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ABSTRACT

INTEGRATED LIMIT EQUILIBRIUM METHOD FOR SLOPE STABILITY
ANALYSIS

Yal¢in, Yagizer
M.S., Department of Civil Engineering

Supervisor: Asst. Prof. Dr. Onur Pekcan

September 2018, 144 pages

Limit equilibrium is a well-established concept with successful implementations to
slope stability analysis problems. Based on different underlying assumptions, there are
numerous limit equilibrium methods (LEMSs), yet all of them interpret the system
reliability to that of the critical slip surface, which requires iterative optimization
procedures to locate. Therefore, a complete analysis framework involves modules to
(i) generate/represent, (ii) analyze and (iii) optimize slip surfaces, all of which
influence the reliability and time complexity of the solutions. Within this context,
many studies were conducted in the past two decades, mostly focusing on improved
optimization procedures. However, little effort is available on the development of
enhanced surface generation algorithms and analysis strategies. In that regard, the
present study introduces Integrated Limit Equilibrium Method (ILEM), wherein novel
procedures are incorporated to generate and analyze slip surfaces. Facilitating the
optimization process, ILEM generates trial slip surfaces with scaled quadratic splines,
which require a minimal number of geometric variables for accurate surface
representation. In addition, quadratic functions render it possible to develop a unified
formulation of common LEMs with differential equations. The governing equations
are derived and closed-form solutions are obtained through analytical integration,

eliminating the need for and the error imposed by slice approximation of conventional



LEMSs. Moreover, high-order numerical integration methods are proven to yield
impartial accuracy with reasonable computational effort. The reliability and refined
efficiency of ILEM are validated through comparative benchmark testing. With
significant improvement over available approaches, ILEM is proposed as an improved

limit equilibrium technique for slope stability analysis.

Keywords: Slope Stability Analysis, Integrated Limit Equilibrium Method, General

Slip Surface, Engineering Optimization
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Oz

SEV STABILITESI ANALIiZI iCIN INTEGRAL TABANLI LIMIT DENGE
YONTEMI

Yalcin, Yagizer
Yiiksek Lisans., Insaat Miihendisligi Boliimii

Tez Yoneticisi: Dr. Ogr. Uyesi Onur Pekcan

Eylul 2018, 144 sayfa

Limit denge metodu, sev stabilitesi analizi problemlerinde oldukca bilinen bir
yontemdir. Farkli kabullere dayanan bir¢ok limit denge yontemi olmakla beraber,
biitiin yontemler kayma giivenligini, iterasyon tabanli optimizasyona dayali olarak
bulunan kritik kayma yiizeyiyle iliskilendirmektedir. Bu nedenle, biitiin bir kayma
analizi, ¢Ozlimlerin giivenilirligini ve ¢6ziim zamani direkt etkileyen, kayma
ylizeylerinin (i) olusturulmasi, (ii) analizi ve (iii) optimize edilmesi agsamalarini
icermektedir. Bu baglamda, son yirmi yilda, 6zellikle optimizasyon yontemlerinin
verimini arttirmak igin bir¢ok ¢alisma yapilmistir. Ancak kayma yiizeyi olusturmak ve
analiz etmek icin kullanilan yontemlerin verimliligi {izerinde ¢ok az durulmustur. Bu
calismada, yukaridaki eksiklikleri gidermek icin, genel kayma yiizeylerinin
olusturulmasi ve analizi konusunda yenilikler i¢eren Integral Tabanli Limit Denge
Yontemi (ILEM) onerilmektedir. Optimizasyon siirecine faydali olmasi amaciyla,
ILEM, test kayma yiizeylerini, ikinci dereceden egrilerle tanimlayarak kullanilan
geometrik parametre sayisini en aza indirgemektedir. Buna ilaveten, bahsi gecen ikinci
dereceden fonksiyonlar, limit denge kosullarinin diferansiyel denklemler aracilig: ile
temsil edilmesine de olanak tanimaktadir. Bununla hakim denklemler elde edilmekte

ve integrasyonla kapali ¢éziimlere ulasiimaktadir. Boylece ILEM, konvansiyonel limit

vii



denge yontemlerinin dilimlere dayali ¢éziimleme yapma zorunlulugunu ve bundan
kaynaklanan tahmin hatalarim1 ortadan kaldirmaktadir. Ayrica, yiiksek dereceden
sayisal integral alma yontemleri sayesinde kisa zamanda iyilestirilen dogruluk oranlar:
da bu metodun kaginilmaz bir sonucudur. ILEM yonteminin giivenilirligi ve
verimliligi, bir ¢ok test problemi kullanilarak dogrulanmistir. Bdylelikle, diger
yontemlere gore ciddi anlamda ilerleme kaydetmeye olanak taniyan ILEM,

tyilestirilmis bir limit denge yontemi olarak sunulmaktadir.

Anahtar Kelimeler: Sev Stabilitesi Analizi, Integral Tabanli Limit Denge Yontemi,

Genel Kayma Yuzeyi, Muhendislik Optimizasyonu
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CHAPTER 1

INTRODUCTION

1.1. Overview

With the gradual expansion of urbanized areas, development of transportation
networks in landslide susceptible areas and common application of engineered soil
structures such as embankments, cut slopes, and earth retaining walls [1], slope
stability analysis has become a vital part of civil engineering practice. In search of
reliable analysis procedures, extensive research has been conducted over the past 80
years [2], giving rise to numerous methods that combine the principles of soil
mechanics with solution approaches based on analytical techniques or the concepts of
continuum/discontinuum mechanics. As a result, contemporary analysis techniques
include, but are not limited to, Limit Equilibrium Methods (LEMS), Finite Element
Method and Discrete Element Method. Among those, LEMs have been widely
preferred owing to their capability to produce reliable results within reasonable
computational demand. Given a possible failure surface, these methods utilize static
equilibrium conditions to determine the “limit state” soil shear strength parameters and
quantify the stability in terms an artificial measure named factor of safety, Fs, which
is the ratio between the mobilized and available soil shear strength at the failure limit
state. The analysis proceeds with different surfaces and the critical one (i.e. the surface
with minimum Fs) is associated with slope system safety. In other words, limit
equilibrium procedures require back-calculation of the critical slip surface, hence a
complete analysis framework incorporates modules for (i) surface
generation/representation, (ii) stability analysis and (iii) surface optimization.
Consequently, the reliability and computational efficiency of the framework depends

on the capability, as well as the compatibility of these modules.



Surface generation module is perhaps the most underrated yet influential component
of a slope stability analysis framework. Most of the available methods and the common
practice aim to facilitate the optimization process through simplifying assumptions
regarding the surface geometry. For instance, it is a common approach to limit the
surface geometry to planar, circular, composite planar-circular or logarithmic spiral
shapes, which can be modeled with only a few decision variables. However, these
assumptions significantly limit the accuracy of the results as the critical surface often
deviates from such simple geometries [3]. Therefore, it is essential that the method is
competent to represent any reasonable surface which may assume arbitrary shapes
with variable curvature and abrupt transitions (i.e. general slip surfaces). Although
these issues are addressed in the literature, there are only a few general surface
generation methods to choose from. Furthermore, the available methods generally
require excessive numbers of decision variables for accurate surface representation; as
a result, they produce challenging optimization problems. Therefore, improved

techniques are still in demand.

After their generation, the surfaces are analyzed using a LEM. Although all LEMs
share the common features mentioned before, they differentiate with unique
assumptions based on force distribution, equilibrium criteria, and sometimes slip
surface geometry. A broad classification divides them into two groups as single free-
body procedures and procedures of slices. Single free-body procedures include simple
methods like Infinite Slope [4], Logarithmic Spiral [5, 6], and Swedish Circle [7, 8].
One characteristic property of these methods is that the underlying assumptions yield
formulations where the normal stress along the slip surface is either constant or do not
affect the overall equilibrium. As a result, equilibrium equations can be formulated for
the whole free-body [2]. Conversely, such a simplification is not possible with other
LEMSs, hence they discretize the free-body into slices to determine the normal stress
distribution. However, discretization itself is not sufficient to resolve such a force
system because the number of unknowns becomes greater than the number of available

equilibrium and boundary conditions when all inter-slice reactions are accounted for.



Therefore, either simplifications or additional boundary conditions are required to
render the problem determinate. In this sense, unique solution schemes were proposed
in the literature, giving rise to LEMs known as Fellenius [9], Bishop’s simplified and
rigorous [10], Janbu’s simplified and generalized [11], Lowe and Karafiath’s [12],
Corps of Engineers [13], Morgenstern-Price [3], Spencer’s [14], and Sarma’s [15]
methods. These methods mainly differ from one another based on the considerations
regarding the equilibrium conditions and internal forces, yet it is possible to unify some
of them with a common formulation like General Limit Equilibrium (GLE) method
[16]. In general, procedures of slices are capable of handling complex slope
geometries, variable soil properties, and external loading effects [1] and therefore often
preferred over single free-body procedures. However, they are computationally

upscale on the account of free-body discretization and individual slice evaluation.

Since LEMs require the location of the critical surface, the analysis proceeds with the
surface optimization step where the geometric parameters of the trial solutions are
updated with an optimization method. Limit equilibrium approach inherently makes it
possible to formulate the analysis procedure as a shape optimization problem with an
objective to minimize Fs. The complexity of the problem depends on the combined
effect of (i) model constants (e.g. slope geometry, soil profile, groundwater and
loading conditions), and (ii) innate characteristics of the selected surface generation
method. When simple surface geometries are assumed, the problem becomes
sufficiently easy to solve with simple trial and error routines. However, accurate
representation of critical surfaces requires general surface generation methods, which
produce high-dimensional optimization problems. Considering that the search spaces
of these problems often contain multiple local minima [2], implementing robust
optimization techniques is essential for the reliability of the analysis framework. This
issue has been extensively studied in the literature, and both deterministic and
stochastic optimization techniques have been employed. Currently, there is a growing
consensus that the modality and dimensionality of slope stability analysis problems

make it necessary to adopt global optimization methods, which involve a certain



degree of random operations. In that regard, stochastic optimization algorithms such
as Genetic Algorithm [17-25], Differential Evolution [26, 27], and Particle Swarm

Optimization [28-31] were successfully adopted in the literature.

With multiple factors in effect, the application of LEM requires a clear understanding
of the fundamental concepts regarding the surface generation, stability analysis, and
surface optimization methods. Limitations imposed by each component can easily
engender the overestimation of safety and inevitably result in catastrophic
consequences. Therefore, both individual and collective performances of the
integrated methods should be assessed when developing an analysis framework.

1.2. Research Objectives

Aiming to develop a reliable and computationally efficient slope stability analysis
framework, the present study proposes enhanced surface generation and analysis
procedures. Focusing on general slip surfaces and procedures of slices, the defects of
the available methods and formulations are identified to specialize the research
objectives. Examination of the available general surface generation methods draws the
inferences that they; (i) require excessive numbers of decision variables for accurate
surface representation, rendering surface optimization a difficult task, (ii) lack the
flexibility to converge to complex surface geometries, and (iii) represent the slip
surfaces with contiguous linear segments, causing unnecessary loss of accuracy.
Similarly, when available LEM formulations are adopted for stability analysis; (i) Fs
evaluation becomes computationally upscale on the account of tedious operations to
discretize the sliding body and individually evaluate each slice; and (ii) Fs is often
overestimated due to the sensitivity of results to the number of slices used in
discretization. Based on these arguments, the present study aims to develop advanced
methods to generate and analyze general slip surfaces and incorporate them into a

proficient slope stability analysis framework.



1.3. Scope of the Study

Addressing the issues mentioned in the preceding section, the present study introduces
Integrated Limit Equilibrium Method (ILEM), wherein novel procedures are
implemented to generate and analyze general slip surfaces. The surface generation
procedure of ILEM incorporates a technique named Scaled Quadratic Spline method
(SQS) which utilizes piecewise continuous quadratic spline functions for surface
representation. The method aims to handle complex geometries with variable
curvature and abrupt gradient transitions using a minimal number of decision
variables, and hence produces relatively lower-dimensional optimization problems.
Furthermore, SQS capacitates a higher accuracy level with smooth curve
representation, compared to available methods that adopt linear segments. In addition
to this embedment, an enhanced analysis strategy is proposed in ILEM as an extension
of SQS. ILEM analysis approach is similar to GLE in the sense that it can be adapted
into several LEMs. However, the static equilibrium conditions are formulated based
on the quadratic function representation of SQS. The derivation results in two
governing equations that consist of definite integrals, which can be integrated
analytically to obtain closed-form solutions. Therefore, ILEM can eliminate the errors
of slice approximation procedures. Furthermore, the integrals can be evaluated with
numerical methods such as Simpson’s 1/3 and Gauss quadrature rules to produce
adequate results with reasonably low computational effort. Based on these properties,

ILEM is introduced as an alternative to the available limit equilibrium formulations.

To validate the reliability of the proposed approach, ILEM surface generation and
analysis methods are evaluated individually. First, a benchmark problem set is
assembled with the slope stability analysis problems available in the literature. The
resulting set includes a total of 11 examples, incorporating a broad range of cases from
simple homogeneous slopes to complex soil profiles; with and without the presence of
groundwater effect, external and pseudo-static earthquake loading. Then, SQS is

combined with GLE formulation and Differential Evolution (DE) optimization



algorithm and evaluated in a series of experiments with these problems. Similarly, the
general surface generation methods in available literature studies [21, 32, 33] are
adopted with the same configuration for performance comparison. The results are
interpreted with statistical significance tests to assess the improvement rate of SQS
over other methods and additionally evaluated with respect to the commercial slope
stability analysis software, Slide v7 [34]. The results emphasize the capability of SQS

and validate the applicability of the proposed analysis procedure.

Accordingly, ILEM analysis procedure is tested in comparison with GLE formulation.
For the analyses in this part, the critical slip surfaces obtained in the previous
experiments are further analyzed using the closed-form formulation of ILEM and other
variants based on numerical integration methods such as trapezoidal, Simpson’s 1/3
and Gauss quadrature rules. The closed-form solution approach is validated for the
procedures of slices proposed by Fellenius, Bishop, Janbu, Lowe and Karafiath, Corps
of Engineers, Spencer, and Morgenstern-Price. Then, a computationally efficient
ILEM variant is developed based on numerical approximation techniques. Lastly, a

comparison is provided to illustrate the improved efficiency of ILEM over GLE.

1.4. Thesis Outline

To deliver the findings and contributions of the study, the rest of the manuscript is
organized as follows: Chapter 2 provides detailed information about available surface
generation, stability analysis, and optimization techniques, outlining the general
framework of limit equilibrium based slope stability analysis procedures. Chapter 3 is
dedicated to ILEM surface generation procedure, SQS. The method is conceptually
introduced, formulated and validated through comparative benchmark testing with
other available surface generation techniques. Chapter 4 presents the unified
formulation of ILEM stability analysis procedure. In this chapter, several ILEM
variants are developed and a computationally efficient configuration is proposed as an
alternative to the available limit equilibrium formulations. Lastly, Chapter 5

summarizes the findings and concludes the study.



CHAPTER 2

LIMIT EQUILIBRIUM CONCEPT FOR SLOPE STABILITY ANALYSIS

The focus of this chapter is to provide the fundamentals of the theory and application
of limit equilibrium concept to slope stability analysis problems. Therefore, the scope
is constrained with the currently available methods, with an emphasis on procedures
of slices and general surface generation techniques. Accordingly, in Section 2.1, limit
equilibrium concept is introduced and available analysis methods are discussed in
detail. Section 2.2 is dedicated to slip surface generation methods, while Section 2.3
covers the surface optimization strategies proposed in the literature. Furthermore, the

methods adopted in the succeeding chapters are formulated in each section.

2.1. Theory of Limit Equilibrium

Limit equilibrium approach assumes that a slope is stable when any free-body inside
the soil medium is at rest, implying that the static equilibrium conditions are satisfied.
Based on this assumption, LEMs cannot yield a direct measure of system reliability;
instead, they analyze multiple paths within the soil profile to determine the critical slip
surface. For any surface, the safety level is quantified with a constant named factor of
safety, Fs, which is the ratio between the available soil shear strength and the
equilibrium shear stress at the slip surface. When the shear strength is expressed with
Mohr-Coulomb soil model, the definition of Fs extends to the expressions given in
Egs. (2.1) and (2.2), where Fs is assumed to be constant throughout the slip surface.
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where 7. peak shear stress, s: equilibrium shear stress, on: normal stress, ¢ and ¢: soil

cohesion and friction angle (i.e. subscript “m” denotes the mobilized parameters).



Considering the generic slip surface given in Figure 2.1, it is possible to formulate the
equilibrium equations and determine the mobilized shear strength based on the inertial
forces, external loads and base reactions. Among those, calculations of inertial and
external forces are relatively straightforward. On the other hand, the base reaction is
the resultant of two variable stress distributions (i.e. normal stress and shear
resistance), hence require additional considerations. The common approach is to
divide the free-body into a finite number of slices and derive the equilibrium equations
based on the individual effect of each segment. However, the problem becomes
statically indeterminate when all internal reactions are accounted for. Considering a
body of “n” slices, the available equilibrium and boundary conditions are summarized
in Table 2.1. For each slice, there are three equilibrium (i.e. horizontal force, vertical
force and moment) and one boundary (i.e. Mohr-Coulomb criterion) conditions,
resulting in a total of 4n equations. On the other hand, the unknowns (i.e. Fs value, the
magnitude and location of the base and interface reactions illustrated in Figure 2.1b)
add up to 6n-2 variables as given in Table 2.2. Consequently, the problem is statically
indeterminate with a degree of 2n-2, and therefore requires either simplifications or
additional boundary conditions to solve.

@) (b)

Figure 2.1: Free-body diagram of a generic slip surface
(a) overall diagram (b) vertical slice diagram



Table 2.1: Available equilibrium and boundary conditions of LEM

Equations Number
Horizontal force equilibrium n
Vertical force equilibrium n
Moment equilibrium n
Mohr-Coulomb criterion n
Total 4n

Table 2.2: Unknown variables in LEM

Unknowns Number
Normal force at the base of the slice n
Location of the normal force at the base of the slice n
Shear force at the base of the slice n
Interslice normal force n-1
Interslice shear force n-1
Location of the interslice force (i.e. line of thrust) n-1
Factor of safety, Fs 1
Total 6n-2

Provided that the indeterminacy problem is handled, limit equilibrium can provide the
Fs related to an assumed slip surface. However, a single analysis does not yield a direct
measure of system reliability as the stability of the slope is associated with the critical
slip surface (i.e. the free-body with the minimum Fs). Therefore, a surface optimization
procedure is necessary to minimize the Fs. Without the aid of computers, both
individual slice evaluation and surface optimization can translate to be tedious tasks.
Suitably, the earlier studies focused on simplifications that either facilitate or eliminate
these steps. For instance, methods like Infinite Slope [4], Logarithmic Spiral [5, 6],
and Swedish Circle [7, 8] greatly simplify the problem with restricted surface
geometries, allowing the formulation of equilibrium equations without free-body
discretization. Also known as single free-body procedures, these methods are simple
enough to adopt in hand calculations; however, their application is limited to specific

slope and slip surface geometries, soil types, loading and groundwater conditions.



In the following decades, the advances in computer technology allowed the practical
implementation of methods based on individual slice evaluation, namely, procedures
of slices. Procedures of slices are competent to handle complex geometries and loading
conditions, hence applicable to a wider range of analysis problems. Despite having
simplifications and intuitive assumptions to overcome static indeterminacy, some
variants of these methods rigorously satisfy the equilibrium conditions. For instance,
procedures of slices like Fellenius’ [9], Bishop’s simplified [10], Janbu’s simplified
[11], Lowe and Karafiath’s [12] and Corps of Engineers [13] methods ignore some of
the equilibrium conditions and internal forces. On the other hand, Bishop’s Rigorous
[10], Janbu’s Generalized [11], Morgenstern-Price [3], Spencer’s [14] and Sarma’s
[15] methods overcome indeterminacy through minor assumptions, rigorously
satisfying the equilibrium conditions. Although the underlying assumptions of these
methods are slightly different, they can be accommodated within unified formulations
like General Limit Equilibrium (GLE) [16].

2.1.1. Single Free-Body Procedures

Despite their limitations, single free-body procedures like Infinite Slope, Logarithmic
Spiral, and Swedish Circle can provide a rough estimation of Fs under specific
conditions. Although not utilized in this study, these methods are discussed in the
following sub-sections to provide a rudimentary understanding of the limit equilibrium

concept.

2.1.1.1. Infinite Slope Method

Proposed by Taylor [4], Infinite Slope method considers a fully translational failure
mechanism. The method assumes that failure develops along an infinitely long plane,
parallel to the ground surface as illustrated in Figure 2.2. Therefore, base normal and
shear stresses are constant. Based on this idea, the analysis can be performed on any
vertical element by resolving the stresses along the slip direction. The interface
reactions can be ignored as the forces on the opposite sides of the element are collinear

with equal magnitude.
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Figure 2.2: Infinite slope analysis

Slice weight, W, and average pore-water pressure, u, are calculated using Egs. (2.3)
and (2.4), respectively. For Eq. (2.4), hydrostatic condition is assumed.
W = yhAx (2.3)
u=y,h, (2.4)
where y: unit weight of soil, h: height of slice, yw: unit weight of water, hw: height of
slice below the water table, Ax: width of the slice.

Base normal force, N, is calculated considering force equilibrium, using Eg. (2.5).
N =W cos o (2.5)

where a: inclination of slice base, measured from horizontal.

Based on the Mohr-Coulomb failure criterion, shear resistance, S, is calculated using
Eqg. (2.6).

¢ AX tan¢"(N _u_Ax) 26)

S=——+
F, cosa K cosa
where Fs: factor of safety, c' and ¢": effective soil cohesion and friction angle,

respectively.

To evaluate the factor of safety, Fs, force equilibrium is satisfied along the slip
direction. As a result, Fs can be singled out to obtain Eq. (2.7).

C'AXseca +(N —UAthan ¢
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The given procedure can be adopted for effective stress analysis, yet it is possible to
modify the equations to evaluate Fs based on total stresses. In that case, the effect of
pore-water pressure is ignored and, c¢' and ¢' in Eq. (2.7) are replaced with the

undrained shear strength parameters, cu and ¢u.

Although Infinite Slope approach is based on force equilibrium, moment equilibrium
is implicitly satisfied since the interface forces cancel out and rest pass through the
same point, producing zero net moment. Having a straightforward formulation, the
method can provide a quick estimation of Fs for translational failure, and therefore
often preferred when the there is a shallow bedrock or a soft soil interlayer. However,
its application is limited to cases where the ground surface and soil layers are in parallel
alignment. Another issue of Infinite Slope method is that the effect of slip toe and scarp
are ignored, hence the method usually underestimates Fs compared to rigorous
procedures of slices.

2.1.1.2. Swedish Circle Method

Introduced by Fellenius in 1922 [7], Swedish Circle is one of the earliest slope stability
analysis methods, having applications that date back to 1916 [8]. The procedure
considers the rotational failure of a circular slip surface around its central axis and
utilizes moment equilibrium to determine the Fs. Therefore, the base normal stresses
focalize to the center of rotation as illustrated in Figure 2.3. Furthermore, the frictional
resistance of soil is ignored (i.e. $=0) to overcome static indeterminacy and eliminate
free-body discretization completely. As a consequence, the method is only applicable
to circular slip surfaces with cohesive soil interfaces, under fully undrained condition.
Considering moment equilibrium with respect to point R, Fs can be derived for a

homogeneous soil profile as follows:

Fs — Z M resisting — c Lr (28)
Z M driving W rx
where r: radius of slip circle, L: total arc length, W: total weight of free-body, xc and

Xr: abscissas of gravitational center of mass and rotational axis, respectively.
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Figure 2.3: Swedish circle analysis

Despite its limitations, Swedish Circle method can handle composite soil profiles
through discrete evaluation of resisting forces. Furthermore, the method rigorously
satisfies the static equilibrium conditions. Although force equilibrium is not
exclusively evaluated, the normal stress distribution can assume any configuration that
satisfies the criteria. Swedish Circle is a reliable method within its range of application,
however, it often overestimates Fs due to limitations imposed by circular surface

assumption.

2.1.1.3. Logarithmic Spiral Method

Similar to other single free-body procedures, Logarithmic Spiral method exploits the
slip surface geometry to overcome static indeterminacy. Initially proposed by Taylor
[5] and further extended by Frohlich [6], the method employs logarithmic spiral slip
surfaces as illustrated in Figure 2.4. The geometry of the spiral is a function of the
center of rotation, mobilized friction angle, ¢m, the angle of rotation, ¢, and the initial

radius, ro, as given in Egs. (2.9) and (2.10).
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Figure 2.4: Logarithmic spiral analysis

tang, = tang (2.9)
FS
r=re’ (2.10)

Using the proposed geometry, the resultant of the normal stress, on, and the frictional
resistance (i.e. ontangm) always passes through the rotational axis, producing zero net
moment. Therefore, it is possible to evaluate the Fs based on moment equilibrium by
ignoring the contribution of normal stresses, similar to Swedish Circle method.
Another similarity with Swedish Circle method is that force equilibrium is satisfied
without explicit consideration. However, Logarithmic Spiral method may require
several trials to achieve complete equilibrium since the resulting Fs and the one
initially assumed to calculate the mobilized friction angle are different. Therefore, an
iterative procedure is often adopted to assure the agreement of these two terms.
Through this implementation, the method can analyze slopes under both drained and
undrained conditions, which is an improvement over Swedish Circle method. In
addition, logarithmic spirals are relatively more capable of representing complex slip
surface geometries, compared to planar and circular surfaces adopted in other single

free-body-procedures. However, the formulation of the method is rather complex, and
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its application is only possible when the soil profile is homogeneous, or at least friction

angle is the same for all layers.

2.1.2. Procedures of Slices and General Limit Equilibrium Method

Procedures of slices have wider application ranges compared to single free-body
procedures, being able to handle composite soil profiles under complex loading
configurations, in both drained and undrained conditions. Furthermore, most of the
available formulations can analyze general slip surfaces, which are more flexible to

represent the critical case compared to the simplified approaches presented previously.

In this section, some of the common procedures of slices are conceptually introduced
based on General Limit Equilibrium (GLE) formulation, which is proposed by
Fredlund et al. [16] to provide a unified formulation for the available approaches.
Therefore, GLE is not considered as a separate LEM, rather a generalized form on the
existing ones. It is worth mentioning that there are several other unified formulations
in the literature [44, 45], however, they are kept out of the scope of this study. The
formulation of GLE can be manipulated with slight adjustments to produce results for
the procedures of slices proposed by Fellenius, Bishop, Janbu, Lowe and Karafiath,
Corps of Engineers, Morgenstern and Price, and Spencer. In its generalized form, the
formulation considers vertical force equilibrium to derive the equations for base shear
and normal forces. Then, Fs is separately computed for horizontal force and moment
equilibrium. In other words, GLE utilizes two separate Fs definitions, which are

iteratively equated to satisfy complete equilibrium.

GLE incorporates two major assumptions to overcome static indeterminacy. First, the
normal force at the base of each slice is assumed to act towards the middle, which
reduces the degree of indeterminacy to n-2 for a body of n slices. In addition, GLE
either specifies a direction or a location (i.e. line of thrust) for the interslice forces. All

LEMs presented in this section can be formulated with the former assumption, hence
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it will be the focal point. Based on the approach proposed by Morgenstern and Price

[3], the direction of resultant interslice forces can be specified with Eq. (2.11).
X/E =41 (x) (2.11)
where X: interslice shear force, E: interslice normal force, A: a constant scale factor, fi

(x): a prescribed function that dictates the variation of X/E ratio along the slip surface.

Applicable to each slice interface, the boundary condition given in Eqg. (2.11)
interpolates n-1 equations and one unknown (i.e. constant scale factor, 4) to the
problem. Accordingly, the system becomes statically determinate. Based on this
approach, GLE method is formulated for the effective stress analysis of the general
slip surface given in Figure 2.5, where the slope is subjected to external and pseudo-
static earthquake loading. Only the governing equations are provided in this section,

and the detailed formulation is provided later in Chapter 4.

The normal and shear forces illustrated in Figure 2.5b are computed using Egs. (2.12)

and (2.13), respectively.

W-(L+k, )+Q+(Xg - XL)—(Axtana)-lg+(qutana)-ta:¢'

— S S
N= sina tan ¢' (2.12)
cosq +———
S
c Ax tang' UAX
S=—- + ¢-(N— j (2.13)
F, cosa K cosa

where W: weight of slice (i.e. refer to Eq. (2.3)), kv and kn: vertical and horizontal
seismic coefficients, Q: resultant of external load acting above the slice, X and E:
interslice shear and normal forces (i.e. subscripts “L” and “R” given in Figure 2.5b
denote left and right-hand sides of slice, respectively), Ax: width of slice, a: inclination
of slice base measured from horizontal, u: average pore-water pressure on slice base

(i.e. referto Eq. (2.4)), ¢ and ¢": effective soil cohesion and friction angle, respectively.
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Figure 2.5: General Limit Equilibrium analysis approach
(a) slip surface of a slope under external and seismic loading
(b) free-body diagram of a vertical slice

To satisfy complete force equilibrium, horizontal forces in each slice are summed up,
producing the force Fs of GLE, given in Eq. (2.14).

> [(c-utang')- Ax+ tan¢' N cos ]

F =
> > (Nsina +Wk, )

(2.14)
where Fs;: force factor of safety.

Similarly, moment equilibrium is satisfied with respect to a common rotational center,
point R in Figure 2.5a. As a result, the moment Fs can be determined using Eq. (2.15).

) cosa
o Z{[Q FW - (L, )]+ W - Nr”}

where Fsm: moment factor of safety, rs, rx, ry, and rn: moment arms in Figure 2.5a.

(2.15)

Although the formulation of GLE is given for effective stress analysis, the equations
can be adapted for total stresses by ignoring the effect of pore-water pressure and
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substituting the undrained parameters into the equations. In the following sub-sections,

GLE interpretations of common LEMs are discussed further.

2.1.2.1. Fellenius’ Method

Fellenius’ method (i.e. also known as Ordinary Method of Slices) is the earliest
procedure of slices in the literature. The method was initially proposed as an extension
of Swedish Circle method to deal with soils under drained condition. In this procedure,
interslice forces are completely ignored and Fs is determined based on moment
equilibrium. Contrary to other procedures, Fellenius’ method does not satisfy vertical
force equilibrium. Instead, the vertical forces are resolved into their components,
parallel and perpendicular to the slip surface. The perpendicular component is assumed
to be equal to the base normal force that is used to determine the shear resistance. Since
this approach is contradictory to the one adopted in GLE, Fellenius’ method requires
an additional modification. For this method only, the normal force is calculated using

the expression given in Eq. (2.16).
N =[W-(1+k,)+Q] cosa —Wk,sina (2.16)

Contrary to the normal force equation given for GLE, Eq. (2.16) is independent of Fs.
Therefore, for Fellenius’ method, a single step calculation concludes the analysis.
Since Fellenius’ method does not satisfy force equilibrium, the value of Fs depends on
the location of the rotational center, R. It is usually acceptable to use the center of the
arc as the reference point when circular slip surfaces are adopted [35]. However, such
a distinct location is not available for general slip surfaces. Therefore, the application
of Fellenius’ method is usually not recommended for non-circular slip surfaces.
Furthermore, the method often yields unrealistic results, especially for flat slopes with
high pore-water pressures [36].
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2.1.2.2. Bishop’s Simplified Method

Similar to Fellenius’ approach, Bishop’s simplified method ignores horizontal force
equilibrium and determines Fs based on moment evaluation. However, base normal
forces are calculated based on Eq. (2.12), which ensures vertical force equilibrium.
The procedure accounts for interslice forces but ignores the shear components to
overcome static indeterminacy (i.e. Afi(x)=0). Based on these assumptions, Fs can be

evaluated using Eq. (2.15).

Bishop’s simplified method does not guarantee complete force equilibrium, hence Fs
is dependent on the point of reference selected for moment calculations, similar to
Fellenius’ method. However, the results are only affected by the vertical position of
the reference point since the free-body is in vertical force equilibrium. Regardless, the

application of this procedure is mostly restricted to circular slip surfaces.

2.1.2.3. Janbu’s Simplified Method

It is apparent that simplified methods that evaluate Fs based on moment equilibrium
require a distinct axis of rotation, which is not clearly defined for general slip surfaces.
Addressing this issue, Janbu proposed a procedure where Fs is evaluated based on
horizontal force equilibrium instead. As a result, the procedure commonly known as
Janbu’s simplified method ignores moment equilibrium. Assumptions regarding the
internal forces are the same as Bishop’s, in that, interslice shear forces are ignored (i.e.
2£i(x)=0). With this approach, Fs can be evaluated using Eq. (2.14).

Ignoring the shear resistance in the slice interfaces, Janbu’s simplified method always
underestimates Fs [2] compared to rigorous methods. Accordingly, Janbu proposed
correction factors to adjust the results based on experimental data from various slope
stability analysis problems.
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2.1.2.4. Lowe and Karafiath’s Method

Lowe and Karafiath introduced a side force correction within a concept similar to the
one proposed by Janbu. In Lowe and Karafiath’s method, it is intuitively assumed that
the direction of the resultant interslice force in an interface is equal to the average of
the ground and slip surface slopes as illustrated with Figure 2.6. Using GLE
formulation, this approach is accommodated by setting A factor to 1 and applying the
interslice force function given in Eq. (2.17). Lowe and Karafiath’s method is often

considered as the most accurate of all force equilibrium methods [2, 37].

9(x)

f(x)
fi (%)

Xt Xs

Figure 2.6: Interslice force function of Lowe and Karafiath’s method

A=1, fi(x)zw 2.17)

where f(x): a function representing the slip surface, g(x): a function representing the

ground surface.

2.1.2.5. Corps of Engineers Method

Corps of Engineers method is essentially the same as the one proposed by Lowe and
Karafiath. However, in this method, the direction of the interslice force is assumed to
be equal to the average ground surface slope. This statement is interpreted in two
different ways as (i) the inclination of the chord passing through the slip toe and scarp
and (ii) the average ground surface slope above the interface. Therefore, Corps of

Engineers method has two variations used in practice as illustrated in Figure 2.7 and
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given in Egs. (2.18) and (2.19). Compared to Lowe and Karafiath’s internal force

assumption, both of these approaches often lead to overestimated Fs values [2, 37].
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Figure 2.7: Interslice force functions of Corps of Engineers method

Case (i): 1=1, f,(X) _ 10~ 1) (2.18)
X=X
Case (ii): 1=1, f;(X)=9'(X) (2.19)

where x: and xs: abscissas of slip toe and scarp.

2.1.2.6. Morgenstern-Price and Spencer’s Methods

Morgenstern-Price method is possibly the most common rigorous procedure of slices.
The method accounts for all internal reactions and equilibrium conditions, hence can
be adopted as the generalized form of GLE formulation. In this approach, the direction
of interslice force is again dictated with a prescribed function, fi(x). However, in this
case, 4 factor is utilized to scale the function, in order to achieve complete equilibrium.
As a result, both Fs and 4 are unknown variables in Morgenstern-Price method. There
are various interslice force functions proposed in the literature (e.g. constant,
trapezoid, half-sine, clipped sine functions). However, the Fs computed by
Morgenstern-Price method is reasonably insensitive to this selection [3]. Therefore,
any reasonable relation can be implemented. Among the available approaches,
constant and half-sine functions are commonly preferred in engineering practice [38].

Therefore, these functions are defined in Egs. (2.20) and (2.21) and further illustrated

21



in Figure 2.8. It should be noted that Spencer’s method is a special case of
Morgenstern-Price method where the interslice function is constant (i.e. all interslice

forces are parallel).

Constant function: f(x) =1 (2.20)
. . . X=X
Half-sine function: f,(X)=sin| 7z x (2.21)
g(x
f
fi (X) ®
l constant
half-sine
0
Xy Xs

Figure 2.8: Interslice force functions of Morgenstern-Price method

Using one of the abovementioned interslice functions, Morgenstern-Price method
analyzes the slip surface based on force and moment equilibrium. As a result, the
problem is defined by two governing equations, Eqgs. (2.14) and (2.15), and two
unknowns, Fs and 4. Since normal force is dependent on Fs, both expressions are
recursive (i.e. Fs appears on both sides). Therefore, the system cannot be solved
through algebraic operations. Instead, trial and error approaches, graphical procedures
or multivariate quasi-Newton root finding methods can be adopted to find the couple
that satisfies both equilibrium conditions. For the non-rigorous LEMs proposed by
Bishop, Janbu, Lowe and Karafiath, and Corps of Engineers, the solution procedure is
comparably simple. The problem is either defined by Eq. (2.14) or (2.15) and the only
unknown is Fs. Accordingly, bracketing methods or fixed-point iteration can also be

adopted to find Fs, in addition to the methods mentioned previously. Based on the
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discussions presented in this section, a summary of common procedures of slices are

given in Table 2.3.

Table 2.3: Summary and comparison of procedures of slices

Equilibrium Conditions

Method Vertical Horizontal

Moment
Force Force Surface Comments

The simplest method of slices;
ignores interslice forces; very
inaccurate for flat slopes with
high pore-water pressures
Ignores interslice shear forces;
Bishop’s simplified [10] Vv X Vv Circular accurate within its range of
applications
Simplest force method; ignores
Janbu’s simplified [11] v v X General interslice shear forces; always
underestimates Fs
Assumes the magnitude and
direction of interslice shear
4 X General forces; most accurate force
equilibrium method
Assumes the magnitude and
Corps of Engineers [13] v v X General direction of interslice shear
forces; often overestimates Fs
Simplest rigorous method;
Spencer [14] v v v General  assumes parallel interslice
forces; accurate
Rigorous method; variable
Morgenstern-Price [3] v N4 N4 General interslice force direction;
accurate

Fellenius [9] X X v Circular

Lowe and Karafiath [12] v

2.2. Slip Surface Generation

The procedures discussed so far can only evaluate the stability of an assumed slip
surface. Therefore, a method is required to generate trial solutions, considering that
LEMs associate the slope system safety to that of the critical slip surface. In this
section, some of the available surface generation methods are introduced through a
classification of available approaches. First, procedures that generate simple surface
geometries such as planar, circular and logarithmic spiral are presented in Section
2.2.1. Then, in Section 2.2.2, some of the common general slip surface generation
methods are discussed and formulated for the succeeding chapters.
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2.2.1. Planar, Circular and Logarithmic Spiral Slip Surfaces

The approaches discussed in this section are based on specified surface geometries that
are coupled with specific LEMs or adopted to simplify the surface optimization
procedure. A common feature of these approaches is that the resulting surfaces can be
represented with at most a few geometric parameters. For instance, planar surfaces
used in Infinite Slope analysis are defined by only one geometric parameter, which is
the slip surface depth. As a result, a specific surface generation or optimization

technique is not necessarily adopted for this method.

In the case of circular and logarithmic spiral surfaces, the geometry can be defined by
a center and a radius (i.e. initial radius for logarithmic spirals). Therefore, a two-
dimensional analysis optimizes three control variables to determine the critical slip
surface. In practice, this procedure is often handled with a grid search routine [37].
The example given in Figure 2.9 illustrates a circular failure analysis. Each node of
the grid is a possible center for the critical slip surface. For each center, multiple
surfaces are generated and the radius, r, is optimized to minimize Fs. The configuration
that yields the minimum Fs is specified as the critical slip surface. For logarithmic
spiral surfaces, a similar approach can be adopted as well. Although this approach is
relatively simple, the result accuracy is limited as the critical slip surface can

significantly deviate from these constrained geometries.

Figure 2.9: Grid search approach for circular failure analysis
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2.2.2. General Slip Surfaces

The reliability of limit equilibrium solutions significantly depends on the capability of
the implemented surface generation method. To accurately represent the critical case,
the method should be flexible to produce any reasonable slip surface, which may
incorporate a composition of planar and rotational segments with variable curvature
and even abrupt gradient transitions. In this sense, general surface generation methods
(i.e. also known as non-circular surface generation methods) eliminate the restrictions
imposed by the approaches presented previously. Although this concept is widely
accepted, it is not extensively studied in the literature except for the notable efforts of
Sun [21], Malkawi [32], Bolton [41], Cheng [33, 39] and L.i [42]. In the following sub-

sections, the methods proposed by Malkawi, Cheng, and Sun are presented.

2.2.2.1. Malkawi’s Method

The method suggested by Malkawi [32] is one of the most effective approaches in the
literature, having successful applications to slope stability analysis problems. When
generating a slip surface of n slices, the formulation requires 2n geometric parameters,
which are normalized between [0, 1]. The parameters can either be chosen randomly
or produced by an optimization routine. The method always generates convex surfaces
to meet the kinematical admissibility requirement proposed in [28, 32, 39, 40]. Beyond
that, no major geometric restrictions are imposed on the surface geometries. The
procedure is formulated below, based on the generic surface illustrated in Figure 2.10.

Step 1: Define the horizontal boundary limits of the slip toe and scarp, Vi(x1, y1) and

Vn+1(X n+1, Yn+1), respectively.

Xl € [Xi,min ' Ximax] ’ Xn+l € [Xn+1,min ’ Xn+1,max] (222)
where X1,min and Xn+1,min: minimum limits of x1 and Xn+1, X1,max and Xn+1,max; Maximum

limits of x1 and Xn+1.
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Figure 2.10: Malkawi’s surface generation method

Step 2: Prescribe the number of slices, n, and generate a decision vector of 2n variables

using an optimization method.
ST (A A A (2.23)

r: a decision vector with 2n variables, rq: d" geometric variable of r, where rq € [0, 1].

Step 3: Determine the positions of Vi(x1, y1) and Vn+1(Xn+1, Yn+1) using Eqgs. (2.24)—
(2.27).

X:L = Xl,min + r1()(1,max - Xl,min) (224)

¥y =9(x) (2.25)

Xn+1 = Xn+1,min + r2 (Xn+l,max - Xn+1,min ) (226)
Yo = 9(%.0) (2.27)

where y=g(x): the function representing the ground surface.

Step 4: Determine the toe and scarp angles of the surface, denoted as o1 and an
respectively, using Egs. (2.28) and (2.29). It should be noted that the toe angle is
limited between -30° and -45° to avoid computational difficulties during the Fs
evaluation, in accordance with [43]. However, this approach does not impose any

restrictions to the generated surfaces since slice widths are variable. The width of the
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first slice may converge to zero and practically be replaced by the second slice,

allowing any toe angle greater than -30°.

T

@=L (-9 2.28)
T

a, = P +hoy (2.29)

Step 5: Determine the position of Vi+2(Xn+2, Yn+2) analytically by drawing two lines

from V1 and Vn+1 with angles a1 and an, respectively.

Step 6: Determine the position of V2(xz, y2) using Egs. (2.30) and (2.31).

X, =X +L(X ., —X) (2.30)
Y, = Yo+ (% —x)tan ey (2.31)
Step 7: Determine the positions of vertices n+3 to 2n using Egs. (2.32) and (2.33).
X =% +F (X = %) (2.32)
Vi =Y, + (%, — X )tana, (2.33)

fori=n+2,n+3,...,2n-1

Step 8: Determine the positions of vertices 3 to n-1 using Eqgs. (2.34)—(2.36).

Xi+l = Xi + ri+n+2(Xi+n+1 - Xi) (234)

tang, = Dt~ N (2.35)
Xi+n+l - Xi

Yia=Yit (Xi+l =X )tan Q; (2.36)

fori=2,3,...,n-2

Step 9: Assign the coordinates of the Vn using Eq. (2.37). Note that Va and Van

correspond to the same vertex.

X=X, Yo = Yon (2.37)
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2.2.2.2. Cheng’s Equal and Variable Division Methods

In their study, Cheng et al. [33] evaluated the performances of various surface
generation methods, including the one proposed by Malkawi. The study concluded that
Malkawi’s method is fairly efficient for problems incorporating stratified soil profiles,
yet it may not be applicable to complicated loading cases. Accordingly, they proposed
the alternative approaches presented in this section. Cheng’s method starts by
assigning the slip toe and scarp positions. Then, the slice widths and the base angles
are assigned considering the kinematical admissibility requirements. There are two
variations of this method, based on (i) equal slice division (i.e. slice width is constant)
and (ii) variable slice division (i.e. slice width is variable) which generate a slip surface
of n slices using n+1 and 2n geometric parameters, respectively. The procedure is

formulated below considering the generic slip surface illustrated in Figure 2.11.

77

Figure 2.11: Cheng’s surface generation methods

Step 1: Define the horizontal boundary limits of the slip toe and scarp, Vi(x1, y1) and

Vin+1(Xn+1, Y n+1), respectively.

Xl € [Xl,min ' leax] ' Xn+1 € [Xn+1,min ’ Xn+l,max] (238)
where X1,min and Xn+1,min: Minimum limits of x1 and Xn+1, X1,max and Xn+1,max; Maximum

limits of x1 and Xn+1.
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Step 2: Prescribe the number of slices, n, and select either equal or variable division
approach. For equal division approach, generate a decision vector of n+1 variables.

For the variable division approach, generate a 2n variables.
Equal division: T = ([, [y e T, (2.39)
Variable division: I'= ([ [y Ty ) (2.40)

where r: a decision vector with either n+1 or 2n variables based on the selected

approach, rq: d" geometric variable of r, where, rq € [0, 1].

Step 3: Determine the positions of Vi(x1, y1) and Vn+1(Xn+1, Yn+1) using Egs. (2.41)—
(2.44).

% =X, i+ 06 Yo (241)
V.= g(x) (2.42)

X2 = Xostmin + (Xn+l,max ~ Xyt min ) (2.43)
Yoo =9(%..1) (2:44)

where y=g(x): the function representing the ground surface.

Step 4: Calculate the average slice width, Ax, using Eq. (2.45) and determine abscissas
of vertices 2 to n using either Eq. (2.46) or Eq. (2.47), depending on the selected

approach.
Ax = Jom T K (2.45)
n
Equal division: X; =X_; +AX fori=2,3,n (2.46)
Variable division: X = X;_; + (0-5+ YHn)AX fori=2,3,n (2.47)

Step 5: Determine the toe angle of the surface, denoted as a1, using Eg. (2.48). Note

that the toe angle is limited between the ground surface inclination and 90°.

alz_%+r3|:g'(x1)_%} (2.48)
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Step 6: Calculate the ordinate of V2 using Eq. (2.49).
Yi=Y,t Axtan 4 (2.49)

Step 7: For slices 2 to n-1, determine the minimum and maximum limits of base angles
using Egs. (2.50) and (2.51). Then, calculate the base angles and ordinates using Eqgs.
(2.52) and (2.53), respectively.

i min = i (2.50)
a“mx:tanl[nun{ym1‘yh g(x””"”}] (251)
' Xon — X; X=X
& = pin T ri+2(ai,max _ai,min) (2.52)
Vi = Y +AXTN (2.53)
fori=2,3,n-1

where aimin and aimax: minimum and maximum limits of «i.

2.2.2.3. Sun’s Cubic Spline Method

The common feature of Malkawi’s and Cheng’s methods is that they require a great
number of geometric parameters for accurate surface representation, and thus produce
high-dimensional, difficult surface optimization problems. Addressing this issue, Sun
[21] proposed a procedure to minimize the number of geometric variables through
spline interpolation. The method generates a number of vertices and connects them
with continuous cubic spline functions. Then, the resulting free-body is divided into
equally spaced vertical slices. Based on the description given by Sun, the method is
summarized as follows:

Step 1: Construct ns+1 vertices as represented in Eq. (2.54). The vertices should
comply with the constraints given in Egs. (2.55)-(2.58).

V306, Yoh Va0t Yo koo Vol 1Y) (2.54)
Equal horizontal spacing constraint:
X —
X :xj_l+(r‘%xl) forj=2,3,....ns (2.55)

S
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Boundary constraints:

Xain SX; S X fOrj=1,3,.., e+l (2.56)
Y1 =904), Vo a=9(X, 1) (2.57)
Kinematic admissibility constraint:
4 T
_ZsalSOtzS...SajS...SanSHSE (2.58)

where ns: number of splines, Xmin and Xmax: minimum and maximum horizontal limits
of vertices, y=g(x): the function representing the ground surface, ¢;j: inclination of the

line passing through vertices j and j+1.

Step 2: Perform cubic spline interpolation to connect the vertices. Based on this
approach, kinematical admissibility is not guaranteed as cubic spline functions can

oscillate to produce concave down segments.

Step 3: Divide the free-body into n vertical slices and process the data to compute slice

properties.

Although the general concept of the method is described, an explicit formulation was
not given in the study of Sun [21]. In the scope of this study, Sun’s method is
formulated based on Malkawi’s approach through a modification to impose constant
slice widths. The resulting procedure requires ns+1 geometric parameters to generate
a surface of ns splines as formulated in the following pseudocode considering the

generic slip surface illustrated in Figure 2.12.

Step 1: Define the horizontal boundary limits of the slip toe and scarp, Vi(x1, y1) and

Vhs+1(X ns+1, Yns+1), respectively.

Xi € [Xl,min ’ Xl,max] ’ an+1 € [an+1,min ’ an+l,max:| (259)

where X1,min and Xns+1,min: Minimum limits of X1 and Xns+1, X1,max and Xns+1,max; Maximum

limits of x1 and Xns+1.

31



“"'°"'i/ns+2
Figure 2.12: Sun’s surface generation method

Step 2: Prescribe the number of splines, ns, and generate a decision vector of ns+1

variables using an optimization method.
r:(rl,...,rd,...,rns+l) (2.60)
r: a decision vector with ns+1 variables, rq: d" geometric variable of r, where ra € [0,1].

Step 3: Determine the positions of Vi(x1, y1) and Vns+1(Xns+1, Yns+1) using Egs. (2.61)—
(2.64).

% =% 0 + 50 e =Xy (2.61)

¥ =9(x) (2.62)

AT S | (SR (2.63)
Yo 1 =0(X, ) (2.64)

where y=g(x): the function representing the ground surface.

Step 4. Calculate the average slice width, Ax, using Eg. (2.65) and determine the
abscissas of vertices 2 to ns using Eq. (2.66).

AX = o™X (2.65)
nS
X; = X;_y +AX forj=2,3,n (2.66)
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Step 5: Determine the toe and scarp angles of the surface, denoted as a1 and ons
respectively. The method limits the base angles -45° and 60°. Therefore, the equations

given for Malkawi’s method are modified to comply with this requirement.

T
=—(r, -3 2.67
@ =563 (267)
a, = % Tre (2.68)

Step 6: Determine the position of Vns+2(Xns+2, Yns+2) analytically by drawing two lines

from V1 and Vns+1 with angles a1 and ans, respectively.

Step 7: Determine the ordinates of V2 and Vns using Egs. (2.69) and (2.70).
Y, =Y, +(x - x tane, (2.69)
ynS = yns a1 (an a1 an )tan ans (2.70)
Step 8: Determine the positions of vertices ns+3 to 2ns-1 using Egs. (2.71) and (2.72).
Xj+1 = Xj + rj+3—nS (an 1 Xj) (2.71)

Vin=Y; + X, —x Jtna, 2.72)

for j = ns+2, ngt3,..., 2ns-2

Step 9: Determine the ordinates of vertices 3 to ns-1 using Egs. (2.73) and (2.74).

y'+n +1 Yi

tang, = 21
a; X1 X, (2.73)
Wu:yf4¥ﬂ‘ﬁﬁm“j (2.74)

Step 10: Perform cubic spline interpolation to connect the vertices. The boundary
conditions of the splines were not clearly specified by Sun. Therefore, the study
possibly employed natural splines.

Step 11: Divide the free-body into n vertical slices as illustrated in Figure 2.12 and

process the data to compute slice properties.
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2.3. Surface Optimization and Differential Evolution Algorithm

Each surface generation method presented in the previous section requires input
decision vectors containing the geometric parameters of the trial slip surfaces. These
parameters are essentially the problem variables that are optimized in order to
minimize Fs. When general slip surface generation methods are employed, the analysis
procedures translate into high-dimensional optimization problems. Considering that
the search spaces of these problems often contain multiple local minima, implementing
a global optimization technique is vital to produce reliable results. In other words, the
optimization method should be capable of exploring the search space and avoid/escape
local minima through random operations. In this sense, stochastic optimization

algorithms are often preferred over other alternatives.

Despite the above arguments, deterministic approaches based on conjugate-gradient
technique [46], dynamic programming [47, 48], alternating-variable search [49, 50],
simplex method [51-54], Powell, Broyden-Fletcher-Goldfarb-Shanno and Davidon-
Fletcher-Powell algorithms [53] were adopted in the earlier studies due to relatively

high computational cost of stochastic search techniques.

After this era, structured random procedures based on Monte Carlo simulation were
proposed for the problem by Greco [55] and Malkawi et al. [32, 56]. Following the
rapid advent of computer technology, deterministic techniques were suppressed by the
development of nature-inspired stochastic optimization algorithms named
metaheuristics and became obsolete for the problem. Generally inspired by the random
concepts observed in biology, physics, material science, social studies, etc.,
metaheuristic algorithms imitate some phenomena within an iterative framework to
converge to a solution. The random nature of these algorithms help them avoid local
optima in complex problems, hence they are favored over deterministic techniques in
a broad range of engineering applications, including slope engineering. Among the
available metaheuristic algorithms, Genetic Algorithm has numerous implementations

to slope stability problems [17-25]. Variants of another evolutionary algorithm,
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Differential Evolution, were adopted in [26, 27]. Swarm intelligence algorithms are
also popular with applications of Particle Swarm Optimization, Artificial Fish Swarm
Algorithm and Cuckoo Search [28-31]. Furthermore, there are notable studies based
on Harmony Search [29, 33], Simulated Annealing and Tabu Search [29], Ant Colony
Optimization [57, 58], Gravitational Search Algorithm [59, 60], Artificial Bee Colony
Optimization [61], Immunised Evolutionary Programming [58], and Imperialistic
Competitive Algorithm [62]. In this study, the specific focus will be on Differential

Evolution algorithm.

Inspired by Darwin’s principles of natural selection and evolution, Storn and Price [63]
introduced Differential Evolution (DE) algorithm for continuous variable optimization
problems. The algorithm initializes with a randomly generated population of
individuals (i.e. decision vectors) and performs successive operations named (i)
mutation, (ii) crossover, and (iii) selection. These operations basically simulate
evolution within the search space of an optimization problem, in order to improve the
quality of the individuals (i.e. slip surfaces). For each member of the population, DE
arbitrarily selects and combines the genes (i.e. variables in the decision vector) of three
individuals named “donors” to produce a mutant vector. Then, in the crossover phase,
the individuals exchange some of their genes (i.e. geometric parameters of the
surfaces) with their mutants to produce new members. In the selection phase, the
fitness values (i.e. Fs of the surfaces) of the new members are compared with their
predecessors. The individuals that produce better quality solutions replace their
predecessors to form the next generation of individuals. This procedure is repeated
until a specified termination criterion is met. DE has two control parameters; (i)
crossover rate, CR € [0, 1] and, (ii) mutation factor, F € [0, 1], which are constant
factors that can be tuned to manipulate the search behavior of the algorithm. These
concepts and their mathematical implementations in the algorithm are given in the
following pseudocode and further illustrated in the flowchart given in Figure 2.13.
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Step 1 - Initialization: Generate a random population of “K” individuals, where the
position of each individual in the search space is represented by the design vector rk
defined in Eq. (2.75).

(= (o ) fork=1,2,..K (2.75)

where D: dimension of the problem, rkq: the position of the k™ individual on the d™

dimension.
Step 2 - Evaluation: Evaluate the fitness of each individual.

Step 3 - Mutation: For each individual, randomly select three donors from the

population and generate a mutant vector, using Eq. (2.76).
V=T F (-1 fork=1,2,...K (2.76)
vk :(vlkv(‘jvl';) (2.77)
where vk: mutant vector of the k" individual, r, r® and r": randomly selected donor

vectors (i.e. rl, r2, r3e{1, 2,..., K}), F: mutation factor, v¥a: the position of v on the

dt dimension.

Step 4 - Crossover: Perform crossover operation to produce trial decision vectors, uX,
using Eq. (2.78).

; {ﬁ,ﬁ RK<CRord =i*

= ford=1,2,....D andk=1,2,...,K 278
X< if RY>CRand d #i¥ (2.78)

d =

where uXq: the position of uk on the d™ dimension, R*:: uniformly distributed random

number € [0, 1], i*: randomly chosen index € {1, 2,..., D}, CR: crossover rate.

Step 5 - Selection: Evaluate the fitness of each trial decision vector u and compare

with the fitness of r*, keep the best one in the population.

Step 6 - Termination: Stop iterations if the termination criteria are satisfied. If not,
return to Step 3. It is common to control the termination with a prescribed number of

maximum iterations, T.
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Figure 2.13: Flowchart of Differential Evolution algorithm
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CHAPTER 3

INTEGRATED LIMIT EQUILIBRIUM METHOD - PART I: SURFACE
GENERATION

In this chapter, the surface generation module of Integrated Limit Equilibrium Method,
namely, Scaled Quadratic Spline method (SQS) is introduced and proposed as an
alternative to the available approaches. In Section 3.1, the general principles and the
aim of SQS are discussed and the method is formulated. Section 3.2 comprises a series
of numerical experiments that validate the improved performance of SQS over other
surface generation methods in the literature. To emphasize the capability of the
proposed method more clearly, the results are further evaluated in comparison with a
common commercial stability analysis software. Lastly, a summary of the findings and

discussions are given in Section 3.3.

3.1. Scaled Quadratic Spline Method

The proposed surface generation procedure, Scaled Quadratic Spline (SQS) method is
conceptually similar to Sun’s cubic spline approach [21]. In both methods, the slip
surfaces are represented with nonlinear spline functions instead of linear segments,
aiming to (i) eliminate the unnecessary accuracy loss and (ii) minimize the number of
geometric parameters required for accurate surface representation. With this idea in
mind, Sun proposed a procedure with cubic spline interpolation, which has some
deficiencies based on the observations made in this study. The first issue with Sun’s
Cubic Spline Method is that the formulation lacks an explicit constraint to produce
admissible surfaces. The method suggests a criterion, given in Eq. (2.58), to assure
that the lines passing through the spline nodes form a convex surface. Although this
measure implicitly controls the feasibility of the surfaces, it is still possible to produce
deficient geometries, as illustrated in Figure 3.1. In some cases, cubic splines may

oscillate to produce non-convex surfaces as their geometries are entirely dictated by
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the alignment of the nodes. Another issue with Sun’s approach is related to the applied
spline boundary conditions. A cubic surface produced by conventional procedures
inherently has continuous first and second derivatives at each node, which is not
necessarily a favorable feature for slope stability analysis. The critical slip surfaces
often incorporate sudden gradient transitions under external loading or in cases where

the soil profile is stratified.

Figure 3.1: Kinematically inadmissible slip surface

Addressing the abovementioned issues, SQS is proposed as a simple, yet efficient
alternative to the available surface generation methods. In SQS, spline nodes are
generated using the approach proposed by Malkawi [32]. Then, the surface is
constructed with piecewise continuous quadratic splines as illustrated in Figure 3.2.

Figure 3.2: Scaled Quadratic Spline Method — general view of a slip surface

For each segment, three boundary conditions are required to calculate the spline
coefficients, “a:”, “b:”, and “d;” given in Eq (3.1).

fj(x):(af)jX2+(bf)jx+(df)j (3.1)

where fj (x): quadratic spline function representing the j™ segment of the surface.
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The first two boundary conditions come from the positions of end nodes, vertices Vj
and Vj«1 in Figures 3.2 and 3.3. The last boundary condition is prescribed with the
derivative of fj (x) at its first node, fj'(xj). For continuous spline interpolation, this value
is already known and equal to the derivative of the preceding spline at the same node,
fi“1(xj). On the other hand, SQS utilizes fj-1(x;) as a lower limit of fj'(x;), while the upper
limit is taken as the slope of the linear segment between the end nodes (i.e. reference
line produced with Malkawi’s procedure), denoted as “m;” in Figure 3.3. Additionally,
another lower limit value is implemented to prevent a negative inflection on the second
node, Vj+1. From the resulting range, SQS assigns a value to fj'(xj) using a scale factor
between 0 and 1. In other words, the spline geometry is scaled between that of a
continuous spline and a linear segment. Through these considerations, SQS always
produces convex surfaces. Moreover, the proposed approach stimulates sudden
gradient transitions and linear segments to provide the flexibility to deal with
geometrically complex problems. To produce a surface represented with ns splines, the
procedure requires 3ns geometric parameters and can be described based on Figures
3.2 and 3.3 as follows:

°
A tan™(mj+1) A

Vj+1(Xj+1, yi+1) Vj+1(Xj+1, yj+]_) /,QtaL(mm)

tan'l[ fi '(Xj+1)]

an'l[ 0]

Vitxi, Vi)

tan” [ f(x)] tan” [ fi(0)]
X

@ (b)
Figure 3.3: Scaled Quadratic Spline Method — close up of splines

Step 1: Prescribe the number of splines, ns, and generate a decision vector of 3ns

variables using an optimization method.

N () e (3.2)
where r: a decision vector with 3ns variables, rq: d" geometric variable of r, ra € [0,1].
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Step 2: Generate ns+1 nodal points for quadratic spline interpolation. Employ
Malkawi’s procedure using the geometric parameters ri through rzns, and take the
following into consideration:

(i) In “Step 4” of Malkawi’s procedure, slip toe inclination is restricted in a range
between -30° and -45°. To provide more flexibility, SQS considers a wider range
between 0° and -45°.

(i1) In the same step, scarp inclination is determined with an expression based on toe

angle. SQS formulation considers scarp inclination as an independent parameter.

Based on these arguments, SQS adopts Malkawi’s procedure by replacing Egs. (2.28)
and (2.29) with Egs. (3.3) and (3.4), respectively.

o, :%(g -1) (3.3)

a, :%(2-5) (34)

S

Step 3: Consecutively for each spline: determine the lower and upper limits of fj'(x;)
using Egs. (3.5)—(3.8); determine fj'(xj) using Eq. (3.9); calculate the spline coefficients
using Egs. (3.10)—(3.12).

1 j=1

(£, )], :{f,-l'(xj) ,}>1 (3.5)
[f(x)] . = Zm," "My I, (3.6)

J e [fi (Xi)]Ll ] =0
[fjl(xj)]L = maX{ [fj'(xj)]Ll’ [fj'(xj)]Lz} (37)
[fj'(xj)]u =m (3.8)
fi (%) = [fj'(xj)]L Fhon { [fj'(XJ)L —[fj‘(xj)]L} (3.9)
(m)sm,if () <7, set (@;); =0 (3.10)
(b,); =m; (@), -(x; +x,.) (3.11)
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(df)j:yj_(af)j'(xj)z_(bf)j'xj (3.12)

where f,(x)=(a;);x*+(b;),x+(d/), (3.13)
forj=1,2,...,ns
where fj'(x;): function representing the j" quadratic spline, m;: slope of j™ reference
line, [fj'(xj)]. and [fj'(xj)]u: lower and upper limits of fj'(x;), za: threshold value for as

(i.e. za is set to 10 in this study).

Step 4: Divide the free-body into n vertical slices as illustrated in Figure 3.2 and

process the data to compute slice properties.

Note that there are two lower limits of fj'(x;), given in Egs. (3.5) and (3.6). Eq. (3.5) is
based on the terminal gradient of the preceding spline, hence not applicable in the first
node. Accordingly, for the first spline, this limit is utilized to keep the slip toe
inclination above -45°. Eq. (3.6) is applied to prevent a negative inflection at the
second node of each spline, and can be derived by equating fj'(xj+1) to the slope of the
succeeding reference line, mj+1. Therefore, this boundary condition is not applicable to
the last spline. The maximum of the values obtained with Egs. (3.5) and (3.6) are used
as the lower limit of fj'(xj), given in Eq. (3.7). In Figures 3.3a and 3.3b, the governing
limits are based on Eq. (3.5) and (3.6), respectively. Lastly, a threshold value is defined
for as in Eq. (3.10). Denoted as “7a”, the threshold stimulates linearity and helps with

the convergence issues encountered later in Chapter 4.

In addition to SQS, a simplified version of the formulation is also adopted in the
numerical experiments. In this simplified variant named Quadratic Spline Method
(QS), Eqgs. (3.5)—(3.9) are only applied to the first spline function to specify the initial
boundary condition. The rest of the splines are constructed continuously without the
scaling operation. As a result, QS utilizes 2ns+1 geometric parameters as opposed to
SQS which requires 3ns parameters. A summary of QS and SQS methods are given in

Table 3.1, together with the surface generation methods presented in Chapter 2. It
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should be noted that the following sections refer to these methods with the

abbreviations given in this table.

Table 3.1: Summary and comparison of surface generation methods

Abbreviation: Method D Comments
. . Guarantees kinematical admissibility; allows
M1: Malkawi [32] 2N Lariable slice width

Guarantees kinematical admissibility; keeps slice

M2: Cheng’s Equal Division [33] N+l Lidth constant

Guarantees kinematical admissibility; allows

M3: Cheng’s Variable Division [33] 20 oriable slice width

Promotes kinematical admissibility but does not
guarantee it; keeps spline width constant; reduces
problem dimension; may not be efficient to handle
stratified soil profiles and external loading

M4: Sun’s Cubic Spline [21] ns+1

Promotes kinematical admissibility but does not
guarantee it; allows variable spline width; reduces
problem dimension; may not be efficient to handle
stratified soil profiles and external loading

QS: Quadratic Spline 2ns+1

Guarantees kinematical admissibility; allows
variable spline width; reduces problem dimension;

SQS: Scaled Quadratic Spline 3ns  aims to handle complex cases by allowing
discontinuous function derivative and stimulating
linearity

where D: dimension of the problem (i.e. the number of geometric parameters), n: number of slices, ns: number of splines.

3.2. Numerical Experiments

To validate the efficiency of ILEM surface generation module, SQS, a series of
numerical experiments are performed with a set of benchmark slope stability analysis
problems assembled from the literature. The problem set includes six different
geometric models, comprising cases with homogeneous and stratified soil profiles.
Furthermore, additional configurations with groundwater effect, surcharge, and
pseudo-static earthquake loading are considered for some of the examples, resulting in
a total of 11 benchmark problems.

The analysis framework is completed with General Limit Equilibrium (GLE)

formulation and Differential Evolution (DE) algorithm. The same configuration is also
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employed with the other surface generation methods (i.e. M1-M4 and QS, given in
Table 3.1), in order to evaluate the performance of SQS comparatively. The control
parameters of each module are summarized in Table 3.2 and briefly discussed in the

following paragraph.

Table 3.2: Parameters settings of the framework components

Module Method Parameter

Number of splines, ns € {3, 4,..., 10}
Surface generation SQS, QS, M4 Number of slices, n € {10, 20,..., 100}

M1, M2, M3 Number of slices, n € {10, 20,..., 100}

Effective stress analysis
Error tolerance for Fs and 4, &1 =107

Mutation factor, F=0.5
Crossover rate, CR=0.9

Surface optimization DE Population size, K=50
Maximum iteration, T=1000
Number of independent runs = 30

Stability analysis GLE - Spencer

GLE is adopted based on Morgenstern-Price approach with constant interslice force
function, given in Eq. (2.20), which is commonly known as Spencer’s method. The
resulting formulation produces a 2x2 system of nonlinear equations with Egs. (2.14)
and (2.15) and unknowns, Fs and 4. To solve the system, Broyden’s multivariate quasi-
Newton root finding method [64] is adopted with an error tolerance of ew =107 for
both unknowns. For DE algorithm, the control parameters (i.e. mutation factor “F” and
crossover rate “CR”) are tuned based on a preliminary study with the settings proposed
in the literature. Considering the example problems adopted in this study, the
configuration used in [65, 66] is adopted as an efficient parameter setting for all surface
generation methods presented in the manuscript. Accordingly, DE is implemented
with mutation factor F=0.5 and crossover rate CR=0.9, using a population of K=50
individuals and maximum T=1000 iterations for each analysis. Due to the stochastic
nature of DE, each problem is analyzed in 30 independent runs to obtain the statistical
performance measures. For the surface generation methods, the main control

parameter is either the number of slices or number of splines, both of which identify
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the dimension of the problem. Since the performance of each method depends on this
selection, a parametric study is performed to assess the most efficient configurations.
Accordingly, the experiments comprise the analysis of benchmark problems with
number of splines varying between 3 and 10 (i.e. where applicable) and number of
slices between 10 and 100.

To deliver the findings and validate the applicability of SQS, the following sub-
sections are organized as follows: Section 3.2.1 presents the benchmark problems in
terms of slope geometry, soil profile and loading condition and gives concise
discussions about the expected failure mechanisms. Section 3.2.2 includes the
parametric sensitivity analyses of the surface generation methods. In Section 3.2.3, the
methods are compared in terms of statistical performance, capability to minimize Fs,
and convergence efficiency. Then, in Section 3.2.4, the capability of SQS is
emphasized through a comparison with the renowned commercial analysis software,
Slide [34].

3.2.1. Benchmark Problems

Example 1, adopted from Fredlund and Krahn [67], evaluates the stability of a 12.2 m
high slope with 1:2 face inclination, as illustrated in Figure 3.4. The soil profile is dry
and idealized as a single homogeneous cohesive soil unit with the parameters given in
Table 3.3. External loading and seismic effects are not considered, hence the slope is

analyzed under gravitational loads only.

Example 2 is taken from Yamagami and Ueta [53] and is similar to the previous
problem. The example deals with a 10 m wide - 5 m high simple slope geometry with
a dry homogeneous soil profile as illustrated in Figure 3.5. Yamagami and Ueta
analyzed this example under gravitational loads only. Additionally, in this study, the
slope is further analyzed considering a 3.5 m wide surcharge of 75 kPa, placed 5 m
away from the crest of the slope. In the following sections, experiments without and
with the external loading are denoted as Cases (i) and (ii), respectively.
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Figure 3.4: Example 1 — slope geometry and soil profile
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Figure 3.5: Example 2 — slope geometry and soil profile

In Example 3, which was originally studied by Zolfaghari [20], a 17 m wide - 8.5 m
high, multi-layered dry slope is analyzed. As illustrated in Figure 3.6, the soil profile
is idealized into four discrete units with the parameters given in Table 3.3. The
preliminary examination of this problem indicates that there is a thin soft soil deposit
(i.e. Soil 3.3) between relatively stiffer layers, which may induce a partially
translational failure.
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(20, 50)

Soil 3.4

(3,41.5)

0 5 10 15 20 25
X (m)

Figure 3.6: Example 3 — slope geometry and soil profile

Adopted from Arai and Tagyo [46], Example 4 considers a 30 m wide dry slope with
1:2 face inclination. Illustrated in Figure 3.7, the soil profile comprises parallel aligned
three layers. The base soil is a relatively stiff material and the interlayer soil is
considerably weak, which will possibly limit the critical slip surface to stay within the
upper layers. Considering that the interlayer deposit is relatively thick, either a

“rotational” or a deep translational failure is expected.

45 T T T T T
40
(48, 35)
35
301 Soil 4.1
Eos
-

Soil 4.2

20
15 (18, 15)
10
5 1 1 il 1 1
10 20 30 40 50 60 70

x (m)

Figure 3.7: Example 4 — slope geometry and soil profile
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Example 5 is introduced by Zolfaghari [20], and incorporates a dry infinite slope with
stratified soil profile as shown in Figure 3.8. There are three soil layers, including an
interlayer soft soil deposit. The problem is analyzed under static loads in Case (i).
Then, a pseudo-static earthquake analysis is conducted with horizontal seismic
coefficient, kn=0.1 in Case (ii). For practical purposes, the width of the critical slip
surface is limited to 100 m since the slope displays a fully translational failure.

Otherwise, the surface width would tend to infinity and promote divergence.

30

Case (i) : kh=0
Case (ii) : kh=0J

30 40 50 60 70 80 90 100 110 120 130
X (m)

Figure 3.8: Example 5 — slope geometry and soil profile

Example 6, also taken from Zolfaghari [20], examines a slope with complex soil profile
under groundwater and seismic effects, as illustrated in Figure 3.9. The slope is
analyzed for four different configurations, which are summarized as follows; Case (i):
there is no earthquake load and no pore-water pressure, Case (ii): there is no
earthquake load but hydrostatic pore-water pressure exists due groundwater, Case (iii):
there is a pseudo-static earthquake load with kn=0.1, but no pore-water pressure, Case
(iv): there is both pseudo-static earthquake loading with kv=0.1 and hydrostatic pore-
water pressure due to groundwater.
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Figure 3.9: Example 6 — slope geometry and soil profile

All surface generation methods presented in this manuscript require boundary
conditions to limit the horizontal position of slip toe and scarp, denoted as “x¢” and
“Xs”, respectively. For each benchmark problem, these values are intuitively selected

and summarized in Table 3.3, together with the soil parameters.

Table 3.3: Model boundaries and soil parameters

Problem  [X¢miny Xemax] [Xsminy Xsmar]  S0il  y (KN/m3) ¢ (kPa) ¢’ (°)

Example 1 [0,17.6]™ [42, 60]™ 1 18.83 28.75 20
Example 2 [0, 5]™ [15, 25] 2 17.64 9.8 10
31 19 15 20

m m 3.2 19 17 21

Example 3 [0, 10] [20, 30] 33 19 5 10
34 19 35 28

41 18.82 29.4 12

Example 4 [10,25]™  [48, 70]™ 4.2 18.82 9.8 5
4.3 18.82 294 40

51 18.63 325 17

Example 5 [30,30]™ [35, 130]™ 5.2 18.63 29.4 10
5.3 18.63 49 27

6.1 18.63 14.7 20

m m 6.2 18.63 16.7 21

Example 6 [0, 15] [22, 30] 6.3 18.63 49 10
6.4 18.63 34.3 28

Soil numbering is based on the figures. Unit weight of water, yw, is taken as 9.81 kKN/m3 when

necessary.
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3.2.2. Parametric Sensitivity Analyses

The main purpose of the parametric study presented in this section is to maximize the
statistical performances of the surface generation methods. To develop a suitable
methodology for each, a distinction is made between the methods that represent the
slip surfaces using (i) slices and (ii) splines. The former group includes M1, M2, and
M3, in which the only parameter is the number of slices. For the latter group, including
M4, QS, and SQS, both numbers of splines and slices are expected to affect the results.
Therefore, slightly different procedures are adopted to assess the performances of these
groups of methods, in the following sub-sections. Throughout the analyses, GLE and
DE are adopted with the parameter settings given in Table 3.2, and for each
experiment, median Fs obtained from 30 independent runs are used as the basis of

comparison.

3.2.2.1. Slice-Based Methods

First, it should be mentioned that GLE formulation overestimates the Fs, provided that
the step size used in free-body discretization is not sufficiently small. Therefore, any
analysis framework that incorporates GLE is inherently biased towards higher
numbers of slices. However, when slice-based surface generation methods like M1,
M2, and M3 are adopted, such an approach produces high-dimensional optimization
problems, which are considerably more difficult to handle. Accordingly, it is necessary
to compromise a certain degree of precision to better exploit the capability of these
methods. Investigating this issue, the performances of M1, M2, and M3 are evaluated

with variable number of slices, n.

Forn € {10, 20,..., 100}, the performance of M1 is summarized in Table 3.4, in terms
of median Fs of 30 independent runs for all examples. In this table, bold notation
denotes the best parameter configuration for each example, while the overall
performances of the configurations are represented through the mean value of the

relative error, ¢r, calculated using Eqg. (3.14). As an example, the relative error of n=20
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slice analysis for Example 1 is calculated as (1.9972-1.9942)/1.9942x100=0.15%.

Average of the relative errors for all benchmark problems is 0.75%.

) = (Fs,med )n B min{Fs,med}
(e, = min{Fsvmed}

where (Fsmed)n: median Fs obtained for an example using n slices, and Fsmed={(

%100 (3.14)

Fs.med)10, (Fsmed)20,..., (Fsmed)100}.

Based on the approach given above, M1 is most efficient with 40 slices, which
produces the lowest mean er at 0.27%. It is notable that the success rate of M1
decreases with increasing number of slices. Using 60 slices, more than half the
analyses did not converge to a feasible solution for Example 6 Cases (i) and (ii). Above

60 slices, this issue is encountered in all experiments.

Table 3.4: Sensitivity of M1 to the number of slices

n-> 10 20 30 40 50 60 70 80 90 100
Example 1 1.9968 1.9972 19942 19961 19947 19944 NC NC NC NC
Example 2 (i) 13342 13328 13331 1.3327 13331 13339 NC NC NC NC
Example 2 (ii)) 1.0068 1.0065 1.0063 1.0030 1.0054 1.0059 NC NC NC NC
Example 3 1.0928 1.0939 1.0928 1.0935 1.0930 1.0957 NC NC NC NC
Example 4 0.4173 0.4173 04170 0.4168 0.4171 0.4187 NC NC NC NC
Example 5 (i) 1.0744 1.0845 1.0731 1.0639 1.0590 1.0827 NC NC NC NC
Example 5 (i) 0.8736 0.9127 0.9357 0.8802 0.9056 0.8968 NC NC NC NC
Example 6 (i) 1.3392 13367 13367 1.3409 13386 13400 NC NC NC NC
Example 6 (i) 1.2122 1.2135 1.2104 1.2122 1.2204 NC NC NC NC NC
Example 6 (ili) 1.0532 1.0513 1.0476 1.0476 1.0531 1.0502 NC NC NC NC
Example 6 (iv) 0.9442 0.9422 0.9423 0.9531 0.9542 NC NC NC NC NC
Mean &r (%) 0.30 0.75 0.81 0.27 0.62 NC NC NC NC NC

The results are given in terms of median Fs of 30 independent runs.

Similarly, the outcomes of the sensitivity analysis of M2 are summarized in Table 3.5.
In this case, the results are unanimously in favor of 20 slice configuration, which
achieves the best statistical outcomes for the benchmark problems. It is worth
mentioning that M2 does not suffer from divergence issues like M1. However, its
performance is significantly sensitive to the number of slices. The mean difference

between the median Fs obtained with 20 slices and 30 slices exceed 10%, which is a
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considerably high deviation for slope stability analysis. The differences significantly

increase when higher values are adopted.

Using M3, the results are similar to those obtained with M2 in the sense that the
performance of the method is significantly influenced by the dimensionality of the
problem. As illustrated in Table 3.6, M3 is most efficient with lower numbers of slices,
10 being the best alternative considering the resulting mean ¢r value. Thereafter, the

error increases monotonically.

Table 3.5: Sensitivity of M2 to the number of slices

n-> 10 20 30 40 50 60 70 80 90 100
Example 1 2.0072 1.9920 1.9998 2.0112 2.0318 2.0445 2.0474 2.0658 2.1049 2.1345
Example 2 (i) 1.3319 1.3251 1.3276 1.3334 1.3382 1.3515 1.3649 1.3945 1.3796 1.4176
Example 2 (i) 1.0158 1.0083 1.0162 1.0294 1.0542 1.0793 1.0986 1.1190 1.1373 1.1414
Example 3 2.1321 1.1886 1.8154 1.7212 1.7086 1.7586 1.7816 1.8794 1.8932 1.9918
Example 4 0.4197 0.4177 0.5699 0.5557 0.5487 0.5453 0.5428 0.5418 0.5401 0.5397
Example5 (i) 1.3112 1.1978 1.3171 1.6368 2.0215 1.9007 1.8428 1.7946 1.7611 1.7545
Example 5 (if) 1.1252 1.0025 1.0837 1.3117 1.4124 1.3622 1.3394 1.3100 1.3141 1.3167
Example 6 (i) 1.3984 1.3795 1.4443 1.7301 2.1934 2.1867 2.1996 2.2028 2.2231 2.2456
Example 6 (ii) 1.2609 1.2561 1.2900 1.5003 2.1431 2.1527 2.1615 2.1492 2.1945 2.2200
Example 6 (iii) 1.1040 1.0941 1.1387 1.3321 1.3515 1.3597 1.3942 1.4199 1.4473 1.5154
Example 6 (iv) 0.9898 0.9784 1.0001 1.0719 1.1945 1.2700 1.3303 1.3683 1.4265 1.4965

Mean &r (%) 9.76 0.00 1112 2047 3341 3352 3427 3533 36.65 39.36

Table 3.6: Sensitivity of M3 to the number of slices

n-> 10 20 30 40 50 60 70 80 90 100
Example 1 1.9911 1.9920 1.9998 2.0187 2.0323 2.0322 2.0588 2.0705 2.0969 2.1093
Example 2 (i) 1.3301 1.3252 1.3292 1.3330 1.3390 1.3454 1.3720 1.3736 1.4034 14117
Example 2 (ii) 1.0026 1.0010 1.0058 1.0411 1.0514 1.0971 1.1004 1.1256 1.1386 1.1395
Example 3 1.1335 1.6450 1.6149 1.6108 1.6807 1.7218 1.7802 1.8546 1.8941 1.9473
Example 4 0.4148 0.4161 0.5444 0.5396 0.5369 0.5354 0.5349 0.5347 0.5347 0.5346
Example5 () 1.1760 1.1413 1.2698 15927 1.7043 1.6685 1.6431 1.6285 1.6305 1.6237
Example 5 (ii) 0.9804 0.9756 1.0027 1.2809 1.2508 1.2301 1.2377 1.2615 1.2777 1.2962
Example 6 (i) 1.3656 1.3814 1.4211 2.0959 2.1243 2.1279 2.1449 2.1785 2.1900 2.2329
Example 6 (i) 1.2393 1.2461 1.2955 1.6539 2.0539 2.0906 2.1020 2.1178 2.1731 2.1660
Example 6 (iii) 1.0784 1.0813 1.1184 1.3241 1.3335 1.3710 1.3893 1.4083 1.4702 1.5137
Example 6 (iv) 0.9737 0.9710 0.9908 1.1964 1.2159 1.2688 1.2970 1.3557 1.4454 15277

Mean &r (%) 039 431 939 2563 3032 3170 3298 3502 37.79 39.83
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3.2.2.2. Spline-Based Methods

For the spline-based methods, M4, QS, and SQS, the parametric analyses are
conducted in two stages. First, for each method, the number of slices, n, is kept
constant at 40 and the benchmark problems are analyzed with numbers of splines, ns,
ranging between 3 and 10 (i.e. ns € {3, 4,..., 10}). Using the most efficient
configuration from these analyses, the methods are further evaluated with n € {10,
20,..., 100}. Using spline-based methods, the complexity of the optimization problem
is not directly influenced from the number of slices. Therefore, the outcomes are

expected to be in favor of higher values.

The results obtained with M4 for different ns values are given in Table 3.7. First, it is
noticed that parameter selection is less influential on the performance of M4, compared
to the previous methods. For all benchmark problems, except for Example 3 and
Example 5 Case (ii), adoption of 4 to 10 splines can yield Fs values in the same order

of magnitude. Considering the mean ¢r values, M4 is most efficient with 6 splines.

Table 3.7: Sensitivity of M4 to the number of splines

n=40 |ns> 3 4 5 6 7 8 9 10

Examplel 19848 1.9796 1.9789 1.9790 1.9802 1.9838 1.9902 1.9905
Example 2 (i) 1.3256 1.3238 1.3228 1.3227 1.3227 1.3228 1.3229 1.3229
Example 2 (i) 1.0461 1.0208 1.0159 1.0168 1.0162 1.0140 1.0190 1.0162
Example3 ~ 2.2963 1.1654 1.1481 1.1477 15167 15018 1.4783 1.4614
Example4 04183 04160 0.4158 0.4152 0.4140 0.4143 0.4132 0.4140
Example 5 (i) 14603 1.2227 1.1639 1.1076 1.0775 1.0682 1.0708 1.0791
Example 5 (i) 1.2332 1.0350 0.9759 0.9265 0.8887 0.8832 0.9168 1.0929
Example 6 (i) 1.3828 1.3680 1.3524 1.3527 1.3525 1.3528 1.3641 1.3641
Example 6 (i) 1.2652 1.2389 1.2254 1.2257 1.2130 1.2218 1.2228 1.2394
Example 6 (iii) 1.0867 1.0688 1.0644 1.0614 1.0674 1.0611 1.0680 1.0739
Example 6 (iv) 0.9875 0.9604 0.9513 0.9536 0.9521 0.9492 0.9508 0.9547

Mean &r (%) 1767 362 199 099 318 292 331 527

Based on the outcomes given in Table 3.7, ns is kept constant at 6 and M4 is evaluated
with n ranging between 10 and 100. The results given in Table 3.8, indicate that the

method favors higher numbers of slices. Ideally, the mean er would decrease
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monotonically with increasing n, yet there are some deviations in the results which are

most probably related to the stochastic nature of the implemented optimization

algorithm, DE. Regardless, n is selected as 70 for M4, considering the improved results

over other configurations.

Table 3.8: Sensitivity of M4 to the number of slices

n=6 [n-> 10 20 30 40 50 60 70 80 90 100
Example 1 1.9936 1.9841 1.9803 1.9790 1.9798 19785 1.9789 19785 1.9783 1.9787
Example 2 (i) 1.3352 1.3254 1.3233 1.3227 1.3225 1.3223 1.3222 1.3222 1.3222 1.3221
Example 2 (ii) 1.0169 1.0180 1.0173 1.0168 1.0165 1.0163 1.0162 1.0161 1.0160 1.0160
Example 3 1.1587 1.1594 1.1388 1.1477 1.2034 1.1431 1.1365 1.1372 1.1357 1.1385
Example 4 0.4171 0.4165 0.4156 0.4152 0.4159 0.4150 0.4152 0.4158 0.4151 0.4150
Example5 (i) 1.1135 1.1260 1.1080 1.1076 1.1561 1.1032 1.1041 1.1059 1.1021 1.1063
Example 5 (ii) 0.9208 0.9987 0.9281 0.9265 0.9435 0.9283 0.9281 0.9261 0.9270 0.9270
Example 6 (i) 1.3785 1.3661 1.3568 1.3527 1.3678 1.3499 1.3486 1.3516 1.3534 1.3496
Example 6 (ii) 1.2511 1.2471 1.2315 1.2257 1.2381 1.2322 1.2218 1.2266 1.2243 1.2213
Example 6 (iii) 1.0811 1.0904 1.0676 1.0614 1.0801 1.0691 1.0651 1.0593 1.0637 1.0653
Example 6 (iv) 0.9804 0.9677 0.9515 0.9536 0.9693 0.9526 0.9510 0.9669 0.9530 0.9512
Mean &r (%) 136 197 038 030 183 032 014 033 015 0.16

Similarly, QS is evaluated with variable ns and the results are summarized in Table

3.9. The results indicate that QS is less sensitive to the selection of ns, compared to

M4. The mean ¢r value only deviates by 0.17% considering the range between 4 and

7 splines. Among those, the best results are obtained with 6 splines, which is exactly

the same as M4. This may indicate that quadratic order functions are sufficiently

flexible to represent the critical slip surfaces.

Table 3.9: Sensitivity of QS to the number of splines

n=40 |ns> 3 4 5 6 7 8 9 10

Example 1 1.9800 1.9786 1.9785 1.9785 1.9786 1.9785 1.9789 1.9796
Example 2 (i) 1.3231 1.3231 1.3230 1.3230 1.3230 1.3230 1.3233 1.3237
Example 2 (i) 1.0145 1.0127 1.0041 1.0015 1.0026 1.0053 1.0059 1.0096
Example 3 1.1023 1.1003 1.1002 1.1056 1.1008 1.1245 1.1115 1.1449
Example 4 0.4130 0.4122 0.4118 0.4118 0.4118 0.4118 0.4122 0.4124
Example 5 (i) 1.0345 1.0189 1.0274 1.0245 1.0276 1.0395 1.0516 1.0447
Example 5 (ii) 0.8760 0.8544 0.8571 0.8556 0.8621 0.8542 0.8835 0.8970
Example 6 (i) 1.3495 1.3439 1.3439 1.3395 1.3381 1.3423 1.3473 1.3487
Example 6 (ii) 1.2100 1.2095 1.2062 1.2047 1.2066 1.2091 1.2072 1.2130
Example 6 (iii) 1.0610 1.0587 1.0541 1.0527 1.0537 1.0537 1.0589 1.0626
Example 6 (iv) 0.9484 0.9447 0.9453 0.9396 0.9433 0.9460 0.9467 0.9525
Meangr (%) 082 029 025 012 024 055 095 150

55



Regarding the sensitivity of QS to n value, the results are reasonably close to the
expectations. Given in Table 3.10, the median Fs values obtained with QS tend to
decrease with increasing number of slices, and the maximum among the adopted

values, 100 slices, yields the best results.

Table 3.10: Sensitivity of QS to the number of slices

Ns=6 |n—) 10 20 30 40 50 60 70 80 90 100
Example 1 1.9960 1.9824 1.9793 1.9785 1.9779 19778 1.9780 1.9779 1.9779 1.9775
Example 2 (i) 1.3353 1.3257 1.3239 1.3230 1.3226 1.3226 1.3223 1.3225 1.3222 1.3229
Example 2 (ii) 1.0088 1.0058 1.0020 1.0015 1.0013 1.0015 1.0020 1.0017 1.0017 1.0009
Example 3 1.1012 1.1001 1.0987 1.1056 1.0989 1.1009 1.0997 1.1022 1.1036 1.0980
Example 4 0.4145 0.4124 0.4119 0.4118 0.4119 0.4119 0.4117 0.4118 0.4118 0.4118
Example 5 (i) 1.0294 1.0265 1.0306 1.0245 1.0237 1.0336 1.0194 1.0230 1.0238 1.0235
Example 5 (ii) 0.8575 0.8634 0.8503 0.8556 0.8556 0.8534 0.8652 0.8514 0.8526 0.8519
Example 6 (i) 1.3452 1.3448 1.3421 1.3395 1.3404 1.3401 1.3404 1.3380 1.3389 1.3373
Example 6 (ii) 1.2099 1.2106 1.2074 1.2047 1.2089 1.2067 1.2045 1.2074 1.2077 1.2056
Example 6 (iii) 1.0529 1.0540 1.0494 1.0527 1.0542 1.0497 1.0515 1.0527 1.0507 1.0547
Example 6 (iv) 0.9438 0.9440 0.9444 0.9396 0.9433 0.9392 0.9394 0.9423 0.9394 0.9426

Mean &r (%) 067 051 024 023 025 023 023 018 017 015

Lastly, the proposed surface generation method, SQS, is evaluated with the same
procedure as M4 and QS. Presented in Table 3.11, the outcomes of the analysis with
variable numbers of splines highlight the statistical soundness of the method.
Compared to the M4 and QS, SQS is significantly less sensitive to this parameter. The
minimum &r values are obtained with 6 and 7 splines, and the mean ¢r deviates at most
by 0.02% within the range between 6 and 9 splines. The number of splines in SQS is
fixed to 6 for the following analyses.

The outcomes of SQS obtained with varying number of slices, given in Table 3.12, are
somewhat similar to those of M4. Although the results are in favor of higher values,
there are some deviations, possibly resulting from the stochastic nature of DE
algorithm. Within the considered range, 70 slice configuration is statistically the best

alternative with a mean ¢r value of 0.05%.
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Table 3.11: Sensitivity of SQS to the number of splines

n=40 |ns> 3 4 5 6 7 8 9 10

Examplel ~ 1.9792 1.9785 19788 1.9785 19786 1.9785 1.9787 1.9789
Example 2 (i) 1.3230 1.3230 1.3234 1.3230 1.3230 1.3231 1.3227 1.3229
Example 2 (i) 1.0012 0.9988 0.9990 0.9991 0.9993 0.9991 0.9990 0.9990
Example3 11022 1.0995 1.0911 1.0898 1.0902 1.0907 1.0901 1.0898
Example4 04129 0.4116 04114 0.4114 04114 0.4114 04115 0.4114
Example 5 (i) 1.0231 1.0145 1.0143 1.0158 1.0127 1.0144 1.0149 1.0157
Example 5 (i) 0.8513 0.8474 0.8457 0.8457 0.8447 0.8448 0.8461 0.8458
Example 6 (i) 1.3458 1.3401 1.3349 1.3342 1.3372 1.3382 1.3356 1.3365
Example 6 (i) 1.2119 1.2062 1.2043 1.2012 1.2022 1.2019 1.2019 1.2019
Example 6 (ii) 1.0611 1.0523 1.0526 1.0500 1.0475 1.0456 1.0489 1.0499
Example 6 (iv) 0.9466 0.9437 0.9391 0.9344 0.9368 0.9384 0.9356 0.9371

Mean &r (%) 074 036 018 008 008 010 010 013

Table 3.12: Sensitivity of SQS to the number of slices

ns=6 |ne 10 20 30 40 50 60 70 80 90 100
Example 1 1.9954 1.9823 1.9795 1.9785 1.9782 1.9780 1.9782 1.9778 1.9779 1.9777
Example 2 (i) 1.3343 1.3259 1.3240 1.3230 1.3228 1.3223 1.3223 1.3223 1.3225 1.3224
Example 2 (i) 1.0062 1.0000 0.9994 0.9991 0.9990 0.9991 0.9988 0.9988 0.9997 0.9991
Example 3 1.0928 1.0917 1.0910 1.0898 1.0938 1.0917 1.0902 1.0936 1.0898 1.0905
Example 4 0.4140 0.4123 0.4116 0.4114 0.4113 0.4112 0.4112 0.4113 0.4114 0.4112
Example5 (i) 1.0164 1.0139 1.0146 1.0158 1.0121 1.0145 1.0149 1.0133 1.0135 1.0165
Example 5 (ii) 0.8453 0.8451 0.8461 0.8457 0.8452 0.8443 0.8443 0.8459 0.8448 0.8448
Example 6 (i) 1.3403 1.3381 1.3360 1.3342 1.3353 1.3356 1.3345 1.3351 1.3340 1.3376
Example 6 (ii) 1.2060 1.2062 1.2056 1.2012 1.2037 1.2031 1.2002 1.2028 1.2045 1.2033
Example 6 (iii) 1.0512 1.0503 1.0502 1.0500 1.0475 1.0505 1.0466 1.0488 1.0461 1.0464
Example 6 (iv) 0.9401 0.9422 0.9416 0.9344 0.9377 0.9363 0.9353 0.9376 0.9392 0.9393

Mean &r (%) 05 031 025 011 013 013 005 015 011 0.15

In light of the sensitivity analyses given in this section, the most efficient parameter
configurations for the surface generation methods are assessed and summarized in
Table 3.13.

Table 3.13: Parameter settings of surface generation methods

M1 M2 M3 M4 QS SQS
Number of splines, ns - - - 6 6 6
Number of slices, n 40 20 10 70 100 70
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3.2.3. Comparison of Surface Generation Methods

In this section, the outcomes of the benchmark analyses are evaluated in further detail
to gain insight about the capability, computational efficiency and statistical reliability
of each surface generation method. Accordingly, a comparative study is performed
based on the results obtained with the parameter settings given in Table 3.13. In the
following sub-sections, each benchmark problem is investigated separately, and then
the results are utilized in statistical significance tests to assess the most reliable surface

generation method.

3.2.3.1. Example 1

The outcomes for Example 1 are given in Table 3.14, summarizing the statistical
performances of the surface generation methods. The results are reported in terms of
statistical parameters like minimum, median, maximum, mean and standard deviation
values, which are calculated based on the Fs values obtained from 30 independent
analyses. The outcomes indicate that spline-based methods (i.e. M4, QS, and SQS) are
effective to deal with Example 1. Among those, QS performs slightly better than M4
and SQS, finding the minimum Fs as 1.9771. The statistical parameters also highlight
QS as the best alternative, however, the differences compared to M4 and SQS are
arguably small. On the other hand, M1, M2, and M3 are not as competitive, despite
achieving practically similar results.

Table 3.14: Example 1 — statistical comparison of surface generation methods

MI M2 M3 M4 QS SQS

Fs.min 19878 1.9833 1.9898 19777 19771 1.9773
Fs,med 1.9961 1.9920 1.9911 1.9789 1.9775 1.9782
Fs max 2.0195 2.0202 2.0007 2.0022 19789 1.9799

Fs,mean 1.9976 19954 1.9923 1.9808 1.9778 1.9784
St. Dev. 7.E-03 1E-02 3.E-03 5E-03 6.E-04 1.E-03

The critical slip surface located by each method is illustrated in Figure 3.10. Similar

to the previous findings, M4, QS, and SQS are in strong agreement such that the critical
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surfaces located by these methods are almost identical. On the other hand, M1, M2,

and M3 slightly deviate from these results, estimating relatively deeper critical paths.
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Figure 3.10: Example 1 — comparison of critical slip surfaces

The last evaluation for Example 1 regards the computational efficiency of the methods.
Accordingly, for each method, the analysis progress is illustrated in the convergence
graph given in Figure 3.11, where the x and y-axes represent the number of iterations
and median Fs of 30 independent runs, respectively. First, it is noticeable that the initial
populations generated by M3 are significantly better than those of other methods.
However, M3 achieves limited improvement and fails to produce results that are
comparable to those of M4, QS, and SQS. An important finding is that the convergence
of QS, which is statistically the best method for Example 1, requires over twice the
iterations required with other methods. On the other hand, the analyses with M4 and
SQS mature in less than 100 iterations, which is relatively low. As a result, M4 and

SQS may be preferred over QS in order to achieve computationally efficient solutions.
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Figure 3.11: Example 1 — the convergence of surface generation methods

3.2.3.2. Example 2

The statistical results of Example 2 are given in Table 3.15 for both cases of the
benchmark problem. For Case (i), which incorporates a homogeneous soil profile
under no external loading, the outcomes further validate the efficiency of spline-based
methods to deal with simple problems. Similar to Example 1, M4, QS, and SQS exhibit
competitive statistical performances, improving the results of M1, M2 and M3. The
minimum Fs is reported as 1.3219 based on the analyses with QS. However, M4 and
SQS are able to find similar results. For Case (ii), which additionally considers
surcharge loading, the outcomes are strictly in favor of SQS considering all statistical
measures, as well as minimum Fs reported as 0.9976. Although QS can find similar
results in some occurrences, it is statistically inferior compared to SQS, while M4 fails
to produce competitive results. It is also noteworthy to mention that M1, M2, and M3

perform fairly better than M4 for this problem.
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Table 3.15: Example 2 — statistical comparison of surface generation methods

MI M2 M3 M4 QS  SQS

Fs,min 1.3280 1.3240 13298 1.3222 1.3219 1.3220
Fs,med 1.3327 1.3251 1.3301 1.3222 1.3229 1.3223
Case (i)  Fsmax 1.3419 1.3295 13332 1.3273 1.3240 1.3240
Fs mean 1.3334 1.3257 1.3303 1.3226 1.3230 1.3226
St. Dev. 3.E-08 2E-03 7.E-04 1.E-03 9.E-04 7.E-04
Fs,min 1.0012 1.0058 1.0013 1.0160 0.9978 0.9976
Fs,med 1.0030 1.0083 1.0026 1.0162 1.0009 0.9988
Case (ii)  Fsmax 1.0108 1.0226 1.0074 1.0340 1.0281 1.0051
Fs mean 1.0046 1.0097 1.0031 1.0175 1.0020 0.9995

St. Dev. 3.E-03 4.E-03 2.E-03 4.E-03 6.E-03 2.E-03

The critical slip surfaces for Cases (i) and (ii) are demonstrated in Figures 3.12 and
3.13, respectively. For Case (i), the resulting surfaces are in good agreement and the
main difference is the smoothness obtained with the spline-based methods. On the
other hand, there are visible deviations between the estimations obtained for Case (ii).
Regardless, all methods except for M4 estimate a curvilinear critical path with a
triangular wedge below the surcharge area, as illustrated in Figure 3.13. The
underlying reason behind the failure of M4 may be attributed to the simplifying
assumptions within the formulation of the method. M4 keeps the spline widths
constant and uses continuous interpolation. As a result, the surfaces lack the flexibility
to represent the sudden transition observed in Case (ii). QS overcomes this issue by
allowing variable spline widths, in that a spline in QS can assume infinitesimal width
and high curvature to allow an abrupt transition. On the other hand, SQS basically

encourages such surfaces through the scaling operation.

The convergence graphs of Example 2, given in Figures 3.14 and 3.15, further illustrate
the efficiency of SQS. Although M4 converges slightly faster than SQS in Case (i),
the method significantly deviates from the optimum solution in Case (ii). On the other
hand, QS is computationally the most inefficient alternative among the spline-based

methods, while M1, M2, and M3 are reasonably cost-effective despite their limitations.
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Figure 3.12: Example 2 Case (i) — comparison of critical slip surfaces
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Figure 3.13: Example 2 Case (ii) — comparison of critical slip surfaces
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Figure 3.14: Example 2 Case (i) — the convergence of surface generation methods
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Figure 3.15: Example 2 Case (ii) — the convergence of surface generation methods
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3.2.3.3. Example 3

Based on the results given in Table 3.16, Example 3 has proven to be a challenging
problem for the surface generation methods. Among those, M2, M3, and QS have
shown severe deviations as indicated by the reported mean and maximum Fs values.
Although M1 is more competent than these methods, SQS is the best alternative
considering all performance measure. It is notable to mention that the median Fs of
SQS is better than the minimum of all methods, except for QS. The most critical slip

surface is also obtained with SQS, with a corresponding Fs value of 1.0878.

Table 3.16: Example 3 — statistical comparison of surface generation methods

MI M2 M3 M4 QS SQS

Fs,min 1.0904 1.1152 1.1157 11175 1.0893 1.0878
Fs,med 1.0935 1.1886 1.1335 1.1365 1.0980 1.0902
Fs,max 1.1203 15419 1.2325 17087 1.4351 1.1049

Fs,mean 1.0954 1.2394 1.1406 1.1804 1.1408 1.0933
St. Dev. 7E-03 1E-01 3.E-02 1E-01 1E-01 6.E-03

The critical slip surfaces, given in Figure 3.16, illustrate that all methods indicate a
deep translational failure within the soft soil interlayer. The surfaces produced by QS
and SQS are in strong correlation. M1 slightly deviates from these methods, while M2,
M3 and M4 estimate the position of the slip toe about 1 to 1.5 m away from the most

critical surface.

The convergence graphs, given in Figure 3.17, highlight M1 and SQS as the best
alternatives for Example 3. The analyses with M2, M3, and QS require significantly
higher computational cost — about twice the iterations required with M1 and SQS.

Lastly, the analyses with M2 fail to mature within 1000 iterations.
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Figure 3.16: Example 3 — comparison of critical slip surfaces
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Figure 3.17: Example 3 — the convergence of surface generation methods
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3.2.3.4. Example 4

Dealing with Example 4, both QS and SQS are effective to produce improved results
over the other methods. Among those, SQS performs slightly better than QS based on
the statistical parameters given in Table 3.17, while both methods report the minimum
Fs as 0.4110. M3 and M4 exhibit consistent performances, however, their accuracy is

limited.

Table 3.17: Example 4 — statistical comparison of surface generation methods

MI M2 M3 M4 QS  SQS

Fs min 0.4157 0.4121 0.4136 0.4149 0.4110 0.4110
Fs.med 0.4168 0.4177 0.4148 0.4152 0.4118 0.4112
Fs max 0.4225 0.4215 0.4169 0.4160 0.4124 0.4122
Fs mean 0.4175 0.4172 0.4148 0.4152 0.4118 0.4113

St. Dev. 2.E-03 2.E-03 7.E-04 3.E-04 3.E-04 3.E-04

The critical slip surfaces illustrated in Figure 3.18, indicate a somewhat rotational
failure mechanism. All methods estimate that the slip and slope toes coincide.
However, the scarp locations can vary as much as 1.5 m. It is also noticeable that the
critical slip surfaces produced by all methods, except for M4, include a discontinuity
at the interface between the uppermost and middle soil layers, which illustrates the

limitations imposed in the formulation of M4.

The convergence graphs, given in Figure 3.19, indicate that the computational effort
required to analyze Example 4 is more or less similar for all surface generation
methods. Furthermore, most methods produce near-optimum solutions with their
initial populations, indicating that the geometric and soil properties of this example

produce a relatively easier optimization problem compared to the previous ones.
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Figure 3.19: Example 4 — the convergence of surface generation methods
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3.2.3.5. Example 5

In Example 5, the slope is analyzed under static loads in Case (i) and further evaluated
considering pseudo-static earthquake loading in Case (ii). The results of the analyses,
presented in Table 3.18, indicate that M2, M3, and M4 fail to locate the critical surface
for both cases. M1 is capable to find near-optimum solutions, however, cannot
improve the results of QS and SQS, which produce the most critical slip surfaces. For
Case (i), the minimum Fs is reported with QS as 1.0096, while SQS vyields the
minimum value for Case (ii) as 0.8400. In either case, the minimum Fs values of these
two methods differ only slightly. However, it should be noted that SQS is statistically

the better alternative.

Example 5 is presumably the most awkward of all the benchmark problems presented
in this manuscript. As illustrated in Figures 3.20 and 3.21, the failure is translational.
Furthermore, the search space of the problem does not contain any strong local minima
considering the distinct soft soil band. However, the critical slip surface is extremely
flat with a wide linear segment in the middle. Therefore, the problem mostly tests the
capabilities of the surface generation methods. In this sense, M2, M3, and M4 fail in
both cases of the problem. On the other hand, M1, QS, and SQS are observed to be

flexible enough to represent the critical surfaces.

Table 3.18: Example 5 — statistical comparison of surface generation methods

MI M2 M3 M4 QS  SQS

Fs.min 1.0187 1.1319 1.1080 1.0975 1.0096 1.0101
Fs med 1.0639 1.1978 1.1760 1.1041 1.0235 1.0149
Case (i)  Fsmax 1.1813 15908 1.2785 1.1371 1.1305 1.0779
Fs,mean 1.0730 1.2370 1.1805 1.1079 1.0398 1.0199
St. Dev. 4E-02 1E-01 4.E-02 1E-02 4.E-02 1.E-02
Fs.min 0.8461 0.9647 0.9542 0.9251 0.8408 0.8400
Fs,med 0.8802 1.0025 0.9804 0.9281 0.8519 0.8443
Case (ii)  Fsmax 0.9745 1.1541 1.0308 0.9514 0.9461 0.8791
Fs,mean 0.8954 1.0087 0.9851 0.9313 0.8628 0.8469

St. Dev. 5.E-02 4.E-02 2.E-02 8.E-03 3.E-02 8.E-03
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Figure 3.20: Example 5 Case (i) — comparison of critical slip surfaces
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Figure 3.21: Example 5 Case (ii) — comparison of critical slip surfaces
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Convergence graphs for Cases (i) and (ii) are given in Figures 3.22 and 3.23,
respectively. Considering both examples, the computational cost of SQS is relatively
higher compared to the previous experiments. However, the analyses fully converge

in about 200 to 300 iterations, which is either similar to or better than the other

methods.
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Figure 3.22: Example 5 Case (i) — the convergence of surface generation methods
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Figure 3.23: Example 5 Case (ii) — the convergence of surface generation methods
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3.2.3.6. Example 6

The last example considers four configurations with different loading and groundwater
conditions as summarized in Figure 3.9. The results of the experiments, given in Table
3.19, further emphasize the capability of SQS, which yields the best statistical
outcomes as well as the minimum Fs values for all cases. Using SQS, the minimum Fs
values for Cases (i) through (iv) are obtained as 1.3303, 1.1971, 1.0419 and 0.9317,
respectively. QS often finds similar results but deviates more than SQS, especially in
the cases with seismic loading (i.e. Cases (iii) and (iv)). Considering the other methods,
M1 is the most competitive alternative, while M2, M3, and M4 often produce inferior

solutions.

Table 3.19: Example 6 — statistical comparison of surface generation methods

MI M2 M3 M4 QS  SQS

Fs min 1.3312 1.3514 13490 1.3392 1.3304 1.3303
Fs med 1.3409 1.3795 1.3656 1.3486 1.3373 1.3345
Case (i) Fsmax 1.3710 1.4166 1.3892 1.3829 1.3599 1.3467
Fs mean 1.3429 1.3832 1.3677 1.3522 1.3382 1.3371
St. Dev. 9.E-03 2.E-02 9.E-03 1E-02 6.E-03 6.E-03
Fs.min 1.2022 1.2120 12197 1.2045 1.1985 1.1971
Fs,med 1.2122 1.2561 1.2393 1.2218 1.2056 1.2002
Case (ii)) Fsmax 1.2285 1.3700 1.2687 1.3282 1.2119 1.2091
Fs,mean 1.2162 1.2636 1.2429 1.2477 1.2064 1.2016
St. Dev. 1.E-02 4.E-02 2E-02 5E-02 5.E-03 4.E-03
Fs,min 1.0424 1.0703 1.0643 1.0559 1.0422 1.0419
Fsmed 1.0476 1.0941 1.0784 1.0651 1.0547 1.0466
Case (iii) Fsmax 1.0776 1.1766 1.0987 1.3269 1.0639 1.0596
Fs,mean 1.0514 1.0949 1.0775 1.0928 1.0538 1.0471
St. Dev. 1.E-02 2.E-02 9.E-03 8.E-02 7.E-03 4.E-03
Fs.min 0.9335 0.9595 0.9472 0.9430 0.9320 0.9317
Fs med 0.9531 0.9784 0.9737 0.9510 0.9426 0.9353
Case (iv) Fsmax 0.9662 1.1029 0.9983 0.9770 0.9688 0.9432
Fs,mean 0.9516 0.9908 0.9746 0.9526 0.9456 0.9367
St. Dev. 1.E-02 4.E-02 2E-02 8.E-03 1.E-02 4.E-03
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The critical slip surfaces obtained with each method are illustrated in Figures 3.24—
3.27 for Cases (i) through (iv), respectively. Considering Case (i), a partially
translational failure mechanism is observed above the relatively stiff base soil layer.
The most visible differences are observed for M2 and M3, which locate the slip toe
about 1 m away from the other methods. Furthermore, the approximation of M4 is
slightly different than M1, QS, and SQS, considering the deviations around the
interface between the soft soil band and the upper layer. Similar observations are made

for the other cases illustrated in Figures 3.25-3.27.

The convergence graphs, given in Figures 3.28-3.31, support the findings of the
previous experiments. For each case, the convergence rate of SQS is significantly
better than the other methods, which promotes SQS as a computationally efficient
surface generation method. Although QS can find comparable terminal values, the
scaling operation in SQS facilitates the optimization process significantly.
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Figure 3.24: Example 6 Case (i) — comparison of critical slip surfaces
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Figure 3.25: Example 6 Case (ii) — comparison of critical slip surfaces
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Figure 3.26: Example 6 Case (iii) — comparison of critical slip surfaces
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Figure 3.27: Example 6 Case (iv) — comparison of critical slip surfaces
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Figure 3.28: Example 6 Case (i) — the convergence of surface generation methods

74



M1 -FS =1.2122
med
2.90 ——M2 -FS__ =12561 -
M3 -FS_  =12393
S med
2.50 ———M4 -FS_=12218 .
o QS -FS_ =12056
15} | _
mE 210+ I_S(ZJS-FSmed— 1.2002 |
& 1
1.70
1.30 +
1 10 100 1000
[teration

Figure 3.29: Example 6 Case (ii) — the convergence of surface generation methods
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Figure 3.30: Example 6 Case (iii) — the convergence of surface generation methods
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Figure 3.31: Example 6 Case (iv) — the convergence of surface generation methods

3.2.3.7. Statistical Significance Tests

The experiments presented so far propound SQS as a proficient and statistically
reliable alternative to the existing surface generation methods. To validate this claim
and encapsulate the findings of the experiments, a comparative analysis is performed
to assess the statistical significance of the improvements achieved with SQS.
Accordingly, SQS is paired with each surface generation method separately and
evaluated using Wilcoxon signed-rank comparison [68] to test the hypothesis that “the
pairwise difference between the results of SQS and the opposing method has a median
Fs value equal to zero”. The confidence interval is kept at 95% (i.e. a=0.05) and it is
reasoned that the method with lower median Fs performs significantly better than the
other if the hypothesis is rejected. The tests are performed based on the results of 30
independent analyses of each benchmark problem, resulting in a total of 11 cases.

The outcomes of the significance tests are summarized in Table 3.20, in terms of p-
values and indications to denote the favorable method for each example. The notation

is explained as follows; (i) the examples where SQS significantly improves the
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opposing method are denoted with “@”, (ii) the examples where the opposing method
significantly improves SQS are denoted with “©”, and (iii) the examples where the
differences between the results are not significant are denoted with “©”. Compared to
M1 and M4, SQS exhibits significant improvement in 10 of the 11 instances, and the
differences are observed to be insignificant in one case for each method. The
improvement rate of SQS over M2 and M3 is 100%. The only method that exhibits
improvement over SQS is QS, which is only observed for Example 1. Furthermore, it
Is noteworthy to mention that the results of these two methods are similar in Example
2 Case (i). Both of these examples consider the analysis of simple slope geometries
with homogeneous soil profiles under gravitational loads only. For such simple cases,
QS may be preferred over SQS. On the other hand, SQS is more effective for complex
problems as it produces significant improvement in 8 out of the 9 cases that either
incorporate stratified soil profiles or consider external loading.

Table 3.20: Summary of signed-rank tests

SQS vs. > M1 M2 M3 M4 QS

Example 1 173E-06 @ 173E-06 @ 1.73E-06 @ 4.72E-02@ 2.30E-02 ©
Example 2 (i) 173E-06 @ 173E-06 ® 173E-06 @ 6.73E-01 O 6.56E-02 O
Example 2 (ii) 407E-05 @  173E-06 @ 7.69E-06 @ 1.73E-06 @ 3.38E-03 @
Example 3 262E-00 © 173E-06 @ 173E-06 ® 1.73E-06 @ 1.25E-04 @
Example 4 1.73E-06 @ 173E-06 @ 173E-06 ® 1.73E-06 ® 3.72E-05 B
Example 5 (i) 352E-06 @  173E-06 @ 173E-06 @ 1.73E-06 @ 1.17E-02 @
Example 5 (ii) 522E-06 @  173E-06 @ 173E-06 @ 1.73E-06 @ 1.83E-03 @
Example 6 (i) 9.84E-03 @  173E-06 @ 173E-06 @ 2.88E-06 @ 6.29E-01 O
Example 6 (ii) 3.18E-06 @ 173E-06 @ 172E-06 ® 3.88E-06 @ 1.71E-03 @
Example 6 (i) ~ 4.07E-02 @  173E-06 @ 1.73E-06 @ 1.73E-06 @ 4.53E-04 &
Example 6 (iv) 6.98E-06 @ 173E-06 @ 1.73E-06 @ 1.73E-06 @ 2.41E-04 @

Summary:

109;09;10 114:09;00 114:00;00 106;00;10 83;10;20

The results are in terms of p-values. @: SQS shows significant improvement, @: opposing method shows significant
improvement, : the difference is not significant in 95% confidence interval.

3.2.4. Comparison of SQS with Commercial Analysis Software

In this section, the reliability of the analysis framework is verified and the efficiency
of SQS is further investigated through a comparison with the renowned slope stability
analysis software, Slide v7 [34]. First, the program is calibrated into the analysis
settings used for SQS. Analysis option is selected as “GLE/Morgenstern-Price”,

77



interslice force function is specified as “Constant”, groundwater option is selected as
“Water Surfaces” and the error tolerance for Fs is set to 10°. Using this configuration,
the critical slip surfaces produced with SQS are analyzed for result verification. The
outcomes, given in Appendix A, indicate that the results reported in the previous
sections are in perfect agreement with the software. The agreement of the results
allows a comparative performance evaluation between the proposed framework and
Slide analysis software. Accordingly, the benchmark problems are analyzed using the
software with the following settings: surface type is selected as “non-circular”, search
method is specified as “Cuckoo Search”, the number of slices for Fs evaluation is set
to 100 (i.e. convergence of Slide v7 is not sensitive to the number of slices) and the
surface optimization settings are kept at the default configurations. The software does
not report statistical results, hence a comparison is only possible in terms of minimum
Fs and the 4 values. Given in Table 3.21, the results further emphasize the capability
of SQS, which yields a slightly improved Fs value for each experiment.

Table 3.21: Comparison of SQS and Slide v7

SQS Slide v7
FS,min A FS,min A
Example 1 1.9773 0.3026 1.9920 0.3031

Example 2 (i) 1.3220 0.2497 1.3252 0.2499
Example 2 (ii)  0.9976 0.2874 1.0018 0.2918
Example 3 1.0878 0.0719 1.0904 0.7010
Example 4 0.4110 0.2430 0.4140 0.2332
Example 5 (i) 1.0101 0.4531 1.0207 0.4431
Example 5 (ii)  0.8400 0.5680 0.8457 0.5674
Example 6 (i) 1.3303 0.1384 1.3321 0.1385
Example 6 (i)  1.1971 0.0703 1.1980 0.0706
Example 6 (iii) 1.0419 0.4141 1.0436 0.4136
Example 6 (iv)  0.9317 0.3323 0.9329 0.3397

The critical slip surfaces located with SQS and Slide v7 are illustrated in Figure 3.32.
For the experiments except for Example 2 Case (ii) and Example 4, the critical paths
are exact matches. The main difference in all cases is the smoothness of the surfaces
generated with SQS.
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Figure 3.32: Comparison of SQS and Slide v7 — critical slip surfaces
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3.3. Discussion of Results

The experiments in this chapter provide an elaborate assessment of the available
surface generation procedures and the alternative methods developed in scope of the
present study. First, a parametric study is conducted to better understand and exploit
the capabilities of these methods, which are broadly classified into two groups as slice
and spline-based methods. Slice-based methods like the ones proposed by Malkawi
(i.e. M1) and Cheng (i.e. M2 and M3) utilize discrete lines to represent the slip
surfaces. Therefore, they require a great number of segments, and consequently
geometric parameters for accurate surface representation. Consequently, the
convergence rates of these methods are greatly influenced by the resulting
dimensionality. On the other hand, spline-based approaches, Sun’s method (i.e. M4)
and the ones developed in this study (i.e. QS and SQS), seem to overcome this issue.
Using any of these methods, a few spline functions are sufficient for accurate surface
representation. Accordingly, the resulting surface optimization problems include

marginally low numbers of decision variables.

In light of these internal observations, the methods are comparatively evaluated based
on result accuracy, statistical soundness, and computational efficiency. For simple
slopes with homogeneous soil profiles, all spline approaches are favorable over slice-
based methods. However, the capability of Sun’s cubic spline method is comparably
limited for complex cases with stratified soil profiles or external loading. For such
problems, slice-based methods like M1 can be more reliable. Regardless, quadratic
spline approaches, QS and SQS, are proficient based on result accuracy and statistical
reliability. Furthermore, it is notable that the critical slip surfaces are always reported
with either of these methods. The difference between QS and SQS is still significant.
The scaling operation proposed in SQS seems to improve the capability of the
quadratic spline approach in all aspects, especially in terms of convergence efficiency.
SQS usually requires less than half the iterations required with QS, in addition to

finding better approximations for the location of the critical slip surfaces. However, it
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should be noted that QS is slightly better than SQS for simple problems, despite its
questionable convergence rates. Regardless, the statistical assessments of the results

emphasize the enhanced performance of SQS over QS, as well as the other methods.

Lastly, a verification study is performed with the commercial slope stability analysis
software, Slide. The outcomes confirm the computational implementations and give
further insight into the potential of the proposed method. Even when applied with a
conventional optimization algorithm (i.e. Differential Evolution) without problem
specific modifications, SQS is able to improve the widely used software, Slide.
Considering the collective of these findings, the surface generation module of
Integrated Limit Equilibrium Method, SQS, is proposed as a reliable surface
generation method that can individually be regarded as an enhancement over available

procedures.
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CHAPTER 4

INTEGRATED LIMIT EQUILIBRIUM METHOD - PART II: STABILITY
ANALYSIS

In this chapter, the stability analysis module of Integrated Limit Equilibrium Method,
ILEM, is introduced and proposed as a refined alternative to the existing limit
equilibrium formulations. In Section 4.1, the analysis problem and the governing
equations are derived using quadratic order relations and solution strategies are
proposed based on analytical and numerical evaluation methods. Then, the resulting
ILEM variants are verified in terms of computational efficiency and result precision in
Section 4.2, including a comparison with the renowned GLE formulation. Then, the

findings are summarized and discussed in Section 4.3.

4.1. Integrated Limit Equilibrium Method

To elucidate the objective of developing ILEM analysis procedure, it is necessary to
refer to Chapter 2 where the limit equilibrium methods were broadly classified into
two categories as single free-body procedures and procedures of slices. Among those,
procedures of slices are often preferred over the others, owing to their wider ranges of
applications and ability to accommodate general slip surfaces. The downside of using
procedures of slices is that achieving a satisfactory level of precision requires a
considerable computational cost on the account of extensive operations to discretize

and evaluate the soil body.

Addressing this issue, a different solution approach is suggested in ILEM as an
extension of the proposed surface generation method, SQS. Accordingly, equilibrium
conditions are formulated based on quadratic order surface representation. Then, the
resulting equations are derived into definite integrals that can either be integrated

analytically to find closed-form solutions or accurately approximated with high-order
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numerical integration methods, both of which eliminate free-body discretization. The
underlying assumptions and the range of application of ILEM are exactly the same as
procedures of slices and the formulation unifies several LEMSs, similar to GLE.
However, the proposed method requires neither individual slice evaluation nor free-
body discretization, hence resembles a single free-body procedure. In other words,
ILEM incorporates the positive features of both lineages of limit equilibrium methods.
These ideas and their implementations in ILEM are given in the following sub-

sections.

Section 4.1.1 makes an introduction with the basic definitions and representation of
geometric problem variables with quadratic order relations. In Section 4.1.2, the
governing equations are formulated considering the equilibrium conditions. Then in
Section 4.1.3, the governing equations are analytically derived into closed-form
solutions for Fs evaluation. Furthermore, numerical approximation methods and their
implementation in the literature are briefly discussed. Section 4.1.4 outlines the
implementation process of ILEM, including further considerations for complex
problems. Lastly, in Section 4.1.5, ILEM interpretation of common LEMs is discussed
and a solution approach is given for each method.

4.1.1. Basic Definitions and Geometric Variables

Before commencing with the formulation, it is necessary to give the explicit definitions
of the geometric variables. As there are quite a few of them that appear in the
formulation, this entire sub-section is dedicated to giving the simple definitions
illustrated in Figure 4.1. The notation in Figure 4.1 follows the one adopted in Chapter
3. However, in this case, the surfaces and the distributed surcharge loading, given in
Figure 4.1a, are represented with quadratic order polynomials as given in Egs. (4.1)—
(4.4).
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Figure 4.1: Integrated Limit Equilibrium Method analysis approach
(a) slip surface of a slope under external and seismic loading
(b) free-body diagram of an infinitesimal element

y, = f(x)=a,x* +bx+d, (4.1)
Y, =9(x)=a,x* +bx+d, (4.2)
y,, =W(x)=a,x’ +b x+d, (4.3)

q(x) = a,x* +b,x +d, (4.4)

where f (x), g(x), w(x): functions representing the failure surface, ground surface, and

groundwater table elevations, and g(x): the magnitude of the distributed surcharge.

The height values illustrated in Figure 4.1b are calculated using Egs. (4.5) and (4.6)
and the base inclination is obtained from the first-order derivative of f (x) as given in
Eq. (4.7). Note that hw assumes negative values if the water level is below the slip

surface. In such a case, the function hw should be set to zero.

h(xX)=g(x)- f(x)=a x’ +hx+d, (4.5)

h,(X) =w(x)- f(X)=a,x*+b x+d, (4.6)
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a(x) = tan [ f'(x)] = tan*[2a,x + by | (4.7)

where h(x) and hw(x): functions representing the height of soil and water above the
failure surface, respectively, and a(x): inclination of the failure surface, measured from
horizontal.

Using these definitions it is possible to determine the total weight of the free-body, W,
with Eq. (4.8), and locate its center of gravity, C(xc, Yc), using Egs. (4.9) and (4.10).
Note that these expressions are derived considering a homogeneous soil profile and
single-function representation. These definitions are extended for complex cases, later
in Section 4.1.4.

W=th.dx:y-(a*‘3x3 erhzx2 +dhxj : (4.8)
Xe =— ;fx yh dx:vlv-(ahx4 +b“;(3 dhzxzj ) (4.9)
) a,a,x° N (a,b, +a,b, )-x* N (a,d, +b b +ad )-x*)"
e :vtliym'yh'dxzvfl' +(smdh+bhdm)'xi+dmdhx 3 0
where y =m(x) = M =a x’+b x+d_ (4.11)

Lastly, the resultant external load, Q, and its point of application on the x-axis, Xr, are
calculated using Egs. (4.12) and (4.13), respectively.

e a,x®> bx? K
(g:jq-dx:(—q3 +—q2 +quJ (4.12)
X a 4 b 3 d 2 s
xQ:% X-q dx=%-( q: + “; + “ZXJ (4.13)
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4.1.2. Formulation of Equilibrium Conditions

The derivation of equilibrium equations in ILEM is similar to the approach previously
adopted in GLE. The main difference is that the formulation given in this section is
based on an infinitesimal element, as illustrated in Figure 4.1. Note that in the
following formulation, all the forces and geometric parameters are treated as
dependent variables (i.e. as a function of x), whereas soil parameters are assumed to
be constant. Furthermore, the groundwater table, slip and ground surfaces are
represented by single continuous functions. Later in Section 4.1.4, an extension is
provided to accommodate complex cases as mentioned previously. The method is
formulated considering fully drained conditions. However, it can be adapted to analyze
aslope in undrained condition by ignoring the pore pressure and replacing the effective

stress parameters, ¢' and ¢', with the total stress parameters, cu and ¢u.

For the infinitesimal element given in Figure 4.1b, weight, dW, surcharge load, dQ,
and base uplift force, dU, are calculated using Eqs. (4.14)—(4.16).

dW =y hdx (4.14)

dQ = qdx (4.15)

du = Zulv gy (4.16)
COSx

Considering the infinitesimal element, force equilibrium in horizontal direction gives

an expression to calculate the change of internal normal force, dE in Eq. (4.17).
dE =dNsina +dWk, —dScosa (4.17)

where dN and dS: normal and shear reactions on the base of the infinitesimal element.

Similarly, vertical force equilibrium yields an expression for the change of internal
shear force, dX in Eq. (4.18).

dX =dW - (1+k,)+dQ-dNcose —dSsine (4.18)

To overcome static indeterminacy, Morgenstern-Price internal force assumption is

applied. As a result, a relation can be written between dE and dX as follows:
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X/E =4 f(x) (4.19)

dX = A f,E—A(f, + f,'dx)-(E — dE ) = AdEf," — AEf,"dx (4.20)
df,

froi 4.21

T i (4.21)

f"=f +f'dx (4.22)

where fi*: the value of internal force function on the right-hand side of the infinitesimal

element.

Substituting Eq. (4.20) into Eq. (4.18) and combining with Eq. (4.17) eliminates dE
and dX from the equations, and yields an expression between base shear and normal

forces, denoted as dS and dN in Eq. (4.23), respectively.

{ds . [sina—/lfi* COSa] +dN -[ﬂfi*sina+c03a] }—0 (4.23)

+dW - [2f, "k, —k, —1] —dQ - 2Ef, dx

When Mohr-Coulomb strength model is considered, another relation is obtained
between dS and dN in Eq. (4.24).

ds= S dx +tan¢

= dN -duU
Fs cosa  F ( ) (4.24)

Substituting Eqg. (4.16) into Eq. (4.24) and dividing both sides by the infinitesimal

thickness, dx, yields the equation for base shear stress, s(x) in Eq. (4.25).

ds c tan ¢' 7.h, j
s(X)=— = + — W
() dx F,cosa F (0” cosa (4.25)
dN
where -
o, (%) ™ (4.26)

Then, Egs. (4.14), (4.15) and (4.24) are substituted into Eq. (4.23). The resulting
equation is arranged to single out dN. Dividing both sides by dx results in an equation

for base normal stress, on(x), given in Eq. (4.27).
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N h-(k, +1- 21k, J+ [C_N‘vvta”"’)(ﬁfi* ~tan ¢')+ q+ AEF;
0,00 =" = L - , (4.27)
cosw[l—itangﬁ}sin a-(tanqﬁwlfi*J
FS FS

Although the equations given so far are sufficient to satisfy internal force equilibrium,
it is necessary to check overall equilibrium explicitly. Based on Egs. (4.25) and (4.27),
both normal and shear stress distributions are dependent on the internal normal force
variation, E(x), which may assume an infinite number of configurations. It is already
known that E is zero at the entrance and exit points of the slip surface since the
interfaces disappear at these locations. Therefore, the boundary conditions in Egs.
(4.28) and (4.29) must be applied to guarantee complete force equilibrium. Note that
internal shear force, X, is linearly dependent on E based on the interslice force
assumption given in Eqg. (4.19). Therefore, the boundary conditions for the internal

shear forces are not considered separately.
E(x=x)=0 (4.28)
E(x=x)=0 (4.29)

The boundary condition in Eq. (4.28) is directly applied to Eqg. (4.27) and the total
change of interslice normal force is set to zero by integrating both sides of Eq.(4.17)

as follows:

TdE=Tsina~dN+kh-TdW—TcoswdS=0 (4.30)

X % % %

The resulting expression is basically the summation of the horizontal components of
the external, inertial and base reaction forces. The integral of dW is equal to the total
weight of the sliding body, denoted with “W” in Figure 4.1a. The forces dN and dS can
be replaced with on(X)dx and s(x)dx, respectively to obtain Eq. (4.31).

ZH :th+fansina-dx—fscoswdx:0 (4.31)
X

X
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The above equation can be combined with Eq. (4.25) and arranged into Eq. (4.32),
which is similar to the “force Fs” of GLE formulation given in Eq. (2.14).

Xs

I(c'—ywhw tan ¢')- dx + fan tan ¢'cos & - dx
FS _ X %

WK, +J0n sine - dx

X

(4.32)

The normal stress is replaced with Eq. (4.27) to develop the explicit form of the force

Fs expression given in Eq. (4.33).

Xs

c'—y,h, tang'

S

j-()fi* —tana)+q+,1Efi'

X

Xt

1

N yh-(k, +1—/1fi*kh)+(
J(C'—]/th tan ¢')‘dx+ tan ¢‘ —
_Af tan ¢I+tana-[tan¢‘

S

S

+/1f,*j

- dx

X

yh~(kv+l—/1ﬁ*kh)+[

c'—y,h, tang'

Fs

)(}fi* —tana)+ g+ AEf;

(4.33)

-dx

Wk, + J

Xt

cotg [1-H W) @
FS FS

In Eq. (4.33), Fs appears on both sides and cannot be singled out. Therefore, an
iterative approach should be adopted to obtain a result. In the manuscript, a quasi-
Newton root finding method is proposed later in Section 4.1.5, hence Eq. (4.33) is
arranged into the form given in Eq. (4.35).

I,+1
Let Fy=—1—% ,
S Wk, + 1, (434)
where 11, I2, and I3: integral terms in Eq. (4.33) (i.e. the arrangement of the terms in

Eq. (4.33) and (4.34) follow the same order).

To satisfy horizontal force equilibrium, both sides of Eq. (4.34) should yield the same
result. Therefore, a governing equation can be defined for horizontal force equilibrium

as follows:

L +1,

f.,(F, A) = —1,-Wk, =0 (4.35)

S

where fu(Fs, 1): governing equation for horizontal force equilibrium.
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Lastly, moment equilibrium is satisfied with respect to a common rotational center,
illustrated as point R in Figure 4.1a. To satisfy this condition, the moments generated
by the external, inertial and base reaction forces are equated to zero in Eq. (4.36). In
this calculation, the internal forces, E and X, are ignored, considering that the forces
on the opposite sides of an interface would cancel out and generate zero net moment.
However, it is worth mentioning that an internal moment equilibrium equation can be

used to determine the location of the line of thrust at any interface.

_Q'(XR _XQ)_W '[(1+kv)'(XR _XC)_kh '(YR - YC)]

>M = +st-[sina-(xR—x)—cosa-(yR—yf)-dx =0 (4.36)

Xt

+Tan-[003a-(xR—x)+sina-(yR—yf)-dx

Xt

The expression in Eq. (4.36) is arranged by substituting the shear stress, s(x), with Eq.
(4.25). The resulting expression in Eq. (4.37) is essentially similar to the “moment Fs”
of GLE, given in Eg. (2.15). However, there are some differences based on the

arrangement of the terms.

T {[c'—ywhw tan ¢'} : [tan (% —x)~(yg - y)}} -dx

- [ O'H-{COSO!'{(XR_X)_tanW (yR—y)}+sina~{(yR—y)+ta£f~(xa—><)}}dx

?S.

Fs = (4.37)

Xt

+Q’(XR _XQ)+W'[(1+kv)'(XR _XC)_kh '(YR _yc)]

Normal stress is replaced with Eq. (4.27) to obtain the explicit form of the moment Fs

equation, given in Eq. (4.38).
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T {c‘—}/whw tan ¢'} . [tan - (X = X)—(yg — y)}} .dx

FS X5
{(XR )=y, ~y)+tan {(VR - y)+taFL¢"(XR —X)}

FS S

- yh-(kv+1—1fi*kh)+(c_yvvhvvtawj.(;ﬁ—tana)+q+wfi'
x — -dx
L +tana‘[ta|2¢ +/1fi*j
S

S

Xy

+ Q'(XR _XQ)+W '[(1+kv)'(XR _XC)_kh '(YR _YC)]

(4.38)

Similar to the procedure adopted previously, Eq. (4.38) is arranged to form the

governing equation given in Eq. (4.40).

Let F, = s
— 15+ Q- (X = g )4 W - [(M+ K, )- (x5 = %c ) =Ky - (v — ¥ )]

fM (FS’ /1):::_4"‘ IS_Q'(XR_XQ)_W '[(1+kv)'(XR_Xc)_kh '(yR_yc)]:o

S

(4.39)

(4.40)

where 14 and Is: integral terms in Eq. (4.38), and fm (Fs, 4): governing equation for

moment equilibrium.

The resulting formulation is similar to that of GLE, presented in Chapter 2. There are

two governing equations (i.e. Egs. (4.35) and (4.40)) and two unknowns (i.e. Fs and

2). Using Egs. (4.35) and/or (4.40), it is possible to obtain solutions based on the

assumptions of Bishop, Janbu, Lowe and Karafiath, Corps of Engineers, Morgenstern-

Price, and consequently Spencer. However, Fellenius’ method ignores vertical force

equilibrium, instead follows a different assumption to calculate base normal stresses

(i.e. refer to Section 2.1.2.1). Therefore, the equations are modified to obtain a solution

for Fellenius’ method as follows:

92



Special Case: Fellenius’ force assumption

Considering the infinitesimal element given in Figure 4.1b, the forces are resolved
along the slip surface. From force equilibrium along the base normal direction, dN and
on can be obtained as follows:

dN ~— =0, =yh-[(k, +1)-cosa —k,sina]+qcosa (4.41)
X

Fellenius’ method ignores internal forces completely and calculates Fs based on
moment equilibrium. Therefore Eq. (4.38) can be modified by substituting Eq. (4.41)
for an, and replacing 4 with zero. After arranging, Fs can be singled out as given in Eq.
(4.42).

T{[c‘—ywhw tan ¢'][tan o (Xg = X)—(yq - y)}} dxs :f{tan g'cos’a-[yh-(k, +1-k, tana)+ q]} de

(Fou ). =* x[tana- (x, = %)= (y= - v)]
} dx+Q.(xR —xQ)+W Ja+k,)- (xe = %0 )=k, - (va = o )]

J.{cos a-[yh-(k, +1-k, tana)+q] (4.42)
[Xe —x+tana-(y, - y)]

where (Fsm)e: moment Fsbased on Fellenius’ normal force assumption.

Additionally, in this study, Fellenius’ normal force assumption is used to calculate a
Fs based on horizontal force equilibrium. It should be noted that this not a common
approach in the literature, rather an experimental trial to evaluate the agreement of the
results with rigorous LEMs. To obtain the force Fs based on this assumption, Eq. (4.41)
is simply substituted into Eq. (4.33) and /1 is replaced with zero. The resulting

expression is given in Eq. (4.43).

f(c'—ywhw tan ¢')- dx + ftan ¢'cos? a-[1h-(k, +1—k, tan )+ q]- dx
%

%

(FS,H )F =

n (4.43)
Wk, + jsinz a-{h-[(k, +1)-cota -k, |+ qcota}-dx
%

where (Fsn)r: horizontal force Fsbased on Fellenius’ normal force assumption.
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4.1.3. Solution Approaches for the Governing Equations

In the following sub-sections, two solution approaches are proposed to compute the
governing equations. First, an analytical approach is adopted to derive closed-form
solutions. Then, numerical integration approaches are discussed with their available

implementations in the literature.

4.1.3.1. Closed-Form Solution with Analytical Integration

Using the derivation given in this sub-section, it is possible to compute exact solutions
for the governing equations, hence avoid free-body discretization and the associated
precision losses altogether. The derivation initiates with Eqgs. (4.35) and (4.40), which
can be adapted to find results for several LEMs by manipulating the internal force
function, fi, and 4 coefficient. Among those, 4 can be treated as a constant, while fi is a
method specific dependent variable that can be a trigonometric function, a polynomial
in any order or even a specific user-defined function. Therefore, the analytical
derivation initiates with an assumption regarding the generalized form of fi. It is
sufficient to assume a constant internal force function for the approaches proposed by
Fellenius, Bishop, Janbu, Corps of Engineers (i.e. case (i)) and Spencer, hence the
following formulation adopts the relations given in Egs. (4.44) and (4.45).

_dfy
= & =
fr— f (4.45)

f =const.eR, f 0 (4.44)

In the governing equation related to force equilibrium, Eq. (4.35), there are three

integral terms, which are explicitly given in Egs. (4.46)—(4.48) for the sake of clarity.

Xs

l, = I (c'=y,h, tan ¢')- dx (4.46)

Xt

y yh-k, +1—zﬁkh)+(°"mwtaw]-(zﬁ —tana)+q+ AEf;
= f tan ¢' Fs

1A g +tana-(ta2¢

Xt S

- dx (4.47)

+/1fi*J

S
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yh-(k, +1—iﬁ*kh)+(WJ-(/lﬁ* —tana)+ q+ AEf;

. =
3 * 1 1
Cota-(l— 4 ta"¢}+ta“¢ i
Xt FS FS

S

- dx

(4.48)

The dependent variables in the equations are replaced with the function definitions

given in Egs. (4.1)—(4.13). After applying the internal force assumption, given in Egs.

(4.44) and (4.45), the integrals can be arranged into the polynomial forms given in Egs.

(4.49)—(4.51). The coefficients in the equations can be calculated using the expressions

given in Eq. (4.52).

= ]E(Aix2 + le+Cl)- dx
Xt

' +B,x* +C,x+D,
z_[ -dx

% E,x+F,

T AXE +B,x? +Cx+ D,

I -dx

. G,/(E;x+F,)+H,

Ai =" w tan ¢I ’ Bl = _bhwyw tan ¢" Cl = CI_dhw}/w tan ¢l
&=y-(k, +1-2fk,), n=b, —f,
2a; A nA +2a,B,
=— B, =a,{+a, —————
A2 Fs 2 h§ q FS
B, +2a,C C
C, =b,&+b, — T2 2% b, —d, £+d, —
Fs s
. 1+b, Af,
EZ=2af-(i+ A, ) F, = =
Fs tang Fs tan ¢
A;=A,, By=B,, D;=D,, E;=2a;, F, =b;
Gazl_/lfitan¢, H3=tan¢ T f
s s

(4.49)

(4.50)

(4.51)

(4.52)

Through a series polynomial arrangement and substitution, the closed-form solutions

of the definite integrals are obtained as given in Eqgs. (4.53)—(4.55). Note that the

coefficients in the equations are not subscripted for the sake of simplicity. However,

for each integral, the corresponding polynomial coefficients in Eq. (4.52) should be

applied in the calculations.
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Xs

3 2
I, = ﬂ+B—X+Cx
3 2

Xt

(DE® —CE?F + BEF? — AF®)-In(|Ex+ F|)
E4
A , BE-AF , CEZ—BEF+AF2X

+—X 4+ — X"+ -
3E 2E E

Xt

DE®H®-CE’FH®-CE®GH?

+BEF’H® + 2BEFGH
12G- In(|EHx + FH +G|)
+BEG’H — AF°H® —3AF *GH 2
| ~3AFG?H - AG® 1
P+ 3AE*H“x* + 4E°H® - (BEH - AG)- X’ 12E*H°

+6E?H?-(CE?H? ~BEGH + AFGH + AG?)- X’
DE°H*-CE’GH “+BEFGH )
+BEG°H-AF *GH -2AFG2H-AG®

+12EH [

%

(4.53)

(4.54)

(4.55)

The solution for 11 is quite straightforward, however, I> and I3 require additional

considerations. When the slip surface is defined by a linear segment (i.e. ar = 0), the

coefficients A2, As, E2, and Ez become zero. When these values are substituted, 0/0

form indeterminacy is encountered in Egs. (4.54) and (4.55). Furthermore, the

equations are ill-conditioned for ar values approaching zero since E2 and Es appear in

the denominators as high-order exponential terms. This issue is already addressed in

SQS formulation with the threshold value applied to ar in Eq. (3.10). To overcome

indeterminacy, closed-form solutions of 12 and I3 are explicitly derived for linear order

surface functions and abbreviated as I2in and lIsjin. In short, for linear surfaces, Egs.

(4.54) and (4.55) are replaced with Egs. (4.56) and (4.57), respectively.

TBx?+Cx+D 1 (Bx® Cx?
CE, =01, = [2XFEXHD g | 2 [ B Xy
AZ 2 2,lin )_!: F |:F ( 3 2 J:|

Xs

Xy

G/F +H GF+H | 3 2

X 0,2 3 2 :
A3=E3=0_)|3,Iin:.[w'dxz{ : [BX +CX +DXH
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In the governing equation related to moment equilibrium, Eq. (4.40), there are two
integral terms, 14 and Is in Eqs. (4.58) and (4.59), respectively.

I, = T{[c'—ywhw tan ¢'} : [tan a-(Xg —X)=(Yg — y)}} -dx (4.58)

Xt

Xs

f {(XR )= (g, - y)+ tana- {(VR —y)+ B (x, - X)}}

Fs Fs

c'—y,h, tan ¢' (4.59)

ls = yh'(kv_'_l_}:f}*kh)_'-( J~(/1ﬁ*—tana)+q+/1Efi'

X
A end’ ;anqﬁ +tana-(ta2¢ +/1fi*j

S S

-dx

[P

t

Similar to the previous steps, the dependent variables are substituted with Egs. (4.1)—
(4.13), (4.44) and (4.45). Then, the integrals are arranged into the polynomial forms
given in Egs. (4.60) and (4.61), where the coefficients are calculated using the

expressions in Eqg. (4.62).

I, =I(A4x4+B4x3+C4x2+D4x+ E, )-dx (4.60)

Xy

5. dx (4.61)

| I AX® +B.Xx° +C.x* + D x° + E;x* + Fx+G
.=
% H.x+ M,

@=d; +b Xz =Yg A =—ac A, B4=af'(2A1XR_B1)
C,=wA +a, -(2x;B,-C,), D, =wB, +2a, x,.C,, E,=w C,

' tan ¢'
K'3=—23f21 K, =-a, -(3bf +ta|2¢J, K'l=28.f .(XRF—¢+ yR_dfj_bfZ_l

S S

tan ¢' X, tan ¢'
K0=XR+(df—yR)~ F¢+bf-( RF ¢+yR—dfj

S S

~2a,A nA +2a, B
Hy = f ’/uzzahég"'aq_ifl
FS FS

(4.62)

B, +2a.C
y /jlzbhg-'-bq_%,
S

7€,

ﬂo:dh§+dq_ = » A =Gy By =G0, H i1, G = kopn + 110, + K fl

s
Dy = ity + Koty + Kl + Koty Eg = Ko ply + K4 + Koty s Fs = Kypty + ko4

G. = xouty: H, = 2a, -(ta;“'” +/1fiJ, M, =1— Af. - ta2¢ Y -(ﬂfi +MJ

S S S
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Similarly, the integrals are analytically solved to obtain the closed-form solutions
given in Egs. (4.63) and (4.64). For each integral, the corresponding polynomial
coefficients in Eq. (4.62), are applied.

Xs

(4.63)

Ax® Bx* Cx* Dx?
I, = + + + + EX
5 4 3 2

Xt

+EH'M? —FH*M +GH®
+10AH °x® —~12H°-(AM —BH)-x°
ly=1| +15H* . (AM 2 =BHM +CH?)- x*
—20H*-(AM® ~BHM?+CH?M —DH?)- *
+30H2-(AM* —BHM®+CH?M?2 —DH*M + EH*). x?
—60H -(AM ® —BHM * +CH?M® - DH*M? + EH*M — FH®)-x

[ (AM®—BHM®+CH?M* —DH®M?
60- In(|Hx + M| )

"BOH7 (4.64)

. X

In this case, Is is indeterminate for linear surface functions, considering that As and Hs
are zero when as is zero. Accordingly, the closed-form solution of Is is explicitly

derived for linear surface functions and abbreviated as Is,iin in Eq. (4.65).

dx

A, =B;=C;=E; =0 I, M

1 (Dx* Ex* Fx?
= —- + + + Gx
M 4 3 2

Special Case: Fellenius’ force assumption

_TDX3+EXZ+FX+G_

(4.65)

X

Xt

For Fellenius’ method, the nature of the governing equations given in Egs. (4.42) and
(4.43) are significantly different from other methods. Therefore, a separate derivation
is required to obtain an analytical solution. However, the procedure is more or less
similar. The main difference in Fellenius’ method is that the Fs values can be directly
obtained from the closed-form solutions. These derivations and the resulting Fs

equations are given in Appendix B.
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4.1.3.2. Approximation with Numerical Integration

The definite integrals in the governing equations can also be evaluated using numerical
integration methods. In this study, the accuracy of the well-known approaches like
Riemann sum, trapezoidal rule, Simpson’s 1/3 rule and Gauss quadrature
approximation are investigated. It is worth mentioning that, when the slip surface is
defined by linear segments (i.e. conventional slices), midpoint Riemann sum
approximation reduces the accuracy of ILEM to that of GLE exactly. On the other
hand, higher order approximation rules can prove to be more efficient. In fact, Gauss
quadrature approximation was previously implemented by Firat [69, 70] and Low et
al. [71] based on similar ideas. The studies of Firat adopt procedures of slices to
analyze circular surfaces, yet the proposed formulation treats the sliding masses like
single free-bodies. To be more specific, the surfaces are evaluated with single-step
Gauss quadrature approximations over whole intervals, resulting in significantly
improved convergence rates. Differently, Low performed experiments with general
slip surfaces; however, utilized linear slice representation for both types of surfaces.
Consequently, the capabilities of the method were not fully exploited, producing
arguably limited improvements on computational efficiency and result accuracy

compared to the quadratic surface representation adopted in this study.

4.1.4. Extension of ILEM to Complex Problems

The formulations given in the previous sections assume constant soil parameters and
continuous single-function representation for all surfaces (i.e. groundwater table, slip
and ground surfaces), as well as the distributed surcharge loading. For more complex
cases, the governing equations can be evaluated using the summation of integrals for

discrete segments, as defined in Eq. (4.66).

= Z[I ]i |[Xivxi+l] (466)

where n: number of segments, [1]:: any definite integral defined for the i segment,

evaluated for the interval [xi, Xi+1].
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To demonstrate, a comprehensive example is given in Figure 4.2. The example slip
surface is composed of 4 splines, which are further divided into sub-intervals at
geometric or parametric discontinuities (i.e. layer transitions, slope toe and crest
locations, intersections with the groundwater level and any point where the surcharge
load is discontinuous).

7777 \N\\N

Soail 1
Ci'y 'y

Sail 2
(P

777 N\\N

Soil 3
Cs', #3', 3

@ spline node
-* geometric discontinuity

Figure 4.2: Illustration of ILEM application

It is possible to account for variable soil shear strength parameters using this process;
however, profiles with variable soil unit weight require further considerations. In such
cases, computing the total weight, W, and the location of its center of gravity, C(xc, Yc),
Is straightforward. On the other hand, evaluating the normal stress based on Eq. (4.27)
or (4.41) can get rather complicated. A simple “get around” to this problem is to
manipulate the function that represents the height of soil, h(x). It is possible to define
the height of soil within each layer, hj(x), in terms of quadratic expressions. Then, an
equivalent soil height can be computed using Eg. (4.67) and adopted instead of Eq.
(4.5) in the calculations. Using this approach, center of gravity calculations, more
specifically Eq. (4.10), should be modified slightly. The rest of the formulation can be

implemented as is.
1 |
h(x) =7Zyjhj (x) (4.67)
I

(i.e. implemented with ;)

where |: number of soil layers above the slip surface.
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4.1.5. Interpretation of Common LEMs and Fs Evaluation with Broyden’s Method

The derivation of the governing equations in ILEM formulation is essentially similar
to GLE, with the exception of differential equation representation. Therefore,
interpretation of other LEMs follows the pattern previously discussed in Section 2.1.2.
However, in this section, these approaches are personalized for ILEM. The governing
equations and unknown variables for each LEM are summarized, and concise
discussions are given in Table 4.1. It is should be noted that the following sections

refer to these methods with the abbreviations given in this table.

Table 4.1: ILEM interpretation of common LEMs

Abbreviation: Method Equation(s) Unknown(s) Explanation

Conventional Fellenius’ method;
(Fsm)F=const. - direct solution is possible from

. moment equilibrium.
FM: Fellenius’ method
Experimental Fellenius’ method;

(Fs,H)F = const. - direct solution is possible from
horizontal force equilibrium.

BS: Bishop’s simplified method fw (Fs,0)=0 Fs Set 1=0; solve the equation for Fs.

JS: Janbu’s simplified method fu (Fs, 0)=0 Fs Set 1=0; solve the equation for Fs.

Set 2=1 and apply internal force
LK: Lowe and Karafiath’s method fu (Fs, 1)=0 Fs assumption in Eq. (2.17); solve
the equation for Fs.

Set A=1 and apply internal force
CE: Corps of Engineers method fu (Fs, 1)=0 Fs assumption in Eq. (2.18) or (2.19);
solve the equation for Fs.

fu (Fs, 1)=0 Apply internal force assumption
SM: Spencer’s method fu (E ' =0 Fs, A in Eq. (2.20); solve the 2x2 system
M (Fs, 2) = of equations for Fs and /.
] fu (Fs, 2)=0 Apply any reasonable internal
MP: Morgenstern-Price method u (F ' =0 Fs, A force assumption; solve the 2x2
M Sy -

system of equations for Fs and A.

(Fsm)e: Eq. (4.42) — (Fsn)e: EQ. (4.43) —fy: Eq. (4.35) — fu: Eq. (4.40)

Using Fellenius’ force assumption, it is possible to single out the Fs in Egs. (4.42) and
(4.43), hence a direct solution is possible for both, conventional and experimental FM,
which are based on moment and horizontal force equilibrium, respectively. However,

other assumptions need indirect approaches using the governing equations. Defined in
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Eq. (4.68), the most complex case is associated with the rigorous methods, where 2x2
systems of nonlinear equations are solved to determine the Fs and 1 values. Among
the many possible techniques, the present study proposes Broyden’s multivariate

quasi-Newton root finding method [64] for the problem.
x=(F,4), f)=(f,,f,)=0 (4.68)

where X: unknown vector and f: vector-valued function.

The procedure, formulated below for two-variable problems, is adopted in ILEM to
obtain solutions for rigorous methods like SM and MP. Single-variable version of the
same procedure is implemented for the simplified methods like BS, JS, LK, and CE

variants.

Step 1: Prescribe the error tolerance, ew1, and make initial guesses for Fs and A. The
quality of the initial guesses greatly affects the convergence of gradient-based

methods, hence reasonable inputs are essential.

It is suitable to use the solution of FM to estimate an initial Fs value in the same order
of magnitude as the final result. Observations throughout the study informally suggest
that the experimental force equilibrium approach is reliable, even for odd slip surface
geometries. For such surfaces, the conventional FM often finds unrealistic solutions.

Therefore, Eq. (4.69) is suggested for the initial Fs value.
(Fs )o = (FS,H )F (4.69)

where (Fs)o: initial Fs guess for Broyden’s method and (Fswr)F: force Fs based on
experimental Fellenius’ method (i.e. refer to Eq. (4.33) and Appendix B).

For A coefficient, it is not possible to obtain an initial guess using the simplified
methods. Suitably, Zhu et al. [72] proposed an empirical correlation based on average
slip surface inclination. Note that the correlation, given in Eq. (4.70) is computed in a
manner similar to the interslice force function of Corps of Engineers method, given in
Eq (2.18).
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f(x)-f
4, =07 () — f(x) (470)
Xs = X
where Zo: initial A guess for Broyden’s method.
Step 2: Evaluate the initial vector-valued function, fo, and the Jacobian matrix, Jo,
defined in Eq. (4.71), respectively. It is possible to evaluate the partial derivatives in

Jo using finite difference method.

EA
oF, 0d

BZld, ot (471
oF, oA

Step 3: Update the unknown vector, X, using Eg. (4.72) and increase the iteration

number by one.
X, =X —J T, (4.72)
t=t+1

where t: denotes the iteration number.

Step 4: Compute the vector-valued function, ft, and differential vectors, Ax: and Aft
using Eq. (4.73).
AX =X, —X;, A, =f -1 | (4.73)

Step 5: Compute absolute error related to Broyden’s method, b, using Eq. (4.74).

Terminate if eb is smaller than the tolerance, etol.
ev =, (4.7)

Step 6: Update the inverse Jacobian matrix using Eq. (4.75) and return to Step 3. The
method adopts a rank-one update instead of computing the Jacobian matrix in every
iteration. In addition, Broyden further refined the formulation with Sherman-Morrison
Formula to update the inverse of the Jacobian matrix directly.

AX, — I AT,

Ji=J4+
T AXT I,

AX{ I (4.75)
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4.2. Numerical Experiments

In this section, the closed-form formulation of ILEM is validated and the
computational the efficiency ILEM variants based on numerical integration methods
are evaluated through extensive experimentation. Utilizing the critical slip surfaces
located in Chapter 3, a benchmark set is constructed in Section 4.2.1. Then in Section
4.2.2, the closed-form version of ILEM, denoted as ILEM-CF, is implemented to find
results based on common limit equilibrium assumptions. After validating the
applicability of the proposed formulation, the results are further used as a basis of
comparison for the subsequent sections. In Section 4.2.3, ILEM formulation is
implemented with numerical integration methods, in search of improvements on
computational efficiency. Based on these results, an efficient ILEM variant is
compared with GLE formulation and proposed as an alternative limit equilibrium
formulation in Section 4.2.4.

4.2.1. Benchmark Problems

The benchmark slope stability analysis problems adopted in this section are essentially
the same as Chapter 3, except that a surface optimization routine is not incorporated
in the experiments. Since the current objective is to evaluate the stability analysis
modules, introducing a stochastic element (i.e. optimization algorithm) would
unnecessarily influence the outcomes by instigating bias to the model. In order to avoid
this issue, the slip surfaces are pre-defined for the analyses as illustrated in Figure 4.3.
The surfaces are exactly the same as those obtained with SQS in Section 3.2. For each
example, the axis of moment equilibrium, R, and spline transition points are indicated,;

and the detailed surface information is provided in Appendix A.

For each slip surface, the indicated rotational axis is the center of the best-fit arc
determined through a regression analysis with the following criteria: (i) the arc must
pass through the slip toe and scarp, (ii) the soil weight inside the arc must be equal to
the weight of the sliding mass. The indicated rotational centers are only utilized for
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FM and BS, which are conventionally not applicable to analyze general slip surfaces,
yet similar approaches are adopted in the commercial analysis software. However, it
should be emphasized that the location of the rotational axis significantly affects the
results in simplified moment equilibrium methods, hence such an approach is
questionable for practical applications. On the other hand, the results of rigorous
LEMs are not sensitive to the position of the rotational axis; therefore, any reasonable
point can be selected. For rigorous LEMs, the gravitational centers of the sliding

masses are conveniently considered as the reference points for moment equilibrium.
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4.2.2. Closed-Form Solution Approach for Common LEMs

In this section, the benchmark problem set is utilized to validate the reliability of the
proposed analysis framework. Furthermore, the closed-form equations and the
resulting formulation ILEM-CF is verified as a precise unified method for common
limit equilibrium assumptions. The experiments adopt ILEM-CF for FM, BS, JS, CE-
Case (i) and SM approaches, and approximate the true Fs values for LK, CE-Case (ii)
and MP using excessive discretization and numerical evaluation. Therefore, the results
reported in this section are exact within the limits of the error tolerance, &twl, Which is
prescribed as 10°1° for Broyden’s quasi-Newton technique. It should be noted that FM
is utilized to find Fs values based on both, moment and horizontal force equilibrium.

Lastly, MP is adopted with half-sine internal force function.

The results are reported in Table 4.2 for all limit equilibrium assumptions and
benchmark problems. The table denotes ILEM-CF solutions and the approximated true
values with the subscripts “CF” and “AT”, respectively. It is noticeable that the results
given for SM are in agreement with the ones previously reported with GLE in Table
3.21. In fact, the Fs values of ILEM-CF are slightly improved versions of the ones
previously obtained using 70 slices. Since SM encloses the entire analytical derivation,
the outcomes also validate the closed-form ILEM formulation for the simplified

methods that can be reduced from SM.

The comparison between different approaches can also prove to be beneficial to verify
the reliability of ILEM. For instance, the results of SM and MP, which only differ in
the applied internal force functions, are strongly correlated. The average deviation in
Fs is about 0.7%, suggesting that the rigorous formulation is not highly sensitive to the
selection of the internal force function, as previously argued by Morgenstern and Price
[3]. To evaluate the results of the simplified approaches, relative differences values are
calculated with respect to SM and MP and denoted as RD1 and RDz, respectively.
Based on these measures BS accurately estimates Fs with mean RD values below 1%.

This is already an expected outcome for circular failure analyses. In this case, the
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procedure adopted to assign the center of rotation may have resulted in a practical way
of achieving similar accuracy for general slip surfaces. However, the reliability of this
approach requires careful assessment with complete analysis frameworks. Regarding
the force equilibrium methods, JS always underestimates Fs as expected [2]. With the
application of internal force function in LK and CE, the results approach to those of
rigorous methods. However, Case (ii) assumption of CE fails to produce reliable

results based on the mean RD values that exceed 4.5%.

It is interesting to note that the results of the conventional FM are reasonably close to
those of SM and MP. However, the trials during the study point out that its application
within a general slip surface optimization framework often yields unrealistic
outcomes. On the other hand, the experimental FM is observed to be more consistent
to produce Fs values, at least in the same order of magnitude as the other methods.
Therefore, the experimental FM based on force equilibrium is proposed as a simple
yet efficient method to provide initial guesses for the iterative analyses. With this
embedment, divergence issues are seldom encountered and the capabilities of

Broyden’s method ensure sufficient accuracy within 3 to 5 iterations.
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4.2.3. The Efficiency of Numerical Integration Methods

Aiming to develop a computationally efficient ILEM variant, the benchmark examples
are further analyzed with approximation methods, instead of using the closed-form
formulation. Accordingly, common numerical integration techniques like Riemann
sum, trapezoidal rule, Simpson’s 1/3 rule, and Gauss quadrature are incorporated into
the formulation of ILEM. A summary of these methods are given in Table 4.3, where
the number of quadrature nodes “nq”, their positions, and weights are indicated for an
arbitrary function, f (x), within the normalized interval of [-1, 1]. Based on these
definitions, the below-given equation can be used to approximate the value of a
definite integral.

[ £ 09dx z%zo f(x)-w, (4.76)

Table 4.3: Summary of numerical integration methods

Method ng Nodeson [-1, +1] Weights

Midpoint Riemannsum 1 Xx=0 w=2

Trapezoidal rule 2 X =-1, X, =+1 w =1 w,=1

Simpson’s 1/3 rule 3 X =-1, X,=0, x;=+1 w, =1/3, w,=4/3, w, =1/3
Gauss quadrature 2 x, =—1//3, x, =+1//3 w=1 w,=1

Gauss quadrature 3 X, =—/3/5, X, =0, X, =+,/3/5 W, =519, w,=8/9, w,=5/9

where nq: number of quadrature nodes within each interval.

The efficiency of GLE formulation is also evaluated in comparison to these methods.
In order to avoid any bias due to possible differences in the computational
implementation of these formulations, ILEM analysis procedure is interpreted to yield
results for GLE. When the slip the surface is discretized into linear segments, adoption
of midpoint Riemann sum reduces ILEM formulation to GLE, based on the derivation

given in Section 4.1.2.

For the analyses, SM is adopted. Approximation intervals are determined by

discretizing the slip surfaces into segments with the procedures given in Section 4.1.4.
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Then, they are further refined into equally spaced sub-intervals to increase the
precision. The number of sub-intervals, multiplied by no gives the number of
governing function evaluations for Fs, denoted with NFE. Note that the minimum NFE
required for Fs evaluation varies for different integration methods, and the calculations

ignore the iterations within Broyden’s root-finding procedure.

The results of the analyses are illustrated with the convergence graphs given in Figure
4.4. In these graphs, x-axes indicate NFE and y-axes represent the absolute error of Fs
values (i.e. not relative, the values are absolute deviations from true Fs values) with
respect to those obtained with the closed-form equations. The convergence graphs
demonstrate that the precision of GLE is comparably lower than other methods, except
for the trapezoidal rule, which is computationally more demanding. Simpson’s 1/3 rule
and 2-node Gauss quadrature are relatively more efficient. However, these methods
may require a degree of refinement for “rotational” slip surfaces, as illustrated in
Figures 4.4a and 4.4b. In general, surfaces with planar segments are easier to analyze
as the order and complexity of the integrand functions reduce for linear functions. On
the other hand, 3-node Gauss quadrature approximation is invariably precise for SM

without further surface refinement.

It is notable in some cases that the approximation of the method does not improve until
a certain point. This is more visible for the convergence graphs given in Figures 4.4f
and 4.4g, which are associated with the infinite slope problem, Example 5. The slip
surfaces in these problems include wide planar segments. Considering a linear surface,
the integrands in 11 through 14 (i.e. refer to Eqgs. (4.49)—(4.51) and (4.60)) reduce to 2"
order polynomials and the integrand in Is in Eq. (4.61) reduces to 3 order, all of which
are approximated exactly using 2 and 3-node Gauss quadrature rules. Therefore, the
linear segments are refined unnecessarily in these experiments. Regardless, 3-node
Gauss quadrature approximation yields impartial results with those of ILEM-CF
without any refinement, and thus selected as a computationally efficient addition to
the formulation of ILEM.
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(J) Example 6 (iii) (k) Example 6 (iv)
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4.2.4. Comparison of ILEM with GLE

The experiments for SM in the previous section promote a computationally efficient
ILEM variant based on 3-node Gauss quadrature approximation, denoted as ILEM-
GQ3 from now on. In this section, the reliability of this configuration is validated for
other limit equilibrium assumptions through a comparison with GLE and true Fs values
reported in Table 4.2. Using ILEM-GQ3, the slip surfaces are analyzed without any
refinement, hence the number of function evaluations, NFE, is the minimum required
for each example. Accordingly, the numbers of slices used for GLE are adjusted to

equivalent values for fair comparison.

Considering the above configurations, an extract of the results obtained with SM are
given in Table 4.4. For each benchmark problem, the outcomes of GLE and ILEM-
GQ3 are summarized based on the approximated Fs and 4 values; and reported together
with the values obtained using ILEM-CF. Furthermore, absolute errors of
approximated Fs values are also given for both formulations. The results further
illustrate the capability of ILEM-GQ3, which reports precise values for Fs in five
significant figures. Although the results of GLE stay within practically acceptable error

margins, such reliability is not possible at the same computational cost.

Table 4.4: Comparison of ILEM and GLE — Spencer’s method

GLE ILEM-GQ3 ILEM
NFE Fs 2 &Fs Fs A &Fs (Fs)cr 2
Example 1 24 19799 0.3026 3.E-03 1.9769 0.3023 5.E-05 | 1.9770 0.3025

Example 2 (i) 24 13239 0.2506 2.E-03 1.3218 0.2495 4.E-05 | 1.3218 0.2496
Example 2 (ii) 27 09983 0.2875 7.E-04 0.9975 0.2874 5.E-07 | 0.9975 0.2874
Example 3 27 1.0884 0.0753 7.E-04 1.0877 0.0702 1.E-08 | 1.0877 0.0702
Example 4 27 04115 0.2441 5.E-04 0.4110 0.2428 1.E-07 | 0.4110 0.2428
Example 5 (i) 24 1.0118 0.4541 2.E-03 1.0095 0.4527 7.E-06 | 1.0095 0.4527
Example 5 (ii) 24 0.8412 0.5688 2.E-03 0.8396 0.5676 1.E-06 | 0.8396 0.5676
Example 6 (i) 27 13321 0.1440 2.E-03 1.3300 0.1377 2.E-07 | 1.3301 0.1377
Example 6 (ii) 36 11981 0.0726 1.E-03 1.1967 0.0692 5.E-08 | 1.1967 0.0691
Example 6 (iii) | 27 1.0428 0.4182 1.E-03 1.0418 0.4136 1.E-07 | 1.0418 0.4136
Example 6 (iv) 36 0.9322 0.3336 8.E-04 0.9315 0.3317 3.E-08 | 0.9315 0.3317
where GQ3: 3-node Gauss quadrature, CF: closed-form solution, NFE: number of function evaluations.
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Considering the simplified methods such as FM, BS, JS, LK and CE, the outcomes,
given in Tables 4.5-4.11, are similar to those of SM, which further validates the
enhanced efficiency of ILEM-GQ3 over GLE. Except for a few instances, the proposed
method reports precise Fs values. On the other hand, the experiments with MP raise
some questions and inspire possible improvements. As mentioned previously, MP is
adopted with half-sine internal force function, which significantly affects the
complexity of the governing equations. As a result, the precision of both GLE and
ILEM-GQ3 are comparably reduced, as illustrated in Table 4.12. GLE formulation is
prone to significant error with relatively lower numbers of slices, especially in
Examples 1 and 2 (i). ILEM-GQ3 can find more acceptable values for Fs; however, 4
coefficients, and consequently the estimated force distributions still deviate from the
approximated true cases. Addressing this issue, either a higher-order approximation
method or a surface refinement procedure may be adopted for MP. Considering the
latter alternative, the problems are analyzed using 48 function evaluations. As a result,
the solutions of both methods reach more satisfactory levels. Although ILEM-GQ3 is
visibly the better alternative, further improvements may be achieved by developing a

more efficient surface refinement procedure in the future studies.

Table 4.5: Comparison of ILEM and GLE — conventional Fellenius” method

GLE* ILEM-GQ3 ILEM
NFE Fs &Fs Fs &Fs (Fs)cr
Example 1 24  1.8722 2.E-03 1.8703 1.E-05 | 1.8703

Example2 (i) | 24  1.2497 7.E-04 12488 1E-04 | 1.2490
Example 2 (i) | 27 09507 4.E-04 09503 7.E-07 | 0.9503
Example 3 27 10801 7.E-04 10794 3.E-06 | 1.0794
Example 4 27  0.3985 2.E-04 0.3983 5.E-07 | 0.3983
Example5(i) | 24 09813 3.E-03 009785 5E-07 | 0.9785
Example5 (i) | 24 0.8104 2.E-03 0.8085 1.E-07 | 0.8085
Example 6 (i) | 27 1.3090 1.E-03 1.3080 3.E-06 | 1.3080
Example 6 (i) | 36 1.1839 2.E-03 11823 3.E-06 | 1.1823
Example 6 (iii) | 27  1.0309 6.E-04 1.0303 1.E-06 | 1.0303
Example 6 (iv) | 36  0.9207 9.E-04 0.9198 8.E-06 | 0.9198

*GLE normally does not accommodate Fellenius” method, here it is regarded as a solution approach.
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Table 4.6: Comparison of ILEM and GLE — experimental Fellenius’ method

GLE* ILEM-GQ3 ILEM
NFE Fs &Fs Fs &Fs (Fs)cr
Example 1 24 19867 3.E-03 1.9836 1.E-06 | 1.9836

Example2 (i) | 24 1.3194 2.E-03 1.3179 3.E-06 | 1.3179
Example 2 (i) | 27 1.0934 7.E-04 1.0926 1.E-06 | 1.0926
Example 3 27 1.0989 6.E-04 1.0982 4.E-06 | 1.0982
Example 4 27 03945 3.E-04 03941 1.E-06 | 0.3941
Example5 (i) | 24 09854 3.E-03 09829 9.E-06 | 0.9829
Example 5 (ii) | 24 0.8096 2.E-03 0.8077 2.E-06 | 0.8077
Example 6 () | 27 14291 1.E-03 1.4280 7.E-06 | 1.4280
Example 6 (i) | 36  1.3126 6.E-04 1.3120 4.E-06 | 1.3120
Example 6 (iii) | 27  1.0324 9.E-04 1.0315 4.E-06 | 1.0315
Example 6 (iv) | 36  0.9140 1.E-03 09131 2.E-05 | 0.9131

*GLE normally does not accommodate Fellenius’ method, here it is regarded as a solution approach.

Table 4.7: Comparison of ILEM and GLE — Bishop’s simplified method

GLE ILEM-GQ3 | ILEM-CF
NFE Fs &Fs Fs &Fs (Fs)cr
Example 1 24 1.9662 2.E-03 1.9637 2.E-05 1.9637

Example2 (i) | 24 1.3038 1.E-03 1.3024 1.E-05 | 1.3024
Example 2 (i) | 27 09867 4.E-04 0.9863 2.E-07 | 0.9863
Example 3 27  1.0894 8.E-04 1.0886 8.E-08 | 1.0886
Example 4 27 04057 4.E-04 0.4053 5.E-08 | 0.4053
Example5 (i) | 24  1.0003 1.E-03 0.9992 6.E-06 | 0.9992
Example 5 (ii) | 24 08247 1.E-03 0.8235 1.E-06 | 0.8235
Example 6 (i) | 27 1.3274 1E-03 13261 1E-07 | 1.3261
Example 6 (i) | 36  1.1945 1.E-03 1.1932 2.E-08 | 1.1932
Example 6 (i) | 27  1.0482 9.E-04 1.0473 1E-07 | 1.0473
Example 6 (iv) | 36 09364 1.E-03 0.9354 2.E-09 | 0.9354

Table 4.8: Comparison of ILEM and GLE — Janbu’s simplified method

GLE ILEM-GQ3 | ILEM-CF
NFE Fs &Fs Fs &Fs (Fs)cr
Example 1 24  1.8334 2.E-03 1.8314 2.E-06 | 1.8314

Example2 (i) | 24 12123 9.E-04 12115 6.E-07 | 1.2115
Example 2 (i) | 27 0.8963 3.E-04 0.8960 4.E-08 | 0.8960
Example 3 27  1.0856 5.E-04 1.0851 6.E-08 | 1.0851
Example 4 27 03953 3.E-04 0.3951 2.E-08 | 0.3951
Example5 (i) | 24 09898 9.E-04 0.9888 6.E-06 | 0.9888
Example5 (i) | 24 08150 1.E-03 0.8139 1.E-06 | 0.8139
Example 6 (i) | 27 13034 6.E-04 13029 4.E-07 | 1.3029
Example 6 (i) | 36 1.1830 7.E-04 11823 2.E-07 | 1.1823
Example 6 (iii) | 27 1.0120 3.E-04 10118 5.E-08 | 1.0118
Example 6 (iv) | 36  0.9085 7.E-04 0.9078 1.E-05 | 0.9078
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Table 4.9: Comparison of ILEM and GLE — Lowe and Karafiath’s method

GLE ILEM-GQ3 ILEM
NFE Fs &Fs Fs &Fs (Fs)at
Example 1 24 2.0071 3.E-03 2.0035 2.E-04 2.0037

Example 2 (i) 24 13420 2.E-03 1.3398 1.E-04 1.3399
Example 2 (ii) 27  1.0318 9.E-04 1.0309 4.E-07 1.0309
Example 3 27 11050 1.E-03 1.1039 1.E-08 1.1039
Example 4 27 04094 6.E-04 0.4088 2.E-06 0.4088
Example 5 (i) 24 0.9829 3.E-03 0.9794 1.E-06 0.9794
Example 5 (ii) 24 0.8086 2.E-03 0.8065 2.E-07 0.8065
Example 6 (i) 27  1.4185 1.E-03 14172 1.E-06 1.4172
Example 6 (ii) 36 13064 8.E-04 1.3056 5.E-07 1.3056
Example 6 (iii) | 27  1.0401 1.E-03 1.0389 1.E-06 1.0389
Example 6 (iv) | 36  0.9299 1.E-03 0.9286 7.E-10 0.9286

Table 4.10: Comparison of ILEM and GLE — Corps of Engineers method Case (i)

GLE ILEM-GQ3 ILEM
NFE Fs &Fs Fs &Fs (Fs)cr
Example 1 24  2.0381 3.E-03 2.0349 7.E-05 | 2.0348

Example 2 (i) 24 13855 1.E-03 1.3843 3.E-05 1.3843
Example 2 (ii) 27 09916 5.E-04 0.9911 6.E-07 0.9911
Example 3 27 11028 4.E-04 11024 1.E-06 1.1024
Example 4 27  0.4288 4.E-04 0.4284 1.E-06 0.4284
Example 5 (i) 24 10177 2.E-03 1.0157 7.E-06 1.0157
Example 5 (ii) 24 0.8397 1.E-03 0.8382 1.E-06 0.8382
Example 6 (i) 27 13897 5.E-04 13892 5.E-07 1.3892
Example 6 (ii) 36 12754 6.E-04 1.2748 5.E-07 1.2748
Example 6 (iii) | 27  1.0410 4.E-04 1.0405 3.E-07 1.0405
Example 6 (iv) | 36  0.9377 5.E-04 0.9371 9.E-08 0.9371

Table 4.11: Comparison of ILEM and GLE — Corps of Engineers method Case (ii)

GLE ILEM-GQ3 ILEM
NFE Fs &Fs Fs &Fs (Fs)at
Example 1 24 21064 3.E-03 21034 1.E-04 2.1033

Example2 (i) | 24 14642 1.E-03 14628 6.E-05 | 1.4627
Example 2 (i) | 27  1.0001 6.E-04 0.9994 5.E-06 | 0.9994
Example 3 27 11032 4E-04 11028 2.E-06 | 1.1028
Example 4 27 04619 6.E-04 04612 9.E-06 | 0.4612
Example5(i) | 24 10177 2.E-03 10157 7.E-06 | 1.0157
Example5 (i) | 24  0.8397 1.E-03 0.8382 1.E-06 | 0.8382
Example 6 (i) | 27 14140 3.E-04 14136 9.E-07 | 1.4136
Example 6 (i) | 36 13010 8.E-04 1.3002 9.E-07 | 1.3002
Example 6 (iii) | 27  1.0546 3.E-04 1.0542 5.E-07 | 1.0542
Example 6 (iv) | 36  0.9511 4.E-04 0.9507 2.E-07 | 0.9507
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Table 4.12: Comparison of ILEM and GLE — Morgenstern-Price method

00 =Sin[7r( X=X, H GLE ILEM-GQ3 ILEM

' X =% ) || NFE Fs A &EFs Fs A &Fs (Fs)at  (A)aT
Example 1 24 19760 0.4031 1.E-02 1.9648 0.4180 9.E-04 | 1.9657 0.3722
Example 2 (i) 24 13215 0.3258 8.E-03 1.3098 0.3286 4.E-03 | 1.3139 0.3053
Example 2 (ii) 27 0.9818 0.3843 4.E-03 0.9785 0.3899 8.E-04 | 0.9777 0.3922
Example 3 27 1.0880 0.0886 1.E-03 1.0871 0.0751 4.E-04 | 1.0866 0.0675
Example 4 27 0.4094 0.3013 2.E-03 0.4077 0.2629 1.E-04 | 0.4078 0.2540
Example 5 (i) 24 1.0002 0.6331 2.E-03 0.9971 0.5930 7.E-04 | 0.9978 0.5823
Example 5 (ii) 24 0.8264 0.8665 2.E-03 0.8239 0.8146 9.E-04 | 0.8248 0.7936
Example 6 (i) 27 1.3344 0.1690 5.E-03 1.3330 0.1731 4.E-03 | 1.3289 0.1468

Example 6 (ii) 36 11979 0.0809 3.E-03 1.1969 0.0797 2.E-03 | 1.1954 0.0712
Example 6 (iii) 27 1.0468 0.4873 5.E-03 1.0464 0.5005 4.E-03 | 1.0421 0.4219
Example 6 (iv) 36 0.9322 0.3641 2.E-03 0.9321 0.3719 2.E-03 | 0.9299 0.3265

Example 1 48 1.9695 0.3839 4.E-03 1.9655 0.3776 1.E-04 | 1.9657 0.3722
Example 2 (i) 48 1.3168 0.3156 3.E-03 1.3136 0.3073 3.E-04 | 1.3139 0.3053
Example 2 (ii) 48 0.9798 0.3877 2.E-03 0.9780 0.3904 3.E-04 | 0.9777 0.3922
Example 3 48 1.0870 0.0736 4.E-04 1.0867 0.0688 9.E-05 | 1.0866 0.0675
Example 4 48 0.4084 0.2747 6.E-04 0.4078 0.2648 3.E-05 | 0.4078 0.2540
Example 5 (i) 48 0.9994 0.6549 2.E-03 0.9974 0.5903 4.E-04 | 0.9978 0.5823
Example 5 (ii) 48 0.8257 0.8564 9.E-04 0.8244 0.8071 5.E-04 | 0.8248 0.7936
Example 6 (i) 48 13311 0.1539 2.E-03 1.3297 0.1488 8.E-04 | 1.3289 0.1468

Example 6 (ii) 48 1.1970 0.0773 2.E-03 1.1957 0.0723 3.E-04 | 1.1954 0.0712
Example 6 (iii) 48 1.0456 0.4729 4.E-03 1.0425 0.4273 4.E-04 | 1.0421 0.4219
Example 6 (iv) 48 0.9314 0.3523 2.E-03 0.9305 0.3386 7.E-04 | 0.9299 0.3265

4.3. Discussion of Results

The experiments in this chapter serve disparate objectives, yet support each other to
validate the collective performance of the proposed unified limit equilibrium method,
ILEM. The first part of the experiments mostly serves as a verification of the
formulation and derivation of the closed-form governing equations within. The results
based on SM indicate that ILEM-CF yields similar, more specifically slight improved
Fs values compared to those obtained using GLE. Based on these outcomes, the
proposed formulation can eliminate free-body discretization and the corresponding
errors of approximation completely. The error margin of this variant is equal to the

prescribed tolerance value, which is an enhancement on reliability over other
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formulations in the literature. Furthermore, the results validate ILEM as a unified

formulation for common limit equilibrium assumptions.

Despite these positive features, closed-form equations are considerably lengthy and
tedious to evaluate. Therefore, their application within a complete analysis framework
may translate to be computationally upscale. Addressing this issue, an efficient ILEM
variant is developed based on 3-node Gauss quadrature method, denoted as ILEM-
GQ3. Compared to GLE, ILEM-GQ3 exhibits significant improvement on result
precision, yielding reliable approximations without free-body discretization or surface
refinement for most LEMs. Using SM, FM, BS, JS, LK, and CE, single evaluations
over entire surface intervals can yield exact solutions for 5 significant figures, except
for rare occurrences. On the other hand, GLE is prone to considerable error without
extensive slicing, especially when a relatively complex internal force function is
incorporated. This issue is clearly visible for MP, which is applied with half-sine
function in the experiments. Although affected by this implementation, ILEM-GQ3
estimates relatively better and practically acceptable solutions. Furthermore, surface
refinement can improve the results at a reasonable computational demand. With these
enhancements and unique characteristics, ILEM is proposed as a refined alternative to

the available unified limit equilibrium formulations.
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CHAPTER 5

SUMMARY AND CONCLUDING REMARKS

Engineering problem solving often exploits analytical and numerical methods within
extended models of mechanics. Consequently, developing reliable solution approaches
is only possible with a clear understanding of the applied mathematical concepts. With
this on mind, the present study relies on the assessment of available limit equilibrium
formulations and incorporated analysis procedures, in order to develop enhanced
alternatives. In light of these assessments, a collective of novel procedures is proposed
within the unified formulation of Integrated Limit Equilibrium Method (ILEM), which
illustrates that basic mathematical techniques can be manipulated to effectively solve

slope stability analysis problems.

ILEM incorporates two distinct methods to generate and analyze general slip surfaces.
For surface generation, a modified spline interpolation procedure is developed through
considerations of kinematical admissibility and surface flexibility. The procedure,
named Scaled Quadratic Spline method (SQS), utilizes piecewise continuous quadratic
order functions to represent the slip surfaces and includes a unique scaling operation
to stimulate linear segments and abrupt transitions. With these implementations, SQS
provides the flexibility to represent composite failure surfaces accurately without
requiring excessive numbers of geometric parameters, which is an improvement over
the available methods. The performance of SQS is validated through comparative
benchmark testing and the method is proposed as an enhanced surface generation
method with significant improvements on computational efficiency and result

accuracy with respect to other approaches.

The second component of ILEM is the refined stability analysis module. Using
quadratic order functions for surface representation, it was possible to develop a

unified formulation of common LEMs based on differential equations. The
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formulation is extended to derive closed-form governing equations, which can be
adapted to evaluate precise Fs values for many of the common LEMSs. Despite bearing
the characteristics of procedures of slices, ILEM treats slip surfaces as single free-
bodies, evaluating the Fs with single-step computations over whole intervals. As a
result, ILEM eliminates free-body discretization and the related approximation errors
of conventional LEMs completely. Furthermore, the formulation allows the
implementation of high-order numerical approximation techniques, which can yield
precise approximations with marginal numbers of function evaluations. The
experiments demonstrate that 3-node Gauss quadrature approximation is a suitable
approach, producing considerable improvement on computational efficiency over slice
approximation. Based on these findings, ILEM is proposed as an improved alternative

to the available slope stability analysis procedures.

In order to realize its full potential, the future studies should focus on several aspects
to further develop ILEM. First, an extensive study is required to incorporate or develop
an improved surface optimization routine. The convergence rate of SQS is promising
and the resulting optimization problems are relatively low-dimensional. Therefore, a
hybrid stochastic-deterministic optimization method may be a suitable option to
improve the efficiency. With this enhancement, ILEM may facilitate the applicability
of the computationally demanding probabilistic analysis models. Similarly, an
extension of ILEM to three-dimensional analysis problems could make significant
contributions as these problems are considerably more difficult and substantially

demanding for practical applications.
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APPENDIX A

RESULT VERIFICATION WITH SLIDE SOFTWARE

Table A.1: Detailed information of critical slip surfaces

Spline number, j > 1 2 3 4 5 6
(ar) 0.0550 0.0221 0.0382 0.0209 0.0406 0.1271
(br)j -2.4779  -1.0691 -2.2868 -0.8052 -2.5693 -10.5903
Example 1 (ds); 32.3746  17.3037 40.2642 8.6797 47.9817 234.0784
Xj 17.6000 21.3174 37.8326 41.6766 45.0098 46.4531
Xj+1 21.3174  37.8326 41.6766 45.0098 46.4531 47.6616
(ar) 0.1167 0.0574 0.0899 0.0265 0.0754 0.2493
(br)j -1.7694  -0.9607 -1.8270 0.0985 -1.4908 -7.6672
Example 2 (i) (df); 106912  7.9336 137072  -0.9198  11.9956 66.8359
Xj 4.6305 6.8199 13.6260 15.1794 16.2536 17.9315
Xj+1 6.8199  13.6260 15.1794 16.2536 17.9315 18.2919
(ar)j 0.0703 0.0319 0 0.0241 0.0304 0.0517
(br)j -1.2373  -0.6018 0.2738 -0.0058 -0.2648 -1.2137
Example 2 (i)  (dy) 94301  6.7984 0.7905  -3.2537  -0.5849 9.9539
Xj 5.0000 8.1594 13.5748 20.0000 20.9524 22.5041
Xj+1 8.1594 13.5748 20.0000 20.9524 22.5041 23.5000
(ar); 0.2724 0 0.0653 0.0274 0.0032 0.7405
(br)j -2.7983  0.2136 -1.9396 0.2836 1.2915 -31.8911
Example 3 (ds); 49.1834 40.8591  58.5441  29.5388 19.0602 392.4195
Xj 4.3406 5.5276 17.5051 19.5585 20.7661 22.5346
Xj+1 5.5276  17.5051 19.5585 20.7661 22.5346 22.6650
(ar) 0.0426 0.0167 0.0151 0.0087 0 0.1191
(br)j -2.0914  -0.8688 -0.7334 -0.0849 0.7620 -12.5447
Example 4 (dv); 387752 243719  21.7905 54979  -15.0186 354.0470
Xj 17.8903  23.0412 28.0718 46.3783 46.9527 60.6931
Xj+1 23.0412  28.0718 46.3783 46.9527 60.6931 62.4719
(ar); 0.0175 0.0049 0 0.0260 0.0193 0.3762
(br)j -1.2385  -0.0214 0.5454 -5.6382 -3.9173 -94.4047
Example 5 (i) (dy); 37.7336 9.3219 -6.9988  360.2456  250.0783 5985.6826
Xj 30.0000 39.5976 57.5702  120.6233  123.5912 126.9294
Xj+1 39.5976 57.5702 120.6233 123.5912  126.9294 129.9977
(ar)j 0.0138 0.0168 0 0 0.0210 0.2647
(br)j -0.9832  -1.0981 0.5454 0.5453 -4.4090 -65.7686
Example 5 (ii) (dy); 33.4300 33.2829 -6.9998 -6.9954  284.4761 4148.1064
Xj 30.0000 40.1453 48.8225 110.2222 120.7534 125.9343
Xj+1 40.1453 48.8225 110.2222 120.7534 125.9343 129.9998
(ar); 0.4535 0.0001 0.0680 0.0609 0.0223 0.0570
(br)j -9.9261 -0.0031 -2.2580 -1.4569 0.2754 -1.3552
Example 6 (i) (df); 98.3159 44.0207  62.7196  49.2821  29.8502 49.0052
Xj 10.3355  10.8994 17.3211 20.5072 21.6855 23.6786
Xj+1 10.8994 17.3211 20.5072 21.6855 23.6786 24.4883
(an); 0.2074 0 0.1093 0.0816 0.0098 566.6792
(br); -4.8090 0  -38839  -22717 0.9037  -27871.8870
Example 6 (i) (dr); 718709 44.0000  78.4837  56.9762  21.8666 342766.8388
Xj 10.4968  11.5911 17.9926 20.7931 21.8217 245937
Xj+1 11.5911  17.9926 20.7931 21.8217 24.5937 24.5938
(ar); 0.0295 0.0001 0.0482 0.1528 0.0115 0.2758
(br)j -0.6829  -0.0021 -1.5977 -5.5144 0.7102 -11.9568
Example 6 (iii) (ds); 47.9438  44.0137 57.2282 93.2993 24.7463 176.4843
Xj 10.1075  10.9832 16.9629 21.1356 21.9986 23.9800
Xj+1 10.9832  16.9629 21.1356 21.9986 23.9800 25.0178
(ar)j 0.5127 0 0.0632 0.0825 0.0492 0.2373
(br)j -11.1461  -0.0002 -2.2003 -2.4366 -0.9178 -9.9721
Example 6 (iv) (df); 104.5798  44.0013 63.1377 59.3507 42.0326 150.9610
Xj 10.3115  10.7740 17.9552 21.4272 22.6005 24.1693
Xj+1 10.7740  17.9552 21.4272 22.6005 24.1693 25.0120
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Figure A.1: Example 1 — result verification using Slide
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Figure A.2: Example 2 Case (i) — result verification using Slide
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Figure A.4: Example 3 — result verification using Slide
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Figure A.6: Example 5 Case (i) — result verification using Slide
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Figure A.8: Example 6 Case (i) — result verification using Slide
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Figure A.9: Example 6 Case (ii) — result verification using Slide
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Figure A.10: Example 6 Case (iii) — result verification using Slide
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APPENDIX B

CLOSED-FORM EQUATIONS OF FELLENIUS’ METHOD

For the horizontal force factor of safety, (Fsu)r, the dependent variables in Eq. (4.33)
are replaced with the function definitions given in Egs. (4.1)—(4.13). Then, the
resulting expression is arranged as given in Eq. (B.1). I1 is the same as before and
calculated using Eq. (4.53). The other integral terms, Is and I7, are defined in Egs. (B.2)
and (B.3). The coefficients in the integrals can be computed using the expression given
in Eq. (B.4).

I, +1
F —_1 6 B.1
(Fon: Wk, + 1, (B1)
Xs 3 2
I :Jtan¢'-A5X +ZBGX +C6X+D6-dx (B.2)
% GeX” + Hgx+ Mg

| _TA7X4+B7X3+C72X+ Dx+E; 4 (B.3)
"y G, x> +H,x+M,

A =-2a,a,rk,, By =a, +a,7 (L+k, —bk,)-2ab k.
Cs =b, +b,y-[L+k, —b.k,)—2a,d, k. Dy =d, +d,»-[L+k, —bk,)
G, =4a,’, H,=4a,b,, M, =b,* +1
A, =-4a,’ak,y, B, =2a, -[a,y-(1+ kv)+aq] —4a,k, 7 -(a,b, +a;b,)
o {bf -[ahy-(1+ K, )+aq] +2a, -[bhy-(1+ kv)+bq]}
"=k 7 (ab,? +4a,b,b, +4a,%d,)
> Z{bf by -@+k, )+b,] +2a, -[dy-@+k,)+ dq]}
—bk, 7 - (o,b, +4a,d,)
E,=b, -[d,7-@+k,)+d,| =b,’d,k, 7, G, =G,, H; =Hg, M, =M,

(B.4)
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Through analytical integration, closed-form of the integrals can be obtained as given
in Egs. (B.5) and (B.6).

[(— AGM + AH? — BGH +CGZ)-|n(Gx2+Hx+M)}

+AG*x* —2G -(AH -BG)- x

I, = tan ¢" 2G° (B.5)

l:{3AGHM _2BG2M - AH 3)'[&”_1( 2Gx+H ﬂ
+BGH? -CG?H +2DG*® VAGM —H?2

G®-J4AGM —H?

J’_

%

3-(2AGHM - BG?M — AH%BGH? —CG?H + DG*)-In(|Gx’ + Hx + M|
+2AG*x® ~3G? - (AH - BG)-x? —6G - (AGM — AH? + BGH —CG?)- x

_ 6G* (B.6)
2AG?M? —4AGH °M + 3BG?HM - 2CG*M tan-! 2Gx+H
+2EG*+ AH* —-BGH® +CG?H? - DG®*H 4GM - H?

G*-V4GM - H?

Xt

For both integrals, linear segments result in 0/0 indeterminacy. Therefore, the closed-
form solutions of ls and 17 are explicitly derived for linear order surface functions and

abbreviated as ls,in and l7,in in Eqs. (B.7) and (B.8), respectively.

s Bx? +Cx+D tang' ( Bx> Cx? -
—G,=H, =01, =[tang X2 4= L2 2 x
A, =G, =H, J¢ ¥ {M(g > ~®)
“C’x+Dx+E 1 (Cx®* Dx? N
A7:B7:G7:H7=O_>I7,Iin Z;[T'dxz M'(T"’T"’EXH (B.8)

%

Similarly for the moment factor of safety, (Fswm)r, the dependent variables in Eq. (4.42)
are replaced with the function definitions given in Egs. (4.1)—(4.13), and then arranged
into Eq. (B.9). In this case, l4 is the same expression as in Eq. (4.63). The other integral
terms, Is and lo, are defined in Egs. (B.10) and (B.11). The coefficients in these
expressions are given in Eq. (B.12). Then, the closed-form solutions of these integrals
are given in Egs. (B.13) and (B.14).
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~ I,+1
(FS'M )F o lq +Q'(XR _XQ)+W '[(1+kv)'(XR _XC)_kh '(yR _yc)] &9

Xs 5 4 3 2

IB:jtan¢'- AX’ + BgX +2(38x + DX+ Egx+ K - dx (B.10)
" GgX” + Hgx+ M,
Xs 6 5 4 3 2

I9:JAgx +ByXx +C9>§ + DgX” + EgXx +F9x+P9_dX (B.11)
" GoX™ +Hyx+ M,

0, =—8;, Oy =28;Xg, 0y =d; =Yg +b Xg
ps==2acak, 7, p, =2, +ah7'(1+kv_bfkh)_2afbhkh7
£ =bg by [k, =Bk, )-2a,d Ky pp =d, +dyy-(L+k, —bik, )
A =03, By =010, + 0,0, Cg = 0yp3 + 010, + 0,01

Dy = 000, + 010, + 0,00, By =001 + 0,05, Fy = 000
Gy =G, Hy=H;, My =M

(B.12)
5,=-2a,%, 8, =-3a,b, , 5,=—1+2a, -(ys —d, )b,
Oy = Xg + by '(yR_df)
Ay =005, By =00, + 0,05, Cg =630, + 0,0, + 0,05
Dy = 8,0, + 6,0, + 0,0, + 65+ Eq = 0,00 + 6,0, + Sy,
Fo =00y + 001, By =0,
G, =G, Hy =H,, My, =M,
[ (AG®M?-3AGH °M +2BG*HM —CG*M , "
6- In([Gx? + Hx+ M) )
+EG*+AH*-BGH?®+CG*H?-DG*H
+3AG*Xx* —4G®-(AH - BG)-x®
—6G?-(AGM — AH? + BGH —CG?)-x?
| +12G - (2AGHM —BG?M — AH®+BGH 2 —CG?H + DG®)-x (B.13)

I, = tan ¢" 12G®
5AG?HM* - 2BG*M? -5AGH *M

+4BG?*H?*M -3CG*HM +2DG*M -tan‘l( 2Gx+H J
+EG*H +AH®*-BGH* +CG?H? VAGM —H?
—-DG®H?-2FG®

G®-V4GM —H?

Xt
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3AG’HM? —BG°M? - 4AGH °M
+3BG*H?M - 2CG*HM + DG*M )
30 In(jGx? + Hx+ M| )
+EG*H + AH® —BGH"*
+CG?H®-DG*H? - FG®
~12AG°x® +15G* - (AH - BG)-x*
+20G°-(AGM — AH? + BGH —CG?)- x*
, [2AGHM —BG’M - AH®) |,
~30G*- X
+BGH? -CG?H + DG*®
AG’M? —3AGH °M +2BG*HM
~CG°M +EG* + AH* -BGH® |-x
+CG?*H? - DG*H

60G°
2G°P - 2AG°M® +9AG*H’M ? ~5BG°HM ?

—-60G -

+2CG*M? —2EG°M —6AGH *M +5BG?H*M wan-t  26x+H
—4CG®H’M +3DG*HM +EG*H? + AH® VAGM —H?

~BGH® +CG2H* -~ DG*H® - FG°H

+L

G®.V4GM —H?

Xs

(B.14)

X

Both Is and lg are indeterminate for linear surfaces. Therefore, the closed-form

solutions of these integrals are derived for linear order surface functions separately and

given in Egs (B.15) and (B.16).

Cx3+Dx2+Ex+F'

A =By =Gy =H, =0 Iy, = [tang" v

tang' (Cx* Dx® Ex?
= : + + + FX
M 4 3 2

Dx3+Ex2+Fx+P.

dx

Xt

Ay =By =Cy =Gy =Hy =0 Iy, =J-
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