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ABSTRACT

PRICING SPREAD AND BASKET OPTIONS UNDER MARKOV-MODULATED
MODELS

Kozpınar, Sinem

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Assoc. Prof. Dr. Zehra Eksi-Altay

September 2018, 108 pages

This thesis first aims to study the evaluation of spread and basket options under the
classical Markov-modulated framework, for which a transition in the Markov process
leads to a switch in the model parameters. In this regard, we provide approximations
to the exact option prices based on ideas from the literature without regime switching.

We start with pricing spread options when risky assets follow Markov-modulated
geometric Brownian motions (MMGBMs). In this context, we focus on the regime-
switching version of Kirk’s formula. For that reason, a change of numeraire tech-
nique is introduced which allows to associate the spread option price with the value
of a European call option. Since the underlying asset of this European call follows a
MMGBM for relatively small strikes, we evaluate the spread option by using Markov-
modulated Black-Scholes formula. Then, we discuss the valuation of spread options
when the underlying asset prices are driven by Markov-modulated Lévy processes
(MMLPs). Under this modeling set-up, we approximate the spread option price by
means of an accurate lower bound, which is obtained via a univariate Fourier inver-
sion. For this method, we only require the joint characteristic function; and therefore,
our approximation becomes valid for many regime-switching models.

Afterwards, we concentrate on the valuation of basket options for which we provide
lower and upper bounds considering the MMLP framework. We first obtain an accu-
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rate lower bound by using a univariate Fourier inversion combined with an optimiza-
tion procedure. However, this optimization procedure increases the computational
cost. Therefore, we then derive faster analogous bounds by using the arithmetic-
geometric mean inequality and univariate Fourier inversion without an optimization.
As in the case of spread options, the approaches we followed for basket options are
applicable to several MMLPs under which the joint characteristic functions of the
underlying assets are known analytically.

Furthermore in this thesis we aim to price spread and basket options under a more
generalized framework, in which a transition in the Markov process may induce a
switch in the parameters as well as synchronous jumps in the asset prices. For this
purpose, we extend the results obtained under the classical MMLP framework, which
does not take the synchronous jumps into account, to this generalized framework.

Finally, in order to verify the accuracy of proposed approximations presented in this
thesis, we include several numerical experiments.

Keywords: Regime-switching, Spread options, Kirk’s formula, Basket options, Fourier
inversion, Synchronous jumps.
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ÖZ

MARKOV KİPLEMELİ MODELLER ALTINDA SPREAD VE BASKET
OPSİYONLARININ FİYATLANDIRILMASI

Kozpınar, Sinem

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Doç. Dr. Zehra Eksi-Altay

September 2018, 108 sayfa

Bu tez, öncelikle, Markov sürecindeki bir geçişin sadece model parametrelerinde de-
ğişmeye sebep olduğu klasik Markov kiplemeli modeller çerçevesinde spread ve bas-
ket opsiyonlarının fiyatlandırılmasını incelemeyi amaçlamıştır. Bu bağlamda, rejim
değişimi olmayan modeller için literatürde geliştirilen fikirler baz alınarak yaklaşım-
lar önerilmiştir.

İlk olarak, riskli varlıkların Markov kiplemeli geometrik Brownian hareketini (MKG
BH) takip ettiği varsayılarak, spread opsiyonlarının fiyatlanması incelenmiştir. Bu
çerçevede, Kirk’s formülünün rejim değişimli versiyonuna odaklanılmış; dolayısıyla,
spread opsiyonunun bir Avrupa tipi alım opsiyonu ile fiyatlanmasına olanak tanıyan
numeraire değişim tekniği önerilmiştir. Oldukça küçük kullanım fiyatları için, söz
konusu alım opsiyonunun dayanak varlık fiyatı MKGBH’e göre modellendiğinden
dolayı, spread opsiyonu Markov kiplemeli Black-Scholes formülü kullanarak fiyat-
landırılmıştır. Ardından, spread opsiyonlarının değerlemesi, dayanak varlık fiyatlarını
Markov kiplemeli Lévy süreçleri (MKLS) ile modelleyerek gerçekleştirilmiştir. Bu
modelleme baz alınarak, tek değişkenli bir Fourier inversiyonu kullanılmış, böylece
spread opsiyonunun gerçek değerine oldukça yakın olan bir alt sınır elde edilmiş-
tir. Sadece birleşik karakteristik fonksiyonlara ihtiyaç duyulduğundan, yaklaşımımız
rejim değişimli birçok modele uygulanabilmektedir.
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Daha sonra, MKLS’i göz önünde bulundurularak basket opsiyonlarının değerleme-
sine odaklanılmış ve opsiyonun gerçek değerine oldukça yakın olan alt ve üst sınırlar
belirlenmiştir. İlk olarak, tek değişkenli Fourier inversiyonu ve bir optimizasyon pro-
sedürü kullanarak opsiyonun gerçek değeri için bir alt sınır elde edilmiştir. Bu opti-
mizasyon prosedürü hesaplama maliyetini arttırdığından dolayı, aritmetik-geometrik
ortalama eşitsizliği ve optimizasyonsuz tek değişkenli Fourier inversiyonu kullanarak,
daha hızlı bir şekilde elde edilen sınır fiyatları belirlenmiştir. Spread opsiyonununda
olduğu gibi, basket opsiyonun fiyatlaması için izlediğimiz bütün yaklaşımlar daya-
nak varlıklara ait birleşik karakteristik fonksiyonunun bilinmesini gerektirmekte, bu
ise bahsi geçen yöntemlerin birçok MKLS’ne uygulanmasına imkan vermektedir.

Ayrıca, bu tezde spread ve basket opsiyonlarının Markov sürecindeki bir geçişin sa-
dece parametrelerde bir değişmeye değil, aynı zamanda varlık fiyatlarında senkronize
sıçramalara da sebep olduğu daha genel bir çerçeveye göre fiyatlandırılması da amaç-
lanmıştır. Bu amaç doğrultusunda, senkronize sıçramaları hesaba katmayan klasik
MKLS çerçevesi altında elde edilen tüm sonuçlar, bu genel çerçeveye göre de ele
alınmıştır.

Son olarak, bu tez kapsamında elde edilen tüm yaklaşımların doğruluğunu kontrol
etmek için birçok nümerik örnek sunulmuştur.

Anahtar Kelimeler: Rejim-değişimi, Spread opsiyonları, Kirk’s formülü, Basket op-
siyonları, Fourier inversiyonu, Senkronize sıçramalar.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Literature Review

Many attempts have been made to discuss regime-switching models for the purpose

of, e.g., identifying the impact of business cycles in the market. The model parameters

are allowed to switch at certain times by means of a Markov process whose states rep-

resent the different regimes of the economy. To be more precise, whenever the state

of the underlying Markov process (i.e. the regime in the market) changes, the model

parameters are modulated according to the new state. In this thesis, we will first focus

upon the pricing of spread and basket options under this classical Markov-modulated

framework. Considering the fact that these options do not generally have closed-form

prices under the dynamics with regime-switching, we provide approximations to the

exact option prices based on ideas from the literature without regime-switching. One

of the main contributions of this thesis lies in the derivation of these pricing formu-

las. Based on our knowledge the valuation of spread and basket options under this

Markov-modulated framework has not been studied so far.

Regime-switching models have been extensively used in the literature, and even when

concentrating only on option pricing, it is impossible to give an exhaustive overview.

Among these papers dedicated to option pricing in the context of Markov-modulated

Brownian motions (MMBMs), we refer to Buffington and Elliot [7] who price Eu-

ropean vanilla and American options by using Black-Scholes arguments, Boyle and

Draviam [6] who evaluate Asian and lookback options by partial differential equa-

tions and Zhu et al. [42] who deal with pricing European vanilla options via a Fourier
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transform method. Furthermore, Elliott et al. [19] propose the regime-switching ver-

sion of Esscher transform with the aim of completing the market and then examine

the valuation of European vanilla options considering the ideas of Buffington and

Elliot [7].

This paper, additionally, provides a detailed overview of the literature on regime-

switching models and their applications in finance. There exists also a wide range

of studies that consider Markov-modulated Lévy processes (MMLP) for the dynam-

ics of the risky assets. For example, Konikov and Madan [25] assume a two-state

Markov-modulated Variance Gamma process and evaluate European vanilla options

by computing the characteristic function of the log-returns of the underlying. El-

liott and Osakwe [18] extend the study of Konikov and Madan to arbitrary number

of states. Under a regime-switching version of Merton jump-diffusion model, Ram-

poni [32] investigates the valuation of forward starting options via Fourier transform

method. Tour et al. [35] concentrate upon the valuation of contracts such as Bermu-

dan, American and barrier options in a regime-switching model of time-changed Lévy

processes; and for this purpose, they use the Fourier cosine expansion (COS) method.

All these papers given above regard option pricing problems with a single underlying.

As far as we know, there are not so many papers focusing upon multivariate option

pricing in a regime-switching framework, especially not in a MMLP setting. In the

MMBM setting, Yoon et al. [40] introduce analytical pricing formulas using the occu-

pation times for the valuation of quanto and exchange options. Chen et al. [13] price

European-type quanto options by assuming that forward interest rates are driven by a

Markov-modulated HJM model, the foreign stock prices follow the regime-switching

version of a jump-diffusion and the spot FX rate is modeled by a geometric Brow-

nian motion (GBM). More recently, Deelstra and Simon [16] study the pricing of

exchange and quanto options in a MMLP framework whereas Fan and Wang [20]

focus on valuing correlation options under a regime-switching stochastic interest rate

model. In these last two papers, the valuation of the options are carried out with a fast

Fourier transform (FFT) method.

The framework of regime-switching models, where transitions to another phase can

happen with only a change in the model parameters, can be generalized if we allow
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the asset prices to jump synchronously in the case of a regime change. That is, a

transition in the Markov process does not only yield a switch in the parameters, but

can also yield a jump in the asset prices. All these approaches given above are carried

out by assuming that a transition in the Markov process induces the modulation of pa-

rameters, and none of them considers the synchronous jumps in the asset prices. To

our knowledge, Chourdakis [14] was the first to investigate Markov-modulated Lévy

processes with synchronous jumps with the goal of option pricing and to show by

numerical examples that this regime-switching model can be successful in capturing

asymmetric volatility skews. Hainaut and Colwell [22] consider a regime-switching

version of Merton’s structural model to evaluate the default risk, assuming that the

asset dynamics jump synchronously whenever a transition occurs in the underlying

Markov process. As argued in this paper, synchronous jumps can model the events

that lead to an immediate change in the price dynamics, such as economic downturn,

terrorist attacks or natural catastrophes. Hainaut and Colwell [22] also provide econo-

metric evidence that Lévy-based regime-switching models with synchronous jumps

lead a good fit to the historical time series.

In a regime-switching framework with synchronous jumps, Chourdakis [14] concen-

trates upon pricing vanilla options and exotic contingent claims like barrier, Bermu-

dan and American options. Since no research results are yet available for the valu-

ation of spread and basket options even in a Markov-modulated framework without

synchronous jumps, the incorporation of these jumps make another significant con-

tributions to the literature on evaluation of such options. There is, however, a vast lit-

erature when the underlying assets of the options are modeled without regime shifts.

Note that there is generally no closed-form pricing formula for these options, even

not in a Gaussian setting.

Spread options, whose payoff is based on the difference of two asset’s prices, are very

popular among practitioners due to its great variety of applications in different types

of markets, such as energy, commodity and equity markets. As regards to its eval-

uation under the GBM setting, Margrabe [29] obtains a Black-Scholes-like pricing

formula in the case of zero strikes (exchange options). In this noteworthy paper, the

value of the first asset in terms of the second asset is treated as a new underlying,

which can still be identified by a GBM. Therefore, the pricing problem of exchange
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option is reduced to the evaluation of a European option. This study is one of the

exceptions yielding a closed-form solution for spread options.

Extending the GBM case to the non-zero strike prices, in which case we do not have

any closed-form solution, leads us to the approximation methods such as in Kirk [24]

and Venkatramanan and Alexander [36]. Being frequently applied by practitioners

due to its tractability, the former study follows the approach of Margrabe [29]: when

the sum of the second asset and strike price is defined as the numeraire process, the

value of the first asset in terms of this numeraire becomes approximately log-normal

for small strikes. Therefore, the evaluation of spread options are carried out by using

Black-Scholes formula, which points out the tractability of Kirk’s approximation.

However, up to our knowledge, a detailed derivation of this pricing formula is not

provided by Kirk. The latter study approximates the value of the spread option by

summing two compound options and also by using Kirk’s formula, whose detailed

derivation is also provided by means of stochastic differential equations.

In this thesis, we favor Venkatramanan and Alexander [36] for their approach intro-

duced for the derivation of Kirk’s formula. Amongst others, we also refer to Carmona

and Durrleman [10] who give lower and upper bounds by using some trigonometric

functions, Deelstra et al. [15] who propose to use moment matching techniques, and

Bjerksund and Stensland [5] who derive a lower bound relating a power function of

the second asset with the first asset.

When the underlying prices evolve according to jump-diffusion processes, for in-

stance, Cheang and Chiarella [12] and Benth et al. [4] focus on the valuation of ex-

change options via a Margrabe-type formula. Differently, Dempster and Hong [17]

and Hurd and Zhou [23] concentrate upon the numerical valuation of spread options

via a two-dimensional FFT. Recently, Caldana and Fusai [8] propose a very accurate

lower bound extending the study of [5] to non-Gaussian models. This approach can

be applied whenever the joint characteristic function of the underlying log-returns is

explicitly known; furthermore, it uses only a univariate Fourier inversion regarding

the exponential form of asset prices.

Basket options, written on the linear combination of two or more assets, are also

widely used in many financial markets and, as a consequence, there exist many pa-
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pers studying the evaluation of basket options by adapting different approaches. Re-

garding a GBM setting, see e.g. Vorst [37] for the use of arithmetic-geometric mean

inequality, Deelstra et al. [15] for the application of moment matching techniques,

Zhou and Wang [41] for approximating the basket distribution with a log-extended-

skew-Normal distribution, Alexander and Venkatramanan [1] for an analytical ap-

proximation based on the sum of several compound-exchange options.

In the line of a non-Gaussian setting, Linders and Stassen [26] consider a multivariate

Variance Gamma model for the evaluation of basket options, in which the dependence

between different assets are implied by a common time change. By conditioning

on this common time change, they introduce some lower and upper bounds to the

true option price. Under a local volatility jump-diffusion model, Xu and Zheng [38]

provide an approximation for basket options by conditioning on a normal and Poisson

variable.

All methods mentioned above are model-dependent, which limits their applicability.

For the line of model-free approximations, see, for instance, Caldana et al. [9]. This

interesting paper provides very useful lower and upper bounds for the prices of basket

options in a wide range of models for which the joint characteristic function of the

log-returns is known explicitly. These results can be obtained for baskets with no

constraints on the signs of the underlying assets and by using only a univariate Fourier

inversion based on the exponential form of asset prices. In particular, Caldana et

al. [9] first obtain a lower bound through a set based on the logarithm of the geometric

average of the weighted assets. Then, they propose new lower and upper bounds

and an approximate pricing formula for the fair price of the basket option, which

follow from the arithmetic-geometric mean inequality proposed by Vorst [37]. This

paper [9] also provides a good background on the valuation of basket options when

the underlying assets are modeled without regime-switching. For a detailed overview

of the literature, we refer the interested readers to this paper.
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1.2 Aim of the Thesis

This thesis first aims to study the evaluation of spread and basket options under the

regime-switching models without synchronous jumps. In this context, we start with

pricing spread options in a Markov-modulated geometric Brownian motion (MM

GBM) setting without synchronous jumps. For this purpose we provide a Markov-

modulated Kirk’s formula, by generalizing the approach of Alexander and Venkatra-

manan [36] to a framework with regime shifts. Since their original work requires the

use of Black-Scholes formula, we also regard the Markov-modulated Black-Scholes

arguments given in Buffington and Elliott [7] and Elliott et al. [19].

Then, we price spread and basket options when risky asset prices are driven by the

exponential of Lévy-based regime-switching models without sychronous jumps. We

therefore will extend the approaches of Caldana and Fusai [8] and Caldana et al. [9] to

the framework in which the underlying assets are assumed to follow a MMLP frame-

work without synchronous jumps. More precisely, we provide a lower bound for the

price of spread options by adopting the ideas of [8]. We further address the pricing

problem of basket options in this MMLP framework. Inspired by [9], we first provide

a lower bound by defining a set based on the geometric average of the weighted assets,

which can be obtained via a univariate Fourier inversion and an optimization proce-

dure. Afterwards, we study the analogous bounds and approximate price estimate

implied by the arithmetic-geometric mean inequality. Finally, we discuss pricing of

these options by generalizing the results obtained in the classical MMLP framework

for which synchronous jumps do not take place. Namely, we derive pricing formulas

inspired by the studies of [8] and [9], but now considering a MMLP framework with

synchronous jumps motivated by Chourdakis [14] and Hainaut and Colwell [22].

In order to verify the accuracy of all approximations presented in this thesis, we in-

clude several numerical experiments. The accuracy of the Markov-modulated Kirk’s

formula has been verified by comparing with the Monte Carlo simulations. In this

context, we also report the lower bound price in order to examine its performance.

Furthermore, we test the tightness of spread and basket bounds under several MMLPs

both without and with synchronous jumps. In particular, we study regime-switching

versions of models introduced in Ballotta and Bonfiglioli [3] in which a common sys-
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tematic component is used to construct dependency between the different assets, and

in Mai et. al. [28], in which a multivariate Kou model with dependence between the

jump components of the different assets is constructed by means of a stochastic time

change.

Most of the contributions of this thesis is due to the derivation of Kirk’s formula

in a MMGBM setting without synchronous jumps and to the generalisation of the

results of [8] and [9] to MMLP frameworks without and with synchronous jumps.

Furthermore, we want to mention that our MMLP model with synchronous jumps

generalizes the ones in [14] and [22] in various aspects. These papers only model the

regime shifts with synchronous jumps whereas we also take into account the possi-

bility of occuring no synchronous jumps after a transition. The unobservable driving

forces create an interesting correlation between the asset price processes. Moreover,

since we are interested in multivariate option pricing like spread and basket options,

we present a multidimensional framework for modeling different asset prices simul-

taneously which allows also the correlation among the asset prices that is not due to

the underlying Markov chain.

1.3 Plan of the Thesis

The paper is organized as follows. Chapter 2 is devoted to the preliminaries including

fundamental definitions and results used in the valuation of spread and basket options.

In Chapter 3, we derive Markov-modulated Kirk’s formula by means of stochastic dif-

ferential equations, formulated under a MMGBM setting without synchronus jumps.

Chapter 4 first starts with the model set-up for MMLPs without synchronus jumps and

then introduces a lower bound to the spread option prices, by extending the approach

of [8] to these Lévy-based framework. Chapter 5 extends the modeling framework

given in Chapter 4 for the basket options and provide the lower and upper bounds

generalizing the ideas of [9] to the present setting. Following two chapters we ex-

amine the valuation of spread and basket options under a MMLP framework with

synchronous jumps. More precisely, Chapter 6 generalizes the spread bounds ob-

tained in Chapter 4 to the regime-switching framework with synchronous jumps; and,

Chapter 7 introduces the basket bounds analogous to those proposed in Chapter 5. In
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Chapter 8, several numerical examples are discussed in order to show the accuracy of

the proposed approximations. The last chapter concludes the thesis.
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CHAPTER 2

PRELIMINARIES

In this chapter, we first give a basic terminology in connection with the continuous-

time Markov process (CTMP), based on Norris [31, Chapter 2], Grimmett and Stirza-

ker [21, Section 6.9] and Ross [33, Chapter 5]. These will provide a better under-

standing about the mathematical framework developed for pricing spread and basket

options. After getting a general idea about the Markov processes, we investigate the

approach given in Buffington and Elliott [7] for a Markov-modulated Black-Scholes

formula, Carr and Madan [11] for option pricing with fast Fourier transform (FFT)

method and Deelstra and Simon [16] for a useful result that is very crucial in the

development of Chapters 4 and 5.

2.1 A Brief Introduction to Continuous-Time Markov Processes

This section is devoted to the fundamental definitions and results related to the CTMPs.

Mainly, we will focus on the properties of transition probability matrices P (t) and

generators Q.

To start with, we give the following notions.

Definition 2.1. A process {M(t)}t≥0 which takes its values in a countable state space

S is said to be a CTMP if the following condition holds:

P (M(tk) = j |M(t1) = l1,M(t2) = l2, . . . ,M(tk−1) = lk−1)

= P (M(tk) = j |M(tk−1) = lk−1)

for all j, l1, . . . , lk−1 ∈ S and t1 < t2 < · · · < tk.
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Definition 2.2. Assume that M(t) is a CTMP with the state space S. Then, the tran-

sition probability plj(s, t) is defined as

plj(s, t) = P (M(t) = j |M(s) = l) , (j, l ∈ S and s ≤ t).

If plj(s, t) = plj(0, t− s) for all j, l ∈ S and s ≤ t, the Markov process M(t) is said

to be homogeneous and plj(s, t) is therefore denoted by plj(t − s). For the sake of

completeness, pl denotes the initial probability P (M(0) = l) for all l ∈ S.

All CTMPs considered hereafter are assumed to be homogeneous and have a finite

state space S with cardinality |S| = N .

Consider a N ×N matrix P (t) whose (l, j)’th entry is given by the transition proba-

bility plj(t). The following theorem gives some properties of this matrix P (t):

Theorem 2.1. Let M(t) be a CTMP with the countable state space S and consider

the matrix P (t) = (plj(t))N×N . Then, the following three conditions hold:

• P (0) = I, where I is the N ×N identity matrix.

• P (t) is a stochastic matrix, namely plj(t) ≥ 0 for all l, j, and
∑

j∈S plj(t) = 1

for all l.

• P (t + s) = P (t)P (s) for all s, t ≤ 0, which is also known as Chapman-

Kolmogorov equation.

Next, following the arguments of Ross [33], an alternative characterization of a CTMP

as well as the construction of its generator (also known as the rate matrix or Q-matrix)

are given.

Theorem 2.2. A CTMP defined on the state space S is a stochastic process, in which

the following assertions hold whenever entering a state l:

(i) The holding time in the current state l, namely the time spent in this state before

transition to another state, is exponentially distributed with some parameter al.

Furthermore, this random variable is independent of the next transition.
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(ii) If the process moves from state l, it goes to a different state j with some proba-

bility p̃lj, formulated as

p̃ll = 0,
∑
l 6=j

p̃lj = 1.

Noting that al is also called the rate of moving from state l, the following theorem

states the generator of a CTMP.

Theorem 2.3. If M(t) is a CTMP with the countable state space S, the leaving rates

al and probabilites p̃lj (l, j ∈ S), the generator matrix Q := (qlj)N×N is defined as

follows:

(i) qlj = alp̃lj, l 6= j,

(ii) qll = −al.

With this construction, qlj turns to be the rate of transition from state l to state j.

Additionally, the diagonals of the generator matrix Q describe the holding times:

Since qll = −al, the holding time in state l is now exponentially distributed with−qll.

In the following, the transition rates are related with the transition probabilites by

invoking a crucial assumption: for small y > 0, the number of transitions in the time

interval (t, t+ y) is more than one with a probability of o(y).

Theorem 2.4. Suppose that M(t) is a CTMP with the transition probability matrix

P (t) and generator Q. Then, as y ↓ 0 and for all l 6= j:

(i) plj(y) = qljy + o(y).

(ii) pll(y) = 1 + qlly + o(y).

In other words, for small values of y the transition probabilities turn out be approxi-

mately linear in y.

By using the above result and stochasticity of the transition probability matrix P (t),

the properties of the generator Q are summarized in the following lemma:
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Lemma 2.1. A square matrix Q = (qlj)N×N is called a Q-matrix or the generator of

a CTMP if and only if the following properties hold for all l, j = 1, . . . , N :

(i) 0 ≤ −qll <∞,

(ii) qlj ≥ 0 for l 6= j,

(iii)
∑N

j=1 qlj = 0.

Lastly, Kolmogorov’s backward and forward equations are introduced, which are one

of most noteworthy results in the context of CTMPs. In particular, these results in-

dicate how the transition probability matrix P (t) can be obtained from the generator

matrix Q.

Theorem 2.5. Let the process M(t) be a CTMP with the finite state space S, tran-

sition probability matrix P (t) and generator Q. Also, consider that eA denotes the

matrix exponential of a finite-dimensional square matrix A.

Then, having the unique solution P (t) = eQt, the followings hold:

(i) (Kolmogorov’s Backward Equation)

d

dt
P (t) = QP (t), P (0) = I.

(ii) (Kolmogorov’s Forward Equation)

d

dt
P (t) = P (t)Q, P (0) = I.

2.2 Markov-Modulated Black-Scholes Formula

In this section, we focus on the approach of Buffington and Elliott [7], developed

for the valuation of vanilla options under a MMGBM setting without synchronous

jumps. In particular, they present the regime-switching version of Black-Scholes

formula by conditioning on the whole trajectory of Markov process. Noting that their

pricing methodology will be very crucial for our Markov-modulated Kirk’s formula,

we briefly review their arguments in the sequel.
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Consider a complete probability space (Ω,F ,Q) on a finite time horizon [0, T ],where

Q is the risk-neutral probability measure, and suppose a homogeneous continuous-

time Markov process {M(t)}t∈[0,T ] with a finite-state space S = {1, 2, . . . , N}. In

this context, the authors assume that the risk-neutral dynamics of the risky asset

{S(t)}t∈[0,T ] is modelled by

dS(t)

S(t)
= r(M(t))dt+ σ(M(t))dW (t), S(0) = s,

or in exponential form,

S(t) = se
∫ t
0 (r(M(u))− 1

2
[σ(M(u))]2)du+

∫ t
0 σ(M(u))dW (u),

where W (t) is a Brownian motion independent of M(t), r(M(t)) is the risk-free

interest rate and σ(M(t)) is the volatility of the asset, both of which are characterized

by the underlying Markov process M(t):

r(M(t)) =
N∑
j=0

rj1{M(t)=j}, σ(M(t)) =
N∑
j=0

σj1{M(t)=j},

with rj and σj are positive constants for each j = 1, 2, . . . , N.

Regarding the above dynamics, they consider the pricing problem

V (0) = EQ [e−U(T ) (S(T )−K)+] ,
where T is the maturity, K is the strike and U(T ) is the integrated process defined by

U(T ) :=
∫ T

0
r(M(s))ds. In order to price, they favor the law of total expectation by

conditioning on the whole trajectory of M(t):

V (0) = EQ [EQ [e−U(T ) (S(T )−K)+ |FM(T )
]]
,

where FM(T ) represents the σ-algebra generated by the Markov process M(t), 0 ≤
t ≤ T. As pointed out in [7], with conditioning on FM(T ) the values of integrated

processes U(T ) =
∫ T

0
r(M(s))ds and

∫ T
0

[σ(M(s))]2 ds are known in advance, and

hence the inner conditional expectation EQ
[
e−U(T ) (S(T )−K)+ |FM(T )

]
is com-

puted by using the Black-Scholes formula

EQ [e−U(T ) (S(T )−K)+ |FM(T )
]

= sN(d1)−Ke−U(T )N(d2),
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where

d1 =

(∫ T

0

[σ(M(u))]2 du

)−1/2 [
log
( s
K

)
+ U(T ) +

1

2

∫ T

0

[σ(M(u))]2 du

]
,

d2 = d1 −
(∫ T

0

[σ(M(u))]2du

)1/2

.

Note that these arguments will be very useful in Chapter 3.

2.3 A Useful Result from Deelstra and Simon

In this section, we visit a noteworthy result from Deelstra and Simon [16], pro-

posed to obtain the joint characteristic function of Markov-modulated Lévy processes

(MMLPs) without synchronous jumps. This result will be frequently used for devel-

oping the theoretical framework in Chapter 4 and Chapter 5. Also, it is worth men-

tioning that an analogous result will be derived for the MMPLs with synchronous

jumps (see Appendix A).

Lemma 2.2. Suppose that M(t) is a continuous-time Markov process defined by a

finite state space S = {1, 2, . . . , N}, generator Q and initial probability vector p =

[p1, p2, . . . , pN ] with pj = P (M(0) = j) . Assume that X(t) = (X1(t) . . . , Xn(t)) is

an n-dimensional MMLP without synchronous jumps, whose dynamics in state k is

identified by the n-dimensional Lévy process Yk(t) = (Y1k(t), . . . , Ynk(t)) that has

the characteristic exponent Φk(u):

EQ [ei〈u,Yk(t)〉] = e−Φk(u)t,

with u = (u1, . . . , un) ∈ CN .

Under the assumption that Φj is known analytically and C(t) =
∫ t

0
c(M(s)) ds is a

Markov-modulated drift process with

c(M(t)) =
N∑
j=0

cj1M(t)=j,

(cj, j = 1, . . . , N, being some constants), then for all a ∈ Cn and t ≥ 0:

E
[
eC(t)+〈a,X(t)〉] = pe(−A+Q)t1,

where 1 is the column vector of ones and A is the diagonal matrix with Ajj =

Φj(−ia)− cj.
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2.4 Option Pricing with FFT

In this section, we review Carr-Madan approach [11] developed for the evaluation

of European call options under a framework without regime-switching. In this in-

teresting paper, the authors propose to use the FFT under the models for which the

characteristic function of log-returns is known analytically. Although the main con-

cern in this approach is the valuation of vanilla options, their idea will motivate us to

obtain pricing formulas for spread and basket options under the Markov-modulated

models. Therefore, in the following we introduce their pricing methodology.

Consider a European call option with underlying asset S, maturity T and strike K.

Denoting X(T ) = log(S(T )) and k = log(K), the fair price of the option at time

t = 0 is given as

V (0) = EQ[e−rT (eX(T ) − ek)+]

= e−rT
∫ ∞
k

(ex − ek)f(x)dx,

where Q is the risk-neutral probability measure, r is the risk-free interest rate and f(x)

is the density function ofX(T ).Carr and Madan point out that since limk→−∞ V (0) =

S(0), V (0) is not square-integrable, and therefore Fourier transform method cannot

be directly applied. For that reason, they introduce a modified price Ṽ (0) = eδkV (0)

which turns out to be square integrable with a suitable choice of damping factor δ > 0.

Then, by considering the Fourier transform of Ṽ (0),

ΨT (γ;K) =

∫ ∞
−∞

eiγkṼ (0)dk =

∫ ∞
−∞

eiγk
∫ ∞
k

e−rT (ex − ek)f(x)dxdk,

the option price is formulated as

V (0) =
e−δk

2π

∫ ∞
−∞

e−iγkΨT (γ;K)dγ =
e−δk

π

∫ ∞
0

e−iγkΨT (γ;K)dγ,

as a result of inverse transform. As they mentioned, the last equality is based on the

fact that since the option price V (0) is real, the imaginary part of ΨT (γ;K) is an

odd function and its real part is even. Lastly, by using Fubini arguments, the function

ΨT (γ;K) is written in terms of the characteristic function of X(T ); and hence, the

option price is obtained. For more discussion about the derivation of the pricing

formula and the choice of the damping factor, we refer to Carr and Madan [11]. It
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is important to mention that the authors also present an efficient FFT algorithm for

computing the corresponding option price numerically.
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CHAPTER 3

PRICING SPREAD OPTIONS UNDER A

MARKOV-MODULATED GEOMETRIC BROWNIAN

MOTION WITHOUT SYNCHRONOUS JUMPS

This chapter is devoted to the valuation of spread options when the evolution of

underlying assets is identified within a Markov-modulated GBM (MMGBM) with-

out synchronous jumps. In this context, whenever the state of the Markov process

change, only a switch in the model parameters will occur according to the visited

state. It is worth mentioning that when risky assets follow a framework without

regime-switching, closed-form pricing formulas are generally not available for spread

options, even in a GBM setting.

Therefore, one can discuss the pricing problem without regime-switching in the line

of analytical approximations or numerical methods. This study concentrates on the

derivation of an analytical approximation, namely the Markov-modulated Kirk’s for-

mula, whose version without regime-switching draws many attention from practition-

ers.

3.1 The Market Model

This section is devoted to the market dynamics under a regime-switching framework

without synchronous jumps. We suppose a complete probability space (Ω,F ,Q) on a

finite time horizon [0, T ], where Q is defined as the risk-neutral probability measure.

We also consider a homogeneous continuous-time Markov process {M(t)}t∈[0,T ] with
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a finite-state space S = {1, 2, . . . , N}, generatorQ = (qij)N×N and initial probability

vector p = [p1 p2 . . . pN ] ∈ RN . Remember from Section 2.1 that under a framework

without synchronous jumps, qlj denotes the constant transition rate from state l to j

and pl = P (M(0) = l) . Unless otherwise stated, all dynamics in this chapter will be

given under the risk-neutral probability measure Q.

When considering the continuous-time financial market, we define a money market

account {S0(t)}t∈[0,T ] and two risky assets {S1(t)}t∈[0,T ], {S2(t)}t∈[0,T ] whose dy-

namics are given in the following: let the interest rate process r(M(t)) be Markov-

modulated, i.e.,

r(M(t)) =
N∑
j=1

rj1{M(t)=j},

with rj > 0 being constant for each j = 1, 2, . . . , N. For such a specification, the

dynamics of the money market account S0(t) is described as

dS0(t) = r(M(t))S0(t)dt, S0(0) = 1,

or equivalently,

S0(t) = eU(t) with U(t) =

∫ t

0

r(M(s))ds.

Moreover, define two volatility processes σi(M(t)), i = 1, 2, characterized by the

underlying Markov process M(t) as follows:

σi(M(t)) =
N∑
j=1

σij1{M(t)=j},

where σij > 0 is constant for each j = 1, 2, . . . , N and i = 1, 2. We also define

σmax
i = max

1≤j≤N
σij <∞ for each i = 1, 2.

Therefore, price processes S1(t) and S2(t) are identified by the following MMGBMs:

dS1(t)

S1(t)
= r(M(t))dt+ σ1(M(t))dW1(t), S1(0) = s1,

dS2(t)

S2(t)
= r(M(t))dt+ σ2(M(t))dW2(t), S2(0) = s2,

where {W1(t)}t∈[0,T ] and {W2(t)}t∈[0,T ] are two standard Brownian motions with

d〈W1,W2〉(t) = ρ(M(t))dt. Here, ρ(M(t)) represents the correlation between the

two Brownian motions W1(t) and W2(t) so that

ρ(M(t)) =
N∑
j=1

ρj1{M(t)=j},
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with ρj ∈ (−1, 1) for j = 1, 2, . . . , N. Importantly, the Markov process M(t) is

assumed to be independent from the two Brownian motions W1(t) and W2(t). We

also want to remark that dW2(t) can be rewritten as

ρ(M(t))dW1(t) +
√

1− [ρ(M(t))]2dB(t),

where {B(t)}t∈[0,T ] is a Brownian motion independent of W1(t). More explicitly, the

dynamics of S1(t) and S2(t) are driven by the stochastic differential equations
dS1(t)

S1(t)
= r(M(t))dt+ σ1(M(t))dW1(t), (3.1)

dS2(t)

S2(t)
= r(M(t))dt+ σ2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)
.

(3.2)

If we regard the processes Z1(t) = log(S1(t)/S1(0)) and Z2(t) = log(S2(t)/S2(0)),

the celebrated Itô formula leads to

Z1(t) = Λ1(t) +X1(t) and Z2(t) = Λ2(t) +X2(t),

where

Λ1(t) =

∫ t

0

(
r(M(u))− 1

2
[σ1(M(u))]2

)
du,

Λ2(t) =

∫ t

0

(
r(M(u))− 1

2
[σ2(M(u))]2

)
du,

X1(t) =

∫ t

0

σ1(M(u))dW1(u),

X2(t) =

∫ t

0

σ2(M(u))

(
ρ(M(u))dW1(u) +

√
1− [ρ(M(u))]2dB(u)

)
.

Hence, the dynamics of the risky assets Si(t), i = 1, 2, can also be expressed in the

exponential form:

Si(t) = Si(0)eZi(t) = sie
Λi(t)+Xi(t).

Lastly, we identify the information carried out by Brownian motions W1(t), B(t)

and the Markov process M(t), which will be required when pricing spread options.

Let σ-algebras {FW1(t)}t∈[0,T ], {FB(t)}t∈[0,T ], {FM(t)}t∈[0,T ] define the filtrations

generated by W1(t), B(t) andM(t), and let G(t) := FW1(t)∨FB(t)∨FM(t) denote

the enlarged filtration for all t ∈ [0, T ].

Giving these set-up, we now introduce the Markov-modulated Kirk’s approximation

technique.
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3.2 Pricing Spread Options via Kirk’s Approximation Technique

In this section, we establish the regime-switching valuation of spread options via

Kirk’s approximation technique. But before giving the perspective for the correspond-

ing regime-switching framework, we find beneficial to briefly discuss the classical

Kirk’s formula with a non-Markovian set-up.

3.2.1 An Overwiew under GBMs without Regime Switching

Consider a spread option whose payoff is given by h(S1(T ), S2(T )) = (S1(T ) −
S2(T ) −K)+, where S1 and S2 are the underlying asset prices governed by GBMs,

T is the maturity and K is the strike price of the option. Assume also that regime-

switching is not allowed in the market. Then, the fair price of the option under the

martingale measure Q is defined as

V (0) = e−rTEQ [(S1(T )− S2(T )−K)+] , (3.3)

with r being the constant risk-free interest rate. Equivalently,

V (0) = e−rTEQ

[
(S2(T ) +K)

(
S1(T )

S2(T ) +K
− 1

)+
]
.

But as commonly mentioned in the literature, there is (in general) no closed-form so-

lution for this pricing problem (3.3), even when the underlying assets are governed by

GBMs. For the exception that yields a closed-form solution in the GBM setting, one

should regard the celebrated work of Margrabe [29]. Since the Kirk’s approximation

technique is inspired by [29], we will first recall Margrabe’s approach for the sake

of completeness. To briefly state, the author shows that the pricing problem under a

measure Q̂, which is defined as dQ̂
dQ = e−

1
2
σ2

2T+σ2W2(T ), is reduced to

V (0) = s2EQ̂

[(
S1(T )

S2(T )
− 1

)+
]
.

In other words, spread options with zero strike (exchange option) can be priced by

means of a European call whose underlying is S1(t)/S2(t) and strike is 1. Since the

process S1(t)/S2(t) is still log-normal, one can then easily evaluate the corresponding

European call option by the well known Black-Scholes formula:

V (0) = s1N(d1)− s2N(d2),
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where

d1 =

(
log(s1/s2) + 1

2
σ2T

σ
√
T

)
, d2 = d1 − σ

√
T ,

σ =
√
σ2

1 + σ2
2 − 2ρσ1σ2.

On the other hand, when K > 0, we regard the process S1(t)/(S2(t) + Ke−r(T−t))

as the underlying, which is not driven by a GBM anymore. For this case, Kirk [24]

introduces a pricing formula for spread options, relying on Margrabe’s approach when

K � S2(t). His approximation is based on the fact that for considerably small strikes

K � S2(t), the process S1(t)/(S2(t) +Ke−r(T−t)) can be considered as log-normal.

Therefore, the spread option price can be given by a Black-Scholes type formula, in

which S1(t)/(S2(t) +Ke−r(T−t)) is the underlying asset and strike is 1.

But as far as we know, the derivation of the formula is not carried out explicitly

by Kirk. For this reason, Venkatramanan and Alexander [36] provide a derivation

of Kirk’s pricing formula. In particular, they examine the dynamics of the price

process S1(t)/(S2(t) + Ke−r(T−t)) and confirm that it is approximately log-normal

when K � S2(t). By defining a new equivalent probability measure Q̂ with dQ̂
dQ =

e−
1
2
σ̃2

2T+σ̃2W2(T ), spread options are then valued in terms of the expectation

V (0) ≈ (s2 +Ke−r(T−t))EQ̂

[(
S1(T )

S2(T ) +K
− 1

)+
]
,

implying the following Kirk’s formula:

V (0) ≈ s1N(d1)− (s2 +Ke−rT )e(r̃−r)TN(d2),

where

d1 =

[
log(s1/(s2 +Ke−rT )) +

(
r − r̃ + 1

2
σ2
)
T

σ
√
T

]
, d2 = d1 − σ

√
T ,

σ =
√

(σ1)2 + (σ̃2)2 − 2ρσ1σ̃2

r̃ =
s2

(s2 +Ke−rT )
r

σ̃2 =
s2

(s2 +Ke−rT )
σ2.

For more on Kirk’s pricing formula, we also refer to studies [5, 10] and references

therein.
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3.2.2 Extension to GBMs with Regime Switching

When we allow the regime shifts in the market, to the best our knowledge there is no

Markov-modulated Kirk’s formula in the existing literature. This section is devoted

to adapt the abovementioned arguments for MMGBMs, motivated by Venkatramanan

and Alexander [36]. Briefly, we apply a change of measure under the fact that the

model dynamics of S1(t)/(S2(t) + Ke−(U(T )−U(t))) is approximated by a MMGBM

for strikes K � S2(t). Hence, we derive a Black-Scholes type formula for the valu-

ation of spread options, inspired by the study of Buffington and Elliott [7] and Elliott

et al. [19].

Let h(S1(T ), S2(T )) = (S1(T )− S2(T )−K)+ be the payoff of a spread call written

on S1 and S2 with maturity T and strike K. Then, pricing problem is reduced to the

computation of the expectation

V (0) = EQ [e−U(T ) (S1(T )− S2(T )−K)+]
= EQ

[
e−U(T )(S2(T ) +K)

(
S1(T )

S2(T ) +K
− 1

)+
]

= EQ [e−U(T )(S2(T ) +K) (Y (T )− 1)+] ,
where Y (t) = S1(t)/(S2(t)+Ke−(U(T )−U(t))) for t ∈ [0, T ]. From this representation,

it is clear that if one can find a measure that eliminates the process (S2(T ) +K) from

the above expectation, the pricing problem is reduced to the valuation of a European

option.

3.2.2.1 A Change of Measure

Therefore, we specify a new probability measure Q̂ ∼ Q which will enable us to

express the value of a spread call in terms of a European option price.

In the following proposition, we introduce the Markov-modulated dynamics of the

process S2(t) +Ke−(U(T )−U(t)) for t ∈ [0, T ].

Proposition 3.1. The process S2(t) + Ke−(U(T )−U(t)), t ∈ [0, T ], evolves according
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to the following stochastic differential equation with regime-switching:

d(S2(t) +Ke−(U(T )−U(t)))

S2(t) +Ke−(U(T )−U(t))
≈

r̃(M(t))dt+ σ̃2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)
, (3.4)

where

r̃(M(t)) :=
S2(t)

S2(t) +Ke(U(T )−U(t))
r(M(t)),

σ̃2(M(t)) :=
S2(t)

S2(t) +Ke−(U(T )−U(t))
σ2(M(t)).

Proof. Notice that S2(t) +Ke−(U(T )−U(t)) has the following dynamics:

d(S2(t) +Ke−(U(T )−U(t))) = dS2(t) + r(M(t))Ke−(U(T )−U(t))dt

= S2(t)

[
r(M(t))dt+ σ2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)]
+ r(M(t))Ke−(U(T )−U(t))dt.

SinceKe−(U(T )−U(t))/(S2(t)+Ke−(U(T )−U(t))) ≈ 0 within each regime, we then have

d(S2(t) +Ke−(U(T )−U(t)))

S2(t) +Ke−(U(T )−U(t))
≈ S2(t)

S2(t) +Ke−(U(T )−U(t))

[
r(M(t))dt

+ σ2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)]
.

Finally if we define two processes r̃(M(t)) and σ̃2(M(t)) as follows

r̃(M(t)) :=
S2(t)

S2(t) +Ke(U(T )−U(t))
r(M(t)),

σ̃2(M(t)) :=
S2(t)

S2(t) +Ke−(U(T )−U(t))
σ2(M(t)),

we confirm

d(S2(t) +Ke−(U(T )−U(t)))

S2(t) +Ke−(U(T )−U(t))
≈

r̃(M(t))dt+ σ̃2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)
.
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Remark 3.1. Since we assume that K � S2(t), S2(t)/
(
S2(t) +Ke(U(T )−U(t))

)
≈ 1,

and hence the processes r̃(M(t)) and σ̃2(M(t)) are approximately constant within

each regime.

Remark 3.2. In the light of Proposition 3.1,

d
(
e−

∫ t
0 r̃(M(u))du

(
S2(t) +Ke−(U(T )−U(t))

))
≈ −r̃(M(t))e−

∫ t
0 r̃(M(u))du

(
S2(t) +Ke−(U(T )−U(t))

)
dt

+ e−
∫ t
0 r̃(M(u))du

(
S2(t) +Ke−(U(T )−U(t))

)
×
(
r̃(M(t))dt+ σ̃2(M(t))

(
ρ(M(t))dW1(t) +

√
1− [ρ(M(t))]2dB(t)

))
= e−

∫ t
0 r̃(M(u))du

(
S2(t) +Ke−(U(T )−U(t))

)
σ̃2(M(t))

×
(
ρ(M(t)dW1(t) +

√
1− [ρ(M(t))]2dB(t)

)
= e−

∫ t
0 r̃(M(u))du

(
S2(t) +Ke−(U(T )−U(t))

)
σ̃2(M(t))dW2(t),

where

dW2(t) = ρ(M(t))dW1(t) +
√

1− [ρ(M(t))]2dB(t).

Thus, the process e−
∫ t
0 r̃(M(u))du

(
S2(t) +Ke(U(T )−U(t))

)
is approximately a local mar-

tingale. Note that since the process [σ̃2(M(t))]2 is bounded due to σmax
i < ∞ and

S2(t)/
(
S2(t) +Ke(U(T )−U(t))

)
≈ 1, the Novikov condition holds; namely,

EQ
[
e−

1
2

∫ T
0 [σ̃2(M(t))]2dt

]
<∞.

Then, e−
∫ t
0 r̃(M(u))du

(
S2(t) +Ke(U(T )−U(t))

)
appears to be a martingale under the as-

sumption K � S2(t). This result will be used to determine the Radon-Nikodym

derivative in the sequel.

By means of Proposition 3.1, we will identify the dynamics of the process Y (t) =

S1(t)/(S2(t) +Ke−(U(T )−U(t))) for strikes K � S2(t).

Proposition 3.2. The price process Y (t) = S1(t)/(S2(t) + Ke−(U(T )−U(t))) for t ∈
[0, T ] is expressed by the following Markov-modulated dynamics:

dY (t)

Y (t)
≈
(
r(M(t))− r̃(M(t)) + σ̃2

2(M(t))− σ1(M(t))σ̃2(M(t))ρ(M(t))

)
dt

+

(
σ1(M(t))− σ̃2(M(t))ρ(M(t))

)
dW1(t)− σ̃2(M(t))

√
1− [ρ(M(t))]2dB(t).
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Proof. Define C(t) := S2(t) + Ke−(U(T )−U(t)) for simplicity. Then, by a direct ap-

plication of two-dimensional Itô formula, we have

dY (t) =
∂Y

∂C
dC(t) +

∂Y

∂S1

dS1(t) +
1

2

∂2Y

∂C2
d[C,C](t)

+
1

2

∂2Y

∂S2
1

d[S1, S1](t) +
∂2Y

∂CS1

d[C, S1](t).

Considering (3.1) and (3.4),

dY (t) ≈ S1(t)

C(t)

(
r(M(t))dt+ σ1(M(t))dW1(t)

)
− S1(t)

C2(t)
C(t)

(
r̃(M(t))dt+σ̃2(M(t))

(
ρ(M(t))dW1(t)+

√
1− [ρ(M(t))]2dB(t)

))
+ S1(t)

C2(t)

C3(t)
[σ̃2(M(t))]2dt− S1(t)

C(t)

C2(t)
σ1(M(t))σ̃2(M(t))ρ(M(t))dt.

Since Y (t) = S1(t)/(S2(t) +Ke−(U(T )−U(t))), we conclude that

dY (t)

Y (t)
≈
(
r(M(t))− r̃(M(t)) + [σ̃2(M(t))]2 − σ1(M(t))σ̃2(M(t))ρ(M(t))

)
dt

+

(
σ1(M(t))− σ̃2(M(t))ρ(M(t))

)
dW1(t)− σ̃2(M(t))

√
1− [ρ(M(t))]2dB(t).

Hence, Proposition 3.2 points out that the price process Y (t) given M(T ) is approx-

imately log-normal, and driven by two independent Brownian motions W1(t) and

B(t). More precisely, log (Y (t)/Y (0)) given M(T ) is a normal random variable

with mean∫ t

0

(
r(M(t))− r̃(M(t))− 1

2

(
[σ1(M(t))]2 − [σ̃2(M(t))]2

))
dt

and variance∫ t

0

(
[σ1(M(t))]2 + [σ̃2(M(t))]2 − 2σ1(M(t))σ̃2(M(t))ρ(M(t))

)
dt.

Hereafter we introduce the following change of measure, which will be convenient in

the sequel. Based on Remark 3.2, define

Γ(t) := e−
∫ t
0 r̃(M(u))duS2(t) +Ke−(U(T )−U(t))

s2 +Ke−U(T )
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for t ∈ [0, T ]. Then, we consider the following Radon-Nikodym derivative:

dQ̂
dQ

= Γ(T ) = e−
∫ T
0 r̃(M(u))du S2(T ) +K

s2 +Ke−U(T )
, (3.5)

where Q̂ is the new probability measure equivalent to Q. By applying Girsanov theo-

rem for Markov-modulated processes,

Ŵ1(t) = W1(t)−
∫ t

0

σ̃2(M(u))ρ(M(u))du,

B̂(t) = B(t)−
∫ t

0

σ̃2(M(u))
√

1− [ρ(M(u))]2du

are two standard Brownian motions under Q̂ [39].

In the following proposition, we give Q̂-dynamics of the price process Y (t).

Proposition 3.3. Under the probability measure Q̂,

dY (t)

Y (t)
≈
(
r(M(t))− r̃(M(t))

)
dt+ σ(M(t))dW (t),

where W (t) is a Q̂-Brownian motion and

σ(M(t)) =
√

[σ1(M(t))]2 + [σ̃2(M(t))]2 − 2ρ(M(t))σ1(M(t))σ̃2(M(t)).

Proof. By straightforward calculations, we have

dY (t)

Y (t)
≈
(
r(M(t))− r̃(M(t))

)
dt+

(
σ1(M(t))− σ̃2(M(t))ρ(M(t))

)
dŴ1(t)

− σ̃2(M(t))
√

1− [ρ(M(t))]2dB̂(t),

where

Ŵ1(t) = W1(t)−
∫ t

0

σ̃2(M(u))ρ(M(u))du,

B̂(t) = B(t)−
∫ t

0

σ̃2(M(u))
√

1− [ρ(M(u))]2du.

Let

σ(M(t))dW (t) =

(
σ1(M(t))− σ̃2(M(t))ρ(M(t))

)
dŴ1(t)

− σ̃2(M(t))
√

1− [ρ(M(t))]2dB̂(t).
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As a result of Lévy characterization theorem, W (t) is a Q̂-Brownian motion if[
σ1(M(t))− σ̃2(M(t))ρ(M(t))

σ(M(t))

]2

dt+

[
σ̃2(M(t))

√
1− [ρ(M(t))]2

σ(M(t))

]2

dt = dt.

Hence,

σ(M(t)) =
√

[σ1(M(t))]2 + [σ̃2(M(t))]2 − 2ρ(M(t))σ1(M(t))σ̃2(M(t)).

Notice that under new measure Q̂, process Y (t) given M(T ) is still approximately

log-normal. But now it is a MMGBM with drift r(M(t)) − r̃(M(t)) and volatility

σ(M(t)).

Below, we will examine the pricing problem under the new probability measure Q̂,

inspired by the study of Buffington and Elliott [7] and Elliott et al. [19]. The results

we obtain may be considered as the main contributions of this chapter.

3.2.2.2 Pricing under New Measure Q̂

As our aim is to price the spread options under the new measure Q̂ ∼ Q, given in

(3.5), we note that by applying Bayes formula

V (0) = EQ [e−U(T )(S2(T ) +K) (Y (T )− 1)+]
= EQ̂

[
dQ
dQ̂

e−U(T )(S2(T ) +K) (Y (T )− 1)+

]
= EQ̂

[
(s2 +Ke−U(T ))e

∫ T
0 (r̃(M(u))−r(M(u))du (Y (T )− 1)+

]
.

This pricing problem adresses to the fact that when we know the whole trajectory

of Markov process M(t), we know the values of s2 + Ke−U(T ),
∫ T

0
(r̃(M(u)) −

r(M(u)))du and
∫ T

0
σ(M(u))2du in advance, and thus the value of spread option

given M(T ) is expressed with the price of a European call whose underlying is Y (t)

and strike is 1. The expected value of this conditional price then gives the required

spread price.

To be more precise, law of total expectation implies that V (0) can be rewritten as

V (0) = EQ̂
[
EQ̂
[
(s2 +Ke−U(T ))e

∫ T
0 (r̃(M(u))−r(M(u))du (Y (T )− 1)+ | FM(T )

]]
.
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Here, the conditional expectation with respect to FM(T ) represents the price of the

corresponding European call option. Since the process Y (t) follows a MMGBM

under the probability measure Q̂, we can evaluate the European option by the well-

known Black-Scholes formula.

Therefore, as suggested in Buffington and Elliott [7] and Elliott et al. [19], we should

take the second expectation over
∫ T

0
(r̃(M(u)) − r(M(u)))du and

∫ T
0
σ(M(u))2du.

Theorem 3.1 infers the corresponding approximate price for spread options, which

may be considered as the main result of this chapter.

Theorem 3.1. Considering the dynamics given in Proposition 3.3, the price of the

spread option given FM(T ),

V (0, U(T )) := EQ̂
[
(s2 +Ke−U(T ))e

∫ T
0 (r̃(M(u))−r(M(u))du (Y (T )− 1)+ | FM(T )

]
,

is calculated as

V (0, U(T )) = s1N(d1)− (s2 +Ke−U(T ))e
∫ T
0 (r̃(M(u))−r(M(u))duN(d2), (3.6)

where N denotes the standard Normal cumulative distribution function, and

d1 =

(∫ T

0

σ2(M(u))du

)−1/2 [
log

(
s1

s2 +Ke−(U(T ))

)
−
∫ T

0

(r̃(M(u))−r(M(u)))du

+
1

2

∫ T

0

σ2(M(u))du

]
,

d2 = d1 −
(∫ T

0

σ2(M(u))du

)1/2

,

σ(M(t)) =
√

[σ1(M(t))]2 + [σ̃2(M(t))]2 − 2ρ(M(t))σ1(M(t))σ̃2(M(t)).

Furthermore,

V (0) = EQ̂
[
s1N(d1)− (s2 +Ke−U(T ))e

∫ T
0 (r̃(M(u))−r(M(u))duN(d2)

]
. (3.7)
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CHAPTER 4

PRICING SPREAD OPTIONS UNDER A

MARKOV-MODULATED LÉVY MODEL WITHOUT

SYNCHRONOUS JUMPS

In this chapter, we study the valuation of spread options when the price dynamics of

risky assets are ruled by Markov-modulated Lévy processes (MMLPs) without syn-

chronous jumps. For this purpose, we favor the study of Caldana and Fusai [8], which

concentrates on only the models without regime switcing. Under our modeling set-up,

we propose a lower bound to the fair price of the option, by simply replacing the true

exercise region with a set very close to it. This set basically relates a power function

of the second asset with the first asset; its closeness to the exercise region will be en-

sured by the high precision of the lower bound under different regime-switching mod-

els (see Chapter 8). Importantly, this corresponding lower bound is obtained by using

only a one-dimensional fast Fourier transform (FFT), which can be applied whenever

the joint characteristic function of log returns are known analytically. Therefore, our

methodology is very flexible in the sense that it can be employed to several regime-

switching models. Note that in the GBM setting this pricing methodology can be

considered a good alternative to the Kirk’s approximation technique, since the joint

characteristic function of the two-dimensional GBM is explicitly known.

4.1 The Market Model

This section is devoted to the model dynamics under a regime-switching framework

without synchronous jumps, and we will closely follow the modeling framework of
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Deelstra and Simon [16]. Recall that with a framework without sychronous jumps, a

state change in the Markov process will lead to only a switch in the model parameters.

As in Chapter 3, we consider a complete probability space (Ω,F ,Q) on a finite time

horizon [0, T ] with Q being the risk-neutral probability measure. We also suppose

a homogeneous continuous-time Markov process {M(t)}t∈[0,T ] with a finite-state

space S = {1, 2, . . . , N}, generator Q = (qij)N×N and initial probability vector

p = [p1 p2 . . . pN ] ∈ RN .

The money market account {S0(t)}t∈[0,T ] has the same dynamics as given in Chap-

ter 3, i.e.,

dS0(t) = r(M(t))S0(t)dt, S0(0) = 1,

where r(M(t)) is the Markov-modulated interest rate process defined by

r(M(t)) =
N∑
k=1

rk1{M(t)=k},

with rl > 0 being constant within each regime l. For a vectoral notation, denote

r = (r1, r2, . . . , rN)>, where u> denotes the transpose of a vector u. Equivalently,

S0(t) = eU(t) with U(t) =

∫ t

0

r(M(s))ds.

Furthermore, we assume that the 2-dimensional process S(t) = (S1(t), S2(t)) of

asset prices is governed by the exponential of a Markov-modulated drift Λ(t) and

a Lévy process X(t) (with zero drift). More precisely, Λ(t) = (Λ1(t),Λ2(t)) is a

2-dimensional drift process given by

Λj(t) =

∫ t

0

µj(M(s))ds, j = 1, 2,

where

µj(M(t)) =
N∑
k=1

µjk1{M(t)=k},

withµj = (µj1, µj2, . . . , µjN)>.Additionally, X(t) = (X1(t), X2(t)) is a 2-dimensional

MMLP whose behaviour within k’th regime is characterized by the 2-dimensional

Lévy process Yk = (Y1k, Y2k),which has the following characteristic exponent Φk(u):

EQ[ei〈u,Yk(t)〉] = e−Φk(u)t (4.1)
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for any u = (u1, u2) ∈ C2. Here, Y1(t),Y2(t), . . . ,YN(t) and the Markov process

M(t) are all mutually independent.

Since in the sequel, we also need the vector of characteristic exponents, we introduce

the notation

Φ(u) = (Φ1(u),Φ2(u), . . . ,ΦN(u))>,

where u = (u1, u2) ∈ C2. Note that when M = k, we consider the characteristic

exponent Φk(u).

Under the dynamics given above, the asset price process S(t) = (S1(t), S2(t)) evolves

according to

Sj(t) = Sj(0)eΛj(t)+Xj(t), Sj(0) = sj,

where j = 1, 2.

We begin with presenting a very useful result from Deelstra and Simon [16], which

shows the drift condition required for the martingality of discounted asset prices.

The proof of this lemma is based on another result from Deelstra and Simon [16],

proven for the exact valuation of exchange and quanto options in a MMLP framework

without synchronous jumps (see Lemma 2.2 in Preliminaries). In this chapter, we will

use these two results very often so as to obtain a lower bound to the exact price of

spread options.

Lemma 4.1 (Deelstra and Simon [16]). The discounted asset price process S̃j(t) =

e−U(t)Sj(t) becomes a Q-martingale if the following condition holds:

µj = r + Φ(−iej), j = 1, 2, (4.2)

where ej is the j’th element of the canonical basis of R2.

4.2 Pricing via Lower Bound

In this section, our main objective is to approximate the spread option price by means

of a lower bound, as in Caldana and Fusai [8], but generalizing to MMLPs without

synchronous jumps.
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Recall that the fair price of a two-asset spread option V (0) at time t = 0 is given as

V (0) = EQ[e−U(T )(S1(T )− S2(T )−K)+],

where K is the strike price of the option and U(t) =
∫ t

0
r(M(s))ds.

For the derivation of a lower bound under a Markov-modulated framework, we extend

the idea given in Caldana and Fusai [8] to the regime-switching models. Therefore,

we define a set H inspired from Bjerksund and Stensland [5]:

H =

{
ω ∈ Ω :

S1(T )

Sα2 (T )
>

ek

EQ[Sα2 (T )]

}
,

where the free parameters α and k are chosen to be

α =
F2(0, T )

F2(0, T ) +K
, (4.3)

k = log (F2(0, T ) +K), (4.4)

with F2(0, T ) = EQ [S2(T )] being the forward price of the second asset.

We consider that on the event H,

(S1(T )− S2(T )−K)1(H) ≤ (S1(T )− S2(T )−K)+

implying that

V k,α
K (0) := EQ[e−U(T )(S1(T )− S2(T )−K)1(H)]

≤ EQ[e−U(T )(S1(T )− S2(T )−K)+]. (4.5)

As a result, V k,α
K (0) can be viewed as a lower bound to the exact option price defined

on the set H.

Before providing an explicit expression to the lower bound, we first comment on the

set H. In fact, one can optimize the spread price V k,α
K (0) with respect to the parame-

ters α and k by leaving them unspecified. However, Caldana and Fusai [8] remark that

their lower bound for which α and k are chosen as in (4.3)-(4.4) and only the models

without regime-switching are considered, turns out to be very tight. Therefore, they

point out that the maximization procedure with respect to α and k is not needed in

practice. They also confirm their arguments by examining how close the shape of the

corresponding set is to the true exercise region. Regarding our generalization to the
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regime-switching models, we will see in Chapter 8 that also our lower bound V k,α
K (0)

with this suitable choice of α and k addresses very tight approximations to the true

opton price.

Since the lower bound given in (4.5) should be calculated through the set H, we

rewrite H more explicitly by considering the following remarks:

Remark 4.1. (i) By using Lemma 2.2 with a = (0, 1) and C(t) = Λ2(t), we verify

that

F2(0, T ) = EQ[S2(T )] = s2EQ[eΛ2(T )+X2(T )] = s2pe
(Q−A)T1, (4.6)

where 1 is the column vector of ones and A is the diagonal matrix with Ajj =

Φj(0,−i) − µ2j. Using (4.6), the chosen parameters α and k can therefore be

rewritten as:

α =
s2pe

(Q−A)T1

S2(0)pe(Q−A)T1 +K
, (4.7)

k = log (s2pe
(Q−A)T1 +K). (4.8)

(ii) Similarly, the expectation EQ[Sα2 (T )] can be calculated by Lemma 2.2 with

a = (0, α) and C(t) = αΛ2(t) :

EQ[Sα2 (T )] = sα2EQ[eαΛ2(T )+αX2(T )] = sα2 pe(Q−B)T1,

where B is the diagonal matrix with Bjj = Φj(0,−iα)− αµ2j.

In the light of these remark, the set H can be rewritten as:

H =
{
ω : ln (S1(T ))− α ln (S2(T )) > k − ln (sα2 pe(Q−D)T1)

}
=
{
ω : X̃1(T )− αX̃2(T ) > k − ln (sα2 pe(Q−D)T1)

}
, (4.9)

where X̃1(T ) = ln (s1) + Λ1(T ) +X1(T ) and X̃2(T ) = ln (s2) + Λ2(T ) +X2(T ).

We now present the explicit computation of the lower bound by the following theo-

rem.

Theorem 4.1. The approximate price of the spread option V k,α
K (0) is given as:

V k,α
K (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨT (γ; δ, α,K)dγ

)+

,
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where δ is the damping factor, α and k are given by (4.7) and (4.8), respectively, and

ΨT (γ; δ, α,K) =
exp

{
(δ + iγ) ln

(
sα2 pe(Q−B)T1

)}
δ + iγ

×(
exp

{
(1 + δ + iγ) ln (s1)− α(δ + iγ) ln (s2)

}
pe(Q−G1)T1

− exp
{

(δ + iγ) ln (s1) + (1− α(δ + iγ)) ln (s2)
}

pe(Q−G2)T1

−K exp
{

(δ + iγ) ln (s1)− α(δ + iγ) ln (s2)
}

pe(Q−G3)T1

)
,

with a1 = (1 + δ + iγ,−α(δ + iγ)), a2 = (δ + iγ, 1 − α(δ + iγ)), a3 = (δ +

iγ,−α(δ + iγ)) and

B = diag (Φ(0,−iα)− αµ2) ,

G1 = diag
(
Φ(−ia1) + r − (1 + δ + iγ)µ1 + α(δ + iγ)µ2

)
,

G2 = diag
(
Φ(−ia2) + r − (δ + iγ)µ1 − (1− α(δ + iγ))µ2

)
,

G3 = diag
(
Φ(−ia3) + r − (δ + iγ)µ1 + α(δ + iγ)µ2

)
.

Proof. Our aim is to compute the following integral:

V k,α
K (0) = EQ[e−U(T )(S1(T )− S2(T )−K)1(H)]

=

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−u(ex̃1 − ex̃2 −K)1(H)f(x̃1, x̃2, u)dx̃1dx̃2du

where f(x̃1, x̃2, u) is the density function of (ln (s1) + Λ1(T ) + X1(T ), ln (s2) +

Λ2(T ) +X2(T ), U(T )).

Following Carr and Madan [11],

V k,α
K (0) =

e−δk

π

∫ ∞
0

e−iγkΨT (γ; δ, α,K)dγ

where δ is the damping factor, the parameters α and k are defined in (4.7) and (4.8),

respectively, and

ΨT (γ; δ, α,K) =

∫ ∞
−∞

e(δ+iγ)kEQ[e−U(T )(S1(T )− S2(T )−K)1(H)]dk

=

∫ ∞
−∞

e(δ+iγ)k

∫
R3

e−u(ex̃1 − ex̃2 −K)1(H)f(x̃1, x̃2, u)dx̃1dx̃2dudk,

being the Fourier transform of V k,α
K (0).
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In order to determine ΨT (γ; δ, α,K), we first take the set H into account for the

integration bounds. Next, we apply Fubini theorem and compute the integral with

respect to k. These arguments yield to

ΨT (γ; δ, α,K)

=

∫
R3

∫ ∞
αx̃2+k−ln (sα2 pe

(Q−B)T 1)

e−u+(δ+iγ)k(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dx̃1dx̃2dudk

=

∫
R3

∫ x̃1−αx̃2+ln (sα2 pe
(Q−B)T 1)

−∞
e−u+(δ+iγ)k(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dkdx̃1dx̃2du

By elaborating the product, we have

ΨT (γ; δ, α,K)

=

∫
R3

e−u+(δ+iγ)(x̃1−αx̃2+ln (sα2 pe
(Q−B)T 1))

δ + iγ
(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dx̃1dx̃2du

=
e(δ+iγ) ln (sα2 pe

(Q−B)T 1)

δ + iγ

(∫
R3

e−u+x̃1(1+δ+iγ)−α(δ+iγ)x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

−
∫
R3

e−u+x̃1(δ+iγ)+(1−α(δ+iγ))x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

−K
∫
R3

e−u+x̃1(δ+iγ)−α(δ+iγ)x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

)
.

Notice that since the resulting triple integrals are indeed expectations, ΨT (γ; δ, α,K)

can be expressed as:

ΨT (γ; δ, α,K) =
e(δ+iγ) ln (sα2 pe

(Q−B)T 1)

δ + iγ

(
EQ
[
e−U(T )+X̃1(T )(1+δ+iγ)−α(δ+iγ)X̃2(T )

]
−EQ

[
e−U(T )+X̃1(T )(δ+iγ)+(1−α(δ+iγ))X̃2(T )

]
−KEQ

[
e−U(T )+X̃1(T )(δ+iγ)−α(δ+iγ)X̃2(T )

])
.

Here, the first expectation given above is evaluated as follows:

EQ
[
e−U(T )+X̃1(T )(1+δ+iγ)−α(δ+iγ)X̃2(T )

]
= EQ [e−U(T )+(1+δ+iγ)(ln (s1)+Λ1(T )+X1(T ))−α(δ+iγ)(ln (s2)+Λ2(T )+X2(T ))

]
= e(1+δ+iγ) ln (s1)−α(δ+iγ) ln (s2)pe(Q−G1)T1,

where

G1 = diag
(
Φ(−ia1) + r − (1 + δ + iγ)µ1 + α(δ + iγ)µ2

)
,
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which is easily calculated by Lemma 2.2 with

C(t) = (1 + δ + iγ)Λ1(t)− α(δ + iγ)Λ2(t)− U(t)

and a = (1 + δ + iγ,−α(δ + iγ)).

Similarly,

EQ
[
e−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T )

]
= EQ [e−U(T )+(δ+iγ)(ln (s1)+Λ1(T )+X1(T ))+(1−α(δ+iγ))(ln (s2)+Λ2(T )+X2(T ))

]
= e(δ+iγ) ln (s1)+(1−α(δ+iγ)) ln (s2)pe(Q−G2)T1,

where

G2 = diag
(
Φ(−ia2) + r − (δ + iγ)µ1 − (1− α(δ + iγ))µ2

)
,

as a result of Lemma 2.2 with

C(t) = (δ + iγ)Λ1(t) + (1− α(δ + iγ))Λ2(t)− U(t)

and a = (δ + iγ, (1− α(δ + iγ))).

Finally, by the application of Lemma 2.2 with

C(t) = (δ + iγ)Λ1(t)− α(δ + iγ)Λ2(t)− U(t)

and a = (δ + iγ,−α(δ + iγ)), the last expectation turns out to be equal to

EQ
[
e−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T )

]
= EQ [e−U(T )+(δ+iγ)(ln (s1)+Λ1(T )+X1(T ))−α(δ+iγ)(ln (s2)+Λ2(T )+X2(T ))

]
= e(δ+iγ) ln (s1)−α(δ+iγ) ln (s2)pe(Q−G3)T1,

where

G3 = diag
(
Φ(−ia3) + r − (δ + iγ)µ1 + α(δ + iγ)µ2

)
.

Using the results given above, we obtain the desired lower bound V k,α
K (0).

It is worth mentioning that by means of the positive part in the formula we guarantee

non-negative prices, especially for out-of-the-money options.
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CHAPTER 5

PRICING BASKET OPTIONS UNDER A

MARKOV-MODULATED LÉVY MODEL WITHOUT

SYNCHRONOUS JUMPS

In this chapter, we introduce an approximation technique for the valuation of basket

options assuming a multivariate MMLP framework without synchronous jumps. This

pricing methodology generalizes the study of Caldana et al. [9] which only considers

the continuous-time models without regime-switching.

More precisely, we first aim to derive a lower bound on a set based on the geometric

average of underlyings. As in Chapter 4, this lower bound is expressed via a uni-

variate Fourier inversion under the assumption that the joint characteristic function

of the multivariate log-returns is known explicitly within each state. Since we only

require the joint characteristic function to be available, our approximation is very

managable in the sense that it becomes valid for many different types of financial

models with regime-switching. In spite of this advantage, the calculation of this lower

bound adresses an optimization procedure which can increase the computational cost.

Therefore, we propose the analogous bounds and approximate price estimate implied

by the arithmetic-geometric mean inequality.

5.1 The Market Model

In this chapter, we adapt the modeling framework given in Chapter 4 for the case of

n underlying assets in the sequel.
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Consider a complete probability space (Ω,F ,Q) endowed with the risk-neutral prob-

ability measure Q, a homogeneous continuous-time Markov process {M(t)}t∈[0,T ]

and a financial market comprising of a money market account{S0(t)}t∈[0,T ] and n

underlying assets {Sj(t)}t∈[0,T ], j = 1, 2, . . . , n. Assuming that the Markov process

M(t) and the money market account S0(t) have the same dynamics as given in Chap-

ter 4, we specify the modeling framework of risky assets.

Let S(t) = (S1(t), . . . , Sn(t)) be the n-dimensional price vector where each compo-

nent Sj(t) is described by the exponential of a one-dimensional drift Λj(t) and Lévy

process Xj(t). That is,

Sj(t) = Sj(0)eΛj(t)+Xj(t), Sj(0) = sj,

where X(t) = (X1(t) . . . , Xn(t)) is a n-dimensional MMLP such that when M = k,

X is identified by the n-dimensional Lévy process Yk = (Y1k, . . . , Ynk) that has the

characteristic exponent Φk(u):

EQ [ei〈u,Yk(t)〉] = e−Φk(u)t, (5.1)

with u = (u1, u2, . . . , un) ∈ Cn. Herewith, the drift process is given as

Λj(t) =

∫ t

0

µj(M(s))ds, j = 1, 2, . . . , n,

where

µj(M(t)) =
N∑
k=1

µjk1{M(t)=k},

with µj = (µj1, µj2, . . . , µjN)> for each j. Importantly, we assume that all source of

randomness, namely, Y1(t),Y2(t), . . . ,YN(t) and M(t), are mutually independent.

Considering the vector of characteristic exponents

Φ(u) = (Φ1(u),Φ2(u), . . . ,ΦN(u))>,

we now establish the martingale condition:

µj = r + Φ(−iej), j = 1, 2, . . . , n, (5.2)

where ej is the jth element of the canonical basis of Rn. Notice that this condition is

a straightforward generalization of the one given in Lemma 4.1, if we use Lemma 2.2

with C(t) = Λj(t)− U(t) and a = ej.
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In the following sections, we introduce some lower and upper bounds to the fair price

of basket options, which can be applied to many different types of financial models

with regime-switching.

5.2 Basket Option Pricing by the Use of a Lower Bound

In this section, we derive a lower bound to the fair price of basket options by using

the geometric average of the underlyings, where we generalize the study of Caldana

et al. [9] to the proposed MMLP framework.

Consider the vector of weights w = (w1, w2, . . . , wn) ∈ Rn and a value process

An(T ) given by

An(T ) =
n∑
j=1

wjSj(T ).

The fair price (at time t = 0) of the basket option V Basket(0) with this underlying

basket is well-known to be equal to

V Basket(0) = EQ [e−U(T )(An(T )−K)+
]
,

where K is the strike price and T is the maturity.

Following the idea of Caldana et al. [9], we define the set G(x) with x ∈ R

G(x) := {ω ∈ Ω : Hn(T ) > x},

where Hn(T ) refers to the logarithm of the geometric average Gn(T ) :

Hn(T ) = lnGn(T ) with Gn(T ) =
n∏
j=1

Sj(T )wj . (5.3)

Similarly as in Caldana et al. [9], we consider that the following inequality holds true

for all x ∈ R

V Basket(0) ≥ EQ [e−U(T )(An(T )−K)1G(x)

]+
=: V GK (0, x), (5.4)

and therefore

V Basket(0) ≥ max
x∈R

V GK (0, x) =: V GK (0, x∗) =: V GK (0), (5.5)
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where V GK (0) is considered as a lower bound to the exact option price and the maxi-

mum is attained at x∗.

In the following theorem, we present the explicit computation of V GK (0) in the settings

of this chapter. We first note that if we define Rj(T ), for j = 1, 2, . . . , n, as the log-

return over [0, T ], namely,

Rj(T ) = ln

(
Sj(T )

sj

)
= Λj(T ) +Xj(T ), (5.6)

then the process Hn(T ) can be rewritten as:

Hn(T ) =
n∑
j=1

wjRj(T ) +Hn(0), (5.7)

where Hn(0) =
∑n

j=1 wj ln sj with sj = Sj(0).

Theorem 5.1. The lower bound price V GK (0) is obtained by

V GK (0) = max
x∈R

V GK (0, x),

with

V GK (0, x) =

(
e−δx

π

∫ ∞
0

e−iγxΨT (γ; δ,K)dγ

)+

,

where δ is the damping factor, aj = (δ+iγ)w+ej for j = 1, 2, . . . , n, b = (δ+iγ)w

and ΨT (γ; δ,K) = Ψ1
T (γ; δ,K)−Ψ2

T (γ; δ,K) with

Ψ1
T (γ; δ,K) =

e(δ+iγ)Hn(0)

δ + iγ

n∑
j=1

wjsjpe
(Q−Dj)T1,

Ψ2
T (γ; δ,K) = K

e(δ+iγ)Hn(0)

δ + iγ
pe(Q−L)T1,

Hn(0) =
n∑
j=1

wj ln sj,

Dj = diag

(
Φ(−iaj) + r − µj − (δ + iγ)

n∑
l=1

wlµl

)
, j = 1, ..., n,

L = diag

(
Φ(−ib) + r − (δ + iγ)

n∑
l=1

wlµl

)
.

Proof. As in Carr and Madan [11], we easily get the expression

V GK (0, x) =

(
e−δx

π

∫ ∞
0

e−iγxΨT (γ; δ,K)dγ

)+

,
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where ΨT (γ; δ,K) is the Fourier transform of V GK (0, x) defined as

ΨT (γ; δ,K) =

∫ ∞
−∞

eiγx+δxEQ [e−U(T )(An(T )−K)1G(x)

]
dx

=

∫ ∞
−∞

e(δ+iγ)x

n∑
j=1

wjEQ [e−U(T )Sj(T )1G(x)

]
dx

−
∫ ∞
−∞

e(δ+iγ)xKEQ [e−U(T )1G(x)

]
dx

:= Ψ1
T (γ; δ,K)−Ψ2

T (γ; δ,K).

Denoting the density function of (Rj(T ), Hn(T ), U(T )) by f(rj, hn, u), both inte-

grals can be easily calculated. Indeed, let us first concentrate upon the first integral

Ψ1
T (γ; δ,K) considering equations (5.6), (5.7) and use the following equalities:

Ψ1
T (γ; δ,K) =

∫ ∞
−∞

e(δ+iγ)x

n∑
j=1

wjEQ [e−U(T )+ln sj+Λj(T )+Xj(T )1G(x)

]
dx

=

∫ ∞
−∞

e(δ+iγ)x

(
n∑
j=1

wjsj

∫ ∞
−∞

∫ ∞
x

∫ ∞
−∞

e−u+rjf(rj, hn, u)drjdhndu

)
dx

=
n∑
j=1

wjsj

∫
R3

∫ hn

−∞
e(δ+iγ)xe−u+rjf(rj, hn, u)dxdrjdhndu

=
1

δ + iγ

n∑
j=1

wjsj

∫
R3

e(δ+iγ)hn−u+rjf(rj, hn, u)drjdhndu

=
1

δ + iγ

n∑
j=1

wjsjEQ [e−U(T )+Rj(T )+(δ+iγ)Hn(T )
]
.

The use of Lemma 2.2 with C(t) = −U(t) + Λj(t) + (δ + iγ)
∑n

l=1wlΛl(t) and

aj = (δ+ iγ)w + ej leads then to an explicit expression of the expectation in the last

equality:

EQ [e−U(T )+Rj(T )+(δ+iγ)Hn(T )
]

= e(δ+iγ)Hn(0)pe(Q−Dj)T1.

In the same way, Ψ2
T (γ; δ,K) can be reformulated as

Ψ2
T (γ; δ,K) =

K

δ + iγ

∫
R3

e(δ+iγ)hn−uf(rj, hn, u)drjdhndu

=
K

δ + iγ
EQ [e(δ+iγ)Hn(T )−U(T )

]
.

Using Lemma 2.2 with C(t) = −U(t) + (δ + iγ)
∑n

l=1wlΛl(t) and b = (δ + iγ)w,

we find

EQ [e(δ+iγ)Hn(T )−U(T )
]

= e(δ+iγ)Hn(0)pe(Q−L)T1.
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This yields the announced expression for V GK (0, x). Maximizing V GK (0, x) over the

values of x, we get the desired result.

5.3 Basket Option Pricing by the Arithmetic-Geometric Mean Inequality

When we follow the optimization procedure given in the previous section, evaluation

of basket options with several underlyings can be rather time demanding. There-

fore, Caldana et al. [9] also proposed fast approximations considering the arithmetic-

geometric mean inequality. Therefore, we aim to extend these approximations to the

basket option price as regards to the proposed Lévy-based regime-switching frame-

work.

Consider that Jpos and Jneg are the sets of indices corresponding to positive and neg-

ative weights, respectively. Then,

An(T ) =
∑
k∈Jpos

wkSk(T )−
∑
k∈Jneg

|wk|Sk(T ) = bposApos
n (T )− bnegAneg

n (T ),

where

Apos
n (T ) =

∑
k∈Jpos wkSk(T )∑

k∈Jpos wk
, bpos =

∑
k∈Jpos

wk,

and

Aneg
n (T ) =

∑
k∈Jneg |wk|Sk(T )∑

k∈Jneg |wk|
, bneg =

∑
k∈Jneg

|wk|.

Moreover, let wpos be the vector whose kth component wpos
k is:

wpos
k =

 wk/
∑

k∈Jpos wk if k ∈ Jpos,

0 if k ∈ Jneg.

Similarly, consider the vector wneg to be the vector whose k’th component wneg
k is

given by:

wneg
k =

 |wk|/
∑

k∈Jneg |wk| if k ∈ Jneg,

0 if k ∈ Jpos.

Additionally, assume that

Gpos
n (T ) = Πk∈JposSk(T )w

pos
k , Gneg

n (T ) = Πk∈JnegSk(T )w
neg
k ,
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and define

Hpos
n (T ) = lnGpos

n (T ), Hneg
n (T ) = lnGneg

n (T ).

In the present framework, we now focus on a lower bound LAGK (0), an upper bound

UAG
K (0) and an approximation CAG

K (0), all inspired by the study of Caldana et al. [9].

Indeed, if we consider the arithmetic-geometric mean inequality Gn(T ) ≤ An(T ),

the bounds LAGK (0), UAG
K (0) and the approximation CAG

K (0) can be defined by the

following formulas, which are straightforward generalizations of the results given in

Caldana et al. [9]:

LAGK (0) =EQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)+
]

+ bneg (EQ [e−U(T )Gneg
n (T )

]
− EQ [e−U(T )Aneg

n (T )
])
,

UAG
K (0) =EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)+

]
+ bpos (EQ [e−U(T )Apos

n (T )
]
− EQ [e−U(T )Gpos

n (T )
])
,

CAG
K (0) =EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K∗)+

]
,

where LAGK (0) ≤ CAG
K (0) ≤ UAG

K (0) and the strike price K∗ is defined by

K∗ = K − EQ [bposApos
n (T )] + EQ [bposGpos

n (T )]

+ EQ [bnegAneg
n (T )]− EQ [bnegGneg

n (T )] .

The difference with the reference study lies in the fact that we now allow a regime-

switching models for the asset prices and in the remaining of this section, we will

study the explicit expressions for LAGK (0), UAG
K (0) and CAG

K (0) in this framework.

Theorem 5.2. The lower bound LAGK (0) is given by the formula:

LAGK (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ

)+

+ bneg (Gneg
n (0)pe(Q−Dneg)T1

)
− bneg∑

k∈Jneg |wk|

(∑
k∈Jneg

|wk|skpe(Q−Lk)T1

)

where δ is the damping factor,

α =
EQ [bnegGneg

n (T )]

EQ [bnegGneg
n (T )] +K

, (5.8)

k = ln
(
EQ [bnegGneg

n (T )] +K
)
,
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ΨGeo
T (γ; δ, α,K) =

exp
{

(δ + iγ) ln
(

(bnegGneg
n (0))αpe(Q−BGeo)T1

)}
δ + iγ

×(
exp {(1 + δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C1)T1

− exp {(δ + iγ)hpos + (1− α(δ + iγ))hneg}pe(Q−C2)T1

−K exp {(δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C3)T1

)
,

with hpos = ln (bpos) +
∑

k∈Jpos w
pos
k ln (sk), hneg = ln (bneg) +

∑
k∈Jneg w

neg
k ln (sk),

and with the vectors a1 = (1 + δ + iγ)wpos − α(δ + iγ)wneg, a2 = (δ + iγ)wpos +

(1− α(δ + iγ))wneg, a3 = (δ + iγ)wpos − α(δ + iγ)wneg,

Dneg = diag

(
Φ(−iwneg) + r −

∑
k∈Jneg

wneg
k µk

)
,

Lk = diag (Φ(−iek) + r − µk) ,

BGeo = diag

(
Φ(−iαwneg)− α

∑
k∈Jneg

wneg
k µk

)
,

and

C1 = diag

(
Φ(−ia1) + r − (1 + δ + iγ))

∑
k∈Jpos

wpos
k µk + α(δ + iγ)

∑
k∈Jneg

wneg
k µk

)
,

C2 = diag

(
Φ(−ia2) + r − (δ + iγ))

∑
k∈Jpos

wpos
k µk − (1− α(δ + iγ))

∑
k∈Jneg

wneg
k µk

)
,

C3 = diag

(
Φ(−ia3) + r − (δ + iγ))

∑
k∈Jpos

wpos
k µk + α(δ + iγ)

∑
k∈Jneg

wneg
k µk

)
.

Proof. Noting that

Gneg
n (T ) = Πk∈Jneg

(
eln (sk)+Λk(T )+Xk(T )

)wneg
k ,

the expectation EQ
[
e−U(T )Gneg

n (T )
]

can be calculated by using Lemma 2.2 with

a = wneg and C(t) = −U(t) +
∑

k∈Jneg w
neg
k Λk(t). Hence, analogously to the calcu-

lations performed in the previous sections, we obtain

EQ [e−U(T )Gneg
n (T )

]
= Πk∈Jnegs

w
neg
k

k pe

(
Q−Dneg)

)
T1. (5.9)

In order to determine the expectation EQ
[
e−U(T )Aneg

n (T )
]
, we firstly point out that

EQ [e−U(T )Aneg
n (T )

]
=

1∑
k∈Jneg |wk|

∑
k∈Jneg

|wk|skEQ [e−U(T )+Λk(T )+Xk(T )
]
.
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The expectation EQ
[
e−U(T )+Λk(T )+Xk(T )

]
is easily computed by Lemma 2.2 with

C(t) = −U(t) + Λk(t) and a = ek:

EQ [e−U(T )+Λk(T )+Xk(T )
]

= pe(Q−Lk)T1.

Using this result, the expectation EQ
[
e−U(T )Aneg

n (T )
]

is then explicitly rewritten as

EQ [e−U(T )Aneg
n (T )

]
=

1∑
k∈Jneg |wk|

∑
k∈Jneg

|wk|skpe(Q−Lk)T1.

Finally, we observe that the calculation of the expectation

EQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)+
]

can be reduced to the problem of pricing a spread option with underlyings bposGpos
n (T )

and bnegGneg
n (T ). Therefore, using the methodology given in Section 4.2, we can ex-

plicitly calculate the expectation EQ
[
e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)+

]
. To

be more precise, we firstly determine a set ΞGeo yielding a lower bound V Geo
K (0)

V Geo
K (0) := EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)1(ΞGeo)

]
≤ EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)+

]
to the exact option price:

ΞGeo =

{
ω ∈ Ω :

bposGpos
n (T )

(bnegGneg
n (T ))α

>
ek

EQ [(bnegGneg
n (T ))α]

}
by using α and k given by equation (5.8).

Notice that EQ [(bnegGneg
n (T ))α] can be explicitly expressed by applying Lemma 2.2

with C(t) = α
∑

k∈Jneg w
neg
k Λk(t) and a = αwneg:

EQ [(bnegGneg
n (T ))α] =

(
bnegΠk∈Jnegs

w
neg
k

k

)α
pe

(
Q−BGeo

)
T1. (5.10)

In light of this result, the set ΞGeo can be expressed as:

ΞGeo =

{
ω ∈ Ω : X̃1(T )− αX̃2(T ) > k − ln

(
(bnegGneg

n (0))αpe

(
Q−BGeo

)
T1

)}
,

where

X̃1(T ) = ln (bposGpos
n (T )) = ln bpos +

∑
k∈Jpos

wpos
k (ln (sk) + Λk(T ) +Xk(T )),

X̃2(T ) = ln (bnegGneg
n (T )) = ln bneg +

∑
k∈Jneg

wneg
k (ln (sk) + Λk(T ) +Xk(T )).
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Let f(x̃1, x̃2, u) be the density function of (ln (bposGpos
n (T )), ln (bnegGneg

n (T )), U(T )) .

Then, introducing a damping factor δ, as in the study of Carr and Madan [11], and

applying the Fourier transform to the lower bound V Geo
K (0), it is clear that

V Geo
K (0) =

e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ, (5.11)

where

ΨGeo
T (γ; δ, α,K) =

∫ ∞
−∞

e(δ+iγ)kEQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)1(ΞGeo)

]
dk

=

∫ ∞
−∞

e(δ+iγ)k

∫
R3

e−u(ex̃1 − ex̃2 −K)1(ΞGeo)f(x̃1, x̃2, u)dx̃1dx̃2dudk.

Then, by using analogous calculations as in the previous sections, the following ex-

pression is obtained:

ΨGeo
T (γ; δ, α,K) =

exp
{

(δ + iγ) ln
(

(bnegGneg
n (0))αpe(Q−BGeo)T1

)}
δ + iγ

×

(
EQ
[
e(−U(T )+(1+δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
−EQ

[
e(−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T ))

]
−KEQ

[
e(−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

])
.

Using Lemma 2.2, the expectations in the last equality may be rewritten as

EQ
[
e(−U(T )+(1+δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
= exp {(1 + δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C1)T1,

EQ
[
e(−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T ))

]
= exp {(δ + iγ)hpos + (1− α(δ + iγ))hneg}pe(Q−C2)T1,

EQ
[
e(−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
= exp {(δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C3)T1.

These calculations imply the desired result.

Now, the following proposition states the explicit expressions for the upper bound

UAG
K (0) and the approximate price CAG

K (0). As mentioned before, the corresponding

calculations are analogous to the ones given for the lower bound LAGK (0).
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Theorem 5.3. The upper bound UAG
K (0) and the approximate priceCAG

K (0) are given

by the formulas:

UAG
K (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ

)+

− bpos (Gpos
n (0)pe(Q−Dpos)T1

)
+

bpos∑
k∈Jpos wk

(∑
k∈Jpos

wkskpe
(Q−Lk)T1

)
,

CAG
K (0) =

(
e−δk

∗

π

∫ ∞
0

e−iγk
∗
ΨGeo
T (γ; δ, α∗, K∗)dγ

)+

,

where Lk,ΨGeo
T (γ; δ, α,K), α and k are given in Theorem 5.2, α∗ and k∗ are obtained

by replacing the strike price K in α and k by K∗, and

Dpos = diag

(
Φ(−iwpos) + r −

∑
k∈Jpos

wpos
k µk

)
.

Proof. Analogously to the calculation of EQ
[
e−U(T )Aneg

n (T )
]

and EQ
[
e−U(T )Gneg

n (T )
]
,

one easily shows that

EQ [e−U(T )Apos
n (T )

]
=

1∑
k∈Jpos wk

∑
k∈Jpos

wkskpe
(Q−Lk)T1,

and

EQ [e−U(T )Gpos
n (T )

]
= Πk∈Jposs

w
pos
k

k pe

(
Q−Dpos)

)
T1

with Dpos = diag
(
Φ(−iwpos) + r −

∑
k∈Jpos w

pos
k µk

)
. Indeed, we only replace the

terms corresponding to negative weights with the ones of positive weigths. These

yield the desired upper bound UAG
K (0).

For the approximation

CAG
K (0) = EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K∗)+

]
,

we follow the approach of spread option pricing as in the derivation of the bounds

LAGK (0) and UAG
K (0), but with a different strike priceK∗. Indeed, the result follows by

replacing the strike price K in the expressions ΨGeo
T (γ; δ, α,K), α and k by K∗.

Remark 5.1. It is worth mentioning that in the case of a basket option with positive

weights, the expectation

EQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)+
]
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is converted into

EQ [e−U(T )(Gn(T )−K)+
]
,

which denotes the price of a European call option whose underlying is the geometric

average of risky assetsGn(t). In this regard, the approximations LAGK (0), UAG
K (0) and

CAG
K (0) turn to

LAGK (0) =EQ [e−U(T )(Gn(T )−K)+
]
,

UAG
K (0) =EQ [e−U(T )(Gn(T )−K)+

]
+ EQ [e−U(T )An(T )

]
− EQ [e−U(T )Gn(T )

]
,

CAG
K (0) =EQ [e−U(T )(Gn(T )−K∗)+

]
,

where the price of the corresponding European call option is stated in Theorem A.1-1

and the expectations EQ
[
e−U(T )An(T )

]
and EQ

[
e−U(T )Gn(T )

]
are easily calculated

by considering a similar argument given in Theorem 5.2 or Theorem 5.3.

48



CHAPTER 6

PRICING SPREAD OPTIONS UNDER A

MARKOV-MODULATED LÉVY MODEL WITH

SYNCHRONOUS JUMPS

This chapter extends the evaluation of spread options given in Chapter 4 to a more

general Lévy-driven regime-switching framework, allowing asset prices to jump syn-

chronously due to a transition in the Markov process. To be more precise, in the case

of a regime change we do not only consider a switch in the model parameters, but

also take into account the possibility of synchronous jumps in the asset prices. These

synchronous jumps, therefore, address an interesting correlation between the asset

price processes, resulting from the underlying Markov process.

For the motivation to synchronous jumps that arise in the asset dynamics, we refer to

Chourdakis [14] who shows that these Lévy-based regime-switching models can suc-

cessfully capture asymmetric volatility skews and to Hainaut and Colwell [22] who

relate the so-called synchronous jumps to the events leading an immediate change in

the model parameters, such as certain economic events, natural catastrophes or terror-

ist attacks. Hainaut and Colwell [22] also point out that these processes fit well to the

time series of asset prices. In both papers, the asset prices always jump synchronously

whenever a transition occurs in the Markov process. Although these studies inspire

to our modeling framework, our regime-switching set-up can be considered more

general than the ones they proposed in the fact that we also take into account the pos-

sibility of occuring no synchronous jump after a phase change. Our study also differs

from those studies in the sense that they do not consider the evaluation of spread

options under this newly proposed framework.
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6.1 The Market Model

In this section, we will closely follow the modeling framework of Chapter 4. The

important distinction is that we now take into account the possibility of synchronous

jumps in the underlying prices when the state of the Markov process changes.

To incorporate synchronous jumps, we introduce the following set-up:

(i) We consider the Markov process M with a finite state space S = {1, 2, . . . , N}
and initial vector p. Moreover, let X = (X1, X2) be a 2-dimensional MMLP

whose behaviour when M = k is governed by the 2-dimensional Lévy process

Yk with the characteristic exponent Φk(u):

EQ [ei〈u,Yk(t)〉] = e−Φk(u)t,

where u = (u1, u2) ∈ R2 and Q is the risk-neutral proabbility measure.

(ii) We assume that when M = k, a transition to phase l 6= k happens at rate qkl

and synchronous jumps may occur at rate γk.

(iii) After a jump, a new state of M is chosen to modulate X = (X1, X2) such that

the distribution of jumps and the state after jumps are governed by the matrix

G = (Gkl)N×N , where

Gkl(x)

= P (jump of X1 ≤ x1, jump of X2 ≤ x2,M = l after jump | jump in phase k)

for x = (x1, x2). Notice that this construction implies Gkk(x) = 0 for all k.

We denote by Ĝ(u) the Fourier transform of G:

Ĝ(u) =

∫
R2

ei〈u,x〉 dG(x).

(iv) Finally, we denote Γ = diag(γk) and define the matrix Q = (qkl)N×N by
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assuming that all diagonal elements qkk are negative, and

P (M(t+ dt) = k, no synchronous jump on [t, t+ dt] |M(t) = k)

= 1 + qkkdt+ o(dt),

P (M(t+ dt) = l (l 6= k), no synchronous jump on [t, t+ dt] |M(t) = k)

= qkldt+ o(dt),

P (synchronous jump on [t, t+ dt] |M(t) = k) = γkdt+ o(dt).

Since the sum of probabilities above over M(t) = k must be 1, we also have

(Q+ Γ)1 = 0,

where 1 is a column vector with each component equal to 1 and 0 is a column

vector with each component equal to 0.

Notice that Q is now the sub-generator of the instantaneous transitions in M when

there is no synchronous jump. As mentioned before, we also remark that we take into

account the possibility of occurring no synchronous jumps after a phase change and

this differs from the framework of Chourdakis [14] and Hainaut and Colwell [22], in

which a transition in the Markov process certainly yields a synchronous jump.

In the following we state a very useful result, whose proof for the n-dimensional

setting can be found in Lemma A.1. We note that this result is the extension of

Lemma 2.2 [16] to the synchronous jumps with n = 2.

Lemma 6.1. Consider a Markov-modulated drift process C(t) =
∫ t

0
c(M(s)) ds

where

c(M(t)) =
N∑
k=1

ck1{M(t)=k},

with ck, k = 1, . . . , N, being constants.

Then, for every a ∈ C2 and ∀t ≥ 0, we have

E
[
eC(t)+〈a,X(t)〉] = pe(−A+Q+ΓĜ(−ia))t1,

where A is the diagonal matrix such that Akk = Φk(−ia)− ck, under the assumption

that Ĝ(−ia) exists and Φk(−ia) is known analytically.
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We further consider the 2-dimensional price vector S(t) = (S1(t), S2(t)) given by:

Sj(t) = sje
Λj(t)+Xj(t), j = 1, 2,

where sj = Sj(0) and Λj(t) denotes the drift process:

Λj(t) =

∫ t

0

µj(M(s)) ds, µj(M(t)) =
N∑
k=1

µjk1{M(t)=k},

with constant coefficients µjk.

We also denote the Markov-modulated interest rate process by r(M(t)) and assume

that

r(M(t)) =
N∑
k=1

rk1{M(t)=k},

where the coefficients rk are constant. Then, the integrated interest rate process U(t)

is given by

U(t) =

∫ t

0

r(M(s)) ds.

Noting that u> denotes the transpose of a vector u, we define:

r = (r1, r2, · · · , rN)>,

µj = (µj1, µj2, . . . , µjN)>, j = 1, 2,

Φ(u) = (Φ1(u),Φ2(u), · · · ,ΦN(u))>.

Herewith, ej denotes the jth standard basis vector of R2.

In the sequel, we present the sufficient constraints on the vectors µj in order to have

a correct model under the risk-neutral measure Q. For the proof of the n-dimensional

setting, see Lemma A.2.

Lemma 6.2. If the vectors µj are chosen as

µj = r + Φ(−iej) + Γ
(
I − Ĝ(−iej)

)
1 (6.1)

for j = 1, 2, then the processes
(
e−U(t)Sj(t)

)
t

are martingales under Q, where I

denotes the N ×N identitty matrix.
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6.2 Spread Option Pricing by the Use of a Lower Bound

In this section, we consider the valuation of spread options in a Markov-modulated

Lévy framework, but now including synchronous jumps. We will follow the same

considerations given in Chapter 4.

Recall that the fair price of a spread option can be approximated by the following

lower bound:

V k,α
K (0) = EQ [e−U(T )(S1(T )− S2(T )−K)1(H)

]
, (6.2)

where

H =

{
ω ∈ Ω :

S1(T )

Sα2 (T )
>

ek

EQ [Sα2 (T )]

}
,

α =
F2(0, T )

F2(0, T ) +K
,

k = ln (F2(0, T ) +K),

with F2(0, T ) = EQ [S2(T )].

Following the arguments given in Chapter 4, we will begin with introducing a more

explicit formulation for the set H. Below are the remarks to achieve this.

1. By applying Lemma 6.1 with a = (0, 1) and C(t) = Λ2(t), it is easy to verify

that the forward price of the second asset equals

F2(0, T ) = EQ [S2(T )] = s2EQ [eΛ2(T )+X2(T )
]

= s2pe
(Q−A+ΓĜ(−ia))T1, (6.3)

where A = diag(Φ(0,−i)− µ2). As a result of (6.3),

α =
s2pe

(Q−A+ΓĜ(0,−i))T1

s2pe(Q−A+ΓĜ(0,−i))T1 +K
(6.4)

and

k = ln
(
s2pe

(Q−A+ΓĜ(0,−i))T1 +K
)
. (6.5)

2. Based on Lemma 6.1 with a = (0, α) and C(t) = αΛ2(t), we have

EQ [Sα2 (T )] = sα2EQ [eαΛ2(T )+αX2(T )
]

= sα2 pe(Q−B+ΓĜ(0,−iα))T1,

where B = diag(Φ(0,−iα)− αµ2).
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Considering these remarks, we obtain

H =
{
ω ∈ Ω : ln (S1(T ))− α ln (S2(T )) > k − ln (sα2 pe(Q−B+ΓĜ(0,−iα))T1)

}
=
{
ω ∈ Ω : X̃1(T )− αX̃2(T ) > k − ln (sα2 pe(Q−B+ΓĜ(0,−iα))T1)

}
,

where X̃1(T ) = ln (s1) + Λ1(T ) +X1(T ) and X̃2(T ) = ln (s2) + Λ2(T ) +X2(T ).

In the following theorem, we present an explicit expression for the lower bound

V k,α
K (0) assuming that asset prices may jump synchronously in the case of a regime

change.

Theorem 6.1. The lower bound V k,α
K (0) equals the following expression:

V k,α
K (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨT (γ; δ, α,K)dγ

)+

,

where δ is the damping factor, α and k are given by (6.4) and (6.5), respectively, and

ΨT (γ; δ, α,K) =
exp

{
(δ + iγ) ln

(
sα2 pe(Q−B+ΓĜ(0,−iα))T1

)}
δ + iγ

×

(
exp

{
(1 + δ + iγ) ln (s1)− α(δ + iγ) ln (s2)

}
pe(Q−L1+ΓĜ(−ia1))T1

− exp
{

(δ + iγ) ln (s1) + (1− α(δ + iγ)) ln (s2)
}

pe(Q−L2+ΓĜ(−ia2))T1

−K exp
{

(δ + iγ) ln (s1)− α(δ + iγ) ln (s2)
}

pe(Q−L3+ΓĜ(−ia3))T1

)
,

with a1 = (1 + δ + iγ,−α(δ + iγ)), a2 = (δ + iγ, 1 − α(δ + iγ)), a3 = (δ +

iγ,−α(δ + iγ)) and

B = diag (Φ(0,−iα)− αµ2) ,

L1 = diag
(
Φ(−ia1) + r − (1 + δ + iγ)µ1 + α(δ + iγ)µ2

)
,

L2 = diag
(
Φ(−ia2) + r − (δ + iγ)µ1 − (1− α(δ + iγ))µ2

)
,

L3 = diag
(
Φ(−ia3) + r − (δ + iγ)µ1 + α(δ + iγ)µ2

)
.

Proof. Carr and Madan [11] formula implies that

V k,α
K (0) =

e−δk

π

∫ ∞
0

e−iγkΨT (γ; δ, α,K)dγ,
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where δ is the damping factor, the parameters α and k are defined in (6.4) and (6.5),

respectively, and

ΨT (γ; δ, α,K) =

∫ ∞
−∞

e(δ+iγ)kEQ [e−U(T )(S1(T )− S2(T )−K)1(H)

]
dk

=

∫ ∞
−∞

e(δ+iγ)k

∫
R3

e−u(ex̃1 − ex̃2 −K)1(H)f(x̃1, x̃2, u)dx̃1dx̃2dudk.

By taking the set H into account in the boundaries of integrals and by Fubini argu-

ments, we obtain

ΨT (γ; δ, α,K)

=

∫
R3

∫ ∞
αx̃2+k−ln (sα2 pe

(Q−B+ΓĜ(0,−iα))T 1)

e−u+(δ+iγ)k(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dx̃1dx̃2dudk

=

∫
R3

∫ x̃1−αx̃2+ln (sα2 pe
(Q−B+ΓĜ(0,−iα))T 1)

−∞
e−u+(δ+iγ)k(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dkdx̃1dx̃2du.

Elaborating the product and recognizing that the resulting integrals are expectations,

we lead to the following expression for ΨT (γ; δ, α,K):

ΨT (γ; δ, α,K)

=

∫
R3

e−u+(δ+iγ)(x̃1−αx̃2+ln (sα2 pe
(Q−B+ΓĜ(0,−iα))T 1))

δ + iγ
(ex̃1 − ex̃2 −K)f(x̃1, x̃2, u)dx̃1dx̃2du.

=
e(δ+iγ) ln (sα2 pe

(Q−B+ΓĜ(0,−iα))T 1)

δ + iγ

(∫
R3

e−u+x̃1(1+δ+iγ)−α(δ+iγ)x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

−
∫
R3

e−u+x̃1(δ+iγ)+(1−α(δ+iγ))x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

−K
∫
R3

e−u+x̃1(δ+iγ)−α(δ+iγ)x̃2f(x̃1, x̃2, u)dx̃1dx̃2du

)

=
e(δ+iγ) ln (sα2 pe

(Q−B+ΓĜ(0,−iα))T 1)

δ + iγ

(
EQ
[
e−U(T )+X̃1(T )(1+δ+iγ)−α(δ+iγ)X̃2(T )

]
− EQ

[
e−U(T )+X̃1(T )(δ+iγ)+(1−α(δ+iγ))X̃2(T )

]
−KEQ

[
e−U(T )+X̃1(T )(δ+iγ)−α(δ+iγ)X̃2(T )

])
.

Note that the first expectation is easily computed by using Lemma 6.1 with C(t) =

(1+δ+ iγ)Λ1(t)−α(δ+ iγ)Λ2(t)−U(t) and a1 = (1+δ+ iγ,−α(δ+ iγ)). Indeed,

EQ
[
e−U(T )+X̃1(T )(1+δ+iγ)−α(δ+iγ)X̃2(T )

]
= EQ [e−U(T )+(1+δ+iγ)(ln (s1)+Λ1(T )+X1(T ))−α(δ+iγ)(ln (s2)+Λ2(T )+X2(T ))

]
= e(1+δ+iγ) ln (s1)−α(δ+iγ) ln (s2)pe(Q−L1+ΓĜ(−ia1))T1.
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Analogously, by an application of Lemma 6.1 with C(t) = (δ+iγ)Λ1(t)+(1−α(δ+

iγ))Λ2(t) − U(t) and a2 = (δ + iγ, (1 − α(δ + iγ))), the second expectation turns

out to equal

EQ
[
e−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T )

]
= EQ [e−U(T )+(δ+iγ)(ln (s1)+Λ1(T )+X1(T ))+(1−α(δ+iγ))(ln (s2)+Λ2(T )+X2(T ))

]
= e(δ+iγ) ln (s1)+(1−α(δ+iγ)) ln (s2)pe(Q−L2+ΓĜ(−ia2))T1.

The third expectation is also followed by Lemma 6.1, but now with C(t) = (δ +

iγ)Λ1(t)− α(δ + iγ)Λ2(t)− U(t) and a3 = (δ + iγ,−α(δ + iγ)):

EQ
[
e−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T )

]
= EQ [e−U(T )+(δ+iγ)(ln (s1)+Λ1(T )+X1(T ))−α(δ+iγ)(ln (s2)+Λ2(T )+X2(T ))

]
= e(δ+iγ) ln (s1)−α(δ+iγ) ln (s2)pe(Q−L3+ΓĜ(−ia3))T1.

When we combine these results and change the negative prices to zero, we obtain the

announced pricing formula V k,α
K (0).
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CHAPTER 7

PRICING BASKET OPTIONS UNDER A

MARKOV-MODULATED LÉVY MODEL WITH

SYNCHRONOUS JUMPS

In Chapter 5, we have studied at length pricing of basket options written on underly-

ing assets whose price dynamics evolve according to MMLPs without synchronous

jumps. Now, we will extend our previous results obtained for basket options to the

Lévy-based regime-switching models with synchronous jumps.

7.1 The Market Model

The evaluation of basket options first requires a straightforward extension of the set-

ting given in Chapter 6 to the n-asset case.

More precisely,

(i) We assume an n-dimensional MMLP X = (X1, . . . , Xn) which behaves like

the n-dimensional Lévy process Yk when M = k :

EQ [ei〈u,Yk(t)〉] = e−Φk(u)t,

where Φk(u) denotes the characteristic exponent with u = (u1, . . . , un) ∈ Rn

and Q is the risk-neutral proabbility measure.

(ii) M is a Markov process with a finite state space S = {1, 2, . . . , N} and ini-

tial vector p. Moreover, a transition to phase l 6= k happens at rate qkl and

synchronous jumps may occur at rate γk.
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(iii) Matrix G = (Gkl)N×N now defines the distribution of jumps and the state after

jumps for the n-dimensional processX = (X1, X2, . . . , Xn). Namely, we have

Gkl(x)

= P (jump of X1 ≤ x1, . . . , jump of Xn ≤ xn,M = l after jump |M(t) = k) ,

where x = (x1, x2, . . . , xn) and all diagonal elements equate to zero with

Gkk(x) = 0.

In the following, we also use the Fourier transform of G, which is denoted as

Ĝ(u) with

Ĝ(u) =

∫
Rn
ei〈u,x〉 dG(x).

where u = (u1, u2, . . . , un).

(iv) Finally, we define the matrices Γ = diag(γk) and Q = (qkl)N×N by assuming

that qkk < 0 for all k and

P (M(t+ dt) = k, no synchronous jump on [t, t+ dt] |M(t) = k)

= 1 + qkkdt+ o(dt),

P (M(t+ dt) = l (l 6= k), no synchronous jump on [t, t+ dt] |M(t) = k)

= qkldt+ o(dt),

P (synchronous jump on [t, t+ dt] |M(t) = k) = γkdt+ o(dt).

Therefore, we also have

(Q+ Γ)1 = 0,

where 1 is a column vector with each component equal to 1 and 0 is a column

vector with each component equal to 0.

In the sequel, price vector S(t) = (S1(t), . . . , Sn(t)) of risky assets is defined by

Sj(t) = sje
Λj(t)+Xj(t), j = 1, . . . , n,

where sj = Sj(0) and Λj(t) denotes the drift process:

Λj(t) =

∫ t

0

µj(M(s)) ds, µj(M(t)) =
N∑
k=1

µjk1{M(t)=k},
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with constant coefficients µjk. We further denote the column vector µj = (µj1, µj2,

. . . , µjN)> for each j.

Moreover, we give the Markov-modulated interest rate process r(M(t)) :

r(M(t)) =
N∑
k=1

rk1{M(t)=k},

where the coefficients rk are constant within each regime k. We also consider the

vector r = (r1, r2, · · · , rN)> and integrated interest rate process U(t) with

U(t) =

∫ t

0

r(M(s)) ds.

Defining the column vector of characteristic exponents

Φ(u) = (Φ1(u),Φ2(u), · · · ,ΦN(u))>,

we finally examine the drift condition of the basket underlyings. As shown in Lemma A.2,

when the vectors µj are chosen as

µj = r + Φ(−iej) + Γ
(
I − Ĝ(−iej)

)
1 (7.1)

for j = 1, 2, . . . , n, then the discounted asset prices
(
e−U(t)Sj(t)

)
t

become martin-

gales under Q. Note that we denote by ej the jth standard basis vector of Rn.

In the following sections, we focus on pricing basket options based on the framework

given above.

7.2 Basket Option Pricing by the Use of a Lower Bound

In this section, basket options are priced via a lower bound based on the geometric

average of underlyings in the context of synchronous jumps. Recall that this study is

inspired from the paper of Caldana et al. [9] which explores the evaluation of basket

options under several models without regime-switching.

Consider w = (w1, w2, . . . , wn) ∈ Rn denoting the vector of weights and the process

An(T ) =
n∑
j=1

wjSj(T )
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showing the value of an underlying basket.

It is well known from Chapter 5 that with G(x) representing the set constructed on

the geometric average of underlyings, the process V GK (0) given by

V GK (0) = max
x∈R

V GK (0, x) =: V GK (0, x∗) (7.2)

serves as a lower bound to the fair price of the basket option. Here, Hn(T ) =

lnGn(T ) with Gn(T ) =
∏n

j=1 Sj(T )wj and

V GK (0, x) = EQ [e−U(T )(An(T )−K)1G(x)

]+
,

where G(x) is the set defined by G(x) = {ω ∈ Ω : Hn(T ) > x}.

Noting that Hn(T ) is also expressed as

Hn(T ) =
n∑
j=1

wjRj(T ) +Hn(0),

with

Rj(T ) = ln

(
Sj(T )

Sj(0)

)
= Λj(T ) +Xj(T ),

Hn(0) =
n∑
j=1

wj lnSj(0),

we introduce an explicit representation of the lower bound V GK (0) regarding syn-

chronous jumps:

Theorem 7.1. The lower bound price V GK (0) is obtained by

V GK (0) = max
x∈R

V GK (0, x),

with

V GK (0, x) =

(
e−δx

π

∫ ∞
0

e−iγxΨT (γ; δ,K)dγ

)+

,

where δ is the damping factor, aj = (δ+iγ)w+ej for j = 1, 2, . . . , n, b = (δ+iγ)w

and ΨT (γ; δ,K) = Ψ1
T (γ; δ,K)−Ψ2

T (γ; δ,K) with

Ψ1
T (γ; δ,K) =

e(δ+iγ)Hn(0)

δ + iγ

n∑
j=1

wjSj(0)pe(Q+ΓĜ(−iaj)−Dj)T1,

Ψ2
T (γ; δ,K) = K

e(δ+iγ)Hn(0)

δ + iγ
pe(Q+ΓĜ(−ib)−L)T1,
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where Hn(0) =
∑n

j=1 wj lnSj(0) and

Dj = diag

(
Φ(−iaj) + r − µj − (δ + iγ)

n∑
l=1

wlµl

)
, j = 1, . . . , n,

L = diag

(
Φ(−ib) + r − (δ + iγ)

n∑
l=1

wlµl

)
.

Proof. As shown in Chapter 5, if we apply the well-known Carr-Madan formula [11],

the lower bound V GK (0, x) is reduced to the computation of terms Ψ1
T (γ; δ,K) and

Ψ2
T (γ; δ,K) in the sense that

V GK (0, x) =

(
e−δx

π

∫ ∞
0

e−iγxΨT (γ; δ,K)dγ

)+

,

where ΨT (γ; δ,K) = Ψ1
T (γ; δ,K)−Ψ2

T (γ; δ,K),

Ψ1
T (γ; δ,K) =

1

δ + iγ

n∑
j=1

wjSj(0)EQ [e−U(T )+Rj(T )+(δ+iγ)Hn(T )
]
,

Ψ2
T (γ; δ,K) =

K

δ + iγ
EQ [e(δ+iγ)Hn(T )−U(T )

]
.

Note that through the computation of expectations given above, the matrices Γ and

Ĝ, which adress the possibility of synchronous jumps, now enter into play. Indeed,

Lemma A.1 with C(t) = −U(t) + Λj(t) + (δ + iγ)
∑n

l=1wlΛl(t) and aj = (δ +

iγ)w + ej implies that

EQ [e−U(T )+Rj(T )+(δ+iγ)Hn(T )
]

= e(δ+iγ)Hn(0)pe(Q+ΓĜ(−iaj)−Dj)T1.

Similarly, the use of Lemma A.1 with C(t) = −U(t) + (δ + iγ)
∑n

l=1wlΛl(t) and

b = (δ + iγ)w leads to an explicit representation of the expectation in the second

term Ψ2
T (γ; δ,K) :

EQ [e(δ+iγ)Hn(T )−U(T )
]

= e(δ+iγ)Hn(0)pe(Q+ΓĜ(−ib)−L)T1.

When we combine these results and maximize V GK (0, x) over the values of x, we

obtain the desired result.

Since the maximization procedure we considered can make the pricing problem time

consuming, we also provide faster approximations followed from the arithmetic-

geometric mean inequality.
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7.3 Basket Option Pricing by the Arithmetic-Geometric Mean Inequality

Using the same considerations given in Section 5.3, we denote the sets of indices

corresponding to positive and negative weights by Jpos and Jneg, respectively. Then,

we define

An(T ) =
∑
k∈Jpos

wkSk(T )−
∑
k∈Jneg

|wk|Sk(T ) = bposApos
n (T )− bnegAneg

n (T ),

where

Apos
n (T ) =

∑
k∈Jpos wkSk(T )∑

k∈Jpos wk
, bpos =

∑
k∈Jpos

wk,

and

Aneg
n (T ) =

∑
k∈Jneg |wk|Sk(T )∑

k∈Jneg |wk|
, bneg =

∑
k∈Jneg

|wk|.

Furthermore, we consider the vector wpos whose kth component wpos
k is given by

wpos
k =

 wk/
∑

k∈Jpos wk if k ∈ Jpos,

0 if k ∈ Jneg.

Similarly, let the vector wneg be the vector whose kth component wneg
k is:

wneg
k =

 |wk|/
∑

k∈Jneg |wk| if k ∈ Jneg,

0 if k ∈ Jpos.

Finally, we assume that

Gpos
n (T ) = Πk∈JposSk(T )w

pos
k , Gneg

n (T ) = Πk∈JnegSk(T )w
neg
k ,

and define

Hpos
n (T ) = lnGpos

n (T ), Hneg
n (T ) = lnGneg

n (T ).

Based on these notions, we analyze the approximations

LAGK (0) =EQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)+
]

+ bneg (EQ [e−U(T )Gneg
n (T )

]
− EQ [e−U(T )Aneg

n (T )
])
,

UAG
K (0) =EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)+

]
+ bpos (EQ [e−U(T )Apos

n (T )
]
− EQ [e−U(T )Gpos

n (T )
])
,

CAG
K (0) =EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K∗)+

]
,
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so as to price basket options in a faster way. Recall that all these approximations take

the arithmetic-geometric inequality, Gn(T ) ≤ An(T ), into account with the relation

LAGK (0) ≤ CAG
K (0) ≤ UAG

K (0); and further, K∗ is the strike price defined by

K∗ = K−EQ [bposApos
n (T )]+EQ [bposGpos

n (T )]+EQ [bnegAneg
n (T )]−EQ [bnegGneg

n (T )] .

In order to interpret LAGK (0), UAG
K (0) and CAG

K (0) in a more explicit way, considering

the framework with synchronus jumps, we introduce the following theorems. First,

we present the derivation of the lower bound LAGK (0) under a MMLP setting with

synchronous jumps.

Theorem 7.2. The lower bound LAGK (0) has the following explicit form:

LAGK (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ

)+

+ bneg
(
Gneg
n (0)pe(Q+ΓĜ(−iwneg)−Dneg)T1

)
− bneg∑

k∈Jneg |wk|

(∑
k∈Jneg

|wk|Sk(0)pe(Q+ΓĜ(−iek)−Lk)T1

)
,

where δ is the damping factor,

α =
EQ [bnegGneg

n (T )]

EQ [bnegGneg
n (T )] +K

and k = ln
(
EQ [bnegGneg

n (T )] +K
)
, (7.3)

and

ΨGeo
T (γ; δ, α,K) =

exp
{

(δ + iγ) ln
(

(bnegGneg
n (0))αpe(Q−BGeo+ΓĜ(−iαwneg))T1

)}
δ + iγ

×(
exp {(1 + δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C1+ΓĜ(−ia1))T1

− exp {(δ + iγ)hpos + (1− α(δ + iγ))hneg}pe(Q−C2+ΓĜ(−ia2))T1

−K exp {(δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C3+ΓĜ(−ia3))T1

)
,

with hpos = ln (bpos) +
∑

k∈Jpos w
pos
k ln (Sk(0)), hneg = ln (bneg) +

∑
k∈Jneg w

neg
k ln (Sk(0)),

and with the vectors a1 = (1 + δ + iγ)wpos − α(δ + iγ)wneg, a2 = (δ + iγ)wpos +
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(1− α(δ + iγ))wneg, a3 = (δ + iγ)wpos − α(δ + iγ)wneg,

Dneg = diag

(
Φ(−iwneg) + r −

∑
k∈Jneg

wneg
k µk

)
,

Lk = diag (Φ(−iek) + r − µk) ,

BGeo = diag

(
Φ(−iαwneg)− α

∑
k∈Jneg

wneg
k µk

)
,

and

C1 = diag

(
Φ(−ia1) + r − (1 + δ + iγ))

∑
k∈Jpos

wpos
k µk + α(δ + iγ)

∑
k∈Jneg

wneg
k µk

)
,

C2 = diag

(
Φ(−ia2) + r − (δ + iγ))

∑
k∈Jpos

wpos
k µk − (1− α(δ + iγ))

∑
k∈Jneg

wneg
k µk

)
,

C3 = diag

(
Φ(−ia3) + r − (δ + iγ))

∑
k∈Jpos

wpos
k µk + α(δ + iγ)

∑
k∈Jneg

wneg
k µk

)
.

Proof. We will first focus on the explicit representation of EQ
[
e−U(T )Gneg

n (T )
]
. Since

Gneg
n (T ) = Πk∈Jneg

(
eln (Sk(0))+Λk(T )+Xk(T )

)wneg
k ,

the expectation EQ
[
e−U(T )Gneg

n (T )
]

is given in a more explicit form if we apply

Lemma A.1 with a = wneg and C(t) = −U(t) +
∑

k∈Jneg w
neg
k Λk(t). As a result,

we have

EQ [e−U(T )Gneg
n (T )

]
= Πk∈JnegSk(0)w

neg
k pe

(
Q−Dneg+ΓĜ(−iwneg)

)
T1. (7.4)

Secondly, we compute the expectation EQ
[
e−U(T )Aneg

n (T )
]

regarding that

EQ [e−U(T )Aneg
n (T )

]
=

1∑
k∈Jneg |wk|

∑
k∈Jneg

|wk|Sk(0)EQ [e−U(T )+Λk(T )+Xk(T )
]
.

By using Lemma A.1 with C(t) = −U(t) + Λk(t) and a = ek, we obtain:

EQ [e−U(T )+Λk(T )+Xk(T )
]

= pe(Q−Lk+ΓĜ(−iek))T1,

and hence,

EQ [e−U(T )Aneg
n (T )

]
=

1∑
k∈Jneg |wk|

∑
k∈Jneg

|wk|Sk(0)pe(Q−Lk+ΓĜ(−iek))T1.
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The last expectation EQ
[
e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)+

]
, as in the case of

no synchronous jumps, shows the value of a spread option written on the underlyings

bposGpos
n (T ) and bnegGneg

n (T ). In the line of the approach developed for spread options,

we construct a set ΞGeo :

ΞGeo =

{
ω ∈ Ω :

bposGpos
n (T )

(bnegGneg
n (T ))α

>
ek

EQ [(bnegGneg
n (T ))α]

}
,

leading the lower bound V Geo
K (0)

V Geo
K (0) = EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K)1(ΞGeo)

]
,

where α and k are defined in (7.3).

As a result of Lemma A.1 with C(t) = α
∑

k∈Jneg w
neg
k Λk(t) and a = αwneg, we find

that

EQ [(bnegGneg
n (T ))α] =

(
bnegΠk∈JnegSk(0)w

neg
k

)α
pe

(
Q−BGeo+ΓĜ(−iαwneg)

)
T1, (7.5)

and therefore,

ΞGeo

=

{
ω ∈ Ω : X̃1(T )− αX̃2(T ) > k − ln

(
(bnegGneg

n (0))αpe

(
Q−BGeo+ΓĜ(−iαwneg)

)
T1

)}
,

where

X̃1(T ) = ln (bposGpos
n (T ))

= ln bpos +
∑
k∈Jpos

wpos
k (ln (Sk(0)) + Λk(T ) +Xk(T )), (7.6)

X̃2(T ) = ln (bnegGneg
n (T ))

= ln bneg +
∑
k∈Jneg

wneg
k (ln (Sk(0)) + Λk(T ) +Xk(T )). (7.7)

After stating the set ΞGeo more explicitly, we apply Carr and Madan formula [11] in

order to derive the spread option price. That is, we lead to

V Geo
K (0) =

e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ, (7.8)

with

ΨGeo
T (γ; δ, α,K) =

∫ ∞
−∞

e(δ+iγ)kEQ [e−U(T )(bposGpos
n (T )− bnegGneg

n (T )−K)1(ΞGeo)

]
dk

=

∫ ∞
−∞

e(δ+iγ)k

∫
R3

e−u(ex̃1 − ex̃2 −K)1(ΞGeo)f(x̃1, x̃2, u)dx̃1dx̃2dudk,
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where δ is the damping factor and f(x̃1, x̃2, u) denotes the joint density function of

(ln (bposGpos
n (T )), ln (bnegGneg

n (T )), U(T )) .

As in the proofs given in the previous sections, a Fubini argument and elaboration of

the product reduce the term ΨGeo
T (γ; δ, α,K) to the computation of three expectations:

ΨGeo
T (γ; δ, α,K) =

exp
{

(δ + iγ) ln
(

(bnegGneg
n (0))αpe(Q−BGeo+ΓĜ(−iαwneg))T1

)}
δ + iγ

×(
EQ
[
e(−U(T )+(1+δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
−EQ

[
e(−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T ))

]
−KEQ

[
e(−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

])
.

Finally, substituting X̃1(T ) and X̃2(T ) as expressed in (7.6) and (7.7) and using

Lemma A.1, we have

EQ
[
e(−U(T )+(1+δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
= exp {(1 + δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C1+ΓĜ(−ia1))T1,

EQ
[
e(−U(T )+(δ+iγ)X̃1(T )+(1−α(δ+iγ))X̃2(T ))

]
= exp {(δ + iγ)hpos + (1− α(δ + iγ))hneg}pe(Q−C2+ΓĜ(−ia2))T1,

EQ
[
e(−U(T )+(δ+iγ)X̃1(T )−α(δ+iγ)X̃2(T ))

]
= exp {(δ + iγ)hpos − α(δ + iγ)hneg}pe(Q−C3+ΓĜ(−ia3))T1.

Combining all the results we complete the proof.

Next theorem states the upper bound UAG
K (0) and the approximate price CAG

K (0) in

the context of synchronous jumps. As mentioned before, we follow very similar

arguments considered for the lower bound LAGK (0).
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Theorem 7.3. The upper bound UAG
K (0) and the approximate priceCAG

K (0) are given

by the formulas:

UAG
K (0) =

(
e−δk

π

∫ ∞
0

e−iγkΨGeo
T (γ; δ, α,K)dγ

)+

− bpos
(
Gpos
n (0)pe(Q+ΓĜ(−iwpos)−Dpos)T1

)
+

bpos∑
k∈Jpos wk

(∑
k∈Jpos

wkSk(0)pe(Q+ΓĜ(−iek)−Lk)T1

)
,

CAG
K (0) =

(
e−δk

∗

π

∫ ∞
0

e−iγk
∗
ΨGeo
T (γ; δ, α∗, K∗)dγ

)+

,

where Lk,ΨGeo
T (γ; δ, α,K), α and k are given in Theorem 7.2, α∗ and k∗ are obtained

by replacing the strike price K in α and k by K∗ in (7.3), and

Dpos = diag

(
Φ(−iwpos) + r −

∑
k∈Jpos

wpos
k µk

)
.

Proof. Similar to the computation of EQ
[
e−U(T )Aneg

n (T )
]

and EQ
[
e−U(T )Gneg

n (T )
]
,

which are explored in the previous theorem, we obtain that

EQ [e−U(T )Apos
n (T )

]
=

1∑
k∈Jpos wk

∑
k∈Jpos

wkSk(0)pe(Q−Lk+ΓĜ(−iek))T1,

and

EQ [e−U(T )Gpos
n (T )

]
= Πk∈JposSk(0)w

pos
k pe

(
Q−Dpos+ΓĜ(−iwpos)

)
T1

with Dpos = diag
(
Φ(−iwpos) + r −

∑
k∈Jpos w

pos
k µk

)
.

Furthermore, the expectation

CAG
K (0) = EQ [e−U(T )(bposGpos

n (T )− bnegGneg
n (T )−K∗)+

]
represents the price of a spread option written on the underlyings of the bounds

LAGK (0) and UAG
K (0), but with a different strike price K∗. So as to find a more explicit

expression of this approximation, and in order to complete the proof, we substitute

the strike K∗ in the expressions ΨGeo
T (γ; δ, α,K), α and k.

Remark 7.1. As in the case of no synchronous jumps, the approximations LAGK (0),
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UAG
K (0) and CAG

K (0) become

LAGK (0) = EQ [e−U(T )(Gn(T )−K)+
]
,

UAG
K (0) = EQ [e−U(T )(Gn(T )−K)+

]
+ EQ [e−U(T )An(T )

]
− EQ [e−U(T )Gn(T )

]
,

CAG
K (0) = EQ [e−U(T )(Gn(T )−K∗)+

]
,

when we consider a basket option with only positive weights. Differently, the price

EQ
[
e−U(T )(Gn(T )−K)+

]
of the European call option is now determined as in The-

orem A.1-2 and the expectations EQ
[
e−U(T )An(T )

]
and EQ

[
e−U(T )Gn(T )

]
are com-

puted by using the arguments given in Theorem 7.2 or Theorem 7.3.
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CHAPTER 8

NUMERICAL RESULTS

In this chapter, we study the performance of the approximate pricing formulas derived

in the previous chapters by exploring different MMLP models and by using several

data sets.

All numerical experiments with synchronous jumps are governed by a two-state Markov

process M(t) with

Q =

−3 0

0 −1

 , Γ =

3 0

0 1

 , p =
[
1 0

]
. (8.1)

When we consider the case without synchronous jumps, we assume the generator

Q =

−3 3

1 −1

 .
The matrix G of the synchronous jumps distribution is assumed to be given by

G(x) =

 0 G12(x)

G21(x) 0

 ,
where the componentG12(x) (respectivelyG21(x)) specifies the distribution of jumps

that may occur when there is a transition from phase 1 to 2 (respectively from phase

2 to 1). Note that the assumptions in this numerical section imply that every phase

change incurs a synchronous jump, as in Hainaut and Colwell [22] (due to q12 =

q21 = 0). We will assume that phase 1 represents a (rather) bad economic situation

with high volatility (and more jumps if applicable), whereas phase 2 is assumed to be

a (rather) good economic environment with low volatility.
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We mainly concentrate on positive and negative exponential synchronous jumps, as

in Hainaut and Colwell [22]. For the two-asset cases, when a jump occurs at the

occasion of a transition from phase 1 to 2, the two components of X jump upwards.

Here, the size of the jump of X1 is exponentially distributed with parameter λ1, and

is independent of the size of the jump of X2, which is exponentially distributed with

parameter λ2. Similarly, when there is a jump at a transition from phase 2 to 1, the

two components ofX jump downwards (modeling that after these downward jumps,

the rather bad economic phase starts). In this case, the size of the jump of X1 is

exponentially distributed with parameter ξ1, and is independent of the size of the

jump of X2, which is exponentially distributed with parameter ξ2. The synchronous

jumps induce dependence in the sense that both components jump at the same time

and in the same direction. These specifications correspond with the following Fourier

transform matrix Ĝ(u1, u2) :

Ĝ(u1, u2) =

 0
∏2

k=1
λk

(λk−iuk)∏2
k=1

ξk
(ξk+iuk)

0

 .
Analogous assumptions and notations lead to the matrix Ĝ(u1, . . . , un) in the n-asset

case

Ĝ(u1, . . . , un) =

 0
∏n

k=1
λk

(λk−iuk)∏n
k=1

ξk
(ξk+iuk)

0

 .
We remark that in all examples with 2 assets, we consider the same parameters for the

exponential synchronous jumps, namely λ1 = 4.5, λ2 = 4, ξ1 = 2.7 and ξ2 = 2.5.

As an alternative, we also examine the case of normally distributed jumps (although

we will only report these results in the second example). Considering two assets in

this case, we assume that the means of the jump sizes of the two components of X

are both positive when a jump from phase 1 to phase 2 occurs. For this transition, the

size of the jump of X1 is assumed to be normally distributed with positive mean β11

and variance τ 2
11, and is independent of the size of the jump of X2, which is normally

distributed with positive parameters β21 and τ 2
21. In the case of a transition from phase

2 to phase 1, the two components of X have on average a negative jump size. Here,

the size of the jump of X1 is assumed to be normally distributed with negative mean

β12 and variance τ 2
12, and is independent of the size of the jump of X2, which is

normally distributed with negative mean β22 and variance τ 2
22. Differently from the
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arguments given for exponentially distributed jumps, both components do not always

jump in the same direction, but the average jump sizes of both components have the

same sign. In these settings, the matrix Ĝ(u1, u2) is given by

Ĝ(u1, u2) =

 0
∏2

k=1 e
(iβk1uk−(1/2)τ2

k1u
2
k)∏2

k=1 e
(iβk2uk−(1/2)τ2

k2u
2
k) 0

 .

8.1 Implementation Details

This section gives a brief description about how to apply the numerical methods for

the valuation of spread and basket options.

We study the accuracy of the formulas V k,α
K (0) and V GK (0), derived for spread and

basket options respectively, by comparing the approximations with estimates obtained

by a control variate Monte Carlo (MC) technique for different exercise prices. For the

spread option evaluation, the lower bound V k,α
K (0) is used as a control variate in the

sense that the true option price can be rewritten as

V (0) = V k,α
K (0)− EQ [e−U(T )(S1(T )− S2(T )−K)1(Ξ)

]+
+ EQ [e−U(T )(S1(T )− S2(T )−K)+

]
. (8.2)

Similarly, the true basket option price can be evaluated by the formula

V Basket(0) = V GK (0)− EQ [e−U(T )(An(T )−K)1G(x∗)

]+
+ EQ [e−U(T )(An(T )−K)+

]
, (8.3)

where V GK (0) is the lower bound to the exact basket option price, corresponding to

the optimal value x∗. Calculation of the spread bound V k,α
K (0) is carried out by The-

orem 4.1 for the case without synchronous jumps and by Theorem 6.1 for the case

with synchronous jumps. For the basket bound V GK (0), we consider Theorem 5.1

when there is no synchronous jumps and Theorem 7.1 when synchronous jumps are

allowed. Note that the two expected values given in equations (8.2) and (8.3), which

are for each equation highly correlated, are computed via a crude MC method.

For the implementation of the MC technique, we first determine all transition times

0 < τ j1 < τ j2 < . . . < τ j
Ij
≤ T and the corresponding phases at each realization
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j = 1, 2, . . . , J. Then, between each transition time we obtain a simulated path of the

underlying process by using an Euler-Maruyama scheme. Note that since between the

transitions the parameters are assumed to be constant, we can carry out the computa-

tions as in the case of no regime shifts. We also want to remark that once we obtained

a path in the time interval [τ jk , τ
j
k+1], its final value is assigned as the initial value of the

next path which is simulated in the time interval [τ jk+1, τ
j
k+2]. All simulation results

are performed with 100 time steps and 105 simulations, unless mentioned otherwise.

Furthermore, all tables with pricing results include columns entitled CI-length. These

columns report the length of the 95% confidence intervals.

In the case of a GBM framework without synchronous jumps, we also consider the

Markov-modulated Kirk’s formula for which we work with stochastic differential

equations leading a MC-based numerical implementation. More precisely, as for the

MC approach given above, we evaluate the transition times 0 < τ j1 < τ j2 < . . . <

τ j
Ij
≤ T and the corresponding phases at each realization j = 1, 2, . . . , J. Then, we

calculate the integrated processes
∫ T

0
(r̃(M(t)) − r(M(t))dt and

∫ T
0
σ2(M(t))dt by

splitting them into Ij + 1 integrals:∫ T

0

(r̃(M(t))− r(M(t))) dt =

∫ τ j1

0

(r̃(M(t))− r(M(t))) dt

+

∫ τ j2

τ j1

(r̃(M(t))− r(M(t))) dt+ . . .+

∫ T

τ j
Ij

(r̃(M(t))− r(M(t))) dt,

∫ T

0

σ2(M(t))dt =

∫ τ j1

0

σ2(M(t))dt+

∫ τ j2

τ j1

σ2(M(t))dt+ . . .+

∫ T

τ j
Ij

σ2(M(t))dt.

With this splitting, the integral terms over the transition times are performed as if

no regime-switching, similarly observed in the implementation of MC simulations.

Regarding these integrated processes, we derive the Black-Scholes type formula (3.6)

for the corresponding realization. At the final step, we take the average of the Black-

Scholes prices computed at each realization, for obtaining the price given in (3.7).

The calculation of the lower bounds V k,α
K (0) and V GK (0) are performed with the FFT

algorithm, based upon Carr and Madan [11], with the damping factor chosen to be

equal to δ = 0.75. Noting that the FFT implementation of these two bounds V k,α
K (0)

and V GK (0) are similar, we summarize the corresponding implementation steps for

V k,α
K (0) :
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• Consider a discretized grid over the values of γ such that γm = (m−1)∆γ with

∆γ > 0 being the size of grid and m = 1, . . . ,M. Over this grid size, we apply

the Simpson’s rule in the sense that

V k,α
K (0) ≈

(
e−δk

π

M∑
m=1

e−iγmkΨT (γm; δ, α,K)
∆γ

3
wm

)+

,

where wm = 4 when m is odd, 2 when m is even and 1 when m = 0.

• Construct a grid with respect to k such that ky = −b + ∆k(y − 1) where

b =M∆k/2 and ∆k > 0 is the size of the grid and y = 1, . . . ,M.

• Moreover, determine the grid sizes ∆γ and ∆k considering ∆γ = 2π
M∆k

.

• As a result, the option price for values of ky can be approximated by the fol-

lowing expression:

V
ky ,α
K (0) ≈

(
e−δky

π

M∑
m=1

e−iγmkyΨT (γm; δ, α,Ky)
∆γ

3
wm

)+

=

(
e−δky

π

M∑
m=1

ei(−2π(m−1)(y−1)/N+mπ)ΨT (γm; δ, α,Ky)
∆γ

3
wm

)+

.

In the implementations, we setM = 4096,∆k = 600/4096 and hence ∆γ = 2π/600.

The optimization procedure arising in the computation of V GK (0) in this regime-switch

ing framework is performed via a two-step procedure, as in Caldana et al. [9], and

is implemented via the built-in-function fminbnd of MATLAB. For the sake of

completeness, we briefly mention how to carry out this maximization procedure in

two-steps. We start with computing V GK (0, x) over the equidistant values {x1, . . . , xk}
and then find the point xi ∈ {x1, . . . , xk} for which V GK (0, x) is maximized. In the

second step, we regard an optimization over the all values x in the interval [xi, xi+1],

by defining this xi found in the first step as the starting value. For a more detailed

overview, see the paper of [9].

As an example for the basket option pricing when the asset price dynamics are ruled

by a Markov-modulated Merton jump-diffusion model, we will provide results for the

approximations UAG
K (0), V AG

K (0) and CAG
K (0). Recall that the computation of these

approximations does not require an optimization procedure.
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8.2 Examples

In the following, we will present and discuss different regime-switching models and

examples.

Example 8.1 (Bivariate GBM). This example examines the valuation of spread op-

tions when the underyling price dynamics are ruled by a Markov-modulated GBM

framework without synchronous jumps (see Chapter 3). To this end, we focus on

Markov-modulated Kirk’s formula and the lower bound V k,α
K (0) whose performances

are established by MC simulations. Note that for the lower bound we consider a 2-

dimensional processX(t) = (X1(t), X2(t)) with two possible phases such that when

M = j, X is characterized by the GBM process Yj(t) = (σ1jW1(t), σ2jW2(t)).

Here, the joint characteristic exponent Φ(u1, u2) = [(Φ1(u1, u2),Φ2(u1, u2)] is given

as

Φj(u1, u2) =
1

2

(
σ2

1ju
2
1 + σ2

2ju
2
2 + 2ρjσ1jσ2ju1u2

)
, j = 1, 2.

For the parameter set, we choose S1(0) = 110, S2(0) = 100, T = 1, r1 = r2 = 0.05

and ρ1 = ρ2 = 0.5. Moreover, when the economy is bad, volatilites are relatively

high with σ11 = 0.5 and σ21 = 0.4. For the good economic environment, we choose

lower volatilities σ12 = 0.1 and σ22 = 0.05.

Table 8.1 illustrates the performance of the lower bound V k,α
K (0) as well as Kirk’s for-

mula by comparing with MC simulations. First notice that when lower bound V k,α
K (0)

is used as a control variate, the performance of the crude MC method is improved by

reducing the length of CI to a large extent. Therefore, it is reasonable to consider the

control variate MC results as benchmark prices. Based on these benchmarks, we see

that the lower bound V k,α
K (0) is a good candidate for the fair price of the option. Espe-

cially, when K = 0 (namely, when we evaluate exchange options), the lower bound

seems to be indifferent from the true price. Note that this result will also be observed

in the other examples. Furthermore, Kirk’s approximation seems to perform well for

small strike prices, especially for the exchange option case. However, an increase in

the strike price reduces the performance of this approximation method, as expected.
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Table 8.1: Spread option prices in the GBM model studied in Example 8.1. Number
of MC simulations is 105.

V k,α
K (0) MCCrude CI-length

(Crude)
Kirk MCControl CI-length

(Control)
K = 0 17.9472 17.8968 3.2422e-01 17.9454 17.9472 3.5527e-14
K = 0.8 17.4809 17.4304 3.2174e-01 17.5010 17.4809 9.1418e-06
K = 1.6 17.0233 16.9728 3.1924e-01 17.0645 17.0233 3.2849e-05
K = 2.4 16.5744 16.5236 3.1672e-01 16.6360 16.5746 7.9650e-05
K = 3.2 16.1344 16.0831 3.1417e-01 16.2155 16.1346 9.6609e-05
K = 4 15.7033 15.6514 3.1161e-01 15.8032 15.7035 9.4859e-05

Example 8.2 (Bivariate Variance Gamma model, with only dependence due to regime-

switching). This example is based on Variance Gamma processes, which is first pro-

posed by Madan and Seneta [27] to explain the properties of log-returns such as lep-

tokurtosis and skewness. More precisely, a Variance Gamma process behaves as a

time-changed Brownian motion with drift subordinated by the Gamma process.

In this example, we consider a bivariate MMLP X(t) = (X1(t), X2(t)) such that

when M = j (with j = 1, 2), the process X is driven by a bivariate Lévy process

Yj = (Y1j, Y2j) whose components evolve like independent Variance Gamma pro-

cesses. In particular, for j = 1, 2,

Y1j(t) = θ1jJ1j(t) + σ1jW1j(J1j(t)),

Y2j(t) = θ2jJ2j(t) + σ2jW2j(J2j(t)),

where W1j(t) are W2j(t) are Brownian motions, J1j(t) and J2j(t) are Gamma subor-

dinators with Γ(t, κ1jt) and Γ(t, κ2jt). Here, Γ(., .) denotes the Gamma distribution,

being different from the matrix of synchronous jumps Γ.

Here, the characteristic exponent of Ylj(t) is given by

ϕlj(u) =
1

κlj
log

(
1− iθljκlju+

σ2
lj

2
κlju

2

)
, l, j = 1, 2.

Since the Lévy components are independent within each state, the joint characteristic

exponent Φ(u1, u2) = [(Φ1(u1, u2),Φ2(u1, u2)] can be expressed as

Φj(u1, u2) = ϕ1j(u1) + ϕ2j(u2), j = 1, 2.
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Table 8.2: Parameter values for the Variance Gamma model studied in Example 8.2.

Phase 1 Phase 2
κ θ σ κ θ σ

X1 0.0236 -0.1421 0.4460 0.0011 0.0196 0.1234
X2 0.0374 -0.1135 0.2459 0.0015 0.0043 0.1534

We notice that since the underlying price processes are independent in each phase, the

dependence between the asset prices is only implied by the hidden Markov process

and in particular the synchronous jumps.

For the numerical experiments in this example, we choose the parameters of the Vari-

ance Gamma processes as in the study of Hainaut and Colwell [22] (see Table 8.2),

although we use another transition matrix and synchronous jump modelling. In this

interesting paper, the authors performed a calibration with a slightly modified ver-

sion of the Hamilton’s filter which allowed them to justify the use of switching Lévy

processes with synchronous jumps. In particular, they fit the Markov-modulated Vari-

ance Gamma processes with synchronous jumps to time series of asset prices of some

French firms and conclude that the Variance Gamma model with two states and ex-

ponential jumps seems to outperform some other models. In our study, the parameter

values of the first process X1 are the ones inferred for the firm Axa, which is an in-

surance company affected severely by the credit crunch and by the sovereign debts

crisis of 2008. On the other side, the parameters of X2 are the ones calibrated for

STMicroelectonics, which is a non-financial firm not showing a visible impact of this

crisis. We further assume that r = (0.01, 0.005), S1(0) = 100, S2(0) = 100 and

T = 1.

Table 8.3 contains, for different exercise prices, spread option prices obtained via the

lower bound approximation and via MC simulation techniques, both in the case of no

synchronous jumps and in the case where the synchronous jumps are exponentially

distributed with parameters λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5. Table 8.4

presents the spread option prices in the case of normally distributed jumps with pa-

rameters of mean βk1 = 0.1, βk2 = −0.4 and of variance τ 2
k1 = 0.05, τ 2

k2 = 0.05 for

k = 1, 2. In both situations, the synchronous jumps yield higher option prices. When

comparing the length of the confidence intervals of the crude MC method and of the
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Table 8.3: Spread option prices in the Variance Gamma model studied in Example 8.2
with and without exponential synchronous jumps. The parameters of the synchronous
jumps are λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5. Number of MC simulations is
105.

Jumps V k,α
K (0) MCCrude CI-length

(Crude)
MCControl CI-length

(Control)

K = 0
with 23.4043 23.4309 5.5114e-01 23.4043 3.5527e-14
without 14.0983 14.0257 3.0613e-01 14.0983 2.1316e-14

K = 0.8
with 23.0078 23.0344 5.4856e-01 23.0079 3.4959e-04
without 13.7261 13.6553 3.0317e-01 13.7261 1.5097e-06

K = 1.6
with 22.6171 22.6440 5.4597e-01 22.6175 1.0737e-04
without 13.3617 13.2927 3.0021e-01 13.3617 3.2332e-06

K = 2.4
with 22.2322 22.2594 5.4377e-01 22.2331 1.9164e-04
without 13.0051 12.9378 3.0021e-01 13.0051 8.3254e-06

K = 3.2
with 21.8530 21.8807 5.4077e-01 21.8545 3.0328e-04
without 12.6562 12.5904 2.9429e-01 12.6562 2.3116e-05

K = 4
with 21.4796 21.5077 5.3817e-01 21.4821 4.4009e-04
without 12.3150 12.2507 2.9132e-01 12.3150 2.3963e-05

ones based on a control variate, both based on 105 simulations, it is clear that the use

of the lower bound V k,α
K (0) as a control variate provides a significant improvement.

Therefore, we will only report the control variate MC results in the following. Us-

ing the control variate MC prices as a benchmark, the lower bound clearly seems to

have a high precision. In general, the lower bounds are a little closer to the control

variate MC results when there are no synchronous jump; but even in the presence of

synchronous jumps, they still show nice approximations.

Example 8.3 (Bivariate Variance Gamma model with dependence due to a system-

atic part). In this example, we assume dependent Variance Gamma processes inspired

by the method in Ballotta and Bonfiglioli [3], namely we generate dependence be-

tween the different assets by a common systematic component. The advantages of

this model construction can be summarized as follows: a flexible correlation struc-

ture, being parsimonious in the sense that a linear increase in the overall number

of parameters is observed with the inclusion of new assets, and readily computable

characteristic functions which facilitate the calibration procedure.

More precisely, when the phase does not change, X(t) = (X1(t), X2(t)) is assumed
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Table 8.4: Spread option prices in the Variance Gamma model studied in Example
8.2 with normal synchronous jumps. The parameters of the synchronous jumps are
βk1 = 0.1, βk2 = −0.4, τ 2

k1 = 0.05, and τ 2
k2 = 0.05 for k = 1, 2. Number of MC

simulations is 105.

V k,α
K (0) MCCrude CI-length

(Crude)
MCControl CI-length

(Control)
K = 0 20.6679 20.6888 4.3529e-01 20.6679 5.6843e-14
K = 0.8 20.2884 20.3104 4.3227e-01 20.2884 2.6229e-05
K = 1.6 19.9143 19.9375 4.2925e-01 19.9144 5.7169e-05
K = 2.4 19.5456 19.5701 4.2622e-01 19.5460 1.4245e-04
K = 3.2 19.1823 19.2079 4.2318e-01 19.1830 1.8799e-04
K = 4 18.8244 18.8511 4.2015e-01 18.8255 2.7407e-04

to be driven by a bivariate Variance Gamma model in which there are two idiosyn-

cratic parts Z1 and Z2, specific for each underlying, and a common systematic com-

ponent ZC , which implies the dependency between X1 and X2. Indeed, the dynamics

of the processes X1(t) and X2(t) are formulated as:

X1(t) = Z1(t) + d1(t)ZC(t),

X2(t) = Z2(t) + d2(t)ZC(t),

where the processesZ1, Z2 andZC are independent one-dimensional Markov-modulated

Variance Gamma processes and

dl(t) =
N∑
j=1

dlj(t)1M(t)=j, l = 1, 2.

For the sake of clarity, we suppose that when M = j, the dynamics of Z1, Z2 and ZC

are ruled by the Variance-Gamma processes Z1j , Z2j and ZCj:

Z1j(t) = θ1jJ1j(t) + σ1jW1j(J1j(t)),

Z2j(t) = θ2jJ2j(t) + σ2jW2j(J2j(t)), (j = 1, 2),

ZCj(t) = θCjJCj(t) + σCjWCj(JCj(t)),

whereW1j(t), W2j(t) andWCj(t) are Brownian motions, Jlj(t), J2j(t) and JCj(t) are

Gamma subordinators with Γ(t, κ1jt), Γ(t, κ2jt) and Γ(t, κCjt) [27]. Note that Γ(., .)

denotes Gamma distribution.

Hence, when M(t) = j, the joint characteristic exponent Φ(u1, u2) easily follows:

Φj(u1, u2) = ϕ1j(u1) + ϕ2j(u2) + ϕCj(d1ju1 + d2ju2), (8.4)
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Table 8.5: Parameter values for the Variance Gamma model studied in Example 8.3

Phase 1 Phase 2
d1 0.2 0.05
d2 0.5 0.3

k θ σ k θ σ

Z1 0.0236 -0.1421 0.4460 0.0011 0.0196 0.1234
Z2 0.0374 -0.1135 0.2459 0.0015 0.0043 0.1534
ZC 0.05 -0.1 0.3 0.001 0.008 0.1

Table 8.6: Spread option prices in the Variance Gamma model studied in Example 8.3
with and without exponential synchronous jumps. The parameters of the synchronous
jumps are λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5. Number of MC simulations is
105.

With synchronous jumps Without synchronous jumps
V k,α
K (0) MCControl CI-length V k,α

K (0) MCControl CI-length
K = 0 23.5082 23.5082 1.5632e-13 14.2948 14.2948 4.2633e-14
K = 0.8 23.1094 23.1095 3.8169e-05 13.9188 13.9188 5.0960e-06
K = 1.6 22.7165 22.7169 1.1546e-04 13.5506 13.5506 8.3719e-06
K = 2.4 22.3293 22.3302 2.1195e-04 13.1900 13.1901 1.8162e-05
K = 3.2 21.9478 21.9495 3.4138e-04 12.8372 12.8373 3.2827e-05
K = 4 21.5721 21.5746 4.4520e-04 12.4920 12.4921 3.1884e-05

where

ϕlj(u) =
1

klj
ln

(
1− iukljθlj +

1

2
u2kljσ

2
lj

)
, l = 1, 2; j = 1, 2,

ϕCj(u) =
1

kCj
ln

(
1− iukCjθCj +

1

2
u2kCjσ

2
Cj

)
, j = 1, 2.

Table 8.5 summarizes the parameters of this Variance Gamma based model for the

two phases. Notice that we choose the parameter set given in Example 8.2 for the

processes Z1 and Z2. We also set r = (0.01, 0.005), S1(0) = 100, S2(0) = 100, and

T = 1.

In Table 8.6, we report prices of spread options obtained via the lower bound ap-

proximation V k,α
K (0) and control variate Monte Carlo simulations (based on 105 sim-

ulations) for both cases without and with synchronous jumps. The numerical results

clearly show that, as in Example 8.2, i) higher prices are observed when we allow
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exponentially distributed synchronous jumps with parameters λ1 = 4.5, λ2 = 4,

ξ1 = 2.7, and ξ2 = 2.5, ii) the lower bound V k,α
K (0) has a very good performance in

the sense that the bounds are very close to the control variate MC prices.

Example 8.4 (Multivariate jump-diffusion model with dependence due to a system-

atic part). In this example, we focus on Merton jump-diffusion model, which is first

introduced by Merton [30] to incorporate the abnormal movements of asset prices

by using compund Poisson processes. This example now illustrates the method of

Ballotta and Bonfiglioli [3] for modeling n risky assets, Sl(t), l = 1, . . . , n, by using

the regime-switching version of Merton jump-diffusion model. Namely, the Markov-

modulated process Xl(t) has the form

Xl(t) = Zl(t) + dl(t)ZC(t), l = 1, . . . , n, (8.5)

where for all l, Zl and ZC are independent, one-dimensional Markov-modulated Mer-

ton jump-diffusion processes with jumps having zero mean. For l = 1, . . . , n, Zl

refers to the idiosyncratic part of Xl(t), ZC denotes the common systematic compo-

nent which implies the dependence between the processes Xl(t) and

dl(t) =
N∑
j=1

dlj(t)1M(t)=j, l = 1, . . . , n.

To be more precise about the implementation of this model, it is assumed that when

M = j, the dynamics of Zl nad ZC are governed by the following Merton jump-

diffusion processes Zlj and ZCj:

Zlj(t) = σljWlj(t) +

Nlj(t)∑
i=1

J ilj, j = 1, 2; l = 1, . . . , n,

ZCj(t) = σCjWCj(t) +

NCj(t)∑
i=1

J iCj, j = 1, 2,

where σlj and σCj are the volatilities, Wlj(t) and WCj(t) are Brownian motions and∑Nlj(t)
i=1 J ilj and

∑NCj(t)
i=1 J iCj are compound Poisson processes. Herewith, Nlj(t) and

NCj(t) are Poisson processes with intensities θlj and θCj, respectively, and {J ilj}
and {J iCj} are normally distributed jumps sizes with J ilj

i.i.d.∼ N (0, τ 2
lj) and J iCj

i.i.d.∼
N (0, τ 2

Cj).
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Table 8.7: Parameter values for the Markov-modulated Merton jump-diffusion model
studied in Example 8.4

Phase 1 Phase 2
d1 0.2 0.05
d2 0.5 0.3
d3 0.4 0.4

τ θ σ τ θ σ

Z1 0.1 1 0.2 0.05 0.2 0.05
Z2 0.1 1 0.2 0.05 0.2 0.05
Z3 0.1 1 0.2 0.05 0.2 0.05
ZC 0 0 0.25 0 0 0.1

Then, analogously to equation (8.4), the characteristic exponent Φ(u1, . . . , un) is de-

termined by

Φj(u1, . . . , un) =
n∑
l=1

ϕlj(ul) + ϕCj

(
n∑
l=1

dljul

)
,

where

ϕlj(u) =
1

2
u2σ2

lj + θlj

(
1− e−

1
2
u2τ2

lj

)
, j = 1, 2; l = 1, . . . , n,

ϕCj(u) =
1

2
u2σ2

Cj + θCj

(
1− e−

1
2
u2τ2

Cj

)
, j = 1, 2.

where ϕlj(u) are ϕCj(u) are the characteristic components of Zlj and ZCj.

For the numerical illustrations, we consider the cases n = 2 and n = 3. Table 8.7

presents the parameter set of the Markov-modulated processes in these cases. We

further choose as in the previous examples r = (0.01, 0.005), S1(0) = 100, S2(0) =

100, T = 1, and additionally set S3(0) = 100.

Table 8.8 illustrates the performance of the lower bounds V k,α
K (0) and V GK (0) for

spread options, both without and with synchronous jumps. We study the accuracy

of these bounds V k,α
K (0) and V GK (0) by using the control variate MC prices as bench-

mark. To start with, both in the case of no synchronous jumps (in paranthesis) and

in the case where synchronus jumps are regarded, the value of basket bound V GK (0),

which needs an optimization procedure, is close to the value of spread bound V k,α
K (0).

Especially, when K = 0, the two bounds seem to give the same values. However, in

general, the spread option bound V k,α
K (0) turns out to perform better than the basket

bound V GK (0). Notice that the simulation errors resulting from the control variate MC
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Table 8.8: Spread option prices in the jump-diffusion model studied in Example 8.4.
The first row for each strike K shows the prices with exponential synchronous jumps
whereas the second row (in paranthesis) are those without synchronous jumps. The
parameters of the synchronous jumps are λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5.

Number of MC simulations is 105.

V k,α
K (0) MCControl CI-length V GK (0) MCControl CI-length

K = 0
20.6292
(8.4423)

20.6292
(8.4423)

3.5527e-14
(4.6185e-14)

20.6292
(8.4423)

20.6292
(8.4423)

1.4211e-13
(2.1316e-14)

K = 0.8
20.2110
(8.0477)

20.2111
(8.0477)

4.1607e-05
(1.5129e-06)

20.2104
(8.0476)

20.2111
(8.0477)

1.5265e-04
(3.2495e-05)

K = 1.6
19.7999
(7.6668)

19.8003
(7.6668)

1.1399e-04
(3.1694e-06)

19.7975
(7.6665)

19.8004
(7.6668)

4.4719e-04
(8.9685e-05)

K = 2.4
19.3959
(7.2996)

19.3969
(7.2996)

2.0170e-04
(1.0107e-05)

19.3906
(7.2989)

19.3969
(7.2996)

8.0990e-04
(1.5238e-04)

K = 3.2
18.9992
(6.9459)

19.0009
(6.9459)

2.8998e-04
(1.2834e-05)

18.9896
(6.9447)

19.0008
(6.9460)

1.2130e-03
(2.4552e-04)

K = 4
18.6097
(6.6057)

18.6124
(6.6057)

4.2021e-04
(1.2007e-05)

18.5946
(6.6038)

18.6125
(6.6057)

1.7726e-03
(3.2290e-04)

are smaller when we use the spread option bound V k,α
K (0) as a control variate. Finally,

we compare the prices without synchronus jumps and those with synchronous jumps.

Mainly, we observe that in the case of no synchronous jumps option prices V k,α
K (0)

and V GK (0) are lower and generally closer to the MC prices, showing a nicer preci-

sion. Even so, we emphasize that the bounds have a good performance regardless of

the presence of synchronous jumps.

Table 8.9 refers to the case of a 2-asset basket option with positive weights, which

are chosen as w = (0.3, 0.7). We begin with discussing the results obtained without

synchronous jumps (in paranthesis). Noting that we also reported values of LAGK (0),

UAG
K (0) and CAG

K (0), which were derived considering the arithmetic-geometric mean

inequality, V GK (0) provides the most accurate prices among all the bounds we ob-

tained. In particular, benchmarking with MC prices, this bound seems to be exact

for the strikes less than K = 60. Regarding the performance of LAGK (0), UAG
K (0) and

CAG
K (0) within this range of strikes, we see that the upper bound UAG

K (0) gives the

best results, having the same precision with the bound V GK (0). But, for higher strikes

it is outperformed by the approximation CAG
K (0). Although the bound V GK (0) is much
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Table 8.9: Basket option prices in the jump-diffusion model studied in Example 8.4.
The first row for eack strike K shows the prices with exponential synchronous jumps
whereas the second row (in paranthesis) are those without synchronous jumps. The
weights of the basket are w = (0.3, 0.7). The parameters of the synchronous jumps
are λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5. Number of MC simulations is 105.

V GK (0) MCControl CI-length LAGK (0) UAG
K (0) CAG

K (0)

K = 20
80.1496

(80.1429)
80.1613

(80.1429)
3.3376e-03

(2.8422e-13)
76.7436

(79.6235)
80.1876

(80.1429)
80.1620

(80.1433)

K = 30
70.3319

(70.2143)
70.3693

(70.2143)
7.2089e-03

(2.5580e-13)
67.0265

(69.6949)
70.4704

(70.2143)
70.3614

(70.2147)

K = 40
60.9553

(60.2857)
61.0153

(60.2857)
9.1903e-03

(1.5632e-13)
57.8026

(59.7663)
61.2466

(60.2857)
60.9215

(60.2862)

K = 50
52.3102

(50.3572)
52.3886

(50.3572)
1.3971e-02

(8.5265e-14)
49.3321

(49.8379)
52.7760

(50.3573)
52.1812

(50.3577)

K = 60
44.4242

(40.4309)
44.5159

(40.4311)
1.6029e-02

(2.9788e-04)
41.6369

(39.9130)
45.0808

(40.4324)
44.2174

(40.4323)

K = 70
37.3117

(30.5361)
37.4155

(30.5376)
1.6595e-02

(7.4771e-04)
34.7226

(30.0285)
38.1666

(30.5479)
37.0314

(30.5431)

K = 80
30.9801

(20.8564)
31.0877

(20.8605)
1.6384e-02

(1.1106e-03)
28.5889

(20.3856)
32.0328

(20.9050)
30.6284

(20.8767)

K = 90
25.4138

(12.0405)
25.5278

(12.0478)
1.7391e-02

(1.4520e-03)
23.2153

(11.6494)
26.6592

(12.1688)
24.9945

(12.0646)

K = 100
20.5826
(5.4876)

20.6933
(5.4945)

1.7126e-02
(1.2753e-03)

18.5688
(5.2098)

22.0127
(5.7292)

20.0999
(5.4655)

Average
CPU

(seconds)
13.2014 0.6174

closer to the true option price, we can conclude that LAGK (0), UAG
K (0) and CAG

K (0)

based on the arithmetic-geometric mean inequality may also be very useful in prac-

tice. In the case of synchronous jumps, we observe a little different pattern in the

performance of the bounds. More precisely, although the lower bound V GK (0) again

leads to very good results, taking the control variate MC results as benchmark, the

approximate price CAG
K (0) has the highest precision for strikes K = 20 and 30 (very

deep-in-the-money option). But for other strikes given in this table, the true option

price can best be approximated by V GK (0). Also the upper bound UAG
K (0) is gener-

ally more accurate than the lower bound LAGK (0), but not as accurate as V GK (0) or

CAG
K (0). All in all, taking the synchronous jumps into account, we again achieve very
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Figure 8.1: Price of a two-asset basket option carried out by the lower bound LAGK (0),

upper bound UAG
K (0) and control variate Monte Carlo MCControl. The weights of the

basket are w = (0.3, 0.7). (a) with synchronous jumps (b) without synchronous

jumps.

good approximations. We finally remark that the prices obtained with synchronous

jumps are higher than those without jumps. Notice that in the lowermost row we

additionally report the average CPU times for V GK (0) and CAG
K (0). Since the bounds

UAG
K (0) and LAGK (0) have a similar CPU performance, only the results of CAG

K (0) are

reported. We observe that although the lower bound V GK (0) in general shows a better

performance than LAGK (0), UAG
K (0), and CAG

K (0) for both cases, it is slower than these

approximations due to the optimization procedure we considered.

Figure 8.1 shows the lower bound LAGK (0), upper bound UAG
K (0) and control variate

Monte Cralo prices for strikes ranging from 20 to 150. The difference UAG
K (0) −

LAGK (0) seems to be null for the case without synchronous jumps. When we take into

account synchronous jumps, the difference turns out to be wider. Additionally, we

see that the upper bound UAG
K (0) with synchronous jumps is very close to the Monte

Carlo prices for deep-in-the-money options. For increasing values of strike price, its

precision is slightly reduced.

Table 8.10 illustrates the valuation of a 3-asset basket option in which the third asset

has a negative weight. Note that in order to have sufficiently small MC confidence

intervals, we need more simulations and we therefore used here 5.105 simulations.

Moreover, it is worth noticing that the lower bound V GK (0) is still accurate but not as

84



Table 8.10: Basket option prices in the jump-diffusion model studied in Example 8.4.
The first row for each strike K shows the prices with exponential synchronous jumps
whereas the second row (in paranthesis) are those without synchronous jumps. The
weights of the basket are w = (2, 1,−2). The parameters of the synchronous jumps
are λ1 = 4.5, λ2 = 4, λ3 = 3.8, ξ1 = 2.7, ξ2 = 2.5 and ξ3 = 2.4. Number of MC
simulations is 5.105.

V GK (0) MCControl CI-length LAGK (0) UAG
K (0) CAG

K (0)

K = 20
98.2063

(81.2050)
100.1263
(81.3030)

4.7553e-02
(5.3651e-03)

90.2579
(79.7515)

101.2252
(81.4001)

99.5981
(81.3285)

K = 30
90.7255

(71.7801)
92.3049

(71.8792)
4.1907e-02

(5.0999e-03)
82.1615

(70.3630)
93.1288

(72.0115)
91.1228

(71.9097)

K = 40
83.5495

(62.5704)
84.8272

(62.6646)
4.0837e-02

(4.5146e-03)
74.4730

(61.1953)
85.4402

(62.8438)
82.9875

(62.7002)

K = 50
76.6998

(53.6555)
77.7113

(53.7413)
3.7038e-02

(4.0123e-03)
67.2488

(52.3298)
78.2161

(53.9784)
75.2536

(53.7780)

K = 60
70.1935

(45.1383)
71.0171

(45.2102)
3.5338e-02

(3.4254e-03)
60.5302

(43.8717)
71.4975

(45.5203)
67.9788

(45.2438)

K = 70
64.0433

(37.1468)
64.7536

(37.2038)
3.4458e-02

(2.8050e-03)
54.3357

(35.9520)
65.3029

(37.6006)
61.2062

(37.2245)

K = 80
58.2577

(29.8316)
58.9241

(29.8732)
3.3629e-02

(2.3671e-03)
48.6621

(28.7238)
59.6294

(30.3723)
54.9568

(29.8702)

K = 90
52.8413

(23.3487)
53.5405

(23.3802)
3.4016e-02

(2.1864e-03)
43.4910

(22.3449)
54.4582

(23.9934)
49.2296

(23.3400)

K = 100
47.7950

(17.8242)
48.5741

(17.8523)
3.5415e-02

(2.0434e-03)
38.7961

(16.9407)
49.7634

(18.5893)
44.0073

(17.7680)
Average

CPU
(seconds)

18.1433 1.8358

promising as in the case with 2-asset option. Therefore, we also report the values of

the basket boundsLAGK (0), UAG
K (0) and the approximate priceCAG

K (0) for both frame-

work (without synchronous jumps and with synchronous jumps). Firstly, visiting the

results of no synchronus jumps, we see that the bound V GK (0) is not sharp as the ap-

proximation CAG
K (0) for the strikes less than K = 90. Even so, V GK (0) seems to give

tighter results than the boundsUAG
K (0) andLAGK (0). In the case of synchronous jumps,

numerical results show that when the strike equals K = 20, the lower bound V GK (0) is

again outperformed by the approximation CAG
K (0), which provides the tightest result

in these settings. When K varies between 30 and 70, the performance of the lower
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Figure 8.2: Price of a three-asset basket option carried out by the lower bound

LAGK (0), upper bound UAG
K (0) and control variate Monte Carlo simulations MCControl.

The weights of the basket are w = (2, 1,−2). (a) with synchronous jumps (b) without

synchronous jumps

bound V GK (0) is better than the approximation CAG
K (0), but not as good as the upper

bound UAG
K (0), which is the closest to the MC results. When we consider strikes

larger than 70, the lower bound V GK (0) turns out to achieve the best results. Besides

the approximate prices, we examine the average CPU times of the lower bound V GK (0)

and approximation CAG
K (0). Recall that UAG

K (0) and LAGK (0) have a similar CPU as

for the approximation CAG
K (0). As in the case of 2-asset basket option, we see that

on the one hand lower bound V GK (0) is close to the fair price of the option, but on

the other hand it is slower than the approximations based on the arithmetic-geometric

mean inequality.

Figure 8.2 displays the difference UAG
K (0) − LAGK (0) for different strike prices. It

seems that this difference is very small for the case without synchronous jumps. For

the case with synchronous jumps, we see that the difference is wider. Furthermore, the

lower bound LAGK (0) is not so tight and is outperformed by the upper bound UAG
K (0).

As for the two-asset basket options, the upper bound UAG
K (0) is more promising for

very-deep-in-the-money option.

Example 8.5 (Multivariate jump-diffusion model with dependence due to a stochastic

time change). This example focuses on a regime-switching version of a multivariate

Kou model proposed by Mai et al. [28]. This approach, which will be explained
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in more detail below, aims to model the marginal distribution of each asset by a

one-dimensional Markov-modulated Kou process, and, moreover, to construct depen-

dency among the jump-components of different assets by a stochastic time change.

This stochastic time change is defined by using the parameters of the marginal distri-

butions as well as supplementary dependency parameters κ+
k ∈ (0, 1) and κ−k ∈ (0, 1),

corresponding to respectively positive and negative jumps. The calibration of this

multivariate model without regime-switching is reported to be very practical since

the parameters of the univariate Kou models can be estimated first, and then the de-

pendence parameters can be treated separately.

We start by discussing the modeling framework when the Markov process M is in

phase k. Let us assume a two-dimensional MMLP X(t) = (X1(t), X2(t)) whose

dynamics within phase k are characterized by a 2-dimensional Lévy process Yk =

(Y1k, Y2k), with components following a univariate Kou model. In particular, Yjk(t),

j = 1, 2, is governed by a one dimensional standard Brownian motionWjk(t) and two

independent compound Poisson processes Ξ+
jk(t) and Ξ−jk(t), representing the positive

and negative jumps. In this state k, the dependency between the Lévy processes Y1k(t)

and Y2k(t) follows from: (1) correlated Brownian motions W1k(t) and W2k(t); and

(2) jump components which are dependent by using a stochastic time change. More

precisely, each Lévy process component Yjk(t), j = 1, 2, in phase k is formulated as:

Yjk(t) = σjkWjk(t) + Ξ+
jk(t)− Ξ−jk(t),

Ξ+
jk(t) =

N+
jk(Θ+

k (t))∑
i=1

J i,+jk ,

Ξ−jk(t) =

N−
jk(Θ−

k (t))∑
i=1

J i,−jk ,

where:

(i) Ξ+
jk(t) is a compound Poisson process with intensity ϑ+

jk and exponentially dis-

tributed jumps with parameter d+
jk.

(ii) Ξ−jk(t) is a compound Poisson process with intensity ϑ−jk and exponentially dis-

tributed jumps with parameter d−jk. Here, Ξ−jk(t) is independent of the com-

pound Poisson Ξ+
jk(t) for each j = 1, 2.
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Table 8.11: Parameter values for the jump-diffusion model in Example 8.5.

Phase 1
ϑ+

1 ϑ+
2 ϑ−1 ϑ−2 d+

1 d+
2 d−1 d−2 σ1 σ2 κ+ κ−

0 0 0.6 0.4 0 0 3.895 2.838 0.3 0.4 0.1 0.7
Phase 2

ϑ+
1 ϑ+

2 ϑ−1 ϑ−2 d+
1 d+

2 d−1 d−2 σ1 σ2 κ+ κ−

0.05 0.1 0.273 0.164 7 5 6 4 0.167 0.182 0.2 0.5

(iii) Θ+
k (t) and Θ−k (t) are two compound Poisson processes with intensities ϑ0,+

k

and ϑ0,−
k and exponentially distributed jumps Exp(d0,+) and Exp(d0,−) where

ϑ0,+
k = max

1≤j≤n
(ϑ+

jk/κ
+
k ), ϑ0,−

k = max
1≤j≤n

(ϑ−jk/κ
−
k )

with κ+
k ∈ (0, 1) and κ−k ∈ (0, 1) for each regime k.

(iv) N+
jk(t) and N−jk(t) are independent Poisson processes for each j = 1, 2 :

N+
jk(t) ∼ Poisson

(
ϑ+
jkd

0,+

ϑ0,+
k − ϑ+

jk

)
,

N−jk(t) ∼ Poisson

(
ϑ−jkd

0,−

ϑ0,−
k − ϑ−jk

)
,

where all Poisson processes given above are independent of Θ+
k (t) and Θ−k (t).

(v) {J i,+jk }i∈N and {J i,−jk }i∈N are i.i.d. random variables for each j = 1, 2 :

J i,+jk ∼ Exp

(
ϑ0,+
k d+

jk

ϑ0,+
k − ϑ

+
jk

)
, i ∈ N,

J i,−jk ∼ Exp

(
ϑ0,−
k d−jk

ϑ0,−
k − ϑ

−
jk

)
, i ∈ N.

By assumption, these random variables are independent of Θ+
k (t), Θ−k (t) and

the Poisson processes N+
jk(t), N

−
jk(t) for j = 1, 2.

(vi) W1k(t) andW2k(t) are Brownian motions with correlation coefficient ρk within

state k. These Brownian motions are independent from all processes introduced

above.
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Table 8.12: Spread option prices in the jump-diffusion model studied in Example
8.5 both without and with exponential synchronous jumps. The parameters of the
synchronous jumps are λ1 = 4.5, λ2 = 4, ξ1 = 2.7, and ξ2 = 2.5. Number of MC
simulations is 105.

With synchronous jumps Without synchronous jumps
V k,α
K (0) MCControl CI-length V k,α

K (0) MCControl CI-length
K = 0 31.1912 31.1912 2.1316e-14 28.0053 28.0053 1.4211e-14
K = 0.8 30.5244 30.5246 7.8651e-05 27.2542 27.2543 4.9114e-05
K = 1.6 29.8636 29.8642 1.6927e-04 26.5069 26.5071 1.0451e-04
K = 2.4 29.2089 29.2104 3.1233e-04 25.7637 25.7640 1.4077e-04
K = 3.2 28.5607 28.5635 5.3566e-04 25.0249 25.0254 2.2449e-04
K = 4 27.9192 27.9236 8.8259e-04 24.2909 24.2916 3.0281e-04
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Figure 8.3: Difference between the lower bound V k,α
K (0) and control variate Monte

Carlo: (a) with synchronous jumps (b) without synchronous jumps

This model construction implies the following characteristic exponent within state k,

see Mai et al. [28]:

Φk(u) =
1

2
uT Σ̂u− ϑ0,+

k β+
k (u)

1− β+
k (u)

+
ϑ0,−
k β−k (u)

1 + β−k (u)
,

where Σ̂k is the covariance matrix of (σ1kW1k(t), σ2kW2k(t)) in state k,

β+
k (u) =

2∑
m=1

ϑ+
mkium

ϑ0,+
k d+

mk − iuk(ϑ
0,+
k − ϑ+

mk)
,

β−k (u) =
2∑

m=1

ϑ−mkium

ϑ0,−
k d−mk + iuk(ϑ

0,−
k − ϑ−mk)

.
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Table 8.11 presents the parameter set chosen in this example, which is inspired by Mai

et al. [28]. We further choose r = (0, 0), S1(0) = 69.468, S2 = 42.10, ρ = (0.5, 0.5)

and T = 1. Table 8.12 illustrates the valuation of spread options via the lower bound

V k,α
K (0), benchmarked with the control variate MC method by using 105 simulations.

For the simulation of the asset price processes, we use Algorithm 5.12 in Schulz [34].

As it is apparent from Table 8.12, despite the complexity of the model, the lower

bound provides very tight prices for both cases without and with synchronous jumps.

Furthermore, we observe higher prices with a slightly less precision when asset prices

are modeled with synchronous jumps. Additionally, Figure 8.3 shows the differ-

ences between the lower bound V k,α
K (0) and control variate Monte Carlo simulations

MCControl for strikes ranging from 0 to 10. It is confirmed that although under a mod-

eling framework with synchronous jumps the price differences are larger, the lower

bound prices V k,α
K (0) continue to agree well with the Monte Carlo simulations.
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CHAPTER 9

CONCLUSION

Being an important research area due to their use in many different markets, this

thesis concentrates upon pricing spread and basket options under the different regime-

switching frameworks.

Mainly, we provide approximations to the exact option prices based upon ideas from

the literature without regime-switching. We begin with examining the valuation of

spread options in a MMGBM setting without synchronous jumps. To this end, we

derive a Markov-modulated Kirk’s formula by using the regime-switching version

of Black-Scholes formula. After considering the GBM setting, we proceed to price

spread and basket options when risky asset prices are ruled by MMLPs. We provide

several bounds for the corresponding options. In particular, we derive a lower bound

for spread options, which is obtained via a univariate Fourier inversion. This bound

is applicable to a wide variety of models for which the joint characteristic function of

MMLPs is known explicitly. For the basket options, we provide several approxima-

tions to the true option price. By defining a set based on the geometric average of the

weighted assets, we first introduce a lower bound that can be obtained via a univariate

Fourier inversion and an optimization procedure. Since this optimization procedure

increases the computational cost of the bound, we then study the analogous approx-

imations followed by the arithmetic-geometric mean inequality. As in the spread

option case, all bounds introduced for basket options are manageable whenever the

joint characteristic function of MMLPs are known analytically. Finally, we study

evaluation of spread and basket options under a more generalized MMLP framework,

in which a regime change yields not only a switch in the model parameters, but also
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may lead synchronous jumps in the asset prices. In this context, we generalize the

aforementioned pricing formulas to the case of synchronous jumps.

After theoretical arguments, the accuracy of all aproximations included in this thesis

has been verified by several numerical examples. The first example is introduced

for showing the precision of Markov-modulated Kirk’s formula; namely we con-

sider a MMGBM setting without synchronous jumps. Then, we consider a Markov-

modulated Variance Gamma model and we assume that the underlying price pro-

cesses are independent in each phase. In this framework, we illustrate the perfor-

mance of the spread option bound, considering both cases with and without syn-

chronous jumps. With the purpose of discussing the case of dependent asset prices

(in each phase), we then focus upon a regime-switching model, using a common sys-

tematic component to explain the dependency structure between the underlying asset

prices. In this example, we assume that both the idiosyncratic parts as well as the

common systematic part of the underlying assets are modeled by Variance Gamma

processes. Particularly, we study the prices of spread options for the cases without

and with synchronous jumps. Next, we observe the valuation of spread and basket

options under the methodology of the previous example, but now the asset compo-

nents are driven according to a Markov-modulated Merton jump-diffusion model. In

this framework, we first discuss approximate prices for spread options and afterwards

for basket options with two and three underlying assets. As in the previous examples,

we show the precison of the approximations in the case of no synchronous jump and

in the case when synchronous jumps occur. Lastly, we consider the regime-switching

generalization of a multivariate Kou model in which the dependency between the

jump components is constructed by means of a stochastic time change. For this ex-

ample, we concentrate upon the approximate prices of spread options both without

and with synchronous jumps.

This thesis provides contributions in different aspects:

• We derive pricing formulas under frameworks without and with sycnhronous

jumps.

• Benchmarking with control variate MC simulations, it is shown that especially

for small strikes the Markov-modulated Kirk’s formula has a nice precision.
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Here, the control variate MC simulations are conducted with the spread bound

V k,α
K (0), which indeed seems to be more promising than the Kirk’s formula,

especially for larger strikes.

• We ensure the accuracy of the spread bound V k,α
K (0) by numerical illustrations

given above. This accuracy surely depends on the presence of synchronous

jumps. Considering the effect of synchronous jumps, it is clear that the per-

formance of the bound is slightly better when asset prices are modeled without

synchronous jumps. However, even including synchronus jumps we achieve

very promising results. Additionally, we observe that when K = 0 the bound

becomes exact regardless of the chosen model. As a result, our approximation

gives very good results for our two modelling frameworks, namely both without

and with sychronous jumps.

• As an example, namely when asset prices are modeled by a Markov-modulated

Variance Gamma model, we also provide spread option prices with normally

distributed synchronous jumps. It is shown that the bound remains accurate

also for this kind of synchronous jumps.

• For a modeling framework with Merton jump-diffusion processes, we compare

the precision of the spread V k,α
K (0) and the basket bound V GK (0). In general,

the spread bound turns out to be more sharp than the basket bound, for both

without and with synchronous jump. However, the basket bound V GK (0) may

also be considered as reasonably accurate.

• When we regard basket options, we observe that the precision of the basket

bounds, V GK (0), LAGK (0), UAG
K (0) and CAG

K (0) are also affected by the presence

of synchronous jumps. In particular, the precision of all approximations are

reduced due to inclusion of synchronous jumps. But even for these cases we

achieve to obtain prices very close to those of MC simulations.

• For the 2-asset basket option with positive weights, the lower bound V GK (0)

in general shows a better performance than the other approximations. For the

3-asset basket option with negative weights, the lower bound V GK (0) is still ac-

curate but not as promising as in the case of 2-asset basket option with positive

weights. In particular, when there is no synchronous jump, the true option
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price seems to be best approximated by CAG
K (0) for strikes less than K = 90.

For other strikes, such as very deep out of the money options, the lower bound

V GK (0) becomes sharper. In the case of synchronous jumps, the upper bound

UAG
K (0) is in general the most precise bound for in the money options whereas

for strikes larger than 70, the lower bound V GK (0) achieves the best results.

Although the most promising bound changes according to the baskets or strike

values we considered, we always provide very accurate approximations to the

true option price.

As an outlook, the Markov-modulated Kirk’s formula can also be derived for a MMGBM

setting with synchronous jumps. Moreover, we can carry out a calibration procedure

for a MMLP framework both without and with synchronous jumps. However, we

should take into account the fact that the calibration of the parameters may be chal-

lenging if we consider a large basket or more complex underlying models.
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APPENDIX A

PROOFS OF SOME THEOREMS AND LEMMAS

By assuming the notions given in Chapter 6 and Chapter 7, we give the proofs of

some important results below.

With the following lemma, we obtain the joint characteristic function of MMLPs with

synchronous jumps.

Lemma A.1. Consider a Markov-modulated drift process C(t) =
∫ t

0
c(M(s)) ds

where

c(M(t)) =
N∑
j=1

cj1M(t)=j,

with cj, j = 1, . . . , N, being some constants.

Then, under a MMLP framework with synchronous jumps, for all a ∈ Cn and t ≥ 0:

E
[
eC(t)+〈a,X(t)〉] = pe(−A+Q+ΓĜ(−ia))t1,

where A is the diagonal matrix with Ajj = Φj(−ia)− cj , under the assumption that

Ĝ(−ia) exists and Φj(−ia) is known analytically.

Proof. We will closely follow the arguments given in Deelstra and Simon [16] by

taking the sycnhronous jumps into account and by using XI-Proposition 2.2 from

Asmussen [2], as motivated by this reference paper.

Let us define the conditional expectation Olj(t) :

Olj(t) = E
[
eC(t)+〈a,X(t)〉1M(t)=j |M(0) = l

]
,

and consider the fact that the number of transitions during the time interval [t, t + y]

is more than one with a probability of o(y).
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Our first aim is to compute Olj(t + y) by means of Olj(t). For this purpose, we will

consider the following arguments:

Notice that the conditinal expectation Olj(t+ y) can be rewritten as:

Olj(t+ y) = E
[
eC(t)+cjy+〈a,X(t)〉+〈a,Yj(t+y)−Yj(t)〉1M(t)=j |M(0) = l

]
×

P (M(t+ y) = j, no synchronous jump on [t, t+ y] |M(t) = j)

+
N∑
k 6=j

E
[
eC(t)+cky+〈a,X(t)〉+〈a,Yk(t+y)−Yk(t)〉1M(t)=k |M(0) = l

]
×

P (M(t+ y) = j, no synchronous jump on [t, t+ y] |M(t) = k)

+
N∑
k 6=j

E
[
eC(t)+cky+〈a,X(t)〉+〈a,Yk(t+y)−Yk(t)〉1M(t)=k |M(0) = l

]
×

N∑
k 6=j

E
[
e〈a,Jk〉1M(t+y)=j |M(t) = k

]
P (synchronous jump on [t, t+ y] |M(t) = k) ,

which is followed from conditioning on M(t) and possibility of synchronous jumps.

Also note that synchronous jumps Jk are independent of the increments Yj(t+ y)−
Yj(t) and M(0).

Substituting the values of the above probabilities, we obtain

Olj(t+ y) = E
[
eC(t)+cjy+〈a,X(t)〉+〈a,Yj(t+y)−Yj(t)〉1M(t)=j |M(0) = l

]
×

(1 + qjjy + o(y)) +
N∑
k 6=j

E
[
eC(t)+cky+〈a,X(t)〉+〈a,Yk(t+y)−Yk(t)〉1M(t)=k |M(0) = l

]
×

(qkjy + o(y)) +
N∑
k 6=j

E
[
eC(t)+cky+〈a,X(t)〉+〈a,Yk(t+y)−Yk(t)〉1M(t)=k |M(0) = l

]
×

N∑
k 6=j

E
[
e〈a,Jk〉1M(t+y)=j |M(t) = k

]
(γky + o(y)).

By regarding the independent and stationary increments property of Lévy processes,

we notice that Yj(t + y) − Yj(t) is independent of X(t) and equal in disribution

to Yj(y), for all j = 1, 2, . . . , n. Since these increments Yj(t + y) − Yj(t) are also
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independent of M, the above equation turns out to be:

Olj(t+y) = ecjyE
[
eC(t)+〈a,X(t)〉1M(t)=j |M(0) = l

]
E
[
e〈a,Yj(y)〉] (1+qjjy+o(y))

+
N∑
k 6=j

eckyE
[
eC(t)+〈a,X(t)〉1M(t)=k |M(0) = l

]
E
[
e〈a,Yk(y)〉] (qkjy + o(y))

+
N∑
k 6=j

eckyE
[
eC(t)+〈a,X(t)〉1M(t)=k |M(0) = l

]
E
[
e〈a,Yj(y)〉]×

E
[
e〈a,Jk〉1M(t+y)=j |M(t) = k

]
(γky + o(y)).

Remembering the definiton of Olj(t) as well as characteristic functions of Yj and Jk,

we then have:

Olj(t+y) = Olj(t)e
y(cj−Φj(−ia))(1+qjjy+o(y))+

N∑
k 6=j

Olk(t)e
y(ck−Φk(−ia))(qkjy+o(y))

+
N∑
k 6=j

Olk(t)e
y(ck−Φk(−ia))Ĝkj(−ia)(γky + o(y))

= Olj(t)(1 + y(cj − Φj(−ia)) + o(y))(1 + qjjy + o(y))

+
N∑
k 6=j

Olk(t)(1 + y(ck − Φk(−ia)) + o(y))(qkjy + o(y))

+
N∑
k 6=j

Olk(t)(1 + y(ck − Φk(−ia)) + o(y))Ĝkj(−ia)(γky + o(y)),

where in the last equality we replace the term ey(cj−Φj(−ia)) with its Taylor expansion

1 + y(cj − Φj(−ia)) + o(y).

By straightforward calculations, Olj(t+ y) is finally rewritten as:

Olj(t+ y) = Olj(t) + y

(
Olj(t)(cj − Φj(−ia)) +

N∑
k=1

Olk(t)qkj

+
N∑
k 6=j

Olk(t)Ĝkj(−ia)γk

)
,

adressing the following equality:

1

y
(Olj(t+ y)−Olj(t)) = Olj(t)(cj − Φj(−ia)) +

N∑
k=1

Olk(t)qkj

+
N∑
k 6=j

Olk(t)Ĝkj(−ia)γk.

101



In what follows, we define a matrix O(t) := (Olj(t))N×N and a diagonal matrix A

with Ajj = Φj(−ia)− cj so that the above equality becomes

1

y
(O(t+ y)−O(t)) = O(t)(Q− A+ ΓĜ(−ia)).

Next, we take the limit as y approaches to zero and obtain

dO(t)

dt
= O(t)(Q− A+ ΓĜ(−ia)),

or, equivalently, O(t) = e(Q−A+ΓĜ(−ia))t with O(0) = I. Here, I denotes the N ×N
identity matrix.

By recognizing that the expectation E
[
eC(t)+〈a,X(t)〉] can be expressed as

E
[
eC(t)+〈a,X(t)〉] =

N∑
j=1

N∑
l=1

E
[
eC(t)+〈a,X(t)〉1M(t)=j |M(0) = l

]
P (M(0) = l)

=
N∑
j=1

N∑
l=1

e(Q−A+ΓĜ(−ia))tpl,

we conclude the proof.

The next result examines the drift condition that makes the discounted asset prices

martingale when their dynamics are driven by MMLPs with synchronous jumps.

Lemma A.2. Suppose that M(t) is a homogeneous continuous-time Markov process

defined by a finite state space S = {1, 2, . . . , N}, generator Q and initial proba-

bility vector p = [p1, p2, . . . , pN ] with pj = P (M(0) = j) . Assume that X(t) =

(X1(t) . . . , Xn(t)) is a n-dimensional MMLP such that when M = k, X is identified

by the n-dimensional Lévy process Yk = (Y1k, . . . , Ynk) that has the characteristic

exponent Φk(u):

EQ [ei〈u,Yk(t)〉] = e−Φk(u)t.

Then, under a MMLP framework with synchronous jumps, if the vectorsµl are chosen

as

µl = r + Φ(−iel) + Γ
(
I − Ĝ(−iel)

)
1

for l = 1, 2, . . . , n, then the processes
(
e−U(t)Sl(t)

)
t

are martingales under Q, where

I is the N ×N identity matrix.
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Proof. In order to check the Q-martingality of e−U(t)Sl(t), we verify whether

EQ [e−U(t)+Λl(t)+Xl(t)
]

= 1 ∀t.

The left hand side of this last equality follows easily from Lemma A.1 with a = el

and C(t) = Λl(t)− U(t):

EQ [e−U(t)+Λl(t)+Xl(t)
]

= peBlt1

with Bl = Q − Al + ΓĜ(−iel) and Al = diag (r − µl + Φ(−iel)). It therefore

suffices to prove that Bl1 = 0, which is equivalent to the equality:

Q1 + µl − r −Φ(−iel) + ΓĜ(−iel)1 = 0.

Since Q1 = −Γ1, the announced relation follows.

Considering also the notations given for basket options, the following theorem will

state the price V Eu-Geo(0) of a European call option written on the geometric average

Gn(T ) of underlying assets:

V Eu-Geo(0) = EQ [e−U(T )(Gn(T )−K)+
]
,

where K is the strike price of the option and T is the maturity time.

Theorem A.1. 1. Let the market dynamics be driven by MMLP processes without

synchronous jumps, as given in Section 5.1. Then, the European option price

V Eu-Geo(0) written on Gn(T ) is given explicitly in the following form:

V Eu-Geo(0) =

(
e−δk

π

∫ ∞
0

e−iγkΨEu-Geo
T (γ; δ,K)dγ

)+

,

where δ is the damping factor, Hn(0) =
∑n

j=1 wj ln sj,

ΨEu-Geo
T (γ; δ,K) =

e(1+δ+iγ)Hn(0)

(δ + iγ)(1 + δ + iγ)
pe(Q−A)T1

with

A = diag

(
Φ(−ia) + r− (1 + δ + iγ)

n∑
j=1

wjµj

)
,

a = (1 + δ + iγ)w and µj, j = 1, 2, . . . , n, being the martingale condition

given in Equation (5.2).
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2. In the case of a MMLP framework with synchronous jumps, the corresponding

European option price V Eu-Geo(0) then turns out to be:

V Eu-Geo(0) =

(
e−δk

π

∫ ∞
0

e−iγkΨEu-Geo
T (γ; δ,K)dγ

)+

,

where δ is the damping factor, Hn(0) =
∑n

j=1wj ln sj, a = (1 + δ + iγ)w,

ΨEu-Geo
T (γ; δ,K) =

exp (1 + δ + iγ)Hn(0)

(δ + iγ)(1 + δ + iγ)
pe(Q−A+ΓĜ(−ia))T1

with

A = diag

(
Φ(−ia) + r− (1 + δ + iγ)

n∑
j=1

wjµj

)
,

andµj, j = 1, 2, . . . , n, being the martingale condition given in Equation (7.1).

Proof. In order to compute the option price V Eu-Geo(0), we will follow Carr and

Madan arguments [11], as done in the previous sections. Indeed, these results will

be very similar to the one obtained for the European call option written on the risky

asset S, see e.g. Deelstra and Simon [16] for the case without synchronous jumps.

Recalling that Gn(T ) = eHn(T ), option price V Eu-Geo(0) can be expressed in the fol-

lowing integral form:

V Eu-Geo(0) = EQ [e−U(T )(Gn(T )−K+
]

=

∫
R2

e−u(ehn − ek)1(hn≥k)f(hn, u)dhndu

=

∫ ∞
−∞

∫ ∞
k

e−u(ehn − ek)f(hn, u)dhndu

where k = ln(K) and f(hn, u) denotes the density function of (Hn(T ), U(T )).

The well-known Carr and Madan argument [11] implies that

V k,α
K (0) =

e−δk

π

∫ ∞
0

e−iγkΨEu-Geo
T (γ; δ,K)dγ,

where δ is the damping factor, and

ΨEu-Geo
T (γ; δ,K) =

∫ ∞
−∞

e(δ+iγ)kEQ [e−U(T )(Gn(T )−K)1(hn≥k)

]
dk

=

∫ ∞
−∞

e(δ+iγ)k

∫ ∞
−∞

∫ ∞
k

e−u(ehn − ek)f(hn, u)dhndudk.
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When we switch the order of integrals by using Fubini theorem and elaborate the

product, ΨEu-Geo
T (γ; δ,K) turns out to be

ΨEu-Geo
T (γ; δ,K) =

∫
R2

∫ hn

−∞
e−u+(δ+iγ)k(ehn − ek)f(hn, u)dkdhndu

=

∫
R2

∫ hn

−∞
e−u+(δ+iγ)k+hnf(hn, u)dkdhndu

−
∫
R2

∫ hn

−∞
e−u+(1+δ+iγ)kf(hn, u)dkdhndu.

As a result of straightforward calculations, we then have

ΨEu-Geo
T (γ; δ,K) =

1

δ + iγ

∫
R2

e−u+(1+δ+iγ)hnf(hn, u)dhndu

− 1

1 + δ + iγ

∫
R2

∫ hn

−∞
e−u+(1+δ+iγ)hnf(hn, u)dhndu

=
1

(1 + δ + iγ)(δ + iγ)

∫
R2

e−u+(1+δ+iγ)hnf(hn, u)dhndu.

Since the above integral is an expectation, we finally have

ΨEu-Geo
T (γ; δ,K) =

1

(1 + δ + iγ)(δ + iγ)
EQ [e−U(T )+Hn(T )(1+δ+iγ)

]
=

e(1+δ+iγ)Hn(0)

(1 + δ + iγ)(δ + iγ)
EQ
[
e−U(T )+(1+δ+iγ)

∑n
j=1 wj(Λj(T )+Xj(T ))

]
.

In the last equality, we used the relationHn(T ) =
∑n

j=1wj(Λj(T )+Xj(T ))+Hn(0).

Notice that when the market dynamics are ruled by MMLPs without synchronous

jumps, the resulting term is expressed in the form of

ΨEu-Geo
T (γ; δ,K) =

e(1+δ+iγ)Hn(0)

(1 + δ + iγ)(δ + iγ)
EQ
[
e−U(T )+(1+δ+iγ)

∑n
j=1 wj(Λj(T )+Xj(T ))

]
=

e(1+δ+iγ)Hn(0)

(1 + δ + iγ)(δ + iγ)
pe(Q−A)T1,

by using Lemma 2.2 with C(t) = −U(t) + (1 + δ + iγ)
∑n

j=1wjΛj(T ) and a =

(1 + δ + iγ)w.

Instead, in the case of a framework with synchronous jumps, we have the following

interpretation:

ΨEu-Geo
T (γ; δ,K) =

e(1+δ+iγ)Hn(0)

(1 + δ + iγ)(δ + iγ)
EQ
[
e−U(T )+(1+δ+iγ)

∑n
j=1 wj(Λj(T )+Xj(T ))

]
=

e(1+δ+iγ)Hn(0)

(1 + δ + iγ)(δ + iγ)
pe(Q−A+ΓĜ(−ia))T1,
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where we now consider Lemma A.1 for the drift process C(t) = −U(t) + (1 + δ +

iγ)
∑n

j=1 wjΛj(T ) and a = (1 + δ + iγ)w.

It is important to mention that although the drift process C(t) seems to be same under

these two different framework, Λj(T )’s are ruled by different martingale conditions.
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