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ABSTRACT

GRAVITATIONAL WAVES AND GRAVITATIONAL MEMORY

Korkmaz, Ali
M.S., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

August 2018, 68 pages

We study the gravitational waves produced by compact binary systems in the linear

regime of massless general relativity and calculate the gravitational memory produced

by these waves on a detector.

Keywords: gravitational waves, gravitational memory
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ÖZ

YERÇEKİMSEL DALGALAR VE YERÇEKİMSEL HAFIZA

Korkmaz, Ali
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

Ağustos 2018 , 68 sayfa

Kompakt ikili sistemler tarafından üretilen kütleçekim dalgaları kütlesiz ve teoride

doğrusal rejimde araştırılıp, bu dalgalar tarafından bir detektör üzerinde üretilen kütle

çekimsel bellek hesaplanacaktır.

Anahtar Kelimeler: yerçekimsel dalgalar, yerçekimsel hafıza
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Prof. Dr. Adnan TEĞMEN and Prof. Dr. Mustafa Çetin GÜLEÇYÜZ, who have

always helped and supported me during and after my university education. To my
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CHAPTER 1

INTRODUCTION

In this thesis, we do not present new ideas or computations, we only follow the ref-

erences and lay set detailed computations. So it is only a review of earlier published

material. Especially the gravitational wave part follows closely the discussion of

Maggiore [1], and the memory part based on the Tolish [2].

In the first chapter, we will find the Einstein equations

Rµν −
1
2

gµνR =
8πG
c4 Tµν

by using variation of the gravitational action S = SE +SM where

SE =
c3

16πG

∫
d4x
√
−gR,

and

δSM =
1
2c

∫
d4x
√
−gT µν

δgµν

under metric change gµν → gµν +δgµν . After that we will use the linearized theory

by writing the metric such as

gµν = ηµν +hµν , |hµν |<< 1,

then we will get the linearized Einstein equations

2hµν +ηµν∂
α

∂
β hαβ −∂

α
∂νhµα −∂

α
∂µhνα +∂ν∂µh−ηµν2h =

−16πG
c4 Tµν .

Then, using Lorenz gauge

∂
ν h̄µν = 0,

we will get a simple wave equation

2h̄µν =
−16πG

c4 Tµν

where

h̄µν = hµν −
1
2

ηµνh.
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Next, we will use another gauge

h0µ = 0, hi
i = 0, ∂

jhi j = 0

which is known as transverse-traceless gauge in order to solve this wave equation.

The solution of this wave equations describe the gravitational wave. Also, we will

find the geodesic equation

d2xβ

dτ2 +Γ
β

αµ

dxµ

dτ

dxα

dτ
= 0,

and geodesic deviation

D2ξ µ

Dτ2 =−Rµ

νρσ uνuσ
ξ

ρ

which is an important equation to find the gravitational wave effect. Lastly, we will

look at some physical effect of the gravitational wave.

In the second chapter, we will describe what memory effect is, and we will give our

notation. In the third chapter, we will find the memory effect of some important fields.

As a first example, we will find the solution of the scalar wave equation

∂
a
∂aϕ =−4πS

where ϕ is a scalar field and S is a scalar charge distribution, then we can find the

memory effect of the scalar fields. Secondly, we will find the solution of the electro-

magnetic wave equation

∂
b
∂bAa =−4πJa

where we have the Lorentz gauge

∂aAa = 0,

and Ja is the electromagnetic current density in order to get electromagnetic memory.

Finally, we will use the our gravitational wave solution in order to prove that there is

non-trivial gravitational memory effect

4di(U) =
∫ U

−∞

dU ′
∫ U ′

−∞

dU ′′
d2di

dU ′′2

=
1
r
4 i

k dk.

in the 4-dimensional flat Minkowski space. To find this memory expression, we will

solve the equation of the geodesic deviation.This result will be important for us since

it is a solid proof of the general relativity.
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CHAPTER 2

THE GEOMETRIC APPROACH TO GRAVITATIONAL WAVES

In this Chapter, we generally follow Maggiore [1] in order to understand Gravitational

Waves.

Notation

Greek indices take the values 0,...,3 while the Latin letters, i, j, ...= 1,2,3 is used for

the spatial indices. The 4-dimensional flat space metric is

ηµν = diag(−,+,+,+).

We also define

xµ = (x0,~x), x0 = ct,

∂µ =
∂

∂xµ
= (

1
c

∂t ,∂i),

d4x = dx0d3x = cdtd3x.

A dot refers to the time derivative such that ḟ (t) = ∂t f = c∂0 f .

The four-momentum is defined as pµ = (E/c,~p), so pµxµ = −Et +~p.~x, and d4 p =

(1/c)dEd3 p. The Einstein summation rule with repeated upper and lower indices are

summed over is used.

2.1 Expansion Around Minkowski Space

The gravitational action is given as S = SE +SM, where

SE =
c3

16πG

∫
d4x
√
−gR. (2.1)

It is known as the Einstein-Hilbert action and SM is called the matter action where

g is the determinant of the metric. The energy-momentum tensor of matter, T µν , is

3



defined from the variation of matter action SM under metric change gµν → gµν +

δgµν , according to

δSM =
1
2c

∫
d4x
√
−gT µν

δgµν . (2.2)

In order to get the Einstein equations, we need to find the variation δSE under the

change of the metric which is

δSE =
c3

16πG

[∫
d4x(δ

√
−g)R+

∫
d4x
√
−gδR

]
(2.3)

by the product rule. If we use the definition of the Ricci scalar R which is

R = gµνRµν ,

then the variation of the Ricci scalar is

δR = (δgµν)Rµν +gµν(δRµν). (2.4)

Using eqn.(2.4) in eqn.(2.3), we can get the variation of Einstein-Hilbert action

δSE =
c3

16πG

[∫
d4xδ (

√
−g)R+

∫
d4x
√
−gRµνδgµν +

∫
d4x
√
−ggµν

δRµν

]
.

(2.5)

Now, let’s split eqn.(2.5) into three parts,

δSE1 :=
∫

d4xδ (
√
−g)R, (2.6)

δSE2 :=
∫

d4x
√
−gRµνδgµν , (2.7)

δSE3 :=
∫

d4x
√
−ggµν

δRµν . (2.8)

First of all, let’s find eqn.(2.8). By definition, the Ricci tensor is

Rµν = Rα
µαν = ∂αΓ

α
µν −∂νΓ

α
µα +Γ

α

λα
Γ

λ
µν −Γ

α

λν
Γ

λ
µα , (2.9)

so the variation of the Ricci tensor is

δRµν = ∂αδ (Γα
µν)−∂νδ (Γα

µα)+δ (Γα

λα
)Γλ

µν +Γ
α

λα
δ (Γλ

µν) (2.10)

−δ (Γα

λν
)Γλ

µα −Γ
α

λν
δ (Γλ

µα).

Let’s rewrite eqn.(2.10), adding and subtracting the term Γλ
ναδ (Γα

λ µ
),

δRµν =
[
∂αδ (Γα

µν)+Γ
α

λα
δ (Γλ

µν)−Γ
λ

µαδ (Γα

λν
)−Γ

λ
ναδ (Γα

λ µ
)
]

−
[
∂νδ (Γα

µα)+Γ
α

λν
δ (Γλ

µα)−Γ
λ

µνδ (Γα

λα
)−Γ

λ
ναδ (Γα

λ µ
)
]
, (2.11)

and using the definition of the covariant derivative

∇αV β

µν = ∂αV β

µν +Γ
β

λα
V λ

µν −Γ
λ

µαV β

λν
−Γ

λ
ναV β

λ µ
, (2.12)
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one can write the variation of the Ricci tensor

δRµν = ∇αδ (Γα
µν)−∇νδ (Γα

µα). (2.13)

Note that Γ
µ

αβ
is not a tensor but δ (Γ

µ

αβ
) is a tensor, hence we know how the

covariant derivative acts on it. If we use eqn.(2.13) in eqn.(2.8), we get

δSE(3) =
∫

d4x
√
−ggµν

(
∇αδΓ

α
µν −∇νδΓ

α
µα

)
=
∫

d4x
√
−g
[
∇α(gµν

δΓ
α

µν)−∇ν(gµν
δΓ

α
µα)
]
,

where we use the fact that the covariant derivative of the Riemannian metric is zero

since we have metric compatibility. If dummy indices α and ν are replaced with each

other for the second term of the integral, we get

δSE(3) =
∫

d4x
√
−g
[
∇α(gµν

δΓ
α

µν)−∇α(gµα
δΓ

ν
µν)
]

=
∫

d4x
√
−g∇αJα . (2.14)

where Jα := gµνδ (Γα
µν)− gµαδ (Γν

µν). Let J be a vector field over the region V

with boundary ∂V , then using the Stokes’ theorem:∫
V

d4x
√
−g∇αJα =

∫
∂V

d3x
√
|γ|nαJα , (2.15)

where nα is the normal unit vector on the hyper surface ∂V , and
√
|γ| is the integra-

tion measure for ∂V .

δSE(3) =
∫

∂V
d3x
√
|γ|nαJα = 0, (2.16)

using eqn.(2.15) in eqn.(2.14), δSE(3) is equal to a contribution which is zero by

vanishing of variation at infinity.

Secondly, we need to know the variation of
√
−g in order to find eqn.(2.6).

δ (
√
−g) =− 1

2
√
−g

δg =− 1
2
√
−g

∂g
∂gλν

δgλν . (2.17)

It is known that one can write the inverse of metric gνλ such that

gνλ =
1
g
(g̃νλ )T =

g̃λν

g

where g̃νλ is the cofactor of metric gνλ .

ggνλ = g̃λν ,

ggλνgνλ = gλν g̃λν ,

g = gλν g̃λν ,

⇒ ∂g
∂gλν

= g̃λν = ggνλ . (2.18)

5



Using eqn.(2.18) in eqn.(2.17), we get

δ (
√
−g) =− 1

2
√
−g

ggνλ
δgλν

=
1
2
√
−ggνλ

δgλν

=
1
2
√
−ggµν

δgµν , (2.19)

and

gµνgµν = 4

δ (gµν)gµν +gµνδ (gµν) = 0

gµν
δ (gµν) =−gµνδ (gµν). (2.20)

Also, if we use eqn.(2.20) in eqn.(2.19), then we get

δ (
√
−g) =

1
2
√
−ggµνδgµν . (2.21)

Hence, eqn.(2.6) takes the following form

δSE(1) =
∫

d4x
(
− 1

2
√
−ggµνδgµν

)
. (2.22)

As a result, eqn.(2.5) can be recast as

δSE =
c3

16πG

[
− 1

2

∫
d4x
√
−ggµνRδgµν +

∫
d4x
√
−gRµνδgµν +0

]
=

c3

16πG

∫
d4x
(
Rµν −

1
2

gµνR
)√
−gδgµν . (2.23)

On the other hand, the variation of the matter action is

δSM =
1
2c

∫
d4x
√
−gT µν

δgµν (2.24)

by the definition. We need to arrange eqn.(2.24) to find the variation of the action

S = SE +SM. To do this, we can use the expression

gαβ gβν = δ
ν

α ,

gαβ δgβν =−δ (gαβ )g
βν ,

gµαgαβ δgβν =−gµα
δ (gαβ )g

βν ,

δ
µ

β
δgβν =−gµα

δ (gαβ )g
βν ,

δgµν =−gµα
δ (gαβ )g

βν .

Then, we have

Tµνδgµν =−Tµνgµα
δ (gαβ )g

βν

=−T αβ
δgαβ

6



=−T µν
δgµν . (2.25)

Plugging eqn.(2.25) in eqn.(2.24), we can write the variation of the matter action as

δSM =− 1
2c

∫
d4x
√
−gTµνδgµν . (2.26)

The variation of the action S = SE +SM vanishes under change of metric,

δS = δSE +δSM

0 =
c3

16πG

∫
d4x
√
−g
(
Rµν −

1
2

gµνR
)
δgµν − 1

2c

∫
d4x
√
−gTµνδgµν

=
c3

16πG

∫
d4x
√
−g
[
Rµν −

1
2

gµνR− 8πG
c4 Tµν

]
δgµν .

As a result, the Einstein equation is found by taking the variation of the total action

with respect to metric gµν

⇒ Rµν −
1
2

gµνR =
8πG
c4 Tµν . (2.27)

Let us discuss the symmetry of general relativity. It is invariant under a big symmetry

group. Let

xµ → x′µ(x) (2.28)

refer to all possible coordinate transformations, where x′µ is arbitrary smooth function

of the coordinate xµ . In other words, it is a diffeomorphism. The metric transforms

as

gµν(x)→ g′µν(x
′) =

∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ (x) (2.29)

under the coordinate transformations (2.28).

We will expand the the Einstein equation around the flat-space metric. To do this, we

can firstly write the metric as

gµν = ηµν +hµν , |hµν |<< 1, (2.30)

and then we expand the equation of the motion up to linear order in hµν . This theory

is known as linearized theory.

Consider coordinate transformations defined as

xµ → x′µ(x) = xµ +ξ
µ(x), (2.31)

where |∂µξν | has the at most same order of smallness as hµν . Let’s use this transfor-

mations in eqn.(2.29). In order to do this one needs to find the inverse transformation

xρ = x′ρ −ξ
µ(x), (2.32)

7



∂xρ

∂x′µ
=

∂x′ρ

∂x′µ
− ∂ξ ρ(x)

∂x′µ
,

= δ
ρ

µ −∂αξ
ρ ∂xα

∂x′µ
,

= δ
ρ

µ −∂αξ
ρ [δ α

µ −∂λ ξ
α ∂xλ

∂x′µ
],

= δ
ρ

µ −∂µξ
ρ +O(|∂µξ

ρ |2). (2.33)

Now, if we use eqn.(2.33) with appropriate indices in eqn.(2.29), then we have

g′µν = (δ
ρ

µ −∂µξ
ρ)(δ σ

ν −∂νξ
σ )(ηρσ +hρσ )

= (δ
ρ

µ −∂µξ
ρ)(ηρν +hρν −∂νξρ −∂νξ

σ hρσ )

= ηµν +hµν −∂νξµ −∂µξν . (2.34)

Hence, the term of perturbation transforms as

hµν → h′µν = hµν − (∂νξµ +∂µξν), (2.35)

under the transformation (2.31). As a special case, we can consider constant transla-

tions, i.e. xµ → x′µ = xµ +aµ , where aµ is not infinitesimal but can be finite. We can

see that hµν is invariant, if we look at eqn.(2.34). Since,

g′µν =
∂xρ

∂x′µ
∂xσ

∂x′ν
[ηρσ +hρσ ] = δ

ρ

µ δ
σ
ν [ηρσ +hρσ ] = ηµν +hµν(x). (2.36)

In addition, we can look at the finite, global Lorentz transformations

xµ = Λ
µ

νxν , (2.37)

and by definition

Λ
ρ

µ Λ
σ

ν ηρσ = ηµν . (2.38)

Lorentz transformation of the metric is

gµν(x)→ g′µν(x
′) = Λ

ρ

µ Λ
σ

ν gρσ (x)

= Λ
ρ

µ Λ
σ

ν [ηρσ +hρσ ]

= ηµν +Λ
ρ

µ Λ
σ

ν hρσ (x). (2.39)

So we have g′µν = ηµν +h′µν , with

h′µν = Λ
ρ

µ Λ
σ

ν hρσ (x). (2.40)

It means that hµν is a tensor under global Lorentz transformations.

Now, let’s find the linearization of the Riemann tensor at the linear order in hµν

Rµ

νρσ = ∂ρΓ
µ

νσ −∂σ Γ
µ

νρ +Γ
µ

αρΓ
α

νσ −Γ
µ

ασ Γ
α

νρ , (2.41)

8



and Christoffel symbol

Γ
ρ

µν =
1
2

gρσ [∂µgσν +∂νgσ µ −∂σ gµν ] (2.42)

by the definition [11]. First we need to use the linearized metric in eqn.(2.42),

Γ
ρ

µν =
1
2

gρσ [∂µ(ησν +hσν)+∂ν(ησ µ +hσ µ)−∂σ (ηµν +hµν)]

=
1
2

gρσ [∂µhσν +∂νhσ µ −∂σ hµν ], (2.43)

and we need to find the inverse metric gρσ using gµρgρσ = δ σ
µ . Suppose that gρσ =

aηρσ +bhρσ . Hence,

(ηµρ +hµρ)(aη
ρσ +bhρσ ) = aδ

ρ

µ +bh σ
µ (x)+ah σ

µ (x)+b|h|2 = δ
ρ

µ

⇒ a = 1a+b = 0⇒ b =−a⇒ b =−1,

the inverse metric is

gρσ = η
ρσ −hρσ (x). (2.44)

Using eqn.(2.44) in eqn.(2.43), we get

Γ
ρ

µν =
1
2
(ηρσ −hρσ )[∂µhσν +∂νhσ µ −∂σ hµν)]

=
1
2

η
ρσ [∂µhσν +∂νhσ µ −∂σ hµν ]+ |h|2. (2.45)

Using eqn.(2.45) with appropriate indices, one can find the linearized Riemann tensor

Rµ

νρσ = ∂ρ [
1
2

η
µα(∂νhασ +∂σ hαν −∂αhνσ )]−∂σ [

1
2

η
µα(∂νhαρ +∂ρhαν −∂αhνρ)]

+
1
2

η
µα [∂λ hαρ +∂ρhαλ −∂αhλρ ]

1
2

η
λα [∂νhασ +∂σ hαν −∂αhνσ ]

− 1
2

η
µα [∂λ hασ +∂σ hαλ −∂αhλρ ]

1
2

η
λα [∂νhαρ +∂ρhαν −∂αhνρ ]

Rµ

νρσ =
1
2

η
µα [∂ρ∂νhασ +���

��∂ρ∂σ hαν −∂ρ∂αhνσ ]

− 1
2

η
µα [∂σ ∂νhαρ +���

��∂σ ∂ρhαν −∂σ ∂αhνρ ]+ |h|2

=
1
2

η
µα [∂ρ∂νhασ +∂σ ∂αhνρ −∂ρ∂αhνσ −∂σ ∂νhαρ ]

gγµRµ

νρσ = (ηγµ +hγµ)
1
2

η
µα [∂ρ∂νhασ +∂σ ∂αhνρ −∂ρ∂αhνσ −∂σ ∂νhαρ ]

Rγνρσ =
1
2

δ
α

γ [∂ρ∂νhασ +∂σ ∂αhνρ −∂ρ∂αhνσ −∂σ ∂νhαρ ]+ |h|2

=
1
2
[∂ρ∂νhγσ +∂σ ∂γhνρ −∂ρ∂γhνσ −∂σ ∂νhγρ ]+ |h|2

⇒ Rµνρσ =
1
2
[∂ρ∂νhµσ +∂σ ∂µhνρ −∂ρ∂µhνσ −∂σ ∂νhµρ ]. (2.46)
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Plugging eqn.(2.31) into eqn.(2.46), one gets

R′µνρσ =
1
2
{∂ρ∂ν [hµσ − (∂µξσ +∂σ ξµ)]+∂σ ∂µ [hνρ − (∂νξρ +∂ρξν)]

−∂ρ∂µ [hνσ − (∂νξσ +∂σ ξν)]−∂σ ∂ν [hµρ − (∂µξρ +∂ρξµ)]}

=
1
2
[∂ρ∂νhµσ +∂σ ∂µhνρ −∂ρ∂µhνσ −∂σ ∂νhµρ ]

− 1
2
[���

���∂ρ∂ν∂µξσ +���
���∂ρ∂ν∂σ ξµ +���

���∂σ ∂µ∂νξρ +���
���∂σ ∂µ∂ρξν

−����
��

∂ρ∂µ∂νξσ −����
��

∂ρ∂µ∂σ ξν −����
��

∂σ ∂ν∂ρξρ −����
��

∂σ ∂ν∂ρξµ ]

= Rµνρσ ,

which means that the linearized Riemann tensor is invariant under infinitesimal gauge

transformations (2.31).

Defining,

h̄µν = hµν −
1
2

ηµνh, (2.47)

where

h = η
µνhµν , (2.48)

the linearized Einstein equations can be written more compactly. In addition, it is

easy to see that h̄≡ ηµν h̄µν = ηµν(hµν − 1
2ηµνh) =−h. Therefore,

hµν = h̄µν +
1
2

ηµνh,

= h̄µν −
1
2

ηµν h̄. (2.49)

Now we can compute the Einstein equations. First we will find Rµν − 1
2gµνR,

Rµ

νρσ =
1
2

η
µα{∂ρ∂νhασ +∂σ ∂αhνρ −∂ρ∂αhνσ −∂σ ∂νhαρ},

Rνσ = Rµ

νµσ =
1
2

η
µα{∂µ∂νhασ +∂σ ∂αhνµ −∂µ∂αhνσ −∂σ ∂νhαµ},

Rµν =
1
2

η
σα{∂σ ∂µhαν +∂ν∂αhµσ −∂σ ∂αhµν −∂ν∂µhασ}, (2.50)

and

R = η
µνRµν =

1
2

η
µν{∂ α

∂µhαν +∂ν∂αh α
µ −∂

α
∂αhµν −∂ν∂µh α

α },

=
1
2
{∂ α

∂µh µ

α +∂
ν
∂αh α

µ −2h µ

µ −∂
µ

∂µh}

=
1
2
{2∂α∂µhµα −22h}

= ∂α∂µhµα −2h. (2.51)
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Then the Einstein tensor becomes

Gµν = Rµν −
1
2

gµνR

=
1
2

η
σα{∂σ ∂µhαν +∂ν∂αhµσ −∂σ ∂αhµν −∂ν∂µhασ}−

1
2

ηµν(∂α∂αhσα −2h)

=
1
2
{∂ α

∂µhαν +∂ν∂αh α
µ −2hµν −∂ν∂µh−ηµν∂σ ∂αhσα −ηµν2h}

=
1
2
{−2hµν +∂

α
∂νhµα +∂

α
∂µhνα −∂ν∂µh−∂α∂β hαβ

ηµν +ηµν2h}.

(2.52)

From Gµν = 8πG
c4 Tµν , we have the linearized Einstein equation

2hµν +ηµν∂
α

∂
β hαβ −∂

α
∂νhµα −∂

α
∂µhνα +∂ν∂µh−ηµν2h =

−16πG
c4 Tµν .

(2.53)

To use definition (2.47), we will add and subtract some suitable terms to eqn.(2.53)

such that,
−16πG

c4 Tµν =2(hµν −
1
2

ηµνh)− 1
2

ηµν2h+ηµν∂
α

∂
β (hαβ −

1
2

ηαβ h)

+
1
2

ηµν∂
α

∂
β

ηαβ h−∂
α

∂ν(hµα −
1
2

ηµαh)− 1
2

∂
α

∂νηµαh

−∂
α

∂µ(hνα −
1
2

ηναh)− 1
2

∂
α

∂µηναh+∂ν∂µh

=2h̄µν +ηµν∂
α

∂
β h̄αβ −∂

α
∂ν h̄µα −∂

α
∂µ h̄να

−
��

��
�1

2
ηµν2h+

��
�
��1

2
∂β ∂

β h−
�
�
�
��1

2
∂µ∂νh−

�
�
�
��1

2
∂ν∂µh+

��
��∂ν∂µh,

⇒2h̄µν +ηµν∂
α

∂
β h̄αβ −∂

α
∂ν h̄µα −∂

α
∂µ h̄να =

−16πG
c4 Tµν . (2.54)

Up to this point, we have not made a choice of gauge. But we can do this to simplify

these equations. We will choose the Lorenz gauge

∂
ν h̄µν = 0. (2.55)

Now, let’s use the gauge symmetry (2.31),

h̄µν → h̄′µν = h̄µν − (∂µξν +∂νξµ)−
1
2

ηµνη
αβ (hαβ −∂αξβ −∂β ξα)

= (hµν −
1
2

ηµνh)− (∂µξν +∂νξµ −ηµν∂β ξ
β )

= h̄µν − (∂µξν +∂νξµ −ηµν∂β ξ
β ),

so

∂
ν h̄µν → (∂ ν h̄µν)

′ = ∂
ν h̄µν − (���

�
∂

ν
∂µξν +∂

ν
∂νξµ −����

���
ηµν∂

ν
∂β ξ

β )
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= ∂
ν h̄µν −2ξµ , (2.56)

to prove the existence of the Lorenz gauge. If we choose the initial field configuration

as ∂ ν h̄µν = fµ(x), we must choose,

2ξµ = fµ(x), (2.57)

to get (∂ ν h̄µν)
′ = 0. Then, the solution of eqn.(2.56) is

ξµ(x) =
∫

d4xG(x− y) fµ(y), (2.58)

where G(x) is a Green’s function of the d’Alembertian operator such that

2xG(x− y) = δ
4(x− y). (2.59)

If we use the Lorenz gauge in our main eqn.(2.54), the last three terms on the left

hand side will vanish, then we get the simple wave equation

2h̄µν =
−16πG

c4 Tµν . (2.60)

Now, let us note the following observations:

i)the gauge condition (2.55) gives four conditions which reduce the ten independent

components of the symmetric 4x4 matrix hµν to six independent components,

ii)if we take the derivative of the wave equation, we will get an expression,

∂
ν(2h̄µν) = ∂

ν(
−16πG

c4 Tµν)

2∂
ν h̄µν =

−16πG
c4 ∂

νTµν

⇒ ∂
νTµν = 0, (2.61)

which is the conservation of the energy-momentum in the linearized theory.

2.2 The transverse-traceless gauge

Firstly, we will analyze eqn.(2.60) outside the source where the energy-momentum

tensor is zero:

2h̄µν = 0. (2.62)

There is an important result which is the fact that Gravitational waves travel at the

speed of light, because the definition of d’Alembertian 2 = −( 1
c2 )∂

2
0 +∇2. Under

transformation (2.31), the Lorenz gauge is not spoiled if

2ξµ = 0. (2.63)

12



Then, 2ξµν = 0, where

ξµν ≡ ∂µξν +∂νξµ −ηµν∂ρξ
ρ , (2.64)

because the flat space d’Alembertian always commutes with partial derivatives. If the

ξµν which depends on ξµ is subtracted from h̄µν , then the result will satisfy the same

equation 2(h̄µν −ξµν) = 0. Taking a suitable value of ξ 0, we can make h̄ = 0, then

it is obvious that h̄µν = hµν . Also, choosing suitable ξ i we can make h0i = 0. Then

the Lorentz gauge for µ = 0,

∂
0h00 +∂

ih0i = 0,

⇒ ∂
0h00 = 0,

⇒ h00 = const. (2.65)

The time independent term h00 is the static part of gravitational interaction that is the

Newtonian potential of the source which generates the gravitational wave. We can

take the h00 = 0. So, h0µ = 0, then the Lorenz gauge becomes ∂ jhi j = 0, and hi
i = 0.

As a result,

h0µ = 0, hi
i = 0, ∂

jhi j = 0. (2.66)

This is called the transverse-traceless gauge (TT gauge).

Using the Lorenz gauge which gives four conditions, hµν has 10-4=6 independent

components. Lastly, we impose the infinitesimal gauge to eqn.(2.63) which gives us

four conditions; therefore, the independent components of the hµν is reduced from 6

to 2. We will denote the metric in the TT gauge by hT T
i j .

The plane wave solution of eqn.(2.62) is hT T
i j = ei j(~k)eikx with kµ = (ω

c ,
~k) and ω

c =

|~k|. The tensor ei j(~k) is known as the polarization tensor. From eqn.(2.66), the non-

zero components of the hT T
i j are in the plane transverse to n̂ =

~k
|~k|

since on plane wave

∂ jhi j = 0⇒ n jhi j = 0. Let’s choose the n̂ = ẑ, and use the symmetry and traceless

conditions of hT T
i j , we can write the solution as

hT T
i j (t,z) =


h+ hx 0

hx −h+ 0

0 0 0


i j

cos[ω(t− z
c
)], (2.67)

or,

hT T
ab (t,z) =

 h+ hx

hx −h+


ab

cos[ω(t− z
c
)], (2.68)
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where a,b = 1,2. h+ and hx are called the amplitudes of the "plus" and "cross"

polarizations of the wave. Then the metric is

ds2 =−c2dt2 +dz2 +{1+h+ cos[ω(t− z
c
)]}dx2

+{1−h+ cos[ω(t− z
c
)]}dy2 +2hx cos[ω(t− z

c
)]dxdy. (2.69)

The plane wave solution hµν(x) propagating in the direction n̂, outside the source,

follows the Lorenz gauge but it is not suitable for TT gauge, yet. To make it suitable

for TT gauge, we will firstly define the tensor

Pi j(n̂) = δi j−nin j, (2.70)

which is symmetric, is transverse(niPi j = 0), is a projector (PikPk j = Pi j), and its trace

is 2. Using the tensor (2.70), we define

Λi j,kl = PikPjl−
1
2

Pi jPkl. (2.71)

The question is if this is still a projector. The answer is yes since

Λi j,klΛkl,mn = (PikPjl−
1
2

Pi jPkl)(PkmPln−
1
2

PklPmn)

= PikPjlPkmPln−
1
2

PikPjlPklPmn−
1
2

Pi jPklPkmPln +
1
4

Pi jPklPklPmn

= PikPjlPkmPln−
1
2

PikPjkPmn−
1
2

Pi jPlmPln +
1
4
.2Pi jPmn

= PikPjlPkmPln−
1
2

Pi jPmn−
1
2

Pi jPmn +
1
2

Pi jPmn

= PikPjlPkmPln−
1
2

Pi jPmn, (2.72)

and eqn.(2.70) implies that

PikPjl = (δik−nink)(δ jl−n jnl) = PjlPik. (2.73)

Using eqn.(2.73) in eqn.(2.72), we get

Λi j,klΛkl,mn = PikPkmPjlPln−
1
2

Pi jPmn

= PimPjn−
1
2

Pi jPmn

= Λi j,mn. (2.74)

Also, it is transverse for all indices, niΛi j,kl = 0 ,etc., and it is traceless for the (i, j)

and (k, l) indices,

ni
Λi j,kl = niPikPjl−−

1
2

niPi jPkl = 0,

Λii,kl = PikPil−
1
2

PiiPkl = 0,
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and it is symmetric under the exchange (i, j)↔ (k, l). In terms of n̂, its explicit form

is

Λi j,kl = PikPjl−−
1
2

Pi jPkl

= (δik−nink)(δ jl−n jnl)−
1
2
(δi j−nin j)(δkl−nknl)

= δikδ jl−δikn jnl−ninkδ jl +ninkn jnl−
1
2

δi jδkl

+
1
2

nknlδi j +
1
2

nin jδkl−
1
2

nin jnknl

= δikδ jl−
1
2

δi jδkl−n jnlδik−ninkδ jl +
1
2

nknlδi j +
1
2

nin jδkl

+
1
2

nin jnknl. (2.75)

It is called the Lambda tensor. In general, any symmetric tensor can be written as

ST T
i j = Λi j,klSkl, (2.76)

in the TT gauge. Hence, the gravitational wave is given by

hT T
i j = Λi j,klhkl. (2.77)

We know that in the TT gauge, the equation of motion is 2hT T
i j = 0, so

hT T
i j (x) =

∫ d3k
(2π)3 (Ai j(~k)eikx +A∗i j(~k)e

−ikx). (2.78)

Since, kµ = (ω

c ,
~k) and |~k| = ω

c = 2π f
c , then d3k = |~k|2d|~k|dΩ = (2π

c )3 f 2d f dΩ, with

f > 0. If we denote the d2n̂ = d cosθdφ , then

hT T
i j (x) =

1
c3

∫
∞

0
d f f 2

∫
d2n̂(Ai j( f , n̂)e−2πi f (t− n̂.~x

c )+ c.c.). (2.79)

Because of the TT gauge condition,

hi
i
T T

(x) =
1
c3

∫
∞

0
d f f 2

∫
d2n̂(Ai

i(~k)e
−2πi f (t− n̂.~x

c )+ c.c.) = 0

which implies that Ai
i(
~k) = 0, and

∂
ihT T

i j (x) = kihT T
i j (x) =

1
c3

∫
∞

0
d f f 2

∫
d2n̂(kiAi j(~k)e−2πi f (t− n̂.~x

c )+ c.c.) = 0

and also this leads to kiAi j(~k) = 0. For simplicity, we can omit the superscript TT by

using the a,b = 1,2 indices for the TT gauge metric in the transverse plane. Then

hab(t,~x) =
∫

∞

0
d f
(

h̃ab( f ,~x)e−2πi f t + h̃ab
∗
( f ,~x)e2πi f t

)
, (2.80)

where

h̃ab( f ,~x) =
f 2

c3

∫
d2n̂Aab( f , n̂)e2πi f n̂.~x

c . (2.81)
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If we observe on Earth a gravitational wave emitted by a single source, we can define

the direction of propagation of the wave n̂0, and we can write

Ai j(~k) = Ai j( f )δ (2)(n̂− n̂0) (2.82)

Using eqn.(2.82) in eqn.(2.81) we get

h̃ab( f ,~x) =
f 2

c3 Aab( f )e2πi f n̂0.~x
c . (2.83)

For the detectors, we have

e2πi f n̂.~x
c = ei n̂.~x

λ̄ ∼= 1, (2.84)

all over the detector with choosing the origin of the coordinate system centered on

the detector, because n̂.~x << λ̄ . When we want to look at the gravitational wave at

the detector location, we can omit all x-dependences and write

hab(t) =
∫

∞

0
d f
(

h̃ab( f )e−2πi f t + h̃ab
∗
( f )e2πi f t

)
, (2.85)

with h̃ab( f ) = h̃ab( f ,~x = 0). We don’t have to keep x-dependence unless we compare

the gravitational wave signal at two different detectors.

From eqn.(2.68)

h̃ab(t) =

 h̃+ h̃x

h̃x −h̃+


ab

. (2.86)

If we rotate by an angle ψ the system of axes for their definition, cosψ sinψ

−sinψ cosψ

 h+ hx

hx −h+

 cosψ −sinψ

sinψ cosψ


=

 cosψ sinψ

−sinψ cosψ

 h+ cosψ−hx sinψ h+ sinψ +hx cosψ

hx cosψ +h+ sinψ h+ cosψ−hx sinψ


=

 h+c2ψ−hxsψcψ−hxsψcψ−h+s2ψ h+cψsψ +hxc2ψ−hxs2ψ +h+sψcψ

h+cψsψ +hxc2ψ−hxs2ψ +h+sψcψ h+s2ψ +hxsψcψ +hxsψcψ−h+c2ψ


=

 h+ cos2ψ−hx sin2ψ h+ sin2ψ +hx cos2ψ

h+ sin2ψ +hx cos2ψ −(h+ cos2ψ−hx sin2ψ)

 ,

then h+ and hx transform as

h+→ h+ cos2ψ−hx sin2ψ, (2.87)

hx→ h+ sin2ψ +hx cos2ψ. (2.88)
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Until now, we have looked at the only physical frequencies f > 0, but now we can

rewrite eqn.(2.80) by defining

h̃ab(− f ,~x) = h̃ab
∗
( f ,~x), (2.89)

then

hab(t) =
∫

∞

−∞

d f h̃ab( f )e−2πi f t , (2.90)

and the inversion of eqn.(2.90) is

h̃ab( f ) =
∫

∞

−∞

dthab(t)e2πi f t . (2.91)

Also, we can use the polarization tensor eA
i j(n̂) (with A =+,x) to write the plane wave

expansion, making the definition

e+i j(n̂) = ûiû j− v̂iv̂ j, ex
i j(n̂) = ûiv̂ j + v̂iû j (2.92)

with û⊥n̂,v̂⊥n̂, and û⊥v̂ where û and v̂ are the unit vectors. It is obvious from this

definition that

eA
i j(n̂)e

A′,i j(n̂) = 2δ
AA′. (2.93)

As a special case, in the frame n̂ = ẑ, if û = x̂ and v̂ = ŷ then

e+ab =

 1 0

0 −1

 , ex
ab =

 0 1

1 0

 (2.94)

with a,b = 1,2 spanning the (x,y) plane. In a generic frame, if we define
f 2

c3 Ai j( f , n̂) = ∑
A=+,x

h̃A( f , n̂)eA
i j(n̂), (2.95)

then eqn.(2.79) reads

hab(t,~x) = ∑
A=+,x

∫
∞

−∞

d f
∫

d2n̂h̃A( f , n̂)eA
ab(n̂)e

−2πi f (t− n̂.~x
c ), (2.96)

where we used the definition (2.89).

2.3 Interaction of gravitational waves with test masses

2.3.1 Geodesic equation and geodesic deviation

Let xµ(λ ) be a curve in some reference frame parametrized by a parameter λ . The

interval ds is

ds2 = gµνdxµdxν = gµν

dxµ

dλ

dxν

dλ
dλ

2. (2.97)
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There are some cases such that

i) if ds2 > 0, then it is known as a space-like curve,

ii) if ds2 < 0, then it is known as a time-like curve.

iii) if ds2 = 0, then it is known as a light-like (null) curve.

In the second case, we can define the proper time τ ,

c2dτ
2 =−ds2 =−gµνdxµdxν . (2.98)

The proper time τ is the time which is measured by a clock which goes along this

trajectory. So we can use τ as a parameter, xµ = xµ(τ). From eqn.(2.98), we have

gµν

dxµ

dτ

dxν

dτ
=−c2. (2.99)

The four-velocity uµ is defined as

uµ =
dxµ

dτ
, (2.100)

then using this definition, we can rewrite eqn.(2.99) as

gµνuµuν =−c2. (2.101)

For all time-like curves which have the value on the boundary xµ(τA) = xµ

A and

xµ(τB) = xµ

B, the action is

S =−m
∫

τB

τA

dτ. (2.102)

Its variation gives us the trajectory of a point-like test mass m. To show this we will

start to use eqn.(2.98) which gives us

dτ =
1
c

√
−gµν

dxµ

dλ

dxν

dλ
dλ . (2.103)

If we use eqn.(2.103) in the action (2.102), we will get

S =−m
c

∫
τB

τA

√
−gµνdẋµdẋνdλ , (2.104)

where dẋµ = dxµ

dλ
. The variation of the action is

δS =−m
c

∫
τB

τA

δ (
√
−gµν ẋµ ẋν)dλ

=−m
c

∫
τB

τA

1
2
√
−gµν ẋµ ẋν

[(−δgµν)
dxµ

dλ

dxν

dλ
−2gµν

d(δxµ)

dλ

dxν

dλ
]dλ .

The last term can be rewritten as

−2gµν

d(δxµ)

dλ

dxν

dλ
=

d
dλ

[−2gµνδxµ dxν

dλ
]+2

dgµν

dλ
δxµ dxν

dλ
+2gµνδxµ d2xν

dλ 2 .

(2.105)
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Then using this, we have

δS =−m
2c

∫
τB

τA

1√
−gµν ẋµ ẋν

{(−δgµν)
dxµ

dλ

dxν

dλ
+
���

���
���

�d
dλ

[−2gµνδxµ dxν

dλ
]

+2
dgµν

dλ
δxµ dxν

dλ
+2gµνδxµ d2xν

dλ 2 }dλ .

Using the fact that dτ

dλ
= 1

c

√
(−gµν

dxµ

dλ

dxν

dλ
), the variation of the action boils down to

δS =− m
2c2

∫
τB

τA

dλ
dλ

dτ2 dτ{(−δgµν)
dxµ

dλ

dxν

dλ
+2

dgµν

dλ
δxµ dxν

dλ
+2gµνδxµ d2xν

dλ 2 }

=− m
2c2

∫
τB

τA

dτ{(−δgµν)
dxµ

dτ

dxν

dτ
+2

dgµν

dτ
δxµ dxν

dτ
+2gµνδxµ d2xν

dτ2 }

=− m
2c2

∫
τB

τA

dτ{−
∂gµν

∂xα
δxα dxµ

dτ

dxν

dτ
+2

dgµν

dxα

dxα

dτ

dxν

dτ
δxµ +2gµν

d2xν

dτ2 δxµ}

=− m
2c2

∫
τB

τA

dτ{−∂αgµν

dxµ

dτ

dxν

dτ
δxα +

dgµν

dxα

dxα

dτ

dxν

dτ
δxµ +

dgµν

dxα

dxα

dτ

dxν

dτ
δxµ

+2gµν

d2xν

dτ2 δxµ}.

If we change some dummy indices such that in the first term α ↔ ν , in the second

term µ↔ ν , in the third term α→ µ,µ→ ν ,ν→ α , and in the last term µ↔ ν then

we have

δS =− m
2c2

∫
τB

τA

dτ{−∂νgµα

dxµ

dτ

dxα

dτ
δxν +∂αgνµ

dxα

dτ

dxµ

dτ
δxν +∂µgνα

dxµ

dτ

dxα

dτ
δxν

+2gνµ

d2xµ

dτ2 δxν}

=− m
2c2

∫
τB

τA

dτ{(−∂νgµα +∂αgνµ +∂µgνα)
dxµ

dτ

dxα

dτ
+2gνµ

d2xµ

dτ2 }δxν

=−m
c2

∫
τB

τA

dτ{1
2
(−∂νgµα +∂αgνµ +∂µgνα)

dxµ

dτ

dxα

dτ
+gνµ

d2xµ

dτ2 }δxν .

Since the δS = 0, we get

gνµ

d2xµ

dτ2 +
1
2
(−∂νgµα +∂αgνµ +∂µgνα)

dxµ

dτ

dxα

dτ
= 0. (2.106)

Multiplying with the inverse metric gβν ,

δ
β

µ

d2xµ

dτ2 +
1
2

gβν(−∂νgµα +∂αgνµ +∂µgνα)
dxµ

dτ

dxα

dτ
= 0, (2.107)

we get

d2xβ

dτ2 +Γ
β

αµ

dxµ

dτ

dxα

dτ
= 0 (2.108)

where we use the definition of the Christoffel symbol Γ
β

αµ [5]. This equation is

known as the geodesic equation, and it is the equation of motion of a test mass in

the space-time which has the metric gµν when there is no external forces. In terms

19



of four-velocity which has been defined in eqn.(2.100), geodesic equation takes the

form

duβ

dτ
+Γ

β

αµuµuα = 0. (2.109)

Let’s look at the two nearby geodesics, one parametrized by xµ(τ) and the other by

xµ(τ)+ ξ µ(τ) where |ξ µ | is much smaller than the scale of the variation of gravi-

tational field. We know xµ(τ) satisfies the geodesic eqn.(2.108), and xµ(τ)+ ξ µ(τ)

satisfies the "nearby" geodesic equation [5]

d2(xµ +ξ µ)

dτ2 +Γ
µ

νρ(x+ξ )
d(xν +ξ ν)

dτ

d(xρ +ξ ρ)

dτ
= 0. (2.110)

Let’s use the Taylor series expansion for the Γ
µ

νρ(x+ξ ) which is

Γ
µ

νρ(x+ξ ) = Γ
µ

νρ(x)+ξ
σ

∂σ Γ
µ

νρ(x)+O(|ξ |2)

then using this in eqn.(2.110)

0 =
d2xµ

dτ2 +
d2ξ µ

dτ2 +[Γ
µ

νρ(x)+ξ
σ

∂σ Γ
µ

νρ(x)][
dxν

dτ

dxρ

dτ
+

dxν

dτ

dξ ρ

dτ
+

dξ ν

dτ

dxρ

dτ
+
��

�
��dξ ν

dτ

dξ ρ

dτ
]

=
d2xµ

dτ2 +
d2ξ µ

dτ2 +Γ
µ

νρ(x)
dxν

dτ

dxρ

dτ
+Γ

µ

νρ(x)
dxν

dτ

dξ ρ

dτ
+Γ

µ

νρ(x)
dξ ν

dτ

dxρ

dτ

+ξ
σ

∂σ Γ
µ

νρ(x)[
dxν

dτ

dxρ

dτ
+
��

�
��dxν

dτ

dξ ρ

dτ
+
��

�
��dξ ν

dτ

dxρ

dτ
]

=
d2xµ

dτ2 +Γ
µ

νρ(x)
dxν

dτ

dxρ

dτ
+

d2ξ µ

dτ2 +Γ
µ

νρ(x)
dxν

dτ

dξ ρ

dτ
+Γ

µ

νρ(x)
dξ ν

dτ

dxρ

dτ

+ξ
σ

∂σ Γ
µ

νρ(x)
dxν

dτ

dxρ

dτ
.

In the last equation, the first two terms will vanish if we use eqn.(2.108), one has

0 =
d2ξ µ

dτ2 +2Γ
µ

νρ(x)
dxν

dτ

dξ ρ

dτ
+ξ

σ
∂σ Γ

µ

νρ(x)
dxν

dτ

dxρ

dτ
. (2.111)

By the definition of the covariant derivative, we know that

DV µ

Dτ
=

dV µ

dτ
+Γ

µ

νρV ν dxρ

dτ
. (2.112)

Then, we have

D2ξ µ

Dτ2 =
D

Dτ
(
Dξ µ

Dτ
) =

D
Dτ

(
dξ µ

dτ
+Γ

µ

νρξ
ν dxρ

dτ
)

=
d

dτ
(
dξ µ

dτ
+Γ

µ

νρξ
ν dxρ

dτ
)++Γ

µ

νρ(
dξ ν

dτ
+Γ

ν

αβ
ξ

α dxβ

dτ
)
dxρ

dτ

=
d2ξ µ

dτ2 +
dΓ

µ

νρ

dτ
ξ

ν dxρ

dτ
+Γ

µ

νρ

dξ ν

dτ

dxρ

dτ
+Γ

µ

νρξ
ν d2xρ

dτ2 +Γ
µ

νρ

dξ ν

dτ

dxρ

dτ

+Γ
µ

νρΓ
ν

αβ
ξ

α dxβ

dτ

dxρ

dτ
. (2.113)
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On the other hand, we can use

dΓ
µ

νρ

dτ
=

∂Γ
µ

νρ

∂xσ

dxσ

dτ
= ∂σ Γ

µ

νρ

dxσ

dτ
,

and
d2xρ

dτ2 +Γ
ρ

αβ

dxα

dτ

dxβ

dτ
= 0⇒ d2xρ

dτ2 =−Γ
ρ

αβ

dxα

dτ

dxβ

dτ
,

in eqn.(2.113),

D2ξ µ

Dτ2 =
d2ξ µ

dτ2 +∂σ Γ
µ

νρuσ uρ
ξ

ν +Γ
µ

νρ

dξ ν

dτ
uρ −Γ

µ

νρΓ
ρ

αβ
uαuβ

ξ
ν +Γ

µ

νρ

dξ ν

dτ
uρ

+Γ
µ

νρΓ
ν

αβ
uβ uρ

ξ
α . (2.114)

From eqn.(2.111) we have

d2ξ µ

dτ2 =−2Γ
µ

νρ

dxν

dτ

dξ ρ

dτ
−∂σ Γ

µ

νρuνuρ
ξ

σ ,

using this in eqn.(2.114), we obtain

D2ξ µ

Dτ2 =
���

���
��

−2Γ
µ

νρuν dξ ρ

dτ
−∂σ Γ

µ

νρuνuρ
ξ

σ +∂σ Γ
µ

νρuσ uρ
ξ

ν +���
��

��
2Γ

µ

νρuρ dξ ν

dτ

−Γ
µ

νρΓ
ρ

αβ
uαuβ

ξ
ν +Γ

µ

νρΓ
ν

αβ
uβ uρ

ξ
α

=−∂σ Γ
µ

νρuνuρ
ξ

σ +∂σ Γ
µ

νρuσ uρ
ξ

ν −Γ
µ

νρΓ
ρ

αβ
uαuβ

ξ
ν +Γ

µ

νρΓ
ν

αβ
uβ uρ

ξ
α .

In the last equation, if we change the dummy indices such that in the first term σ↔ ρ ,

in the second and third terms ν ↔ ρ , in the last term α ↔ ρ , then we have

D2ξ µ

Dτ2 =−∂ρΓ
µ

νσ uνuσ
ξ

ρ +∂σ Γ
µ

νρuσ uν
ξ

ρ −Γ
µ

νρΓ
ν

αβ
uαuβ

ξ
ρ +Γ

µ

ναΓ
ν

ρβ
uβ uα

ξ
ρ .

Now, in the last equation, if we again change the dummy indices such that in the third

term α ↔ ν ,β → σ , and in the last term β ↔ ν ,α → σ ,β → α , then we arrive at

D2ξ µ

Dτ2 =−∂ρΓ
µ

νσ uνuσ
ξ

ρ +∂σ Γ
µ

νρuσ uν
ξ

ρ −Γ
µ

αρΓ
α

νσ uνuσ
ξ

ρ +Γ
µ

ασ Γ
α

ρνuνuσ
ξ

ρ

=−(∂ρΓ
µ

νσ −∂σ Γ
µ

νρ +Γ
µ

αρΓ
α

νσ +Γ
µ

ασ Γ
α

ρν)u
νuσ

ξ
ρ .

The term which is in the parenthesis is the Riemann tensor by definition, so we have

the so called "geodesic deviation" equation

D2ξ µ

Dτ2 =−Rµ

νρσ uνuσ
ξ

ρ . (2.115)

Hence, we can say that two nearby time-like geodesics experience a tidal gravitational

force, which is determined by the Riemann tensor. Also, eqn.(2.115) is very important

for us, since we will use it in order to compute the gravitational memory in Chapter

3.
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2.3.2 Local inertial frames and freely falling frames

In General Relativity, it is known that we can perform a change of coordinates such

that the Christoffel symbol always vanishes at a given point P, Γ
µ

νρ(P) = 0. In such

a frame, the geodesic equation at point P is

d2xµ

dτ2

∣∣∣
P
= 0.

Hence, we can say that a test mass is freely falling in this frame, but only at one point

in space-time. This kind of frame is called a local inertial frame(LIF). This is also

important for this thesis because we will imagine a detector which consists of the

freely falling particles when we try to compute the gravitational memory.

However, it is possible to construct a reference frame in which a test mass is in free

fall all along the geodesic. To do this, we observe that a freely spinning object which

goes on along a time-like geodesic xµ(τ) then we have

dsµ

dτ
+Γ

µ

νρsν dxρ

dτ
= 0,

where sµ is the spin four-vector which is sµ = (0,~s) in the rest frame. From the

conservation of the angular momentum, we have dsµ

dτ
= 0. This is true along the entire

time-like geodesic, then we can see that Γ
µ

νρ is zero from last expression. Such

a reference frame is called a freely falling frame, and its coordinates are known as

Fermi normal coordinates.

2.3.3 TT frame and proper detector frame

The TT frame

We have used the TT gauge to give gravitational waves a simple form. We denote the

corresponding reference frame as the TT frame.

Let’s look at the geodesic eqn.(2.108) in order to understand TT frame. Say a test

mass is at rest at τ = 0, then

d2xi

dτ2

∣∣∣∣∣
τ=0

=−
[
Γ

i
νρ(x)

dxν

dτ

dxρ

dτ

]
τ=0

=−
[
Γ

i
00

(dx0

dτ

)2]
τ=0

,
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where we used the fact that dxi

dτ

∣∣
τ=0 = 0. We have computed the Christoffel symbol

Γ
µ

νρ explicitly for the gµν = ηµν which is

Γ
µ

νρ =
1
2

η
µσ (∂νhρσ +∂ρhνσ −∂σ hνρ),

so

Γ
i
00 =

1
2

η
iσ (∂0h0σ +∂0h0σ −∂σ h00)

=
1
2
(2∂0h0i−∂ih00).

In the TT gauge from eqn.(2.66), h00 and h0i are zero. Hence we can say that if
dxi

dτ

∣∣
τ=0 = 0, then also its derivative d2xi

dτ2

∣∣
τ=0 = 0 vanishes in the TT gauge. This

means that dxi

dτ
is always zero. As a result, particle which is at rest before the wave

arrives will be at rest when wave arrives, even after wave is gone. However, this is

true only to linear order in hµν . In other words, in the TT frame the position of the

test masses initially at rest do not change, this looks like to use the free test masses

themselves as the coordinate.

Let’s look at coordinate separations of the two nearby test masses. From eqn.(2.111),

we have for the (µ = i)

d2ξ i

dτ2

∣∣∣
τ=0

=−
[
2Γ

i
νρ

dxν

dτ

dξ ρ

dτ
+ξ

σ
∂σ Γ

i
νρ

dxν

dτ

dxρ

dτ

]
τ=0

=−
[
2cΓ

i
0ρ

dξ ρ

dτ
+ c2

ξ
σ

∂σ Γ
i
00

]
τ=0

where we use the conditions dx0

dτ

∣∣∣
τ=0

= c and dxi

dτ

∣∣∣
τ=0

= 0 at rest. We saw that before

Γi
00 = 0, since h00 = h0i = 0. From the definition of the Christoffel symbol,

Γ
i
0ρ =

1
2

η
iσ(

∂0hρσ +
��

��
∂ρh0σ −��

��
∂σ h0ρ

)
=

1
2

∂0hi j,

which implies that

d2ξ i

dτ2

∣∣∣
τ=0

=−
[
2c

1
2

∂

∂x0 hi j
dξ i

dτ

]
τ=0

=−
[
ḣi j

dξ i

dτ

]
τ=0

,

where we used ∂

∂x0 =
∂τ

∂x0
∂

∂τ
= 1

c
∂

∂τ
, and denotes ∂hi j

∂τ
as ḣi j.

When we take the condition dξ i

dτ

∣∣∣
τ=0

= 0 into account we can say that d2ξ i

dτ2

∣∣∣
τ=0

= 0
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from the last equation. As a result, the separation is constant at all times. Also,

c2dτ
2 =−ds2(τ)

= c2dt2(τ)−
(
δi j +hT T

i j
)
dxi(τ)dx j(τ)

= c2dt2(τ)−
(
δi j +hT T

i j
)dxi

dτ
(τ)

dx j

dτ
(τ)dτ

2,

where x0(τ) = ct(τ). To find the physical effect of the gravitational wave, we can

consider two events at (t,x1,0,0) and at (t,x2,0,0). In the TT gauge the coordinate

distance x2− x1 = L remains. From eqn.(2.69),

ds2 =−c2dt2 +dz2 +
{

1+h+ cos[w(t− z
c
)]
}

dx2 +
{

1−h+ cos[w(t− z
c
)]
}

dy2

+2hx cos[w(t− z
c
)]dxdy,

the proper distance s between these events is given by

s = (x2− x1){1+h+ coswt}
1
2 ≡ L{1+h+ coswt}

1
2 ,

where ds = s, dx = x2− x1 and dy = dx = 0. Hence, we can say that the proper

distance will change periodically in time with existence of the gravitational wave.

The Proper Detector Frame

Let us give our attention to a very small region of space. In such a region, if we choose

the coordinates (t,~x), the metric is flat even if there is gravitational waves such that

ds2 =−c2dt2 +δi jdxidx j.

If we look at the this last expression with second order gµν in terms of Riemann

tensor, the result is

ds2 =−c2dt2[1+R0i0 jxix j]−2cdtdxi
(2

3
R0i jkx jxk

)
+dxidx j

[
δi j−

1
3

Ri jklxkxl
]
,

where we are around at the point P which implies the Christoffel symbol vanishes.

The detector moves non-relativistically, so we have

dxi

dτ
<<

dx0

dτ
.

Using this last expression in the geodesic deviation equation, we get

d2ξ i

dτ2 +ξ
σ

∂σ Γ
i
00

(dx0

dτ

)2
= 0.

If we look at the last expression around the point P, i.e. xi = 0. Because gµν =

ηµν +O(xix j), the time derivative of the Christoffel symbol at P gives zero. Also,
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we know that at the point P, both Γ
µ

νρ = 0 and ∂0Γi
0 j = 0, then we have Ri

0 j0 =

∂ jΓ
i
00−∂0Γi

0 j = ∂ jΓ
i
00. Using this, we get

d2ξ i

dτ2 =−Ri
0 j0ξ

j
(dx0

dτ

)2
= 0.

We have already found that the Riemann tensor order h. Hence, if we limit ourselves

to study at linear order in h, we can write t = τ , so dx0/dτ = c, then we obtain

ξ̈
i =−c2Ri

0 j0ξ
j.

2.4 The energy of gravitational waves

2.4.1 Separation of gravitational waves from the background

Now, we will expand the Einstein equation around the curved background metric

ḡµν(x), and write

gµν(x) = ḡµν(x)+hµν(x), |hµν |<< 1 (2.116)

where the diagonal elements of ḡµν(x) are O(0) with respect to hµν(x) on the region

of the space. We need to find which part of gµν is the background and which is the

fluctuation. Let ḡµν(x) has a scale of spatial variation LB, such that

λ̄ << LB, (2.117)

where λ̄ = λ

2π
is the reduced wavelength, and λ is the wavelength of the small per-

turbations hµν .

Or, equivalently, we can assume that the background metric has frequencies which

can be fB as the maximum value, and let f be the frequency of the perturbation hµν

such that

f >> fB. (2.118)

The conditions (2.117) and (2.118) are independent since LB and fB are unrelated.

However, if one of them is satisfied then we can distinguish the metric as background

metric plus perturbation based upon the gravitational wave. In the next section, we

will find the answers for the two main questions such that

1. hµν is called a gravitational wave to answer the question: how does this high-

frequency(or short wavelength) perturbation effect the background space-time,
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2. tµν an energy momentum tensor can be defined to answer the question how it

effects the background metric itself.

2.4.2 How gravitational waves curve the background

The Einstein equations can be rewritten as

Rµν =
8πG
c4 (Tµν −

1
2

gµνT ), (2.119)

where Tµν is the energy-momentum tensor of the matter and T is its trace. If we

expand the Ricci tensor up to O(h2), we will get

Rµν = R̄µν +R(1)
µν +R(2)

µν + ..., (2.120)

where R̄µν is based on the ḡµν only, R(1)
µν is linear in hµν , and R(2)

µν is quadratic in hµν .

Since, the R̄µν is based on ḡµν , it contains only low-frequency modes. Let~k separate

the low frequency from the high frequency modes, then ḡµν has only modes up a

typical wave-vector kB ' 2π

LB
with kB << k. The Christoffel symbols for the ḡµν are

quadratic, so they have modes up to 2kB. The Ricci tensor is quadratic with respect

to the Christoffel symbols, so its modes are up to 4kB. Fortunately, 4kB << k implies

that R̄µν has only low-frequency modes. Since, R(1)
µν is linear in hµν by definition,

it contains only high-frequency modes. On the other hand, R(2)
µν is quadratic in hµν

implies that it has both low- and high-frequency modes. When we take these factors

into account, we can separate the Einstein equations into two parts which are low-

and high-frequency parts, the first one is

R̄µν =−[R(2)
µν ]

Low +
8πG
c4 (Tµν −

1
2

gµνT )Low, (2.121)

and the other one is

R(1)
µν =−[R(2)

µν ]
High +

8πG
c4 (Tµν −

1
2

gµνT )High, (2.122)

where the superscript "Low" denotes projection on the low momenta or on the low

frequencies which depend on if eqn.(2.117) or eqn.(2.118) applies, and the superscript

"High" has similar meaning.

Let’s start to compute R(1)
µν explicitly. To do this, first of all we need to find the

Christoffel symbols. We know that the metric gµν = ḡµν +hµν and its inverse metric

is gµν = ḡµν −hµν +O(h2). By definition, the Christoffel symbol is

Γ
µ

νρ =
1
2

gµα(∂νgαρ +∂ρgαν −∂αgνρ), (2.123)
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and writing the metric explicitly

Γ
µ

νρ =
1
2
(ḡµα −hµα)[∂ν(ḡαρ +hαρ)+∂ρ(ḡαν +hαν)−∂α(ḡνρ +hνρ)]

=
1
2

ḡµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)+
1
2

ḡµα(∂νhαρ +∂ρhαν −∂αhνρ)

− 1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)+O(h2).

We can change the derivatives in the second term of the last equation to covariant

derivatives if we add some suitable terms,

Γ
µ

νρ =
1
2

ḡµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)+
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)

+
1
2

ḡµα(Γ̄
β

νρhβα + Γ̄
β

ναhρβ )+
1
2

ḡµα(Γ̄
β

ρνhβα + Γ̄
β

ραhνβ )

− 1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ).

Using the definition of the Christoffel symbol, and making suitable cancellations

Γ
µ

νρ = Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)

+
1
2

ḡµα{1
2

ḡβσ (∂ν ḡσρ +∂ρ ḡσν −∂σ ḡνρ)hβα +
1
2

ḡβσ (∂ν ḡσα +∂α ḡσν −∂σ ḡνα)hρβ

+
1
2

ḡβσ (∂ρ ḡσν +∂ν ḡσρ −∂σ ḡρν)hβα +
1
2

ḡβσ (∂ρ ḡσα +∂ν ḡσρ −∂σ ḡρα)hνβ

+
1
2

ḡβσ (∂α ḡσρ +∂ρ ḡσα −∂σ ḡαρ)hβν +
1
2

ḡβσ (∂α ḡσν +∂ν ḡσα −∂σ ḡαν)hρβ}

− 1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)

= Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)

+
1
4

ḡµα ḡβσ{∂ν ḡσρhβα +∂ρ ḡσνhβα −∂σ ḡνρhβα +���
���∂ν ḡσαhρβ +���

���∂α ḡσνhρβ

−����
��

∂σ ḡναhρβ +∂ρ ḡσνhβα +∂ν ḡσρhβα −∂σ ḡρνhβα +���
���∂ρ ḡσαhνβ +���

���∂α ḡσρhνβ

−����
��

∂σ ḡραhνβ −����
��

∂α ḡσρhβν −����
��

∂ρ ḡσαhβν +���
���∂σ ḡαρhβν −����

��
∂α ḡσνhρβ −����

��
∂ν ḡσαhρβ

+���
���∂σ ḡανhρβ}−

1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ),

we get

Γ
µ

νρ = Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)

+
1
2

ḡµα ḡβσ (∂ν ḡσρhβα +∂ρ ḡσνhβα −∂σ ḡνρhβα)−
1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)

= Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)+
1
2

hµσ (∂ν ḡσρ +∂ρ ḡσν −∂σ ḡνρ)

− 1
2

hµα(∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ)
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where we use ḡµα ḡβσ hβα = hµσ . If we change the dummy index in the last term as

α → σ , we obtain

Γ
µ

νρ = Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)+
((((

(((
((((

(((
((1

2
hµσ (∂ν ḡσρ +∂ρ ḡσν −∂σ ḡνρ)

−
((((

(((
((((

(((
((1

2
hµσ (∂ν ḡσρ +∂ρ ḡσν −∂σ ḡνρ).

As a result,

Γ
µ

νρ = Γ̄
µ

νρ +
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ). (2.124)

At any given point x, we can simplify eqn.(2.124) using the Γ̄
µ

νρ(x) = 0 with a

suitable coordinate system. However, its derivative is not zero. In addition, we

see that Γ
µ

νρ = O(h) from eqn.(2.124), so in the Riemann tensor we will omit

the terms ΓΓ because they are order in O(h2). Then we can say that Rµ

νρσ =

∂ρΓ
µ

νσ −∂σ Γ
µ

νρ +O(h2) by the definition of Riemann tensor.

In such frame where Γ̄
µ

νρ(x) = 0, we need to compute the Riemann tensor.

Rµ

νρσ = ∂ρΓ
µ

νσ −∂σ Γ
µ

νρ

= ∂ρ{Γ̄µ

νσ +
1
2

ḡµα(D̄νhασ + D̄σ hαν − D̄αhνσ )−∂σ Γ̄
µ

νρ

+
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ)}

= {∂ρ Γ̄
µ

νσ −∂σ Γ̄
µ

νρ}+
1
2

ḡµα{∂ρ(D̄νhασ + D̄σ hαν − D̄αhνσ )

−∂σ (D̄νhαρ + D̄ρhαν − D̄αhνρ)}.

Since Γ̄
µ

νρ(x) = 0, we can write the Riemann tensor for the background metric in-

stead of the first two terms, and covariant derivative instead of the normal derivative.

Then we have

Rµ

νρσ = R̄µ

νρσ +
1
2

ḡµα{D̄ρD̄νhασ + D̄ρD̄σ hαν − D̄ρD̄αhνσ − D̄σ D̄νhαρ − D̄σ D̄ρhαν

+ D̄σ D̄αhνρ}

= R̄µ

νρσ +
1
2
{D̄ρD̄νhµ

σ + D̄ρD̄σ hµ

ν − D̄ρD̄µhνσ − D̄σ D̄νhµ

ρ − D̄σ D̄ρhµ

ν

+ D̄σ D̄µhνρ}.

Let’s rewrite the last equation such that

gβ µRµ

νρσ =
(
ḡβ µ +hβ µ

)
Rµ

νρσ

Rβνρσ = ḡβ µ R̄µ

νρσ +
1
2

ḡβ µ ḡµα{D̄ρD̄νhασ + D̄ρD̄σ hαν − D̄ρD̄αhνσ − D̄σ D̄νhαρ
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− D̄σ D̄ρhαν + D̄σ D̄αhνρ}+hβ µ R̄µ

νρσ +O(h2)

= R̄βνρσ +
1
2
{D̄ρD̄νhβσ + D̄ρD̄σ hβν − D̄ρD̄β hνσ − D̄σ D̄νhβρ − D̄σ D̄ρhβν

+ D̄σ D̄β hνρ}+hβ µ R̄µ

νρσ +O(h2).

Now we can use the definition of the Ricci tensor,

gβρRβνρσ =
(
ḡβρ −hβρ

)
Rβνρσ

Rνσ = ḡβρ R̄βνρσ +
1
2

ḡβρ{D̄ρD̄νhβσ + D̄ρD̄σ hβν − D̄ρD̄β hνσ − D̄σ D̄νhβρ

− D̄σ D̄ρhβν + D̄σ D̄β hνρ}+ ḡβρhβ µ R̄µ

νρσ −hβρ R̄βνρσ +O(h2)

= R̄νσ +
1
2
{D̄β D̄νhβσ + D̄β D̄σ hβν − D̄β D̄β hνσ − D̄σ D̄νh−����

��
D̄σ D̄β hβν

+���
���D̄σ D̄β h β

ν }+����
��hρ

µ R̄µ

νρσ −����
��hρ

β
R̄β

νρσ +O(h2)

= R̄νσ +
1
2
{D̄β D̄νhβσ + D̄β D̄σ hβν − D̄β D̄β hνσ − D̄σ D̄νh}.

We can separate the Ricci tensor with respect to its h orders such as

Rµν = R̄µν +R(1)
µν (2.125)

where the superscript (1) refers to order of h is 1. Hence, we can define R(1)
µν such that

R(1)
µν =

1
2

(
D̄αD̄µhνα + D̄αD̄νhµα − D̄αD̄αhµν − D̄νD̄µh

)
. (2.126)

Next, we will find the Ricci tensor at quadratic order. To do this, we need to find

inverse metric at quadratic order. Say gνα = ḡνα − hνα + xνα(h2) where xνα(h2) is

the quadratic term. Let’s find it to use the definition gµνgνα = δ α
µ

δ
α

µ =
(
ḡµν +hµν

)(
ḡνα −hνα + xνα

)
= ḡµν ḡνα − ḡµνhνα + ḡµνxνα +hµν ḡνα −hµνhνα

�
��δ

α
µ =

�
��δ

α
µ −

�
��h α

µ + x α
µ +

�
��h α

µ −hµνhνα

x α
µ = hµνhνα

xµα = hµ

νhνα ,

so the inverse metric at quadratic order is

gµα = ḡµα −hµα +hµ

λ
hλα . (2.127)

Now, let’s compute the Christoffel symbol again,

Γ
µ

νρ =
1
2

gµα
(
∂νgαρ +∂ρgαν −∂αgνρ

)
=

1
2
(
ḡµα −hµα +hµ

λ
hλα
)[

∂ν(ḡαρ +hαρ)+∂ρ(ḡαν +hαν)−∂α(ḡνρ +hνρ)
]
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=
1
2

ḡµα
(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
+

1
2

ḡµα
(
∂νhαρ +∂ρhαν −∂αhνρ

)
− 1

2
hµα

(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
− 1

2
hµα

(
∂νhαρ +∂ρhαν −∂αhνρ

)
+

1
2

hµ

λ
hλα
(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
.

If we use the expression (2.124) instead of the first three terms, we will get

Γ
µ

νρ = Γ̄
µ

νρ +Γ
µ(1)

νρ −
1
2

hµα
(
∂νhαρ +∂ρhαν −∂αhνρ

)
+

1
2

hµ

λ
hλα
(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
,

where

Γ
µ(1)

νρ =
1
2

ḡµα(D̄νhαρ + D̄ρhαν − D̄αhνρ). (2.128)

Let’s denote the quadratic order terms of the Christoffel symbol such as

Γ
µ(2)

νρ =−1
2

hµα
(
∂νhαρ +∂ρhαν −∂αhνρ

)
+

1
2

hµ

λ
hλα
(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
=−1

2
hµα

(
D̄νhαρ + D̄ρhαν − D̄αhνρ

)
− 1

2
hµα

(
��

���Γ̄
λ

ναhλρ + Γ̄
λ

νρhαλ +���
��

Γ̄
λ

ραhλν

+ Γ̄
λ

ρνhαλ −����
�

Γ̄
λ

ανhλρ −����
�

Γ̄
λ

αρhνλ

)
+

1
2

hµ

λ
hλ

γ ḡγα
(
∂ν ḡαρ +∂ρ ḡαν −∂α ḡνρ

)
=−1

2
hµα

(
D̄νhαρ + D̄ρhαν − D̄αhνρ

)
−����

���hµαhαλ Γ̄
λ

νρ +���
���

�
hµ

λ
hλ

γ Γ̄
γ

νρ

=−1
2

hµ

β
ḡβα
(
D̄νhαρ + D̄ρhαν − D̄αhνρ

)
.

Using the expression (2.128), we get

Γ
µ(2)

νρ =−hµ

β
Γ

β (1)
νρ . (2.129)

Hence, the Christoffel symbol is

Γ
µ

νρ = Γ̄
µ

νρ +Γ
µ(1)

νρ −hµ

β
Γ

β (1)
νρ +O(h3). (2.130)

By the definition of the Riemann tensor and using the a suitable coordinate system

such that Γ̄
µ

νρ(x) = 0,

Rµ

νρσ = ∂ρΓ
µ

νσ −∂σ Γ
µ

νρ +Γ
µ

ρλ
Γ

λ
σν −Γ

µ

σλ
Γ

λ
ρν

= ∂ρ Γ̄
µ

νσ +∂ρΓ
µ(1)

νσ −∂ρ

(
hµ

β
Γ

β (1)
νσ

)
−∂σ Γ̄

µ

νρ −∂σ Γ
µ(1)

νρ +∂σ

(
hµ

β
Γ

β (1)
νρ

)
+Γ

µ(1)
ρλ

Γ
λ (1)

σν −Γ
µ(1)

σλ
Γ

λ (1)
ρν +O(h3)

= R̄µ

νρσ +Rµ(1)
νρσ −

(
∂ρhµ

β

)
Γ

β (1)
νσ +

(
∂σ hµ

β

)
Γ

β (1)
νρ −hµ

β
Rβ (1)

νρσ+

+Γ
µ(1)

ρλ
Γ

λ (1)
σν −Γ

µ(1)
σλ

Γ
λ (1)

ρν +O(h3).

We can change the normal derivatives terms to covariant derivative thanks to the co-

ordinate system which we chose. If we rewrite the last expression after multiplying
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with metric gαµ , we have

gαµRµ

νρσ =
(
ḡαµ +hαµ

)
Rµ

νρσ

Rανρσ = ḡαµ R̄µ

νρσ + ḡαµRµ(1)
νρσ − ḡαµ

(
D̄ρhµ

β

)
Γ

β (1)
νσ + ḡαµ

(
D̄σ hµ

β

)
Γ

β (1)
νρ

− ḡαµhµ

β
Rβ (1)

νρσ + ḡαµΓ
µ(1)

ρλ
Γ

λ (1)
σν − ḡαµΓ

µ(1)
σλ

Γ
λ (1)

ρν +hαµ R̄µ

νρσ

+hαµRµ(1)
νρσ +O(h3).

Now we can use the definition of the Ricci tensor,

gραRανρσ =
(
ḡρα −hρα +hρ

λ
hλα
)
Rανρσ

Rνσ = ḡρα ḡαµ R̄µ

νρσ + ḡρα ḡαµRµ(1)
νρσ − ḡρα ḡαµ

(
D̄ρhµ

β

)
Γ

β (1)
νσ + ḡρα ḡαµ

(
D̄σ hµ

β

)
Γ

β (1)
νρ

− ḡρα ḡαµhµ

β
Rβ (1)

νρσ + ḡρα ḡαµΓ
µ(1)

ρλ
Γ

λ (1)
σν − ḡρα ḡαµΓ

µ(1)
σλ

Γ
λ (1)

ρν + ḡραhαµ R̄µ

νρσ

+ ḡραhαµRµ(1)
νρσ −hρα ḡαµ R̄µ

νρσ −hρα ḡαµRµ(1)
νρσ +hραhαµ R̄µ

νρσ

+hρ

λ
hλα ḡαµ R̄µ

νρσ +O(h3)

= R̄νσ +Rρ(1)
νρσ −

(
D̄ρhρ

β

)
Γ

β (1)
νσ +

(
D̄σ hρ

β

)
Γ

β (1)
νρ −hρ

β
Rβ (1)

νρσ +Γ
ρ(1)

ρλ
Γ

λ (1)
σν

−Γ
ρ(1)

σλ
Γ

λ (1)
ρν +���

���hρ

µ R̄µ

νρσ +���
���hρ

µRµ(1)
νρσ −����

��hρ

µ R̄µ

νρσ −����
��

hρ

µRµ(1)
νρσ

+
���

���
��

hραhαµ R̄µ

νρσ +
���

���
��

hρ

λ
hλ

µ R̄µ

νρσ +O(h3)

= R̄νσ +Rρ(1)
νρσ −

(
D̄ρhρ

β

)
Γ

β (1)
νσ +

(
D̄σ hρ

β

)
Γ

β (1)
νρ −hρ

β
Rβ (1)

νρσ +Γ
ρ(1)

ρλ
Γ

λ (1)
σν

−Γ
ρ(1)

σλ
Γ

λ (1)
ρν +O(h3).

We can define the second order terms as R(2)
νσ , so the Ricci tensor can be defined as

Rνσ = R̄νσ +Rρ(1)
νρσ +R(2)

νσ +O(h3). (2.131)

Now, let’s find the R(2)
νσ explicitly

R(2)
νσ =−

(
D̄ρhρ

β

)[1
2

ḡβα
(
D̄νhρα + D̄ρhνα − D̄αhνρ

)]
+
(
D̄σ hρ

β

)[1
2

ḡβα
(
D̄νhσα + D̄σ hνα − D̄αhνσ

)]
−hρ

β
Rβ (1)

νρσ

+
1
2

ḡρω
(
D̄ρhλω + D̄λ hρω − D̄ωhρλ

)1
2

ḡλγ
(
D̄σ hνγ + D̄νhσγ − D̄γhσν

)
− 1

2
ḡρω

(
D̄σ hλω + D̄λ hσω − D̄ωhσλ

)1
2

ḡλγ
(
D̄ρhνγ + D̄νhργ − D̄γhρν

)
=−1

2
hρ

β

(
D̄ρD̄σ hβ

ν + D̄ρD̄νhβ

σ − D̄ρD̄β hσν − D̄σ D̄ρhβ

ν − D̄σ D̄νhβ

ρ + D̄σ D̄β hρν

)
+

1
2
(
D̄σ hραD̄νhρα + D̄σ hραD̄ρhνα − D̄σ hραD̄αhνρ − D̄ρhραD̄νhσα − D̄ρhραD̄σ hνα

+ D̄ρhραD̄αhνσ

)
+

1
4

ḡρω ḡλγ
(
D̄ρhλωD̄σ hνγ + D̄ρhλωD̄νhσγ − D̄ρhλωD̄γhσν

+ D̄λ hρωD̄σ hνγ + D̄λ hρωD̄νhσγ − D̄λ hρωD̄γhσν − D̄ωhρλ D̄σ hνγ − D̄ωhρλ D̄νhσγ
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+ D̄ωhρλ D̄γhσν − D̄σ hλωD̄ρhνγ − D̄σ hλωD̄νhργ + D̄σ hλωD̄γhρν − D̄λ hσωD̄ρhνγ

− D̄λ hσωD̄νhργ + D̄λ hσωD̄γhρν + D̄ωhσλ D̄ρhνγ − D̄ωhσλ D̄νhργ − D̄ωhσλ D̄γhρν

)
.

Let’s rearrange the indices of the last equation,

R(2)
µν =

1
4

ḡρσ ḡαβ
(
D̄ρhασ D̄νhµβ + D̄ρhασ D̄µhνβ − D̄ρhασ D̄β hνµ

+ D̄αhρσ D̄νhµβ + D̄αhρσ D̄µhνβ − D̄αhρσ D̄β hνµ − D̄σ hραD̄νhµβ − D̄σ hραD̄µhνβ

+ D̄σ hραD̄β hνµ − D̄νhασ D̄ρhµβ − D̄νhασ D̄µhρβ + D̄νhασ D̄β hρµ − D̄αhνβ D̄ρhµβ

− D̄αhνσ D̄µhρβ + D̄αhνσ D̄β hρµ + D̄σ hναD̄ρhµβ − D̄σ hναD̄µhρβ − D̄σ hναD̄β hρν

)
+

1
2

ḡρσ ḡαβ
(
D̄νhσβ D̄µhρα + D̄νhσβ D̄ρhµα − D̄νhσβ D̄αhµρ − D̄ρhσβ D̄µhνα

− D̄ρhσβ D̄νhµα + D̄ρhσβ D̄αhµν

)
+

1
2

ḡρσ ḡαβ hρα

(
− D̄σ D̄νhβ µ − D̄σ D̄µhβν

+ D̄σ D̄β hνµ + D̄νD̄σ hβ µ + D̄νD̄µhβσ − D̄νD̄β hσ µ

)
.

If we make the suitable cancellations in the last expression, we will get

R(2)
µν =

1
2

ḡρσ ḡαβ

[
1
2

D̄µhραD̄νhσβ +
(

D̄ρhνα

)(
D̄σ hµβ − D̄β hµσ

)
+hρα

(
D̄νD̄µhσβ + D̄β D̄σ hµν − D̄β D̄νhµσ − D̄β D̄µhνσ

)
+
(1

2
D̄αhρσ − D̄ρhασ

)(
D̄νhµβ + D̄µhνβ − D̄β hµν

)]
. (2.132)

Now we can think about the question what the energy-momentum tensor of grav-

itational waves is. To understand the aim of this question, we firstly consider the

situation where there is no external matter, Tµν = 0 for the eqns.(2.121) and (2.122).

Hence, we have

R̄µν = [R(2)
µν ]

Low,

and we found that R(2)
µν = O

(
(∂h)2)+O

(
h∂ 2h

)
from eqn.(2.132). When there is no

matter, we can write that

R̄µν ∼ (∂h)2, (2.133)

so we can say that the [R(2)
µν ]

Low has the order (∂h)2. Where the scale of variation of h

is λ̄ , and the scale of variation of the background metric is LB, then we have

∂ ḡµν ∼
1

LB
, (2.134)

and

∂h∼ h
λ̄
. (2.135)
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The Ricci tensor of the background R̄µν is constructed from the ∂ 2ḡµν then eqn.(2.134)

implies that

R̄µν ∼ ∂
2ḡµν ∼

1
L2

B
,

while from eqn.(2.135)

(∂h)2 ∼ (
h
λ̄
)2.

Using the last two expressions in eqn.(2.133), we get
1

L2
B
∼ (

h
λ̄
)2, (2.136)

which means that

h∼ λ̄

LB
. (2.137)

On the other hand, the curvature is determined by the gravitational waves. Consider

the situation Tµν 6= 0 which means there is matter, we can neglect the background

curvature if we compare it to the contribution of matter sources. Then,

1
L2

B
∼ h2

λ̄
2 +(matter contribution)>>

h2

λ̄
2

implies that

h <<
λ̄

LB
. (2.138)

The curvature is determined by the matter. As a result, we can understand why the

linearized approximation of flat metric expansion cannot be used. In other words, to

think ḡµν = ηµν makes 1
LB

zero. Also, from eqns.(2.137) and (2.138), it is obvious

that λ̄

LB
is at least order one.

Now, we consider eqn.(2.121). Suppose there is a clear-cut separation between λ̄ and

LB. To define a scale l̄ such that λ̄ << l̄ << LB,and to average over a spatial volume

with side l̄, we can make the projection on the long-wavelength (or low-frequency)

modes. If we find average the modes with wavelengths of order LB, we will get a

constant value. Because of this, we can say that there is no effect on them. On the

other hand, modes with a reduced wavelength of order λ̄ oscillate very fast, and their

average is zero. Next thing we will do is that introducing the time scale t̄ which is

t̄ >> 1
f (the period of the gravitational waves) and t̄ << 1

fB
(the typical time-scale of

the background). We can therefore write eqn.(2.121) as

R̄µν =−〈R(2)
µν〉+

8πG
c4 〈Tµν −

1
2

gµνT 〉, (2.139)
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where 〈...〉 denote a spatial average.

Let’s define an effective energy-momentum tensor of matter which is denoted by T̄µν ,

〈Tµν −
1
2

gµνT 〉= T̄µν −
1
2

ḡµν T̄ (2.140)

where T̄ denotes the trace of effective energy momentum tensor and defined as T̄ =

ḡµν T̄ µν . In the case, the fundamental energy momentum tensor T µν is constant when

we average it. In this case,

〈Tµν −
1
2

gµνT 〉 ' Tµν −
1
2
〈gµν〉T

= Tµν −
1
2

ḡµνT,

so T̄µν ' Tµν . Also, T̄µν is a low-frequency quantity by the definition.

Let’s define another quantity tµν as

tµν =− c4

8πG
〈R(2)

µν −
1
2

ḡµνR(2)〉, (2.141)

where

R(2) = ḡµνR(2)
µν , (2.142)

and its trace is

t = ḡµνtµν

=− c4

8πG
〈ḡµνR(2)

µν −
1
2

ḡµν ḡµνR(2)〉

=− c4

8πG
〈R(2)− 1

2
4R(2)〉

=
c4

8πG
〈R(2)〉, (2.143)

where we used ḡµν ḡµν = δ ν
ν = 4. If we use eqn.(2.143) in eqn.(2.141), we will get

−〈R(2)
µν〉=

8πG
c4 (tµν)−

1
2

ḡµν〈R(2)〉

=
8πG
c4 (tµν −

1
2

ḡµνt), (2.144)

where 〈ḡµνR(2)〉 = ḡµν〈R(2)〉 which means ḡµν is constant under the averaging pro-

cedure. So eqn.(2.139) becomes

R̄µν =
8πG
c4 (tµν −

1
2

ḡµνt)+
8πG
c4 (T̄µν −

1
2

ḡµν T̄ ), (2.145)

or, equivalently

R̄µν −
1
2

ḡµν R̄ =
8πG
c4 (T̄µν + tµν). (2.146)
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2.4.3 The energy-momentum tensor of gravitational waves

In this subsection, we want to find the energy and momentum which are carried by the

gravitational waves. Again, we will use the situation Tµν = 0 in which we consider

the large distance from the sources. Suppose that the background space-time is flat,

then (D̄µ → ∂µ). In this case, we can write the second order Ricci tensor as

R(2)
µν =

1
2

η
ρσ

η
αβ

[1
2

∂µhρα∂νhσβ +∂ρhνα

(
∂σ hµβ −∂β hµσ

)
+hρα

(
∂ν∂µhσβ +∂β ∂σ hµν −∂β ∂νhµσ −∂β ∂µhνσ

)
+(1

2
∂αhρσ −∂ρhασ

)(
∂νhµβ +∂µhνβ −∂β hµν

)]
.

If we make some suitable interchange between some dummy indices, we will easily

get

R(2)
µν =

1
2

[1
2

∂µhαβ ∂νhαβ +hαβ
∂µ∂νhαβ −hαβ

∂ν∂β hαµ −hαβ
∂µ∂β hαν +hαβ

∂α∂β hµν

+∂
β hα

ν∂β hαµ −∂
β hα

ν∂αhβ µ −∂β hαβ
∂νhµα +∂β hαβ

∂αhµν −∂β hαβ
∂µhαν

− 1
2

∂
αh∂αhµν +

1
2

∂
αh∂νhαµ +

1
2

∂
αh∂µhαν

]
. (2.147)

In this section, one of our aim is to compute the tµν explicitly. It is the reason why we

wrote R(2)
µν explicitly. We discussed before the fact that hµν has 10 degrees of freedom

thanks to the symmetry property of it. In addition, in section (2.2), we saw that 2 of

them are physical while the other eight of them are gauge modes. As a result, we can

say that tµν has the contributions of both physical and gauge modes.

If we want to compute the contribution of the physical modes, we need to use the

Lorenz gauge condition. Using it eliminates 4 degrees of freedom. Also, if we use

the residual gauge conditions which are 2ξµ = 0 where ξµ = 0 are the four gauge

modes as discussed in section (2.2). Also, we had chosen the ξµ = 0 such that h = 0.

Then h̄µν = hµν implies that Lorenz condition becomes ∂ µhµν = 0.

〈R(2)
µν〉=

∫
d3xR(2)

µν ,

where d3x is the spatial volume element. Let’s write the last equations explicitly

〈R(2)
µν〉=

1
2(volV )

∫
V

dx3
[1

2
∂µhαβ ∂νhαβ +hαβ

∂µ∂νhαβ −hαβ
∂ν∂β hαµ −hαβ

∂µ∂β hαν

+hαβ
∂α∂β hµν +∂

β hα
ν∂β hαµ −∂

β hα
ν∂αhβ µ −∂β hαβ

∂νhµα +∂β hαβ
∂αhµν

−∂β hαβ
∂µhαν −

�
��

�
��
�1

2
∂

αh∂αhµν +
�
��

�
��
�1

2
∂

αh∂νhαµ +
�
��

�
��
�1

2
∂

αh∂µhαν

]
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=
1

2(volV )

∫
dx
∫

dy
∫

dz
[
− 1

2
∂µhαβ ∂νhαβ +∂µ

(
hαβ

∂νhαβ

)
−∂β

(
hαβ

∂νhαµ

)
−∂β

(
hαβ

∂µhαν

)
+∂β

(
hαβ

∂αhµν

)
+∂

β
(
hα

ν∂β hαµ

)
−hα

ν∂
β

∂β hαµ

−∂
β
(
hα

ν∂αhβ µ

)
+hα

ν∂
β

∂αhβ µ

]
,

where volV is the volume of the region V in which we take the integral over it. Using

the fact that hµν = hµν(t− z
c), we can write

〈R(2)
µν〉=

1
2(volV )

∫
dx
∫

dy
∫

dz
[
− 1

2
∂µhαβ ∂νhαβ +∂0

(
hαβ

∂νhαβ

)
+∂z

(
hαβ

∂νhαβ

)
−∂0

(
hα0

∂νhαµ

)
−∂z

(
hαz

∂νhαµ

)
−∂0

(
hα0

∂µhαν

)
−∂z

(
hαz

∂µhαν

)
+∂0

(
hα0

∂αhµν

)
+∂z

(
hαz

∂αhµν

)
+∂

0(hα
ν∂0hαµ

)
+∂

z(hα
ν∂zhαµ

)
−����

�hα
ν2hαµ

−∂
0(hα

ν∂αhoµ

)
−∂

z(hα
ν∂αhzµ

)
+���

���
�

hα
ν∂α∂

β hβ µ

]
,

where we used the plane wave equation 2hαµ = 0 and the Lorenz gauge ∂ β hβ µ = 0.

If we use the fact that the boundary terms vanish when the size of the box which we

take integration over is infinitely larger than λ̄ , we get

〈R(2)
µν〉=

1
2(volV )

∫
dx
∫

dy
∫

dz
[
− 1

2
∂µhαβ ∂νhαβ

]
.

To get the last expression, we also used that ∂0hµν =−∂zhµν since hµν is the function

of (t− z). As a result,

〈R(2)
µν〉=−

1
4
〈∂µhαβ ∂νhαβ 〉. (2.148)

Similarly, we can compute the value of the 〈R(2)〉

〈R(2)〉= 〈ḡµνR(2)
µν〉

=−1
4

ḡµν〈∂µhαβ ∂νhαβ 〉

=−1
4
〈∂ νhαβ ∂νhαβ 〉

=−1
4
〈∂ ν
(
hαβ ∂νhαβ

)
−hαβ ∂

ν
∂νhαβ 〉,

by using same arguments which we used to find expression (2.48), so

〈R(2)〉= 0. (2.149)

Using the results (2.148) and (2.149) in eqn.(2.141), we get

tµν =− c4

8πG

(
− 1

4
)
〈∂µhαβ ∂νhαβ 〉

=
c4

32πG
〈∂µhαβ ∂νhαβ 〉. (2.150)
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Secondly, if we use the residual gauge (2.35) in the expression (2.150), we get

δ tµν =
c4

32πG

[
〈∂µhαβ ∂ν(δhαβ )+∂νhαβ ∂µ(δhαβ )〉

]
=

c4

32πG

[
〈∂µhαβ ∂ν(∂

α
ξ

β +∂
β

ξ
α)+∂νhαβ ∂µ(∂

α
ξ

β +∂
β

ξ
α)〉
]

=
c4

32πG

[
〈∂µhαβ ∂ν∂

α
ξ

β 〉+ 〈∂µhαβ ∂ν∂
β

ξ
α〉+ 〈∂νhαβ ∂µ∂

α
ξ

β 〉+ 〈∂νhαβ ∂µ∂
β

ξ
α〉
]

=
c4

16πG

[
〈∂µhαβ ∂ν∂

α
ξ

β 〉+ 〈∂νhαβ ∂µ∂
α

ξ
β 〉
]

==
c4

16πG

[
((((

(((
(((〈∂ α(∂µhαβ ∂νξ

β )〉+(((((
((((〈∂ α(∂νhαβ ∂µξ

β )〉
]

= 0,

where we again used the Lorenz gauge. Consequently, we eliminated four degrees

of freedom using the Lorenz gauge and eliminated the other four of them using in-

finitesimal gauge choice that means there are only two physical modes hT T
i j . Then

expression (2.150) becomes

tµν =
c4

32πG
〈∂µhT T

i j ∂νhT T
i j 〉. (2.151)

Now, we can compute the gauge invariant energy density t00,

t00 =
c4

32πG
〈∂0hT T

i j ∂0hT T
i j 〉

=
c2

32πG
〈ḣT T

i j ḣT T
i j 〉, (2.152)

where ḣT T
i j = 1

c ∂0hT T
i j = ∂thT T

i j , and using eqn.(2.148)

t00 =
c2

32πG
〈ḣT T

11 ḣT T
11 + ḣT T

12 ḣT T
12 + ḣT T

21 ḣT T
21 + ḣT T

22 ḣT T
22 〉

=
c2

32πG
〈ḣ2

++ ḣ2
x + ḣ2

x +(−ḣ+)2〉

=
c2

16πG
〈ḣ2

++ ḣ2
x〉. (2.153)

Since hT T
i j is a function of the (t− z

c) for a plane wave traveling along the z-direction,

it is obvious t01 = t02 = 0. Also, since ∂zhT T
i j =−∂0hT T

i j = ∂ 0hT T
i j , we have t00 = t03.

Using the Bianchi identity, we can get

D̄µ
(
R̄µν −

1
2

ḡµν R̄
)
= 0,

so from eqn.(2.146), we have

D̄µ
(
T̄µν + t̄µν

)
= 0. (2.154)
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If we look at the last expression at large distances from the source with flat back-

ground, we will get

∂
µtµν = 0 (2.155)

since T̄µν = 0 and D̄µ → ∂ µ .

The energy flux

Let’s start with the conservation of the energy-momentum tensor which is given by

eqn.(2.155),

∂
0t0ν +∂

itiν = 0.

If we look at it in the situation ν = 0, then

∂0t00 +∂iti0 = 0

implies that ∫
V

d3x (∂0t00 +∂iti0) = 0 (2.156)

where V is a spatial volume in the far region, which has the boundary ∂V = S. The

gravitational energy inside the volume V is given by

EV =
∫

V
d3x t00. (2.157)

Taking the time derivative of last expression, we get

∂0EV =
∫

V
d3x ∂0t00. (2.158)

Using eqn.(2.157) and ∂0 =
1
c

d
dt , we get
1
c

dEV

dt
=−

∫
V

d3x ∂it0i

=−
∫

S
dA nit0i (2.159)

where ni is the outer normal to the surface and dA is the surface area element. Say S

be a spherical surface at a large distance r from the source, then dA = r2 sinθdθdφ =

r2dΩ. Then eqn.(2.159) becomes
dEV

dt
=−c

∫
S

dA t0r (2.160)

where

t0r =
c4

32πG
〈∂ 0hT T

i j
∂

∂r
hT T

i j 〉. (2.161)

A gravitational wave which propagates radially outward has the form

hT T
i j (t,r) =

1
r

fi j(t−
r
c
). (2.162)
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To compute eqn.(2.161), we firstly compute some arguments which we need
∂

∂r
hT T

i j (t,r) =− 1
r2 fi j(t−

r
c
)+

1
r

∂

∂r
fi j(t−

r
c
).

Also, 
∂

∂r
fi j(t− r

c) =
∂ fi j
∂u

∂u
∂r

=−1
c

∂ fi j
∂u

∂

∂t
fi j(t− r

c) =
∂ fi j
∂u

∂u
∂t

=
∂ fi j
∂u

imply that
∂

∂r
fi j(t−

r
c
) =−1

c
∂

∂t
fi j(t−

r
c
), (2.163)

where u(t,r) = t− r
c . Therefore,

∂

∂r
hT T

i j (t,r) =− 1
r2 fi j(t−

r
c
)− 1

r
1
c

∂

∂t
fi j(t−

r
c
)

=−∂0
[1

r
fi j(t−

r
c
)
]
+O(

1
r2 )

=−∂0hT T
i j (t,r)+O(

1
r2 )

= ∂
0hT T

i j (t,r)+O(
1
r2 ). (2.164)

Using this expression in eqn.(2.161), we get

t0r =
c4

32πG
〈∂ 0hT T

i j ∂
0hT T

i j 〉

= t00.

Now, we can go back to eqn.(2.160) which becomes
dEV

dt
=−c

∫
S

dA t00. (2.165)

It is obvious that dEV
dt < 0 from the last equation, so there is an important result which

is EV decreases in time. Since EV decreases, we can say that the outward-propagating

gravitational waves carry away an energy flux
dE

dAdt
= ct00 (2.166)

=
c3

32πG
〈ḣT T

i j ḣT T
i j 〉,

or,
dE
dt

=
c3r2

32πG

∫
dΩ〈ḣT T

i j ḣT T
i j 〉. (2.167)

Using eqn.(2.153) in the last expression, we get

dE
dAdt

=
c3

16πG
〈ḣ2

++ ḣ2
x〉. (2.168)
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As a result, the total energy which flows through dA is
dE
dA

=
c3

16πG

∫
∞

−∞

dt〈ḣ2
++ ḣ2

x〉. (2.169)

The reason why we take the integration over from t = −∞ to t = ∞ is that we want

to resolve all possible frequencies. However, we will integrate the signal only over

a certain interval 4t. We saw that the average in eqn.(2.169) is a temporal average

over a few periods in the previous section. Therefore, we can omit the average in

eqn.(2.169),
dE
dA

=
c3

16πG

∫
∞

−∞

dt
(
ḣ2
++ ḣ2

x
)
. (2.170)

From (2.86) and (2.90),

h+ =
∫

∞

−∞

d f h̃+( f )e−2iπ f t ,

ḣ+ =
d
dt

(∫ ∞

−∞

d f h̃+( f )e−2iπ f t
)
=
∫

∞

−∞

d f (−2iπ f )h̃+( f )e−2iπ f t .

Similarly,

ḣx =
∫

∞

−∞

d f (−2iπ f )h̃x( f )e−2iπ f t .

To use the last two result in eqn.(2.170), we will firstly compute∫
∞

−∞

dtḣ2
+ =

∫
∞

−∞

dt

[(∫ ∞

−∞

d f (−2iπ f )h̃+( f )e−2iπ f t
)2
]

=
∫

∞

−∞

dt
(∫ ∞

−∞

d f (−2iπ f )h̃+( f )e−2iπ f t
)(∫ ∞

−∞

d f ′(2iπ f ′)h̃∗+( f ′)e2iπ f ′t
)

=
∫

∞

−∞

d f (−2iπ f )h̃+( f )
∫

∞

−∞

d f ′(2iπ f ′)h̃∗+( f ′)
∫

∞

−∞

dte2iπ( f ′− f )t

=
∫

∞

−∞

d f (−2iπ f )h̃+( f )
∫

∞

−∞

d f ′(2iπ f ′)h̃∗+( f ′)δ ( f ′− f )

=
∫

∞

−∞

d f (2π f )2|h̃+( f )|2,

where we used the definition of the Dirac-delta function and superscript (*) denotes

the complex conjugation. Similarly, we can find∫
∞

−∞

dtḣ2
x =

∫
∞

−∞

d f (2π f )2|h̃x( f )|2,

by using the same technique. Hence, eqn.(2.170) becomes
dE
dA

=
c3

16πG

∫
∞

−∞

d f (2π f )2(|h̃+( f )|2 + |h̃x( f )|2
)

=
πc3

4G

∫
∞

−∞

d f f 2(|h̃+( f )|2 + |h̃x( f )|2
)
. (2.171)

If we look at only the physical situations which is f > 0, then it becomes
dE
dA

=
πc3

2G

∫
∞

0
d f f 2(|h̃+( f )|2 + |h̃x( f )|2

)
. (2.172)
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Hence,
dE

dAd f
=

πc3

2G
f 2(|h̃+( f )|2 + |h̃x( f )|2

)
. (2.173)

The integration of dE
d f which is the energy spectrum over the positive frequencies gives

us the total energy. From eqn.(2.173),

dE
d f

=
πc3

2G
f 2r2

∫
dΩ
(
|h̃+( f )|2 + |h̃x( f )|2

)
. (2.174)

Now, we can compute the flux of momentum using the same way which we used to

find the energy flux. By definition, the momentum of the gravitational waves inside a

spherical shell which has the volume V at large distance from the source is

Pk
V =

1
c

∫
V

d3x t0k, (2.175)

where k is the spatial index (k = 1,2,3).

2.5 Propagation in Curved Space-time

In the last section, we gave our attention to low-modes eqn.(2.121). Now, we will

focus on eqn.(2.121) which is the high-modes equation. First of all, we again look at

the case where there is no matter, Tµν = 0, so

R(1)
µν =−

[
R(2)

µν

]High
. (2.176)

There are two small parameters h ≡ O(hµν) and λ̄

LB
(or fB

f ) in the short-wave (high-

frequency) expansion. From (2.137) the Einstein equation shows us these two param-

eters have the same order of the magnitude, h ∼ λ̄

LB
. Let’s define a single parameter

which we denote by ε such that

ε = O(h) = O(
λ̄

LB
). (2.177)

For simplicity, we use units LB = 1 when we compare the orders. Hence, we have

ε ∼ h∼ λ̄ . If we look at eqn.(2.126), we will see that

R(1)
µν ∼ ∂

2h∼ h

λ̄
2 ∼

1
ε

(2.178)

where we used the fact that the scale of variation of h is λ̄ . Also, since

R(2)
µν ∼ ∂

2h2 ∼ h2

λ̄
2 ∼ 1, (2.179)[

R(2)
µν

]High is at most O(1). It can be omitted in eqn.(2.165) when we compare it with

the leading term of R(1)
µν which is O(1

ε
). Also, if we look at eqn.(2.122) with this
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leading term, then it becomes [
R(1)

µν

]
1
ε

= 0 (2.180)

where subscript 1
ε

means that we must extract the O(1
ε
) part. Let’s write eqn.(2.180)

explicitly

η
ρσ
(
∂ρ∂νhµσ +∂ρ∂µhνσ −∂ν∂µhρσ −∂ρ∂σ hµν

)
' 0, (2.181)

where we changed the covariant derivative with regular derivative, and changed the

metric ḡµν with Minkowski flat space metric ηµν .

In section (1.1), we constructed the propagation equation for the field hµν in a flat

background by using the linearized theory, it is obvious that eqn. (2.181) is the same

equation with it. Defining h̄µν = hµν− 1
2ηµνh and using the Lorenz gauge condition,

we can easily get

2h̄µν ' 0, (2.182)

where 2 = ∂µ∂ µ is the flat space d’Alembertian. As a result, since this equation is

the same equation as eqn.(2.60) where Tµν = 0, we can say that the high-frequency

eqn.(2.122) is a wave equation for the perturbation hµν .

Now we can look at the situation there is matter which means Tµν 6= 0. This matter

will dominate the curvature, so eqn.(2.121) which is known as low-frequency equa-

tion becomes

R̄µν −
1
2

ḡµν R̄' 8πG
c4 T̄µν . (2.183)

For the frequency case, we know that h << λ̄

LB
<< 1 from eqn.(2.138) that means the

expansion in h and in λ̄

LB
are not same. If we only use the liner terms with respect to

h, and we make an expansion with respect to λ̄

LB
, eqn.(2.122) becomes

R(1)
µν = 0, (2.184)

where we limit only to the leading and next-to-leading order in λ̄

LB
. Since

[
R(2)

µν

]High

has the square power of h, we can omit it. Also, if we use the fact that gµνT =

(ḡµν + hµν)T , we can say that it has high-frequency part O(h), and there is another

high-frequency part with order h which based on multiplying hµν with low-frequency

part of T . Hence, (
Tµν −

1
2

gµνT
)High

= O(
h

L2
B
). (2.185)
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Since R(1)
µν ∼ ∂ 2h ∼ h

λ̄
2 , the order of eqn.(2.85) is smaller than the order of R(1)

µν .

When there is matter, the background metric ḡµν will be different from the flat metric

ηµν . Hence, R(1)
µν is a covariant quantity with respect to background metric. From

eqn.(2.126), we can write R(1)
µν explicitly,

ḡρσ
(
D̄ρD̄νhµσ + D̄ρD̄µhνσ − D̄νD̄µhρσ − D̄ρD̄σ hµν

)
= 0. (2.186)

We already made discussions of the flat space metric version of this last equation, in

section (1.1). In here, ηµν will be replaced by ḡµν . Defining h = ḡµνhµν and

h̄µν = hµν −
1
2

ḡµνh, (2.187)

eqn.(1.186) will be simpler. Also, we can use the condition

D̄ν h̄µν = 0 (2.188)

which is still called Lorenz gauge. Let’s use this gauge condition, definition (2.187)

and in eqn.(2.186),

0 = D̄ρD̄νhµρ + D̄ρD̄µhνρ − D̄νD̄µh− D̄ρD̄ρhµν

= D̄ρD̄ρ

(
hµν −

1
2

ḡµνh
)
+

1
2

ḡµνD̄ρD̄ρh+ D̄νD̄µh− D̄ρD̄ν

(
hµρ −

1
2

ḡµρh
)

− 1
2

ḡµρD̄ρD̄νh− D̄ρD̄µ

(
hνρ −

1
2

ḡνρh
)
− 1

2
ḡνρD̄ρD̄µh

= D̄ρD̄ρ h̄µν +
1
2

ḡµνD̄ρD̄ρh+
1
2��

��
��[

D̄ν , D̄µ

]
h−
[
D̄ρ , D̄ν

]
h̄µρ −

[
D̄ρ , D̄µ

]
h̄νρ

to cancel the third term of the last expression, we used the fact that covariant derivative

commutes for the scalar. Also, if we use the expression[
D̄ν , D̄ρ

]
h̄ ρ

µ = hρα R̄ρµαν − h̄ τ
µ R̄τν ,

then we get

D̄ρD̄ρ h̄µν +2R̄µρνσ h̄ρσ − R̄µρ h̄ρ

ν − R̄νρ h̄ρ

µ = 0, (2.189)

where we used the residual gauge to make hµν traceless.

If we look at the situation outside the matter which means T̄µν = 0, then the Einstein

equation (2.183) for the background implies that R̄µν = 0. In other words, R̄µν has

the terms which are contributions only from
[
R(2)

µν

]Low if we look at eqn.(2.121), so

R̄µν = O( h2

λ̄
2 ). Since we are only interested the linear order in h, R̄µρ h̄ρ

ν and R̄νρ h̄ρ

µ

can be canceled in eqn.(2.189). In addition, R̄µρνσ =O( 1
L2

B
) implies that R̄µρνσ h̄ρσ =

O( h
L2

B
), but on the other hand D̄ρD̄ρ h̄µν = O( h

λ̄
2 ). We already have a restriction which
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we study order in λ̄

LB
, so we have

D̄ρD̄ρ h̄µν = 0. (2.190)

Equations (2.188) and (2.190) give us the propagation of gravitational waves in the

curved background. Consequently, if we separate the Einstein equations into two

parts where the first part is a low-frequency and second one is a high-frequency part,

then we can say that the low-frequency part gives us the information about the effect

of gravitational waves and effect of matter on the background space-time; on the other

hand, the high-frequency part gives us a wave equation in curved space. We can solve

this curved-space equation using the eikonal approximation of geometric optics. In

the next section, we will do this.

2.5.1 Geometric Optics in Curved Space

Electromagnetic waves

The action of the electromagnetic field in the curved space is

S =−1
4

∫
d4x
√
−ḡḡµα ḡνβ FµνFαβ , (2.191)

and it is known that its variation gives the equation of motion

D̄µ

(
D̄µAν − D̄νAµ

)
= 0, (2.192)

where we use ḡµν to raise and lower the indices [5]. The result (2.192) is the general-

ization of Maxwell equations ∂µFµν . The curved space generalization of the Lorenz

gauge on the four vector potential Aµ is

D̄µAµ = 0. (2.193)

Lets now compute the expression
[
D̄µ , D̄ν

]
Aµ . To do this, let’s firstly compute

D̄µD̄νAµ = ḡναD̄µD̄αAµ

= ḡνα

[
∂µ

(
D̄αAµ

)
+ Γ̄

µ

µλ

(
D̄αAλ

)
− Γ̄

λ
µα

(
D̄λ Aµ

)]
= ḡνα

[
∂µ

(
∂αAµ + Γ̄

µ

αβ
Aβ
)
+ Γ̄

µ

µλ

(
∂αAλ + Γ̄

λ

αβ
Aβ
)

− Γ̄
λ

µα

(
∂λ Aµ + Γ̄

µ

λβ
Aβ
)]

= ḡνα

[
∂µ∂αAµ + Γ̄

µ

αβ
∂µAβ + Γ̄

µ

µλ
∂αAλ − Γ̄

λ
µα∂λ Aµ

+
(
∂µ Γ̄

µ

αβ
+ Γ̄

µ

µλ
Γ̄

λ

αβ
− Γ̄

λ
µα Γ̄

µ

λβ

)
Aβ

]
.
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Secondly, if we use same technique, we will get

D̄νD̄µAµ = ḡνα

[
∂α∂µAµ + Γ̄

µ

µβ
∂αAβ + Γ̄

µ

αλ
∂µAλ − Γ̄

λ
αµ∂λ Aµ

+
(
∂α Γ̄

µ

µβ
+ Γ̄

µ

αλ
Γ̄

λ

µβ
− Γ̄

λ
αµ Γ̄

µ

λβ

)
Aβ

]
.

If we subtract the second term from first one, we can get[
D̄µ , D̄ν

]
Aµ = ḡνα

(
∂µ Γ̄

µ

αβ
−∂α Γ̄

µ

µβ
+ Γ̄

µ

µλ
Γ̄

λ

αβ
− Γ̄

µ

αλ
Γ̄

λ

µβ

)
Aβ

= ḡνα R̄µ

β µα
Aβ

= R̄ν
µAµ

where R̄ν
µ is the Ricci tensor of the background metric ḡµν . From the last expression,

D̄µD̄νAµ =���
��D̄νD̄µAµ + R̄ν

µAµ = R̄ν
µAµ

where we used the gauge condition (2.193). Hence, eqn.(2.181) becomes

D̄ρD̄ρAµ − D̄ρD̄µAρ = 0,

⇒ D̄ρD̄ρAµ − R̄µ

ρAρ = 0. (2.194)

If λ̄ is much smaller than the other scalers in the problem, geometric optics will be

valid. Hence, we must have λ̄ << LB, where LB is the scale of variation of the back-

ground metric. In addition, we must have λ̄ << Lc where Lc is the characteristic

length-scale over which the amplitude, polarization or wavelength of the electromag-

netic field change. In particular, the curvature radius of the wavefront must be much

bigger than λ̄ . Say

Aµ(x) =
[
aµ(x)+E bµ(x)+E 2cµ(x)+ ...

]
e

iθ(x)
E , (2.195)

where E is a fictitious parameter, which reminds us that the term which has E n is of

order
(

λ̄

L

)n
where L is the min(LB,Lc).

Since Rµ

ρAρ =O(A/L2
B) where A is the amplitude of the Aµ , and D̄ρD̄ρAµ =O(A/λ̄

2),

to leading and next-to-leading order in λ̄/LB we can omit Rµ

ρAρ . Hence, the equa-

tions of motion (2.194) can be rewritten as

D̄ρD̄ρAµ = 0. (2.196)

Let’s define the wave-vector kµ ≡ ∂µθ , and use this and eqn.(2.195) in eqn.(2.193) in

order to find the lowest order term:

D̄µAµ = D̄µ

[(
aµ(x)+E bµ(x)+E 2cµ(x)+ ...

)
e

iθ(x)
E

]
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0 =
(
D̄µaµ(x)+E D̄µbµ(x)+E 2D̄µcµ(x)+ ...

)
e

iθ(x)
E

+
(
aµ(x)+E bµ(x)+E 2cµ(x)+ ...

) i∂µθ

E
e

iθ(x)
E

0 =
[
E −1(ikµaµ

)
+E 0(D̄µaµ + ikµbµ

)
+E

(
D̄µbµ + ikµcµ

)
+O(E 2)

]
e

iθ(x)
E .

(2.197)

The lowest order term implies that

kµaµ = 0⇒ ḡµνkµaν = 0, (2.198)

where we use D̄µθ = ∂µθ since θ is a scalar. Similarly, let’s find the lowest order

term from eqn.(2.196)

D̄ρD̄ρAµ = D̄ρD̄ρ

[(
aµ +E bµ + ...

)
e

iθ(x)
E

]
= D̄ρ

{[(
D̄ρaµ +E D̄ρbµ + ...

)
+
(
aµ +E bµ + ...

) ikρ

E

]
e

iθ(x)
E

}

=
(
D̄ρD̄ρaµ +E D̄ρD̄ρbµ + ...

)
e

iθ(x)
E +

ikρ

E

(
D̄ρaµ +E D̄ρbµ + ...

)
e

iθ(x)
E

+
iD̄ρkρ

E

(
aµ +E bµ + ...

)
e

iθ(x)
E +

ikρ

E

(
D̄ρaµ +E D̄ρbµ + ...

)
e

iθ(x)
E

+
ikρ

E

ikρ

E

(
aµ +E bµ + ...

)
e

iθ(x)
E , (2.199)

so it is

kρkρ = 0⇒ ḡµνkµkν = 0. (2.200)

which is called the eikonal equation. Also, we have

D̄ν

(
kµkµ

)
= D̄ν

(
ḡµνkµkµ

)
= ḡµν

[(
D̄νkµ

)
kα + kµ

(
D̄νkα

)]
= kµ

(
D̄νkµ

)
+ kµ

(
D̄νkµ

)
= 2kµD̄νkµ , (2.201)

which is zero from eqn.(2.200). There is another important expression which is

D̄ν∂µθ = D̄νD̄µθ = D̄µD̄νθ = D̄µ∂νθ ,

since θ is a scalar and it is known that covariant derivatives always commute on the

scalars. If we use the definition of the wave vector on the last expression, we get

D̄νkµ = D̄µkν . (2.202)

In addition, using eqns.(2.200) and (2.202) in eqn.(2.201), we can get

kµD̄µkν = 0. (2.203)
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The expression (2.203) is the geodesic equation in the space-time of the background

metric ḡµν . It can be seen easily to write kµ = dxµ

dλ
where λ is the affine parameter

along the geodesic,

ḡαν

dxµ

dλ
D̄µ

dxα

dλ
= ḡαν

dxµ

dλ

(
∂µ

dxα

dλ
+Γ

α

µβ

dxβ

dλ

)
= ḡαν

(d2xα

dλ 2 +Γ
α

µβ

dxµ

dλ

dxβ

dλ

)
= 0,

implies that

d2xα

dλ 2 +Γ
α

µβ

dxµ

dλ

dxβ

dλ
= 0. (2.204)

As a result, the curves which are orthogonal to the surfaces move along the null

geodesic of background metric.

Now, we can find the next-to-leading order from eqn.(2.196). If we look at the ex-

pression (2.199), the terms which have the order of E −1 is

2kρD̄ρaµ +
(
D̄ρkρ

)
aµ = 0. (2.205)

Let’s define the real scalar amplitude a = (aµa∗µ)
1/2 and the polarization vector eµ

such that aµ = aeµ , so we have eµe∗µ = 1. It is trivial that kµ∂µ(a2) = 2akµ∂µa.

Using the fact that normal derivative is equivalent to covariant derivative when we

apply it to a scalar, we get

kµ
∂µ(a2) = kµD̄µ(aρa∗ρ)

= kµ
(
D̄µaρ

)
a∗ρ + kµaρ

(
D̄µa∗ρ

)
=−1

2
(
D̄µkµ

)
aρa∗ρ −

1
2
(
D̄µkµ

)
a∗ρaρ

=−
(
D̄µkµ

)
a2, (2.206)

where we used eqn.(2.205) to write kµ
(
D̄µaρ

)
= −1

2

(
D̄µkµ

)
aρ . From the result

(2.206), we get

kµ
∂µ(a2) =−

(
D̄µkµ

)
a2

2akµ
∂µa =−

(
D̄µkµ

)
a2

⇒ kµ
∂µa =−1

2
(
D̄µkµ

)
a. (2.207)

Also, we can find an equation for eµ by writing aµ = aeµ in eqn.(2.205) and using

eqn.(2.207),

2kρD̄ρ

(
aeµ
)
+
(
D̄ρkρ

)
aeµ = 0
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2kρ
(
D̄ρa

)
eµ +2akρD̄ρeµ +

(
D̄ρkρ

)
aeµ = 0(

2kρ
∂ρa
)
eµ +

(
D̄ρkρ

)
aeµ +2akρD̄ρeµ = 0

−����
��(

D̄ρkρ
)
aeµ +���

���
(
D̄ρkρ

)
aeµ +2akρD̄ρeµ = 0

implies that

kρD̄ρeµ = 0. (2.208)

The main results of the geometric optics of electromagnetic waves in curved spaces

are the equations (2.198), (2.200), (2.203), (2.207) and (2.208). Eqn.(2.198) means

kµeµ = 0, and eqn.(2.208) means that it is parallel-transported along the null geodesic.

Lastly, eqn.(2.207) gives us information about the conservation of the number of

photons (in the quantum language) in the limit of geometric optics. Let’s look at

D̄µ
(
a2kµ

)
explicitly

D̄µ
(
a2kµ

)
= D̄µ

(
aeρae∗ρkµ

)
= (D̄µa)eρae∗ρkµ +

���
���

��
a(D̄µeρ)ae∗ρkµ +aeρ(D̄µa)e∗ρkµ +

��
���

���a2eρ(D̄µe∗ρ)k
µ

+aeρae∗ρ(D̄
µkµ)

= 2akµ(∂ µa)+a2(D̄µkµ)

=−a2D̄µkµ +a2D̄µkµ

= 0 (2.209)

As a result, if we define a current such that j = a2kµ , then we can say that the cur-

rent is covariantly conserved. Noether’s theorem says us that its relevant conserved

charge is the spatial surface integral of a2k0 at constant time. Also energy density

is proportional to (k0a)2. Because the each photon have the energy k0 and we have

eqn.(2.209), the number of photons is conserved in the limit of the geometric optics.

Gravitational waves

The question is what the eikonal approximation is for gravitational waves. Say

h̄µν(x) =
[
Aµν(x)+E Bµν(x)+ ...

]
e

iθ(x)
E . (2.210)

Similar to the situation in electromagnetic waves, there is the definition kµ = ∂µθ ,

and we also write Aµν = Aeµν where eµν is the polarization tensor which is normal-

ized as eµνe∗µν = 1, and A is the scalar amplitude. If we substitute eqn.(2.210) into
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eqn.(2.188),

D̄ν h̄µν = D̄ν

{[
Aµν(x)+E Bµν(x)+ ...

]
e

iθ(x)
E

}
=
(
D̄νAµν(x)+E D̄νBµν(x)+ ...

)
e

iθ(x)
E +

(
Aµν(x)+E Bµν(x)+ ...

) ikν

E
e

iθ(x)
E

= 0,

then the lowest order term gives us

kνAµν = 0. (2.211)

Let’s focus on eqn.(2.190) this time,

D̄ρD̄ρ h̄µν = D̄ρ

{(
D̄ρAµν(x)+E D̄ρBµν(x)+ ...

)
e

iθ(x)
E

+
(
Aµν(x)+E Bµν(x)+ ...

) ikρ

E
e

iθ(x)
E

}
=
(
D̄ρD̄ρAµν(x)+E D̄ρD̄ρBµν(x)+ ...

)
e

iθ(x)
E

+
(
D̄ρAµν(x)+E D̄ρBµν(x)+ ...

) ikρ

E
e

iθ(x)
E

+
(
D̄ρAµν(x)+E D̄ρBµν(x)+ ...

) ikρ

E
e

iθ(x)
E

+
(
Aµν(x)+E Bµν(x)+ ...

) iD̄ρkρ

E
e

iθ(x)
E

−
(
Aµν(x)+E Bµν(x)+ ...

)kρkρ

E 2 e
iθ(x)

E . (2.212)

Hence, from the lowest order term of eqn.(2.212), we have

kρkρ = 0⇒ ḡµνkµkν = 0. (2.213)

The eqns.(2.211) and (2.212) are the same as for the electromagnetic waves version

of the geometric optics which we found before. As a result, we can say that gravitons

use the null geodesic of background metric hence they travel like the photons. In

addition, Aµν satisfies, if we look at the next-to-leading term from eqn.(2.121)

kρD̄ρAµν + kρD̄ρAµν +(D̄ρkρ)Aµν = 0

2kρD̄ρAµν +(D̄ρkρ)Aµν = 0

which implies that

kρD̄ρAµν =−1
2
(D̄ρkρ)Aµν . (2.214)

Also, let’s look at the expression

kµ
∂µ(A2) = kµD̄µ

(
Aαβ A∗

αβ

)
= kµ

(
D̄µAαβ

)
A∗

αβ
+ kµAαβ

(
D̄µA∗

αβ

)
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=−1
2
(
D̄µkµ

)
Aαβ A∗

αβ
−−1

2
(
D̄µkµ

)
Aαβ A∗

αβ

=−
(
D̄µkµ

)
A2 (2.215)

From the last expression, we can get

2Akµ
∂µA =−

(
D̄µkµ

)
A2

⇒ kµ
∂µA =−1

2
(
D̄µkµ

)
A. (2.216)

Now, we can look at the expression

D̄µ
(
A2kµ

)
= ∂

µ
(
A2)kµ +A2(D̄µkµ

)
= 0 (2.217)

where we used eqn.(2.215). As a result, we can say that the number of the gravitons

are conserved in this approximation of geometric optics.
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CHAPTER 3

INTRODUCTION TO GRAVITATIONAL WAVES’ MEMORY

To observe the gravitational waves, we can use a detector which consists of freely

falling test particles. The gravitational wave passing through a detector causes a rel-

ative motion of these test particles. The Laser Interferometer Gravitational-Wave

Observatory (LIGO) has this physical mechanism. For example, assume that there

are four test particles which make a circle shape before the plane wave arrives. When

the plane wave is passing, the shape of it changes as

Figure 3.1: A simplified gravitational wave detector [2].

Astrophysical realistic radiation has the form of finite pulses instead of endlessly re-

peating plane waves [9]. Such a pulse which is created by interactions of sources such

as stars or black holes in a galactic nucleus, can cause a finite, permanent change in

the separations of the particles. This is known as the gravitational wave memory ef-

fect. Recently there are many publications about this phenomenon [3, 4, 12–23] . If

we look at this phenomenon with same analogy which is shown in Fig.(3.1). It starts

with the perfect circle shape, then it will oscillate for a finite amount of time, and it

finally will stop. However, this time it cannot be a circle again.

Figure 3.2: A representation of the memory effect [2].
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3.1 What Are the Mathematical Properties of the Memory Effect?

There is a reason for use of null infinity. The reason is that it gives us a permission to

isolate the radiation from other forms of gravitation due to the peeling theorem, since

we can identify different portions of curvature using the peeling theorem [10]. We

can accept that the source is very far away from the detector, then the space-time is

asymptotically flat. Let the source be at a point p in extended space-time; however,

the detector is near a point q on null infinity. Then we can expand the gravitational

fields in powers of 1
r , and we will only focus on the leading term.

Let da be the spatial separation between two detector particles, and let’s define 4da

as the change in the separation, then we can find that the memory is

4da =
1
r
4a

bdb (3.1)

where 4ab is the memory tensor which has some interesting information about the

memory-angular dependence, energy and mass scales, etc. If r̂ points to the location

of the detector on the sphere at null infinity, the memory tensor is

4ab = 2 ∑
(i),out

[
m(i)√
1− v2

(i)

(v(i))a(v(i))b

1− r̂.~v

]T T

−2 ∑
( j),in

[
m( j)√
1− v2

( j)

(v( j))a(v( j))b

1− r̂.~v

]T T

(3.2)

where

[Xab]
T T = q c

a q d
b Xcd−

1
2

qcdXcdqab (3.3)

where qab known as the transverse-traceless projection operator which is given ex-

plicit form of it in section (1.2).

3.2 Notation and Convention

In the memory part of the thesis, we use the geometrized units (G = c = 1), and the

abstract index notation for the tensors. The indices a,b take the values 1,2 which we

have already used them in Chapter 1. A Latin index in the parentheses (i) tells us

which particle we are interest in. Also, ta =−∂ at is future-pointing, and ra = ∂ ar is

outward-pointing vector. U = t− r is the retarded time, and

Ka =−∂
aU = ta + ra.
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we have the definition such that the nth derivative of the Dirac delta function is

denoted by δ (n), and m-dimensional coordinate Delta function is denoted δm, and∫
dmxδm(x) = 1. We use the symbol Θ for the Heaviside step function.

Lastly, qab denote the projection of the 4-dimensional Minkowski metric onto S2.
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CHAPTER 4

THE GRAVITATIONAL WAVES MEMORY OF SCATTERING PARTICLES

IN MINKOWSKI SPACE-TIME

In this Chapter, we use [2], [3] and [4] as a guide to construct the idea of gravitational

memory.

4.1 Scalar Fields

The scalar wave equation is

∂
a
∂aϕ =−4πS, (4.1)

where ϕ is a scalar field and S is a scalar charge distribution. Our aim is to find

the retarded solution of the wave eqn.(4.1). Here, S represents a system of charged

point-particles. They follow inertial trajectories except at the point P which is called

"interaction vertex". At the point P, the particles may interact, and they can be cre-

ated, or destroyed. For example, we can imagine that six incoming point particles go

on to a interaction vertex P, and then three point particles are born, which is shown

in the Fig.(4.1). Their worldliness can be time-like or light-like (null).

Let (t,~x) be a global inertial coordinate system (GICS) such that the point P can be

chosen as the origin (t = 0,~x = 0) of the GISC. In this coordinate system, we can

write the charge distribution S such as

S(x) = ∑
(i) in

q(i)
dτ(i)

dt
δ3

(
~x−~y(i)(t)

)
Θ(−t)+ ∑

( j) out
q( j)

dτ( j)

dt
δ3

(
~x−~y( j)(t)

)
Θ(t),

(4.2)

where q(i) are the scalar charges of the particles which are measured in their rest

frame, and (t,~y(i)(t)) with (~y(i)(0)= 0) are the particles worldliness which are parametrized

with the GICS time coordinate. In here, the particles which arrive the point P are de-
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Figure 4.1: A space-time diagram of the sort of radiation source we will consider. [2]

stroyed by the Θ(−t) factor, and the particles which leave the point P are created by

the Θ(t) factor.

We can find the retarded solution of eqn. (4.1) by using the charge distribution S

given by eqn. (4.2) with retarted Green’s function G of eqn. (4.1), such that

ϕ(x) = 4π

∫
d4x′G(x,x′)S(x′), (4.3)

where the retarded Green’s function G(x,x′) is

G(x,x′) =
1

2π
δ

(
σ

2(x,x′)
)

Θ(t− t ′), (4.4)

in which σ2(x,x′) = −(t− t ′)2 + |~x−~x′|2 is the squared geodesic distance between

field point x and the charge point x′.

Let’s think a source Sin,~v=0(x) which is a single massive particle at rest, and is de-

stroyed at point P, so it is

Sin,~v=0(x) = qδ3(~x)Θ(−t). (4.5)

If we write the Green’s function (4.4) and the charge density (4.5) on the retarded

field which is given at eqn.(4.3), we will get

ϕin,~v=0(x) = 4π

∫
d4x′

[ 1
2π

δ

(
σ

2(x,x′)
)

Θ(t− t ′)
][

qδ3(
~x′)Θ(−t ′)

]
= 2q

∫
d4x′δ

(
− (t− t ′)2 + |~x−~x′|2

)
Θ(t− t ′)δ3(

~x′)Θ(−t ′).
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First of all, we can take the spatial part of the integral, so

ϕin,~v=0(x) = 2q
∫

dt ′δ
(
− (t− t ′)2 + r2

)
Θ(t− t ′)Θ(−t ′). (4.6)

Then, to obtain the value of the integral (4.6), we will give an interlude about the delta

function. The definition of the delta function is

δ ( f ) = ∑
i

δ (x− xi)∣∣∣(d f
dx

)
x=xi

∣∣∣ . (4.7)

where the xi is the zeros of the function f . In our problem, f = r2− (t− t ′)2 ,and its

zeros are t ′ = t− r and t ′ = t + r. Since we have the factor Θ(t− t ′), t ′ = t− r is the

only zero point of f which give us a value different from the zero when we take the

integral (4.6). Thus,

δ (−(t− t ′)2 + r2) =
δ (t ′− (t− r))∣∣∣(−2(t− t ′)

)
t ′=t−r

∣∣∣
=

δ (t ′− (t− r))
2r

. (4.8)

Using the result (4.8) in the integral eqn. (4.6), we get

ϕin,~v=0(x) = 2q
∫

dt ′
δ (t ′− (t− r))

2r
Θ(t− t ′)Θ(−t ′)

=
q
r

Θ
(
− (t− r)

)
+O(

1
r2 )

=
q
r

Θ
(
−U

)
+O(

1
r2 ), (4.9)

where

U = t− r. (4.10)

Hence, the leading order of ϕin,~v=0 is 1
r . The terms which have the higher order of 1

r

can be neglected since ve have the detectors in the radiation zone. We can find the

field of a particle which is created with velocity~v by boosting eqn.(4.9). Let’s (t,~y(t))

be the geodesic of a particle with coordinate velocity~v = d~y
dt , then the leading term of

field is

ϕin,~v(x) =
q
r

dτ

dt
1

1− r̂.~v
Θ
(
−U

)
. (4.11)

Now, let’s consider about the retarded solution of Sout,~v=0 which is a single massive

particle at rest, and is created at P. Thus, if we make same calculation, then we will

get

ϕout,~v=0(x) =
q
r

Θ
(
U
)
+O(

1
r2 ). (4.12)
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The only difference of last equation from eqn.(4.9) is that it does not have the minus

sign in the factor of Θ, since there will be term Θ(t) to create a particle instead of

Θ(−t) in the source density Sout,~v=0. Again, to find the leading term of a retarded

solution for a particle which is created with velocity~v, we can boost eqn.(4.12) with

the same approach we did before for the particle which is destroyed with velocity~v.

Thus,

ϕout,~v(x) =
q
r

dτ

dt
1

1− r̂.~v
Θ
(
U
)
. (4.13)

If we consider a general source like (4.2), we can write the field as a linear superpo-

sition of the created and destroyed particles. Thus, the general retarded field solution

is the superposition of the solution of the every particle in the system,

ϕ =
1
r

(
Θ
(
U
)
α(r̂)+Θ

(
−U

)
β (r̂)

)
, (4.14)

with leading order 1
r , where

α(r̂) = ∑
(i),out

dτ(i)

dt
q(i)

1− r̂.~v(i)
, β (r̂) = ∑

( j),in

dτ( j)

dt
q( j)

1− r̂.~v( j)
. (4.15)

There are two cases for an observer;

Case 1 (U < 0, or equivalently, t < r): He/she will observe a collection of charges

which have several constant velocities. Thus, he/she measure a superposition of

boosted Coulomb-like fields.

Case 2 (U > 0, or equivalently, t > r): He/she will observe a collection of charges

which are different from the particles described in case 1 with different velocities.

As a result, we can find a "scalar wave" propagating with a Heaviside step wavefront

on the future light cone of the interaction point P between these two regions.

4.1.1 Scalar Memory

Now, we have the tools to find the effect of the scalar field (4.14) on a "scalar wave

detector" which made of a massive test charge at rest in the GICS near future null

infinity. The scalar force on a test particle which has mass M0 and charge Q is

f a = Q∂
a
ϕ. (4.16)

Then, the leading order term of the force at large distance from the source is

f a(U,x) =−Q
r
(α−β )δ (U)Ka, (4.17)
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where

Ka =−∂
aU. (4.18)

We neglect the terms in eqn.(4.17) which come from derivative of 1/r, α and β , since

they are order in 1/r2.

Assume that the test particle is initially at rest, then the change of the momentum is

∆Pa(U) =
∫ U

−∞

dU ′ f a(U ′,~x)

=
∫ U

−∞

dU ′
Q
r
(α−β )δ (U)∂ aU

=−Q
r
(α−β )Θ(U)Ka (4.19)

Because of the scalar radiation which is emitted by interactions of particles, a test

particle will have a momentum kick. There will be a change in mass because of mass

which is

M2
1 =−ηab

(
Pa

0 +∆Pa)(Pb
0 +∆Pb)= M2

0 −2Pa
0 ∆Pa = M2

0 −2Q(α−β )
M0

r
, (4.20)

where we only write the leading order term [6, 7].

4.2 Electromagnetic Fields

We can write the Maxwell’s equation for the four-potential Aa with the form of a wave

equation which is like eqn.(4.1),

∂
b
∂bAa =−4πJa, (4.21)

where we have the Lorentz gauge

∂aAa = 0, (4.22)

and Ja is the electromagnetic current density. The current density has the property

∂aJa = 0 which is known as the charge conservation law. If we use the retarded

integral (4.3) on each GICS component of (4.21), we can compute the retarded elec-

tromagnetic field for a given current density. Let’s again assume that there is a event

P where ingoing particles destroyed, and outgoing particles created. Say the event P

is the origin of the our GICS, then we can write the charge-current density for ingoing

particles with the form

Ja
(i) = q(i)

dτ(i)

dt
ua
(i)δ3

(
~x−~y(i)(t)

)
Θ(−t), (4.23)
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where τ(i) is the proper time for the i th particle which has the world-line (t,~y(i)),ua
(i) is

the tangent vector which is normalized, and q(i) is the charge of it. Also, the massless

version of the charge-current density of ingoing charges is

Ja
( j) = q(i)w

a
( j)δ3

(
~x−~y( j)(t)

)
Θ(−t) (4.24)

where ωa
( j) is the tangent vector for the particle’s null world-line(geodesic). We have

the normalization such that an observer who has four-velocity ta measures ωa
( j)ta =

−1. Changing the factor Θ(−t) with Θ(t), we can get the charge-current density for

the outgoing particles. In other words, the factor Θ(t) creates the outgoing particles

at interaction points. As a result, we can write the general charge-current density as

Ja = ∑
(i)in,massive

Ja
(i)+ ∑

( j)in,null
Ja
( j)+ ∑

(k)out,massive
Ja
(k)+ ∑

(l)out,null
Ja
(l). (4.25)

Also,if we consider the conservation of Ja, then we have another important expression

about conservation of charge which is

∑
(i)out

q(i) = ∑
( j)in

q( j). (4.26)

We will only consider the massive charges for the simplicity. It is easy to generalize

our solution which include the massless charged particles. Let’s find the retarded

solution of eqn.(4.21) for the only ingoing particles charge-current density which

belongs to a single massive particle at rest which is destroyed at point P

Ja
in,~va=0(x) = q

dτ

dt
ua

δ3(~x)Θ(−t). (4.27)

Since the every component of the charge-current density has scalar nature, we can

use same integral which we used in the scalar part. Then the leading order term of ath

component of the vector potential is

Aa
in,~v=0 = 4π

∫
d4x′G(x,x′)Ja(x′)

= 4π

∫
d4x′

1
2π

[
− (t− t ′)2 + |~x−~x′|2

]
Θ(t− t ′)qua

δ3(~x)Θ(−t ′)

= 2qua
∫

d4t ′δ
[
− (t− t ′)2 + r2]

Θ(t− t ′)Θ(−t ′)

= 2qua
∫

d4t ′
δ
[
t ′− (t− r)

]
2|t− t ′|

Θ(t− t ′)Θ(−t ′)

=
q
r

ua
Θ(−(t− r))

=
q
r

ua
Θ(−U). (4.28)
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Then,the ath component of the vector potential of the particle which is created with

velocity~v is

Aa
in,~v =

q
r

dτ

dt
ua

1− r̂.~v
Θ(−U). (4.29)

Using the same technique, we can write solution for the outgoing particles

Aa
out,~v =

q
r

dτ

dt
ua

1− r̂.~v
Θ(U). (4.30)

As a result, we can write the retarded solution of eqn.(4.21) with leading order

Aa =
1
r

(
Θ(U)αa +Θ(−U)β a), (4.31)

where

α
a(r̂) = ∑

(i),out

dτ(i)

dt

q(i)ua
(i)

1− r̂.~v(i)
, (4.32)

β
a(r̂) = ∑

( j),in

dτ( j)

dt

q( j)ua
( j)

1− r̂.~v( j)
. (4.33)

4.2.1 Electromagnetic Memory

By the definition, the field tensor Fab = ∂aAb−∂bAa is

Fab = ∂
a(1

r

(
Θ(U)αb +Θ(−U)β b))−∂

b(1
r

(
Θ(U)αa +Θ(−U)β a))

=
1
r
(αb−β

b)δ (U)∂ aU− 1
r
(αa−β

a)δ (U)∂ bU

=−1
r

(
Ka(αb−β

b)−Kb(αa−β
a)
)
δ (U)

=−2
r

K[a(αb]−β
b])δ (U). (4.34)

Using the conservation of the charge (4.26), we get

K[a(αb]−β
b]) = ∑

(i),out,in

dτ(i)

dt
η(i)q(i)

1− r̂.~v( j)
K[aqb]cu(i)c. (4.35)

The force acting on the test particle with charge Q and four-velocity V a is

f a = QFabVb

= Q
2
r

K[a(αb]−β
b])δ (U)Vb

= Q
2
r ∑
(i),out,in

dτ(i)

dt
η(i)q(i)

1− r̂.~v( j)
K[aqb]cu(i)cVbδ (U). (4.36)

If the test particle initially at rest in our GICS, V a = ta, then

f a =
Q
r

[
∑

(i),out,in

dτ(i)

dt
η(i)q(i)

1− r̂.~v( j)
qabu(i)b

]
δ (U), (4.37)
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where we used

qbctb = 0,

and

Kbtb =−1.

Its change in momentum is

4Pa =
∫ U

−∞

dU ′ f a(U ′,~x)

=
Q
r

[
∑

(i),out,in

dτ(i)

dt
η(i)q(i)

1− r̂.~v( j)
qabu(i)b

]
Θ(U). (4.38)

Since faV a = 0, there is no any change in mass due to the electromagnetic force [8].

4.3 Gravitational Fields

Let’s remember the Einstein-Hilbert action which is

S =
1
κ

∫
d4x
√
−gR, (4.39)

which yields the field equation

Gab = κTab, (4.40)

as we have shown in chapter 1. If we consider the linearization around 4-dimensional

flat background gab = ηab +hab, then the Einstein tensor can be given

G(1)
ab =−1

2
(∂ c

∂chab−
1
2

ηab∂
c
∂ch) (4.41)

where we used the harmonic gauge ∂ ahab =
1
2∂bh. Then, from eqn.(4.36), we have

∂
c
∂chab−

1
2

ηab∂
c
∂ch =−2κTab. (4.42)

Taking the trace of the last equation, we get

∂
c
∂ch−2∂

c
∂ch =−2κT

⇒ ∂
c
∂ch = 2κT. (4.43)

Then using this expression in eqn.(4.38), we obtain

∂
c
∂chab =−2κTab +

1
2

ηab(2κT )

=−2κ(Tab−
1
2

ηabT ), (4.44)

which is known as the linearized field equation. Taking G = 1 natural unit as we did

chapter 1, κ = 8π , then

∂
c
∂chab =−16πT̃ab, (4.45)
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where we define T̃ab = Tab− 1
2ηabT . The general solution of this last expression is

hab = 16π

∫
d4x′G cd

ab (x,x′)T̃cd(x′), (4.46)

where the retarded Green’s function

G cd
ab (x,x′) = η

c
a η

d
b G(x,x′). (4.47)

To find the retarded solution, let us consider the following energy-momentum tensor

Tab = ∑
(i),in

m(i)u(i)a u(i)b
dτ(i)

dt
δ (~x−~y(i)(t))Θ(−t)

+ ∑
( j),out

m( j)u( j)
a u( j)

b
dτ( j)

dt
δ (~x−~y( j)(t))Θ(t), (4.48)

where m(i) is the rest mass of the ith particle which follows the geodesic (t,~y( j)(t))

with four velocity u(i). Now, let’s find the retarded solution of eqn.(4.42) for only the

outgoing particles at rest which is created at P

hab = 16π

∫
d4x′η c

a η
d

b G(x,x′)T̃cd(x′)

= 16π

∫
d4x′G(x,x′)T̃ab(x′)

= 16π

∫
d4x′G(x,x′)

[
∑

(i),out
m(i)u(i)a u(i)b

dτ(i)

dt
δ3(

~x′)Θ(t ′)

− 1
2

ηab ∑
(i),out

m(i)
η

cdu(i)c u( j)
d

dτ(i)

dt
δ3(

~x′)Θ(t ′)
]
.

If we use the fact that ηabu(i)a u( j)
b =−1, we get

hab = 16π

∫
d4x′G(x,x′) ∑

(i),out
m(i)dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
)
δ3(

~x′)Θ(t ′)

= 16π ∑
(i),out

m(i)dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
)∫

d4x′G(x,x′)δ3(
~x′)Θ(t ′).

We have already computed the integral in the last term in the scalar part, so we can

use the result of it.

hab = 16π ∑
(i),out

m(i)dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
) 1

4πr
Θ(U)

=
4
r ∑
(i),out

m(i)dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
)
Θ(U).

Now, we can generalize the last result for the particles which is created with velocity

~v such that

hab =
4
r ∑
(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
)
Θ(U)
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=
4
r

αabΘ(U), (4.49)

where

αab := ∑
(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
)
. (4.50)

Making same computation, we can find the following retarded solution for the ingoing

particles

hab =
4
r

βabΘ(−U), (4.51)

where

βab := ∑
( j),out

m( j)

1− r̂.~v
dτ( j)

dt

(
u( j)

a u( j)
b +

1
2

ηab
)
. (4.52)

As a result, the retarded metric perturbation can be obtained as

hab =
4
r

(
αabΘ(U)+βabΘ(−U)

)
. (4.53)

4.3.1 The Gravitational Memory

We computed the Riemann tensor for the linearized theory in chapter 1 which was

Rabcd =
1
2
(
∂c∂bhad−∂c∂ahbd−∂d∂bhac +∂d∂ahac

)
= ∂c∂[bha]d−∂d∂[bha]c. (4.54)

Now, let us start with computing the term,

∂c∂bhad = ∂c∂b
[4

r

(
αabΘ(U)+βabΘ(−U)

)]
. (4.55)

In here, we can neglect the derivative of 1
r and 1

1−r̂.~v which is O( 1
r2 ),since we study

with O(1
r ). We have already defined Ka =−∂ aU = ta + ra in scalar part, so we have

∂c∂bhad = ∂c
[4

r

(
αad∂bΘ(U)+βad∂bΘ(−U)

)]
= ∂c

[4
r

(
αadδ (U)∂bU−βadδ (U)∂bU

)]
= ∂c

[
− 4

r
Kb
(
αad−βad

)
δ (U)

]
=

4
r

KcKb
(
αad−βad

)
δ
′(U) (4.56)

where we used the fact that ∂cKb = 0. Then

Rabcd =
2
r

[
KcKb

(
αad−βad

)
−KcKa

(
αbd−βbd

)
δ
′(U)−KdKb

(
αac−βac

)
+KdKa

(
αac−βac

)]
δ
′(U).
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(4.57)

Now, let us define

4ab = 2(αab−βab)
T T , (4.58)

where we use the TT gauge condition since our solution (4.53) is not transverse-

traceless. We have already discussed this technique in Chapter 1. To find the expres-

sion (4.54), we can look at only the first term of it, since second term will give us a

similar result. Then

α
T T
ab =

(
∑

(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
u(i)a u(i)b +

1
2

ηab
))T T

=
(

q c
a q d

b −
1
2

qcdqab

)(
∑

(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
u(i)c u(i)d +

1
2

ηcd
))

= ∑
(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a q d
b −

1
2

qcdqab

)(
u(i)c u(i)d +

1
2

ηcd

)
= ∑

(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a q d
b u(i)c u(i)d +

1
2

ηcdq c
a q d

b −
1
2

qcdqabu(i)c u(i)d −
1
4

ηcdqcdqab

)
= ∑

(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a q d
b u(i)c u(i)d +

�
�
�1

2
qab−

1
2

qcdqabu(i)c u(i)d −
�
�
��1

4
2qab

)
= ∑

(i),out

m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a q d
b u(i)c u(i)d −

1
2

qcdqabu(i)c u(i)d

)
. (4.59)

Similarly, the second term of the (4.54) is

β
T T
ab = ∑

(i),in

m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a q d
b u(i)c u(i)d −

1
2

qcdqabu(i)c u(i)d

)
.

Hence, the expression (4.54) becomes

4ab = 2 ∑
(i),out,in

η(i)m(i)

1− r̂.~v
dτ(i)

dt

(
q c

a u(i)c q d
b u(i)d −

1
2

qcdu(i)c u(i)d qabu(i)c u(i)d

)
(4.60)

where η(i) is +1 for out-going and -1 for incoming particles.

We can apply transverse-traceless gauge to the linearized Riemann tensor (4.53),

since it is gauge invariant in the General Relativity case. To do this, we can apply

the TT-gauge to terms α and β as it can be seen eqn.(4.55). Then, the linearized

Riemann tensor is

Rabcd =
1
r

[
Kc4adKb−Kc4bdKa−Kd4acKb +Kd4bcKa

]
δ
′(U)

=
4
r

[
K[a4b][cKd]

]
δ
′(U). (4.61)
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The memory effect relates to the curvature via the geodesic deviation equation which

has been reached in Chapter (1.3.1), since the relative motion of the test particles

is described by the geodesic deviation equation. Let us consider a detector which

consists of two freely falling test particles which are initially at rest with respect to

each other, so their 4-velocities are both ta, and say the spatial separation between

them be da, then the coordinate version of the geodesic deviation equation is

d2di

dt2 =−Ri
0 j0d j. (4.62)

If we use eqn.(4.57) in eqn.(4.58), and integrate it twice, then we have

4di(U) =
∫ U

−∞

dU ′
∫ U ′

−∞

dU ′′
d2di

dU ′′2
(4.63)

=
1
r
4 i

k dk. (4.64)

Thus, there is nontrivial memory effect in 4-dimensional space-time.

4.4 Conclusion

Using the linearized theory and some gauges such that Lorenz and TT gauges we

have transformed the Einstein equations to a simple wave equations. Then we have

found the solution of this wave equations which describes the gravitational waves.

By using the geodesic deviation we have found that there is non-trivial memory ef-

fect in 4-dimensional flat Minkowski space. The gravitational memory is already in

data obtained by advanced LIGO, but it cannot be distinguished from low frequency

background noise. In the future, one could expect that it can be measurable.

Also we have found that there are memory effects for the scalar fields and the elec-

tromagnetic fields.
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