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ABSTRACT 

 

A MODULUS GRADIENT ELASTICITY MODEL                                        

FOR NANO-REINFORCED COMPOSITES  

 

Gülaşık, Hasan 

Ph.D., Department of Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Ercan Gürses 

 

September 2018, 145 pages 

 

In this work, nanocomposites and their numerical simulations are studied. At the 

beginning of the study, the properties of the polymer nanocomposites are explained 

based on a specific nano-inclusion and polymer matrix couple, namely, carbon 

nanotube (CNT) and thermoplastic polyetheretherketone (PEEK) polymer. In a 

literature comparison study, it is shown that the properties of the constituents, 

interface properties, manufacturing methods, characterization methods and 

therefore mechanical properties of the CNT/PEEK nanocomposites can vary 

significantly among different studies.  

Classical elasticity formulations may become inadequate for the modeling of the 

nanostructured materials. They do not contain any information about the size and 

applicable from nanometer to meter scale. Moreover, they do not properly describe 

stress/strain singularities and are questionable if wavelength of deformation is 

comparable to dominant micro-structural length scale. Therefore, some extensions 

of the classical elasticity formulations have been proposed in literature. Two of the 

widely-used extensions, the Eringen’s nonlocal elasticity and the Aifantis’s gradient 

elasticity formulations, are explained. It is seen that nonlocal/gradient formulations 

include higher order fields and boundary conditions which are not easy to 

understand intuitively. They also have complex formulations and are 
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computationally expensive. 

In this work, a new gradient elasticity formulation, the so-called E-grad model, is 

proposed to overcome some of the difficulties in the nonlocal and the gradient 

elasticity formulations. In the new formulation, similar to the differential relation 

between the local strain and the gradient enhanced strain in the classical models of 

gradient elasticity, a differential relation is proposed for the elastic constants of 

linear elasticity. Analytical and finite element solutions of the proposed formulation 

are derived for a one-dimensional inhomogeneous rod. The results of the proposed 

model are compared with a classical model of gradient elasticity for a one-

dimensional model problem. It is seen that the discontinuities in the modulus, 

displacement, strain and stress fields are removed by the proposed model. 

Furthermore, there are no additional higher-order fields and boundary conditions 

and the numerical formulations are simpler than the nonlocal/gradient elasticity 

models. 

Then, the E-grad model is extended to more general three-dimensional 

inhomogeneous materials with isotropic linear elastic constituents. The finite 

element formulation for axisymmetric problems is derived and a model problem of 

a soft cylindrical rod with a stiff spherical inclusion is solved. It is seen that 

discontinuities and/or sharp changes in the modulus, displacement, strain and stress 

fields that exist in local formulations are smoothed out with the proposed model. 

The proposed model is compared with a micromechanical model from literature and 

experiments conducted on polyimide/silica nanocomposites. The results obtained by 

the proposed approach agree well with the experimentally measured values of the 

nanocomposite modulus. The model is also extended to obtain anisotropic 

macroscopic response by choosing different length scale parameters in different 

directions.  

At the end, a CNT reinforced polymer nanocomposite problem from literature is 

reconsidered in which the nanocomposite is assumed to be composed of four distinct 

phases: CNT, interface, interphase and bulk polymer. Rather than being 

homogeneous, the interphase is considered to be graded by the E-grad model. By 
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using the E-grad model and the genetic algorithm optimization, homogenized elastic 

constants of the transversely isotropic effective fiber are calculated. It is seen that, 

although the effective fiber has higher modulus in the axial direction, it has lower 

modulus values in transverse and shear directions compared to the polymer matrix. 

Then, the effect of the orientation distribution of the effective fibers in a 

nanocomposite is taken into account by using an orientation distribution function. It 

is seen that, if effective fibers are aligned in a direction, the modulus of the 

composite increases in that direction as expected. However, it is also seen that, 

isotropic distribution of the effective fibers makes the composite to have lower 

modulus than the matrix due to low transverse and shear moduli of the effective 

fiber. 

 

 

Keywords: nanocomposite, carbon nanotube (CNT), PEEK polymer, nonlocal 

elasticity, gradient elasticity, size effect, inhomogeneous materials, finite element 

method (FEM)  



viii 

 

ÖZ 

 

NANO-GÜÇLENDİRİLMİŞ KOMPOZİTLER İÇİN                                     

BİR MODÜL GRADYANI ELASTİSİTE MODELİ  

 

Gülaşık, Hasan 

Doktora, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi:  Doç. Dr. Ercan Gürses 

 

Eylül 2018, 145 sayfa 

 

Bu çalışmada, nanokompozitler ve sayısal benzetimleri çalışılmıştır. Başlangıçta, 

nanokompozitlerin özellikleri belirli bir nano-katkı/polimer çifti, karbon nanotüp 

(KNT) ve termoplastik polietereterketon (PEEK) polimer, baz alınarak 

araştırılmıştır. Bir literatür karşılaştırma çalışmasında, KNT/PEEK 

nanokompozitlerin, bileşen özelliklerinin, arayüz özelliklerinin, üretim 

yöntemlerinin, karakterizasyon yöntemlerinin ve bunlardan dolayı mekanik 

özelliklerinin her bir çalışmada önemli ölçüde değiştiği gösterilmiştir. 

Klasik elastisite formülasyonu nano yapılı malzemelerin modellemesinde yetersiz 

kalabilmektedir. Klasik elastisite formülasyonları boyut konusunda herhangi bir 

bilgi içermezler ve nanometer boyutdan metre boyutuna kadar uygulanabilirler. 

Ayrıca, gerinim/gerilim tekilliğini gerektiğince tanımlayamazlar ve deformasyon ve 

mikro yapı boyutunun benzer olduğu durumlarda tartışmalıdırlar. Bundan dolayı, 

literatürde klasik elastisite formülasyonuna bazı açılımlar önerilmiştir. Çoklukla 

kullanılan bu açılımlardan ikisi, Eringen’in yerel olmayan elastisite ve Aifantis’in 

gradyan elastisite teorileri, açıklanmıştır. Yerel olmayan/gradyan elastisite 

modellerinin, anlamlandırılmaları kolay olmayan yüksek mertebeli alanlar ve sınır 

koşulları içerdiği görülmüştür. Ayrıca, karmaşık formülasyonları vardır ve sayısal 

hesaplamaları pahalıdır.  
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Bu çalışmada, yerel olmayan elastisite ve gradyan elastisite formülasyonlarında 

karşılaşılan güçlüklerin üstesinden gelmek için yeni bir gradyan formülasyonu, E-

grad modeli, önerilmiştir. Yeni formülasyonda, gradyan elastisite 

formülasyonundaki local gerinim ve gradyanla geliştirilmiş gerinim arasındakine 

benzer bir diferansiyel denklem, doğrusal elastisite malzeme parametreleri için 

önerilmiştir. Önerilen formülasyonun analitik ve sonlu eleman çözümleri, bir 

boyutlu homojen olmayan bir çubuk için verilmiştir. Önerilen formülasyon 

sonuçları ve gradyan elastisite formülasyon sonuçları, bir boyutlu örnek bir problem 

için karşılaştırılmıştır. Önerilen formülasyon ile modülüs, deplasman, gerinim ve 

gerilim alanlarındaki süreksizliklerin kaldırıldığı görülmüştür. Ek olarak, yüksek 

mertebeli alanlar ve sınır koşulları yoktur ve sayısal formülasyonları yerel 

olmayan/gradyan elastisite modellerinden daha basittir. 

Daha sonra, E-grad modeli izotropik lineer elastik bileşenlerden oluşan üç boyutlu 

genel bir malzemeye genişletilmiştir. Eksenel simetrik problemler için sonlu eleman 

formülasyonu verilmiştir ve sert küresel bir katkı içeren yumuşak silindirik çubuktan 

oluşan örnek bir problemin çözümü verilmiştir. Önerilen formülasyonu ile, yerel 

elastisite formülasyonunda görülen modülüs, deplasman, gerinim ve gerilim 

alanlarındaki keskin değişimlerin yumuşatıldığı görülmüştür. Önerilen model, 

literatürden mikromekanik bir model ve poliamid/silica nanocomposite malzeme 

test sonuçları ile karşılaştırılmıştır. Önerilen modelin nanokompozit malzeme test 

sonuçlarını yakaladığı görülmüştür. Model, farklı yönlerde değişik uzunluk 

parametreleri kullanılarak, makro düzeyde anizotropik yanıt alacak şekilde 

geliştirilmiştir.  

Çalışmanın sonunda, literatürden bir KNT ile güçlendirilmiş polimer, ki KNT, 

arayüz, arafaz ve polimerden oluşmaktadır, problemi yeniden ele alınmıştır. 

Arafazın, homojen malzemelerden farklı olarak, E-grad modeli kullanılarak aşamalı 

değişim gösteren malzeme özellklerine sahip olduğu düşünülmüştür. E-grad modeli 

ve genetik algoritma optimizasyonu kullanılarak, enine izotrop etkin bir efektif 

fiberin homojenleştirilmiş elastik sabitleri hesaplanmıştır. Polimer matrisle 

karşılaştırılınca, her ne kadar efektif fiberin eksenel yönde daha yüksek modüle 
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sahip olduğu görülsede, en ve kesme yönlerinde daha düşük modüle sahip olduğu 

görülmüştür. Daha sonra, fiberlerin yönelim etkisini dikkate almak için bir yönelim 

dağılımı fonksiyonu kullanılmıştır. Fiberler belirli bir yönde hizalanırsa, 

beklenildiği gibi, o yönde kompozit modülünün arttığı görülmüştür. Buna rağmen, 

efektif fiberin izotropik dağıldığı durumda, efektif fiberin düşük en ve kesme 

modüllerinden kaynaklı olarak, kompozit malzemenin matrise göre daha düşük 

modüle sahip olduğu görülmüştür.  

  

 

Anahtar Kelimeler: nanokompozit, karbon nanotüp (KNT), PEEK polimer, yerel 

olmayan elastisite, gradyan elastisite, büyüklük etkisi, homojen olmayan 

malzemeler, sonlu elemanlar metodu (SEM) 
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CHAPTER 1  

 

INTRODUCTION 

 

 

In today’s industry, especially in aviation, composite materials are replacing 

homogeneous materials because of their enhanced material properties, high 

strength/density and high rigidity/density ratios. There are even aircrafts, Boeing 

787 Dreamliner and Airbus A350, which utilized considerable amount of carbon 

fiber reinforced polymer composites. Carbon fiber or glass fiber reinforced 

polymer/ceramic/metallic materials are well known to most of the people, Figure 

1.1. Besides these usual fiber reinforced composite materials, there are also nano-

reinforced composites.  

 

Figure 1.1 – A carbon fiber (CF) reinforced polymer part is being manufactured 

(Innovativecomposite, 2018) 

 

Nanocomposites are composed of at least two materials, a reinforcing nano-

inclusion and a matrix material. Polymer, ceramic and metallic materials can be used 
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as matrix materials, with the same nano inclusion, i.e., carbon nanotube (CNT), 

graphene, silica. Figure 1.2 shows a scanning electron microscope (SEM) image of 

a multi walled carbon nanotube (MWCNT)/carbon fiber (CF)/polyetheretherketone 

(PEEK) polymer nanocomposite. Note that, in the figure, the size of MWCNTs is 

much smaller than the CFs. For the same volume or mass fractions, the surface area 

of the nano-inclusions is much higher than the corresponding micro or macro 

counterparts. Therefore, small amount of nano-inclusion can enhance the material 

properties significantly.  

The nano-inclusions are used to enhance mechanical, thermal and electrical 

properties of the matrix material.  With a proper understanding of the properties of 

the nanocomposites, reliable numerical models can be proposed. Therefore, in 

Chapter 2, the properties of the nanocomposites are discussed. Rather than giving 

general information about the nanocomposites, a specific nano-inclusion (CNT)/ 

polymer (PEEK) couple is selected to better investigate the nanocomposites. 

Individual material properties, interface properties, manufacturing processes, 

structural characterization methods and mechanical properties of CNT/PEEK 

nanocomposites are compared among several works from literature.   

 

Figure 1.2 - Field emission scanning electron microscopy (FE-SEM) of a 

fractured sample of MWCNT/CF/PEEK composite (Li and Zhang, 2011) 

MWCNT bundles 

Carbon 
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In nanoscale, materials exhibit different properties than in the macro scale. The 

overall effect can be named as the size effect. For the modeling of materials in small 

(sub-micron) scales, atomistic or quantum mechanics based simulation methods are 

generally used, i.e., density functional theory (DFT), molecular dynamics (MD) and 

the coarse grain methods. However, the atomistic simulations are computationally 

significantly more expensive than the continuum mechanics based methods. The 

spanned time and length scales are also limited with the atomistic simulations. On 

the contrary, classical continuum based simulations are computationally efficient 

but these methods normally do not include any parameter to account the size effect 

for nano-structured materials. Therefore, extensions have been proposed to the 

classical local continuum theories over the years. The Mindlin’s higher order 

elasticity theory, the Eringen’s nonlocal elasticity model and the Aifantis’s gradient 

elasticity models are the most well-known continuum models. In Chapter 3, to 

develop a thorough understanding of these models, Eringen’s nonlocal elasticity and 

Aifantis’s gradient elasticity models are explained in detail.  

Although, they can take the size effect into account, the nonlocal and gradient 

elasticity models have some shortcomings. They require introduction of some 

additional higher order strain and stress fields and also boundary conditions which 

are not always easy to motivate physically. Therefore, to overcome some of the 

difficulties in nonlocal and gradient elasticity formulations, a new gradient elasticity 

formulation, the so-called E-grad model, is proposed for a one-dimensional 

inhomogeneous rod in Chapter 4. In the new formulation, similar to the differential 

relation between the local strain and the gradient enhanced strain in the classical 

models of gradient elasticity, a differential relation is proposed for the Young’s 

modulus. Analytical and finite element solutions of the proposed formulation are 

derived for a one-dimensional inhomogeneous rod. The results of the proposed 

model are compared with a classical model of gradient elasticity for a model problem 

of carbon nanotube reinforced polymer composite. 

In Chapter 5, the one-dimensional E-grad model proposed in the previous chapter is 

extended to more general three-dimensional inhomogeneous materials with 
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isotropic linear elastic constituents. In addition to the constitutive equations and the 

balance relations, differential relations for the material parameters of isotropic linear 

elasticity are provided. The finite element formulation for axisymmetric problems is 

derived and a model problem of a soft cylindrical rod with a stiff spherical inclusion 

is solved. The proposed model is compared with a micromechanical model from 

literature and experiments conducted with polyimide/silica nanocomposites. Finally, 

the model is extended to obtain an anisotropic macroscopic response. 

In Chapter 6, a CNT reinforced polymer nanocomposite problem from literature is 

reconsidered. To this end, the nanocomposite is assumed to consist of four distinct 

phases: CNT, interface, interphase and bulk polymer. Rather than being 

homogeneous, the interphase is considered to be graded and the E-grad model is 

utilized to determine its properties. Then, the CNT, the interface and the interphase 

are treated as a transversely isotropic effective fiber. By using the E-grad model and 

the genetic algorithm optimization, homogenized elastic constants of the effective 

fiber are calculated. In nanocomposites, rather than a perfect alignment in a specific 

direction fibers/CNTs are either randomly distributed or oriented around a main 

direction. The statistical distribution of CNTs in a polymer matrix is discussed. The 

effect of orientations of the fibers are taken into account by using orientation 

distribution functions. Finally, the elastic properties of the nanocomposite with 

different fiber orientation distribution are computed.  

In Chapter 7, an overall discussion of the study is given, the conclusions are drawn 

and the potential future studies are considered. 

 

1.1. MOTIVATION AND OBJECTIVES 

It is well-known that small amount of nano-inclusions enhances the matrix material 

properties significantly. Therefore, nano-reinforced composites have a great 

potential in a wide range of applications in several industries. For this purpose, 

material models are needed to account for the size effect in the nano-structured 

materials. Available nonlocal and gradient material models require introduction of 

some additional higher-order strain and stress fields and also boundary conditions 

which are not always easy to motivate physically and understand intuitively. On the 
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other hand, atomistic simulations are computationally very expensive and require a 

different area of expertise than the continuum scale models. Therefore, the main 

motivation of this study is to develop a more general and intuitively understandable 

modeling approach for the numerical simulation of polymer nanocomposites. 

The first objective of the study is to develop a deeper understanding of the individual 

material properties, interface properties, manufacturing processes, structural 

characterization methods and mechanical properties of nanocomposites. The second 

objective is to build theoretical and numerical modeling experience about the 

nonlocal and gradient elasticity models. It is the third and the main objective to 

develop a simple gradient elasticity model for the numerical simulation of the 

polymer nanocomposites. The last objective is to apply the developed model to 

different problems in literature for the validation of the model. 
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CHAPTER 2  

 

POLYMER NANOCOMPOSITES 

 

 

As stated previously, a small amount of nano inclusion can enhance the properties 

of the matrix material in great amounts. For a deeper understanding of the properties 

of a composite, a comprehensive knowledge from individual constituents to 

composite level has to be developed. Instead of giving general information about 

nanocomposites, it is better to choose a specific nano-inclusion/matrix material 

couple and explain the properties of the nanocomposite based on this couple. In this 

study, carbon nanotube (CNT) reinforced polyetheretherketone (PEEK) polymer is 

investigated as an example. 

General information about CNT and PEEK is given in Section 2.1 and Section 2.2, 

respectively. In Section 2.3, detailed information about the individual constituents 

of the nanocomposite, interface properties between CNT and PEEK, manufacturing 

methods, characterizing methods and mechanical properties of nanocomposites are 

given.   

 

2.1. CARBON NANOTUBE (CNT)  

The diameters of the carbon fibers (CF) used today, generally are in the micrometer 

range. It is known that, for a specified volume fraction, decreasing the diameter of 

the reinforcing fibers increases the interface area between the fiber and the matrix 

which eventually results in stronger composite materials. One of the most promising 

candidate for reinforcing fibers is CNT. CNTs are thought to replace or used together 

with the common carbon fibers in the composites because of their nano-size 

diameter which enhances the adhesion surface area. In the investigations, it is seen 

that inclusion of minimum amount of CNT into polymers enhances the mechanical, 

electrical and thermal properties of the polymers (Boyer et al. 2012, Zhang et al. 

2012). 

CNTs can be described as cylindrical tubes which are made by rolling graphene 
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sheets around a certain axis. If a CNT has a single carbon layer, it is a single-wall 

carbon nanotube (SWCNT), if it has more than one carbon layer, it is a multi-wall 

carbon nanotube (MWCNT), see Figure 2.1. In Figure 2.2, unit translational vectors 

on a graphene layer, 𝒂1 and 𝒂2, are shown which compose the chiral vector, 𝑪ℎ, of 

a CNT. The chiral vector is calculated as: 

𝑪ℎ = 𝑚𝒂1 + 𝑛𝒂2 (2.1) 

Where, 𝑚 and 𝑛 show the number of hexagons travelled by the unit vectors. The 𝑻 

vector designates the CNT axis and perpendicular to 𝑪ℎ (Kalamkarov et al., 2006). 

The chiral angle, 𝜃, is defined as the angle between 𝑪ℎ and 𝒂1 and changes between 

0° and 30°. By using the parameters 𝑚 and 𝑛, 𝜃 is calculated as (Grady, 2011):   

𝑡𝑎𝑛𝜃 =
𝑛 −𝑚

√3(𝑛 + 𝑚)
 (2.2) 

The diameter of the CNT can be calculated as (Dresselhaus et al. 1995):   

𝑑 =
𝑎

𝜋
√𝑛2 +𝑚2 + 𝑛𝑚 (2.3) 

where, 𝑑 in the above formula is in angstrom (Å). The constant 𝑎 is equal to 2.46 Å 

for carbon.  According to the chiral angle, CNTs have armchair, zigzag and chiral 

configurations, see Table 2.1 and Figure 2.3. 

 

Figure 2.1 - (a) Single-Wall Carbon Nanotube (SWCNT), (b) Multi-Wall 

Carbon Nanotube (MWCNT) (Vidu et al. 2014) 

 

(a) 

(b) 
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Figure 2.2 - (a) Unit translational vectors 𝒂1, 𝒂2 and chiral vector, 𝑪ℎ = 𝑚𝒂1 +

𝑛𝒂2, on a graphene layer. Chiral vector shows the rolling direction while tangent 

vector, 𝑻, shows the CNT axis (Kalamkarov et al., 2006) 

 

Table 2.1 - CNT types based on chiral angle 

CNT type Chiral vector, 𝑪𝒉 Chiral angle, 𝜽 [°] 

zigzag (𝑚, 0) 0° 

armchair (𝑚,𝑚) 30° 

chiral (𝑚, 𝑛),𝑚 ≠ 0, 𝑛 ≠ 0 0° <   𝜃 <  30° 

 

 

Figure 2.3 – Armchair, Zigzag, Chiral SWCNTs (Madani et al., 2013) 

 

    θ 
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CNTs have extraordinary mechanical, thermal and electrical properties because of 

their high length/diameter ratio and covalent bonds between the carbon atoms. The 

covalent bonds between the carbon atoms make the nanotubes one of the strongest 

materials known.  

Table 2.2 (Tserpes and Silvestre, 2014) compares the mechanical properties of CNT 

with other commonly used engineering materials. It can be seen that CNT has much 

higher modulus (E), strength and toughness than the high strength steel (HSS) with 

a 1/5 density of the HSS. Therefore, CNT has extremely high specific strength 

compared to conventional engineering materials. 

Table 2.3 (Tserpes and Silvestre, 2014) shows the thermal and electrical properties 

of CNTs. It can be seen that CNTs have ten times thermal conductance and almost 

the same electrical conductance compared to copper which is the most widely used 

conductive material. The thermal and electrical properties of CNTs are also better 

than the common carbon fibers. 

Figure 2.4 (Liu et al., 2009) shows conduction properties of zigzag, chiral and 

armchair CNTs for different values of 𝑚  and 𝑛. If the difference between 𝑚  and 𝑛 

can be divided by three, CNTs show conducting behavior. 

 

Table 2.2 - Mechanical properties of CNT (Tserpes and Silvestre, 2014) 

Fiber 

Material 

Specific Density 

[𝐠𝐫/𝐜𝐦𝟑] 
E       

[𝐓𝐏𝐚] 
Strength 

[𝐆𝐏𝐚] 
Strain at Break 

[%] 

CNT 1.3 –  2 1 10 –  60 10 

HS Steel 7.8 0.2 4.1 <  10 

Carbon fiber 1.7 –  2 0.2 −  0.6 1.7 –  5 0.3 −  2.4 

E/S - glass 2.5 0.07 / 0.08 2.4 / 4.5 4.8 

Kevlar 49 1.4 0.13 3.6 −  4.1 2.8 
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Table 2.3 - Thermal and electrical properties of CNT (Tserpes and Silvestre, 2014) 

Material 
Thermal Conductivity 

[W/(m.K)] 

Electrical Conductivity 

[S/m] 

CNT 25 − 3000 106 – 107 

Copper 400 6 × 107 

CF 1000 2 ×  106 –  8.5 × 106 

 

 

Figure 2.4 – Semiconductor and conductor (metallic) SWCNT types obtained for 

different rolling directions (Liu et al., 2009) 

 

2.2. POLY ETHER-ETHER KETONE (PEEK)  

The other constituent of the composite material is the polymer matrix. Thermoset 

polymers are mostly used in industry, e.g. epoxy, because of their high strength 

compared to thermoplastic and elastomer polymers. But they cannot be recycled and 

therefore they are environmentally not preferable.  

Thermoplastic polymers are good candidates to replace the thermosets. First of all, 

they can be recycled and used repeatedly. In addition, moderate strengths are 

achievable with thermoplastics. PEEK is one of the candidates to be used, especially 

in structural applications. PEEK is a colorless, semi-crystalline, high performance, 
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thermoplastic polymer. Figure 2.5 shows a PEEK monomer, C21H18O3. 

 

Figure 2.5 – PEEK monomer (Wikipedia, 2018) 

 

The advantageous properties of the PEEK are listed below (Brydson, 1999):  

- PEEK can be recycled as other thermoplastic polymers. 

- PEEK has high stiffness (𝐸 ≃ 3 GPa) snd strength (𝜎𝑓 ≃ 100 Mpa). 

Therefore, it is suitable for structural applications. 

- PEEK is wear resistant. Therefore, it is suitable for tribology applications i.e. 

bearings, gears, (Li and Zhang, 2011). 

- PEEK has a high chemical, radiation and moisture resistance. Therefore, it 

is suitable for harsh environment applications (chemical industry, space 

platforms, off-shore platforms…). 

- PEEK has excellent thermal properties with high glass transition and melting 

temperatures (𝑇𝑔 ≃ 140 °C, 𝑇𝑚 ≃ 350 °C). PEEK also has a low 

flammability rating (V-0) with low smoke and toxic gas emission. Therefore, 

it is suitable for interior applications (vehicle interiors, household 

devices…). 

 

PEEK has some disadvantages in addition to its excellent properties: 

- PEEK has high cost and low volume production compared to other polymers 

(Wikipedia, 2018). 

- PEEK needs high processing temperatures because of its high 𝑇𝑔 and 𝑇𝑚.  

 

Figure 2.6 shows a general classification of the polymers. It can be seen that PEEK 

is one of the high performance polymers. 
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Figure 2.6– Classification of polymers by price, performance, production 

volume and crystallinity  (Wikipedia, 2016) 

 

2.3. CNT/PEEK COMPARISON STUDY 

A numerical model of a composite material requires a comprehensive understanding 

of the material and its constituents. Therefore, a comparative study is made for the 

CNT/PEEK nanocomposite by using some articles listed in Table 2.4. The properties 

of the constituents, interface, manufacturing processes, characterization techniques 

and mechanical properties of the CNT reinforced PEEK nanocomposites are 

compared. 

 

Table 2.4 – Considered articles in the CNT/PEEK comparison study 

[1] 
Boyer, F., Olivier, P.A., Pons, F., Cadaux, P.H. 2012. “Mechanical and 

electrical behavior of a Peek/Carbon nanotube composite”.  
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[2] 

Tishkova, V., Raynal, P., Puech, P., Lonjon, A., Le Fournier, M., Demont, 

P., Flahaut, E., Bacsa W. 2011. “Electrical conductivity and Raman 

imaging of double wall carbon nanotubes in a polymer matrix”.  

[3] 

Jain, R., Choi, Y. H., Yaodong, L., Minus, M. L., Chae, H. G., Kumar, S., 

Baek, J. 2010. “Processing, structure and properties of poly(ether ketone) 

grafted few wall carbon nanotube composite fibers”.  

[4] 

Zhang, S., Wang, H., Wang, G., Jiang, Z. 2012. “Material With High 

Dielectric Constant, Low Dielectric Loss, And Good Mechanical And 

Thermal Properties Produced Using Multi-Wall Carbon Nanotubes 

Wrapped With Poly(Ether Sulphone) in a Poly(Ether Ether Ketone) 

Matrix”. 

[5] 
Mohiuddin, M., Hoa, S.V. 2011. “Temperature dependent electrical 

conductivity of CNT–PEEK composites”.  

[6] 
Li, J., Zhang, L.Q. 2011. “Reinforcing effect of carbon nanotubes on PEEK 

composite filled with carbon fiber”.  

[7] 

Guehenec, M., Tishkova, V., Dagreou, S. Leonardi, F., Derail, C., Puech, 

P., Pons, F., Gauthier, B., Cadaux, P.H., Bacsa, W. 2013. “The effect of 

twin screw extrusion on structural, electrical, and rheological properties in 

carbon nanotube poly-ether-ether-ketone nanocomposites”.  

[8] 

Hwang, Y., Kim, M., Kim, J. 2013. “Improvement of the mechanical 

properties and thermal   conductivity of poly(ether-ether-ketone) with the 

addition of graphene oxide-carbon nanotube hybrid fillers”.  

[9] 

Ashrafi, B., Díez-Pascual, A.M., Johnson, L., Genest, M., Hind, S., 

Martinez-Rubi, Y., González-Domínguez, Jose M., Martínez, M. T., 

Simard, B., Gómez-Fatou, M.A., Johnston, A. 2012. “Processing and 

properties of PEEK/glass fiber laminates: Effect of addition of single-

walled carbon nanotubes”.  

[10] 
Ogasawara, T., Tsuda, T., Takeda, N. 2011. “Stress–strain behavior of 

multi-walled carbon nanotube/PEEK composites”.  
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2.3.1. Constituents of CNT/PEEK Nanocomposites 

In the list below, the individual material properties of the nanocomposites can be 

found for the considered articles. Therefore, a better comparison can be made and 

differences among the composites may be underlined starting from the material 

level. 

 

[1]- Boyer et al., 2012 

 CNT: MWCNT (𝑑 =  10 − 15 nm, 𝑙 =  0.1 − 10 µm, 5 − 15 walls) 

 PEEK: grade 1000P (𝑇𝑔 = 149 °C, 𝜗 = 50 Pa. s@380°C), grade 2000P 

(𝑇𝑔 = 149 °C, 𝜗 = 270 Pa. s@380°C) 

 

[2] - Tishkova et al., 2011 

 CNT: 12% SWCNT, 70% DWCNT, 16% TWCNT, 1.5% QWCNT 

(Chemical Vapor Deposition, CVD, 𝑑 = 2.8 nm, 𝑙 = 10 µm) 

 PEEK: grade 90P (𝜌 = 1.3 g/cm3 @25°C, 𝑇𝑚 = 341°C, 𝜗 =

 90 Pa. s @ 400°C, 𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑖𝑡𝑦 = 32%)  

 

[3] - Jain et al., 2010  

 CNT: MWCNT 

 PEK: 4-phenoxybenzoic acid (4-PBA) monomer, poly phosphoric acid 

(PPA), phosphorous pentoxide (𝑃2𝑂5)  

 

[4] - Zhang et al., 2012 

 CNT: MWCNT 

 PEEK: no information given 

 

[5] - Mohiuddin and Hoa, 2011 

 CNT: MWCNT (CVD, 𝑝𝑢𝑟𝑖𝑡𝑦 = 95%, 𝜌 = 2.2 g/cm3, 𝑑𝑜𝑢𝑡𝑒𝑟 = 13 −

16 nm, 𝑑𝑖𝑛𝑛𝑒𝑟 = 4 nm, 𝑙 = 1 − 10 µm, 𝜎𝐶𝑁𝑇 = 104 S/cm) 
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 PEEK: (𝜌 = 1.263 g/cm3) 

 

[6] - Li and Zhang, 2011: 

 CNT: MWCNT (𝑑 = 6 − 20 nm, 𝑙 = 1.5 µm) 

 PEEK: grade 450P (𝜌 = 1.32 g/cm3, 𝑇𝑔 = 143°C, 𝑇𝑚 = 334°C, 𝑇𝑑 =

590°𝐶) 

 

[7] - Guehenec et al., 2013 

 CNT: MWCNT (𝑝𝑢𝑟𝑖𝑡𝑦 = 90%, 𝑑 = 50 − 150 kg/m3, 𝑙 = 0.1 −

10 µm, 𝑑 = 15 nm, 5-15 walls) 

 PEEK: grade 2000P (𝑀𝑊 =  25000 g/mol, 𝑑 = 1.2 g/cm3 @25°𝐶, 𝑇𝑔 =

143°C, 𝑇𝑚 = 345°C) 

 

[8] - Hwanget al., 2013 

 CNT: MWCNT (𝑝𝑢𝑟𝑖𝑡𝑦 = 95%, 𝑑 = 40 − 60 nm) 

 PEEK: no information given 

 

[9] - Ashrafi et al., 2012 

 CNT: SWCNT (laser grown, arc grown) 

 PEES: 𝑀𝑊 = 38000 g/mol, 𝜌 =  1.38 g/cm3 @25°C, 𝑇𝑔 =  192°C 

 PEEK: grade 150PF (𝑀𝑊 = 40000g/mol, 𝜌 = 1.3 g/cm3 @25°C, 𝑇𝑔 =

147°C, 𝑇𝑚 = 345°C, 𝜗 = 103 Pa. s @ 350°C) 

 

[10] - Ogasawara et al., 2011 

 CNT: MWCNT (CVD, 𝑑 = 40 − 100 nm) 

 PEEK: grade 151G  

 

Although, not all of the references specified all the material properties, it is seen 
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from the above list that, there are lots of material configurations used in the 

references. CNTs have different properties in terms of the purity, density (𝜌), 

diameter (𝑑), length (𝑙), and number of walls. Similarly, PEEK polymers have 

different specifications in terms of the molecular weight (𝑀𝑊), density, glass 

transition temperature (𝑇𝑔), melting temperature (𝑇𝑚) and the viscosity (𝜗). 

Therefore, it is reasonable to expect that, the composite properties will be different 

for each reference. 

 

2.3.2. Interface of CNT/PEEK Nanocomposites 

The successful load transfer between the CNT and the PEEK is in crucial importance 

for the performance of the nanocomposites. If no functionalization is done on the 

CNT, the load transfer is by the mechanical mechanisms and the weak van-der Walls 

attractions between the nanotube and the polymer. To increase the load transfer 

between CNT and PEEK, chemical treatments are applied on CNTs to form covalent 

bonds with PEEK. It is also known that, the chemical treatment influences the 

dispersion of the CNTs preventing agglomeration within the polymer matrix. 

Therefore, it is important to investigate the interface region separately and specify 

the current treatments on the constituents. The treatment procedures of PEEK and 

CNT are provided below for each reference if available.  

 

[2] - Tishkova et al., 2011 

 catalyst particles removed from CNTs through chemical etching  

 CNTs washed many times with distilled water  

 CNTs kept in acetone prior dispersion in PEEK  

 PEEK powder added to CNT/acetone suspension  

 suspension submitted to sonication for 10 s  

 

[3] - Jain et al., 2010  

 Grafting PEK (polyetherketone) on CNTs (PEK-g-MWCNT) by in-situ 

polymerization 
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 Monomer and MWCNT mixed under dry nitrogen purge at 130°C for 72 h 

 

 [4] - Zhang et al., 2012 

 MWCNT wrapped in PES (polyethersulphone) 

 

[8] - Hwanget al., 2013 

 MWCNT purified and functionalized with carboxylic acid groups by heat 

treating the MWCNT in 800 mL of 𝐻2𝑆𝑂4 (Sulfuric acid) and 𝐻𝑁𝑂3 (Nitric 

acid) in an ultrasonicater bath for 8h at room temperature 

 Suspension heated to 50°C and stirred for 24 h and filtered through a nylon 

membrane 

 Filtered cake washed thoroughly with water for several times until the filtrate 

becomes neutral 

 Carboxylated MWCNT immersed into 𝑆𝑂𝐶𝑙2 (Thionyl chloride) using an 

ultrasonicator at room temperature for 1h and stirred for 12h at 65°C to 

convert the carboxylic acid groups on the surface of MWCNT to acid 

chlorides 

 Suspension vacuum-filtered through a membrane, washed with THF 

(tetrahydrofuran), and dried for 12h under vacuum at ambient temperature.  

 Chlorinated MWCNT dispersed in 20 mL of ethylenediamine and refluxed 

at 125°C for 2 days with stirring 

  MWCNT also filtered through a nylon membrane and washed several times.  

 Product dried under vacuum at room temperature for 24 h 

 

[9] - Ashrafi et al., 2012 

Laser-grown SWCNT:   

 wrapped with PEES (Polyether ether sulfone) 

 

Arc-grown SWCNT:  
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 thermally oxidized in an air atmosphere at 350 °C for 2 h 

 then refluxed in 𝐻𝐶𝑙 (Hydrochloric acid) for 4 h 

 wrapped with PEES 

 

From the above list, it can be seen that half of the references do not apply a treatment 

on the CNTs. The other references used different methods for the functionalization 

of CNTs. Chemical etching, grafting by in-situ polymerization, wrapping and 

oxidization are used. As seen in reference Hwang et al., (2013), the functionalization 

may take several days and numerous processing. Therefore, it is reasonable to 

develop standard procedures for the functionalization. This will also help the 

repeatability of the procedure and also experiments.   Figure 2.7 shows some of the 

commonly used CNT functionalization methods in summary. 

 

Figure 2.7 – Surface functionalization of CNTs (Wu et al., 2009) 

 

2.3.3. Manufacturing of CNT/PEEK Nanocomposites 

Apart from the functionalization, the manufacturing processes influence the 

dispersion and orientation of CNTs in the matrix. The properties of the 
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nanocomposite are strongly related with the homogeneity of the dispersion of CNTs 

in the PEEK matrix. If a nonhomogeneous dispersion exists, cracks can initiate 

around the bundles of the CNTs. In addition to dispersion, orientation of the CNTs 

is also important. If a uniform orientation is obtained in the axial direction, the 

modulus and strength in this direction will be higher compared to other directions, 

then the composite will be transversely isotropic. If the dispersion of the CNTs is 

uniform in all directions, the modulus and strength of the composite will be the same 

in all directions, then and the composite will be isotropic. Nanocomposite 

manufacturing processes are given below for the considered articles. 

 

[1]- Boyer et al., 2012 

 Premixing of PEEK powder and MWCNT  

 twin-screw co-rotating extruder, @380°C, 400 rpm, torque=11 N.m, feeding 

rate= 1 kg/h. 

 Membrane specimens: hot-pressing of PEEK/MWCNT granulates obtained 

from the twin-screw extruder, @380°C, 𝑡 = 2 mins 

 Tensile specimens: injection molding of PEEK/MWCNT granulates  

 

[2] - Tishkova et al., 2011 

 PEEK/CNTs/acetone solution heated to 50°C to evaporate acetone 

 PEEK/CNTs/acetone paste compression molded in hydraulic hot press, 

@400°C, 𝑡 = 30 mins, 𝑃 = 0.01 MPa.  

 

[3] - Jain et al., 2010  

 Dry-jet wet-spinning of fibers  

 PEK-g-MWCNT/PPA solution placed into barrel (28 mm internal diameter) 

 Solution extruded through a single-hole spinneret of 120 mm diameter 

equipped with filter (mesh size was 20 mm) and passed through distilled 

water coagulation bath (1.2 m long, at room temperature) 
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 Fibers immersed in water for several days to remove the residual PPA and 

the bath water periodically replaced with fresh water 

 Fibers drawn at various draw ratios @ 200°C 

 

[4] - Zhang et al., 2012 

 Melt mixing 

 

[5] - Mohiuddin and Hoa, 2011 

 CNT mixed with PEEK  

 Melting and high temperature shear mixing, @380°C, 𝜔 = 100 rpm, 𝑡 =

20 min 

 CNT/PEEK melt compression molded, @340°C, 𝑃 = 10 tons, 𝑡 = 15 min, 

round shaped samples having 25.4 mm diameter and 1.4 mm thickness  

 

[6] - Li and Zhang, 2011 

 PEEK dried in a dehumidifier, @160°C, 𝑡 = 10 h 

 CF dried in a dehumidifier, @1000°C, 𝑡 = 2 h 

 PEEK mixed with CF with different weight percentage (5, 10, 15, 20) in a 

batch mixer, @340°C, 𝑡 = 30 min 

 compounds dried in a dehumidifier, @160°C, 𝑡 = 2 h 

 samples compression molded, @350°C, 𝑃 = 15 MPa, 𝑡 = 15 min 

 

[7] - Guehenec et al., 2013 

 PEEK powder dried in an oven, @140°C, 𝑡 = 6 h 

 PEEK powder mixed with 3% weight percentage of MWCNT 

 Melt compounding performed in a co-rotating twin screw extruder (10 

different heating zones, @ 390°C max with varying temperature profile) 

 PEEK with 3% wt MWCNTs extruded (𝜔 = 100, 150, 200, 300, and 400 

rpm), feed rate= 1kg/h  
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 Material cooled down in a temperature regulated water bath and then 

pelletized  

 Extruded pellets dried in air, @140°C  

 Pellets compression molded for the rheological measurements, @380°C, 

disks with a diameter of 25 mm and a thickness of 2 mm 

 Thin films hot pressed, @380°C, 𝑃 = 40 bars, 𝑡 = 2 min, pellets with a 

thickness of 150 µm and 10 cm in diameter 

 Films cooled down below the 𝑇𝑔, 𝑡 = 3 mins 

 

 [8] – Hwang et al., 2013 

 GO, MWCNT, and PEEK powders dried overnight, @80°C 

 fillers were premixed with anhydrous DMF (Dimethylformamide) using an 

ultrasonicator, @room temperature, t=1h 

 Premixed GO and MWCNT (or functionalized GO and MWCNT) added into 

PEEK  

 Mixture dispersed in the ultrasonicator, followed by stirring continuously, 

@65°C, 𝑡 = 8 h. Chemical reaction between the chlorinated GO and amine-

treated MWCNT achieved  

 Slurry dried in an oven, @100°C, 𝑡 =overnight 

 hot press to fabricate the circular disk at an average, heating rate=

5°C/min,@340°C, then hot pressed @340°C, 𝑃 = 15MPa, 𝑡 = 10 min 

 cooled to below the glass transition temperature of PEEK  

 

[9] - Ashrafi et al., 2012 

 PEEK resin melt-blended SWCNT (wrapped in polysulfone and unwrapped)  

 Extruded PEEK/SWCNT pellets used to fabricate films, 𝑡 = 0.5 mm  

 Films made using a hot-press, @380°C, 𝑃 = 5 − 40 − 130 bars, 𝑡 =  6 min 

at each pressure 
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 Hot compression of alternating layers of PEEK films and GF fabric sheets, 

@380°C, 𝑡 = 20 mins 

 the edges of the laminates trimmed to 150x150 mm, after ultrasonic and 

thermographic inspection, laminates cut into pieces of approximately 10x10 

mm. 

 

[10] - Ogasawara et al., 2011 

 PEEK/CNT master batches using a twin-screw extruder, @380°C 

 Injection molding, @180°C 

 Annealing, @230°C, 𝑡 = 5h 

 Cooled to room temperature to reduce thermal stress and to improve the 

degree of crystallinity, 𝑡 = 20 h 

 

Different manufacturing methods, procedures, temperature, pressures, durations etc. 

are applied for each reference as seen from the above comparison. Therefore, it is 

reasonable to have different PEEK/CNT interface, dispersion, orientations and 

properties for each manufactured composite.  

 

2.3.4. Structural Characterization of CNT/PEEK Nanocomposites 

Different characterization methods are used to investigate the structure of the 

produced material. Raman Spectroscopy (RS), Transmission Electron Microscopy 

(TEM), Scanning Electron Microscopy (SEM), Fourier Transform-Infra Red (FT-

IR), Focused Ion Beam Microscopy (FIBM), Dynamic Mechanical Analyzer 

(DMA), Dynamic Dielectric Spectroscopy (DDS), Differential Scanning 

Calorimeter (DSC), Thermo-Gravimetric Analysis (TGA), Laser Flash Analyzer 

(LFA) are extensively used characterization methods. Some conventional methods 

are also used for nanocomposite characterization; strain gage, extensometer, multi-

meter, ring on block friction test, thermocouple etc. The material, mechanical, 

thermal and electrical characterization methods for the PEEK/CNT nanocomposite 

for each reference are provided in Table 2.5. But only material characterization 
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methods are detailed for some references further in below paragraphs. In the next 

chapter, mechanical properties are investigated. 

 

Table 2.5 – List of structural characterization methods used in the references 

 
material 

char. 

methods 

instruments for 

mechanical 

property char. 

instruments for 

thermal 

property char. 

instruments 

for electrical 

property char. 

[1] … 

strain gage, 

extensometer, 

DMA 

DSC DDS 

[2] RS, TEM … … 
broadband 

spectrometer 

[3] 

X-ray, RS, 

SEM, HR-

TEM 

DMA TGA 

point probe 

with source 

meter 

[4] SEM … TGA … 

[5] … … thermocouple multi meter 

[6] FE-SEM 
ring on block 

friction test 
… … 

[7] TEM, RS … … electrometer 

[8] 
FT-IR, FE-

SEM, X-ray 
DMA 

TGA, DSC, 

LFA 
… 

[9] 

ultrasonic 

C-scan, 

optical 

microscopy, 

SEM 

short beam shear 

strength 

DSC, 

thermography 
source meter 

[10] SEM, FIBM 
extensometer, 

DMA 
… … 
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[2] - Tishkova et al., 2011 

Tishkova et al. (2011) provided the TEM images of 0.8% weight percentage 

DWCNT/PEEK composite. Figure 2.8(a) shows DWCNT agglomeration in the 

PEEK matrix with higher magnification in Figure 2.8(b). Several residual catalyst 

particles (black dots) are also seen. The TEM images reveal an inhomogeneous 

dispersion of CNTs in the matrix. 

 

Figure 2.8 – (a) TEM image of 0.8 wt% DWNTs/PEEK composites. (b) Higher 

magnification view (Tishkova et al., 2011) 

 

[3] - Jain et al., 2010  

Jain et al. (2010) provided the cross-sectional SEM images of PEK and various PEK-

g-MWCNT composite fibers, see Figure 2.9. It can be noted that PEK-g-20% 

MWCNT fiber shows highly porous structure while the other fibers appear to have 

relatively flat cross sections.  

 

[9] - Ashrafi et al., 2012 

Ashrafi et al., (2012) investigated the effects of the CNT addition on the density and 

porosity content of glass fiber reinforced PEEK. The weight fractions of the 

composite laminate types are summarized in Table 2.6. It can be seen that they 

acquired higher density for the modified composites than the pure PEEK/GF.  They 
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said that composites with SWCNT wrapped in the compatibilizer (PEES) exhibit the 

highest density values. 

 

Figure 2.9 – Cross-sectional SEM images of (a) PEK, (b) PEK-g-1% MWCNT, 

(c) PEK-g-5% MWNT, (d) PEK-g-10% MWCNT, and (e) PEK-g-20% MWCNT 

fibers (Jain et al., 2010) 

 

Table 2.6 - Resin/fiber weight fraction, density, porosity of manufactured 

laminates (Ashrafi et al., 2012) 

Laminates 
Resin/fiber weight 

fraction [%] 

Density  

[g/cm3] 

Porosity 

[%] 

PEEK/GF 36.0/64.0 ± 0.4 1.78 ± 0.02 5.3 ± 1.2 

PEEK/PEES/GF 36.1/63.9 ± 0.3 1.78 ± 0.02 5.0 ± 1.2 

PEEK/arc SWCNT (1.0 

wt.%)/GF 
35.9/64.1 ± 0.2 1.81 ± 0.02 3.4 ± 0.8 

PEEK/laser SWCNT 

(1.0 wt.%)/GF 
35.4/64.6 ± 0.5 1.84 ± 0.02 2.2 ± 1.3 

PEEK/arc SWCNT (1.0 

wt.%) + PEES/GF 
35.9/64.1 ± 0.5 1.85 ± 0.01 1.3 ± 0.5 
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PEEK/laser SWCNT 

(0.5 wt.%) + PEES/GF 
36.0/64.0 ± 0.2 1.84 ± 0.01 1.6 ± 0.7 

PEEK/laser SWCNT 

(1.0 wt.%) + PEES/GF 
36.2/63.8 ± 1.0 1.86 ± 0.01 0.3 ± 0.2 

 

[10] - Ogasawara et al., 2011 

As seen from the FIB micrographs in Figure 2.10, by using injection molding, 

Ogasawara et al. (2011) obtained well aligned CNT dispersion in the longitudinal 

direction.  

 

Figure 2.10 - Focused ion beam (FIB) micrograph of a tensile specimen 

(Ogasawara et al., 2011) 

 

As can be seen from the above discussion, various characterization methods are used 

and there is not a standard procedure for material characterization. Therefore, it is 

reasonable to expect scatter in the results.  

 

2.3.5. Mechanical Properties of CNT/PEEK Nanocomposites 

In the above sections, material properties, interface properties and manufacturing 

processes are explained. These all affect mechanical, electrical and thermal 

properties of the nanocomposite. In this section, mechanical properties of the final 

nanocomposite products for the considered references are given.   
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[1]- Boyer et al., 2012 

As seen from Table 2.7 (Boyer et al., 2012), MWCNT modifies the PEEK properties 

drastically. By the addition of the MWCNTs, the elastic modulus and the yield 

strength increase but the ultimate tensile strength decreases. PEEK becomes more 

brittle and maximum elongation decreases. Note the scatter of the values which is 

possibly caused from the agglomeration of the CNTs. 

Boyer et al. (2012) also investigated dynamic mechanical properties of the 

PEEK/MWCNT by using DMA, Figure 2.11. They showed that MWCNT increases 

the storage modulus but the glass transition temperature 𝑇𝑔 almost stays constant. 

They also showed that as MWCNT weight content is increased, loss angle tangent 

tan𝛿 increases to some degree, then starts to decrease. They commented that 

modification of tan𝛿 shows the decrease in the chain mobility of the matrix. 

 

Table 2.7 - Experimental mechanical results for neat PEEK and PEEK/MWCNT 

(Boyer et al., 2012) 

Material Neat PEEK 
1%wt 

MWCNT 

3%wt   

MWCNT 

5%wt 

MWCNT 

Young’s 

Modulus [MPa] 
3678.6 ± 71.3 3703.3 ± 82.9 3774.5 ± 125.1 4145.3 

𝜎𝑚𝑎𝑥  [MPa] 91.8 ± 4.9 83 ± 9.1 80.5 ± 10.8 84.4 

𝜀𝑚𝑎𝑥 [%] 28.6 3.3 ± 1 5 ± 1 2.5 

𝜎 @ 𝜀𝑥 = 0.2% 
[MPa] 

62.2 ± 0.1 60.6 ± 5 60.6 ± 4.6 66 

 

[4] - Zhang et al., 2012 

The mechanical properties of PEEK and its nanocomposites in the work of Zhang et 

al. (2012) are presented in  

Table 2.8. It can be seen that the flexural modulus and the flexural strength are 

increased while the tensile strength and the elongation at break are decreased with 

the increasing MWCNT content.  After 5% content, the effect of the MWCNT on 
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the mechanical properties is generally negative. 

 

Figure 2.11 – DMA of nanocomposites behavior. a) Storage modulus E’ and b) 

loss angle tangent tan δ as a function of temperature for neat PEEK and PEEK 

filled with 1, 3 and 5 % wt of MWCNT (Boyer et al., 2012) 

 

Table 2.8 - Mechanical properties of PEEK and CNT/ PEEK composites (Zhang et 

al., 2012) 

Samples PEEK 

MWCNT/ 

PEEK, 3% 

/ 97% 

MWCNT/ 

PEEK, 5% 

/ 95% 

MWCNT/ 

PEEK, 7% 

/ 93% 

Flexural modulus [MPa] 3758 3895 3968 3985 

Flexural strength [MPa] 183 188 188 186 

Tensile strength [MPa] 107 102 99 96 

Elongation at break [%] 27.8 17.2 16.5 15.9 

 

[6] - Li and Zhang, 2011 

Figure 2.12 shows the tensile properties of the 20% weight percent carbon fiber in 

PEEK for varying MWCNT addition (Li and Zhang, 2011). Improvement in the 

tensile properties of the composite with the increase of MWCNT concentration can 

be seen clearly. Li and Zhang (2011) said that MWCNTs are warped by the PEEK 

chains, attached to each other and linked by CF’s forming through the system. They 

commented that this new network acted as a new reinforcement and lead to high 
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strength and modulus.  

Li and Zhang (2011) also investigated the variation in the specific wear rate and the 

friction coefficient as a function of abrading distance of CF/PEEK and 

CF/MWCNTs/PEEK composites, see Figure 2.13(a) and (b). As can be seen form 

the figure, the specific wear rate decreases with increasing abrading distance for both 

composites. Higher specific wear rate is noticed for the CF/PEEK composite 

compared to the CF/MWCNTs/PEEK composite. They commented that 

CF/MWCNTs has high specific strength and reduced ductility compared to CF. The 

results show that addition of MWCNTs to PEEK increases the tribological 

properties of the polymer. 

 

Figure 2.12 – Tensile properties of MWCNT/ CF/PEEK composite (Li and 

Zhang, 2011) 

 

 

Figure 2.13 – Friction and wear properties of MWCNT/ CF/PEEK composite 

(Li and Zhang, 2011) 
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[7] - Guehenec et al., 2013 

Guehenec et al. (2013) provided the mechanical spectra of PEEK with 3 % weight 

percentage of CNTs extruded at various screw speeds in Figure 2.14. Note that the 

insert in this figure shows the spectro-mechanical behavior of the pure PEEK in the 

same frequency range. They showed that the pure PEEK exhibits a liquid-like 

behavior while the PEEK with 3% weight percentage MWCNT shows a solid-like 

behavior. They observed that when MWCNT content increases, a liquid to solid 

transition at low frequency is observed, which is referred to as the rheological 

percolation. They also showed that the storage modulus G’ and loss modulus G’’ are 

very sensitive to screw speed of the extruder. 

 

Figure 2.14 – Spectromechanical analysis of PEEK/ 3% MWCNT prepared with 

several rotor speeds (Guehenec et al. 2013) 

 

[9] - Ashrafi et al., 2012 

Ashrafi et al. (2012) investigated the PEEK/GF composites for evaluation of 

interlaminar properties with the short beam shear test. As shown in Table 2.9, they 

obtained that in comparison to the PEEK/GF laminate, those incorporating laser 
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SWCNT with compatibilizer (PEES) shows a 64% and 12% increase in the bending 

strength for loadings of 1% wt and 0.5% wt, respectively. They showed that for other 

laminates with arc grown CNTs, either no change or a reduction of bending was 

measured as compared to the base laminate.  

 

Table 2.9 - Short beam bending strengths of different laminates and their failure 

modes (Ashrafi et al., 2012) 

Laminate composites 

Short beam 

bending strength, 

[MPa] 

Failure modes 

PEEK/GF 15.7 ± 1.5 

Interlaminar failure in the 

outermost laminae; compression 

failure 

PEEK/PEES/GF 14.8 ± 1.3 

Interlaminar failure in the 

outermost laminae; compression 

failure 

PEEK/laser SWCNT 

(1.0 wt.%)/ GF 
12.3 ± 2.8 

Interlaminar failure in several 

locations; compression failure 

(for 2/10 specimens) 

PEEK/arc SWCNT 

(1.0 wt.%) + 

PEES/GF 

11.7 ± 1.4 
Interlaminar failure in several 

locations; inelastic deformation 

PEEK/laser SWCNT 

(0.5 wt.%) + 

PEES/GF 

17.5 ± 1.6 

Interlaminar failure in several 

locations; inelastic deformation; 

fiber failure (for 2/10 specimens) 

PEEK/laser SWCNT 

(1.0 wt.%) + 

PEES/GF 

25.8 ± 4.3 

Interlaminar failure in several 

locations (mostly in the middle) 

inelastic deformation; fiber 

failure (for 5/10 specimens) 
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[10] - Ogasawara et al., 2011 

Ogasawara et al. (2011) showed that as MWCNT percentage increases, the 

mechanical properties of the nanocomposite increase, see Figure 2.15. 

 

Figure 2.15 – Tensile stress–strain curves of PEEK and CNT/PEEK composites 

under a constant displacement rate of 1 mm/min (Ogasawara et al., 2011) 

 

Ogasawara et al. (2011) investigated the loading/unloading behavior of the PEEK 

and the CNT/PEEK composite under a constant loading rate of 1.7 MPa/s, see Figure 

2.16. Results are shown for stress ranges of 0–33 MPa and 0–100 MPa in Figure 

2.16(a) and (b), respectively. It can be seen that for small stress range, PEEK shows 

a linear behavior and loading/unloading responses are the same. With the increase 

in CNT content, the modulus of the CNT/PEEK composite increases. The 

CNT/PEEK composite shows nonlinear loading/unloading behavior with hysteresis 

which is an indication of the viscoelastic behavior, Figure 2.16(a). For the larger 

stress range, the PEEK starts to show nonlinear behavior and hysteresis, Figure 

2.16(b). The nonlinearity of the CNT/PEEK composite is increased and the 

viscoelastic effect is more pronounced for the larger stress range with the addition 

of CNT. 

As seen from the above comparisons from several references, material properties of 

individual phases, processing of materials, interface properties and manufacturing 

methods can significantly affect the properties of nanocomposites. To this end, it is 
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expected to see a big scatter in results from different references. Therefore, for the 

correct numerical simulation of the composites, the structure of the considered 

material has to be known, especially the properties of the interface between the CNT 

and the polymer. Standard manufacturing and test methods have to be developed for 

the reliable end product. 

 

Figure 2.16 – Stress–strain curves of PEEK and CNT/PEEK composites under 

loading–unloading tensile tests (Ogasawara et al., 2011) 
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CHAPTER 3  

 

NONLOCAL/GRADIENT ELASTICITY  

 

 

In classical (local) elasticity, stress at a material point is considered as a local 

function of the strain at that point: 

𝝈(𝑥)  = 𝑪: 𝜺(𝑥) (3.1) 

𝜺 = 𝛻𝑠𝒖 =
1

2
(∇𝒖 + (∇𝒖)𝑇) (3.2) 

where, 𝝈 is the stress tensor, 𝑪 is the fourth-order elasticity tensor, 𝜺 is the strain 

tensor, 𝒖 is the displacement vector, ∇ is the gradient operator and (∙)𝑇 denotes the 

transpose. Equation (3.1) is applicable to structures in all dimensions from 

nanometer to meter since the local elasticity theory does not contain any information 

about the size of the structure. The local elasticity also cannot properly describe 

stress/strain singularities that may be present in heterogeneous media, crack tips, 

imperfections etc. (Askes and Aifantis, 2011). When the wavelength of a 

deformation field and the dominant micro-structural length scale of the material are 

comparable, the locality assumption is questionable as the material behavior at a 

point is influenced by the deformation of neighboring points (Forest, 1999). 

Furthermore, in the local elasticity, mathematical problems and mesh dependence in 

finite element simulations can be present if strain softening exist (Dreimeier et al., 

2005). For nano/microstructures, atomistic simulations can be alternative. However, 

these simulations are computationally much more expensive than the continuum 

scale simulations. The time and length scales that can be modeled in atomistic 

simulations are also limited. 

Because of the above reasons, gradient elasticity models have been proposed. The 

micropolar, micromorphic theories of Cosserat brothers (1909) and the higher order 

gradient theories of Toupin (1962) and Midlin (1964) are the early versions of the 

gradient theories.  In the Cosserat theory, in addition to the material translational 
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displacement, 𝒖, an independent rotational displacement quantity, 𝜽, is defined and 

couple stresses (bending moment per unit area) are introduced as the work conjugate 

to the micro-curvature (the spatial gradient of 𝜽). Toupin and Midlin proposed a 

theory that includes gradients of normal strain. In their review article, Askes and 

Aifantis (2011) even reported that Cauchy and Voigt studied on gradient theories.  

The above theories require many additional material constants to be determined 

which are not feasible from an experimental point of view. Eringen (1983) and 

Aifantis (1984) developed further formulations of gradient type theories. Aifantis 

(1984) proposed a simple model of gradient plasticity for strain softening materials 

motivated by dislocation dynamics, to determine the width of shear bands. In the 

beginning of the 1990s, Aifantis proposed another simple model with only one 

additional constant for use in gradient elasticity (Aifantis, 1992).  

In this section, Eringen’s nonlocal elasticity and Aifantis’s gradient elasticity models 

are explained in detail. The summation convention is used, that is a subscript index 

(𝑖, 𝑗, 𝑘. . . ), unless stated otherwise, takes a value of 1-3 and repeated indices imply 

a summation over 1-3. A small bold character represents a vector, whereas a capital 

bold character represents a tensor. A Cartesian reference-frame is employed 

throughout the study. 

 

3.1. ERINGEN’S NONLOCAL ELASTICITY 

Compared to the local formulation of elasticity, Eqn. (3.1), the nonlocal formulation 

is considered to be function of points, �̃�, in the neighborhood of the local point 𝑥: 

𝝈 = 𝝈(𝑥, �̃�) (3.3) 

This means that long-range forces are applied at a material point. Eringen (1983) 

proposed an integral formulation for the calculation of nonlocal stress response at a 

point: 

𝝈(𝑥)  = ∫𝑔(𝑥, �̃�) 𝑪: 𝜺(�̃�) 𝑑�̃�
 

𝛺

 (3.4) 

where, 𝝈(𝑥) is the nonlocal stress, 𝑔(𝑥, �̃�) is the attenuation (kernel) function 

defining the nonlocal response of the material which depends on the distance 
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|𝑥 − �̃�|. Polizzotto (2001) gave the representations of some attenuation functions as 

in Figure 3.1. Eringen (2002) proposed to determine 𝑔 on the basis of a dispersion 

analysis. Two of the generally used attenuation functions in literature are: 

 𝑔1(𝑥, �̃�)  =
1

2ℓ
 𝑒−|𝑥 − �̃�|/ℓ (3.5) 

 𝑔2(𝑥, �̃�)  =
1

𝑊(𝑥)
 𝑒−(𝑥 − �̃�)

2/2ℓ2 (3.6) 

where, ℓ is the internal characteristic length related with the material internal 

structure. At the macroscopic level, ℓ can be considered as much smaller than the 

smallest dimension of the specimen. The internal characteristic length ℓ defines the 

influence distance of 𝑔.  

 

Figure 3.1  – Plots of the attenuation function g(ρ); (a) error function, (b) bell 

shape function, (c) conical shape function, (Polizzotto, 2001) 

 

3.1.1. Attenuation Functions  

By considering the attenuation function 𝑔1 of Eqn. (3.5), the effects of the internal 

length scale parameter, ℓ, and 𝑥 are shown in Figure 3.2. It can be seen from Figure 

3.2(a) that if ℓ → 0, 𝑔1 becomes Dirac delta function, 𝛿(𝑥 − �̃�), which represents a 

complete local action. On the contrary, if ℓ increases, 𝑔1 becomes more uniform, 

representing a nonlocal action and diffusion process. This causes non-zero 𝑔 values 

at the boundaries, which means the material response at a point 𝑥 is affected by the 

complete material domain. By changing 𝑥, the center of the 𝑔1 is changed as seen in 

Figure 3.2(b).    

The terms 1/2ℓ and 1/𝑊(𝑥) in Eqns. (3.5) and (3.6), respectively, are used in order 



38 

 

to normalize the attenuation functions in the integral domain. Note that 1/2ℓ is a 

constant term, whereas 1/𝑊(𝑥) is a function of the material point. Normality 

conditions for 𝑔1 and 𝑔2 are given as:  

∫ 𝑔1(𝑥, �̃�)𝑑𝑣′ 
 

𝛺∞

= ∫
1

2ℓ
 𝑒
(−
|𝑥 − �̃�|
ℓ

)
𝑑�̃� = 1

 

𝛺∞

 (3.7) 

∫𝑔2(𝑥, �̃�) 𝑑𝑣
 

𝛺

= ∫
1

𝑊(𝑥)
 𝑒
(−
(𝑥 − �̃�)2

2ℓ2
)
𝑑�̃�

 

𝛺

= 1 (3.8) 

Note that the integral domains for 𝑔1 and 𝑔2 are 𝛺∞ and 𝛺, respectively. This means 

that for 𝑔1, the normality condition is fulfilled for infinite domain and it cannot be 

met for finite domain boundaries. Whereas for 𝑔2, normality condition can be 

fulfilled in any integral domain by defining 𝑊(𝑥) as follows: 

𝑊(𝑥) = ∫ 𝑒
(−
(𝑥 − �̃�)2

2ℓ2
)
𝑑�̃�

 

𝛺

 (3.9) 

 

  

Figure 3.2  – (a) Effect of ℓ, (b) effect of x on attenuation function 𝑔1 

 

Figure 3.3 shows 𝑔1 and 𝑔2 curves for a unit volume in one dimension. As can be 

seen form Figure 3.3(a), the curves are symmetric. Both curves have almost the same 

peak value and the area under the curves are unity. Figure 3.3(b) shows 𝑔1 and 𝑔2 

curves at the boundaries of the domain. Note that the maximum value of 𝑔1 is the 

same at the boundary as in the middle of the domain and therefore the area under the 

curve halves. Whereas, the maximum value of 𝑔2 increases at the boundary 

(a) (b) 
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compared to the middle and the area under the curve remains unity. 

Figure 3.4 shows values of Eqns. (3.7) and (3.8) at every material point in the 

domain. Although the area under 𝑔2 is constant and equal to unity, the area under 𝑔1 

is decreasing towards the domain boundaries. Therefore, if 𝑔1 is used, the calculated 

field, i.e. 𝜎, will decrease towards the boundaries. 

  

Figure 3.3  –Attenuation functions 𝑔1 and 𝑔2 for, (a) x=0.5, ℓ=0.1, (b) x=0, ℓ 

=0.1 

 

 

 

 

Figure 3.4  – Area under attenuation functions, 𝑔1 and 𝑔2, for ℓ =0.1 

 

3.1.2. One-Dimensional Rod under Constant Load 

In literature, the kernel function 𝑔1 is used in several studies and the nonlocality at 

the boundaries is considered; Pisano and Fuschi (2003), Polizzotto et al. (2004), 

Polizzotto et al. (2006), Benvenuti and Simone (2013), Malagu et al. (2014).  

𝑔1(𝑥,  �̃�) =
1

2ℓ
 𝑒−|𝑥 − 𝑥|/ℓ 

𝑔2(𝑥,  �̃�) =
1

𝑊(𝑥)
 𝑒−(𝑋 − �̃�)2/2ℓ2 

𝑥 = 0.5,     ℓ = 0.1 

𝑥 = 0,     ℓ = 0.1 

ℓ=0.1 

(a) (b) 
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If a 1D rod subjected to a constant load at one end and clamped at the other end, is 

considered as shown in Figure 3.5, a constant strain and a constant stress is obtained 

along the rod in the local elasticity. If 𝑔1 is used in Eqn. (3.4) for a 1D rod then one 

obtains: 

𝜎 =
𝑃

𝐴
= ∫ 𝑔1(𝑥, �̃�) 𝐸𝜀(�̃�) 𝑑�̃�

𝐿

0

 (3.10) 

where, 𝜎 is the constant stress along the rod. It can be observed that a constant strain 

cannot be achieved along the rod, see Figure 3.6. The non-constant strain is due to 

the attenuation function considered which ceases to hold the normality condition at 

the boundaries. The above situation can be avoided by using a different attenuation 

function, i.e., 𝑔2 in Eqn. (3.6), which fulfills the normality condition in the problem 

domain rather than in an infinite domain, see Figure 3.6.   

 

Figure 3.5  –1D rod under constant end load 

 

 

 

 

Figure 3.6  –Strain ε along the rod under constant end load for two different 

attenuation functions  

 

3.1.2.1. Alternative Nonlocal Models 

In Eringen (2002) another form of Eqn. (3.4) is given: 

ℓ=0.1 
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𝝈(𝑥)  = 𝜉1𝑪: 𝜺(𝑥) + 𝜉2∫𝑔(𝑥, �̃�) 𝑪: 𝜺(�̃�) 𝑑�̃�
 

𝛺

 (3.11) 

where, 𝜉1 can be considered as the local part and 𝜉2 can be considered as the nonlocal 

part of a two-phase material. When 𝜉1 = 1 and 𝜉2 = 0, Eqn. (3.11) reduces to the 

local formulation given in Eqn. (3.1), and when 𝜉1 = 0 and 𝜉2 = 1, Eqn. (3.11) 

reduces to the original nonlocal formulation given in Eqn. (3.4).  

Pisano and Fuschi (2003) considered a bar of uniform cross-section 𝐴 = 1 and finite 

length 𝐿, subjected to a boundary force 𝐹 = 𝐴𝜎 applied at the end sections so that a 

uniform tensile stress, 𝜎, is induced in the bar. The bar is made of a nonlocal 

homogeneous isotropic linear elastic material whose constitutive behavior complies 

with Eqn. (3.11) in 1D form. Then, Eqn. (3.11) can be modified as: 

𝜀(𝑥) =
𝜀̅

𝜉1
−
𝜉2
𝜉1
∫ 𝑔(𝑥, �̃�) 𝜀(�̃�) 𝑑�̃�
𝐿

0

 (3.12) 

where 𝜀̅ = 𝜎/𝐸. By assuming 𝑔 = 𝑔1 and converting (3.12) to Volterra integral 

equation of second kind, Pisano and Fuschi (2003) obtained a closed form solution 

for the strain: 

𝜀(𝑥)  = 𝜀̅ −
𝜆𝑙

2
𝜀[̅𝑒(𝜆𝑥ℓ−𝑥)/ℓ + 𝑒(𝜆ℓ𝐿−𝜆ℓ𝑥−𝐿+𝑥)/ℓ] (3.13) 

where 𝜀 ̅is the uniform strain of the local solution, and 𝜆 = −𝜉2/2ℓ𝜉1.  

Benvenuti and Simone (2013) also gave the closed form solution in a different 

format as: 

𝜀(𝑥) = 𝐶1 cosh(𝜅𝑥) + 𝐶2 sinh(𝜅𝑥) +
𝜀̅

𝜉1
−
𝜅1
𝜅
(1 − cosh(𝜅𝑥)) (3.14) 

where 

𝜅 =
1

ℓ
√
𝜉1 + 𝜉2
𝜉1

 (3.15) 

𝜅1 =
𝜉2𝜀̅

𝜉1
2ℓ2𝜅

 (3.16) 

𝐶1 = 𝐶2𝜅ℓ (3.17) 
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𝐶2 =
𝜅1/(𝜅ℓ)(1 − cosh (𝜅𝐿)) − 𝜅1sinh (𝜅𝐿)

𝜅2ℓ sinh(𝜅𝐿) + 2𝜅cosh(𝜅𝐿) + (1/ℓ)sinh (𝜅𝐿)
 (3.18) 

Benvenuti and Simone (2013) also considered some constraints on the values of 𝜉1 

and 𝜉2. They showed that as ℓ ⟶ 0, 𝑔1 becomes 𝛿(𝑥 − �̃�), and therefore:  

𝜉1 + 𝜉2 = 1 (3.19) 

They also pointed out that micro/nano structures should behave stiffer than the 

macro structure, therefore: 

𝜉1 ≥ 1 (3.20) 

Figure 3.7 shows the analytical solutions of a 1D rod under constant end load by 

considering strain expressions given in Eqn. (3.13) and Eqn. (3.14), and constraints 

Eqn. (3.19) and (3.20) for 𝐿 = 100, ℓ = 10, 𝜀 ̅ = 1, 𝜉1 = 1.5, 0.5. As seen from 

Figure 3.7(a), if 𝜉1 > 1, strain at the boundaries is lower than the strain in the middle, 

whereas, if 𝜉1<1, the strain at the boundaries is higher than the strain in the middle, 

Figure 3.7(b). For both cases, strain in the middle of the rod approaches to 𝜀.̅ The 

same problem was also analyzed with series solutions by Abdollahi and Boroomand 

(2013) and the result was compared with the solution of Pisano and Fuschi (2003). 

They showed that the solution of Pisano and Fuschi (2003) gives erroneous results. 

They modified (3.13) by minimizing the difference with the series solutions for 

some specific values of problem parameters, see Abdollahi and Boroomand (2013) 

for the details. 

  

Figure 3.7  – Analytical solutions of Pisano and Fuschi (2003) and Benvenuti 

and Simone (2013) for 1D rod under constant end load 

(a) 

𝐿 = 100, ℓ = 10, 𝜀̅ = 1, 𝜉1 = 1.5 𝐿 = 100, ℓ = 10, 𝜀̅ = 1, 𝜉1 = 0.5 

(b) 
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As seen from Figure 3.7, the nonlocal elasticity of the form in Eqn. (3.11) still has 

the property of decreasing strain towards the boundaries for constant load along the 

rod. Polizzotto et al. (2004) proposed a new formulation, which eliminates this 

deficiency. By taking the uniform strain, 𝜀,̅ the stress at the boundaries of the domain 

can be written as: 

𝜎(𝑥)  = 𝑊(𝑥)𝐸𝜀 ̅ (3.21) 

where: 

𝑊(𝑥) = ∫
1

2ℓ
 𝑒
(−
|𝑥 − �̃�|
ℓ

)
 𝑑�̃�

 

𝑥

 (3.22) 

It can be realized that the undistributed stress at the boundaries can be written as: 

𝜎(𝑥)  = [1 −𝑊(𝑥)]𝐸𝜀(𝑥) (3.23) 

Therefore, the original Eringen model (3.4) can be modified as: 

𝜎(𝑥)  = [1 −𝑊(𝑥)]𝐸𝜀(𝑥) + ∫𝑔1(𝑥, �̃�)𝐸𝜀(�̃�) 𝑑�̃�
 

𝛺

 (3.24) 

The above equation implies that, in the inner domain where 𝑊(𝑥) = 1, the local 

part [1 −𝑊(𝑥)]𝐸𝜀(𝑥) does not contribute to stress response whereas at the 

boundaries, the local part increases to make the stress response constant along the 

domain. Note that, in Eqn. (3.24), 𝐸 is constant through the domain, but it can be 

replaced with 𝐸(𝑥) changing through the domain. By comparing Eqn. (3.11) and 

Eqn. (3.24), it can be shown that Eqn. (3.11) satisfies the constant strain under 

constant stress condition if 𝜉1 = [1 −𝑊(𝑥)] and 𝜉2 = 1. In Polizzotto et al. (2004), 

nonlocal formulations for non-homogeneous rods are also proposed. 

There have been also some nonlocal models developed particularly for CNTs. Sudak 

(2003) developed a model for the column buckling of MWCNTs, based on the 

theory of nonlocal continuum mechanics. Peddieson et al. (2003) provided the Euler 

beam bending formulations of nonlocal elasticity. Polizzotto et al. (2004, 2006) 

provided alternative formulations for homogeneous and non-homogeneous 1D rods. 

Murmu and Pradhan (2009) studied the thermo-mechanical vibration of a single-
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walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity 

theory. Arash and Wang (2012) provided a review on recent studies on the 

application of the nonlocal continuum theory in modeling of carbon nanotubes and 

graphene sheets under static and dynamic loadings. Also an introduction to the 

nonlocal beam, plate, and shell models were given in Arash and Wang (2012). 

Malagu et al. (2014) investigated the application and performance of high-order 

approximation techniques to 1D nonlocal elastic rods. They compared the accuracy 

and convergence rate of the numerical solutions obtained by Lagrange, Hermite, B-

spline finite elements and C1 generalized finite elements with the corresponding 

analytical solutions. Malagu et al. (2015) used an atomistic based nonlocal 

attenuation function and validated the nonlocal modeling of CNT under axial tensile 

load by using molecular mechanics approach. They investigated the effects of 

chirality and size on the results.  

 

3.1.3. Some Remarks 

Finite Deformation: 

The nonlocal elasticity formulation for large strain framework is basically the same 

as the small strain formulation. The difference is to choose the strain/deformation 

measure on which the nonlocality integral will be applied. As an example, Dreimeier 

et al. (2005) applied large strain nonlocal elasticity for a nonhomogeneous 1D rod.  

 

Thermodynamic Framework: 

Discussions of the thermodynamic aspects and restrictions of the nonlocal elasticity 

can be found in Polizzotto (2001, 2003) and Polizzotto et al. (2006). He commented 

that, because the internal energy density at a point is dependent on the strain field in 

the nonlocal elasticity, the principle of local action of thermodynamics does not 

hold, and therefore the first principle of thermodynamics can only be written for the 

whole body.  

 

Variational Formulation and FE Modeling: 
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Variational formulation and FE modeling of the nonlocal elasticity are provided in 

Polizzotto (2001) and Polizzotto et al. (2006) by considering the total potential 

energy. Polizzotto (2001) also provided variational formulations based on the 

complementary energy and the Hu-Washizu principle.   

 

3.2. AIFANTIS’S STRAIN GRADIENT ELASTICITY 

In the gradient elasticity, stress at a material point is not only a function of the strain 

but also function of the higher order derivatives of displacement, strain or stress. 

The strain gradient form can be given as: 

𝝈 = �̂�(𝜺, 𝛻2𝜺) (3.25) 

where 𝛻2 is the Laplacian, i.e., 𝛻2𝜺 denotes the divergence of the gradient of 𝜺. 

There are also higher order gradient models in literature. Askes et al. (2002) 

proposed a 4th order strain gradient, 𝛻4𝜺, model. They showed that although 2nd and 

4th order gradient formulations give similar results in static applications, 4th order 

model gives more reliable results in dynamic applications at higher wave numbers. 

The strain gradient form of the gradient elasticity is given as (Altan and Aifantis, 

1992):  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − 𝑙
2𝛻2𝜀𝑘𝑙) (3.26) 

or, alternatively: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(1 − 𝑙
2𝛻2)𝜀𝑘𝑙            (3.27) 

where, ℓ is the internal length scale related with the material microstructure that can 

be linked to the inter particle distance in discrete models, grain size, etc. By 

assuming 𝜎𝑖𝑗
0 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙, the stress gradient form of the Aifantis model can be 

written as 

𝜎𝑖𝑗 = (𝜎𝑖𝑗
0 − 𝑙2𝛻2𝜎𝑖𝑗

0) (3.28) 
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where 𝜎𝑖𝑗
0  is the stress tensor in local elasticity. By considering  𝜀𝑘𝑙 = 1/2(𝑢𝑘,𝑙 +

𝑢𝑙,𝑘) and the symmetry conditions of 𝐶𝑖𝑗𝑘𝑙, the displacement gradient form of the 

Aifantis model can be written as: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝑢𝑘,𝑙 − 𝑙
2𝛻2𝑢𝑘,𝑙) (3.29) 

In (3.26), 𝐶𝑖𝑗𝑘𝑙 is given as: 

𝐶𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘) (3.30) 

where, 𝜆, 𝜇 are the Lamé constants and 𝛿 is the Kronecker delta. By inserting (3.30) 

into (3.26), stress can be written as: 

𝜎𝑖𝑗 = 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑘𝑙 − 𝑙
2𝛻2(𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑘𝑙) (3.31) 

In tensor notation, (3.31) is written as: 

 𝝈 = 𝜆 tr(𝜺)𝟏 + 2𝜇𝜺 − 𝑙2𝛻2(𝜆 tr(𝜺)𝟏 + 2𝜇𝜺) (3.32) 

where, tr(. ) is the trace operator and 𝟏 is the 2nd order identity tensor. By 

considering the static equilibrium equation 𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0, (3.26) can be written as: 

1

2
𝐶𝑖𝑗𝑘𝑙 (𝑢𝑘,𝑙𝑗 + 𝑢𝑙,𝑘𝑗 − 𝑙

2(𝑢𝑘,𝑙𝑗 + 𝑢𝑙,𝑘𝑗),𝑚𝑚) + 𝑏𝑖 = 0 (3.33) 

where, 𝑏𝑖 is the body load per unit volume. Because of the symmetry of the strain 

tensor, (3.33) can also be written as: 

𝐶𝑖𝑗𝑘𝑙 (𝑢𝑘,𝑙𝑗 − 𝑙
2(𝑢𝑘,𝑙𝑗𝑚𝑚)) + 𝑏𝑖 = 0 (3.34) 

or, in tensor notation 

𝑪: (𝒖′′ − 𝑙2𝒖′′′′) + 𝒃 = 𝟎 (3.35) 

 

3.2.1. Variational Formulation and FE modeling 

The strain energy density for a linear gradient material is given by: 

𝑤 =  
1

2
𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1

2
𝑙2𝜀𝑖𝑗,𝑚𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙,𝑚 (3.36) 
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     =
1

2
𝜀𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1

2
𝑙2𝜂𝑖𝑗𝑚𝐶𝑖𝑗𝑘𝑙𝜂𝑘𝑙𝑚 

The stress tensor 𝜎𝑖𝑗  and the higher order stress tensor (double stress) 𝜇𝑖𝑗𝑚 can be 

obtained by differentiating Eqn. (3.36) with respect to 𝜀𝑖𝑗 and 𝜂𝑖𝑗𝑚, respectively: 

   𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝜀𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 = 𝜎𝑗𝑖 (3.37) 

𝜇𝑖𝑗𝑚 =
𝜕𝑤

𝜕𝜂𝑖𝑗𝑚
= ℓ2𝐶𝑖𝑗𝑘𝑙𝜂𝑘𝑙𝑚 = ℓ2𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙,𝑚 = ℓ2𝜎𝑖𝑗,𝑚 = 𝜇𝑗𝑖𝑚 (3.38) 

The total potential energy in 3D can be given as (Lam et al. 2003, Gao and Park, 

2007, Papanicolopulos et al. 2009, Zibaei et al. 2014, Rudraraju et al. 2014, Zhou et 

al. 2016): 

𝛱(𝒖) =
1

2
∫(𝝈: 𝜺 + 𝝁 ⋮ 𝜼)𝑑𝑣 −
 

𝛺

∫𝒃 ⋅ 𝒖𝑑𝑣
 

𝛺

 

                −∫(𝒕 ⋅ 𝒖 + 𝒒 ⋅ 𝑫𝒖)𝑑𝑎
 

𝛤

−∫𝒓 ⋅ 𝒖𝑑𝑐
 

𝛶

 

(3.39) 

where, 𝝈 is the Cauchy stress, 𝝁 is the double stress, 𝒃 is the body load, 𝒕 is the 

traction, 𝒒 is the higher order traction, 𝒖 is the displacement, 𝑫𝒖 is the normal 

derivative of the displacement, 𝒓 is the line load. For clarity reasons, variational 

formulation and FE modeling of Aifantis model in 1D are provided below. For a 1D 

problem, 𝜎 and 𝜇 can be written as: 

𝜎 = 𝐸𝜀 = 𝐸𝑢′         and         𝜇 = 𝑙2𝐸𝜂 = 𝑙2𝐸𝜀′ = 𝑙2𝐸𝑢′′ (3.40) 

where E is the Young’s modulus. The first variation of the potential energy can be 

written as:  

𝛿𝛱(𝒖) =
1

2
∫(𝝈: 𝛿𝜺 + 𝝁 ⋮ 𝛿𝜼)𝑑𝑣 −
 

𝛺

∫𝒃. 𝛿𝒖𝑑𝑣
 

𝛺

 

                −∫(𝒕. 𝛿𝒖 + 𝒒. 𝛿𝑫𝒖)𝑑𝑎
 

𝛤

−∫𝒓. 𝛿𝒖𝑑𝑐
 

𝛶

 

(3.41) 

The line integral in Eqn. (3.39) vanishes for 1D formulation and the boundary 

integral reduces to nodal forces. Then, the first variation of the total potential energy 

in 1D is expressed as: 
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𝛿𝛱(𝑢) =
1

2
∫(𝜎𝛿𝜀 + 𝜇𝛿𝜂)𝑑𝑣 −
 

𝐿

∫𝑏𝛿𝑢𝑑𝑣
 

𝐿

− (𝑡𝐴𝛿𝑢 + 𝑞𝐴𝛿𝐷𝑢)|𝛤 (3.42) 

Using Eqns. (3.40) in (3.42) gives: 

𝛿𝛱(𝑢) 

= ∫ [𝐸𝐴𝑢′𝛿𝑢′ + 𝑙2𝐸𝐴𝑢′′𝛿𝑢′′]𝑑𝑥
𝐿

0

−∫ 𝑏𝐴𝛿𝑢𝑑𝑥
𝐿

0

− (𝑡𝐴𝛿𝑢 + 𝑞𝐴𝛿𝐷𝑢)|𝛤 
(3.43) 

Integration of the higher order term by parts gives: 

𝛿𝛱(𝑢) = ∫ [𝐸𝐴(𝑢′ − 𝑙2𝑢′′′)𝛿𝑢′]𝑑𝑥
𝐿

0

+ (𝐸𝐴𝑙2𝑢′′𝛿𝑢′)|𝛤 

     −∫ 𝑏𝐴𝛿𝑢𝑑𝑥
𝐿

0

− (𝑡𝐴𝛿𝑢 + 𝑞𝐴𝛿𝐷𝑢)|𝛤    

(3.44) 

Integrating the first integral by parts gives: 

𝛿𝛱(𝑢) = −∫ [𝐸𝐴(𝑢′′ − 𝑙2𝑢′′′′) + 𝑏𝐴]𝛿𝑢𝑑𝑥
𝐿

0

                                      

               +[𝐸𝐴𝑙2𝑢′′𝛿𝑢′ + 𝐸𝐴(𝑢′ − 𝑙2𝑢′′′)𝛿𝑢]|𝛤 − (𝑡𝐴𝛿𝑢 + 𝑞𝐴𝛿𝐷𝑢)|𝛤   

(3.45) 

In equilibrium, the first variation vanishes: 

𝛿𝛱(𝑢) = 0 (3.46) 

Eqn. (3.46) holds for any 𝛿𝑢 and 𝛿𝑢’. Consequently, the equilibrium equation and 

the boundary conditions are obtained: 

𝐸(𝑢′′ −  𝑙2𝑢′′′′) + 𝑏 = 0            ∀𝑥 ∈ [0, 𝐿] (3.47) 

𝐸(𝑢′ − 𝑙2𝑢′′′) = 𝑡̅ 

                    𝑢 = �̅� 

on 𝛤𝑡 
(3.48) 

on 𝛤𝑢 

                 𝐸𝑙2𝑢′′ = �̅� 

              𝑢′ = 𝐷𝑢̅̅ ̅̅ = �̅�′   

on 𝛤𝑞 
(3.49) 

on 𝛤𝐷𝑢 

where 𝛤𝑢 and 𝛤𝑡 are the boundaries on which axial displacements and tractions are 

prescribed, respectively. 𝛤𝐷𝑢 and 𝛤𝑞 are the boundaries on which normal strains and 

double tractions are prescribed, respectively. In particular, 𝛤𝑢 ∪ 𝛤𝑡 = 𝛤, 𝛤𝑢 ∩ 𝛤𝑡 =

0, 𝛤𝐷𝑢 ∪ 𝛤𝑞 = 𝛤 and 𝛤𝐷𝑢 ∩ 𝛤𝑞 = 0 must hold. From Eqns. (3.47)-(3.49), it is worth 
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noting that, beside the prescribed axial forces, 𝑡𝐴, and displacements, 𝑢, either 

double axial force, 𝑞𝐴, or the axial strain, 𝑢′, need to be specified at the boundary. 

It must be noted that, in gradient elasticity higher order stress or strain are required.  

Imposing 𝛿𝛱 = 0, Eqn. (3.43) can be rewritten as: 

𝑲𝒖 = 𝒇 (3.50) 

where, 𝑲 is the stiffness tensor and 𝒇 is the force vector: 

𝑲 =
𝑛𝑒𝑙
𝐴

𝑒 = 1
∫ (𝑩𝑇𝐸𝐴𝑩 + 𝑙2

𝑑𝑩𝑇

𝑑𝑥
𝐸𝐴

𝑑𝑩

𝑑𝑥
)𝑑𝑥

𝑥2
𝑒

𝑥1
𝑒

 (3.51) 

𝒇 =
𝑛𝑒𝑙
𝐴

𝑒 = 1
(𝒇𝛺

𝑒 + 𝒇𝛤
𝑒 )  =

𝑛𝑒𝑙
𝐴

𝑒 = 1
[∫ 𝑵𝑇𝑏𝐴𝑑𝑥 + (𝑵𝑇𝑡𝐴 − 𝑩𝑇𝑞𝐴)|𝛤

𝑥2
𝑒

𝑥1
𝑒

] (3.52) 

where, 𝑩 matrix includes the derivatives of the shape functions. Detailed FE 

formulation can be found in Shu et al. (1999), Papanicolopulos et al. (2009). The 

numerical approximation of 𝑢 should be 𝐶1-continuous within the domain because 

of the higher order derivative of 𝑢. The standard 𝐶0  basis functions, such as 

Lagrangian basis functions, cannot be employed. Hermite and B-spline basis 

functions can be used to satisfy such continuity requirement, (Malagu et al., 2014). 

Alternatively, mixed finite element formulations, which require only 𝐶0-continuity, 

can be employed (Askes and Gutierrez, 2006).  

 

3.2.2. Staggered Gradient Elasticity 

The gradient elasticity formulations include higher order derivatives of 

displacements, strains, stresses etc. Therefore, a higher order continuity, 𝐶1 at least, 

of shape functions is required in finite element formulation. Askes et al. (2008) 

summarized the methods that fulfill this continuity requirement: 

 Hermite polynomials and B-spline shape functions can be used (Malagu et al. 

2014) 

 Mixed finite elements can be used (Askes and Gutierrez, 2006) 

 Meshless methods can be used 
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 Penalty methods can be used 

 Continuous/discontinous Galerkin methods can be used  

All of the above methods have their advantages and disadvantages. With respect to 

𝐶0 Laplacian finite elements, the main disadvantages of the above methods are 

computational burden, implementation difficulties and stability issues. Another way 

of implementing gradient elasticity is to change the problem formulation. In the 

staggered gradient elasticity, 4th order differential equation is rewritten as a two set 

of 2nd order differential equation which reduces the continuity requirement to 𝐶0. 

Then, the 2nd order equations can be solved consecutively. There are displacement, 

strain and stress formulations of the staggered gradient elasticity as in the standard 

gradient case. Reader can refer to the reference Askes et al. (2008) for further details. 

 

3.2.3. Sign of the gradient term in Aifantis Gradient Elasticity 

Askes et al. (2002) considered two different second order gradient elasticity models. 

One is the usual Aifantis model:  

𝝈 = 𝑪: (𝜺 − 𝑙2𝛻2𝜺) (3.53) 

and the other is: 

𝝈 = 𝑪: (𝜺 + 𝑙2𝛻2𝜺) (3.54) 

They obtained Eqn. (3.54) with the homogenization of a discrete system with a 

Taylor Series expansion. They considered Eqn. (3.53) as phenomenological, but 

(3.54) as microstructural because it is developed from a discrete microstructure. 

They showed that the analytical solution of Eqn. (3.53) is exponential type, 

smoothing the heterogeneities in the strain field, whereas Eqn. (3.54) is harmonic 

type introducing heterogeneities in the strain field as shown in Figure 3.8.  



51 

 

 

Figure 3.8  –Two motivations for using higher-order gradients: smoothing or 

regularization of heterogeneities in the strain field (top) and the introduction of 

heterogeneities in the strain field (bottom), Askes et al. (2002) 

 

They commented that Eqn. (3.53) has a stable and unique solution, but has no 

physical basis because of the unmatched dispersion relations with the discrete 

model. On the other hand, Eqn. (3.54) has a physical basis but it is conditionally 

stable and may give non-unique results.  

Askes et al. (2002) also introduced a fourth order gradient elasticity as an extension 

to Eqn. (3.54) which is derived from the homogenization of the microstructure: 

𝜎 = 𝐸(𝜀 +
1

12
𝑑2
𝜕2𝜀

𝜕𝑥2
+
1

12
𝑑4
𝜕4𝜀

𝜕𝑥4
+⋯) (3.55) 

where 𝑑 is the inter-particle distance. By omitting, the fourth order term and taking 

𝑑 = 𝑙√12, Eqn. (3.54) can be reproduced. They showed that that the 4th order model 

has the physical microstructural basis of the model Eqn. (3.54), and stability and 

uniqueness properties of the model Eqn. (3.53). 

 

3.2.4. Relation to Eringen’s Nonlocal Elasticity  

Remember the Eringen nonlocal formulation of stress, Eqn. (3.4): 

𝜎𝑖𝑗
𝑔
(𝑥) = ∫𝑔(𝑥, 𝑡)𝜎𝑖𝑗

𝑐 (�̃�)𝑑V
 

V

 (3.56) 
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where, 𝜎𝑖𝑗
𝑔

 is the nonlocal stress tensor, 𝜎𝑖𝑗
𝑐 (𝑡) is the local stress tensor and 𝑔 is the 

attenuation function. It was shown in Eringen (1983) that the integral Eqn. (3.56) 

can be simplified to the following differential equation: 

𝜎𝑖𝑗
𝑔
− ℓ2𝜎𝑖𝑗,𝑘𝑘

𝑔
= 𝜎𝑖𝑗

𝑐  (3.57) 

A similar stress based formulation can also be written for Aifantis model, Eqn. 

(3.28). Askes and Aifantis (2011) and Askes and Gitman (2010) explained the 

difference between the two formulations by comparing the balance equations. They 

explained that the Eringen model uses 𝜎𝑖𝑗
𝑔

 for the equilibrium whereas the Aifantis 

model uses 𝜎𝑖𝑗
𝑐  for the equilibrium: 

𝜎𝑖𝑗,𝑗
𝑔
+ 𝑏𝑖 = 0       (Eringen) (3.58) 

𝜎𝑖𝑗,𝑗
𝑐 + 𝑏𝑖 = 0       (Aifantis) (3.59) 

Because the Aifantis model is uncoupled, it is simpler to implement. Askes and 

Gitman (2010) commented that the Eringen model was developed for dynamics, 

whereas the Aifantis model was developed for statics. They also compared wave 

dispersion results of both model with discrete lattice model results, and showed that 

the Eringen model is better suited for dynamic applications.     

It was stated in Aifantis (2011) that by starting with an implicit constitutive equation 

of the form 𝑓(𝜺, 𝝈, ∇2𝜺, ∇2𝝈) =0 and assuming 𝑓 is a linear isotropic tensor function 

of its arguments, the relevant representation theorem for 𝑓 gives: 

tr(𝛼1𝜺 + 𝛼2𝝈)𝟏 + 𝛼3𝜺 + 𝛼4𝝈 + 𝛻
2[tr(𝛼5𝜺 + 𝛼6𝝈)𝟏 + 𝛼7𝜺 + 𝛼8𝝈] = 𝟎 (3.60) 

where 𝛼𝑖 are constants. It was stated that the Eringen model 𝜀𝑖𝑗= 𝐶𝑖𝑗𝑘𝑙
−1 (1 − 𝑐𝛻2)𝜎𝑘𝑙, 

the Aifantis model 𝜎𝑖𝑗= 𝐶𝑖𝑗𝑘𝑙(1 − 𝑐𝛻
2)𝜀𝑘𝑙, and implicit gradient model (1 −

𝑐1𝛻
2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(1 − 𝑐2𝛻

2)𝜀𝑘𝑙 can be obtained by the special choices of 𝛼𝑖.  

 

3.2.5. Mindlin Higher Order Gradient Elasticity in Small Strain Limit 

The Midlin theory (Mindlin, 1964) is the general form of the gradient elasticity. In 

this theory, there are three different forms of higher deformation measures in 
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literature (Polizzotto, 2017, Askes and Aifantis, 2011):  

- In Form I, higher order deformation measure is considered as the second 

gradient of displacement: 𝜂𝑖𝑗𝑘 = 𝜕𝑘𝜕𝑗𝑢𝑖 = 𝑢𝑖,𝑗𝑘 

- In Form II, higher order deformation measure is considered as the first 

gradient of strain: 𝜂𝑖𝑗𝑘 = 𝜕𝑘𝜀𝑖𝑗 = 1/2(𝑢𝑖,𝑗𝑘 + 𝑢𝑗,𝑖𝑘) 

- In Form III, higher order deformation measure is divided into two parts, the 

gradient of macroscopic rotation 𝜒𝑖𝑗 =
1

2
𝜖𝑗𝑙𝑘𝑢𝑘,𝑖𝑙 and the symmetric part of 

the second gradient of macroscopic displacement 𝜂𝑖𝑗𝑘 =
1

3
(𝑢𝑖,𝑗𝑘 + 𝑢𝑗,𝑖𝑘 +

𝑢𝑘,𝑖𝑗). 

In this study, the strain gradient elasticity of Form II is considered. Further 

information on different forms can be found in Askes and Aifantis (2011), Polizzotto 

(2017) and Gusev and Lurie (2017).  

In Form II gradient elasticity, the strain energy density 𝑤 is a function of both strain 

and strain gradient: 

𝑤 = 𝑤(𝜀𝑖𝑗, 𝜂𝑖𝑗𝑘) (3.61) 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),             𝜂𝑖𝑗𝑘 = 𝜀𝑖𝑗,𝑘 =

1

2
(𝑢𝑖,𝑗𝑘 + 𝑢𝑗,𝑖𝑘) (3.62) 

where, 𝒖 is the displacement vector, 𝜀𝑖𝑗 is the 2nd order strain tensor, 𝜂𝑖𝑗𝑘 is the 3rd 

order strain gradient tensor. Note that 𝜀𝑖𝑗 = 𝜀𝑗𝑖 and 𝜂𝑖𝑗𝑘 = 𝜂𝑗𝑖𝑘 , that is strain gradient 

is symmetric with respect to first two indices in Form II. It is worth to note that the 

symmetry condition for Form I formulation is different. In Form I, 𝜂𝑖𝑗𝑘 is symmetric 

with respect to last two indices. If a linear gradient elasticity is considered, 𝑤 is 

expressed in the general quadratic form (Gusev and Lurie, 2017): 

𝑤 =  
1

2
𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 + 𝐵𝑖𝑗𝑘𝑙𝑚𝜀𝑖𝑗𝜂𝑘𝑙𝑚 +

1

2
𝐴𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑖𝑗𝑘𝜂𝑙𝑚𝑛    (3.63) 

where 𝐶𝑖𝑗𝑘𝑙, 𝐵𝑖𝑗𝑘𝑙𝑚 and 𝐴𝑖𝑗𝑘𝑙𝑚𝑛 are the components of the 4th, 5th and 6th order 

elasticity tensors. In addition to the Cauchy stress 𝜎𝑖𝑗, which is work conjugate of 

strain tensor 𝜀𝑖𝑗, in the classical theory, the gradient theory also includes a double 

stress tensor 𝜇𝑖𝑗𝑘, which is work conjugate to the strain gradient 𝜂𝑖𝑗𝑘. The stress 
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tensors 𝜎𝑖𝑗  and 𝜇𝑖𝑗𝑘 can be obtained by differentiating Eqn. (3.63) with respect to 

𝜀𝑖𝑗 and 𝜂𝑖𝑗𝑘, respectively: 

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝜀𝑖𝑗
= 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 + 𝐵𝑖𝑗𝑘𝑙𝑚𝜂𝑘𝑙𝑚   (3.64) 

𝜇𝑖𝑗𝑘 =
𝜕𝑤

𝜕𝜂𝑖𝑗𝑘
= 𝐵𝑙𝑚𝑖𝑗𝑘𝜀𝑙𝑚 + 𝐴𝑖𝑗𝑘𝑙𝑚𝑛𝜂𝑙𝑚𝑛    (3.65) 

The components of the elasticity tensors 𝑨, 𝑩 and 𝑪 obey the conditions (Gusev and 

Lurie, 2017): 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 ,          𝐴𝑖𝑗𝑘𝑙𝑚𝑛 = 𝐴𝑙𝑚𝑛𝑖𝑗𝑘 (3.66) 

and strain symmetry conditions (Gusev and Lurie, 2017): 

𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘 = 𝐶𝑗𝑖𝑘𝑙 ,     𝐵𝑖𝑗𝑘𝑙𝑚 = 𝐵𝑗𝑖𝑘𝑙𝑚 = 𝐵𝑖𝑗𝑙𝑘𝑚,  

   𝐴𝑖𝑗𝑘𝑙𝑚𝑛 = 𝐴𝑗𝑖𝑘𝑙𝑚𝑛 = 𝐴𝑖𝑗𝑘𝑚𝑙𝑛 
(3.67) 

Since tensors 𝑪, 𝑩 and 𝑨 obey strain symmetry conditions, stresses 𝝈 and 𝝁 are also 

symmetric: 

𝜎𝑖𝑗 = 𝜎𝑗𝑖  ,          𝜇𝑖𝑗𝑘 = 𝜇𝑗𝑖𝑘 (3.68) 

Substituting 𝜀𝑖𝑗 = (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 into constitutive laws Eqns. (3.64) and (3.65) and 

using symmetry conditions (3.67) one obtains: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝑢𝑘,𝑙 + 𝐵𝑖𝑗𝑘𝑙𝑚𝑢𝑘,𝑙𝑚   (3.69) 

𝜇𝑖𝑗𝑘 = 𝐵𝑙𝑚𝑖𝑗𝑘𝑢𝑙,𝑚 + 𝐴𝑖𝑗𝑘𝑙𝑚𝑛𝑢𝑙,𝑚𝑛    (3.70) 

By taking into account the symmetry considerations Eqns. (3.66) and (3.67), for a 

general centrosymmetric isotropic linear elastic solid, the strain energy density can 

be expressed as (Mindlin 1964, Zhou et al. 2016):  

𝑤 = 
1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 + 𝑎1𝜂𝑖𝑗𝑗𝜂𝑖𝑘𝑘 + 𝑎2𝜂𝑖𝑖𝑘𝜂𝑘𝑗𝑗  

+𝑎3𝜂𝑖𝑖𝑘𝜂𝑗𝑗𝑘 + 𝑎4𝜂𝑖𝑗𝑘𝜂𝑖𝑗𝑘 + 𝑎5𝜂𝑖𝑗𝑘𝜂𝑘𝑗𝑖      

(3.71) 

where, 𝜆 and 𝜇 are the classical Lame constants and 𝑎𝑖 are the additional material 

constants of dimension stress times length squared. The derivation of Eqn. (3.71) 
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from the most general Mindlin form is given in Abali et al. (2015). A discussion on 

the derivation of higher-order isotropic tensors and their application in the 

formulation of enhanced continuum models can be found in Suiker and Chang 

(2000). The stress tensors 𝜎𝑖𝑗 and 𝜇𝑖𝑗𝑘 for isotropic case can be obtained as: 

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝜀𝑖𝑗
= 𝜆𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗 (3.72) 

𝜇𝑖𝑗𝑘 =
𝜕𝑤

𝜕𝜂𝑖𝑗𝑘
=
1

2
𝑎1(𝛿𝑖𝑗𝜂𝑘𝑝𝑝 + 2𝛿𝑗𝑘𝜂𝑝𝑝𝑖 + 𝛿𝑖𝑘𝜂𝑗𝑝𝑝) + 2𝑎2𝛿𝑗𝑘𝜂𝑖𝑝𝑝    

                                 +𝑎3(𝛿𝑖𝑗𝜂𝑝𝑝𝑘 + 𝛿𝑖𝑘𝜂𝑝𝑝𝑗) + 2𝑎4𝜂𝑖𝑗𝑘 + 𝑎5(𝜂𝑘𝑗𝑖 + 𝜂𝑗𝑘𝑖) 

(3.73) 

Polizzotto (2017) provided the conditions on the coefficients of Eqn. (3.73) for the 

positive definiteness of the strain energy.  

Because the requirement of the determination of the additional five elastic constants, 

Eqn. (3.73) is undesirable from experimental point of view. By imposing some 

restrictions (further symmetry conditions, deformation modes etc.), the number of 

the coefficients have been reduced in literature. By assuming that the strain energy 

is independent of the anti-symmetric part of the rotation gradient, Lam et al. (2003) 

proposed a strain gradient isotropic elasticity model for couple stresses with only 

three coefficients. Gusev and Lurie (2015) formulated a simplified isotropic model 

of strain gradient elasticity with two coefficients. Zhou et al. (2016) proposed that 

only three material constants are required instead of five coefficients by using 

hydrostatic-deviatoric and symmetric-antisymmetric decompositions. Polizzotto 

(2017) classified the gradient elasticity models according to considered number of 

coefficients as: 

- Generalized model (5 independent coefficients) 

- Gradient-symmetric model (4 independent coefficients) 

- Hemi-collinear model (3 independent coefficients) 

- Collinear model (2 independent coefficients) 

- Micro-affine model (1 independent coefficient) 

Micro-affine model coincides with the generally used Aifantis model when the 

following identification is made: 
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𝐴𝑖𝑗𝑘𝑙𝑚𝑛 = ℓ
2𝛿𝑖𝑙𝐶𝑗𝑘𝑚𝑛 (3.74) 

The strain energy density 𝑤 of the Aifantis model includes only one additional 

material constant: 

𝑤 =  
1

2
𝜆𝜀𝑖𝑖𝜀𝑗𝑗 + 𝜇𝜀𝑖𝑗𝜀𝑖𝑗 + 𝑐 (

1

2
𝜆 𝜂𝑖𝑖𝑘𝜂𝑗𝑗𝑘 + 𝜇 𝜂𝑖𝑗𝑘𝜂𝑖𝑗𝑘) (3.75) 

where, 𝑐 (= ℓ2) is a constant of length squared. For 𝑐 = 0, Eqn. (3.75) reduces to 

the classical isotropic linear elasticity. The stress tensors 𝜎𝑖𝑗  and 𝜇𝑖𝑗𝑘 can be 

obtained by differentiating (3.75) with respect to 𝜀𝑖𝑗 and 𝜂𝑖𝑗𝑘 , respectively: 

𝜎𝑖𝑗 =
𝜕𝑤

𝜕𝜀𝑖𝑗
= 𝜆𝜀𝑙𝑙𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗                           (3.76) 

𝜇𝑖𝑗𝑘 =
𝜕𝑤

𝜕𝜂𝑖𝑗𝑘
= 𝑐(𝜆𝜀𝑙𝑙𝛿𝑖𝑗 + 2𝜇𝜀𝑖𝑗),𝑘 = 𝑐𝜎𝑖𝑗,𝑘 (3.77) 

Aifantis also (2011) showed that the Aifantis model can be obtained from the 

Mindlin model by choosing the constants in Eqn. (3.71) as: 

𝑎1 = 𝑎2 = 𝑎5 = 0,          𝑎3 = 𝜆𝑐/2,          𝑎4 = 𝜇𝑐 (3.78) 

The physical interpretation of the double stress components for Form I and Form II 

formulations of gradient elasticity are given by Polizzotto (2016, 2017). The 

variational formulation of the strain gradient elasticity is provided by Gao and Park 

(2007).  

 

3.2.6. Some Remarks  

Discussions for the thermodynamic aspects and restrictions of the gradient elasticity 

can be found in Polizzotto (2003). He commented that, in local continuum theories, 

the first principle of thermodynamics is applicable in a pointwise form, and in the 

gradient theory, the first principle can be enforced only in the whole domain and the 

long-distance energy interchanges must be taken into account.  

In the micromorphic elasticity, the strain energy is written as (Ferretti et al. 2014): 

𝑊 = 𝑊(𝜀𝑖𝑗, 𝛾𝑖𝑗, 𝜂𝑖𝑗𝑘) (3.79) 



57 

 

𝛾𝑖𝑗 = 𝜀𝑖𝑗 − 𝜑𝑖𝑗 (3.80) 

𝜂𝑖𝑗𝑘 = 𝜑𝑖𝑗,𝑘 (3.81) 

where, 𝛾𝑖𝑗 is the relative deformation, 𝜑𝑖𝑗 micro deformation. If the relative 

deformation is zero, then 𝜑𝑖𝑗 → 𝜀𝑖𝑗 and 𝜂𝑖𝑗𝑘 → 𝜀𝑖𝑗,𝑘 which is the second gradient 

formulation of Form II of Mindlin theory.     

Shu et al. (1999) developed finite elements of Fleck—Hutchinson 

phenomenological strain gradient theory which fits within the Toupin—Mindlin 

framework. The developed elements are of the mixed type that use displacements 

and displacement gradients as nodal degrees of freedom. These elements require 𝐶0 

continuity in displacement based FE implementation rather than the usual 𝐶1 

continuity of the usual gradient elasticity. Although, they simplified the formulation 

by 𝐶0 continuous finite elements, stability issues are present for the developed finite 

elements.  

In order to illustrate the size effect in materials, Aifantis (1999) considered the 

gradient elasticity by adopting a simple strength of materials approach for torsion 

and bending of solid bars. He considered the first and second gradient of the strain 

in torsion and bending formulations. He showed that the first or the second gradient 

of the strain components is dominant according to the loading condition and 

material. 

Askes and Gutiérrez (2006) discussed mixed finite element method and the order of 

shape functions for unkowns for gradient elasticity. 

Davoudi et al. (2009) considered the stress field of a screw dislocation inside an 

embedded nanowire within the theory of strain-gradient elasticity. They showed that 

the stress singularity is removed around the dislocation and all stress components 

are continuous and smooth across the interface, in contrast to the singular stress field 

of the classical theory of elasticity. 

There are several studies concerning strain gradient formulations of rods/bars/beams 

and shells/plates. Beskou and Beskos (2010) provided a review on the gradient 

elastic response of bars, beams, plates and shells under static loading with the 

Aifantis model. 
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Aifantis (2011) provided a review article comparing different theories including the 

Eringen’s nonlocal stress gradient model, the Aifantis strain gradient model, the 

Mindlin higher order model. He also gave several example applications of strain 

gradient elasticity.  

In addition to statics formulations, there have also been dynamic formulations of the 

Aifantis gradient elasticity including Laplacian of acceleration in literature. In their 

review article, Askes and Aifantis (2011) provided static and dynamic formulations 

and applications of gradient elasticity.    

Although static applications are concerned in this study, the gradient elasticity is 

also utilized in dynamics. In dynamics, wave dispersion is studied generally with the 

gradient elasticity, see Askes and Aifantis (2011), Askes and Gitman (2010). 

Akgöz and Civalek (2016) investigated static bending response of SWCNTs 

embedded in an elastic medium on the basis of higher-order shear deformation 

microbeam models in conjunction with modified strain gradient theory.  

Barretta et al. (2017) studied the internal length scale parameter ℓ by comparing 

molecular structural mechanics and gradient elasticity results of CNTs under axial 

and bending loads. They commented that ℓ depends on CNT diameter, length, 

boundary conditions, chirality etc. They also stated that nonlocal effects diminish as 

the geometrical parameters are increased, converging to the same value in all 

considered cases.    

Barretta et al. (2017) studied the bending of armchair carbon nanotubes by means of 

the gradient elasticity. They determined the internal length scale parameter 

employed in the Bernoulli-Euler and the Timoshenko gradient formulations with 

molecular structural mechanics simulations with different loading and kinematic 

boundary conditions.  

Detailed information on the irreducible forms and mechanical interpretations of the 

strain gradients and higher order stiffness tensors can be found in Aufray (2013), 

Aufray et al. (2013), Lazar (2016), Gusev and Lurie (2017), Polizzotto (2017).       

Several authors provided the variational formulation of gradient elasticity in the 

large deformation framework, see Rudraraju et al. (2014), Zibaei et al. (2014), Abali 

et al. (2015). The variational procedure for the large strain Mindlin model is the 
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same as in the small strain case, which is discussed in previous section. Therefore, 

some of the discussions are not given for the large strain gradient elasticity.  
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CHAPTER 4  

 

A MODULUS GRADIENT MODEL FOR AN AXIALLY LOADED 

INHOMOGENEOUS ELASTIC ROD 

 

 

In the previous chapter, several non-classical elasticity formulations are introduced. 

The details are given for the Eringen model of nonlocal elasticity and the Aifantis 

model of gradient elasticity. It is seen that, these formulations involve higher order 

strain/stress fields and nonstandard boundary conditions which are difficult to 

understand intuitively. They also have complex variational and finite element 

formulations/implementations.  

In this chapter, a new simple gradient elasticity formulation, E-grad model (Gülaşık 

et al. 2018a), is proposed. In the new formulation, similar to the relation between 

local and gradient fields of displacement/strain/stress in the gradient models of 

Aifantis (Askes et al. 2008), a differential relation is proposed for the elastic modulus 

variation of a one-dimensional inhomogeneous rod.  

Before giving the details of the proposed model, in Section 4.1, the gradient 

elasticity of Aifantis is briefly reviewed and its analytical solution is presented. 

Then, in Section 4.2, the E-grad model is introduced. In Section 4.3, the results of 

Aifantis’s and E-grad models are presented and discussed for a one-dimensional 

inhomogeneous rod.  

 

4.1. REVIEW OF AIFANTIS’S GRADIENT ELASTICITY MODEL 

In this section, Aifantis’s gradient elasticity theory is briefly explained in the 

displacement form.  

  

4.1.1. Problem Definition and Governing Differential Equations 

Aifantis (1992) proposed a simple gradient elasticity model with only one more 

additional constant compared to the classical elasticity. In his strain gradient 
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elasticity formulation, stress at a material point is not only a function of the strain 

but also function of the higher order derivative of the strain. The simplest form of 

gradient elasticity is given in indicial notation as:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑘𝑙 − ℓ
2𝜀𝑘𝑙,𝑚𝑚) (4.1) 

Eqn. (4.1) represents the strain gradient form of the Aifantis’s model. Using the 

classical strain-displacement relations  𝜀𝑘𝑙 = 1/2(𝑢𝑘,𝑙 + 𝑢𝑙,𝑘) and the symmetry 

conditions of 𝐶𝑖𝑗𝑘𝑙, the displacement gradient form of the Aifantis’s model is derived 

from Eqn. (4.1) as: 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝑢𝑘,𝑙 − ℓ
2𝑢𝑘,𝑙𝑚𝑚) (4.2) 

Insertion of Eqn. (4.2) into the static equilibrium equation 𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 results in: 

1

2
𝐶𝑖𝑗𝑘𝑙 (𝑢𝑘,𝑙𝑗 + 𝑢𝑙,𝑘𝑗 − ℓ

2(𝑢𝑘,𝑙𝑗 + 𝑢𝑙,𝑘𝑗),𝑚𝑚) + 𝑏𝑖 = 0 (4.3) 

where, 𝑏𝑖 is the body load per unit volume. Neglecting the body forces in a one-

dimensional problem, Eqn. (4.3) can be written as: 

𝑢𝑥,𝑥𝑥 − ℓ
2𝑢𝑥,𝑥𝑥𝑥𝑥 = 0 (4.4) 

The analytical solution of this differential equation is given in Askes et al. (2008) 

as: 

𝑢(𝑥)  = 𝑎1  + 𝑎2𝑥 + 𝑎3𝑒
𝑥
ℓ + 𝑎4𝑒

−
𝑥
ℓ (4.5) 

As a model problem, a 3-phase rod with different Young’s moduli subjected to a tip 

displacement is considered, Figure 4.1, and solutions are provided further. The 

displacement field in Eqn. (4.5) can be written for each phase of the rod as: 

0 < 𝑥 < 𝐿𝑀  𝑢1(𝑥) = 𝑐1 + 𝑐2𝑥 + 𝑐3𝑒
𝑥
ℓ + 𝑐4𝑒

−
𝑥
ℓ (4.6) 

𝐿𝑀 < 𝑥 < 𝐿𝑀 + 𝐿𝐼  𝑢2(𝑥) = 𝑐5 + 𝑐6𝑥 + 𝑐7𝑒
𝑥
ℓ + 𝑐8𝑒

−
𝑥
ℓ (4.7) 

𝐿𝑀 + 𝐿𝐼 < 𝑥 < 2𝐿𝑀 + 𝐿𝐼  𝑢3(𝑥) = 𝑐9 + 𝑐10𝑥 + 𝑐11𝑒
𝑥
ℓ + 𝑐12𝑒

−
𝑥
ℓ (4.8) 

The coefficients 𝑐1…𝑐12 in in Eqns. (4.6)-(4.8) are solved for the considered 

displacement/strain/traction boundary conditions along the rod. Once the 

coefficients are obtained, displacement, strain and stress fields can be computed. 
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Figure 4.1 – 3-phase rod subjected to prescribed tip displacement 

 

4.1.2. Boundary Conditions  

The considered boundary conditions are given below. These conditions correspond 

to continuity of displacement 𝑢, displacement gradient 𝑢,𝑥
 , traction 𝑡 and higher 

order traction 𝑞 along the interfaces. In addition, at the two ends of the rod the 

displacement 𝑢 and its second derivative 𝑢,𝑥𝑥
  are assumed to be prescribed. 

𝑥 = 0, 𝑢1 = 0     → 𝑐1 + 𝑐3 + 𝑐4 = 0 (4.9) 

𝑥 = 0, 𝑢1,𝑥𝑥
 = 0  → 𝑐3 + 𝑐4 = 0 (4.10) 

𝑥 = 𝐿𝑀, 𝑢1
 = 𝑢2

    → 
𝑐1 + 𝑐2𝐿𝑀 + 𝑐3𝑒

𝐿𝑀
ℓ + 𝑐4𝑒

−
𝐿𝑀
ℓ  

= 𝑐5 + 𝑐6𝐿𝑀 + 𝑐7𝑒
𝐿𝑀
ℓ + 𝑐8𝑒

−
𝐿𝑀
ℓ  

(4.11) 

𝑥 = 𝐿𝑀, 𝑢1,𝑥
 = 𝑢2,𝑥

 → 

𝑐2 +
1

ℓ
𝑐3𝑒

𝐿𝑀
ℓ −

1

ℓ
𝑐4𝑒

−
𝐿𝑀
ℓ  

= 𝑐6 +
1

ℓ
𝑐7𝑒

𝐿𝑀
ℓ −

1

ℓ
𝑐8e

−
𝐿𝑀
ℓ  

(4.12) 

𝑥 = 𝐿𝑀, 𝑡1
 = 𝑡2

      → 𝐸𝑀𝑐2 = 𝐸𝐼𝑐6 (4.13) 

𝑥 = 𝐿𝑀, 𝑞1
 = 𝑞2

     → 

𝐸𝑀 [𝑐3e
𝐿𝑀
ℓ + 𝑐4e

−
𝐿𝑀
ℓ ] 

= 𝐸𝐼 [𝑐7e
𝐿𝑀
ℓ + 𝑐8e

−
𝐿𝑀
ℓ ] 

(4.14) 

𝑥 = 𝐿𝑀 + 𝐿𝐼, 𝑢2
 = 𝑢3

    → 

𝑐5 + 𝑐6(𝐿𝑀 + 𝐿𝐼) + 𝑐7e
𝐿𝑀+𝐿𝐼
ℓ

+ 𝑐8e
−
𝐿𝑀+𝐿𝐼
ℓ  

= 𝑐9 + 𝑐10(𝐿𝑀 + 𝐿𝐼) + 𝑐11𝑒
𝐿𝑀+𝐿𝐼
ℓ

+ 𝑐12e
−
𝐿𝑀+𝐿𝐼
ℓ  

(4.15) 
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𝑥 = 𝐿𝑀 + 𝐿𝐼, 𝑢2,𝑥
 = 𝑢3,𝑥

  → 

𝑐6 +
1

ℓ
𝑐7𝑒

𝐿𝑀+𝐿𝐼
ℓ −

1

ℓ
𝑐8𝑒

−
𝐿𝑀+𝐿𝐼
ℓ  

= 𝑐10 +
1

ℓ
𝑐11𝑒

𝐿𝑀+𝐿𝐼
ℓ −

1

ℓ
𝑐12𝑒

−
𝐿𝑀+𝐿𝐼
ℓ  

(4.16) 

𝑥 = 𝐿𝑀 + 𝐿𝐼, 𝑡2
 = 𝑡3

       → 𝐸𝐼𝑐6 = 𝐸𝑀𝑐10 (4.17) 

𝑥 = 𝐿𝑀 + 𝐿𝐼, 𝑞2
 = 𝑞3

       → 

𝐸𝐼 [𝑐7𝑒
𝐿𝑀+𝐿𝐼
ℓ + 𝑐8𝑒

−
𝐿𝑀+𝐿𝐼
ℓ ] 

= 𝐸𝑀 [𝑐11𝑒
𝐿𝑀+𝐿𝐼
ℓ + 𝑐12𝑒

−
𝐿𝑀+𝐿𝐼
ℓ ] 

(4.18) 

𝑥 = 2𝐿𝑀 + 𝐿𝐼, 𝑢3
 = �̅�        → 

𝑐9 + 𝑐10(2𝐿𝑀 + 𝐿𝐼) + 𝑐11𝑒
2𝐿𝑀+𝐿𝐼

ℓ

+ 𝑐12𝑒
−
2𝐿𝑀+𝐿𝐼

ℓ = �̅� 

(4.19) 

𝑥 = 2𝐿𝑀 + 𝐿𝐼, 𝑢3,𝑥𝑥
 = 0    → 𝑐11𝑒

2𝐿𝑀+𝐿𝐼
ℓ + 𝑐12𝑒

−
2𝐿𝑀+𝐿𝐼

ℓ = 0 (4.20) 

Because the model of Aifantis is a simplification of the more general Mindlin model, 

some additional fields and also gradient enhanced versions of classical fields are 

present. The mentioned fields are summarized together with the standard 

displacement, strain and stress fields below:  

 𝑢(𝑥) = 𝑎1  +  𝑎2𝑥 + 𝑎3𝑒
𝑥
ℓ + 𝑎4𝑒

−
𝑥
ℓ  (4.21) 

 𝜀(𝑥) = 𝑢,𝑥 = 𝑎2 +
1

ℓ
𝑎3𝑒

𝑥
ℓ −

1

ℓ
𝑎4𝑒

−
𝑥
ℓ (4.22) 

 𝜂(𝑥) = 𝜀,𝑥 = 𝑢,𝑥𝑥 =
1

ℓ2
𝑎3𝑒

𝑥
ℓ +

1

ℓ2
𝑎4𝑒

−
𝑥
ℓ  (4.23) 

 𝑒(𝑥) = 𝜀 − ℓ2𝜀,𝑥𝑥 (4.24) 

 𝜎(𝑥) = 𝐸𝜀 (4.25) 

 𝜇(𝑥) = ℓ2𝐸𝜂 = ℓ2𝐸𝜀,𝑥 (4.26) 

 𝜎𝑔(𝑥) = 𝐸(𝜀 − ℓ2𝜀,𝑥𝑥) = 𝐸𝑒 (4.27) 

 𝑡(𝑥) = 𝐸(𝑢,𝑥 − ℓ
2𝑢,𝑥𝑥𝑥) = 𝐸(𝜀 − ℓ

2𝜀,𝑥𝑥) = 𝜎𝑔 (4.28) 

 𝑞(𝑥) = ℓ2𝐸𝑢,𝑥𝑥 = 𝜇 (4.29) 

where, 𝜂 is the strain gradient field, 𝑒 is the effective (gradient) strain feld, 𝜎 is the 
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stress field, 𝜇 is the higher order stress field, 𝜎𝑔 is the effective (gradient) stress 

field, 𝑡 is the traction (gradient enhanced), 𝑞 is the higher order traction. The details 

of the variational formulation, boundary conditions, higher order and enhanced 

fields of the gradient elasticity formulation can be found in Polizzotto (2003), Gao 

and Park (2007) and Askes et al. (2008). 

 

4.2. E-MODULUS GRADIENT (E-GRAD) MODEL  

In gradient elasticity theories, there are additional and enhanced vector and tensor 

fields which are difficult to interpret. The boundary conditions also require special 

attention which also need to be changed according to the type of formulation, i.e., 

displacement gradient, strain gradient, or stress gradient elasticity formulations 

(Askes et al., 2008).  

In this section, as in the Aifantis’s gradient formulations, a gradient formulation is 

applied to the elasticity modulus of an inhomogeneous rod (Gülaşık et al. 2018a): 

𝐸 
𝑔 − ℓ2𝐸,𝑥𝑥

𝑔
= 𝐸 

𝑐 (4.30) 

where, 𝐸 
𝑔 is the gradient enhanced continuous Young’s modulus field, 𝐸 

𝑐 is 

classical discontinuous Young’s modulus field of inhomogeneous material and ℓ is 

the internal length scale parameter. As a result of Eqn. (4.30), a continuous modulus 

variation of 𝐸 
𝑔 is obtained along the inhomogeneous rod compared to step-wise 

variation of 𝐸 
𝑐 in classical elasticity theory. E-grad model also leads to a continuous 

variation in displacement, strain and stress fields along the rod. Furthermore, E-grad 

model does not need introduction of several additional enhanced gradient fields and 

the boundary conditions are easier to interpret in comparison to gradient models 

available in literature.  

It is important to note that, higher-order fields are indeed needed for the correct 

simulation of some singular elasticity problems. For example, Rudararaju et al. 

(2014) removed the singularities in a homogeneous elastic material deformed by an 

edge loading by using higher-order gradient elasticity theory.  
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4.2.1. Problem Definition and Governing Differential Equations 

The solution of Eqn. (4.30) is given as:  

𝐸 
𝑔(𝑥) = 𝐸 

𝑐 + 𝑎1𝑒
𝑥
ℓ + 𝑎2𝑒

−
𝑥
ℓ (4.31) 

where, 𝑎1 and 𝑎2 are the constants to be determined with the use of the boundary 

conditions for modulus change along the rod. Note that for a homogeneous rod, 𝑎1 =

𝑎2 = 0 and 𝐸 
𝑔 = 𝐸 

𝑐.    

In addition to differential Eqn. (4.30), the constitutive and balance equations are 

given, respectively, as:   

𝜎 
𝑔(𝑥) = 𝐸𝑔(𝑥)𝜀(𝑥) (4.32) 

𝜎,𝑥
𝑔
+ 𝑏 = 0 (4.33) 

where, 𝑏  is the body force. In Eqn. (4.32) the constitutive relation is written using 

the gradient enhanced Young’s modulus 𝐸𝑔 which depends on spatial position 𝑥 

along the rod. Neglecting the body forces, Eqn. (4.33) can be extended as: 

𝐸,𝑥
𝑔(𝑥)𝜀(𝑥) + 𝐸 

𝑔(𝑥)𝜀,𝑥(𝑥) = 0 (4.34) 

𝐸,𝑥
𝑔(𝑥)𝑢,𝑥(𝑥) + 𝐸 

𝑔(𝑥)𝑢,𝑥𝑥(𝑥) = 0 (4.35) 

Using Eqns. (4.31) and (4.35), the displacement field is obtained as: 

𝑢(𝑥) =

𝑘1ℓ 𝑡𝑎𝑛
−1 (

2𝑐1𝑒
𝑥
ℓ + 𝐸𝑐

√4𝑐1𝑐2 − (𝐸𝑐)2
)

√4𝑐1𝑐2 − (𝐸𝑐)2
+ 𝑘2 

(4.36) 

where, 𝑘1 and 𝑘2 are the constants to be determined with the use of boundary 

conditions for the displacement. 

The same 3-phase rod in Figure 4.1 is also considered for the E-grad formulation. 

The Young’s modulus equations for each phase of the rod can be written with the 

help of Eqn. (4.31): 

0 < 𝑥 < 𝐿𝑀  𝐸1
𝑔(𝑥) = 𝐸𝑀

 + 𝑐1𝑒
𝑥
ℓ + 𝑐2𝑒

−
𝑥
ℓ (4.37) 

𝐿𝑀 < 𝑥 < 𝐿𝑀 + 𝐿𝐼  𝐸2
𝑔(𝑥) = 𝐸𝐼

 + 𝑐3𝑒
𝑥
ℓ + 𝑐4𝑒

−
𝑥
ℓ (4.38) 
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𝐿𝑀 + 𝐿𝐼 < 𝑥 < 2𝐿𝑀 + 𝐿𝐼  𝐸3
𝑔(𝑥) = 𝐸𝑀

 + 𝑐5𝑒
𝑥
ℓ + 𝑐6𝑒

−
𝑥
ℓ (4.39) 

Then the displacement fields for each phase of the rod are obtained from Eqn. (4.36) 

as: 

0 < 𝑥 < 𝐿𝑀 
𝑢1(𝑥) =

𝑘1ℓ 𝑡𝑎𝑛
−1 (

2𝑐1𝑒
𝑥
ℓ + 𝐸𝑀

√4𝑐1𝑐2 − 𝐸𝑀
2
)

√4𝑐1𝑐2 − 𝐸𝑀
2

+ 𝑘2 
(4.40) 

𝐿𝑀 < 𝑥 < 𝐿𝑀 + 𝐿𝐼 
𝑢2(𝑥) =

𝑘3ℓ 𝑡𝑎𝑛
−1 (

2𝑐3𝑒
𝑥
ℓ + 𝐸𝐼

√4𝑐3𝑐4 − 𝐸𝐼
2
)

√4𝑐3𝑐4 − 𝐸𝐼
2

+ 𝑘4 
(4.41) 

𝐿𝑀 + 𝐿𝐼 < 𝑥 < 2𝐿𝑀 + 𝐿𝐼 
𝑢3(𝑥) =

𝑘5ℓ 𝑡𝑎𝑛
−1 (

2𝑐5 𝑒
𝑥
ℓ + 𝐸𝑀

√4𝑐5𝑐6 − 𝐸𝑀
2
)

√4𝑐5𝑐6 − 𝐸𝑀
2

+ 𝑘6 
(4.42) 

The coefficients 𝑐1, … , 𝑐6 and 𝑘1, … , 𝑘6 in Eqn. (4.37)-(4.42) are determined 

according to given modulus and displacement boundary conditions along the rod. 

Once the coefficients are obtained, displacement, strain and stress fields can be 

computed. 

 

4.2.2. Boundary Conditions  

The considered 𝐸-modulus boundary conditions for the Eqns. (4.37)-(4.39) are as 

follows. The modulus and the first derivative of the modulus are assumed to be 

continuous at the interfaces. Furthermore, at the start and the end of the domain 𝐸𝑔 

is assumed to be equal to the corresponding local modulus:  

𝑥 = 0  𝐸1
𝑔
= 𝐸𝑀

  (4.43) 

𝑥 = 𝐿𝑀  𝐸1
𝑔
= 𝐸2

𝑔
 (4.44) 

𝑥 = 𝐿𝑀  (𝐸1
𝑔
)
,𝑥
= (𝐸2

𝑔
)
,𝑥

 (4.45) 

𝑥 = 𝐿𝑀 + 𝐿𝐼  𝐸2
𝑔
= 𝐸3

𝑔
 (4.46) 

𝑥 = 𝐿𝑀 + 𝐿𝐼  (𝐸2
𝑔
)
,𝑥
= (𝐸3

𝑔
)
,𝑥

 (4.47) 
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𝑥 = 2𝐿𝑀 + 𝐿𝐼  𝐸3
𝑔
= 𝐸𝑀

  (4.48) 

The boundary conditions for the displacement, 𝑢, in Eqns. (4.40)-(4.42), are given 

next. Displacement continuity and strain continuity are assumed at the interfaces. 

The displacement is equal to the prescribed displacement at each end.  

𝑥 = 0  𝑢1 = 0 (4.49) 

𝑥 = 𝐿𝑀  𝑢1 = 𝑢2 (4.50) 

𝑥 = 𝐿𝑀  (𝑢1),𝑥 = (𝑢2),𝑥 (4.51) 

𝑥 = 𝐿𝑀 + 𝐿𝐼  𝑢2 = 𝑢3 (4.52) 

𝑥 = 𝐿𝑀 + 𝐿𝐼  (𝑢2),𝑥 = (𝑢3),𝑥 (4.53) 

𝑥 = 2𝐿𝑀 + 𝐿𝐼  𝑢3 = �̅� (4.54) 

 

4.2.3. Finite Element Implementation  

The variational formulations of Eqns. (4.30) and (4.33) are needed for the finite 

element formulation. Therefore, Eqn. (4.30) is multiplied with a weight function and 

integrated over the domain: 

∫𝑤(𝐸 
𝑔 − ℓ2𝐸,𝑥𝑥

𝑔
)𝑑𝐿

 

𝐿

= ∫𝑤𝐸 
𝑐𝑑𝐿

 

𝐿

 (4.55) 

Integrating by parts the second term of the left integral gives: 

∫(𝑤𝐸 
𝑔 + ℓ2𝑤′𝐸,𝑥

𝑔
)𝑑𝐿

 

𝐿

= ∫𝑤𝐸 
𝑐𝑑𝐿

 

𝐿

+ ℓ2𝑤𝐸,𝑥
𝑔
|
0

𝐿
 (4.56) 

The last term on the right side of the above equation is the boundary term. By 

considering 𝐸 
𝑔 to be specified at the boundaries, 𝑥 = 0 and 𝑥 = 𝐿, the last term of 

the above equation vanishes. 𝑤 and 𝐸 
𝑔 are interpolated as: 

𝑤 = 𝑁𝐸�̅� (4.57) 

𝐸 
𝑔 = 𝑁𝐸�̅� 

𝑔 (4.58) 

where, 𝑁𝐸 is the interpolation function, �̅� and �̅� 
𝑔 are nodal values. Inserting Eqns. 

(4.57) and (4.58) into Eqn. (4.56) gives: 
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�̅� ∫ (𝑁𝐸
𝑇𝑁𝐸 + ℓ

2𝐵𝐸
𝑇𝐵𝐸)𝑑𝐿 �̅� 

𝑔
 

𝐿

= �̅�∫𝑁𝐸
𝑇𝐸 

𝑐𝑑𝐿
 

𝐿

 (4.59) 

where, 𝐵𝐸 = 𝜕𝑁𝐸/𝜕𝑥. Eqn. (4.59) can be written in matrix form as: 

 𝐾𝐸�̅� 
𝑔 = 𝐹𝐸 (4.60) 

where, 𝐾𝐸 and 𝐹𝐸 are the stiffness matrix and load vector for modulus formulation 

and are given as: 

 𝐾𝐸 = ∫(𝑁𝐸
𝑇𝑁𝐸 + ℓ

2𝐵𝐸
𝑇𝐵𝐸)

 

𝐿

𝑑𝐿 (4.61) 

 𝐹𝐸 = ∫𝑁𝐸
𝑇𝐸 

𝑐𝑑𝐿
 

𝐿

 (4.62) 

The second equation to discretize is Eqn. (4.35). The FEM formulation of this 

equation is well-known from one-dimensional elasticity and only the final form is 

given: 

 𝐾𝑢�̅� = 𝐹𝑢 (4.63) 

 𝐾𝑢 = ∫ �̅� 
𝑔𝐵𝑢

𝑇𝐵𝑢

 

𝐿

𝑑𝐿 (4.64) 

 𝐹𝑢 = ∫𝑁𝑢
𝑇𝑏

 

𝐿

𝑑𝐿 (4.65) 

where, 𝐾𝑢 and 𝐹𝑢 are the stiffness matrix and load vector for displacement 

formulation. As can be seen, Eqns. (4.60) and (4.63) are decoupled. Therefore, after 

the solution of Eqn. (4.60), Eqn. (4.63) can be solved for the nodal displacements. 

 

4.3. RESULTS 

In this section, a comparative study is carried out with Aifantis’s gradient elasticity 

model and E-grad model. Only analytical results are given for Aifantis’s model, 

whereas both analytical and finite element results are given for E-grad model. The 

considered material parameters are given in Table 4.1. In the table, ‘I’ stands for the 

inclusion and ‘M’ stands for the matrix. Three different ℓ values are considered in 

the sequel. The Young’s modulus values for the matrix and the inclusion correspond 

to a typical thermoplastic polymer, e.g. PEEK, and carbon nanotubes (CNTs), 
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respectively. 

 

Table 4.1 – Problem parameters for 3-phase rod 

𝑳𝑴   

[mm] 

𝑳𝑰    
[mm] 

𝓵 

[𝟏𝟎−𝟓mm] 

𝑬𝑴 

[MPa] 

𝑬𝑰  
[MPa] 

�̅�         

[mm] 

1x10-3 1x10-3 1, 5, 10 3x103 1000x103 1 x10-5 

 

4.3.1. Aifantis’s Gradient Elasticity Model 

Aifantis’s model results are given for the 3-phase rod in Figure 4.1 with the 

parameters in Table 4.1. Using the boundary conditions in Eqns. (4.9)-(4.20), the 

coefficients in Eqns. (4.6)-(4.8) are found and unknown fields in Eqns. (4.21)-(4.29) 

are obtained.  

Figure 4.2 shows the corresponding displacement field for three different values of 

ℓ. As expected, displacement variation in the inclusion is much lower than the matrix 

regions. It can be seen that, with Aifantis’s model, a smoother field is obtained along 

the rod by removing the sharp kinks at the interfaces. By increasing ℓ, the 

displacement values are increased near the interfaces in the matrix. As ℓ → 0, local 

solution is recovered.  

 

 

Figure 4.2 – Analytical displacement, u, results of Aifantis’s model for    

ℓ=1×10-5, 5×10-5, 10×10-5 mm. 

ℓ = 1 × 10−5 
ℓ = 5 × 10−5 
ℓ = 10 × 10−5 
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Figure 4.3 (a)-(c) show 𝜀, 𝜂 and 𝑒 variations along the rod, respectively. Figure 4.3 

(a) shows that as ℓ decreases, local solution of 𝜀 is recovered. As ℓ increases, the 

strain discontinuities at the interfaces disappear and 𝜀 values increase in CNT and 

matrix regions.  As 𝜂 is the gradient of the strain, Figure 4.3 (b) shows jumps at the 

interfaces and these jumps decrease with the increase in ℓ.  Figure 4.3 (c) shows a 

stepwise distribution of 𝑒 along the rod which is caused because of the stepwise 

change in modulus values. As in the 𝜀 field, 𝑒 increases in CNT and matrix regions. 

 

 

Figure 4.3 –Analytical results of Aifantis’s model for ℓ=1×10-5, 5×10-5, 10×10-5 

mm. (a) Strain 𝜀, (b) strain gradient 𝜂 and (c) effective strain 𝑒. 

 

Figure 4.4 (a)-(c) show 𝜎, 𝜇 and 𝜎𝑔 variations along the rod, respectively. Figure 

4.4 (a) shows that 𝜎 exhibits jumps at the interfaces and generally increases with 𝑙 

along the rod. On the other hand, 𝜇 stays almost constant along the rod except at the 

interfaces, see Figure 4.4 (b). Figure 4.4 (c) shows that  𝜎𝑔 is constant along the rod 

ℓ = 1 × 10−5 
ℓ = 5 × 10−5 
ℓ = 10 × 10−5 
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as expected and increases with the increase in ℓ which is sign of the size effect. 

Tractions 𝑡 and 𝑞 are actually 𝜎𝑔 and 𝜇 values at the interfaces, therefore 𝑡 and 𝑞 

fields are the same with 𝜎𝑔 and 𝜇 fields in Figure 4.4 (b)-(c).  

 

 

Figure 4.4 –Analytical results of Aifantis’s model for ℓ=1×10-5, 5×10-5, 10×10-5 

mm. (a) Stress 𝜎, (b) higher order stress 𝜇, and (c) effective stress 𝜎𝑔.  

 

4.3.2. E-grad Model 

The coefficients of the analytical solutions of the displacements in Eqns. (4.40)-

(4.42) of the E-grad model are obtained from the boundary conditions in Eqns. 

(4.43)-(4.54). Both analytical and FEM results of 𝐸𝑔,𝑢, 𝜀 and 𝜎𝑔 along the rod are 

given in Figure 4.5 for 𝑙 = 10 × 10−5 together with the local solution. The solution 

of gradient enhanced modulus is obtained from Eqn. (4.60) by using 300 linear 

elements. Then, Eqn. (4.63) is solved for the displacements using the same mesh 

consisting of 300 linear elements. Naturally, the solution of Eqn. (4.63) requires the 

ℓ = 1 × 10−5 
ℓ = 5 × 10−5 
ℓ = 10 × 10−5 



73 

 

construction of the stiffness matrices. In this construction, the nodal values of the 

modulus obtained from Eqn. (4.60) are interpolated to two integration points of the 

linear elements and the stiffness matrices are evaluated with full integration. Having 

solved the nodal displacements then the strain and stress fields are calculated. As a 

result of linear shape functions, the strain field is constant inside an element, while 

the Young’s modulus varies linearly due to linear interpolation in Eqn. (4.58). 

Therefore, the uniform stress state cannot be generated inside a linear element if two 

integration points are used. This indeed leads to oscillations around the interface 

between two phases which will be shown in the next section. Therefore, after solving 

Eqn. (4.60) and Eqn. (4.63), for the visualization purposes the stress is evaluated 

only at the reduced integration points of the elements. It can be seen that analytical 

and FEM results are the same and continuity in 𝐸𝑔, 𝑢 and 𝜀 fields are achieved along 

the rod.  

  

 
 

Figure 4.5 – Analytical and FEM results of E-grad model for ℓ=10×10-5 mm 

together with the local solution, (a) Gradient enhanced Young’s modulus 𝐸𝑔, (b) 

displacement 𝑢, (c) strain 𝜀, (d) stress 𝜎. 
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Figure 4.6 shows FEM results of E-grad model for 𝐸𝑔, 𝑢, 𝜀 and 𝜎 along the rod for 

different ℓ values. In the figure, the classical elasticity results are also given and it 

can be seen that as ℓ decreases, all 𝐸𝑔, 𝑢, 𝜀 and 𝜎 fields converge to the classical 

elasticity solution as expected. Figure 4.6(a) shows that, a smooth transition in  𝐸𝑔 

values is achieved at the interfaces. The  𝐸𝑔 values at both ends and in the middle 

of the rod remain the same as classical values. Figure 4.6(b) shows that, a continuous 

displacement field is obtained along the rod by removing the kinks at the interfaces. 

As expected, the displacement in the inclusion is much lower than the matrix 

regions. The displacement values in the matrix, particularly near the interfaces, 

increase by increasing ℓ. As ℓ → 0, the local solution is recovered. Figure 4.6 (c) 

shows that, with an increase in ℓ, the strain values in the matrix close to the interfaces 

decease and strain values in the matrix near the boundaries increase. There is also 

an increase in the strain for the inclusion. Figure 4.6 (d) shows that, as ℓ increases, 

the stress for the E-grad model increases which is the sign of the size effect.  

Figure 4.7 compares the results of the Aifantis’s model and the proposed E-grad 

model for 𝑢, 𝜀 and 𝜎 fields along the rod for ℓ = 10 × 10−5. It can be seen that the 

effects of ℓ on E-grad model results are much stronger than the Aifantis’s model. 

Figure 4.7(a) shows that, the matrix near the interface exhibits much larger 

displacements for E-grad model than the Aifantis’s formulation, although the 

displacement at the ends are the same. As already shown in Figure 4.3(c), the 

effective strain, 𝑒, in the Aifantis’s model shows a stepwise behavior whereas the 

strain in the E-grad model shows a continuous behavior along the rod. The strains 

in the matrix for the E-grad model decrease near the interfaces and significantly 

increase towards to both ends, see Figure 4.7(b). The strain in the E-grad model at 

the boundaries is 0.010054 whereas it is 0.005541 for the Aifantis’s formulation, 

which means almost a %100 increase. The same behavior in strain is also seen in the 

uniform stress values in Figure 4.7(c); the stress is 30.62 MPa for the E-grad model 

whereas it is 16.62 MPa for the Aifantis’s model. 
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Figure 4.6 – FEM results for E-grad model for ℓ=0, 1×10-5, 5×10-5, 10×10-5 mm. 

(a) gradient enhanced Young’s modulus 𝐸𝑔, (b) displacement 𝑢, (c) strain 𝜀, (d) 

stress 𝜎.  

 

4.3.2.1. Oscillation in the Stress Field and Effect of Mesh Refinement 

When the fully integrated finite elements are used, oscillations in the stress field are 

observed as mentioned in the previous section.  This is because of the interpolation 

orders of the modulus-field (E) and the displacement field (u). The displacement is 

linear and therefore, the strain is constant inside an element, while E is linear inside 

an element. Thus, the stress evaluated as 𝜎 =  𝐸𝜀 cannot be uniform inside a linear 

element if two integration points are used. This indeed leads to oscillations around 

the interface between two phases. 

A study is performed to show how the oscillations change is investigated with 

element size and interpolation order, see Figure 4.8. In the first case, linear 

ℓ = 1× 10−5 
ℓ = 5× 10−5 
ℓ = 10× 10−5 
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interpolations are used for the modulus-field (E) and the displacement field (u), and 

the stress is visualized at full integration points, see Figure 4.8(a). In the second case, 

quadratic interpolations are used for the modulus-field (E) and the displacement 

field (u), and the stress is again visualized at full integration points, see Figure 4.8(b). 

As can be seen from the figures as the number of elements increases the magnitude 

of the oscillations decreases. Furthermore, the use of quadratic interpolation function 

reduces the magnitude of oscillations about one order of magnitude. Please note that 

the minimum and maximum values of the stress axis is 29.6 MPa and 31.6 MPa for 

Figure 4.8(a), while they are 30.4 MPa and 30.65 MPa for Figure 4.8(b). 

  

 

Figure 4.7 – Comparison of the Aifantis’s model and E-grad model results for 

ℓ= 10×10-5 mm. (a) displacement 𝑢, (b) strain 𝜀, (c) stress 𝜎. 

 

A case where the modulus-field (E) is interpolated with 300 linear shape functions 

while the displacement field (u) is interpolated with 150 quadratic shape functions 

ϵ 
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is also investigated, Figure 4.9. Therefore, the nodes of both meshes coincide. First 

the nodal E values are determined and then they are interpolated to full integration 

points of the mesh consisting of 150-quadratic elements for the solution of the 

displacement field. Finally, the stress is visualized by using full integration points 

of the quadratic mesh. The solution obtained by this procedure is compared with the 

one in which both fields are interpolated with quadratic functions (QQ), see Figure 

4.9. As can be seen form the figure, E, u and ε fields are almost the same, while there 

is a small shift in the stress field.  

  

Figure 4.8 – FEM results for E-grad model for ℓ=10×10-5 mm. (a) 𝜎 for 

300/600/1800 linear elements, (b) 𝜎 for 150/300/900 quadratic elements 
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Figure 4.9 – Comparison of FEM results for E-grad model for a linear 

interpolation of E, a quadratic interpolation of u and a quadratic interpolation of 

E, a quadratic interpolation of u. (a) Gradient enhanced Young’s modulus 𝐸𝑔, (b) 

displacement 𝑢, (c) strain 𝜀, (d) stress 𝜎. Results are shown for ℓ=10×10-5 mm. 
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CHAPTER 5  

 

A MODULUS GRADIENT MODEL FOR INHOMOGENEOUS 

MATERIALS WITH ISOTROPIC LINEAR ELASTIC CONSTITUENTS 

 

 

In this chapter, E-grad model for a one-dimensional inhomogeneous linear elastic 

rod proposed in the previous chapter is extended to a more general three-dimensional 

framework (Gülaşık et al. 2018b). Furthermore, a two-dimensional axisymmetric 

finite element formulation is given and a model problem is studied in detail.  

The governing partial differential equations of the proposed gradient elasticity 

model and related boundary conditions are discussed in Section 5.1. In Section 5.2, 

the weak forms of the differential equations and an axisymmetric finite element 

implementation of the model are provided. In Section 5.3, a soft cylindrical rod with 

a stiff spherical inclusion is solved and a comparison with experimental results of a 

polyimide/silica nanocomposite is given.  

 

5.1. DESCRIPTION OF THE MODEL 

Let ℳ be a set of elastic constants for an isotropic linear elastic material:  

ℳ = {𝐸𝑔, 𝐺𝑔, 𝜈𝑔, 𝜅𝑔, 𝜆𝑔} (5.1) 

where 𝐸𝑔 is the Young’s modulus, 𝐺𝑔 is the shear modulus, 𝜈𝑔 is the Poisson’s ratio, 

𝜅𝑔 is the bulk modulus and 𝜆𝑔 is the Lame’s constant. Obviously only two of the 

five elastic constants given above are independent for an isotropic linear elastic 

material. Three-dimensional generalization of the differential Eqn. (4.30) can be 

written for any material parameter 𝑀 
𝑔 ∈ ℳ as (Gülaşık et al. 2018b): 

𝑀 
𝑔 − div (𝓵2∇𝑀 

𝑔) = 𝑀 
𝑐 (5.2) 

In the above relations, the superscript 𝑔 stands for the gradient enhancement of the 

considered field and the superscript 𝑐 stands for the local values of the considered 

field. In Eqn. (5.2), 𝓵𝟐 is a second-order positive definite symmetric internal length 
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scale tensor, which can be expressed in the spectral form as: 

𝓵2 =∑ℓ𝛼
2𝒏𝛼⨂𝒏𝛼

𝛼

 (5.3) 

where ℓ𝛼
2  are the eigenvalues and 𝒏𝛼 are the eigenvectors of 𝓵𝟐. If an ellipsoidal 

inclusion is considered in a matrix, then the eigenvectors 𝒏𝛼 and the eigenvalues ℓ𝛼
2  

can be related to the principal directions and the corresponding radii of the ellipsoid. 

Therefore, the above form of 𝓵2 allows different length scale parameters in different 

directions which accounts for different microstructure variations in various 

directions. On the other hand, if a spherical inclusion is considered then the 

eigenvalues ℓ𝛼
2  can be considered as identical and hence the internal length scale 

tensor 𝓵2 becomes diagonal. 

Gitman et al. (2010) proposed a similar internal length scale tensor and obtained 

anisotropic versions of the Aifantis/Eringen models in stress gradient form. 

Although, the structure of the formulations shows similarities, the internal length 

scale tensor is directly applied to the stress tensor in Gitman et al. (2010), while it is 

applied to the elastic material parameters in the proposed model. A detailed 

discussion on the anisotropy in strain gradient elasticity models can be found in 

Polizzotto (2018) in which different forms of internal length and moduli tensors are 

discussed. 

It is well known that there are two independent material constants for an isotropic 

linear elastic material. Therefore, for an inhomogeneous material consisting of 

isotropic linear elastic constituents, it is required to specify two differential 

equations for two of the elastic constants belonging to the set ℳ. In this study, Eqn. 

(5.2) is written for the Young’s modulus 𝐸𝑔 and the shear modulus 𝐺𝑔, and the 

formulation is designated as 𝐸/𝐺 gradient model. 

Other than Eqn. (5.2) for the 𝐸/𝐺 model, the balance equation is required for the 

description of a mechanical problem as   

div 𝝈𝑔 + 𝒃 = 𝟎 (5.4) 

where 𝒃 is the body force vector and 𝝈𝑔 is the stress tensor obtained by a linear 

elastic constitutive relation  
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𝝈𝑔 = ℂ𝑔: 𝜺𝑔 (5.5) 

where ℂ𝑔 is the fourth order isotropic linear elasticity tensor which can be described 

in terms of two independent elastic constants 𝐸𝑔 and 𝐺𝑔. In Eqn. (5.5) 𝜺𝑔 is the 

infinitesimal strain tensor, i.e., the symmetric gradient of the displacement vector. 

The obtained 𝐸𝑔 and 𝐺𝑔 fields for the 𝐸/𝐺 model are used in Eqn. (5.5) to compute 

the corresponding stress field.   

To discuss the boundary conditions for the governing partial differential equations 

(5.2) and (5.4), an inhomogeneous domain 𝛺 consisting of two phases 𝛺𝑖 and 𝛺𝑚 

such that 𝛺 = 𝛺𝑖 ∪ 𝛺𝑚 is considered as shown in Figure 5.1. The inclusion 𝛺𝑖 is 

considered to be completely embedded into the matrix 𝛺𝑚. For the differential 

equation (5.2) the boundary 𝜕𝛺 of the domain is divided into two distinct sets such 

that 𝜕𝛺 = 𝜕𝛺𝑀 ∪ 𝜕𝛺𝛻𝑀 and ∅ = 𝜕𝛺𝑀 ∩ 𝜕𝛺𝛻𝑀, see Figure 5.1(a). Here 𝜕𝛺𝑀 

denotes the boundary where the material parameters are prescribed, i.e., 𝑀𝑔 = �̅�𝑔, 

and 𝜕𝛺𝛻𝑀 denotes the boundary where the fluxes of the material parameters are 

prescribed, i.e., (𝓵𝟐𝛻𝑀𝑔) ∙ 𝒏 = �̅�𝑛
𝑔

. Here 𝒏 is the outward unit normal to the 

boundary. Similarly, for the differential equation (5.4) the boundary 𝜕𝛺 is divided 

such that 𝜕𝛺 = 𝜕𝛺𝒖 ∪ 𝜕𝛺𝒕 and ∅ = 𝜕𝛺𝒖 ∩ 𝜕𝛺𝒕 where 𝜕𝛺𝒖 and 𝜕𝛺𝒕 correspond to 

the essential boundary where displacements are prescribed, i.e., 𝒖 = �̅� and the 

natural boundary where tractions are prescribed, i.e., 𝝈𝒏 = �̅�, respectively, see 

Figure 5.1(b).  

 

Figure 5.1 – An inhomogeneous domain 𝛺 consisting of a matrix phase 𝛺𝑚 and 

an inclusion phase 𝛺𝑖. (a) Decomposition of the boundary 𝜕𝛺 = 𝜕𝛺𝑀 ∪ 𝜕𝛺𝛻𝑀 into 

two distinct sets for the differential equation (5.2), (b) decomposition of the 

boundary 𝜕𝛺 = 𝜕𝛺𝑢 ∪ 𝜕𝛺𝑡 into two distinct sets for the differential equation (5.4). 



82 

 

 

5.2. FINITE ELEMENT IMPLEMENTATION 

A two-dimensional axisymmetric finite element implementation of Eqn. (5.2), 𝑀𝑔 

field, and Eqn. (5.4) is discussed below. However, the derivation from the strong 

form to the weak form is given for general three-dimensional problems. In order to 

obtain the weak form, Eqn. (5.2) is multiplied by a scalar test function 𝑤 and 

integrated over the domain: 

∫𝑤[𝑀 
𝑔 − div (𝓵2∇𝑀𝑔)]𝑑V

 

Ω

= ∫𝑤𝑀𝑐𝑑𝑉
 

Ω

 (5.6) 

After application of the integration by parts to the second term of left hand side, one 

obtains: 

∫[𝑤𝑀 
𝑔 +  ∇w ∙ (𝓵2∇𝑀𝑔)]𝑑V

 

Ω

= ∫𝑤𝑀𝑐𝑑𝑉
 

Ω

+∫ 𝑤(𝓵2∇𝑀𝑔) ∙ 𝒏 𝑑𝑆
 

𝜕Ω

 (5.7) 

where 𝒏 is the outward unit normal. If an axisymmetric problem is considered and 

the inclusion is spherical then 𝓵2 becomes two-dimensional and diagonal, i.e.: 

𝓵2 = [
ℓ𝑟 0
0 ℓ𝑧

] (5.8) 

then Eqn. (5.7) can be written as1: 

∫(𝑤𝑀 
𝑔 +𝑤,𝑟ℓ𝑟

2𝑀,𝑟
𝑔
+ 𝑤,𝑧ℓ𝑧

2𝑀,𝑧
𝑔
)2𝜋𝑟𝑑𝐴

 

Ω

= ∫𝑤𝑀 
𝑐2𝜋𝑟𝑑𝐴

 

Ω

+∫ 𝑤ℓ𝑟
2𝑀,𝑟

𝑔
𝑛𝑟2𝜋𝑟𝑑𝑆

 

𝜕Ω

+∫ 𝑤ℓ𝑧
2𝑀,𝑧

𝑔
𝑛𝑧2𝜋𝑟𝑑𝑆

 

𝜕Ω

 

(5.9) 

where 𝑑𝐴 = 𝑑𝑟𝑑𝑧, 𝑟 and 𝑧 are the radial and axial coordinates, and ℓ𝑟 and ℓ𝑧 denote 

the length scale parameters in 𝑟 and 𝑧 directions. In Eqn. (5.9) 𝑛𝑟 and 𝑛𝑧 are 𝑟 and 

𝑧 components of the outward unit normal 𝒏. In following discussions, the boundary 

conditions are assumed to be one of the two following cases. Either 𝑀 
𝑔 is specified 

as equal to 𝑀 
𝑐 at the boundary 𝜕𝛺𝑀, and therefore 𝑤 = 0, or homogeneous 

Neumann boundary conditions are assumed, and therefore 𝑀,𝑟
𝑔
= 𝑀,𝑧

𝑔
= 0 at the 

                                                 
1If 𝓵2 is assumed as a diagonal tensor then the governing differential equation (5.2) for 

axisymmetric problems becomes 𝑀 
𝑔 −

1

𝑟

𝜕

𝜕𝑟
(𝑟ℓ𝑟

2 𝜕𝑀 
𝑔

𝜕𝑟
) −

𝜕

𝜕𝑧
(ℓ𝑟

2 𝜕𝑀 
𝑔

𝜕𝑧
) = 𝑀 

𝑐. 
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boundary 𝜕𝛺𝛻𝑀. Thus, the last two boundary terms in Eqn. (5.9) vanish in the finite 

element formulation. The test function 𝑤 and the primary field 𝑀 
𝑔 are interpolated 

as: 

𝑤 = 𝑵�̅� (5.10) 

𝑀 
𝑔 = 𝑵�̅� 

𝑔 (5.11) 

where, �̅� and �̅� 
𝑔 are the nodal values of the corresponding fields. Insertion of 

interpolations Eqn. (5.10) and Eqn. (5.11) into Eqn. (5.9), gives: 

�̅�𝑇∫(𝑵𝑇𝑵+ ℓ𝑟
2𝑩𝑟

𝑇𝑩𝒓
 + ℓ𝑧

2𝑩𝑧
𝑇𝑩𝑧

 )2𝜋𝑟𝑑𝐴 �̅� 
𝑔

 

Ω

= �̅�𝑇∫𝑵𝑇𝑀 
𝑐2𝜋𝑟𝑑𝐴

 

Ω

 (5.12) 

In Eqn. (5.12), 𝑩𝑟 = 𝜕𝑵/𝜕𝑟, 𝑩𝑧 = 𝜕𝑵/𝜕𝑧 and superscript 𝑇 represents the 

transpose of the matrix. For arbitrary nodal variations �̅� satisfying homogeneous 

essential boundary conditions, Eqn. (5.12) can be written in the following form: 

𝑲𝑀�̅� 
𝑔 = 𝑭𝑀 (5.13) 

where: 

𝑲𝑀 = ∫(𝑵
𝑇𝑵+ ℓ𝑟

2𝑩𝑟
𝑇𝑩𝑟

 + ℓ𝑧
2𝑩𝑧

𝑇𝑩𝑧
 )2𝜋𝑟𝑑𝐴

 

Ω

 (5.14) 

𝑭𝑀 = ∫𝑵
𝑇𝑀 

𝑐2𝜋𝑟𝑑𝐴
 

Ω

 (5.15) 

Here,𝑲𝑀 denotes the coefficient matrix and 𝑭𝑀 denotes the right-hand side vector. 

𝑀 
𝑔 in Eqn. (5.11) is: 

𝑀 
𝑔(𝑟, 𝑧) = 𝑁1(𝑟, 𝑧)�̅�1

𝑔
+ 𝑁2(𝑟, 𝑧)�̅�2

𝑔
+ 𝑁3(𝑟, 𝑧)�̅�3

𝑔
+ 𝑁4(𝑟, 𝑧)�̅�4

𝑔
 (5.16) 

for 4-node axisymmetric quadrilateral elements. Clearly, Eqn. (5.16) can also be 

written as: 

𝑀 
𝑔(𝑟, 𝑧) = [𝑁1(𝑟, 𝑧)   𝑁2(𝑟, 𝑧)   𝑁3(𝑟, 𝑧)   𝑁4(𝑟, 𝑧)]

{
 
 

 
 
�̅�1
𝑔

�̅�2
𝑔

�̅�3
𝑔

�̅�4
𝑔
}
 
 

 
 

 (5.17) 

The matrices 𝑵, 𝑩𝑟 and 𝑩𝑧 in Eqn. (5.12) are then given as: 
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𝑵 = [𝑁1(𝑟, 𝑧)    𝑁2(𝑟, 𝑧)   𝑁3(𝑟, 𝑧)   𝑁4(𝑟, 𝑧)] (5.18) 

𝑩𝑟 = [
𝜕𝑁1
𝜕𝑟

    
𝜕𝑁2
𝜕𝑟

   
𝜕𝑁3
𝜕𝑟

   
𝜕𝑁4
𝜕𝑟

] (5.19) 

𝑩𝑧 = [
𝜕𝑁1
𝜕𝑧

    
𝜕𝑁2
𝜕𝑧

   
𝜕𝑁3
𝜕𝑧

   
𝜕𝑁4
𝜕𝑧

] (5.20) 

The second equation to discretize is the balance equation. The finite element 

formulation of this equation is well-known. Therefore, only final equations are given 

without the details of the intermediate steps. The final form of the weak form is 

given as:  

�̅�𝑇∫(𝑩𝑢
𝑇ℂ𝑩𝑢

 )2𝜋𝑟𝑑𝐴 �̅�
 

𝛺

= �̅�𝑇∫𝑵𝑇𝒃2𝜋𝑟𝑑𝐴
 

𝛺

+ �̅�𝑇∫ 𝑵𝑇 �̅�2𝜋𝑟𝑑𝑆
 

𝜕𝛺

 (5.21) 

where 𝑩𝑢
  is the strain-displacement matrix, ℂ is the elasticity matrix, 𝒃 is the body 

load and �̅� is the boundary traction. For arbitrary nodal variations �̅� satisfying 

homogeneous essential boundary conditions, the above given weak form simplifies 

to: 

𝑲𝑢�̅� = 𝑭𝑢 (5.22) 

where �̅� is the nodal displacement vector, 𝑲𝑢 denotes the stiffness matrix, and 𝑭𝑢 

stands for the load vector. The explicit integrals defining 𝑲𝑢 and 𝑭𝑢 are written as:   

𝑲𝑢 = ∫(𝑩𝑢
𝑇ℂ𝑩𝑢

 )2𝜋𝑟𝑑𝐴
 

Ω

 (5.23) 

𝑭𝑢 = ∫𝑵
𝑇𝒃2𝜋𝑟𝑑𝐴

 

Ω

+∫ 𝑵𝑇 �̅� 2𝜋𝑟𝑑𝑆
 

∂Ω𝐭

 (5.24) 

The first part of the above equation, 𝑭𝑢, is the load vector due to body forces and 

the second part is due to boundary tractions. 

 

5.3. RESULTS 

A cylindrical composite specimen with a spherical inclusion at the center is 

considered as a model problem as shown in Figure 5.2. The matrix (𝑀) is considered 

as soft and the spherical inclusion (𝐼) is considered as stiff with the material 

parameters in Table 5.1. Generic material properties are specified for the matrix 
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𝐸𝑀 = 1000 MPa, 𝐺𝑀 = 384.62 MPa and the inclusion 𝐸𝐼 = 10000 MPa, 𝐺𝐼 =

4000 MPa. These parameter sets correspond to the Poisson’s ratios of  𝜈𝑀 = 0.3 

and 𝜈𝐼 = 0.25 for the matrix and the inculsion, respectively. The results are provided 

for ℓ𝑟 = ℓ𝑧 = ℓ = 0, 0.1 × 10−6, 0.3 × 10−6 mm. Because of the symmetry of the 

geometry, the problem is modeled as an axisymmetric quarter model as seen in 

Figure 5.3. The mesh of the model is created by the preprocessor of Abaqus®. The 

mesh consists of 19061 4-node axisymmetric quadrilateral elements. The mesh size 

around the interface is chosen to be lower than 0.1 × 10−6 mm to guarantee that the 

discretization can resolve the length-scale ℓ. Four different paths are defined (𝑧 =

0, 𝑧 = 𝐿, 𝑟 = 0, 𝑟 = 𝑅) on the mesh for the visualization of relevant fields.  

 

Table 5.1 – Problem parameters for the rod with a spherical inclusion 

𝑬𝑴 

[MPa] 

𝑮𝑴 

[MPa] 

𝑬𝑰  
[MPa] 

𝑮𝑰  
[MPa] 

𝓵 = 𝓵𝒙 = 𝓵𝒚 

[mm] × 𝟏𝟎−𝟔 

�̅�𝒛         
[mm] × 𝟏𝟎−𝟔 

1000 384.62 10000 4000 0, 0.1, 0.3 1.25 

 

As mentioned previously, the E/G model, which includes the gradient formulations 

of the Young’s modulus and the shear modulus, is considered for the numerical 

example. The E/ν model, which includes the gradient formulations of the Young’s 

modulus and the Poisson’s ratio, has also been investigated. Since the results of the 

two formulations are turned out to be the same, only the results of the E/G model 

are presented.  

Two different sets of boundary conditions have to be specified for the problem; one 

for the gradient-enhanced material parameters 𝐸𝑔, 𝐺𝑔 and one for the displacement 

and/or traction 𝒖 and/or 𝒕, see Figure 5.3. The boundary conditions for the material 

parameters read: 

𝐸𝑔(𝑟 = 𝑅, 𝑧) = 𝐸𝑀,    𝐺𝑔(𝑟 = 𝑅, 𝑧) = 𝐺𝑀, 

𝐸𝑔(𝑟, 𝑧 = 𝐿) = 𝐸𝑀,    𝐺𝑔(𝑟, 𝑧 = 𝐿) = 𝐺𝑀, 

𝐸𝑔(𝑟 = 0, 𝑧 = 0) = 𝐸𝐼,    𝐺
𝑔(𝑟 = 0, 𝑧 = 0) = 𝐺𝐼 

(5.25) 

while the mechanical boundary conditions are:  
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𝑢𝑧(𝑟, 𝑧 = 0) = 0,    𝑢𝑟(𝑟 = 0, 𝑧) = 0, 

𝑢𝑧(𝑟, 𝑧 = 𝐿) = �̅�𝑧 = 1.25 × 10
−6 mm,    𝒕(𝑟 = 𝑅, 𝑧) = 𝟎 

(5.26) 

 

 
 

Figure 5.2 – (a) Cylindrical rod with a spherical inclusion, (b) a central section 

in the plane of the rod. The axisymmetric quarter model is highlighted in blue. 

 

Figure 5.4 shows 𝐸𝑔 and 𝐺𝑔 variations over the quarter domain for the gradient 

formulation for ℓ = 0.3 × 10−6 mm. It can be seen that both 𝐸𝑔 and 𝐺𝑔 values start 

with the inclusion properties and gradually decrease to matrix properties without 

discontinuity at the interface. 
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Figure 5.3 – Axisymmetric finite element mesh of the problem generated by 

Abaqus® 

 

 

 

Figure 5.4 – Variations of (a) 𝐸𝑔and (b) 𝐺𝑔 fields for the E/G model for 

ℓ=0.3×10-6 mm.  

(a) (b) 
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5.3.1. Effect of Length Scale Parameter  

In this section, variations of 𝐸𝑔, 𝐺𝑔, 𝑢, 𝜀 and 𝜎 fields are shown along the predefined 

paths 𝑧 = 0, 𝑧 = 𝐿, 𝑟 = 0 and 𝑟 = 𝑅 (Figure 5.3). Three different ℓ values, i.e., ℓ =

0, 0.1 × 10−6 and 0.3 × 10−6 mm, are considered. Note that ℓ=0 corresponds to the 

local solution. In Figure 5.5 to Figure 5.13, 𝑟 represents the radial direction and 𝑧 

represents the longitudinal direction.  

Figure 5.5 shows 𝐸𝑔 and 𝐺𝑔 variations along the path 𝑧 = 0. It can be seen that 

discontinuous step-like variation of elastic constants in the case of the local model 

changes to a continuous and diffuse variation for the E-grad model.  

  

Figure 5.5 – Variations of (a) 𝐸𝑔and (b) 𝐺𝑔 along the path 𝑧 = 0 for ℓ=0, 

0.1×10-6, 0.3×10-6 mm. 

 

Figure 5.6 (a) depicts 𝑢𝑟
𝑔

 (radial displacement) along the path 𝑧 = 0. Although the 

displacement magnitudes are almost the same throughout the domain, they are lower 

for the gradient model representing a stiffer behavior. Figure 5.6 (b) demonstrates 

that 𝑢𝑟
𝑔

 along the path 𝑧 = 𝐿 are almost the same for different ℓ values because the 

path 𝑧 = 𝐿 is far away from the inclusion. Since the path 𝑧 = 𝐿 is far away from the 

inclusion the strain 𝜀𝑧
𝑔

 corresponding to this path is almost constant as can be seen 

in Figure 5.6 (b). Figure 5.7(a) shows 𝑢𝑧
𝑔

 (longitudinal displacement) along the path 

𝑟 = 0. Displacement magnitudes are also smaller for the gradient model similar to 

𝑢𝑟
𝑔

 along the path 𝑧 = 0. Variations of 𝑢𝑧
𝑔

 along the path 𝑟 = 𝑅 are almost the same 

(a) (b) 
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for different ℓ values representing a homogeneous deformation state, see Figure 5.7 

(b).  

 

Figure 5.6 – (a) 𝑢𝑟
𝑔

 along the path 𝑧 = 0, (b) 𝑢𝑟
𝑔

 along the path 𝑧 = 𝐿, for ℓ=0, 

0.1×10-6, 0.3×10-6 mm. 

 

 

Figure 5.7 – (a) 𝑢𝑧
𝑔

 along the path 𝑟 = 0, (b) 𝑢𝑧
𝑔

  along the path 𝑟 = 𝑅, for ℓ=0, 

0.1×10-6, 0.3×10-6 mm. 

 

Figure 5.8(a) presents 𝜀𝑟
𝑔

 (radial normal strain) along the path 𝑧 = 0 which is 

compressive due to Poisson effect. It can be seen that the magnitude of the strain is 

minimum at the center of the inclusion and slightly increases until the material 

interface. After the interface the magnitudes of strains significantly increase and 

(b) (a) 

(a) (b) 
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reach to a maximum value which are followed by a decrease and a saturation 

behavior. The responses are similar for all three ℓ values considered. Maximum 

value of the strain magnitude (minimum value of compression) slightly decreases 

with an increase of ℓ.  Figure 5.8 (b) shows 𝜀𝑧
𝑔

 (longitudinal normal strain) along 

the path 𝑧 = 0 which is parallel to the loading axis. The increase in ℓ causes higher 

strains in the inclusion (near the interface) and lower strains in the matrix. The 

longitudinal normal strain 𝜀𝑧
𝑔

 approaches to the macroscopic tensile strain 0.05 for 

𝑟 > 10 nm. The strain components 𝜀𝑟
𝑔

 and 𝜀𝑧
𝑔

 for the path 𝑧 = 𝐿 are not shown, 

because they are almost constant and do not depend on ℓ.  

Figure 5.9 (a) illustrates 𝜀𝑟
𝑔

 along the path 𝑟 = 0 which is very similar to 𝜀𝑟
𝑔

 along 

the path 𝑧 = 0, see Figure 5.8 (a). Figure 5.9 (b) shows 𝜀𝑧
𝑔

 along the path 𝑟 = 0. It 

is seen that normal strain is very low inside the inclusion and rapidly raises after the 

interface reaching a value 𝜀𝑧
𝑔
≈ 0.08 which is larger than the macroscopic tensile 

strain 0.05. After the maximum value, 𝜀𝑧
𝑔

 starts to decrease and drops almost to 

macroscopic value. In general, it can be concluded that the increase in ℓ causes a 

more diffused strain profile around the interface. In other words, strain magnitudes 

increase in the inclusion and decrease in the matrix with the increase in ℓ. Since the 

strain components 𝜀𝑟
𝑔

 and 𝜀𝑧
𝑔

 for the path 𝑟 = 𝑅 are almost constant and do not 

depend on ℓ, they are not shown. 

 

Figure 5.8 – (a) 𝜀𝑟
𝑔

 along the path 𝑧 = 0, (b) 𝜀𝑧
𝑔

 along the path 𝑧 = 0, for ℓ=0, 

0.1×10-6, 0.3×10-6 mm. 

 

(a) (b) 
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Figure 5.9 – (a) 𝜀𝑟
𝑔

 along the path 𝑟 = 0, (b) 𝜀𝑧
𝑔

 along the path 𝑟 = 0, for ℓ=0, 

0.1×10-6, 0.3×10-6 mm. 

 

Figure 5.10(a) demonstrates 𝜎𝑟
𝑔

 (radial normal stress) along the path 𝑧 = 0 which is 

compressive throughout the domain. The stress magnitude is higher and almost 

constant in the inclusion for ℓ= 0 (the local model), but it decreases for larger ℓ 

values. On the other hand, the stress magnitude is not constant in the inclusion for 

the gradient model and decreases towards the material interface. The normal stress 

𝜎𝑟
𝑔

 curves approaches to the same value as one goes away from the interface (𝑟 >

20 nm) along the path 𝑧 = 0. Figure 5.10(b) shows 𝜎𝑧
𝑔

 (longitudinal normal stress) 

along the path 𝑧 = 0 which is tensile throughout the domain. The stress magnitude 

is lower and almost constant in the inclusion for the local model, whereas it increases 

with increasing ℓ. This effect is more pronounced especially close to the interface 

and for higher ℓ values. Before reaching to the material interface, the stress 𝜎𝑧
𝑔

 

reaches to a peak value and then decreases. The normal stress 𝜎𝑧
𝑔

 curves almost 

coincide as one goes away from the interface (𝑟 > 10 nm) along the path 𝑧 = 0. 

Figure 5.11(a) depicts 𝜎𝑟
𝑔

 along the path 𝑟 = 0. The stress of the local model is 

compressive and constant in the inclusion. However, for the gradient models the 

stress 𝜎𝑟
𝑔

 shows considerable variation in the inclusion.  An increase in ℓ causes a 

decrease in stress magnitude close to the center, and increase towards the material 

interface. At the material interface, the local model demonstrates a sharp tensile 

stress peak, while the proposed gradient model diffuses the stress and lowers the 

(a) 

(b) 
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peak value. The normal stress 𝜎𝑟
𝑔

 curves almost coincide away from the interface 

(𝑧 > 10 nm) along the path 𝑟 = 0. Figure 5.11(b) presents 𝜎𝑧
𝑔

along the path 𝑟 = 0. 

The stress 𝜎𝑧
𝑔

 of the local model is tensile and constant in the inclusion, while it 

shows a slight variation for the gradient model. After the material interface, stress 

has a peak value which is almost the same for the local model and the gradient 

model. After the peak value, stress curves shift to the right with increasing value of 

ℓ. The stresses 𝜎𝑧
𝑔

 of all models approach to the same value for 𝑧 > 20 nm. 

 

Figure 5.10 – (a) 𝜎𝑟
𝑔

 along the path 𝑧 = 0, (b) 𝜎𝑧
𝑔

 along the path 𝑧 = 0, for 

ℓ=0, 0.1×10-6, 0.3×10-6 mm. 

 

 

Figure 5.11 – (a) 𝜎𝑟
𝑔

 along the path 𝑟 = 0, (b) 𝜎𝑧
𝑔

 along the path 𝑟 = 0, for 

ℓ=0, 0.1×10-6, 0.3×10-6 mm. 

 

(a) (b) 

(a) (b) 
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Figure 5.12 (a) and (b) show 𝜎𝑟
𝑔

 and 𝜎𝑧
𝑔

 stress contours, respectively, for the local 

elasticity solution, while the contours of 𝜎𝑟
𝑔

 and 𝜎𝑧
𝑔

 components of stress for the 

proposed model are given in Figure 5.12 (c) and (d), respectively. It can be seen 

from the figures that the stress field around the inclusion is smoothed for the 

proposed gradient model while it is very similar to local elasticity solution away 

from the inclusion. 

 

Figure 5.12 – (a) Variation of 𝜎𝑟
𝑔

 for ℓ = 0, (b) variation of 𝜎𝑧
𝑔

 for ℓ = 0, (c) 

variation of 𝜎𝑟
𝑔

 for ℓ=0.3×10-6 mm and (d) variation of 𝜎𝑧
𝑔

 for ℓ=0.3×10-6 mm.  

 

The proposed gradient model removes or smoothens the discontinuities or sharp 

changes at the interfaces for the fields 𝐸𝑔, 𝐺𝑔, and thus also for 𝑢𝑔, 𝜀𝑔, 𝜎𝑔. 

Furthermore, the results converge to local solution for vanishing ℓ. It can also be 

seen from Figure 5.5 to Figure 5.12 that the E-grad model affects the region close to 

the material interface and the results converges to the local solution far from the 

material interface even for large ℓ values.  

 

(a) (b) 

(d) (c) 
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5.3.2. Comparison with Literature 

In this section, a numerical example from literature (Wang et al., 2016) is considered 

and solved by the E-grad model for comparison. Wang et al. (2016) proposed a 

micromechanics based annular coated inclusion model and compared the results 

with the experiments conducted with a polyimide/silica nanocomposite (Abbate et 

al., 2004). The relevant elastic parameters of Wang et al. (2016) for the proposed 

gradient model and the considered length scale parameter ℓ are given in Table 5.2. 

These parameter sets correspond to the Poisson’s ratios of  𝜈𝑀 = 𝜈𝐼 = 0.4 for the 

matrix and the inculsion, respectively. The elastic parameters given in Table 5.2 are 

identical with the values used in the coated inclusion model of Wang et al. (2016). 

However, the annular coated inclusion model requires three additional constants. 

These constants are the thickness for the interphase, which is a transition region from 

the nano-inclusion to the matrix, and the two elastic constants of the isotropic linear 

elastic interphase. The length scale parameter ℓ of the proposed gradient model can 

be related to the thickness of the interphase of the annular coated inclusion model. 

A representative volume element in the form of a cylinder similar to Figure 4. is 

considered in this study to compare to the micromechanical model of Wang et al. 

(2016). In Abbate et al. (2004) test results are given for various volume fractions. In 

the axisymmetric finite element simulations corresponding volume fractions are 

obtained by keeping the radius of the inclusion constant at 35 nm and by changing 

the radius and the length of the cylindrical rod while keeping the aspect ratio the 

same. The geometric parameters of the models are given in Table 5.3. 

 

Table 5.2 – Material parameters for literature problem 

𝑬𝑴 

[MPa] 

𝑮𝑴 

[MPa] 

𝑬𝑰  
[MPa] 

𝑮𝑰  
[MPa] 

𝓵 = 𝓵𝒓 = 𝓵𝒛 
[mm] × 𝟏𝟎−𝟔 

1960 700 88700 31679 0-6 
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Table 5.3 – Geometry parameters for literature problem  

% VF 
𝒓𝑰 [mm] ×
𝟏𝟎−𝟔 

𝑹 [mm] ×
𝟏𝟎−𝟔 

𝟐𝑳 [mm] ×
𝟏𝟎−𝟔 

4.28 35 87.5 175 

8.04 35 70.7 141.4 

10.7 35 64.4 128.8 

14.3 35 58.5 116.9 

 

As shown in previous chapter, the proposed E-grad model shows a gradual decrease 

in elastic parameters in the inclusion and a gradual increase in elastic parameters in 

the matrix. This is not realistic for polymer nanocomposite materials where the 

polymer close to nano-inclusion becomes denser and stiffer, while the properties of 

the nano-inclusion is not affected (Malagù, et al., 2017). Therefore, different from 

the previous section, in current examples 𝐸 and 𝐺 values are specified as boundary 

condition at the material interface and Eqn.  (5.13) is solved only for polyimide 

matrix while material parameters of the inclusion region are set to constant values 

given in Table 5.2. This is done in order to ensure that no softening takes place in 

the silica inclusion, because it is seen from the SEM micrographs that silica particles 

do not degrade in the nanocomposite. Furthermore, Abbate et al. (2004) commented 

that an adhesion is developed between the polyimide matrix and the silica inclusion, 

while weak van der Waals type adhesion is observed in some other studies (Malagu 

et al., 2017). Therefore, stiffening of the matrix at the interface is considered as 

reasonable for this nanocomposite. Figure 5.13(a) shows that the material properties 

obtained with the E-grad model when the boundary condition is applied to the 

interface.  As can be seen from the figure, 𝐸𝑔 is constant in the inclusion and varies 

only in the matrix region. Figure 5.13(b) presents that, for high values of ℓ and high 

volume fractions, modulus cannot diffuse out before reaching the external boundary 

of the geometry. 
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Figure 5.13 – Variation of 𝐸𝑔 along the path 𝑧 = 0, (a) for VF=%4.28 and 0 ≤ ℓ 

≤ 6×10-6 mm, (b) for VF=%4.28, %8.04, %10.7, %14.3 and ℓ=6×10-6 mm  

 

Figure 5.14 compares the Young’s modulus values computed by the E-grad model, 

the micromechanics model of Wang et al. (2016) and the test results of Abbate et al. 

(2004). The Young’s modulus is computed with the proposed approach for seven 

different ℓ values and for different volume fractions. A response very similar to the 

coated inclusion model is obtained by varying the length scale ℓ. Different solid 

curves in Figure 5.14 correspond to the responses of the annular coated inclusion 

model for various interphase thicknesses. In the annular coated inclusion model, the 

overall modulus of the composite increases as the interphase thickness increases 

provided that the stiffness of the interphase is larger than the matrix. A nonlinear 

behavior is observed with increasing volume fraction of the inclusion at constant ℓ. 

The nonlinearity is more pronounced for higher values of ℓ. If ℓ value is chosen in 

the range 3 × 10−6  < ℓ <  4 × 10−6 mm then a reasonable agreement with the 

experiment is achieved. It can be seen that for low volume fractions, ℓ makes small 

difference while its effect becomes more significant with increasing volume fraction 

of the inclusion. 

The results obtained by the proposed approach capture the experimentally measured 

values of the nanocomposite modulus. Moreover, the put forward gradient model, 

based on a relatively basic modeling consideration and a computationally efficient 

approach, is able to predict the computationally more expensive and complex 

(a) (b) 

ℓ increasing 

(a) (b) 
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micromechanically-based model’s results 

 

Figure 5.14 – Variation of the macroscopic Young’s modulus of the 

nanocomposite with volume fraction for various length scales, 0 ≤ ℓ ≤ 6×10-6 mm. 

The solid curves correspond to the results of the annular coated inclusion model 

(Wang et al., 2016) for interphase thicknesses of 0, 10, 15, 20 and 25 nm, while 

the black circles are the experimental results (Abbate et al., 2004). 

 

 

Figure 5.15 – Variation of the macroscopic Young’s modulus of the 

nanocomposite with ℓ for various volume fractions VF=%4.28, %8.04, %10.7, 

%14.3 

ℓ [mm]x10
-6
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Figure 5.15 compares the Young’s modulus values computed by the proposed model 

with increasing ℓ for different inclusion volume fractions of the considered literature 

problem. It can be seen that, composite modulus values increase with increasing 

inclusion volume fraction for constant ℓ. The composite modulus also increases with 

increasing ℓ for constant volume fraction. Although, a slight nonlinearity is seen for 

the lowest volume fraction, it is more pronounced for higher volume fractions.  

 

5.3.3. Generation of Anisotropy 

As stated in previous sections, by assuming different ℓ values in 𝑟 and 𝑧 directions, 

different modulus variations can be obtained in the considered directions. Figure 

5.16 shows E-modulus variations in 𝑧 = 0 and 𝑟 = 0 for the problem in previous 

section at 4.28% volume fraction, for different combinations of length scale 

parameters ℓ: (case 1) ℓ𝑟 = ℓ𝑧 = 1 × 10
−6 mm, (case 2) ℓ𝑟 = 1 × 10

−6mm, ℓ𝑧 =

6 × 10−6 mm and (case 3) ℓ𝑟 = 6 × 10
−6 mm,  ℓ𝑧 = 1 × 10−6 mm. As can be seen 

from the figure, by changing ℓ, different modulus variations are obtained in different 

directions. By assuming the load case in the previous section, the Young’s modulus 

of the nanocomposite is computed and the results are shown in Table 5.4. Note that, 

different modulus values are obtained for each combination. As expected, higher 

modulus is obtained with the increase in ℓ. Because the loading is in 𝑧 direction, ℓ𝑧 

has a more pronounced effect in composite modulus. As a result of the difference in 

ℓ𝑟 and ℓ𝑧 values, anisotropic macroscopic behavior is obtained even for a 

nanocomposite having a spherical inclusion and consisting of isotropic linear elastic 

constituents.  
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Table 5.4 – Macroscopic Young’s modulus of the nanocomposite in z-direction for 

different combinations of the length scale parameters ℓ𝑟 and ℓ𝑧  

VF = 4.28 

% 

𝓵𝒓 [mm] ×
𝟏𝟎−𝟔 

𝓵𝒛 [mm] ×
𝟏𝟎−𝟔 

𝑬 

[GPa] 

case 1 1 1 2.20 

case 2 1 6 2.48 

case 3 6 1 2.42 

 

 

 

§ 

 

Figure 5.16 – Variation of 𝐸 
𝑔 along the path 𝑟 = 0 and 𝑧 = 0 for (a) ℓr= 

ℓz=1×10-6 mm, (b) ℓr=1×10-6 mm, ℓz=6×10-6 mm, (c) ℓr=6×10-6 mm,  ℓz=1×10-6 

mm. Variation of 𝐸 
𝑔 in the entire domain for (d) ℓr= ℓz=1×10-6 mm, (e) ℓr=1×10-

6 mm, ℓz=6×10-6 mm, (f) ℓr=6×10-6 mm,  ℓz=1×10-6 mm 

 

  

(a) (b) 

Case 
1 

Case 
2 

(c) 

Case 
3 

(d) (f) (e) 
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CHAPTER 6  

 

MODELING THE STATISTICAL DISTRIBUTION OF FIBERS IN A 

MATRIX 

 

 

As stated before, an ideal candidate for a nano-reinforcement material is CNT. There 

are experimental and computational studies discussing the effect of CNTs in 

polymers, metals, ceramics (Bai and Allaoui, 2003, Wang et al., 2013, Bakshi et al. 

2011).  In addition to continuum formulations (Wernik and Meguid, 2010, Tserpes 

et al., 2008), atomistic simulations (Arash et al., 2015, Jensen et al., 2016, Malagu 

et al., 2017) are also carried out to model the CNT reinforced nano-composites. 

CNTs are generally distributed in a matrix material in different orientations. To 

account for this orientation distribution, atomistic and micromechanical models are 

used in literature (Odegard et al., 2003, Arash et al., 2015, Malagu et al., 2017). For 

the modeling of orientation of collagen fibers in arterial layers, Gasser et al. (2006) 

proposed a Gaussian like distribution function in a structural tensor formulation. 

Later, this model is used to model different biological tissues: human cornea 

(Pandolfi and Holzapfel, 2008), articular cartilage (Ateshian et al., 2009), posterior 

scleral (Girard et al., 2009). Pandolfi and Vasta (2012) and Cortes and Elliot (2014) 

and also proposed higher order corrections to the structural tensor model with fiber 

distribution. In biological tissues collagen fibers do not carry compressive load and 

the fibers under compression are disregarded with a tension-compression switch 

(Gasser et al., 2006, Holzapfel and Ogden, 2015, Latorre and Montans, 2016).  

Malagu et al. (2017) studied a CNT reinforced polymer both in molecular dynamics 

and micromechanics. In this study, some further investigations are made based on 

the work of Malagu et al. (2017). To this end, E-grad model proposed in previous 

chapters is used for the modeling of a representative volume element. Then, by 

distributing the RVEs statistically, nanocomposite material properties are obtained.  
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6.1. PROBLEM DESCRIPTION 

6.1.1. Local Assumption 

In the work of Malagu et al. (2017) on CNT reinforced polymer composites, 

different regions around the CNT were identified by using molecular dynamics 

(MD) simulations, see Figure 6.1. As can be seen from Figure 6.1, after the CNT 

layer, an empty space is present which is a result of the Van der Walls interaction. 

They named this region as the interface (‘if’ in the figure). After the interface, 

Malagu et al. (2017) observed ordered polymer layers. They named these ordered 

layers as the interphase (‘ip’ in the figure). After the interphase, the bulk polymer 

matrix is present.  By MD simulations, it was shown that during deformation almost 

all the internal energy is carried by the interphase and the bulk polymer while the 

CNT and the interface have stored negligible energy. Therefore, they commented 

that the interphase region is mainly responsible for the strengthening mechanism for 

non-functionalized CNT reinforced polymer composites.  

 

Figure 6.1  – Side and cross section views of considered geometry for the MD 

model in Malagu et al. (2017) (not to scale) 

 

By neglecting the CNT and interface regions, Malagu et al. (2017) considered the 

interphase as an equivalent fiber embedded in the bulk polymer, see Figure 6.2. They 

considered the interphase as a homogeneous material and by equating the strain 

energy of MD and strain energy FE models, they obtained the Young’s modulus 𝐸 

and the Poisson’s ratio 𝑣 of the interphase for various CNT diameters, see Table 6.1. 

As can be seen from the table, the Young’s modulus of interphase 𝐸𝐼𝑃_𝑀𝑎𝑙𝑎𝑔𝑢 is 
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significantly higher than the bulk polymer 𝐸𝑀. Furthermore, when compared with 

the bulk polymer, the Young’s modulus of the interphase increases with the CNT 

diameter while 𝑣 decreases. Note that, the shear modulus values in Table 6.1 are 

computed from 𝐸 and 𝑣.  

 

Figure 6.2  –  Side view of considered geometry for the FE model in Malagu et 

al. (2017) (not to scale)  

 

Table 6.1 – Calculated homogenized interphase elastic constants in Malagu et al. 

(2017) 

CNT 
𝑬𝑰𝑷_𝑴𝒂𝒍𝒂𝒈𝒖    

[MPa] 
𝝂𝑰𝑷_𝑴𝒂𝒍𝒂𝒈𝒖 

𝑮𝑰𝑷_𝑴𝒂𝒍𝒂𝒈𝒖    

[MPa] 

𝑬𝑴 

[MPa] 
𝝂𝑴 

𝑮𝑴 

[MPa] 

(8×8) 6249 0.300 2403 

3040 0.36 1118 

(12×12) 7195 0.283 2803 

 

6.1.2. E-grad model 

Although Malagu et al. (2017) considered the interphase as a homogeneous material 

with constant tensile modulus 𝐸, and shear modulus 𝐺, they also found in the MD 

simulations that the density of the interphase decreases from the interface to the bulk 

polymer. This behavior has been seen in other studies as well, see Wei et al. (2004), 

Karatrantos et al. (2016).  Therefore, it is reasonable to assume that the Young’s 

modulus decreases from the interface to the bulk polymer rather than being constant 

in the interphase. In this section, the gradual variation of 𝐸 is considered by using 
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the E-grad model discussed before.  

In order to determine the values of 𝐸 and 𝐺 for the E-grad model at the inner and 

outer boundaries of the interphase region, it is assumed that 𝐸 and 𝐺 at the inner 

surface of the interphase, which is in contact with the interface, gradually decrease 

from 𝐸 = 𝐸𝐼 and 𝐺 = 𝐺𝐼 to the value of the bulk polymer 𝐸 = 𝐸𝑀 and 𝐺 = 𝐺𝑀 at 

the outer surface of the interphase as shown in Figure 6.3. The values of 𝐸𝑀 and 𝐺𝑀 

are governed by the material parameters of the bulk polymer, while the values of 𝐸𝐼 

and 𝐺𝐼 at the inner surface of the interphase are not yet known and are found as 

follows. The volumes under the 𝐸 and 𝐺 surfaces obtained by the E-grad model over 

the interphase are computed, and these volumes are divided by the volume of the 

interphase. The integral is taken over the circular tubular cross-sectional area of the 

interphase with the inner and outer radii of the interphase. This way the average 

values of 𝐸 and 𝐺 of the E-grad model for the interphase are obtained. Then these 

values are equated to the corresponding Young’s modulus and shear modulus values 

of the effective fiber obtained in Malagu et al. (2017), as shown in Table 6.1. With 

an iterative study, it is seen that, for values of ℓr greater than 5 × 10−7mm, the 𝐸𝑔 

curve is almost horizontal at the interphase-bulk matrix intersection. Therefore, ℓr =

5 × 10−7 mm is selected as the highest value, see Figure 6.5.  

 

Figure 6.3  – (a)𝐸, (b) 𝐺 variations for  ℓr=3×10-7 mm for (8 × 8) CNT with E-

grad model 

 

A detailed investigation of the problem with the E-grad model is provided further. 

8x8 

CNT 

(a) (b) 
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The geometry, FE mesh, boundary conditions for 𝐸-field and boundary conditions 

for the mechanical problem are given in Figure 6.4. An axisymmetric FE model is 

considered. The problem parameters are provided in Table 6.2 for (8×8) and 

(12×12) CNTs. Two different length scale parameters are considered for the E-grad 

model, ℓr = 3 × 10−7 mm and ℓr = 5 × 10−7 mm. For both values of ℓr, 𝐸𝐼 and 𝐺𝐼 

are determined as explained above. It is assumed that 𝐸 does not vary in the axial 

direction and ℓz is considered to be 0. The calculated 𝐸𝐼 and 𝐺𝐼 values are also 

provided in Table 6.2. It can be seen that 𝐸𝐼 and 𝐺𝐼 values are higher for the lower 

ℓ𝑟. For the (12×12) CNT, 𝐸𝐼 values are higher compared to the (8×8) CNT. Note 

that the calculated 𝐸𝐼 values at the inner surface of the interface are much higher 

than the local values, i.e., uniform material properties of the interphase given in 

Table 6.1. In literature, it is reported that while low density polyethylene (PE) has 

elastic modulus in the 0.1-1 GPa range, while highly crystalline ultra-high molecular 

weight PE fibers can have moduli as high as 117 GPa (Coleman et al. 2006, Callister 

2003). Therefore, very high 𝐸 values at the inner surface of the interphase are 

reasonable. 

 

Figure 6.4  – 2D axisymmetric E-grad model (a) geometry, (b) FE mesh, (c) 

boundary conditions for E field solution, (d) boundary conditions for mechanical 

problem 
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Figure 6.5 shows the variations of 𝐸 and 𝐺 along the path 𝑧 = 0 for ℓr = 3 × 10
−7 

mm, ℓr = 5 × 10
−7 mm and the uniform values of 𝐸 and 𝐺 found in Malagu et al. 

(2017). For the lower value of ℓ𝑟, 𝐸 starts from a higher value and shows a steep 

decrease at the beginning and converges to the Young’s modulus of the bulk polymer 

𝐸𝑀 =3040 MPa. For the higher value of ℓ𝑟, 𝐸 starts from a lower value and does 

not show a decrease as steep as the former one.  

Figure 6.6 compares the variation of 𝐸 for the (8×8) and (12×12) CNTs along the 

path 𝑧 = 0. Although, similar trends are seen for both CNTs, the modulus values of 

the (12×12) CNT at the inner surface of the interphase is higher than the modulus 

values of the (8×8) CNT. Note that the radius of the (12×12) CNT is higher than 

the radius of the (8×8) CNT. The interface and interphase thicknesses are considered 

to be equal for both CNTs as reported by Malagu et al. (2017). 

 

Figure 6.5  – Variation of (a)𝐸, (b) 𝐺 for ℓr=0, 3×10-7, 5×10-7 mm along the path 

𝑧 = 0. (8 × 8) CNT is considered 

  

u, ε and σ fields for (8×8) CNT 

Having determined the distributions of the Young’s modulus and the shear modulus, 

a tensile test is conducted by applying a prescribed displacement �̅� = 𝐿𝐶𝑁𝑇/100 in 

the 𝑧-direction, as shown in Figure 6.4(d).  

Figure 6.7(a) shows the variation of radial displacement 𝑢𝑟 along the path 𝑟 = 𝑅. 

For all the cases 𝑢𝑟 values are constant along the path. 𝑢𝑟 values of the E-grad model 

8x8 

CNT @ path z=0 
(a) (b) 
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are higher than the local one. Furthermore, 𝑢𝑟 has the highest magnitude for ℓr =

3 × 10−7 mm. The variation of 𝑢𝑟 along the path 𝑧 = 0 is depicted in Figure 6.7(b). 

Although, there is small difference between the results, for the E-grad model 𝑢𝑟 

values are higher than the local one at the outer surface. For ℓr = 3 × 10
−7mm, 𝑢𝑟 

has the highest magnitude. 

 

 

Figure 6.6  –Variation of 𝐸 along the path 𝑧 = 0 for (a) (8 × 8) CNT, (b) (12 ×

12) CNT for ℓr=0, 3×10-7, 5×10-7 mm are considered 

  

  

Figure 6.7  – (a) Variation of 𝑢𝑟 along the path 𝑟 = 𝑅, (b) variation of 𝑢𝑟 along 

the path 𝑧 = 0 for (8 × 8) CNT for ℓr=0, 3×10-7, 5×10-7 mm are considered 

 

Figure 6.8(a) and (b) depict the normal stresses 𝜎𝑟 and 𝜎𝑧 along the path 𝑟 = 0, 

respectively. 𝜎𝑟 values are constant for all the cases but the results of E-grad model 

8x8 

CNT 
12x12 

CNT 
@ path z0 

(a) (b) 

8x8 

CNT @ path r=R 

(a) 

@ path z=0 
(b) 
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are higher than the local one. For ℓr = 3 × 10
−7 mm, 𝜎𝑟 and 𝜎𝑧 have the highest 

magnitude. 𝜎𝑧 values for the E-grad model are much higher than the local stress. 

These high stress values are important for the evaluation of the strength of the 

composites. The elastic modulus can be increased with the addition of nano-

inclusion, but the strength of the composite may be decreased due to this dramatic 

increase in stress. In other words, the strength predictions of the models with 

gradually varying interphase and uniform interphase models could be very different, 

although their stiffness predictions do not show significant difference. 

Figure 6.9(a) illustrates the variation of 𝜎𝑟 along the path 𝑟 = 𝑅. Because it is a free 

surface, the stress values are almost zero for all cases. The variation of 𝜎𝑧 along the 

path 𝑟 = 𝑅 is shown in Figure 6.9(b). For the local case, the Young’s modulus is 

higher than the E-grad model along this path, therefore the stress value is higher for 

the local case. The results of the E-grad model are almost the same for ℓr = 3 ×

10−7 mm and ℓr = 5 × 10
−7 mm. 

Figure 6.10(a) shows the variation of 𝜎𝑟 along the path 𝑧 = 0. It can be seen that at 

the inner surface, 𝜎𝑟 magnitude decreases as ℓ𝑟 increases. Furthermore, the values 

of 𝜎𝑟 for the E-grad model is substantially higher than the local case. All the curves 

go to zero at the free surface as expected. Figure 6.10(b) depicts 𝜎𝑧 variation along 

the path 𝑧 = 0. It can be seen that at the inner surface, 𝜎𝑧 is considerably higher for 

the E-grad model than the local case. The normal stress 𝜎𝑧 is the highest for ℓ𝑟 =

3 × 10−7 mm, because the Young’s modulus at the inner surface is the largest for 

this case. 𝜎𝑧 values converge to the same value at the outer surface of the interphase 

for the E-grad model, while 𝜎𝑧 is constant for the local elasticity model.  
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Figure 6.8  – (a) Variation of 𝜎𝑟 along the path 𝑟 = 0, (a) variation of 𝜎𝑧 along 

the path 𝑟 = 0 for (8 × 8) CNT for ℓr=0, 3×10-7, 5×10-7 mm are considered 

 

 

 

Figure 6.9  – (a) Variation of 𝜎𝑟 along the path 𝑟 = 𝑅, (b) variation of 𝜎𝑧 along 

the path 𝑟 = 𝑅 for (8 × 8) CNT for ℓr=0, 3×10-7, 5×10-7 mm are considered 

 

8x8 

CNT @ path 

r=0 

(a) (b) 

8x8 

CNT @ path 

r=R 

(a) (b) 
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Figure 6.10  – (a) Variation of 𝜎𝑟 along the path 𝑧 = 0, (a) variation of 𝜎𝑧 

along the path 𝑧 = 0 for (8 × 8) CNT for ℓr=0, 3×10-7, 5×10-7 mm are 

considered 

 

 

6.2. HOMOGENIZED PROPERTIES AND STATISTICAL 

ORIENTATION OF FIBRES  

6.2.1.  (8×8) CNT embedded in interphase 

In the previous section, polymer ordering around the CNT is considered only in 

radial direction. However, it is known that the ordering is also present at the tips of 

the CNTs in the axial direction, see Malagu et al. (2017), Wei and Srivastava (2004). 

Therefore, in this section, in addition to the interphase in radial direction, a gradually 

varying interphase from the tips of the CNT in axial direction is considered. For this 

purpose, an axisymmetric FE model of an embedded CNT is generated as depicted 

in Figure 6.11. All the dimensions are the same with the model in Figure 6.4 except 

the cap region.  

Figure 6.11 (a) shows the geometry of the problem. The size of the interphase in 

axial direction is taken as 𝑡𝑐𝑎𝑝 = 10 × 10
−7 mm following the molecular dynamics 

simulation results in Malagu et al. (2017). Figure 6.11 (b) presents the axisymmetric 

FE mesh and some predefined paths for post processing. The modulus boundary 

conditions for the E-grad model are demonstrated in Figure 6.11(c). 𝐸 = 𝐸𝐼 =

8x8 

CNT @ path z=0 

(a) (b) 
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55000 MPa and 𝐺 = 𝐺𝐼 = 21912 MPa (values for (8×8) CNT and 𝑙𝑟 = 3 × 10
−7 

mm given in Table 6.2) at the inner boundary, and 𝐸 = 𝐸𝑀 = 3040 MPa and 𝐺 =

𝐺𝐼 = 1118 MPa at the outer boundary are considered as boundary conditions.   

Different ℓ values are considered in r and z directions because of the thickness 

differences of interphase in these directions. To this end, ℓ𝑟 = 3 × 10−7 mm in 

radial direction and ℓ𝑧 = 1 × 10−7 mm in axial direction are assumed. Figure 6.12 

shows the variation of 𝐸 along the predefined paths. Figure 6.12 (a) depicts that at 

path 𝑟 = 0, 𝐸 converges from 𝐸𝐼 to 𝐸𝑀. At path 𝑟 = 𝑀, 𝐸 stays constant at 𝐸 = 𝐸𝐼 

and converges to 𝐸𝑀 after the material corner. It can be seen that a small difference 

is observed between the path 𝑟 = 0 and the path 𝑟 = 𝑀. Along the path 𝑟 = 𝑅, 𝐸 

value stays constant at 𝐸 = 𝐸𝑀. As can be seen form Figure 6.12 (b), similar trend 

is also observed along the paths 𝑧 = 0, 𝑧 = 𝑀 and 𝑧 = 𝐿. Compared to 𝑟 paths the 

𝐸 variation is less steep because of higher ℓ𝑟 value. 

 

Figure 6.11  – 2D axisymmetric E-grad model (a) geometry, (b) FE mesh, (c) 

boundary conditions for E field solution  
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Figure 6.12  – Variation of 𝐸 along the path (a) r=0,M,R, (b) z=0,M,L, for 

ℓr=3×10-7 mm and ℓz=1×10-7mm for (8 × 8) capped CNT 

 

6.2.2. Homogenized material properties of (8×8) CNT embedded in 

interphase 

In this section, homogenized material properties, i.e., an effective fiber, of (8×8) 

CNT embedded in the interphase are found, see Figure 6.11. It is assumed that the 

homogenized material is a transversely isotropic with five independent elastic 

constants; 𝐶11, 𝐶12, 𝐶13, 𝐶33, 𝐶44. For a transversely isotropic linear elastic material 

in 3D, the stress-strain relation 𝝈 = ℂ: 𝜺 is given in cylindrical coordinates as: 

[
 
 
 
 
 
𝜎𝑟𝑟
𝜎𝜃𝜃
𝜎𝑧𝑧
𝜎𝜃𝑧
𝜎𝑟𝑧
𝜎𝑟𝜃]

 
 
 
 
 

=

[
 
 
 
 
 
𝐶11
𝐶12
𝐶13
0
0
0

𝐶12
𝐶11
𝐶13
0
0
0

𝐶13
𝐶13
𝐶33
0
0
0

0
0
0
𝐶44
0
0

0
0
0
0
𝐶44
0

0
0
0
0
0

(𝐶11 − 𝐶12)/2]
 
 
 
 
 

[
 
 
 
 
 
𝜀𝑟𝑟
𝜀𝜃𝜃
𝜀𝑧𝑧
𝜀𝜃𝑧
𝜀𝑟𝑧
𝜀𝑟𝜃]

 
 
 
 
 

 (6.1) 

For the calculation of the elastic constants, the strain energy of the graded material 

for various load cases is equated to the strain energy of a homogenized material with 

the same outer dimensions as shown in Figure 6.13.  

For the calculation of the elastic constants, different load cases have to be applied 

on the geometries to generate different deformations. Two of the deformations are 

homogeneous, while the other three are inhomogeneous. Figure 6.14 shows the 

considered load cases to provoke different elastic constants. These load cases are 

(b) 8x8 CNT 

ℓ𝑟 = 3x10
−7 

ℓ𝑧 = 1x10
−7 

(a) 
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applied in a stepwise procedure which is explained below. 

 

Figure 6.13  – The models for which the strain energy equivalence are required. 

(a) Interphase of a (8 × 8) capped CNT with graded properties, (b) 

homogenized equivalent fiber model 

 

Step1, Consideration of Load Case 1: The following BCs are applied in this load 

case; 𝑢𝑧 = 0 along path 𝑧 = 0, 𝑢𝑧 = �̅�𝑧 along path 𝑧 = 𝐿, 𝑢𝑟 = 0 along path 𝑟 =

0, 𝑢𝑟 = 0 along path 𝑟 = 𝑅, see Figure 6.14(a). This uniform loading in 𝑧 direction 

leads to a homogeneous strain condition for the homogenized model, i.e., 𝜀𝑟 =

0, 𝜀𝑧 = 0.01, 𝜀𝜃 = 0, 𝜀𝑟𝑧 = 0. It means that the only active material constant is 𝐶33. 

By equating the energy of the capped model to the homogenized model, it is found 

that 𝐶33 =  6837.56 MPa.   

Step2, Consideration of Load Case 2: The following BCs are applied in this load 

case; 𝑢𝑧 = 0 along path 𝑧 = 0, 𝑢𝑧 = 0 along path 𝑧 = 𝐿, 𝑢𝑟 = 0 along path 𝑟 =

0, 𝑢𝑟 = �̅�𝑟 along path 𝑟 = 𝑅, see Figure 6.14(b). By prescribing this uniform 

loading in 𝑟 direction, a homogeneous strain condition is obtained for the 

homogenized model such that 𝜀𝑟 = 0.01, 𝜀𝑧 = 0, 𝜀𝜃 = 0.01, 𝜀𝑟𝑧 = 0. By equating 

the energy of the capped model to homogenized model, a relation is found between 

𝐶11 and 𝐶12 as 𝐶12 =  9154.44 − 𝐶11 .  

Step3, Use of Genetic Algorithm (GA) for Load Cases 3, 4 and 5: Other than the 

above load cases, it is not possible to generate an additional homogeneous strain 
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field which provides further identification of the unknown elastic constants. 

Therefore, inhomogeneous load cases are considered to identify the remaining 

unknown elastic constants. The following BCs are considered for the Load Case 3; 

𝑢𝑧 = 0 along path 𝑧 = 0, 𝑢𝑟 = 0 along path 𝑧 = 0,  𝑢𝑟 = 0 along path 𝑟 = 𝑅, 𝑢𝑧 =

�̅�𝑧 = 0.01 × 𝑧 along path 𝑟 = 𝑅, see Figure 6.14(c). For the Load Case 4; 𝑢𝑧 =

0 along path 𝑧 = 0, 𝑢𝑧 = �̅�𝑧 = 0.02 × 𝑟 along path 𝑧 = 𝐿,  𝑢𝑟 = 0 along path 𝑟 =

0, 𝑢𝑟 = 0 along path 𝑟 = 𝑅, see Figure 6.14(d). For the Load Case 5; 𝑢𝑧 = 0 along 

path 𝑧 = 0, 𝑢𝑧 = 0 along path 𝑧 = 𝐿,  𝑢𝑟 = 0 along path 𝑟 = 0, 𝑢𝑟 = �̅�𝑟 = 0.6 −

0.01 × 𝑧 along path 𝑟 = 𝑅.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14  – Homogeneous and inhomogeneous load cases used for the 

determination of the elastic constants (a) Load case 1, (b) Load case 2, (c) Load 

case 3, (d) Load case 4, (e) Load case 5.  

(e) (d) 

(a) (c) (b) 
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Then, the strain energy equivalence between two models is written in the form of an 

optimization problem in terms of remaining unknown elastic constants. The 

optimization problem is then solved by using Matlab Genetic Algorithm (GA) 

toolbox (Matlab, 2018). 𝐶33 is already calculated by using the Load Cases 1, and a 

relation between 𝐶11 and 𝐶12 is found by using the Load Case 2. Therefore, 𝐶11, 𝐶13 

and 𝐶44 are considered as remaining unknown variables for the optimization 

problem. The constant 𝐶33 is expected to be higher than the above elastic constants, 

because it is related with the fiber direction. Therefore, for the upper bound of all 

remaining constants 𝐶33 = 6837.56 MPa is given. Furthermore, as a lower bound 

for 𝐶13 and 𝐶44, 0 MPa is set. As required by Eqn. (6.1), 𝐶11 − 𝐶12 must be positive. 

Therefore, the lower bound of 𝐶11 is set to be 9154.44/2. The fitness function 

𝑦(𝐶11, 𝐶13, 𝐶44) for the optimization problem is formulated as: 

𝑦(𝐶11, 𝐶13, 𝐶44)  

= |𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶3 − 𝐸𝑇_ℎ𝑜𝑚 _𝐿𝐶3|/𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶3    

                     +|𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶4 − 𝐸𝑇_ℎ𝑜𝑚 _𝐿𝐶4|/𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶4 

                      +|𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶5 − 𝐸𝑇_ℎ𝑜𝑚 _𝐿𝐶5|/𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶5                                            

(6.2) 

where 𝐸𝑇_𝑐𝑎𝑝𝑝𝑒𝑑_𝐿𝐶𝑖 stands for the strain energy of the capped model for load 

case 𝑖, and 𝐸𝑇_ℎ𝑜𝑚 _𝐿𝐶𝑖 stands for the strain energy of the homogenized material 

for load case 𝑖. For the capped model, calculated strain energies from the nonlocal 

model for the above five load cases are given in Table 6.3. 

 

Table 6.3 – Energy values of the capped model from nonlocal model for the 

considered load cases  

 𝑳𝑪𝟏 𝑳𝑪𝟐 𝑳𝑪𝟑 𝑳𝑪𝟒 𝑳𝑪𝟓 

ET [𝑱 × 𝟏𝟎−𝟗] 80756.73 216241.78 3.9050.52 58502.05 197307.49 

 

By by using Matlab Genetic Algorithm (GA) toolbox elastic constants are 

determined. The considered GA parameters can be found in the APPENDIX A. The 

elastic constants computed from the load cases 1 and 2, and by the GA algorithm are 

given in Table 6.4.  
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Table 6.4 – Homogenized material elastic constants 

𝑪𝟏𝟏 [MPa] 𝑪𝟏𝟐 [MPa] 𝑪𝟏𝟑 [MPa] 𝑪𝟑𝟑 [MPa] 𝑪𝟒𝟒 [MPa] 

5070.67 4083.77 2699.80 6837.56 911.07 

 

6.2.3. Statistical Orientation of Fibres 

In Gasser et al. (2006), for the hyperelastic modelling of anisotropic arterial layers, 

authors considered collagen fiber orientations in different directions. They used a 

Gaussian like distribution function to model the orientation of the collagen fibers. 

The same modeling approach is also considered here for the orientation of effective 

fibers developed in the previous section.  

The effective fibers are considered to be oriented around a main direction which is 

E3 in our case. Figure 6.15 shows the required definitions for the problem 

formulation, where E3(= 𝒂) shows the main fiber direction, 𝒎 is the orientation of 

an arbitrary fiber, 𝜃 is the zenith angle, i.e., the angle between X3 axis and 𝒎, and 

𝜙 is the azimuth angle, i.e., the angle between X1 axis and the projection of 𝒎 onto 

X1 − X2 plane. The fiber orientation, m, is given as: 

𝒎(𝜃, 𝜙) = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙𝑬1 + 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙𝑬2 + 𝑐𝑜𝑠𝜃𝑬3 (6.3) 

A π periodic distribution function, 𝜌(𝜃, 𝜙), is considered in 3D space (Gasser et al. 

2006)   

𝜌(𝒎(𝛩, 𝜙)) =
1

𝜋
√
𝑏

2𝜋

𝑒𝑥𝑝[𝑏(𝑐𝑜𝑠(2(𝛩 − 𝛼)) + 1)]

𝑒𝑟𝑓𝑖(√2𝑏)
 (6.4) 

where, 𝑏 is the concentration parameter, 𝑒𝑟𝑓𝑖 is the imaginary error function and 𝛼 

is the deviation of the main direction from E3 which is taken as zero in this study. A 

transversely isotropic effective fiber distribution is considered, therefore, 𝜌 is 

independent of 𝜙. Note that when 𝜌(𝜃, 𝜙) is integrated over a unit sphere, the result 

must be unity: 
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∫𝜌(𝒎(𝛩, 𝜙))𝑑𝛺
 

𝛺

= ∫ ∫ 𝜌(𝒎(𝛩, 𝜙))𝑠𝑖𝑛(𝜃)𝑑𝜃𝑑𝜙
2𝜋

0

𝜋

0

= 1 (6.5) 

The effect of 𝑏 on fiber distribution is shown in Figure 6.16. As seen from the figure, 

𝑏 = 0 represents a uniform fiber distribution. As 𝑏 increases, fibers are concentrated 

about the main fiber direction and 𝑏 >> 1 represents that all the fibers are perfectly 

aligned in the main direction. It can also be seen from the figure that 𝜌 is π-periodic. 

 

Figure 6.15 – Fiber orientation vector m about the main direction E3=a  

 

 

Figure 6.16 – Effect of fiber concentration parameter b on the distribution 

function ρ  
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6.2.4. Composite material 

In this section, a composite material is considered with statistically oriented fibers 

in matrix material, and the calculation of the homogenized properties of the 

composite is provided. It is further assumed that each phase is subjected to the same 

macroscopic deformation. In other words, the deformation is assumed to be affine. 

A prescribed macroscopic strain �̅� is applied on the transversely isotropic composite 

material. The applied strain is then transformed into the local fiber coordinate system 

as 

𝜺𝑓𝑚 = 𝑻(𝜃, 𝜙) �̅� 𝑻𝑇(𝜃, 𝜙) (6.6) 

where 𝜺𝑓𝑚 is the strain tensor of an individual fiber in the local coordinate system, 

T is the transpose of a matrix and 𝑻 is the transformation matrix which is given as 

𝑻(𝜃, 𝜙) = 𝑹𝒚(𝜃)𝑹𝒛(𝜙) (6.7) 

𝑹𝒚(𝜃) = [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃
0 1 0

−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃
]   (6.8) 

𝑹𝒛(𝜙) = [
𝑐𝑜𝑠𝜙 −𝑠𝑖𝑛𝜙 0
𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙 0
0 0 1

] (6.9) 

where 𝑹𝒚(𝜃) and 𝑹𝒛(𝜙) are the rotation matrices about 𝑬2 and 𝑬3, respectively. 

Figure 6.17 shows a representation of rotation matrices. Then the stress tensor of the 

fibers in local coordinate system is calculated as  

𝝈𝑓𝑚 = ℂ: 𝜺𝑓𝑚 (6.10) 

where 𝝈𝑓𝑚 is the stress tensor of an individual fiber in local coordinate system, ℂ is 

the elasticity tensor of the homogenized fiber with elastic constants in Table 6.4. 

The stress tensor of the fiber is then transformed back into the global coordinate 

system 

𝝈𝑓𝑎 = 𝑻
𝑻(𝜃, 𝜙) 𝝈𝑓𝑚 𝑻(𝜃, 𝜙) (6.11) 

where 𝝈𝑓𝑎 is the stress tensor of an individual fiber in global coordinate system. The 

total stress of the fiber portion of the composite material is obtained with an integral 

over the orientation space 
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𝝈𝒇
 =∬𝜌(𝜃, 𝜙)𝝈𝑓𝑎

 𝑑𝛺

 

𝛺

= ∫ ∫ 𝜌(𝜃, 𝜙) 𝝈𝑓𝑎
  sin𝜃𝑑𝜙𝑑𝜃

2𝜋

0

𝜋

0

   (6.12) 

where 𝝈𝑓 is the total stress tensor of the fibers in global coordinate system. The 

above integral is evaluated by 21 or 37 points numerical integration schemes. The 

details of the integration scheme can be found in Bazant and Oh (1986) and Miehe 

et al. (2004). For the polymer matrix, an isotropic linear elastic law is assumed  

  𝝈𝑝
 = ℂ𝑝: �̅� (6.13) 

where 𝝈𝑝 and ℂ𝑝 are the stress and the modulus tensors of the polymer matrix 

material, respectively. The total stress response of the composite material is obtained 

according to the considered volume fractions 

�̅� =   𝝈𝑓
 𝑉𝑓 + 𝝈𝑝

 𝑉𝑝 (6.14) 

In above equation �̅� is the macroscopic stress of the composite, 𝑉𝑓 is the volume 

fraction of the distributed effective fibers, 𝑉𝑝 is the volume fraction of the polymer 

matrix. It is clear that, 𝑉𝑓 + 𝑉𝑝 = 1 has to hold. 

 

 

 

 

(𝑋1
 , 𝑋2

 , 𝑋3
 ) → (𝑋1

′ , 𝑋2
′ , 𝑋3

′) → (𝑋1
′′, 𝑋2

′′, 𝑋3
′′) 

Figure 6.17 – Representation  of T(θ,ϕ)=Ry(θ)Rz(ϕ) 
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6.2.5. Numerical Example 

In this section, the statistical orientation of the effective fibers (Table 6.4) in the 

matrix (Table 6.1) is considered as shown in the previous sections. The fibers are 

assumed to be oriented as in Figure 6.15. A simple tension test is simulated by 

prescribing a macroscopic strain of 0.01 in 𝑧 direction, while other directions are 

assumed to be free. Iterations are carried out to make the total composite stress in 

transverse directions to be zero.  

The effects of the orientation parameter 𝑏 and volumetric fraction of CNT, 𝑉𝑓, are 

investigated in a parametric study.  Three values of 𝑏 (0, 2 and 4) and two values of  

𝑉𝑓 (%0.5 and %1) are considered. The results are given in Table 6.5. It can be seen 

that as 𝑏 increases, the stress of the fibers in the tensile loading direction 𝜎𝑓𝑧𝑧
  

increases which results in an increase in the macroscopic stress 𝜎 of the composite. 

The modulus of the composite in the loading direction also increases. The stress of 

the matrix, 𝜎𝑝𝑧𝑧
 , more or less remains the same for different values of 𝑏. An increase 

in 𝑉𝐶𝑁𝑇 also increases the total stress response of the composite except for 𝑏 = 0 

case. It can also be clearly seen that the overall Poisson’s ratio ν of the composite 

material decreases with increasing 𝑏 which means that the material behaves stiffer 

in the longitudinal direction. The results for higher 𝑏 values are also obtained, but it 

is seen that the numerical integration scheme fails to capture the stress response. 

This is caused by the concentration of the fibers in the mean direction for which the 

integration scheme fails to resolve. So far the above results are explained with 21 

integration scheme. For higher 𝑏 values, more accurate results can be found by using 

37 points integration scheme. 

An important point to mention is that for composite material with isotropic fiber 

orientation, 𝑏 = 0, 𝐸𝑇 = 2828 MPa is lower than the modulus of the pure matrix, 

3040 MPa. This is caused by the lower values of the elastic constants, 𝐶11 and 𝐶44 

of the effective fiber, which means that the stiffness in radial direction and shear 

modulus in transverse plane has lower values compared to the pure matrix (𝐶11 =

5109 MPa and 𝐶44 = 2235 MPa for the isotropic pure matrix), since the actual fiber 

geometry is a hollow structure. Choi et al. (2016) observed the same situation also 

for SWNT/epoxy nanocomposite. In order to demonstrate this, 𝐶44 is increased 
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gradually while keeping the other elastic parameters constant, Table 6.6. It is seen 

that after 𝐶44 = 2500 MPa, the effective fiber shows stiffer behavior than the 

matrix. Additionally, by keeping the other elastic parameters constant and 

considering the relation 𝐶12 =  9154.44 − 𝐶11, 𝐶11 is increased gradually, Table 

6.7. It is seen that composite becomes stiffer after elastic constants in transverse 

directions, 𝐶11 = 𝐶22 become greater than 6000 MPa.   

 

Table 6.5 – Tensile loading results of a nanocomposite with statistically oriented 

fibers in a polymer matrix 

 𝒃 𝑽𝒇 𝑽𝑪𝑵𝑻 𝛎 
𝑬𝑻 

[MPa] 

�̅�  

[MPa] 

𝝈𝒇𝒛𝒛
  

[MPa] 

𝝈𝒑𝒛𝒛
  

[MPa] 

2
1
 i

n
te

g
ra

ti
o
n
 p

o
in

ts
 0 

%26 %0.5 0.3732 2828.47 28.28 24.42 29.64 

%51 %1.0 0.3854 2620.44 26.20 23.58 28.94 

2 
%26 %0.5 0.3623 3128.09 31.28 34.16 30.27 

%51 %1.0 0.3644 3212.69 32.13 34.03 30.15 

4 
%26 %0.5 0.3494 3538.88 35.39 47.85 31.01 

%51 %1.0 0.3403 4015.43 40.15 48.44 31.53 

 

 

Table 6.6 – Effect of increase in C44 on the tensile loading results of a 

nanocomposite with statistically oriented fibers in a polymer matrix 

𝑪𝟒𝟒 

[MPa] 
𝒃 𝑽𝒇 𝑽𝑪𝑵𝑻 𝛎 

𝑬𝑻 

[MPa] 

�̅�  

[MPa] 

𝝈𝒇𝒛𝒛
  

[MPa] 

𝝈𝒑𝒛𝒛
  

[MPa] 

1500 

0 %26 %0.5 

0.3697 2905.61 29.06 26.82 29.84 

2000 0.3668 2970.46 29.70 28.84 30.01 

2500 0.3639 3035.10 30.35 30.85 30.18 
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CHAPTER 7  

 

SUMMARY, CONCLUSION AND FUTURE WORK  

 

 

In Chapter 2, nanocomposite properties are explained in detail based on a particular 

polymer nanocomposite couple; CNT and PEEK. Individual properties of the CNT 

and the PEEK, the interface properties of CNT/PEEK, the manufacturing processes, 

the characterization techniques, and the mechanical properties are investigated in a 

comparison study among some selected works from literature. It is seen that CNTs 

have different properties in terms of purity, density, diameter, length, number of 

walls etc. Similarly, PEEK polymers have different specifications in terms of 

molecular weight, density, glass transition temperature, melting temperature, 

viscosity etc. In some of the references, various methods (chemical etching, grafting 

by in-situ polymerization, wrapping and oxidization) are used for the 

functionalization on the CNTs. Various manufacturing methods with different 

temperature and pressure levels, process time are used in literature for the production 

of polymer nanocomposites. Not only the conventional methods (strain gage, 

extensometer) but also more modern methods (Raman Spectroscopy, Transmission 

Electron Microscopy, Scanning Electron Microscopy, Fourier Transform-Infra Red) 

are used for the characterization of nanocomposites. At the end of the chapter, the 

mechanical properties of the CNT/PEEK nanocomposite are investigated. Although, 

the mechanical properties of the polymer are generally enhanced with the addition 

of CNT, the level of improvement significantly varies among the references.  

In Chapter 3, the Eringen’s nonlocal elasticity and the Aifantis’s gradient elasticity 

frameworks are explained which are used for the incorporation of the size effect in 

the elasticity theory. The details of two formulations, some analytical solutions, 

different forms, variational and FEM formulations are provided. The relations of the 

gradient model to the nonlocal model and to the higher order gradient models are 

discussed.  

In Chapter 4, a new gradient elasticity model, E-grad model, for inhomogeneous 
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elastic rod is proposed. The proposed model is based on the introduction of the 

gradient enhanced Young’s modulus with a differential equation. In the proposed 

model, in addition to the differential equation of the modulus, the classical 

equilibrium equation is solved. Both analytical and FE formulations of the proposed 

model are provided. For a 3-phase one-dimensional model problem, the analytical 

and finite element results are compared with the Aifantis’s gradient elasticity 

formulation. Compared to Aifantis’s formulation, it is seen that the internal 

characteristic length has a significantly more pronounced influence on the results of 

the proposed model.  

In Chapter 5, the E-grad model is extended to multi-dimensional framework. The 

FE formulation is provided for axisymmetric problems. A soft cylindrical rod with 

a stiff spherical inclusion is considered as a model problem. The model provides a 

smooth and continuous variation of 𝐸 and 𝐺 fields over the entire domain. It is 

shown that, as expected, the macroscopic stiffness of the composite increases with 

increasing internal length scale parameter. The response of the model is compared 

with the numerical and experimental results of a polyimide/silica nanocomposite. It 

is seen that the proposed model predicts the experimentally measured macroscopic 

modulus of nanocomposite well. Finally, the spherical inclusion problem is 

simulated by choosing different length scale parameters in different directions, and 

it is shown that the behavior of the nanocomposite with isotropic constituents 

becomes anisotropic, if the length scale parameters are chosen differently. 

In Chapter 6, by using the E-grad model and genetic algorithm optimization, an 

effective fiber model is generated to obtain the homogenized modulus of a CNT 

reinforced polymer. The effective fiber model is then utilized in a fiber reinforced 

polymer which takes the statistical distribution of the fibers into account. It is seen 

that for the zero value of the concentration parameter the nanocomposite is isotropic, 

while the increase in the concentration parameter leads to a transversely isotropic 

nanocomposite material.  

 

The key observations and the future works of the study are summarized below: 
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 In Chapter 2, it was shown that the differences between the material properties 

of the CNT/PEEK nanocomposites in literature are due to the different material 

properties of the constituents, functionalization of CNTs, interface and 

interphase properties, manufacturing methods and characterization techniques. 

Therefore, numerical models have to be material specific for reliable results. In 

future, for industrial applications, a standard procedure has to be developed for 

composite manufacturing.  

 In Chapter 3, it was shown that, the nonlocal and the gradient elasticity models 

have more complex variational and FE formulations, even for the simplest 

Eringen’s nonlocal elasticity and Aifantis’s gradient elasticity models. These 

models also require higher order stress fields, strain fields and boundary 

conditions which are not very intuitive.  

 In Chapter 4, a novel gradient elasticity model, E-grad model, was proposed. 

The proposed model has simple variational and FE formulations. It also does 

not require any additional higher order stress fields, strain fields and boundary 

conditions. It eliminates sharp changes/singularities in the material property 

distribution, and in displacement, strain and stress fields. In future, the proposed 

formulation can also be used to remove any type of singularities in different 

kind of problems. However, the model requires an inhomogeneous material to 

start with, i.e., nonlocal effects disappear if the material is homogeneous.     

 In Chapter 5, the E-grad model was extended to general multi-dimensional 

framework. In a comparison with a problem from literature, it was shown that 

the E-grad model gives reasonable results. A functionally graded interface with 

nonlocal effects can be created with the proposed model. It was also shown that 

the model can create an anisotropic material by using different internal length 

scales in different directions. In future, the functionally graded interface with 

anisotropic behavior can be further studied for other materials, i.e., phase 

changing materials, evolution of material properties in time.      

 In Chapter 6, from a literature survey, it was seen that for non-functionalized 

CNTs, the interface between the CNT and polymer is weak and is not effective 

in load transfer. Furthermore, an interphase is developed in the polymer near to 
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CNT surface with elastic properties stronger than the polymer. In some studies, 

this interphase region is taken as the main reinforcing mechanism in 

nanocomposites. By neglecting the CNT in numerical models of the 

nanocomposites, it is found that although a reinforcement is obtained in axial 

direction, weaker material properties are obtained in transverse and shear 

directions. The full details of the interaction between the CNT and the polymer 

are difficult to model in continuum scale. Therefore, in future, more atomistic 

and sub-atomistic simulations, i.e., MD, DFT, coarse grain, have to be used for 

a better understanding of the load transfer mechanisms between the CNT and 

the polymer. Especially, better understanding of the interface and the interphase 

regions requires deeper investigation.  
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APPENDICES 

 

 

APPENDIX A 

The details of the MATLAB genetic algorithm used for the homogenization problem 

in Section 6.2.2 are given below.  

 

Matlab GA Toolbox options:  

CreationFcn: @gacreationlinearfeasible 

CrossoverFcn: @crossoverintermediate 

HybridFcn: @fmincon 

MaxGenerations: 50 

MutationFcn: @mutationadaptfeasible 

PopulationSize: 200 

UseParallel: 1 

UseVectorized: 0 

ConstraintTolerance: 1.0000e-03 

CrossoverFraction: 0.8000 

EliteCount: '0.05*PopulationSize' 

FitnessLimit: -Inf 

FitnessScalingFcn: @fitscalingrank 

FunctionTolerance: 1.0000e-06 

InitialPopulationMatrix: [] 

InitialPopulationRange: [] 

InitialScoresMatrix: [] 

MaxStallGenerations: 50 

MaxStallTime: Inf 

MaxTime: Inf 

NonlinearConstraintAlgorithm: 'auglag' 
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OutputFcn: [] 

PopulationType: 'doubleVector' 

SelectionFcn: @selectionstochunif 

 

For a constraint problem “mutationadaptfeasible”, “gacreationlinearfeasible”, 

“crossoverintermediate” are the recommended mutation, creation and crossover 

functions, respectively, in Matlab GA toolbox. In order to speed up the computation, 

parallel computing is used. The population size is increased to 200 from the default 

value of 50 to better resolve the domain. By using a “fmincon” function as a hybrid 

function, a constraint minimization is applied at the end of each GA run to further 

optimize the result. The other parameters are kept at default values. 

 

Convergence of GA: 

To check the convergence of the GA, fitness value and average distance between 

variables are plotted at each generation as seen in Figure A.1. Figure A.1(a) shows 

the mean value of the fitness function which rapidly decreases and stays almost 

constant after 1st generation. Note that the best fitness value stays always at a low 

value starting from the first generation. The average distance between variables is 

another method to check the convergence of a GA problem. Figure A.1(b) shows 

that distance between the variables starts at a high value. This indicates that the 

algorithm covers the domain well at the start. After the 15th generation, the distance 

values remain almost constant which means that the minimization is achieved.  

 

Effect of “fmincon”: 

Sometimes, a constraint algorithm is used further to increase the accuracy of the GA. 

As specified in the above paragraphs, Matlab “fmincon” function is used as hybrid 

function in GA to increase the accuracy of the considered problem. From the below 

Matlab output, it can be seen that the GA algorithm is terminated after reaching the 

generation limit of 50. Then, fmincon algorithm starts. It can be observed that the 

outputs of both algorithms are almost the same which shows that the GA converged 

to the possible minimum before “fmincon”. 
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(a) (b) 

C values:      C11=5.070919e+03, C12=4.083521e+03, C13=2.699875e+03, 

C44=9.120725e+02, C33=6.837560e+03 

Optimization terminated: maximum number of generations exceeded. 

Switching to the hybrid optimization algorithm (FMINCON). 

C values:      C11=5.070670e+03, C12=4.083770e+03, C13=2.699802e+03, 

C44=9.110730e+02, C33=6.837560e+03 

FMINCON terminated. 

  

Figure A.1 – Matlab GA outputs; (a) fitness value vs generation, (b) average 

distance between variables vs generation     

 

Effect of population size: 

In GA, the default population size for problems with less than five variables is 50. 

The results in Table 6.4 are for a population size of 200. The same problem is solved 

with a higher population size of 300 to better resolve the domain. In Table A.1, it is 

seen that only 𝐶11 and 𝐶12 changes about 3%, while the other parameters remain 

almost the same if the population size is increased from 200 to 300. 

 

Table A.1 – Homogenized material elastic constants with 300 population size 

𝑪𝟏𝟏 [MPa] 𝑪𝟏𝟐 [MPa] 𝑪𝟏𝟑 [MPa] 𝑪𝟑𝟑 [MPa] 𝑪𝟒𝟒 [MPa] 

5209.35 3945.09 2699.71 6837.56 906.44 
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Check load case: 

By using the parameters in Table 6.4, another load case, Figure A.2, was also run to 

check the validity of the elastic constants. The energy outputs from the capped 

nonlocal model and homogenized local model are compared which are 2.643 ×

105[10−9 Joule] and 2.588 × 105[10−9 Joule], respectively. The difference 

between the energy values is about 2% which is considered to be acceptable.  

 

 

 

 

 

 

 

 

 

 

Figure A.2  – Check load case for the validation of the elastic constants  
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