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ABSTRACT 

 

DERIVATIVE BASED PROPORTIONATE TYPE ADAPTIVE FILTERING 

OVER SPARSE ECHO CHANNELS 

 

Salman, Murat Babek 

MSc., Department of Electrical and Electronics Engineering 

Supervisor : Prof. Dr. Tolga Çiloğlu 

 

 

September 2018, 104 pages 

 

Adaptive filters are the intelligent mechanisms, which are extensively used in the 

various real world applications such as system identification and equalization 

problems. Therefore, many well established adaptive filtering algorithms were 

developed in the literature. In this thesis, adaptive filters will be considered as a tool 

to identify an unknown impulse response. Impulse responses that are considered in 

current identification problems have special characteristics. These impulse responses 

are long and they are mainly composed of zero coefficients, only a few number of non-

zero coefficients present in the impulse response. Due to this fact, well known adaptive 

filtering algorithms such as Normalized Least Mean Squares and Affine Projection 

Algorithm yield slow convergence. In order to deal with this performance problem, 

proportionate type algorithms were developed. Main idea behind the proportionate 

algorithms is to apply coefficient specific step-size by exploiting the sparse 

characteristics of the impulse response. In this thesis, previously proposed 

proportionate algorithms are investigated and their advantages and disadvantages are 

discussed. Furthermore, a novel approach using the dynamic behavior of filter 

coefficients is presented. In this approach, time derivatives of the filter coefficients are 

used in the adaptation process. Moreover, mathematical and geometrical analysis on 

the convergence of the proportionate algorithms are provided. The proposed algorithm 

is also extended to the situations in which non-Gaussian impulsive noise is present. In 

the presence of the non-Gaussian impulsive noise standard algorithms show poor 
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performance in terms of robustness. Therefore, developed approach is combined with 

the algorithms that are robust against non-Gaussian impulsive noise. Superiority of the 

proposed approach is observed via the computer simulations. 

 

Keywords: Sparse channels, System identification, Proportionate algorithms 
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ÖZ 

 

SEYREK EKO KANALLARI İÇİN TÜREV TABANLI ORANTILI 

SÜZGEÇLEME 

 

 

 

Salman, Murat Babek 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi : Prof. Dr. Tolga Çiloğlu 

 

 

Eylül 2018, 104 sayfa 

 

Uyarlanır süzgeçler, sistem tanılama ve denkleştirme gibi uygulamalarda sıklıkla 

kullanılan akıllı mekanizmalardır. Bu nedenle, literatürde çok sayıda iyi bilinen 

uyarlanır süzgeç algoritmaları geliştirilmiştir. Bu tezde, uyarlanır süzgeçler 

bilinmeyen bir sistemi tanılamak için kullanılmaktadır. Güncel tanılama 

problemlerine konu olan dürtü yanıtlarının önemli özellikleri vardır. Bu dürtü yanıtları 

uzundurlar ve çok sayıda sıfır büyüklüklü katsayıdan oluşmaktadır, sadece az sayıda 

sıfırdan farklı büyüklüğe sahip katsayı bulunmaktadır. Bu özellikleri, çok bilinen 

“Normalized Least Mean Squares” ve “Affine Projection Algorithm” gibi yöntemlerin 

yavaş yakınsamasına neden olmaktadır. Bu sorunu gidermek için, oratılı uyarlanır 

süzgeçler geliştirilmiştir. Uyarlanır süzgeç yönteminin arkasındaki temel mantık, 

dürtü yanıtının seyrek yapısından faydalanarak her katsayı için özel seçilmiş bir adım 

boyu uygulamaktır. Bu tezde, daha önce önerilen orantılı algoritmalar incelenmiş ve 

her birinin avantaj ve dezavantajları tartışılmıştır. Ayrıca, filtre katsayılarının dinamik 

davranışı düşünülerek yeni bir yaklaşım sunulmuştur. Bu tezde, filtre katsayılarının 

türevleri adaptasyon sürecine dahil edilmiştir. Ayrıca, önerilen algoritmanın 

matematiksel ve geometrik analizleri sunulmuştur. Önerilen yaklaşım aynı zamanda 

Gaussian olmayan gürültü içeren durumlar için de kullanılmıştır. Gaussian olmayan 

gürültü durumunda standart algoritmalar zayıf performans göstermektedirler. Bu 

nedenle geliştirilen yöntem Gaussian olmayan  
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gürültüye karşı dayanıklı algoritmalarla birleştirilmiştir. Önerilen yöntemin üstünlüğü 

bilgisayar benzetimleriyle de gözlemlenmiştir. 

 

Anahtar Kelimeler: Seyrek kanallar, Sistem tanılama, Orantılı algoritmalar 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1. Motivation 

Filters are excessively employed in variety of engineering fields such as digital 

signal processing, biomedical engineering and control engineering [1-3]. These 

applications may involve filtering process for several purposes such as noise removal, 

signal enhancement, information extraction and prediction [1], [3], [4]. Depending on 

the application, filtering operations can be carried out either in the digital or analog 

domain. However, digital filters are generally chosen over analog filters due to the 

enhancements in the hardware technologies, which make the implementation of the 

digital filters much simpler [5]. Moreover, filters can be classified as linear and non-

linear filters. Much of the attention in the literature, was paid to linear filtering since 

linear filtering has been extensively studied throughout the years [2]. Therefore, filters 

are often implemented as finite impulse response (FIR) filter, which eventually 

reduces the filtering problem to the determination of the FIR filter coefficients. Prior 

information about the signal statistics makes it possible to find the optimal values of 

the filter coefficients. However, statistical information is not always available; 

therefore, alternative methods should be developed to estimate the filter parameters.  

Adaptive filtering is an approach to iteratively estimate the filter coefficients 

without need for prior information [6]. An adaptive filter can be defined as a time 

varying filter whose parameters are adjusted according to an adaptation rule so that 

the desired signal is obtained at the output. Adaptive filtering is an important tool of 

statistical signal processing since it provides implementation friendly solutions for 

many real-world applications such as telecommunications, echo cancellation, noise 

reduction, radar and sonar. [6]. Due to this fact, many complex adaptive filtering 
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algorithms have been proposed for different applications which employ different 

adaptive filtering schemes. These schemes are shown in Figure 1.1.  
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Figure 1.1 Adaptive filtering  schemes for (a) Identification (b) Inverse Modelling 

(c) Prediction (d) Interference Cancelling 

 

Main focus of this thesis is on the system identification scheme. System 

identification is a commonly encountered problem that employs adaptive filtering in 

order to model an unknown system by replicating the impulse response of the system 

[4]. In system identification scheme, both the adaptive filter and the unknown system 

receive the same input signal as shown in Figure 1.1. Coefficients of the adaptive filter 

is modified based on the difference between the outputs of the adaptive filter and the 

unknown system. For instance, in acoustic echo cancellation (AEC) [7] applications 

adaptive filters are used to replicate the impulse response of the echo path  so that the 

undesired echo signal can be eliminated by subtracting the replicated echo signal 

generated at the output of the adaptive filter. 

Many of the impulse responses that are considered in the recent studies have sparse 

characteristic. In these channels, energy is distributed among a small number of 
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coefficients in the impulse response. In other words, most of the coefficients in the 

impulse response have zero or very small magnitudes, which are called minor 

coefficients. Relatively small number of coefficients have significantly larger 

magnitudes compared to the minor coefficients and these are defined as major 

coefficients. In the literature, such channels are classified as sparse channels. Network 

echo channels and acoustic channels are the examples of sparse channels. Another 

distinctive characteristic of these channels is the length of their impulse responses. 

Sparse channels are known to have longer impulse responses compared to that of 

dispersive channels. For instance, satellite-linked communication systems include 

sparse echo channels, which have long delays between the active echo regions in the 

impulse response [8]. These long delays in the echo path yield minor coefficients in 

the impulse response and active regions yield major coefficients. Due to the excessive 

length of the impulse response of the sparse channels, conventional adaptive filtering 

algorithms such as Normalized Least Mean Squares Algorithm (NLMS) [9] and 

Affine Projection Algorithm (APA) [10] suffer from slow convergence since 

convergence time is proportional to the length of the impulse response [9]. Therefore, 

algorithms that exploit the sparsity of the impulse response have been proposed in 

literature.  

Proportionate type algorithms can be considered as one of the most important 

methods regarding the sparse channel identification. These algorithms achieve the 

same estimation accuracy by using smaller number of data compared to conventional 

adaptive filtering algorithms. Firstly, Proportionate NLMS (PNLMS) [11] and 

Proportionate APA (PAPA) [12] were introduced to provide fast convergence for 

sparse channels but these algorithms suffer from performance degradation as the 

sparsity of the impulse response decreases. Later, Improved PNLMS (IPNLMS) [13] 

and Improved PAPA (IPAPA) [12] were proposed which solve performance 

degradation problem for dispersive channels. These proportionate type algorithms 

improve the convergence rate by assigning individual step-sizes called proportionate 

factors, to each coefficient as roughly proportional to its magnitude. Later, many 

different proportionate type algorithms stemming from the same idea have been 

proposed such as 𝜇-law IPNLMS [14], Individual Activation Factor IPNLMS (IAF-
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IPNLMS) [15] and Zero Attracting LMS (ZA-PNLMS) [16]. In the classical 

proportionate type algorithms, adaptation is done by adjusting the coefficient specific 

step-sizes proportional to the “current” magnitude of the respective filter coefficients. 

Initial development of the proportionate algorithms was based on this intuitive idea 

that does not rely on any mathematical derivation. After a decade, [17] provided a 

basis pursuit perspective for the proportionate approach. Therefore, a theoretical basis 

is obtained for proportionate type algorithms which is based on the 𝑙1 norm 

optimization criterion. 

Classical proportionate type algorithms only provide fast convergence at the initial 

stage; hence, as adaptive filter gets closer to steady state, convergence speed decreases. 

In order to overcome this issue, new proportionate type algorithms, which take the 

dynamic behavior of the filter coefficients into account, were introduced. Generalized 

PAPA (G-PAPA) [18] is the first algorithm that uses the time derivatives of the filter 

coefficients while assigning the individual step-sizes. Later, Gradient Controlled 

IPAPA (GC-IPAPA) [19] was proposed which uses the gradient of the error with 

respect to estimated filter coefficients in order to control the individual step-sizes. 

Gradient vector corresponds to update term in the update equation; hence, GC-IPAPA 

assigns larger step-sizes to coefficients which are subject to greater changes in 

magnitude. If the estimated filter coefficients are initialized as zero, then only major 

coefficients are subject to significant changes. Hence, they will receive relatively 

larger step-sizes compared to that of minor coefficients until they reach steady-state 

values. Consequently; GC-IPAPA assigns proportionate factors proportional to 

difference between current and optimal filter coefficient magnitudes. Coefficient 

Difference Based IPAPA (D-IPAPA) algorithm was proposed in [20] which is also 

based on the distance between current filter coefficients and the optimal filter 

coefficients. This method approaches the adaptation in a block by block manner 

assuming that filter coefficient values do not change significantly during a block 

period, 𝑃 samples. At the beginning of each block, estimated filter coefficient values 

are stored as the initial coefficient vector for the adaptive filter. Then proportionate 

factors are calculated by using the difference between current filter coefficients and 

stored initial vector. As the estimated filter coefficients get close to their optimal 
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values, difference values become small for major coefficients; hence, small 

coefficients can receive reasonable step-size to converge faster. 

These classical algorithms are developed based on the Gaussian noise assumptions; 

however, non-Gaussian interference is another important problem, which is frequently 

encountered in echo-cancellation applications [21]. In such cases, output of the 

unknown system is subject to impulsive noise, which may cause divergence of the 

adaptive filter. Double talk situation [22] in acoustic echo cancellation applications is 

an example of such non-Gaussian interference. In echo cancellation problems, far-end 

speech is the input of the unknown channel and output signal at the near-end side is 

used in the adaptation algorithm. In the presence of double talk, the output signal is 

corrupted by the near-end speech which makes coefficients of the adaptive filter 

significantly deviate from their optimal values. 

 Many methods have been proposed in order to compensate the effects of double 

talk interference. One of the methods is based on the detection of the double talk. In 

this method, adaptation is modified to avoid divergence during the presence of the 

interference [23]. However, detection of the double talk (DTD) is another major 

challenge; therefore, this study focuses on another approach, which provides 

algorithms which are inherently robust against impulsive interference. It can be shown 

that divergence of the affine projection type algorithms stem from the fact that they 

are result of 𝑙2 norm optimization. Therefore, optimization problems based on lower 

order norms are used in order to have robustness against impulsive noise. [24] 

proposes an 𝑙𝑝-norm optimization scheme with 0 ≤ 𝑝 ≤ 1 to obtain robust algorithms. 

If 𝑝 is selected as 1, well-known Normalized Sign Algorithm (NSA) is obtained as the 

solution. NSA provides robustness against impulsive interference by using the sign of 

the error signal rather than magnitude of the error signal, which is significantly 

affected by the impulsive interference. However, NSA suffers from significant 

degradation of convergence speed. In [21], Affine Projection Sign Algorithm was 

proposed to achieve fast convergence while preserving robustness feature. Later, 

proportionate approach is applied to sign algorithms to achieve further improvement 

in convergence rate by exploiting the sparse nature of the echo channels that are 
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exposed to impulsive interference. In [25], Improved Proportionate APSA (IPAPSA) 

and Proportionate APSA (PAPSA) were proposed by combining the APSA with 

IPAPA and PAPA. In addition, Gradient Controlled IPAPSA (GC-IPAPSA) was 

proposed in which time averaged gradient approach is applied to the proportionate 

type sign algorithms in order to improve the convergence speed [35]. 

In addition to adaptive filtering, compressed sensing has also attracted much 

attention in the context of the sparse channel identification [36]. In particular, 

compressed sensing techniques are commonly employed in the estimation of sparse 

multipath channels in communication applications [36-38]. However, in the literature, 

compressed sensing techniques are not considered in the echo cancellation 

applications. Therefore, in this thesis, only adaptive filtering framework is considered 

for sparse system identification. 

1.2. Contributions 

Aim of this thesis is to develop fast converging adaptive filtering algorithms that 

achieves superior performance compared to previously proposed algorithms. In addition, 

the proposed algorithm is extended to its sign algorithm counterpart to have robustness 

against the impulsive interference. Proposed Derivative Based Improved Proportionate 

Affine Projection Algorithm (DB-IPAPA) and Derivative Based Improved Proportionate 

Affine Projection Sign Algorithm (DB-IPAPSA) are based on the observations of the 

dynamic behavior of the filter coefficients. In the proposed algorithms, update energy is 

distributed among the filter coefficients proportional to the rate of change of their 

magnitudes. As a result, coefficient specific step-sizes are adjusted such that convergence 

speed does not degrade during the adaptation process. In the proposed algorithm, time 

derivatives of the filter coefficients are used to calculate the proportionate factors. 

Consequently, proposed algorithm significantly outperforms previously proposed 

algorithms in terms of convergence speed and steady-state estimation error. Lastly, it 

should be stated that a scientific paper related to the studies presented in the thesis is 

being prepared. 
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1.3. Outline of the Thesis 

Organization of the thesis is given as follows. Chapter 2 provides problem 

definition and mathematical background for adaptive filtering, starting from the 

steepest descent method. Following the steepest descent approach, algorithms 

employing gradient descent such as LMS, NLMS and APA are presented. Some 

interpretations regarding NLMS and APA are given to provide insight about these 

algorithms. Lastly, performance assessment criteria are also defined in this chapter. In 

Chapter 3, sparseness of the channel is defined and measure of sparseness is given. 

Then, some important proportionate type algorithms are introduced without any 

mathematical derivation since these algorithms were developed intuitively. 

Performances of the proportionate type algorithms are compared with that of non-

proportionate types. Later, mathematical derivation of proportionate type algorithms 

is provided from a basis pursuit perspective. In Chapter 4, sign algorithms are 

introduced. Then proportionate type algorithms are extended to sign algorithms. In 

Chapter 5, Motivation for the proposed method for calculation of the proportionate 

factors is presented. Then proposed derivative based approach for calculation of the 

proportionate factors is introduced and geometrical interpretation of proposed 

algorithm is given. In Chapter 6, simulations results are given for the proposed 

algorithm and performance of the proposed algorithm is compared with that of 

previously proposed algorithm. In Chapter 7, conclusions and future works are 

discussed. 
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CHAPTER 2 

 

PROBLEM STATEMENT AND ADAPTIVE FILTERING FRAMEWORK 

 

2.1. Introduction 

In this chapter, system identification problem is stated and optimal solution for the 

problem is derived. Then, Steepest Descent method, which can be considered as the 

fundamental approach in adaptive filtering theory, is introduced. Three, widely used 

Gradient Descent algorithms, namely LMS, NLMS and APA, are examined in detail. 

Advantages and disadvantages of each algorithm are discussed. Derivations of NLMS 

and APA based on Newton’s method is given to elaborate on the convergence behavior 

of these algorithms. In addition, geometrical interpretations of NLMS and APA are 

given to provide intuition about the adaptation process which will be considered later 

while investigating the proportionate type algorithms. Lastly, criteria, which are 

considered while evaluating performance of the adaptive filters, are defined. 

 

2.2. Problem Statement 

This study focuses on identification of an unknown system by means of adaptive 

filtering such that impulse response of the unknown system is replicated. In system 

identification applications, adaptive filter and unknown system receive the same input 

signal. Output of the unknown system is treated as the reference signal and it is desired 

to obtain the same signal at the output of the adaptive filter. Adaptive filtering 

configuration used in this thesis is illustrated in Figure 2.1 and it should be noted that 

throughout this thesis, unless otherwise stated, all signals have real values. 
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Figure 2.1 Adaptive Filtering Scheme 

 

As Figure 2.1 depicts, a known signal at time 𝑛, 𝑥(𝑛), passes through an unknown 

channel, 𝒉 = [ℎ0 ℎ1 … ℎ𝐿−1]𝑇with length 𝐿 so that desired output signal, 𝑦(𝑛), is 

obtained as 

 𝑦(𝑛) = 𝒙𝑇(𝑛)𝒉 + 𝑣(𝑛), (2.1) 

 

where 𝒙(𝑛) = [𝑥(𝑛), 𝑥(𝑛 − 1), … , 𝑥(𝑛 − 𝐿 + 1)]𝑇 is the input signal vector formed 

by the last 𝐿 input signals, 𝑣(𝑛) is the background noise and superscript 𝑇 denotes the 

transpose operation. 𝑣(𝑛) may have different statistical properties depending on the 

application. In most of the applications, 𝑣(𝑛) is modeled as white Gaussian noise 

(WGN); however, in some applications it is more suitable to model 𝑣(𝑛) as the 

combination of white Gaussian noise and Bernoulli Gaussian process (BG). 

Estimation error, 𝑒(𝑛), is obtained as the difference between desired and estimated 

output signals, 

 𝑒(𝑛) = 𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛) = 𝑦(𝑛) − 𝒘𝑇(𝑛)𝒙(𝑛), (2.2) 

 

where 𝒘(𝑛) = [𝑤0(𝑛), 𝑤1(𝑛), … , 𝑤𝐿−1(𝑛)]𝑇 represents the estimated filter 

coefficients. In order to obtain a solution for 𝒘(𝑛), a suitable cost function should be 

defined as a function of 𝒘(𝑛). One of the most commonly utilized cost function in 

estimation theory is the Mean-Squared-Error [26] cost function which is given as, 

Unknown System

(h)

Adaptive Filter

(w)

∑

∑wT(n)x(n)

y(n)
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 𝐽 = 𝐸{|𝑒(𝑛)|2} = 𝐸{(𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛))𝑇(𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛))}. (2.3) 

Wiener Filtering [27] provides the optimal solution for 𝒘 so that 𝐽 attains its 

minimum value. Since cost function defined in (2.3) is a convex function, stationary 

point of 𝐽 corresponds to its global minimum. Consequently, solution of the following 

convex optimization problem gives the optimal filter coefficients, 

 min
𝒘

 𝐽 = min
𝒘

𝐸{(𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘)𝑇(𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘)}, (2.4) 

 min
𝒘

[𝐸{𝑦2(𝑛)} − 𝐸{𝑦(𝑛)𝒘𝑇𝒙(𝑛)} − 𝐸{𝒙𝑇(𝑛)𝒘(𝑛)𝑦𝑇(𝑛)}

+ 𝐸{𝒘𝑇𝒙(𝑛)𝒙𝑇(𝑛)𝒘}]. 
(2.5) 

Equation (2.5) can be simplified as 

 min
𝒘

[𝐸{𝑦2(𝑛)} − 2𝐸{𝑦(𝑛)𝒙𝑇(𝑛)}𝒘 + 𝒘𝑇𝐸{𝒙(𝑛)𝒙𝑇(𝑛)}𝒘]. (2.6) 

By taking the derivative of the cost function and equating it to zero, one can simply 

get the optimal solution, 

 𝜕

𝜕𝒘
(𝐸{𝑦2(𝑛)} − 2𝒘𝑇𝐸{𝒙(𝑛)𝑦(𝑛)} + 𝒘𝑇𝐸{𝒙(𝑛)𝒙𝑇(𝑛)}𝒘) = 0, 

(2.7) 

 −2𝐸{𝒙(𝑛)𝑦(𝑛)} + 2𝐸{𝒙(𝑛)𝒙𝑇(𝑛)}𝒘 = 0, (2.8) 

 𝐸{𝒙(𝑛)𝒙𝑇(𝑛)}𝒘 = 𝐸{𝒙(𝑛)𝑦(𝑛)} (2.9) 

 𝑹𝑥𝒘 = 𝒓𝑥𝑦, (2.10) 

 

where 𝑹𝑥 = 𝐸{𝒙(𝑛)𝒙𝑇(𝑛)} is the 𝐿 × 𝐿 autocorrelation matrix of input signal and 

𝒓𝑥𝑦 = 𝐸{𝒙(𝑛)𝑦(𝑛)} is 𝐿 × 1 the cross-correlation vector of input and output signals. 

Solution of linear system of equations in (2.10) gives optimal filter coefficients. 

However, obtaining such statistics is a very difficult process and brings excessive 

computational burden to the system.  

2.3. Steepest Descent Method 

Steepest Descent is an iterative gradient based optimization method which is used to 

find a minimum of a certain function [4]. In adaptive filtering framework, Steepest 

Descent is employed to estimate the filter coefficients iteratively, which minimize the 
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cost function provided that the cost function is differentiable at every point [4]. Let 

the cost function be defined by the Mean-Squared-Error criterion, 𝐽 = 𝐸{|𝑒(𝑛)|2}, 

which is a quadratic function of adaptive filter coefficients that can be represented by 

an error surface. Objective of the Steepest Descent is to reach the minimum point of 

the error surface step-by-step, starting from an arbitrary point on the error surface. At 

each step, it is desired to move to a point on the error surface, which is closer to the 

global minimum. Consider a case where optimal filter has two coefficients such that 

the error surface can be visualized in 3-D as shown in Figure 2.2. The goal is to reach 

the bottom of the error surface. In order to achieve this goal, it is clear that coefficients 

of the adaptive filter should move in the opposite direction of the gradient vector since 

gradient vector shows the direction along which cost function increases most.  

 

Figure 2.2 Error surface for adaptive filter with length 2 

  

Mathematically, Steepest Descent method for adaptive filtering framework can be 

expressed as follows, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) − 𝜇𝛻𝒘𝐽, (2.11) 
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where 𝜇 is the step-size parameter which adjusts the adaptation speed of the algorithm, 

𝛻𝒘 denotes the gradient operation with respect to 𝒘. Cost function is already defined 

as ,𝐽 = 𝐸{|𝑒(𝑛)|2}, then the gradient can be found as, 

 𝛻𝒘𝐽 = −2𝒓𝑥𝑦 + 2𝑹𝑥𝒘(𝑛). (2.12) 

 

By substituting 𝛻𝒘𝐽 expression in (2.12) to (2.11), Steepest Descent Algorithm is 

obtained as, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇[𝒓𝑥𝑦 − 𝑹𝑥𝒘(𝑛)], (2.13) 

 

where the factor 2 in the 𝛻𝒘𝐽 is included in 𝜇. Similar to optimal filtering, Steepest 

Descent approach also requires prior knowledge on statistics of the related signals. 

Therefore, algorithms which use approximations of these correlation matrices, 𝒓𝑥𝑦 and 

𝑹𝑥, were developed. 

 Step-size is an important parameter that significantly affects the behavior of the 

adaptive filter. If step-size is selected too large, adaptive filter may diverge, on the 

other hand, if it is selected too small then its convergence speed decreases 

significantly. It was shown that choice of step-size depends on the magnitudes of the 

eigenvalues of the input correlation matrix. It is shown in Appendix A that, 𝜇 is 

bounded by 0 < 𝜇 < 2/𝜆𝑚𝑎𝑥 where, 𝜆𝑚𝑎𝑥 is the largest eigenvalue of 𝑹𝑥 in order to 

ensure stability of the adaptive filter. 

 

2.4. Least Mean Squares (LMS) Algorithm 

In the literature, “Stochastic Gradient Descent” algorithms were proposed which 

employ approximations of the correlation matrices in the adaptation. LMS algorithm 

[28], is a Stochastic Gradient Descent algorithm which uses one of the simplest 

approximations for the correlation matrices. LMS algorithm employs instantaneous 

realizations of the signals as, 
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 𝑹𝑥 ≈ 𝒙(𝑛)𝒙𝑇(𝑛), (2.14) 

 𝒓𝑥𝑦 ≈ 𝒙(𝑛)𝑦(𝑛). (2.15) 

 

After inserting these approximations into (2.13), update equation becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇[𝒙(𝑛)𝑦(𝑛) − 𝒙(𝑛)𝒙𝑇(𝑛)𝒘(𝑛)], (2.16) 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝒙(𝑛)[𝑦(𝑛) − 𝒙𝑇(𝑛)𝑤(𝑛)], (2.17) 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝒙(𝑛)𝑒(𝑛). (2.18) 

 

As one can see from (2.18), update equation depends only on the instantaneous input 

vector and error signal. Therefore, implementation of LMS algorithm is extremely 

easy compared to the Steepest Descent Algorithm. Moreover, error surface changes at 

every step since approximated correlation matrices change at every step. A sample 

instantaneous error surface is shown in Figure 2.3. Change in the error surface creates 

random variations in the adaptive filter parameters since direction of the gradient 

changes randomly at each step. Hence, LMS algorithm suffers from gradient noise, 

which leads the adaptive filter to follow a noisy path during adaptation. Consequently, 

LMS algorithm has a slower convergence rate than the Steepest Descent Algorithm. 

 

Figure 2.3 Instantaneous Error Surface 
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2.5. Normalized Least Mean Squares (NLMS) Algorithm 

 In LMS algorithm, magnitude of the input signal power has a significant effect on 

the adaption of the adaptive filter as can be observed in (2.18). Since input signal, 

𝑥(𝑛), inherently includes the noise components, excessive increase in input signal 

power may yield gradient noise amplification problem [4]. Hence, new methods were 

needed in order to reduce the effects of the input signal power. For this purpose, 

Normalized LMS algorithm was proposed [9]. It is the solution of a constrained 

optimization problem which is defined as in (2.19) such that deviation of the filter 

coefficients from their current values is minimized to avoid fluctuations, 

 min
𝒘(𝑛+1)

‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 

subject to 𝑦(𝑛) = 𝒙𝑇(𝑛)𝒘(𝑛 + 1). 
(2.19) 

 

This optimization problem can be solved by using the method of Lagrange Multipliers 

which gives the following cost function to be minimized, 

 𝐽 = ‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 + 𝜆[𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛 + 1)], (2.20) 

 

where 𝜆 is called the “Lagrange multiplier”. In order to find the solution, cost function 

should be differentiated with respect to 𝒘(𝑛 + 1) and be equated to zero, 

 𝜕𝐽

𝜕𝒘(𝑛 + 1)

=
𝜕{[𝒘(𝑛 + 1) − 𝑤(𝑛)][𝒘(𝑛 + 1) − 𝑤(𝑛)]𝑇 + 𝜆[𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛 + 1)]}

𝜕𝒘(𝑛 + 1)

= 0, 

(2.21)  

 𝜕𝐽

𝜕𝒘(𝑛 + 1)
= 2[𝒘(𝑛 + 1) − 𝒘(𝑛)] − 𝜆𝒙(𝑛) = 0, 

(2.22)  

 
𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝜆

2
𝒙(𝑛). 

(2.23)  

 

By substituting (2.23) into constraint in (2.19), 𝜆 can be obtained 
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𝑦(𝑛) − 𝒙𝑇(𝑛) [𝒘(𝑛) +

𝜆

2
𝒙(𝑛)] = 0, 

(2.24) 

 
𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛) −

𝜆

2
𝒙𝑇(𝑛)𝒙(𝑛) = 0, 

(2.25) 

 
𝑒(𝑛) =

𝜆

2
𝒙𝑇(𝑛)𝒙(𝑛), 

(2.26) 

 
𝜆 =

2𝑒(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, 

(2.27) 

 

where ‖𝒙(𝑛)‖2
2 = 𝒙𝑇(𝑛)𝒙(𝑛) is the instantaneous input signal power. Then by 

substituting (2.27) into (2.23), update equation is obtained as 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) + 2

𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2
2 . 

(2.28) 

 

In order to control the adaptation, a step-size parameter is inserted to (2.28) and overall 

update equation becomes, 

  
𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇

𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2
2 . 

(2.29) 

 

It is clear from (2.29) that as the input signal power increases, normalization value, 

which is the denominator value of the update term, also increases such that effects of 

the input power are compensated. Hence, adaption becomes independent from the 

input signal power. However, there is a possibility of division by zero in (2.29).To 

avoid division by zero, a regularization term, 𝜖, is also included, 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇
𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2
2 + 𝜖

. 
(2.30) 

 

In order to guarantee the stability of the NLMS algorithm step-size is bounded by 0 <

𝜇 < 2  [4]. Although it provides robustness against excessive input signal power, 

NLMS algorithm suffers from performance degradation for colored input since it only 
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uses the instantaneous realization of the input signals. When the correlated input signal 

is applied to the system instantaneous value of the input signal does not provide 

sufficient information. Therefore, instead of using instantaneous input signal vector, 

past input signal vectors should also be employed in the update process. 

 

2.6. Affine Projection Algorithm (APA) 

 Instantaneous values of the signals were used in the approximations of the 

correlation matrices, 𝑹𝑥 and 𝒓𝑥𝑦 in LMS and NLMS algorithms. However, these 

approximations do not satisfy performance requirements in case of colored input 

signals [10]. Consequently, in addition to the current values, past values of these 

signals are embedded into the constraint equation of the optimization problem in order 

to overcome performance degradation issue. Then, optimization problem becomes, 

 min
𝒘(𝑛+1)

‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 

subject to 𝒚(𝑛) = 𝑿𝑇(𝑛)𝒘(𝑛 + 1), 
(2.31) 

where 𝑿(𝑛) = [𝒙(𝑛), 𝒙(𝑛 − 1), … , 𝒙(𝑛 − 𝑀 + 1)] is the input matrix formed by the 

last 𝑀 input vectors, 𝒚(𝑛) = [𝑦(𝑛), 𝑦(𝑛 − 1), … , 𝑦(𝑛 − 𝑀 + 1)]𝑇 is the output vector 

formed by last 𝑀 output signals and 𝑀 is the projection order of the algorithm. By 

using the method of Langrage Multipliers with multiple constraints, update equation 

of APA is obtained as, 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝑿𝑇(𝑛)(𝑿(𝑛)𝑿𝑇(𝑛) + 𝜖𝑰)−1𝒆(𝑛), (2.32) 

 

where 𝑰 is 𝑀 × 𝑀 identity matrix and 𝑒(𝑛) = 𝒚(𝑛) − 𝑿𝑇(𝑛)𝒘(𝑛) is the error vector. 

Derivation of APA is given in Appendix B. One can observe the similarity between 

APA and NLMS algorithm. In fact, NLMS algorithm can be considered as a special 

case for APA when the projection order is 𝑀 = 1.  

APA provides higher convergence speed compared to NLMS algorithm. As the 

projection order increases, convergence speed also increases. However, improvement 

in the convergence rate decreases as the projection order increases. Main drawback of 
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APA is its computational complexity since it requires matrix multiplications and 

inversion during the adaptation. Moreover, computational complexity of APA 

depends on the projection order with 𝑂(𝑀2); therefore, as the projection order 

increases computational complexity of the algorithm significantly increases. 

Therefore, choice of a reasonable projection order is an important issue.  

 

2.7. NLMS and APA from Newton’s Method Perspective 

Another approach regarding the derivation of APA and NLMS is considering them 

as the simplified versions of the Newton’s method [29]. In order to verify this point, 

update equation of the Newton’s method is considered, 

𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝑹𝑥
−1[𝒓𝑥𝑦 − 𝑹𝑥𝒘(𝑛 + 1)]. (2.33) 

 

If one inserts the approximations for the correlation matrices, 

𝑹𝑥 = 𝒙(𝑛)𝒙𝑇(𝑛), (2.34) 

𝒓𝑥𝑦 = 𝒙(𝑛)𝑦(𝑛), (2.35) 

 

and after some matrix manipulations [29], (2.33) becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛)

+ 𝜇[𝒙𝑇(𝑛)𝒙(𝑛)]−1[𝒙(𝑛)𝑦(𝑛) − 𝒙(𝒏)𝒙𝑇(𝑛)𝒘(𝑛)], 

(2.36) 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝜇𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2
2 , 

(2.37) 

 

which is the update equation for the NLMS algorithm. In a similar way, this approach 

can be extended to APA [29].  

  Steepest descent method adjusts the filter coefficients in the opposite direction of 

the gradient. However, in Newton’s method, filter coefficients move directly toward 

their optimum values since the gradient is rotated by multiplication with 𝑹𝑥
−1. 
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Therefore, convergence speed of Newton’s based algorithms is higher than that of 

Steepest Descent algorithms. In Figure 2.4. convergence of the filter coefficients for 

Steepest Descent and Newton’s algorithms are shown. It can be observed that 

coefficients, which are updated according to Newton’s algorithm, follow a straight 

path toward optimal point; however, coefficients follow a longer path when Steepest 

Descent algorithm is applied. This longer path also demonstrates the source of slow 

convergence of the Steepest Descent Algorithm.  

 

Figure 2.4 Trajectory of the filter coefficients for Steepest Descent and  Newton’s 

algorithms 

 

2.8. Geometrical Perspective of the NLMS and APA 

It is important to understand the geometrical reasoning behind the adaptation of 

NLMS and APA, therefore, in this section a geometrical insight for adaptation process 

is provided. From the update equation of the NLMS, it can be observed that adjustment 

of the coefficients is done in the positive or negative direction of the input vector 

depending on the sign of the error signal as in 

𝛿𝒘(𝑛 + 1) =
𝒙(𝑛)𝑒(𝑛)

‖𝒙(𝑛)‖2
2 , 

(2.38) 
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where 𝛿𝒘(𝑛 + 1) = 𝒘(𝑛 + 1) − 𝒘(𝑛) is the adjustment vector and step-size is 

selected as 𝜇 = 1 for simplicity. Adjustment of the filter coefficients can be visualized 

for 𝐿 = 3 as in Figure 2.5. 𝒘(𝑛 + 1) is obtained as the projection of 𝒘(𝑛), 

𝒘(𝑛 + 1) = 𝑷𝛱𝑛
𝒘(𝑛), onto the hyperplane 𝛱𝑛. 𝛱𝑛 is composed of the set of filter 

coefficients, �̂�(𝑛), that satisfies 𝑦(𝑛) = 𝒙𝑇(𝑛)�̂�(𝑛) and 𝑷𝛱𝑛
is the projection 

operator. Therefore, 𝒘(𝑛 + 1) corresponds to the intersection point of 𝛱𝑛 and 𝒙(𝑛). 

From Figure 2.5, it can also be concluded that performance of the algorithm can be 

improved by changing the direction of the update vector toward optimal point by 

manipulating the input vector. This idea is the main motivation of the development of 

the proportionate type algorithms. 

x(n)

Πn

w(n+1)

h

w(n)  

Figure 2.5 Geometrical representation of the update of NLMS 

 

This approach can be directly extended to APA as shown in Figure 2.6. In this case, 

filter coefficients are not projected onto a single hyperplane but they are projected onto 

the intersection of many planes 𝛱𝑛 ∩ 𝛱𝑛−1 ∩ … 𝛱𝑛−𝑀+1, to calculate 𝒘(𝑛 + 1) where 

𝑀 is the projection order. In Figure 2.6, �̇�(𝑛 + 1) represents the update of 𝒘(𝑛) if 

NLMS update rule is applied. It is shown in [10] that, ‖𝒉 − 𝒘(𝑛 + 1)‖2 ≤

‖𝒉 − �̇�(𝑛 + 1)‖2 which means that better estimate is obtained by APA compared to 

NLMS estimate. 
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Figure 2.6 Geometrical representation of the update of APA 

 

2.9. Evaluation Criteria for Adaptive Filtering 

There are several criteria that are considered while evaluating the performances of 

adaptive filtering algorithms. In this thesis, two of them are accepted as the major 

criteria, which are normalized steady state misalignment and convergence rate. 

Normalized steady state misalignment, (𝑚𝑠𝑙), is a measure of the distance between 

estimated filter coefficients and the optimal filter coefficients and it is given as 

 
𝑚𝑠𝑙(𝑛) = 20 log10

‖𝒉 − 𝒘(𝑛)‖2

‖𝒉‖2
. 

(2.39) 

 

Convergence rate is the measure of time, which is required to achieve steady-state. 

Consequently, major concern in this thesis study is to develop algorithms which 

achieve lower steady state misalignment with a higher convergence rate. There are 

other criteria which should be considered such as computational complexity and 

steady state mean square error, lim
𝑛→∞

𝐸{|𝑒(𝑛)|2}.  Generally, computational complexity 
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of an algorithm is measured by the number of arithmetic operations (additions, 

multiplications) required.  
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CHAPTER 3 

 

ADAPTIVE FILTERS FOR SPARSE CHANNEL IDENTIFICATION 

 

3.1. Introduction 

In this chapter, firstly the concept of sparse impulse and a measure of sparseness 

are defined. Then, proportionate type adaptive filtering framework is established and 

fundamental proportionate type algorithms, PNLMS (PAPA) and IPNLMS (IPAPA) 

algorithms, are introduced. Later, other proportionate algorithms GC-IPNLMS (GC-

IPAPA) and D-IPNLMS (D-IPAPA) which consider the dynamical behavior of the 

filter coefficients are presented. Then, performances of proportionate type and 

classical adaptive filtering algorithms are compared. Furthermore, these algorithms 

are also compared in terms of their computational complexities. Lastly, a 

mathematical basis for proportionate type algorithms is provided. 

 

3.2. Sparse Impulse Response Concept and Measure of Sparseness 

In this thesis, impulse responses of the systems are categorized into two classes 

based on the characteristics of the impulse responses. The first class is the sparse 

impulse responses in which magnitudes of many coefficients are zero or close to zero 

but a small number of coefficients have relatively larger magnitudes compared to these 

small coefficients. In the literature, small coefficients are referred to as “minor” 

coefficients and larger coefficients are referred to as “major” coefficients. The other 

class involves “dispersive” impulse responses for which many of the filter coefficients 

have significant magnitudes. In Figure 3.1, examples of sparse and dispersive 

responses are shown. 
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Figure 3.1 (a) Sparse and (b) Dispersive Impulse Responses 

 

In order to place an impulse response in one of the classes, a mathematical measure 

for sparseness is needed. In [30], measure of sparseness is defined as 

 
𝜉 ≜

𝐿

𝐿 − √𝐿
(1 −

‖ℎ‖1

√𝐿‖ℎ‖2

), 
(3.1) 

 

where 0 ≤ 𝜉 ≤ 1. As 𝜉 increases, impulse response becomes sparser. In the extreme 

case of a single nonzero coefficient 𝜉 = 1. On the contrary, if all of the coefficients 

have the same absolute value then 𝜉 = 0. For instance, the sparseness of the channel 

shown in Figure 3.1 (a) is 𝜉 = 0.9297 meaning that it is a highly sparse channel and 

that of in Figure 3.2 (b) is 𝜉 = 0.2268 which corresponds to a highly dispersive 

channel. This study mainly focuses on impulse responses with 𝜉 close to 1. 

 

3.3. Proportionate Type Algorithms  

Classical adaptive filtering algorithms assign the same step-size to all filter 

coefficients regardless of the characteristics of the unknown impulse response. 

However, in case of sparse channels, this leads to performance degradation. For 
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instance, consider the case where all filter coefficients are initialized as zero such that 

minor coefficients are already close to their optimal values. However, at the beginning 

of the adaptation, these coefficients would significantly deviate from their optimal 

values due to the assignment of large step-sizes, which yields slow convergence of 

minor coefficients. In order to avoid this issue, smaller step-sizes should be assigned 

to minor coefficients. Therefore, proportionate type algorithms were proposed to 

assign coefficient specific step-sizes to filter coefficients so that faster convergence is 

achieved by taking the sparse nature of the unknown channel into account. 

In order to assign individual step-sizes, a diagonal proportionate matrix is defined 

whose diagonal elements are the proportionate factors that contain the information 

about the structure of the impulse response. Let 𝛀(𝑛) be the 𝐿 × 𝐿 diagonal 

proportionate matrix composed of proportionate factors, 

 𝛀(𝑛) = 𝑑𝑖𝑎𝑔([𝜔0(𝑛), 𝜔1(𝑛), … , 𝜔𝐿−1(𝑛)]), (3.2) 

 

where 𝜔𝑘(𝑛) is the proportionate factor of the 𝑘𝑡ℎ coefficient. General form of the 

update equation of proportionate type NLMS algorithms is given as follows [11], 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇

𝛀(𝑛)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛) + 𝛿
. 

(3.3) 

 

This approach can be extended to APA as [12], 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝛀(𝑛)𝑿(𝑛)(𝑿𝑇(𝑛)𝛀(𝑛)𝑿(𝑛) + 𝛿𝑰)−1𝒆(𝑛). (3.4) 

   

 

3.4. Proportionate NLMS (PNLMS) and Proportionate APA (PAPA) 

PNLMS algorithm [11] is a milestone in the context of the sparse channel 

identification. It was proposed to achieve faster convergence compared to NLMS 

algorithm which has been commonly used in echo cancellation applications. PNLMS 

achieves faster convergence by assigning coefficient specific step-sizes to each 
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coefficient independently. The elements of the proportionate matrix in PNLMS 

algorithm are obtained as follows, 

 𝑒(𝑛) = 𝑦(𝑘) − 𝒘𝑇(𝑛)𝒙(𝑛), (3.5) 

 𝑙∞(𝑛) = max{|𝑤0(𝑛)|, |𝑤1(𝑛)|, … , |𝑤𝐿−1(𝑛)|}, (3.6) 

 𝑙∞
′ (𝑛) = max{𝜖, 𝑙∞(𝑛)}, (3.7) 

 𝛾𝑘(𝑛) = max{ρ𝑙∞
′ (𝑛), |𝑤𝑘(𝑛)|}, (3.8) 

 
𝜔𝑘(𝑛) =

𝛾𝑘(𝑛),

∑ 𝛾𝑖(𝑛)𝐿−1
𝑖=0

, (3.9) 

 

then the update equation becomes, 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇

𝛀(𝑛)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛) + 𝛿
. (3.10) 

 

In PNLMS, “update energy” is distributed over the filter coefficients by 𝛀 matrix 

and the proportionate factors, 𝜔𝑘, represent the gain distributors. It is clear from (3.9) 

that proportionate factors, are roughly proportional to the instantaneous magnitudes of 

the filter coefficients. Therefore, minor coefficients receive relatively smaller step-

sizes than those of major coefficients. Assignment of smaller step-sizes prevents 

deviation of the minor coefficients from their optimal values which results in faster 

convergence. In PNLMS algorithm, an individual step-size assigned to a minor 

coefficient is determined by the parameter 𝜌, which affects the overall distribution of 

the update energy since summation of the proportionate factors is equal to 1. 

Consequently, if 𝜌 is selected to be too large then major coefficients cannot receive 

adequate update energy. Otherwise, if it is selected to be too small then any estimation 

error in minor coefficients may have significant effects on the convergence. Therefore, 

choice of 𝜌 is an important issue regarding the performance of PNLMS algorithm. As 

a rule of thumb, it is selected to be 5/𝐿 [13]. 
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It is shown in [11] that steady state misalignment of the PNLMS is the same as that 

of NLMS. This is an important result regarding the steady-state performance of 

PNLMS since it achieves faster convergence while having the same steady-state error.  

In order to comprehend the logic behind the proportionate approach, it is better to 

observe the evolutions of the filter coefficients. For this purpose, in Figure 3.2 

evolutions of adaptive filters for a 2 tap sparse impulse response, 𝒉 = [1 0]𝑇, are 

shown for NLMS and PNLMS algorithms. It can be observed that minor coefficient 

deviates from their optimal values if NLMS rule is applied even if its initial value is 

optimal. On the other hand, coefficients follow a more direct path in case of PNLMS 

since by assigning smaller step-sizes to minor coefficient deviation from the optimal 

value is prevented. Another comment about the convergence pattern of PNLMS may 

be its resemblance to Newton’s method since filter coefficients move toward their 

optimal value on a more direct path. 

 

 

Figure 3.2 Evolutions of the filter coefficients for NLMS and PNLMS algorithms 

This idea can be extended to its affine projection counterpart, which is called 

Proportionate APA (PAPA). Update equation of PAPA is given as 
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 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝛀(𝑛)𝑿(𝑛)(𝑿𝑇(𝑛)𝛀(𝑛)𝑿(𝑛) + 𝛿𝑰)−1𝒆(𝑛). (3.11) 

 

PNLMS and PAPA provide fast convergence for only sparse impulse responses; on 

the other hand, for dispersive channels their performances significantly degrade. Even 

NLMS and APA outperform PNLMS and PAPA in case of dispersive channel 

identification. Therefore, methods, which provide better performance when the 

impulse response is dispersive, have been proposed. 

 

3.5. Improved PNLMS (IPNLMS) and Improved PAPA (IPAPA) 

Introduction of PNLMS algorithm formed a basis for new algorithms, which further 

improve the performance in case of sparse channels. IPNLMS is one of the widely 

employed approaches regarding the sparse channel identification. IPNLMS algorithm 

not only improves the convergence rate but also solves the performance degradation 

problem for dispersive channels. IPNLMS offers a smoother way to calculate 

proportionate factors so that negative effects of the estimation errors are eliminated. 

A proportionate factor of IPNLMS is calculated as 

 
𝜔𝑘(𝑛) =

1 − 𝛼

2𝐿
+ (1 + 𝛼)

|𝑤𝑘(𝑛)|

2 ∑ 𝑤𝑖(𝑛) + 𝜖𝐿−1
𝑖=0

  , (3.12) 

 

where −1 < 𝛼 < 1 is control parameter. For 𝛼 values close to 1, IPNLMS algorithm 

behaves like PNLMS algorithm. If 𝛼 = −1 then IPNLMS becomes NLMS algorithm. 

The first term in (3.12) compensates the error made in the estimation of the current 

filter coefficients and the second term corresponds to proportionality of the IPNLMS 

which exploits the sparsity of the impulse response. By its hybrid approach, IPNLMS 

provides faster convergence for both sparse and dispersive impulse responses. Then, 

by inserting these proportionate factors into update equation IPNLMS can be obtained 

as 
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𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇

𝛀(𝑛)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛) + 𝛿
  . (3.13) 

 

Similarly, the hybrid approach of IPNLMS can be applied to IPAPA as [13], 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝛀(𝑛)𝑿(𝑛)(𝑿𝑇(𝑛)𝛀(𝑛)𝑿(𝑛) + 𝛿𝑰)−1𝒆(𝑛). (3.14) 

 

3.6. Gradient Controlled IPNLMS and IPAPA 

Both PNLMS (PAPA) and IPNLMS (IPAPA) algorithms only consider magnitudes 

of the instantaneous filter coefficients while assigning proportionate factors. These 

approaches provide fast initial convergence. However, overall convergence 

performance degrades when the estimated filter coefficients get close to the optimal 

point since these algorithms lead to random variations around the optimal point by 

assigning large step-sizes to major coefficients, which are close to optimal values. 

Therefore, it is necessary to modify the assignment of the coefficient specific step-

sizes such that only coefficients, which are far away from their optimal values, receive 

larger update energy. Since optimal filter coefficients are not known, it is an 

impossible task to find the difference between current and optimal filter coefficients. 

Hence, [19] achieves this by assigning step-sizes proportional to the gradient vector 

which contains the information of the difference between optimal and the current filter 

coefficient. In order to justify this statement, firstly, consider the error vector, 

 𝒆(𝑛) = 𝑿𝑇(𝑛)𝒉 − 𝑿𝑇(𝑛)𝒘(𝑛 − 1) + 𝒗(𝑛). (3.15) 

 

If noise is assumed to be sufficiently small, then error vector approximately becomes, 

 𝒆(𝑛) ≈ 𝑿𝑇�̃�(𝑛 − 1), (3.16) 

 

where �̃�(𝑛) = 𝒉 − 𝒘(𝑛) is the weight error vector. [19] states that the coefficient 

error vector can be utilized by considering the gradient vector, 
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 𝛁(𝑛) = −𝑿(𝑛)[𝑿𝑇(𝑛)𝑿(𝑛) + 𝛿𝑰]−1𝒆(𝑛), (3.17) 

 

since it inherently involves coefficient error vector. This can be observed by inserting 

(3.16) to (3.17), 

 𝛁(𝑛) = −𝑿(𝑛)[𝑿𝑇(𝑛)𝑿(𝑛) + 𝛿𝑰]−1𝑿𝑇�̃�(𝑛 − 1), (3.18) 

   

where 𝑿(𝑛)[𝑿𝑇(𝑛)𝑿(𝑛) + 𝜖𝑰]−1𝑿𝑇 can be considered as the projection matrix onto 

the range space of 𝑿(𝑛), ℝ[𝑿(𝑛)]. Therefore, according to (3.18), 𝛁(𝑛) is the 

projection of �̃�(𝑛 − 1) onto ℝ[𝑿(𝑛)]. Hence, instead of directly using the weight error 

vector, its projection onto ℝ[𝑿(𝑛)], 𝛁(𝑛), is employed while calculating the 

proportionate factors. In order to avoid overshooting, smoothed version of the gradient 

vector is used, 

 �̅�(𝑛) = 𝛽�̅�(𝑛 − 1) − (1 − 𝛽)𝑿(𝑛)[𝑿𝑻(𝑛)𝑿(𝑛) + 𝛿𝑰]−𝟏𝒆(𝑛), (3.19) 

 

where 0 < 𝛽 < 1. Consequently, proportionate factors are expressed as 

 𝜔𝑙(𝑛) =
(1 − 𝛼)

2𝐿
+

(1 + 𝛼)|∇̅𝑙(𝑛 − 1)|

2 ∑ |∇̅𝑖(𝑛 − 1)|𝐿−1
𝑖=0 + 𝜖

  , (3.20) 

 

where ∇̅𝑙 is the 𝑙𝑡ℎ element of the smoothed gradient vector. Similar to IPAPA, update 

equation of GC-IPAPA is given as 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝛀(𝑛)𝑿(𝑛)(𝑿𝑇(𝑛)𝛀(𝑛)𝑿(𝑛) + 𝛿𝑰)−1𝒆(𝑛). (3.21) 

 

In addition, GC-IPNLMS is the special case of GC-IPAPA where 𝑀 = 1, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇
𝛀(𝑛)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛) + 𝛿
   . (3.22) 
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In order to understand the improvement introduced by the GC-IPAPA, evolution 

of the proportionate factors should be investigated. Figure 3.3 shows the behavior of 

a specific proportionate factor for both IPAPA and GC-IPAPA. It can be seen that, 

proportionate factor of IPAPA increases up to a point and stays there for the rest of 

the adaptation. However, proportionate factor for GC-IPAPA increases until it 

converges to its optimal value. After reaching the optimal point, magnitude of the 

proportionate factor starts to decrease. This behavior prevents the fluctuations around 

the optimal point; therefore, GC-IPAPA provides smoother and faster convergence. 

 

 

Figure 3.3 Proportionate Factor Comparisons for IPAPA and GC-IPAPA 

 

Although GC-IPAPA provides faster convergence, it requires an extra matrix 

inversion while calculating the gradient vector. Therefore, the main drawback of the 

GC-IPAPA is its computational complexity. Especially, as the projection order 

increases computational complexity becomes a major problem. 
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3.7. Difference Based IPNLMS (D-IPAPA) and IPAPA (D-IPAPA) 

D-IPAPA is another method proposed to combat the performance degradation 

problem after the initial stage of the adaptation [20]. D-IPAPA divides the adaptation 

into two stages, which are the initial stage and the second stage. At the initial stage, 

major coefficients quickly reach their optimal values. At the second stage, 

convergence of the minor coefficients begins; therefore, proportionate factors should 

be modified such that larger step-sizes are assigned to the minor coefficients. 

According to [20], PNLMS and IPNLMS have performance degradation problem 

since they do not have the capability to adjust their proportionate factors in the second 

stage. In order to modify the proportionate factors appropriately, D-IPAPA handles 

the adaptation block-by-block, assuming that convergence behavior of a certain filter 

coefficient does not change significantly within a block period. Therefore, during a 

block period, variation of a proportionate factor is assumed to be relatively slow. At 

each block period, a new set of proportionate factors are calculated by considering 

current values of the filter coefficients at the beginning of each block as the initial 

value during that block period. Consider the 𝑘𝑡ℎ block, it is assumed that adaptation 

has the initial values of 𝒘(𝑘𝑃), where P is the block period. Then proportionate factors 

are obtained as 

 
𝜔𝑙(𝑘𝑃 + 𝑖) =

(1 − 𝛼)

2𝐿
+

(1 + 𝛼)|𝑤𝑙(𝑘𝑃 + 𝑖) − 𝑤𝑙(𝑘𝑃)|

2 ∑ |𝑤𝑗(𝑘𝑃 + 𝑖) − 𝑤𝑗(𝑘𝑃)|𝐿−1
𝑗=0 + 𝜖

  .  

𝑖 = 0,1, … , 𝑃 − 1 

(3.23) 

 

It is clear that if all filter coefficients are initialized as zero, at the initial stage D-

IPNLMS and IPNLMS are identical. When the major coefficients converge, the 

difference, 𝑤𝑙(𝑘𝑃 + 𝑖) − 𝑤𝑙(𝑘𝑃), becomes negligible. Therefore, the minor 

coefficients, which are far away from their optimal value, may have the opportunity 

to receive necessary step-size so that their convergence is boosted. 
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3.8. Simulation Results of Proportionate Type Algorithms 

In this section, misalignment performances of proportionate type algorithms are 

investigated. Length of the unknown impulse response is set to 512 for all cases and 

it is either a highly sparse one with 𝜉 = 0.9297 or relatively dispersive one with 𝜉 =

0.4647. Input of the unknown system is modeled as a white Gaussian signal and as a 

noise component an independent white Gaussian signal is added to the output of the 

system to have 30 𝑑𝐵 SNR. Step-size, 𝜇, is set to 0.2, control variable, 𝛼, is set to 0 

and decaying constant for GC-IPAPA is set to 𝛽 = 0.999 and 𝜌 is set to 0.01 for 

PNLMS. Results are obtained by ensemble averaging of 10 independent trials. 

Firstly, improvements introduced by the proportionate approach is observed by 

comparing PNLMS and IPNLMS algorithms with NLMS algorithm for a sparse 

channel. Results are shown in Figure 3.4 and superiority of PNLMS and IPNLMS over 

NLMS is apparent. However, as can be seen in Figure 3.5 PNLMS algorithm cannot 

hold the superiority for a dispersive channel with 𝜉 = 0.5138; on the other hand, 

IPNLMS still outperforms NLMS algorithm. Consequently, IPNLMS seems to be 

more appealing choice for the system identification applications. Therefore, in the 

remainder of this thesis IPNLMS is regarded as the reference method for the 

performance comparisons. 
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Figure 3.4 Performance comparisons of NLMS, PNLMS and IPNLMS algorithms 

for the sparse channel with 𝜉 = 0.9297 

 

Figure 3.5 Performance comparisons of NLMS, PNLMS and IPNLMS algorithms 

for the dispersive channel with 𝜉 = 4947 

 

After defining the IPNLMS as the reference approach, it is compared with D-

IPNLMS and GC-IPNLMS algorithms. In this case, a channel with a sparseness of 

𝜉 = 0.8036 is identified and all other parameters are kept same. Figure 3.6 shows the 
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misalignment curves of these algorithms. It can be seen that both D-IPNLMS and GC-

IPNLMS outperforms IPNLMS algorithm. 

 

 

Figure 3.6 Performance comparison of IPNLMS, D-IPNLMS and GC-IPNLMS 

 

Moreover, results for algorithms with higher order projection are obtained in 

order to compare IPAPA, D-IPAPA and GC-IPAPA for 𝑀 = 2 and superior 

performance of D-IPAPA and GC-IPAPA can be observed from Figure 3.7. 
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Figure 3.7 Performance comparison of IPAPA, D-IPAPA and GC-IPAPA 

 

3.9. Computational Complexities of the Proportionate Type Algorithms 

In this section computational complexities of the proportionate type algorithms are 

compared. For this purpose, the number of operations required by the algorithms, 

PAPA, IPAPA, D-IPAPA and GC-IPAPA are given in Table 3.1. In addition, the 

number of operations required for APA is also given in order to observe the extra 

complexity brought by the proportionate approach. Computational complexities of 

APA, PAPA, IPAPA and D-IPAPA are close to each other. However, GC-IPAPA 

requires almost twice as much operations as the other algorithms.  Therefore, it can be 

concluded that proportionate type algorithms do not bring excessive computational 

burden except GC-IPAPA.  
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Table 3. 1 Number of operations required for adaptive filtering algorithms 

Method Summations Multiplications Comparisons Memory 

APA (𝑀2 + 𝑀 − 1)𝐿 (𝑀2 + 𝑀 + 1)𝐿 + 𝑀2 0 0 

PAPA (𝑀2 + 𝑀 − 1)𝐿 (𝑀2 + 𝑀 + 2)𝐿 + 𝑀2 + 2 2L L 

IPAPA (𝑀2 + 𝑀 + 1)𝐿 (𝑀2 + 𝑀 + 2)𝐿 + 𝑀2 0 L 

D-

IPAPA 
(𝑀2 + 𝑀 + 2)𝐿 (𝑀2 + 𝑀 + 2)𝐿 + 𝑀2 0 L 

GC-

IPAPA 

(2𝑀2 + 2𝑀

+ 2)𝐿 
(2𝑀2 + 2𝑀 + 2)𝐿 + 2𝑀2 0 2L 

 

3.10. A Mathematical Derivation of Proportionate Type Algorithms 

Initial development of proportionate type algorithms took place in an intuitive 

manner. Although proportionate approach is experimentally proved to be useful, it is 

necessary to provide a mathematical foundation. In [17], proportionate approach is 

derived from a basis pursuit perspective by employing 𝑙1 norm optimization. First step 

of the derivation in [17] is to show that estimated coefficient vectors in NLMS and 

APA can be expressed as the sum of two orthogonal vectors. One of these vectors is 

the solution of an 𝑙2 optimization problem, while the other one is considered as an 

initialization vector. Consequently, by changing the optimization problem to 𝑙1 norm 

criterion, proportionate type algorithms can be obtained. 

Consider the NLMS update equation without regularization constant, 𝛿, and 𝜇 = 1, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, (3.24) 

 

where 𝑒(𝑛) = 𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛) = 𝑦(𝑛) − �̂�(𝑛), �̂�(𝑛) is the estimate of 𝑦(𝑛).  

Then, (3.24) can be rewritten as 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝒙(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
[𝑦(𝑛) − 𝒙𝑇(𝑛)𝒘(𝑛)], 

(3.25) 
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𝒘(𝑛 + 1) = 𝒘(𝑛) −

𝒙(𝑛)𝒙𝑇(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
𝒘(𝑛) +

𝒙(𝑛)𝑦(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, 

(3.26) 

 
𝒘(𝑛 + 1) = [𝑰 −

𝒙(𝑛)𝒙𝑇(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
] 𝒘(𝑛) +

𝒙(𝑛)𝑦(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, 

(3.27) 

 𝒘(𝑛 + 1) = ℘(𝑛)𝒘(𝑛) + �̃�(𝑛), (3.28) 

 

where, 

 
℘(𝑛) = 𝑰 −

𝒙(𝑛)𝒙𝑇(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, 

(3.29) 

 

and 

 
�̃�(𝑛) =

𝒙(𝑛)𝑦(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
. 

(3.30) 

 

In (3.28), �̃�(𝑛) is related to solution of the 𝑙2 norm optimization and ℘(𝑛)𝒘(𝑛) 

corresponds to the initialization component. It can be shown that constituent vectors 

of 𝒘(𝑛 + 1) are orthogonal such that 

 [℘(𝑛)𝒘(𝑛)]𝑇�̃�(𝑛) = 0. (3.31) 

 

Hence, �̃�(𝑛) is in the null space of ℘(𝑛), �̃�(𝑛) ∈ ℵ(℘(𝑛)), 

 ℘(𝑛)�̃�(𝑛) = 𝟎. (3.32) 

 

Moreover, 𝒘(𝑛) can be expressed as the sum of two vectors which are in the range 

and null spaces of ℘(𝑛), 

 𝒘(𝑛) = 𝒘∥(𝑛) + 𝒘⊥(𝑛), (3.33) 

 

where 
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 ℘(𝑛)𝒘(𝑛) = 𝒘∥(𝑛), (3.34) 

 ℘(𝑛)𝒘⊥(𝑛) = 𝟎. (3.35) 

 

Therefore, (3.28) becomes, 

 𝒘(𝑛 + 1) = 𝒘∥(𝑛) + �̃�(𝑛). (3.36) 

 

From (3.31), it is clear that 

 𝒘∥(𝑛)𝑇�̃�(𝑛) = 0, (3.37) 

 

and the desired signal can be obtained as 

 𝒙𝑇(𝑛)𝒘(𝑛 + 1) = 𝒙𝑇(𝑛)�̃�(𝑛) = 𝑑(𝑛) . (3.38) 

 

Furthermore, 𝒘⊥(𝑛) can be obtained in a straightforward manner as, 

 𝒘⊥(𝑛) = 𝒘(𝑛) − ℘(𝑛)𝒘(𝑛), (3.39) 

   

then by inserting (3.29) to (3.39), one can obtain, 

 𝒘⊥(𝑛) =
𝒙(𝑛)�̂�(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
, (3.40) 

 

it is important to note that 𝒘⊥(𝑛) is also in the null space of ℘(𝑛). By using the 

definition of the error signal, it can be written as 

 𝑒(𝑛) = 𝒙𝑇(𝑛)�̃�(𝑛) − 𝒙𝑇(𝑛)𝒘⊥(𝑛) = 𝒙𝑇(𝑛)[�̃�(𝑛) − 𝒘⊥(𝑛)], (3.41) 

 

which is independent of 𝒘∥(𝑛)𝑇. Thus, [17] states that �̃�(𝑛) is the solution of 𝑙2 norm 

optimization problem which gives the overall update expression of NLMS, 
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 min
�̃�(𝑛)

‖�̃�(𝑛)‖2
2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑛) = 𝒙𝑇(𝑛)�̃�(𝑛). (3.42) 

 

So far, a basis for the derivation of the proportionate approach is constructed. By 

using 𝑙1 norm criterion instead of 𝑙2 norm criterion in (3.42), following optimization 

problem is obtained to get proportionate type algorithms, 

 min
�̃�(𝑛)

‖�̃�(𝑛)‖1  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦(𝑛) = 𝒙𝑇(𝑛)�̃�(𝑛), (3.43) 

 

and it can be solved by using Lagrange multipliers method, 

 𝐽 = ‖�̃�(𝑛)‖1 + 𝜆[𝑦(𝑛) − 𝒙𝑇(𝑛)�̃�(𝑛)]. (3.44) 

 

By taking the derivative of 𝐽 with respect to �̃�(𝑛) and equating it to zero, one can get, 

 
𝜕𝐽

𝜕�̃�(𝑛)
= 𝑠𝑔𝑛(�̃�(𝑛)) − 𝜆𝒙(𝑛) = 0. (3.45) 

 

where, 𝑠𝑔𝑛() is the sign function, which gives signs of the elements in the vector. By 

multiplying (3.45) with matrix �̃�(𝑛) = 𝑑𝑖𝑎𝑔(|�̃�0(𝑛)|, |�̃�1(𝑛)|, … , |�̃�𝐿−1(𝑛)|), 

following equality is obtained, 

 �̃�(𝑛)𝑠𝑔𝑛(�̃�(𝑛)) = 𝜆�̃�(𝑛)𝒙(𝑛), (3.46) 

 �̃�(𝑛) = 𝜆�̃�(𝑛)𝒙(𝑛). (3.47) 

 

By inserting (3.47) in the constraint in (3.43), one can obtain 𝜆 as 

 𝑑(𝑛) = 𝜆𝒙𝑇(𝑛)�̃�(𝑛)𝒙(𝑛), (3.48) 

 
𝜆 =

𝑑(𝑛)

𝒙𝑇(𝑛)�̃�(𝑛)𝒙(𝑛)
. 

(3.49) 

 

Consequently, �̃�(𝑛) becomes, 
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�̃�(𝑛) =

�̃�(𝑛)𝒙(𝑛)𝑑(𝑛)

𝒙𝑇(𝑛)�̃�(𝑛)𝒙(𝑛)
, 

(3.50) 

 

since �̃�(𝑛) is not obtained at that moment, it is reasonable to replace it with 𝛀(𝑛), 

where 𝛀(𝑛) = 𝑑𝑖𝑎𝑔(|𝑤0(𝑛)|, |𝑤1(𝑛)|, … , |𝑤𝐿−1(𝑛)|). Hence, (3.50) becomes, 

 �̃�(𝑛) =
𝛀(𝑛)𝒙(𝑛)𝑑(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛)
. (3.51) 

 

Next step is to form the projection matrix ℘(𝑛) as 

 ℘(𝑛) = 𝑰 −
𝛀(𝑛)𝒙(𝑛)𝒙𝑇(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛)
. (3.52) 

 

By combining these results update equation of PNLMS algorithm can be written as 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
𝛀(𝑛)𝒙(𝑛)𝑒(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛)
. (3.53) 

 

Other variants of the proportionate type algorithms can be obtained by using this 

framework. This framework also shows that proportionate and non-proportionate type 

algorithms are not irrelevant since they share similar ideas in their nature. 
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CHAPTER 4 

 

SIGN ALGORITHMS: ROBUSTNESS AGAINST IMPULSIVE 

INTERFERENCE 

 

4.1. Introduction 

Development of many adaptive filtering algorithms including NLMS, APA etc., is 

based on the Gaussian noise assumption [24]. Therefore, performance degradation is 

inevitable if the noise in the environment is not Gaussian. Impulsive interference is a 

non-Gaussian noise, which extremely affects the performance of these algorithms 

since they are developed based on the mean-square-error cost function which uses 

square of the error signal. In order to overcome this problem, lower order normed cost 

functions are considered instead of the mean-squared-error. Stemming from this idea, 

sign algorithms are proposed which are based on the 𝑙1 norm of the error signal since 

𝑙1 norm based optimization provides robustness against impulsive interference. In this 

chapter, firstly, some well-known sign algorithms, Normalized Sign Algorithm (NSA) 

[24] and Affine Projection Sign Algorithm (APSA) [21], are introduced. Later, 

proportionate approach is extended to APSA [25] for sparse channels which are 

afflicted by impulsive noise. Lastly, simulation results related to sign algorithms are 

presented. 

 

4.2. Motivation for Sign Algorithms 

In Section 2.2, it is stated that background noise 𝑣(𝑛) is generally modeled as WGN 

but for some cases it can be modeled as the combination of WGN and BG process to 

integrate impulsive interference into the system as 

 𝑣(𝑛) = 𝑡(𝑛) + 𝑧(𝑛), (4.1) 
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where, 𝑡(𝑛) is a WGN and 𝑧(𝑛) is a BG process. 

Conventional algorithms have been proposed under the assumption of 𝑧(𝑛) = 0. 

Therefore, these algorithms fail when 𝑧(𝑛) ≠ 0 due to MSE criterion, 𝐽 = 𝐸{|𝑒(𝑛)|2} 

since, in the presence of impulsive noise, magnitude of the error signal changes 

drastically which is directly used in the update equations (2.31) and (2.33). Therefore, 

resultant algorithms are significantly affected by the impulsive noise. As a result, sign 

algorithms were proposed to eliminate the effect of the impulsive noise. 

 

4.3. Normalized Sign Algorithm (NSA) 

NSA is one of the simplest forms of the sign algorithms, which can be interpreted 

as the sign extension of NLMS algorithm. NSA is obtained by employing a lower 

order normed cost function defined in (4.2) to provide robustness against impulsive 

noise, 

 𝐽 = 𝐸{|𝑒(𝑛)|}. (4.2) 

 

By using this cost function, [31] proposes the Sign Algorithm for cases in which non-

Gaussian noise is present. Furthermore, stemming from Sign Algorithm, NSA has 

been proposed in [24], 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇
𝒙(𝑛)

‖𝒙(𝑛)‖1 + 𝛿
𝑠𝑔𝑛(𝑒(𝑛)) (4.3) 

 

According to (4.3), update equation is independent of the magnitude of the error 

signal, it only depends on the sign of the error signal. Hence, the effect of the impulsive 

noise is limited to +1 and −1. 

NSA provides robustness against impulsive interference; however, it suffers from 

slow convergence especially for the colored input case. For instance, for Gaussian 

noise case, LMS algorithm significantly outperforms NSA. Therefore, Affine 
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Projection Sign Algorithm (APSA) is proposed as a solution of the slow convergence 

problem. 

 

4.4. Affine Projection Sign Algorithm (APSA) 

NSA uses only the instantaneous input and error signal for the adaptation. 

Therefore, multiple instances of these signal can be used in order to improve the 

performance of the algorithm. APSA is proposed such that affine projection idea is 

extended to sign algorithm framework. Consequently, APSA [21] is obtained as the 

solution of the following optimization problem, 

 
min

𝒘(𝑛+1)
‖𝒚(𝑛) − 𝑿𝑇(𝑛)𝒘(𝑛 + 1)‖1 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 < 𝜓2 , 

(4.4) 

   

where 𝜓 is the disturbance constraint which keeps the variation in the filter coefficients 

sufficiently small such that filter coefficients do not diverge. 𝜓 should be selected as 

small as possible. By using Lagrange multipliers, cost function is obtained as 

 
𝐽 = ‖𝒚(𝑛) − 𝑿𝑇(𝑛)𝒘(𝑛 + 1)‖1 + 𝜆[‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2

2 − 𝜓2] 

= ‖𝒆𝑝(𝑛)‖
1

+ 𝜆[‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 − 𝜓2], 

(4.5) 

 

where 𝒆𝑝(𝑛) is the a posteriori error vector. By taking the derivative of 𝐽 with respect 

to 𝒘(𝑛 + 1), one gets, 

 
∂𝐽

𝜕𝒘(𝑛 + 1)
= −𝑿(𝑛)𝑠𝑔𝑛 (𝒆𝑝(𝑛)) + 2𝜆[𝒘(𝑛 + 1) − 𝒘(𝑛)], (4.6) 

 

and by equating it to zero, following update equation is obtained, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
1

2𝜆
𝑿(𝑛)𝑠𝑔𝑛 (𝒆𝑝(𝑛)). (4.7) 
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In order to obtain 𝜆, substitute (4.7) into the constraint in (4.4) to obtain 

 

1

2𝜆
=

𝜓

√𝑠𝑔𝑛 (𝒆𝑝
𝑇(𝑛)) 𝑿(𝑛)𝑿𝑇(𝑛)𝑠𝑔𝑛 (𝒆𝑝(𝑛))

, 
(4.8) 

 

and update equation becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
𝜓𝑿(𝑛)𝑠𝑔𝑛 (𝒆𝑝(𝑛))

√𝑠𝑔𝑛 (𝒆𝑝
𝑇(𝑛)) 𝑿(𝑛)𝑿𝑇(𝑛)𝑠𝑔𝑛 (𝒆𝑝(𝑛))

. (4.9) 

 

Note that 𝒆𝑝(𝑛) is a function of 𝒘(𝑛 + 1) which is not present at the moment. 

Therefore, 𝒆𝑝(𝑛) is replaced with the priori error vector 𝒆(𝑛). In order to satisfy the 

stability of the algorithm minimum disturbance parameter should be much smaller 

than 1 which can be considered as the step-size of the algorithm; hence, 𝜓 is replaced 

with step-size parameter 𝜇. Final form of the update equation becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
𝜇𝒙𝑠(𝑛)

√𝒙𝑠
𝑇(𝑛)𝒙𝑠(𝑛) + 𝛿

 , (4.10) 

 

where 𝒙𝑠(𝑛) = 𝑿(𝑛)𝑠𝑔𝑛(𝒆(𝑛)) and step-size should satisfy 0 < 𝜇 ≪ 1 due to 

minimum disturbance constraint. 

Most remarkable property of this algorithm is that there is no need of matrix 

inversion unlike other APA’s. Consequently, computational complexity is 

significantly reduced.  

 

4.5. Proportionate Type Sign Algorithms  

APSA provides fast convergence and robust adaptation in case of existence of non-

Gaussian impulsive interference. However, its performance can be improved further 
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for sparse channels by extending the proportionate approach to sign algorithms. 

Proportionate type algorithms provide fast convergence for acoustic channels but they 

are not robust against impulsive interferences. However, acoustic channels, for 

example, are often exposed to double talks, which can be considered as the non-

Gaussian interference. Therefore, integration of sign and proportionate type 

algorithms is crucial. Consequently, Proportionate APSA (PAPSA) and Improved 

PAPSA (IPAPSA) [25] were proposed to provide both fast convergence and 

robustness against impulsive interference. These algorithms are given below in (4.11)-

(4.15) and (4.16)-(4.19), respectively. Resultant algorithms have slightly higher 

computational complexities compared to that of APSA. 

 𝛾𝑚𝑖𝑛 = 𝜌 max(𝑐, |𝑤0(𝑛)|, |𝑤1(𝑛)|, … , |𝑤𝐿−1(𝑛)|), (4.11) 

 𝜔𝑙(𝑛) =
𝛾𝑙

‖𝜸‖1/𝐿 
, (4.12) 

 𝛀(𝑛) = 𝑑𝑖𝑎𝑔(𝜔0(𝑛), 𝜔1(𝑛), … , 𝜔𝐿−1(𝑛)), (4.13) 

 𝒙𝑔𝑠(𝑛) = 𝛀(𝑛)𝑿(𝑛)𝑠𝑔𝑛(𝒆(𝑛)), (4.14) 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝜇𝒙𝑔𝑠(𝑛)

√𝒙𝑔𝑠
𝑇 (𝑛)𝒙𝑔𝑠(𝑛) + 𝛿

. 
(4.15) 

 

 
𝜔𝑙(𝑛) =

1 − 𝛼

2𝐿
+ (1 + 𝛼)

|𝑤𝑙(𝑛)|

2 ∑ 𝑤𝑖(𝑛)𝐿−1
𝑖=0 + 𝜖

, 
(4.16) 

 𝛀(𝑛) = 𝑑𝑖𝑎𝑔(𝜔0(𝑛), 𝜔1(𝑛), … , 𝜔𝐿−1(𝑛)), (4.17) 

 𝒙𝑔𝑠(𝑛) = 𝛀(𝑛)𝑿(𝑛)𝑠𝑔𝑛(𝒆(𝑛)), (4.18) 

 
𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝜇𝒙𝑔𝑠(𝑛)

√𝒙𝑔𝑠
𝑇 (𝑛)𝒙𝑔𝑠(𝑛) + 𝛿

. 
(4.19) 
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4.6. Performance Comparisons for Sign Algorithms 

In this section, firstly performances of the sign algorithms, namely NSA and APSA, 

will be compared to those of conventional algorithms, NLMS and APA. Later, 

proportionate type sign algorithms will be compared to NSA and APSA so that 

contribution of the proportionate approach in the improvement of the performance can 

be observed. The same configuration used in Section 3.8. is also used in this section. 

Input signal is generated as an 𝐴𝑅(1) process, passing a white noise through a first 

order IIR filter which has a pole at 0.8. Step-size is set to 0.003 for APSA in order to 

meet stability conditions and it is set to 0.2 for APA, 1 for NLMS and 0.1 for NSA. 

These steps-size values are those used in [21]. 

For simulations, impulsive interference is generated by BG process which is the 

combination of a Bernoulli process and a Gaussian process. Let 𝑧(𝑛) be the signal 

modeled by the BG process. It can be obtained by the multiplication of a Bernoulli 

signal, 𝑏(𝑛), with probability mass function 𝑃(𝑏) = 1 − 𝑃𝑏 for 𝑏 = 0 and 𝑃(𝑏) =

𝑃𝑏 for 𝑏 = 1 and a zero mean Gaussian signal, 𝜂(𝑛), with variance 𝜎𝜂
2, 𝑧(𝑛) =

𝜔(𝑛)𝜂(𝑛) . Power of the BG signal is calculated by 𝑃 = 𝑃𝑏𝜎𝜂
2. In this process, rate of 

impulses depends on 𝑃b and their magnitudes depend on the 𝜎𝜂
2. Therefore, it can be 

concluded that Bernoulli process is associated with the probability of occurrence of an 

impulse and Gaussian process is related to its magnitude. 

Firstly, normalized misalignments of sign algorithms are compared to those of 

conventional algorithms for different Signal-to-Interference Ratio (SIR) levels. 

Adaptive filter has length 𝐿 = 512. For this case, projection order for APA and APSA 

is selected to be 𝑀 = 2 and 𝑃b is set to 0.001. In Figure 4.1 results for a high SIR, 

𝑆𝐼𝑅 = 30 𝑑𝐵, case is shown. It can be seen that APA exhibits the best performance 

compared to other algorithms and NSA has the slowest convergence speed. Effect of 

low SIR, 𝑆𝐼𝑅 = −10 𝑑𝐵 on the the algorithms is shown in Figure 4.2. Sign algorithms 

offer notable robustness against impulsive interference and it can be observed that 

conventional algorithms are affected by the interference such that they may almost 

diverge. 
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Figure 4.1 Performance comparisons of Sign Algorithms with conventional 

algorithms for SIR = 30 dB 

 

 

 

Figure 4.2 Performance comparisons of Sign Algorithms with conventional 

algorithms for SIR = -10 dB 
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Improvement introduced by the proportionate type sign algorithms are shown in 

Figure 4.3. Step-sizes for PAPA and IPAPA is set to 0.003. These steps-size values 

are those used in [25]. In this case, a channel with 𝜉 = 0.8723 is identified and 

interference is added to system to have 𝑆𝐼𝑅 = −10 𝑑𝐵. Figure 4.3 shows that 

proportionate type sign algorithms significantly outperform APSA in terms of both 

convergence speed and steady-state misalignment. 

 

Figure 4.3 Performance comparisons of Proportionate type Sign Algorithms and 

APSA for SIR = -10 dB 

 

Convergence behavior of the coefficients of APA and APSA are also compared. It 

can be seen from Figure 4.4 that when the desired signal is disturbed by an impulse, 

APA significantly changes coefficient values; however, APSA does not allow such 

significant change. Therefore, misalignment of APA drastically increases when an 

impulsive noise occurs; on the other hand, misalignment of APSA is not affected since 

APSA prevents deviation of the filter coefficients. 
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Figure 4.4 Convergence behavior of the filter coefficients for APA and APSA 
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CHAPTER 5 

 

DERIVATIVE BASED PROPORTIONATE ALGORITHMS AND 

GEOMETRICAL INTERPRETATION 

 

5.1. Introduction 

In this chapter, a coefficient-derivative based method for sparse channel 

identification is introduced. In the proposed method, the proportionate factors are 

computed by using the time “derivatives” of filter coefficients. Firstly, the motivation, 

which leads to the development of the algorithm, is expressed by illustrating the 

convergence behavior of both minor and major coefficients. Then, the proposed 

method will be described and comments on the steady-state misalignment and 

computational complexity will be given. Lastly, a geometrical interpretation of the 

proportionate type algorithms will be presented to comprehend the reasoning behind 

the proportionate approach. 

 

5.2. Motivation for the Proposed Algorithm 

Proportionate type algorithms assign coefficient specific step-sizes to each 

coefficient in order to achieve faster convergence. Main purpose of these algorithms 

is to assign coefficient specific step-sizes in order to prevent the deviation of minor 

coefficients from their optimal values at the initial stage. In other words, proportionate 

type algorithms aim to reduce the gradient noise introduced due to the approximation 

of the correlation matrices. Conventional proportionate type algorithms make these 

assignments roughly proportional to magnitudes of the current filter coefficients.  

Later, approaches, which incorporate estimates of the differences between the current 

filter coefficients and the optimal filter coefficients, were proposed. The proposed 

algorithm is an example of the latter sort of algorithms since it involves proportionate 

factors proportional to time derivatives of the filter coefficients. Simulations on the 
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evolution of filter coefficients show that filter coefficients tend to have higher 

derivative values if they are away from their optimal values. In Figure 5.1, evolutions 

of a major and a minor coefficient are plotted. It can be seen that the amount of 

variation of the minor coefficient is negligible compared to that of the major 

coefficient during the transient period. These variations can be quantified as the 

derivative of the corresponding coefficient. Therefore, derivative information 

possesses useful information regarding the structure of the impulse response, which 

can be used to determine the proportionate factors. Lastly, it can be seen that as the 

filter coefficients get close to their optimal value, major coefficient’s rate of change 

also becomes small. Hence, smaller step-sizes are assigned to major coefficients at the 

steady-state which reduces random fluctuations around the optimal value. 

 

 

Figure 5.1 Coefficient evolutions for both major and minor coefficients for IPAPA 

 

In order to provide a mathematical basis, firstly it can be shown that proportionate 

factors should be selected proportional to difference between current filter coefficients 

and the optimal filter coefficients. For this purpose, consider the update equation of a 

proportionate type NLMS algorithm, 
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 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇
𝛀(𝑛)𝒙(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛)
𝑒(𝑛). (5.1) 

 

Writing the weight error as �̃�(𝑛) = 𝒉 − 𝒘(𝑛), (5.1) can be modified as 

 �̃�(𝑛 + 1) = �̃�(𝑛) − 𝜇
𝛀(𝑛)𝒙(𝑛)

𝜎𝑔𝑥
2

𝑒(𝑛), (5.2) 

 

where 𝜎𝑔𝑥
2 = 𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛). This update equation can be written for the 𝑖𝑡ℎ 

coefficient as, 

 ℎ̃𝑖(𝑛 + 1) = ℎ̃𝑖(𝑛) − 𝜇
𝜔𝑖(𝑛)𝑥𝑖(𝑛)

𝜎𝑔𝑥
2

𝑒(𝑛). (5.3) 

 

To provide faster convergence, the following inequality should be satisfied to prevent 

deviation of the filter coefficients from their optimal values, 

 |ℎ̃𝑖(𝑛 + 1)| < |ℎ̃𝑖(𝑛)|, (5.4) 

 
|ℎ̃𝑖(𝑛) − 𝜇

𝜔𝑖(𝑛)𝑥𝑖(𝑛)

𝜎𝑔𝑥
2

𝑒(𝑛)| < |ℎ̃𝑖(𝑛)|. 
(5.5) 

 

Inequality (5.5) is satisfied only if the following condition is met, 

 |𝜇
𝜔𝑖(𝑛)𝑥𝑖(𝑛)

𝜎𝑔𝑥
2

𝑒(𝑛)| < 2|ℎ̃𝑖(𝑛)|, (5.6) 

 
𝜇𝜔𝑖(𝑛)

|𝑥𝑖(𝑛)||𝑒(𝑛)|

𝜎𝑔𝑥
2

< 2|ℎ̃𝑖(𝑛)|, 
(5.7) 

 
𝜇𝜔𝑖(𝑛) <

2|ℎ̃𝑖(𝑛)|𝜎𝑔𝑥
2

|𝑥𝑖(𝑛)||𝑒(𝑛)|
. 

(5.8) 

 

From (5.8), it can be concluded that 𝑖𝑡ℎ proportionate factor, 𝜔𝑖(𝑛), is proportional to 

weight error of 𝑖𝑡ℎ coefficient, i.e. 𝜔𝑖(𝑛) ∝ ℎ̃𝑖(𝑛). However, proportionate factors 
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cannot be directly estimated since weight error vector is not available. Therefore, it is 

necessary to obtain an estimate of �̃�(𝑛). For this purpose, again consider the update 

equation of the NLMS algorithm over several iterations, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇
𝒙(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
𝑒(𝑛), (5.9) 

 
𝒘(𝑛 + 2) = 𝒘(𝑛 + 1) + 𝜇

𝒙(𝑛 + 1)

𝒙𝑇(𝑛 + 1)𝒙(𝑛 + 1)
𝑒(𝑛 + 1), 

(5.10) 

 ⋮  

 𝒘(𝑛 + 𝑁) = 𝒘(𝑛 + 𝑁 − 1)

+ 𝜇
𝒙(𝑛 + 𝑁 − 1)

𝒙𝑇(𝑛 + 𝑁 − 1)𝒙(𝑛 + 𝑁 − 1)
𝑒(𝑛 + 𝑁 − 1). 

(5.11) 

 

Summation of 𝒘(𝑛 + 1) to 𝒘(𝑛 + 𝑁) gives, 

 

𝒘(𝑛 + 𝑁) = 𝒘(𝑛) + 𝜇 ∑
𝒙(𝑛 + 𝑗)

𝒙𝑇(𝑛 + 𝑗)𝒙(𝑛 + 𝑗)
𝑒(𝑛 + 𝑗)

𝑁−1

𝑗=0

. (5.12) 

 

Since 𝑒(𝑛) = 𝒙𝑇(𝑛)�̃�(𝑛) + 𝑣(𝑛) 5.12 becomes, 

 𝒘(𝑛 + 𝑁) − 𝒘(𝑛)

= 𝜇 ∑
𝒙(𝑛 + 𝑗)[𝒙𝑇(𝑛 + 𝑗)�̃�(𝑛 + 𝑗) + 𝑣(𝑛 + 𝑗)]

𝒙𝑇(𝑛 + 𝑗)𝒙(𝑛 + 𝑗)

𝑁−1

𝑗=0

. 
(5.13) 

 

Inspiring from law of large numbers, summation in (5.13) can be replaced by 

expectation operator and it is assumed that the step-size 𝜇 is chosen such that the 

change in �̃�(𝑛) is sufficiently small. Then (5.13) becomes, 

 
𝒘(𝑛 + 𝑁) − 𝒘(𝑛) ≈ 𝜇𝑁𝐸 {

𝒙[𝒙𝑇�̅�(𝑛 + 𝑁) + 𝑣]

𝒙𝑇𝒙
}. (5.14) 
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where �̅�(𝑘 + 𝑁) =
∑ �̃�(𝑘+𝑗)𝑁−1

𝑗=0

𝑁
 can be considered as the average coefficient error 

vector at time 𝑘 + 𝑁 assuming that convergence behavior of filter coefficients does 

not change significantly within 𝑁 samples. Since the background noise and the input 

signal are independent, the second term of the expectation becomes zero. Therefore, 

the following approximation is obtained, 

 
𝒘(𝑛 + 𝑁) − 𝒘(𝑛) ≈ 𝜇𝑁𝐸 {

𝒙𝒙𝑇�̅�(𝑛 + 𝑁)

𝒙𝑇𝒙
| 𝒘(𝑘)}. 

(5.15) 

 

By using the assumptions made in [4], (5.15) turns into 

 
𝒘(𝑛 + 𝑁) − 𝒘(𝑛) ≈

𝜇𝑁𝐸{𝒙𝒙𝑇}

𝐸{𝒙𝑇𝒙}
�̂�(𝑛 + 𝑁), 

(5.16) 

 
𝒘(𝑛 + 𝑁) − 𝒘(𝑛) ≈

𝜇𝑁𝑹𝑥

𝑁𝜎𝑥
2

�̂�(𝑛 + 𝑁). 
(5.17) 

 

where �̂�(𝑛 + 𝑵) = 𝐸{�̅�(𝑛 + 𝑁)}. If the signal is assumed to be white then 𝑹𝑥/𝜎𝑥
2 =

𝑰. Therefore, 𝑁-step coefficient difference becomes, 

 𝒘(𝑛 + 𝑁) − 𝒘(𝑛) ≈ 𝜇�̂�(𝑛 + 𝑁). (5.18) 

 

Consequently, it can be concluded that optimal proportionate factors can be calculated 

by using the difference of two instances of the filter coefficients. This difference in 

the discrete domain can be interpreted as an approximation of the time-averaged 

derivative in continuous domain. Therefore, time derivative of filter coefficients 

provides valuable information while calculating proportionate factors. Above analysis 

is carried out for white Gaussian input signals; however, it can be extended to APA 

for colored input. 
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5.3. Proposed Derivative Based Proportionate approach 

Proposed method for the calculation of proportionate factors is composed of two 

parts. As the name of the algorithm implies, the first part of the algorithm is related to 

the “derivatives” of the filter coefficients. The term “derivative” is used generically 

since adaptive filters operate in discrete time. “Derivatives” of filter coefficients are 

defined as 

 𝛻𝑙(𝑛) ≜ |𝑤𝑙(𝑛) − �̿�𝑙(𝑛)|, (5.19) 

 

where �̿�𝑙(𝑛) would be, 

 �̿�𝑙(𝑛) = 𝑤𝑙(𝑛 − 𝑇). (5.20) 

 

However, (5.20) requires excessive memory since 𝑇 × 𝐿 filter coefficients should be 

stored in the memory. Therefore, an alternative approach has been developed. This 

approach requires an intermediate step in order to ensure that the difference does not 

involve consecutive instances of 𝑤𝑙(𝑛) while calculating the derivative values. For 

this purpose, an intermediate element, �̅�(𝑛), is defined as 

 �̅�𝑙(𝑛) ≜ {
𝑤𝑙(𝑛)               𝑛 = 𝑘𝐿𝑚 
�̅�𝑙(𝑛 − 1)       𝑛 ≠ 𝑘𝐿𝑚 

, (5.21) 

 

where, 𝐿𝑚 is the update period which defines the minimum time in order to obtain 

reliable derivative approximates. In order separation between 𝑤𝑙(𝑛) and  �̿�𝑙(𝑛) to be 

large enough, �̅�𝑙(𝑛) is delayed by 𝐿𝑚 samples, �̿�𝑙(𝑛) = �̅�𝑙(𝑛 − 𝐿𝑚), so that 

reasonable difference values are obtained. Then, �̿�𝑙(𝑛) is defined as 

 �̿�𝑙(𝑛) ≜ {
�̅�𝑙(𝑛)               𝑛 = 𝑘𝐿𝑚 

�̿�𝑙(𝑛 − 1)       𝑛 ≠ 𝑘𝐿𝑚 
. (5.22) 
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Choice of 𝐿𝑚 is a crucial issue that needs to be discussed in-depth. There are two 

major factors that affect the choice of 𝐿𝑚 value. Firstly, it depends on the ‘inherent’ 

convergence speed of the algorithm, which, in turn, depends on the type of the input 

signal. As a rule of thumb, 𝐿𝑚 should be selected to be smaller than the ‘inherent’ 

convergence time. If 𝐿𝑚 is chosen to be comparable or larger than the ‘inherent’ 

convergence time then, effectively, derivative information as utilized in the proposed 

method will be redundant since the algorithm will converge before derivative 

information develops. Therefore, 𝐿𝑚 value, for example, for an AR(1) type input 

signal should be smaller than that for a speech type input signal. The reason behind 

the use of smaller 𝐿𝑚 value with AR(1) signals is that convergence is faster for AR(1) 

signals compared to speech input signals. If 𝐿𝑚 value for AR(1) input signal is chosen 

to be close to the 𝐿𝑚 value for a speech input then the algorithm may reach the steady 

state before the 𝐿𝑚
th iteration and; therefore, it becomes impossible to use derivative 

information during the convergence period. Therefore, the proposed algorithm shows 

almost the same performance as classical IPAPA for larger values of 𝐿𝑚. 

Consequently, it is reasonable to select relatively smaller 𝐿𝑚 values for AR(1) input 

signals. On the other hand, larger 𝐿𝑚 values can be selected for speech input signals 

to detect changes in the filter coefficients due to slow convergence of the adaptive 

filter.  

Secondly, in the case of speech input, convergence of the filter coefficients has a 

non-uniform profile. If convergence characteristics of an individual filter coefficient 

is examined, it can be observed that filter coefficients do not move to their optimal 

values smoothly for a speech input signal in contrast to that encountered with an AR(1) 

signal. Therefore, in order to eliminate the effect of the non-uniform convergence, a 

larger block size is used in the calculation of the derivative values. In addition, using 

delayed instances of the filter coefficients helps to combat the non-uniform 

convergence. Figure 5.2 shows the evolution of a specific filter coefficient for both 

speech and AR(1) inputs. It can be seen that in the AR(1) case the filter coefficient 

moves to its optimal value in a smooth way. On the other hand, the filter coefficient 
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value changes significantly slower and non-uniformly in the case of speech input 

signal. 

 

 

Figure 5.2 Coefficient evolutions for the same coefficient for AR(1) and Speech 

Input Signals for the proposed algorithm 

 

Another fundamental issue of the proposed algorithm is the calculation of the 

normalization value of the proportionate factors. Other algorithms normalize the 

proportionate factors by the 𝑙1-norm of the proportionate elements. In the proposed 

algorithm, a new normalization method is developed. This normalization method 

mainly aims to sense the changes in the filter coefficients in terms of their magnitudes. 

Therefore, the magnitude of the current filter estimate is a component of the 

normalization value which is effective in the steady-state. In the steady-state, changes 

in the filter coefficients are negligibly small compared to their magnitudes; hence, 

normalizing by the magnitude value, smaller step-sizes are assigned. Therefore, 

random fluctuations around the optimal value is avoided at the steady state. On the 

other hand, if a sudden change occurs in the filter coefficients than derivative values 

become comparable to magnitudes of the filter coefficients. Hence, in order to track 
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the changes in the filter coefficients, larger step-sizes are applied to coefficients, which 

are subject to significant changes. However, during the transient period, derivative 

values might be significantly larger than magnitudes, which may lead to impulsive 

variations in the proportionate factors. In order to avoid such variations of the 

proportionate factors, magnitudes of the derivative values are used for the calculation 

of the normalization value. This forms the second part of the normalization value. 

Consequently, normalization value is dominated by the different components for 

different stages. Overall normalization value, 𝛫𝑚𝑥(𝑛) is obtained as 

 𝑊𝑚𝑥(𝑛) = max{|𝑤0(𝑛)|, |𝑤1(𝑛)|, … , |𝑤𝐿−1(𝑛)|}, (5.23) 

 𝛻𝑚𝑥(𝑛) = max{𝛻0(𝑛), 𝛻1(𝑛), … , 𝛻𝐿−1(𝑛)}, (5.24) 

 𝛫𝑚𝑥(𝑛) = 𝑊𝑚𝑥(𝑛) + 𝛻𝑚𝑥(𝑛). (5.25) 

 

As a result, the proposed approach is integrated with the existing methods such that 

coefficient specific proportionate constant is calculated as 

 𝜔𝑙(𝑛) =
1 − 𝛼

2𝐿
+

(1 + 𝛼)𝛻𝑙(𝑛)

𝛫𝑚𝑥(𝑛) + 𝜖
. (5.26) 

 

Rest of the procedure is the same with that of other algorithms, which employ 

proportionating. Therefore, the matrix containing coefficient specific step-sizes is 

formed as, 𝛀(𝑛) = 𝑑𝑖𝑎𝑔[𝜔0(𝑛), 𝜔1(𝑛), … , 𝜔𝐿−1(𝑛)], then the adaptation equation 

becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇𝛀(𝑛)𝑿(𝑛)[𝑿𝑻(𝑛)𝛀(𝑛)𝑿(𝑛) + 𝛿𝑰]−1. (5.27) 

 

The proposed method can be extended as a sign algorithm as 

 
𝜔𝑙(𝑛) =

1 − 𝛼

2𝐿
+

(1 + 𝛼)𝛻𝑙(𝑛)

𝛻𝑚𝑥(𝑛) + ‖𝒘(𝑛)‖1 + 𝜖
. 

(5.28) 

 𝒙𝑑𝑠(𝑛) = 𝑿(𝑛)𝑠𝑔𝑛(𝒆(𝑛)), (5.29) 
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𝒘(𝑛 + 1) = 𝒘(𝑛) +

𝜇𝛀(𝑛)𝒙𝑑𝑠(𝑛)

√𝒙𝑑𝑠
𝑇 (𝑛)𝛀(𝑛)𝒙𝑑𝑠(𝑛) + 𝛿

. 
(5.30) 

 

Normalization value of the sign extension of the proposed approach is not the same as 

that of DB-IPAPA since smoother proportionate factors is needed in case of sign 

algorithms. However, (5.25) results in larger proportionate factors yielding significant 

changes in the filter coefficients which is undesired due to minimum disturbance 

constraint. Hence, proportionate factors are calculated as in (5.28) in order not to harm 

disturbance constraint. Normalization value in (5.28) provides smoother proportionate 

factors since 𝑙1 norm of the filter coefficients is much larger than the difference values 

which gives smaller proportionate factors. However, 𝛻𝑚𝑥(𝑛) terms is kept in order to 

sustain stability in case of sudden changes of the impulse response. 

Steady-state analysis of proportionate type algorithms is a difficult task. However, 

under some assumptions Duttweiler [11] has shown that the steady state misalignment 

of the PNLMS is the same as that of the NLMS algorithm. Nevertheless, without any 

assumption it can be observed that steady state misalignment of the proposed 

algorithm will be the same as the NLMS\APA since derivative values become zero at 

the steady state. Therefore, update equation of the proposed algorithm becomes 

identical to the update equation of NLMS\APA at the steady state. 

Computational complexity of the DB-IPAPA is an important aspect to be 

considered. It can be noted that the proposed algorithm does not require additional 

matrix operations such as summation or multiplication. It only requires additional 2𝐿 

comparisons compared to that of IPAPA. Therefore, it can be stated that DB-IPAPA 

achieves better performance without introducing extra computational burden. 

Similarly, proposed DB-IPAPSA requires additional 𝐿 comparisons and 𝐿 summations 

compared to IPAPSA. 
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5.4. Geometrical Interpretation of the Proportionate Type Algorithms 

In section 2.8, geometrical interpretations for NLMS and APA are presented. In 

this section, proportionate approach will be investigated from a geometrical 

perspective as well. By using this perspective, convergence behavior of the 

proportionate type algorithms will be discussed and compared with the conventional 

algorithms. In the geometrical analysis, an impulse response with length 2 will be 

considered for simplicity. This impulse response is sparse such that one of the 

coefficient is zero and the other one is non zero, 𝒉 = [ℎ0 0]𝑇. Assume that at the 𝑛𝑡ℎ 

iteration, the coefficients of the adaptive filter have values 𝒘(𝑛) = [𝑤0(𝑛), 0]. Let 

�̂�(n + 1) be the NLMS update of the 𝒘(𝑛) and �̌�(𝑛 + 1) be the DB-IPNLMS update 

of 𝒘(𝑛). Proportionate matrix of DB-IPNLMS is  𝛀(𝑛) = [
𝜔0 0
0 𝜔1

], where 𝜔0 ≫

𝜔1 and for any proportionate type NLMS (Pt-NLMS) 𝜔0 ≈ 1 and 𝜔1 ≈ 0. 

Furthermore, squares of the proportionate factors can be approximated as 𝜔0
2 ≈ 𝜔0 

and 𝜔1
2 ≈ 𝜔1. Firstly, consider the NLMS update of 𝒘(𝑛), 

 �̂�(n + 1) = 𝒘(𝑛) +
𝜇𝒙(𝑛)

𝒙𝑇(𝑛)𝒙(𝑛)
𝑒(𝑛). (5.31) 

 

Equation (5.31) can be written for each coefficient individually as 

 �̂�0(n + 1) = 𝑤0(𝑛) +
𝜇𝑥(𝑛)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛), (5.32) 

 

 �̂�1(n + 1) = 𝑤1(𝑛) +
𝜇𝑥(𝑛 − 1)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛). (5.33) 

 

Now, consider the update equation of the Pt-NLMS of 𝒘(𝑛), 

 �̌�(n + 1) = 𝒘(𝑛) +
𝜇𝛀(𝑛)𝒙(𝑛)

𝒙𝑇(𝑛)𝛀(𝑛)𝒙(𝑛)
𝑒(𝑛). (5.34) 
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Equation (5.34) can also be written for each coefficient individually, 

 �̌�0(n + 1) = 𝑤0(𝑛) +
𝜇ω0𝑥(𝑛)

ω0𝑥2(𝑛) + ω1𝑥2(𝑛 − 1)
𝑒(𝑛), (5.35) 

 
�̌�1(n + 1) = 𝑤1(𝑛) +

𝜇ω1𝑥(𝑛 − 1)

ω0𝑥2(𝑛) + ω1𝑥2(𝑛 − 1)
𝑒(𝑛). 

(5.36) 

 

By considering (5.34) and assumptions on 𝜔0 and 𝜔1, a modified input vector can be 

defined as 

 
�̌�(n) = (

ω0𝑥0(𝑛)

ω1𝑥1(𝑛)
). 

(5.37) 

   

Remember that NLMS algorithm is a Newton’s method based algorithm in which 

direction of the gradient is rotated by the autocorrelation matrix of the input signal. 

However, NLMS involves the approximation of the correlation matrices, which causes 

errors in the gradient calculation. Therefore, it can be stated that DB-IPNLMS and 

other proportionate type algorithms are developed to correct the correlation matrices 

such that adaptive filter follows a more direct path, which improves convergence rate 

as desired in the Newton’s method by modifying the input matrix as in (5.37). Update 

process of both NLMS and DB-NLMS can be seen from Figure 5.3.  
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Figure 5.3 Geometrical illustration of update process of NLMS and DB-IPNLMS 

 

Geometrically, misalignment is defined as the distance between the estimated and 

optimal filter coefficients. Therefore, misalignments of DB-IPNLMS and NLMS can 

be compared by considering the triangle with corners �̂�(n + 1), �̌�(n + 1) and 𝒉. It 

can be stated that if this triangle is an obtuse-angled triangle then misalignment at next 

iteration of DB-IPNLMS is guaranteed to be less than that of NLMS. Therefore, it 

should be shown that the following inequalities are satisfied to have obtuse-angled 

triangle,  

 |�̌�0(n + 1)| ≥ |�̂�0(n + 1)|, (5.38) 

 |�̌�1(n + 1)| ≥ |�̂�1(n + 1)|. (5.39) 

 

In order to state that (5.38) holds, it should be shown that 
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|

𝜇ω0𝑥(𝑛)

ω0𝑥2(𝑛) + ω1𝑥2(𝑛 − 1)
𝑒(𝑛)| ≥ |

𝜇𝑥(𝑛)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛)|. 

(5.40) 

 

Left-hand side of the inequality (5.40) can be modified by using the assumption of 

ω0 ≫ ω1 on the proportionate factors as 

 
|
𝜇ω0𝑥(𝑛)

ω0𝑥2(𝑛)
𝑒(𝑛)| ≥ |

𝜇𝑥(𝑛)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛)|, 

(5.41) 

 
|
𝜇𝑥(𝑛)

𝑥2(𝑛)
𝑒(𝑛)| ≥ |

𝜇𝑥(𝑛)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛)|. 

(5.42) 

 

It is clear that this inequality holds since denominator of the left-hand side of the 

inequality is always greater than or equal to that of the right-hand side. 

Then same procedure is carried out to show that (5.39) also holds, 

 
|

𝜇ω1𝑥(𝑛 − 1)

ω0𝑥2(𝑛) + ω1𝑥2(𝑛 − 1)
𝑒(𝑛)| ≤ |

𝜇𝑥(𝑛 − 1)

𝑥2(𝑛) + 𝑥2(𝑛 − 1)
𝑒(𝑛)|. 

(5.43) 

 

Since ω1 ≈ 0, (5.43) is obvious. Therefore, it can be claimed that (5.39) holds. 

Consequently, by utilizing the fact that the triangle is an obtuse-angled triangle, 

following inequality can be written, 

 ‖𝒉 − �̌�(𝑛 + 1)‖2 ≤ ‖𝒉 − �̂�(𝑛 + 1)‖2. (5.44) 

 

Therefore, proportionate type algorithms achieve smaller misalignment than 

conventional algorithm at each step, which makes the convergence of the 

proportionate type algorithms faster. Consequently, by multiplying input vector with 

𝛀 matrix, input vector is rotated such that gradient vector points to the optimal value. 
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CHAPTER 6 

 

SIMULATION RESULTS 

 

6.1. Introduction 

In this chapter, simulation results are investigated in detail to evaluate the 

performances of the proposed algorithms. Misalignment curves of DB-IPAPA, 

IPAPA, D-IPAPA and GC-IPAPA are presented to compare the convergence 

performances of the algorithms for different configurations. Algorithms are tested for 

different values of the parameters step-size (𝜇), control parameter (𝛼) and projection 

order (𝑀). Misalignment curves are obtained for different types of input signals and 

SNR values. Proposed DB-IPAPSA is compared to the other proportionate type sign 

algorithms. Effects of double-talk interference on the convergence of both sign and 

non-sign algorithms are investigated. Lastly, time evolutions of assigned proportionate 

factors of the proposed approach are compared to those of the other approaches in 

order to understand the reasons of the performance differences. 

 

6.2. Configuration of the Simulation Environment 

In order the comparisons to be fair, simulation environment has to be constructed 

carefully. Selection of the simulation parameters is of crucial importance in evaluating 

the performances of the algorithms. Therefore, parameter values, which have been 

used in the literature, are also used in this thesis. The length of the unknown impulse 

response is taken as 512 as in [11], [12], [13], [19], [32]. Impulse responses with 

different sparseness of our choice and also from ITU-T G168 Recommendation [33] 

(padded with zeros) are considered in the simulations.  

Selection of the step-size value is another important issue, which should be 

discussed. In order to select the optimal step-size, performances of all algorithms for 

different step-sizes are investigated. According to the obtained misalignment curves 
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or different step-size values, it is concluded that step-size, 𝜇 = 0.2, provides a good 

performance in terms of both convergence rate and steady-state misalignment for non-

sign algorithms. This is consistent with the simulation results presented in [12], [13], 

[32]. In addition, as stated in [11], same step-size value yields same steady-state 

misalignment. Therefore, it is necessary to compare proportionate type algorithms for 

the same step-size value. However, in the case of sign algorithms, smaller step-sizes 

are selected when obtaining the misalignment curves of these algorithms as used in 

[21], [25]. Misalignment curves for different step-sizes are plotted in the subsequent 

sections to justify the selection of the step-size parameter. 

 

Selection of the projection order is straightforward depending on the statistical 

properties of the input signal. As the correlation between input samples increases, 

projection order should also increase in order to improve convergence performance 

[10]. Therefore, projection order is selected for white Gaussian, AR(1), speech signals 

as 𝑀 = 1, 𝑀 = 2, 𝑀 = 8 respectively. Control parameter, 𝛼, is selected to be 0 as 

used in the most of the studies [13], [19], [32]. However, in order to clarify this 

selection, performances of the algorithms are obtained for different 𝛼 values.  

 

Choice of block period 𝐿𝑚 is also verified based on the simulation results presented 

in the subsequent section. Regularization parameter, 𝛿, is selected as 𝛿 =
10𝜎𝑥

2

𝐿
, where 

𝜎𝑥
2 is the input signal power [34] and the other Regularization parameter, 𝜖 is set to 

0.01 for all cases as in [13], [15],[19], [33]. 

 

6.3. Performance Comparisons of DB-IPNLMS and DB-IPAPA 

Firstly, performance of the proposed DB-IPAPA is compared with that of IPAPA, 

D-IPAPA and GC-IPAPA with projection order 𝑀 = 1. Input signal of the channel is 

a white Gaussian signal. A white Gaussian signal as the background noise is added to 

the output of the channel at an SNR of 30 𝑑𝐵.  
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Other parameters are selected as 𝜇 = 0.2 and 𝛼 = 0 for all algorithms. Block period 

is selected as 𝐿𝑚 = 𝐿 for the proposed algorithm and 𝑃 = 2𝐿 for D-IPNLMS.  

 

6.3.1. Effect of Sparseness of the Channel 

Results for the identification of a channel with sparseness 𝜉 = 0.7961 is shown in 

Figure 6.1. It can be observed that proposed algorithm has the fastest convergence 

speed and both D-IPNLMS and GC-IPNLMS outperforms IPNLMS algorithm. 

Moreover, all algorithms have the same steady-state misalignment as stated in section 

5.3.  

In order to observe the effect of the channel sparseness, simulation results for 

channel with different sparseness levels are also shown. For this purpose, results for a 

channel with sparseness 𝜉 = 0.8896 are also obtained which are shown in Figure 6.2. 

In Figure 6.2, it is observed that as the impulse response becomes sparser superiority 

of the DB-IPNLMS becomes more apparent. However, it is also observed that GC-

IPNLMS has the performance degradation problem for such highly sparse channel.  

Proposed algorithm is also compared with the other algorithms for a dispersive 

channel with sparseness 𝜉 = 0.5719. In this case, the results of NLMS are also 

included in order to evaluate the performance of the proportionate type algorithms for 

dispersive channels. Results for the dispersive channel are shown in Figure 6.3. It can 

be seen that the convergence speeds of all proportionate type algorithms decrease and 

get close to each other since sparse channel assumption is no longer valid. Hence, it 

cannot be used to improve the convergence speed. However, proportionate type 

algorithms continue to have faster convergence speed compared to NLMS algorithm. 
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Figure 6.1 Performance comparison of proportionate type algorithms for 𝜉 =
0.7961 

 

 

 

Figure 6.2 Performance comparison of proportionate type algorithms for 𝜉 =
0.8896 
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Figure 6.3 Performance comparison of proportionate type algorithms for 𝜉 =
0.5719 

 

6.3.2. Colored Input Signal Case 

Proposed algorithm is compared to the other algorithms with colored input signals. 

For this purpose, a sparse channel, with 𝜉 = 0.8174, is identified when the input signal 

is modeled as an AR (1) signal with a pole at 0.8. Since the input signal samples are 

correlated, algorithms with a higher projection order, 𝑀 = 2, are considered. Proposed 

DB-IPAPA is compared with IPAPA, D-IPAPA and GC-IPAPA and the results are 

shown in Figure 6.4, which demonstrate the superior convergence performance of the 

proposed algorithm.  
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Figure 6.4 Performance comparison of proportionate type algorithms for 𝑀 = 2 

 

6.3.3. Tests for Network Echo Channels from ITU-T Standards 

Channels, which have been identified so far have been randomly generated; 

however, it is more suitable to use channel models specified by the standards. 

Therefore, algorithms are also compared for echo path models described by ITU-T 

G68 Recommendations [33]. These echo path models are recommended to be used in 

tests of network echo cancellation applications on 4-wire telephone networks. In 

Figure 6.5 and Figure 6.6, performance comparisons of the proportionate type 

algorithms are shown for the echo path models EPM-1 and EPM-2 when the input 

signal is an AR (1) signal. Sparseness of EPM-1 is 𝜉 = 0.8970 and that of EPM-2 is 

𝜉 = 0.8031. In all cases, proposed algorithm has superior performance compared to 

other algorithms. In addition to achieving faster convergence, proposed method 

reduces the gradient noise at the steady state since derivative terms become zero. This 

yields assignment of smaller steady-state step-sizes to the coefficients so that smaller 

fluctuations occur around the optimal value.  
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Figure 6.5 Performance comparison of proportionate type algorithms for EPM-1 

 

 

 

Figure 6.6 Performance comparison of proportionate type algorithms for EPM-2 

 

In addition to an AR (1) signal, performances of these algorithms are also compared 

for speech input signal. Speech signal with sampling rate 8 𝑘𝐻𝑧 is used in the 
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simulations. Since speech signal samples are highly correlated and non-stationary, a 

higher projection order, 𝑀 = 8, is used and block period is selected as 𝐿𝑚 = 4𝐿 for 

the proposed algorithm and 𝑃 = 8𝐿 for D-IPAPA. Figure 6.7 and Figure 6.8 show the 

results for EPM-1 and EPM-2 respectively. Proposed algorithm outperforms the other 

algorithms with speech input signal since it is able to detect the sudden changes in the 

filter coefficients, which occur due to non-stationary nature of the speech signal. 

 

 

Figure 6.7 Performance comparison of proportionate type algorithms for EPM-1 for 

Speech Input 
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Figure 6.8 Performance comparison of proportionate type algorithms for EPM-2 for 

Speech Input 

 

6.3.4. Tracking Performance 

Tracking performance of the adaptive filtering algorithms is an important 

evaluation item since, as encountered in mobile channels, a sudden change in the echo 

path may occur during the adaptation. It is desired for the adaptive filter to recover as 

fast as possible. Hence, tracking performance of the proposed algorithm is investigated 

in the simulations. For this purpose, echo path is changed suddenly during the 

adaptation. Proposed algorithm also provides reasonable tracking ability compared to 

other proportionate type algorithms as shown in Figure 6.9. When the echo path 

changes suddenly, distance between current and optimal filter coefficients increases. 

This leads to fast variations in the filter coefficients yielding higher derivative values. 

Therefore, incorporation of derivative values in the formation of proportionate factors 

contributes to faster recovery of the filter after sudden changes. However, 

conventional IPAPA provide fast initial tracking since they store the information 

regarding the locations of the non-zero filter coefficients. Consequently, faster 

tracking is achieved by employing DB-IPAPA adaptation rule. 
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Figure 6.9 Tracking performance comparison of proportionate type algorithms 

 

6.3.5. Effect of Step-size Parameter 

Performance of the proposed algorithm is evaluated for different step-size values 

in order to experimentally determine the optimal value of the step-size. Figure 6.10 

shows the misalignment curves of DB-IPAPA with a projection order of 𝑀 = 2 for 

EPM-1 channel. An AR (1) signal is applied to the channel. Step-size is changed from 

𝜇 = 0.1 to 𝜇 = 0.5 and it can be seen that as the step-size increases convergence speed 

increases; however, steady-state misalignment also increases. Therefore, one should 

make a trade-off between convergence rate and steady state misalignment. From 

Figure 6.10, it is observed that after 𝜇 = 0.2, increase in the convergence rate 

decreases, on the other hand, steady-state misalignment continues to increase of a 

higher rate. Hence, step-size value, 𝜇 = 0.2, is selected to be used in the simulations.  

Moreover, results for larger step-sizes near the limit of divergence are also 

obtained. Figure 6.11 shows the results for step-sizes 𝜇 = 1.8 to 𝜇 = 2.2. Effect of 

step-size on the performance of IPAPA is also shown in Figure 6.12 to clarify the 

selection of step-size for classical proportionate algorithms. It can be seen that step-

size 𝜇 = 0.2 provides satisfactory steady-state and convergence speed performance. 
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Figure 6.10 Misalignment curves of DB-IPAPA for different step-sizes 𝜇 = 0.1 

to 𝜇 = 0.5 

 

 

Figure 6.11 Misalignment curves of DB-IPAPA for different step-sizes 𝜇 = 1.8 to 

𝜇 = 2.2 
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Figure 6.12 Misalignment curves of IPAPA for different step-sizes 𝜇 = 0.1 to 

𝜇 = 0.5 

 

 

6.3.6. Effect of 𝜶 Parameter 

Effects of the choice of the control variable 𝛼 is investigated. Actually, 𝛼 is a 

predetermined parameter depending on the sparseness of the impulse response. 

However, it is more reasonable to determine a value for 𝛼 which yields considerably 

good performance for all cases. Therefore, a moderately sparse impulse response, 

EPM-2, is identified for this purpose and results are shown in Figure 6.13. It can be 

seen that performance of the DB-IPAPA is not significantly affected by the choice of 

𝛼; hence, it is reasonable to select 𝛼 as 0.  Furthermore, different 𝛼 values are 

considered for IPAPA algorithm. In Figure 6.14, it can be seen that performance of 

IPAPA clearly depends on the selection of 𝛼. Furthermore, it can be observed that 𝛼 =

0 provides best performance compared to other 𝛼 values. 
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Figure 6.13 Misalignment curves of DB-IPAPA for different 𝛼 values 

 

Figure 6.14 Misalignment curves of IPAPA for different 𝛼 values 
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6.3.7. Effect of the Projection Order 

Projection order is another important parameter whose effects should be studied. 

The effects of the projection order can be observed effectively for speech input signals. 

It is expected that as the projection order increases convergence speed of the proposed 

algorithm improves. However, increase in the projection order causes higher steady-

state misalignment after 𝑀 = 8. Consequently, projection order is selected as 𝑀 = 8 

for simulations. This convergence behavior for different M values, which is shown in 

Figure 6.15, is expected as stated in Section 2.6. 

 

Figure 6.15 Misalignment curves of the proposed algorithm for different projection 

order 
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6.3.8. Effect of SNR 

Misalignment curves of the DB-IPAPA is also obtained for different SNR values. 

Figure 6.16 shows that as SNR decreases steady state misalignment decreases. This 

result is consistent with misalignment expressions in [29], [11] which linearly depends 

on the noise power as 

 𝜎𝑟
2 ≈ 𝜎𝑣

2
𝜇

2 − 𝜇
, (6.1) 

 

where 𝜎𝑟
2 is the steady state misalignment and 𝜎𝑣

2 is the noise power. 

 In addition to this analysis, DB-IPAPA is compared with the other algorithms for 

low SNR case. Figure 6.17 demonstrate the results for 𝑆𝑁𝑅 = 15 𝑑𝐵 and it can be 

seen that the superiority of the proposed algorithm remains. However, it can also be 

concluded that performances of the algorithms get close to each other compared to 

that of higher SNR case. 

 

Figure 6.16 Misalignment curves of the proposed algorithm for different SNR 

values 
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Figure 6.17 Performance comparison of the proportionate type algorithms for 

SNR=15 dB case 

 

6.3.9. Selection of 𝑳𝒎 value 

In Section 5.3, it is stated that selection of 𝐿𝑚 is an important issue. Therefore, 

performance of the proposed DB-IPAPA is evaluated for different 𝐿𝑚 values. For this 

purpose both AR(1) and speech input signals are considered since choice of 𝐿𝑚 value 

depends on the spectral characteristics of the input signal. Figure 6.18 shows 

misalignment curves for different 𝐿𝑚 values for AR(1) input signal. Figure 6.18 

illustrates that as the 𝐿𝑚 increases performance of DB-IPAPA degrades since 

derivative information becomes redundant. Consequently, 𝐿𝑚 is selected as 𝐿 for 

AR(1) input signal. Figure 6.19 shows misalignment curves for different 𝐿𝑚 values 

for speech input signal. In this case, higher 𝐿𝑚values provide superior performance up 

to a certain value. After that value performance degradation starts. According to Figure 

6.19, 𝐿𝑚 is selected as 4𝐿 for speech input signal. 
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Figure 6.18 Performance of DB-IPAPA for different 𝐿𝑚values for AR(1) input 

signal 

 

 

Figure 6.19 Performance of DB-IPAPA for different 𝐿𝑚values for speech input 

signal 
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6.3.10. Misalignment Performances of Proportionate Type Sign Algorithms 

Simulations are also conducted for the cases where non-Gaussian interference 

dominates the background noise. Firstly, impulsive noise generated by a BG process 

is added to the system such that SIR is −30 𝑑𝐵 and input signal of the channel is 

generated by AR (1) process. In addition to impulsive noise, a white Gaussian noise 

is added to the system to have 30 𝑑𝐵 SNR. The same channel configuration is used as 

previous analysis, where channel is EPM-2. Performance of the proposed DB-IPAPSA 

is compared to that of PAPSA and IPAPSA algorithms. Step-sizes for the sign 

algorithms are selected as 𝜇 = 0.004 for PAPSA and IPAPSA, 𝜇 = 0.04 for DB-

IPAPSA, projection order is 𝑀 = 2 and block period for DB-IPAPSA is 𝐿𝑚 = 𝐿. The 

other parameters are kept the same as previous analysis. As can be seen from Figure 

6.20, DB-IPAPSA provides faster convergence compared to other algorithms.  

 

Figure 6.20 Performance comparisons of proportionate type sign algorithms for 

SIR=-30 dB 

 

6.3.11. Selection of Step-size Parameter for DB-IPAPSA 

Selection of the step-size parameter is also an important issue. Hence, effect of step-

size parameter should also be studied in case of sign algorithms. Therefore, 
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misalignment curves of DB-IPAPSA obtained as shown in Figure 6.21. As in the case 

of DB-IPAPA, steady-state misalignment is proportional to step-size value. According 

to simulation results, step-size is selected as 𝜇 = 0.04 for simulations since it provides 

considerably good steady-state and convergence performance. 

 

Figure 6.21 Misalignment curves for DB-IPAPSA for different step-sizes 

 

Then, simulations are also conducted for the speech input signal. Since speech 

signal is used, a higher projection order, 𝑀 = 8, is employed and block period for DB-

IPAPSA is selected as 𝐿𝑚 = 4𝐿. In this case, instead of impulsive noise generated by 

the BG process, an actual speech signal is used as the double talk interference. Signal 

power to double talk power ratio is 6 𝑑𝐵 and double talk is active during samples of 

[10,20] × 104. Figure 6.22 depicts that proposed algorithm provides robustness 

against double talk since there is no divergence trend in the misalignment curve. It is 

observed that misalignment of the proposed algorithm stays still during the double 

talk. In order to understand the benefit of the sign algorithms for double talk situations, 

Figure 6.23 shows the performances of non-sign algorithms when the desired signal is 

corrupted by double talk. It is clear that there is a divergence tendency of non-sign 

algorithms; therefore, they cannot be considered as robust in the presence of double 

talk. 
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Figure 6.22 Performance comparisons of proportionate type sign algorithms when 

double talk occurs 

 

 

Figure 6.23 Performance comparisons of sign and non-sign algorithms when double 

talk occurs 
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6.3.12. Comparisons of Time Evolutions of Proportionate Factors of DB-IPAPA, 

D-IPAPA and IPAPA 

In order to understand the properties of the proposed method, which makes it 

superior than the previously proposed algorithm, behavior of the proportionate factors 

should be investigated. Hence, proportionate factors of the proposed method are 

compared with that of IPAPA and D-IPAPA for both major minor coefficients. 

Figure 6.24 shows the proportionate factors of DB-IPAPA and IPAPA for the same 

major coefficient. According to this figure, proportionate factor of DB-IPAPA rapidly 

increases to its maximum value and keeps that value for a while and decreases 

gradually. At the steady state, proportionate factor becomes zero. On the other hand, 

proportionate factor of IPAPA increases slower and after reaching steady-state it keeps 

its large value. Since proportionate factor of DB-IPAPA increases faster, DB-IPAPA 

acts to exploit the sparseness of the channels earlier. Therefore, convergence speeds 

of major filter coefficients are boosted in an earlier period of the adaptation. In 

addition, when a coefficient gets close to its optimal value, DB-IPAPA assigns smaller 

coefficient specific step-size to a major coefficient so that larger step-sizes can be 

assigned to the coefficients which are still far away from their optimal values. 

Consequently, convergence speeds of the smaller coefficients increase which yields 

improvement in the overall convergence speed. In addition, fluctuations around the 

optimal point are minimized due to assignment of smaller step-sizes at the steady-

state. This reduces the misalignment variance at the steady state. 
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Figure 6.24 Proportionate factors of DB-IPAPA and IPAPA for a major coefficient 

 

Figure 6.25 shows the proportionate factors of DB-IPAPA and IPAPA for the same 

minor coefficient. It is observed that proportionate factor of DB-IPAPA increases 

significantly at the beginning of the adaptation since there is no prior information 

regarding the locations of the major coefficients. Hence, at the initial stage DB-IPAPA 

behaves like conventional APA which causes higher derivative terms for minor 

coefficients. However, this stage lasts for only a short time interval so that it does not 

significantly damage the adaptation performance. In addition, even if the proportionate 

factor of DB-IPAPA for a minor coefficient is larger than that of IPAPA algorithm, it 

is still quite smaller than the proportionate factor for the major coefficient. Hence, 

effect of larger proportionate factor for minor coefficient at the initial stage is 

compensated. 



89 
 

 

Figure 6.25 Proportionate factors of DB-IPAPA and IPAPA for a minor coefficient 

 

Figure 6.26 shows the proportionate factors of DB-IPAPA and D-IPAPA for the 

same major coefficient. Expressions of DB-IPAPA and D-IPAPA may be similar; 

however, there are several crucial differences which makes the proposed algorithm 

much superior. Firstly, proportionate factor of D-IPAPA becomes zero at the 

beginning of each block and start to increase again as can be seen in Figure 6.26. This 

problem is solved by using the delayed instances of the filter coefficient such that the 

values of proportionate factors decrease gradually. This gradual decreasing profile is 

similar to the derivative profile of the filter coefficient. If the evolution of the filter 

coefficient is considered, there is a fast initial change in the filter coefficient, however, 

change becomes slower as the filter coefficient gets close to its optimal value, which 

is accompanied by smaller derivative terms. Consequently, by using more suitable 

derivative values, superior convergence performance is achieved by the proposed 

algorithm. Secondly, effect of the normalization technique of the proposed method can 

be observed from Figure 6.26. Since derivative terms become significantly smaller 
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than the magnitude of the filter coefficients, proportionate factors of the DB-IPAPA 

is smaller than that of D-IPAPA at the steady-state. Therefore, steady state 

misalignment variance of the proposed DB-IPAPA becomes smaller. 

 

Figure 6.26 Proportionate factors of DB-IPAPA and D-IPAPA for a major 

coefficient 

 

Figure 6.27 shows the proportionate factors of DB-IPAPA and D-IPAPA for the 

same minor coefficient. It is clear that proportionate factor of D-IPAPA is noisy and 

constantly larger compared to that of DB-IPAPA. This significantly degrades the 

performance of the D-IPAPA; therefore, performance of the D-IPAPA may be even 

worse than IPAPA for some cases. 
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Figure 6.27 Proportionate factors of DB-IPAPA and D-IPAPA for a minor 

coefficient 

 

6.3.13. A Benchmark for the Proportionate Type Algorithms 

Lastly, a benchmark for the proportionate type adaptive filtering algorithms is 

introduced. In this case, it assumed that locations of the major coefficients are known 

and proportionate factors are assigned as 1 for these coefficients. For zero coefficients, 

proportionate factors are assigned as 0. Consequently, a limit for the convergence 

performance for the proportionate type algorithms is obtained. In Figure 6.28, 

performance of the proposed algorithm is compared with the benchmark. It can be 

seen that performance of the proposed algorithms is closed to the benchmark during 

the initial stage. However, as the adaptive filter gets close to its steady-state, its 

convergence speed decreases. Therefore, performance of the proposed algorithm can 

be improved further by speeding up the later stages of the adaptation. 
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Figure 6.28 Misalignment curves of the proposed algorithm and the benchmark 
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CHAPTER 7  

 

CONCLUSION AND FUTURE WORK 

 

In this thesis, proportionate type algorithms for sparse impulse response 

identification have been studied. Some important proportionate type algorithms, 

PAPA, IPAPA, D-IPAPA and GC-IPAPA, were investigated in detail. In addition, 

sign algorithms, which are robust against impulsive noise were introduced.  Sign 

extensions of the proportionate type algorithms namely, PAPSA and IPAPSA, were 

discussed. Lastly a “derivative” based proportionate approach was proposed in order 

to achieve faster convergence speed compared to the other proportionate type 

algorithms. 

Development of the proposed method for sparse system identification was 

discussed in detail. Firstly, the intuitive idea behind the proposed “derivative” based 

approach was discussed. It was concluded that derivative information is an indicator 

of the distance between the current and optimal filter coefficients. This statement was 

also shown to be correct mathematically. Later, proposed method was applied to 

proportionate type algorithms to obtain DB-IPAPA and DB-IPAPSA. Finally, 

geometrical interpretation for the proportionate type algorithms was presented in order 

to geometrically show the improvement in the convergence rate. 

Performances of the proposed algorithms were compared with that of previously 

proposed algorithms. Convergence rate and steady-state misalignment were 

considered while evaluating the performance of the algorithms. Simulations results 

have shown that proposed approach has better performance among all since it 

converges faster than the other algorithms. Performance comparisons were conducted 

for different configurations such as different sparseness levels, different input signal 

spectral characteristics, different SNR level, different parameter values etc.  

For highly sparse channels, proposed algorithm improves the convergence speed 

significantly. However, as the channel impulse response becomes dispersive 
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superiority of the proposed algorithm is not apparent as in the sparse channel case. In 

the case of speech input signal, proposed algorithm achieves significantly better 

performance compared to other proportionate type algorithms. Therefore, proposed 

algorithm can be considered as an attractive choice for the echo cancellation problems. 

Proposed algorithm also provides considerably good tracking performance. However, 

conventional proportionate type algorithms have better initial tracking response since 

they store the information about the structure of the impulse response. Although, 

conventional algorithms have faster initial tracking speed, proposed algorithm catches 

up these algorithms in the later stages of the adaptation. In addition, sign extension of 

the proposed approach has faster convergence speed compared to other proportionate 

type sign algorithms. Robustness of the proposed method to double talk situations is 

shown in the simulations. Therefore, proposed approach can be employed in the AEC 

applications which may involve double talk interference. Consequently, proposed 

algorithms can be used in echo cancellation applications in order to identify unknown 

echo path in a fast manner. 

As a future work, adaptive selection of the block period, 𝐿𝑚 can be studied to 

improve the convergence performance of the proposed algorithm further. Also, new 

methods for the calculation of the proportionate factors can be developed. 

Incorporation of the conventional proportionate type methods and the proposed 

method may provide better performance. Moreover, proposed algorithm can be 

applied to different applications such as equalization of sparse communication 

channels and non-linear sparse system identification. 
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APPENDICES 

 

Appendix A 

 

STABILITY OF STEEPEST DESCENT 

 

 

Update process of steepest descent algorithms is composed of a feedback loop; 

therefore, it may suffer from instability [4]. In order to provide a stable operation of 

steepest descent algorithms, step-size parameter should be chosen carefully since it 

controls the update gain of the system. Stability of the algorithms is ensured if the 

magnitude of each coefficient error monotonically decreases. Consider the update 

equation of steepest descent algorithm, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝜇[𝒓𝑥𝑦 − 𝑹𝑥𝒘(𝑛)], (A.1) 

 

then coefficient error vector at time 𝑛 + 1 becomes, 

 �̃�(𝑛 + 1) = �̃�(𝑛) − 𝜇[𝑹𝑥𝒉 − 𝑹𝑥𝒘(𝑛)], (A.2) 

 �̃�(𝑛 + 1) = �̃�(𝑛) − 𝜇𝑹𝑥�̃�(𝑛), (A.3) 

 �̃�(𝑛 + 1) = [𝑰 − 𝜇𝑹𝑥]�̃�(𝑛). (A.4) 

 

If input is colored input then 𝑹𝑥 can be decomposed as, 

 𝑹𝑥 = 𝑸𝜦𝑸𝐻, (A.5) 

  
 

which is called eigenvalue decomposition and 𝑸 is the unitary matrix, 𝑸𝑸𝐻 = 𝑰 and 

𝜦 is diagonal matrix whose diagonal elements are the eigenvalues of 𝑹𝑥. Then (A.4) 

can be written as, 
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 �̃�(𝑛 + 1) = [𝑰 − 𝜇𝑸𝜦𝑸𝐻]�̃�(𝑛), (A.6) 

 �̃�(𝑛 + 1) = [𝑸𝑸𝐻 − 𝜇𝑸𝜦𝑸𝐻]�̃�(𝑛), (A.7) 

 𝑸𝐻�̃�(𝑛 + 1) = [𝑰 − 𝜇𝜦]𝑸𝐻�̃�(𝑛). (A.8) 

 

It can be observed from (A.8) that �̃� is subject to a coordinate transformation. 

Transformed coefficient error vector is defined as, 𝒗(𝑛) = 𝑸𝐻�̃�(𝑛 + 1), then (A.8) 

becomes, 

 𝒗(𝑛 + 1) = [𝑰 − 𝜇𝜦]𝒗(𝑛). (A.9) 

 

Since 𝚲 is a diagonal matrix (A.9) can be written for 𝑘𝑡ℎ coefficient, 

 𝑣𝑘(𝑛 + 1) = [1 − 𝜇𝜆𝑘]𝑣𝑘(𝑛), (A.10) 

 

𝜆𝑘 is the 𝑘𝑡ℎ eigenvalue of 𝑹𝑥. If the initial value of the error of 𝑘𝑡ℎ coefficient is 

𝑣𝑘(0), 𝑣𝑘(𝑛 + 1) can be written in terms of 𝑣𝑘(0) as, 

 𝑣𝑘(𝑛 + 1) = [1 − 𝜇𝜆𝑘]𝑛𝑣𝑘(0). (A.11) 

 

It is clear that in order to ensure the stability 1 − 𝜇𝜆𝑘 term should satisfy, 

 −1 < 1 − 𝜇𝜆𝑘 < 1, (A.12) 

   

which yields, 

 0 < 𝜇 <
2

𝜆𝑘
, (A.13) 

 

Since eigenvalues of 𝑹𝑥 are real and positive. (A.13) is valid only for a specific 

coefficient. These result can be generalized as, 
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 0 < 𝜇 <
2

𝜆𝑚𝑎𝑥
, (A.14) 

 

where 𝜆𝑚𝑎𝑥 is the maximum of the eigenvalues. 
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Appendix B 

 

DERIVATION OF AFFINE PROJECTION ALGORITHM 

 

Constraint optimization problem for APA is defined as, 

 
min

𝒘(𝑛+1)
‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2

2 

subject to 𝒚(𝑛) = 𝑿𝑇(𝑛)𝒘(𝑛 + 1). 
(B.1) 

 

This problem can be solved by using Langrange multipliers method. Hence, following 

cost function can be defined, 

 𝐽 = ‖𝒘(𝑛 + 1) − 𝒘(𝑛)‖2
2 + 𝝀[𝒚(𝑛) − 𝑿𝑇(𝑛)𝒘(𝑛 + 1)], (B.2) 

where, 𝝀 is the 𝐿 × 𝑀 Lagrange multiplier matrix. (B.2) can be minimized by taking 

derivative and equating to zero, 

 
𝜕𝐽

𝜕𝒘(𝑛 + 1)
= 0 (B.3) 

 
𝜕𝐽

𝜕𝒘(𝑛 + 1)
= 2(𝒘(𝑛 + 1) − 𝒘(𝑛)) − 𝑿(𝑛)𝝀𝑇 = 0. (B.4) 

 

Then update equation becomes, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) +
1

2
𝑿(𝑛)𝝀𝑇 . (B.5) 

 

In order to find 𝝀, (B.5) is inserted to constraint in (B.1), 

 𝒚(𝑛) − 𝑿𝑇(𝑛)𝒘(𝑛) +
1

2
𝑿𝑇(𝑛)𝑿(𝑛)𝝀𝑇 = 𝟎, (B.6) 
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 𝒆(𝑛) −
1

2
𝑿𝑇(𝑛)𝑿(𝑛)𝝀𝑇 = 𝟎, (B.7) 

 𝝀𝑇 = 2[𝑿𝑇(𝑛)𝑿(𝑛)]−1𝒆(𝑛). (B.8) 

 

Overall update equation is obtained by replacing the 𝝀𝑇 in (B.5) with the expression 

in (B.8), 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝑿(𝑛)[𝑿𝑇(𝑛)𝑿(𝑛)]−1𝒆(𝑛), (B.9) 

 

in order to avoid singularity in the matrix inversion a small constant is added to the 

matrix whose inverse is taken, 

 𝒘(𝑛 + 1) = 𝒘(𝑛) + 𝑿(𝑛)[𝑿𝑇(𝑛)𝑿(𝑛) + 𝛿𝑰]−1𝒆(𝑛). (B.10) 

 

 




