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Limit equilibrium is a well-established concept with successful implementations to 

slope stability analysis problems. Based on different underlying assumptions, there are 

numerous limit equilibrium methods (LEMs), yet all of them interpret the system 

reliability to that of the critical slip surface, which requires iterative optimization 

procedures to locate. Therefore, a complete analysis framework involves modules to 

(i) generate/represent, (ii) analyze and (iii) optimize slip surfaces, all of which 

influence the reliability and time complexity of the solutions. Within this context, 

many studies were conducted in the past two decades, mostly focusing on improved 

optimization procedures. However, little effort is available on the development of 

enhanced surface generation algorithms and analysis strategies. In that regard, the 

present study introduces Integrated Limit Equilibrium Method (ILEM), wherein novel 

procedures are incorporated to generate and analyze slip surfaces. Facilitating the 

optimization process, ILEM generates trial slip surfaces with scaled quadratic splines, 

which require a minimal number of geometric variables for accurate surface 

representation. In addition, quadratic functions render it possible to develop a unified 

formulation of common LEMs with differential equations. The governing equations 

are derived and closed-form solutions are obtained through analytical integration, 

eliminating the need for and the error imposed by slice approximation of conventional 
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LEMs. Moreover, high-order numerical integration methods are proven to yield 

impartial accuracy with reasonable computational effort. The reliability and refined 

efficiency of ILEM are validated through comparative benchmark testing. With 

significant improvement over available approaches, ILEM is proposed as an improved 

limit equilibrium technique for slope stability analysis. 

 

Keywords: Slope Stability Analysis, Integrated Limit Equilibrium Method, General 

Slip Surface, Engineering Optimization 
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ÖZ 

 

 

ŞEV STABİLİTESİ ANALİZİ İÇİN İNTEGRAL TABANLI LİMİT DENGE 

YÖNTEMİ 

 

 

Yalçın, Yağızer 

 

Yüksek Lisans., İnşaat Mühendisliği Bölümü 

 

Tez Yöneticisi: Dr. Öğr. Üyesi Onur Pekcan 

 

 

Eylül 2018, 144 sayfa  

 

Limit denge metodu, şev stabilitesi analizi problemlerinde oldukça bilinen bir 

yöntemdir. Farklı kabullere dayanan birçok limit denge yöntemi olmakla beraber, 

bütün yöntemler kayma güvenliğini, iterasyon tabanlı optimizasyona dayalı olarak 

bulunan kritik kayma yüzeyiyle ilişkilendirmektedir. Bu nedenle, bütün bir kayma 

analizi, çözümlerin güvenilirliğini ve çözüm zamanını direkt etkileyen, kayma 

yüzeylerinin (i) oluşturulması, (ii) analizi ve (iii) optimize edilmesi aşamalarını 

içermektedir. Bu bağlamda, son yirmi yılda, özellikle optimizasyon yöntemlerinin 

verimini arttırmak için birçok çalışma yapılmıştır. Ancak kayma yüzeyi oluşturmak ve 

analiz etmek için kullanılan yöntemlerin verimliliği üzerinde çok az durulmuştur. Bu 

çalışmada, yukarıdaki eksiklikleri gidermek için, genel kayma yüzeylerinin 

oluşturulması ve analizi konusunda yenilikler içeren Integral Tabanlı Limit Denge 

Yöntemi (ILEM) önerilmektedir. Optimizasyon sürecine faydalı olması amacıyla, 

ILEM, test kayma yüzeylerini, ikinci dereceden eğrilerle tanımlayarak kullanılan 

geometrik parametre sayısını en aza indirgemektedir. Buna ilaveten, bahsi geçen ikinci 

dereceden fonksiyonlar, limit denge koşullarının diferansiyel denklemler aracılığı ile 

temsil edilmesine de olanak tanımaktadır. Bununla hakim denklemler elde edilmekte 

ve integrasyonla kapalı çözümlere ulaşılmaktadır. Böylece ILEM, konvansiyonel limit 
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denge yöntemlerinin dilimlere dayalı çözümleme yapma zorunluluğunu ve bundan 

kaynaklanan tahmin hatalarını ortadan kaldırmaktadır. Ayrıca, yüksek dereceden 

sayısal integral alma yöntemleri sayesinde kısa zamanda iyileştirilen doğruluk oranları 

da bu metodun kaçınılmaz bir sonucudur. ILEM yönteminin güvenilirliği ve 

verimliliği, bir çok test problemi kullanılarak doğrulanmıştır. Böylelikle, diğer 

yöntemlere göre ciddi anlamda ilerleme kaydetmeye olanak tanıyan ILEM, 

iyileştirilmiş bir limit denge yöntemi olarak sunulmaktadır. 

 

Anahtar Kelimeler: Şev Stabilitesi Analizi, Integral Tabanlı Limit Denge Yöntemi, 

Genel Kayma Yüzeyi, Mühendislik Optimizasyonu 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Overview 

With the gradual expansion of urbanized areas, development of transportation 

networks in landslide susceptible areas and common application of engineered soil 

structures such as embankments, cut slopes, and earth retaining walls [1], slope 

stability analysis has become a vital part of civil engineering practice. In search of 

reliable analysis procedures, extensive research has been conducted over the past 80 

years [2], giving rise to numerous methods that combine the principles of soil 

mechanics with solution approaches based on analytical techniques or the concepts of 

continuum/discontinuum mechanics. As a result, contemporary analysis techniques 

include, but are not limited to, Limit Equilibrium Methods (LEMs), Finite Element 

Method and Discrete Element Method. Among those, LEMs have been widely 

preferred owing to their capability to produce reliable results within reasonable 

computational demand. Given a possible failure surface, these methods utilize static 

equilibrium conditions to determine the “limit state” soil shear strength parameters and 

quantify the stability in terms an artificial measure named factor of safety, FS, which 

is the ratio between the mobilized and available soil shear strength at the failure limit 

state. The analysis proceeds with different surfaces and the critical one (i.e. the surface 

with minimum FS) is associated with slope system safety. In other words, limit 

equilibrium procedures require back-calculation of the critical slip surface, hence a 

complete analysis framework incorporates modules for (i) surface 

generation/representation, (ii) stability analysis and (iii) surface optimization. 

Consequently, the reliability and computational efficiency of the framework depends 

on the capability, as well as the compatibility of these modules. 
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Surface generation module is perhaps the most underrated yet influential component 

of a slope stability analysis framework. Most of the available methods and the common 

practice aim to facilitate the optimization process through simplifying assumptions 

regarding the surface geometry. For instance, it is a common approach to limit the 

surface geometry to planar, circular, composite planar-circular or logarithmic spiral 

shapes, which can be modeled with only a few decision variables. However, these 

assumptions significantly limit the accuracy of the results as the critical surface often 

deviates from such simple geometries [3]. Therefore, it is essential that the method is 

competent to represent any reasonable surface which may assume arbitrary shapes 

with variable curvature and abrupt transitions (i.e. general slip surfaces). Although 

these issues are addressed in the literature, there are only a few general surface 

generation methods to choose from. Furthermore, the available methods generally 

require excessive numbers of decision variables for accurate surface representation; as 

a result, they produce challenging optimization problems. Therefore, improved 

techniques are still in demand. 

After their generation, the surfaces are analyzed using a LEM. Although all LEMs 

share the common features mentioned before, they differentiate with unique 

assumptions based on force distribution, equilibrium criteria, and sometimes slip 

surface geometry. A broad classification divides them into two groups as single free-

body procedures and procedures of slices. Single free-body procedures include simple 

methods like Infinite Slope [4], Logarithmic Spiral [5, 6], and Swedish Circle [7, 8]. 

One characteristic property of these methods is that the underlying assumptions yield 

formulations where the normal stress along the slip surface is either constant or do not 

affect the overall equilibrium. As a result, equilibrium equations can be formulated for 

the whole free-body [2]. Conversely, such a simplification is not possible with other 

LEMs, hence they discretize the free-body into slices to determine the normal stress 

distribution. However, discretization itself is not sufficient to resolve such a force 

system because the number of unknowns becomes greater than the number of available 

equilibrium and boundary conditions when all inter-slice reactions are accounted for. 
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Therefore, either simplifications or additional boundary conditions are required to 

render the problem determinate. In this sense, unique solution schemes were proposed 

in the literature, giving rise to LEMs known as Fellenius [9], Bishop’s simplified and 

rigorous [10], Janbu’s simplified and generalized [11], Lowe and Karafiath’s [12], 

Corps of Engineers [13], Morgenstern-Price [3], Spencer’s [14], and Sarma’s [15] 

methods. These methods mainly differ from one another based on the considerations 

regarding the equilibrium conditions and internal forces, yet it is possible to unify some 

of them with a common formulation like General Limit Equilibrium (GLE) method 

[16]. In general, procedures of slices are capable of handling complex slope 

geometries, variable soil properties, and external loading effects [1] and therefore often 

preferred over single free-body procedures. However, they are computationally 

upscale on the account of free-body discretization and individual slice evaluation.  

Since LEMs require the location of the critical surface, the analysis proceeds with the 

surface optimization step where the geometric parameters of the trial solutions are 

updated with an optimization method. Limit equilibrium approach inherently makes it 

possible to formulate the analysis procedure as a shape optimization problem with an 

objective to minimize FS. The complexity of the problem depends on the combined 

effect of (i) model constants (e.g. slope geometry, soil profile, groundwater and 

loading conditions), and (ii) innate characteristics of the selected surface generation 

method. When simple surface geometries are assumed, the problem becomes 

sufficiently easy to solve with simple trial and error routines. However, accurate 

representation of critical surfaces requires general surface generation methods, which 

produce high-dimensional optimization problems. Considering that the search spaces 

of these problems often contain multiple local minima [2], implementing robust 

optimization techniques is essential for the reliability of the analysis framework. This 

issue has been extensively studied in the literature, and both deterministic and 

stochastic optimization techniques have been employed. Currently, there is a growing 

consensus that the modality and dimensionality of slope stability analysis problems 

make it necessary to adopt global optimization methods, which involve a certain 
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degree of random operations. In that regard, stochastic optimization algorithms such 

as Genetic Algorithm [17–25], Differential Evolution [26, 27], and Particle Swarm 

Optimization [28–31] were successfully adopted in the literature. 

With multiple factors in effect, the application of LEM requires a clear understanding 

of the fundamental concepts regarding the surface generation, stability analysis, and 

surface optimization methods. Limitations imposed by each component can easily 

engender the overestimation of safety and inevitably result in catastrophic 

consequences. Therefore, both individual and collective performances of the 

integrated methods should be assessed when developing an analysis framework. 

1.2. Research Objectives 

Aiming to develop a reliable and computationally efficient slope stability analysis 

framework, the present study proposes enhanced surface generation and analysis 

procedures. Focusing on general slip surfaces and procedures of slices, the defects of 

the available methods and formulations are identified to specialize the research 

objectives. Examination of the available general surface generation methods draws the 

inferences that they; (i) require excessive numbers of decision variables for accurate 

surface representation, rendering surface optimization a difficult task, (ii) lack the 

flexibility to converge to complex surface geometries, and (iii) represent the slip 

surfaces with contiguous linear segments, causing unnecessary loss of accuracy. 

Similarly, when available LEM formulations are adopted for stability analysis; (i) FS 

evaluation becomes computationally upscale on the account of tedious operations to 

discretize the sliding body and individually evaluate each slice; and (ii) FS is often 

overestimated due to the sensitivity of results to the number of slices used in 

discretization. Based on these arguments, the present study aims to develop advanced 

methods to generate and analyze general slip surfaces and incorporate them into a 

proficient slope stability analysis framework. 
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1.3. Scope of the Study 

Addressing the issues mentioned in the preceding section, the present study introduces 

Integrated Limit Equilibrium Method (ILEM), wherein novel procedures are 

implemented to generate and analyze general slip surfaces. The surface generation 

procedure of ILEM incorporates a technique named Scaled Quadratic Spline method 

(SQS) which utilizes piecewise continuous quadratic spline functions for surface 

representation. The method aims to handle complex geometries with variable 

curvature and abrupt gradient transitions using a minimal number of decision 

variables, and hence produces relatively lower-dimensional optimization problems. 

Furthermore, SQS capacitates a higher accuracy level with smooth curve 

representation, compared to available methods that adopt linear segments. In addition 

to this embedment, an enhanced analysis strategy is proposed in ILEM as an extension 

of SQS. ILEM analysis approach is similar to GLE in the sense that it can be adapted 

into several LEMs. However, the static equilibrium conditions are formulated based 

on the quadratic function representation of SQS. The derivation results in two 

governing equations that consist of definite integrals, which can be integrated 

analytically to obtain closed-form solutions. Therefore, ILEM can eliminate the errors 

of slice approximation procedures. Furthermore, the integrals can be evaluated with 

numerical methods such as Simpson’s 1/3 and Gauss quadrature rules to produce 

adequate results with reasonably low computational effort. Based on these properties, 

ILEM is introduced as an alternative to the available limit equilibrium formulations. 

To validate the reliability of the proposed approach, ILEM surface generation and 

analysis methods are evaluated individually. First, a benchmark problem set is 

assembled with the slope stability analysis problems available in the literature. The 

resulting set includes a total of 11 examples, incorporating a broad range of cases from 

simple homogeneous slopes to complex soil profiles; with and without the presence of 

groundwater effect, external and pseudo-static earthquake loading. Then, SQS is 

combined with GLE formulation and Differential Evolution (DE) optimization 
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algorithm and evaluated in a series of experiments with these problems. Similarly, the 

general surface generation methods in available literature studies [21, 32, 33] are 

adopted with the same configuration for performance comparison. The results are 

interpreted with statistical significance tests to assess the improvement rate of SQS 

over other methods and additionally evaluated with respect to the commercial slope 

stability analysis software, Slide v7 [34]. The results emphasize the capability of SQS 

and validate the applicability of the proposed analysis procedure.  

Accordingly, ILEM analysis procedure is tested in comparison with GLE formulation. 

For the analyses in this part, the critical slip surfaces obtained in the previous 

experiments are further analyzed using the closed-form formulation of ILEM and other 

variants based on numerical integration methods such as trapezoidal, Simpson’s 1/3 

and Gauss quadrature rules. The closed-form solution approach is validated for the 

procedures of slices proposed by Fellenius, Bishop, Janbu, Lowe and Karafiath, Corps 

of Engineers, Spencer, and Morgenstern-Price. Then, a computationally efficient 

ILEM variant is developed based on numerical approximation techniques. Lastly, a 

comparison is provided to illustrate the improved efficiency of ILEM over GLE. 

1.4. Thesis Outline 

To deliver the findings and contributions of the study, the rest of the manuscript is 

organized as follows: Chapter 2 provides detailed information about available surface 

generation, stability analysis, and optimization techniques, outlining the general 

framework of limit equilibrium based slope stability analysis procedures. Chapter 3 is 

dedicated to ILEM surface generation procedure, SQS. The method is conceptually 

introduced, formulated and validated through comparative benchmark testing with 

other available surface generation techniques. Chapter 4 presents the unified 

formulation of ILEM stability analysis procedure. In this chapter, several ILEM 

variants are developed and a computationally efficient configuration is proposed as an 

alternative to the available limit equilibrium formulations. Lastly, Chapter 5 

summarizes the findings and concludes the study. 
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CHAPTER 2 

 

LIMIT EQUILIBRIUM CONCEPT FOR SLOPE STABILITY ANALYSIS 

 

The focus of this chapter is to provide the fundamentals of the theory and application 

of limit equilibrium concept to slope stability analysis problems. Therefore, the scope 

is constrained with the currently available methods, with an emphasis on procedures 

of slices and general surface generation techniques. Accordingly, in Section 2.1, limit 

equilibrium concept is introduced and available analysis methods are discussed in 

detail. Section 2.2 is dedicated to slip surface generation methods, while Section 2.3 

covers the surface optimization strategies proposed in the literature. Furthermore, the 

methods adopted in the succeeding chapters are formulated in each section. 

2.1. Theory of Limit Equilibrium 

Limit equilibrium approach assumes that a slope is stable when any free-body inside 

the soil medium is at rest, implying that the static equilibrium conditions are satisfied. 

Based on this assumption, LEMs cannot yield a direct measure of system reliability; 

instead, they analyze multiple paths within the soil profile to determine the critical slip 

surface. For any surface, the safety level is quantified with a constant named factor of 

safety, FS, which is the ratio between the available soil shear strength and the 

equilibrium shear stress at the slip surface. When the shear strength is expressed with 

Mohr-Coulomb soil model, the definition of FS extends to the expressions given in 

Eqs. (2.1) and (2.2), where FS is assumed to be constant throughout the slip surface. 
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where τ: peak shear stress, s: equilibrium shear stress, σn: normal stress, c and ϕ: soil 

cohesion and friction angle (i.e. subscript “m” denotes the mobilized parameters). 
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Considering the generic slip surface given in Figure 2.1, it is possible to formulate the 

equilibrium equations and determine the mobilized shear strength based on the inertial 

forces, external loads and base reactions. Among those, calculations of inertial and 

external forces are relatively straightforward. On the other hand, the base reaction is 

the resultant of two variable stress distributions (i.e. normal stress and shear 

resistance), hence require additional considerations. The common approach is to 

divide the free-body into a finite number of slices and derive the equilibrium equations 

based on the individual effect of each segment. However, the problem becomes 

statically indeterminate when all internal reactions are accounted for. Considering a 

body of “n” slices, the available equilibrium and boundary conditions are summarized 

in Table 2.1. For each slice, there are three equilibrium (i.e. horizontal force, vertical 

force and moment) and one boundary (i.e. Mohr-Coulomb criterion) conditions, 

resulting in a total of 4n equations. On the other hand, the unknowns (i.e. FS value, the 

magnitude and location of the base and interface reactions illustrated in Figure 2.1b) 

add up to 6n-2 variables as given in Table 2.2. Consequently, the problem is statically 

indeterminate with a degree of 2n-2, and therefore requires either simplifications or 

additional boundary conditions to solve. 
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Figure 2.1: Free-body diagram of a generic slip surface 

(a) overall diagram (b) vertical slice diagram 
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Table 2.1: Available equilibrium and boundary conditions of LEM 

Equations Number 

Horizontal force equilibrium n 

Vertical force equilibrium n 

Moment equilibrium n 

Mohr-Coulomb criterion n 

Total 4n 

Table 2.2: Unknown variables in LEM 

Unknowns Number 

Normal force at the base of the slice n 

Location of the normal force at the base of the slice n 

Shear force at the base of the slice n 

Interslice normal force n-1 

Interslice shear force n-1 

Location of the interslice force (i.e. line of thrust) n-1 

Factor of safety, FS 1 

Total 6n-2 

Provided that the indeterminacy problem is handled, limit equilibrium can provide the 

FS related to an assumed slip surface. However, a single analysis does not yield a direct 

measure of system reliability as the stability of the slope is associated with the critical 

slip surface (i.e. the free-body with the minimum FS). Therefore, a surface optimization 

procedure is necessary to minimize the FS. Without the aid of computers, both 

individual slice evaluation and surface optimization can translate to be tedious tasks. 

Suitably, the earlier studies focused on simplifications that either facilitate or eliminate 

these steps. For instance, methods like Infinite Slope [4], Logarithmic Spiral [5, 6], 

and Swedish Circle [7, 8] greatly simplify the problem with restricted surface 

geometries, allowing the formulation of equilibrium equations without free-body 

discretization. Also known as single free-body procedures, these methods are simple 

enough to adopt in hand calculations; however, their application is limited to specific 

slope and slip surface geometries, soil types, loading and groundwater conditions. 
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In the following decades, the advances in computer technology allowed the practical 

implementation of methods based on individual slice evaluation, namely, procedures 

of slices. Procedures of slices are competent to handle complex geometries and loading 

conditions, hence applicable to a wider range of analysis problems. Despite having 

simplifications and intuitive assumptions to overcome static indeterminacy, some 

variants of these methods rigorously satisfy the equilibrium conditions. For instance, 

procedures of slices like Fellenius’ [9], Bishop’s simplified [10], Janbu’s simplified 

[11], Lowe and Karafiath’s [12] and Corps of Engineers [13] methods ignore some of 

the equilibrium conditions and internal forces. On the other hand, Bishop’s Rigorous 

[10], Janbu’s Generalized [11], Morgenstern-Price [3], Spencer’s [14] and Sarma’s 

[15] methods overcome indeterminacy through minor assumptions, rigorously 

satisfying the equilibrium conditions. Although the underlying assumptions of these 

methods are slightly different, they can be accommodated within unified formulations 

like General Limit Equilibrium (GLE) [16]. 

2.1.1. Single Free-Body Procedures 

Despite their limitations, single free-body procedures like Infinite Slope, Logarithmic 

Spiral, and Swedish Circle can provide a rough estimation of FS under specific 

conditions. Although not utilized in this study, these methods are discussed in the 

following sub-sections to provide a rudimentary understanding of the limit equilibrium 

concept. 

2.1.1.1. Infinite Slope Method 

Proposed by Taylor [4], Infinite Slope method considers a fully translational failure 

mechanism. The method assumes that failure develops along an infinitely long plane, 

parallel to the ground surface as illustrated in Figure 2.2. Therefore, base normal and 

shear stresses are constant. Based on this idea, the analysis can be performed on any 

vertical element by resolving the stresses along the slip direction. The interface 

reactions can be ignored as the forces on the opposite sides of the element are collinear 

with equal magnitude.  
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Figure 2.2: Infinite slope analysis 

Slice weight, W, and average pore-water pressure, u, are calculated using Eqs. (2.3) 

and (2.4), respectively. For Eq. (2.4), hydrostatic condition is assumed. 

xhW =   (2.3) 

ww hu =  (2.4) 

where γ: unit weight of soil, h: height of slice, γw: unit weight of water, hw: height of 

slice below the water table, Δx: width of the slice. 

Base normal force, N, is calculated considering force equilibrium, using Eq. (2.5). 

cosWN =  (2.5) 

where α: inclination of slice base, measured from horizontal. 

Based on the Mohr-Coulomb failure criterion, shear resistance, S, is calculated using 

Eq. (2.6).  
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where FS: factor of safety, c' and ϕ': effective soil cohesion and friction angle, 

respectively. 

To evaluate the factor of safety, FS, force equilibrium is satisfied along the slip 

direction. As a result, FS can be singled out to obtain Eq. (2.7). 
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The given procedure can be adopted for effective stress analysis, yet it is possible to 

modify the equations to evaluate FS based on total stresses. In that case, the effect of 

pore-water pressure is ignored and, c' and ϕ' in Eq. (2.7) are replaced with the 

undrained shear strength parameters, cu and ϕu. 

Although Infinite Slope approach is based on force equilibrium, moment equilibrium 

is implicitly satisfied since the interface forces cancel out and rest pass through the 

same point, producing zero net moment. Having a straightforward formulation, the 

method can provide a quick estimation of FS for translational failure, and therefore 

often preferred when the there is a shallow bedrock or a soft soil interlayer. However, 

its application is limited to cases where the ground surface and soil layers are in parallel 

alignment. Another issue of Infinite Slope method is that the effect of slip toe and scarp 

are ignored, hence the method usually underestimates FS compared to rigorous 

procedures of slices. 

2.1.1.2. Swedish Circle Method 

Introduced by Fellenius in 1922 [7], Swedish Circle is one of the earliest slope stability 

analysis methods, having applications that date back to 1916 [8]. The procedure 

considers the rotational failure of a circular slip surface around its central axis and 

utilizes moment equilibrium to determine the FS. Therefore, the base normal stresses 

focalize to the center of rotation as illustrated in Figure 2.3. Furthermore, the frictional 

resistance of soil is ignored (i.e. ϕ=0) to overcome static indeterminacy and eliminate 

free-body discretization completely. As a consequence, the method is only applicable 

to circular slip surfaces with cohesive soil interfaces, under fully undrained condition. 

Considering moment equilibrium with respect to point R, FS can be derived for a 

homogeneous soil profile as follows: 

xdriving
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M
F ==




 (2.8) 

where r: radius of slip circle, L: total arc length, W: total weight of free-body, xC and 

xR: abscissas of gravitational center of mass and rotational axis, respectively. 
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Figure 2.3: Swedish circle analysis 

Despite its limitations, Swedish Circle method can handle composite soil profiles 

through discrete evaluation of resisting forces. Furthermore, the method rigorously 

satisfies the static equilibrium conditions. Although force equilibrium is not 

exclusively evaluated, the normal stress distribution can assume any configuration that 

satisfies the criteria. Swedish Circle is a reliable method within its range of application, 

however, it often overestimates FS due to limitations imposed by circular surface 

assumption. 

2.1.1.3. Logarithmic Spiral Method 

Similar to other single free-body procedures, Logarithmic Spiral method exploits the 

slip surface geometry to overcome static indeterminacy. Initially proposed by Taylor 

[5] and further extended by Frohlich [6], the method employs logarithmic spiral slip 

surfaces as illustrated in Figure 2.4. The geometry of the spiral is a function of the 

center of rotation, mobilized friction angle, ϕm, the angle of rotation, θ, and the initial 

radius, ro, as given in Eqs. (2.9) and (2.10). 
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Figure 2.4: Logarithmic spiral analysis 
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Using the proposed geometry, the resultant of the normal stress, σn, and the frictional 

resistance (i.e. σntanϕm) always passes through the rotational axis, producing zero net 

moment. Therefore, it is possible to evaluate the FS based on moment equilibrium by 

ignoring the contribution of normal stresses, similar to Swedish Circle method. 

Another similarity with Swedish Circle method is that force equilibrium is satisfied 

without explicit consideration. However, Logarithmic Spiral method may require 

several trials to achieve complete equilibrium since the resulting FS and the one 

initially assumed to calculate the mobilized friction angle are different. Therefore, an 

iterative procedure is often adopted to assure the agreement of these two terms. 

Through this implementation, the method can analyze slopes under both drained and 

undrained conditions, which is an improvement over Swedish Circle method. In 

addition, logarithmic spirals are relatively more capable of representing complex slip 

surface geometries, compared to planar and circular surfaces adopted in other single 

free-body-procedures. However, the formulation of the method is rather complex, and 
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its application is only possible when the soil profile is homogeneous, or at least friction 

angle is the same for all layers. 

2.1.2. Procedures of Slices and General Limit Equilibrium Method 

Procedures of slices have wider application ranges compared to single free-body 

procedures, being able to handle composite soil profiles under complex loading 

configurations, in both drained and undrained conditions. Furthermore, most of the 

available formulations can analyze general slip surfaces, which are more flexible to 

represent the critical case compared to the simplified approaches presented previously.  

In this section, some of the common procedures of slices are conceptually introduced 

based on General Limit Equilibrium (GLE) formulation, which is proposed by 

Fredlund et al. [16] to provide a unified formulation for the available approaches. 

Therefore, GLE is not considered as a separate LEM, rather a generalized form on the 

existing ones. It is worth mentioning that there are several other unified formulations 

in the literature [44, 45], however, they are kept out of the scope of this study. The 

formulation of GLE can be manipulated with slight adjustments to produce results for 

the procedures of slices proposed by Fellenius, Bishop, Janbu, Lowe and Karafiath, 

Corps of Engineers, Morgenstern and Price, and Spencer. In its generalized form, the 

formulation considers vertical force equilibrium to derive the equations for base shear 

and normal forces. Then, FS is separately computed for horizontal force and moment 

equilibrium. In other words, GLE utilizes two separate FS definitions, which are 

iteratively equated to satisfy complete equilibrium.  

GLE incorporates two major assumptions to overcome static indeterminacy. First, the 

normal force at the base of each slice is assumed to act towards the middle, which 

reduces the degree of indeterminacy to n-2 for a body of n slices. In addition, GLE 

either specifies a direction or a location (i.e. line of thrust) for the interslice forces. All 

LEMs presented in this section can be formulated with the former assumption, hence 
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it will be the focal point. Based on the approach proposed by Morgenstern and Price 

[3], the direction of resultant interslice forces can be specified with Eq. (2.11). 

( )xfEX i=  (2.11) 

where X: interslice shear force, E: interslice normal force, λ: a constant scale factor, fi 

(x): a prescribed function that dictates the variation of X/E ratio along the slip surface. 

Applicable to each slice interface, the boundary condition given in Eq. (2.11) 

interpolates n-1 equations and one unknown (i.e. constant scale factor, λ) to the 

problem. Accordingly, the system becomes statically determinate. Based on this 

approach, GLE method is formulated for the effective stress analysis of the general 

slip surface given in Figure 2.5, where the slope is subjected to external and pseudo-

static earthquake loading. Only the governing equations are provided in this section, 

and the detailed formulation is provided later in Chapter 4. 

The normal and shear forces illustrated in Figure 2.5b are computed using Eqs. (2.12) 

and (2.13), respectively. 
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where W: weight of slice (i.e. refer to Eq. (2.3)), kv and kh: vertical and horizontal 

seismic coefficients, Q: resultant of external load acting above the slice, X and E: 

interslice shear and normal forces (i.e. subscripts “L” and “R” given in Figure 2.5b 

denote left and right-hand sides of slice, respectively), Δx: width of slice, α: inclination 

of slice base measured from horizontal, u: average pore-water pressure on slice base 

(i.e. refer to Eq. (2.4)), c' and ϕ': effective soil cohesion and friction angle, respectively. 
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Figure 2.5: General Limit Equilibrium analysis approach  

(a) slip surface of a slope under external and seismic loading  

(b) free-body diagram of a vertical slice 

To satisfy complete force equilibrium, horizontal forces in each slice are summed up, 

producing the force FS of GLE, given in Eq. (2.14). 
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where FS,f : force factor of safety. 

Similarly, moment equilibrium is satisfied with respect to a common rotational center, 

point R in Figure 2.5a. As a result, the moment FS can be determined using Eq. (2.15).  
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(2.15) 

where FS,m : moment factor of safety, rs, rx, ry, and rn: moment arms in Figure 2.5a. 

Although the formulation of GLE is given for effective stress analysis, the equations 

can be adapted for total stresses by ignoring the effect of pore-water pressure and 
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substituting the undrained parameters into the equations. In the following sub-sections, 

GLE interpretations of common LEMs are discussed further. 

2.1.2.1. Fellenius’ Method 

Fellenius’ method (i.e. also known as Ordinary Method of Slices) is the earliest 

procedure of slices in the literature. The method was initially proposed as an extension 

of Swedish Circle method to deal with soils under drained condition. In this procedure, 

interslice forces are completely ignored and FS is determined based on moment 

equilibrium. Contrary to other procedures, Fellenius’ method does not satisfy vertical 

force equilibrium. Instead, the vertical forces are resolved into their components, 

parallel and perpendicular to the slip surface. The perpendicular component is assumed 

to be equal to the base normal force that is used to determine the shear resistance. Since 

this approach is contradictory to the one adopted in GLE, Fellenius’ method requires 

an additional modification. For this method only, the normal force is calculated using 

the expression given in Eq. (2.16).  

( )   sincos1 hv WkQkWN −++=  (2.16) 

Contrary to the normal force equation given for GLE, Eq. (2.16) is independent of FS. 

Therefore, for Fellenius’ method, a single step calculation concludes the analysis. 

Since Fellenius’ method does not satisfy force equilibrium, the value of FS depends on 

the location of the rotational center, R. It is usually acceptable to use the center of the 

arc as the reference point when circular slip surfaces are adopted [35]. However, such 

a distinct location is not available for general slip surfaces. Therefore, the application 

of Fellenius’ method is usually not recommended for non-circular slip surfaces. 

Furthermore, the method often yields unrealistic results, especially for flat slopes with 

high pore-water pressures [36].  
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2.1.2.2. Bishop’s Simplified Method 

Similar to Fellenius’ approach, Bishop’s simplified method ignores horizontal force 

equilibrium and determines FS based on moment evaluation. However, base normal 

forces are calculated based on Eq. (2.12), which ensures vertical force equilibrium. 

The procedure accounts for interslice forces but ignores the shear components to 

overcome static indeterminacy (i.e. λfi(x)=0). Based on these assumptions, FS can be 

evaluated using Eq. (2.15).  

Bishop’s simplified method does not guarantee complete force equilibrium, hence FS 

is dependent on the point of reference selected for moment calculations, similar to 

Fellenius’ method. However, the results are only affected by the vertical position of 

the reference point since the free-body is in vertical force equilibrium. Regardless, the 

application of this procedure is mostly restricted to circular slip surfaces. 

2.1.2.3. Janbu’s Simplified Method 

It is apparent that simplified methods that evaluate FS based on moment equilibrium 

require a distinct axis of rotation, which is not clearly defined for general slip surfaces. 

Addressing this issue, Janbu proposed a procedure where FS is evaluated based on 

horizontal force equilibrium instead. As a result, the procedure commonly known as 

Janbu’s simplified method ignores moment equilibrium. Assumptions regarding the 

internal forces are the same as Bishop’s, in that, interslice shear forces are ignored (i.e. 

λfi(x)=0). With this approach, FS can be evaluated using Eq. (2.14). 

Ignoring the shear resistance in the slice interfaces, Janbu’s simplified method always 

underestimates FS [2] compared to rigorous methods. Accordingly, Janbu proposed 

correction factors to adjust the results based on experimental data from various slope 

stability analysis problems. 
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2.1.2.4. Lowe and Karafiath’s Method 

Lowe and Karafiath introduced a side force correction within a concept similar to the 

one proposed by Janbu. In Lowe and Karafiath’s method, it is intuitively assumed that 

the direction of the resultant interslice force in an interface is equal to the average of 

the ground and slip surface slopes as illustrated with Figure 2.6. Using GLE 

formulation, this approach is accommodated by setting λ factor to 1 and applying the 

interslice force function given in Eq. (2.17). Lowe and Karafiath’s method is often 

considered as the most accurate of all force equilibrium methods [2, 37]. 
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Figure 2.6: Interslice force function of Lowe and Karafiath’s method 
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where f(x): a function representing the slip surface, g(x): a function representing the 

ground surface. 

2.1.2.5. Corps of Engineers Method 

Corps of Engineers method is essentially the same as the one proposed by Lowe and 

Karafiath. However, in this method, the direction of the interslice force is assumed to 

be equal to the average ground surface slope. This statement is interpreted in two 

different ways as (i) the inclination of the chord passing through the slip toe and scarp 

and (ii) the average ground surface slope above the interface. Therefore, Corps of 

Engineers method has two variations used in practice as illustrated in Figure 2.7 and 
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given in Eqs. (2.18) and (2.19). Compared to Lowe and Karafiath’s internal force 

assumption, both of these approaches often lead to overestimated FS values [2, 37]. 

fi (x)

0

f (x)

g (x)

xt xs

(ii)

(i)

 

Figure 2.7: Interslice force functions of Corps of Engineers method 
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)(  (2.18) 

Case (ii): 1= , )(')( xgxfi =  (2.19) 

where xt and xs: abscissas of slip toe and scarp. 

2.1.2.6. Morgenstern-Price and Spencer’s Methods 

Morgenstern-Price method is possibly the most common rigorous procedure of slices. 

The method accounts for all internal reactions and equilibrium conditions, hence can 

be adopted as the generalized form of GLE formulation. In this approach, the direction 

of interslice force is again dictated with a prescribed function, fi(x). However, in this 

case, λ factor is utilized to scale the function, in order to achieve complete equilibrium. 

As a result, both FS and λ are unknown variables in Morgenstern-Price method. There 

are various interslice force functions proposed in the literature (e.g. constant, 

trapezoid, half-sine, clipped sine functions). However, the FS computed by 

Morgenstern-Price method is reasonably insensitive to this selection [3]. Therefore, 

any reasonable relation can be implemented.  Among the available approaches, 

constant and half-sine functions are commonly preferred in engineering practice [38]. 

Therefore, these functions are defined in Eqs. (2.20) and (2.21) and further illustrated 
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in Figure 2.8. It should be noted that Spencer’s method is a special case of 

Morgenstern-Price method where the interslice function is constant (i.e. all interslice 

forces are parallel). 

Constant function: 1)( =xfi  (2.20) 

Half-sine function: 

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Figure 2.8: Interslice force functions of Morgenstern-Price method 

Using one of the abovementioned interslice functions, Morgenstern-Price method 

analyzes the slip surface based on force and moment equilibrium. As a result, the 

problem is defined by two governing equations, Eqs. (2.14) and (2.15), and two 

unknowns, FS and λ. Since normal force is dependent on FS, both expressions are 

recursive (i.e. FS appears on both sides). Therefore, the system cannot be solved 

through algebraic operations. Instead, trial and error approaches, graphical procedures 

or multivariate quasi-Newton root finding methods can be adopted to find the couple 

that satisfies both equilibrium conditions. For the non-rigorous LEMs proposed by 

Bishop, Janbu, Lowe and Karafiath, and Corps of Engineers, the solution procedure is 

comparably simple. The problem is either defined by Eq. (2.14) or (2.15) and the only 

unknown is FS. Accordingly, bracketing methods or fixed-point iteration can also be 

adopted to find FS, in addition to the methods mentioned previously. Based on the 
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discussions presented in this section, a summary of common procedures of slices are 

given in Table 2.3. 

Table 2.3: Summary and comparison of procedures of slices 

 
 

Method 
 

Equilibrium Conditions  
 

Surface 
 

 
 
Comments 
 

Vertical 
Force 

Horizontal 
Force 

Moment 

Fellenius [9] ✕ ✕ ✓ Circular 

The simplest method of slices; 

ignores interslice forces; very 

inaccurate for flat slopes with 

high pore-water pressures 

Bishop’s simplified [10] ✓ ✕ ✓ Circular 

Ignores interslice shear forces; 

accurate within its range of 

applications 

Janbu’s simplified [11] ✓ ✓ ✕ General 

Simplest force method; ignores 

interslice shear forces; always 

underestimates FS 

Lowe and Karafiath [12] ✓ ✓ ✕ General 

Assumes the magnitude and 

direction of interslice shear 

forces; most accurate force 

equilibrium method 

Corps of Engineers [13] ✓ ✓ ✕ General 

Assumes the magnitude and 

direction of interslice shear 

forces; often overestimates FS 

Spencer [14] ✓ ✓ ✓ General 

Simplest rigorous method; 

assumes parallel interslice 

forces; accurate 

Morgenstern-Price [3] ✓ ✓ ✓ General 

Rigorous method; variable 

interslice force direction; 

accurate 

2.2. Slip Surface Generation 

The procedures discussed so far can only evaluate the stability of an assumed slip 

surface. Therefore, a method is required to generate trial solutions, considering that 

LEMs associate the slope system safety to that of the critical slip surface. In this 

section, some of the available surface generation methods are introduced through a 

classification of available approaches. First, procedures that generate simple surface 

geometries such as planar, circular and logarithmic spiral are presented in Section 

2.2.1. Then, in Section 2.2.2, some of the common general slip surface generation 

methods are discussed and formulated for the succeeding chapters. 
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2.2.1. Planar, Circular and Logarithmic Spiral Slip Surfaces 

The approaches discussed in this section are based on specified surface geometries that 

are coupled with specific LEMs or adopted to simplify the surface optimization 

procedure. A common feature of these approaches is that the resulting surfaces can be 

represented with at most a few geometric parameters. For instance, planar surfaces 

used in Infinite Slope analysis are defined by only one geometric parameter, which is 

the slip surface depth. As a result, a specific surface generation or optimization 

technique is not necessarily adopted for this method.  

In the case of circular and logarithmic spiral surfaces, the geometry can be defined by 

a center and a radius (i.e. initial radius for logarithmic spirals). Therefore, a two-

dimensional analysis optimizes three control variables to determine the critical slip 

surface. In practice, this procedure is often handled with a grid search routine [37]. 

The example given in Figure 2.9 illustrates a circular failure analysis. Each node of 

the grid is a possible center for the critical slip surface. For each center, multiple 

surfaces are generated and the radius, r, is optimized to minimize FS. The configuration 

that yields the minimum FS is specified as the critical slip surface. For logarithmic 

spiral surfaces, a similar approach can be adopted as well. Although this approach is 

relatively simple, the result accuracy is limited as the critical slip surface can 

significantly deviate from these constrained geometries. 

r

r

R

 

Figure 2.9: Grid search approach for circular failure analysis 
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2.2.2. General Slip Surfaces 

The reliability of limit equilibrium solutions significantly depends on the capability of 

the implemented surface generation method. To accurately represent the critical case, 

the method should be flexible to produce any reasonable slip surface, which may 

incorporate a composition of planar and rotational segments with variable curvature 

and even abrupt gradient transitions. In this sense, general surface generation methods 

(i.e. also known as non-circular surface generation methods) eliminate the restrictions 

imposed by the approaches presented previously. Although this concept is widely 

accepted, it is not extensively studied in the literature except for the notable efforts of 

Sun [21], Malkawi [32], Bolton [41], Cheng [33, 39] and Li [42]. In the following sub-

sections, the methods proposed by Malkawi, Cheng, and Sun are presented. 

2.2.2.1. Malkawi’s Method 

The method suggested by Malkawi [32] is one of the most effective approaches in the 

literature, having successful applications to slope stability analysis problems. When 

generating a slip surface of n slices, the formulation requires 2n geometric parameters, 

which are normalized between [0, 1]. The parameters can either be chosen randomly 

or produced by an optimization routine. The method always generates convex surfaces 

to meet the kinematical admissibility requirement proposed in [28, 32, 39, 40]. Beyond 

that, no major geometric restrictions are imposed on the surface geometries. The 

procedure is formulated below, based on the generic surface illustrated in Figure 2.10. 

Step 1: Define the horizontal boundary limits of the slip toe and scarp, V1(x1, y1) and 

Vn+1(x n+1, yn+1), respectively. 

   max,1min,11max,1min,11 ,,, +++  nnn xxxxxx  (2.22) 

where x1,min and xn+1,min: minimum limits of x1 and xn+1, x1,max and xn+1,max: maximum 

limits of x1 and xn+1. 
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Figure 2.10: Malkawi’s surface generation method 

Step 2: Prescribe the number of slices, n, and generate a decision vector of 2n variables 

using an optimization method. 

( )nd rrr 21 ,...,,...,=r  (2.23) 

r: a decision vector with 2n variables, rd: dth geometric variable of r, where rd ∈ [0, 1]. 

Step 3: Determine the positions of V1(x1, y1) and Vn+1(xn+1, yn+1) using Eqs. (2.24)–

(2.27). 

( )min,1max,11min,11 xxrxx −+=  (2.24) 

)( 11 xgy =  (2.25) 

( )min,1max,12min,11 ++++ −+= nnnn xxrxx  (2.26) 

)( 11 ++ = nn xgy  (2.27) 

where y=g(x): the function representing the ground surface. 

Step 4: Determine the toe and scarp angles of the surface, denoted as α1 and αn 

respectively, using Eqs. (2.28) and (2.29). It should be noted that the toe angle is 

limited between -30o and -45o to avoid computational difficulties during the FS 

evaluation, in accordance with [43]. However, this approach does not impose any 

restrictions to the generated surfaces since slice widths are variable. The width of the 
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first slice may converge to zero and practically be replaced by the second slice, 

allowing any toe angle greater than -30o. 

( )3
12

31 −= r


  (2.28) 

14
2




 rn +=  (2.29) 

Step 5: Determine the position of Vn+2(xn+2, yn+2) analytically by drawing two lines 

from V1 and Vn+1 with angles α1 and αn, respectively. 

Step 6: Determine the position of V2(x2, y2) using Eqs. (2.30) and (2.31). 

( )12512 xxrxx n −+= +  (2.30) 

( ) 11212 tanxxyy −+=  (2.31) 

Step 7: Determine the positions of vertices n+3 to 2n using Eqs. (2.32) and (2.33). 

( )inniii xxrxx −+= +−++ 141  (2.32) 

( ) niiii xxyy tan11 −+= ++  (2.33) 

for i = n+2, n+3,…, 2n-1  

Step 8: Determine the positions of vertices 3 to n-1 using Eqs. (2.34)–(2.36).  

( )ininiii xxrxx −+= +++++ 121  (2.34) 

ini

ini
i

xx

yy

−

−
=

++

++

1

1tan  (2.35) 

( ) iiiii xxyy tan11 −+= ++  (2.36) 

for i = 2, 3,…, n-2 
 

Step 9: Assign the coordinates of the Vn using Eq. (2.37). Note that Vn and V2n 

correspond to the same vertex.  

nn xx 2= , nn yy 2=  (2.37) 
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2.2.2.2. Cheng’s Equal and Variable Division Methods 

In their study, Cheng et al. [33] evaluated the performances of various surface 

generation methods, including the one proposed by Malkawi. The study concluded that 

Malkawi’s method is fairly efficient for problems incorporating stratified soil profiles, 

yet it may not be applicable to complicated loading cases. Accordingly, they proposed 

the alternative approaches presented in this section. Cheng’s method starts by 

assigning the slip toe and scarp positions. Then, the slice widths and the base angles 

are assigned considering the kinematical admissibility requirements. There are two 

variations of this method, based on (i) equal slice division (i.e. slice width is constant) 

and (ii) variable slice division (i.e. slice width is variable) which generate a slip surface 

of n slices using n+1 and 2n geometric parameters, respectively. The procedure is 

formulated below considering the generic slip surface illustrated in Figure 2.11. 

g (x)

V1

V2 V3 V...

V...

V...

Vn+1

-α1
α2,max

-π/2

α3,max

y

x
 

Figure 2.11: Cheng’s surface generation methods 

Step 1: Define the horizontal boundary limits of the slip toe and scarp, V1(x1, y1) and 

Vn+1(x n+1, y n+1), respectively. 

   max,1min,11max,1min,11 ,,, +++  nnn xxxxxx  (2.38) 

where x1,min and xn+1,min: minimum limits of x1 and xn+1, x1,max and xn+1,max: maximum 

limits of x1 and xn+1. 
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Step 2: Prescribe the number of slices, n, and select either equal or variable division 

approach. For equal division approach, generate a decision vector of n+1 variables. 

For the variable division approach, generate a 2n variables. 

Equal division: ( )11 ,...,,..., += nd rrrr  (2.39) 

Variable division: ( )nd rrr 21 ,...,,...,=r  (2.40) 

where r: a decision vector with either n+1 or 2n variables based on the selected 

approach, rd: dth geometric variable of r, where, rd ∈ [0, 1]. 

Step 3: Determine the positions of V1(x1, y1) and Vn+1(xn+1, yn+1) using Eqs. (2.41)–

(2.44). 

( )min,1max,11min,11 xxrxx −+=  (2.41) 

)( 11 xgy =  
(2.42) 

( )min,1max,12min,11 ++++ −+= nnnn xxrxx  (2.43) 

)( 11 ++ = nn xgy  (2.44) 

where y=g(x): the function representing the ground surface. 

Step 4: Calculate the average slice width, Δx, using Eq. (2.45) and determine abscissas 

of vertices 2 to n using either Eq. (2.46) or Eq. (2.47), depending on the selected 

approach. 

n

xx
x n 11 −= +

 (2.45) 

Equal division: xxx ii += −1  for i = 2, 3, n (2.46) 

Variable division: ( ) xrxx niii ++= +− 5.01  for i = 2, 3, n (2.47) 

Step 5: Determine the toe angle of the surface, denoted as α1, using Eq. (2.48). Note 

that the toe angle is limited between the ground surface inclination and 90o. 









−+−=

2
)('

2
131


 xgr  (2.48) 
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Step 6: Calculate the ordinate of V2 using Eq. (2.49). 

11 tan −− += iii xyy   (2.49) 

Step 7: For slices 2 to n-1, determine the minimum and maximum limits of base angles 

using Eqs. (2.50) and (2.51). Then, calculate the base angles and ordinates using Eqs. 

(2.52) and (2.53), respectively.  

1min, −= ii   (2.50) 


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−
=
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+
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+−

ii

ii

in

in
i

xx

yxg

xx

yy

1

1

1

11

max,

)(
,mintan  (2.51) 

( )min,max,2min, iiiii r  −+= +  (2.52) 

iii xyy tan1 +=+  (2.53) 

for i = 2, 3, n-1  

where αi,min and αi,max: minimum and maximum limits of αi. 

2.2.2.3. Sun’s Cubic Spline Method 

The common feature of Malkawi’s and Cheng’s methods is that they require a great 

number of geometric parameters for accurate surface representation, and thus produce 

high-dimensional, difficult surface optimization problems. Addressing this issue, Sun 

[21] proposed a procedure to minimize the number of geometric variables through 

spline interpolation. The method generates a number of vertices and connects them 

with continuous cubic spline functions. Then, the resulting free-body is divided into 

equally spaced vertical slices. Based on the description given by Sun, the method is 

summarized as follows: 

Step 1: Construct ns+1 vertices as represented in Eq. (2.54). The vertices should 

comply with the constraints given in Eqs. (2.55)–(2.58). 

( ) ( ) ( )111222111 ,,...,,,, +++ sss nnn yxVyxVyxV  (2.54) 

Equal horizontal spacing constraint: 

( )
s

n

jj
n

xx
xx s 11

1

−
+=

+

−  for j = 2, 3,…, ns (2.55) 
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Boundary constraints: 

maxmin xxx j   for j = 1, 3,…, ns+1 (2.56) 

)(),( 1111 ++ ==
ss nn xgyxgy  (2.57) 

Kinematic admissibility constraint: 

3
......

4
121





− +snj  (2.58) 

where ns: number of splines, xmin and xmax: minimum and maximum horizontal limits 

of vertices, y=g(x): the function representing the ground surface, αj: inclination of the 

line passing through vertices j and j+1. 

Step 2: Perform cubic spline interpolation to connect the vertices. Based on this 

approach, kinematical admissibility is not guaranteed as cubic spline functions can 

oscillate to produce concave down segments. 

Step 3: Divide the free-body into n vertical slices and process the data to compute slice 

properties. 

Although the general concept of the method is described, an explicit formulation was 

not given in the study of Sun [21]. In the scope of this study, Sun’s method is 

formulated based on Malkawi’s approach through a modification to impose constant 

slice widths. The resulting procedure requires ns+1 geometric parameters to generate 

a surface of ns splines as formulated in the following pseudocode considering the 

generic slip surface illustrated in Figure 2.12. 

Step 1: Define the horizontal boundary limits of the slip toe and scarp, V1(x1, y1) and 

Vns+1(x ns+1, yns+1), respectively. 

   max,1min,11max,1min,11 ,,, +++ 
sss nnn xxxxxx  (2.59) 

where x1,min and xns+1,min: minimum limits of x1 and xns+1, x1,max and xns+1,max: maximum 

limits of x1 and xns+1. 
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Figure 2.12: Sun’s surface generation method 

Step 2: Prescribe the number of splines, ns, and generate a decision vector of ns+1 

variables using an optimization method. 

( )11 ,...,,..., +=
snd rrrr  (2.60)  

r: a decision vector with ns+1 variables, rd: dth geometric variable of r, where rd ∈ [0,1]. 

Step 3: Determine the positions of V1(x1, y1) and Vns+1(xns+1, yns+1) using Eqs. (2.61)–

(2.64). 

( )min,1max,11min,11 xxrxx −+=  (2.61) 

)( 11 xgy =  (2.62) 

( )min,1max,12min,11 ++++ −+=
ssss nnnn xxrxx  (2.63) 

)( 11 ++ =
ss nn xgy  (2.64) 

where y=g(x): the function representing the ground surface. 

Step 4: Calculate the average slice width, Δx, using Eq. (2.65) and determine the 

abscissas of vertices 2 to ns using Eq. (2.66). 

s

n

n

xx
x s 11 −
=

+
 (2.65) 

xxx jj += −1  for j = 2, 3, ns 
(2.66) 
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Step 5: Determine the toe and scarp angles of the surface, denoted as α1 and αns 

respectively. The method limits the base angles -45o and 60o. Therefore, the equations 

given for Malkawi’s method are modified to comply with this requirement. 

( )3
12

31 −= r


  (2.67) 

14
3




 r
sn +=  (2.68) 

Step 6: Determine the position of Vns+2(xns+2, yns+2) analytically by drawing two lines 

from V1 and Vns+1 with angles α1 and αns, respectively. 

Step 7: Determine the ordinates of V2 and Vns using Eqs. (2.69) and (2.70). 

( ) 11212 tanxxyy −+=  (2.69) 

( )
sssss nnnnn xxyy tan11 −−= ++  (2.70) 

Step 8: Determine the positions of vertices ns+3 to 2ns-1 using Eqs. (2.71) and (2.72). 

( )jnnjjj xxrxx
ss

−+= +−++ 131  (2.71) 

( )
snijjj xxyy tan11 −+= ++  (2.72) 

for j = ns+2, ns+3,…, 2ns-2  

Step 9: Determine the ordinates of vertices 3 to ns-1 using Eqs. (2.73) and (2.74).  

jnj

jnj

j
xx

yy

s

s

−

−
=

++

++

1

1
tan  (2.73) 

( ) jjjjj xxyy tan11 −+= ++  (2.74) 

for j = 2, 3,…, ns-2  

Step 10: Perform cubic spline interpolation to connect the vertices. The boundary 

conditions of the splines were not clearly specified by Sun. Therefore, the study 

possibly employed natural splines. 
 

Step 11: Divide the free-body into n vertical slices as illustrated in Figure 2.12 and 

process the data to compute slice properties. 
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2.3. Surface Optimization and Differential Evolution Algorithm 

Each surface generation method presented in the previous section requires input 

decision vectors containing the geometric parameters of the trial slip surfaces. These 

parameters are essentially the problem variables that are optimized in order to 

minimize FS. When general slip surface generation methods are employed, the analysis 

procedures translate into high-dimensional optimization problems. Considering that 

the search spaces of these problems often contain multiple local minima, implementing 

a global optimization technique is vital to produce reliable results. In other words, the 

optimization method should be capable of exploring the search space and avoid/escape 

local minima through random operations. In this sense, stochastic optimization 

algorithms are often preferred over other alternatives. 

Despite the above arguments, deterministic approaches based on conjugate-gradient 

technique [46], dynamic programming [47, 48], alternating-variable search [49, 50], 

simplex method [51–54], Powell, Broyden-Fletcher-Goldfarb-Shanno and Davidon-

Fletcher-Powell algorithms [53] were adopted in the earlier studies due to relatively 

high computational cost of stochastic search techniques.  

After this era, structured random procedures based on Monte Carlo simulation were 

proposed for the problem by Greco [55] and Malkawi et al. [32, 56]. Following the 

rapid advent of computer technology, deterministic techniques were suppressed by the 

development of nature-inspired stochastic optimization algorithms named 

metaheuristics and became obsolete for the problem. Generally inspired by the random 

concepts observed in biology, physics, material science, social studies, etc., 

metaheuristic algorithms imitate some phenomena within an iterative framework to 

converge to a solution. The random nature of these algorithms help them avoid local 

optima in complex problems, hence they are favored over deterministic techniques in 

a broad range of engineering applications, including slope engineering. Among the 

available metaheuristic algorithms, Genetic Algorithm has numerous implementations 

to slope stability problems [17–25]. Variants of another evolutionary algorithm, 
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Differential Evolution, were adopted in [26, 27]. Swarm intelligence algorithms are 

also popular with applications of Particle Swarm Optimization, Artificial Fish Swarm 

Algorithm and Cuckoo Search [28–31]. Furthermore, there are notable studies based 

on Harmony Search [29, 33], Simulated Annealing and Tabu Search [29], Ant Colony 

Optimization [57, 58], Gravitational Search Algorithm [59, 60], Artificial Bee Colony 

Optimization [61], Immunised Evolutionary Programming [58], and Imperialistic 

Competitive Algorithm [62]. In this study, the specific focus will be on Differential 

Evolution algorithm. 

Inspired by Darwin’s principles of natural selection and evolution, Storn and Price [63] 

introduced Differential Evolution (DE) algorithm for continuous variable optimization 

problems. The algorithm initializes with a randomly generated population of 

individuals (i.e. decision vectors) and performs successive operations named (i) 

mutation, (ii) crossover, and (iii) selection. These operations basically simulate 

evolution within the search space of an optimization problem, in order to improve the 

quality of the individuals (i.e. slip surfaces). For each member of the population, DE 

arbitrarily selects and combines the genes (i.e. variables in the decision vector) of three 

individuals named “donors” to produce a mutant vector. Then, in the crossover phase, 

the individuals exchange some of their genes (i.e. geometric parameters of the 

surfaces) with their mutants to produce new members. In the selection phase, the 

fitness values (i.e. FS of the surfaces) of the new members are compared with their 

predecessors. The individuals that produce better quality solutions replace their 

predecessors to form the next generation of individuals. This procedure is repeated 

until a specified termination criterion is met. DE has two control parameters; (i) 

crossover rate, CR ∈ [0, 1] and, (ii) mutation factor, F ∈ [0, 1], which are constant 

factors that can be tuned to manipulate the search behavior of the algorithm. These 

concepts and their mathematical implementations in the algorithm are given in the 

following pseudocode and further illustrated in the flowchart given in Figure 2.13. 
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Step 1 - Initialization: Generate a random population of “K” individuals, where the 

position of each individual in the search space is represented by the design vector rk 

defined in Eq. (2.75). 

( )k

D

k

d

kk rrr ,...,,...,1=r     for k = 1, 2,…, K (2.75) 

where D: dimension of the problem, rk
d: the position of the kth individual on the dth 

dimension. 

Step 2 - Evaluation: Evaluate the fitness of each individual. 

Step 3 - Mutation: For each individual, randomly select three donors from the 

population and generate a mutant vector, using Eq. (2.76). 

( )321 rrrk F rrrv −+=     for k = 1, 2,…, K (2.76) 

( )k

D

k

d

kk vvv ,...,,...,1=v  (2.77) 

where vk: mutant vector of the kth individual, rr1, rr2 and rr3: randomly selected donor 

vectors (i.e. r1, r2, r3∈{1, 2,…, K}), F: mutation factor, vk
d: the position of v on the 

dth dimension. 

Step 4 - Crossover: Perform crossover operation to produce trial decision vectors, uk, 

using Eq. (2.78). 







=
=

kk

d

k

d

kk

d

k

dk

d
idandCRRifx

idorCRRifv
u

,

,
    for d = 1, 2,…, D  and k = 1, 2,…, K (2.78) 

where uk
d: the position of uk on the dth dimension, Rk

d: uniformly distributed random 

number ∈ [0, 1], ik: randomly chosen index ∈ {1, 2,…, D}, CR: crossover rate. 

Step 5 - Selection: Evaluate the fitness of each trial decision vector uk and compare 

with the fitness of rk, keep the best one in the population. 

Step 6 - Termination: Stop iterations if the termination criteria are satisfied. If not, 

return to Step 3. It is common to control the termination with a prescribed number of 

maximum iterations, T. 
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Figure 2.13: Flowchart of Differential Evolution algorithm 
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CHAPTER 3 

 

INTEGRATED LIMIT EQUILIBRIUM METHOD - PART I: SURFACE 

GENERATION 

 

In this chapter, the surface generation module of Integrated Limit Equilibrium Method, 

namely, Scaled Quadratic Spline method (SQS) is introduced and proposed as an 

alternative to the available approaches. In Section 3.1, the general principles and the 

aim of SQS are discussed and the method is formulated. Section 3.2 comprises a series 

of numerical experiments that validate the improved performance of SQS over other 

surface generation methods in the literature. To emphasize the capability of the 

proposed method more clearly, the results are further evaluated in comparison with a 

common commercial stability analysis software. Lastly, a summary of the findings and 

discussions are given in Section 3.3. 

3.1. Scaled Quadratic Spline Method 

The proposed surface generation procedure, Scaled Quadratic Spline (SQS) method is 

conceptually similar to Sun’s cubic spline approach [21]. In both methods, the slip 

surfaces are represented with nonlinear spline functions instead of linear segments, 

aiming to (i) eliminate the unnecessary accuracy loss and (ii) minimize the number of 

geometric parameters required for accurate surface representation. With this idea in 

mind, Sun proposed a procedure with cubic spline interpolation, which has some 

deficiencies based on the observations made in this study. The first issue with Sun’s 

Cubic Spline Method is that the formulation lacks an explicit constraint to produce 

admissible surfaces. The method suggests a criterion, given in Eq. (2.58), to assure 

that the lines passing through the spline nodes form a convex surface. Although this 

measure implicitly controls the feasibility of the surfaces, it is still possible to produce 

deficient geometries, as illustrated in Figure 3.1. In some cases, cubic splines may 

oscillate to produce non-convex surfaces as their geometries are entirely dictated by 
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the alignment of the nodes. Another issue with Sun’s approach is related to the applied 

spline boundary conditions. A cubic surface produced by conventional procedures 

inherently has continuous first and second derivatives at each node, which is not 

necessarily a favorable feature for slope stability analysis. The critical slip surfaces 

often incorporate sudden gradient transitions under external loading or in cases where 

the soil profile is stratified. 

 

Figure 3.1: Kinematically inadmissible slip surface 

Addressing the abovementioned issues, SQS is proposed as a simple, yet efficient 

alternative to the available surface generation methods. In SQS, spline nodes are 

generated using the approach proposed by Malkawi [32]. Then, the surface is 

constructed with piecewise continuous quadratic splines as illustrated in Figure 3.2. 

V2
Vj

Vj+1

Vns+1

π/4

g (x)

fj (x)

V1
1 ...  ...

n-1

2 3

... ... n

y

x

f1 (x)

fns(x)

Figure 3.2: Scaled Quadratic Spline Method – general view of a slip surface 

For each segment, three boundary conditions are required to calculate the spline 

coefficients, “af”, “bf”, and “df” given in Eq (3.1).  

jfjfjfj dxbxaxf )()()()( 2 ++=  (3.1) 

where fj (x): quadratic spline function representing the jth segment of the surface. 
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The first two boundary conditions come from the positions of end nodes, vertices Vj 

and Vj+1 in Figures 3.2 and 3.3. The last boundary condition is prescribed with the 

derivative of fj (x) at its first node, fj '(xj). For continuous spline interpolation, this value 

is already known and equal to the derivative of the preceding spline at the same node, 

fj'-1(xj). On the other hand, SQS utilizes fj'-1(xj) as a lower limit of fj '(xj), while the upper 

limit is taken as the slope of the linear segment between the end nodes (i.e. reference 

line produced with Malkawi’s procedure), denoted as “mj” in Figure 3.3. Additionally, 

another lower limit value is implemented to prevent a negative inflection on the second 

node, Vj+1. From the resulting range, SQS assigns a value to fj'(xj) using a scale factor 

between 0 and 1. In other words, the spline geometry is scaled between that of a 

continuous spline and a linear segment. Through these considerations, SQS always 

produces convex surfaces. Moreover, the proposed approach stimulates sudden 

gradient transitions and linear segments to provide the flexibility to deal with 

geometrically complex problems. To produce a surface represented with ns splines, the 

procedure requires 3ns geometric parameters and can be described based on Figures 

3.2 and 3.3 as follows: 

Vj(xj, yj)

Vj+1(xj+1, yj+1)

tan-1[ fj-1'(xj)]

tan-1[ fj '(xj+1)]

tan-1[ fj-1'(xj)]

tan-1[ fj '(xj+1)]

tan-1(mj)

tan-1(mj+1)

tan-1(mj+1)

tan-1(mj)

Vj(xj, yj)

Vj+1(xj+1, yj+1)

(a) (b)

y

x

 

Figure 3.3: Scaled Quadratic Spline Method – close up of splines 

Step 1: Prescribe the number of splines, ns, and generate a decision vector of 3ns 

variables using an optimization method. 

),...,,...,( 31 snd rrr=r  (3.2)   

where r: a decision vector with 3ns variables, rd: dth geometric variable of r, rd ∈ [0,1]. 
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Step 2: Generate ns+1 nodal points for quadratic spline interpolation. Employ 

Malkawi’s procedure using the geometric parameters r1 through r2ns, and take the 

following into consideration: 

(i) In “Step 4” of Malkawi’s procedure, slip toe inclination is restricted in a range 

between -30o and -45o. To provide more flexibility, SQS considers a wider range 

between 0o and -45o. 

(ii) In the same step, scarp inclination is determined with an expression based on toe 

angle. SQS formulation considers scarp inclination as an independent parameter. 

Based on these arguments, SQS adopts Malkawi’s procedure by replacing Eqs. (2.28) 

and (2.29) with Eqs. (3.3) and (3.4), respectively. 

( )1
4

31 −= r


  (3.3)  

( )42
4

r
sn −=


  (3.4)  

Step 3: Consecutively for each spline: determine the lower and upper limits of fj'(xj) 

using Eqs. (3.5)–(3.8); determine fj'(xj) using Eq. (3.9); calculate the spline coefficients 

using Eqs. (3.10)–(3.12). 
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jjfjjfjjf xbxayd −−= )()()()( 2
 (3.12) 

where jfjfjfj dxbxaxf )()()()( 2 ++=  (3.13) 

for j = 1, 2,…, ns  

where fj '(xj): function representing the jth quadratic spline, mj: slope of jth reference 

line, [fj '(xj)]L and [fj '(xj)]U: lower and upper limits of fj '(xj), τaf : threshold value for af 

(i.e. τaf is set to 10-4 in this study). 

Step 4: Divide the free-body into n vertical slices as illustrated in Figure 3.2 and 

process the data to compute slice properties.  

Note that there are two lower limits of fj '(xj), given in Eqs. (3.5) and (3.6). Eq. (3.5) is 

based on the terminal gradient of the preceding spline, hence not applicable in the first 

node. Accordingly, for the first spline, this limit is utilized to keep the slip toe 

inclination above -45o. Eq. (3.6) is applied to prevent a negative inflection at the 

second node of each spline, and can be derived by equating fj '(xj+1) to the slope of the 

succeeding reference line, mj+1. Therefore, this boundary condition is not applicable to 

the last spline. The maximum of the values obtained with Eqs. (3.5) and (3.6) are used 

as the lower limit of fj '(xj), given in Eq. (3.7). In Figures 3.3a and 3.3b, the governing 

limits are based on Eq. (3.5) and (3.6), respectively. Lastly, a threshold value is defined 

for af in Eq. (3.10). Denoted as “τaf”, the threshold stimulates linearity and helps with 

the convergence issues encountered later in Chapter 4. 

In addition to SQS, a simplified version of the formulation is also adopted in the 

numerical experiments. In this simplified variant named Quadratic Spline Method 

(QS), Eqs. (3.5)–(3.9) are only applied to the first spline function to specify the initial 

boundary condition. The rest of the splines are constructed continuously without the 

scaling operation. As a result, QS utilizes 2ns+1 geometric parameters as opposed to 

SQS which requires 3ns parameters. A summary of QS and SQS methods are given in 

Table 3.1, together with the surface generation methods presented in Chapter 2. It 
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should be noted that the following sections refer to these methods with the 

abbreviations given in this table. 

Table 3.1: Summary and comparison of surface generation methods 

Abbreviation: Method D Comments 

M1: Malkawi [32] 2n 
Guarantees kinematical admissibility; allows 

variable slice width 

M2: Cheng’s Equal Division [33] n+1 
Guarantees kinematical admissibility; keeps slice 

width constant 

M3: Cheng’s Variable Division [33] 2n 
Guarantees kinematical admissibility; allows 

variable slice width 

M4: Sun’s Cubic Spline [21] ns+1 

Promotes kinematical admissibility but does not 

guarantee it; keeps spline width constant; reduces 

problem dimension; may not be efficient to handle 

stratified soil profiles and external loading 

QS: Quadratic Spline 2ns+1 

Promotes kinematical admissibility but does not 

guarantee it; allows variable spline width; reduces 

problem dimension; may not be efficient to handle 

stratified soil profiles and external loading 

SQS: Scaled Quadratic Spline 3ns 

Guarantees kinematical admissibility; allows 

variable spline width; reduces problem dimension; 

aims to handle complex cases by allowing 

discontinuous function derivative and stimulating 

linearity 

where D: dimension of the problem (i.e. the number of geometric parameters), n: number of slices, ns: number of splines. 

 

 

3.2. Numerical Experiments 

To validate the efficiency of ILEM surface generation module, SQS, a series of 

numerical experiments are performed with a set of benchmark slope stability analysis 

problems assembled from the literature. The problem set includes six different 

geometric models, comprising cases with homogeneous and stratified soil profiles. 

Furthermore, additional configurations with groundwater effect, surcharge, and 

pseudo-static earthquake loading are considered for some of the examples, resulting in 

a total of 11 benchmark problems. 

The analysis framework is completed with General Limit Equilibrium (GLE) 

formulation and Differential Evolution (DE) algorithm. The same configuration is also 
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employed with the other surface generation methods (i.e. M1–M4 and QS, given in 

Table 3.1), in order to evaluate the performance of SQS comparatively. The control 

parameters of each module are summarized in Table 3.2 and briefly discussed in the 

following paragraph. 

Table 3.2: Parameters settings of the framework components 

Module Method Parameter 

Surface generation 
SQS, QS, M4 

Number of splines, ns ∈ {3, 4,…, 10} 

Number of slices, n ∈ {10, 20,…, 100} 

M1, M2, M3 Number of slices, n ∈ {10, 20,…, 100} 

Stability analysis GLE - Spencer 
Effective stress analysis 

Error tolerance for FS and λ, εtol =10-5 

Surface optimization DE 

Mutation factor, F=0.5 

Crossover rate, CR=0.9 

Population size, K=50 

Maximum iteration, T=1000 

Number of independent runs = 30 

GLE is adopted based on Morgenstern-Price approach with constant interslice force 

function, given in Eq. (2.20), which is commonly known as Spencer’s method. The 

resulting formulation produces a 2×2 system of nonlinear equations with Eqs. (2.14) 

and (2.15) and unknowns, FS and λ. To solve the system, Broyden’s multivariate quasi-

Newton root finding method [64] is adopted with an error tolerance of εtol =10-5 for 

both unknowns. For DE algorithm, the control parameters (i.e. mutation factor “F” and 

crossover rate “CR”) are tuned based on a preliminary study with the settings proposed 

in the literature. Considering the example problems adopted in this study, the 

configuration used in [65, 66] is adopted as an efficient parameter setting for all surface 

generation methods presented in the manuscript. Accordingly, DE is implemented 

with mutation factor F=0.5 and crossover rate CR=0.9, using a population of K=50 

individuals and maximum T=1000 iterations for each analysis. Due to the stochastic 

nature of DE, each problem is analyzed in 30 independent runs to obtain the statistical 

performance measures. For the surface generation methods, the main control 

parameter is either the number of slices or number of splines, both of which identify 
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the dimension of the problem. Since the performance of each method depends on this 

selection, a parametric study is performed to assess the most efficient configurations. 

Accordingly, the experiments comprise the analysis of benchmark problems with 

number of splines varying between 3 and 10 (i.e. where applicable) and number of 

slices between 10 and 100. 

To deliver the findings and validate the applicability of SQS, the following sub-

sections are organized as follows: Section 3.2.1 presents the benchmark problems in 

terms of slope geometry, soil profile and loading condition and gives concise 

discussions about the expected failure mechanisms. Section 3.2.2 includes the 

parametric sensitivity analyses of the surface generation methods. In Section 3.2.3, the 

methods are compared in terms of statistical performance, capability to minimize FS, 

and convergence efficiency. Then, in Section 3.2.4, the capability of SQS is 

emphasized through a comparison with the renowned commercial analysis software, 

Slide [34]. 

3.2.1. Benchmark Problems 

Example 1, adopted from Fredlund and Krahn [67], evaluates the stability of a 12.2 m 

high slope with 1:2 face inclination, as illustrated in Figure 3.4. The soil profile is dry 

and idealized as a single homogeneous cohesive soil unit with the parameters given in 

Table 3.3. External loading and seismic effects are not considered, hence the slope is 

analyzed under gravitational loads only. 

Example 2 is taken from Yamagami and Ueta [53] and is similar to the previous 

problem. The example deals with a 10 m wide - 5 m high simple slope geometry with 

a dry homogeneous soil profile as illustrated in Figure 3.5. Yamagami and Ueta 

analyzed this example under gravitational loads only. Additionally, in this study, the 

slope is further analyzed considering a 3.5 m wide surcharge of 75 kPa, placed 5 m 

away from the crest of the slope. In the following sections, experiments without and 

with the external loading are denoted as Cases (i) and (ii), respectively. 
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Figure 3.4: Example 1 – slope geometry and soil profile 

 

Figure 3.5: Example 2 – slope geometry and soil profile 

In Example 3, which was originally studied by Zolfaghari [20], a 17 m wide - 8.5 m 

high, multi-layered dry slope is analyzed. As illustrated in Figure 3.6, the soil profile 

is idealized into four discrete units with the parameters given in Table 3.3. The 

preliminary examination of this problem indicates that there is a thin soft soil deposit 

(i.e. Soil 3.3) between relatively stiffer layers, which may induce a partially 

translational failure. 
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Figure 3.6: Example 3 – slope geometry and soil profile 

Adopted from Arai and Tagyo [46], Example 4 considers a 30 m wide dry slope with 

1:2 face inclination. Illustrated in Figure 3.7, the soil profile comprises parallel aligned 

three layers. The base soil is a relatively stiff material and the interlayer soil is 

considerably weak, which will possibly limit the critical slip surface to stay within the 

upper layers. Considering that the interlayer deposit is relatively thick, either a 

“rotational” or a deep translational failure is expected.  

 

Figure 3.7: Example 4 – slope geometry and soil profile 
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Example 5 is introduced by Zolfaghari [20], and incorporates a dry infinite slope with 

stratified soil profile as shown in Figure 3.8. There are three soil layers, including an 

interlayer soft soil deposit. The problem is analyzed under static loads in Case (i). 

Then, a pseudo-static earthquake analysis is conducted with horizontal seismic 

coefficient, kh=0.1 in Case (ii). For practical purposes, the width of the critical slip 

surface is limited to 100 m since the slope displays a fully translational failure. 

Otherwise, the surface width would tend to infinity and promote divergence. 

 

Figure 3.8: Example 5 – slope geometry and soil profile 

Example 6, also taken from Zolfaghari [20], examines a slope with complex soil profile 

under groundwater and seismic effects, as illustrated in Figure 3.9. The slope is 

analyzed for four different configurations, which are summarized as follows; Case (i): 

there is no earthquake load and no pore-water pressure, Case (ii): there is no 

earthquake load but hydrostatic pore-water pressure exists due groundwater, Case (iii): 

there is a pseudo-static earthquake load with kh=0.1, but no pore-water pressure, Case 

(iv): there is both pseudo-static earthquake loading with kh=0.1 and hydrostatic pore-

water pressure due to groundwater. 

 



 

 

50 

 

 

 

Figure 3.9: Example 6 – slope geometry and soil profile 

All surface generation methods presented in this manuscript require boundary 

conditions to limit the horizontal position of slip toe and scarp, denoted as “xt” and 

“xs”, respectively. For each benchmark problem, these values are intuitively selected 

and summarized in Table 3.3, together with the soil parameters. 

Table 3.3: Model boundaries and soil parameters 

Problem [xtmin, xtmax] [xsmin, xsmax] Soil γ (kN/m3) c' (kPa) ϕ' (o) 

Example 1 [0, 17.6]m [42, 60]m 1 18.83 28.75 20 

Example 2 [0, 5]m [15, 25]m 2 17.64 9.8 10 

Example 3 [0, 10]m [20, 30]m 

3.1 

3.2 

3.3 

3.4 

19 

19 

19 

19 

15 

17 

5 

35 

20 

21 

10 

28 

Example 4 [10, 25]m [48, 70]m 

4.1 

4.2 

4.3 

18.82 

18.82 

18.82 

29.4 

9.8 

294 

12 

5 

40 

Example 5 [30, 30]m [35, 130]m 

5.1 

5.2 

5.3 

18.63 

18.63 

18.63 

32.5 

29.4 

49 

17 

10 

27 

Example 6 [0, 15]m [22, 30]m 

6.1 

6.2 

6.3 

6.4 

18.63 

18.63 

18.63 

18.63 

14.7 

16.7 

4.9 

34.3 

20 

21 

10 

28 

Soil numbering is based on the figures. Unit weight of water, γw, is taken as 9.81 kN/m3 when 

necessary. 
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3.2.2. Parametric Sensitivity Analyses 

The main purpose of the parametric study presented in this section is to maximize the 

statistical performances of the surface generation methods. To develop a suitable 

methodology for each, a distinction is made between the methods that represent the 

slip surfaces using (i) slices and (ii) splines. The former group includes M1, M2, and 

M3, in which the only parameter is the number of slices. For the latter group, including 

M4, QS, and SQS, both numbers of splines and slices are expected to affect the results. 

Therefore, slightly different procedures are adopted to assess the performances of these 

groups of methods, in the following sub-sections. Throughout the analyses, GLE and 

DE are adopted with the parameter settings given in Table 3.2, and for each 

experiment, median FS obtained from 30 independent runs are used as the basis of 

comparison. 

3.2.2.1. Slice-Based Methods 

First, it should be mentioned that GLE formulation overestimates the FS, provided that 

the step size used in free-body discretization is not sufficiently small. Therefore, any 

analysis framework that incorporates GLE is inherently biased towards higher 

numbers of slices. However, when slice-based surface generation methods like M1, 

M2, and M3 are adopted, such an approach produces high-dimensional optimization 

problems, which are considerably more difficult to handle. Accordingly, it is necessary 

to compromise a certain degree of precision to better exploit the capability of these 

methods. Investigating this issue, the performances of M1, M2, and M3 are evaluated 

with variable number of slices, n.  

For n ∈ {10, 20,…, 100}, the performance of M1 is summarized in Table 3.4, in terms 

of median FS of 30 independent runs for all examples. In this table, bold notation 

denotes the best parameter configuration for each example, while the overall 

performances of the configurations are represented through the mean value of the 

relative error, εR, calculated using Eq. (3.14). As an example, the relative error of n=20 
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slice analysis for Example 1 is calculated as (1.9972-1.9942)/1.9942×100=0.15%. 

Average of the relative errors for all benchmark problems is 0.75%. 

( )
( )  

 
100

min

min

med,

med,med,


−
=

s

sns

nR

F

F

F
  (3.14) 

where (FS,med)n: median FS obtained for an example using n slices, and FS,med={( 

FS,med)10, (FS,med)20,…, (FS,med)100}. 

Based on the approach given above, M1 is most efficient with 40 slices, which 

produces the lowest mean εR at 0.27%. It is notable that the success rate of M1 

decreases with increasing number of slices. Using 60 slices, more than half the 

analyses did not converge to a feasible solution for Example 6 Cases (i) and (ii). Above 

60 slices, this issue is encountered in all experiments.  

Table 3.4: Sensitivity of M1 to the number of slices 

 n→ 10 20 30 40 50 60 70 80 90 100 

Example 1 1.9968 1.9972 1.9942 1.9961 1.9947 1.9944 NC NC NC NC 

Example 2 (i) 1.3342 1.3328 1.3331 1.3327 1.3331 1.3339 NC NC NC NC 

Example 2 (ii) 1.0068 1.0065 1.0063 1.0030 1.0054 1.0059 NC NC NC NC 

Example 3 1.0928 1.0939 1.0928 1.0935 1.0930 1.0957 NC NC NC NC 

Example 4 0.4173 0.4173 0.4170 0.4168 0.4171 0.4187 NC NC NC NC 

Example 5 (i) 1.0744 1.0845 1.0731 1.0639 1.0590 1.0827 NC NC NC NC 

Example 5 (ii) 0.8736 0.9127 0.9357 0.8802 0.9056 0.8968 NC NC NC NC 

Example 6 (i) 1.3392 1.3367 1.3367 1.3409 1.3386 1.3400 NC NC NC NC 

Example 6 (ii) 1.2122 1.2135 1.2104 1.2122 1.2204 NC NC NC NC NC 

Example 6 (iii) 1.0532 1.0513 1.0476 1.0476 1.0531 1.0502 NC NC NC NC 

Example 6 (iv) 0.9442 0.9422 0.9423 0.9531 0.9542 NC NC NC NC NC 

Mean εR (%) 0.30 0.75 0.81 0.27 0.62 NC NC NC NC NC 

The results are given in terms of median FS of 30 independent runs. 

Similarly, the outcomes of the sensitivity analysis of M2 are summarized in Table 3.5. 

In this case, the results are unanimously in favor of 20 slice configuration, which 

achieves the best statistical outcomes for the benchmark problems. It is worth 

mentioning that M2 does not suffer from divergence issues like M1. However, its 

performance is significantly sensitive to the number of slices. The mean difference 

between the median FS obtained with 20 slices and 30 slices exceed 10%, which is a 
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considerably high deviation for slope stability analysis. The differences significantly 

increase when higher values are adopted. 

Using M3, the results are similar to those obtained with M2 in the sense that the 

performance of the method is significantly influenced by the dimensionality of the 

problem. As illustrated in Table 3.6, M3 is most efficient with lower numbers of slices, 

10 being the best alternative considering the resulting mean εR value. Thereafter, the 

error increases monotonically. 

Table 3.5: Sensitivity of M2 to the number of slices 

 n→ 10 20 30 40 50 60 70 80 90 100 

Example 1 2.0072 1.9920 1.9998 2.0112 2.0318 2.0445 2.0474 2.0658 2.1049 2.1345 

Example 2 (i) 1.3319 1.3251 1.3276 1.3334 1.3382 1.3515 1.3649 1.3945 1.3796 1.4176 

Example 2 (ii) 1.0158 1.0083 1.0162 1.0294 1.0542 1.0793 1.0986 1.1190 1.1373 1.1414 

Example 3 2.1321 1.1886 1.8154 1.7212 1.7086 1.7586 1.7816 1.8794 1.8932 1.9918 

Example 4 0.4197 0.4177 0.5699 0.5557 0.5487 0.5453 0.5428 0.5418 0.5401 0.5397 

Example 5 (i) 1.3112 1.1978 1.3171 1.6368 2.0215 1.9007 1.8428 1.7946 1.7611 1.7545 

Example 5 (ii) 1.1252 1.0025 1.0837 1.3117 1.4124 1.3622 1.3394 1.3100 1.3141 1.3167 

Example 6 (i) 1.3984 1.3795 1.4443 1.7301 2.1934 2.1867 2.1996 2.2028 2.2231 2.2456 

Example 6 (ii) 1.2609 1.2561 1.2900 1.5003 2.1431 2.1527 2.1615 2.1492 2.1945 2.2200 

Example 6 (iii) 1.1040 1.0941 1.1387 1.3321 1.3515 1.3597 1.3942 1.4199 1.4473 1.5154 

Example 6 (iv) 0.9898 0.9784 1.0001 1.0719 1.1945 1.2700 1.3303 1.3683 1.4265 1.4965 

Mean εR (%) 9.76 0.00 11.12 20.47 33.41 33.52 34.27 35.33 36.65 39.36 

Table 3.6: Sensitivity of M3 to the number of slices 

 n→ 10 20 30 40 50 60 70 80 90 100 

Example 1 1.9911 1.9920 1.9998 2.0187 2.0323 2.0322 2.0588 2.0705 2.0969 2.1093 

Example 2 (i) 1.3301 1.3252 1.3292 1.3330 1.3390 1.3454 1.3720 1.3736 1.4034 1.4117 

Example 2 (ii) 1.0026 1.0010 1.0058 1.0411 1.0514 1.0971 1.1004 1.1256 1.1386 1.1395 

Example 3 1.1335 1.6450 1.6149 1.6108 1.6807 1.7218 1.7802 1.8546 1.8941 1.9473 

Example 4 0.4148 0.4161 0.5444 0.5396 0.5369 0.5354 0.5349 0.5347 0.5347 0.5346 

Example 5 (i) 1.1760 1.1413 1.2698 1.5927 1.7043 1.6685 1.6431 1.6285 1.6305 1.6237 

Example 5 (ii) 0.9804 0.9756 1.0027 1.2809 1.2508 1.2301 1.2377 1.2615 1.2777 1.2962 

Example 6 (i) 1.3656 1.3814 1.4211 2.0959 2.1243 2.1279 2.1449 2.1785 2.1900 2.2329 

Example 6 (ii) 1.2393 1.2461 1.2955 1.6539 2.0539 2.0906 2.1020 2.1178 2.1731 2.1660 

Example 6 (iii) 1.0784 1.0813 1.1184 1.3241 1.3335 1.3710 1.3893 1.4083 1.4702 1.5137 

Example 6 (iv) 0.9737 0.9710 0.9908 1.1964 1.2159 1.2688 1.2970 1.3557 1.4454 1.5277 

Mean εR (%) 0.39 4.31 9.39 25.63 30.32 31.70 32.98 35.02 37.79 39.83 
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3.2.2.2. Spline-Based Methods 

For the spline-based methods, M4, QS, and SQS, the parametric analyses are 

conducted in two stages. First, for each method, the number of slices, n, is kept 

constant at 40 and the benchmark problems are analyzed with numbers of splines, ns, 

ranging between 3 and 10 (i.e. ns ∈ {3, 4,…, 10}). Using the most efficient 

configuration from these analyses, the methods are further evaluated with n ∈ {10, 

20,…, 100}. Using spline-based methods, the complexity of the optimization problem 

is not directly influenced from the number of slices. Therefore, the outcomes are 

expected to be in favor of higher values. 

The results obtained with M4 for different ns values are given in Table 3.7. First, it is 

noticed that parameter selection is less influential on the performance of M4, compared 

to the previous methods. For all benchmark problems, except for Example 3 and 

Example 5 Case (ii), adoption of 4 to 10 splines can yield FS values in the same order 

of magnitude. Considering the mean εR values, M4 is most efficient with 6 splines. 

Table 3.7: Sensitivity of M4 to the number of splines 

n=40  ns → 3 4 5 6 7 8 9 10 

Example 1 1.9848 1.9796 1.9789 1.9790 1.9802 1.9838 1.9902 1.9905 

Example 2 (i) 1.3256 1.3238 1.3228 1.3227 1.3227 1.3228 1.3229 1.3229 

Example 2 (ii) 1.0461 1.0208 1.0159 1.0168 1.0162 1.0140 1.0190 1.0162 

Example 3 2.2963 1.1654 1.1481 1.1477 1.5167 1.5018 1.4783 1.4614 

Example 4 0.4183 0.4160 0.4158 0.4152 0.4140 0.4143 0.4132 0.4140 

Example 5 (i) 1.4603 1.2227 1.1639 1.1076 1.0775 1.0682 1.0708 1.0791 

Example 5 (ii) 1.2332 1.0350 0.9759 0.9265 0.8887 0.8832 0.9168 1.0929 

Example 6 (i) 1.3828 1.3680 1.3524 1.3527 1.3525 1.3528 1.3641 1.3641 

Example 6 (ii) 1.2652 1.2389 1.2254 1.2257 1.2130 1.2218 1.2228 1.2394 

Example 6 (iii) 1.0867 1.0688 1.0644 1.0614 1.0674 1.0611 1.0680 1.0739 

Example 6 (iv) 0.9875 0.9604 0.9513 0.9536 0.9521 0.9492 0.9508 0.9547 

Mean εR (%) 17.67 3.62 1.99 0.99 3.18 2.92 3.31 5.27 

Based on the outcomes given in Table 3.7, ns is kept constant at 6 and M4 is evaluated 

with n ranging between 10 and 100. The results given in Table 3.8, indicate that the 

method favors higher numbers of slices. Ideally, the mean εR would decrease 
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monotonically with increasing n, yet there are some deviations in the results which are 

most probably related to the stochastic nature of the implemented optimization 

algorithm, DE. Regardless, n is selected as 70 for M4, considering the improved results 

over other configurations. 

Table 3.8: Sensitivity of M4 to the number of slices 

ns=6  n → 10 20 30 40 50 60 70 80 90 100 

Example 1 1.9936 1.9841 1.9803 1.9790 1.9798 1.9785 1.9789 1.9785 1.9783 1.9787 

Example 2 (i) 1.3352 1.3254 1.3233 1.3227 1.3225 1.3223 1.3222 1.3222 1.3222 1.3221 

Example 2 (ii) 1.0169 1.0180 1.0173 1.0168 1.0165 1.0163 1.0162 1.0161 1.0160 1.0160 

Example 3 1.1587 1.1594 1.1388 1.1477 1.2034 1.1431 1.1365 1.1372 1.1357 1.1385 

Example 4 0.4171 0.4165 0.4156 0.4152 0.4159 0.4150 0.4152 0.4158 0.4151 0.4150 

Example 5 (i) 1.1135 1.1260 1.1080 1.1076 1.1561 1.1032 1.1041 1.1059 1.1021 1.1063 

Example 5 (ii) 0.9208 0.9987 0.9281 0.9265 0.9435 0.9283 0.9281 0.9261 0.9270 0.9270 

Example 6 (i) 1.3785 1.3661 1.3568 1.3527 1.3678 1.3499 1.3486 1.3516 1.3534 1.3496 

Example 6 (ii) 1.2511 1.2471 1.2315 1.2257 1.2381 1.2322 1.2218 1.2266 1.2243 1.2213 

Example 6 (iii) 1.0811 1.0904 1.0676 1.0614 1.0801 1.0691 1.0651 1.0593 1.0637 1.0653 

Example 6 (iv) 0.9804 0.9677 0.9515 0.9536 0.9693 0.9526 0.9510 0.9669 0.9530 0.9512 

Mean εR (%) 1.36 1.97 0.38 0.30 1.83 0.32 0.14 0.33 0.15 0.16 

Similarly, QS is evaluated with variable ns and the results are summarized in Table 

3.9. The results indicate that QS is less sensitive to the selection of ns, compared to 

M4. The mean εR value only deviates by 0.17% considering the range between 4 and 

7 splines. Among those, the best results are obtained with 6 splines, which is exactly 

the same as M4. This may indicate that quadratic order functions are sufficiently 

flexible to represent the critical slip surfaces. 

Table 3.9: Sensitivity of QS to the number of splines 

n=40  ns → 3 4 5 6 7 8 9 10 

Example 1 1.9800 1.9786 1.9785 1.9785 1.9786 1.9785 1.9789 1.9796 

Example 2 (i) 1.3231 1.3231 1.3230 1.3230 1.3230 1.3230 1.3233 1.3237 

Example 2 (ii) 1.0145 1.0127 1.0041 1.0015 1.0026 1.0053 1.0059 1.0096 

Example 3 1.1023 1.1003 1.1002 1.1056 1.1008 1.1245 1.1115 1.1449 

Example 4 0.4130 0.4122 0.4118 0.4118 0.4118 0.4118 0.4122 0.4124 

Example 5 (i) 1.0345 1.0189 1.0274 1.0245 1.0276 1.0395 1.0516 1.0447 

Example 5 (ii) 0.8760 0.8544 0.8571 0.8556 0.8621 0.8542 0.8835 0.8970 

Example 6 (i) 1.3495 1.3439 1.3439 1.3395 1.3381 1.3423 1.3473 1.3487 

Example 6 (ii) 1.2100 1.2095 1.2062 1.2047 1.2066 1.2091 1.2072 1.2130 

Example 6 (iii) 1.0610 1.0587 1.0541 1.0527 1.0537 1.0537 1.0589 1.0626 

Example 6 (iv) 0.9484 0.9447 0.9453 0.9396 0.9433 0.9460 0.9467 0.9525 

Mean εR (%) 0.82 0.29 0.25 0.12 0.24 0.55 0.95 1.50 
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Regarding the sensitivity of QS to n value, the results are reasonably close to the 

expectations. Given in Table 3.10, the median FS values obtained with QS tend to 

decrease with increasing number of slices, and the maximum among the adopted 

values, 100 slices, yields the best results. 

Table 3.10: Sensitivity of QS to the number of slices 

ns=6  n → 10 20 30 40 50 60 70 80 90 100 

Example 1 1.9960 1.9824 1.9793 1.9785 1.9779 1.9778 1.9780 1.9779 1.9779 1.9775 

Example 2 (i) 1.3353 1.3257 1.3239 1.3230 1.3226 1.3226 1.3223 1.3225 1.3222 1.3229 

Example 2 (ii) 1.0088 1.0058 1.0020 1.0015 1.0013 1.0015 1.0020 1.0017 1.0017 1.0009 

Example 3 1.1012 1.1001 1.0987 1.1056 1.0989 1.1009 1.0997 1.1022 1.1036 1.0980 

Example 4 0.4145 0.4124 0.4119 0.4118 0.4119 0.4119 0.4117 0.4118 0.4118 0.4118 

Example 5 (i) 1.0294 1.0265 1.0306 1.0245 1.0237 1.0336 1.0194 1.0230 1.0238 1.0235 

Example 5 (ii) 0.8575 0.8634 0.8503 0.8556 0.8556 0.8534 0.8652 0.8514 0.8526 0.8519 

Example 6 (i) 1.3452 1.3448 1.3421 1.3395 1.3404 1.3401 1.3404 1.3380 1.3389 1.3373 

Example 6 (ii) 1.2099 1.2106 1.2074 1.2047 1.2089 1.2067 1.2045 1.2074 1.2077 1.2056 

Example 6 (iii) 1.0529 1.0540 1.0494 1.0527 1.0542 1.0497 1.0515 1.0527 1.0507 1.0547 

Example 6 (iv) 0.9438 0.9440 0.9444 0.9396 0.9433 0.9392 0.9394 0.9423 0.9394 0.9426 

Mean εR (%) 0.67 0.51 0.24 0.23 0.25 0.23 0.23 0.18 0.17 0.15 

Lastly, the proposed surface generation method, SQS, is evaluated with the same 

procedure as M4 and QS. Presented in Table 3.11, the outcomes of the analysis with 

variable numbers of splines highlight the statistical soundness of the method. 

Compared to the M4 and QS, SQS is significantly less sensitive to this parameter. The 

minimum εR values are obtained with 6 and 7 splines, and the mean εR deviates at most 

by 0.02% within the range between 6 and 9 splines. The number of splines in SQS is 

fixed to 6 for the following analyses. 

The outcomes of SQS obtained with varying number of slices, given in Table 3.12, are 

somewhat similar to those of M4. Although the results are in favor of higher values, 

there are some deviations, possibly resulting from the stochastic nature of DE 

algorithm. Within the considered range, 70 slice configuration is statistically the best 

alternative with a mean εR value of 0.05%. 
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Table 3.11: Sensitivity of SQS to the number of splines 

n=40  ns → 3 4 5 6 7 8 9 10 

Example 1 1.9792 1.9785 1.9788 1.9785 1.9786 1.9785 1.9787 1.9789 

Example 2 (i) 1.3230 1.3230 1.3234 1.3230 1.3230 1.3231 1.3227 1.3229 

Example 2 (ii) 1.0012 0.9988 0.9990 0.9991 0.9993 0.9991 0.9990 0.9990 

Example 3 1.1022 1.0995 1.0911 1.0898 1.0902 1.0907 1.0901 1.0898 

Example 4 0.4129 0.4116 0.4114 0.4114 0.4114 0.4114 0.4115 0.4114 

Example 5 (i) 1.0231 1.0145 1.0143 1.0158 1.0127 1.0144 1.0149 1.0157 

Example 5 (ii) 0.8513 0.8474 0.8457 0.8457 0.8447 0.8448 0.8461 0.8458 

Example 6 (i) 1.3458 1.3401 1.3349 1.3342 1.3372 1.3382 1.3356 1.3365 

Example 6 (ii) 1.2119 1.2062 1.2043 1.2012 1.2022 1.2019 1.2019 1.2019 

Example 6 (iii) 1.0611 1.0523 1.0526 1.0500 1.0475 1.0456 1.0489 1.0499 

Example 6 (iv) 0.9466 0.9437 0.9391 0.9344 0.9368 0.9384 0.9356 0.9371 

Mean εR (%) 0.74 0.36 0.18 0.08 0.08 0.10 0.10 0.13 

Table 3.12: Sensitivity of SQS to the number of slices 

ns=6  n → 10 20 30 40 50 60 70 80 90 100 

Example 1 1.9954 1.9823 1.9795 1.9785 1.9782 1.9780 1.9782 1.9778 1.9779 1.9777 

Example 2 (i) 1.3343 1.3259 1.3240 1.3230 1.3228 1.3223 1.3223 1.3223 1.3225 1.3224 

Example 2 (ii) 1.0062 1.0000 0.9994 0.9991 0.9990 0.9991 0.9988 0.9988 0.9997 0.9991 

Example 3 1.0928 1.0917 1.0910 1.0898 1.0938 1.0917 1.0902 1.0936 1.0898 1.0905 

Example 4 0.4140 0.4123 0.4116 0.4114 0.4113 0.4112 0.4112 0.4113 0.4114 0.4112 

Example 5 (i) 1.0164 1.0139 1.0146 1.0158 1.0121 1.0145 1.0149 1.0133 1.0135 1.0165 

Example 5 (ii) 0.8453 0.8451 0.8461 0.8457 0.8452 0.8443 0.8443 0.8459 0.8448 0.8448 

Example 6 (i) 1.3403 1.3381 1.3360 1.3342 1.3353 1.3356 1.3345 1.3351 1.3340 1.3376 

Example 6 (ii) 1.2060 1.2062 1.2056 1.2012 1.2037 1.2031 1.2002 1.2028 1.2045 1.2033 

Example 6 (iii) 1.0512 1.0503 1.0502 1.0500 1.0475 1.0505 1.0466 1.0488 1.0461 1.0464 

Example 6 (iv) 0.9401 0.9422 0.9416 0.9344 0.9377 0.9363 0.9353 0.9376 0.9392 0.9393 

Mean εR (%) 0.56 0.31 0.25 0.11 0.13 0.13 0.05 0.15 0.11 0.15 

In light of the sensitivity analyses given in this section, the most efficient parameter 

configurations for the surface generation methods are assessed and summarized in 

Table 3.13. 

Table 3.13: Parameter settings of surface generation methods 

 M1 M2 M3 M4 QS SQS 

Number of splines, ns - - - 6 6 6 

Number of slices, n 40 20 10 70 100 70 
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3.2.3. Comparison of Surface Generation Methods 

In this section, the outcomes of the benchmark analyses are evaluated in further detail 

to gain insight about the capability, computational efficiency and statistical reliability 

of each surface generation method. Accordingly, a comparative study is performed 

based on the results obtained with the parameter settings given in Table 3.13. In the 

following sub-sections, each benchmark problem is investigated separately, and then 

the results are utilized in statistical significance tests to assess the most reliable surface 

generation method. 

3.2.3.1. Example 1 

The outcomes for Example 1 are given in Table 3.14, summarizing the statistical 

performances of the surface generation methods. The results are reported in terms of 

statistical parameters like minimum, median, maximum, mean and standard deviation 

values, which are calculated based on the FS values obtained from 30 independent 

analyses. The outcomes indicate that spline-based methods (i.e. M4, QS, and SQS) are 

effective to deal with Example 1. Among those, QS performs slightly better than M4 

and SQS, finding the minimum FS as 1.9771. The statistical parameters also highlight 

QS as the best alternative, however, the differences compared to M4 and SQS are 

arguably small. On the other hand, M1, M2, and M3 are not as competitive, despite 

achieving practically similar results. 

Table 3.14: Example 1 – statistical comparison of surface generation methods 

 M1 M2 M3 M4 QS SQS 

FS,min 1.9878 1.9833 1.9898 1.9777 1.9771 1.9773 

FS,med 1.9961 1.9920 1.9911 1.9789 1.9775 1.9782 

FS,max 2.0195 2.0202 2.0007 2.0022 1.9789 1.9799 

FS,mean 1.9976 1.9954 1.9923 1.9808 1.9778 1.9784 

St. Dev. 7.E-03 1.E-02 3.E-03 5.E-03 6.E-04 1.E-03 

The critical slip surface located by each method is illustrated in Figure 3.10. Similar 

to the previous findings, M4, QS, and SQS are in strong agreement such that the critical 
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surfaces located by these methods are almost identical. On the other hand, M1, M2, 

and M3 slightly deviate from these results, estimating relatively deeper critical paths. 

 

Figure 3.10: Example 1 – comparison of critical slip surfaces 

The last evaluation for Example 1 regards the computational efficiency of the methods. 

Accordingly, for each method, the analysis progress is illustrated in the convergence 

graph given in Figure 3.11, where the x and y-axes represent the number of iterations 

and median FS of 30 independent runs, respectively. First, it is noticeable that the initial 

populations generated by M3 are significantly better than those of other methods. 

However, M3 achieves limited improvement and fails to produce results that are 

comparable to those of M4, QS, and SQS. An important finding is that the convergence 

of QS, which is statistically the best method for Example 1, requires over twice the 

iterations required with other methods. On the other hand, the analyses with M4 and 

SQS mature in less than 100 iterations, which is relatively low. As a result, M4 and 

SQS may be preferred over QS in order to achieve computationally efficient solutions.  
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Figure 3.11: Example 1 – the convergence of surface generation methods 

3.2.3.2. Example 2 

The statistical results of Example 2 are given in Table 3.15 for both cases of the 

benchmark problem. For Case (i), which incorporates a homogeneous soil profile 

under no external loading, the outcomes further validate the efficiency of spline-based 

methods to deal with simple problems. Similar to Example 1, M4, QS, and SQS exhibit 

competitive statistical performances, improving the results of M1, M2 and M3. The 

minimum FS is reported as 1.3219 based on the analyses with QS. However, M4 and 

SQS are able to find similar results. For Case (ii), which additionally considers 

surcharge loading, the outcomes are strictly in favor of SQS considering all statistical 

measures, as well as minimum FS reported as 0.9976. Although QS can find similar 

results in some occurrences, it is statistically inferior compared to SQS, while M4 fails 

to produce competitive results. It is also noteworthy to mention that M1, M2, and M3 

perform fairly better than M4 for this problem. 
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Table 3.15: Example 2 – statistical comparison of surface generation methods 

  M1 M2 M3 M4 QS SQS 

 FS,min 1.3280 1.3240 1.3298 1.3222 1.3219 1.3220 

 FS,med 1.3327 1.3251 1.3301 1.3222 1.3229 1.3223 

Case (i) FS,max 1.3419 1.3295 1.3332 1.3273 1.3240 1.3240 

 FS,mean 1.3334 1.3257 1.3303 1.3226 1.3230 1.3226 

 St. Dev. 3.E-03 2.E-03 7.E-04 1.E-03 9.E-04 7.E-04 

 FS,min 1.0012 1.0058 1.0013 1.0160 0.9978 0.9976 

 FS,med 1.0030 1.0083 1.0026 1.0162 1.0009 0.9988 

Case (ii) FS,max 1.0108 1.0226 1.0074 1.0340 1.0281 1.0051 

 FS,mean 1.0046 1.0097 1.0031 1.0175 1.0020 0.9995 

 St. Dev. 3.E-03 4.E-03 2.E-03 4.E-03 6.E-03 2.E-03 

The critical slip surfaces for Cases (i) and (ii) are demonstrated in Figures 3.12 and 

3.13, respectively. For Case (i), the resulting surfaces are in good agreement and the 

main difference is the smoothness obtained with the spline-based methods. On the 

other hand, there are visible deviations between the estimations obtained for Case (ii). 

Regardless, all methods except for M4 estimate a curvilinear critical path with a 

triangular wedge below the surcharge area, as illustrated in Figure 3.13. The 

underlying reason behind the failure of M4 may be attributed to the simplifying 

assumptions within the formulation of the method. M4 keeps the spline widths 

constant and uses continuous interpolation. As a result, the surfaces lack the flexibility 

to represent the sudden transition observed in Case (ii). QS overcomes this issue by 

allowing variable spline widths, in that a spline in QS can assume infinitesimal width 

and high curvature to allow an abrupt transition. On the other hand, SQS basically 

encourages such surfaces through the scaling operation. 

The convergence graphs of Example 2, given in Figures 3.14 and 3.15, further illustrate 

the efficiency of SQS. Although M4 converges slightly faster than SQS in Case (i), 

the method significantly deviates from the optimum solution in Case (ii). On the other 

hand, QS is computationally the most inefficient alternative among the spline-based 

methods, while M1, M2, and M3 are reasonably cost-effective despite their limitations. 
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Figure 3.12: Example 2 Case (i) – comparison of critical slip surfaces 

 

Figure 3.13: Example 2 Case (ii) – comparison of critical slip surfaces 
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Figure 3.14: Example 2 Case (i) – the convergence of surface generation methods 

 

Figure 3.15: Example 2 Case (ii) – the convergence of surface generation methods 
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3.2.3.3. Example 3 

Based on the results given in Table 3.16, Example 3 has proven to be a challenging 

problem for the surface generation methods. Among those, M2, M3, and QS have 

shown severe deviations as indicated by the reported mean and maximum FS values. 

Although M1 is more competent than these methods, SQS is the best alternative 

considering all performance measure. It is notable to mention that the median FS of 

SQS is better than the minimum of all methods, except for QS. The most critical slip 

surface is also obtained with SQS, with a corresponding FS value of 1.0878. 

Table 3.16: Example 3 – statistical comparison of surface generation methods 

 M1 M2 M3 M4 QS SQS 

FS,min 1.0904 1.1152 1.1157 1.1175 1.0893 1.0878 

FS,med 1.0935 1.1886 1.1335 1.1365 1.0980 1.0902 

FS,max 1.1203 1.5419 1.2325 1.7087 1.4351 1.1049 

FS,mean 1.0954 1.2394 1.1406 1.1804 1.1408 1.0933 

St. Dev. 7.E-03 1.E-01 3.E-02 1.E-01 1.E-01 6.E-03 

 

The critical slip surfaces, given in Figure 3.16, illustrate that all methods indicate a 

deep translational failure within the soft soil interlayer. The surfaces produced by QS 

and SQS are in strong correlation. M1 slightly deviates from these methods, while M2, 

M3 and M4 estimate the position of the slip toe about 1 to 1.5 m away from the most 

critical surface. 

The convergence graphs, given in Figure 3.17, highlight M1 and SQS as the best 

alternatives for Example 3. The analyses with M2, M3, and QS require significantly 

higher computational cost – about twice the iterations required with M1 and SQS. 

Lastly, the analyses with M2 fail to mature within 1000 iterations. 
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Figure 3.16: Example 3 – comparison of critical slip surfaces 

 

Figure 3.17: Example 3 – the convergence of surface generation methods 
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3.2.3.4. Example 4 

Dealing with Example 4, both QS and SQS are effective to produce improved results 

over the other methods. Among those, SQS performs slightly better than QS based on 

the statistical parameters given in Table 3.17, while both methods report the minimum 

FS as 0.4110. M3 and M4 exhibit consistent performances, however, their accuracy is 

limited. 

Table 3.17: Example 4 – statistical comparison of surface generation methods 

 M1 M2 M3 M4 QS SQS 

FS,min 0.4157 0.4121 0.4136 0.4149 0.4110 0.4110 

FS,med 0.4168 0.4177 0.4148 0.4152 0.4118 0.4112 

FS,max 0.4225 0.4215 0.4169 0.4160 0.4124 0.4122 

FS,mean 0.4175 0.4172 0.4148 0.4152 0.4118 0.4113 

St. Dev. 2.E-03 2.E-03 7.E-04 3.E-04 3.E-04 3.E-04 

The critical slip surfaces illustrated in Figure 3.18, indicate a somewhat rotational 

failure mechanism. All methods estimate that the slip and slope toes coincide. 

However, the scarp locations can vary as much as 1.5 m. It is also noticeable that the 

critical slip surfaces produced by all methods, except for M4, include a discontinuity 

at the interface between the uppermost and middle soil layers, which illustrates the 

limitations imposed in the formulation of M4. 

The convergence graphs, given in Figure 3.19, indicate that the computational effort 

required to analyze Example 4 is more or less similar for all surface generation 

methods. Furthermore, most methods produce near-optimum solutions with their 

initial populations, indicating that the geometric and soil properties of this example 

produce a relatively easier optimization problem compared to the previous ones. 
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Figure 3.18: Example 4 – comparison of critical slip surfaces 

 

Figure 3.19: Example 4 – the convergence of surface generation methods 
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3.2.3.5. Example 5 

In Example 5, the slope is analyzed under static loads in Case (i) and further evaluated 

considering pseudo-static earthquake loading in Case (ii). The results of the analyses, 

presented in Table 3.18, indicate that M2, M3, and M4 fail to locate the critical surface 

for both cases. M1 is capable to find near-optimum solutions, however, cannot 

improve the results of QS and SQS, which produce the most critical slip surfaces. For 

Case (i), the minimum FS is reported with QS as 1.0096, while SQS yields the 

minimum value for Case (ii) as 0.8400. In either case, the minimum FS values of these 

two methods differ only slightly. However, it should be noted that SQS is statistically 

the better alternative.  

Example 5 is presumably the most awkward of all the benchmark problems presented 

in this manuscript. As illustrated in Figures 3.20 and 3.21, the failure is translational. 

Furthermore, the search space of the problem does not contain any strong local minima 

considering the distinct soft soil band. However, the critical slip surface is extremely 

flat with a wide linear segment in the middle. Therefore, the problem mostly tests the 

capabilities of the surface generation methods. In this sense, M2, M3, and M4 fail in 

both cases of the problem. On the other hand, M1, QS, and SQS are observed to be 

flexible enough to represent the critical surfaces.  

Table 3.18: Example 5 – statistical comparison of surface generation methods 

  M1 M2 M3 M4 QS SQS 

 FS,min 1.0187 1.1319 1.1080 1.0975 1.0096 1.0101 

 FS,med 1.0639 1.1978 1.1760 1.1041 1.0235 1.0149 

Case (i) FS,max 1.1813 1.5908 1.2785 1.1371 1.1305 1.0779 

 FS,mean 1.0730 1.2370 1.1805 1.1079 1.0398 1.0199 

 St. Dev. 4.E-02 1.E-01 4.E-02 1.E-02 4.E-02 1.E-02 

 FS,min 0.8461 0.9647 0.9542 0.9251 0.8408 0.8400 

 FS,med 0.8802 1.0025 0.9804 0.9281 0.8519 0.8443 

Case (ii) FS,max 0.9745 1.1541 1.0308 0.9514 0.9461 0.8791 

 FS,mean 0.8954 1.0087 0.9851 0.9313 0.8628 0.8469 

 St. Dev. 5.E-02 4.E-02 2.E-02 8.E-03 3.E-02 8.E-03 
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Figure 3.20: Example 5 Case (i) – comparison of critical slip surfaces 

 

Figure 3.21: Example 5 Case (ii) – comparison of critical slip surfaces 
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Convergence graphs for Cases (i) and (ii) are given in Figures 3.22 and 3.23, 

respectively. Considering both examples, the computational cost of SQS is relatively 

higher compared to the previous experiments. However, the analyses fully converge 

in about 200 to 300 iterations, which is either similar to or better than the other 

methods. 

 

Figure 3.22: Example 5 Case (i) – the convergence of surface generation methods 

 

Figure 3.23: Example 5 Case (ii) – the convergence of surface generation methods 
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3.2.3.6. Example 6 

The last example considers four configurations with different loading and groundwater 

conditions as summarized in Figure 3.9. The results of the experiments, given in Table 

3.19, further emphasize the capability of SQS, which yields the best statistical 

outcomes as well as the minimum FS values for all cases. Using SQS, the minimum FS 

values for Cases (i) through (iv) are obtained as 1.3303, 1.1971, 1.0419 and 0.9317, 

respectively. QS often finds similar results but deviates more than SQS, especially in 

the cases with seismic loading (i.e. Cases (iii) and (iv)). Considering the other methods, 

M1 is the most competitive alternative, while M2, M3, and M4 often produce inferior 

solutions. 

Table 3.19: Example 6 – statistical comparison of surface generation methods 

  M1 M2 M3 M4 QS SQS 

 FS,min 1.3312 1.3514 1.3490 1.3392 1.3304 1.3303 

 FS,med 1.3409 1.3795 1.3656 1.3486 1.3373 1.3345 

Case (i) FS,max 1.3710 1.4166 1.3892 1.3829 1.3599 1.3467 

 FS,mean 1.3429 1.3832 1.3677 1.3522 1.3382 1.3371 

 St. Dev. 9.E-03 2.E-02 9.E-03 1.E-02 6.E-03 6.E-03 

 FS,min 1.2022 1.2120 1.2197 1.2045 1.1985 1.1971 

 FS,med 1.2122 1.2561 1.2393 1.2218 1.2056 1.2002 

Case (ii) FS,max 1.2285 1.3700 1.2687 1.3282 1.2119 1.2091 

 FS,mean 1.2162 1.2636 1.2429 1.2477 1.2064 1.2016 

 St. Dev. 1.E-02 4.E-02 2.E-02 5.E-02 5.E-03 4.E-03 

 FS,min 1.0424 1.0703 1.0643 1.0559 1.0422 1.0419 

 FS,med 1.0476 1.0941 1.0784 1.0651 1.0547 1.0466 

Case (iii) FS,max 1.0776 1.1766 1.0987 1.3269 1.0639 1.0596 

 FS,mean 1.0514 1.0949 1.0775 1.0928 1.0538 1.0471 

 St. Dev. 1.E-02 2.E-02 9.E-03 8.E-02 7.E-03 4.E-03 

 FS,min 0.9335 0.9595 0.9472 0.9430 0.9320 0.9317 

 FS,med 0.9531 0.9784 0.9737 0.9510 0.9426 0.9353 

Case (iv) FS,max 0.9662 1.1029 0.9983 0.9770 0.9688 0.9432 

 FS,mean 0.9516 0.9908 0.9746 0.9526 0.9456 0.9367 

 St. Dev. 1.E-02 4.E-02 2.E-02 8.E-03 1.E-02 4.E-03 
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The critical slip surfaces obtained with each method are illustrated in Figures 3.24–

3.27 for Cases (i) through (iv), respectively. Considering Case (i), a partially 

translational failure mechanism is observed above the relatively stiff base soil layer. 

The most visible differences are observed for M2 and M3, which locate the slip toe 

about 1 m away from the other methods. Furthermore, the approximation of M4 is 

slightly different than M1, QS, and SQS, considering the deviations around the 

interface between the soft soil band and the upper layer. Similar observations are made 

for the other cases illustrated in Figures 3.25–3.27. 

The convergence graphs, given in Figures 3.28–3.31, support the findings of the 

previous experiments. For each case, the convergence rate of SQS is significantly 

better than the other methods, which promotes SQS as a computationally efficient 

surface generation method. Although QS can find comparable terminal values, the 

scaling operation in SQS facilitates the optimization process significantly.  

 

Figure 3.24: Example 6 Case (i) – comparison of critical slip surfaces 
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Figure 3.25: Example 6 Case (ii) – comparison of critical slip surfaces 

 

Figure 3.26: Example 6 Case (iii) – comparison of critical slip surfaces 
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Figure 3.27: Example 6 Case (iv) – comparison of critical slip surfaces 

 

Figure 3.28: Example 6 Case (i) – the convergence of surface generation methods 
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Figure 3.29: Example 6 Case (ii) – the convergence of surface generation methods 

 

Figure 3.30: Example 6 Case (iii) – the convergence of surface generation methods 
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Figure 3.31: Example 6 Case (iv) – the convergence of surface generation methods 

3.2.3.7. Statistical Significance Tests 

The experiments presented so far propound SQS as a proficient and statistically 

reliable alternative to the existing surface generation methods. To validate this claim 

and encapsulate the findings of the experiments, a comparative analysis is performed 

to assess the statistical significance of the improvements achieved with SQS. 

Accordingly, SQS is paired with each surface generation method separately and 

evaluated using Wilcoxon signed-rank comparison [68] to test the hypothesis that “the 

pairwise difference between the results of SQS and the opposing method has a median 

FS value equal to zero”. The confidence interval is kept at 95% (i.e. α=0.05) and it is 

reasoned that the method with lower median FS performs significantly better than the 

other if the hypothesis is rejected. The tests are performed based on the results of 30 

independent analyses of each benchmark problem, resulting in a total of 11 cases. 

The outcomes of the significance tests are summarized in Table 3.20, in terms of p-

values and indications to denote the favorable method for each example. The notation 

is explained as follows; (i) the examples where SQS significantly improves the 
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opposing method are denoted with “⊕”, (ii) the examples where the opposing method 

significantly improves SQS are denoted with “⊝”, and (iii) the examples where the 

differences between the results are not significant are denoted with “⊙”. Compared to 

M1 and M4, SQS exhibits significant improvement in 10 of the 11 instances, and the 

differences are observed to be insignificant in one case for each method. The 

improvement rate of SQS over M2 and M3 is 100%. The only method that exhibits 

improvement over SQS is QS, which is only observed for Example 1. Furthermore, it 

is noteworthy to mention that the results of these two methods are similar in Example 

2 Case (i). Both of these examples consider the analysis of simple slope geometries 

with homogeneous soil profiles under gravitational loads only. For such simple cases, 

QS may be preferred over SQS. On the other hand, SQS is more effective for complex 

problems as it produces significant improvement in 8 out of the 9 cases that either 

incorporate stratified soil profiles or consider external loading. 

Table 3.20: Summary of signed-rank tests 

SQS vs. → M1 M2 M3 M4 QS 
Example 1 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 4.72E-02 ⊕ 2.30E-02 ⊝ 

Example 2 (i) 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 6.73E-01 ⊙ 6.56E-02 ⊙ 

Example 2 (ii) 4.07E-05 ⊕ 1.73E-06 ⊕ 7.69E-06 ⊕ 1.73E-06 ⊕ 3.38E-03 ⊕ 

Example 3 2.62E-01 ⊙ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.25E-04 ⊕ 

Example 4 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 3.72E-05 ⊕ 

Example 5 (i) 3.52E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.17E-02 ⊕ 

Example 5 (ii) 5.22E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.83E-03 ⊕ 

Example 6 (i) 9.84E-03 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 2.88E-06 ⊕ 6.29E-01 ⊙ 

Example 6 (ii) 3.18E-06 ⊕ 1.73E-06 ⊕ 1.72E-06 ⊕ 3.88E-06 ⊕ 1.71E-03 ⊕ 

Example 6 (iii) 4.07E-02 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 4.53E-04 ⊕ 

Example 6 (iv) 6.98E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 1.73E-06 ⊕ 2.41E-04 ⊕ 

Summary: 10⊕;0⊝;1⊙ 11⊕;0⊝;0⊙ 11⊕;0⊝;0⊙ 10⊕;0⊝;1⊙ 8⊕;1⊝;2⊙ 
The results are in terms of p-values. ⊕: SQS shows significant improvement, ⊝: opposing method shows significant 

improvement, ⊙: the difference is not significant in 95% confidence interval. 

3.2.4. Comparison of SQS with Commercial Analysis Software 

In this section, the reliability of the analysis framework is verified and the efficiency 

of SQS is further investigated through a comparison with the renowned slope stability 

analysis software, Slide v7 [34]. First, the program is calibrated into the analysis 

settings used for SQS. Analysis option is selected as “GLE/Morgenstern-Price”, 
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interslice force function is specified as “Constant”, groundwater option is selected as 

“Water Surfaces” and the error tolerance for FS is set to 10-5. Using this configuration, 

the critical slip surfaces produced with SQS are analyzed for result verification. The 

outcomes, given in Appendix A, indicate that the results reported in the previous 

sections are in perfect agreement with the software. The agreement of the results 

allows a comparative performance evaluation between the proposed framework and 

Slide analysis software. Accordingly, the benchmark problems are analyzed using the 

software with the following settings: surface type is selected as “non-circular”, search 

method is specified as “Cuckoo Search”, the number of slices for FS evaluation is set 

to 100 (i.e. convergence of Slide v7 is not sensitive to the number of slices) and the 

surface optimization settings are kept at the default configurations. The software does 

not report statistical results, hence a comparison is only possible in terms of minimum 

FS and the λ values. Given in Table 3.21, the results further emphasize the capability 

of SQS, which yields a slightly improved FS value for each experiment.  

Table 3.21: Comparison of SQS and Slide v7 

 SQS Slide v7 
 FS,min λ FS,min λ 

Example 1 1.9773 0.3026 1.9920 0.3031 

Example 2 (i) 1.3220 0.2497 1.3252 0.2499 

Example 2 (ii) 0.9976 0.2874 1.0018 0.2918 

Example 3 1.0878 0.0719 1.0904 0.7010 

Example 4 0.4110 0.2430 0.4140 0.2332 

Example 5 (i) 1.0101 0.4531 1.0207 0.4431 

Example 5 (ii) 0.8400 0.5680 0.8457 0.5674 

Example 6 (i) 1.3303 0.1384 1.3321 0.1385 

Example 6 (ii) 1.1971 0.0703 1.1980 0.0706 

Example 6 (iii) 1.0419 0.4141 1.0436 0.4136 

Example 6 (iv) 0.9317 0.3323 0.9329 0.3397 

The critical slip surfaces located with SQS and Slide v7 are illustrated in Figure 3.32. 

For the experiments except for Example 2 Case (ii) and Example 4, the critical paths 

are exact matches. The main difference in all cases is the smoothness of the surfaces 

generated with SQS. 
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Figure 3.32: Comparison of SQS and Slide v7 – critical slip surfaces 

(a) Example 1 (b) Example 2 (i) (c) Example 2 (ii)  

(d) Example 3 (e) Example 4 (f) Example 5 (i)  

(a)               (b) 
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Figure 3.32 (cont’d): Comparison of SQS and Slide v7 – critical slip surfaces 

(g) Example 5 (ii) (h) Example 6 (i) (i) Example 6 (ii)  

(j) Example 6 (iii) (k) Example 6 (iv) 

(g)               (h) 
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3.3. Discussion of Results 

The experiments in this chapter provide an elaborate assessment of the available 

surface generation procedures and the alternative methods developed in scope of the 

present study. First, a parametric study is conducted to better understand and exploit 

the capabilities of these methods, which are broadly classified into two groups as slice 

and spline-based methods. Slice-based methods like the ones proposed by Malkawi 

(i.e. M1) and Cheng (i.e. M2 and M3) utilize discrete lines to represent the slip 

surfaces. Therefore, they require a great number of segments, and consequently 

geometric parameters for accurate surface representation. Consequently, the 

convergence rates of these methods are greatly influenced by the resulting 

dimensionality. On the other hand, spline-based approaches, Sun’s method (i.e. M4) 

and the ones developed in this study (i.e. QS and SQS), seem to overcome this issue. 

Using any of these methods, a few spline functions are sufficient for accurate surface 

representation. Accordingly, the resulting surface optimization problems include 

marginally low numbers of decision variables.  

In light of these internal observations, the methods are comparatively evaluated based 

on result accuracy, statistical soundness, and computational efficiency. For simple 

slopes with homogeneous soil profiles, all spline approaches are favorable over slice-

based methods. However, the capability of Sun’s cubic spline method is comparably 

limited for complex cases with stratified soil profiles or external loading. For such 

problems, slice-based methods like M1 can be more reliable. Regardless, quadratic 

spline approaches, QS and SQS, are proficient based on result accuracy and statistical 

reliability. Furthermore, it is notable that the critical slip surfaces are always reported 

with either of these methods. The difference between QS and SQS is still significant. 

The scaling operation proposed in SQS seems to improve the capability of the 

quadratic spline approach in all aspects, especially in terms of convergence efficiency. 

SQS usually requires less than half the iterations required with QS, in addition to 

finding better approximations for the location of the critical slip surfaces. However, it 
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should be noted that QS is slightly better than SQS for simple problems, despite its 

questionable convergence rates. Regardless, the statistical assessments of the results 

emphasize the enhanced performance of SQS over QS, as well as the other methods. 

Lastly, a verification study is performed with the commercial slope stability analysis 

software, Slide. The outcomes confirm the computational implementations and give 

further insight into the potential of the proposed method. Even when applied with a 

conventional optimization algorithm (i.e. Differential Evolution) without problem 

specific modifications, SQS is able to improve the widely used software, Slide. 

Considering the collective of these findings, the surface generation module of 

Integrated Limit Equilibrium Method, SQS, is proposed as a reliable surface 

generation method that can individually be regarded as an enhancement over available 

procedures. 
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CHAPTER 4 

 

INTEGRATED LIMIT EQUILIBRIUM METHOD - PART II: STABILITY 

ANALYSIS 

 

In this chapter, the stability analysis module of Integrated Limit Equilibrium Method, 

ILEM, is introduced and proposed as a refined alternative to the existing limit 

equilibrium formulations. In Section 4.1, the analysis problem and the governing 

equations are derived using quadratic order relations and solution strategies are 

proposed based on analytical and numerical evaluation methods. Then, the resulting 

ILEM variants are verified in terms of computational efficiency and result precision in 

Section 4.2, including a comparison with the renowned GLE formulation. Then, the 

findings are summarized and discussed in Section 4.3. 

4.1. Integrated Limit Equilibrium Method 

To elucidate the objective of developing ILEM analysis procedure, it is necessary to 

refer to Chapter 2 where the limit equilibrium methods were broadly classified into 

two categories as single free-body procedures and procedures of slices. Among those, 

procedures of slices are often preferred over the others, owing to their wider ranges of 

applications and ability to accommodate general slip surfaces. The downside of using 

procedures of slices is that achieving a satisfactory level of precision requires a 

considerable computational cost on the account of extensive operations to discretize 

and evaluate the soil body. 

Addressing this issue, a different solution approach is suggested in ILEM as an 

extension of the proposed surface generation method, SQS. Accordingly, equilibrium 

conditions are formulated based on quadratic order surface representation. Then, the 

resulting equations are derived into definite integrals that can either be integrated 

analytically to find closed-form solutions or accurately approximated with high-order 
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numerical integration methods, both of which eliminate free-body discretization. The 

underlying assumptions and the range of application of ILEM are exactly the same as 

procedures of slices and the formulation unifies several LEMs, similar to GLE. 

However, the proposed method requires neither individual slice evaluation nor free-

body discretization, hence resembles a single free-body procedure. In other words, 

ILEM incorporates the positive features of both lineages of limit equilibrium methods. 

These ideas and their implementations in ILEM are given in the following sub-

sections.  

Section 4.1.1 makes an introduction with the basic definitions and representation of 

geometric problem variables with quadratic order relations. In Section 4.1.2, the 

governing equations are formulated considering the equilibrium conditions. Then in 

Section 4.1.3, the governing equations are analytically derived into closed-form 

solutions for FS evaluation. Furthermore, numerical approximation methods and their 

implementation in the literature are briefly discussed. Section 4.1.4 outlines the 

implementation process of ILEM, including further considerations for complex 

problems. Lastly, in Section 4.1.5, ILEM interpretation of common LEMs is discussed 

and a solution approach is given for each method. 

4.1.1. Basic Definitions and Geometric Variables 

Before commencing with the formulation, it is necessary to give the explicit definitions 

of the geometric variables. As there are quite a few of them that appear in the 

formulation, this entire sub-section is dedicated to giving the simple definitions 

illustrated in Figure 4.1. The notation in Figure 4.1 follows the one adopted in Chapter 

3. However, in this case, the surfaces and the distributed surcharge loading, given in 

Figure 4.1a, are represented with quadratic order polynomials as given in Eqs. (4.1)–

(4.4). 
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Figure 4.1: Integrated Limit Equilibrium Method analysis approach 

(a) slip surface of a slope under external and seismic loading  

(b) free-body diagram of an infinitesimal element 

ffff dxbxaxfy ++== 2)(  

 

(4.1) 

gggg dxbxaxgy ++== 2)(  (4.2) 

wwww dxbxaxwy ++== 2)(  (4.3) 

qqq dxbxaxq ++= 2)(  (4.4) 

where f (x), g(x), w(x): functions representing the failure surface, ground surface, and 

groundwater table elevations, and q(x): the magnitude of the distributed surcharge.  

The height values illustrated in Figure 4.1b are calculated using Eqs. (4.5) and (4.6) 

and the base inclination is obtained from the first-order derivative of f (x) as given in 

Eq. (4.7). Note that hw assumes negative values if the water level is below the slip 

surface. In such a case, the function hw should be set to zero. 

hhh dxbxaxfxgxh ++=−= 2)()()(  (4.5) 

wwww dxbxaxfxwxh ++=−= 2)()()(  (4.6) 
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   ff bxaxfx +== −− 2tan)('tan)( 11  (4.7) 

where h(x) and hw(x): functions representing the height of soil and water above the 

failure surface, respectively, and α(x): inclination of the failure surface, measured from 

horizontal. 

Using these definitions it is possible to determine the total weight of the free-body, W, 

with Eq. (4.8), and locate its center of gravity, C(xc, yc), using Eqs. (4.9) and (4.10). 

Note that these expressions are derived considering a homogeneous soil profile and 

single-function representation. These definitions are extended for complex cases, later 

in Section 4.1.4. 

s

t

s

t

x

x

h
hh

x

x

xd
xbxa

dxhW 







++==  23

23

  (4.8) 

s

t

s

t

x

x

hhh

x

x

C

xdxbxa

W
dxhx

W
x 








++==  234

1 234
  (4.9) 

( ) ( )

( )

s

t

s

t

x

x

hm
mhhm

mhhmhmmhhmhm
x

x

mC

xdd
xdbdb

xdabbdaxbabaxaa

W
dxhy

W
y



















+
+

+

++
+

+
+

== 

2

3451
2

345


  

(4.10) 

where 
mmmm dxbxa

xfxg
xmy ++=

+
== 2

2

)()(
)(  (4.11) 

 

Lastly, the resultant external load, Q, and its point of application on the x-axis, xR, are 

calculated using Eqs. (4.12) and (4.13), respectively. 
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4.1.2. Formulation of Equilibrium Conditions 

The derivation of equilibrium equations in ILEM is similar to the approach previously 

adopted in GLE. The main difference is that the formulation given in this section is 

based on an infinitesimal element, as illustrated in Figure 4.1. Note that in the 

following formulation, all the forces and geometric parameters are treated as 

dependent variables (i.e. as a function of x), whereas soil parameters are assumed to 

be constant. Furthermore, the groundwater table, slip and ground surfaces are 

represented by single continuous functions. Later in Section 4.1.4, an extension is 

provided to accommodate complex cases as mentioned previously. The method is 

formulated considering fully drained conditions. However, it can be adapted to analyze 

a slope in undrained condition by ignoring the pore pressure and replacing the effective 

stress parameters, c' and ϕ', with the total stress parameters, cu and ϕu. 

For the infinitesimal element given in Figure 4.1b, weight, dW, surcharge load, dQ, 

and base uplift force, dU, are calculated using Eqs. (4.14)–(4.16). 

hdxdW =  (4.14) 

qdxdQ =  (4.15) 

dx
h

dU ww





cos
=  (4.16) 

Considering the infinitesimal element, force equilibrium in horizontal direction gives 

an expression to calculate the change of internal normal force, dE in Eq. (4.17).  

 cossin dSdWkdNdE h −+=  (4.17) 

where dN and dS: normal and shear reactions on the base of the infinitesimal element. 

Similarly, vertical force equilibrium yields an expression for the change of internal 

shear force, dX in Eq. (4.18). 

( )  sincos1 dSdNdQkdWdX v −−++=  (4.18) 

To overcome static indeterminacy, Morgenstern-Price internal force assumption is 

applied. As a result, a relation can be written between dE and dX as follows: 
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where fi*: the value of internal force function on the right-hand side of the infinitesimal 

element. 

Substituting Eq. (4.20) into Eq. (4.18) and combining with Eq. (4.17) eliminates dE 

and dX from the equations, and yields an expression between base shear and normal 

forces, denoted as dS and dN in Eq. (4.23), respectively. 
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When Mohr-Coulomb strength model is considered, another relation is obtained 

between dS and dN in Eq. (4.24). 

( )dUdN
F

dx

F

c
dS

SS

−+=
'tan

cos

' 


 (4.24) 

Substituting Eq. (4.16) into Eq. (4.24) and dividing both sides by the infinitesimal 

thickness, dx, yields the equation for base shear stress, s(x) in Eq. (4.25). 
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where 
dx

dN
xn =)(  (4.26) 

Then, Eqs. (4.14), (4.15) and (4.24) are substituted into Eq. (4.23). The resulting 

equation is arranged to single out dN. Dividing both sides by dx results in an equation 

for base normal stress, σn(x), given in Eq. (4.27). 
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Although the equations given so far are sufficient to satisfy internal force equilibrium, 

it is necessary to check overall equilibrium explicitly. Based on Eqs. (4.25) and (4.27), 

both normal and shear stress distributions are dependent on the internal normal force 

variation, E(x), which may assume an infinite number of configurations. It is already 

known that E is zero at the entrance and exit points of the slip surface since the 

interfaces disappear at these locations. Therefore, the boundary conditions in Eqs. 

(4.28) and (4.29) must be applied to guarantee complete force equilibrium. Note that 

internal shear force, X, is linearly dependent on E based on the interslice force 

assumption given in Eq. (4.19). Therefore, the boundary conditions for the internal 

shear forces are not considered separately. 

0)( == txxE  (4.28) 

0)( == sxxE  (4.29) 

The boundary condition in Eq. (4.28) is directly applied to Eq. (4.27) and the total 

change of interslice normal force is set to zero by integrating both sides of Eq.(4.17) 

as follows:  
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The resulting expression is basically the summation of the horizontal components of 

the external, inertial and base reaction forces. The integral of dW is equal to the total 

weight of the sliding body, denoted with “W” in Figure 4.1a. The forces dN and dS can 

be replaced with σn(x)dx and s(x)dx, respectively to obtain Eq. (4.31).  
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The above equation can be combined with Eq. (4.25) and arranged into Eq. (4.32), 

which is similar to the “force Fs” of GLE formulation given in Eq. (2.14).  
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The normal stress is replaced with Eq. (4.27) to develop the explicit form of the force 

Fs expression given in Eq. (4.33).  
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(4.33) 

In Eq. (4.33), Fs appears on both sides and cannot be singled out. Therefore, an 

iterative approach should be adopted to obtain a result. In the manuscript, a quasi-

Newton root finding method is proposed later in Section 4.1.5, hence Eq. (4.33) is 

arranged into the form given in Eq. (4.35). 
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=  (4.34) 

where I1, I2, and I3: integral terms in Eq. (4.33) (i.e. the arrangement of the terms in 

Eq. (4.33) and (4.34) follow the same order). 

To satisfy horizontal force equilibrium, both sides of Eq. (4.34) should yield the same 

result. Therefore, a governing equation can be defined for horizontal force equilibrium 

as follows: 

 0),( 3
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+
= h
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F

II
Ff    (4.35) 

where fH(FS, λ): governing equation for horizontal force equilibrium. 
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Lastly, moment equilibrium is satisfied with respect to a common rotational center, 

illustrated as point R in Figure 4.1a. To satisfy this condition, the moments generated 

by the external, inertial and base reaction forces are equated to zero in Eq. (4.36). In 

this calculation, the internal forces, E and X, are ignored, considering that the forces 

on the opposite sides of an interface would cancel out and generate zero net moment. 

However, it is worth mentioning that an internal moment equilibrium equation can be 

used to determine the location of the line of thrust at any interface.  

( ) ( ) ( ) ( ) 

( ) ( ) 

( ) ( ) 

0

sincos

cossin

1

=

































−+−+

−−−+

−−−+−−−

=





s

t

s

t

x

x

fRRn

x

x

fRR

CRhCRvQR

dxyyxx

dxyyxxs

yykxxkWxxQ

M



  (4.36) 

The expression in Eq. (4.36) is arranged by substituting the shear stress, s(x), with Eq. 

(4.25). The resulting expression in Eq. (4.37) is essentially similar to the “moment Fs” 

of GLE, given in Eq. (2.15). However, there are some differences based on the 

arrangement of the terms. 
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(4.37) 

Normal stress is replaced with Eq. (4.27) to obtain the explicit form of the moment Fs 

equation, given in Eq. (4.38). 
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(4.38) 

Similar to the procedure adopted previously, Eq. (4.38) is arranged to form the 

governing equation given in Eq. (4.40). 
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where I4 and I5: integral terms in Eq. (4.38), and fM (FS, λ): governing equation for 

moment equilibrium. 

The resulting formulation is similar to that of GLE, presented in Chapter 2. There are 

two governing equations (i.e. Eqs. (4.35) and (4.40)) and two unknowns (i.e. FS and 

λ). Using Eqs. (4.35) and/or (4.40), it is possible to obtain solutions based on the 

assumptions of Bishop, Janbu, Lowe and Karafiath, Corps of Engineers, Morgenstern-

Price, and consequently Spencer. However, Fellenius’ method ignores vertical force 

equilibrium, instead follows a different assumption to calculate base normal stresses 

(i.e. refer to Section 2.1.2.1). Therefore, the equations are modified to obtain a solution 

for Fellenius’ method as follows: 
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Special Case: Fellenius’ force assumption 

Considering the infinitesimal element given in Figure 4.1b, the forces are resolved 

along the slip surface. From force equilibrium along the base normal direction, dN and 

σn can be obtained as follows: 

( )   cossincos1 qkkh
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hvn +−+==  (4.41) 

Fellenius’ method ignores internal forces completely and calculates FS based on 

moment equilibrium. Therefore Eq. (4.38) can be modified by substituting Eq. (4.41) 

for σn, and replacing λ with zero. After arranging, FS can be singled out as given in Eq. 

(4.42). 

( )
( ) ( )

( ) 
( ) ( ) 

( ) 
( ) 

( ) ( ) ( ) ( ) 



−−−++−+








−+−

+−+
−










−−−

+−+
+













 −−−





 −

=
s

t

s

t

s

t

x

x

CRhCRvQR

RR

hv

x

x RR

hv

x

x

RRww

FMS

yykxxkWxxQdx
yyxx

qkkh

dx
yyxx

qkkh
dxyyxxhc

F

1
tan

tan1cos

tan

tan1cos'tan
tan'tan'

2

2

,








  

(4.42) 

where (FS,M)F: moment FS based on Fellenius’ normal force assumption. 

Additionally, in this study, Fellenius’ normal force assumption is used to calculate a 

FS based on horizontal force equilibrium. It should be noted that this not a common 

approach in the literature, rather an experimental trial to evaluate the agreement of the 

results with rigorous LEMs. To obtain the force FS based on this assumption, Eq. (4.41) 

is simply substituted into Eq. (4.33) and λ is replaced with zero. The resulting 

expression is given in Eq. (4.43). 
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where (FS,H)F: horizontal force FS based on Fellenius’ normal force assumption. 
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4.1.3. Solution Approaches for the Governing Equations 

In the following sub-sections, two solution approaches are proposed to compute the 

governing equations. First, an analytical approach is adopted to derive closed-form 

solutions. Then, numerical integration approaches are discussed with their available 

implementations in the literature.  

4.1.3.1. Closed-Form Solution with Analytical Integration 

Using the derivation given in this sub-section, it is possible to compute exact solutions 

for the governing equations, hence avoid free-body discretization and the associated 

precision losses altogether. The derivation initiates with Eqs. (4.35) and (4.40), which 

can be adapted to find results for several LEMs by manipulating the internal force 

function, fi, and λ coefficient. Among those, λ can be treated as a constant, while fi is a 

method specific dependent variable that can be a trigonometric function, a polynomial 

in any order or even a specific user-defined function. Therefore, the analytical 

derivation initiates with an assumption regarding the generalized form of fi. It is 

sufficient to assume a constant internal force function for the approaches proposed by 

Fellenius, Bishop, Janbu, Corps of Engineers (i.e. case (i)) and Spencer, hence the 

following formulation adopts the relations given in Eqs. (4.44) and (4.45).  

= ..constfi ℝ ,     0' ==
dx

df
f i

i  (4.44) 

ii ff =
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In the governing equation related to force equilibrium, Eq. (4.35), there are three 

integral terms, which are explicitly given in Eqs. (4.46)–(4.48) for the sake of clarity.  
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The dependent variables in the equations are replaced with the function definitions 

given in Eqs. (4.1)–(4.13). After applying the internal force assumption, given in Eqs. 

(4.44) and (4.45), the integrals can be arranged into the polynomial forms given in Eqs. 

(4.49)–(4.51). The coefficients in the equations can be calculated using the expressions 

given in Eq. (4.52). 
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(4.52) 

Through a series polynomial arrangement and substitution, the closed-form solutions 

of the definite integrals are obtained as given in Eqs. (4.53)–(4.55). Note that the 

coefficients in the equations are not subscripted for the sake of simplicity. However, 

for each integral, the corresponding polynomial coefficients in Eq. (4.52) should be 

applied in the calculations. 
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The solution for I1 is quite straightforward, however, I2 and I3 require additional 

considerations. When the slip surface is defined by a linear segment (i.e. af = 0), the 

coefficients A2, A3, E2, and E3 become zero. When these values are substituted, 0/0 

form indeterminacy is encountered in Eqs. (4.54) and (4.55). Furthermore, the 

equations are ill-conditioned for af values approaching zero since E2 and E3 appear in 

the denominators as high-order exponential terms. This issue is already addressed in 

SQS formulation with the threshold value applied to af in Eq. (3.10). To overcome 

indeterminacy, closed-form solutions of I2 and I3 are explicitly derived for linear order 

surface functions and abbreviated as I2,lin and I3,lin. In short, for linear surfaces, Eqs. 

(4.54) and (4.55) are replaced with Eqs. (4.56) and (4.57), respectively. 
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In the governing equation related to moment equilibrium, Eq. (4.40), there are two 

integral terms, I4 and I5 in Eqs. (4.58) and (4.59), respectively.  
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Similar to the previous steps, the dependent variables are substituted with Eqs. (4.1)–

(4.13), (4.44) and (4.45). Then, the integrals are arranged into the polynomial forms 

given in Eqs. (4.60) and (4.61), where the coefficients are calculated using the 

expressions in Eq. (4.62).  
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Similarly, the integrals are analytically solved to obtain the closed-form solutions 

given in Eqs. (4.63) and (4.64). For each integral, the corresponding polynomial 

coefficients in Eq. (4.62), are applied. 
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In this case, I5 is indeterminate for linear surface functions, considering that A5 and H5 

are zero when af is zero. Accordingly, the closed-form solution of I5 is explicitly 

derived for linear surface functions and abbreviated as I5,lin in Eq. (4.65). 
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Special Case: Fellenius’ force assumption 

For Fellenius’ method, the nature of the governing equations given in Eqs. (4.42) and 

(4.43) are significantly different from other methods. Therefore, a separate derivation 

is required to obtain an analytical solution. However, the procedure is more or less 

similar. The main difference in Fellenius’ method is that the FS values can be directly 

obtained from the closed-form solutions. These derivations and the resulting FS 

equations are given in Appendix B. 
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4.1.3.2. Approximation with Numerical Integration 

The definite integrals in the governing equations can also be evaluated using numerical 

integration methods. In this study, the accuracy of the well-known approaches like 

Riemann sum, trapezoidal rule, Simpson’s 1/3 rule and Gauss quadrature 

approximation are investigated. It is worth mentioning that, when the slip surface is 

defined by linear segments (i.e. conventional slices), midpoint Riemann sum 

approximation reduces the accuracy of ILEM to that of GLE exactly. On the other 

hand, higher order approximation rules can prove to be more efficient. In fact, Gauss 

quadrature approximation was previously implemented by Fırat [69, 70] and Low et 

al. [71] based on similar ideas. The studies of Fırat adopt procedures of slices to 

analyze circular surfaces, yet the proposed formulation treats the sliding masses like 

single free-bodies. To be more specific, the surfaces are evaluated with single-step 

Gauss quadrature approximations over whole intervals, resulting in significantly 

improved convergence rates. Differently, Low performed experiments with general 

slip surfaces; however, utilized linear slice representation for both types of surfaces. 

Consequently, the capabilities of the method were not fully exploited, producing 

arguably limited improvements on computational efficiency and result accuracy 

compared to the quadratic surface representation adopted in this study. 

4.1.4. Extension of ILEM to Complex Problems 

The formulations given in the previous sections assume constant soil parameters and 

continuous single-function representation for all surfaces (i.e. groundwater table, slip 

and ground surfaces), as well as the distributed surcharge loading. For more complex 

cases, the governing equations can be evaluated using the summation of integrals for 

discrete segments, as defined in Eq. (4.66).  
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where n: number of segments, [I]i : any definite integral defined for the ith segment, 

evaluated for the interval [xi, xi+1]. 
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To demonstrate, a comprehensive example is given in Figure 4.2. The example slip 

surface is composed of 4 splines, which are further divided into sub-intervals at 

geometric or parametric discontinuities (i.e. layer transitions, slope toe and crest 

locations, intersections with the groundwater level and any point where the surcharge 

load is discontinuous).  

spline node

geometric discontinuity

Soil 1
c1', ϕ1', γ1

...

...

...
...

i=2

i=1

i=4
i=3

i=n

Soil 2
c2', ϕ2', γ2

Soil 3
c3', ϕ3', γ3

h2(x)

h1(x)

 

Figure 4.2: Illustration of ILEM application 

It is possible to account for variable soil shear strength parameters using this process; 

however, profiles with variable soil unit weight require further considerations. In such 

cases, computing the total weight, W, and the location of its center of gravity, C(xc, yc), 

is straightforward. On the other hand, evaluating the normal stress based on Eq. (4.27) 

or (4.41) can get rather complicated. A simple “get around” to this problem is to 

manipulate the function that represents the height of soil, h(x). It is possible to define 

the height of soil within each layer, hj(x), in terms of quadratic expressions. Then, an 

equivalent soil height can be computed using Eq. (4.67) and adopted instead of Eq. 

(4.5) in the calculations. Using this approach, center of gravity calculations, more 

specifically Eq. (4.10), should be modified slightly. The rest of the formulation can be 

implemented as is. 


=

=
l

j

jj

l

xhxh
1

)(
1

)( 


 

(i.e. implemented with l )  

(4.67) 

 

 

where l: number of soil layers above the slip surface. 
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4.1.5. Interpretation of Common LEMs and FS Evaluation with Broyden’s Method 

The derivation of the governing equations in ILEM formulation is essentially similar 

to GLE, with the exception of differential equation representation. Therefore, 

interpretation of other LEMs follows the pattern previously discussed in Section 2.1.2. 

However, in this section, these approaches are personalized for ILEM. The governing 

equations and unknown variables for each LEM are summarized, and concise 

discussions are given in Table 4.1. It is should be noted that the following sections 

refer to these methods with the abbreviations given in this table. 

Table 4.1: ILEM interpretation of common LEMs 

Abbreviation: Method  Equation(s) Unknown(s) Explanation 

FM: Fellenius’ method 

(FS,M)F = const. – 
Conventional Fellenius’ method; 

direct solution is possible from 

moment equilibrium. 

(FS,H)F = const. – 
Experimental Fellenius’ method; 

direct solution is possible from  

horizontal force equilibrium. 

BS: Bishop’s simplified method       fM (FS, 0) = 0 FS Set λ=0; solve the equation for FS. 

JS: Janbu’s simplified method fH (FS, 0) = 0 FS Set λ=0; solve the equation for FS. 

LK: Lowe and Karafiath’s method fH (FS, 1) = 0 FS 
Set λ=1 and apply internal force 

assumption in Eq. (2.17); solve 

the equation for FS. 

CE: Corps of Engineers method fH (FS, 1) = 0 FS 
Set λ=1 and apply internal force 

assumption in Eq. (2.18) or (2.19);  

solve the equation for FS. 

SM: Spencer’s method 
fH (FS, λ) = 0 

fM (FS, λ) = 0 
FS, λ 

Apply internal force assumption  

in Eq. (2.20); solve the 2×2 system  

of equations for FS and λ. 

MP: Morgenstern-Price method 
fH (FS, λ) = 0 

fM (FS, λ) = 0 
FS, λ 

Apply any reasonable internal 

force assumption; solve the 2×2 

system of equations for FS and λ. 

(FS,M)F : Eq. (4.42) – (FS,H)F: Eq. (4.43) – fH: Eq. (4.35) – fM: Eq. (4.40) 

Using Fellenius’ force assumption, it is possible to single out the FS in Eqs. (4.42) and 

(4.43), hence a direct solution is possible for both, conventional and experimental FM, 

which are based on moment and horizontal force equilibrium, respectively. However, 

other assumptions need indirect approaches using the governing equations. Defined in 
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Eq. (4.68), the most complex case is associated with the rigorous methods, where 2×2 

systems of nonlinear equations are solved to determine the FS and λ values. Among 

the many possible techniques, the present study proposes Broyden’s multivariate 

quasi-Newton root finding method [64] for the problem.  

( ),SF=x , ( ) 0, == MH ff(x)f  (4.68) 

where x: unknown vector and f: vector-valued function. 

The procedure, formulated below for two-variable problems, is adopted in ILEM to 

obtain solutions for rigorous methods like SM and MP. Single-variable version of the 

same procedure is implemented for the simplified methods like BS, JS, LK, and CE 

variants. 

Step 1: Prescribe the error tolerance, εtol, and make initial guesses for FS and λ. The 

quality of the initial guesses greatly affects the convergence of gradient-based 

methods, hence reasonable inputs are essential. 

It is suitable to use the solution of FM to estimate an initial FS value in the same order 

of magnitude as the final result. Observations throughout the study informally suggest 

that the experimental force equilibrium approach is reliable, even for odd slip surface 

geometries. For such surfaces, the conventional FM often finds unrealistic solutions. 

Therefore, Eq. (4.69) is suggested for the initial FS value. 

( ) ( )
FHSS FF ,0

=  (4.69) 

where (FS)0: initial FS guess for Broyden’s method and (FS,H)F: force FS based on 

experimental Fellenius’ method (i.e. refer to Eq. (4.33) and Appendix B). 

For λ coefficient, it is not possible to obtain an initial guess using the simplified 

methods. Suitably, Zhu et al. [72] proposed an empirical correlation based on average 

slip surface inclination. Note that the correlation, given in Eq. (4.70) is computed in a 

manner similar to the interslice force function of Corps of Engineers method, given in 

Eq (2.18). 
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where λ0: initial λ guess for Broyden’s method. 

Step 2: Evaluate the initial vector-valued function, f0, and the Jacobian matrix, J0, 

defined in Eq. (4.71), respectively. It is possible to evaluate the partial derivatives in 

J0 using finite difference method.  
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Step 3: Update the unknown vector, x, using Eq. (4.72) and increase the iteration 

number by one. 

tttt fJxx
1

1

−

+ −=  

1+= tt  

(4.72) 

 

where t: denotes the iteration number. 

Step 4: Compute the vector-valued function, f t, and differential vectors, Δxt and Δf t 

using Eq. (4.73). 

1−−= ttt xxx , 1−−= ttt fff  (4.73) 

Step 5: Compute absolute error related to Broyden’s method, εb, using Eq. (4.74). 

Terminate if εb is smaller than the tolerance, εtol.  

εb 


= x  (4.74) 

Step 6: Update the inverse Jacobian matrix using Eq. (4.75) and return to Step 3. The 

method adopts a rank-one update instead of computing the Jacobian matrix in every 

iteration. In addition, Broyden further refined the formulation with Sherman-Morrison 

Formula to update the inverse of the Jacobian matrix directly.  
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4.2. Numerical Experiments 

In this section, the closed-form formulation of ILEM is validated and the 

computational the efficiency ILEM variants based on numerical integration methods 

are evaluated through extensive experimentation. Utilizing the critical slip surfaces 

located in Chapter 3, a benchmark set is constructed in Section 4.2.1. Then in Section 

4.2.2, the closed-form version of ILEM, denoted as ILEM-CF, is implemented to find 

results based on common limit equilibrium assumptions. After validating the 

applicability of the proposed formulation, the results are further used as a basis of 

comparison for the subsequent sections. In Section 4.2.3, ILEM formulation is 

implemented with numerical integration methods, in search of improvements on 

computational efficiency. Based on these results, an efficient ILEM variant is 

compared with GLE formulation and proposed as an alternative limit equilibrium 

formulation in Section 4.2.4. 

4.2.1. Benchmark Problems 

The benchmark slope stability analysis problems adopted in this section are essentially 

the same as Chapter 3, except that a surface optimization routine is not incorporated 

in the experiments. Since the current objective is to evaluate the stability analysis 

modules, introducing a stochastic element (i.e. optimization algorithm) would 

unnecessarily influence the outcomes by instigating bias to the model. In order to avoid 

this issue, the slip surfaces are pre-defined for the analyses as illustrated in Figure 4.3. 

The surfaces are exactly the same as those obtained with SQS in Section 3.2. For each 

example, the axis of moment equilibrium, R, and spline transition points are indicated; 

and the detailed surface information is provided in Appendix A.  

For each slip surface, the indicated rotational axis is the center of the best-fit arc 

determined through a regression analysis with the following criteria: (i) the arc must 

pass through the slip toe and scarp, (ii) the soil weight inside the arc must be equal to 

the weight of the sliding mass. The indicated rotational centers are only utilized for 
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FM and BS, which are conventionally not applicable to analyze general slip surfaces, 

yet similar approaches are adopted in the commercial analysis software. However, it 

should be emphasized that the location of the rotational axis significantly affects the 

results in simplified moment equilibrium methods, hence such an approach is 

questionable for practical applications. On the other hand, the results of rigorous 

LEMs are not sensitive to the position of the rotational axis; therefore, any reasonable 

point can be selected. For rigorous LEMs, the gravitational centers of the sliding 

masses are conveniently considered as the reference points for moment equilibrium. 
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Figure 4.3: Slip surfaces and rotational centers 

(a) Example 1 (b) Example 2 (i) (c) Example 2 (ii)  

(d) Example 3 (e) Example 4 (f) Example 5 (i)  

(a)               (b) 

 

 

 

 

 

 

 

 

(c)               (d) 

 

 

 

 

 

 

 

 

 

(e)               (f) 
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Figure 4.3 (cont’d): Slip surfaces and rotational centers 

(g) Example 5 (ii) (h) Example 6 (i) (i) Example 6 (ii)  

(j) Example 6 (iii) (k) Example 6 (iv) 

(g)               (h) 
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4.2.2. Closed-Form Solution Approach for Common LEMs 

In this section, the benchmark problem set is utilized to validate the reliability of the 

proposed analysis framework. Furthermore, the closed-form equations and the 

resulting formulation ILEM-CF is verified as a precise unified method for common 

limit equilibrium assumptions. The experiments adopt ILEM-CF for FM, BS, JS, CE-

Case (i) and SM approaches, and approximate the true FS values for LK, CE-Case (ii) 

and MP using excessive discretization and numerical evaluation. Therefore, the results 

reported in this section are exact within the limits of the error tolerance, εtol, which is 

prescribed as 10-15 for Broyden’s quasi-Newton technique. It should be noted that FM 

is utilized to find FS values based on both, moment and horizontal force equilibrium. 

Lastly, MP is adopted with half-sine internal force function.  

The results are reported in Table 4.2 for all limit equilibrium assumptions and 

benchmark problems. The table denotes ILEM-CF solutions and the approximated true 

values with the subscripts “CF” and “AT”, respectively. It is noticeable that the results 

given for SM are in agreement with the ones previously reported with GLE in Table 

3.21. In fact, the FS values of ILEM-CF are slightly improved versions of the ones 

previously obtained using 70 slices. Since SM encloses the entire analytical derivation, 

the outcomes also validate the closed-form ILEM formulation for the simplified 

methods that can be reduced from SM. 

The comparison between different approaches can also prove to be beneficial to verify 

the reliability of ILEM. For instance, the results of SM and MP, which only differ in 

the applied internal force functions, are strongly correlated. The average deviation in 

FS is about 0.7%, suggesting that the rigorous formulation is not highly sensitive to the 

selection of the internal force function, as previously argued by Morgenstern and Price 

[3]. To evaluate the results of the simplified approaches, relative differences values are 

calculated with respect to SM and MP and denoted as RD1 and RD2, respectively. 

Based on these measures BS accurately estimates FS with mean RD values below 1%. 

This is already an expected outcome for circular failure analyses. In this case, the 
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procedure adopted to assign the center of rotation may have resulted in a practical way 

of achieving similar accuracy for general slip surfaces. However, the reliability of this 

approach requires careful assessment with complete analysis frameworks. Regarding 

the force equilibrium methods, JS always underestimates FS as expected [2]. With the 

application of internal force function in LK and CE, the results approach to those of 

rigorous methods. However, Case (ii) assumption of CE fails to produce reliable 

results based on the mean RD values that exceed 4.5%. 

It is interesting to note that the results of the conventional FM are reasonably close to 

those of SM and MP. However, the trials during the study point out that its application 

within a general slip surface optimization framework often yields unrealistic 

outcomes. On the other hand, the experimental FM is observed to be more consistent 

to produce FS values, at least in the same order of magnitude as the other methods. 

Therefore, the experimental FM based on force equilibrium is proposed as a simple 

yet efficient method to provide initial guesses for the iterative analyses. With this 

embedment, divergence issues are seldom encountered and the capabilities of 

Broyden’s method ensure sufficient accuracy within 3 to 5 iterations. 
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4.2.3. The Efficiency of Numerical Integration Methods 

Aiming to develop a computationally efficient ILEM variant, the benchmark examples 

are further analyzed with approximation methods, instead of using the closed-form 

formulation. Accordingly, common numerical integration techniques like Riemann 

sum, trapezoidal rule, Simpson’s 1/3 rule, and Gauss quadrature are incorporated into 

the formulation of ILEM. A summary of these methods are given in Table 4.3, where 

the number of quadrature nodes “nQ”, their positions, and weights are indicated for an 

arbitrary function, f (x), within the normalized interval of [-1, 1]. Based on these 

definitions, the below-given equation can be used to approximate the value of a 

definite integral. 

 
− =



1

1 1

)(
2

1
)( ii

n

i

wxfdxxf
Q

 (4.76) 

Table 4.3: Summary of numerical integration methods 

Method nQ Nodes on [-1, +1]  Weights 

Midpoint Riemann sum 1 0=x  2=w  

Trapezoidal rule 2 1,1 21 +=−= xx  1,1 21 == ww  

Simpson’s 1/3 rule 3 1,0,1 321 +==−= xxx  31,34,31 321 === www  

Gauss quadrature  2 31,31 21 +=−= xx  1,1 21 == ww  

Gauss quadrature  3 53,0,53 321 +==−= xxx  95,98,95 321 === www  

where nQ: number of quadrature nodes within each interval. 

The efficiency of GLE formulation is also evaluated in comparison to these methods. 

In order to avoid any bias due to possible differences in the computational 

implementation of these formulations, ILEM analysis procedure is interpreted to yield 

results for GLE. When the slip the surface is discretized into linear segments, adoption 

of midpoint Riemann sum reduces ILEM formulation to GLE, based on the derivation 

given in Section 4.1.2.  

For the analyses, SM is adopted. Approximation intervals are determined by 

discretizing the slip surfaces into segments with the procedures given in Section 4.1.4. 
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Then, they are further refined into equally spaced sub-intervals to increase the 

precision. The number of sub-intervals, multiplied by nQ gives the number of 

governing function evaluations for FS, denoted with NFE. Note that the minimum NFE 

required for FS evaluation varies for different integration methods, and the calculations 

ignore the iterations within Broyden’s root-finding procedure.  

The results of the analyses are illustrated with the convergence graphs given in Figure 

4.4. In these graphs, x-axes indicate NFE and y-axes represent the absolute error of FS 

values (i.e. not relative, the values are absolute deviations from true FS values) with 

respect to those obtained with the closed-form equations. The convergence graphs 

demonstrate that the precision of GLE is comparably lower than other methods, except 

for the trapezoidal rule, which is computationally more demanding. Simpson’s 1/3 rule 

and 2-node Gauss quadrature are relatively more efficient. However, these methods 

may require a degree of refinement for “rotational” slip surfaces, as illustrated in 

Figures 4.4a and 4.4b. In general, surfaces with planar segments are easier to analyze 

as the order and complexity of the integrand functions reduce for linear functions. On 

the other hand, 3-node Gauss quadrature approximation is invariably precise for SM 

without further surface refinement.  

It is notable in some cases that the approximation of the method does not improve until 

a certain point. This is more visible for the convergence graphs given in Figures 4.4f 

and 4.4g, which are associated with the infinite slope problem, Example 5. The slip 

surfaces in these problems include wide planar segments. Considering a linear surface, 

the integrands in I1 through I4 (i.e. refer to Eqs. (4.49)–(4.51) and (4.60)) reduce to 2nd 

order polynomials and the integrand in I5 in Eq. (4.61) reduces to 3rd order, all of which 

are approximated exactly using 2 and 3-node Gauss quadrature rules. Therefore, the 

linear segments are refined unnecessarily in these experiments. Regardless, 3-node 

Gauss quadrature approximation yields impartial results with those of ILEM-CF 

without any refinement, and thus selected as a computationally efficient addition to 

the formulation of ILEM. 
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Figure 4.4: Convergence of numerical integration methods 

(a) Example 1 (b) Example 2 (i) (c) Example 2 (ii)  

(d) Example 3 (e) Example 4 (f) Example 5 (i)  

(a)               (b) 

 

 

 

 

 

 

 

 

(c)               (d) 

 

 

 

 

 

 

 

 

 

(e)               (f) 
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Figure 4.4 (cont’d): Convergence of numerical integration methods 

(g) Example 5 (ii) (h) Example 6 (i) (i) Example 6 (ii)  

(j) Example 6 (iii) (k) Example 6 (iv) 

(g)               (h) 

 

 

 

 

 

 

 

 

(i)               (j) 
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4.2.4. Comparison of ILEM with GLE 

The experiments for SM in the previous section promote a computationally efficient 

ILEM variant based on 3-node Gauss quadrature approximation, denoted as ILEM-

GQ3 from now on. In this section, the reliability of this configuration is validated for 

other limit equilibrium assumptions through a comparison with GLE and true FS values 

reported in Table 4.2. Using ILEM-GQ3, the slip surfaces are analyzed without any 

refinement, hence the number of function evaluations, NFE, is the minimum required 

for each example. Accordingly, the numbers of slices used for GLE are adjusted to 

equivalent values for fair comparison. 

Considering the above configurations, an extract of the results obtained with SM are 

given in Table 4.4. For each benchmark problem, the outcomes of GLE and ILEM-

GQ3 are summarized based on the approximated FS and λ values; and reported together 

with the values obtained using ILEM-CF. Furthermore, absolute errors of 

approximated FS values are also given for both formulations. The results further 

illustrate the capability of ILEM-GQ3, which reports precise values for FS in five 

significant figures. Although the results of GLE stay within practically acceptable error 

margins, such reliability is not possible at the same computational cost. 

Table 4.4: Comparison of ILEM and GLE – Spencer’s method 

 

 GLE ILEM-GQ3 ILEM 

NFE FS λ εFs FS λ εFs (FS)CF λ 

Example 1 24 1.9799 0.3026 3.E-03 1.9769 0.3023 5.E-05 1.9770 0.3025 

Example 2 (i) 24 1.3239 0.2506 2.E-03 1.3218 0.2495 4.E-05 1.3218 0.2496 

Example 2 (ii) 27 0.9983 0.2875 7.E-04 0.9975 0.2874 5.E-07 0.9975 0.2874 

Example 3 27 1.0884 0.0753 7.E-04 1.0877 0.0702 1.E-08 1.0877 0.0702 

Example 4 27 0.4115 0.2441 5.E-04 0.4110 0.2428 1.E-07 0.4110 0.2428 

Example 5 (i) 24 1.0118 0.4541 2.E-03 1.0095 0.4527 7.E-06 1.0095 0.4527 

Example 5 (ii) 24 0.8412 0.5688 2.E-03 0.8396 0.5676 1.E-06 0.8396 0.5676 

Example 6 (i) 27 1.3321 0.1440 2.E-03 1.3300 0.1377 2.E-07 1.3301 0.1377 

Example 6 (ii) 36 1.1981 0.0726 1.E-03 1.1967 0.0692 5.E-08 1.1967 0.0691 

Example 6 (iii) 27 1.0428 0.4182 1.E-03 1.0418 0.4136 1.E-07 1.0418 0.4136 

Example 6 (iv) 36 0.9322 0.3336 8.E-04 0.9315 0.3317 3.E-08 0.9315 0.3317 

  where GQ3: 3-node Gauss quadrature, CF: closed-form solution, NFE: number of function evaluations. 



 

 

116 

 

 

Considering the simplified methods such as FM, BS, JS, LK and CE, the outcomes, 

given in Tables 4.5–4.11, are similar to those of SM, which further validates the 

enhanced efficiency of ILEM-GQ3 over GLE. Except for a few instances, the proposed 

method reports precise FS values. On the other hand, the experiments with MP raise 

some questions and inspire possible improvements. As mentioned previously, MP is 

adopted with half-sine internal force function, which significantly affects the 

complexity of the governing equations. As a result, the precision of both GLE and 

ILEM-GQ3 are comparably reduced, as illustrated in Table 4.12. GLE formulation is 

prone to significant error with relatively lower numbers of slices, especially in 

Examples 1 and 2 (i). ILEM-GQ3 can find more acceptable values for FS; however, λ 

coefficients, and consequently the estimated force distributions still deviate from the 

approximated true cases. Addressing this issue, either a higher-order approximation 

method or a surface refinement procedure may be adopted for MP. Considering the 

latter alternative, the problems are analyzed using 48 function evaluations. As a result, 

the solutions of both methods reach more satisfactory levels. Although ILEM-GQ3 is 

visibly the better alternative, further improvements may be achieved by developing a 

more efficient surface refinement procedure in the future studies. 

Table 4.5: Comparison of ILEM and GLE – conventional Fellenius’ method 

  GLE* ILEM-GQ3 ILEM 
 NFE FS εFs FS εFs (FS)CF 

Example 1 24 1.8722 2.E-03 1.8703 1.E-05 1.8703 

Example 2 (i) 24 1.2497 7.E-04 1.2488 1.E-04 1.2490 

Example 2 (ii) 27 0.9507 4.E-04 0.9503 7.E-07 0.9503 

Example 3 27 1.0801 7.E-04 1.0794 3.E-06 1.0794 

Example 4 27 0.3985 2.E-04 0.3983 5.E-07 0.3983 

Example 5 (i) 24 0.9813 3.E-03 0.9785 5.E-07 0.9785 

Example 5 (ii) 24 0.8104 2.E-03 0.8085 1.E-07 0.8085 

Example 6 (i) 27 1.3090 1.E-03 1.3080 3.E-06 1.3080 

Example 6 (ii) 36 1.1839 2.E-03 1.1823 3.E-06 1.1823 

Example 6 (iii) 27 1.0309 6.E-04 1.0303 1.E-06 1.0303 

Example 6 (iv) 36 0.9207 9.E-04 0.9198 8.E-06 0.9198 
        *GLE normally does not accommodate Fellenius’ method, here it is regarded as a solution approach. 
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Table 4.6: Comparison of ILEM and GLE – experimental Fellenius’ method 

  GLE* ILEM-GQ3 ILEM 
 NFE FS εFs FS εFs (FS)CF 
Example 1 24 1.9867 3.E-03 1.9836 1.E-06 1.9836 

Example 2 (i) 24 1.3194 2.E-03 1.3179 3.E-06 1.3179 

Example 2 (ii) 27 1.0934 7.E-04 1.0926 1.E-06 1.0926 

Example 3 27 1.0989 6.E-04 1.0982 4.E-06 1.0982 

Example 4 27 0.3945 3.E-04 0.3941 1.E-06 0.3941 

Example 5 (i) 24 0.9854 3.E-03 0.9829 9.E-06 0.9829 

Example 5 (ii) 24 0.8096 2.E-03 0.8077 2.E-06 0.8077 

Example 6 (i) 27 1.4291 1.E-03 1.4280 7.E-06 1.4280 

Example 6 (ii) 36 1.3126 6.E-04 1.3120 4.E-06 1.3120 

Example 6 (iii) 27 1.0324 9.E-04 1.0315 4.E-06 1.0315 

Example 6 (iv) 36 0.9140 1.E-03 0.9131 2.E-05 0.9131 
         *GLE normally does not accommodate Fellenius’ method, here it is regarded as a solution approach. 

Table 4.7: Comparison of ILEM and GLE – Bishop’s simplified method 

  GLE ILEM-GQ3 ILEM-CF 
 NFE FS εFs FS εFs (FS)CF 
Example 1 24 1.9662 2.E-03 1.9637 2.E-05 1.9637 

Example 2 (i) 24 1.3038 1.E-03 1.3024 1.E-05 1.3024 

Example 2 (ii) 27 0.9867 4.E-04 0.9863 2.E-07 0.9863 

Example 3 27 1.0894 8.E-04 1.0886 8.E-08 1.0886 

Example 4 27 0.4057 4.E-04 0.4053 5.E-08 0.4053 

Example 5 (i) 24 1.0003 1.E-03 0.9992 6.E-06 0.9992 

Example 5 (ii) 24 0.8247 1.E-03 0.8235 1.E-06 0.8235 

Example 6 (i) 27 1.3274 1.E-03 1.3261 1.E-07 1.3261 

Example 6 (ii) 36 1.1945 1.E-03 1.1932 2.E-08 1.1932 

Example 6 (iii) 27 1.0482 9.E-04 1.0473 1.E-07 1.0473 

Example 6 (iv) 36 0.9364 1.E-03 0.9354 2.E-09 0.9354 

Table 4.8: Comparison of ILEM and GLE – Janbu’s simplified method 

  GLE ILEM-GQ3 ILEM-CF 
 NFE FS εFs FS εFs (FS)CF 
Example 1 24 1.8334 2.E-03 1.8314 2.E-06 1.8314 

Example 2 (i) 24 1.2123 9.E-04 1.2115 6.E-07 1.2115 

Example 2 (ii) 27 0.8963 3.E-04 0.8960 4.E-08 0.8960 

Example 3 27 1.0856 5.E-04 1.0851 6.E-08 1.0851 

Example 4 27 0.3953 3.E-04 0.3951 2.E-08 0.3951 

Example 5 (i) 24 0.9898 9.E-04 0.9888 6.E-06 0.9888 

Example 5 (ii) 24 0.8150 1.E-03 0.8139 1.E-06 0.8139 

Example 6 (i) 27 1.3034 6.E-04 1.3029 4.E-07 1.3029 

Example 6 (ii) 36 1.1830 7.E-04 1.1823 2.E-07 1.1823 

Example 6 (iii) 27 1.0120 3.E-04 1.0118 5.E-08 1.0118 

Example 6 (iv) 36 0.9085 7.E-04 0.9078 1.E-05 0.9078 
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Table 4.9: Comparison of ILEM and GLE – Lowe and Karafiath’s method 

  GLE ILEM-GQ3 ILEM 
 NFE FS εFs FS εFs (FS)AT 
Example 1 24 2.0071 3.E-03 2.0035 2.E-04 2.0037 

Example 2 (i) 24 1.3420 2.E-03 1.3398 1.E-04 1.3399 

Example 2 (ii) 27 1.0318 9.E-04 1.0309 4.E-07 1.0309 

Example 3 27 1.1050 1.E-03 1.1039 1.E-08 1.1039 

Example 4 27 0.4094 6.E-04 0.4088 2.E-06 0.4088 

Example 5 (i) 24 0.9829 3.E-03 0.9794 1.E-06 0.9794 

Example 5 (ii) 24 0.8086 2.E-03 0.8065 2.E-07 0.8065 

Example 6 (i) 27 1.4185 1.E-03 1.4172 1.E-06 1.4172 

Example 6 (ii) 36 1.3064 8.E-04 1.3056 5.E-07 1.3056 

Example 6 (iii) 27 1.0401 1.E-03 1.0389 1.E-06 1.0389 

Example 6 (iv) 36 0.9299 1.E-03 0.9286 7.E-10 0.9286 

Table 4.10: Comparison of ILEM and GLE – Corps of Engineers method Case (i) 

  GLE ILEM-GQ3 ILEM 
 NFE FS εFs FS εFs (FS)CF 
Example 1 24 2.0381 3.E-03 2.0349 7.E-05 2.0348 

Example 2 (i) 24 1.3855 1.E-03 1.3843 3.E-05 1.3843 

Example 2 (ii) 27 0.9916 5.E-04 0.9911 6.E-07 0.9911 

Example 3 27 1.1028 4.E-04 1.1024 1.E-06 1.1024 

Example 4 27 0.4288 4.E-04 0.4284 1.E-06 0.4284 

Example 5 (i) 24 1.0177 2.E-03 1.0157 7.E-06 1.0157 

Example 5 (ii) 24 0.8397 1.E-03 0.8382 1.E-06 0.8382 

Example 6 (i) 27 1.3897 5.E-04 1.3892 5.E-07 1.3892 

Example 6 (ii) 36 1.2754 6.E-04 1.2748 5.E-07 1.2748 

Example 6 (iii) 27 1.0410 4.E-04 1.0405 3.E-07 1.0405 

Example 6 (iv) 36 0.9377 5.E-04 0.9371 9.E-08 0.9371 

Table 4.11: Comparison of ILEM and GLE – Corps of Engineers method Case (ii) 

  GLE ILEM-GQ3 ILEM 
 NFE FS εFs FS εFs (FS)AT 
Example 1 24 2.1064 3.E-03 2.1034 1.E-04 2.1033 

Example 2 (i) 24 1.4642 1.E-03 1.4628 6.E-05 1.4627 

Example 2 (ii) 27 1.0001 6.E-04 0.9994 5.E-06 0.9994 

Example 3 27 1.1032 4.E-04 1.1028 2.E-06 1.1028 

Example 4 27 0.4619 6.E-04 0.4612 9.E-06 0.4612 

Example 5 (i) 24 1.0177 2.E-03 1.0157 7.E-06 1.0157 

Example 5 (ii) 24 0.8397 1.E-03 0.8382 1.E-06 0.8382 

Example 6 (i) 27 1.4140 3.E-04 1.4136 9.E-07 1.4136 

Example 6 (ii) 36 1.3010 8.E-04 1.3002 9.E-07 1.3002 

Example 6 (iii) 27 1.0546 3.E-04 1.0542 5.E-07 1.0542 

Example 6 (iv) 36 0.9511 4.E-04 0.9507 2.E-07 0.9507 
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Table 4.12: Comparison of ILEM and GLE – Morgenstern-Price method 





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

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





−

−
=

ts

t
i

xx

xx
xf sin)(

  GLE ILEM-GQ3 ILEM 

NFE FS λ εFs FS λ εFs (FS)AT (λ)AT  

Example 1 24 1.9760 0.4031 1.E-02 1.9648 0.4180 9.E-04 1.9657 0.3722 

Example 2 (i) 24 1.3215 0.3258 8.E-03 1.3098 0.3286 4.E-03 1.3139 0.3053 

Example 2 (ii) 27 0.9818 0.3843 4.E-03 0.9785 0.3899 8.E-04 0.9777 0.3922 

Example 3 27 1.0880 0.0886 1.E-03 1.0871 0.0751 4.E-04 1.0866 0.0675 

Example 4 27 0.4094 0.3013 2.E-03 0.4077 0.2629 1.E-04 0.4078 0.2540 

Example 5 (i) 24 1.0002 0.6331 2.E-03 0.9971 0.5930 7.E-04 0.9978 0.5823 

Example 5 (ii) 24 0.8264 0.8665 2.E-03 0.8239 0.8146 9.E-04 0.8248 0.7936 

Example 6 (i) 27 1.3344 0.1690 5.E-03 1.3330 0.1731 4.E-03 1.3289 0.1468 

Example 6 (ii) 36 1.1979 0.0809 3.E-03 1.1969 0.0797 2.E-03 1.1954 0.0712 

Example 6 (iii) 27 1.0468 0.4873 5.E-03 1.0464 0.5005 4.E-03 1.0421 0.4219 

Example 6 (iv) 36 0.9322 0.3641 2.E-03 0.9321 0.3719 2.E-03 0.9299 0.3265 

Example 1 48 1.9695 0.3839 4.E-03 1.9655 0.3776 1.E-04 1.9657 0.3722 

Example 2 (i) 48 1.3168 0.3156 3.E-03 1.3136 0.3073 3.E-04 1.3139 0.3053 

Example 2 (ii) 48 0.9798 0.3877 2.E-03 0.9780 0.3904 3.E-04 0.9777 0.3922 

Example 3 48 1.0870 0.0736 4.E-04 1.0867 0.0688 9.E-05 1.0866 0.0675 

Example 4 48 0.4084 0.2747 6.E-04 0.4078 0.2648 3.E-05 0.4078 0.2540 

Example 5 (i) 48 0.9994 0.6549 2.E-03 0.9974 0.5903 4.E-04 0.9978 0.5823 

Example 5 (ii) 48 0.8257 0.8564 9.E-04 0.8244 0.8071 5.E-04 0.8248 0.7936 

Example 6 (i) 48 1.3311 0.1539 2.E-03 1.3297 0.1488 8.E-04 1.3289 0.1468 

Example 6 (ii) 48 1.1970 0.0773 2.E-03 1.1957 0.0723 3.E-04 1.1954 0.0712 

Example 6 (iii) 48 1.0456 0.4729 4.E-03 1.0425 0.4273 4.E-04 1.0421 0.4219 

Example 6 (iv) 48 0.9314 0.3523 2.E-03 0.9305 0.3386 7.E-04 0.9299 0.3265 

 

4.3. Discussion of Results 

The experiments in this chapter serve disparate objectives, yet support each other to 

validate the collective performance of the proposed unified limit equilibrium method, 

ILEM. The first part of the experiments mostly serves as a verification of the 

formulation and derivation of the closed-form governing equations within. The results 

based on SM indicate that ILEM-CF yields similar, more specifically slight improved 

FS values compared to those obtained using GLE. Based on these outcomes, the 

proposed formulation can eliminate free-body discretization and the corresponding 

errors of approximation completely. The error margin of this variant is equal to the 

prescribed tolerance value, which is an enhancement on reliability over other 
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formulations in the literature. Furthermore, the results validate ILEM as a unified 

formulation for common limit equilibrium assumptions. 

Despite these positive features, closed-form equations are considerably lengthy and 

tedious to evaluate. Therefore, their application within a complete analysis framework 

may translate to be computationally upscale. Addressing this issue, an efficient ILEM 

variant is developed based on 3-node Gauss quadrature method, denoted as ILEM-

GQ3. Compared to GLE, ILEM-GQ3 exhibits significant improvement on result 

precision, yielding reliable approximations without free-body discretization or surface 

refinement for most LEMs. Using SM, FM, BS, JS, LK, and CE, single evaluations 

over entire surface intervals can yield exact solutions for 5 significant figures, except 

for rare occurrences. On the other hand, GLE is prone to considerable error without 

extensive slicing, especially when a relatively complex internal force function is 

incorporated. This issue is clearly visible for MP, which is applied with half-sine 

function in the experiments. Although affected by this implementation, ILEM-GQ3 

estimates relatively better and practically acceptable solutions. Furthermore, surface 

refinement can improve the results at a reasonable computational demand. With these 

enhancements and unique characteristics, ILEM is proposed as a refined alternative to 

the available unified limit equilibrium formulations. 
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CHAPTER 5 

 

SUMMARY AND CONCLUDING REMARKS 

 

Engineering problem solving often exploits analytical and numerical methods within 

extended models of mechanics. Consequently, developing reliable solution approaches 

is only possible with a clear understanding of the applied mathematical concepts. With 

this on mind, the present study relies on the assessment of available limit equilibrium 

formulations and incorporated analysis procedures, in order to develop enhanced 

alternatives. In light of these assessments, a collective of novel procedures is proposed 

within the unified formulation of Integrated Limit Equilibrium Method (ILEM), which 

illustrates that basic mathematical techniques can be manipulated to effectively solve 

slope stability analysis problems. 

ILEM incorporates two distinct methods to generate and analyze general slip surfaces.  

For surface generation, a modified spline interpolation procedure is developed through 

considerations of kinematical admissibility and surface flexibility. The procedure, 

named Scaled Quadratic Spline method (SQS), utilizes piecewise continuous quadratic 

order functions to represent the slip surfaces and includes a unique scaling operation 

to stimulate linear segments and abrupt transitions. With these implementations, SQS 

provides the flexibility to represent composite failure surfaces accurately without 

requiring excessive numbers of geometric parameters, which is an improvement over 

the available methods. The performance of SQS is validated through comparative 

benchmark testing and the method is proposed as an enhanced surface generation 

method with significant improvements on computational efficiency and result 

accuracy with respect to other approaches. 

The second component of ILEM is the refined stability analysis module. Using 

quadratic order functions for surface representation, it was possible to develop a 

unified formulation of common LEMs based on differential equations. The 
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formulation is extended to derive closed-form governing equations, which can be 

adapted to evaluate precise FS values for many of the common LEMs. Despite bearing 

the characteristics of procedures of slices, ILEM treats slip surfaces as single free-

bodies, evaluating the FS with single-step computations over whole intervals. As a 

result, ILEM eliminates free-body discretization and the related approximation errors 

of conventional LEMs completely. Furthermore, the formulation allows the 

implementation of high-order numerical approximation techniques, which can yield 

precise approximations with marginal numbers of function evaluations. The 

experiments demonstrate that 3-node Gauss quadrature approximation is a suitable 

approach, producing considerable improvement on computational efficiency over slice 

approximation. Based on these findings, ILEM is proposed as an improved alternative 

to the available slope stability analysis procedures.  

In order to realize its full potential, the future studies should focus on several aspects 

to further develop ILEM. First, an extensive study is required to incorporate or develop 

an improved surface optimization routine. The convergence rate of SQS is promising 

and the resulting optimization problems are relatively low-dimensional. Therefore, a 

hybrid stochastic-deterministic optimization method may be a suitable option to 

improve the efficiency. With this enhancement, ILEM may facilitate the applicability 

of the computationally demanding probabilistic analysis models. Similarly, an 

extension of ILEM to three-dimensional analysis problems could make significant 

contributions as these problems are considerably more difficult and substantially 

demanding for practical applications. 
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APPENDIX A 

 

 RESULT VERIFICATION WITH SLIDE SOFTWARE 

 

Table A.1: Detailed information of critical slip surfaces 

Spline number, j → 1 2 3 4 5 6 

Example 1 

(af)j 0.0550 0.0221 0.0382 0.0209 0.0406 0.1271 

(bf)j -2.4779 -1.0691 -2.2868 -0.8052 -2.5693 -10.5903 

(df)j 32.3746 17.3037 40.2642 8.6797 47.9817 234.0784 

xj 17.6000 21.3174 37.8326 41.6766 45.0098 46.4531 

xj+1 21.3174 37.8326 41.6766 45.0098 46.4531 47.6616 

Example 2 (i) 

(af)j 0.1167 0.0574 0.0899 0.0265 0.0754 0.2493 

(bf)j -1.7694 -0.9607 -1.8270 0.0985 -1.4908 -7.6672 

(df)j 10.6912 7.9336 13.7072 -0.9198 11.9956 66.8359 

xj 4.6305 6.8199 13.6260 15.1794 16.2536 17.9315 

xj+1 6.8199 13.6260 15.1794 16.2536 17.9315 18.2919 

Example 2 (ii) 

(af)j 0.0703 0.0319 0 0.0241 0.0304 0.0517 

(bf)j -1.2373 -0.6018 0.2738 -0.0058 -0.2648 -1.2137 

(df)j 9.4301 6.7984 0.7905 -3.2537 -0.5849 9.9539 

xj 5.0000 8.1594 13.5748 20.0000 20.9524 22.5041 

xj+1 8.1594 13.5748 20.0000 20.9524 22.5041 23.5000 

Example 3 

(af)j 0.2724 0 0.0653 0.0274 0.0032 0.7405 

(bf)j -2.7983 0.2136 -1.9396 0.2836 1.2915 -31.8911 

(df)j 49.1834 40.8591 58.5441 29.5388 19.0602 392.4195 

xj 4.3406 5.5276 17.5051 19.5585 20.7661 22.5346 

xj+1 5.5276 17.5051 19.5585 20.7661 22.5346 22.6650 

Example 4 

(af)j 0.0426 0.0167 0.0151 0.0087 0 0.1191 

(bf)j -2.0914 -0.8688 -0.7334 -0.0849 0.7620 -12.5447 

(df)j 38.7752 24.3719 21.7905 5.4979 -15.0186 354.0470 

xj 17.8903 23.0412 28.0718 46.3783 46.9527 60.6931 

xj+1 23.0412 28.0718 46.3783 46.9527 60.6931 62.4719 

Example 5 (i) 

(af)j 0.0175 0.0049 0 0.0260 0.0193 0.3762 

(bf)j -1.2385 -0.0214 0.5454 -5.6382 -3.9173 -94.4047 

(df)j 37.7336 9.3219 -6.9988 360.2456 250.0783 5985.6826 

xj 30.0000 39.5976 57.5702 120.6233 123.5912 126.9294 

xj+1 39.5976 57.5702 120.6233 123.5912 126.9294 129.9977 

Example 5 (ii) 

(af)j 0.0138 0.0168 0 0 0.0210 0.2647 

(bf)j -0.9832 -1.0981 0.5454 0.5453 -4.4090 -65.7686 

(df)j 33.4300 33.2829 -6.9998 -6.9954 284.4761 4148.1064 

xj 30.0000 40.1453 48.8225 110.2222 120.7534 125.9343 

xj+1 40.1453 48.8225 110.2222 120.7534 125.9343 129.9998 

Example 6 (i) 

(af)j 0.4535 0.0001 0.0680 0.0609 0.0223 0.0570 

(bf)j -9.9261 -0.0031 -2.2580 -1.4569 0.2754 -1.3552 

(df)j 98.3159 44.0207 62.7196 49.2821 29.8502 49.0052 

xj 10.3355 10.8994 17.3211 20.5072 21.6855 23.6786 

xj+1 10.8994 17.3211 20.5072 21.6855 23.6786 24.4883 

Example 6 (ii) 

(af)j 0.2074 0 0.1093 0.0816 0.0098 566.6792 

(bf)j -4.8090 0 -3.8839 -2.2717 0.9037 -27871.8870 

(df)j 71.8709 44.0000 78.4837 56.9762 21.8666 342766.8388 

xj 10.4968 11.5911 17.9926 20.7931 21.8217 24.5937 

xj+1 11.5911 17.9926 20.7931 21.8217 24.5937 24.5938 

Example 6 (iii) 

(af)j 0.0295 0.0001 0.0482 0.1528 0.0115 0.2758 

(bf)j -0.6829 -0.0021 -1.5977 -5.5144 0.7102 -11.9568 

(df)j 47.9438 44.0137 57.2282 93.2993 24.7463 176.4843 

xj 10.1075 10.9832 16.9629 21.1356 21.9986 23.9800 

xj+1 10.9832 16.9629 21.1356 21.9986 23.9800 25.0178 

Example 6 (iv) 

(af)j 0.5127 0 0.0632 0.0825 0.0492 0.2373 

(bf)j -11.1461 -0.0002 -2.2003 -2.4366 -0.9178 -9.9721 

(df)j 104.5798 44.0013 63.1377 59.3507 42.0326 150.9610 

xj 10.3115 10.7740 17.9552 21.4272 22.6005 24.1693 

xj+1 10.7740 17.9552 21.4272 22.6005 24.1693 25.0120 
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Figure A.1: Example 1 – result verification using Slide 

 

Figure A.2: Example 2 Case (i) – result verification using Slide 
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Figure A.3: Example 2 Case (ii) – result verification using Slide 

 

Figure A.4: Example 3 – result verification using Slide 
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Figure A.5: Example 4 – result verification using Slide 

 

Figure A.6: Example 5 Case (i) – result verification using Slide 
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Figure A.7: Example 5 Case (ii) – result verification using Slide 

 

Figure A.8: Example 6 Case (i) – result verification using Slide 
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Figure A.9: Example 6 Case (ii) – result verification using Slide 

 

Figure A.10: Example 6 Case (iii) – result verification using Slide 
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Figure A.11: Example 6 Case (iv) – result verification using Slide 
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APPENDIX B 

 

 CLOSED-FORM EQUATIONS OF FELLENIUS’ METHOD 

For the horizontal force factor of safety, (FS,H)F, the dependent variables in Eq. (4.33) 

are replaced with the function definitions given in Eqs. (4.1)–(4.13). Then, the 

resulting expression is arranged as given in Eq. (B.1). I1 is the same as before and 

calculated using Eq. (4.53). The other integral terms, I6 and I7, are defined in Eqs. (B.2) 

and (B.3). The coefficients in the integrals can be computed using the expression given 

in Eq. (B.4). 
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Through analytical integration, closed-form of the integrals can be obtained as given 

in Eqs. (B.5) and (B.6). 
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For both integrals, linear segments result in 0/0 indeterminacy. Therefore, the closed-

form solutions of I6 and I7 are explicitly derived for linear order surface functions and 

abbreviated as I6,lin and I7,lin in Eqs. (B.7) and (B.8), respectively.  
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Similarly for the moment factor of safety, (FS,M)F, the dependent variables in Eq. (4.42) 

are replaced with the function definitions given in Eqs. (4.1)–(4.13), and then arranged 

into Eq. (B.9). In this case, I4 is the same expression as in Eq. (4.63). The other integral 

terms, I8 and I9, are defined in Eqs. (B.10) and (B.11). The coefficients in these 

expressions are given in Eq. (B.12). Then, the closed-form solutions of these integrals 

are given in Eqs. (B.13) and (B.14). 
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Both I8 and I9 are indeterminate for linear surfaces. Therefore, the closed-form 

solutions of these integrals are derived for linear order surface functions separately and 

given in Eqs (B.15) and (B.16). 
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