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ABSTRACT

VISUAL OBJECT DETECTION AND TRACKING USING LOCAL
CONVOLUTIONAL CONTEXT FEATURES AND RECURRENT NEURAL

NETWORKS

Kaya, Emre Can

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. A. Aydın Alatan

September 2018, 104 pages

Visual object detection and tracking are two major problems in computer vision which
have important real-life application areas. During the last decade, Convolutional Neu-
ral Networks (CNNs) have received significant attention and outperformed methods
that rely on handcrafted representations in both detection and tracking. On the other
hand, Recurrent Neural Networks (RNNs) are commonly preferred for modeling se-
quential data such as video sequences. A novel convolutional context feature exten-
sion is introduced to a proposal-based detection scheme for improving object detec-
tion performance. A comprehensive experimental study is conducted to demonstrate
the effectiveness of this newly proposed approach. On the tracking side, the effect
of several design choices is investigated for an RNN-based tracking algorithm by the
help of comparative experiments. Finally, the proposed context feature based method
is combined with the RNN-based tracking framework and a joint detection-tracking
framework that outperforms the baseline model is proposed.

Keywords: Convolutional Neural Networks, Recurrent Neural Networks, Object De-
tection, Object Tracking, Context Features
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ÖZ

YEREL EVRİŞİMLİ BAĞLAM ÖZNİTELİKLERİ VE YİNELEMELİ SİNİR
AĞLARI KULLANARAK GÖRSEL NESNE TESPİTİ VE TAKİBİ

Kaya, Emre Can

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. A. Aydın Alatan

Eylül 2018 , 104 sayfa

Görsel nesne tespiti ve takibi; gerçek yaşamda bir çok önemli uygulama alanı bu-
lunan, bilgisayarlı görünün iki başlıca problemidir. Geçtiğimiz onyılda, ayırt edici
olarak eğitilen görsel temsil modelleri olan Evrişimli Sinir Ağları’na (ESA) ilgi arttı
ve bunların performansı el yapımı temsillere dayanan modelleri hem tespit hem takip
probleminde geride bıraktı. Öte yandan, videolar gibi sıralı yapıya sahip verileri mo-
dellemede Yinelemeli Sinir Ağları (YSA) sıkça tercih edilmektedir. Hipotez temelli
tespit yöntemlerinin performansını arttırmaya yönelik olarak yenilikçi bir evrişimli
bağlam özniteliği eklentisi önerilmektedir. Önerilen yeni yaklaşımın etkililiğini gös-
termek adına, geniş kapsamlı bir deneysel çalışma yürütüldü. Nesne takibi tarafında,
karşılaştırmalı deneyler yoluyla çeşitli tasarımsal seçimlerin YSA temelli bir takip
algoritması üzerindeki etkileri incelendi. Son olarak, önerilen bağlam öznitelikleri
temelli yöntem YSA temelli takip algoritmasıyla birleştirildi ve birleşik tespit-takip
algoritmasının tespitsiz algoritmaya göre daha iyi bir takip performansı sergilediği
gözlemlendi.

Anahtar Kelimeler: Evrişimli Sinir Ağları, Yinelemeli Sinir Ağları, Nesne Tespiti,
Nesne Takibi, Bağlam Öznitelikleri
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Without their friendship and companionship, I wouldn’t be able to make it till the end.

Finally, I would like to thank to my family by their spiritual support during my thesis
study.

viii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problem Statement and Motivation . . . . . . . . . . . . . . 4

1.2 Scope of the Thesis . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 VISUAL OBJECT DETECTION LITERATURE . . . . . . . . . . . 9

2.1 Sliding Window Object Detection . . . . . . . . . . . . . . . 10

2.2 Object Proposal Generation and Proposal-Based Object De-
tection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Object Proposal Methods . . . . . . . . . . . . . . 11

ix



2.2.1.1 Superpixel Grouping Methods for Ob-
ject Proposal Generation . . . . . . . 12

2.2.1.2 Handcrafted Objectness Methods for
Object Proposal Generation . . . . . . 16

2.2.1.3 Learned Representation Methods for
Object Proposal Generation . . . . . . 17

2.2.2 Proposal-Based Object Detection . . . . . . . . . . 20

2.3 Single-shot Object Detection . . . . . . . . . . . . . . . . . 22

3 VISUAL OBJECT DETECTION WITH LOCAL CONVOLUTIONAL
CONTEXT FEATURES . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Proposed Method with Local Convolutional Context Features 31

3.2 Experimental Work . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Datasets and Evaluation Metrics . . . . . . . . . . 34

3.2.2 Training . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Experiments . . . . . . . . . . . . . . . . . . . . . 38

3.2.3.1 Experiment 1: Separate Feature Ex-
tractors . . . . . . . . . . . . . . . . . 40

3.2.3.2 Experiment 2: Number of Separate
Feature Extraction Stages . . . . . . . 43

3.2.3.3 Experiment 3: Offset Ratio . . . . . . 45

3.3 Comparison with Similar Methods . . . . . . . . . . . . . . 46

3.4 Category-level Improvements Achieved by Local Convolu-
tional Context Features . . . . . . . . . . . . . . . . . . . . 50

3.5 Feature Diversification and Sparsity . . . . . . . . . . . . . . 51

3.6 Diagnostic Analysis of Errors . . . . . . . . . . . . . . . . . 51

x



3.6.1 Analysis of False Positives . . . . . . . . . . . . . 51

3.6.2 Sensitivity to Object Characteristics . . . . . . . . 53

4 VISUAL OBJECT TRACKING LITERATURE . . . . . . . . . . . . 59

4.1 Visual Tracking of a Generic Object . . . . . . . . . . . . . 59

4.1.1 Visual Object Tracking using Recurrent Neural Net-
works . . . . . . . . . . . . . . . . . . . . . . . . 63

5 VISUAL OBJECT TRACKING USING RECURRENT NEURAL
NETWORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 Real-Time Recurrent Regression Networks (Re3) . . . . . . 67

5.2 Combining Tracking and Detection . . . . . . . . . . . . . . 71

5.3 Re3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 74

5.3.1 Training Data . . . . . . . . . . . . . . . . . . . . 74

5.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . 75

5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . 76

5.3.3.1 Experiment 1: Effect of Unrolls Dur-
ing Training . . . . . . . . . . . . . . 78

5.3.3.2 Experiment 2: Effect of Number of
Feature Extraction Stages . . . . . . . 80

5.3.3.3 Experiment 3: Effect of the size of the
two-frame representation . . . . . . . 81

5.3.3.4 Experiment 4: RNN stages . . . . . . 82

5.3.3.5 Experiment 5: Evolution of Perfor-
mance During Training . . . . . . . . 82

5.3.3.6 Experiment 6: Size of Training Data
Set . . . . . . . . . . . . . . . . . . . 84

xi



5.3.3.7 Experiment 7: Different RNN types . 85

5.3.3.8 Experiment 8: RNN State Reset . . . . 86

5.4 Experiments with Detection-aided Tracking . . . . . . . . . 87

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xii



LIST OF TABLES

TABLES

Table 3.1 Number of parameters of baseline and context models . . . . . . . . 39

Table 3.2 Models trained in Experiment 1 . . . . . . . . . . . . . . . . . . . . 40

Table 3.3 AP results of Experiment 1 over VOC 2007 Test Set . . . . . . . . . 42

Table 3.4 Properties of baseline and context models in Experiment 2 . . . . . 44

Table 3.5 APs over VOC 2007 Test Set for Experiment 2 . . . . . . . . . . . . 44

Table 3.6 Properties of baseline and context models in Experiment 3 . . . . . 46

Table 3.7 APs over VOC 2007 Test Set for Experiment 3 . . . . . . . . . . . . 47

Table 3.8 APs over VOC 2007 Test Set for Experiment 3 . . . . . . . . . . . . 48

Table 3.9 Comparison with methods in the literature over VOC 2007 Test Set . 49

Table 5.1 Expected Average Overlap (EAO) of state-of-the-art trackers on
VOT 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Table 5.2 Training schedule with varying number of unrolls . . . . . . . . . . 78

Table 5.3 Results for Experiment 1: Effect of Unrolls During Training . . . . 79

Table 5.4 Results for Experiment 2: Effect of Number of Feature Extraction
Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Table 5.5 Results for Experiment 3: Effect of Feature Vector Size . . . . . . . 82

Table 5.6 Results for Experiment 4: RNN stages . . . . . . . . . . . . . . . . 83

Table 5.7 Results for Experiment 5, Model VU . . . . . . . . . . . . . . . . . 83

Table 5.8 Results for Experiment 5, Model CU . . . . . . . . . . . . . . . . . 84

Table 5.9 Experiment 6: Training Sets . . . . . . . . . . . . . . . . . . . . . 85

Table 5.10 Results for Experiment 6: Amount of Training Data . . . . . . . . . 85

xiii



Table 5.11 Results for Experiment 7: Different RNN types . . . . . . . . . . . 86

Table 5.12 Results for Experiment 8: RNN State Reset . . . . . . . . . . . . . 86

Table 5.13 Results Obtained with Detection-aided Trackers and Baseline Tracker 88

xiv



LIST OF FIGURES

FIGURES

Figure 1.1 A model that combines tracking and detection. . . . . . . . . . . . 4

Figure 1.2 Image classification, object detection and instance segmentation.
Image taken from: [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 1.3 Forms of object localization in tracking: (a) bounding box, (b)
ellipse, (c) contour, (d) articulation block, (e) interest point, (f) silhouette.
Image taken from: [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.4 Types of apperance changes in visual objects. Image taken from: [2] 7

Figure 2.1 Taxonomy of Object Detection Methods. . . . . . . . . . . . . . . 10

Figure 2.2 Taxonomy of Object Proposal Methods. . . . . . . . . . . . . . . . 12

Figure 2.3 Selective Search aims to generate object proposals by hierarchi-
cally merging similar neighbour regions. (a) Input image, (b) Ground
truths, (c) Hierarchical Grouping of regions, (d) Bounding Box Proposals
generated by Selective Search. [3]. . . . . . . . . . . . . . . . . . . . . . 13

Figure 2.4 Multiscale Combinatorial Grouping [4]. . . . . . . . . . . . . . . . 14

Figure 2.5 Constrained Parametric Min-Cuts [5]. . . . . . . . . . . . . . . . . 15

Figure 2.6 Geodesic Object Proposal Generation Method: (a) Input Image and
the corresponding oversegmentation. (b) Seed placement. (c) Foreground-
background masks obtained from individual seeds. (d) SGDT maps. (e)
Final results. [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 2.7 Objectness estimation with Binarized Normed Gradients [7]. . . . . 17

Figure 2.8 DeepProposal object proposal framework. [8]. . . . . . . . . . . . 18

Figure 2.9 DeepMask network architecture for object candidate segmentation
[9]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 2.10 Object proposal generation with a fully convolutional network [10]. 19

xv



Figure 2.11 Fast R-CNN [11] (Figure taken from: [12]). . . . . . . . . . . . . . 20

Figure 2.12 Region-based Fully Convolutional Networks (R-FCN) [13]. . . . . 21

Figure 2.13 Object Detection with Adaptive Region Pooling [14]. . . . . . . . . 22

Figure 2.14 YOLO divides an input image into a regular grid of cells to predict
bounding boxes and class for each cell[15]. . . . . . . . . . . . . . . . . . 23

Figure 3.1 Multi-region semantic segmentation-aware CNN model [16] . . . 26

Figure 3.2 Faster R-CNN [17]. Three most activated feature maps are shown
in RGB. Red box: Proposal, White box: Ground Truth. . . . . . . . . . . 28

Figure 3.3 Overview of the Proposed Algorithm. Layers shown in green are
proposed for improving detection performance. (Best viewed in color) . . 32

Figure 3.4 Context Ring Pooling. In this illustration, context poolsize is 4x4
and roipool size is 2x2. Offset Ratio is 0.5. . . . . . . . . . . . . . . . . . 33

Figure 3.5 Wrap Around Layer combines two feature maps while preserving
the spatial relationship between them. . . . . . . . . . . . . . . . . . . . . 34

Figure 3.6 Number of instances and images per category in PASCAL VOC
2007 (taken from [18]] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 3.7 Precision-Recall Curve. . . . . . . . . . . . . . . . . . . . . . . . 37

Figure 3.8 Test Loss vs. Iteration for Models B5 (left) and C20 (right). . . . . . 38

Figure 3.9 Feature extraction architecture used: VGG-16 [19] . . . . . . . . . 39

Figure 3.10 Visual results for baseline model B1 (left) and context model C1

(right). Confidence Threshold = 0.5. . . . . . . . . . . . . . . . . . . . . 41

Figure 3.11 Model architectures in Experiment 1: (a) B1, B7, B5 (b) BC1,
BC14, BC20 (c) C1, C14, C20 . . . . . . . . . . . . . . . . . . . . . . . . 43

Figure 3.12 Feature extractor of Model C1 . . . . . . . . . . . . . . . . . . . . 43

Figure 3.13 Feature extractor of Model Cf2 . . . . . . . . . . . . . . . . . . . 45

Figure 3.14 Feature extractor of Model Cf3 . . . . . . . . . . . . . . . . . . . 45

Figure 3.15 Mean Percent Increase in Average Precision vs. visual category. . . 50

Figure 3.16 Input Image (left), three most activated object features in RGB
(middle), three most activated context features in RGB (right). . . . . . . . 52

xvi



Figure 3.17 Distribution of Positives vs Number of Detections and Recall Curves
(Red Lines) for Models B1 and C1. Cor: True positives, Loc: Localiza-
tion errors, Sim: Confusion with similar, Oth: Confusion with other, BG:
Confusion with background. . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.18 Distribution of Positives vs Number of Detections and Recall Curves
(Red Lines) for Models B1 and C1. . . . . . . . . . . . . . . . . . . . . . 55

Figure 3.19 Sensitivity (difference between max and min) and Impact (differ-
ence between max and overall). . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.20 Average Precision vs. Level of Occlusion (N: None, L: Low, M:
Medium, H: High) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 3.21 Average Precision vs. Bounding Box Area . . . . . . . . . . . . . 57

Figure 3.22 Average Precision vs. Aspect Ratio . . . . . . . . . . . . . . . . . 57

Figure 3.23 Average Precision vs. Height . . . . . . . . . . . . . . . . . . . . 57

Figure 3.24 Average Precision vs. Parts Visible . . . . . . . . . . . . . . . . . 57

Figure 3.25 Average Precision vs. Sides Visible . . . . . . . . . . . . . . . . . 57

Figure 4.1 Recent Trends in Visual Object Tracking. . . . . . . . . . . . . . . 60

Figure 4.2 A generalized view of correlation filter based tracking. Image
taken from: [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 4.3 Tracking by Target-Background Classification. . . . . . . . . . . . 62

Figure 4.4 Siamese Networks in Object Tracking . . . . . . . . . . . . . . . . 62

Figure 4.5 Fully-convolutional Siamese architecture proposed in [21]. Feature
maps extracted from target (z) and search patch (x) are cross-correlated to
obtain a similarity score map. . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 4.6 DRLT combines Deep Neural Networks with Reinforcement Learn-
ing. [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 4.7 Recurrent Attentive Tracking Model [23]. . . . . . . . . . . . . . . 65

Figure 4.8 Hierarchical Attentive Recurrent Tracking (HART) [24]. . . . . . . 65

Figure 4.9 Recurrent Filter Learning (RFL) [25]. . . . . . . . . . . . . . . . . 66

Figure 5.1 Re3 Network Structure. . . . . . . . . . . . . . . . . . . . . . . . 68

xvii



Figure 5.2 Long Short-Term Memory. . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.3 Gated Recurrent Unit. . . . . . . . . . . . . . . . . . . . . . . . . 70

Figure 5.4 Unrolling of an RNN cell [26]. . . . . . . . . . . . . . . . . . . . . 71

Figure 5.5 Detection-aided tracking model. . . . . . . . . . . . . . . . . . . . 72

Figure 5.6 Checking failure of a track with baseline detector (left) and context
detector (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 5.7 Caffenet feature extraction backbone. . . . . . . . . . . . . . . . . 78

Figure 5.8 Loss Curves (top) and Number of Unrolls (bottom) vs. Iteration
plots for models C16 (left) and V5 (right). 10k iterations between vertical
lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.9 1-layer and 3-layer feature extractors of Models F1 and F3 in Ex-
periment 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Figure 5.10 Block C of Models S1 (left), SC2 (middle) and S2 (right). . . . . . 82

Figure 5.11 Expected overlap curves for models VU20-80 (Best viewed in color). 84

xviii



LIST OF ABBREVIATIONS

CNN Convolutional Neural Network

RNN Recurrent Neural Network

SVM Support Vector Machine

HOG Histograms of Oriented Gradients

RoI Region of Interest

IoU Intersection over Union (Jaccard Overlap)

VOT Visual Object Tracking

EAO Expected Average Overlap

AP Average Precision

mAP mean Average Precision

ReLU Rectified Linear Unit

NMS Non-Maximum Suppression

BPTT Backpropagation Through Time

xix



xx



CHAPTER 1

INTRODUCTION

Computer vision is an interdisciplinary field of research that aims at developing algo-

rithms to extract useful information from visual data. Subjective opinions of humans

is often decisive in determining the useful information. It is often desired that the

algorithm responds to an input in a similar way to how human visual system does

when developing computer vision algorithms. When somebody examines a photo of

a cat, one usually assumes that most of the other humans would agree that the photo

contains a cat. On the other hand, there is not a clear mathematical formula to find out

whether there is a cat in the photo or not. In certain cases, it may be unclear whether

the photo belongs to cat or a dog, so that not all humans give the same response when

it is asked. Visual recognition is in this sense subjective. Computers, on the other

hand, carry out mathematical operations that are strictly based on a set of algebraic

rules. This may, or may not, be similar to the way the human mind works. In fact,

it is not clearly known how human mind makes decisions. Although the internal be-

havior of an algorithm may be completely different than that of human visual system,

an algorithm is considered a successful one if its input-output relationship is close to

human vision.

Still, as in many other technical fields, living things are a major source of inspiration

in computer vision and recent research favors biologically plausible models. Con-

volutional neural networks (CNNs) are such models that bear resemblance to their

biological counterparts. Their multi layer structure is reminiscent of the stratified

nature of human visual cortex.

Convolution operation is commonly used in many fields of engineering to describe

1



the behaviour of Linear Time Invariant (LTI) systems. Convolution allows us to easily

compute the output of an LTI system to an arbitrary input by accumulating individual

responses to impulses that are thought to constitute the arbitrary input. In CNNs,

learned filters can be thought of as impulse responses that are sensitive to certain

visual features. In this context, time invariance is replaced by shift invariance, which

suggests that when a visual entity is shifted by a certain amount in the input, the

corresponding response is the same but shifted by the proper amount in the output.

On the other hand, a closely related area of research to computer vision is machine

learning. Machine learning aims to build algorithms to make machines learn. Ma-

chine learning became essential for computer vision in the recent years. Learning

is usually formulated as a problem of optimization. There is, however, an impor-

tant difference between a conventional optimization problem and a machine learning

problem: Convential optimization seeks to find the best solution using all of the avail-

able data. The solution is relevant only to the data being used. Therefore one cannot

use the solution for similar data.

In order to exemplify this, consider the task of planning a travel route from Ankara

to Kars. One might define certain criteria for a desired route: A quiet long route is

not desirable. A route that goes through regions with poor road conditions is also

not desirable. While going all the way, one might want to stop by in nearby places

with tourist attractions which should count as desirable changes to the route. By

quantifying all such considerations with the appropriate mathematical formulation,

one may construct an optimization problem that seeks the best route from Ankara

to Kars. The resulting solution is applicable to Ankara-Kars trip only. If next year,

somebody decides to travel to İzmir instead, then one would probably apply the same

procedure without using any computed result from the first trip.

Instead of explicitly defining criteria for the best route, imagine one could ask a lot

of people about their trips around the world and which routes they enjoyed the best.

One can collect data which are relevant to the problem such as tourist attractions,

road conditions, road lengths and so on. Then one can construct a model with some

unknown parameters that will decide how the response should be to a certain input.

Unknown parameters can be learned from collected data and responses from people
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corresponding to this data. Learning is achieved by optimizing the response of the

model. Such a model falls into the range of machine learning and is to be called a

learned model.

In machine learning, data is essential for training a model. By the year 2017, num-

ber of digital photos taken worldwide was estimated to be 1.2 trillion which is about

twice the number estimated for the year 2013 [27]. This overwhelming increase in

digital photography is largely due to widespread usage of smartphones in the recent

years. Smartphones not only facilitate photography, they also boost the sharing of

visual data via social media. About one fifth of the digital photos taken are shared

on social media platforms, such as Facebook and Instagram [28]. Social media make

visual data publicly available. Availability of large amounts of visual data has paved

the way to the domination of algorithms that learn representations from data itself

in almost every field of computer vision. The main advantage of learned representa-

tions against handcrafted representations is that one can improve the representation

by simply feeding additional data.

Objects are thought to have discriminative features that are helpful when recognizing

them. Features are easy to define when spoken in words. For example, a German

Shepherd dog has upright ears that clearly distinguishes it from a Saint Bernard or

a Cocker Spaniel. Unfortunately, computers do not speak in words, they compute

in ones and zeros. Goal of representation learning is to mathematically formulate

discriminative features so that they can be computed.

Beside the object features that help to discriminate between different objects, visual

context is also shown to play a significant role in human vision. According to numer-

ous experimental studies [29, 30, 31, 32], when recognizing objects, our visual sys-

tems take into account certain contextual cues that establish a relation between an ob-

ject and its surroundings. Motivated by these findings, object recognition algorithms

that aim to model and exploit context have been developed [33, 34, 16, 35, 36, 37, 38].
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Figure 1.1: A model that combines tracking and detection.

1.1 Problem Statement and Motivation

Object Detection and Tracking are two important problems of computer vision. While

they are two distinct problems, in most real life scenarios, they often occur in con-

junction and they are strongly related. Object tracking has applications in a wide

range of areas including medical diagnosis systems, visual surveillance and security

systems, video games, industrial robotics and traffic monitoring [39]. In almost all of

these applications, a prior detection step is necessary to determine the initial location

of the object(s) to be tracked. A typical real-life scenario that incorporates object

detection and tracking is depicted on Figure 1.1. In this scenario, objects of interest

are determined through detection on the initial frame of the video stream and a track

is initiated for each object. Then the system enters a tracking loop in which the most

recent estimation for the object location is fed back to the tracker. Tracking loop can

be broken for one of the tracks if the system detects a failure. In this case, detection is

performed on the current frame to obtain possible locations for the objects of interest.

Regardless of whether it is a multiple or single target tracking scenario, data associ-

ation needs to be performed to associate object detections to track(s). After this, the

system reenters the tracking loop.

Visual object detection is the problem of estimating the class and location of objects

in visual data. In many real-life applications one is often interested in two forms of
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Figure 1.2: Image classification, object detection and instance segmentation. Image

taken from: [1]

visual data: Photographs and videos.

Figure 1.2 compares the problem of object detection to three closely related problems.

Image classification can be applied to determine the class of the object when it is

assumed that a single object dominates an entire image. In certain applications, there

is a single object of interest in an image and its location and class is not known. In this

case, classification and localization are the two problems to be solved for that object.

In object detection, aim is to classify and localize all the objects in an image that

belong to a set of predefined object classes. In instance level segmentation, objects

are localized by their full extent rather than bounding boxes that roughly describe the

location.

In ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [40], object detec-

tion is defined as the task of producing a list of object categories present in the image

along with an axis aligned bounding box indicating the position and scale of every

instance of each object category.

Visual object tracking deals with moving objects in videos. In visual object tracking,

the aim is to estimate the location of an object in all frames when the initial loca-

tion is known. Visual object tracking has various application fields including medical

diagnosis, industrial robotics, traffic monitoring, surveillance and security systems.

It should be noted that in most of these applications tracking is preceded by object
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Figure 1.3: Forms of object localization in tracking: (a) bounding box, (b) ellipse, (c)

contour, (d) articulation block, (e) interest point, (f) silhouette. Image taken from: [2]

detection. Initial location of tracked objects are usually provided by a detection algo-

rithm and this step is called automatic initialization of objects.

A video is a sequence of frames that are ordered with respect to corresponding time

instants they capture. Motion is perceived, if the frames are viewed consecutively in

an appropriate speed while watching a video. From this perspective, a video is not

merely a collection of images. Consecutive frames are similar to each other up to

some degree so that human brains perceive moving objects. Frames contain common

information that is necessary for the task of tracking an object. In visual object track-

ing the aim is to efficiently extract and utilize this useful information for locating the

object in consecutive frames. In tracking, object localization can take various forms

as depicted on Figure 1.3. Among these forms, we are mostly interested in bounding

box tracking.

Objects in videos are subject to several types of appearance changes which pose chal-

lenges when tracking them. Different types of appearance changes are exemplified

on Figure 1.4.
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Figure 1.4: Types of apperance changes in visual objects. Image taken from: [2]

1.2 Scope of the Thesis

This thesis has three main contributions: A proposal based object detection scheme

that uses local convolutional context features to improve detection performance is

developed. A comprehensive comparative study to investigate visual object tracking

using recurrent neural networks is conducted. Finally, an object tracking framework

that combines context feature based detection and recurrent neural network based

tracking is developed.

1.3 Outline

• In Chapter 2, we provide a comprehensive review of the recent developments in the

field of object detection.

• In Chapter 3, we present our context feature based extension to proposal-based

object detection.

• In Chapter 4, we provide a comprehensive review of the recent developments in the

field of visual object tracking.

• In Chapter 5, we present the Re3 algorithm [41] and extensive experimental analy-
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sis is carried out to investigate the operation of Re3. Furthermore, we develop

a detection-supervised tracking framework which combines Re3 [41] and our

context feature based object detection model.

8



CHAPTER 2

VISUAL OBJECT DETECTION LITERATURE

In visual object detection, the goal is to predict a bounding box and a class for each

object in an image that belongs to a set of predefined classes. Output bounding box

should cover the full visible extent of the object. A naive approach to this problem

is to slide windows at various scale and aspect ratios over the whole image, classify

the window contents and return the windows that are most likely to contain objects as

a detection result. Sliding window detection is a brute-force approach that degrades

the problem into a set of classification problems. The main disadvantage of sliding

window approach is its computational inefficiency. A more recent paradigm of object

proposal generation suggests to reduce the set of possible object windows with much

less computation prior to performing classification. Apart from that there are also

methods that perform one-shot detection with no sliding window or proposals.

In object detection, classification, segmentation and localization; transforming raw

visual data into semantically meaningful forms plays an important role. The outputs

of such transformations are usually called features. Features are useful, if they are

discriminative so that they contribute distinguishing different objects. In conventional

approaches, features are obtained by fixed, data independent tranformations that rely

on expert knowledge. Resulting features are called manually crafted or hand-crafted

features. On a different track, learned representations are used in which, the features

are learned from the data itself. In learning representations, the amount of training

data is decisive on the performance of the algorithm.

It should also be noted that a frequently applied post-processing technique in object

detection is non-maxima suppression (NMS). Object detectors usually return a lot
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Figure 2.1: Taxonomy of Object Detection Methods.

of bounding box predictions that are likely to capture the same object more than

once. NMS eliminates the predictions that have high overlap with more confident

predictions. NMS is usually applied at test time however there are also cases that it is

applied during training to reduce computation.

According to the ground truth content they utilize, object detection methods can be

fully-supervised (bounding box annotations are available), weakly-supervised (only

image-level annotations are available) or unsupervised. Our focus is mainly on the

fully-supervised methods.

Fully-supervised object detection methods can be grouped into three classes as sliding

window based methods, methods that are built on top of proposal generators (see

Sec. 2.2.1) and methods that do not generate any proposals called one-shot detection

methods.

2.1 Sliding Window Object Detection

In the past, object detection algorithms were built on manually crafted features (de-

scriptors) such as Histograms of Oriented Gradients (HOG) [42], Scale-Invariant Fea-

ture Transform (SIFT) [43] and Local Binary Patterns (LBP). In sliding window de-

tection; windows with various size, location and aspect ratio are hypothesized with-

out using any image information other than the height and width of the image. Patch

features extracted using these windows are classified to decide whether it contains

an object of a known category or not. Classification should be quite fast in such a

method to scan the whole image in an acceptable time. Nowadays, the usage of hand-

crafted features are much more limited due to the success of learned representations.
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Moreover, sliding window approach is replaced by more time-effective approaches.

HOGs are constructed by computing intensity gradients among a finite set of direc-

tions in a dense grid and expressing the gradient distribution over this finite set of

directions. Dalal and Triggs [42] used HOG descriptors in a sliding window fashion

to detect humans. A linear SVM is trained for this binary classification problem.

More recently, Deformable Parts Model (DPM) [44] was introduced. In DPM, a fea-

ture pyramid of HOGs is constructed for an input image. Each level of the pyramid

corresponds to a set of features in different resolutions. A deformable parts model

consists of several components that correspond to different views of objects and each

component consists of a root filter and corresponding part filters that capture the fea-

tures of different object parts. An object consists of parts and parts can be in different

spatial configurations in an image. These different configurations are modeled by the

positions of part filters with respect to a root filter that centers the object. In DPM,

object parts are modeled as rectangular regions. When a part deviates from its ideal

location, it is called a deformation. The model is learned through a latent SVM for-

mulation.

2.2 Object Proposal Generation and Proposal-Based Object Detection

Many detection algorithms are built on object proposals which are generated by a

separate object proposal method. In this case, detection performance is usually upper

bounded by the correct detection ratio (i.e. recall) of the proposal method. In this

section, we shall first provide a brief survey of the most prominent object proposal

methods.

2.2.1 Object Proposal Methods

Object proposal generation problem is formulated as follows: Given an input image,

the task is to return a set of bounding boxes or regions that are likely to contain objects

with a corresponding set of scores measuring the likelihood of containing an object.

High recall and efficiency are the main concerns when designing object proposal al-
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Figure 2.2: Taxonomy of Object Proposal Methods.

gorithms. An object that is undetected (i.e. missed) in the proposal stage, is not likely

to be recovered in the later stages of detection. Computational efficiency is also a

key aspect in proposal generation. It should be noted that the aim in the first place

in using a proposal method is to reduce the computational cost. Object proposal gen-

eration can be seen as a stage that casts the detection problem into a classification

problem. On the other hand, some detection methods involve a bounding box regres-

sion stage as a post-processing step (after obtaining initial detections) or as a jointly

trained module. In that case, the bounding box of the final detection is not necessarily

contained within the set of proposals. Hence, the detector part of the framework does

more than classifying and ranking a bounding box. It can modify the bounding box.

Object proposals come in two forms: A bounding box or an arbitrary shaped segment.

Bounding box annotations are easy to produce and they provide sufficient location

information for many real-life applications.

Based on the underlying philosophy, object proposal methods can be classified into

the following sub-classes: superpixel grouping methods, handcrafted objectness meth-

ods and learned representation methods, as depicted on Figure 2.2. It is important to

note that proposal methods can be categorized in several other ways. Given cate-

gorization is useful as far as it helps to develop an understanding on well-known

proposal methods.

2.2.1.1 Superpixel Grouping Methods for Object Proposal Generation

Superpixel grouping methods usually initialize with an oversegmentation step that

divides an input image into its superpixels. Superpixels are defined as small regions

of uniform color and brightness. These small regions are usually contained within a
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Figure 2.3: Selective Search aims to generate object proposals by hierarchically merg-

ing similar neighbour regions. (a) Input image, (b) Ground truths, (c) Hierarchical

Grouping of regions, (d) Bounding Box Proposals generated by Selective Search.

[3].

single object. After obtaining superpixels, larger regions are obtained by growing or

merging superpixels. Notable segmentation based proposal methods include Selective

Search [3], Geodesic [6], Randomize Prim’s [45], Constrained Parametric Min-Cuts

[5] and Multiscale Combinatorial Grouping [4].

Selective Search initally applies the graph-based segmentation method proposed by

Felzenszwalb and Huttenlocher [46] to obtain superpixels. According to certain pre-

defined similarities, neighbor regions are iteratively merged into larger regions. Sim-

ilarity measures involve color histograms, low level features, size and shape informa-

tion. Selective Search is visualized on Fig. 2.3.

Multiscale Combinatorial Grouping (MCG) [4], follows a top-down procedure, where

initial segmentations of varying size and resolution are obtained from the different

scales of the same image via normalized cuts. Boundaries generated at individual

scales are used to train a boundary classifier which produces boundary estimates at

single-scale. This step corresponds to the "Combination" block shown on Fig. 2.5.

Combinatorial grouping is applied to obtain object candidates out of boundaries. In

this step, number of possible regions is reduced to an acceptable range by formulating

the problem as a Pareto front optimization. The remaining regions are then ranked by
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Figure 2.4: Multiscale Combinatorial Grouping [4].

a random forest according to low level features, shape, size and contour information.

MCG can be considered a segmentation based method. The method is summarized

on Fig. 2.5.

Constrained Parametric Min-Cuts (CPMC) [5] starts by placing foreground seeds on

a regular grid on the image and background seeds along the borders. For each fore-

ground seed region, an independent binary min-cut problem [47] to segment fore-

ground and background is solved. The energy function applied to solve the min-cut

problem consists of unary and pairwise potentials calculated for each pixel. Unary

potential involves a variable foreground bias term so that by varying bias one can

obtain several proposal regions for a foreground seed. These proposals are finally

ranked by applying linear regression or random forests, similar to the ranking step in

MCG. Note that this final step involves supervised learning from ground truth object

regions.

Geodesic Object Proposals [6] starts with an oversegmentation as in Selective Search

and MCG. Based on this initial segmentation, the algorithm places seeds similarly to

CPMC. Geodesic seeds are placed by classifiers specifically designed for discovering

objects which is different from the case in CPMC. Oversegmentation can be repre-

sented as a graph together with the corresponding boundary probability map where

nodes are the superpixels and edge weights are boundary probabilities. Using edge

weights, one can compute a distance between the nodes of a graph. Geodesic dis-

tance between the two nodes is defined to be the length of the shortest path between

them. Geodesic distances between the seeds are used as seed features together with

14



Figure 2.5: Constrained Parametric Min-Cuts [5].

Figure 2.6: Geodesic Object Proposal Generation Method: (a) Input Image and the

corresponding oversegmentation. (b) Seed placement. (c) Foreground-background

masks obtained from individual seeds. (d) SGDT maps. (e) Final results. [6].

other cues, such as color and position. Seed placement is governed by a classifier

acting upon these features. After the seeds are placed, a foreground-background clas-

sifier (which is trained on object ground truths), generates masks. According to these

masks, each superpixel is assigned a Signed Geodesic Distance Transform (SGDT)

value calculated from geodesic distances. SGDT measures the likelihood of the pixel

of belonging to foreground or background. Sharp changes in SGDT map are used to

identify object proposals. The algorithm is schematized in Fig. 2.6.
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2.2.1.2 Handcrafted Objectness Methods for Object Proposal Generation

Apart from the superpixel based approach discussed above, there is a set of tech-

niques for proposal generation that are built upon the "objectness" concept, namely

objectness-based methods. Objectness, coined by Alexe et al. [48], is the property

of a bounding box. Objectness expresses how likely it is that the box corresponds to

an object. Objectness can be a property that is learned by a CNN [49] or a property

that is defined solely over the edge maps [50]. When compared to superpixel group-

ing methods, objectness-based methods have the obvious difference that they do not

actually eliminate the need for sliding window. Initially, sliding window needs to be

applied to generate an initial set of windows over which objectness measure can be

applied. Therefore objectness-based methods should be quite fast so that they have an

advantage over applying sliding window detection directly. Although objectness can

be defined through learned representations as well as handcrafted representations, in

this section the objectness methods are gathered that are based on handcrafted repre-

sentations. Section 2.2.1.3 is devoted to learned representation methods.

Alexe et al. [48] derive objectness from image cues: Multi-scale Saliency (MS),

Color Contrast (CC), Edge Density (ED) and Superpixels Straddling (SS). Saliency

has its roots in cognitive neuroscience as a fundamental concept for understanding

visual perception. Multi-scale saliency cue relies on a spectral residual based saliency

definition [51]. CC cue is based on the assumption that an object should exhibit

a colorwise dissimilarity to its immediate surroundings. ED captures the contour

information. SS cue quantifies how much the bounding box borders pass through

the superpixels. This algorithm uses the same superpixel segmentation algorithm

applied in Selective Search [3]. Each of these cues aims to capture a different aspect

of objects. A single cue serves as a necessary but not sufficient criterion for being

an object. Alexe et al. [48] propose a supervised Bayesian scheme for learning the

image cue parameters.

EdgeBoxes [50], a more recent method, identifies objects from their edges by estimat-

ing the number of contours contained in a box. In that approach, objectness is solely

defined over edges. Contour Box [52] uses closed path integrals on contours and de-

grades the problem into an optimization of completeness and tightness of contours
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Figure 2.7: Objectness estimation with Binarized Normed Gradients [7].

which can be efficiently solved in polar coordinates.

Cheng et al. [7] propose a much more simpler and efficient objectness measure which

they call Binarized Normed Gradients (BING). BING extracts a fixed size binarized

normed gradient map as the only descriptive feature of each bounding box and rank

these features with a learned linear model as summarized in Fig. 2.7.

2.2.1.3 Learned Representation Methods for Object Proposal Generation

As in many machine vision tasks, CNNs proved to be successful in object detection

and object proposal generation as well. CNNs provide powerful learned visual rep-

resentations. The main advantage of using learned representations is that they can be

improved indefinitely by simply adding more training data. Here we shall describe

some of the well-known CNN-based proposal methods. These methods can be further

divided into two as methods that utilize off-the-shelf CNN features and methods that

learn representations for the task of proposal generation.

One such method is DeepProposal [8], which makes use of the representation ability

of CNN features learned from large amount of data instead of making strong as-

sumptions. These features are used off-the-shelf. Edges and object contours that are

frequently utilized in proposal generation also plays an important role in this method.
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Figure 2.8: DeepProposal object proposal framework. [8].

In DeepProposal, object contour detection is learned from CNN features by struc-

tured random forests [8] which is a radically different approach from the previously

mentioned methods. DeepProposal is summarized in Fig. 2.8.

DeepMask [9] is a fully convolutional model that generates object proposal regions in

the form of arbitrary shaped segments. In this method, CNN features are transferred

from an Imagenet [40] pretrained model and finetuned on the task of object proposal

generation. The network is trained end-to-end with a joint loss that quantifies the

correspondence of output segmentation with the ground truth object mask and output

object score with the binary label (object or not). DeepMask network structure is

depicted on Fig. 2.9. SharpMask [53] is an improved version of DeepMask, where

features from different layers of the CNN are blended in a bottom-up/tow-down net-

work architecture to generate sharp object masks. The main drawback of DeepMask

is that it can return only a single proposal as a result of a single network evaluation on

an image patch. For obtaining multiple proposals, the image should be scanned by the

network in a sliding window fashion. Computational cost grows proportionally with

the number of objects to be searched. A method similar to DeepMask is InstanceFCN

[54] which generates instance-sensitive feature maps in a fully-convolutional setting.

InstanceFCN can handle several object instances in a single forward pass.

On the other hand, Jie et al. [10] employ a fully-convolutional network to predict

bounding box proposals instead of object masks. In this approach, a confidence map

is generated where each pixel value serves as a confidence value for the proposal box
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Figure 2.9: DeepMask network architecture for object candidate segmentation [9].

Figure 2.10: Object proposal generation with a fully convolutional network [10].

derived from the receptive field of the pixel. The main drawback of this method is

that the input image needs to be fed multiple times in different scales and aspect ratios

to account for varying scale and aspect ratio proposals. The method is depicted on

Figure 2.10.

In DeepBox [49], a small size convolutional neural network is trained to classify

boxes as object or not object. Proposals generated by a bottom-up method such as

Selective Search are reranked according to their CNN features (a top-down approach),

to obtain better proposals. Multibox [55] [56] on the other hand, formulates object

bounding box prediction as a regression task. In this method, an end-to-end trained

CNN predicts a fixed number of bounding box coordinates with the corresponding

confidence values.
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Figure 2.11: Fast R-CNN [11] (Figure taken from: [12]).

2.2.2 Proposal-Based Object Detection

Development of many successful object proposal methods has paved the way to the

rise of proposal based detection. Shortly after this, excellent representational capabil-

ities of CNNs were demonstrated on large-scale image classification by Krizhevsky

et al. [57].

Motivated by the success of CNNs on image classification, R-CNN [58] was intro-

duced as an object detection framework based on CNN features. R-CNN is a multi-

stage feedforward model that consists of region proposal generation (via Selective

Search [3]), CNN feature extraction, classification (multiple SVMs) and bounding

box regression stages. R-CNN uses CNN as an off-the-shelf feature extractor.

Fast R-CNN [11] is an improved version of this algorithm. In Fast R-CNN, Region of

Interest (RoI) pooling layer is introduced. RoI Pooling layer pools variable shape RoI

(proposal) features into fixed size features. Detection speed is improved by computing

the convolutional features for the whole image instead of for each proposal separately.

SVM classifiers and separate bounding box regression model are replaced by neural

network classifer and regression layers that can be trained in conjunction with the rest

of the network. Error can be backpropagated through the RoI pooling layer which

allows for finetuning of the visual features that were transferred from a classification

network for the detection task. Fast R-CNN is depicted on Fig. 2.11. More recently,

Faster R-CNN [17] was introduced. The essential difference from Fast R-CNN is that

the CNN itself generates its own proposals via convolutional layers instead of relying

on external region proposals. This allows the model to be end-to-end trainable.

Dai et al. propose R-FCN [13] architecture that employs the position-sensitive RoI

20



Figure 2.12: Region-based Fully Convolutional Networks (R-FCN) [13].

pooling layer which pools scores from different score maps which are associated with

different subregions in a RoI. A RoI is divided into cells by a regular grid to define

the subregions. They apply voting over these subregion scores to obtain the final

classification for a region of interest as depicted on Fig. 2.12. Obtaining score maps

for the whole image and applying voting over these maps eliminates the need for a

fully connected classifier and computational cost is significantly reduced.

In DeepID-Net [59], deformable part based modelling was incorporated into R-CNN

framework. DeepID-Net employs the so-called def-pooling layers in between convo-

lutional layers. Def-pooling layers perform max pooling according to learned defor-

mation constraints.

Hypernet [60] extends the architecture in Faster R-CNN by combining the feature

maps from multiple scales to obtain the so-called hyper feature maps to account for

multiple resolutions. A similar work is Feature Pyramid Networks (FPN) [61]. FPN

uses a bottom-up/tow-down architecture with skip connections similar to Sharpmask

[53] to make bounding-box predictions at multiple scales. Both Hypernet and FPN

aim at improving detection performance of Faster R-CNN by efficiently combining

the information from multiple convolutional layers instead of using the final layer

output only. Information from earlier layers is important for especially recognizing

small objects.
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Figure 2.13: Object Detection with Adaptive Region Pooling [14].

Tsai et al. [14] propose a part-based detection framework called Adaptive Region

Pooling in which, parts are defined to be arbitrary shaped, non-rigid regions that to-

gether form the object. In this framework, for each object class a set of representative

exemplars are discovered from the training set. An externally generated object pro-

posal is matched to an examplar according to their similarity in shape and appearance.

After this step, part features of the target object are extracted according to the part seg-

mentation of the exemplar. Multiple Support Vector Regressors (SVR) are applied to

pooled part features to generate final detection results. Adaptive Region Pooling is

depicted on Fig. 2.13.

2.3 Single-shot Object Detection

In one-shot detection methods, detection results are obtained from a single network

evaluation for the whole image and they are simply proposal-free. Computational

complexity is significantly reduced by the elimination of proposal generation. Promi-

nent representatives of this group of methods are YOLO (You Only Look Once)

[15, 62] and SSD (Single shot multibox detector) [63]. In YOLO, an input image

is divided by a regular grid where the resulting image patches (grid cells) are as-

signed a set of class probabilities. For each grid cell, a number of bounding boxes

are predicted by the network. A grid cell is responsible for detecting an object if the

center of an object falls into it. This procedure is visualized on Fig. 2.14. Although
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Figure 2.14: YOLO divides an input image into a regular grid of cells to predict

bounding boxes and class for each cell[15].

the model is fast and accurate, assigning a class probability to each grid cell, poses a

strong constraint on the number of nearby object detections. A possible drawback of

YOLO is, objects that belong to different visual categories and that are centered in a

common grid cell might not be correctly classified.

Single Shot Detector (SSD), on the other hand, is a fully convolutional model that

makes use of anchor boxes similarly to Faster R-CNN [17]. Anchors are defined

over feature maps of consecutive convolutional stages. This allows to efficiently pre-

dict bounding boxes at multiple scales. Fu et al. [64] extend the SSD architecture

with their so-called deconvolution modules that combine the information from fea-

ture maps of various stages via deconvolution and elementwise multiplication to ob-

tain better detection results. Zhang et al. [65] combine SSD with weakly-supervised

segmentations to obtain improved results.
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CHAPTER 3

VISUAL OBJECT DETECTION WITH LOCAL

CONVOLUTIONAL CONTEXT FEATURES

The notion of context is frequently encountered in computer vision literature, espe-

cially for object detection problem [33, 34, 16, 35, 36, 37, 38]. A context frequently

helps recognizing the extent of an object and usually provides a significant clue when

determining the class of the object in question. On the other hand, in some cases, such

an information does not contain discriminative information for many visual classes.

For instance, in the sky, it is more likely to see an object from plane or bird classes,

compared to a car object. Any supporting information about the context of the object

as sky might help to discriminate between cars and birds, although such a knowledge

does not help to discriminate between planes and birds.

CNN architectures that are used in object detection are discriminatively trained on

large scale image classification tasks [19, 57, 66, 67]. Such networks that are trained

in this manner naturally tend to focus on the most discriminative object features,

possibly leaving out the more ambiguous context information. This observation gives

the motivation to train a specialized feature extractor for the local context region

surrounding the regions of interest as well. Moreover, it could be argued that the role

of context becomes even more dominant by challenging samples, such as objects that

are captured from certain distance, under weak illumination or strongly occluded.

Context can be local or global depending on whether this information is extracted

from neighboring pixels of a region or the whole image containing the object. The

local context region can be defined via a rectangular window outside a bounding box.

In segDeepM [35], context features are extracted by using a CNN that is finetuned
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Figure 3.1: Multi-region semantic segmentation-aware CNN model [16]

with expanded versions of ground truth boxes which contain not only the object but

also the surrounding context region. In ParseNet [68], global context information

is extracted through Global Average Pooling and two types of features are concate-

nated to obtain smooth and occlusion aware semantic segmentation results. A similar

Global Pooling strategy is applied in Deep Residual Networks [67] as well. In the

proposed framework, the context features are not global, they are extracted from a

local context region defined around each region of interest.

On the other hand, Gidaris and Komodakis [16] train different fully-connected fea-

ture stages for different subregions assigned to each region of interest on top of shared

convolutional feature maps as depicted on Figure 3.1. Gidaris and Komodakis have a

discriminative feature diversification approach to enforce different network compo-

nents learning diversified discriminative features from different subregions assigned

to a single proposal region. They report decent detection results even by only using

the context features, which suggests that context rings of a region of interests provide

strong clues for the task of object detection. In this thesis, a similar approach is fol-

lowed; however, the proposed method differs from [16] in such a way that the authors

learn different fully-connected layers for different subregions on top of a shared con-

volutional feature map, whereas in this thesis, the convolutional features for different

subregions that preserve the spatial relationship after combining are being learned.

In proposal-based detection methods, it is a common practice that once region pro-

posals are obtained, information related to rest of the image is left out. It is argued
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that the surrounding features can be further useful for better classification and local-

ization of objects. Context features might render the final bounding box regression

stage in Faster R-CNN [17] more purposeful by allowing it to look at a wider range

for discovering the full extent of an object. Although the proposed context-based

extension is experimented on Faster R-CNN, it might be applicable to other region

proposal-based methods.

Faster R-CNN [17] is an end-to-end trainable CNN-based object detection method

that performs proposal generation with a fully convolutional network, namely Region

Proposal Network (RPN). Proposals are sometimes called Regions of Interest (RoI).

In Faster R-CNN, proposal generation, bounding box regression and classification are

built upon a shared convolutional feature map. Faster R-CNN is depicted on Figure

3.2.

The method formulates the bounding box regression through anchor boxes, which

are reference windows that are hypothesized at various positions, scales and aspect

ratios. Ground truth bounding boxes are transformed into regression targets by using

the following equations:

t∗x = (x∗ − xa)/wa (3.1)

t∗y = (y∗ − ya)/ha (3.2)

t∗w = log(w∗/wa) (3.3)

t∗h = log(h∗/ha) (3.4)

where x, y, w, h are box center coordinates, width and height; ∗ and a denote ground

truth and anchor, respectively. This transformation is a normalization over the image

dimensions and makes the system robust to image scale. The transformation is essen-

tial for numerical stability. It should be noted that the inverse of these transformations

should be applied to network outputs denoted t (without *) to obtain predicted box

coordinates. RPN Regression Loss is defined as

LRPNreg =
∑

r∈proposals
p∗rLreg(r, t

∗
r) (3.5)
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Figure 3.2: Faster R-CNN [17]. Three most activated feature maps are shown in

RGB. Red box: Proposal, White box: Ground Truth.
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RPN Regression Loss is applied to predictions for positive anchor boxes only. Pos-

itive anchors are the anchor boxes that have IoU with some ground truth box higher

than a certain threshold. This is expressed in Eqn. 3.5 through the indicator p∗r that

takes the value 1, if the anchor box is positive and 0 otherwise.

In addition to the regression term, there is also a classification term in the RPN loss.

For each proposal prediction, RPN returns both the coordinates of the proposal and

a corresponding confidence value pr expressing how confident the system is about

this proposal. RPN Classification Loss operates on this confidence, therefore the

classification is over two classes: Object vs. No-Object. It should be noted that since

RPN is trained with ground truth boxes belonging to a certain set of visual object

classes, it is not expected to recognize generic objects. RPN Classification Loss Term

is given in Eqn. 3.6.

LRPNcls = −
∑

r∈proposals
logpr (3.6)

It should be noted that the confidence values pr given in Eqn. 3.6 are obtained through

softmax over two values produced by the network which is also a crucial step for the

system to properly work. Softmax ensures pr is a value between 0 and 1.

Hence, the resulting overall RPN loss is obtained as

LRPN = λ1LRPNreg + λ2LRPNcls (3.7)

where λ1 and λ2 are hyperparameters that determine the trade-off between bounding-

box regression and classification.

Final detection loss of Faster R-CNN is defined in a similar manner with two main

differences:

1. Classification is over (number of classes + 1) instead of 2. Here, +1 stands for

the background class.

2. Ground truth bounding boxes undergo a similar transformation as in Eqn.’s 3.1,

3.2, 3.3, 3.4 but this time with respect to proposals instead of the anchor boxes.
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The regression targets for the final detection stage are expressed as follows:

t∗x = (x∗ − xp)/wp (3.8)

t∗y = (y∗ − yp)/hp (3.9)

t∗w = log(w∗/wp) (3.10)

t∗h = log(h∗/hp) (3.11)

Here, subscript p denotes proposals output by RPN. Final detection loss is expressed

in Eqn.’s 3.12, 3.13, 3.2.2.

LDETreg =
∑

i∈dets
p∗iLreg(i, t

∗
i ) (3.12)

LDETcls = −
∑

i∈dets
logpcls,i (3.13)

LDET = λ3LDETreg + λ4LDETcls (3.14)

For both RPN and final detections, bounding box regression is learned through the

so-called smooth L1 distance defined in Eqn. 3.16. Smooth L1 distance between

regression targets and predictions are summed over four coordinates as in Eqn. 3.15.

Lreg(b, t
∗
b) =

∑
cb∈(xb,yb,wb,hb)

smoothL1(tcb − t∗cb) (3.15)

smoothL1 =

0.5x2 if |x| < 1

|x| − 0.5 otherwise
(3.16)

In the original Faster R-CNN [17], an alternating training scheme is applied. In this

alternating scheme, firstly RPN is trained applying the RPN loss defined by Eqn.

3.7. In the next step, a Fast R-CNN is trained using the proposals generated by RPN

trained in the first step and applying the loss defined in 3.2.2. In the third step, RPN

is finetuned on top of the base features that were finetuned in the second step. Finally,
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the layers unique to Fast R-CNN are finetuned. Due to practical concerns, we decide

to follow the joint training strategy which we find sufficient for our purposes. Joint

training reportedly yields close results to the 4-stage alternating training scheme [17].

We apply the following multi-task loss in all our experiments:

Ltotal = LDET + LRPN + Lwd (3.17)

Here, Lwd is the weight regularization (decay) term defined as

Lwd =
∑

w∈network parameters
λww

2 (3.18)

where λw is decay coefficient of the variable w.

Total loss expressed in Eqn. 3.17 is minimized by appyling Stochastic Gradient De-

scent (SGD) with momentum. In SGD, parameter updates are carried out as

θi+1 = θi − η∇θLtotal(θ)|θ=θi (3.19)

where θ is the vector of trainable parameters, θi is its value at i’th iteration and η is

the learning rate. SGD with momentum extends Eqn. 3.19 with a momentum term to

reach convergence faster. Formally, update rule is given as

vi = γvi−1 + η∇θLtotal(θ)|θ=θi (3.20)

θi+1 = θi − vi (3.21)

where γ is the momentum, a value between 0 and 1.

3.1 Proposed Method with Local Convolutional Context Features

In the proposed method, local context of a region proposal is utilized to improve de-

tection results. Local context region is defined through a context box that is obtained
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Figure 3.3: Overview of the Proposed Algorithm. Layers shown in green are proposed

for improving detection performance. (Best viewed in color)

by expanding the RoI box by a certain ratio as depicted on Figure 3.3. This ratio,

denoted as offset ratio, determines the extent of surrounding features to be utilized.

The region between a bounding box and the corresponding context box is called the

context ring. To illustrate, if the object region has a shape of 100x100 pixels and the

corresponding context region is chosen to be 120x120 pixels the offset ratio is 0.1.

On top of a shared feature extraction stage, there are RoI and context feature layers

that aim to learn diversified features for the context region and the region of interest.

Both feature extractors are identical in their structures and they are initialized by the

same weights learned from Imagenet [40]. Figure 3.3 presents an overview of the

proposed algorithm.

In the proposed model, there are two adaptive pooling layers: One of them is the

RoI pooling layer that pools features from a region of interest in the exact same way

Faster R-CNN [17] does. The newly introduced one is called context ring pooling

layer. Context ring pooling layer pools context features to generate a fixed size rep-

resentation for the local context. Context ring pooling is a two-stage operation that
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Figure 3.4: Context Ring Pooling. In this illustration, context poolsize is 4x4 and

roipool size is 2x2. Offset Ratio is 0.5.

consists of RoI pooling over the context box followed by a so-called Drill operation

that drills out the inner features and generates a ring-shaped fixed size representation

for the context region. Roipool size of the RoI pooling operation which is performed

inside the context ring pooling layer is called the contextpool size. Context ring pool-

ing is illustrated in Figure 3.4. The relationship between offset ratio, roipool size and

contextpool size is expressed as follows:

Offset Ratio =
(contextpool size)− (roipool size)

2 ∗ (roipool size)
(3.22)

A novel wrap around operation lies at the heart of the proposed method (The opera-

tion of wrap around layer is depicted in Figure 3.5). Wrap around combines the RoI

pooled features with the context ring pooled features in a special way that the spatial

relationships between the features are preserved. The output of the wrap around layer

is fed to the subsequent stages of the network. By relating the three parameters as

in Eqn. 3.22, we ensure that the context ring pooled and RoI pooled features have

the same scale which might be crucial since they are concatenated together and fed

into convolutional filters. It should be noted that after the proposed modifications, the

resulting system remains to be end-to-end trainable.
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Figure 3.5: Wrap Around Layer combines two feature maps while preserving the

spatial relationship between them.

3.2 Experimental Work

In this section, we present the experimental work. Section 5.3.1 describes the dataset

and the evaluation procedure. Section 3.2.2 presents detailed information related to

training scheme. Section 5.3.3 presents the conducted experiments and their results.

3.2.1 Datasets and Evaluation Metrics

The experiments are conducted with PASCAL VOC 2007 [18], which is a popu-

lar object detection benchmark dataset. Pascal VOC 2007 contains a total of 9963

photographs containing at least 1 instance of 20 objects. PASCAL VOC object cat-

egories are as follows: Aeroplane, Bicycle, Bird, Boat, Bottle, Bus, Car, Cat, Chair,

Cow, Dining Table, Dog, Horse, Motorbike, Person, Pottedplant, Sheep, Sofa, Train

and TV/Monitor.

PASCAL VOC is split into training+evaluation (train+val) and test sets containing

5011 and 4952 images, respectively. All the presented experiments use train+val set

as the training set and the test results are obtained with the test set. The number of

instances and images per category in VOC 2007 is plotted on Fig. 3.6.
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Figure 3.6: Number of instances and images per category in PASCAL VOC 2007

(taken from [18]]
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For assessing the performance of detection algorithms, precision and recall are two

important metrics. In order to have a grasp of these two concepts, one can explain by

a toy example: Assume that a sheep detector algorithm is applied to a photograph of

sheep. Let there be 5 sheep in the photograph. The tested sheep detector is capable

of detecting 1000 sheep and returns confidences associated with every 1000 detec-

tions. 1000 is a quite large number and most of the time, it is reasonable to apply a

confidence threshold to allow for the most confident detections only. Let us assume 6

detections surpass the threshold and among these detections, only 4 detections have

sufficient overlap with individual sheep instances in the photograph. These 4 de-

tections are called true positives. Remaining two detections are wrong and they are

called false positives. In the photograph there were 5 sheep and the algorithm could

detect only four of them. The sheep that is missed is called a false negative.

More formally, precision is defined as

Precision =
TP

TP + FP
(3.23)

while recall is given by the following relation:

Recall =
TP

TP + FN
(3.24)

where TP is the number of true positives, FP is the number of false positives and FN

is the number of false negatives. For a detection algorithm, it is desirable that both

precision and recall are high. At test time, one adjusts a parameter called confidence

threshold. Precision and recall are significantly affected by this parameter. Precision

is likely to be high and recall is low when the threshold is set quite high and vice

versa. The system moves on a precision-recall curve as depicted on Figure 3.7 when

the confidence threshold is varied. Confidence threshold is merely a means to select

an operating point on this curve. The whole curve is much more informative about

the performance of the algorithm when compared to a single point on the curve.

Detection performance can also be measured with Average Precision (AP). AP is a

summary of the precision-recall curve of a single class. In official PASCAL VOC

36



Figure 3.7: Precision-Recall Curve.

evaluation, this summary is taken by interpolating the precision-recall curve at 11

recall levels [18] as follows:

APc =
1

11

∑
r∈{0,0.1,...,1}

max
r∗:r∗≥r

pc(r
∗) (3.25)

where pc is the precision-recall curve for class c. Mean of the Average Precisions

over all classes is called mean Average Precision (mAP):

mAP =
1

#ofclasses

∑
c∈classes

APc (3.26)

3.2.2 Training

All training is performed using the machine learning library Tensorflow [69] on a

NVIDIA GTX 980 graphics card. Shared convolutional feature layers are kept fixed

(no backpropagation). Loss component weights λ1 − λ4 in Eqn.’s 3.7, are all set

to 1. Stochastic Gradient Descent (SGD) with momentum equal to 0.9 is applied

throughout the whole experimentation. During training, the images are fed in single

scale with the shorter side is 400 (In the original paper [17], this value was equal

to 600) and the aspect ratios are kept the same. For pretrained layers, weight decay

coefficient λw is set to 0.0005, for newly initialized layers λw is set to 0.00025. During
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Figure 3.8: Test Loss vs. Iteration for Models B5 (left) and C20 (right).

training both the original images and their left-right flipped versions are fed; no other

data augmentation is applied. Initially learning rate is 0.0001 and decays by 0.8 after

every 25k iterations. Since the models are trained with single image batches, loss

curves are typically quite noisy and it is impractical to apply early stopping based on

training and test losses. Test loss curves for a baseline model and a context model are

given on Figure 3.8. For a fair comparison, we fixed the number of training iterations

to 340k for all models.

Training is performed on single image multiple RoI batches. Following [17], we

applied a batch size of 256 consisting of up to 128 positive and down to 128 negative

RoIs belonging to a single image during all experiments. During training and test,

10k proposals with the highest confidence generated by RPN are applied Non-Max

Suppression (NMS) and up to 2k of the remaining proposals are used.

3.2.3 Experiments

In this section, several experiments are performed to investigate the effects of design

considerations when constructing a context model. There are two important design

selections regarding the context extension. These are the number of context and RoI

feature layers and the offset ratio. Experiments 1 and 2 deal with context feature

layers and Experiment 3 investigates the effect of the offset ratio.

In all experiments, VGG-16 [19] architecture pretrained on Imagenet [40] is em-

ployed for feature extraction. The feature extractor network is depicted on Fig. 3.9.
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Table 3.1: Number of parameters of baseline and context models

Model Name Number of Parameters (in Millions)
Original Faster R-CNN with VGG-16 137.08
B1 22.04
C1 25.04
Cf2 27.40
Cf3 29.76
C33 26.12

B7 22.30
C14 25.53
C29 26.82

B5 21.88
C20 24.67

B8 22.68
C12 26.12
C25 27.62

B9 23.17
C22 28.54

Figure 3.9: Feature extraction architecture used: VGG-16 [19]

In baseline models, which are denoted with B and BC, this architecture is used with-

out any modification. In context models, which are denoted with C, the final layers

are branched into context and RoI feature layers as depicted on Figures 3.12,3.13 and

3.14.

Original Faster R-CNN architecture has large fully connected stages after the RoI

pooling stage. Due to limited hardware resources, a simplified version is utilized by

replacing the two fully-connected 4096 neuron layers in the original model with two

3x3x512 convolutional layers. With this modification, around 115 million trainable

parameters are saved. Number of parameters for all trained models are presented on

Table 3.1.
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Table 3.2: Models trained in Experiment 1

Model roipool(/ctxpool) # of Ctx Layers Pooled Regions Offset Ratio
B1 6x6 0 RoI -
BC1 8x8 0 RoI and Ctx Ring 0.17
C1 6x6/8x8 1 RoI and Ctx Ring 0.17

B7 7x7 0 RoI -
BC14 9x9 0 RoI and Ctx Ring 0.14
C14 7x7/9x9 1 RoI and Ctx Ring 0.14

B5 5x5 0 RoI -
BC20 7x7 0 RoI and Ctx Ring 0.20
C20 5x5/7x7 1 RoI and Ctx Ring 0.20

3.2.3.1 Experiment 1: Separate Feature Extractors

In this experiment, we compare two different scenarios for exploiting local context

information. Models C1, C14 and C20 are context models that have separate feature

extraction stages for the region of interest and the context ring. Models BC1, BC14

and BC20 pool features from the context box but they do not have separate feature

extraction stages for the context ring and the region of interest. Models B1, B7 and

B5 are baseline models that pool features from the region of interest only. Our aim

is to investigate whether it is essential to learn diversified features for the context

region and the region of interest by comparing models denoted with B, BC and C.

The experiment is repeated for three different offset ratios (0.14, 0.17, 0.20) to reduce

the possibility of having coincidental results. Model roipool sizes and offset ratios

are presented in Table 3.2. Model architectures are presented in Figure 3.11.

Experimental results for different visual categories are presented on Table 3.3. Com-

paring results for models denoted with B, BC and C; it can be concluded that although

by simply expanding the region of interest into a local context region, as in models

BC, some improvements over baseline models (denoted with B) are observed, sep-

arate feature extractors for the context region and the region of interest lead to best

improvements in detection performance. Visual results for baseline model B1 and

context model C1 are given on Figure 3.10.
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Figure 3.10: Visual results for baseline model B1 (left) and context model C1 (right).

Confidence Threshold = 0.5.
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Table 3.3: AP results of Experiment 1 over VOC 2007 Test Set

Class B1 BC1 C1 B7 BC14 C14 B5 BC20 C20

a.plane 58.94 61.29 67.67 60.58 59.84 59.79 58.56 62.29 63.36
bicycle 69.78 73.34 76.42 71.83 73.88 73.69 72.12 72.94 73.35
bird 55.60 55.46 61.13 56.45 54.88 59.70 55.22 54.09 58.68
boat 38.54 45.32 54.85 39.07 38.87 41.93 39.46 40.47 41.37
bottle 30.10 33.10 34.09 27.03 29.41 29.56 28.25 31.23 32.27
bus 67.96 69.78 73.81 68.08 65.73 67.71 64.87 71.92 69.68
car 68.28 67.96 74.68 67.45 66.95 70.93 67.22 67.76 70.80
cat 74.46 75.06 80.32 73.28 73.31 77.85 73.58 75.07 76.06
chair 38.15 37.44 40.30 36.79 37.26 37.04 35.38 35.47 38.36
cow 61.37 62.26 71.13 62.04 63.95 64.46 58.00 64.10 64.45
d.table 55.46 58.01 59.75 56.07 58.61 56.75 52.49 61.46 58.22
dog 72.91 74.08 76.35 71.24 71.17 74.11 72.90 72.09 75.04
horse 75.23 74.91 79.36 76.32 75.71 76.68 74.66 76.63 77.27
m.bike 70.00 71.48 75.84 71.93 69.79 73.11 66.26 68.68 71.67
person 64.93 64.33 68.11 64.38 63.70 66.26 63.57 64.36 66.31
p.plant 27.59 27.15 31.13 31.00 29.50 29.88 26.03 26.29 28.81
sheep 54.24 53.37 63.26 52.89 54.52 51.84 48.93 55.58 54.61
sofa 60.08 57.88 62.65 59.64 56.41 60.95 56.31 58.37 63.71
train 72.35 70.47 73.63 70.86 68.60 71.61 70.97 71.05 73.51
tv 62.80 60.88 62.48 59.38 60.67 61.75 61.28 60.63 62.24
mean 58.94 59.68 64.35 58.82 58.64 60.28 57.30 59.52 60.99
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Figure 3.11: Model architectures in Experiment 1: (a) B1, B7, B5 (b) BC1, BC14,

BC20 (c) C1, C14, C20

Figure 3.12: Feature extractor of Model C1

3.2.3.2 Experiment 2: Number of Separate Feature Extraction Stages

In order to observe the effect of having different number of context feature layers, the

models C1, Cf2 and Cf3 are trained by 1, 2 and 3 context feature layers, respectively.

Feature extraction stages of these models are depicted on Figures 3.12, 3.13 and 3.14.

Properties of the models are summarized in Table 3.4

Experimental results presented in Table 3.5 suggest that the number of separate con-

text and RoI feature layers has a significant effect on the performance of the algo-

rithm. Best results are obtained with a single context feature layer (C1). There are

improvements with respect to the baseline with 2 (Cf2) and 3 (Cf3) layers, although

less when compared to C1. It can be argued that as the number of unshared layers in-
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Table 3.4: Properties of baseline and context models in Experiment 2

Model roipool(/ctxpool) # of Ctx Layers Pooled Regions Offset Ratio
B1 6x6 0 RoI -
C1 6x6/8x8 1 RoI and Ctx Ring 0.17
Cf2 6x6/8x8 2 RoI and Ctx Ring 0.17
Cf3 6x6/8x8 3 RoI and Ctx Ring 0.17

Table 3.5: APs over VOC 2007 Test Set for Experiment 2

Class B1 C1 Cf2 Cf3

aeroplane 58.94 67.67 60.58 61.20
bicycle 69.78 76.42 70.28 69.61
bird 55.60 61.13 56.18 57.00
boat 38.54 54.85 40.25 42.44
bottle 30.10 34.09 35.36 30.62
bus 67.96 73.81 67.45 70.36
car 68.28 74.68 69.19 70.77
cat 74.46 80.32 74.41 77.47
chair 38.15 40.30 34.68 36.03
cow 61.37 71.13 62.07 64.42
diningtable 55.46 58.01 59.75 56.73
dog 72.91 76.35 71.33 72.23
horse 75.23 79.36 76.65 75.89
motorbike 70.00 75.84 68.87 70.83
person 64.93 68.11 64.88 65.52
pottedplant 27.59 31.13 26.41 29.38
sheep 54.24 63.26 51.91 53.40
sofa 60.08 62.65 59.72 63.33
train 72.35 73.63 73.61 73.44
tv/monitor 62.80 62.48 64.15 62.42
mean 58.94 64.35 59.24 60.18
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Figure 3.13: Feature extractor of Model Cf2

Figure 3.14: Feature extractor of Model Cf3

crease, the complexity of the problem also increases and it becomes harder to obtain

improved results with the same number of iterations.

3.2.3.3 Experiment 3: Offset Ratio

In this experiment, we train models with different offset ratios in order to observe

the effect of offset ratio. Offset ratio, contextpool size and roipool size are related to

each other as expressed in Eqn. 3.22. To illustrate, if contextpool and roipool sizes

are chosen as 8x8 and 6x6, then the offset ratio becomes 0.17. Since contextpool

size and roipool size have to be integers, one cannot arbitrarily adjust the offset ratio.

In order to perform fine adjustment on the offset ratio, both roipool size and con-

textpool size need to be changed. However, it should be noted that roipool size is a

parameter for the baseline model as well. Since roipool size might be decisive for

the perfomance of the baseline model, one should also train the respective baseline

models having the same roipool size with each context model to have a fair compar-

ison. Based on this reasoning, the context models C1 and C33 are to be compared

against the baseline model B1; context models C14 and C29 are to be compared with

the corresponding baseline model B7; context model C20 is to be compared with the

corresponding baseline model B5; context model C12 and C25 are to be compared

with the corresponding baseline model B8. Model properties are summarized in Ta-

ble 3.6. During context pooling, feature maps are padded with the mean value of the
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Table 3.6: Properties of baseline and context models in Experiment 3

Model roipool(/ctxpool) # of Ctx Layers Pooled Regions Offset Ratio
B1 6x6 0 RoI -
C1 6x6/8x8 1 RoI and Ctx Ring 0.17
C33 6x6/10x10 1 RoI and Ctx Ring 0.33

B7 7x7 0 RoI -
C14 7x7/9x9 1 RoI and Ctx Ring 0.14
C29 7x7/11x11 1 RoI and Ctx Ring 0.29

B5 5x5 0 RoI -
C20 5x5/7x7 1 RoI and Ctx Ring 0.20

B8 8x8 0 RoI -
C12 8x8/10x10 1 RoI and Ctx Ring 0.125
C25 8x8/12x12 1 RoI and Ctx Ring 0.250

B9 9x9 0 RoI -
C22 9x9/13x13 1 RoI and Ctx Ring 0.22

feature map where necessary. In baseline models, green layers in Fig. 3.3 are left

out so that only the blue layers are active. Experimental results for Experiment 3 are

presented in Tables 3.7-3.8.

For most of the experiments, context models outperform the corresponding baselines.

Among context models that have different offset ratios, there are significant differ-

ences in performance as evident from Tables 3.7-3.8. Performance difference between

different context models suggests that offset ratio critically effects the performance

of a context-based model. For models C12 and C14, which have the smallest offset

ratios, the improvements are less significant when compared to models C1, C20, C22,

C25, C29. The worst result is obtained with the highest offset ratio model (C33). This

result might be due to the fact that spatially distant features provide irrelevant infor-

mation. It should also be noted that since the image dimensions are bounded, a high

offset ratio results in more padding in pooled context features.

3.3 Comparison with Similar Methods

Results of our best performing context model (C1) are compared with two proposal-

based detection methods (Faster R-CNN [17] and Multi-region segmentation-aware
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Table 3.7: APs over VOC 2007 Test Set for Experiment 3

Class B1 C1 C33 B7 C14 C29

aeroplane 58.94 67.67 57.95 60.58 59.79 66.03
bicycle 69.78 76.42 69.59 71.83 73.69 73.84
bird 55.60 61.13 53.71 56.45 59.70 61.16
boat 38.54 54.85 39.73 39.07 41.93 48.34
bottle 30.10 34.09 29.19 27.03 29.56 35.11
bus 67.96 73.81 69.97 68.08 67.71 74.03
car 68.28 74.68 68.07 67.45 70.93 74.55
cat 74.46 80.32 73.50 73.28 77.85 80.62
chair 38.15 40.30 34.02 36.79 37.04 39.79
cow 61.37 71.13 60.18 62.04 64.46 67.45
diningtable 55.46 59.75 50.29 56.07 56.75 63.40
dog 72.91 76.35 70.40 71.24 74.11 76.40
horse 75.23 79.36 72.70 76.32 76.68 78.16
motorbike 70.00 75.84 68.89 71.93 73.11 74.78
person 64.93 68.11 61.43 64.38 66.26 67.68
pottedplant 27.59 31.13 27.89 31.00 29.88 29.59
sheep 54.24 63.26 52.55 52.89 51.84 61.49
sofa 60.08 62.65 64.50 59.64 60.95 65.00
train 72.35 73.63 67.63 70.86 71.61 75.51
tv/monitor 62.80 62.48 61.22 59.38 61.75 64.86
mean 58.94 64.35 57.67 58.82 60.28 63.89
Offset Ratio - 0.17 0.33 - 0.14 0.29
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Table 3.8: APs over VOC 2007 Test Set for Experiment 3

Class B5 C20 B8 C12 C25 B9 C22

aeroplane 58.56 63.36 58.47 60.69 65.12 59.61 62.76
bicycle 72.12 73.35 72.36 71.43 72.55 71.22 72.90
bird 55.22 58.68 56.23 58.36 55.80 52.75 54.17
boat 39.46 41.37 41.20 41.32 42.06 35.21 44.86
bottle 28.25 32.27 29.05 32.90 33.13 31.85 34.34
bus 64.87 69.68 64.29 66.69 69.52 66.34 71.58
car 67.22 70.80 68.80 69.92 71.04 68.80 70.12
cat 73.58 76.06 74.83 75.72 75.94 74.07 77.28
chair 35.38 38.36 36.97 36.70 36.99 34.18 37.25
cow 58.00 64.45 62.46 61.73 60.85 59.02 63.12
diningtable 52.49 58.22 55.34 57.23 58.36 53.44 59.42
dog 72.90 75.04 69.71 72.82 73.28 71.04 73.43
horse 74.66 77.27 76.04 75.14 75.23 76.16 77.01
motorbike 66.26 71.67 69.75 72.77 71.30 71.11 69.79
person 63.57 66.31 65.48 65.96 65.89 65.41 65.55
pottedplant 26.03 28.81 27.11 29.07 30.09 27.35 28.31
sheep 48.93 54.61 53.86 53.93 52.29 52.12 55.53
sofa 56.31 63.71 56.63 63.17 65.22 59.83 60.17
train 70.97 73.51 70.38 72.63 73.86 70.77 71.26
tv/monitor 61.28 62.24 60.82 62.79 63.88 62.78 63.42
mean 57.30 60.99 58.49 60.05 60.62 58.15 60.61
Offset Ratio - 0.20 - 0.125 0.25 - 0.22

48



Table 3.9: Comparison with methods in the literature over VOC 2007 Test Set

Class FRCNN [17] MRCNN [16] C1(ours)
aeroplane 70.0 74.9 67.7
bicycle 80.6 75.7 76.4
bird 70.1 64.5 61.1
boat 57.3 54.9 54.9
bottle 49.9 44.7 34.1
bus 78.2 74.1 73.8
car 80.4 75.5 74.7
cat 82.0 76.0 80.3
chair 52.2 48.1 40.3
cow 75.3 72.4 71.1
diningtable 67.2 67.4 58.0
dog 80.3 76.5 76.4
horse 79.8 72.4 79.4
motorbike 75.0 74.9 75.8
person 76.3 61.7 68.1
pottedplant 39.1 34.8 31.1
sheep 68.3 61.7 63.3
sofa 67.3 64.0 62.7
train 81.1 73.5 73.6
tv/monitor 67.6 76.0 62.5
mean 69.9 66.2 64.4
# net params (in Millions) 137.08 1210.26 25.04

CNN (MRCNN) [16]) in Table 3.9. All three models are trained on PASCAL VOC

2007 train+val set and they are built on top of VGG-16 feature extraction backbone.

MRCNN uses Selective Search [3] for region proposal generation. It should be noted

that, although context model C1 does not outperform the other two methods (except

one visual category), it yields comparable results with a much simpler training strat-

egy, smaller input images during both training and test and significantly less number

of trainable parameters (given in the last row of Table 3.9).
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Figure 3.15: Mean Percent Increase in Average Precision vs. visual category.

3.4 Category-level Improvements Achieved by Local Convolutional Context

Features

In order to observe the category-level effects of local context features, we define

Percent Increase in Average Precision (PIAP) of a context model C as

PIAP (C) =
AP (C)−BaselineAP (C)

BaselineAP (C)
, (3.27)

where AP(C) is the Average Precision of model C and Baseline AP(C) is the Av-

erage Precision of the corresponding baseline model. PIAP aims to quantify the

improvement achieved with context feature extension. By evaluating mean of PI-

APs over all trained context models for each visual category, we compare the im-

provements for different visual categories in Figure 3.15. According to Figure 3.15,

best improvements are obtained for visual categories with distinctive context such as

boat, bottle, sofa and aeroplane. It should be noted that for certain visual categories

such as aeroplane-bird, sheep-cow, cat-dog pairs and land vehicles (car-bus-bicycle-

motorbike) object contexts are similar which might confuse the classifier. On the

other hand, for the boat category, such similar context categories do not exist there-

fore it is reasonable to observe a high improvement. In PASCAL VOC, person cate-

gory does not have a distinctive context therefore it is reasonable to observe a small

improvement. Nevertheless, it should also be emphasized that our method exploits

the context of region proposals instead of objects. The overlaps between context re-

gions of proposals and objects are high as far as region proposals are accurate. The

above discussion assumes that there is some correspondence between the contexts of

proposals and ground truth objects.
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3.5 Feature Diversification and Sparsity

In order to reach an understanding about the operation of the newly proposed system,

we visualize object and context features during training. On Figure 3.16, three most

activated feature maps (that have the highest average value) from object and context

feature layers are shown in Red, Green and Blue channels. It should be noted that

"the most activated" does not necessarily mean "the most important" or "the most

discriminative". In fact, most activated features tend to be the least sparse features.

From Figure 3.16, it is evident that the network is able to learn diversified features for

the region of interest and the context region. Also, it is observed that as the training

continues, context features become less and less sparse when compared to object

feature maps.

3.6 Diagnostic Analysis of Errors

Average precision (AP) provides a convenient way to assess the performance of object

detectors. On the other hand, knowing AP alone does not provide much of an insight

on what the algorithm is capable of and what it is not. With this motivation, Hoiem

et al. [70] developed certain tools for an in-depth analysis of object detectors. In this

section, we apply these tools to a baseline and a context model and provide a detailed

comparative analysis of their performances.

3.6.1 Analysis of False Positives

For the case of false positives, Hoiem et al. [70] define three types of errors: "lo-

calization", "confusion with similar object", "confusion with dissimilar object" and

"confusion with background".

Localization error is the case of having a detection with true class but not having suf-

ficient overlap with the ground truth box. IoU of ground truth and detection boxes is

between 0.1 and 0.5. PASCAL VOC classes are grouped into super-classes as vehi-

cles, animals and furniture. Classes belonging to the same super-class are considered

similar classes. In addition to the super-classes mentioned above, aeroplane and bird
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Figure 3.16: Input Image (left), three most activated object features in RGB (middle),

three most activated context features in RGB (right).
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are also considered similar. False positives that confuse similar classes are defined to

be confusion with similar object and vice versa. False positives that do not fit any of

the cases described above are called confusion with background.

Distribution of positives for different classes obtained with models B1 and C1 are

given on Figures 3.17 and 3.18. Horizontal axes of these plots are normalized by

the number of instances of the respective class in the test set. On top of the dis-

tributions, two different recall curves corresponding to two true positive criteria are

plotted. Strong criterion for true positive is the official PASCAL VOC criterion that

accepts a detection having IoU higher than 0.5 with a ground truth box as true posi-

tive. For weak criterion, the threshold is 0.1. On Figures 3.17 and 3.18; it is observed

that in all classes C1 makes significantly less localization errors than B1. Also in

background errors, there is improvement in most classes. On the other hand, confu-

sion with similar object is slightly increased for certain classes such as person, train

and boat. Confusion with other objects is increased for most classes as well. While

this increase in confusion type of errors is in general not desired, it should be noted

that the increase is mostly in the right portions of the plots where the number of detec-

tions made is higher than the number of instances. Therefore, their negative effect on

the AP is limited. Based on these results it can be argued that while usage of context

information improves localization, sometimes context might also act as a source of

confusion.

3.6.2 Sensitivity to Object Characteristics

In this part, we investigate the sensitivity of object detectors to certain visual object

characteristics. The characteristics are occlusion, truncation, size, aspect ratio, visible

sides and visible parts of the object.

Sensitivity and Impact plots for the models B1 and C1 are given in Fig. 3.19. Here,

the dashed lines indicate the Average Normalized Precision over all of the test set.

Average Normalized Precision is a metric proposed by Hoiem et al. [70]. This metric

helps to avoid the imbalance caused by the variation in number of samples over dif-

ferent categories. Class-level effects of factors such as occlusion, bounding box area

and visible parts are plotted on Figures 3.25, 3.24, 3.23, 3.22, 3.21 and 3.20.
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Figure 3.17: Distribution of Positives vs Number of Detections and Recall Curves

(Red Lines) for Models B1 and C1. Cor: True positives, Loc: Localization errors,

Sim: Confusion with similar, Oth: Confusion with other, BG: Confusion with back-

ground.
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Figure 3.18: Distribution of Positives vs Number of Detections and Recall Curves

(Red Lines) for Models B1 and C1.

55



Figure 3.19: Sensitivity (difference between max and min) and Impact (difference

between max and overall).

From Figure 3.19, it is observed that there are no drastic differences in the sensitiv-

ity and impact between the two models. Moreover, the detailed results in Figures

3.25, 3.24, 3.23, 3.22, 3.21 and 3.20 suggest that the general trends are similar for the

baseline and context models. These trends are informative not just about the detec-

tors but also about the properties of the dataset. For both models, occlusion leads to

significant drops in performance for classes such as airplane, bird, boat and chair as

observed from Figure 3.20. While occlusion is generally considered as a negative fac-

tor, it is worth noting that occlusion consistantly increases the detection performance

for the table class. This tendency is reasonable since tables are usually occluded in

the dataset with instances from related object classes such as bottles and humans.

According to Fig.s 3.21, 3.23, as bounding box area and height get larger, detection

performance generally increases. Comparing the results for C1 and B1, it can be con-

cluded that usage of context information leads to an improvement without changing

the general behavior of the algorithm dramatically.

Figure 3.20: Average Precision vs. Level of Occlusion (N: None, L: Low, M:

Medium, H: High)

56



Figure 3.21: Average Precision vs. Bounding Box Area

Figure 3.22: Average Precision vs. Aspect Ratio

Figure 3.23: Average Precision vs. Height

Figure 3.24: Average Precision vs. Parts Visible

Figure 3.25: Average Precision vs. Sides Visible
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CHAPTER 4

VISUAL OBJECT TRACKING LITERATURE

In the most general sense, tracking can be defined as the estimation of the state of

a moving object [71]. In visual object tracking, state can be defined as location,

deformation, orientation or combinations of these. Estimation of the state can be

based on observations related to the object as well as a motion model. Observations,

which are sometimes called measurements, can take various forms including radar

signals, sonar signals, LIDAR images and videos taken by cameras. Since the early

works related with the tracking problem concentrated on military applications, the

term "target", instead of "object", was used more often. When the observations are in

the form of regular videos, the phrase "visual object tracking" is commonly used in

vision literature.

According to the number of objects to be tracked simultaneously, visual object track-

ing can be divided into single and multiple (visual) object tracking. This thesis fo-

cuses on single object tracking. In single object tracking, one is mostly interested in

what is referred to as visual tracking of generic objects.

4.1 Visual Tracking of a Generic Object

Generic visual object tracking is one of the most commonly studied problems in com-

puter vision. The word generic is used to express the fact that there is minimum con-

straint on the properties of the tracked object. Object can be an animal, a piece of

garbage or even a part of another object (human face). The underlying notion is when

designing the generic object tracker, one is not able to make any assumptions regard-
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Figure 4.1: Recent Trends in Visual Object Tracking.

ing the shape, appearance or motion of the object. Although, there are many other

hand-crafted appearence models in the past, most of the state-of-the-art trackers use

deep hierarchical representations (mostly obtained through CNNs) for modeling the

visual appearance of objects [72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86].

Object tracking has been studied for long decades and a vast literature has been de-

veloped on this topic. In this thesis, we shall narrow down our focus to the most

recent developments rather than aiming to draw a complete picture. Specifically, we

shall study recent approaches that can be summarized with key concepts illustrated

on Figure 4.1.

A respectable number of the many state-of-the-art tracking methods use Discrimina-

tive Correlation Filters (DCF) [72, 79, 80, 82, 84, 87, 88, 89]. In DCF-based trackers,

in order to obtain an estimate for the location of the object, 2-D spatial correlation be-

tween the correlation filter and visual features at each frame is computed in a search

window defined around the last location of the object. The filter aims to model the

appearance of the object and it undergoes online updates to account for the changes

in the appearance of the object. The method MOSSE [90] can be assumed as the pi-

oneer of this group of methods (The term MOSSE is an abbreviation for minimizing

the sum of squared error). The error is defined as the difference between the response

of a learned correlation filter to input features and desired response. A generic corre-

lation filter based tracking framework is illustrated on Figure 4.2.

As a completely different approach, there are methods that formulate tracking as the

problem of obtaining the optimal window out of a set of candidate windows gen-

erated at each frame through binary classification (i.e. two class: target vs. back-
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Figure 4.2: A generalized view of correlation filter based tracking. Image taken from:

[20]

ground window) [73, 74, 75, 76, 91]. Candidate windows are usually generated from

a random distribution centered around the current target window. Target-background

classifier can be trained in a supervised manner using the bounding box annotation

available in the first frame. Classifier requires to be updated by the information from

the incoming frames to handle the changes in target appearance. Tracking based on

target-background classification is depicted on Figure 4.3.

It should be noted that both classification-based and correlation filter methods are

discriminative: In other words, they aim learning to discriminate between the target

and background appearances. Such an approach corresponds to directly estimating

a conditional probability of having the target given an observation without attempt-

ing to solve the more general problem of estimating the joint probability distribution

of having the target and the observation. Accordingly, most of the state-of-the-art

trackers adopt a discriminative approach (see Table 5.1).

In order to better match an object in consecutive frames after representing in a dif-

ferent feature space, siamese neural networks are also commonly used in tracking

[92, 21, 85, 93, 86, 94]. Siamese networks consist of identical feature extraction

stages applied on target, candidate or search patches (patches that are likely to con-

tain target). The general approach is depicted on Figure 4.4. The aim is to learn a

similarity metric or a matching function that quantifies how similar a candidate re-
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Figure 4.3: Tracking by Target-Background Classification.

Figure 4.4: Siamese Networks in Object Tracking
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Figure 4.5: Fully-convolutional Siamese architecture proposed in [21]. Feature maps

extracted from target (z) and search patch (x) are cross-correlated to obtain a similar-

ity score map.

gion to target is. Seminal work in this branch is SiamFc [21] depicted on Fig. 4.5. In

SiamFc, matching of consecutive frame features is performed through correlation.

Some of the recent methods incorporate reinforcement learning [83, 94, 95, 22, 96],

which formulates tracking as a problem of policy and decision-making which is a

radically different approach. Reinforcement learning is a machine learning paradigm

in which a model consists of an agent and an environment. Agent affects the envi-

ronment by performing an action. As a result of this action, environment undergoes

a change that can be sensed through observations. Also, a reward signal is provided

by the environment. Agent makes a decision to perform an action based on both the

observations and the reward signal. The aim of the agent is to maximize the total

reward gathered in the long term.

4.1.1 Visual Object Tracking using Recurrent Neural Networks

Recurrent neural networks have proven to be successful in numerous sequence mod-

elling tasks, such as language modelling [97], image captioning [98] and speech

recognition [99]. Object tracking can also be considered as a sequence modelling

task. On the other hand, RNN-based tracking models are still underperforming when

compared to state-of-the-art correlation filter and classification-based methods men-

tioned above. RNNs in general maintain an internal state which can encode object
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Figure 4.6: DRLT combines Deep Neural Networks with Reinforcement Learning.

[22].

motion as well as changes in object appearance. Therefore, an RNN-based tracker

network does not need to undergo online parameter updates to handle changes in

object appearance. It should be noted that RNNs can be incorporated in a tracking

scheme in several different ways. Therefore one should avoid describing a general

framework for tracking with RNNs, unlike the case with correlation filters. In this

section, we shall review some of the forthcoming RNN-based tracking methods.

Deep Reinforcement Learning Tracker (DRLT) [22], employs RNN as a memory

component between a feature extractor and a reinforcement learning (RL) unit. Mem-

ory component takes the feature representation as input and maintains a memory state.

RL unit decides the target location based on the memory state provided by the mem-

ory component. DRLT is depicted on Fig. 4.6.

In Recurrent Attentive Tracking Model (RATM) [23], RNN serves as an attention

mechanism that indicates the system the position to examine in the image. The net-

work architecture of RATM is depicted on Fig. 4.7. In Hierarchical Attentive Recur-

rent Tracking (HART) [24], convolutional appearance features of the object are fed

into an LSTM. The output of the LSTM is then fed to a multi-layer perceptron (MLP)

which generates attention feedbacks and bounding-box correction. Recurrent Filter

Learning (RFL) method proposed by Yang & Chan [25] uses a Convolutional LSTM

in conjunction with correlation to locate the target. RFL can be seen as an end-to-end

learning based extension of the correlation filter paradigm which employs RNN as a
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Figure 4.7: Recurrent Attentive Tracking Model [23].

Figure 4.8: Hierarchical Attentive Recurrent Tracking (HART) [24].

trainable correlation filter. RFL is illustrated on Fig. 4.9.
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Figure 4.9: Recurrent Filter Learning (RFL) [25].
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CHAPTER 5

VISUAL OBJECT TRACKING USING RECURRENT NEURAL

NETWORKS

In this chapter, the context feature based object detection method developed in Chap-

ter 3 is combined with an RNN based tracking method, namely Real-Time Recurrent

Regression Networks (Re3) [41], to improve tracking performance. In Section 5.1,

Re3 algorithm is explained in detail. In Section 5.2, a tracking framework that com-

bines Re3 and object detection with convolutional context features is presented. In

Section 5.3, the experiments conducted with Re3 are presented. Finally, in Section

5.4, experiments with detection-aided tracking are presented.

5.1 Real-Time Recurrent Regression Networks (Re3)

Re3 is a method that combines CNN and RNN to track generic objects in real-time.

Figure 5.1 illustrates the method for generic object tracking using CNN-based ap-

pearance features and RNNs. In this method, at each time step t, the estimated ob-

ject bounding box is expanded by a certain ratio (by default, doubled). The larger

box obtained in this manner is used to crop from both t and t + 1 frames. Iden-

tical CNN stages are applied to obtain CNN features from both crops. For clarity,

certain parts of this system is denoted as Block A, B and C; the experiments are de-

scribed by refering to these building blocks. In this convention, feature extractor step

is denoted as Block A. The convolutional feature maps are concatenated and fed to a

fully-connected layer (Block B) followed by the RNN stages (Block C). The output

of the RNN stages which is equal to the hidden state is fed to a fully-connected layer
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Figure 5.1: Re3 Network Structure.

with 4 outputs to generate a new estimate for the position in the form of a bounding

box. The whole system is trained end-to-end. L1-loss for bounding box regression

and L2 weight regularization is applied during training.

Bounding box regression loss is expressed as;

Lbox =
1

ebs

∑
f∈(frames)

∑
c∈(x1,y1,x2,y2)

|cfgt − c
f
pred| (5.1)

where, ebs is the effective batch size (number of predictions) which can be computed

as batch size times (number of unrolls + 1).

Regularization term is expressed as;

Lreg = λreg
∑

w∈net params
w2 (5.2)

where, netparams is the set of trainable parameters in the network.

Total Loss is defined in Eqn. 5.3.

Ltotal = Lbox + Lreg (5.3)

In the original work [41], Long Short-Term Memory (LSTM) [100] is used in the

RNN part. In the thesis, the results with LSTM, as well as its popular variant Gated
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Figure 5.2: Long Short-Term Memory.

Recurrent Unit (GRU) [101] and Convolutional LSTM are presented. A brief overview

of these different types of RNNs are presented next.

LSTM architecture is depicted on Fig. 5.2. LSTM cell has two types of states called

hidden and cell states. Inside an LSTM cell, nonlinearities play an important role

in bringing numbers to a desired range so that the resulting system is numerically

stable. Sigmoid (σ) and tanh function have ranges [0,1] and [-1,1], respectively. At

each time step, sequential input is concatenated with the hidden state and the resulting

combined information is processed by three gates consisting of linear weight layers

and nonlinearities. For each element in the cell state vector, forget gate generates a

value between 0 and 1 that expresses the importance of the corresponding cell state

element. Some of the information accumulated in the cell state is forgotten in this

manner and the decision to forget is performed based on the values of both the current

input and the current hidden state. The next gate is denoted as the input gate and it

generates values between 0 and 1 to decide how much of the incoming information

will be stored in the cell state. The final gate is defined as the output gate and it is

responsible for generating the next hidden state.

A well-known variant of LSTM is the one with peephole connections [102]. In this
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Figure 5.3: Gated Recurrent Unit.

version; forget, input and output gates are fed not just the hidden state and the input

but also the cell state is fed. Re3 algorithm uses this version of the LSTM.

Gated Recurrent Unit depicted on Figure 5.3 has a single state vector as the hidden

state. There is a reset gate and an update gate. Reset gate decides on how much of

the information stored currently in the state will be preserved whereas, update gate

decides on how much of the incoming information will contribute to the state in the

next timestep.

Considering training of the recurrent networks, it should be noted that feed-forward

neural networks (including CNNs) are usually trained by applying the backpropaga-

tion algorithm [103]. Backpropagation is a systematic application of the chain rule

that computes the gradient of the cost function with respect to every trainable param-

eter in the network in a computationally efficient manner. Computational efficiency

is achieved by propagating an error term among consecutive network layers rather

than computing everything from scratch at each layer. Backpropagation Through

Time (BPTT) [104], extends backpropagation to dynamic structures such as RNNs.

In BPTT, a RNN is unfolded along time axis as depicted on Figure 5.4 so that it is

reformulated as a feed-forward network. In this new formulation, identical copies
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Figure 5.4: Unrolling of an RNN cell [26].

of the same cell are present for each timestep and the state is passed between them

through feed-forward connections in time. The sum of all time step costs is taken to

obtain a total cost and the gradient of this total cost is used to update the parame-

ters. Since the parameters are shared in each consecutive copy, gradients computed

for different timesteps are taken average to update parameters. It is possible to per-

form unfolding along the whole sequence, although it is often considered impractical

during training. Therefore, truncated BPTT is frequently preferred. In this method,

BPTT is performed in limited number of unrolls.

Training is performed by applying ADAM optimization [105]. ADAM is a gradi-

ent descent type of optimization algorithm. Gradient descent computes the gradient

of the loss function with respect to parameters of a system using the whole train-

ing set. Stochastic Gradient Descent (SGD), estimates the gradient using randomly

constructed mini-batches. SGD directly uses gradients estimated from mini-batches

to update parameters. Unlike SGD, ADAM optimizer uses first and second moment

estimates of the gradients that are obtained through exponential moving averages to

update parameters [105].

5.2 Combining Tracking and Detection

In this section, we combine the context-based detection algorithm proposed in Chap-

ter 3 with theRe3 model and build a detection-aided tracking model which is depicted

on Figure 5.5.

In this framework, tracking starts by feeding the initial frame and the corresponding

ground truth bounding box to the tracker network. At every 5 frames, Check Failure
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Figure 5.5: Detection-aided tracking model.

block checks whether the tracker fails to track the object.

Failure check is performed as follows: Tracker output is fed to the detection network

as a proposal. Classifier output of the detection network is used to decide whether

the tracking has failed or succeeded. If the class confidence of the true class of the

object is below a certain threshold, namely failure threshold, it is regarded a failure. It

should be noted that this is an estimated failure, not necessarily an actual failure. The

failure threshold is a hyperparameter that determines the amount of the classification

result to be relied upon. Check Failure blocks constructed from context detector (C1)

and baseline detector (B1) are depicted on Figure 5.6.

Whenever the check failure block estimates that the tracking has failed, single im-

age detection is performed by directly applying the detection algorithm (B1 or C1).

Detection results are confidence thresholded so that the detections that surpass the

user-defined confidence threshold are defined as confident detections. Detector con-

fidence threshold is a hyperparameter that reflects the amount the detector is relied

upon. If there are no confident detections, tracking continues in the usual manner.

Otherwise, association between the detections and the track is performed by comput-
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Figure 5.6: Checking failure of a track with baseline detector (left) and context de-

tector (right).
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ing L2 distances between the most recent track box and the confident detection boxes.

Detection that is closest to the last track box is used to reinitialize tracking.

During reinitialization, RNN states are also reset. It is worth noting that failure check-

ing performs classification on a single bounding box which is computationally not

costly, whereas detection step proposes many regions and classifies and regresses all

of them which constitute a significant computational cost.

5.3 Re3 Experiments

In this section, we describe the experiments performed with Re3. In these experi-

ments, we investigate the effect of several design choices on the performance of a

Re3 model. In deep neural network models, theoretical justification is limited when

making design choices. Therefore, controlled experiments play an important role in

the design process. Section 5.3.1 describes the training data used in the experiments.

Section 5.3.2 describes the evaluation procedure. Section 5.3.3 describes the experi-

ments and their results.

5.3.1 Training Data

It is important to realize that since Re3 is a deep neural network model, the success of

the method depends heavily on the amount of training data. The training is performed

on the Imagenet VID [40] dataset. Imagenet VID contains 3,862 training videos with

a total of 1,122,397 frames and 7,911 unique object tracks featuring instances from 30

animal and vehicle categories. VID categories are; airplane, antelope, bear, bicycle,

bird, bus, car, cattle, dog, domestic cat, elephant, fox, giant panda, hamster, horse,

lion, lizard, monkey, motorcycle, rabbit, red panda, sheep, snake, squirrel, tiger, train,

turtle, watercraft, whale and zebra.
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5.3.2 Evaluation

We evaluate the performance of the algorithm on the VOT2016 dataset. VOT2016

consists of 60 sequences of daily objects. In VOT challenge [106], there are three

primary evaluation metrics: Accuracy, Robustness and Expected Average Overlap

(EAO). These metrics are computed in a supervised framework. In this framework,

when the tracker completely loses the target (zero overlap), it is called a failure and

the tracker is reinitialized with the ground truth five frames later. In order to eliminate

possible bias, ten frames after reinitialization are ignored when calculating accuracies.

Accuracy is quantified with the average overlap between ground truth and predictions

over all frames. Formally speaking, let the overlap ( φt ) of the ground truth region at

time t (RG
t ) and tracker output at time t (RT

t ) be expressed as follows:

φt =
RG
t ∩RT

t

RG
t ∪RT

t

(5.4)

Accuracy of the tracker is,

φ̄ =
∑

t

φt
N

(5.5)

Robustness indicates whether the tracker fails too many times or not. Robustness is

defined as,

RS = e−SM (5.6)

where M denotes the mean-time-between-failures and S is by default set to 30. Ac-

curacy and Robustness are usually reported together. It is commonly encountered that

one algorithm is better in terms of accuracy whereas the other algorithm is better in

terms of robustness when comparing the performance of two algorithms. Tracker per-

formance is high if both accuracy and robustness are high [107]. Number of failures

is also an indicator for robustness. Therefore, instead of computing robustness using

Eqn. 5.6, here we frequently report number of failures.
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Expected Average Overlap (EAO) metric was introduced in VOT 2015 [108]. EAO

aims to unify both the accuracy and robustness performances of a tracker in a sin-

gle value. For a sequence having length Ns, average overlap φ(Ns) is computed by

averaging the prediction and ground truth overlaps at each frame. φ̂(Ns), which is

the expected average overlap for a sequence length Ns, is estimated by evaluating the

average overlap for a large number of sequences having the same length. An expected

average overlap curve is obtained by evaluating expected average overlap at different

sequence lengths. Average of this curve over an interval of typical lengths is reported

as the EAO value. Formally speaking, let φi be the per-frame overlap at the i’th frame

of an Ns frames long sequence, expected average overlap curve is defined as;

φ̂(Ns) = E[φ(Ns)] = E[
1

Ns

Ns∑
i=1

φi] (5.7)

EAO is computed from this curve as follows:

EAO =
1

Nhigh −Nlow

Nhigh∑
Ns=Nlow

φ̂(Ns) (5.8)

Nhigh andNlow are higher and lower limits for typical video sequences. EAO of state-

of-the-art trackers on VOT 2016 are presented on Table 5.1. Trackers are grouped

into types as Target-Background Classifier (TB), Correlation Filter (CF) and other

approaches.

In addition to accuracy and robustness, speed of a tracker is also important. Speed

is difficult to measure since it depends on several factors including hardware, pro-

gramming language whatsoever. Even execution of the same algorithm twice on the

same hardware should not yield the exactly the same execution time due to numerous

physical factors. Execution time is measured in terms of frames-per-second (FPS).

5.3.3 Experiments

In order to observe the effects of several design choices on the operation of the system,

we train models under different configurations.
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Table 5.1: Expected Average Overlap (EAO) of state-of-the-art trackers on VOT
2016.

Tracker Type EAO
CFCF [84] CF 0.390
ECO [72] CF 0.374
C-COT [88] CF 0.331
TCNN [76] TB 0.325
SSAT (a version of MDNet [73]) TB 0.321
MLDF [109] TB 0.311
Staple [89] CF 0.295
DDC [109] CF 0.293
EBT [91] TB 0.291
SRBT [109] Other 0.290

In all experiments, ADAM optimization [105] is applied with a learning rate of 10−5

in the first 10k iterations and 10−6 in the rest of the training. λreg of weight regular-

ization term in Eqn. 5.2 is set 0.0005.

In the original work [41], test time RNN reset length is determined according to train-

ing unrolls. For example, a model trained with a maximum unroll of 32, RNN states

are reset every 32 frames. It is assumed that RNN might not be able to generalize to

unobserved sequence lengths. We follow the same strategy in Experiments 1-7, so

that every test in these experiments are performed by resetting RNN states at every

N frames, N being the maximum number of unrolls made when training the model

at stake. In Experiment 8, we test the same model with different state reset periods.

Default feature extraction backbone network is the well-known CaffeNet variant of

Alexnet [57] and it is initialized with Imagenet pretrained weights. Backbone net-

work is depicted on Figure 5.7. The network involves convolutional stages each fol-

lowed by a ReLU nonlinearity. Local Response Normalization (LRN) is applied after

the first two convolution layers. LRN normalizes the feature maps across different

channels that is observed to be helpful for generalization [57]. During experiments,

except Experiment 2, default feature extraction network is employed. In Experiment

2, different feature extractors are compared.
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Figure 5.7: Caffenet feature extraction backbone.

Table 5.2: Training schedule with varying number of unrolls

iters 0-20k 20k-40k 40k-60k 60k-80k 80k-100k

Unrolls 2 4 8 16 32
Batch Size 32 16 8 4 2

5.3.3.1 Experiment 1: Effect of Unrolls During Training

In order to observe the effect of number of unrolls applied during training to model

performance, we train a series of models applying different unroll strategies. For a

fair comparison, model architecture in these experiments is kept the same. Block A is

the Caffenet backbone which is depicted on Figure 5.7. Block B is a fully-connected

layer with 1024 units. Block C is a single LSTM stage with state sizes being 512. We

train 3 models for 100k iterations.

Model V5 is trained with the regularly increasing number of unrolls strategy proposed

in [41]. In this strategy, training begins with 2 unrolls and a mini-batch size of 32.

at each 20K iterations, the number of unrolls is doubled while dividing batch size

by 2 so that the effective batch size remains the same (64) throughout the whole

training. By keeping the effective batch size the same, it is ensured that same amount

of computation capacity is used as the other 2 models for a fair comparison. Unroll

and batch size schedule of Model V5 is summarized on Table 5.2. Model C16 is

trained with constant 16 unrolls and a batch size of 4. Model C32 is trained with

constant 32 unrolls and a batch size of 2. Model C2 is trained with constant 2 unrolls

and a batch size of 32.

The loss curve behaves significantly different than the case of having a constant num-

ber of unrolls when training with varying number of unrolls. The bounding box re-

gression losses and unrolls vs. iteration for models V5 and C16 are depicted on

Figure 5.8. Loss makes a sudden jump and it can never reach back to the lower val-

ues achieved with less number of unrolls whenever the number of unrolls is doubled.
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Figure 5.8: Loss Curves (top) and Number of Unrolls (bottom) vs. Iteration plots for

models C16 (left) and V5 (right). 10k iterations between vertical lines.

Table 5.3: Results for Experiment 1: Effect of Unrolls During Training

Model Name Unrolls Accuracy Failures EAO Speed (FPS)
V5 2-4-8-16-32 0.51 24 0.18 38.92
C2 Constant 2 0.36 31 0.14 32.80
C16 Constant 16 0.51 24 0.18 38.42
C32 Constant 32 0.54 25 0.16 39.11

This behavior might be reasonable in the sense that with a new unroll number, we are

actually forcing the network to learn a new and more complicated task: Instead of

tracking an object for N frames, it is now required to track it for 2N frames. Num-

ber of frames might not seem to make an important difference when thinking about

human visual perception. Nevertheless experimental results reveal that it makes an

important difference when training RNNs.

Results for models V5, C2, C16 and C32 are presented on Table 5.3. According to

these results, accuracy-robustness performance of V5 and C16 are measured to be

equivalent. On the other hand, C32 which was trained with 32 unrolls has better

accuracy but is slightly less robust than the other two models. In EAO metric, V5

and C16 are better than the other models. These results suggests that there is not a

significant difference between training with varying unrolls versus with a constant

unroll length that is properly selected. On the other hand, if constant unroll length

is selected to be too small or too high, as in the cases of model C2 and model C32,

performance gets significantly worse. System performance is quite sensitive to this
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hyperparameter. Therefore, in order to eliminate the need to determine the optimal

constant length, training with varying unrolls is a reasonable option.

5.3.3.2 Experiment 2: Effect of Number of Feature Extraction Stages

As a consequence of the hierarchical nature of CNNs, consecutive feature layers in

a CNN correspond to various levels of abstraction. While the first layer represents

low level visual properties such as corners and edges, the last feature layer carries

semantic information and there is a gradual transition in between. In certain computer

vision tasks, such as image recognition and semantic segmentation, quite deep CNN

architectures have proved to be successful. On the other hand, most of the successful

CNN-based tracking methods are based on shallow CNNs [73, 74, 75, 76, 77] which

suggests that quite deep representations might not be desirable when tracking objects.

Execution time consideration might also play a crucial role in making this decision.

With this motivation, controlled experiments with varying number of feature layers

are performed to investigate the effect of feature extraction depth. Specifically, we

train three models called F1, F3 and F5 which are having 1, 3 and 5 conv layers,

respectively, as indicated on Table 5.4. In Model F5, Block A is the default feature

extractor which is depicted on Fig. 5.7. Block A’s of F1 and F3 are depicted on Fig.

5.9.

All three models are trained for 80k iterations with a constant unroll length of 16 and

a batch size of 4. Block B is a fully-connected layer of size 1024 and Block C is a

single layer LSTM stage with 512 element state vectors.

Quantitative Results for models F1, F3 and F5 are presented on Table 5.4. According

to these results, model F5 is the best model in terms of accuracy and robustness. On

the other hand, F1 is the best model in terms of speed. This results suggest that as

the number of feature layers increase, both accuracy and robustness of the model

increases significantly. Since number of layers is directly related with computational

complexity, speed of the tracker decreases as the number of layers increase.
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Figure 5.9: 1-layer and 3-layer feature extractors of Models F1 and F3 in Experiment

2.

Table 5.4: Results for Experiment 2: Effect of Number of Feature Extraction Stages

Model Name Num Convs Accuracy Failures EAO Speed (FPS)
F1 1 0.35 59 0.09 44.44
F3 3 0.49 45 0.14 40.24
F5 5 0.52 25 0.16 38.73

5.3.3.3 Experiment 3: Effect of the size of the two-frame representation

InRe3, CNN features are passed into a fully connected layer denoted Block B on Fig-

ure 5.1. Block B produces a two-frame representation that aims to represent the essen-

tial information within two consecutive image crops useful for matching them. There

is no cookbook for deciding the size of this representation and all we can achieve is

to perform controlled experiments for determining a decent size. Therefore, models

with different two-frame representation sizes are trained and compared in terms of

their performance. All models are trained for 60k iterations.

Model feature sizes and quantitative results for models R1, R2 and R3 are presented

on Table 5.5. Based on these results, it can be concluded that size of Block B is not

that critical for the performance of the algorithm. While the model that has the least

number of neurons is the one that is most accurate, EAO turn out to be equal for all

three models. Speed advantage of R1 makes it more favorable.
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Table 5.5: Results for Experiment 3: Effect of Feature Vector Size

Model Feat. Neurons Accuracy Failures EAO FPS
R1 256 0.53 32 0.16 40.08
R2 1024 0.52 29 0.16 38.44
R3 2048 0.51 34 0.16 36.25

Figure 5.10: Block C of Models S1 (left), SC2 (middle) and S2 (right).

5.3.3.4 Experiment 4: RNN stages

While a single stage RNN seems to be sufficient for modeling a sequence, multi stage

RNNs are also frequently used. In order to investigate the effect of this difference, we

train three models having single stage and two stage Re3 models. Block C of Model

S1 is a single stage LSTM. Block C of Model SC2 is a two stage LSTM. Block C of

Model S2 also is a two stage LSTM but this time, only the output vector of the first

LSTM stage is fed to the second stage. By comparing SC2 and S2, one might decide

whether it is necessary to feed fully connected features to the second stage. Block Cs

of models in this experiment are depicted on Figure 5.10.

Quantitative Results for models S1, SC2 and S2 are presented on Table 5.6. Ac-

cording to these, best configuration for the RNN stages is two stage with the short

connection that feeds fully-connected features to the second LSTM stage. Most ac-

curate model is the one with 2 stage LSTM and no short connection. This is also the

least robust model.

5.3.3.5 Experiment 5: Evolution of Performance During Training

Training neural networks take quite long time, especially for vision tasks; hence,

efficient usage of time is an important concern in vision research. Moreover, in order

to gain insight into the learning process, it is important to measure the performance

of the network at different iterations. We evaluate the performance of two different

models at each 20k iterations. Training CU is performed with a constant unroll of
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Table 5.6: Results for Experiment 4: RNN stages

Model Name RNN Stages Accuracy Failures EAO FPS
S1 1-stage 0.51 24 0.18 38.92
SC2 2-stage with concat 0.50 23 0.19 39.15
S2 2-stage no concat 0.52 33 0.18 37.27

Table 5.7: Results for Experiment 5, Model VU

Model Name Unrolls Accuracy Failures EAO Speed (FPS)
VU20 2 0.44 50 0.12 33.65
VU40 2-4 0.48 32 0.16 36.76
VU60 2-4-8 0.51 36 0.17 35
VU80 2-4-8-16 0.53 31 0.18 37.24
VU100 2-4-8-16-32 0.51 24 0.18 38.92

16 and a batch size of 4 for 100k iterations. CU20, CU40, CU60, CU80, CU100 are

snapshots taken at iterations 20k, 40k, 60k, 80k, 100k, respectively. Training VU is

performed with the regularly increasing number of unrolls strategy which is given on

Table 5.2. VU20, VU40, VU60, VU80, VU100 are snapshots taken at iterations 20k,

40k, 60k, 80k, 100k, respectively.

Quantitative Results for models CU20-100 and VU20-100 are summarized on Tables

5.7, 5.8.

According to Table 5.7, Accuracy-Robustness performance of the algorithm rapidly

increases in the early iterations and reaches to a saturation in the last iterations.

VU100, which is the finetuned version of VU80 with 32 unrolls is more robust when

compared to VU80 but less accurate. According to EAO metric, performance of these

two are equivalent. Expected overlap curves of models VU20-100 are given on Figure

5.11. According to these curves, improvements are observed at almost all sequence

lengths as training continues.

According to Table 5.8, Accuracy-Robustness performance of the algorithm did not

undergo significant changes after 20k iterations. The best results are obtained at 100k

iterations. For both VU and CU, 100k iterations are observed to be sufficient for

convergence.
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Figure 5.11: Expected overlap curves for models VU20-80 (Best viewed in color).

Table 5.8: Results for Experiment 5, Model CU

Model Name Iterations Accuracy Failures EAO Speed (FPS)
CU20 20k 0.51 28 0.16 39.18
CU40 40k 0.52 25 0.17 38.84
CU60 60k 0.52 29 0.16 38.44
CU80 80k 0.52 25 0.16 38.73
CU100 100k 0.51 24 0.18 38.42

5.3.3.6 Experiment 6: Size of Training Data Set

Performance of neural networks is known to be largely dependent on the amount

of training data. As a fully supervised algorithm, Re3 requires training data with

bounding box annotations. Bounding box annotations are produced by human experts

and it is expensive. Therefore, it is important to know how much the accuracy of Re3

will be affected when the amount of training data is reduced. With this motivation,

we train three models with varying amounts of training data. Each model is trained

for 60k iterations with a constant batch size of 4 and number of unrolls equal to 16.

Model DT3 is trained with the entire VID training set containing 3862 videos. Model

DT1 and Model DT2 are trained with 400 and 2000 videos which are randomly picked

from the complete training set. Training data for these models are described on Table
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Table 5.9: Experiment 6: Training Sets

Model Name Num Videos Num Tracks Num Frames Num Classes
DT3 3,862 7,911 1,122,397 30
DT2 2,000 4,269 946,569 30
DT1 400 787 171,149 30

Table 5.10: Results for Experiment 6: Amount of Training Data

Model Name Num Videos Accuracy Failures EAO Speed (FPS)
DT3 3862 0.52 29 0.16 38.44
DT2 2000 0.52 32 0.15 39.01
DT1 400 0.05 367 0.01 41.65

5.9.

Results for models DT3, DT2 and DT1 are presented on Table 5.10. From Table

5.10 it is observed that performance is improved when the training data is bigger.

However, the relationship is not linear. Surprisingly, from 787 tracks model learns

almost nothing.

5.3.3.7 Experiment 7: Different RNN types

In this experiment, we compare the performance of Re3 using different RNN types.

Specifically, we train three models with single stage LSTM, GRU and Convolutional

LSTM cells. Only Block C is different for these three models. Each model con-

tains 2-stage RNNs with short connection as depicted on Fig. 5.10. Block A is the

default Caffenet feature extraction backbone depicted on Fig. 5.7. Block B is a fully-

connected layer with 1024 units. Models are trained by applying the training strategy

in Table 5.2 up to 80k iterations. Quantitative Results for models G, CL and L are

presented on Table 5.11.

According to results in Table 5.11, LSTM performs better than GRU and Convolu-

tional LSTM in terms of accuracy and EAO. On the other hand, GRU and Convolu-

tional LSTM make less failures which is rather interesting. Fastest model is the one

with GRU. Convolutional LSTM is significantly slower than the other two models.

On the other hand, Convolutional LSTM has the advantage of using small disk space.
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Table 5.11: Results for Experiment 7: Different RNN types

Model RNN Type Accuracy Fails EAO FPS Model Size
G GRU 0.38 27 0.15 39.70 267.7 MB
CL Conv LSTM 0.46 27 0.16 26.19 241.0 MB
L LSTM 0.53 31 0.18 37.24 286.6 MB

Table 5.12: Results for Experiment 8: RNN State Reset

Reset Length Accuracy Failures EAO Speed (FPS)
2 0.53 26 0.17 33.59
4 0.50 25 0.17 37.09
8 0.53 29 0.17 38.26
16 0.51 24 0.18 38.42
32 0.52 28 0.17 39.65
64 0.52 112 0.10 40.34

To sum up, each RNN type has its own advantage.

5.3.3.8 Experiment 8: RNN State Reset

In [41], when testing a model trained with a maximum unroll of 32, RNN states

are reset every 32 frames. By doing so, possible negative effect of truncation in

backpropagation is aimed to be eliminated. In this experiment, we test the same model

with different LSTM reset lengths. Our aim is to understand the relationship between

reset length and system performance. Model CU100 is trained with a constant unroll

of 16 and it is tested with various reset lengths. Results are presented on Table 5.12.

From Table 5.12, it is observed that AR performance of the algorithm is optimal when

the LSTM reset length is selected to be equal to the number of unrolls applied during

training. On the other hand, accuracy is similar for different reset lengths, number

of failures significantly increases, when the difference between number of training

unrolls and reset length gets larger. A reset length of 32, which is twice the number

of unrolls applied during training, does not make a significant difference when com-

pared to 16. On the other hand, when the reset length is 64, the system makes many

failures; hence, the performance gets much worse. Based on this observation, it can

be concluded that LSTM is able to generalize what it has learned in a limited number
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of unrolls (16) to higher number of unrolls (32) up to some degree. LSTM might not

be able to generalize to higher reset lengths (64).

Furthermore, it is observed that state resets have a significant effect on the speed of

the algorithm. Speed of the algorithm consistently increases when the reset length is

increased, which is quite reasonable.

5.4 Experiments with Detection-aided Tracking

For both detection and failure check, Model C1 presented in Chapter 3 is employed.

For tracking, Model CU100 which was presented on Section 5.3.3 is employed. We

compare the performances of two detection-aided tracking models constructed with

detectors B1 and C1 and tracker (CU100) as depicted in Figure 5.5 with a tracker-

only baseline model (CU100). It should be noted that while the tracker-only model

is a generic tracker, detection-aided model is restricted with classes known by the

detector. Therefore, comparison is performed on videos that involve object categories

learned by the detector. Furthermore, it should be emphasized that detection-aided

model exploits an extra information, namely the category of the object, which is not

used in the tracker-only approach.

In detection-aided trackers (B1+Re3 and C1+Re3), failure check is performed in 5

frame periods. Failure threshold is set to 3e-4, that is, whenever the true class score

is below 3e-4, detection is performed. Confidence threshold is set as 0.2 in detection

step.

One aim of the experimental evaluation is to investigate whether tracking performance

can be improved by incorporating a detection step. Another aim is to compare the

context detector and baseline detector in this task as well. Evaluation is performed

over 24 VOT 2016 sequences that involve objects from 4 object categories learned

by the detector: Person, Car, Cat and Bird. Evaluation is solely based on accuracy in

an unsupervised setting which means failed tracks are not reinitialized. Although this

setting is not the official evaluation methodology of the VOT benchmark, it is found to

be sufficient for demonstrating that improved results are obtained. At each frame, IoU

between the ground truth and the track is computed to obtain the accuracy. Accuracies
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Table 5.13: Results Obtained with Detection-aided Trackers and Baseline Tracker

Sequence Category (C1+Re3) (B1+Re3) Re3 Est. Fails (C1-B1)
graduate Person 0.541 0.592 0.591 21-10
gymnastics1 Person 0.200 0.180 0.118 7-1
gymnastics2 Person 0.610 0.571 0.571 4-1
gymnastics3 Person 0.108 0.197 0.342 9-4
gymnastics4 Person 0.555 0.555 0.555 0-0
girl Person 0.205 0.150 0.064 3-5
crossing Person 0.747 0.747 0.747 0-0
bolt1 Person 0.135 0.135 0.135 1-1
bolt2 Person 0.552 0.457 0.468 1-1
basketball Person 0.123 0.062 0.441 8-2
soldier Person 0.164 0.137 0.128 21-19
iceskater1 Person 0.620 0.514 0.114 4-4
iceskater2 Person 0.467 0.183 0.420 3-4
pedestrian1 Person 0.590 0.576 0.437 1-1
singer2 Person 0.649 0.517 0.390 1-1
wiper Car 0.103 0.235 0.105 29-4
tunnel Car 0.727 0.760 0.727 40-24
car1 Car 0.148 0.221 0.092 26-17
car2 Car 0.090 0.06 0.171 29-6
racing Car 0.719 0.709 0.710 1-1
birds1 Bird 0.292 0.21 0.216 15-16
birds2 Bird 0.576 0.569 0.538 1-1
nature Bird 0.475 0.610 0.621 1-0
fernando Cat 0.444 0.460 0.460 3-1
All All 0.379 0.358 0.345 231-124

obtained with det+track and track-only scenarios on all sequences are given on Table

5.13. Moreover, number of failures estimated by the check failure blocks are given in

the last column.

From Table 5.13, it is observed that detection-aided tracking method has outper-

formed the tracker-only baseline with both the context detector (C1) and the baseline

detector (B1). Best results are obtained with the context detector. Also, from Table

5.13 it is evident that failure check with C1 estimates almost twice as many failures

as B1.

In order to be able to diagnose the weaknesses of our algorithm, it is wise to focus on
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the videos on which it performed worse than the baseline model. Visual inspection

reveals that for the detection-aided tracker, the main source of failure are the misclas-

sifications obtained in the check failure block. Effects such as motion blurring and

occlusion cause disruptions in object appearance which makes it harder to be cor-

rectly classified and detected. Another source of failure are the same class objects in

the immediate vicinity of the object of interest.

89



90



CHAPTER 6

CONCLUSION

6.1 Summary

In this section, we shall summarize the performed work and findings in this the-

sis. We focused on two well-studied problems of machine vision, which are visual

object detection and tracking. On the detection side, we proposed an extension to

proposal-based object detection problem which uses local convolutional context fea-

tures to improve detection performance. On the tracking side, we focused on a recent

visual tracking algorithm [41] which combines convolutional and recurrent neural

networks. We conducted several experiments to gain insight on the operation of this

algorithm. Finally, we proposed a detection-aided tracking model that combines our

context based detector with the tracking algorithm. This detection-aided tracker per-

formed better when compared to a tracker-only baseline model.

6.2 Conclusion

Regarding the detection part, conclusions of this thesis can be stated as follows: Ex-

perimental results suggest that object detection performance can be improved using

local convolutional context features. A separate feature extractor for the context re-

gion around the region of interest is essential for this improvement. It is observed

that the number of context feature layers and offset ratio significantly affect the per-

formance of a context model. Analysis of false positives reveals that while usage of

context features mainly improves localization, it sometimes acts as a source of confu-
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sion between different object categories having similar context. Moreover, analysis of

sensitivity to object characteristics reveals that context extension yields better results

independent of several object characteristics.

On the tracking side, it should be first noted that the overall performance of RNN-

based visual trackers is inferior to mature tracking algorithms in the literature. How-

ever, RNN-based techniques are still under development with rapid evolution. Sev-

eral benchmark experiments are conducted to determine how much the accuracy-

robustness performance as well as speed and memory allocation of the Re3 algorithm

varies under different configurations. Based on these experiments, following con-

clusions are reached: Number of unrolls during training, number of feature stages,

amount of training data and RNN type being used are factors that have a significant

effect on the performance of the Re3 algorithm. On the other hand; factors such as

state reset period applied at test time, the way RNN stages are constructed from basic

RNN building blocks, size of the feature vector that summarizes the CNN features

have a less significant effect on the performance.

Finally, the proposed detection-aided tracking framework that combines context-based

detection model with the RNN-based tracker has a superior performance when com-

pared to both the context-free detection-aided model and the detector-free baseline

tracker model.

6.3 Future Work

In this thesis, it was shown that proposal-based detection can be improved by using lo-

cal convolutional context features. Here we defined the context region by introducing

a hyperparameter called offset ratio. The question arises, whether this hyperparam-

eter can be eliminated by e.g. forcing the system to learn to predict the appropriate

offset for different objects. Furthermore, the idea of using a seperate feature extrac-

tor for the context region can be taken one step further perhaps by using seperate

extractors for lower, upper, left and right context regions. Also, experiments with

other proposal-based detection methods and other detection benchmark datasets such

as MS COCO [110] would be informative.
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Tracking performance of the RNN-based baseline model was improved by adding

a detection supervision step. However, proposed tracking failure check method has

obvious weaknesses against motion blurring and occlusion. One might seek ways to

formulate a tracking failure detection method robust to these kind of challenges.
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