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ABSTRACT

LYNXTUN

Okan, Galip Oral

M.S., Department of Cyber Security

Supervisor : Prof. Dr. Nazife Baykal

Co-Supervisor : Dr. Cihangir Tezcan

September 2018, 134 pages

Lynxtun is a VPN solution that allows the creation of a secure tunnel between two

hosts over an insecure network. The Lynxtun Protocol transmits fully encrypted data-

grams with a fixed size and at a fixed interval using UDP/IP. Our custom authenticated

encryption scheme uses the AES-256 block cipher and modified version of GCM

mode in order to decrypt and authenticate datagrams efficiently. It ensures traffic

flow confidentiality by maintaining a constant bitrate that does not depend on under-

lying communication. In this sense, it provides unobservable communication. This

constitutes a difficult engineering problem. The protocol design allows implementa-

tions to fulfill this requirement. We analyze factors that influence realtime behavior

and propose solutions to mitigate this. We developed a full implementation for the

GNU/Linux operating system in the C programming language. Our implementation

succeeds in performing dispatch operations at the correct time, with a tolerance on

the order of microseconds, as we have verified empirically.

Keywords: Network Security, Unobservable Communication, TFC, VPN
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ÖZ

LYNXTUN

Okan, Galip Oral

Yüksek Lisans, Siber Güvenlik Bölümü

Tez Yöneticisi : Prof. Dr. Nazife Baykal

Ortak Tez Yöneticisi : Dr. Cihangir Tezcan

Eylül 2018 , 134 sayfa

Lynxtun güvenilir olmayan bir ağ ile bağlı iki bilgisayar arasında güvenli bir tünel

kurulmasını sağlayan bir VPN çözümüdür. Lynxtun Protokolü, sabit boyutta ve tama-

men şifreli paketlerin UDP/IP kullanılarak sabit aralıklarla gönderilmesini öngörür.

Şifreleme ve doğrulama için kendi geliştirdiğimiz AES-256 blok şifresi ve modifiye

edilmiş GCM moduna dayalı bir yöntem kullanılır. Veri aktarım hızını asıl haberleş-

meden bağımsız olarak sabit tutarak trafik akışı gizliliği sağlanır. Bu açıdan, gözlem-

lenemez haberleşmeye olanak sağlar. Bu zor bir mühendislik problemidir. Protokol,

uygulamaların bu şartı fiilen sağlayabilmelerini mümkün kılacak şekilde tasarlanmış-

tır. Tespit ettiğimiz gerçek zamanlı işleyişi etkileyebilecek unsurlara yönelik çeşitli

çözüm önerileri geliştirdik. Protokolün tam kapsamlı bir uygulamasını C dilini kul-

lanarak GNU/Linux işletim sistemi için geliştirdik. Deneysel olarak doğruladığımız

üzere, uygulamamız mikrosaniyeler düzeyindeki bir hata payı ile gönderim işlemle-

rini doğru zamanlarda gerçekleştirmektedir.

Anahtar Kelimeler: Ağ Güvenliği, Gözlemlenemez Haberleşme, TFC, VPN
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

1.1.1 Security Implications of Information Technology

Whole of human civilization is rooted in our ability to create, acquire, record, process
and share information. Throughout history, important technological developments in
this area have often led to significant progress, transforming human society. The very
ability to use language to encode and communicate information is among the defin-
ing characteristics of our species. Despite the fact that interconnected programmable
digital computers are a very recent development, the magnitude of their impact has
been such that they have become an integral part of society. The internet has become
the preeminent medium through which communication takes place. As a result, we
are able to create, acquire, record, process and share information with unprecedented
effectiveness, and at a scale that is incomparable to what was possible for most of our
history. Within a very short timespan, the advent of computer technology has trans-
formed society thoroughly. These changes appear to be irreversible, as it is highly
unlikely that society will revert to what it was like before computers were introduced.
On the other hand, the transformation appears to be far from complete. Technology
continues to progress at an astounding pace, making the situation highly dynamic and
volatile. Our society is faced with the challenge of understanding the ramifications of
such sudden and all-encompassing change. This is a difficult task indeed, and can at
times require thinking about the assumptions that underly human society. One such
assumption is that secrets can be kept.

While it is true that human society thrives on our ability to use information, it also
requires that access to information can be restricted in compliance with our social
constructs. We require confidentiality of personal, commercial and national secrets.
Information technology gives us tools that make information more accessible. While
we derive great benefit from this, it also makes it more difficult to prevent unautho-
rized parties from gaining access to confidential information.

1.1.2 Secure Network Communication

In order to discuss secure communication, we first have to develop an understanding
of what communication is. At the highest level, we can define communication to be

1



the conveyance of information. For the purposes of our analysis, we require a more
precise definition. In his seminal paper, Shannon [50] presents a mathematical the-
ory of communication. He states that "the fundamental problem of communication is
that of reproducing at one point either exactly or approximately a message selected
at another point." The semantics of the message are irrelevant. All that is important
is that the message is selected from a set of possible messages. The problem is con-
veying this selection to the other side. This can be done, for instance, by encoding
the message in a signal that is carried by some physical phenomenon, such as elec-
tromagnetic waves. This definition of communication provides a precise definition of
what information is. In the context of digital computers, information is represented as
binary strings. Text can be represented as binary data by using an encoding scheme
such as ASCII or UTF-8. Analogue signals that make up images and sounds can be
sampled to produce a binary representation. While text, images and sound recordings
are different in terms of semantics, this has no relevance to the problem of network
communication which is concerned with the transmission of binary strings.

In this study, we focus on network communication that is based on packet switching.
In particular, we focus on IP networks. The IP protocol defines the mechanisms
through which a packet of data can be sent from one network host to another. Each IP
packet contains a header that specifies the origin and the destination, the amount of
data contained in the packet, in addition to various other fields that can influence how
the packet is to be routed across the network. Each packet travels from the source
to the destination, and can traverse several hops (intermediary network hosts) along
the way. Each of the hosts along the path share a physical link, such as an ethernet
connection or a WiFi connection. An attacker with access to any of the network hops
or the links are able to observe the packets. Unless a network is completely isolated,
it must be assumed to be insecure. This is especially true in the case of the internet.

When we consider IP communication, we see that it can be modeled as a stochastic
process Xi, where

Xi = (Ξi, ζi, τi, ηi) (1.1)

Xi is the information associated with the i’th IP packet, with Ξi being the message,
ζi its size, τi the time at which it was observed on the network and ηi its direction,
which is its origin and destination. When we consider point-to-point communication
between two hosts, ηi reduces to a single bit of information. These are the observable
features of network traffic. Additional features can be derived, such as the average
data transmission rate over a period of time, the total amount of data exchanged over a
period of time, and the burstiness of traffic. Imperfections due to the network (delays,
corruption, etc.) can be expected to lead to slight variations in observed features,
depending on where and when the observation is made. Other than this, what is seen
by the intended recipient and any observer on the network is equivalent.

The message Ξi is, by and large, the most important part. It is the reason why com-
munication takes place at all. People talk when they have something to say, because
they have something to say. Otherwise, there is silence. Similarly, computers send
packets when they have data to send. It is of the utmost importance that an attacker
cannot see Ξi if the communication is to be confidential. But how can this be achieved

2



in light of what we have said in the previous paragraph? How is it that two people
look at the same data, and yet only one of them is able to understand it? The answer
to this question is provided by cryptography.

Virtually all secure network protocols rely on cryptography to solve this problem.
Diffie and Hellman [23] say that "the best known cryptographic problem is that of
privacy: preventing the unauthorized extraction of information from communications
over an insecure channel." This is precisely the problem as we have presented it. In
an encrypted network protocol, the plaintext message Ξi is replaced by the ciphertext
message EK(Ξi), where E is an encryption algorithm and K is the encryption key.
The cipher and the encryption key combined define a mathematical transformation
that maps a plaintext message to a corresponding ciphertext message. This trans-
formation has an inverse, DK′ , where D is the decryption algorithm and K ′ is the
decryption key1. The crucial aspect is that is should be computationally infeasible to
derive the decryption transformation without prior knowledge of the decryption key,
which is assumed to have been delivered in advance only to the intended recipient
over a secure channel. Moreover, ciphers are designed to hide inherent redundancy
in plaintext through confusion and diffusion, so that ciphertext is statistically indis-
tinguishable from randomly generated data. This way, EK(Ξi) that is observable on
the network appears to have been randomly generated and only the intended recipient
who has access to the correct decryption key can recover the hidden message Ξi.

While the use of cryptography is necessary to secure network communication, it is
not sufficient. The problem is due to the fact that network communication is made up
of a sequence of related messages. Encrypting message content, that is Ξi, ensures
that the message is confidential when treated in isolation. However, this has no effect
on observable patterns in network traffic that arise from the relationships between
multiple messages and that can be used to make inferences about the content of the
messages. These patterns manifest themselves in generated timing, size and direction
information.

Sending a message necessarily generates corresponding values for the auxiliary fea-
tures of time, size and direction. However, by virtue of the fact that these are also val-
ues selected from a possible set, they can be considered to be messages themselves.
These auxiliary messages can encode semantic information that is complementary to
the content of the messages. We now present two examples to show how this can be
the case.

For our first example, suppose that Alice is in love with Bob, as of yet unbeknownst
to him. Alice sends Bob a text message, professing her love. The words "I Love You."
are sent using an instant messaging app on Alice’s smartphone. As is customary of
such apps, Alice receives a notification when Bob sees the message. Bob now knows.
How will he respond? Alice starts to experience increasing feelings of restlessness
with every passing second. "Why is he taking so long to answer?" she wonders.
Perhaps it is because he is looking for the right words to inform her that her love is
unreciprocated without causing her too much agony. Surely the impossibility of such
a task could account for a prolonged delay. This delay carries semantic information,
that is related to the content of Bob’s response.

1 In a symmetric cipher, the decryption key is the same as the encryption key.
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As a second example, consider Shakespeare’s A Midsummer Night’s Dream. The
verses represent messages that characters send to one another. While the precise times
at which these messages are sent is a matter of artistic delivery, the fixed ordering of
these impose timing constraints. The script also specifies who is speaking. If we
were to redact all of this information by having a single actor recite the entire script,
shuffling the order of the lines at random, the play would become unintelligible. The
content of each of the individual messages remains intact, yet it is no longer possible
to understand what is being communicated. In this example, we see that auxiliary
features can encode semantic information pertaining to the communication that is not
explicitly available from the messages themselves.

Similar examples also exist in the field of network communication. Various types of
network activity will result in distinct timing patterns that will be reflected in net-
work traces. An attacker can then use this information to make inferences about the
confidential content even if the packets are encrypted. For example, a shell session
over SSH transmits data at each keystroke. The timestamps of recorded packets will
mirror the typing behavior. Streaming videos will be characterized by significant data
flow in one direction while the buffer is being filled that is later throttled down. Web
browsing exhibits spurious increases in data rate when the user clicks a new link and
the page is being loaded.

As we have said, securing messages in isolation by encrypting them is not tantamount
to securing the entire communication. This is a well known problem in the field of
network communication. The problem is that of Traffic Flow Confidentiality (TFC).
TFC countermeasures depend on traffic shaping. Essentially, traffic shaping involves
explicitly specifying when data is sent independently from the underlying communi-
cation. There are two main ways in which this could be done. First, data that is ready
to be sent may be delayed until a scheduled time in the future. Second, if a dispatch
is due but there is not enough actual data to send, dummy data should be generated to
make up for the deficiency.

1.1.3 The Cost of Security

In optimization theory, it is a well known fact that introducing an additional con-
straint can never improve the optimal solution. Security requirements are constraints.
Therefore, implementing security countermeasures will always incur some amount of
overhead. The generated overhead can involve additional computational or network
resources being used, or latencies being introduced. For a given usecase, there is a
limit to the amount of overhead that can be justified.

The use of encryption is no exception to this principle. Additional work has to be
done in order to encrypt and decrypt the data, which takes time and uses computa-
tional resources. This is likely to have been a contributing factor to the reluctance of
certain popular websites from switching to HTTPS, in spite of the fact that they han-
dle sensitive personal data. The additional overhead is detrimental to user experience.
However, the importance of encrypting network communication has become widely
acknowledged. It is important to note that there is an ongoing trend such that regula-
tory legislation is being produced that requires services that handle sensitive data to
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be compliant with various information security standards, and the use of encryption
is a central theme.

It is more difficult to justify TFC countermeasures. Unlike the case with encryption,
data obtained from auxiliary features like timing information can only be used to
compromise confidentiality in an indirect way. Such attacks are often described as
side-channel attacks. Delaying data that is ready to be sent increases network latency,
and interactive network communication requires latency to be as low as possible.
Sending dummy data increases the use of network resources, which are a precious
commodity. A constant bitrate (CBR) protocol is one that sends data at a fixed rate.

Our assessment is that the amount of overhead generated to provide full TFC is not
justified in most usecases. As such, most secure network protocols do not strive for
full TFC. However, the fact that this is not required in most usecases does not imply
that there are no usecases where it is required.

It is misleading to think of overhead as a waste of resources. If overhead is necessary
to ensure security, then the resources are not wasted. They are the cost of security.
Whether or not the cost is justified depends on the security requirements. But there is
also the issue of whether the solution is actually viable.

Network bandwidth availability is much greater now than in the past. People regularly
use the internet to watch HD quality movies, which is a leisure activity. Doing so
requires gigabytes worth of data to be transferred. Let us assume a typist writes at
a rate of 5 keystrokes per second. Using ASCII encoding, this comes out to 5 bytes
per second and about 422 KB per day. Suppose we were to implement, perfectly, an
encrypted, constant bit-rate (CBR) system that can transmit 5 bytes per seconds. If an
operator types in a message, it gets encapsulated in the data that is sent. Otherwise,
dummy data is sent. Since data is being sent every second, the maximum latency
introduced is one second. Accounting for overhead due to packet headers and matters
related to encryption, we can safely assume that dedicating a bandwidth of several
megabytes per day bidirectionally will be sufficient to implement such a system. This
is negligible when compared to watching a single movie per day.

A CBR protocol can also be used to watch a movie. Specifically, if the CBR matches
the bandwidth necessary to stream the movie, then there will be no overhead. The
overhead arises when there is no actual communication. Running a prolonged CBR
connection that allows streaming movies through it is similar to streaming movies all
day, everyday.

1.1.4 Research Objectives

Our primary research objective is to develop a system that can be used to secure
network communication over an insecure network, with the level of security being
analogous to what is possible through the use of cryptography in the context of static
data. Furthermore, we want the system to run on a general purpose operating system
running on general purpose hardware.

To interpret this requirement, let us elaborate on what we mean by the level of secu-
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rity provided by cryptography in the context of static data. Suppose that there is a
4 GB thumb drive. This data is static, as in it does not change over time. Further-
more, no additional data is generated in the future. Performing statistical analysis
on the data indicates that it is indistinguishable from randomly generated data. The
aim of cryptography is to ensure that ciphertext is statistically indistinguishable from
randomly generated data. Unless we have prior knowledge of the correct decryption
transformation to use, all we can say is that the data might be ciphertext. In other
words, not only are we able to make any inferences to the content of the plaintext,
we cannot even determine whether or not there is a hidden plaintext at all. However,
there is one thing that we can say with certainty. If the data is ciphertext, then the
corresponding plaintext cannot contain more information (entropy-wise) then can be
encoded in 4 GB. In other words, one cannot take a single bit and claim that it is an
encrypted version of the collected works of Shakespeare.

As we have discussed, encrypting packets does not lead to the same level of secu-
rity in the context of network communication. Unlike the example above, network
communication is dynamic, and patterns in observable features of network traffic that
are not protected by encryption can be used to compromise security. Achieving the
same level of security requires regulating all observable features of the generated net-
work traffic. This requires using cryptography to protect individual packets, and also
ensuring Traffic Flow Confidentiality.

A stronger statement of our security requirement is to say that the communication
should be unobservable. This is analogous to what we have said about not being
able to definitively identify ciphertext. Of course, an attacker will always be able to
observe the generated network traffic. However, none of the observable features of
this traffic should be correlated with the properties of actual communication that may
be taking place. In other words, the network traffic should be statistically invariant to
the underlying communication. An attacker should not be able to reliably determine
whether or not actual communication is taking place. The only thing that an attacker
should be able to say with certainty is the maximum amount of data that may have
been exchanged within a certain period of time.

We have one additional security requirement that does not have a counterpart in the
static case. The communication should be undisturbed. In essence, it is a matter
of protecting the ongoing communication from external influences, intentional and
malicious, or otherwise. This involves the authentication of data (which also relies on
cryptographic methods) and resilience against data injection and modification attacks,
replay attacks, and denial of service attacks.

In the field of security research, one has to accept that there is no such thing as ab-
solute security. On the other hand, absolute security is not necessary. Information
security requirements should not be considered independently of how they relate to
the lives of actual humans. The fact that we have a functioning society is proof that
we have thus far been successful in attaining sufficiently high levels of security for
most purposes. On the other hand, there are certain usecases that require stricter secu-
rity requirements. While perfect security is unattainable, that is no reason not to aim
for it. It is by aiming for perfect security that we can come as close to it as possible.
Also, such an endeavour allows us to discover what keeps us from achieving it and
further our understanding of security in general.
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In this study, we set upon such an endeavor. We set out to answer the following
question. How should one design a network protocol, that is intended to be imple-
mented as a userspace application running on a general-purpose operating system and
hardware, so that it comes as close to perfect security as possible. Our answer to this
question is Lynxtun, and is the subject of this thesis. We take a holistic approach, cov-
ering all aspects of the system including the protocol specification, implementation
and system configuration.

1.2 Proposed Solution

In this thesis we present Lynxtun, which is a VPN solution that is designed to run as
a userspace application on a general-purpose operating system and hardware while
striving to achieve the highest level of security possible. It allows the creation of a
secure point-to-point tunnel between two network hosts over an insecure network. It
does this through the use of strong cryptography and the regulation of all observable
features of network traffic in order to achieve traffic flow confidentiality. For this
purpose, it adopts the constant bit-rate (CBR) approach.

The Lynxtun Protocol defines the protocol between the two endpoints of a Lynxtun
tunnel. At its core, it is an encrypted layer-3 encapsulation protocol that encapsulates
IP datagrams in fully encrypted UDP datagrams. We develop our own cryptographic
protocol that is based on the AES-256 block cipher and a modified version of the
Galois Counter Mode (GCM). Authentication is due to the use of GCM’s authenti-
cated encryption. The Lynxtun Protocol also includes countermeasures against replay
attacks, and is designed to be resilient against denial-of-service attacks.

Encrypted Lynxtun datagrams have a fixed size. Their payload includes encapsulated
IPv4 packets and padding. These datagrams are dispatched at fixed intervals. The
size of the datagrams and the interval at which they are dispatched are configuration
parameters for the tunnel.

The Lynxtun Protocol is not connection oriented and does not provide reliable deliv-
ery. There is a logical separation of the processing of incoming data and outgoing
data. There is no concept of request and response. A Lynxtun endpoint will continue
to send datagrams whether or not it receives any data in return. It might even be the
case that the tunnel peer goes offline. This will not effect the dispatch process of the
other. The initial dispatch is functionally identical to all subsequent ones. There is
no initial negotiation or connection-establishment phase. The only shared state that
exists in the system is the shared configuration parameters that the user must provide
when starting the endpoint. This includes a shared AES-256 secret key in addition
to the dispatch interval and size parameters mentioned above. This information has
to be shared between the two hosts in a secure way prior to the establishment of the
tunnel. This issue is outside of the scope of the Lynxtun Protocol.

A Lynxtun implementation interfaces with the network stack of the host operating
system using a TUN virtual network interface driver, which is available for all major
operating systems. Since the TUN device represents a logical network interface, it
is configurable through standard routing and net device configuration methods. This
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makes it very easy to adapt Lynxtun to different usecases, such as using the tunnel
peer as the default network gateway or creating a secure network with multiple hosts,
where each link consists of a separate Lynxtun tunnel.

We implement the Lynxtun Protocol for the GNU/Linux operating system using the
C programming language. Our implementation has no external dependencies besides
the glibc library and the POSIX multi-threading library (pthreads).

The security of Lynxtun depends on regulating all observable features of generated
network traffic so that these cannot be exploited by an attacker to make inferences re-
garding the underlying communication. This requires fully encrypting Lynxtun data-
grams and regulating the dispatch process in order to provide TFC. The first issue
is fully addressed by the Lynxtun Protocol specification. The latter is ultimately de-
pends on the runtime behavior of the Lynxtun implementation.

In the sense that the Lynxtun protocol requires fixed-sized datagrams to be dispatched
at fixed intervals, it is theoretically secure in terms of TFC. However, achieving this
in practice is a difficult engineering problem; particularly since we are implementing
Lynxtun as a userspace application. The interarrival times of datagrams as observed
by an attacker will always be variable due to numerous factors. These include factors
due to both the Lynxtun implementation itself, its complex interaction with the oper-
ating system and the underlying hardware, the statistical properties of the underlying
communication, factors due to physical hardware devices, and other processes run-
ning on the same system. One should not assume that the observed variability does
not depend on tunnel activity. Our goal is to understand the mechanisms through
which such a relationship can manifest and identify ways of hiding such a relation-
ship. We want, to the extent possible, that the observed variability remains invariant
to tunnel activity. If the mean interarrival packet time increases when the tunnel is
active (in the sense that it is being used to carry actual data), security is compromised.
If the mean instead decreases, security is compromised. If the maximum deviation
from the mean, when measured over a duration of five seconds, is consistently dif-
ferent depending on whether the tunnel is active or not, security is compromised. An
ideal solution would ensure that the observed dispatch process is statistically indis-
tinguishable when the tunnel is active and when it is idle.

This problem is similar to that of designing a cryptosystem, where ciphertext should
be statistically indistinguishable from randomly generated data. One of the main
goals cryptanalysis is to devise distinguishers that are able to identify ciphertext as
such. It is not possible to design a cipher such that it is guaranteed that such a distin-
guisher can never be found. Similarly, it is not possible to assert that tunnel activity
can never be detected. Actually, the problem is more difficult in our case. Cipher
definitions are static, whereas Lynxtun’s dispatch process is extremely dynamic. The
environment in which Lynxtun runs is neither stationary nor ergodic.

As we said earlier, absolute security is neither attainable nor required in practice.
There is some amount of tolerance when it comes to how successfully we are able
to regulate the dispatch process. Consider the data observed by an attacker on the
network. The network itself is not pristine, and therefore there will always be some
random noise. There will also be noise due to unrelated work taking place on the same
operating system and hardware. The smaller the signal-to-noise ratio is, the more
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difficult it will be for an attacker to exploit it. Deviations less than a microsecond will
be extremely difficult to detect in the presence of noise on the order of milliseconds.

But how do we differentiate noise? The guiding principle that we use, which we refer
to as the burden of knowledge principle, is as follows:

Definition 1.2.1 (Burden of Knowledge Principle). Let C be a datum. Any given
entity E will either have access to C, or it will not. Any information that is generated
either intentionally or inadvertently by E can have been influenced by C if and only
if E has access to C. Therefore, if E has access to C, which we can also describe
by saying that E knows C, then it is possible for information being propagated by
E to be related to C. If C is confidential information, then E carries the burden of
knowledge, and must ensure that the information it generates does not accidentally
divulge information related to C. Conversely, any information generated by an entity
that does not know C has no bearing on its confidentiality.

All variability due to components that have access to the confidential communication
is suspect. First and foremost, we have the actual Lynxtun implementation. We also
have the kernel that does work on behalf of it through system calls, and the hardware
on which these are being executed. We also have the actual data sources that are re-
sponsible for the IP packets that are encapsulated. These can be userspace processes
running on the same host, or network interfaces. Then, there is activity belonging to
tasks that have no particular reason to access the confidential information, but are nev-
ertheless capable of doing so. These include other userspace processes running under
the same user, all processes running with superuser privileges, and kernel threads.
According to the burden of knowledge principle, one cannot inadvertently divulge
what one does not know. therefore, we regard variability due to unrelated sources as
noise.

The organization of this thesis is as follows. In Chapter 2, we provide an overview of
related work. In Chapter 3, we present the Lynxtun Protocol specification. In Chap-
ter 4, we discuss issues related to the Linux kernel and underlying hardware that are
pertinent to achieving deterministic runtime behavior in a userspace process. This
discussion serves two purposes. First, establishes the groundwork for our implemen-
tation of Lynxtun for the GNU/Linux operating system, and it provides insight into
how a system should be configured in order to improve security. In Chapter 5, we dis-
cuss our Lynxtun implementation for the GNU/Linux operating system. In Chapter
6, we analyze empirical data collected using our Lynxtun implementation in relation
to our research objectives. Finally, we present our concluding remarks in Chapter 7.
Here, we discuss our contributions and identify future work to be done.
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CHAPTER 2

RELATED WORK

2.1 Statistical Traffic Analysis

In the introduction, we stated that Lynxtun must regulate the dispatch process in or-
der to prevent attackers from using publicly observable information due to the packet
interarrival times and packet sizes in order to undermine the confidentiality of the
communication. Attacks that target this vector are known as statistical traffic anal-
ysis attacks. The term for the associated security requirement is Traffic Flow Confi-
dentiality (TFC), and is identified as such in the ISO/OSI Security Architecture (ISO
7498-2) standard [33]. The standard states that TFC mechanisms can be implemented
at the physical, network or application layer.

TFC mechanisms are based on traffic shaping that can generate additional dummy
data, introduce artificial delays, or make use of fragmentation to control the statistical
characteristics of the resulting traffic flow. The aim can either be to hide the traffic
flow signature, or to masquerade the traffic by imitating the signature of a different
type of network activity. The simplest approach to hiding traffic flow is the constant
bit-rate (CBR) approach.

There is extensive literature on both statistical traffic analysis attacks and TFC coun-
termeasures.

Traffic classification, application fingerprinting, protocol fingerprinting and version
detection are related issues. These seek to identify the type of network activity taking
place based on observed network traffic. The features used include but are not limited
to traffic flow features. Other features include using known fixed ports and plain-
text meta-data fields. Information can be collected passively by recording network
traffic, or actively by sending packets in order to prompt the generation of additional
network traffic. Ferreira et al. present a recent meta-analysis of feature selection ap-
proaches for traffic analysis [27]. The nmap network scanner [4] includes functional-
ity for detecting the type and version of the operating system and software being used.
Bernaille et al. [12] show that it is possible to identify which application is being used
based on observing the size and direction of the first few packets of a TCP connec-
tion. Roughan et al. [47] present a framework for using statistical signatures that take
into account features such as interactive use or the presence of bulk-data transport
to classify network traffic. Williams et al. [56] evaluate various machine learning
algorithms for automated network application identification. Another related study is
due to Nguyen and Armitage, who do a survey of machine learning methods used in
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traffic classification [40]. Sen et al. [49] propose methods for detecting Peer-to-Peer
(P2P) application signatures.

A particular type of traffic analysis attempts to identify which network hosts are com-
municating with each other. This is important in terms of privacy. If an attacker is
able to observe the traffic close to two hosts, if they are able to match a message that
is being sent to a message that is being received, then they can infer that the two hosts
are communicating. Raymond presents an overview of this problem by presenting
various attacks and countermeasures [45].

An important field within statistical traffic analysis is website fingerprinting. This
aims to detect which website a user is visiting. Wang et al. present various attacks
and countermeasures against website fingerprinting [55]. They use ML classifiers
and claim to be able to reliably identify which of the monitored 100 websites has
been visited. The countermeasures they propose are intended to be efficient in terms
of generated overhead. They make the claim that they are able to provide provable
defense. Other countermeasures are due to Liberatore and Levine [37] who use a
Pad-to-MTU strategy and Wright et al. [57] who propose Traffic Morphing that seeks
to reduce overhead by optimally modifying packets in real-time to match a differ-
ent, but behaviorally compatible type of network activity. A paper by Dyer et al.
[26] analyzes various types of so-called efficient website fingerprinting countermea-
sures and conclude that they are ineffective. They go on to claim that an effective
website fingerprinting countermeasure may not be viable. They present a CBR-type
countermeasure that they have named BuFLO that, similar to our approach, transmits
fixed-sized data at fixed intervals. However, data transmission stops when a website
is fully loaded. The authors are able to use this fact to compromise BuFLO too. An
improved implementation called CS-BuFLO is due to Cai et al. [16].

An early notable attack is due to Song et al. [52], who observed that the SSH protocol
pads data to an eight-byte boundary and the dispatch events coincide with keystrokes.
They show how this can be used to reveal sensitive information including passwords.
Canvel et al. [17] show how the TLS padding scheme can be exploited to intercept
passwords.

The Linux kernel provides traffic control mechanisms that can be used to perform
traffic shaping [15]. These are more suitable for Quality-of-Service (QoS) purposes,
but can also be used to mitigate traffic analysis attacks.

There are a class of proposed solutions, including SkypeMorph, StegoTorus and Cen-
sorSpoofer that aim to achieve unobservable communication through imitation. That
is, they try to shape the traffic to make it appear to be consistent with the signature
associated by a target protocol. SkypeMorph attempts to imitate Skype, StegoTorus
imitates VoIP and CensorSpoofer imitates Skype or HTTP. The important work due
to Houmansadr et al.[32] shows that each of these fail in practise. This paper is es-
pecially relevant to our research. The authors provide compelling arguments for why
unobservability through imitation is fundamentally flawed. They argue that, in or-
der to effectively imitate a target protocol, it is not sufficient to follow the protocol
standard, but rather to mimic every and all idiosyncrasies of a specific version of a
specific implementation of that protocol. This is an insurmountable challenge. A
single discrepancy is sufficient to detect the impersonator. They point to the work
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of Gianvecchio and Wang [30] which uses an entropy-based approach for detecting
covert channels and suggest that such an approach would always be able to detect
slight differences in entropy between traffic generated by a genuine application and
an imitator.

Secure network protocols tend to have features that enable TFC mechanisms to be
built upon them. For example, in TLS 1.1 [22] it is stated that padding up to 255
bytes can be added, provided it is a multiple of the block cipher’s block length. IPsec
has more explicit support, in the form of TFC Padding. RFC-4303 (IPsec ESP) [28]
includes the following discussion:

"Dummy packets can be inserted at random intervals to mask the ab-
sence of actual traffic. One can also "shape" the actual traffic to match
some distribution to which dummy traffic is added as dictated by the dis-
tribution parameters. As with the packet length padding facility for Traf-
fic Flow Security (TFS), the most secure approach would be to generate
dummy packets at whatever rate is needed to maintain a constant rate on
an SA. If packets are all the same size, then the SA presents the appear-
ance of a constant bit rate data stream, analogous to what a link crypto
would offer at layer 1 or 2. However, this is unlikely to be practical in
many contexts, e.g., when there are multiple SAs active, because it would
imply reduc- ing the allowed bandwidth for a site, based on the number
of SAs, and that would undermine the benefits of packet switching. Im-
plementations SHOULD provide controls to enable local administrators
to manage the generation of dummy packets for TFC purposes."

2.2 VPN Solutions

In a phyical network, the network topology is determined by actual network inter-
faces installed on hosts, and the physical connections between them. A Virtual Pri-
vate Network (VPN) allows using this physical topology to define alternative logical
topologies. For example hosts that are located far away, connected to different net-
works with many hops in between and form a virtual network that, from the point of
view of higher network layers, appear to be neighbours in a single local area network.

Historically, there has been a distinction between public networks and private net-
works, and VPNs are sometimes described as a way to simulate a private network
over a public network [48]. For example, intranets belonging to a company are con-
sidered to be private. A VPN can be used to create a logical connection between a
host on a separate network, through a so-called public network, so that the user would
be able to access private resources available on the private network.

The technical foundation of building a VPN is encapsulation of network layer packets
or link layer frames. This is also referred to as tunneling. Following the OSI model
[60], these are referred to as Layer 3 and Layer 2 VPNs respectively.

The carrier protocol can be anything. It can be a network layer protocol, a transport
layer protocol like UDP or TCP, or even an application layer protocol like SSH or
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even DNS [41] or HTTP [20].

A pair of Layer 2 VPN endpoints act like a switch, and a pair of Layer 3 VPN end-
points act like a router. We can think of the situation like this. Both switches and
routers have multiple ports on them. The device itself is a closed box, and there is
some internal wiring that somehow connects these ports inside the device, so that data
going in one port can come out of the other. What we do is cut the device in half.
One of the ports is attached to one network, and the other is attached to some other
network which can be far away. Then, we replace the internal wiring that used to
connect the two sides of the device with the internet. The entire internet is now the
internal wiring of a single logical network device that just happens to be exceptionally
large.

IP packets or ethernet frames picked up by one tunnel endpoint are encapsulated
using the carrier protocol. The carrier protocol datagram is then sent to the other
endpoint using the underlying network infrastructure. These datagrams are routed
and delivered as usual. There is nothing special about them. The receiving side
unpacks the datagram, extracts the packets or frames inside, and injects them into the
local network.

So far, our discussion has been focused on the situation with only two tunnel end-
points, corresponding to two ports of a network device. However, the number of
connections can be more than this. The basic operating principles remain the same.

In general, VPN tunnels can funnel simultaneous traffic flows into a single traffic flow
observable on the network. This makes is a beneficial property when guarding against
traffic analysis attacks. Even if the VPN protocol does not employ explicit TFC mech-
anisms, the signatures of the individual tunneled flows will become multiplexed and
therefore harder for an attacker to analyze in isolation. This is not applicable if there
is a single traffic flow, however.

OpenVPN [5] is a widely used userspace, open-source VPN solution that relies on
TLS for encryption. It can be used to establish Layer-2 and Layer-3 VPNs using a
virtual TAP and TUN device driver respectively. It can be configured to use both
UDP and TCP. It is has a large number of configuration parameters. This leads to
high complexity of the code base. The OpenVPN codebase has more than a hundred
thousand lines of code. This does not include the OpenSSL library, which itself is
a very large codebase with over 400,000 lines of code, and which OpenVPN relies
heavily. Due to being implemented in userspace, it is less performant than IPSec,
since network buffers have to be copied in between the kernel and userspace several
times. Since its security is based on TLS, it has high cipher and algorithm agility. It
supports the use of pre-installed symmetric keys in addition to public key cryptog-
raphy for authenticating users and generating symmetric encryption keys. It can be
regarded as a comprehensive general-purpose VPN solution that can adapt to meet
a wide variety of operational requirements. As such, it is a userspace alternative to
IPsec. Implementations are widely available for all major operating systems.

IPsec is a comprehensive VPN solution that is implemented directly within the net-
work stack of the kernel. It is included as part of the IPv4 protocol suite. The original
IPv4 specification does not include security functionality. IPsec was introduced as an
enhancement of the IPv4 specification that brought security functionality, hence its
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name. Unlike IPv4, security is a primary design requirement of the IPv6 specification,
which adopts the IPsec specification. On Linux, the IPsec implementation is based on
the xfrm (transform) layer. It is highly configurable. Users are able to select from a
range of ciphers and compression algorithms. Its design is based on clearly separated
layers of abstraction. Since it is implemented in the kernel, it offers greater perfor-
mance when compared to userspace solutions. When correctly configured, IPsec is
a reliable and powerful VPN solution. However, configuring it correctly is known to
be challenging and requires a good understanding of how it operates. This difficulty
is in large part due to the existence of several layers of abstraction, each of which are
highly configurable. IPsec defines Traffic Flow Confidentiality (TFC) padding as a
countermeasure against traffic flow analysis attacks. This allows dummy packets to
be inserted to mask the absence of actual traffic, which is along the same lines as the
security requirements for Lynxtun. Kiraly et al. [35] propose an TFC sublayer for
IPsec. IPsec is Layer-3 by definition.

SoftEther [8] is another popular VPN solution. It is also open-source and runs on
Windows, Linux, Mac, FreeBSD and Solaris. SoftEther is an alternative to Open-
VPN. Its encryption is also based on SSL/TLS. It has features such as tunneling over
HTTPS, DNS and ICP to make it harder to detect. SoftEther also has a large codebase,
which is over 300,000 lines of code. It is understood that the main differentiator of
SoftEther in comparison to alternate VPN solutions is its support for firewall evasion.

WireGuard [24] is a new VPN solution that is under active development. It is pri-
marily designed for the Linux kernel, and has a prototype that has been implemented
as a kernel module. WireGuard is different from the other VPN solutions discussed
in that it has made simplicity and audability one of its main design objectives. The
WireGuard prototype comes in at only 4000 lines of code. The simplicity of Wire-
Guard is due to the fact that it is highly opinionated. Unlike IPsec, OpenVPN and
SoftEther, it does not provide cipher agility. It relies on pre-shared static Curve25519
keys for mutual authentication. It only uses UDP as the transport layer protocol. It
uses ChaCha20Poly1305 for authenticated encryption. The author holds that forgo-
ing cipher agility is necessary for simplicity, and simplicity is crucial for security.
He points out that OpenVPN has been effected by numerous security vulnerabilities
discovered in OpenSSL, which were hard to detect due to the complicated codebase.
We agree with the author in thinking that this is the correct approach for developing
a VPN protocol, and is the approach that we have adopted for Lynxtun.

There are also other VPN solutions such as L2TP, PPTP and PPP. Berger [11] presents
a comparison of these against IPsec.

2.3 Anonymity Networks

Anonimity Networks or alternatively Anonymous Routing Networks are systems that
are used to randomize the route each IP packet takes through the network in order to
make users anonymous.

Anonymity networks are conceptually related to VPNs, as they define logical network
topologies. Specific to anonymity networks, the logical network topology is highly

15



dynamic. Moreover, anonymity networks generally operate as a network proxy. This
is similar to a VPN tunnel being used as a gateway.

Anonymity networks present a possible solution to our research problem. This is due
to two main reasons. First, the role of an anonymity network is to mask which hosts
are communicating. Second, as stated by [59], a anonymity network router "will
not relay the received packet immediately (and rather) it collects several packets and
sends them in a batch." This batch will likely combine packets from different sources
going to different destinations, which changes the timing signature.

The concept of an anonymity network dates back to the seminal paper due to Chaum
in 1981 [18], who proposed the idea of using anonymous remailers, also known as
mixes, as a solution to sending email anonymously. According to Chaum, "the pur-
pose of a mix is to hide the correspondences between the items in its input and those
in its output."

This concept later evolved into low-latency anonymous networks, that utilize similar
principles to relay network packets rather than email messages. These are also called
mix-networks. Examples include Onion routing (Tor) [53], Freedom [13], Tarzan [29]
and Crowds [46]. Tarzan supports TFC mechanisms based on the CBR approach by
establishing bidirectional streams between network nodes that transmit data at a fixed
rate.

Johnson compares various efficient anonymous network systems [34]. Le Blond et al.
evaluates anonymity networks in terms of traffic analysis resistance [36]. Zhu et al.
[59] investigates flow correlation attacks, which is a type of traffic analysis attack, in
mix networks. Panchenko et al. [42] describe support vector machine based website
fingerprinting attacks in the context of onion routing based networks. Murdoch et al.
[39] describe timing signature based attacks against the Tor network. They observe
that the distortion to the timing signature is low due to the low-latency feature of the
network.

2.4 Evaluation of Existing Solutions

The objective of Lynxtun is to protect communication against statistical analysis at-
tacks and provide Traffic Flow Confidentiality. This makes it a suitable countermea-
sure against traffic classification and website fingerprinting attacks.

Lynxtun uses the CBR approach to TFC. The results due to Houmansadr et al. [32]
indicate that an imitation-based approach is not suitable. OpenVPN, SoftEther and
WireGuard have no built-in mechanisms for CBR. IPsec provides the necessary frame-
work on top of which such a system could be built, but this requires integrating the
solution on top of the highly complex IPsec infrastructure. Additionally, our aim is to
achieve highly deterministic real-time behavior on the order of microseconds. Having
a custom, opinionated protocol that has been specifically designed with this goal in
mind is beneficial towards this goal.

When we consider the use of mix-networks as an alternative to Lynxtun, one has
to differentiate between two alternate scenarios, depending on whether or not the
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communicating hosts are nodes of the mix network, or are external to it and using the
mix network as a proxy. In the latter case, the system is open to traffic correlation
attacks. An attacker who is capturing traffic on all the end nodes of the mix network
might be able to match related traffic. This is best exemplified by looking at an edge
case. Suppose that the two hosts communicate exclusively using the Tor network. If
an attacker observes that there is traffic between the first host and the Tor network
only when there is also traffic between the second host and the Tor network, and
furthermore the amount the two traffic flows is consistent, they can reliably infer that
the two hosts are communicating. In the second scenario, the endpoint itself is a
mix. Using Tarzan with CBR TFC is then similar to how Lynxtun operates. However,
Lynxtun focuses specifically on highly deterministic behavior, which is more difficult
to achieve in a more complex system.

We have mentioned that the ISO 7498-2 [33] identifies the physical layer as a im-
plementation target for TFC. Dedicated network hardware that supports encryption
and CBR TFC would ultimately be the most secure solution, because it can utilize
specially designed hardware that built specifically to exhibit highly deterministic be-
havior without being subject to the numerous complexities and level of uncertainty
inherent in a software-based solution running on general-purpose hardware. However,
this would be much more expensive. Our aim is to solve the problem in software.
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CHAPTER 3

THE LYNXTUN PROTOCOL

In this section, we present a complete specification of the Lynxtun Protocol. The
naming conventions that we use when specifying directions and actions are presented
in Appendix A. We begin with an introductory example intended to develop a basic
understanding of how the Lynxtun Protocol operates. We then present a formal spec-
ification of the protocol. We specify the interface of a Lynxtun endpoint has with
the local network stack and with its tunnel peer. We describe the structure of the
Lynxtun Datagrams that are exchanged between tunnel endpoints. We describe how
processing of incoming and outgoing data is performed. We define the our custom
cryptographic protocol that is used to encrypt and authenticate Lynxtun datagrams.
Finally, we present a technical evaluation of various aspects of the protocol design
and the present the rationale of certain design decisions that we have made.

3.1 Introductory Example

Before providing a formal specification of the protocol, it is illustrative to present a
simple introductory example of how the Lynxtun protocol is expected to work. This
examples is meant to give a sense of what our solution entails without going into
technicalities or striving for robustness.

Alice and Bob are both connected to the internet, and communicate over it using IP.
Alice’s public IP address is 192.0.2.101 and Bob’s is 192.0.113.102. Alice
and Bob communicate using an instant messaging application. The client on each
side sends and receives data through network sockets. This data gets placed inside IP
packets and routed through the network.

Alice and Bob decide to use Lynxtun to secure their communication. They agree upon
the following shared configuration:
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Example Lynxtun Configuration
Alice Bob

AES-256 Key K K
Local IP Address 192.0.2.101 192.0.113.102
Remote IP Address 192.0.113.102 192.0.2.101
Local UDP Port 6060 6060
Remote UDP Port 6060 6060
Local Tunnel IP Address 10.0.0.1 10.0.0.2
Remote Tunnel IP Address 10.0.0.2 10.0.0.1
Dispatch Interval 25 ms 25 ms
Dispatch Size 5000 B 5000 B

Note that this is a simplified version of Lynxtun configuration, and does not include
all configuration parameters defined by the protocol.

Besides switching local and remote values on the two sides, the two configurations are
identical. This configuration includes the shared AES-256 secret key. Therefore, this
configuration should be shared between the two systems through a secure channel.

Alice and Bob each run the Lynxtun endpoint application on their machines. Lynxtun
will create a virtual TUN interface called lynx0 on each host, and assign it the host’s
local tunnel IP address. The routing table will be configured so that packets being sent
to the peer’s tunnel IP will get routed to the local lynx0 device.

Each endpoint each binds to UDP port 6060, and sends fully encrypted Lynxtun data-
grams that are 5000 bytes each at 25 millisecond intervals to the corresponding socket
on the tunnel peer.

The operation of Lynxtun is strictly periodic. We call each period a round. In each
round, the Lynxtun endpoint running on Alice’s computer will attempt to read IP
packets from the lynx0 device, encapsulate these in a staged Lynxtun datagram,
encrypt the datagram and send it to Bob at the scheduled dispatch time.

Incoming data will be read from the UDP/IP socket. This data will be authenticated,
decrypted and (assuming it was a valid Lynxtun datagram sent by Bob) unpacked.
The contained IP datagrams will be delivered to Alice’s local network stack through
the lynx0 device.

20



3.2 Definitions

N
Lynxtun datagram size (bytes). Configuration
parameter.

δ Dispatch interval. Configuration parameter.

σ
Freeze window duration. Configuration param-
eter.

P Total payload size (bytes). P = N − 32.

n
Used payload size (bytes). The total size of the
IP packets encapsulated inside the payload.

τ Datagram timestamp.
ω Timestamp tolerance. Configuration parameter.

γ
Size of the timestamp list. Configuration pa-
rameter.

K
Shared AES-256 Secret Key. Configuration pa-
rameter.

3.3 Protocol Design Objectives

The Lynxtun Protocol is a secure IPv4 1 encapsulation protocol, that can be used to
establish a secure point-to-point tunnel between two network hosts over an insecure
network.

In Section 1.1.4, we stated that our interpretation of security has three parts. The com-
munication should be confidential, unobservable and undisturbed. We further stated
that ensuring confidentiality requires addressing two issues. First, the content of each
individual packet should be encrypted. Second, traffic flow confidentiality should
be achieved, meaning that patterns that may exist in the underlying communication
should not be observable in the network traffic generated by Lynxtun endpoints. This
requires regulating all observable features.

Our approach to securing the content of individual IP packets is to send fully en-
crypted datagrams with no plaintext segments. We refer to these as Lynxtun Data-
grams. A Lynxtun Datagram is sent as the payload of a UDP datagram, which itself
becomes the payload of an IP datagram. Since the Lynxtun Datagram is fully en-
crypted, the only plaintext segments of network packets sent by Lynxtun are IP and
UDP headers. Our requirement is to that, if Lynxtun Datagrams are recorded and con-
catenated, the resulting data should be statistically indistinguishable from randomly
generated data.

Requirement 3.3.1 (Fully Encrypted Datagrams). Lynxtun Datagrams should be
fully encrypted. The concatenation of captured Lynxtun Datagrams should be sta-
tistically indistinguishable from randomly generated data.

Due to the fact that UDP does not provide reliable delivery, we have the following
additional requirement:

1 IP is used to refer to IPv4 throughout this thesis.
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Requirement 3.3.2 (Independent Datagram Decryption). An encrypted Lynxtun Data-
gram should be fully self-contained in the sense that it includes all necessary infor-
mation to fully decrypt and authenticate it.

In order to achieve traffic flow confidentiality, the Lynxtun Protocol uses the Constant
Bitrate (CBR) approach. That is, each tunnel endpoint should transmit data at a fixed
rate. We define the Dispatch Interval and Dispatch Size configuration parameters.
The dispatch interval specifies the amount of time between consecutive dispatch op-
erations, which we also refer to as the interarrival time of dispatch operations. The
dispatch size, also referred to as the datagram size, determines the size of the Lynxtun
datagram that is sent.

The dispatch size does not depend on how much data is generated by the underlying
communication. The payload of any given Lynxtun datagram can include encapsu-
lated IP packets in addition to padding. The size of the padding is adjusted to ensure
that the total size of the datagram remains fixed. Since the entire datagram is en-
crypted, the data and padding segments of the payload are indistinguishable.

A Lynxtun tunnel consists of two Lynxtun endpoints that share a common configura-
tion. Each endpoint in a tunnel sends and receives data from its tunnel peer. However,
the dispatch process of each endpoint should be independent. Each endpoint should
regularly transmit datagrams, independently from the times at which its peer sends
them. It is not necessary to synchronize the times at which dispatch operations are
performed between the two endpoints. As long as each endpoint continues to make
dispatch operations at fixed intervals, datagram timestamps observable on the network
cannot be used to undermine traffic flow confidentiality.

A related objective is to achieve ergodicity of the dispatch process. This implies
that the first dispatch operation should be functionally equivalent to all subsequent
ones. There should not be distinct operational phases that result in different dispatch
behavior. Ergodicity implies stationarity. The statistical properties of the dispatch
process should not change throughout the lifetime of the tunnel.

Realizing this approach successfully also fulfills the requirement for unobservable
communication. Since the rate at which data is sent by a Lynxtun endpoint will
remain the same even if there is no underlying communication, an attacker cannot
detect whether or not actual communication is taking place. The attacker can at most
determine the maximum amount of information that could have been exchanged over
a period of time.

Ensuring that communication is not disturbed by an attacker requires being able to
identify Lynxtun Datagrams that were in fact sent by the tunnel peer and were not
modified. Only datagrams that meet this condition should be accepted. There are two
aspects of authenticating datagrams. First, the datagram should exhibit proof that it
was generated by someone with access to the shared secret, which takes the form of an
AES-256 secret key. Second, the Lynxtun Protocol requires that each dispatched data-
gram is unique. This follows from Requirement 3.3.1. If a given datagram is received
more than once, this property implies that only the first is authentic. Therefore, it is
necessary to design mechanisms that identify and discard replayed datagrams. These
mechanisms can be referred to as replay-attack mitigation countermeasures.
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Requirement 3.3.3 (Datagram Authentication). A Lynxtun Datagram D is authentic
if and only if it demonstrates proof that it was generated by a party with access to a
shared secret, and is not identical to any previously authenticated datagrams.

A hypothetical implementation that is able to adhere to the aforementioned require-
ments perfectly will be secure. Such an implementation would need to be perfectly
deterministic, in that it is always able to execute dispatch operations at precisely the
right time. This is not possible to achieve in practice. A successful implementation
should be able to limit the deviations in actual dispatch times with a tolerance on
the order of several microseconds, as these will be extremely difficult to detect on a
network where latencies are on the order of milliseconds.

How successful an implementation is able to regulate its dispatch process depends
on numerous factors, which will be discussed at length in later chapters. However,
the viability of a successful implementation depends on a protocol design that is con-
ducive to achieving this objective. This is one of the most important design objectives
for the Lynxtun Protocol.

For this purpose, it is important that the Lynxtun Protocol is as simple as possible.
Most importantly, it is necessary to ensure that all rounds can be treated in the same
way. It is imperative that we are able to clearly define the work that has to be done
within a single dispatch round, to be able to reason about whether or not this work
can be completed in the available amount of time, and for this not to depend on past
activity.

It is necessary to acknowledge that the actual dispatch process will neither be ergodic
nor stationary, as it will be influenced by external factors. We will discuss ways in
which such external factors can be mitigated in later chapters. However, from the
standpoint of protocol design, it is necessary to design the protocol such that these
requirements are not violated either intentionally or inadvertently by implementations
themselves.

One final point to consider is that of efficiency. It should be possible to implement the
protocol efficiently. That is, it should be possible to carry out the necessary work as
quickly and with the least amount of instructions as possible. There are two reasons
for this. First, the smaller the ratio of the time that is necessary on average to complete
the work that has to be done in a round is to the time available to do the said work,
the less likely it is that the dispatch deadline is missed. This is important for traffic
flow confidentiality. Second, an attacker can attempt a denial-of-service attack by
flooding an endpoint with a large number of unrelated datagrams. Unless we are
able to detect and discard these efficiently, this can lead to the situation where actual
communication can no longer take place. Therefore, efficiency is also necessary for
undisturbed communication.

3.4 Interface Specifications

A Lynxtun endpoint will have two interfaces, that we refer to as its ingress and egress.
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The ingress is a virtual TUN network interface that is integrated into the network stack
of the local host. IP packets that are received through the ingress are encapsulated in
outgoing Lynxtun datagrams. IP packets that are unpacked from received Lynxtun
datagrams are delivered to the ingress.

The fact that the TUN device is subject to standard routing configuration allows Lynx-
tun to be readily used in different ways. For instance, the tunnel can serve as a secure
network proxy by setting it as the default network gateway. Also, it is possible to cre-
ate secure networks with multiple hosts, where each point-to-point link is a separate
Lynxtun tunnel.

The egress is a UDP/IP socket that is used to send and receive encrypted Lynxtun
datagrams from the tunnel peer.

The Lynxtun configuration specifies a pair of local and remote Tunnel IP Addresses.
The local tunnel IP address is assigned to the ingress TUN device. An entry is added
to the routing configuration so that IP packets that are sent to the remote tunnel IP
address are routed to the TUN device.

The Lynxtun configuration also specifies a pair of local and remote Public IP Ad-
dresses, and a pair of corresponding UDP Port Numbers. The Lynxtun endpoint
binds to the local UDP/IP socket specified by the local IP address and port number. It
sends encrypted Lynxtun datagrams using the remote IP address and UDP port num-
ber. There are no restrictions on which UDP port numbers can be used, and can be
different for each host.

3.5 The Lynxtun Datagram

Lynxtun tunnel endpoints exchange encrypted Lynxtun datagrams. In this section we
define the structure of the encrypted and unencrypted forms of the Lynxtun datagram.
The cryptographic protocol used to encrypt and decrypt Lynxtun datagrams is given
in Section 3.9. The limits of the datagram size is covered in Section 3.10.3. Reasons
why large datagram sizes might be desirable are discussed in Section 3.10.13.

Since we are defining a network protocol, we follow the network byte ordering con-
vention. All fields are represented in network byte order, which is big-endian.

Requirement 3.5.1 (Byte Order). All fields in a transmitted Lynxtun datagram must
be stored in network byte order (big-endian).

3.5.1 The Encrypted Lynxtun Datagram

The size of the encrypted Lynxtun datagram isN . It is made up of a 16-byte encrypted
header, a 16-byte GCM authentication tag field, and an encrypted payload of size P .

All fields are the output of AES-256 block encryption. As such, the encrypted Lynx-
tun datagram contains no plaintext fields.
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The structure of the encrypted Lynxtun datagram is given in Figure 3.1.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Enc. Header

Auth Tag

Enc. Payload

Figure 3.1: The Encrypted Lynxtun Datagram

3.5.2 The Unencrypted Lynxtun Datagram

The structure of the unencrypted Lynxtun datagram is similar to that of its encrypted
counterpart, but does not include the GCM authentication tag field. Figure 3.2 shows
the structure of the unencrypted Lynxtun datagram.

3.5.2.1 Header Fields

The Host ID field identifies the tunnel endpoint. It is defined to be 0 for the tunnel
endpoint that has the smaller tunnel IP address, as interpreted as an unsigned 32-bit
integer and 1 for the other endpoint.

ts_sec and ts_msec together constitute the datagram timestamp, indicating the
time at which the datagram was generated with millisecond resolution. ts_sec
is the number of seconds since the UNIX epoch (1970-01-01 00:00:00 UTC) and
ts_msec is the remainder in milliseconds.

Together, the Host ID and datagram timestamp make up a 96-bit nonce that is used
as the GCM initialization vector for authenticated encryption, as described in section
3.9.4.

The 16 bits after ts_msec is set to 1, represented as an unsigned 16-bit integer. The
is necessary for the security of the cryptographic protocol, as discussed in section
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Host ID

ts_sec

ts_msec

 GCM IV

0x0001 dat_len
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Payload

Figure 3.2: The Unencrypted Lynxtun Datagram

3.10.7.

The final 16 bits of the header, dat_len, stores the size of the actual data that the
datagram holds in bytes, which is n. This is the sum of the sizes of all encapsulated
IP packets in the payload.

Note that the total datagram size is not explicitly stated in the datagram header. Since
Lynxtun transmits fixed-sized datagrams and the same configuration is shared on both
sides, this is known implicitly. Moreover, reading a datagram from a UDP socket will
reveal its size. Therefore such a field is redundant.

There are two main reasons why we choose to use millisecond resolution rather than
a finer resolution. First, the clock resolution is not the same on all systems, but we
can safely assume that millisecond resolution will be available2. Secondly, using
millisecond resolution rather than microsecond or nanosecond resolution fixes more
bits of the datagram header to be 0. This is beneficial for header authentication, that
is explained in Section 3.9.4.

Each Lynxtun Datagram is required to be unique. This follows from the security re-
quirements defined in Section 3.3. Uniqueness of IVs are also a requirement of GCM.
The implication of the aforementioned design decision is the following requirement:

Requirement 3.5.2 (Minimum Theoretical Dispatch Interval). The dispatch interval
must not be less than 1 millisecond. More specifically, the amount of time between the
generation of two separate datagram headers should never be less than 1 millisecond.
The timestamps of all datagrams should be unique.

In practice, there is no benefit of a setting the dispatch interval below one millisecond.
Even a dispatch of one millisecond is unlikely to provide sufficient time to sustain a
regular dispatch process. It is more appropriate to set the dispatch interval to be at
least tens of milliseconds.

2 In practice, implementing Lynxtun such that deviations in dispatch times remain on the order of microsec-
onds requires high-precision timers to be available on the system. Without this, TFC will be reduced.

26



3.5.2.2 Payload

The payload of a Lynxtun datagram contains encapsulated IP packets and padding.
IP packets cannot be divided across multiple datagrams.

Requirement 3.5.3 (Fully-Formed Encapsulated IP Packets). Encapsulated IP pack-
ets in the payload of a Lynxtun Datagram have to be fully-formed. They cannot be
divided across multiple datagrams.

The size of the padding is P − n. The Lynxtun Protocol does not impose any re-
quirements regarding the content of the padding. It is allowed to contain arbitrary
data. The payload is encrypted, and the cryptographic protocol uses GCM mode of
operation such that identical padding plaintext will be mapped to different ciphertext
blocks. The padding is discarded by the receiving endpoint. However, depending on
how an implementation allocates memory, it is possible that the payload to include
sensitive data that should not be sent to the tunnel peer. Therefore, an implementation
can choose to zero out the padding of a datagram before it is encrypted.

3.6 Specification for Processing Outgoing Data

The algorithm for processing outgoing data is strictly periodic. Each iteration is iden-
tical, and is called a round. Each round ends with a dispatch operation. That is, an
encrypted Lynxtun datagram being sent over the network to the tunnel peer.

At the start of each round, there is an empty staged datagram. Outbound IP pack-
ets received through the TUN device are encapsulated in the payload of the staged
datagram.

The structure of a round of outgoing processing is shown in Figure 3.3.

A round can be divided into five distinct stages. These are:

Initialization The staged datagram is cleared. The target dispatch time and the target
freeze time are set.

Encapsulation IP packets are added to the payload of the staged datagram.

Preparation The staged datagram is frozen, meaning that no more packets can be
encapsulated. The datagram header is generated, and the datagram is encrypted.

Waiting Waiting for the scheduled dispatch time.

Dispatch Execution of the dispatch operation by writing the encrypted Lynxtun data-
gram to the UDP/IP socket.

Requirement 3.5.3 states that encapsulated IP packets must be fully-formed. If an IP
packet that is read from the TUN device file descriptor does not fit into the staged
datagram in the current round, then the datagram is said to have reached capacity and
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is immediately frozen. The client should not attempt to read any more IP packets,
even if there is still some unused space in the payload. The IP packet that was read
and could not be encapsulated should be cached by the client until a future round. If
there is such a cached IP packet at the start of the encapsulation stage, then this must
be the first packet encapsulated in the empty payload before any packets are read from
the TUN device, after which the cache is cleared. The TUN device MTU must be set
to be no greater than the fixed payload size, although it is allowed to be less. This
ensures that a cached IP packet will fit into an empty staged datagram.

For the i th round, let Ri be the current time at the start of the round, Di be the target
dispatch time, Fi be the target freeze time, D′i be the realized dispatch time, δ be the
dispatch interval and σ be the freeze window duration.

For the first round, we set D0 = R0 + δ and F0 = D0− σ. For all subsequent rounds,
we have D′i > Di. That is, the client must not execute the dispatch operation before
the scheduled dispatch time. Therefore, the actual dispatch will take place after the
scheduled dispatch time. The client implementation should ensure that the difference
D′i −Di is as small as possible, and does not depend on tunnel activity.

At the start of the i th round for i > 0, we tentatively set Di = Di−1 + δ and
Fi = Di − σ. Noting that Ri > D′i−1, there are three different cases that have to be
considered:

1. Ri < Fi

2. Fi ≤ Ri < Di

3. Di ≤ Ri

The first situation describes standard operating procedure. The tentatively set dispatch
and freeze times are accepted. The amount of time Fi − Ri specifies the amount of
time in which to perform encapsulation. The client repeatedly performs encapsulation
attempts until either the staged datagram reaches capacity and a IP packet is cached,
or the freeze time is reached. Each encapsulation attempt begins by trying to obtain
an IP packet to encapsulate. If there exists a cached IP packet from a previous round,
then this is used. Otherwise, the client will attempt to read an IP packet from the TUN
device file descriptor. In either case, the client is required to check the current time
and only initiate a new encapsulation attempt if the freeze time has not been reached.
If data is not available to be read from the Tun device, then the client can wait for
data to become available. However, the client has to stop waiting if the freeze time
is reached, in which case the encapsulation attempt times out. To summarize, the
encapsulation phase ends when one of the following conditions are met:

• An obtained IP packet does not fit inside the staged datagram payload. The
staged datagram is said to have reached capacity and the IP packet is cached
for a future round.

• Once an obtained IP packet has been added to the staged datagram, the client
discovers that the freeze time has passed and does not attempt to obtain a new
datagram.
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• The client attempts to obtain a new packet, but one does not become available
until the freeze deadline is reached and the encapsulation attempt times out.

Note that if an IP packet is obtained and processing begins shortly before the freeze
time, then the processing is not aborted once the freeze time is reached. The exact
amount of time it takes once an IP packet has been obtained until the encapsulation
process is complete is variable. Furthermore, once the datagram is frozen, it is en-
crypted. Encryption also takes some variable amount of time. The freeze window
duration should be set by taking this into consideration. That is, it should be suffi-
ciently longer than the time it takes to perform encapsulation and encryption, so that
the staged datagram is ready in advance of the scheduled dispatch time. Once encryp-
tion has been completed, the client enters the waiting phase. As mentioned above, the
waiting phase ends no sooner than the dispatch deadline, and the client should ensure
that the time delay between the dispatch deadline and the end of the waiting period is
minimal. Once the waiting period ends, the dispatch operation is executed.

If the start of a round was considerably delayed, then it is possible that either the ten-
tative freeze time or dispatch time was already missed. This respectively corresponds
to the second and third cases mentioned above. In either case, there is not enough
time to encapsulate IP packets and prepare the staged datagram. Instead, a dummy
datagram that contains no actual data will be dispatched.

How the dummy datagram is generated is up to the implementation, but the require-
ment is that it is not distinguishable from an encrypted Lynxtun datagram. That is,
it should appear to statistically indistinguishable from randomly generated data. A
dummy datagram can only be used once. An initial dummy datagram should be gen-
erated at startup. Afterwards, the dispatch of a dummy datagram should immediately
be followed by the generation of a new one, to be used in the future. This generation
takes place after the dispatch has been made, and therefore does not induce further
delays.

If the start of a round was delayed, this could either be because the actual dispatch
operation was delayed, or the dispatch operation was performed at the correct time but
there was a delay before control was given back to the Lynxtun process. Therefore,
the fact that the round start was delayed does not necessarily imply that an observable
change in the dispatch process has occurred. However, this might be the case.

If the freeze deadline was missed but not the dispatch deadline, then it is still possible
to dispatch the dummy datagram at the next intended dispatch deadline. If the delay
was not due to the previous dispatch, then it is still possible that no externally ob-
servable disruption has taken place. The endpoint waits for the dispatch deadline as
usual, with the only difference being that the dummy datagram is transmitted instead
of an actual datagram.

If the tentative dispatch deadline was missed, then an externally observable disruption
in the dispatch process is no longer avoidable. The client should dispatch the dummy
datagram as soon as possible. The tentative dispatch deadline is rejected and the client
sets Di to the current time. To explain why this is necessary, consider the following
example. Let the dispatch interval be 20 milliseconds. The scheduled dispatch to take
place at tmilliseconds was missed by 100 milliseconds, and was therefore executed at
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t+ 100 milliseconds. If The next round sets its dispatch deadline based on the missed
dispatch deadline as usual, then the new deadline will be t + 20, and will have also
been missed. This would result in several dispatches being made in rapid succession
for at least five rounds, further disrupting the externally observable dispatch process.

If the dispatch interval is not sufficiently long, then this will lead to thrashing which
is characterized by only dummy datagrams being sent. In such a case, communication
will not be possible.

3.7 Specification for Processing Incoming Data

The algorithm for processing incoming data is also iterative. At the start of each
iteration, the client attempts to read a UDP datagram payload from the UDP/IP socket.
This may or may not be a Lynxtun datagram. The client should assume that it will
receive unrelated or corrupt datagrams.

The general procedure for processing incoming datagrams is to perform validation
and authentication of the datagram in several steps, decrypt an valid datagram, un-
pack encapsulated IP packets, and write these to the TUN device file descriptor, thus
completing their delivery to the local network stack.

The initial validation checks compare the source address to the tunnel peer, and the
size of the datagram to the dispatch size. A datagram is immediately discarded in the
event of a mismatch.

The authenticated decryption algorithm is described in 3.9.

Upon being accepted, any packets that are encapsulated in the datagram payload are
unpacked. Due to Requirement 3.5.3, we know that IP packets can only be encapsu-
lated as a whole. Therefore, the payload will be the concatenation of zero or more IP
packets, followed by padding. The total size of the IP packets is available in the data-
gram header. The size of each IP packet is available in the encapsulated IP header.
Unless the payload is empty, then the start of the payload will coincide with the IP
header of the first encapsulated IP packet. This packet is written to the TUN device
file descriptor. The size obtained from the IP header points to the IP header belonging
to the next encapsulated packet. IP packets are extracted in this way, until the total
size of processed packets is equal to the data length specified in the Lynxtun datagram
header.

Once a datagram has finished processing, then the iteration is complete and the client
waits for the next datagram to be available.

Note that, since Lynxtun uses UDP/IP sockets, Lynxtun datagrams (i.e. UDP pay-
loads) are received as a whole and not partially as in the case of TCP sockets.

30



3.8 Independence of Incoming and Outgoing Data Processing

The algorithms for processing incoming and outgoing data operate independently.

A single-threaded client can partition the available work time between processing
incoming and outgoing data.

A multi-threaded client can run each loop simultaneously on a separate thread. How-
ever, a client must ensure that the thread responsible for processing incoming data
does not contend for CPU time with the dispatch thread, thereby having the possi-
bility to delay a dispatch operation. How this is implemented depends on the client.
Possible approaches include thread synchronization, running the threads on isolated
CPUs, or running the dispatch thread with greater priority vis-a-vis the system sched-
uler.

3.9 Cryptographic Protocol

In this section, we present our cryptographic protocol that is used to encrypt and
decrypt Lynxtun datagrams. The cryptographic protocol also defines mechanisms for
authenticating incoming datagrams.

The cryptographic protocol relies on the security of the AES-256 block cipher. We
use AES-256 in a combination of ECB and a modified version of GCM mode. We
discuss the reasons why we have chosen these cryptographic primitives in Section
3.10.8

3.9.1 Key Establishment

The Lynxtun Protocol requires a shared AES-256 secret key to be installed on both
tunnel endpoints prior to the operation of the tunnel. The protocol does not define
mechanisms for generating or sharing the keys.

3.9.2 Construction of the GCM IV

We construct a unique GCM IV that is used for the encryption of a single Lynxtun
datagram. The length of the GCM IV is 96 bits, and corresponds to the first 96 bits
of the unencrypted Lynxtun datagram. This is the recommended IV length as it can
be processed more efficiently and is the most secure [38].

The method that we use to construct the GCM IV corresponds to the deterministic
construction method described in the NIST recommendations for GCM [25]. Ac-
cordingly, the IV is the concatenation of a 32-bit fixed field and a 64-bit invocation
field.

The fixed field is the Host ID. This ensures that no two IVs generated by different
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endpoints can be the same.

The invocation field is the 64-bit timestamp, which is the concatenation of the ts_sec
and ts_msec fields, and represents the timestamp at which the IV was generated
with millisecond resolution. IVs generated by a single endpoint will be unique pro-
vided that the time between the generation of two IVs is strictly greater than one
millisecond, and the system clock is not adjusted backwards. Requirement 3.5.2 spec-
ifies that the time between two timestamp generation events should always be greater
than one millisecond. The implications of adjusting the system clock backwards is
discussed in 3.10.5.

3.9.3 Authenticated Encryption

3.9.3.1 Generation of the Datagram Timestamp

The first step in encrypting the staged Lynxtun datagram is to generate the datagram
timestamp, based on the current time. This is subject to Requirement 3.5.2. The
remaining fields of the datagram header are assumed to have set prior to the start of
the encryption operation.

3.9.3.2 Encryption of Datagram Payload

The first 96-bits of the datagram header constitute the IV used for GCM authenticated
encryption based on the AES-256 block cipher, using the shared secret key K.

We use a modified version of the GCM algorithm, which we refer to as the early-
stopping modification. Normally, GCM calculates an authentication tag over all the
ciphertext. Our modification changes this behavior. 16-byte blocks (AES block size)
of the payload that contain only padding are not included in this calculation. The pay-
load is nevertheless fully encrypted. If the data length is zero, then the authentication
tag will be equal to EK(C0), where C0 is the initial counter value, which is IV ||0311.
The modification can be described as follows. Pure GCM mode is used to encrypt up
to the point where blocks no longer contain actual data. The remainder of the payload
is encrypted in AES-256 CTR mode. The IV used by CTR is the last counter value
used by GCM incremented by one.

As a result of this modification, the part of the encrypted payload that contains only
padding is not authenticated. This is not a problem, since this data will be discarded.
The modification allows the receiver to perform authentication and decryption more
efficiently, stopping when the end of actual data is reached. This is why we refer to
the modification as early-stopping.

The authentication tag produced by GCM authenticated encryption is placed in the
encrypted datagram.

The additional authenticated data argument of GCM-mode encryption is not used.
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3.9.3.3 Encryption of Datagram Header

The last step is to encrypt the datagram header. The datagram header is a single AES
block. It is encrypted using ECB AES-256 block encryption, using the shared secret
key K.

Using ECB mode to encrypt the header allows the header to be decrypted indepen-
dently using only the shared key K. This reveals the IV required to decrypt the
payload is available in the header. Therefore, Requirement 3.3.2 is satisfied, and the
decryption of a datagram is entirely self-contained.

ECB mode is generally considered to be insecure, since identical plaintext blocks get
mapped to identical ciphertext blocks. In our case, it is ensured that the datagram
header is unique, so ECB mode encryption is never performed on the same plaintext
block more than once.

3.9.4 Authenticated Decryption

Received datagrams are subjected to authenticated decryption. The authentication
takes place in several steps. The aim is to detect and discard invalid datagrams as
early as possible, and as efficiently as possible.

Datagrams are received through the egress UDP/IP socket. There is no guarantee that
a received datagram is an authentic Lynxtun datagram that was sent by the tunnel
peer. As specified by Requirement 3.3.3, there are two conditions that have to be met
in order for a datagram to be accepted as authentic. First, it has to be demonstrable
that it was generated by someone that has access to the shared secret key. Second, it
has to be different from all previously accepted datagrams.

The definitive check as to whether the datagram was encrypted by the tunnel peer
is full GCM authenticated decryption. This has to be done before a datagram is
accepted. However, full GCM authenticated decryption is a relatively expensive op-
eration. There are a number of checks that can be done efficiently before this is done.
While these checks do not provide conclusive evidence of authenticity, datagrams that
are discarded as a result of these checks are guaranteed to be unauthentic.

The second requirement, which states that an identical copy of an authentic datagram
that is received at a later time is not authentic, requires an additional mechanism. The
Lynxtun protocol defines the Timestamp Tolerance ω and Timestamp List Size γ
configuration parameters for this purpose. The implementation maintains a list of
timestamps belonging to recently accepted datagrams. The size of this list is γ. The
list is initially empty.

3.9.4.1 Preliminary Checks

Reading a datagram from the UDP/IP socket will reveal its origin. If the IP address
and port are not consistent with values defined for the tunnel peer in the configuration,
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the datagram is discarded without further processing.

Similarly, a datagram is immediately discarded if its size is not equal to the dispatch
size N .

3.9.4.2 Authentication of Datagram Header

We perform AES-256 decryption on a single block using the shared AES-256 key K.
Unless the data was encrypted using the same key, then the result of the decryption
operation will be random.

Decrypting the datagram header reveals the fields it contains. This contains all the
information necessary to fully decrypt a datagram, in accordance with Requirement
3.3.2.

The receiving endpoint checks the current time after decrypting the header. Call this
t. The timestamp in the decrypted header, τ is compared against this value. The
datagram is dropped unless |τ − t| < ω, where ω is the timestamp tolerance. If this
condition is met, then τ is compared to the oldest timestamp in the list of recently
accepted timestamps. If τ is older, then the datagram is dropped. Next, τ is compared
against all recently accepted datagrams in the list. If it matches any of them, the
datagram is dropped. This ensures that a duplicate of a previously accepted datagram
will be rejected.

The checks that are made to authenticate the datagram header are as follows:

1. Does the Host ID match the Host ID of the tunnel peer?

2. Is the ts_sec value in an acceptable range, based on the timestamp tolerance.

3. Is the ts_msec value smaller than 1000?

4. Is the 16-bit value before the data length equal to 1?

5. Is the 16-bit data length field smaller than the payload size?

Unless the header was generated using the secret key K, the probability that each of
these conditions will be true are given below.

Condition Probability
1 2−32

2 2ω · 2−32
3 1000 · 2−32
4 2−16

5 P · 2−16

The probability that a datagram header that was not generated by the tunnel peer will
meet all of these conditions is 125 ωP · 2−124. We are therefore able to reliably iden-
tify and discard datagrams after performing AES-256 decryption on a single block.
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Note that, in order to reach this stage, the attacker should have set the datagram size
correctly and also spoofed the IP address of the tunnel peer.

3.9.4.3 Decryption and Definitive Authentication

The next step is to perform GCM authenticated decryption with our early-stopping
modification. The GCM IV to be used is available in the decrypted header. The
early-stopping modification causes the authentication tag to only be calculated over
AES blocks that contain actual data, and not over blocks that contain only padding.
The length of the actual data is available in the decrypted header. This increases
efficiency of the authenticated decryption. Decryption of padding blocks is not done,
as doing so would be redundant.

After performing decryption, we compare the calculated authentication tag against the
received authentication tag. The datagram is dropped if the two values do not match.
This situation would imply that an attacker has captured an authentic datagram and
sent it after modifying its payload. Moreover, the modified datagram would have to
be received before the original datagram. Otherwise, it would be discarded since it
contains an invalidated timestamp.

If the calculated and received authentication tag values match, then the authentication
is complete and the datagram is accepted. At this point, the datagram timestamp is
added to the list of recently accepted timestamps. If the size of the list is smaller than
γ (which will be true when the tunnel is first created), it is appended to the end of the
list. Otherwise, it replaces the oldest timestamp currently in the list.

3.10 Evaluation of Protocol Design

3.10.1 CBR Dispatch Process

The Lynxtun protocol defines a constant bitrate (CBR) dispatch process. In this sec-
tion we explain why we believe this is the most suitable approach.

We have mentioned in the Related Work section the results due to Houmansadr et al.
[32] that show why imitation based approaches are likely to be unsuccessful. Using
an imitation-based approach to regulating the dispatch process would therefore likely
lead to an attacker easily identifying that Lynxtun is being used. While this alone
does not necessarily mean that security has been compromised, it would mean that
the additional complexity required is not justified.

Alternatively, we could have randomly changed the effective dispatch interval and
dispatch size for each round. While this could make it slightly more difficult to de-
tect that Lynxtun is being used, it would also make it much more difficult to ensure
consistent real-time behavior.

Ultimately, Lynxtun is secure as long as the distribution of the dispatch process does
not depend on that of the underlying communication. While it is theoretically possible
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to shape this distribution freely without violating this requirement, the CBR approach
is most suitable for ensuring that it is not violated in practice.

3.10.2 Regarding Rekeying

Since we exclusively use 96-bit IVs that are the result of deterministic construction,
the constraints on the number of invocations stated in [25] do not apply. However,
suppose that these constraints did apply. Since the invocation field is 64 bits, then
we should not perform more than 264 invocations. We perform one invocation per
datagram, and we limit the rate at which datagrams can be generated to 1 datagram
per millisecond (see discussion regarding IV construction above). This means less
than 210 invocations are performed per second. This corresponds to less than 235 in-
vocations per year of continuous operation. Meaning that it would take more than 229

years of continuous operation to reach the maximum number of invocations allowed.
Under these circumstances, we can say that there are no rekeying requirements and
that the shared key can be used directly for the lifetime of the tunnel, provided that
the clock that is used to generate the timestamps is not adjusted backwards, in which
case the key should be invalidated.

3.10.3 Datagram Size Limits

The size of the payload is set by the sender. The dat_len cannot be larger than
the size of the payload. When the dispatch process is regulated to fix the size of the
dispatched datagrams, the payload size is specified as a configuration parameter. The
difference between the payload size and the actual data size is the size of the padding.

The total size of an encrypted datagram is its payload size plus 32 bytes for the header
and the authentication tag.

The datagram size or payload size is not explicitly specified in the datagram. Lynx
datagrams are sent using UDP/IP. Receiving a UDP datagram through a socket will
yield the UDP payload (which is the Lynxtun datagram) in addition to the size of
the UDP payload (which is the size of the Lynxtun datagram). This is because UDP
datagrams are read from the socket as a whole and not partially. Therefore, we do not
need to explicitly specify the total length.

The data length field stores the length of the encapsulated data as bytes as a 16-bit
unsigned integer. Therefore, the maximum theoretical data length is 216− 1 = 65535
bytes.

The GCM counter value that is used to generate the first keystream block used to
encrypt the first plaintext block is IV || 2, where IV is the first 96-bits of the unen-
crypted header. This value is incremented once for each plaintext block encrypted. If
x is the data length of a datagram, then the datagram header is IV || 216 + x. There-
fore, we limit the largest counter value that could be used to 216 − 1, corresponding
to block 216 − 2. Since each block is 16 bytes, the theoretical upper bound for the
payload size is 220 − 32 = 1048544 bytes, and the upper bound for the padding size
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is 1048544− 65535 = 983009 bytes.

In Lynxtun, we send datagrams using UDP/IP. The maximum size of an IP datagram
is 65535 bytes. The longest IP header is 60 bytes, and the UDP header is 8 bytes.
This means the maximum size of an encrypted lynx datagram is 65467 bytes. Since
16 bytes are used for the datagram header and another 16 bytes are used for the au-
thentication tag, this leaves 65435 bytes to use for the datagram payload. As a result,
for the purposes of our implementation, the maximum size of the lynx datagram pay-
load is 65435 bytes that can hold up to 65435 bytes of actual data and the remainder
will be padding.

3.10.4 Detecting Data Modification

Suppose an attacker captures a datagram being sent from Alice to Bob. If Bob modi-
fies the encrypted header, then this modification will be detected as part of the proce-
dure for authenticating the header, and the datagram will be dropped.

If Bob leaves the header intact and modifies the payload, there are two possibilities. If
the original datagram was received and accepted before the modified datagram, then
the latter will be rejected because it contains an invalidated timestamp. Suppose that
the modified datagram is received earlier. Again, there are two possibilities. If the
modification was made to a part of the encrypted payload that consists of padding,
then the datagram will be accepted; but the modified part was done to a part that would
be discarded anyway. Therefore, security is not affected. If the modification was done
to a part that coincides with actual data, then the authentication tag calculated over the
ciphertext will not match the value specified in the header. Therefore, the datagram
will be rejected.

The fact that the GCM IV is included in the datagram header, and that this datagram is
encrypted means that it is not necessary to specify the datagram header as additional
authenticated data input to the GCM operation.

3.10.5 Time Synchronization

The Lynxtun Protocol requires that the system time on each tunnel endpoint to be
synchronized. How this synchronization should be achieved is not defined by the
protocol. However, there are certain operational and security implications that should
be mentioned.

Checking the timestamp of a received datagram to the current time as described in
Section 3.9.4 involves comparing time values generated on two separate machines.
Even if the two clocks are perfectly synchronized, there will be a difference in the
timestamps, primarily due to network latency. Small differences in the two clocks
are accommodated by the timestamp tolerance parameter. This is the reason why
timestamps that are greater than the current time when the check is made are also
allowed. However, if the difference in the two clocks is significant, then datagram
authentication will consistently fail.
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Adjusting the clock backwards poses a security problem. This is due to two reasons.
First, it invalidates the uniqueness of GCM IVs, as it becomes possible for the same
timestamp to be used to generate a new datagram timestamp. Second, it undermines
the replay attack prevention mechanism, as old timestamps become valid again.

In general, the system clock should not be adjusted backwards while the tunnel is in
use. More specifically, even if the tunnel is currently not being used, the time should
not be set backwards beyond the timestamp of the most recently sent datagram. If
this is necessary, then the AES-256 key should be invalidated and a new key should
be used.

3.10.6 Replay Attack Mitigation Mechanisms

We discuss the replay attack mitigation mechanisms specified by the Lynxtun Proto-
col in Section 3.9.4. Here, we explain the rationale behind our approach along with
some implications.

First, consider the following simple mechanism. The endpoint records the timestamp
of the most recently accepted datagram. When a datagram is received, its timestamp
is compared to this value and the datagram is dropped unless it is more recent. If the
datagram is accepted, then its timestamp replaces the recorded value, so the recorded
value always represents the timestamp of the most recently accepted datagram. This
completely eliminates the possibility of a replay attack. However, it is unsuitable
for the Lynxtun Protocol. Suppose we did not persist the timestamp information on
disk. Restarting a Lynxtun process would cause this state to be lost. At this point,
it becomes possible for an attacker to replay a captured datagram. Since there is no
timestamp value to compare it to, it will be accepted. Moreover, if the tunnel endpoint
does not send any new datagrams, then the attacker can keep replaying previously
captured datagrams in the same order that they were captured. This will likely result
in many of them being accepted, as they will have increasing timestamps. We could
avoid this problem by persisting the state, but this would require I/O operations to be
performed. A primary design goal for the Lynxtun Protocol is to make it conducive
for implementations to attain deterministic runtime behavior. Requiring state to be
persisted is incompatible with this goal. This is the reason for the timestamp tolerance
parameter. It imposes a limit to how old a timestamp can be. Specifically, if we
shutdown the Lynxtun process and wait 2ω seconds before restarting it, then it is
guaranteed that any datagrams that might have been captured by an attacker now
have invalid timestamps.

The reason why we keep a list rather than a single timestamp is because Lynxtun is an
unreliable network protocol. This means datagrams can be received in an order dif-
ferent from which they were generated and sent. If we set γ = 1, then any reordering
would necessarily lead to discarding an otherwise legitimate datagram. Allowing for
larger values of γ allows us to accommodate reordering. However, since datagrams
are dispatched at regular intervals and not immediately after one another, reordering
is not very likely. Therefore γ can be small. Since the list is initially empty, the
probability that a reordered datagram will be dropped is higher when the process first
starts, but will quickly drop as the list becomes populated. We should also note that,
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since the dispatch interval is fixed, the number of datagrams that could be sent within
the timestamp tolerance is known. Setting γ beyond this will not have any effect,
other than decreased performance, since checking against the oldest timestamp in the
list becomes redundant.

In order for this mechanism to function, it is necessary for the system clocks on the
two tunnel endpoints to be synchronized, within the margin allowed by the timestamp
tolerance. Implications of time synchronization are discussed in Section 3.10.5.

3.10.7 Security of the Datagram Header

Let x be a 16-bit unsigned integer representing the length of the data in the payload
in bytes.

The datagram header can be represented as IV ||0151||x. There is an important reason
for setting the bit before x to be 1.

Consider the case where x is 2. Then the first keystream block that is XORed with
the first plaintext block is EK(IV ||0312). If we did not set the bit before the x to 1,
then this would be identical to the encrypted datagram header, which is seen by the
attacker. In such a case, an attacker could simply XOR the first ciphertext block with
the datagram header to recover two bytes of data.

Similarly, suppose that x is 1. Then the datagram header would be identical to
EK(IV ||C0), where C0 is the initial GCM counter value. This is the value that gets
XORed in the last step to produce the Auth Tag, so the last XOR operation can be
undone by an attacker.

Since the maximum payload size corresponds to 4090 blocks, the maximum counter
value will be IV ||4091, where 4091 is represented as a 32-bit integer. Due to the
fact that the last 32 bits of the header are a concatenation of 1 represented as a 16-bit
integer and the data length, the range of values that the header can take start from
IV ||64536. This prevents a collision from occurring.

Another point is that the values in the datagram header are predictable. A lynx data-
gram that is seen on the network is likely to have a timestamp value that is close to the
time that the observer sees the datagram. Suppose there is a 10 second window. The
millisecond field can be considered random. Suppose the payload size is 10000 bytes.
The Host ID field has two possible values. Then there are 2× 108 possible values for
the datagram header. So the probability that an attacker can guess the plaintext data-
gram header is not negligible. However, none of the data contained in the datagram
header is secret. Also, without knowing the key, there is no way for the attacker to
verify whether or not a plaintext matches the observed ciphertext. Finally, even if
the attacker knew which plaintext headers corresponded to which ciphertext headers,
AES-256 is secure against known plaintext attacks.
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3.10.8 Choice of Cryptographic Primitives

The two cryptographic primitives that we use in Lynxtun are the AES-256 block
cipher, and the GCM mode of operation based on AES-256. As such, there is only a
single shared secret in the system, which is the symmetric AES-256 key.

AES [21, 44] is a FIPS-approved cryptographic algorithm that can be used to protect
electronic data. The original name of the AES cipher is the Rijndael block cipher. It
was submitted to the AES competition held by NIST and was selected as the winner,
after which point it took on the name AES. AES is included in the ISO/IEC 18033-3
standard. It has been widely studied by the cryptographic community and is secure
against all known cryptanalytic attacks.

GCM [38] is a mode of operation that can be used with AES-256, that provides au-
thenticated encryption. [38] presents a discussion on the security of GCM. It is also
a NIST recommendation [25]. GCM is essentially HMAC that does encrypt-then-
MAC. There is no need for a separate secret key. Both encryption and authentication
depend on the same key, which in our case is the AES-256 key. Since this is among
the primary design goals of GCM, its security has been widely studied in this con-
text. This allows us to use a single AES-256 key that has to be exchanged prior to
establishing the tunnel, and that does not have to be rekeyed.

AES supports key sizes that are 128, 192 and 256 bits. Longer key sizes offer greater
security at the cost of performance [10]. However, we find that our AES-256 is suf-
ficiently performant. Using a longer key is particularly desirable due to the fact that
rekeying is not done.

One of the primary benefits of using GCM as opposed to a separate cryptographically
secure hash function, such as SHA256, in order to implement HMAC is performance.
The time it takes to process a block of data using SHA256 is on the same order of
magnitude as performing block encryption on the same amount of data with AES-256,
when software implementations are used. We need to perform decryption in any case.
GCM incorporates the decryption into its authentication procedure, and calculating
the authentication key comes down to providing a field multiplication operation for
each block of data. In Appendix D, we show how this can be efficiently implemented
in software. Therefore, using GCM has performance benefits.

Another advantage due to the use of GCM is that its recommended IV length is 96-
bits. This fits nicely into the datagram header. Furthermore, our method of GCM IV
construction (see Section 3.9.2) allows us to incorporate the datagram timestamp into
the IV. This timestamp is also the basis of replay-attack prevention mechanisms. As
such, using GCM with AES-256 presents us with an elegant approach.

Unlike SSL/TLS, IPsec or SSH, the Lynxtun protocol does not support the use of
different ciphers. Its cryptographic protocol is fixed. In this sense, Lynxtun is crypto-
graphically opinionated. The Wireguard technical whitepaper [24] argues that trying
to have cipher agility, which means supporting different ciphers, is detrimental to se-
curity. Like Lynxtun, Wireguard is also cryptographically opinionated. In general,
our approach to the problem is as follows. A cipher is either cryptographically se-
cure, or it is not. In certain cases, such as embedded programming where hardware

40



resources might not be enough to run AES-256, lightweight crypto algorithms be-
come important. However, in the context of a general-purpose computer, AES-256 is
usable. Furthermore, AES-256 is widely accepted by the cryptographic community
as being secure. If we are able to use AES-256 to secure our communication, then
adding support for another cipher is redundant. Furthermore, the additional com-
plexity required to add support for other ciphers increases complexity, which is itself
detrimental to security. The implication of this approach is that, if AES-256 or GCM
is ever found to be insecure, then the Lynxtun Protocol would have to be redesigned.
This is a risk that we are willing to accept.

3.10.9 Regarding the GCM Early-Stopping Modification

The modification to GCM that we describe above allows the receiver to perform au-
thentication and decryption more quickly, by not wasting time authenticating or de-
crypting blocks that only contain padding, which will be discarded.

This would have caused a problem if an attacker was able to check segments of vary-
ing length against the authentication tag to learn the length of the data segment. This
is not the case since calculating the authentication tag requires knowledge of the se-
cret key.

The main reason for this modification is to increase the rate at which datagrams are
dequeued from the RX queue of the UDP/IP socket, making the system more resilient
against DoS attacks. The modification is especially relevant to the case where large
Lynxtun datagrams are being sent, that contain mostly padding.

There is an important implication with regards to implementations that use a single
thread. More specifically, any implementation where incoming data is processed on
the same thread that dispatches are made. The duration of the decryption operation
will depend on the amount of actual data in the payload. Such an implementation is
required to ensure that this will not lead to the dispatch deadline being more likely
to be missed if the incoming data rate is high. On the other hand, a multi-thread
implementation should ensure that the dispatch thread is shielded from the workload
of the thread processing incoming data.

3.10.10 Reasons for a Connectionless Protocol

The Lynxtun protocol is not a connection-oriented protocol (COP). As such, there
are no mechanisms for the establishment, management, and closure of connections.
However, there is an implicit connection between the two tunnel endpoints. In this
section, we discuss this design decision with regards to its security implications.

A COP depends on the concept of a session that is associated with shared persis-
tent state that defines the context in which incoming network messages should be
processed. This state should be consistent between the two endpoints. This is not
trivial, as the state exists on separate machines. Mechanisms have to be implemented
to ensure consistency. Implementing such mechanisms should be justified by having
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certain benefits associated with using a COP. In the case of Lynxtun, we have decided
that no just justification exists. To the contrary, defining Lynxtun as a COP would be
detrimental in terms of security.

COPs are often represented as state machines. This requires clearly identifying and
labelling all possible states that the system can be in at any given time, which transi-
tions are allowed between these states, under what conditions they are executed, and
how they are performed. This model has to be robust and the implementation must
strictly adhere to it.

There are two primary benefits of a COP. The first is that it allows defining a particular
context in which related IP packets are to be processed. The second is that this context
is not fixed, but adaptable. That is, the rules governing the communication can adapt
to changing circumstances.

In Lynxtun, there exists an implicit logical connection between the two endpoints.
The shared state associated with this connection is the shared configuration param-
eters that are installed on each of the clients. However, this shared configuration
is shared prior to tunnel operation and remains fixed throughout the lifetime of the
tunnel.

If there was no implicit connection, then a connection would have to be established
during startup. This would require one endpoint to initiate a connection request, and
the other to respond to it. Together, they would transition from an initial state where
there is no connection to one where there is. This is not desirable with regards to our
requirement that the tunnel behavior should be stationary. There would have to be
at least two different modes of operation, one for establishing a connection, and the
other for normal tunnel operation.

This sort of coordination between two hosts is quintessential to COPs. Control mes-
sages have to be exchanged in order to coordinate transitioning from one state to
another. Since Lynxtun is not a COP, there is no reason for the two endpoints to di-
rectly interact with one another. Due to our specification, the operation of an endpoint
does not change even when the peer becomes offline. There is no inherent difference
between the cases where there is no tunnel peer. Operation will resume as usual. Dis-
patches will continue to be made regularly. The only salient change will be that there
will never be any incoming datagrams to process.

When we consider whether there is any reason to alter state while in operation, we see
that this would be detrimental to security. By definition, the dispatch process should
be unrelated to tunnel activity. Therefore, the parameters should remain fixed. It
might be necessary that the requirements change and a greater bandwidth is required.
This will result in an observable shift of the dispatch process. If this is necessary, then
the user should restart the tunnel with modified configuration parameters, being aware
of its possible implications. However, since this is discouraged unless absolutely
necessary, there is no benefit of doing this while the system is in operation.

Unless the state machine is limited to two states, then additional mechanisms would
be required to detect if the system has entered an inconsistent state and apply cor-
rective actions if this is found to be the case. The fact that the system has become
inconsistent indicates that something unexpected happened, and therefore handling
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this eventuality is a complicated process.

A related issue is whether or not to use a connection-oriented transport layer protocol,
such as TCP. We discuss this issue in the next section.

3.10.11 Unreliable Delivery and UDP

Reliable delivery implies that data can be treated as a stream, and is received in the
same order that it is sent. The Lynxtun protocol is based on the unreliable UDP
transport layer protocol, and does not implement reliable delivery itself. As such, it
is an unreliable network protocol.

Implementing reliable delivery requires a connection-oriented protocol. While Lynx-
tun is not a COP, the implicit connection could still be used to implement reliable
delivery. However, this would increase the complexity of the protocol. More impor-
tantly, there is a fundamental reason why it would be wrong to design Lynxtun as a
reliable protocol, which we will explain below.

Lynxtun is a Layer-3 encapsulation protocol. The IP protocol itself is unreliable. It
relies on a best-effort delivery principle, without providing any guarantees. Packets
are routed independently through the network. They can be dropped, reordered, or
duplicated.

As a Layer-3 encapsulation protocol, Lynxtun represents a segment of an IP network
that is fundamentally unreliable. Therefore it is not possible to achieve end-to-end re-
liability. Making Lynxtun reliable would be limited to the communication between its
endpoints, which would correspond to having a reliable segment within an unreliable
network, to which there is no benefit in terms of the IP communication.

The Lynxtun cryptographic protocol is defined such that each datagram can be en-
crypted independently. This is due to Lynxtun being unreliable. Making Lynxtun
reliable would mean that this does not have to be the case, but there is no benefit from
doing so. The encrypted Lynxtun header is 16 bytes. The TCP header that is primar-
ily used to implement reliability is 20 bytes. Furthermore, the Lynxtun header also
contains the timestamp which is necessary for replay-attack prevention, and therefore
cannot be eliminated. A reliable protocol could implement alternative mechanisms
for replay-attack prevention, but overall it is not likely that any gains in terms of
overhead reduction would be possible.

The only actual benefit from having reliable delivery would be the possibility to di-
vide IP packets across multiple datagrams, thereby increasing average datagram uti-
lization. However, as we explain in Section 3.10.13, it is possible to use leverage
IP fragmentation in order to optimize datagram utilization even with an unreliable
protocol.

There is one other conceptual reason why reliable delivery is unsuitable. The encap-
sulated IP packets will either be carrying datagrams belonging to a reliable transport
layer protocol such as TCP, or an unreliable transport layer protocol such as UDP. In
the case of UDP, then the sender has already accepted the possibility for this packet
to be lost. However, if it is TCP, then the sender will be in charge of retransmission
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if an acknowledgement is not received. If we also independently retransmit a Lyn-
tun datagram containing such a packet, then we would be wasting network resources.
In principle, encapsulating a reliable communication stream through another reliable
communication stream reduces efficiency [54, 58].

The same arguments are also valid if we do not implement reliability within Lynxtun,
but instead have it depenend on TCP, which is reliable. This has the additional down-
side of making Lynxtun datagrams subject to TCP congestion control mechanisms,
which would disrupt the regularity of the Lynxtun dispatch process.

Therefore, Lynxtun is designed to be used only with UDP/IP. This is the approach also
taken by WireGuard [24]. OpenVPN supports UDP and TCP, but UDP is preferable
[58].

3.10.12 Time Overflow

UNIX time, which is the amount of seconds since the epoch 1970-01-01 00:00:00
UTC represented as an signed 32-bit integer value will overflow in 2038. We rep-
resent this value as an unsigned 32-bit integer value, so this will not overflow until
2106. Being able to cleanly separate the ts_sec and ts_msec fields into two 32-
bit words facilitates implementation. In all likelihood, this protocol will have become
utterly irrelevant by 2106. If for some reason it does not, then unused bits from the
ts_msec field can be used to increase the number of bits used to store ts_sec.

3.10.13 Regarding Large Datagrams

The Lynxtun datagram is allowed to be larger than the network MTU. IP fragmenta-
tion and reassembly will be handled by the network stack. This has certain benefits.

In general, it gives us more control over the target data rate. The bandwidth can be
kept constant by balancing longer dispatch intervals with larger datagrams.

In Section 3.10.11 we mentioned that large datagram sizes can be used to optimize
datagram utilization. We freeze the staged datagram when a IP packet read from
the Tun device does not fit. In the worst case, this will lead to leaving N − 1 bytes
unused in the datagram even though there was data available to be sent, where N is
the maximum size of the IP packet, which is bounded by the Tun device MTU. We
can also configure the Tun device MTU. By increasing the ratio of the datagram size
to the Tun device MTU, datagram utilization improves, provided that datagrams are
consistently reaching capacity in most rounds. On the other hand, if datagrams are
not usually filled by the time of the freeze deadline, then increasing the datagram size
will decrease datagram utilization. The optimal case will depend on the distribution
of the underlying communication.

There is an important benefit of relegating the fragmentation to the network stack
rather than handling it within Lynxtun. This is due to the burden of knowledge prin-
ciple. The reassembly code of the network stack does have access to the underlying
communication, but is overall far more isolated from it than the Lynxtun client itself.
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By transferring complexity further away from the sensitive information, we reduce
the risk of tainting the dispatch process.

If fragmentation takes place, then an attacker will not see entire Lynxtun datagrams
but IP fragments in rapid succession. However, this has no implication on security.

One final point to make on this issue is that increasing datagram size when commu-
nicating over networks that are prone to high data loss will be detrimental to tunnel
operation. This is because the loss of a single IP fragment would result in the loss of
an entire Lynxtun datagram, regardless of how many fragments do arrive. By using
datagram sizes that are smaller than the network MTU, then the loss of an IP packet
does not affect the delivery of other packets. This should be taken into consideration
when deciding on the correct dispatch size.

3.10.14 Detectability of Lynxtun

Detectability means being able to classify Lynxtun datagrams as such. Whether or
not we wish to hide the fact that we are using Lynxtun depends on the context in
which we are using it. The design of Lynxtun makes it relatively difficult to detect.
While this is a desirable quality, undetectability is not in itself a design objective. Our
objective is to hide the traffic flowing through Lynxtun and not Lynxtun itself.

One specific area where detectability becomes important is censorship circumven-
tion. A censor that wants to block Lynxtun will have to reliably classify network
traffic as Lynxtun datagrams. The Lynxtun datagrams are fully encrypted. The only
unencrypted parts of Lynxtun traffic are the IP and UDP headers, which contain no
information that can be linked to Lynxtun. Therefore deep packet inspection cannot
reliably detect Lynxtun datagrams. The UDP ports that are used is not fixed, so port-
based identification is not possible. The format of all datagrams are the same. There
is no connection-establishment stage where unencrypted data is sent.

Contrast this with OpenVPN. OpenVPN also uses encryption and does not use fixed
ports. However, it is possible to identify OpenVPN traffic reliably based on datagram
content [43]. Connection initialization messages such as "Client Hello" and "Server
Hello" can be easily matched. Even after the session has been established, the unen-
crypted opcode field can be used to reliably identify OpenVPN communication.

Many protocols, like OpenVPN, include some plaintext segments in their datagrams.
While these can be used to identify those protocols, observing that there are not plain-
text fields whatsoever can suggest that Lynxtun is being used. A censor might decide
to treat datagrams that appear to be entirely encrypted (or entirely random) as suspi-
cious and block them altogether.

Another reason why it is hard to detect Lynxtun is because the endpoints do not
respond to incoming requests. An OpenVPN server can be detected by trying to
connect to it and seeing how it responds. In Lynxtun, there is no concept of a request.
There is nothing that an attacker can send, even if they know the secret key, that
would make the Lynxtun endpoint send data in response, confirming that it is in fact
a Lynxtun endpoint.
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The most viable approach to classifying Lynxtun traffic is by doing statistical analysis
of the observed dispatch process. Since the regulated dispatch process transmits the
same amount of data at fixed intervals, such an approach is likely to succeed. Again,
the result would not be definitive. Provided that we are able to regulate successfully,
then the result should be indifferent from sending entirely random data at fixed in-
tervals. However, since that sort of behavior is not expected, the attacker can simply
assume that traffic that matches this description should be blocked.

3.10.15 Denial of Service Attacks

First of all, we assume that an attacker cannot disrupt communications between Alice
and Bob, meaning preventing packets from being delivered. If they are able to do
this, then there is nothing that the protocol can do to avoid it. Therefore, we focus
our attention on an attacker sending malformed datagrams to keep the protocol client
busy so that legitimate datagrams will be dropped.

Ultimately, this is a matter of how fast an attacker can fill up the RX queue attached to
the UDP/IP socket through which the tunnel client receives datagrams, and how fast
the tunnel client can drain that queue. If the queue overflows, then incoming legiti-
mate datagrams will be dropped. Optimizing the rate at which we drain the queue is
mainly the responsibility of the client implementation. However, the protocol specifi-
cation has been designed to make it easier for the client to do this. This is the primary
reason for the multi-layered authentication strategy and the GCM modification that
makes early stopping possible. The aim is to make it possible to recognize corrupt
datagrams as soon as possible, having done as little work as possible, in order to
avoid having to do any more work than is strictly necessary. Without this considera-
tion, many of the things that we have discussed above become unnecessary. We could
simply rely on full GCM authenticated decryption to make our decision on whether or
not to accept a received datagram. But this would make it much easier for an attacker
to be able to mount a successful denial of service attack.

Of course, we are talking about denial of service attacks that result from the inability
of the tunnel client to drain the RX queue of the socket. It is also possible that the
bottleneck will turn out to be a network component along the way that cannot handle
the amount of traffic flowing in. In this case, there isn’t anything that we can do.

3.10.16 Regarding IPv6

IPv4 and IPv6 are the two preeminent network layer protocols that are responsible
for most of the internet infrastructure. IPv6 is the successor of IPv4, although IPv6
adoption is still limited and IPv4 is still widely used. While we have focused our
attention on IPv4 traffic, the Lynxtun Protocol can easily be adapted to support IPv6
packets too.
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Figure 3.3: Outgoing Processing Round
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CHAPTER 4

LYNXTUN AND ITS ENVIRONMENT

4.1 Realtime Requirements

An algorithm is the expression of the steps required in order to perform a task. In the
field of computation theory, the task is to transform input data into output. Therefore,
an algorithm is analogous to a mathematical function. Unlike a mathematical func-
tion, however, there is an inherent notion of the passage of time. An algorithm is fully
deterministic. It will always produce the same output for a given input. However, the
number of steps that are taken before an output is produced can vary. It can even tend
to infinity, in which case no output is ever generated. This is similar to a function
being undefined for a certain input. The problem is that an algorithm may require
arbitrarily many steps to produce an output. There is no fixed point that allows us to
say with certainty that, if an algorithm has not produced an output thus far, it never
will. This is known as the halting problem.

A Turing machine is an ideal model of a general-purpose computer that has infinite
memory [51]. A problem is computable if it is possible to express it as an algorithm
and associated input that combined will produce an output. If a problem is com-
putable, then a Turing machine can compute it. This is a very powerful concept, as it
implies that there exists a finite set of logical operations that constitute the building
blocks of all computations. If an instruction set or programming language is Turing
complete, in that it provides the necessary functionality to simulate a Turing machine,
then that instruction set or language can be used to solve all computational problems.
Memory limitations aside, all computers are equal in their capacity to eventually solve
a computable problem.

This brings us to an important point. How long it takes to produce the output is
always important. Consider the case of decrypting data that has been encrypted using
the AES-256 cipher. There are 2256 different keys to try. If one were to try each and
every one of them, then they are sure to find the correct key, eventually. We can safely
say that by the time the brute-force algorithm returns, the person who started it will
have long gone. For any problem, there is an upper bound to the amount of time that
we can accept to wait before the problem becomes computationally infeasible.

Even within the limits of feasibility, producing output sooner than later is generally
preferable. This is true of programs that are run in order to produce the output. For
example, a student who is using Latex to produce PDF documents from input text
files will appreciate if the output would be produced in one second rather than ten.
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Now consider an interactive 3D computer game, which is essentially an interactive
simulation. The work includes getting user input, updating the world model, and
rendering a frame. Frames are displayed in rapid succession to the user, similar to
how frames of still images played back one after the other make a movie. When we
consider the frame to be the output of a computation, the rendering operation, then
all computers (provided they have sufficient memory) will be able to render the same
frame equally well. However, rendering a single frame every hour is infeasible, as
the game can no longer be played. If we are able to render frames at a rate of 30 Hz,
then we have a game. Moreover, it is also bad for a frame to be displayed too soon, as
variable frame rate can result in jittery animation. The refresh rate of the display also
has a fixed frequency, and there are benefits to matching this in how often we present
new frames.

We see that the problem has now changed. We are no longer only concerned with the
result of a computation. We are also concerned with when these results are computed.
An algorithm specifies the sequence of instructions that will be performed. Now, we
want control over when these steps are performed. In other words, we want control
over runtime execution. We can refer to a program that has such requirements as a
realtime program.

The logic expressed by the algorithms that make up a program do not depend on
the hardware that is used to execute them. The benefit of using high-level program-
ming languages like C is that it enables expressing these algorithms in a platform-
independent way. That being said, a program that is unable to interact with the user
is of little use. User interaction involves receiving input or providing output, and is
done using I/O devices. Displays, keyboards, hard disks and network interfaces are
all examples of I/O devices. Interacting with them requires producing what is known
as side-effects in programming. It causes something to change in external state.

One of the primary goals of an operating system is to present an abstraction layer to
userspace processes for interacting with hardware devices. A process does not interact
with I/O devices directly. Rather, it makes system calls. This is a request that the
process makes to the kernel. Upon receiving the request, the kernel interacts with the
designated hardware device on behalf of the process that made the request. The result
is later transferred from the kernel back to the process. It is the kernel’s responsibility
to know how to interact with each device, being aware of its idiosyncrasies. This
complexity is hidden from userspace processes, which only see the abstract system
calls API. When developing userspace software, we only have to know about the
kernel API and not about specific hardware devices.

As we have said, the core logic of a program is essentially platform-independent. The
parts that are platform dependent are developed targeting a specific operating system
platform, rather than a specific set of hardware. Furthermore, it is possible to keep the
core part of a program intact and only change the platform-dependant parts in order to
adapt the program to run under different operating systems. This is known as porting.

For a program that does not have realtime requirements, its interaction with the kernel
and underlying hardware may not be particularly important. If a program performs
up to specifications on a particular platform, then porting it to a different platform
will likely result in an acceptable solution.
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In the case of a realtime application, porting becomes more involved. The goal of the
program can no longer be reduced to computing a result. While the way that results
are computed remains the same, the means in which we ensure that work gets done
at the right time depends entirely on platform-specific mechanisms. This requires a
more intimate understanding of the kernel: how it works, what its interaction with
the process is like, and what its interaction with the hardware is like. We also need to
have some idea about the underlying hardware too. Designing a realtime application
needs taking all of this information into account. This information also determines
how a system should be configured, in order to run a realtime application properly.

Lynxtun is a quintessential realtime application. There are two specific realtime re-
quirements that we have. First, a dispatch operation needs to be performed at the right
time. That is, the network interface should start transmitting the Lynxtun datagram
as soon as possible, once a scheduled dispatch operation is due. Secondly, a Lynxtun
datagram has to be prepared before it can be dispatched. IP packets have to be en-
capsulated in it, and it has to be encrypted. Other than reading IP packets from the
TUN device, the preparation of the encrypted Lynxtun datagram is a computational
problem. The goal here is that, the computational output (the encrypted datagram)
should be ready some time before the next dispatch operation is due.

4.2 Achieving Deterministic Runtime Execution

In light of the discussion above, we now identify numerous factors that can contribute
to non-deterministic runtime behavior, and propose methods of mitigating them. The
information presented here has implications on various design decisions necessary for
our implementation of Lynxtun for Linux, which is discussed in the following chapter.
It also provides insight with regards to how a system should be configured in order to
achieve optimal security. However, we should mention that the correct configuration
for any particular Lynxtun deployment will depend on both the actual hardware spec-
ifications, as well as operational and security requirements. The discussion below is
based on Linux 4.16.

4.2.1 CPU Related Factors

Each machine instruction requires a certain amount of processor cycles to perform.
How long it takes to execute a given instruction will depend on the CPU frequency,
design and architecture. If instructions can be executed in parallel, then the number
of cores (physical or logical) is also important. In general, modern CPUs are highly
complex. They cannot be assumed to have a fixed clock rate. Technologies like Intel
SpeedStep and Turbo Boost are used to dynamically adjust the CPU frequency. The
frequency is dialed back when there is no load in order to conserve power. This is
especially important for battery powered devices like laptops. A CPU core can be
throttled if its temperature exceeds a given threshold. The CPU can be overclocked
for brief periods of time when there is high load, as long as the power, current and
temperature values are within acceptable ranges. If there are multiple cores available,
and a single highly intensive thread of execution, this can switch from one core to
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another. The active core will be overclocked. When it becomes too hot, execution
will continue running on another core working at full speed while the previous core
is allowed to cool. Dynamic adjustment of the CPU clock rate is referred to as CPU
frequency scaling.

A CPU can only continue execution if all computational resources necessary for an
instruction to be executed are available. Otherwise the CPU will stall. The time it
takes to access memory is significantly greater than the duration of a CPU cycle.
Waiting for disk access is much worse. CPUs use several layers of cache that take
advantage of the concepts of spacial and temporal locality, to store data that is likely
to be needed in the short term by the CPU in a location that can be accessed much
more quickly. Cache management is inherently a difficult problem. Furthermore, the
content of the cache is affected by all processes that are executing on a given CPU
core. The fact that the core on which a particular task is executed can change makes
the issue even more complicated.

To add to this complexity, CPUs perform out-of-order execution. Suppose that the
CPU stalls because resources needed for the next instruction are not available. It
might be the case that another instruction further down the line can be executed
straight away. In this case, the CPU will execute this instruction out-of-order in-
stead of stalling. Modern CPUs go one step further and perform out-of-order in a
speculative fashion. That is, the processor is allowed to execute instructions that have
not been actually issued yet, but are statistically likely to be issued in the near future,
based on the current state and previously observed behavior. If the speculative in-
struction does in fact realized, then the result has already been computed. Otherwise,
the CPU has to roll back the speculative instruction. The mechanisms that are respon-
sible for this are immensely complex. Speculative execution is the cause of a recently
discovered class of security vulnerabilities, including Spectre and Meltdown. The
complexities of speculative out-of-order execution and its implications on security
are still being understood, and constitute an important field of active research.

The fundamental issue here is that general-purpose CPUs are designed to maximize
utilization and achieve high levels of throughput and responsiveness, while consum-
ing less power and generating less heat. Deterministic runtime behavior in the sense
that it is possible to predict the exact time that a specific instruction will get executed,
or how long it will take to carry out a given sequence of instructions, is not a priority.

The Linux kernel provides a mechanism for controlling CPU frequency scaling. This
is done through the use of a CPUFreq governor. Setting the
CPU_FREQ_DEFAULT_GOV_PERFORMANCE kernel configuration option enables
statically setting the frequency to the highest value supported by the CPU. How-
ever, this is still subject to throttling that can occur if the CPU exceeds a temperature
threshold, in order to prevent hardware damage. Alternatively, a userspace CPUFreq
governor enables setting the frequency manually while the system is being used. This
offers greater flexibility, as the user can alter the configuration depending on current
needs. However, this is not available on all systems. For example, Intel Core pro-
cessors use the X86_INTEL_PSTATE driver, which does not support the userspace
CPUfreq governor. It only supports the performance and powersave governors.

The duration of a single CPU cycle represents the smallest unit of time in the system.
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Modern CPUs generally run at GHz frequencies. 1 GHz corresponds to a clock cycle
that lasts one nanosecond. We define our tolerance for deviations in dispatch times
in absolute terms. We say that, the deviations should be on the order of several mi-
croseconds at most. It is unlikely to be able to achieve this requirement if we were
using a CPU running at a frequency of 1 MHz, as a single CPU instruction would in-
troduce a delay above our fixed threshold. In general, the higher the CPU frequency
is, the more likely we are to be able to minimize the deviations.

CPU frequency scaling issues have no bearing on how to design the Lynxtun imple-
mentation. However, it can influence runtime behavior. In principle, we can assume
that fixing the frequency at the highest possible value that is sustainable even dur-
ing period of heavy load is the optimal strategy in terms of a deterministic dispatch
process.

4.2.2 Memory Related Factors

Modern operating systems, including Linux, use virtual memory management. Vir-
tual memory management requires support from both the kernel and the hardware.
The memory space allocated to a userspace process physically exists across several
layers of CPU cache, main memory and swap space. Memory access times vary
greatly depending on where the requested data is actually located at the time of the
request. The number, sizes and access times of CPU cache layers depend on the pro-
cessor. The access time from main memory depends on the type and frequency of the
memory modules installed. For a given type of memory module, access times tend
to increase with memory size. Memory access time for pages that were swapped out
onto disk are significantly longer, though SSD disks offer significantly higher per-
formance in comparison to magnetic hard disks. Memory access time is also greatly
influenced by overall system load, which is highly non-deterministic. Different pro-
cesses contend for CPU cache and main memory. Memory access requires informa-
tion being sent over a bus, and will take longer if contention for bus utilization is
high.

When implementing Lynxtun for Linux, there are several ways in which we can mit-
igate these issues to a certain extent.

The first is by using memory locking, which is done using the mlock() system call.
This allows a specific range of memory addresses to be locked into main memory,
such that they are not allowed to be swapped out to disk until either it is unlocked
explicitly through the munlock() system call, or the process terminates. This pre-
vents significant delays that can arise from having to retrieve data from disk. Our
implementation should take advantage of this capability. However, there is an im-
plication. Locking memory will significantly increase the memory pressure on the
system, as it effectively decreases the available space on main memory for everything
else. We need to be conservative in our use of memory. The general design principle
should be to allocate all memory buffers that will be required throughout the lifetime
of the process at startup, keep the sizes of these to a minimum and lock all of them
into main memory. The allocation can either be done statically or dynamically. How-
ever, it is very important that dynamic memory allocation (malloc()) should not
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be done after the start of the first round. Dynamic memory allocation is inherently
unpredictable in how long it takes to allocate the requested amount of memory.

The second approach, that can be used to complement the first, is to make efficient
use of the CPU cache. By optimizing the structure of our code and particularly mem-
ory access operations, it is possible to decrease the likelihood of cache misses. Of
course, writing perfectly optimized code would require us to know how large the
cache actually is, but this depends on the CPU. In general, performing less memory
access operations, keeping the size of the accessed values small, and accessing mem-
ory that is stored adjacently is beneficial. While the CPU cache is subject to external
influences, it is also possible to mitigate this through the use of CPU isolation, as
discussed below.

As was the case in the previous section, using hardware that is more performant is
beneficial.

4.2.3 Scheduling Related Factors

Earlier in this chapter, we mentioned that one of the objectives of a kernel is to present
an abstract API to interact with the hardware to userspace processes. In the case of a
timesharing operating system, there is an additional objective: being able to present
the same interface to multiple processes running at the same time. Unix, Linux,
Windows and OS X are all examples of timesharing operating systems.

We have to make a clarification. A single CPU can only execute a single instruction at
a time. Therefore, it can only be working on a single task at any given moment. On a
uniprocessor system, two processes can never be said to be running at the exact same
time. Once again we invoke the fact that computer design should not be considered
independently from how a user — that is, a human — interacts with it. There are
limits to the human perception of time. By partitioning available CPU time into
short timeslices (on the order of milliseconds or less), and allocating each timeslice
to a different process creates the illusion, from the perspective of the user, that the
processes are running at the same time despite the fact that the CPU executes a single
instruction belonging to a single process at a time. This is the foundation of the
interactive computer experience that we are accustomed to. It is then the operating
system’s job to make it appear to the process that, while it is running, it has full
control over the hardware; as if it were the only process that is running.

However, there is an important limitation to this, that is related to our earlier discus-
sion on program logic and runtime execution. The process is isolated in the sense
that which instructions are executed are not affected by other processes (unless such
a relationship is implemented explicitly through inter-process communication mech-
anisms). However, the runtime execution certainly is. Therefore, there are ramifica-
tions due to timesharing in the context of a realtime application.

The key component of a timesharing kernel is the scheduler. The scheduler manages
the allocation of CPU timeslices among processes. A process is said to be running
while its instructions are being executed on a CPU. Otherwise, the process is said to
be sleeping. In order for a sleeping process to start running again, the scheduler has
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to select it.

The transition between running and sleeping is transcendental to the logic of the
userspace program. The internal state of the process is not changed. There is no
lapse in the process’s stream of consciousness, so to speak. As far as the process is
concerned, it never stopped running. In order to do this, the entire internal state of
a process should be captured as it is being put to sleep, and this state should be re-
stored before the process starts running again. A context switch is the process through
which execution switches from one thread of execution to another. Performing a con-
text switch requires saving the state of the former, and restoring the previously saved
state of the latter. This incurs time and computational overhead. It may even be the
case that context switches happen so frequently that all processor time is spent on
saving and restoring state, and no time is left to perform any actual work. This is
called thrashing, and it is the scheduler’s responsibility to avoid it.

While the concept of sleeping is not related to the computational logic of a program,
as we have noted, not all parts of an actual software program are purely computa-
tional, and there are times when it is necessary to produce external side-effects. This
might be done in order to interact with an external hardware device through the ker-
nel, or it might be done to interact with the kernel itself. In either case, this requires a
system call being made from the process to the kernel. When a system call is made,
then execution switches from the process code to kernel code, so that the kernel can
handle the request. This puts the process to sleep. There are two reasons why this is
necessary. First, the kernel itself is not exempt from the fact that only a single task
can be running on a CPU at any given time. If there is a single CPU on the system,
control necessarily has to switch to the kernel so that it can handle the request, thereby
putting the process to sleep. Even if there are multiple CPUs available, the process
cannot continue its execution before the kernel at least acknowledges that the request
has been received. A system call is similar to a function call in this sense. In fact,
the glibc library implements library wrappers for most system calls. Execution is
blocked on the calling thread until this function returns.

If the system call was hardware-related, then the kernel has to send instructions to
the device. I/O operations in particular take a long time to perform. For this reason,
the Linux kernel uses asynchronous I/O. Instructions that are sent to the device are
executed on a hardware controller on the actual device. The kernel does not wait
for the operation to finish, and instead moves onto working on other things. This
can include performing a context switch to another application. At some point in the
future, when the result is ready, the device will generate a hardware interrupt request
(IRQ) in order to notifying the kernel. The interrupt is received on a CPU. Upon
receiving an interrupt, the CPU stops any work that it was doing, and starts executing
the kernel’s interrupt handler code that exists at a fixed memory address. At this
point, the result to be returned to the original userspace process is available within
the kernel. The kernel will flag the process as runnable, so that it becomes eligible to
start running as the result of a scheduling decision. However, this might not happen
immediately. It is possible that the scheduler selects a different process to run in the
next available timeslice. When the original process wakes up, the result of the system
call is transferred into the memory space of the process, and the system call returns.
Note that there are delays associated with each step in this process that depend on the
scheduler load, context switches, and latency due to hardware devices. Therefore, it
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is difficult to predict how long it will take for a system call to return.

The implication of this on implementing Lynxtun is that we have to be careful about
when and where we make system calls. In particular, system calls that involve I/O
operations. Whenever we make a system call, we do not know when control will be
returned to us. Then again, there are I/O system calls that we nevertheless have to
make. At the very least, we have to read and write IP packets to the TUN device, and
read and write Lynxtun datagrams to the UDP/IP socket.

While making a system call voluntarily yields control, it is also possible for a context
switch to take place without being triggered by the process. We have already touched
upon the way this happens, when we mentioned that a CPU that receives a hardware
interrupt will stop working on what it was doing. This could very well be a userspace
process, putting it to sleep.

Linux is a preemptive kernel. This means that a running process can be suspended
even if it does not yield control voluntarily. Such a process is said to have been pre-
empted. This is a central requirement for a timesharing operating system. A userspace
process is not allowed to run indefinitely even if it does not make any system calls.
As we have mentioned, CPU time is partitioned into timeslices. Each timeslice has
a fixed duration, and control will return to the kernel at the end of each timeslice so
that a new scheduling decision can be made. This can be followed by performing a
context switch to a different runnable process. In general, every time control switches
to the kernel, the scheduler has to decide what to run next. Even in the absence of
IRQs that result from various system calls and device activity, the a timer interrupt
will be generated at regular intervals called ticks to ensure that scheduling decisions
are made regularly. The kernel can also explicitly preempt a process if there is another
runnable process with a higher priority.

Returning to our runtime requirements for Lynxtun, there are two challenges related
to scheduling. First, if Lynxtun is not given sufficient processor time necessary to
complete the work required to prepare an encrypted datagram by the time that the
dispatch operation is due, then the dispatch deadline will be missed. Secondly, if
Lynxtun is not running at the exact time that the dispatch operation should be made,
it can only do so once it regains control. Again, this leads to the dispatch deadline
being missed.

The most straightforward approach to reducing variability due to scheduling is to
limit the number of other processes that are running on the same system. However,
there is an important point to consider. The reason we want deterministic runtime
execution is in order to ensure that dispatch time variability is not correlated with
the underlying communication. Random variability due to unrelated processes is not
necessarily a problem in and of itself in terms of traffic flow confidentiality. If the
IP packets that are encapsulated by the tunnel are generated by another userspace
process running on the same host, and this is the only other process running besides
Lynxtun, then variability due to scheduling becomes more dangerous. While running
unrelated processes make it more difficult to achieve deterministic runtime execution,
it also means that failing to achieve this is less dangerous, as the resulting variability
will also include noise.

56



4.2.3.1 Realtime Scheduling

The Linux kernel allows the scheduling policy of a process in runtime. This presents
us with an important tool in order to mitigate issues related to scheduling.

The first concept to be aware of is that each process can be assigned a scheduling
priority. Processes can be preempted in favor of a runnable process with a higher
priority. Similarly, a routine scheduling decision will favor processes with higher
priority.

The default scheduler policy of Linux is SCHED_OTHER, which is also Completely
Fair Scheduler (CFS). CFS operates in what is essentially a round-robin fashion by
aiming to give each process an equal amount of processor time. A process that is
subject to this policy will have a nice value, which is 0 by default. The negative of
the nice value is the process’ scheduling priority. Therefore, increasing the nice value
decreases the priority of the process.

Linux also supports realtime scheduling policies specified by POSIX realtime exten-
sions [6]. These are SCHED_FIFO and SCHED_RR. Within the set of all runnable
tasks at a given priority, the former will select the processes in the order that they
became runnable, and the latter will use a round-robin approach.

The primary system call used to configure the scheduler is sched_setscheduler().
We can use this to configure Lynxtun to run with a high realtime priority in order to
improve deterministic runtime behavior.

4.2.3.2 Kernel Preemption

While preemption is an integral part of the design of Linux, there is an important
caveat. A low priority process that is working in user mode can always be preempted
by the kernel to pass control to a higher priority runnable process. However, the
situation is different when the low priority process made a system call and the kernel
is in control and doing work on behalf of the low priority process. The instructions
are being executed here belong to the kernel. Whether or not kernel code itself can
be preempted is a separate matter. If it is, then we call this a preemptible kernel.
The degree at which this is possible depends on how the kernel was compiled. If the
kernel is not preemptible, then a high priority task might be delayed while waiting
for the kernel to finish working, even if this work is being done on behalf of a low
priority task.

According to the kernel configuration documentation, CONFIG_PREEMPT_NONE
is the traditional Linux preemption model. Here, kernel tasks cannot be preempted.
It increases throughput and is recommended for servers and scientific-computation
systems.

CONFIG_PREEMPT_VOLUNTARY and CONFIG_PREEMPT__LL, known as Vol-
untary Kernel Preemption and Preemptible Kernel configurations, are geared more
towards desktop use. The introduces explicit preemption points into the kernel. The
latter makes allows kernel code that is not in critical sections to be preempted. This
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reduces throughput, but allows interactive applications that require latencies in the
milliseconds range to be more responsive when the system is under load. Applica-
tions for which this is particularly important are media applications like listening to
music. This makes these suitable choices for desktop machines.

Next, we discuss the PREEMPT_RT kernel patch, which is maintained by the Real
Time Linux collaborative project [7]. This is not a part of the mainline Linux kernel.
Rather, it is a kernel patch that has to be applied separately. It converts Linux into
a fully preemptible kernel and allows it to function as a realtime operating system
(RTOS) capable of attaining latencies on the order of microseconds. Having said
this, the use of RT_PREEMPT is not sufficient to make this happen. The RT Linux
Wiki contains useful information concerning realtime application design and system
configuration issues and mistakes to avoid.

The RT Linux wiki provides an interesting example that illustrates how tricky this
subject can be. A user reported that they have observed latencies greater than 500 mi-
croseconds when the computer is booted with a USB flash stick plugged in. However,
if the same USB flash stick is connected after system boot, then latencies become sig-
nificantly lower.

The following passage from the RT Linux Wiki [7] neatly sums up the level of diffi-
culty in achieving determinism.

"An RT-application is only able to operate correctly if the underly-
ing OS and hardware are able to provide the needed determinism. That
means a higher priority task can preempt a lower priority task. If for
example a BIOS decides to use all CPU cycles for a very long time, no
operating system or application can provide any latency guarantees. The
hole system needs to be tuned and configured correctly."

Having a preemptible kernel is desirable for Lynxtun. The kernel should either be
configured with PREEMPT__LL or preferably with PREEMPT_RT. There are two
issues to consider with the latter. First, it means that a patched kernel should be used,
which is not very convenient for the user. Second, a fully preemptible kernel is not
suitable unless a dedicated machine is being used for Lynxtun. In Section 4.3, we
compare the realtime behavior of the two alternatives. Additionally, in Chapter 6, we
compare results obtained from running Lynxtun on each configuration.

4.2.3.3 Reducing Scheduling Clock Ticks

We have mentioned that timer interrupts that are generated at regular intervals ensure
that scheduling decisions are made even in the absence of other IRQs. The Linux
kernel source tree includes a documentation file on this subject1.

IBM-compatible PCs have a hardware time-measuring device called the Programmable
Interval Timer (PIT) that can be used to generate a timer interrupt on IRQ line 0 at

1 /Documentation/timers/NO_HZ.txt under the Linux kernel source tree.
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a fixed frequency that is set by the kernel [14]. Each timer interrupt is called a tick.
These play an important role in scheduling, which is why they are referred to as
scheduling ticks. Even if a running process does not make a system call and no other
IRQs are generated, the timer interrupt will cause control to switch to the kernel and
lead to a scheduling decision being made. Different frequencies for the clock range
from about 100 Hz to about 1000 Hz.

While the timer interrupts are important from the point of view of timesharing if there
are multiple runnable processes waiting on a single CPU. However, as stated in the
Linux documentation (NO_HZ.txt), "if a CPU is idle, there is little point in sending
it a scheduling-clock interrupt (because) the primary purpose of a scheduling-clock
interrupt is to force a busy CPU to shift its attention among multiple duties, and an idle
CPU has no duties to shift its attention among." This becomes an important concern
when considering battery-powered devices, because handling IRQs increases power
consumption. We see that these concerns were important in the decision to make a
shift towards a dynamic ticking system (dynticks), where scheduling clock ticks can
be omitted depending on the situation, such as when the CPU is idle.

The CONFIG_HZ_PERIODIC kernel configuration option can be used to have the
old behavior, where timer interrupts are generated at a constant rate. This rate can
be 100 Hz, 250 Hz, 300 Hz or 1000 Hz. Linux kernel configuration documentation
suggests that 1000 Hz is typical for desktops and 100 Hz for servers.

The configuration documentation suggests that the idle dynticks system (tickless idle)
is the usually desired behavior, with energy saving being cited as the reason.

The most interesting alternative for us is CONFIG_NO_HZ_FULL. This option causes
scheduling timer interrupts to be omitted when a CPU has only a single runnable
task. NO_HZ.txt identifies timer interrupts are a source of timing jitter, and presents
CONFIG_NO_HZ_FULL as a useful means of reducing this for real-time applica-
tions, particularly those that have short and regular iteration times. This is the case
for Lynxtun.

Even if the kernel is compiled with CONFIG_NO_HZ_FULL=y, it is not activated
by default and has to be explicitly enabled for each CPU using the boot parameter
nohz_full=. A recent addition is the CONFIG_NO_HZ_FULL_ALL configura-
tion option that enables the full dynticks system for all CPUs apart from CPU 0.

We evaluate the various possible alternatives in section 4.3.

4.2.4 Timing Events and the vDSO

Our realtime requirements dictate that we have control over when particular actions
are taken. Specifically, we need to control the time that dispatch operations are ex-
ecuted. There are two basic approaches that we can take in order to do this. Either
we delegate the task to the kernel and request it to notify us at a given time, or we
repeatedly check the current time until we find that a set deadline has been reached.

In both cases, the precision with which we can time events depends on the resolution
of the timekeeping system available on the system. As stated by the Linux documen-
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tation2, before Linux 2.6.21, the accuracy of the timekeeping device was limited to
a jiffy. The duration of a jiffy is precisely the period of the timer interrupt tick. This
meant that timekeeping could only be done at a resolution of milliseconds. In such a
case, it is not possible to limit dispatch time variability to microseconds.

To solve this problem, the Linux kernel features the high-resolution timers API, that
allows timers up to nanosecond resolution. The Linux kernel source tree includes
documentation on the subject3. There is also a comprehensive LWN article on the
subject [2]. We should point out that high-resolution timer availability depends on
the hardware to support it.

Userspace applications can make use of the high-resolution timers API through sev-
eral means. nanosleep() system call puts the process to sleep, to be waken up
after the specified time. The itimers interface instructs the kernel to send a signal to
the process at specified intervals. The clock_gettime() system call can be used
to obtain the current time with high precision.

The problem with nanosleep() is that it puts the process to sleep. As we observe
in Section 4.3, the wake-up times are subject to significant variability. Our assessment
is that using itimers to generate signals at specific times is not the correct approach
for Lynxtun. The procedure for processing incoming data and outgoing data can
each be executed in a completely synchronous way, and the two can be processed
independently. Having to handle asynchronous signals would introduce complexity
that makes it more difficult to reason about the realtime behavior of the program.
Furthermore, it is challenging to implement signal handling in the context of a multi-
threaded program. Being able to handle each of the two aforementioned tasks on
separate threads has certain advantages.

In Section 4.3, we show that it is viable to implement a busy-loop that constantly
checks the current time until a set deadline has been reached. However, for this to be
viable, it should be possible to check the current time using the vDSO.

vDSO stands for the Virtual Dynamic Shared Object [1]. It was found that some
userspace code makes certain system calls provided by the kernel so often that it leads
to the resulting context-switching overhead to dominate the system 4. In particular,
these are calls related to getting the current time, such as gettimeofday() and
clock_gettime. While these have to do with device interaction, unlike most other
system calls, there is no obvious reason why these calls should not be allowed to be
made directly from userspace. This led to the addition of the vDSO support to the
Linux kernel.

The vDSO is a shared library that gets automatically mapped into the address space
of all userspace applications. The glibc library takes advantage of the vDSO when
available by calling a virtual system call exported into the vDSO rather than making
a full system call that would result in a context switch. The virtual system call is exe-
cuted directly in userspace, greatly reducing latency and context-switching overhead.

While being able to get the current time using the vDSO can be assumed to be the

2 See man (7) time
3 Under the /Documentation/timers directory of the Linux kernel source tree
4 man (7) vdso
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case on almost all physical systems, there are certain cases where getting the current
time through vDSO is not possible. As it turns out, the implementation of certain
hypervisors does not support doing this. Results published online [9] indicate a 77%
performance decrease in performance due to code running on AWS EC2 because the
virtualized clock source on the xen hypervisor does not support vDSO.

While Lynxtun will run regardless of vDSO support, its deterministic runtime behav-
ior will be severely degraded if it is not available. This is because each
clock_gettime() call made will result in a full system call being made, and this
will be done shortly before a dispatch operation is made.

4.2.5 Multiprocessing and CPU Isolation

A Linux kernel compiled with CONFIG_SMP=y will be able to make use of multiple
CPU cores. A kernel compiled with CONFIG_SMP=n will run faster on a uniproces-
sor machine, but will only be able to use a single core on a multi-processor machine.

Linux uses the Symmetric Multiprocessing Model (SMP) to handle multiple CPUs.
What this means is that the kernel does not have a bias toward one CPU with respect
to the others [14]. Linux configures the Advanced Programmable Interrupt Controller
(APIC) to dynamically distribute IRQ signals among available CPUs, following what
is essentially a round-robin approach.

On the other hand, Linux is not purely SMP, as it offers ways of treating cores sep-
arately. We have already seen one example of how this is possible, in the case of
omitting scheduling clock ticks for certain CPUs.

The CONFIG_CPU_ISOLATION=y kernel configuration option is another such mech-
anism. When this is available, the isolcpus= kernel boot parameter can be used to
isolate a number of CPUs so that no process will get added to the run queue of this
processor by default, and no IRQs will be routed to this CPU.

The kernel configuration documentation states that this allows to "make sure that
CPUs running critical tasks are not disturbed by any source of ’noise’ such as un-
bound workqueues, timers, kthreads, etc." This is made possible by a feature known
as the IRQ affinity of multi-APIC systems [14]. This feature allows IRQs to be routed
to a specific CPU.

The sched_setaffinity() system all or the taskset utility can be used to set
the CPU affinity of a process, which designates the set of CPUs that the scheduler can
assign this task to run on. While the isolcpus= boot option is the preferable way of
isolating a CPU, it is also possible to use taskset on all exiting processes to isolate a
CPU while the system is already running.

The Linux kernel also provides the cpuset pseudo-filesystem 5 if compiled with
CONFIG_CPUSETS=y that can be used to manage which processes get assigned to
which CPUs.

5 See man (7) cpuset
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A related issue is Simultaneous Multithreading (SMT), which is also known as hy-
perthreading. It is related to the CONFIG_SCHED_SMT kernel configuration option.
Its most notable use is in the Intel Pentium 4 CPU. SMT presents a single physical
CPU core as two logical CPU cores to the operating system. Within the CPU, parts
of it that store architectural state are duplicated so the scheduler can interact with two
logical CPUs and schedule processes to them independently. However, this duplica-
tion does not extend to the main execution components, meaning that only one of the
threads can be executed at any given time. This is an alternative approach to the prob-
lem solved by out-of-order execution, in that the CPU can quickly switch to working
on a different task instead of stalling (e.g. due to a cache miss).

4.2.6 Hardware Devices

Hardware devices generate hardware interrupts that can be detrimental to determin-
istic runtime behavior. Therefore, limiting the number of connected devices is ben-
eficial. That being said, similarly to what we have said about non-determinism due
to unrelated userspace processes, if we have reason to believe that non-determinism
introduced by a particular hardware device cannot be related to the underlying com-
munication, then this might actually be beneficial to the overall security of Lynxtun.

We should also mention that there will be some variability due to the network stack
on the host. The actual dispatch time is when the network packets appear on the
network, as they are physically transmitted by the egress network adapter. However,
we do not have precise control over when this happens. Within the context of a
userspace implementation, the most that we can aim for is to make the system call that
writes an encrypted Lynxtun datagram to the UDP/IP socket close to the scheduled
dispatch time. There will be some variable amount of delay between this and when
the first packet is actually sent. Here, we refer to the burden of knowledge principle.
From the point of view of the network stack, encrypted Lynxtun datagrams should
all appear to be equivalent, regardless of the data contained within them. Therefore,
it is likely that the variability generated here will mostly be noise. If, however, the
underlying communication is also arriving through the network stack and the same
network adapter in particular, then it is possible for this variability to be correlated
to underlying communication. There is not a lot we can do to prevent this. If the
underlying communication arrives through a network, ensuring that it does so through
a separate network adapter should help mitigate this issue.

4.3 Experimental Comparison of Alternative Configurations

4.3.1 Experimental Setup

We implemented the simple C program presented in Appendix F.

The waiting behavior is implemented in two separate ways.

1. Sleeping using clock_nanosleep.
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2. Spinning in a busy-loop by checking the current time using clock_gettime().

We note that we perform these experiments on a physical host that supports clock_gettime()
through the vDSO. This is essential to this experiment.

All our experiments are performed using a dedicated physical host. The hardware
specifications for this host are given in Appendix B.

The specifications for the three kernels configurations that we use in our experiments
are given in Appendix C.

We can boot each kernel using isolcpus=1 to isolate CPU 1. Alternatively, we do
not isolate any CPU.

We use sched_setaffinity() to be able to constrict the process to run on a
specific CPU. Alternatively, we set no CPU affinity.

We use sched_setscheduler() to make the process be subject to the realtime
SCHED_FIFO scheduler with a high priority of 98, or alternatively leave it at the
default which is SCHED_OTHER with the default nice value of 0.

We use the hackbench benchmarking utility to test the system when the scheduler is
under heavy load. hackbench forks many processes which each use a large number
of pipes between them to send messages to one another, in order to put artificial load
on the system scheduler. We perform our experiments when the system is idle, and
when it is under load.

We collect 250 samples. The target waiting duration is 20 milliseconds.

4.3.2 Results

4.3.2.1 Baseline

Parameters: lynx-2-desktop, no CPU isolation, default scheduler.

This represents a system without any special configuration.

We observe the following values when we compare sleeping vs. spinning when the
system is idle and under load.

Sleep (Idle) Spin (Idle) Sleep (Busy) Spin (Busy)
Mean (nanosec) 292,406 404 4,819,182 146,862,816

Std Dev. 9,477 91 24,841,475 178,450,136

When we use spinning when the system is idle, then the average deviation is on the
order of nanoseconds. This is the order of CPU cycles. On the other hand, when we
sleep instead, the average deviation rises to around 300 microseconds. This is a very
significant increase. While both values increase significantly when the scheduler is
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put under load, we see that the increase is much greater in the case of spinning.
The average deviation is on the order of several milliseconds in the case of sleeping,
but hundreds of milliseconds when spinning when the system is busy. This is an
interesting observation. We see that by setting a wake-up timer in the kernel using
clock_nanosleep() offers better performance that a program that constantly
gets preempted as it is trying to check the current time using clock_gettime()
in a busy-loop.

Noting that our Lynxtun implementation uses spinning while waiting for the dispatch
process, we observe that this is much better than sleeping as long as the system is
idle, performs particularly bad when the system is under load. This is unacceptable
for Lynxtun.

4.3.2.2 Strictly Configured System

Parameters: lynx-0-nohz-rt, CPU isolation, realtime scheduler

We perform the same experiment with a strictly configured system. The system uses
the RT_PREEMPT kernel patch, CPU isolation is enabled, and realtime scheduling is
used.

Sleep (Idle) Spin (Idle) Sleep (Busy) Spin (Busy)
Mean (nanosec) 302,354 423 232,575 368

Std Dev. 31,348 98 24,554 86

We see that the situation under load has greatly improved. Most importantly, spinning
yields values in the nanoseconds range regardless of whether the system is under load
or not.

The second observation that is important to make at this point is that sleeping remains
in the range of hundreds of thousands of microseconds. What this tells us is that the
correct way to wait for the dispatch operation is in fact spinning, which is what we
have done in our implementation. However, we see that this is particularly suscep-
tible to poor performance on an unconfigured system. This shows how important
configuring the system actually is.

4.3.2.3 Usability of a Stock Kernel

The next question to answer is whether a stock kernel that has not been patched and
compiled specifically for Lynxtun can be used at all by relying on boot parameters,
CPU affinity setting and using a realtime scheduler.

In Figure 4.1 we see the comparison of spinning data obtained from lynx-0-nohz-rt
(Realtime) and lynx-2-desktop (Stock).

We see that the behavior is quite similar in all cases. There are some slight patterns in
the behavior of the stock kernel when it is idle. Also, we can see that there is a slight
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Figure 4.1: Realtime vs. Stock Kernel Spinning

difference in the means. In any case, all variations remain in the nanosecond range.
This suggests that a stock kernel can be capable of providing reasonable security for
Lynxtun.

We compare the two configurations’s sleeping behavior in Figure 4.2.

Figure 4.2: Realtime vs. Stock Kernel Sleeping

We make the following observations:

• The idle behavior has similar means in both cases. However, the stock kernel
is susceptible to suprious spikes.

• The idle behavior of the RT kernel is very regular, but there are large troughs
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that occur at every second. This was interesting. We found that the reason
is probably related to NO_HZ_FULL. As it turns out, when timer interrupts
are omitted for a CPU with a single runnable task (which is what happens in
this case), an interrupt is nevertheless generated at a frequency of 1 Hz for
synchronization. This corresponds to the troughs that we observe.

• When we look at the busy behavior, we see that the real-time kernel has less
variability, but the means are similar.

• In both cases, the average deviation is significantly lower when the scheduler is
busy. This result is rather counter-intuitive. In our first test, we saw that putting
the scheduler under load resulted in significantly higher average deviations.

• In both cases, the deviations have larger spikes when idle. But if we remove
these as outliers, then the remaining data exhibits less variability.

4.3.2.4 The Effect of Scheduler Load

As we have noted, it is interesting to see that the average deviation when sleeping
becomes smaller when the scheduler is put under load, provided the process is running
using SCHED_FIFO with high priority. We suspect that the reason is mainly related
to the following. When a process makes a system call for an I/O operation, this will
result in an I/O IRQ interrupt being generated at some point in the future. When there
are a lot of these happening, these interrupts are generated at a greater frequency.
Each time this happens, it triggers the scheduler. When the scheduler sees that there
is a runnable high-priority process (that was sleeping), then it runs it. It appears that
the frequent interrupts are causing the kernel to check whether our high-priority task
is ready for wake-up earlier than it otherwise would. Basically, putting the system
under load forces it to make scheduling decisions at a higher rate, and this leads it
to discovering that a high-priority task is ready for wake-up sooner than it otherwise
would. While we find this explanation to be reasonable, actually determining that
it is correct would require careful analysis of kernel code. As we only observe this
discrepancy in the sleeping behavior and not the spinning behavior, it is not crucial
for our purposes. However, this result also goes towards supporting that the correct
approach to wait for a dispatch process is spinning and not sleeping, and also the fact
that vDSO support is important.

4.3.2.5 Realtime Scheduler vs. CPU Isolation

Using a fully preemptible kernel, using the SCHED_FIFO scheduler and setting a
high priority are all related to scheduling. Scheduling, in the context of a timesharing
operating system such as Linux, deals with running multiple tasks on a single CPU
simultaneously. To be precise, the CPU can only ever execute a single instruction at
any given time, but by interleaving instructions belonging to separate tasks, a time-
sharing operating system creates the illusion that they are running at the same time.
The scheduler is what decides which process gets run, and for how long.
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Then, there is the case of CPU isolation. When we dedicate a CPU to a single task,
then there is no inherent need to have a scheduler at all: there is nothing to be sched-
uled.

If we were able to completely dedicate a CPU to a process, then it would appear
that CPU isolation and countermeasures targeting the scheduler are redundant. It is
therefore a valid question to ask, is this actually the case? If we use CPU isolation,
can we assume that scheduler related parameters will have no effect?

As we have said, the Linux kernel follows the Symmetrical Multi-Processing (SMP)
approach. This is based on the assumption that the kernel treats all CPUs in the same
way. However, as we have also said, Linux does offer some capabilities that work
around this underlying design decision that allows some control for managing CPUs
individually, such as the isolcpu boot parameter and the per-CPU configuration
that allows omitting timer interrupts. Furthermore, the Linux kernel takes different
execution paths depending on its chosen, preemption model which still influences
real-time behavior even in the context of an isolated CPU.

We compare the sleeping behavior of kernels lynx-0-nohz-rt and lynx-2-desktop in
three cases:

1. Only real-time scheduling is used with SCHED_FIFO 2. Only CPU isolation is
used 3. Both are used

Figure 4.3: Realtime Kernel Sleeping Comparison CPU Isolation vs. Realtime

Scheduling

The results shown in Figures 4.3 and 4.4 suggest the following:

• The average deviation is less when only real-time scheduling is used.

• The variability in deviations is less when CPU isolation is used, and its behavior
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Figure 4.4: Desktop Kernel Sleeping Comparison CPU Isolation vs. Realtime

Scheduling

is more stationary.

• Using real-time scheduling when CPU isolation is being used increases the
average.

As expected, real-time scheduling does not improve the results if CPU isolation is
used, since there is only a single runnable task. To the contrary, it increases the
average deviation. While relying on real-time scheduling alone reduces the average
deviation, the deviations become less consistent. These results suggest that CPU
isolation is preferable, provided that there is a CPU available to dedicate. However, if
this is not possible, then real-time scheduling is important to reduce interference due
to other processes contending for the same CPU.

4.3.2.6 Periodic Timer Interrupts

As a final point, compare the sleep behavior of kernels lynx-0-nohz-rt and lynx-1-
tick in order to observe the influence of having timer interrupts. We can see the
fluctuations caused by the interrupt timer. However, the average deviations become
smaller. The reason is likely to be similar to our earlier discussion on the influence
of I/O IRQs. There is a distinct pattern caused by the timer interrupt, which exhibits
significant periodicity. We see that the range of the deviations do not surpass those
from lynx-0-nohz-rt. While the variability of the deviations is more, we can safely
assume that the clock rate does not depend on the communication, and therefore
can be considered to be noise. As such, this variability might actually be desirable.
However, care should be taken when setting the dispatch interval to accommodate for
these fluctuations.
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Figure 4.5: Full Dyntick vs. Periodic Tick Sleeping
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CHAPTER 5

LYNXTUN IMPLEMENTATION

5.1 Important Data Structures

In this section, we provide an overview of the important data structures that are used
in our implementation.

5.1.1 LynxTunnel

LynxTunnel is the most important data structure. Each lynxtun process has a sin-
gle instance of LynxTunnel (which we usually denote as L) as a globally defined
variable. This holds most of the state in the program, and a pointer to it is passed as
an argument to many functions that implement parts of the Lynxtun Protocol. The
annotated definition of the LynxTunnel structure is given below.

typedef struct {

/* Protocol Configuration Parameters */
Duration dispatch_interval;
Duration freeze_window;
uint16_t dgram_size;
Duration timestamp_tolerance;
int ts_list_size; /* Size of recent timestamps list */
uint16_t payload_size; /* Related to dgram_size */

int host_id; /* Host ID defined by the protocol */

/* Time to spend spinning leading up to a
dispatch operation. */

Duration spin_window;

/* The public and tunnel IP addresses for the
local and remote endpoints. */

struct {
/* The virtual network address assigned

to the TUN interface. */
struct {

char addr_str[INET_ADDRSTRLEN + 1];
struct in_addr in_addr;

} vlan;
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/* The internet address that the two
hosts can use to reach one another. */

struct {
char addr_str[INET_ADDRSTRLEN + 1];
uint16_t port;
struct sockaddr_in sockaddr_in;
struct in_addr in_addr;
struct sockaddr *sockaddr;
socklen_t socklen;

} inet;
} host, peer;

/* Data related to the TUN device */
struct {

char name[IFNAMSIZ + 1]; /* Name. Default: lynx0 */
uint32_t queue_size; /* TX queue sz. in bytes */
int mtu; /* MTU*/
int fd; /* The TUN dev fd. */

} dev;

int sock_fd; /* UDP/IP socket file descriptor */

uint8_t aes_key[AES_KEY_SIZE]; /* AES secret key */

/* GCM Context (incl. lookup tables) */
struct aes256gcm_ctx gcm_ctx;

/* Buffers that hold the staged datagram. */
struct {

struct {
uint16_t size;
uint8_t buffer[IP_MAXPACKET];

} tun_ip_packet;
LynxDatagram dgram;
LynxEncryptedDatagram enc_dgram;

} staging_area;

/* Buffers that hold the dummy datagram. */
struct {

LynxDatagram dgram;
LynxEncryptedDatagram enc_dgram;

} dummy_dgram;

/* List of recently accepted timestamps */
Time ts_list[TS_LIST_MAX_SIZE];
int ts_list_count;

} LynxTunnel;

5.1.2 Lynxtun Datagram Structures

The structures LynxDatagramHeader, LynxDatagram and LynxEncryptedDatagram
are used to implement the Lynxtun Datagram structure defined by the protocol speci-
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fication.

typedef struct {
struct {

uint32_t host_id;
struct {

uint32_t sec;
uint32_t msec;

} timestamp;
} iv;
uint16_t one;
uint16_t data_length;

} LynxDatagramHeader;

typedef struct {
LynxDatagramHeader header;
uint8_t payload[MAX_LYNX_PAYLOAD_SIZE];

} LynxDatagram;

typedef struct {
uint8_t header[sizeof(LynxDatagramHeader)];
uint8_t tag[LYNX_TAG_SIZE];
uint8_t payload[MAX_LYNX_PAYLOAD_SIZE];

} LynxEncryptedDatagram;

5.2 Initialization

When the lynxtun process starts, it creates and initializes a global LynxTunnel
instance based on parsed configuration parameters. This instance is locked into main
memory using mlock(), which will prevent it from being swapped out. This is
important for deterministic runtime behavior.

Note that the LynxTunnel statically allocates memory buffers that are used to hold
the staged datagram and the dummy datagram. Dynamic memory allocations are not
suitable in the context of a realtime application, as they can introduce substantial
delays. A fundamental design decision is to lock all necessary memory at startup.

Besides parsing the input configuration, initializing the LynxTunnel instance re-
quires the following to be done:

• Creating and initializing the TUN device and obtaining a file descriptor. IP
packets read from this file descriptor will be encapsulated in outgoing Lynxtun
datagrams. IP packets unpacked from incoming Lynxtun datagrams will be
written to this file descriptor.

• Creating and binding a UDP/IP socket that will be used to send and receive
Lynxtun datagrams.

• Initializing the GCM context. This is described in Section 5.6.

• Making a number of system calls to configure the system.
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• Generating the initial dummy datagram.

5.2.1 Initializing the TUN Device

On Linux, creating a TUN device starts by opening a file descriptor to a special file
called TUN_CLONE_DEV.

if ((dev_fd = open(TUN_CLONE_DEV, O_RDWR)) < 0)
err_sys("Could not open tun device fd.");

This file descriptor is then used in a series of ioctl() requests that are used to
configure the TUN device.

We begin by setting the name of the TUN device. If there is a single instance of
lynxtun running on the system, then the name will be lynx0. If additional instances
get started, the number at the end will be incremented. This device can be seen
using standard configuration utilities such as ip. We bring the TUN device up, set
it as a point-to-point device with the source and destination addresses matching the
configuration. This ensures that a routing table entry is added, so that IP packets sent
to the peer’s tunnel address get routed to the TUN device.

We set the MTU of the TUN device. If a value is specified by the configuration, then
this is used. Otherwise, it will be set to the size of the fixed datagram payload, as
specified by the protocol. This ensures that the largest IP packet that can be read from
the TUN device file descriptor is guaranteed to fit inside the payload of an empty
staged datagram at the start of a round.

We allow setting the size of the TX queue of the TUN device. If there are periods of
time when data enters the TUN device at a rate greater than Lynxtun collects them
(which is determined by the configuration), then the TX queue will start to fill up. If it
overflows, then packets will be dropped. While it is not possible to sustain prolonged
periods where this is the case without dropping packets, increasing the size of the
TUN device’s TX queue can reduce the probability that the buffer overflows due to
intermittent periods of high activity.

If lynxtun is started with the -gateway option, then we modify the routing table to
use the TUN device as the default gateway. This is useful for operating the tunnel as
a network proxy.

5.2.2 Runtime System Configuration

5.2.2.1 Scheduler Configuration

The rt-dispatch argument can be used to assign the realtime SCHED_FIFO
scheduler provided by Linux to the main dispatch thread. The rt-dispatch-prio
argument specifies the realtime priority to use. Similarly rt-aux and rt-aux-prio

74



can be used to enable realtime scheduling for non-dispatch threads. The
sched_setscheduler() system call is used for the dispatch thread and
pthread_setschedparam() is used for other threads.

The default scheduler on Linux is SCHED_OTHER, which is the standard round-robin
time-sharing policy. This will be used with a nice value of 0 unless one of the afore-
mentioned arguments is used.

Timer slack1 determines the amount of time by which the wake-up of a process can
be deferred in order to coalesce multiple wake-up events that are scheduled to occur
at around the same time. The default time slack is 50 microseconds. We make the
following call during initialization to set the timer slack to 1 nanosecond. This will
not have any effect if realtime scheduling is used.

if (prctl(PR_SET_TIMERSLACK, 1, 0, 0, 0) == -1)
err_sys("Could not set timer slack.");

5.2.2.2 CPU Isolation

The cpu and cpu-aux arguments can be used to set the CPU affinity for the dispatch
and non-dispatch threads respectively. The arguments specify a CPU ID. This value
is used to make the sched_setaffinity() system call for the dispatch thread
and pthread_setaffinity_np() for other threads.

It is most useful to combine the use of these arguments with the cpuisol kernel
boot parameter, that is used to isolate a CPU so that it does not receive IRQs and
processes are not scheduled unto it by default. To take advantage of CPU isolation,
the Lynxtun threads can be assigned to such an isolated CPU.

5.2.3 Main Dispatch Loop

The code below shows implementation for processing outgoing data and performing
dispatch operations as specified in the protocol. Each iteration corresponds to a round
that ends with a dispatch operation.

/* To calculate the initial dispatch time. */
next_dispatch = get_current_time();

while (GlobalRunning) {

/* Clear the staged datagram */
L.staging_area.dgram.header.data_length = 0;

/* Calculate the target dispatch time and freeze time */
next_dispatch = time_add(next_dispatch, dispatch_interval);
freeze_time = time_sub(next_dispatch, freeze_duration);

1 see man (7) time and man (2) prctl
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/* Target dispatch time was already missed. */
if (get_nsec_until_time(next_dispatch) < 0) {

/* Dispatch the dummy datagram immediately. */
dispatch_dummy_dgram(next_dispatch, &L);
/* To be used for the next dispatch time. */
next_dispatch = get_current_time();

}

/* Target freeze time was missed */
else if (get_nsec_until_time(freeze_time) < 0) {

/* Wait until the dispatch time, then dispatch the
dummy datagram.*/

dispatch_dummy_dgram(next_dispatch, &L);
}

/* NOTE: dispatch_dummy_dgram() will generate
a new dummy datagram after the dispatch is done. */

/* Encapsulate IP packets */
else {

do {
/* Do not wait for more than time remaining until

freeze time when waiting for an IP packet. */
read_timeout = time_diff(freeze_time,

get_current_time());
/* Stop if freeze time is reached */
if (duration_to_nsec(read_timeout) < 0)

break;
/* Encapsulate the packet */
res = mvdat_local_to_staged(&L, &read_timeout);

} while (res.packet_added_to_staged_dgram);
/* res.packet_added_to_staged_dgram will be false if

the IP packet did not fit into the datagram. */

/* Freeze and encrypt datagram, wait until dispatch
time and perform the dispatch operation. */

dispatch_staged_dgram(next_dispatch, &L);
}

}

5.2.3.1 Dispatching a Dummy Datagram

As specified by the protocol, it may be necessary to dispatch a dummy datagram if
either the target dispatch time or target freeze time has already passed at the start of
a round. This is done using the dispatch_dummy_dgram() call. This call will
block until the scheduled dispatch time, and then send the dummy datagram.

A dummy datagram can only be used once. Therefore a new dummy datagram is
generated immediately after the dispatch is made. This ensures that there is a dummy
datagram available at all times. The initial dummy datagram is generated as part of
the initialization.
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5.2.3.2 Encapsulating IP Packets

EncapsulatePacketResult mvdat_local_to_staged
(LynxTunnel *L, Duration *read_timeout);

The mvdat_local_to_staged() function represents a request to read a single
IP packet from the TUN device file descriptor and encapsulate it in the staged data-
gram. The read_timeout argument is set to the target freeze time, so that the
request is aborted if an IP packet does not become available for reading until then.
Internally, pselect() is used to wait for an IP packet to be available.

As discussed in the protocol specification, it is possible that an IP packet that is read
does not fit into the staged datagram. In this case, it is cached until the next round, and
the result returned mvdat_local_to_staged()will indicate that the packet was
not encapsulated. In this case, another call to the mvdat_local_to_staged()
will not be made in the current round and dispatch_staged_dgram() will
be called. The first call to mvdat_local_to_staged() in a future round will
encapsulate the cached IP packet instead of trying to read one from the TUN device.
Since the MTU of the TUN device is not allowed to be greater than the payload size,
it is guaranteed that the cached IP packet will fit inside an empty payload.

5.2.3.3 The Dispatch Operation

The call to dispatch_staged_dgram() begins freezing the staged datagram.
The datagram header is generated, using the timestamp of the current time. The
datagram is then encrypted. Once this is done, then the thread will wait until the
specified dispatch time, and finally send the encrypted datagram using sendto()
by specifying the tunnel peer’s UDP/IP address.

5.2.4 Implementing Waiting Behavior

The calls for dispatching a dummy datagram and the staged datagram both require
waiting until the specified dispatch time, and then executing the dispatch. It is there-
fore necessary to implement waiting behavior. The waiting period should not end
sooner than the target time, but once that happens, the waiting period should end as
soon as possible.

As we have observed in 4.3, using nanosleep() on its own does not present a
viable solution, as there is significant variability in the wake-up times. As we have
also noted, using a busy-loop that takes advantage of vDSO clock_gettime()
offers a superior solution. This enables us to implement spinning while waiting for
the target time without yielding control to the kernel by making a system call. How-
ever, as is the case with spinning, this will cause the CPU to run at full speed. Simply
from the viewpoint of making efficient usage of processor time, this is not preferable.
However, there is a more important reason why spinning alone is unsuitable for Lynx-
tun. That is, if the CPU is used at maximum capacity, it will become hotter. This can

77



lead to the system decreasing the CPU frequency in order to allow it to cool down,
which can also lead to delays.

The correct solution is to use a combination of the two approaches.

void
wait_until (Time t, Duration spin_duration)
{

if (get_nsec_until_time(t) < 0)
return;

Time spin_time = time_sub(t, spin_duration);

if (get_nsec_until_time(spin_time) > 0)
clock_nanosleep(CLOCK, TIMER_ABSTIME, &spin_time, NULL);

/* Spin */
while (get_nsec_until_time(t) > 0);

}

The wait_until() function is used to wait for dispatch operations. It will return
immediately if the target time has already passed. Otherwise, it will use
clock_nanosleep() to wait until a time that is earlier than the target time. Once
this returns, the remaining time is spent spinning by constantly checking the current
time until the target time has been reached.

The length of time that should be spent spinning is provided as a configuration argu-
ment. It should only be as long enough as to compensate for variability due to using
nanosleep().

Note that, as stated in Section 4.2.4, this implementation requires that
clock_gettime() is available in the vDSO.

5.2.5 Dummy Datagram Generation

The Lynxtun Protocol specifies that a dummy datagram should be sent in the event
that it is found at the start of a round that there the freeze deadline has already been
missed, meaning that there is no time for encapsulating outgoing datagrams. It is
up to the implementation to decide how to generate the dummy datagram, but it is
required that it is indistinguishable from an encrypted Lynxtun datagram.

Here, we have two options. The first is that we encrypt a Lynxtun datagram with zero
data length. The second is that we use a random data source. There are two random
source devices implemented by the Linux kernel, which are /dev/urandom and
/dev/random.

We argue that the best alternative is to use the first approach. /dev/random de-
pends on accumulated entropy in the entropy pool of the system. The size of this
pool decreases as entropy is consumed. Trying to read from /dev/random will
block until there is enough entropy in the pool to generate the requested amount of
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data. This is unsuitable for our purposes. /dev/urandom does not block if the
entropy pool is depleted. Instead, it falls back to a pseudo-random number generator.
We cannot assume that the statistical characteristics of this method will match that of
encrypted Lynxtun datagrams.

In order to solve these problems, we generate the dummy datagram using the same
method that actual datagrams are encrypted. The data length field in the header is set
to 0. The timestamp shows the time that the dummy datagram was generated.

5.3 Processing Incoming Data

Processing incoming data is performed on a separate thread. pselect() is used
to wait for an incoming datagram to be available to be read from the UDP/IP socket
file descriptor. When it is, this datagram is processed by verifying and performing
authenticated decryption as specified by the protocol.

If a datagram is accepted, then we know from the header how much of the payload
is actually used. IP packets can only be encapsulated as a whole according to the
Lynxtun protocol. Therefore, the procedure to unpack the datagram is as follows:

uint8_t *skbuf = dgram.payload;
uint32_t total_size = dgram.header.data_length;
uint32_t processed_size = 0;
uint16_t packet_size;
struct iphdr *iphdr;

while (processed_size < total_size) {
iphdr = (struct iphdr *) skbuf;
packet_size = ntohs(iphdr->tot_len);

/* Write the unpacked IP packet to the TUN dev. */
write(L->dev.fd, skbuf, packet_size);

processed_size += packet_size;
skbuf += packet_size;

}

5.4 Regarding Byte Order

Endianness is a difficult topic to deal with [19, 31]. We have to pay special attention
to issues related to endianness since we are implementing a network protocol. In this
section, we share some of the lessons we have learned over the course of implement-
ing Lynxtun, and present the approach that we use.

The standard that has to be followed when implementing a network protocol is to al-
ways use big-endian order. That is why big-endian order is also referred to as network
byte order. Host order, as implied by its name, depends on the host. Host order and
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network order are different in the case of a little-endian machine. Conversion func-
tions such as ntohl() and htonl() perform byte-swapping if necessary. They
are noops on a big-endian machine.

Always using big-endian order when exchanging messages over the internet means
little-endian machines incur conversion overhead in network code. This happens even
if two little-endian machines communicate. While the conversion in such a case might
appear to be redundant, it is a necessity. The lower layers of the internet are designed
to be stateless. The concept of a stateful session only appears in higher layers of the
OSI model. This design decision is crucial to making the internet viable. The over-
head and complexity introduced by having to negotiate whether or not byte-swapping
should be done prior to all exchanging IP packets would be debilitating. The over-
head incurred by little-endian machines is fully justified, and having a convention is
highly beneficial.

[31] observes that using such a convention in designing the external interface of an
encryption function would enable various software components to interact without
having to know about the internal representation being used in each case. They sug-
gest that the convention should be to represent data as an array of bytes. The impli-
cation is that, if the internal representation makes use of multi-byte words, then these
these should be converted to big-endian order when the data is represented as an array
of bytes.

As we will discuss in more detail when we cover our AES-256 and GCM implementa-
tion (Sections 5.5 and 5.6), in both cases we use lookup tables that are 32-bit unsigned
inteegers. Therefore, the internal data representation for plaintext, ciphertext and key
buffers should also be the same.

Changing data representation from arrays of bytes to arrays of multi-byte words (and
vice versa) requires byte-swapping to be done on little-endian machines.

Encryption and decryption is performed on Lynxtun Datagrams. The fields of the
datagram header are represented in network byte order, and so are encapsulated IP
packets. The content of the payload is irrelevant. This is in agreement with what [31]
recommends, in that we require function signatures that accept data represented as an
array of bytes. These functions would convert the data to the internal representation
at the start, and back to the canonical representation at the end.

Within the AES-256 and GCM functions, work is performed using the internal rep-
resentation, which is arrays of 32-bit unsigned integers. This leads to the following
issue. GCM needs to call AES-256 directly. The internal representation of each is the
same. However, if we only have an AES-256 function signature that expects data to
be represented as an array of bytes, then this will require many redundant conversions.
These additional conversions cannot be justified. Unlike the case of communicating
network hosts, the two functions run on a single machine. Therefore we know that the
endianness is the same in both cases. We further know that the internal representation
of the two are compatible. Therefore, we implement additional function signatures
that accept data to be provided in the native format for the function. Furthermore, the
AES secret key argument is always expected to be provided according to the internal
representation. Otherwise, we would perform redundant conversions with each call.
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In general, byte order conversion is a requirement of data serialization. We serialize
data when we send it over the network or write it to a file. We argue that, within
the context of a single process, data conversion should take place close to points of
serialization. Within the process, different components that use compatible internal
data representations should be allowed to take advantage of this fact.

5.5 AES-256 Implementation

We have implemented AES-256 [21, 44] to use as the primary block encryption func-
tion in Lynxtun. Our implementation is based on the four lookup table approach de-
scribed for 32-bit processors in Section 5.2.1 of [21]. We use the equivalent inverse
cipher method for implementing decryption described in [44].

The internal representation represents an AES block as an array of 4 uint32_t
values, and an AES key as an array of 8 uint32_t values. Following the discussion
in Section 5.4, we implement the following functions:

void aes256_encrypt_native(uint32_t *plaintext,
uint32_t *ciphertext,
uint32_t *key);

void aes256_decrypt_native(uint32_t *plaintext,
uint32_t *ciphertext,

uint32_t *key);

void aes256_encrypt(uint8_t *plaintext,
uint8_t *ciphertext,

uint32_t *key);

void aes256_decrypt(uint8_t *plaintext,
uint8_t *ciphertext,

uint32_t *key);

5.6 GCM Implementation

We have implemented the modified version of the GCM mode of operation [38] using
AES-256 block encryption. Our modifications are described in the protocol specifica-
tion. The implementation uses byte-decomposition lookup tables in order to speed up
the multiplication of 128-bit field elements with the hash key. The hash key is simply
EK(0), where E is AES-256 block encryption and K is the shared secret key.

Aside from the early-stopping modification that we have made, which extends GCM
functionality, we have implemented a full GCM implementation and have tested it
with published GCM test vectors. That is, even though additional authenticated data
(AAD) is not used in Lynxtun, and the tag and IV lengths are fixed at 128-bits and
96-bits respectively, our GCM implementation does not have these limitations. As
such, the same implementation could easily be adapted to other usecases.
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5.6.1 Interface

We implement the following functions.

void aes256gcm_encrypt (uint8_t *authdata, uint8_t *plaintext,
uint8_t *ciphertext, uint8_t *iv, uint8_t *tag,
uint32_t *authdata32, uint32_t *plaintext32,
uint32_t *ciphertext32, uint32_t *iv32,
uint32_t authdata_len, uint32_t ciphertext_len,
struct aes256gcm_ctx *gcm_ctx);

int aes256gcm_decrypt (uint8_t *authdata, uint8_t *plaintext,
uint8_t *ciphertext, uint8_t *iv, uint8_t *tag,
uint32_t *authdata32, uint32_t *plaintext32,
uint32_t *ciphertext32, uint32_t *iv32,
uint32_t authdata_len, uint32_t ciphertext_len,
struct aes256gcm_ctx *gcm_ctx);

void aes256gcm_encrypt_ext (uint8_t *authdata, uint8_t *plaintext,
uint8_t *ciphertext, uint8_t *iv, uint8_t *tag,
uint32_t *authdata32, uint32_t *plaintext32,
uint32_t *ciphertext32, uint32_t *iv32,
uint32_t authdata_len,
uint32_t ciphertext_sig_len,
uint32_t ciphertext_tot_len,
struct aes256gcm_ctx *gcm_ctx);

int aes256gcm_decrypt_ext (uint8_t *authdata, uint8_t *plaintext,
uint8_t *ciphertext, uint8_t *iv, uint8_t *tag,
uint32_t *authdata32, uint32_t *plaintext32,
uint32_t *ciphertext32, uint32_t *iv32,
uint32_t authdata_len,
uint32_t ciphertext_sig_len,
uint32_t ciphertext_tot_len,
struct aes256gcm_ctx *gcm_ctx);

The internal representation represents an AES block as an array of 4 uint32_t
values, and an AES key as an array of 8 uint32_t values. Functions with _ext
use byte array representation, and the others use internal representation.

The ciphertext_sig_len and ciphertext_tot_len arguments are related
to our early-stopping modification. The first argument specifies the actual data that
should be used to calculate the authentication tag (this is the used size of a datagram
payload, excluding padding), and the second represents the total size of data to be
encrypted (which is the size of the datagram payload).

We have discussed issues regarding data representation conversion in Section 5.4.
There is an additional issue that we must address that is specific to GCM.

The sizes of the data buffers in AES-256 are all fixed. They are 16 bytes for plaintext
and ciphertext buffers, and 32 bytes for the key buffer. This is not the case with GCM.

Although there are limits to the sizes of various data buffers like the additional au-
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thenticated data (AAD), plaintext and ciphertext buffers, these are large enough that,
for the purposes of this discussion, we can say they are arbitrarily large. Secondly,
GCM allows AAD, plaintext and ciphertext to end on byte boundaries, rather than a
16-byte block boundary. In other words, GCM allows encrypting data that is 7 bytes
long, for instance.

This poses a problem when we have to convert from 8-bit arrays to 32-bit arrays with
byte-swapping. We cannot convert in-place because it is possible that the data does
not end on a 32-bit boundary. Otherwise we would be corrupting adjacent memory.

Since the fields can be arbitrarily large, we cannot allocate static memory to use as
working buffers without introducing an arbitrary limit. Additionally, there would have
to be separate buffers to allow calls to be made on multiple threads simultaneously.
Workarounds could be found, but it is bad design.

Using dynamic memory allocation using malloc() would avoid this problem, but
we have already discussed reasons why this is not appropriate in the case of Lynxtun.

Our solution was to make use of working buffers that are allocated on the stack:
stack buffers. In Lynxtun, the size of the data that is encrypted/decrypted is fixed.
Therefore, the caller knows how large the working buffers must be. The caller can
allocate these on the stack (or statically), and pass a pointer to the GCM functions.
The uint32_t pointers with names that end with 32 in the function declarations
above are such working buffers.

We implement the encrypt_payload() and decrypt_payload() functions
as wrappers that handle the allocation of working buffers on the stack.

5.6.2 The GCM Context and Lookup Tables

The GCM Context holds the AES-256 Key, hash key and lookup tables. It is a part
of LynxTunnel and is initialized using the function aes256gcm_init during
initialization.

struct aes256gcm_ctx {
uint32_t K[AES_KEY_SIZE / 4]; /* AES-256 Key Data */
uint32_t H[4]; /* Hash Key Data: E(K, 0) */
/* Lookup tables (depends on key) */
uint32_t M[AES256GCM_LOOKUP_TABLE_UINT32_VALS];
uint32_t iv_len; /* Length of the IV in bits (96) */
uint8_t tag_len; /* Auth tag length in bits (128) */

};

void aes256gcm_init (uint8_t *key, uint32_t iv_len,
uint8_t tag_len,
struct aes256gcm_ctx *gcm_ctx);

The lookup tables are used to implement the GF (2128) field multiplication operation
in an efficient way. Our approach is based on the software implementation section of
[38], and is presented in Appendix D.
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This method takes advantage of time-memory tradeoff. Implementing the multipli-
cation of arbitrary field elements is expensive to implement in software because it
requires many bitshift operations.

Instead, our implementation uses 16 lookup tables that combined use 64 KB. They
are generated for a specific hash key. The hash key is derived from the AES-256
shared key, which remains fixed throughout the lifetime of the process. Therefore,
the lookup table generation only has to be performed during initialization and there-
fore does not disturb the dispatch process. Even though this was not essential, we
nevertheless optimized the generation of the lookup tables (as described in Appendix
D) so that the number of field multiplication operations necessary to generate the
tables is minimized.
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CHAPTER 6

EMPIRICAL ANALYSIS

The security of Lynxtun depends on two things: the cryptographic protocol and the
regulation of the dispatch process. The security of the cryptographic protocol follows
from the assumption that the cryptographic primitives it relies on, and the manner
in which these are combined are secure. It is therefore possible to discuss the secu-
rity of the cryptographic protocol in abstract terms. If the cryptographic protocol is
secure, then it will not depend on runtime behavior, and we do not need to observe
runtime behavior in order to reason about its security. This is not the case when we
consider the security due to the regulation of the dispatch process. As we have stated
throughout this thesis, achieving sufficient determinism of runtime behavior poses a
significant engineering challenge. We have discussed how the protocol should be de-
signed, how the implementation should be carried out, and how the system should be
configured in order to achieve this. Whether or not we have been successful in this
objective can only be evaluated based on empirical observations of an actual Lynxtun
deployment. That is the purpose of this section.

6.1 Data Collection Challenges

Our aim is to compare the properties of the communication flowing through the tunnel
against the properties of the dispatch process. Therefore, we need to collect data on
both of these.

We can observe the dispatch process of a given Lynxtun endpoint at three places. We
can take measurements within the Lynxtun process itself, such as recording the time
when the dispatch operation was made. We can record IP packets on the same host
that is running Lynxtun. Finally, we can observe the network traffic somewhere along
the network connecting the two Lynxtun endpoints. When we consider our threat
model, the situation of an attacker is best described by the third alternative. This is
what we are trying to protect against.

Similarly, when we consider how to observe the underlying communication, we again
see that there are three alternatives. We can make observations within the Lynxtun
process and we can capture IP packets on the same host. If the data arrives through a
private network, then we can also record traffic on this network.
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6.1.1 Capturing Network Traffic

If we take measurements on the network, then this will contain noise that is due to the
network. This noise is difficult to predict or control, but we can assume that it will
be on the order of milliseconds. The further away from the source the measurements
are made, the greater the amount of noise there will be. In general, this noise is
beneficial in terms of the security of Lynxtun, as it will hide residual patterns in the
dispatch process. It is harder for an attacker to detect these patterns and use them
to make inferences about the communication in the presence of noise. However, we
want to be able to observe whether there are any residual patterns to begin with. One
of the design objectives of Lynxtun is to limit the amount of variability in the dispatch
process. The variability in the times between successive dispatch operations should
be on the order of microseconds. We cannot assess this if our recordings contain noise
on the order of milliseconds. Therefore, we need want to eliminate noise as much as
possible when designing our data collection methodology.

This suggests that we should make measurements either within the Lynxtun process
itself, or on the same host. This raises another problem, which is reminiscent of
one of the key problems in Quantum Physics. Making an observation influences the
observed phenomena. This is true in both cases.

The documentation of the pcap packet capturing library [3] contains the following
warning:

"If the time stamp is applied to the packet when the networking stack
receives the packet, the networking stack might not see the packet until
an interrupt is delivered for the packet or a timer event causes the net-
working device driver to poll for packets, and the time stamp might not
be applied until the packet has had some processing done by other code
in the networking stack, so there might be a significant delay between
the time when the last bit of the packet is received by the capture device
and when the networking stack time-stamps the packet; the timer used
to generate the time stamps might have low resolution, for example, it
might be a timer updated once per host operating system timer tick, with
the host operating system timer ticking once every few milliseconds; a
high-resolution timer might use a counter that runs at a rate dependent
on the processor clock speed, and that clock speed might be adjusted
upwards or downwards over time and the timer might not be able to com-
pensate for all those adjustments; the host operating system’s clock might
be adjusted over time to match a time standard to which the host is be-
ing synchronized, which might be done by temporarily slowing down or
speeding up the clock or by making a single adjustment; different CPU
cores on a multi-core or multi-processor system might be running at dif-
ferent speeds, or might not have time counters all synchronized, so pack-
ets time-stamped by different cores might not have consistent

In order to have better deterministic runtime behavior, we run Lynxtun using high
realtime priority. This means, the Lynxtun process can preempt other tasks on the
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system. If we use tcpdump (which uses the pcap library) in order to capture network
packets on the same host, then it is likely that Lynxtun has a disruptive effect on
tcpdump. It might be the case that Lynxtun is sending packets at perfectly regular
intervals, but preemption of tcpdump can mean that this is not captured in the recorded
timestamps. If the possibility that such disruption will occur depends on how much
communication there is, then the output of tcpdump will suggest that the dispatch
process is correlated with the underlying communication, even though this might not
have been the case were the recording done somewhere else. In order to avoid this
problem, we do not run tcpdump to capture packets on the same host that is running
Lynxtun. Instead, we capture network traffic on a separate physical host, but this host
is close to the source. It is on the same LAN.

Isolating both tunnel endpoints and the hosts that capture network traffic completely
requires a large number of dedicated physical hosts to be used. Such a setup is shown
in Figure 6.1.

Figure 6.1: Ideal Full Data Collection Setup

6.1.2 Taking Measurements Within the Lynxtun Process

There is a similar problem when we consider taking measurements directly within
Lynxtun. Since we are dealing with nanoseconds, this is the same order of magnitude
that it takes to execute single machine instructions. Modifying the code of Lynxtun
to add support for taking measurements is not possible to do without running the risk
of affecting its realtime behavior. On the other hand, we have to do this in order to
observe variability at such a high resolution. The most important problem to address
is how to collect the results. In order for us to see the results, they have to be written
to a file at some point. This can either be a pipe like standard output, or a file on the
filesystem. I/O operations require system calls being made. These require control to
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be passed onto the kernel and the process put to sleep until the disk I/O has finished,
which can take many milliseconds. This is especially detrimental to deterministic
realtime behavior. The solution we have found is as follows. Global memory arrays
are statically allocated and locked using mlock() during initialization. Collected
samples are written to these memory locations. While memory access also takes time,
it is much quicker than disk access. It also does not require relinquishing control flow.
The implication is that the tunnel cannot continue running indefinitely. The tunnel
main loop terminates when the specified number of samples has been collected. The
samples are written to disk before the process terminates. This way, file I/O is not
performed why dispatches are being made.

6.1.3 Dedicated Physical Hosts

It is imperative that the Lynxtun endpoint that is being analyzed is a dedicated physi-
cal host. That is, it is not appropriate to use virtual machines for this purpose. As we
have noted in 4.2.4, there can be problems due to lack of vDSO support when running
inside a VM. Even if this is not the case, the virtualization layer introduces significant
complexity into the system making it much more difficult to reason about how and
when instructions get executed on the baremetal hardware.

6.2 Data Collection Methodology

We now present our data collection methodology in light of the discussion of the
previous section.

6.2.1 Experimental Setup

Figure 6.2 shows an overview of our experimental setup. It is composed of two phys-
ical hosts (ctrl and lynx) in addition to one virtual host (lynx-aux) that is running
inside the VirtualBox hypervisor on ctrl. We set up a Lynxtun tunnel between lynx
and lynx-aux. We analyze the dispatch process of lynx. The hardware specification
of lynx is given in Appendix B. The kernel specifications are given in Appendix C.

The hosts ctrl and lynx are connected over a Gigabit ethernet LAN. lynx-aux is con-
nected to the same LAN using a bridged network adapter.

Experiments produce the three sets of data described below.

1. The time at which a dispatch operation was made by the Lynxtun process run-
ning on lynx, and the amount of data that was in the staged datagram in bytes.

2. The time at which a Lynxtun datagram was received by the Lynxtun process
running on lynx, and the amount of data that was in this datagram in bytes.

3. A pcap file generated using tcpdump containing encrypted Lynxtun datagrams
that were sent from lynx to lynx-aux. This is recorded using tcpdump on ctrl.
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Figure 6.2: Data Collection Setup

Note that we have to configure tcpdump only to capture IP packets without a
fragmentation offset since Lynxtun datagrams can have been fragmented. We
should only capture the initial fragment of each Lynxtun datagram.

By using the data provided by the first two items, we are able to determine the to-
tal amount of incoming and outgoing data that is processed by the Lynxtun process
running on lynx per second.

By using the timestamps included in the first item, we are able to measure with high
resolution how much variation there is in the times between successive dispatch oper-
ations. We calculate the difference between successive timestamps and subtract from
this the target dispatch interval.

By using the timestamps in the pcap file, we also calculate the time between succes-
sive Lynxtun datagrams that were sent by lynx to lynx-aux. The difference is that
these are recorded on a different physical host on the network.

We analyze the dispatch process while controlling the amount of data that is flowing
through the tunnel. The expectation is that changes in the underlying communication
should not be observable in the dispatch process.

We implemented a simple C utility called lynx-data-generator. This is used to gener-
ate the IP packets that get encapsulated through the tunnel. lynx-data-generator can
be started either as a server or a client. The server listens on a TCP socket. Data gen-
eration begins on both sides when the client establishes a connection to this socket.
The operation is made up of rounds. Each round lasts 10 seconds. In any given round,
lynx-data-generator either sends data to its peer at a fixed rate, or it is idle. The be-
havior for the i th round is different for the client and server, and is given below:
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• IDLE if i mod (4) = 0

• Client sends data if i mod (4) = 1

• Server sends data if i mod (4) = 2

• Both client and server sends data if i mod (4) = 3

This corresponds to 10 second periods where either there is no communication, there
is communication in one direction, or there is bidirectional communication. By tun-
neling this communication through Lynxtun, we are able to observe the dispatch pro-
cess when the tunnel is idle, when there is only incoming data, when there is only
outgoing data, and when there is both incoming and outgoing data.

When data is being sent, 1000 bytes of data is sent to the peer at 10 millisecond
intervals using UDP.

Figure 6.3: Experimental Setup 1

The experimental setup is based on Figure 6.2 and is shown in Figure ??.

Figure ?? also shows the routing table configuration on each of the hosts. This con-
figuration is done such packets from ctrl to lynx-aux are routed over lynx, where they
enter the tunnel and correspond to outgoing traffic. Similarly, packets from lynx-aux
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to ctrl are routed to the lynx0 TUN device on lynx-aux, where they are read by the
Lynxtun process on lynx-aux and get sent to lynx over the tunnel. This corresponds
to incoming traffic. This setup ensures that the Lynxtun process being analyzed is
running on a dedicated physical host that is isolated as much as possible.

The ctrl host is responsible for driving the experiment, and does so by executing
remote commands on the other two hosts using SSH. We use a separate isolated host-
only network defined in VirtualBox (corresponding to eth1 on ctrl and lynx-aux) so
that ctrl can access lynx-aux directly.

Data is generated using the lynx-data-generator program above. This program is run
on ctrl and lynx-aux. ctrl runs as the server and lynx-aux runs as the client.

The procedure for running an experiment is as follows:

1. Start tcpdump capture on ctrl.

2. Create Lynxtun tunnel between lynx and lynx-aux.

3. Start lynx-data-generator server on ctrl.

4. Start lynx-data-generator client on lynx-aux.

5. lynx-data-generator connection is established and the two sides begin sending
data.

6. All processes stop ones 10,000 dispatch samples have been collected on lynx.

We perform three trials for each experiment.

6.3 Analysis of Results

We present results collected using various configurations under Appendix E. The con-
figurations are defined there. In this section, we analyze the results.

Configuration 1 uses a fully preemptible kernel that uses the RT_PREEMPT kernel
patch. with both realtime scheduling and CPU isolation enabled for the Lynxtun pro-
cess. We observe that the difference of the duration of each round and the target
dispatch interval oscillates around zero, and remains under 1 microsecond. The os-
cillation is expected, and due to the fact that missing a dispatch deadline means there
is less time from the start of the next round to the dispatch operation, so that the time
between two dispatch operations is less than the target dispatch interval. This ensures
that the mean round duration equals the target dispatch interval, which is observed
in the data. We see that the variability of internally measured dispatch delays tends
to increase when the tunnel is idle in Trial 1. This is not observed in the other two
trials. This behavior is likely to be related to our observations in section 4.3, where
we saw that increased scheduler load tends to improve deterministic behavior if real-
time scheduling is used on a preemptible kernel. These fluctuations do not result in
deviations greater than 1 microsecond, and is not reflected in the externally recorded
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dispatch delays. That being said, there are some irregularities that can be observed in
the external dispatch delay data for Trial 1, that coincide with a period of increased
tunnel activity. It is possible that this is due to an unrelated cause. In any case, the
deviations here are under half a millisecond. Other than this, the externally recorded
delays are fairly regular and well under a millisecond. These results indicate that,
when used with a correctly configured system, Lynxtun is capable of providing a
high level of Traffic Flow Confidentiality.

The difference between Configuration 1 and 2 is that, in Configuration 2 we do not use
CPU isolation. We see that the internally recorded dispatch variability is extremely
well regulated, with deviations that are on the order of a couple hundred nanosec-
onds. Similar to the results from Configuration 1, we see that the externally observed
dispatch process is also fairly regular. While there are a few relatively greater fluc-
tuations in Trial 3, similarly to Configuration 1, the deviations are well under 1 mil-
lisecond. These results suggest that, in this particular deployment, using a realtime
scheduler without CPU isolation is capable of delivering highly deterministic runtime
behavior.

This is not the case in Configuration 3, which uses CPU isolation but not realtime
scheduling. We see peaks in the internally recorded dispatch variability, and these
coincide with periods of increased variability in the externally observable data and
changes in tunnel activity. The magnitudes of the fluctuations in internally recorded
data is significantly higher, in the order of hundreds of microseconds. While these
fluctuations are reflected in the externally recorded data, the fluctuations in externally
observed delays remain under 1 millisecond.

In Configuration 4, we switch over to a regular preemptible mainline kernel rather
than a fully preemptible kernel with RT_PREEMPT. The results clearly indicate that
the internally recorded dispatch variability is highly correlated with tunnel activity.
On the other hand, deviations from the target dispatch interval remain under 1 mi-
crosecond. That is, the fluctuations are evidently due to changes in tunnel activity,
but the magnitude of these fluctuations are small. We see that the externally recorded
data is highly regular. This result suggests that, while it is preferable to use a realtime
kernel in order to minimize the level of correlation between the dispatch process and
the underlying communication, it is still possible to limit the magnitude of the fluc-
tuations to under a microsecond when running on a non-realtime kernel so that while
the two processes are correlated, this cannot be observed through data captured on
the network.

The internally recorded dispatch delays recorded for Configuration 2 are presented
in 6.4 as a representative example. The values show the time difference between the
actual dispatch time and the target dispatch time for each round. We see that the
deviations are always less than 1 microsecond, and oscillate around zero.
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Figure 6.4: Dispatch Delays
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CHAPTER 7

CONCLUSION

7.1 Our Contribution

In this thesis, we have successfully developed a point-to-point VPN solution that is
capable of achieving high levels of security within the context of a userspace im-
plementation. Our solution sends fully encrypted and authenticated datagrams that
are encrypted and authenticated using a custom cryptographic protocol that we have
designed, and is based on the security of the AES-256 block cipher. Our Lynxtun im-
plementation is capable of achieving high levels of traffic flow confidentiality, such
that fixed-sized encrypted datagrams are sent at regular intervals, and the deviation
from these intervals remains is less than several microseconds regardless of how much
communication is taking place. Furthermore, it is possible to achieve this level of se-
curity when running on a stock Linux kernel and general-purpose hardware. It is easy
to configure a stock kernel through kernel boot parameters and runtime configuration
without the need for custom compilation. Therefore, using Lynxtun is as simple as in-
stalling and running any userspace application, and it is possible to use Lynxtun on a
wide variety of hardware configurations. Our design of Lynxtun does not require it to
be running on dedicated hardware. On a correctly configured everyday workstation,
Lynxtun can still be used to provide high levels of traffic flow confidentiality.

The standard that we set as our security requirement was extremely strict. That is,
we wanted communication to be unobservable, meaning that the regularity of the dis-
patch process should be unaffected by whether or not any data is flowing through
the tunnel. We have been successful in achieving this, provided that the system has
been configured correctly. On the other hand, even on a system where no configura-
tion whatsoever is done, the security provided by Lynxtun is nevertheless significant.
Even if traffic flow confidentiality is not achieved in the sense that communication is
unobservable, it will be extremely difficult for an attacker to gain enough information
in order to learn about the content of the communication. Statistical traffic analysis
attacks are difficult in general, as they require a lot of data to be collected. Further-
more, an attacker needs to have prior knowledge of signatures that result from various
types of network activity. Any traffic shaping will make the task much more difficult
for the attacker. In most usecases, ensuring that communication remains purely unob-
servable is not necessary. Therefore, using Lynxtun will provide very high levels of
security, even if the system is not tuned with the intention of making communication
unobservable. Very little information beyond the possible existence of communica-
tion can be inferred from observing the timing of Lynxtun datagrams. Furthermore,
the security due to the use of fully-encrypted datagrams is significant even without
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any traffic shaping.

That being said, it is also possible to fine-tune a system to achieve even greater levels
of security. Other solutions such as IPsec and TLS feature TFC mechanisms. How-
ever, we have shown that achieving TFC requires a deterministic dispatch process,
which poses a difficult engineering challenge. Unlike other solutions, Lynxtun has
been build around this central objective to make. Achieving this requires addressing
cross-cutting issues at all layers of the system, including protocol design, implemen-
tation design, runtime system configuration, kernel compilation configuration and
hardware issues. We have covered all of these issues in this thesis. We have analyzed
the complex interactions between various parts of the system and identified ways in
which these can affect deterministic runtime behavior. We have also presented solu-
tions to these problems.

As we have stated in the introduction, a benefit of aiming for perfection is the dis-
covery of what keeps us from attaining it. It is important to be aware of what the
limitations are when developing such a system. Our discussion regarding achieving
determinism transcends Lynxtun, and relates to all realtime applications. The prob-
lems that we have identified, the solutions that we suggest, and the limitations that we
point out are relevant to all such applications. We have addressed the question of how
one could achieve highly deterministic runtime behavior in a userspace application
running on the Linux kernel. The answers we provide are pertinent to all developers
who have realtime requirements.

We have developed our own network protocol: the Lynxtun Protocol. This is a Layer-
3 encapsulation protocol that generates fully encrypted, timestamped and authenti-
cated datagrams. It is designed with realtime requirements in mind. It can be used as
a starting point to develop other network protocols with similar requirements.

The custom cryptographic protocol that we have designed is largely independent of
the realtime requirements of the system. With slight modifications, this cryptographic
protocol can be used in other contexts. There are two aspects of this protocol that we
would like to emphasize. The first it that it allows authenticated encryption that relies
on a single shared secret AES-256 key, while at the same time all datagrams can
be decrypted and authenticated independently. We argue that the correct approach
to implementing a Layer-3 tunneling protocol is to use unreliable delivery, as we
have discussed. Our approach solves this problem. Secondly, our approach defines a
method for authentication that is reliably able to discard unauthentic datagrams after
a AES-256 decryption of a single block of data.

Another contribution we have made is the early-stopping modification to the GCM
authenticated encryption algorithm. This is a way to combine pure GCM with CTR
mode. Under pure GCM, the entire ciphertext is authenticated. It is also possible to
authenticate additional data by using the additional authenticated data input. How-
ever, it is not possible to exclude parts of the ciphertext from being authenticated.
This is what our modification allows. Lynxtun datagrams carry payload that are dis-
carded upon being received. We still have to encrypt these payloads, so that the the
entire datagram that is sent over the network is encrypted. However, by excluding
the payload from the authentication allows us to perform authenticated decryption
more efficiently. This approach is superior in comparison to using a separate pseudo-
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random number generator to generate random padding, which can exhibit different
statistical properties than the actual ciphertext. It is also secure against padding-
oracle attacks, as the only way to verify padding length is by knowing the secret key,
which is used to generate the authentication tag. Our approach elegantly solves the
problem of generating random padding without compromising the requirement that
concatenating all captured datagrams appears to be statistically random data.

Our implementation section provides insight on how such a protocol can be imple-
mented in practice in order to have deterministic runtime behavior. We have also
talked about how we implemented our cryptographic algorithm and the underlying
primitives.

The chapter on experimental analysis identifies certain challenges that come up when
evaluating the security of a Lynxtun deployment, particularly with regards to data
collection. Ultimately, assessing the actual security of a Lynxtun deployment requires
observing its dispatch process. The discussion in this section provides insight on how
this can be done. These ideas can also be used in assessing the security of TFC
protocols in general. We have seen that, in the literature, simulation-based studies are
often used. However, these fail to capture factors due to non-deterministic runtime
behavior, and are therefore not suitable for assessing TFC countermeasures. The
approach that we present in this section discusses how actual data collection can be
done.

7.2 Operational Considerations

In this section, we provide a discussion of important operational considerations that
arise when using Lynxtun in practice.

As we have stated from the outset, Lynxtun is not a general-purpose network protocol.
As such, it is not a drop-in replacement for solutions like OpenVPN or IPsec. Lynxtun
strives for perfect security, within a certain tolerance. This involves ensuring traffic
flow confidentiality by maintaining a constant bitrate. This requires a fixed amount
of bandwidth to be dedicated.

Deploying Lynxtun requires planning to be done beforehand. It is necessary to have
a clear understanding of the communication that Lynxtun will be used to protect.
There are two aspects to this. First, we need to know the statistical properties of
the communication. Specifically, we need to know how much bandwidth we need
to dedicate in order to sustain the communication. An important question to ask is
whether the communication will come to an end after a fixed amount of time, or it
will be allowed to continue indefinitely. When deciding how much bandwidth has
to be dedicated, we have to consider the entire lifetime of the communication. Of
course, we also have to consider whether or not we have sufficient network resources.
This problem is more difficult as the amount of available network resources can also
change over time. The planning has to account for all of these factors.

The second aspect is performing an analysis of the security requirements. It is nec-
essary to understand what negative consequences will arise if confidentiality is com-
promised. As we have stated, this should always be evaluated in light of how actual
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people are affected. If there is a point in time after which confidentiality is no longer
required, this should be understood. The analysis should also develop a threat model.
That is, adversaries that could actively attempt to compromise security should be
identified. If there are such adversaries, what are their capabilities and competencies?
How much time, resources and effort are they expected to be willing in this task? Is
there reason to believe that these adversaries may have preconceptions regarding the
communication that allows them to devise particular hypothesis tests? These should
all be determined.

It is helpful to present several example usecases in order to illustrate these concepts.

For our first scenario, consider a military command center. An engagement is being
planned to be executed in one week. There are three bases along the front line: Alpha,
Bravo and Charlie. The enemy is expecting an attack in the near future, but does not
know the exact date. They also do not know from which of the three bases the attack
will be launched. If they knew this, they could prepare their defences accordingly.
As such, this information is highly confidential. It ceases to be confidential the mo-
ment that the enemy realizes that the operation is taking place. The HQ and the bases
communicate over an isolated network, but enemy reconnaissance is able to capture
packets as they are being sent along the links. Since the network is isolated, we know
how much bandwidth is available at all times. The enemy has two preconceptions
with regards to the communication. First, they assume that there will be more com-
munication between the HQ and the base from which the attack will be launched.
Second, they assume that there will be an increase in the amount of generated traffic
leading up to the attack. Both of these are reasonable assumptions. We use Lynxtun
to establish protect all communication between the HQ and each of the three bases1.
We configure Lynxtun to use all available bandwidth on each of the three links, which
we assume to be the same in all cases. This way, the amount of data that is observed
on all three links is always the same.

In our second scenario, there are two people who wish to be able to exchange written
messages over a secure channel. Specifically, they want to hide when messages are
being exchanged. They create establish a Lynxtun tunnel with a dedicated bandwidth
of several megabytes per day. This can be sustained indefinitely, and can be used to
effectively carry text messages with sufficiently low latency. An observer will see
that encrypted datagrams are being exchanged between the two parties, but will not
be able to tell when actual communication is taking place.

In our third scenario, suppose that Alice is connecting to the internet from within
a corporate network. Network traffic is analyzed at the periphery to detect which
websites Alice visits. This involves statistical timing analysis that is able to detect
restricted websites even if the traffic is being tunneled through SSH, for instance.
Alice creates a Lynxtun tunnel to a host under her control that is outside this network,
and uses it as her default network gateway. Her web browsing activity will last for
one hour, which is the lifetime of the tunnel. She knows that a bandwidth of 1 Mbps
will be sufficient. During this period, analysis at the network edge will only detect
fully encrypted datagrams being exchanged between Alice and a single external host
at a fixed rate.

1 This example is for illustrative purposes only. We make no claims with regards to the suitability of Lynxtun
in a military context.
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It may be the case that the properties and therefore the requirements of the underlying
communication change while the tunnel is being used. If the amount of communi-
cation decreases, this will mean that the tunnel utilization will become less. That is,
the ratio of actual data to padding has become less, and it is now possible to dedi-
cate less bandwidth in order to make communication possible. On the other hand,
if the communication data rate increases, then the bandwidth specified by the tunnel
configuration might no longer be sufficient. This would lead to queues filling up and
packets being dropped. Both of these are related to the fact that the underlying com-
munication may not be stationary. The important thing to realize here is that changing
the tunnel bandwidth necessarily leads to an observable change on the network. If,
for instance, we increased bandwidth whenever there is communication and decrease
bandwidth when there is none in order to conserve network resources, then it is easy
for an attacker to detect the times at which communication is taking place. This
would defeat the purpose of a CBR approach. These considerations become more
important in the case of tunnels that will remain active for a prolonged amount of
time. Of course, there may be times where changing parameters is desirable. In such
a case, the tunnel should be reestablished after manually modifying the configuration
parameters. While it is conceivable to add automatic mechanisms that would adjust
these parameters during tunnel operation, this would go against the design principles
that we have described. The correct approach would depend on the situation. For
instance, if the communication data rate fluctuates between 10 Kbps and 50 Kbps
throughout the day, then setting the tunnel bandwidth to 50 Kbps would be appropri-
ate. If the maximum data rate of the communication was 100 Kbps for one week, and
then drops to 50 Kbps, and we also have reason to believe that it will not increase
in the near future, then we can revise the parameters in order to conserve network
parameters. As always, we have to be aware that we are making a change that will
be publicly observable, and can be used to make inferences about the communica-
tion. In this example, an attacker might infer that the amount of communication has
decreased.

We have earlier mentioned that running unrelated tasks on the same computer makes
it more difficult to have a deterministic dispatch process, but can in fact be beneficial
in terms of security. A similar argument can also be made to have non-confidential
streams of communication being tunneled through a Lynxtun tunnel in addition to a
confidential stream of communication. It is important to note that we do not desire
deterministic dispatch for its own sake. It is only important insofar it relates to TFC.
However, it should be noted that the more complicated a system becomes, the more
difficult it is to reason about its long-term behavior.

7.3 Future Work

7.3.1 Kernel Implementation

The level of traffic flow confidentiality that can be achieved depends on how much
control we have over the underlying hardware. The Linux kernel provides numerous
features that allows us to be able to do this successfully, even in the context of a
userspace application. However, greater control is possible by implementing Lynxtun
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as a kernel module. This would allow us to have direct control on issues such as
scheduling, context switching and the network stack. It would also have performance
benefits due to the fact that data does not have to be transferred back and forth between
the kernel and userspace.

Kernel development is generally difficult as it debugging facilities are limited. There-
fore, having a functional userspace implementation is highly beneficial to have as a
starting point.

One of the key benefits of implementing Lynxtun in userspace is that it is simple to
install and run. Installing and maintaining a custom kernel module, particularly one
that is not in the mainline Linux kernel, is more involved. Due to the niche nature
of Lynxtun, it is not suitable to consider it as a candidate for integration into the
mainline kernel. On the other hand, we have seen that improving security beyond
what is possible on a stock kernel requires a custom compiled kernel, which can also
include applying the RT_PREEMPT kernel patch. We presume that a user that has
requirements that justify such an approach would justify installing a custom kernel
module.

7.3.2 Hardware Implemented Cryptographic Primitives

Modern processors feature hardware implementations of certain cryptographic prim-
itives, such as AES-256. We have implemented AES-256 and GCM ourselves in
software. There are performance benefits of using a hardware implementation, if it is
available. This support can be added to our Lynxtun implementation.

7.3.3 Time Synchronization

Time synchronization between the two tunnel endpoints has implications on tunnel
operation and security as discussed in Section 3.10.5. How this should be achieved
has not been included in the scope of this thesis. However, due to the importance of
the issue, it would be useful to add mechanisms to the Lynxtun Protocol that specify
how time synchronization should be done in a secure manner. Specifically, time syn-
chronization should be achieved when a key is used for the first time, and additional
adjustments should be done to keep the two clocks synchronized without undermining
the security, whilst keeping a correct representation of actual time.

7.3.3.1 Cryptanalysis of the GCM Early-Stopping Modification

We have modified the GCM algorithm to provide early-stopping. As with all cryp-
tographic algorithms, extensive cryptanalysis study must be done in order to ensure
that it is actually secure.
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7.3.3.2 Further Experimentation

The security of Lynxtun, as it relates to the regularity of its dispatch process, can only
be fully assessed by observing an actual deployment. Experimenting with Lynxtun
running on different machines, across different types of networks, and being used to
channel different types of communication will provide additional insight with regards
to how successful Lynxtun can operate in different situations.

Additionally, more accurate results can be obtained by fully isolating machines that
perform data collection, and ensuring that Lynxtun datagrams and packets belonging
to the underlying communication do not traverse the same physical links.

7.3.4 IPv6 Support

As we have noted, our implementation of Lynxtun only supports IPv4 traffic. How-
ever, it can be easily extended to support IPv6 packets.
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Appendix A

DATA DIRECTIONALITY NAMING CONVENTIONS

Descriptive words that are specify direction (inbound, outbound, ingress, egress) and
actions (read, write, send, receive) are relative to a frame of reference. We use the
following conventions.

We consider the outward direction to point toward the public network. That is, the
network that is used to transmit Lynxtun datagrams. As for actions, the subject per-
forming the action is always taken to be the Lynxtun endpoint.

The outward facing network interface is the egress. This can be an ethernet adapter,
for instance. The inward facing interface is always the TUN device managed by the
Lynxtun endpoint, called lynx0 by default.

Various data flows in the system can be encoded using the following 3-bit encoding
scheme.

(Host ID,Action,Direction) (A.1)

The Host ID identifies the tunnel endpoint. It is defined such that the endpoint that
has the smaller tunnel IP address (as interpreted as an unsigned 32-bit integer) is Host
0 and the other endpoint is Host 1.

Action is 0 for reading and 1 for writing. Here, the Lynxtun endpoint is the subject
and either the TUN device (the ingress) or UDP/IP socket (attached to the egress) is
the object.

Direction is 0 for outbound data and 1 for inbound data.

There are eight data flows in the system.
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Flow ID Description
000 Outbound IP packets read by Host 0 from the TUN device
001 Inbound Lynxtun Datagrams read by Host 0 from the UDP/IP socket
010 Outbound Lynxtun Datagrams written by Host 0 to the UDP/IP socket
011 Inbound IP packets written by Host 0 to the TUN device
100 Outbound IP packets read by Host 1 from the TUN device
101 Inbound Lynxtun Datagrams read by Host 1 from the UDP/IP socket
110 Outbound Lynxtun Datagrams written by Host 1 to the UDP/IP socket
111 Inbound IP packets written by Host 1 to the TUN device

Note that flows that are the bitwise complement of each other are related. Lynxtun
datagrams received by Host 1 are those sent by Host 0. However, the flows in the
inbound direction are subject to distortion due to network noise and interference. A
datagram sent by Host 0 might not be received by Host 1, or an unrelated datagram
might be received.
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Appendix B

HARDWARE SPECIFICATION

The hardware specifications of the dedicated physical host that we use in our experi-
ments is as follows.

Make and Model Acer Aspire One725 Netbook

Processor AMD Dual-Core C70 processor with Turbo Core technology up to 1.333
GHz.

Memory 2GB DDR3 Memory.

The system was always connected to a power supply.
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Appendix C

KERNEL SPECIFICATION

The following Linux kernel configurations have been used in our experiments. All
are variations of Linux 4.16.

lynx-0-nohz-rt A real-time kernel that uses the RT_PREEMPT kernel patch. Its pre-
emption model is a fully preemptible kernel. It is compiled with
CONFIG_NO_HZ_FULL to disable timer interrupts for cores with a single
runnable task.

lynx-1-tick This is similar to lynx-0-nohz-rt, with the difference being that it uses a
periodic timer interrupt with a fixed frequency of 1000 Hz.

lynx-2-desktop This kernel configuration represents a stock desktop kernel that is
included with popular Linux distros. Its preemption model is Low-Latency
Desktop. It uses dynamic clock ticks, with a frequency of 1000 Hz.
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Appendix D

GCM FIELD MULTIPLICATION

The Galois Field GF (pn), where p is a prime, is a finite field with pn elements. GCM
uses GF (2128). The elements of this field are 128-bit binary strings.

A finite field is defined by its multiplication and addition operations that obey the
field axioms of commutativity, associativity and distributivity. Both operations map
one field element to another field element. We use the · operator to mean field mul-
tiplication and ⊕ to mean field addition, when these are used in the context of field
elements. Note that field addition is simply the XOR operation.

Let X and Y be arbitrary field elements. X · Y is performed by representing each
element as a polynomial, multiplying these polynomials, then dividing the resulting
polynomial with a special polynomial called the *field polynomial*. The result of
the field multiplication is defined to be the result of this division, expressed as a field
element.

The field polynomial used in GCM is:

f = 1 + α + α2 + α7 + α128 (D.1)

We use the notation Xi where i is from 0 to 127 to refer to the i th bit of a field
element. X0 is the leftmost bit.

Using this notation, we can show that the way to convert between field elements and
corresponding polynomials is to use the following equivalence:

X = X0X1 . . . X127 ≡ X0α
0 +X1α

1 + . . .+X127α
127 (D.2)

We define field element P that corresponds to the polynomial α. We have

Pi =

{
1 if i = 1

0 otherwise
(D.3)

Multiplication by polynomial α simply corresponds to a shift of indices.

Let χ be the polynomial that corresponds to field element X .
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If X127 = 0, then the order of χ is less than 127. Then multiplying χ by α gives a
polynomial with order less than 128. The remainder of dividing this polynomial by
the field polynomial f (which is of order 128) is the χ itself. So whenever X127 = 0,
X · P = rightshift(X). We define the rightshift operation such that rightshift(X) =
Y ⇐⇒ Yi = Xi− 1 ∀i > 0 and Y0 = 0. Notice that involves shifting all the bits
of X to the right by one position. The rightmost bit is discarded, and the leftmost bit
becomes 0 after the shift. This operation is equivalent to integer division of a 128-bit
unsigned integer by 2.

If X127 = 1, then the product of χ and α is a polynomial of degree 128. Let us call
this α128 + a. Then we have to find q and r such that α128 + a = q · f + r, and r is a
polynomial of degree less then or equal to 128. Setting q = 1 gives us the solution

r = α128 + a− f = a+ 1 + α + α2 + α7 (D.4)

The α128 term cancels out with the same term in f , because addition done overGF (2).

The polynomial 1 + α + α2 + α7 corresponds to a field element R with its leftmost
bits set to 11100001 and the rest of the bits set to 0.

Notice also, that a corresponds to the field element rightshift(X).

Therefore, we can express X · P as,

X · P =

{
rightshift(X) if X127 = 0

rightshift(X)⊕R if X127 = 1
(D.5)

where R is the field element defined above.

Let I be the field element that corresponds to the polynomial 1. This is the identity
element for field multiplication. While the original paper [38] does not explicitly
mention this, defining P 0 = I . By doing this, we can say that P i = X such that
Xj = 1 ⇐⇒ i = j. Additionally, we say that the null element is the field element
with all bits equal to zero. If we define a have a set that holds the null element and all
the powers of P, it is possible to write all field elements as a sum of elements of this
set.

This is precisely the approach that is used to multiply arbitrary field elements X and
Y . Y is represented as a sum of powers of P , and then the distributive property is
used to multiply X with these powers of P in the way we have outlined above, and
then sum the individual products.
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D.1 Multiplication of Arbitrary Field Elements

In order to multiply two arbitrary field elements X and Y , it is necessary to express
Y as a sum of powers of P .

Y = c0P
0 + c1P

1 + . . .+ c127P
127 (D.6)

where ci is either 1 or 0. Then,

X · Y = X · c0P 0 +X · c1P 1 + . . .+X · c127P 127 (D.7)

To calculate X · P i, we have to repeatedly multiply by P , a total of i times.

X · P i = X · P · · ·P (D.8)

This completes the procedure for multiplying arbitrary field elements.

D.2 Field Multiplication Using Lookup Tables

The method described here is based on the simple 8-bit decomposition method in
[38]. In order to implement GCM, we do not require multiplication of arbitrary field
elements. One of the operands of the field multiplication is always H , which is the
hash key. The hash key is derived from the AES-256 key. We can generate lookup
tables for a given hash key that will significantly increase the efficiency with which
field multiplications operations are performed.

Let X[i] be the i th byte of field element X .

For a byte x let ρ(x) be a field element B such that B[i] = x and the remaining 120
bits are all zero.

A field element X can be decomposed into 16 field elements ρ(X[i]) · P 8i where i is
from 0 to 15 in the following way:

X =
16⊕
i=0

ρ(X[i]) · P 8i (D.9)

Note that P 8i means shifting to the right by i bytes in this situation.

Since H ·X is linear in the bits of X over the field GF (2), we have

H ·X =
15⊕
i=0

ρ(X[i]) ·H · P 8i (D.10)
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We use 16 lookup tables: M0 through M15. Each lookup table corresponds to a sepa-
rate byte in the decomposition above. Each lookup table has 256 rows, corresponding
to the 256 values that X[i] can take. Let Mi[j] be the j th row of table i. Then
Mi[j] = ρ(j) ·H · P 8i.

Hence the multiplication X ·H becomes

X ·H =
15⊕
i=0

Mi[X[i]] (D.11)

Which is highly efficient as it only requires performing 16 lookups to get the correct
row corresponding to each byte of X , XORing these rows.

Our lookup table generation strategy is optimized even tough we could have also used
a lower performance solution, since it is only called during the initialization phase.

First, we use the following three rules to fill in all the rows of all lookup tables corre-
sponding to a power of 2.

• M0[2
7] = H , where H is the hash key.

• Mi[2
k] = Mi[2

k+1] · P ∀ i and ∀ k < 7

• Mi[2
7] = Mi−1[2

0] · P ∀ i > 0

Doing this requires a field multiplication of an arbitrary field element with P to be
done a total of 127 times.

Mi[0] is the null field element for all i. These rows are zeroed out.

We represent the remaining rows as sums of powers of P , which have already been
calculated. For example, M0[2

7 + 25 + 21] can be expressed as the sum M0[2
7] ⊕

M0[2
5]⊕M0[2

1].

This completes our construction of the lookup tables.
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Appendix E

DATA GENERATOR EXPERIMENT RESULTS

E.1 Configuration Specifications

E.1.1 Configuration 1

Dispatch Interval 25 ms

Payload Size 5000 Bytes

Kernel lynx-0-nohz-rt

CPU Isolation Enabled

Realtime Scheduling Enabled

E.1.2 Configuration 2

Dispatch Interval 25 ms

Payload Size 5000 Bytes

Kernel lynx-0-nohz-rt

CPU Isolation Disabled

Realtime Scheduling Enabled

E.1.3 Configuration 3

Dispatch Interval 25 ms

Payload Size 5000 Bytes

Kernel lynx-0-nohz-rt

CPU Isolation Enabled

Realtime Scheduling Disabled
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E.1.4 Configuration 4

Dispatch Interval 25 ms

Payload Size 5000 Bytes

Kernel lynx-2-desktop

CPU Isolation Enabled

Realtime Scheduling Enabled

E.2 Results

For each configuration, we present three plots:

Internal Dispatch Variability The standard deviation taken over 10 seconds, of the
difference between the measured and expected delay of dispatch events, as
recorded within the Lynxtun process.

Internal Dispatch Delay The measured delay of dispatch events, as recorded within
the Lynxtun process. The mean should be the dispatch interval.

External Dispatch Delay The measured delay between consecutive Lynxtun data-
grams, as recorded by a separate physical host on the network using tcpdump.
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Figure E.1: Cfg 1 Internal Dispatch Variability
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Figure E.2: Cfg 1 Internal Dispatch Delay
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Figure E.3: Cfg 1 External Dispatch Delay
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Figure E.4: Cfg 2 Internal Dispatch Variability
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Figure E.5: Cfg 2 Internal Dispatch Delay
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Figure E.6: Cfg 2 External Dispatch Delay
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Figure E.7: Cfg 3 Internal Dispatch Variability
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Figure E.8: Cfg 3 Internal Dispatch Delay
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Figure E.9: Cfg 3 External Dispatch Delay
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Figure E.10: Cfg 4 Internal Dispatch Variability
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Figure E.11: Cfg 4 Internal Dispatch Delay
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Figure E.12: Cfg 4 External Dispatch Delay
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Appendix F

REALTIME EXPERIMENT IMPLEMENTATION

#define _GNU_SOURCE

#include <sched.h>
#include <stdio.h>
#include <time.h>
#include <unistd.h>
#include <stdlib.h>
#include <lynx.h>

#define TSLEEP 20 /* msec */
#define SAMPLES 250

#define abs(X) ((X) >= 0 ? (X) : -(X))

int
main (int argc, char **argv)
{

int spin = 0;
if (argc > 1)

spin = atoi(argv[1]);

if (argc > 2) {
int rt_prio = atoi(argv[2]);
if (rt_prio) {

const struct sched_param sp = {
.sched_priority = 98,

};
if (sched_setscheduler(getpid(), SCHED_FIFO, &sp) == -1)

return 1;
}

}

if (argc > 3) {
int cpu_id = atoi(argv[3]);
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu_id, &set);
if (sched_setaffinity(getpid(), sizeof(set), &set) == -1)

return 1;
}
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Time t_start, t_end, t_now, t_target;

const Duration delta = msec_to_duration(TSLEEP);
const long delta_nsec = duration_to_nsec(delta);

Duration delta_ob;
long delta_ob_nsec;

struct timespec cur, tar;

for (int i=0; i<SAMPLES; i++) {

clock_gettime(CLOCK_REALTIME, &t_start);
t_target = time_add(t_start, delta);

if (spin) {
while(get_nsec_until_time(t_target) > 0);

} else {
clock_nanosleep(CLOCK_REALTIME, TIMER_ABSTIME, &t_target, NULL);

}

clock_gettime(CLOCK_REALTIME, &t_end);

delta_ob = time_sub(t_end, t_start);
delta_ob_nsec = duration_to_nsec(delta_ob);

printf("%ld\n", abs(delta_nsec - delta_ob_nsec));

}

return 0;

}
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