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ABSTRACT

GRAVITATIONAL WAVES AND GRAVITATIONAL MEMORY

Korkmaz, Ali
M.S., Department of Physics
Supervisor : Prof. Dr. Bayram Tekin

August 2018, [68|pages

We study the gravitational waves produced by compact binary systems in the linear
regime of massless general relativity and calculate the gravitational memory produced

by these waves on a detector.

Keywords: gravitational waves, gravitational memory
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YERCEKIMSEL DALGALAR VE YERCEKIMSEL HAFIZA

Korkmaz, Ali
Yiiksek Lisans, Fizik Boliimii

Tez Yoneticisi : Prof. Dr. Bayram Tekin

Agustos 2018 , [68] sayfa

Kompakt ikili sistemler tarafindan iiretilen kiitlecekim dalgalar1 kiitlesiz ve teoride
dogrusal rejimde arastirilip, bu dalgalar tarafindan bir detektor iizerinde iiretilen kiitle

cekimsel bellek hesaplanacaktir.

Anahtar Kelimeler: yer¢ekimsel dalgalar, yercekimsel hafiza
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CHAPTER 1

INTRODUCTION

In this thesis, we do not present new ideas or computations, we only follow the ref-
erences and lay set detailed computations. So it is only a review of earlier published
material. Especially the gravitational wave part follows closely the discussion of

Maggiore [1], and the memory part based on the Tolish [2].

In the first chapter, we will find the Einstein equations
1 3nG
Ryy — EguvR = C_4Tuv

by using variation of the gravitational action S = Sg + Sy where

/d4x\/_R

Sk = 16G

and

1
oSy = g/d4x\/—_gT“V5guv

under metric change g,v — guv + 6guv. After that we will use the linearized theory
by writing the metric such as

guv = Nuv +hyy, lhuv| << 1,
then we will get the linearized Einstein equations

—l6nG
Dhyy + Nuvd* P hgp — 0% dyhpe — 9% duhve + dyduh — Ny Bh = T Ty

Then, using Lorenz gauge
aviluv - O7

we will get a simple wave equation

- —167G

Dhuv = —4Tuv
C

where

- 1
h“v — huv _— En’uvh



Next, we will use another gauge
hou =0,  RW;=0,  9h;=0

which is known as transverse-traceless gauge in order to solve this wave equation.
The solution of this wave equations describe the gravitational wave. Also, we will

find the geodesic equation
d*xP g dxtdx® 0

a7 T ar T
and geodesic deviation

D?EH

D
which is an important equation to find the gravitational wave effect. Lastly, we will

_R“vpouvucgp

look at some physical effect of the gravitational wave.

In the second chapter, we will describe what memory effect is, and we will give our
notation. In the third chapter, we will find the memory effect of some important fields.

As a first example, we will find the solution of the scalar wave equation
20,0 = —4nS

where ¢ is a scalar field and S is a scalar charge distribution, then we can find the
memory effect of the scalar fields. Secondly, we will find the solution of the electro-

magnetic wave equation
0P A = —ArJ*
where we have the Lorentz gauge
d,A% =0,
and J“ is the electromagnetic current density in order to get electromagnetic memory.

Finally, we will use the our gravitational wave solution in order to prove that there is

non-trivial gravitational memory effect

) U U’ d2di
Nd'(U) = / auv’ dU”dU”2
1 .
= -Ald~.
r k

in the 4-dimensional flat Minkowski space. To find this memory expression, we will
solve the equation of the geodesic deviation.This result will be important for us since

it is a solid proof of the general relativity.



CHAPTER 2

THE GEOMETRIC APPROACH TO GRAVITATIONAL WAVES

In this Chapter, we generally follow Maggiore [1]] in order to understand Gravitational

Waves.

Notation
Greek indices take the values 0,...,3 while the Latin letters, i, j,... = 1,2,3 is used for

the spatial indices. The 4-dimensional flat space metric is
n”v — dl(lg(—, +7 +7 +) .

We also define

M=%, x=c,

R a JE—
W= G

d*x = dX’d*x = cdtd’x.

1
(;ahai)a

A dot refers to the time derivative such that £(¢) = 9, f = cdyf.

The four-momentum is defined as p* = (E/c, p), so pyx* = —Et + p.X, and d*p =
(1/¢)dEd?p. The Einstein summation rule with repeated upper and lower indices are

summed over is used.

2.1 Expansion Around Minkowski Space

The gravitational action is given as S = Sg + Sy, where

3

4
— / d*x\/—gR. @.1)

It is known as the Einstein-Hilbert action and Sy is called the matter action where

SE =

g is the determinant of the metric. The energy-momentum tensor of matter, T*V, is

3



defined from the variation of matter action Sy under metric change guv — guv +

0guv, according to

1
OSy = % /d4x\/—gT”V5guv. (2.2)
In order to get the Einstein equations, we need to find the variation 6Sg under the

change of the metric which is

3

167G [ / d'x(8v/=g)R+ / d4x\/—_g§R] (2.3)

by the product rule. If we use the definition of the Ricci scalar R which is

O0SE =

R= gulelV7
then the variation of the Ricci scalar is
SR = (6g"Y)Ruy + & (8Ryy). (2.4)

Using eqn.(2.4) in eqn.(2.3), we can get the variation of Einstein-Hilbert action

O0Sg = 16c73rG [/d4x5(\/—_g)R+/d4x\/—_gRuv5g“v+/d4x\/—_gg”V5Ruv :
(2.5)
Now, let’s split eqn.(2.5) into three parts,

581 = / d*x8(/—2)R, (2.6)
88y = / d*x/—gRyy 88", (2.7)
8Sp3 = / d*x/~gg" SRy (2.8)

First of all, let’s find eqn.(2.8). By definition, the Ricci tensor is
Ruv =R%yy = a1, — Oy T% 0 +T% T4, —T% T4 (2.9)

so the variation of the Ricci tensor is
SRuy = 0a8(I%,,) — 0y8(T%0) + 8(T%, )Ty +T%,,8(T4,,)  (2.10)

— (0% )T g —T%,,8(T* 1)

uo
Let’s rewrite eqn.(2.10), adding and subtracting the term I'* 8 (I'* Py “),
SRyy = [068 (%) +T% (8(T* 1) —T* o 8(T%,,) = T4 8(0% )]
— [T %) +T%,8(Thyq) =T, 8(1% ) — T4, 8(0%, )], @.11)
and using the definition of the covariant derivative

VaVhyy =0Vl + 1P, VA, —Th VP —TH, VP

" (2.12)



one can write the variation of the Ricci tensor
SR“V :V(x6(ra'uv)_Vv5(Fa’u(x) (213)

Note that T* op 1S MOt a tensor but st (xﬁ) is a tensor, hence we know how the

covariant derivative acts on it. If we use eqn.(2.13) in eqn.(2.8), we get

6Sp@3) = / d*x\/—gg"" (VaST%,, — Vo, 8T%,,)

= /d4X\/ —8 [V(x(guv6rauv) - Vv(g'uVSFau(x)] ’

where we use the fact that the covariant derivative of the Riemannian metric is zero
since we have metric compatibility. If dummy indices & and v are replaced with each

other for the second term of the integral, we get

65E(3) = /d4xv —8 [Va(guvsra,uv) - Va(g#a5rvuv)}

= / d*xy/ =gV l®. (2.14)
where J% := ghV6(T'%,,) — gh*6(I'Y,,). Let J be a vector field over the region V

with boundary dV/, then using the Stokes’ theorem:

/ d*xy/—gVal® = /a B/ [7Inal?, (2.15)
v v
where nq is the normal unit vector on the hyper surface dV, and +/|7| is the integra-

tion measure for JV.

8S(3) = /(9 dx/[finad® =0, (2.16)

using eqn.(2.15) in eqn.(2.14), SSE(3) is equal to a contribution which is zero by

vanishing of variation at infinity.

Secondly, we need to know the variation of \/—g in order to find eqn.(2.6).

1 1 Jdg
8 = T T Ty ae,
It is known that one can write the inverse of metric g,,; such that
VA 1 vANT g/lv
g =-@E") =
8 8

where gV is the cofactor of metric g .

2.17)

gg"t =g",

ggave’t = 1,8,

8= glvglv7

d .
= > E g — v, (2.18)
8av



Using eqn.(2.18) in eqn.(2.17), we get

1
o0(v—g)= —ﬁgé’v’l 08y
1

= 5V=88" 8
- %\/_—gguvagw, (2.19)
and
guvg“v =4
8(guv)e"” +guv8(g"") =0
g""6(guv) = —guvd(g""). (2.20)
Also, if we use eqn.(2.20) in eqn.(2.19), then we get
6(v—g) = %\/—_gguvrsg“v- (2.21)
Hence, eqn.(2.6) takes the following form
8Sg(1) = /d4x( - %¢—_gguv5gﬂv). (2.22)
As aresult, eqn.(2.5) can be recast as
5 = 16073[6 [— % / d*xy/ g8y REg" + / d*xy/—gRuy 88" +0]
- 16C;G / d*x(Ryy — %guvR) NartT g (2.23)
On the other hand, the variation of the matter action is

1
8Sy = 5 / d*x/—gT"" Sguy (2.24)
by the definition. We need to arrange eqn.(2.24) to find the variation of the action

S = Sg + Su. To do this, we can use the expression

g(xﬁgﬁv = 6ava
SoPV — _§ Bv
8ap08 (8ap)g""s
§"%g4p08PY = —g"*8(gap)gP",

5588 = —g"*5(gup)e”,

SgHY = —g"*8(gap)gP”.

Then, we have

Tuvég'uv = _T,uvg'uaé(gaﬁ)gﬁv
= _Taﬁ(sgaﬁ

6



Plugging eqn.(2.25) in eqn.(2.24), we can write the variation of the matter action as

1
8Su =7 / d*x\/—gT,v 68", (2.26)

The variation of the action S = Sg + S); vanishes under change of metric,

0S =06Sg+6Sy
1
167:G/d4x\/ (RMV_EgMVR )6y — /d4x\/ gTuvogh”
1 3G
_ 4
- 167:G/d /=g |Ruv = 5 8uvR = = 5= Tuv] 58",

As a result, the Einstein equation is found by taking the variation of the total action

with respect to metric gy

1 8nG

Let us discuss the symmetry of general relativity. It is invariant under a big symmetry
group. Let
xH — X (x) (2.28)

refer to all possible coordinate transformations, where x’* is arbitrary smooth function
of the coordinate x*. In other words, it is a diffeomorphism. The metric transforms

as

dxP dx°
guv(¥) = guy () = 550 55 8po (¥) (2.29)

under the coordinate transformations (2.28).

We will expand the the Einstein equation around the flat-space metric. To do this, we

can firstly write the metric as
g'uv - n‘uv +h’uv, |huv| << 1, (2.30)

and then we expand the equation of the motion up to linear order in /. This theory

is known as linearized theory.

Consider coordinate transformations defined as
= (x) = M+ EH(x), (2.31)
where |d, &y | has the at most same order of smallness as /. Let’s use this transfor-

mations in eqn.(2.29). In order to do this one needs to find the inverse transformation

1P =x"P —EH(x), (2.32)



oxP Jx'P  JEP(x)
OXH  oxm oM

ox%
= 8- 0"

ox*
= 6pu - aocép[(sau - aléaax/u];
= 8% — &P + O(|9uEP ). (2.33)

Now, if we use eqn.(2.33) with appropriate indices in eqn.(2.29), then we have
guv = (8% — 9u&P) (8% — vE°) (Moo + hpo)
= (8% — Iu&P)(Mpv + hpv — vEp — & hpo)
= Nuv +hyy — v — duy. (2.34)

Hence, the term of perturbation transforms as

under the transformation (2.31). As a special case, we can consider constant transla-

tions, i.e. x* — x’* = x* + a*, where a* is not infinitesimal but can be finite. We can

see that Ay is invariant, if we look at eqn.(2.34). Since,
, dxP Jx®
g,u\’ - ox'H 9x'V

In addition, we can look at the finite, global Lorentz transformations

Mpo +hpo) = 8185 Mpo +hps) = Nuv + by (%) (2.36)

=AM xY, (2.37)
and by definition
AP A Moo = Ny (2.38)
Lorentz transformation of the metric is
guv(x) — g;w(x/) = AupAngpc(x)
= AP A Mpo + po]
=Ny +Au" Ay hpo (). (2.39)
So we have g,, = Ny +hj;,, with
Hyy = AP A hpo (%), (2.40)

It means that £y, is a tensor under global Lorentz transformations.

Now, let’s find the linearization of the Riemann tensor at the linear order in 7y,

R\ po = 0pT! 6 — 06Ty p + TV pT% 5 — TV 46 T%, (2.41)

8



and Christoffel symbol
Iy = %gp"[augov +vgou — Joguv] (2.42)
by the definition [11]. First we need to use the linearized metric in eqn.(2.42),
Dy = 89 (o +ov) + 2y ey + o) — 3o (s + )]
= 28 [Buhoy + Aoy — Ahuy], (2.43)

and we need to find the inverse metric g using g,pgP° = 6, °. Suppose that gP° =
anP® + bhP°. Hence,

(NP +h*P)(anP® + bhP®) = ad,” + bh,° (x) + ah,° (x) + b|h|* = &,°
a=1la+b=0=b=—-a=>b=—1,
the inverse metric is
g% =nP° — hPO(x). (2.44)
Using eqn.(2.44) in eqn.(2.43), we get
[y = 5 (17— 1) By + oy — dohuv)
= 1P Buhoy + Avliou — dghyuy] + Al (2.45)
Using eqn.(2.45) with appropriate indices, one can find the linearized Riemann tensor
R o0 = pl5 1" (uhao + dohay — duhve)] ~ Do 3114 (Buhap + Fphay — Fuhvp)]
+ %n““[a,lhap + dphgy — aah)tp]%nka[avhao + dshay — Idahve]
- %n'ua[&/lhac + dshgy — 3ah1p]%nm[9vhap + dphay — Oahvp]
R ypo = %n““wp&vhac + 9pohiary — Opduhvs]
" Baduhap + dedyha — dodavp] + A
= 1" Opdvhas -+ dodahup — dpdaltve — dodvhap)
&R oo = (g 1) S0 3p v+ doduhvp — Ip v — doduhap)
Ryvpo = %@a[apavhao + Aoty — O ecltves — D dyharp] + |
= 2 [puliro +2oByhyp — Opyhvs — dodvhyp] + P

1

9



Plugging eqn.(2.31) into eqn.(2.46), one gets
Rivpo = 4 (00 liua — (Ouo + 3oEa)] + 2adulhvg — 0y + IpE)]
~ Opulhve — (Ao +2080)] — odvliup — (up+ IpGu)))
= 2 oAl + Aaduhvp — Fpduhvo — Aoyl
~ 5 26203585+ 0o + 2uudty + uddsty
— 9p0r0vEs — 9pddsCy — dsvI5p — dsdvdpEy]
= Ruvpo,

which means that the linearized Riemann tensor is invariant under infinitesimal gauge

transformations (2.31).

Defining,
huy = hyy — %nuvh, (2.47)
where
h=n""hyy, (2.48)

the linearized Einstein equations can be written more compactly. In addition, it is
easy to see that h = N"Vhyy = N*Y (hyy — 3Muvh) = —h. Therefore,
- 1
huy = hyy + Enuvha

- 1 -

Now we can compute the Einstein equations. First we will find R,y — % guvR,
R yp = 511" (Qpivhas + Aadatvp — 3p v — dodvhap).
Ry = R0 = 31" (vl + dodahvp — udechvs — doduhay )
Ruy = 31°% {20 duhay + ddahuo — dodyy — huhas), (250
and
R=1""Ryy — %nw{a“aﬂhav - AVBah, — 9%ghuy — dyduhy,
= 0% Buhe® +3"2h,® — O — 9 3h)
_ %{28(18“}1”“ _20n)

— e Oy h** — Oh. (2.51)

10



Then the Einstein tensor becomes
1
Guv = Ruy — EguvR
: 1
= Enca{acauhav + av&ahuc — 8gaah“v — 8va”hao} _ En,uv(aaaaho-a _ Dh)
1
— E{QO‘auhav + avaahua _ Dhuv — &vguh _ nuvaogahoa . n“th}

1
— E{_Dh,w + 0%y hyg + 0% yhve — dyouh — aaaﬁhaﬁ Nuv + NuyOh}.

(2.52)
From G,y = 8?—46T“v, we have the linearized Einstein equation
—16nG
Ohyy + Nuvd®* P hgp — 0% dyhpe — 9% duhve + dyduh — Ny Bh = o Ty
(2.53)

To use definition (2.47), we will add and subtract some suitable terms to eqn.(2.53)

such that,
—167G
A

Tuy = O(huy — %nuvh) - %nuthJr Muvd*P (hep — %naﬁh)
+ %nuva“aﬁ Nagh — 9%y (hye — %nwh) _ %Wavnwh
0 Bu(hva — 3 vach) — 50 uvah -+ hduh
= Ohyy + Muvd %P hyg — 0%Ovhye — % Iuhyg

- - - - —16nG
= Dh’uv + nu\/aaaﬁhaﬁ - aaavh“a - aaguhva - TTIJV (254)

Up to this point, we have not made a choice of gauge. But we can do this to simplify

these equations. We will choose the Lorenz gauge
0 hyy = 0. (2.55)
Now, let’s use the gauge symmetry (2.31),
B = H oy = s = &y +208u) — 3 v ™ (s — 2up ~ 9pa)
= (= 3 Muvh) = iy + A — v g EP)
= By — (Ouéy + Iv&u — NuvpEP),

SO

11



= OVhyy — D&, (2.56)

to prove the existence of the Lorenz gauge. If we choose the initial field configuration

as 8‘%#\, = fu(x), we must choose,

D8 = fu(x), (2.57)
to get (8‘71“\,)’ = 0. Then, the solution of eqn.(2.56) is
&) = [ G x= 1) fuly) (2.58)

where G(x) is a Green’s function of the d’ Alembertian operator such that
0,G(x—y) = 8*(x—y). (2.59)

If we use the Lorenz gauge in our main eqn.(2.54), the last three terms on the left

hand side will vanish, then we get the simple wave equation
—l6nG

Now, let us note the following observations:
i)the gauge condition (2.55) gives four conditions which reduce the ten independent
components of the symmetric 4x4 matrix &y, to six independent components,

11)if we take the derivative of the wave equation, we will get an expression,

- —167G
9¥(Ohyy) =9"( A Tuv)
- —167nG
00Vhyy = 7 9 Ty
= 9" Ty =0, 2.61)

which is the conservation of the energy-momentum in the linearized theory.

2.2 The transverse-traceless gauge

Firstly, we will analyze eqn.(2.60) outside the source where the energy-momentum

tensor is zero:
Dhyy = 0. (2.62)

There is an important result which is the fact that Gravitational waves travel at the
speed of light, because the definition of d’Alembertian O = —(C%)&()z + V2. Under

transformation (2.31), the Lorenz gauge is not spoiled if

08, =0. (2.63)

12



Then, Déuv =0, where

Euv = by + &y — Nuvdp &P, (2.64)
because the flat space d’ Alembertian always commutes with partial derivatives. If the
uv which depends on &, is subtracted from h v, then the result will satisfy the same
equation D(ﬁ“v —&uv) = 0. Taking a suitable value of &Y, we can make h = 0, then
it is obvious that /2,y = hyy. Also, choosing suitable &' we can make /% = 0. Then

the Lorentz gauge for u =0,
0%hoo + 9'ho; = 0,
= 9% =0,
= hgp = const. (2.65)

The time independent term /g is the static part of gravitational interaction that is the
Newtonian potential of the source which generates the gravitational wave. We can
take the hgp = 0. So, hoy = 0, then the Lorenz gauge becomes 0’ h; i =0,and h'; = 0.

As aresult,
hou =0,  HW;=0,  dh=0. (2.66)

This is called the transverse-traceless gauge (TT gauge).

Using the Lorenz gauge which gives four conditions, i,y has 10-4=6 independent
components. Lastly, we impose the infinitesimal gauge to eqn.(2.63) which gives us
four conditions; therefore, the independent components of the 4y is reduced from 6

to 2. We will denote the metric in the TT gauge by thjT

The plane wave solution of eqn.(2.62) is h;" = e;; (k)™ with k* = (2,k) and 2 =
|k|. The tensor e; j (k) is known as the polarization tensor. From eqn.(2.66), the non-
zero components of the thjT are in the plane transverse to 71 = % since on plane wave
d/h;; = 0= n/h;j = 0. Let’s choose the /A = %, and use the symmetry and traceless

conditions of hiTjT, we can write the solution as

he he O
hiTjT(laZ): hy —hy O COS[a)(t—g)], (2.67)
0 o 0/ .
ij
or,
h h
Mle="" 7 | coslot—2)], (2.68)
hy —hy , c
a



where a,b = 1,2. h; and h, are called the amplitudes of the "plus" and "cross"

polarizations of the wave. Then the metric is
ds? = —cdt* +dz? + {1+ hy cos|w(t — g)]}dxz
{1 — h. cos[o(r — g)] Ydy? + 2h, cos[o(t — g)]dxdy. (2.69)
The plane wave solution /4,y (x) propagating in the direction 7, outside the source,
follows the Lorenz gauge but it is not suitable for TT gauge, yet. To make it suitable
for TT gauge, we will firstly define the tensor
P,j(A) = & —nnj, (2.70)

which is symmetric, is transverse(n'P; ;= 0), is a projector (Py Py ; = F;j), and its trace

is 2. Using the tensor (2.70), we define
1
Ajjr = PP — EPiijb (2.71)
The question is if this is still a projector. The answer is yes since
1 1
Aij gkt mn = (PacPj1 — Sb iPct) (PomPrn — EPkZPmn)
1 1 1
= PP PinPrn — 3 ik Pj1 Pt B — EPi Pkt BmPrn + ZPi 1Pkt Prt Bnn

1 1 1
5 PicPjkPmn — 5 FijPimPin + < - 2PijBun

= PiPj1 BimPin — > > 1
= Py Pji P Prn — %Pz’ iPon — %Pi i Prnn + %Pi iPrnn
= PiPj1 P Prn — %Pi Pmns (2.72)
and eqn.(2.70) implies that
PPy = (6 —nimg) (61 — njny) = Pj Py. (2.73)

Using eqn.(2.73) in eqn.(2.72), we get
Aij kit mn = PixPrmPij1Pin — %Pi i Prnn
= PimPijn — %Pi jPnn
= Aijmn- (2.74)

Also, it is transverse for all indices, n'A, ikt =0 ,etc., and it is traceless for the (i,))

and (k,1) indices,
. . 1.
W Aj g = n'FyPj — —5n'PjPg =0,

1
Ajixi = PyPy — EPiiPkl =0,
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and it is symmetric under the exchange (i, j) <> (k,1). In terms of 7, its explicit form
is
1

Aija = FiePji = =5 FijFu

1
= (& —ming) (81 —njny) — 5(51'_;' —ninj) (8 — mgny)

1
= 0 Sj; — Opn jny — ninOj; + nimgn jng — 551' Okl

1 1
+ Enknlaij + Eninj&d — Eninjnknl
1 1 1
= 6y 01 — §5ij5kl —njm G — i O + ”k”léu +5ni i O
1
+ Eninjnknl. (2.75)

It is called the Lambda tensor. In general, any symmetric tensor can be written as

SHT = AijaSu, (2.76)

in the TT gauge. Hence, the gravitational wave is given by

hiT = Aij ihia.- (2.77)
We know that in the TT gauge, the equation of motion is DhiTjT =0, so
I’ZTT( ) / dsk ( ) .(%)eikx _i_A*(%)eflkX) (2.78)
(2m)* Y Y ' '

Since, k* = (2,k) and [k| = © = 2L then d°k = |k|%d|K|dQ = (2£)3 f2d fdQ, with
f > 0. If we denote the d?4 = d cos 8d ¢, then
1
h,.TjT(x)zc—3/O dffz/dz G (fR)e 2T ey, (2.79)

Because of the TT gauge condition,

—

. 1
h’,.TT(x):_3/ dff /d2 (AL(R)e 2T ") 4. =0
¢ Jo
which implies that A’,(k) = 0, and
) . 1 [ S
OB (x) = KR () = 5 [ dff [ dPaay®e ) yee) =0
¢ Jo

and also this leads to k'A; i (%) = 0. For simplicity, we can omit the superscript TT by

using the a,b = 1,2 indices for the TT gauge metric in the transverse plane. Then

ha(t.3) = [ df (Ruol 7. 9072+ hy” (2777, (2.80)

where

hap(f,%) / dP7A gy (f,7)2TE (2.81)
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If we observe on Earth a gravitational wave emitted by a single source, we can define

the direction of propagation of the wave r, and we can write
Aij(k) = Aij(£)8) (7 — i) (2.82)
Using eqn.(2.82) in eqn.(2.81) we get
hap (f.%) = "5 Aap(f)E7 7 (2.83)
For the detectors, we have
, (2.84)

all over the detector with choosing the origin of the coordinate system centered on
the detector, because 7.X << A. When we want to look at the gravitational wave at

the detector location, we can omit all x-dependences and write

hap (1) = /O s (R (e Ry ()2, (2.85)

with A1, (f) = hap(f,X = 0). We don’t have to keep x-dependence unless we compare

the gravitational wave signal at two different detectors.

From eqn.(2.68)

hap(t) = : (2.86)

ab
If we rotate by an angle y the system of axes for their definition,

cosy siny hy  hy cosy —siny
—siny cosy he —hy siny  cosy
cosy siny hicosy —hesiny  hysiny+ hycosy

—siny  cosy hycosWY+hysiny hycosy —h,siny
hy Py — hesywey — heswey —hy 2y hycysy + he?w — hes> W+ hosyey
hycWsy +he? Y — hes® W+ hysyey  hys?W+hesyey + hysyey —h ey

hycos2y —h,sin2y  hysin2y + hycos2y
hysin2y 4+ hycos2y  —(hy cos2y — hysin2y)
then /4 and h, transform as
hy — hycos2y — h,sin2y, (2.87)
hy — hysin2y + hycos2y. (2.88)
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Until now, we have looked at the only physical frequencies f > 0, but now we can

rewrite eqn.(2.80) by defining
hap(—f:%) = hap (%), (2.89)

then
)= [ dfhap(pe >, (2.90)
and the inversion of eqn.(2.90) is

= / dthg(1)e*™ /1, (2.91)

Also, we can use the polarization tensor e‘l“j(ﬁ) (with A = +,x) to write the plane wave

expansion, making the definition

e?} (ﬁ) = ﬁiﬁj - ﬁi{}\j7 ex(ﬁ) = ﬁiﬁj + ‘I)iﬁj (292)
with 414,017, and #iLV where @i and ¥ are the unit vectors. It is obvious from this
definition that

()N (7)) = 2644 (2.93)

As a special case, in the frame 72 = Z, if I = X and ¥ = J then

1 0 01

e, = , et = (2.94)
ab 0 —1 ab 10
with a,b = 1,2 spanning the (x,y) plane. In a generic frame, if we define
2
Laf)= ¥ Ta(f) 2.95)
A=+x
then eqn.(2.79) reads
hap(1,%) = Y / df / d*iha(f,7)ed, (R)e 27156, (2.96)
A=+x

where we used the definition (2.89).

2.3 Interaction of gravitational waves with test masses
2.3.1 Geodesic equation and geodesic deviation

Let x* (1) be a curve in some reference frame parametrized by a parameter A. The

interval ds is
dx* dxV

= guv 3 d 2. (2.97)

ds* = guvdxtdx’
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There are some cases such that

1) if ds* > 0, then it is known as a space-like curve,

i1) if ds® < 0, then it is known as a time-like curve.

ii3) if ds? = 0, then it is known as a light-like (null) curve.

In the second case, we can define the proper time 7,
Adt? = —ds* = —gyydx*dx. (2.98)

The proper time 7 is the time which is measured by a clock which goes along this

trajectory. So we can use 7 as a parameter, x* = x* (7). From eqn.(2.98), we have

dxt dx¥ )
——— = —C". 2.99
SV ar dt ¢ (2.99)
The four-velocity u* is defined as
dx*
= — 2.100
W= ( )
then using this definition, we can rewrite eqn.(2.99) as
guvittu’ = —c%. (2.101)

u

For all time-like curves which have the value on the boundary x*(74) = x", and

xH(1g) = x" 5, the action is
B
S= —m/ dr. (2.102)
TA

Its variation gives us the trajectory of a point-like test mass m. To show this we will

start to use eqn.(2.98) which gives us

1 dxM dxV
= —\/—8uv—7 —7dA. 2.1
dt c Suv dA dA dA (2.103)

If we use eqn.(2.103) in the action (2.102), we will get

m (B
s=_" / Narywrrrory (2.104)
C Jry

where dxiH = %. The variation of the action is
B
55=—" [ 7 8(\/=guvitx)dA
C Jry
m [T 1 dx* dx" d(6xM) dx¥
= —— — (-6 - 20,y ———~—|dA.
c /TA 2/~ guviF iV (osw) g ar ~ 28w ax ax

The last term can be rewritten as

d(6xt)dx" d pdx'
TR an T axl e

2.V

dguv dx” d-x
LA T 20,,8xH L
g O e s

(2.105)
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Then using this, we have

55— / )dx“ dxV n d ]
_m ax a4, Sl
o «/7—guvxﬂxv o8 ) i an vOraa
dg“v d2 \Y
+2—=— i Ox “d/"t +2g,v0x! 2}a’?L
Using the fact that j/{ = 1 (— g“v‘ix/{l fjﬁl) the variation of the action boils down to
dx* dx dg v pdx
an P ari(—s I WL Y W
2c2/ d 2d 8uv) a7 dn d?L d?L -+ Suvox /12}
it dx¥ dguy d*x¥
= _2_02 dr{( Sguv) T de +2 is Ox ud e +2guv3x” s }
m [ quv dx® dx” dguy dx* dxV d*xv
=—— [ dr 5x* pple SxM+2 SxH
202 - dt dr "X dne dp ar OF T28wv gz o)
m TB dx* dxV dguy dx* dx” dguy dx®* dxV
=—— [ dt{-9 o £ St £ St
2 J. ATty O e O  ar an O

d2 Y
+2g“v 6.x }

If we change some dummy indices such that in the first term o <> v, in the second

term U <+ Vv, in the third term o¢ — @, — v, v — @, and in the last term p <+ v then

we have
m dxt dx® dx® dx* dxt dx®
Rl A B e i
>t oy
+28VM dt 2 ox }
m TR dxM dx dlei
:_2_C2 : dt{(— avg”a—{-aagvu—l—augva) Jr dt +28vu——> 472 }ox”
m TB 1 dx“ d.x dzxu

:_0_2 . dT{E(_avgua‘f’aagvu‘f'augva) Jr dt +8vu i }oxY.
Since the S = 0, we get

d>x* 1 doct dx®
gVHW"‘z( dvgua+ dagvu +dugva) —— i dt =0. (2.106)
Multiplying with the inverse metric ghv,
ﬁ d Rl dx* dx®
6 > T 2g Y(—0vgua + dagvu + ugva) —— T dt =0, (2.107)
we get
d’xP At dx®
. o= =0 (2.108)

a? e ar
where we use the definition of the Christoffel symbol P ap [5]. This equation is
known as the geodesic equation, and it is the equation of motion of a test mass in

the space-time which has the metric g,y when there is no external forces. In terms
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of four-velocity which has been defined in eqn.(2.100), geodesic equation takes the

form
duP
dt
Let’s look at the two nearby geodesics, one parametrized by x*(7) and the other by

S Pt =0, (2.109)

xH(7) + E#(T) where |EH| is much smaller than the scale of the variation of gravi-
tational field. We know x* (1) satisfies the geodesic eqn.(2.108), and x* (1) + EH (1)
satisfies the "nearby" geodesic equation [J5]]

20U m \Y A\ Y P
d <xdT+5 ) d(x dtﬁ >d<x;g ) _o 2.110)

Let’s use the Taylor series expansion for the I'" vp (x+&) which is

1—"uvp (x+&) = 1—‘#vp (x) + 5Gacruvp (x) +0(|& |2)

then using this in eqn.(2.110)

+IH,,(x+&)

d>xH dPER dx" dxP  dx¥dEP  d&YdxP  d&Y dEF
0= —5 4+ —+[* O 9sI*
a2 T an v () +6%00 Vp(x)][d‘c dt  dt dt  dt dt 4T dr
d’x* dPER dx" dxP dx¥ d&P dEV dxP
- 472> . 1H — = 4TH, =
a2 g T e G T W e A T 0
dx¥ dxP dx'd dé jx’y
% 9,TH _—
+6%0s Vp(x)[dr dt 7 dt /d/d'c
d?x* dx¥ dxP  d*EM dx¥ d&P dEV dxP
= ——+T%, r, -
e T ) e T AT e 0 A T e (0
dx" dxP
% 9,TH _
+67017yp (x) dt dt
In the last equation, the first two terms will vanish if we use eqn.(2.108), one has
dZéj# dx" d&P dx" dxP
0= ort, o9, _— 2.111
aez T e W) G 67 ) (2111
By the definition of the covariant derivative, we know that
DVH  4qVvH dxP
— = 4T V=, 2.112
Dt 4t Y ar ( )
Then, we have
D" D Dé“) D (d!; - évdxp)
D2~ Dt Dt Dt dt VPR dr
d dE* afv dxP  dxP
— (= 1’*# V_ I-*N o
dr(dr vpS 7:)+Jr Vp( I opS dT)d”L'
d2emarty, d dEv dx dEY dxP
— . = v_ H o
dt? dt 5 + v ar dr T v0é az Vv an
dxﬁ dxP
v o
+1* vpl' aﬁé 7 de (2.113)
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On the other hand, we can use

dl_“uvp . a].—"uvp de . u de'
dt ~ ox° dtr ° YPdr’
and
d*xP dx® dxP d*xP dx?® dxP
- 4rf T —0=>—— =T = =
dr? of dr dt dr? of dr dt
in eqn.(2.113),
D dre @z g
_ FM o PEV Fu p_FM FP u® /3 \% 1—# o]
D12 dt? vpu ur & + Par & g
+r“vprvaﬁu uPEY. (2.114)

From eqn.(2.111) we have
d>EH y dxV dEP "
e N A

using this in eqn.(2.114), we obtain

D2§“_2u arﬂ V. pgeo ar.u GPVM
D12 — pﬁ_c"puuéchv”uuéJr T dr

—r*, F” ﬁ§v+1~u v aplt Pupgo

——861"“vpu uP§“+a l"“v uCuPEY —TH, Fp Bé"—kl"“ vaﬁuﬁupéa.

In the last equation, if we change the dummy indices such that in the first term ¢ <> p,
in the second and third terms v <+ p, in the last term & <+ p, then we have

D&
D?

Now, in the last equation, if we again change the dummy indices such that in the third

= —dpI", cu u’EP +8GF“vpuGuv§p —l—‘”vpfvaﬁuauﬁép+Fuvarvpﬁuﬁua§p.

term @ <> vV, 3 — o, and in the last term 8 <> v, o0 — 0,8 — «, then we arrive at

D2§l~i H V.G M c.V 1 o V. o U o V..o

D—ﬂ:—apr vt u?EP + 9o yuu’ &P — T o T cu¥ u®EP + TV o T, u¥u® EP
_(apruvo - acrruvp + FNocpravc + Fﬂaarapv)”vucép-

The term which is in the parenthesis is the Riemann tensor by definition, so we have
the so called "geodesic deviation" equation
D?EH
D - K

Hence, we can say that two nearby time-like geodesics experience a tidal gravitational

Hopott uCEP. (2.115)

force, which is determined by the Riemann tensor. Also, eqn.(2.115) is very important
for us, since we will use it in order to compute the gravitational memory in Chapter

3.
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2.3.2 Local inertial frames and freely falling frames

In General Relativity, it is known that we can perform a change of coordinates such
that the Christoffel symbol always vanishes at a given point P, T vp(P) = 0. In such
a frame, the geodesic equation at point P is

d?xH

dav lp
Hence, we can say that a test mass is freely falling in this frame, but only at one point
in space-time. This kind of frame is called a local inertial frame(LIF). This is also
important for this thesis because we will imagine a detector which consists of the

freely falling particles when we try to compute the gravitational memory.

However, it is possible to construct a reference frame in which a test mass is in free
fall all along the geodesic. To do this, we observe that a freely spinning object which

goes on along a time-like geodesic x*(7) then we have
ds* T dxP

—— T s = =
dt YPToar
where s is the spin four-vector which is s# = (0,5) in the rest frame. From the

. Vad . e .
conservation of the angular momentum, we have ‘% = (0. This is true along the entire

time-like geodesic, then we can see that I'* vp 18 zero from last expression. Such
a reference frame is called a freely falling frame, and its coordinates are known as

Fermi normal coordinates.

2.3.3 TT frame and proper detector frame

The TT frame
We have used the TT gauge to give gravitational waves a simple form. We denote the

corresponding reference frame as the TT frame.

Let’s look at the geodesic eqn.(2.108) in order to understand TT frame. Say a test
mass is at rest at T = 0, then
d*x!

dxV dxP ]
dt? =0

=[P T

7=0
o rdxON2
=—[rw(G) ]y
[ 0\ dr 7=0
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where we used the fact that Z—’;j |T:0 = 0. We have computed the Christoffel symbol
™ vp explicitly for the g,y = 1y which is
1
1—‘uvp = Erl’w(avhpc + aphvcf - aohvp);
SO

. 1.
[y = 577’6(30}100 + dohos — dshoo)

1
= E(Zaoh()i — 8,-h00).

In the TT gauge from eqn.(2.66), hoy and hg; are zero. Hence we can say that if

dx‘ d*x
dt lt=0 — dt? lt=0 —

means that is always zero. As a result, particle which is at rest before the wave

=0, then also its derivative = 0 vanishes in the TT gauge. This
arrives will be at rest when wave arrives, even after wave is gone. However, this is
true only to linear order in /. In other words, in the TT frame the position of the
test masses initially at rest do not change, this looks like to use the free test masses

themselves as the coordinate.

Let’s look at coordinate separations of the two nearby test masses. From eqn.(2.111),
we have for the (it = i)

B [ ; dx"d&P L ESQ,T dx” dxp]
0 YPdt dt Tvo gz ar

d ’L'2 T=l
d
- [2cr’ di +2E% 9T, ]
where we use the conditions ‘éxf = c and Z); = 0 at rest. We saw that before
7=0 7=0

I 00 = 0, since hgy = ho; = 0. From the definition of the Christoffel symbol,

= 31"° (Q0hpo + Iphtia — dship)
1

= 5 bhij,

which implies that

dE!
—_2 ——h-~—}
7=0 [ “39x0" gz Lo

Ohy;i .
where we used % = a—foai %81, and denotes a—ff as hjj.
When we take the condition % = 0 into account we can say that & 52 =0
at | g dts 7=
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from the last equation. As a result, the separation is constant at all times. Also,
Adt? = —ds* (1)
= 2di’ (1) — (6ij+ hiTjT)dxi(’C)dxj(T)
dxt dx’
—_ T —_—
drt (7) drt

where xV(7) = ct(t). To find the physical effect of the gravitational wave, we can

= c*dt*(t) — (&;+h]}") (7)d7?,

consider two events at (z,x1,0,0) and at (z,x,,0,0). In the TT gauge the coordinate

distance x; —x; = L remains. From eqn.(2.69),
ds® = —c2di® +d2> + {1+ hy cosw(t — g)] Yo + {1 — hy cosw(t — f)] Ydy?
+ 2hycos[w(t — g)]dxdy,
the proper distance s between these events is given by
s=(xp—x)){1+hy coswt}% =L{1+hy coswt}%,

where ds = s, dx = x; —x; and dy = dx = 0. Hence, we can say that the proper

distance will change periodically in time with existence of the gravitational wave.

The Proper Detector Frame
Let us give our attention to a very small region of space. In such aregion, if we choose

the coordinates (,X), the metric is flat even if there is gravitational waves such that
ds®> = —cdt* + 5ijdxidxj.

If we look at the this last expression with second order g,y in terms of Riemann

tensor, the result is
. ) . o 1
ds* = —cdr? [1 +Rol~ojx’xj} —2cdtdx’ <§R0,-J-kx]xk> +dx'dx’ [5,7 — §R,-jklxkxl ,
where we are around at the point P which implies the Christoffel symbol vanishes.

The detector moves non-relativistically, so we have

dx' e dx®
dt dt
Using this last expression in the geodesic deviation equation, we get
d2 éi - ) de 2
T T80T () =0

If we look at the last expression around the point P, i.e. x' = 0. Because guv =

Nuv + O(x'x/), the time derivative of the Christoffel symbol at P gives zero. Also,
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we know that at the point P, both T* vp =0 and JpI', j = 0, then we have R, o=
9Ty — oIy i= d;T" - Using this, we get

d? 51’ ) rdxON2

7o~ Rt (Gg) =0
We have already found that the Riemann tensor order 4. Hence, if we limit ourselves

to study at linear order in &, we can write t = T, SO dx° /dT = c, then we obtain

' = —c"Rly;08 .
2.4 The energy of gravitational waves

2.4.1 Separation of gravitational waves from the background

Now, we will expand the Einstein equation around the curved background metric
Zuv(x), and write
where the diagonal elements of g,y (x) are O(0) with respect to /iy (x) on the region

of the space. We need to find which part of g is the background and which is the

fluctuation. Let g,y (x) has a scale of spatial variation Lg, such that

A << Lp, (2.117)

where 4 = % is the reduced wavelength, and A is the wavelength of the small per-

turbations /7y, .

Or, equivalently, we can assume that the background metric has frequencies which
can be fp as the maximum value, and let f be the frequency of the perturbation 7y,

such that

f>> fs. (2.118)

The conditions (2.117) and (2.118) are independent since Lp and fp are unrelated.
However, if one of them is satisfied then we can distinguish the metric as background
metric plus perturbation based upon the gravitational wave. In the next section, we

will find the answers for the two main questions such that

1. hyy is called a gravitational wave to answer the question: how does this high-

frequency(or short wavelength) perturbation effect the background space-time,
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2. tyy an energy momentum tensor can be defined to answer the question how it

effects the background metric itself.

2.4.2 How gravitational waves curve the background

The Einstein equations can be rewritten as

8nG 1

where T,y is the energy-momentum tensor of the matter and T is its trace. If we

expand the Ricci tensor up to O(h?), we will get

Ryv = Ruv + R+ R + .., (2.120)
1) (2)

where Ry is based on the g, only, REW is linear in Ay y, and Ry is quadratic in Ay, y.

Since, the R,y is based on gy, it contains only low-frequency modes. Let k separate

the low frequency from the high frequency modes, then g,y has only modes up a

typical wave-vector kp =~ %—’; with kg << k. The Christoffel symbols for the g, are

quadratic, so they have modes up to 2kp. The Ricci tensor is quadratic with respect

to the Christoffel symbols, so its modes are up to 4kp. Fortunately, 4kp << k implies
(1)

that R,y has only low-frequency modes. Since, R,y 1s linear in hyy by definition,
it contains only high-frequency modes. On the other hand, Rg\), is quadratic in hyy
implies that it has both low- and high-frequency modes. When we take these factors
into account, we can separate the Einstein equations into two parts which are low-

and high-frequency parts, the first one is

_ Mirow  STG 1
and the other one is
1 )15 8tG 1 .
R() = —[RG))ish 4 ~7 (Tuv - 5ng)ngh, (2.122)

where the superscript "Low" denotes projection on the low momenta or on the low
frequencies which depend on if eqn.(2.117) or eqn.(2.118) applies, and the superscript

"High" has similar meaning.

Let’s start to compute RE}\Z explicitly. To do this, first of all we need to find the

Christoffel symbols. We know that the metric g,y = gy v + Ay and its inverse metric

is gtV = g"v — h*Y + O(h?). By definition, the Christoffel symbol is

1
F“vp = Eg“a<avgap + apgav - aagvp)7 (2.123)
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and writing the metric explicitly
1

1—‘uvp = i(gua - hua)[av(gap +hap) =+ ap (g_ocv ‘|‘hav) - &a<gvp +hvp)]

1 1
= Eg*‘o‘(&vgap +dpZav — advp) + Eg““(avhap + dphay — Aahvp)
1
- Eh“a(avgap +p8av —agvp) + O(hz)-

We can change the derivatives in the second term of the last equation to covariant

derivatives if we add some suitable terms,

1 1 _ _ _
l—‘“vp = _gua@vgap + apgozv - aocgvp) + Egu(X(Dvhap +Dph(xv - Dahvp)

[\
p—

_ua /e = 1 _,, = _
+ _gua(rﬁvphﬁa + FBvahpﬁ) + Egua(rﬁpvhﬁa + erahvB)

1
— Eh‘ua(avg_ap + apg_otv - a(giP)-

\S}

Using the definition of the Christoffel symbol, and making suitable cancellations

_ 1 _ }
F”Vp - Fuvp + Egua(Dvhap +Dphav - Dah\/p)
1

1 1
+ Eg”a{igﬁc(avgcp + apgcrv - aagvp>hﬁa + Egﬁc(avgca + aozgcrv - 8crgva)hpﬁ

1 1
+ Egﬁc(apgcv +v8op — do8pv)hpa + Egﬁc(apgca +9v8op — do8pa)hvp

1 1
+ Egﬁc(aagcp +9pgoa — Io&ap)hpy + Egﬁc(aagcv +9v8oa — Io8av)hpp }

1
— _pHo
2

=T, + %g““(Dvhap +Dphay —Dahyp)
+ 3848 (0Bophpa + pRovhpa — dofvphpa-+ dulouhsy + dudovhny
— Oavattpp + IpGovhpa +IvEophpa — odpvhpe + dpdoaltvp + dugopttp
— 9oZpaltyp — daBophpy — OpGeuttpy + Ialaplipy — daoviipp — dvBoulipp
+ dsZaviiyp ) — %h““(avgap + dpZav — 9avp),

(Ov8ap + Ip&av — Fadvp)

1 _ _ _
1—"uvp = 1—‘uvp + Egua(Dvhap +Dphay — Dahvp)

1 1
+ iguagﬁc(avgophﬁa + apgcvhﬁa - aogvphﬁa) - Ehua<avgap + apgotv - aocgvp)

_ 1 _ _ _ 1
1
- Eh”a(avgap + apgav - aoc§vp)
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where we use g% gP ®hgg = h*°. If we change the dummy index in the last term as

o — O, we obtain

_ 1 _ _ _ 1
Fuvp - F”Vp + Eg_ua(Dvhap +Dph(xv —Dahvp) + _h,LlG(a g ng'V - aggvp)
1
- _hﬂc(a g p8ov — acfgw)-

As a result,
_ 1 _ _ _
Myp =Ty + 58"*(Dvhap + Dphav — Dahvp). (2.124)

At any given point x, we can simplify eqn.(2.124) using the T* vp(x) = 0 with a
suitable coordinate system. However, its derivative is not zero. In addition, we
see that T" vp = O(h) from eqn.(2.124), so in the Riemann tensor we will omit
the terms I'T because they are order in O(h?). Then we can say that R" vpo =
pI" 6 — doTH vp T O(h?) by the definition of Riemann tensor.

In such frame where T'* vp(x) = 0, we need to compute the Riemann tensor.
R#vpc = apl—‘uvc - adlﬂuvp

_ 1 _ _ _ _

= {6 + Eg““(Dvhaa +Dohay — Dahys) — 95T,

1 _ _ _
+ Egua(Dvhap +Dp/’l(xv - D(xhvp)}

_ _ 1 _ _ _

= {apruva - acrl—‘lhtvp} + Egﬂa{ap (Dvhac +Dgshgy — Dahva)

Since T* vp(x) = 0, we can write the Riemann tensor for the background metric in-
stead of the first two terms, and covariant derivative instead of the normal derivative.

Then we have
R'yp0 = By -+ 2 8“{DpDyhas + DypDshay ~ DpDav — DoDyhap ~ DsDphay
+DsDghyp }
— Rt %{DPDvh”G 1 DpDoh", — DyDF hyg — DDyh, — DgDpht,
+ DD hyp ).
Let’s rewrite the last equation such that
8puR"vpo = (&g +hpu) R vpo

_ 1 _ _ _ I
Rﬁva' = gﬁuRvaO' + Egﬁpgua{DpDvhac + DpDohav - DpDahvc - Dchhap
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—DoDphay +DDahyp}t +hgy R oo + O(h?)
= Rgvpa-+ 5 {DpDuhge + DpDahgy —DpDghv — DoDyhgy ~ DoDyhp,
+DoDghyp} +hgu Ry oo+ O(R?).
Now we can use the definition of the Ricci tensor,
gﬁpRﬁva — (gﬁp —hﬁp)Rﬁva
Rvo = 8 Rgvpo + 38° {DpDuhg + DpDahy — DpDghvo — DoDyhgy
—DgDphgy +DsDghyp} +&PPhg R* s — hPP Ry o+ O(H?)
= Ruo+ 5 (D" Dhigq + D Dohgy — DP Dghve — DoDyh — Do DA,
+ Do} + 1Py R — WP g REG + O (1)
~Ryot %{DBDvhﬁG 1 D Dohgy — DP Dghyo — DaDyh}.
We can separate the Ricci tensor with respect to its 4 orders such as
Ruy = Ryy +RY) (2.125)

where the superscript (1) refers to order of 4 is 1. Hence, we can define Rﬂ\z such that

Ry = 5 (D*Dyuhya+ D Dyhya — D*Dahyy — DyDyh). (2.126)

Next, we will find the Ricci tensor at quadratic order. To do this, we need to find

inverse metric at quadratic order. Say g% = g"% — hV%* 4 xV%(h?) where xV%*(h?) is

the quadratic term. Let’s find it to use the definition g,vg"* = J,
5,ua _ (guv +huv) <gva _pre _|_xva)
_ gﬂvgva . guvhva +guvxva +h“vgva N huvhva
B = B
x““ = hyyh"*
MY — g v
so the inverse metric at quadratic order is
gh% =g — pHe 4t pre (2.127)
Now, let’s compute the Christoffel symbol again,

1
1ﬁ”vp = Eg“a (avgap + apgozv - aocgvp)

1

= D) <gua — hH® +hulhla) [av@ap +hap) + ap (Zav +hay) — aa(gvp +hvp)}
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1 1

= Egua (avgap +dp&av — aocgvp) + Egua (avhap + dphay — aochvp)
1 1

- Ehua (avgap +dp8av — aagvp) - Ehua (avhap +dphgy — aahvp)

1
+ Eh#lhla (avgap + apgocv - aagVP)'

If we use the expression (2.124) instead of the first three terms, we will get

_ no1
l—\‘Lva - F’uvp + Fus/p) — Eh“a <8vhap + aphav - aahvp)

1 _ _ _
+ Ehulhla (avgap +dp8av — aagvp),
where

n 1 4 - _ _
Let’s denote the quadratic order terms of the Christoffel symbol such as

1 1
r“<v2p> - —Eh““ (Ovhap + Iphay — dahvp) + Eh“ AhM (vgap + Ip&av — dadvp)
1 _ _ _ 1 _ _ _
= 2 (Dyhap + Dphay ~ Dahup) — SHH (Do + T pho + Py
_ _ _ 1 _ _ _ _
‘i‘rlpvh(xl _%_m + Ehulhlygya (avgap + apgocv - aocgvp)

1 _ _ _ _ _
= —5h"*(Dvhap +Dphay — Dahvp) —h*hazT™, + 1 AT

1 _ _ _
- _Eh‘uﬁg_ﬁa (Dvhap +Dphav _Dahvp) .

Using the expression (2.128), we get

) — —h“Brﬁ(Jp). (2.129)

Hence, the Christoffel symbol is
Ty =T, + T4 — i TP+ o). (2.130)
By the definition of the Riemann tensor and using the a suitable coordinate system
such that T* vp(x) =0,
R*\pe = 0pTH 6 — d6THyp + r“plr’tav o LY S
= 0T o+ 0TV — 0p (1 sTPVg) — BoTHyp — BoTHy) + 0 (1 4 TP1))
+r O - T + o)
= R oo+ R g — (0t ) TP Vg + (9ah 5 )TPL0 — i (RP L)+
+ O - + o).
We can change the normal derivatives terms to covariant derivative thanks to the co-

ordinate system which we chose. If we rewrite the last expression after multiplying
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with metric gy, we have
gapR" oo = (Zap +hap) R ps
Ravpo = ZauR" vpo + ZauR"Y)s — Zau (Dph ) TP\3 + gy (Doh ) TPL)
— Zagh gRP ) + B T T 50— Gou TN T 50+ o R
+hauRM o+ O(H).
Now we can use the definition of the Ricci tensor,
8"*Ravps = (7% — hpa + 1, 1**)Ravpo
Rvo = 3" BauR" vpo + 8 “ZonR Y3 — 8 Gan (Dol 5 ) TP\ + 8P “Gou (Do 5 )T\,
— 8P Gah gRP )6 + 8P Ran T TG0 — 8 T )T ) + 2P hau R
+ 8% hau R o — P Gau R vps — P Bau R Vo + WP %hau R po
+ P Mgy R oo + O(1?)
— Rvo+R\)s — (Dphpﬁ)rﬁ(vlg + (Doh”ﬁ)rﬁ( ) hpﬁRﬁ(p) +r"< )
- chrllr pv +%+M_%_M
+ 1P DR g + WP IR S+ O (1)

= Rvo + R\ — (D’ 5) T Vg + (Doh? ) TPL) — P ,RP L) + TPV TG
PO o).
We can define the second order terms as R(fg, so the Ricci tensor can be defined as
Rvo = Ryo +RP W) + RV + O(RY). (2.131)
Now, let’s find the R(fg explicitly

| _
R =—(D, i5) (52 2 3P (Dyhpo + Dphve — Dahvp)]

+ (Doly) [385% (Dyhoe + Dohve — Dav) |~y RP\1

& (Dphro + Do — Dohon) 58" (Dohvy+ Doy~ Dyhoy)

g°*(Dohy+Djhow — thd); Y(Dphyy+ Dyhyy— Dyhpy)

= —>hP 4 (DpDohP + DpDyhP 5 — Dy DP hoy — DoDph, — DeDyhP y + DeDP hyy)
4 %(DGhPO‘Dvhpa 4+ DelP*Dphye — DelhP*Dahyp — DphP*Dyhog — DphP Dehye

+Dpl#“Dahys) + 388" (DphraDohvy+ DphywDvhay—DphywDyho

+ DyhpwDohvy+DyhpoDyhoy— Dy hpoDyhoy — Dohyy Dohvy — Dahys Dyhay
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+Dohyy Dyhay — DohyoDphyy — DahywDyhpy + Dol oDyhpy — Dy hoaDphyy
— D howDyhpy+ Dy hooDyhpy + Dohgy Dphyy — Dohgy Dyvhpy — DohsiDyhpy).
Let’s rearrange the indices of the last equation,
RG) = %g”"g“ﬁ (DphaoDyvhyp +DphacDyuhyg — DphaoDghyy
+ DahpsDyhy g+ DahpsDyuhyg — DahpsDghyy — DohpaDyhyg — DohpaDyuhyp
+ DohpaDphyy — DyhaoDphyg — DvhasDyhyp + DyhacDghpy — DalygDphyg
— DohysDyhyg +DahyeDghpy + DohyaDphyg — DohyaDyhyg — DohyaDghypy)
- %g""g“ﬁ (DvhopDuhpa +DyhegDphua — DyhogDahyp — DphggDyuhye
—DphogDyhuo +DphggDahyy) + %g—f”g“ﬁhpa (= DoDyhgy, —DgDyhg,
+ DsDghyy + DyDshgy 4+ DyDyhgs — DyDghoy).

If we make the suitable cancellations in the last expression, we will get

v=758

2y 1 _
REI) _ : pogaﬁ

1 - - _ _

+hpg (Dvl_)“hcﬁ +DgDohyy — DgDyhye — Dﬁl_)”hvc>

+ (%Dahpo —Dphac ) (Dyhyp +Duhvg —D,;hw>] . (2.132)
Now we can think about the question what the energy-momentum tensor of grav-
itational waves is. To understand the aim of this question, we firstly consider the
situation where there is no external matter, 7, = O for the eqns.(2.121) and (2.122).
Hence, we have
Ruv = [RLZ\Z]LOW,
and we found that Rﬁ\z = O((9h)?) + O(hd*h) from eqn.(2.132). When there is no
matter, we can write that
Ryv ~ (9h)?, (2.133)

so we can say that the [RLZ\Z]L"W has the order (dh)%. Where the scale of variation of &

is 4, and the scale of variation of the background metric is Lp, then we have

_ 1
8guv ~ E, (2.134)
and
h
oh~ —. 2.135
) ( )
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The Ricci tensor of the background R,y is constructed from the 0’3 uv theneqn.(2.134)

implies that

_ 1
Ruv ~ *guy ~ —,
uv 8uv L%
while from eqn.(2.135)
h
oh)? ~ (3)%
(@) ~ (5)
Using the last two expressions in eqn.(2.133), we get
1 h.,
— ~ (= 2.136
z~GE" (2.136)
which means that
A
h~—. 2.137
> (2.137)

On the other hand, the curvature is determined by the gravitational waves. Consider
the situation 7, # 0 which means there is matter, we can neglect the background

curvature if we compare it to the contribution of matter sources. Then,
1 KW o h?
—5 + (matter contribution) >>

[ 22

implies that

A
h<<—. (2.138)
Lp

The curvature is determined by the matter. As a result, we can understand why the
linearized approximation of flat metric expansion cannot be used. In other words, to
think g,y = 1,y makes LLB zero. Also, from eqns.(2.137) and (2.138), it is obvious

that Li—B is at least order one.

Now, we consider eqn.(2.121). Suppose there is a clear-cut separation between A and
Lp. To define a scale  such that << [ << Lg,and to average over a spatial volume
with side /, we can make the projection on the long-wavelength (or low-frequency)
modes. If we find average the modes with wavelengths of order Lp, we will get a
constant value. Because of this, we can say that there is no effect on them. On the
other hand, modes with a reduced wavelength of order A oscillate very fast, and their
average is zero. Next thing we will do is that introducing the time scale # which is
r>> % (the period of the gravitational waves) and f << fLB (the typical time-scale of

the background). We can therefore write eqn.(2.121) as
(2) 8tG 1

Ruv = _<Ruv> + c_4<Tuv - Eg#VT>’ (2.139)
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where (...) denote a spatial average.

Let’s define an effective energy-momentum tensor of matter which is denoted by 7,
1 _ |

<Tuv - EguvT> =Tuv — Eg,uvT (2.140)

where T denotes the trace of effective energy momentum tensor and defined as 7 =

guvT*Y. In the case, the fundamental energy momentum tensor 7#" is constant when

we average it. In this case,

1

1
(Tuv — quvn ~ Tuv — §<guV>T

1

= Tuv - EguvTa

s0 Ty =~ Tyy. Also, Tyy is a low-frequency quantity by the definition.

Let’s define another quantity 7,,, as

¢ 1. o
v =~ = (Ryiv — Eg,uvR( h, (2.141)
where
R® = g"vR), (2.142)

and its trace is

t=g"1y
4
(TRTIYIN ) N SV
= _%@M"RL‘Z _ Eg“vgva(2)>
4
= _8;_G<R(2) _ %4R(2)>
A
= R 2.143
87rG< ) ( )
where we used g*Vg,v = 6%, = 4. If we use eqn.(2.143) in eqn.(2.141), we will get
2 8nG 1_
_<RL3> = C_4(tuv) - 5guv<R(2)>
3nG 1
= c—4(tuv - Eé?uvf), (2.144)

where (g,yR®) = g,y (R®)) which means g,y is constant under the averaging pro-

cedure. So eqn.(2.139) becomes

_ 8tG 1._ 8nG - 1. -
Ryy = C_4(t[.LV - Eg#\’t) + C_4(Tuv - EgNVT)7 (2.145)
or, equivalently
_ 1. - 8nG, -



2.4.3 The energy-momentum tensor of gravitational waves

In this subsection, we want to find the energy and momentum which are carried by the
gravitational waves. Again, we will use the situation 7y = 0 in which we consider
the large distance from the sources. Suppose that the background space-time is flat,

then (Dy — dy). In this case, we can write the second order Ricci tensor as

1 1
RS" = Enpcnaﬂ [Eaﬂhpaavhcﬁ + aphvoc (aohuﬁ - aﬁhuo)

+ hpa (a\/&”ho-ﬁ + aﬁach“v - aﬁ avh'ug — aﬁ a“hvg> +
1
(Egahpc — dphas) (dvhyp + duhyp — aﬁhﬂ")} :
If we make some suitable interchange between some dummy indices, we will easily

get

Irl
RLZV == 5 [Eauhaﬁ avhaﬁ + haB augvhaﬁ - haﬁa\/aﬁhau - haB auaﬁhav + haﬁ 8058[3/1”\;

+ thavtha“ - 8ﬁhavaahﬁu - aﬁhaﬁ a\/hua + aﬁhaﬁaah’uv - aﬁhaﬁ auhav
- %8“h8ah“v + %8“h8vh(w + %a“hauhav] . (2.147)

In this section, one of our aim is to compute the 75, explicitly. It is the reason why we
wrote Rﬁa explicitly. We discussed before the fact that /1, has 10 degrees of freedom
thanks to the symmetry property of it. In addition, in section (2.2), we saw that 2 of
them are physical while the other eight of them are gauge modes. As a result, we can

say that 7, has the contributions of both physical and gauge modes.

If we want to compute the contribution of the physical modes, we need to use the
Lorenz gauge condition. Using it eliminates 4 degrees of freedom. Also, if we use
the residual gauge conditions which are 0&, = 0 where §;, = 0 are the four gauge
modes as discussed in section (2.2). Also, we had chosen the éu = 0 such that 4 = 0.

Then ﬁuv = hyy implies that Lorenz condition becomes 8“huv =0.
2 2
(R = [ R,
where d3x is the spatial volume element. Let’s write the last equations explicitly

) I I
R = 307 /V 4[5 0uhapdh® +hP 3,0, e — h*P D, gy — h*P 0 ghary

+ haﬁ aaaﬁh‘uv + aﬁhav&Bhau - thavaahﬁ'u - aﬁhaﬁ 8vh’uo‘ + aﬁhaﬁ aah’uv

1 1 1
— 9gh®™B duhgy — M + M + M}
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1 1
2(volV) / dx / dy / dz[—gauhaﬁavhaﬁ + 9 (h*BAyhep) — I (W*P Ayhay)

05 (P ) + 35 (HP ) + 2P (1, Dphs) — %, gy
—oP (h*ydahpy) + havaﬁaahﬁﬂ} ’

where volV is the volume of the region V in which we take the integral over it. Using

the fact that hyy = hyy(t — £), we can write

I I
(R = 5 ol / dx / dy / d2[ = 2 Quhapdh®® + Ao (1P Dy + 0. (P By

- a() (haoavhau) - az (hazavha’u) - ao (haoa'uhav) - az (haza'uhav)
4 30 () + 0. (1) +3° (h, Do) + 3 (H Ochays) — %, i

—9Y (h*, Oahop) — 0%(h*, dahzy) +W] ,

where we used the plane wave equation Ohgy = 0 and the Lorenz gauge Pl hg, = 0.

If we use the fact that the boundary terms vanish when the size of the box which we

take integration over is infinitely larger than 4, we get

1 1

To get the last expression, we also used that 80h#v = —azhuv since hyy is the function

of (t —z). As aresult,
(R = _%<auha/3 oyhoP). (2.148)
Similarly, we can compute the value of the (R(z))
(RY) = (8" Ryy)
= 18" (uhap i)

1
= —Z<avhaﬁavh°‘5>

1
= = (0" (hapdh™P) —hod*oyn®P),
by using same arguments which we used to find expression (2.48), so

(R = 0. (2.149)

Using the results (2.148) and (2.149) in eqn.(2.141), we get

c* 1
v =~ 576~ 7) Ouhapdvh®)
4
C
— %@uhaﬁa\,h“ﬁ ). (2.150)
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Secondly, if we use the residual gauge (2.35) in the expression (2.150), we get

Ao
157 | Ouhapdy (81°P) + yhapdu(8h°P))

A

= 257G | Ouhapdy (098P +0P5%) 1 duhapdu(9°EP +P£%))

C4

T 321G :<a”haﬁ8v8a€/3> + <aﬂhaﬁa\/aﬁéa> + <avhaﬁauaa5ﬁ> + <avhaﬁau(9ﬁ§a>

= S| (OuhapdyI“EP) + (a9 0”EP) |

== | (0% E?)) + (0% DrhapE?))|

St[,LV -

where we again used the Lorenz gauge. Consequently, we eliminated four degrees
of freedom using the Lorenz gauge and eliminated the other four of them using in-
finitesimal gauge choice that means there are only two physical modes hiTjT. Then

expression (2.150) becomes
4

v = 35 (8“h Tovhi"). (2.151)

Now, we can compute the gauge invariant energy density 7,

4
00 a hTT a hTT

2
C . .

where hTT 18 hTT 8,thJT, and using eqn.(2.148)

2
1% = (W i) +his hiy +h3[ by + 0l hy) )

327G
2
W2 AR+ 2+ (—hy)?
— (R R ()
_ (i +h2) (2.153)
~lenGT T '
Since hTT is a function of the (t — £) for a plane wave traveling along the z-direction,
it is obvious ! =192 = 0. Also, since 9, hTT =—d hTT KT we have 1% =103

ij
Using the Bianchi identity, we can get

_ 1 _
D* (Ryv — 5guvR) =0,
so from eqn.(2.146), we have

D* (Tyy +1uy) = 0. (2.154)
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If we look at the last expression at large distances from the source with flat back-

ground, we will get

Mtyy =0 (2.155)
since T,y = 0 and D* — 9*.
The energy flux

Let’s start with the conservation of the energy-momentum tensor which is given by

eqn.(2.155),

9%y + 9't;y = 0.
If we look at it in the situation v = 0, then

9ot® + ditio = 0
implies that

/V B (9™ + Jitig) = 0 (2.156)

where V is a spatial volume in the far region, which has the boundary dV = §. The
gravitational energy inside the volume V is given by

Ey = /V dx 1%, (2.157)
Taking the time derivative of last expression, we get

HEy — / d3x 9y, (2.158)

Using eqn.(2.157) and dy = dz’ we get

1 E
d =V /d3x8t0’
c dt

= —/dA n;t"" (2.159)
S
where 7' is the outer normal to the surface and dA is the surface area element. Say S

be a spherical surface at a large distance r from the source, then dA = r*sin 0d0d¢ =

r2dQ. Then eqn.(2.159) becomes

dE
Py _ / dA 1 (2.160)
where
0 c* 0 TT d 77
= d°hi —hij ). 2.161
= 52 O 50 (2.161)
A gravitational wave which propagates radlally outward has the form
Wi (t,r) = fu( -). (2.162)
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To compute eqn.(2.161), we firstly compute some arguments which we need

d rr 1 r. 10
a—rhij (t,r) = r—zfij( )+;§rfij(
Also,
afij afii
Srj—t) =519 =151
P 9fij 9 dfij
Shit—0) =235 =3"
imply that

0 r
grfij(f— E) = o ij(t— 2)7

where u(t,r) =t — . Therefore,

1 110
a—rhﬁT(t,ﬂ— r—zfij( Z>_;Z§tﬁ](
1 1
= —d[~fijlt = 2)] +0(3)

Using this expression in eqn.(2.161), we get

4
Or_ 04, TT 30, TT
(" = = (nlT ]}

=%,

Now, we can go back to eqn.(2.160) which becomes
dEV / dA 1.

c)'
(2.163)
-
;)
(2.164)
(2.165)

It is obvious that dE" < 0 from the last equation, so there is an important result which

is Ey decreases in time. Since Ey decreases, we can say that the outward-propagating

gravitational waves carry away an energy flux
dE 00
— =t
dAdr ~ ©
_.c (WTTRITY
321G

Y

or,

dt
Using eqn.(2.153) in the last expression, we get

dE A .
= ——(i2 +}).
dAdi ~ TenG T
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As a result, the total energy which flows through dA is

— dt{hs +h 2.169
dA 167rG/ . (2.169)
The reason why we take the integration over from t = —oo to t = oo is that we want

to resolve all possible frequencies. However, we will integrate the signal only over
a certain interval Af. We saw that the average in eqn.(2.169) is a temporal average
over a few periods in the previous section. Therefore, we can omit the average in

eqn.(2.169),
dE
dA 167rG

/ dt (b5 +13). (2.170)
From (2.86) and (2.90),

he= [ dfh(pen,
o= ([ g (e ) = [ ap-2imph (pre

Similarly,

o= [ df(-2imp)hul fle

To use the last two result in eqn.(2.170), we will firstly compute

/:odthz :/:odt[(/_D;df(—Ziirf)fer(f)e_Zi”ﬂ)2]

— /O;dt(/o;df(—Ziﬂf)flJr(f)e—szt) (/w df'(Ziﬂf')fl* (f/)ezinf’z>

:/m df(—Ziﬂf)fz+(f)/ df' Qinf )t (f / dr 2w (=
= [ar2imphi() [ _af @ing )i (£)3(7 - 1)

— [ _arexrPh P,
where we used the definition of the Dirac-delta function and superscript (*) denotes

the complex conjugation. Similarly, we can find

[ _aiz= [ areapi(nP,
by using the same technique. Hence, eqn.(2.170) becomes

dE oo z 7
= /_ _df@afP (e (NP +[h(HP)

ncd [ ~ ~
= [ AP ()P + P). 217
If we look at only the physical situations which is f > 0, then it becomes
dE
[P P+ RPR) 217)
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Hence,

dE _7rc3 217 2z ’
m—%f (1 ()12 4 e (£)17). (2.173)

The integration of z—? which is the energy spectrum over the positive frequencies gives

us the total energy. From eqn.(2.173),

dE . 7[03 ) ~ 2 = 2
0= 5l [ a2 (PP ). @174

Now, we can compute the flux of momentum using the same way which we used to

find the energy flux. By definition, the momentum of the gravitational waves inside a

spherical shell which has the volume V' at large distance from the source is
1
ph== / d3x 1% (2.175)
cJv

where £ is the spatial index (k = 1,2, 3).

2.5 Propagation in Curved Space-time

In the last section, we gave our attention to low-modes eqn.(2.121). Now, we will
focus on eqn.(2.121) which is the high-modes equation. First of all, we again look at

the case where there is no matter, 7,y =0, so

Ry = —[RE)]™". (2.176)

There are two small parameters 4 = O(hyy) and ZL—B (or J%) in the short-wave (high-
frequency) expansion. From (2.137) the Einstein equation shows us these two param-
eters have the same order of the magnitude, h ~ ZL—B. Let’s define a single parameter

which we denote by € such that

A
Ly
For simplicity, we use units Lp = 1 when we compare the orders. Hence, we have

e =0(h) = 0(=). 2.177)

€ ~h~ A.If we look at eqn.(2.126), we will see that
h 1

(1) 2
Rﬂvwa hN?NE (2.178)
where we used the fact that the scale of variation of 4 is 4. Also, since
2
2 h
Ry ~ 0% ~ Rt (2.179)

[RLZ\Z] High i at most O(1). It can be omitted in eqn.(2.165) when we compare it with

the leading term of R\ which is O(L). Also, if we look at eqn.(2.122) with this
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leading term, then it becomes
[Riv] =0 (2.180)

where subscript % means that we must extract the 0(%) part. Let’s write eqn.(2.180)

explicitly

where we changed the covariant derivative with regular derivative, and changed the

metric g,y with Minkowski flat space metric 7,y .

In section (1.1), we constructed the propagation equation for the field 4,y in a flat
background by using the linearized theory, it is obvious that eqn. (2.181) is the same
equation with it. Defining Buv =hyy — %n“vh and using the Lorenz gauge condition,

we can easily get
Dhyy ~ 0, (2.182)

where O = d, d* is the flat space d’Alembertian. As a result, since this equation is
the same equation as eqn.(2.60) where T, = 0, we can say that the high-frequency

eqn.(2.122) is a wave equation for the perturbation /.

Now we can look at the situation there is matter which means 7,y # 0. This matter
will dominate the curvature, so eqn.(2.121) which is known as low-frequency equa-

tion becomes

_ 1 - 871G -
R‘uv_iguvR:C_“-TlJ_v. (2.183)

For the frequency case, we know that h << Li
B
A

expansion in 4 and in 7, are not same. If we only use the liner terms with respect to

<< 1 from eqn.(2.138) that means the

h, and we make an expansion with respect to ZL—B, eqn.(2.122) becomes

R =0, (2.184)

where we limit only to the leading and next-to-leading order in ZL—B. Since [Ritza] High

has the square power of A, we can omit it. Also, if we use the fact that gy,,T =
(&uv + huv)T, we can say that it has high-frequency part O(%), and there is another
high-frequency part with order h which based on multiplying /,, with low-frequency
part of 7. Hence,

1 .
(Tuv - —guvT)ngh =

h
5 O(E). (2.185)
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Since RE}V) ~ 3%h ~ %, the order of eqn.(2.85) is smaller than the order of RE}\Z.

When there is matter, the background metric g, will be different from the flat metric

n*v. Hence, Rﬂa is a covariant quantity with respect to background metric. From

eqn.(2.126), we can write RLIV) explicitly,

We already made discussions of the flat space metric version of this last equation, in

section (1.1). In here, 1, will be replaced by g,,v. Defining & = g*Vh, and
huy = hyy — %guvh, (2.187)
eqn.(1.186) will be simpler. Also, we can use the condition
D¥hyy =0 (2.188)

which is still called Lorenz gauge. Let’s use this gauge condition, definition (2.187)

and in eqn.(2.186),

_ 1 1 _ I _ = 1
=DPDp (hyy — Eguvh) + 5guvDPD,,h +DyDyh—DPDy (hyp — zg-“ph)
| _ 1. 1

- | 1. - = - o
= DPDphyy + ngDprh + EM_ [DP,Dy]hyp — [DP,Dy]hyp
to cancel the third term of the last expression, we used the fact that covariant derivative

commutes for the scalar. Also, if we use the expression
[Dy,Dp|hy’ = WP*Rppay —hy " Rey,
then we get
DPDphyy +2RupvehP® — Ryph?y — Ryph® , =0, (2.189)
where we used the residual gauge to make &,y traceless.

If we look at the situation outside the matter which means Tuv = 0, then the Einstein
equation (2.183) for the background implies that R“v = 0. In other words, Ruv has

e

. o L
the terms which are contributions only from [Ry,] "

if we look at eqn.(2.121), so
Ruy = 0(;{-22) Since we are only interested the linear order in h, Ryph”, and RyphP ),

can be canceled in eqn.(2.189). In addition, R;;pye = O(Liz) implies that Ry pyohP® =
B

O(L%), but on the other hand DD hy,, = 0(%) We already have a restriction which
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A

we study order in 75> SO we have

Equations (2.188) and (2.190) give us the propagation of gravitational waves in the
curved background. Consequently, if we separate the Einstein equations into two
parts where the first part is a low-frequency and second one is a high-frequency part,
then we can say that the low-frequency part gives us the information about the effect
of gravitational waves and effect of matter on the background space-time; on the other
hand, the high-frequency part gives us a wave equation in curved space. We can solve
this curved-space equation using the eikonal approximation of geometric optics. In

the next section, we will do this.

2.5.1 Geometric Optics in Curved Space

Electromagnetic waves

The action of the electromagnetic field in the curved space is

1
S = —Z/d4x\/—gg#agvﬁF“VFo‘ﬁ, (2.191)

and it is known that its variation gives the equation of motion
Dy (D*AY —DYA*) =0, (2.192)
where we use gy to raise and lower the indices [5]. The result (2.192) is the general-

ization of Maxwell equations d, F*V. The curved space generalization of the Lorenz

gauge on the four vector potential A* is
DyA* =0. (2.193)
Lets now compute the expression [D“ ,D"}A“. To do this, let’s firstly compute
DuDYAM = g"* DD oAH

= 8" |3 (DaAt) + 1", (DaA®) — T g (DrA") |

= g"® [au (DuAM + f“aﬁAﬁ) + (DA™ + F’laﬁAﬁ)
57|
— gve [au DoAH +T¥ L9y AP + T ) DpA* T, 0.4

JaP|.

ST (pAH 4 TH

i A A U
+ (QuI op T T ap — T ual™ 15
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Secondly, if we use same technique, we will get
AV 7S _ = = = A FA
D¥DyAt = g% |daduAt + T s0pAP + T ) 9yt — T, 0, A
s A A B
+ (Bal™ g+ T TP~ T T 5)A } .
If we subtract the second term from first one, we can get
N PV AL _ Vo DAY o' ~H A PR A B
[Dy, D¥]A" = g (duT* g — aT™ 5 + 1" T g —TF 3 T 5)A
_ svaph B
=&R ﬁuaA
_ PV AM
=R"A
where RY u 1s the Ricci tensor of the background metric g,v. From the last expression,
DyuDYA* = YDA + RY A" = RY A"
where we used the gauge condition (2.193). Hence, eqn.(2.181) becomes
DpDP A" —D,DHAP =0,

= D,DPA* — R AP = 0. (2.194)

If A is much smaller than the other scalers in the problem, geometric optics will be
valid. Hence, we must have 4 << Lg, where Lp is the scale of variation of the back-
ground metric. In addition, we must have A << L. where L, is the characteristic
length-scale over which the amplitude, polarization or wavelength of the electromag-
netic field change. In particular, the curvature radius of the wavefront must be much

bigger than A. Say

i0(x)

At (x) = [a* (x) + EDH (x) + 2 (x) + .. ]e o, (2.195)

where & is a fictitious parameter, which reminds us that the term which has &” is of

n
order (%) where L is the min(Lp,L.).

Since R",AP = O(A/L3%) where A is the amplitude of the A, and DP D, A* = O(A/3%),
to leading and next-to-leading order in 4 /Lg we can omit R* pAP. Hence, the equa-

tions of motion (2.194) can be rewritten as
Dp,DPA* =0. (2.196)

Let’s define the wave-vector k,, = d,, 0, and use this and eqn.(2.195) in eqn.(2.193) in

order to find the lowest order term:

DyA* =Dy, [(a“(x) + EbH (x) 4+ &2 cH (x) + ...)e%}
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0= (Dya* (x) + EDyb* (x) + E*Dyct (x) +...)e &

+ (@t (x) + EDH (x) + E2H (x) +...) i %
0= 67" (ikya) + 6°(Dyat + ik bH) + & (Db +ikc) + 0(67)| e+
(2.197)
The lowest order term implies that
kya = 0= guykta" =0, (2.198)

where we use DHO = 8“9 since 0 is a scalar. Similarly, let’s find the lowest order

term from eqn.(2.196)

— - — - i0(x)
DPDpAH = DDy (at + 60 +..)e |

= DP{ [(Dpa” +&DpbH +..) + (a* 4 EbH + )%”} e }

o o i0(x) kP _ _ i0(x)
= (DPDpa + EDPDpbH + .. )e ¢ + ’? (Dpa* +EDpb* +...)e ¢
iDP o) ik, _ i0(x)
: p(a“+£b“+...)e & —i—lgp(Dpa“—l—o@pr”—i—...)e &
iky ikP i0(x)
?p?(a“—l—cg’b”—l—...)e z (2.199)
SO it is
kpkP =0 = g, kMK =0. (2.200)

which is called the eikonal equation. Also, we have
Dy (kukt) = Dy (guvkuk!)
= Zuv [(ka#)k“ e (ka“)]
= kM (Dyky) +k* (Dyky)
= 2k*Dyky, (2.201)
which is zero from eqn.(2.200). There is another important expression which is
Dyd,6 = DyD,6 = DyDy6 = Dyd,6,
since 0 is a scalar and it is known that covariant derivatives always commute on the
scalars. If we use the definition of the wave vector on the last expression, we get
Dyky = Dyky. (2.202)
In addition, using eqns.(2.200) and (2.202) in eqn.(2.201), we can get
k*Dyky = 0. (2.203)
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The expression (2.203) is the geodesic equation in the space-time of the background
metric g,,v. It can be seen easily to write k¥ = % where A is the affine parameter
along the geodesic,
dx* _ dx* dx* dx® dxP
Sov Dy = Fav o (9 S 4T 52 )
Sav g P ~ 8 \ % an T e
d’x* dxt dxP
—g. (=" 1% __) =0,
g“”(dﬂ T an an
implies that
dzxa +FO¢ ﬁﬁﬁ =
dA? P dA dA
As a result, the curves which are orthogonal to the surfaces move along the null

(2.204)

geodesic of background metric.

Now, we can find the next-to-leading order from eqn.(2.196). If we look at the ex-

pression (2.199), the terms which have the order of & s

2kpDPat + (DPkp)at = 0. (2.205)

1/2

Let’s define the real scalar amplitude a = (a"aj;)"/* and the polarization vector e*

such that a* = ae¥, so we have ete;; = 1. It is trivial that k* 9, (a®) = 2akMdya.
Using the fact that normal derivative is equivalent to covariant derivative when we

apply it to a scalar, we get
kM 9y (a*) = kK*Dy (aPay)

= kM (Duap)a;; + kM aP (Dua:;)

= 3 (Dk)aP ay — 5 (Dky )apa?

= —(D*ky)a?, (2.206)
where we used eqn.(2.205) to write k" (DyaP) = —3(D"ky)aP. From the result
(2.206), we get

Koy (a*) = — (DMky ) a?

2ak* dya = —(D'ky)a®

= kMdya = —% (D*ky)a. (2.207)

Also, we can find an equation for e# by writing a* = ae* in eqn.(2.205) and using
eqn.(2.207),

ZkPDp (ae“) + (l_)pkp)ae“ =0
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2kP (Dpa) e +2akP Dpe* + (DpkP )aet =0
(2kp 8pa) et + (l_)pkp)ae” +2akPDpet =0

— (Dpkyae™ + (DpkPyae™ + 2akP Dpet = 0

implies that

kPDpet = 0. (2.208)

The main results of the geometric optics of electromagnetic waves in curved spaces
are the equations (2.198), (2.200), (2.203), (2.207) and (2.208). Eqn.(2.198) means
kyet =0, and eqn.(2.208) means that it is parallel-transported along the null geodesic.
Lastly, eqn.(2.207) gives us information about the conservation of the number of
photons (in the quantum language) in the limit of geometric optics. Let’s look at
DM (a®kM) explicitly
D" (a*k*) = D" (ae? aep kM)
= (DHa)eP aeykt +W+ aeP (D a)eq kt +W
+aeP aey (DHIH)

= 2akM (9" a) 4 a* (D" kM)

— —a?DMi + DM

=0 (2.209)

As a result, if we define a current such that j = a*k*, then we can say that the cur-
rent is covariantly conserved. Noether’s theorem says us that its relevant conserved
charge is the spatial surface integral of a?k" at constant time. Also energy density
is proportional to (k’a)?. Because the each photon have the energy k¥ and we have

eqn.(2.209), the number of photons is conserved in the limit of the geometric optics.

Gravitational waves

The question is what the eikonal approximation is for gravitational waves. Say

v () = [Apy () + By () + & (2.210)

Similar to the situation in electromagnetic waves, there is the definition ky, = 8”9,
and we also write A,y = Aeyy where ey 1s the polarization tensor which is normal-

ized as e“"ezv =1, and A is the scalar amplitude. If we substitute eqn.(2.210) into
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eqn.(2.188),

Dvl_luv - Dv{ [Auv(X) + gBuv(X) + :| €i9g) }

= (DYAuy(x) + EDYByy(x) +...)e
=0,
then the lowest order term gives us
K Auv = 0. 2.211)

Let’s focus on eqn.(2.190) this time,

= (DPDpApy(x) + EDPDpByy (x) + ..

+ (DpApv(x) +EDpByy(x) + .. )l
(D )

+ (Auv (%) + EByy (x) +...)

k kp i0(x
P (2.212)

— (Apv(x) + EBuy(x) + ...

Hence, from the lowest order term of eqn.(2.212), we have
kokP =0 = guvktk¥ = 0. (2.213)
The eqns.(2.211) and (2.212) are the same as for the electromagnetic waves version
of the geometric optics which we found before. As a result, we can say that gravitons

use the null geodesic of background metric hence they travel like the photons. In

addition, Ay satisfies, if we look at the next-to-leading term from eqn.(2.121)
kPDpAyy +kpDPAyy + (DPkp)Apy =0
2kpDPAyy + (DPkp)Apy =0
which implies that
koDPAy = —%(Dpkp)A”V. (2.214)
Also, let’s look at the expression
kM9 (A%) = kM Dy (AP A7 )
=k (DuAP) At g + kAP (DAY g)
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1, . 1, .
=~ (D) AP AL — ) (D) AP AL,
= —(DMky)A? (2.215)
From the last expression, we can get

= kM dyA = — = (D"kyu)A. (2.216)

| =

Now, we can look at the expression
DM (A*K*) = oM (A%) KM + A% (DMKM)
=0 2.217)

where we used eqn.(2.215). As a result, we can say that the number of the gravitons

are conserved in this approximation of geometric optics.
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CHAPTER 3

INTRODUCTION TO GRAVITATIONAL WAVES’ MEMORY

To observe the gravitational waves, we can use a detector which consists of freely
falling test particles. The gravitational wave passing through a detector causes a rel-
ative motion of these test particles. The Laser Interferometer Gravitational-Wave
Observatory (LIGO) has this physical mechanism. For example, assume that there
are four test particles which make a circle shape before the plane wave arrives. When

the plane wave is passing, the shape of it changes as

P & x . . . . & |-

[ B3 '] [T} B ] ' | v ow [ ' [T} (T}

Figure 3.1: A simplified gravitational wave detector [2].

Astrophysical realistic radiation has the form of finite pulses instead of endlessly re-
peating plane waves [9]. Such a pulse which is created by interactions of sources such
as stars or black holes in a galactic nucleus, can cause a finite, permanent change in
the separations of the particles. This is known as the gravitational wave memory ef-
fect. Recently there are many publications about this phenomenon [3}4,(12-23]] . If
we look at this phenomenon with same analogy which is shown in Fig.(3.1). It starts
with the perfect circle shape, then it will oscillate for a finite amount of time, and it

finally will stop. However, this time it cannot be a circle again.

Figure 3.2: A representation of the memory effect [2].
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3.1 What Are the Mathematical Properties of the Memory Effect?

There is a reason for use of null infinity. The reason is that it gives us a permission to
isolate the radiation from other forms of gravitation due to the peeling theorem, since
we can identify different portions of curvature using the peeling theorem [10]. We
can accept that the source is very far away from the detector, then the space-time is
asymptotically flat. Let the source be at a point p in extended space-time; however,
the detector is near a point ¢ on null infinity. Then we can expand the gravitational

fields in powers of %, and we will only focus on the leading term.

Let d“ be the spatial separation between two detector particles, and let’s define Ad“

as the change in the separation, then we can find that the memory is
1
b
Ad = ;A“bd 3.1
where A\, is the memory tensor which has some interesting information about the
memory-angular dependence, energy and mass scales, etc. If 7 points to the location
of the detector on the sphere at null infinity, the memory tensor is

T T
Bp=2 Y [ ") (Vo‘))a(V(z'))b] _2(;[ my) (v )a<V<j)>b]
j),in

)
. 2 1—7V 2 1—7V
(@iour Ly /1 =G I=viy

(3.2)

where

1
[Xab]TT = qaCCIbchd - EquXchab (33)

where g,;, known as the transverse-traceless projection operator which is given ex-

plicit form of it in section (1.2).

3.2 Notation and Convention

In the memory part of the thesis, we use the geometrized units (G = ¢ = 1), and the
abstract index notation for the tensors. The indices a, b take the values 1,2 which we
have already used them in Chapter 1. A Latin index in the parentheses (i) tells us
which particle we are interest in. Also, t* = —d“¢ is future-pointing, and r* = 9“r is

outward-pointing vector. U =t — r is the retarded time, and

K= —9U =1"+r"
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we have the definition such that the n”* derivative of the Dirac delta function is
denoted by 5(”), and m-dimensional coordinate Delta function is denoted §,,, and

[ d"x8,(x) = 1. We use the symbol O for the Heaviside step function.

Lastly, g, denote the projection of the 4-dimensional Minkowski metric onto S2.
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CHAPTER 4

THE GRAVITATIONAL WAVES MEMORY OF SCATTERING PARTICLES
IN MINKOWSKI SPACE-TIME

In this Chapter, we use [2]], [3] and [4]] as a guide to construct the idea of gravitational

memory.

4.1 Scalar Fields

The scalar wave equation is
00,0 = —4nS, 4.1)

where ¢ is a scalar field and S is a scalar charge distribution. Our aim is to find
the retarded solution of the wave eqn.(4.1). Here, S represents a system of charged
point-particles. They follow inertial trajectories except at the point P which is called
"interaction vertex". At the point P, the particles may interact, and they can be cre-
ated, or destroyed. For example, we can imagine that six incoming point particles go
on to a interaction vertex P, and then three point particles are born, which is shown

in the Fig.(4.1). Their worldliness can be time-like or light-like (null).

Let (7,X) be a global inertial coordinate system (GICS) such that the point P can be
chosen as the origin (¢t = 0,X¥ = 0) of the GISC. In this coordinate system, we can

write the charge distribution S such as

dt; o drt; oL
S(x) = (.)Z. q() 63()5_}’(1')(7/‘))@(_7/‘)‘}_(.)2 Cl(j)%&<x—m)(l))@(l),
i) in j) out

i)
dt
4.2)
where g(;) are the scalar charges of the particles which are measured in their rest
frame, and (¢, ;) (t)) with (¥;)(0) = 0) are the particles worldliness which are parametrized

with the GICS time coordinate. In here, the particles which arrive the point P are de-
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Figure 4.1: A space-time diagram of the sort of radiation source we will consider. [2]]

stroyed by the ®(—t) factor, and the particles which leave the point P are created by
the ©(r) factor.

We can find the retarded solution of eqn. (4.1) by using the charge distribution S
given by eqn. (4.2) with retarted Green’s function G of eqn. (4.1), such that
o(x)=4rn / d*Y G(x,x)S(x'), (4.3)
where the retarded Green’s function G(x,x’) is
Glx, ) = %5(02(;@)&))@(; _, 4.4)
in which 62(x,x') = —(t —t')? + |¥ — ¥|? is the squared geodesic distance between

field point x and the charge point x’.

Let’s think a source S;, 5—o(x) which is a single massive particle at rest, and is de-
stroyed at point P, so it is

Sin,i—0(x) = q63(X)O(—1). (4.5)
If we write the Green’s function (4.4) and the charge density (4.5) on the retarded
field which is given at eqn.(4.3), we will get

Ons-o) =47 [ a8 (c?(.x)) 0 )] [48s0)0(~1)

—2g / a5~ (11 +[F-F )0l — )& ()0(—r).
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First of all, we can take the spatial part of the integral, so

Qinio(x) = 2g / ar's(— (112 +7) 0 —)O(—1). 4.6)
Then, to obtain the value of the integral (4.6), we will give an interlude about the delta

function. The definition of the delta function is

5(f) =Y, px )

. (%)x:xi

l
where the x; is the zeros of the function f. In our problem, f = r?> — (¢t —¢')? ,and its

4.7)

zeros are t' =t —r and ¢’ =t + r. Since we have the factor @(r —1’), t' =t — r is the

only zero point of f which give us a value different from the zero when we take the

integral (4.6). Thus,

S(—(t—1)2+1%) = ‘(_5;2—_(;;) r))

/ J— J—
_d=(r=n) 4.8)
2r
Using the result (4.8) in the integral eqn. (4.6), we get
/ J— J—
ous-o() =29 [ ar XD e(-1)
r
_9e(—(— 1
=o(~(t-n)+0()
_4g(_ 1
= r@( U) +0(3), (4.9)
where
U=t—r (4.10)

Hence, the leading order of ¢;,, — is % The terms which have the higher order of %
can be neglected since ve have the detectors in the radiation zone. We can find the
field of a particle which is created with velocity vV by boosting eqn.(4.9). Let’s (¢,¥(z))
be the geodesic of a particle with coordinate velocity v = % , then the leading term of

field is

gdt 1
- = = oO(-U). 4.11
(pln7v(x) r dt 1 A"—}»‘ ( ) ( )

Now, let’s consider about the retarded solution of S, —o which is a single massive
particle at rest, and is created at P. Thus, if we make same calculation, then we will

get

1
Gouti=0(x) = 10 (U) +0(). (4.12)
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The only difference of last equation from eqn.(4.9) is that it does not have the minus
sign in the factor of ©, since there will be term O(t) to create a particle instead of
O(—t) in the source density S, y—o. Again, to find the leading term of a retarded
solution for a particle which is created with velocity v, we can boost eqn.(4.12) with
the same approach we did before for the particle which is destroyed with velocity V.

Thus,

gdt 1

If we consider a general source like (4.2), we can write the field as a linear superpo-

sition of the created and destroyed particles. Thus, the general retarded field solution

is the superposition of the solution of the every particle in the system,

1
o= (0(U)a(?)+0(-V)B(M). (4.14)
with leading order %, where
o v 9% a0 o v 9T 40
=L a i, POTL i, @9
(i),out (i) (j),in ()

There are two cases for an observer;

Case 1 (U <0, or equivalently, # < r): He/she will observe a collection of charges
which have several constant velocities. Thus, he/she measure a superposition of
boosted Coulomb-like fields.

Case 2 (U > 0, or equivalently, # > r): He/she will observe a collection of charges

which are different from the particles described in case 1 with different velocities.
As aresult, we can find a "scalar wave" propagating with a Heaviside step wavefront

on the future light cone of the interaction point P between these two regions.

4.1.1 Scalar Memory

Now, we have the tools to find the effect of the scalar field (4.14) on a "scalar wave
detector" which made of a massive test charge at rest in the GICS near future null

infinity. The scalar force on a test particle which has mass M, and charge Q is

f4=0d%. (4.16)
Then, the leading order term of the force at large distance from the source is
U2 =L (a-pawKe, @17)
r
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where
K% = —-0%. (4.18)

We neglect the terms in eqn.(4.17) which come from derivative of 1/r, @ and 3, since

they are order in 1/r2.

Assume that the test particle is initially at rest, then the change of the momentum is
U
APY(U) = / au' f4(u',z)
v
_ / aU'E (a— B)6(U)U

—oo r
0
’

(a—B)®U)K* (4.19)
Because of the scalar radiation which is emitted by interactions of particles, a test
particle will have a momentum kick. There will be a change in mass because of mass
which is
M
M? = —1ap, (P + APY) (P + APP) = M3 — 2P§AP, = M3 —20(a — ﬁ)TO, (4.20)

where we only write the leading order term [6}7]].

4.2 Electromagnetic Fields

We can write the Maxwell’s equation for the four-potential A“ with the form of a wave

equation which is like eqn.(4.1),
0P 9,AY = —4mJ*, (4.21)
where we have the Lorentz gauge
d,AY =0, (4.22)

and J“ is the electromagnetic current density. The current density has the property
d,J* = 0 which is known as the charge conservation law. If we use the retarded
integral (4.3) on each GICS component of (4.21), we can compute the retarded elec-
tromagnetic field for a given current density. Let’s again assume that there is a event
P where ingoing particles destroyed, and outgoing particles created. Say the event P
is the origin of the our GICS, then we can write the charge-current density for ingoing

particles with the form

Ty = 40 dz' u(y 3 (X = Y5y (1)) O(—1), (4.23)



where 7;) is the proper time for the i th particle which has the world-line (t, i) ) ”?i) is
the tangent vector which is normalized, and g(;) is the charge of it. Also, the massless

version of the charge-current density of ingoing charges is
It = a@w;y0 (¥ —5(;)(1)O(-1) (4.24)

where a)(“j) is the tangent vector for the particle’s null world-line(geodesic). We have
the normalization such that an observer who has four-velocity * measures a)(“j)ta =
—1. Changing the factor ®(—t) with ®(¢), we can get the charge-current density for
the outgoing particles. In other words, the factor ®(¢) creates the outgoing particles
at interaction points. As a result, we can write the general charge-current density as
J4 = ..Z I+ Z I+ Y iyt Y I (4.25)
(i)in,massive (j)in,null (k)out massive (Dout null
Also,if we consider the conservation of /¢, then we have another important expression
about conservation of charge which is
a0 = Y 90 (4.26)
(i)out (j)in
We will only consider the massive charges for the simplicity. It is easy to generalize
our solution which include the massless charged particles. Let’s find the retarded
solution of eqn.(4.21) for the only ingoing particles charge-current density which

belongs to a single massive particle at rest which is destroyed at point P

d
inyao(X) = qd—fu"&(ic’)@(—t). (4.27)

Since the every component of the charge-current density has scalar nature, we can
use same integral which we used in the scalar part. Then the leading order term of a'”
component of the vector potential is
A;’n’vzo = 47r/d4x/G(x,xl)J“(x/)
1 bl
— 4z / d [ (=P + 5= POl — ' )qut5,(1)0(—)
— 2qu“/d4r’6 [~ (t =t +7]O( —1")O(-1)

Sl —(t—r)]
_ a 40710 0 )]
= 2qu /d ! 20t —1/|

= u'0(~(t-r))

O —1)0(—t)

=%uo(-v). (4.28)

60



Then,the a'" component of the vector potential of the particle which is created with

velocity V is
gdt u*

s ==— O(-U). 4.29

merdt 1 -1V (=0) (4.29)
Using the same technique, we can write solution for the outgoing particles

« _gdt u

o(U). (4.30)

oLy pdt 1 -1V

As a result, we can write the retarded solution of eqn.(4.21) with leading order

1
AY = ;(@(U)a“ +0(-U)B%), (4.31)
where
dty 9i)U(;
4/ (i) 10%a)
a’(F) = — (4.32)
(i),X;’m t 1=y
dtin g Aus.
ars () 1%0G)
P (r>_(.2 dt 1—iv (4.33)

J)sin
4.2.1 Electromagnetic Memory

By the definition, the field tensor F;, = d,A, — dpA, is
1 1
F© =9(~(0(U)a" +O(-U)B")) — " (~ (8(U)a + O(~U)B"))

= (o~ B")3(U)3U ~ (e~ p8(W)U
r r

1
— _;(Ka(ab _Bb) _Kb(aa _Ba))é(U)
_ —%Ida(ab} _Bs(U). (4.34)

Using the conservation of the charge (4.26), we get
dti N4
Kl(all - p¥) = =0 0P laghley . (4.35)
(i),ozutnin dt 1— FV(j) (@)

The force acting on the test particle with charge Q and four-velocity V¢ is
f*=QF"V,
2
=0 K“(a” = B")5(U)V,
r

2 Aty No4a6) i, ple
—0= Y 00D glaghey, v,8(U). (4.36)

T (i) oat.in dr 1=~y

7
If the test particle initially at rest in our GICS, V¢ =4, then

«_ @ At M096)  a
F=7 L g, ¢ w3 (4.37)

(i),out in
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where we used
q "ty =0,
and
KPt, = —1.
Its change in momentum is

U
AP = / av' f4(U',x)

: — iy, |OU). (4.38)

:9[ y 40 M0do
(i) dt 1—7‘.\/(]')

,out in

Since f,V¢ = 0, there is no any change in mass due to the electromagnetic force [J8].

4.3 Gravitational Fields

Let’s remember the Einstein-Hilbert action which is
S = % / d*x/—gR, (4.39)
which yields the field equation
Gap = KTy, (4.40)

as we have shown in chapter 1. If we consider the linearization around 4-dimensional
flat background g,;, = Ny + hap, then the Einstein tensor can be given

G\ = —%(afachab - %naba%ch) (4.41)
where we used the harmonic gauge d%h,;, = %&bh. Then, from eqn.(4.36), we have

9Dy — %nabafach _ kT, (4.42)
Taking the trace of the last equation, we get

d°dch —29°d.h = —2xT
= 9°d.h = 2kT. (4.43)

Then using this expression in eqn.(4.38), we obtain

1
0°0chyy, = —2KTy, + Enab(21<T)

1
= =2K(Tup = 5 T), (4.44)
which is known as the linearized field equation. Taking G = 1 natural unit as we did

chapter 1, k = 87, then

0°0chyp = — 167y, (4.45)
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where we define T, = T, — %nabT. The general solution of this last expression is
hap = 167 / 4Gy (0,2 ) Toa (0, (4.46)
where the retarded Green’s function
G (x,2) = 1,0, G x, ). (4.47)

To find the retarded solution, let us consider the following energy-momentum tensor
d f( i)

T = ¥ mulu) 83~ 50(1)(-1)
(iyin
. df( 7 i
+ ¥ mOu ——8E-3)e). (4.48)

(j),out
where m(®) is the rest mass of the i’ particle which follows the geodesic (¢,5) (1))

with four velocity u(!). Now, let’s find the retarded solution of eqn.(4.42) for only the

outgoing particles at rest which is created at P

hap = 167 / d*X'1, 1, G (x,x' ) Toa ()
= 167r/d4x'G(x,x')Tab(x')

R
— 167 / d4x’G(x,x’)[ y m<z>ug>ug>%53<xq@(f>
(i),out

. ) i . df(i) -
i T 08 5 o]

(i),out

If we use the fact that n¢ ug,)uéj) = —1, we get

a ,
hay = 1670 / d*NG(x,x) Y m(l)%(ug)u,(;)—i—%T]ab)&(xl)@(t/)
(i),out
—tom ¥ 0L )+ ) [at G800
dt “

(i),out

We have already computed the integral in the last term in the scalar part, so we can

use the result of it.

2dt o1 1
_ (i) (0 @@, *
hap 167r(i)zo"mm 7 (ua’uy + 2nab) 4m®(U)
4 i dt!”

G, 1
= Z m\ T(Mg)ul(?)—FEnab)@(U)

r (i),out

Now, we can generalize the last result for the particles which is created with velocity

v such that

4 m\) dgl) G (i), 1
hap = P 1——?.17’7(% u, +§Tlab)®(U)

(i),out
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4
= ;aab®(U), (4.49)
where
m® dt¥ i) ) ]
Olup = mw(ua u, Enab). (450)

(i),out

Making same computation, we can find the following retarded solution for the ingoing

particles
4
hap = ;Babe)(_U)a 4.51)
where
(/) d (J) . . 1
._ m T (), ()
Bap = Z 1 g (ug”wy” + E”“”)' (4.52)
(j)out
As a result, the retarded metric perturbation can be obtained as
4
hap =~ (0a®U) + Pu®(=U)). (4.53)

4.3.1 The Gravitational Memory

We computed the Riemann tensor for the linearized theory in chapter 1 which was
1
Raped = 5 (8cabhad - aCaahbd - 8dabhac + adaahac>

- 8ca[bha]d - 8d8[bha}c. (454)

Now, let us start with computing the term,
4
acabhad = acab [; (aab®(U) + ﬁab®(_U))} : (4.55)

In here, we can neglect the derivative of % and 1%3 which is O(4;),since we study
. r

with 0(%) We have already defined K¢ = —d“U = t* 4 r* in scalar part, so we have

Aedbhas =3[ (0aaBOU) + Buudh®(~U))]
Y [‘-: (08 (U)AU — Bua(U)AU)]

4
= ac [ - ;Kb(aad - ﬁad) S(U)i|
4
= ;KCKb(ocad —Bua)8'(U) (4.56)
where we used the fact that d.K, = 0. Then
2
Rapea = - [Kch (Ctad — Bad) — KeKa(Ctpa — Bra) &' (U) — KyKp (Olac — Pac)

+ KdKa (aac - ﬁac)] 6/<U)
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(4.57)

Now, let us define

Aab— (aab ﬁab) ) (458)

where we use the TT gauge condition since our solution (4.53) is not transverse-
traceless. We have already discussed this technique in Chapter 1. To find the expres-
sion (4.54), we can look at only the first term of it, since second term will give us a
similar result. Then

O g 1 rr
m\Wodt\ Gy
O‘aTbT: ((Z —t(ug)u,(,)+5nab)>

1—7v

[),out

1 m) gz a1
(qa b _Equab><(Z gl Dyl 4 2 ncd))

Y
)

dt
:(.)Z 1ni(?~d2i) (qa . __q qab> (uc Wl 4= ncd)
i),out

m® a g0 0,V a6 1
= (~)Zoml_ﬁ‘7 dt (C[a qp Uc Uy +§Tlcd% dp _Eq qabUc U, _Zrlcdq qab
@O g7 NP | 1 N1
_ m® dvY (e a () (i) z_/ L, ) ) 1
(i)’zom 1—7v dt (C]a qp Ue Uy + Hab 2q GabUc U, %)
m a7 L w @)
-y == (qa a5 "ul"u]) = 3q“ qupulu ) (4.59)

(i),out
Similarly, the second term of the (4.54) is

BIT_ Y m df“( a0 1 0 )

@S Y dr Qa0 1e M 54" dablic Uy
Hence, the expression 4. 54) becomes
@ g7 . | N N
ta=2 ¥ 1 _N = (") = 3q ) gl ) @60)

(i),out in

where 17)(;) is +1 for out-going and -1 for incoming particles.

We can apply transverse-traceless gauge to the linearized Riemann tensor (4.53),
since it is gauge invariant in the General Relativity case. To do this, we can apply
the TT-gauge to terms o and f as it can be seen eqn.(4.55). Then, the linearized

Riemann tensor is

1
Rapea = — [KcAade — K DN paKy — KD aeKp + Ky A pe Ky | 8'(U)

| B~

|KiaDyeKa | '), 4.61)

r
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The memory effect relates to the curvature via the geodesic deviation equation which
has been reached in Chapter (1.3.1), since the relative motion of the test particles
is described by the geodesic deviation equation. Let us consider a detector which
consists of two freely falling test particles which are initially at rest with respect to
each other, so their 4-velocities are both 7%, and say the spatial separation between

them be d“, then the coordinate version of the geodesic deviation equation is

d*d o
If we use eqn.(4.57) in eqn.(4.58), and integrate it twice, then we have
A i v / Ul 1 dzdi
d(U) = / v / R (4.63)
1 .
= —A/Jd~. (4.64)
r

Thus, there is nontrivial memory effect in 4-dimensional space-time.

4.4 Conclusion

Using the linearized theory and some gauges such that Lorenz and TT gauges we
have transformed the Einstein equations to a simple wave equations. Then we have
found the solution of this wave equations which describes the gravitational waves.
By using the geodesic deviation we have found that there is non-trivial memory ef-
fect in 4-dimensional flat Minkowski space. The gravitational memory is already in
data obtained by advanced LIGO, but it cannot be distinguished from low frequency

background noise. In the future, one could expect that it can be measurable.

Also we have found that there are memory effects for the scalar fields and the elec-

tromagnetic fields.
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