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Mechanical Engineering Department, METU

Prof. Dr. Can Çoğun
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ABSTRACT

ANALYSIS OF RATCHETING BY USING DIFFERENT YIELD CRITERIA
AND KINEMATIC HARDENING MODELS FOR UNIAXIAL AND

BIAXIAL LOADING

İşler, Mert

M.S., Department of Mechanical Engineering

Supervisor : Prof. Dr. Haluk Darendeliler

August 2018, 130 pages

Ratcheting is defined as accumulation of plastic strain under cyclic loading. It affects

the fatigue failure time of materials as well as the length of service life. To predict

this behavior, many models have been proposed to simulate ratcheting responses of

materials. However, it is a general problem that these models are close to simulate

one type of ratcheting, but fails to simulate one another. For this reason, uniaxial

and biaxial models are proposed by adding terms to the formulations. On the other

hand, most of the models are able to simulate ratcheting behavior to limited number

of cycles. Some models predict shakedown (stabilization) for further cycles while

some models give ovepredicted results. In this aspect, kinematic hardening models

are worth to be investigated. In this thesis, six of most common kinematic harden-

ing models (Armstrong-Frederick, Bari-Hassan, Burlet-Cailletaud, Chaboche, Ohno-

Wang and Prager) are used to simulate the ratcheting behavior of isotropic materials

in both uniaxial and biaxial aspect. For uniaxial loading, Ohno-Wang model gave

the least amount of ratcheting, while Prager model gave no accumulation. As for

biaxial loading, Chaboche model predicted the least amount of accumulation. Prager
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model could not simulate ratcheting for biaxial loading too. In this study, anisotropic

material assumption, whose yield criteria are given by Hill and Aretz, is also used

for Armstrong-Frederick, Ohno-Wang, Chaboche and Prager models to investigate

the ratcheting effect. Models with Aretz yield criterion predicted excessive ratchet-

ing compared to Hill and von-Mises. Constitutive models with Hill’s yield criterion

simulated ratcheting slightly greater than the models with von-Mises yield criterion.

When the kinematic hardening models are compared for each yield criterion sepa-

rately, their order of estimated ratcheting amounts remained the same.

Keywords: Ratchetting, Cyclic Plasticity, Kinematic Hardening

vi



ÖZ

BİR VE İKİ EKSENLİ YÜKLEMELERDE PLASTİK DEFORMASYON
BİRİKİMİNİN FARKLI AKMA KRİTERLERİ VE KİNEMATİK
SERTLEŞME MODELLERİ KULLANILARAK İNCELENMESİ

İşler, Mert

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Haluk Darendeliler

Ağustos 2018 , 130 sayfa

Plastik gerinim birikimi ya da plastic deformasyon birikimi döngüsel yüklemeler al-

tında gelişir. Bu, malzemelerin yorulma zamanları ve servis ömürlerini etkiler. Bu

davranışı tahmin edebilmek için, plastic gerinim birikimini simule eden birçok mo-

del önerilmiştir. Ancak, modellerin bazı tip birikimleri tahmin edip bazılarını tahmin

edememeleri genel bir problemdir. Bu sebepten, önceki formüllere terimler eklen-

mek suretiyle tek eksenli ve iki eksenli modeller oluşturulmuştur. Diğer taraftan, mo-

dellerin çoğu yalnızca belli bir yükleme döngüsü sayısına kadar gerinim yığılımını

tahmin edebilmektedir. Daha sonraki döngüler için bazı modeller yığılmanın kaybol-

ması (stabilizasyon) tahminini yapabilirken, bazıları ise fazla gerinim vermektedir. Bu

açıdan, kinematik sertleşme modelleri araştırılmalıdır. Bu tezde, en bilinen kinema-

tik sertleşme modellerinden altı tanesi (Armstrong-Frederick, Bari-Hassan, Burlet-

Cailletaud, Chaboche, Ohno-Wang ve Prager), tek eksenli ve iki eksenli yükleme-

ler altındaki izotropik malzemelerin deformasyon birikimi davranışını incelemek için

kullanılmıştır. Tek eksenli yüklemede Ohno-Wang modeli en az birikimi verirken,
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Prager modeli hiç deformasyon yığılması tahmin edememiştir. İki yönlü yüklemede

ise, Chaboche modeli en az miktarı vermiştir. Çok eksenli yüklemede de Prager mo-

deli hiç bir yığılma tahmin edememiştir. Akma kriterleri Hill ve Aretz tarafından be-

lirlenmiş olan anizotropik malzeme kabulleri de Armstrong-Frederick, Ohno-Wang,

Chaboche ve Prager modelleri için yapılmıştır. Aretz akma kriterinin olduğu model-

ler, Hill ve von-Mises akma kriterlerinin olduğu modellere göre daha fazla yığılma

birikimi tahmin etmiştir. Hill akma kriterinin olduğu modeller ise, von-Mises akma

kriterinin olduğu modellerden çok küçük farklarla daha fazla yığılma birikimi simule

etmiştir. Kinematik sertleşme modelleri kendi içlerinde ayrı ayrı değerlendirildiğinde,

modellerin tahmin ettiği yığılma değerlerinin sırası değişmemiştir.

Anahtar Kelimeler: Deformasyon Birikimi, Döngüsel Plastisite, Kinematik Sertleşme
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CHAPTER 1

INTRODUCTION

Materials exhibit irreversible deformation after yield point. Upon this yield limit,

stress states can be calculated using Hooke’s Law. However, after the initial yield, the

stress increases nonlinearly. Therefore, several constitutive relations were established

to predict the stress values on each corresponding strain in the plastic region.

Materials are generally not loaded for once in their service life. Many of them are

exposed to cyclic loading. Therefore, their response under cyclic load should be

analyzed for failure. There are two failure modes resulted from cyclic loading.

The first and most commonly known mode is fatigue. Internal cracks occur in the

materials as they get deformed. The material suddenly fails as soon as the crack

reaches to the surface. This is a catastrophic failure. Therefore, internal structure

must be examined in order to know how these cracks are propagating and to estimate

the fatigue failure time. There are two types of fatigue analyses. The first one is high

cycle fatigue in which the number of load cycles is greater than 105 and magnitude

of the loads are small such that deformations are in elastic region. The second one

is low cycle fatigue in which magnitude of the loads are high and number of cycles

is less than 105. The deformations are in plastic region for low cycle fatigue. In this

type of loading, there exist a second failure mode which is called ratcheting. In this

mode, plastic strain accumulates in each cycle. Either the material gets out of service

or it directly fractures when deformation reaches to fracture strain. This failure can

be detected by naked eye (e.g. bulging of a pipe). Many models have been developed

to predict this behavior. These models are mostly based on kinematic hardening.

1



1.1 Motivation

Ratcheting is observed in cyclic loading around a non zero mean stress. It causes

failure in different ways. Direct collapse can be encountered causing material to be

out of usage. Another way of failure is shortening the time of fatigue failure, which

devastates the material with initiation of internal cracks. Yet another failure mode is

excessive deformation.

Crucial components are subjected to cyclic loading with non-zero mean stress such as

piping components in nuclear power plants, landing gears of airplanes or suspension

of the automobiles. Therefore, it is important to predict the ratcheting behavior before

the failure.

Back then, various kinematic hardening models were proposed to predict stresses in

the materials through the plastic range. There are limited number of researches done

on ratcheting behavior considering the seriousness of the phenomena. Commercial

finite element packages provide predictions based on kinematic hardening. However,

they are inadequate to simulate the ratcheting phenomena. Hence, researches on ac-

cumulation of strain should be carried out to improve the prediction of failure.

1.2 Research Objectives

The improvement of the kinematic hardening models used in ratcheting analysis are

obtained by incremental development. In other words, researchers have used the pre-

vious formulae to propose new kinematic hardening models by changing or adding

new parameters. For instance, Armstrong-Frederick model was established by intro-

ducing radial evanescence term to the linear model. Capability of new models had

become closer to simulate ratcheting. On the other hand, there are different proposals

not by adding terms, but starting from scratch. They distinguished from the others

with the calculation of plastic modulus.

To the best knowledge of the author, all of the models included in the studies done

on ratcheting analysis used von-Mises yield criterion. As a result, the modifications

other than the plastic modulus calculation mostly arose in backstress tensor. Adding
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new terms to the hardening parameters in the backstress tensor has improved the

ratcheting predictions. These additions or alterations had different effects in uniaxial

and biaxial models. In the literature, there are two types of models. The first type,

coupled models, comprehends plastic modulus calculation to kinematic hardening

rule through consistency condition. The second type is uncoupled models in which

plastic modulus calculation is completely independent from the kinematic hardening

rule.

The objective of this study is to compare capability of different hardening models

in simulating ratcheting. Another objective is to examine the differences of results

between various yield functions. Lacking features of these models will be detected.

Therefore, following this thesis, new models that completes these features can be

developed to enhance the possibility of predicting the exact amount of ratcheting.

1.3 Scope of the Research

In this thesis, aforementioned models will be analyzed to determine ratcheting behav-

ior of materials in both uniaxial and biaxial loading. Different yield criteria will be

used such as von-Mises, Hill and Aretz yield criteria.

Simulation capabilities of the existing kinematic hardening models will be tested by

a commercial finite element package. Although the commercial packages have a

limited built-in models to analyze cyclic loading of materials, subroutines can be

implemented for applying kinematic hardening rules that are not available by de-

fault. Starting from the linear kinematic hardening model which is proposed by

Prager, five other non-linear models are applied to evaluate cyclic modeling which are

Armstrong-Frederick, Burlet-Cailletaud, Bari-Hassan, Chaboche, and Ohno-Wang

models. These models will be used with von-Mises, Hill, and Aretz yield critera.

Evaluation will be done considering uniaxial and biaxial response. Simulations will

cover unsymmetric stress and strain cycling.
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1.4 Outline of the Thesis

This work consists of seven chapters. In chapter 1, a brief introduction is given about

the subject of thesis. Motivation with research objectives are present. Finally, in this

chapter, scope of the thesis can be found.

In chapter 2, literature survey is written. In the first part, the past researches and

studies that are made to improve ratcheting simulations are explained very briefly.

In the second part, papers which are exploited to improve finite element modeling’s

accuracy and time optimization are summarized.

In chapter 3, theoretical formulation of constitutive models are given. General con-

stitutive equations and yield functions are explained. Kinematic hardening rules are

explained.

In chapter 4, details of finite element modeling are explained. After a general in-

formation, elements, integration method, scaling, and mesh dependency issues are

considered. Results of analyses for searching an optimum analysis are presented.

In chapter 5, results of finite element simulations are given.

In chapter 6, discussion and conclusion of the results are included. Also, future work

that can be done to improve the models are discussed briefly.

Finally, references are provided.
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CHAPTER 2

LITERATURE SURVEY

This chapter is divided into two parts. In the first part, past studies about ratcheting

are explained. These papers generally do not give information about finite element

techniques that the authors adopted while analyzing suggested kinematic hardening

models. Hence, a second part of this chapter, which involves studies and papers about

different features of finite element analyses techniques are included.

2.1 Studies about Ratcheting

In this part, previous studies about ratcheting are summarized.

The first linear kinematic hardening model was proposed by Prager [33]. Although

this model can be used in plasticity calculations with acceptable error for isotropic

materials with von Mises yield criterion, ratcheting behavior cannot be observed since

it brings about closed hysteresis loops. Therefore, modifications on the model has

been done. Except for Mroz’s and Besseling’s multilinear models, all of the improve-

ments are done by converting the hardening rule from linear to nonlinear.

The very first one of the nonlinear kinematic hardening rules which is able to pre-

dict some amount of ratcheting has been derived by Armstrong and Frederick [2].

They introduced a dynamic recovery term to incremental linear backstress formula.

However, this model overpredicted both uniaxial and multiaxial ratcheting. There-

fore, modifications have been done on this model. Many of them, as explained in this

chapter, exist in dynamic recovery term.

Tseng and Lee, performed a study on general plasticity model including two surfaces
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named yield surface or inner surface and memory surface or the boundary surface

[38]. Although the study is not merely about ratcheting, there are useful information

which can be beneficial when modeling a cyclic behavior to consider when coding

the constitutive equations to simulate strain accumulation. Memory surface has been

defined in the paper as the surface that passes through the maximum historical stress.

The inner surface always keeps in touch with the outer one or memory surface. In

their proposed plasticity model, memory surface is expanding in isotropic way. On

the other hand, since the inner surface keeps the touch with the outer one, it exhibits

kinematic hardening behavior. It can both rotate and translate, but the size remains

unchanged. Numerical examples are given in the study. These are about monotonic

loading, cyclic loading, cyclic creep, cyclic stress relaxation and generalized cyclic

loading. Plastic modulus calculation is different from the other models. In the results,

the new proposed model, was investigated and it was decided that model is simulating

the loading cases well.

In 1984, Yoshida et al. looked for the effect of maximum stress, stress ratio, steady

stress and cycle number on biaxial ratcheting using a thin walled tube specimen [41].

They concluded that direction of ratcheting in biaxial case was independent from cy-

cle number and maximum stress. For the same stress occasions, biaxial and uniaxial

ratcheting amounts were observed to be the same. Direction of ratcheting in biaxial

loading was investigated in this study also.

Ruggles and Krempl’s study was about the influence of test temperature on the ratch-

etting behavior of type 304 stainless steel. They conducted experiments at 550°C,

600°C, and 650°C [35]. Two kinds of loading histories were applied. One of them

was to a virgin material and the other one was the material that is exposed to stress re-

laxation. Throughout the history, the stress and strain controlled loading were mixed.

For the prior history, in which the material was virgin, the prominent factor that cause

ratcheting was said to be the viscous effects although it was not expected for low

temperatures. For higher temperatures, strain aging was effective for prohibition of

inelastic deformation accumulation.

Chaboche et al. have partitioned the back stress components of the nonlinear kine-

matic hardening rule of Armstrong and Frederick [7]. Model proposed in the study
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was tested on both uniaxial and multiaxial conditions. One of the important conclu-

sion they came up with is the fact that there is a correspondence between uniaxial

and multiaxial ratcheting and for plastically equivalent conditions, multiaxial ratch-

eting is smaller than the uniaxial ratcheting. The proposed model in their study was

a time independent one in which viscous effects were not included. Results showed

that the model predicted ratcheting in uniaxial experiments approximately. However,

it needs to be improved for the other types of experiments on ratcheting especially for

multiaxial conditions.

Hassan and Kyriakides has tested two materials which exhibits cyclic softening and

cyclic hardening [19]. In uniaxial part, stainless steel 304, which undergoes cyclic

hardening, and carbon steel 1018, which undergoes cyclic softening, are used. In the

modeling, J2 type plasticity was used with von-Mises yield criterion. Plastic modu-

lus was calculated using Dafalias-Popov model. After numerous experiments, it was

concluded that cyclic softening and hardening were greatly impressive on ratcheting

behavior. For CS 1018, ratcheting after some amount of plastic strain increases ex-

ponentially. When some modifications done considering this cyclic hardening with

the usage of D-P model, prediction of ratcheting has improved. D-P model is a two

surface model in which there exists a bounding surface and elastic region’s surface. In

stress-strain curve, the memory surface or bounding surface represents two straight

lines limiting the tensile yield point on the top and compressive yield point on the

bottom. Position of these two surface determines the plastic modulus [13].

Delobelle did a research on phenomenological modeling of ratcheting under uniaxial

and biaxial loading of austenitic steel [14]. The tests for ratcheting under uniaxial

loading, nonsymmetrical stress control, tension torsion tests and axial cycles under

internal pressure were done. Objective of the research was to implement suitable

models for simulating the rate and amount of ratcheting under different loading con-

ditions. The viscoplastic modeling was described in a rather detailed way in the paper.

Both for uniaxial and biaxial ratcheting, different constitutive models were used. In

the results part, it was stated that for uniaxial case, ratcheting occurs after maximum

stress exceeds 210 MPa and for 25 MPa mean stress, the amount gets maximum. The

axial loading with internal pressure tests agreed with the predictions. However, if a

second alternating load has advanced, then the phase difference between these two
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loads became important. In the paper, introduction of radial evanescence term has

also improved the estimation of ratcheting well. All in all, according to the authors,

modeling given in the paper simulated ratcheting in both uniaxial and multiaxial load-

ing quite well.

Jiang et al. proposed a hardening rule which is again based on A-F kinematic hard-

ening rule [23]. In their study, memory surface concept, which brings the maximum

stress from the loading history was used. Backstress was divided into partitions.

However, the formula that describes the each partition was different from Chaboche’s

model. Also, different material constants were introduced. In the conclusion, model

is said to be able to predict the prior loading history effect on the ratcheting and the

change in the ratcheting direction for multiple step loading.

Ohno and Wang suggested a different model based on the cricitical state of dynamic

recovery term [28]. Tests were done on uniaxial and multiaxial loadings. Model

consisted of two versions. The first version modified Armstrong-Frederick model

by adding a threshold to dynamic recovery term. This was done by a Heaviside

step function. With this enhancement, the model became superior to Armstrong-

Frederick’s model but as for ratcheting, it was still poor. Therefore, the second version

of Ohno-Wang model was proposed. Heaviside step function in the first version of

this model was replaced with a power term in the second version. Therefore, more

material constants were introduced to the formulation. In the conclusion, second

version got closer to simulation of ratcheting.

Potsberg et al. have compared the Ohno-Wang model’s predictions with the experi-

mental results [32]. They went up to 400 load cycles claiming that there existed no

significant ratcheting beyond this number of cycles. As a result, to the 150th load

cycle, all the simulation results were parallel to the experimental results. However,

after 150th load cycle, two kinds of results were obtained. In experiments in which

increasing mean stress was present, after hundred cycle, ratcheting was underpre-

dicted. After further cycles, ratcheting rate became constant. On the other hand, in

experiments containing decreasing stress amplitude, amount of ratcheting was well

predicted. Moreover, negative ratcheting could also be predicted with the Ohno and

Wang model.
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Corona et al. made comparison among models including two flow rules and four kine-

matic hardening rules on five different loading paths [12]. Cases that are investigated

were different than uniaxial loading. In the experiments, specimens were tubular.

They were subjected to constant internal pressure together with axial strain. With

the presence of these, tubular specimens were cycled in the way that there would be

biaxial ratcheting. Paths were strain symmetric cycling at constant pressure, inclined

load path with and negative slopes, bowtie and reverse bowtie paths, and hourglass

path. Two different calculations for plastic modulus were adopted which are named

as Drucker-Palgen model and D-P model. For both models, one can decouple flow

rule and kinematic hardening rule. In this study, Prager-Ziegler rule, A-F rule, Mroz

rule and stress increment rule were used as kinematic hardening models. After exper-

iments and analyses that were done using these models and rules, predictions were

acceptable for loading paths of strain-symmetric cycling at constant pressure, positive

and negative sloped inclined loading paths and hourglass path. However, for loading

histories of bowtie paths predictions are not good.

Hassan et al. have worked on improved ratcheting analysis of piping components

[21]. In their study, the primary mode of failure in piping components subjected to

seismic loading were investigated. Two assumptions were questioned. The first pri-

mary mode of failure was collapse while second primary mode was fatigue failure.

Another concern was the effect of ratcheting on fatigue life. Improvement made by

the researchers of this study was the modification on the calculation of plastic modu-

lus. Drucker-Palgen plastic modulus equation was implemented to the overall mod-

eling. In conclusion, the new model was able to simulate ratcheting more efficiently

than the previous ones. However, for complex loading histories, the model has failed.

Yoshida studied on the cyclic plasticity models and proposed a new viscoplastic con-

stitutive model [40]. Four types of experiments were done. They are uniaxial tension,

cyclic straining, stress controlled ratcheting and strain controlled ratcheting. The

difference that distinguish this study from the others is that the emphasis is on the

yield-point phenomena. Therefore, all the calculations were done considering the

slip systems and dislocations. The microstructure of the materials was considered.

Also the study included viscoplasticity. Hence, rate equations appeared in the formu-

lation. Stress rate was found to be effective on ratcheting. Proposed model simulated
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the shakedown in all the experiments on ratcheting after finite amount of cycles.

Portier et al. stuied on a group of cyclic plasticity models to compare simulation

results and experimental results [31]. They used 316 austenitic stainless steel for

the experiments. The loading was both uniaxial and biaxial in this study. The first

model used for simulations was the base model for most of the applications which

is A-F hardening rule. However, this model overestimated the ratcheting in biaxial

loading. Different than this, Burlet-Cailletaud model, Ohno and Wang model, and

Tanaka model which modifies the Ohno-Wang model were used. As a conclusion

of this study, it was observed that the model which has been obtained by modifying

Ohno-Wang model (mentioned as OW-TANA model in the paper) was better than the

other tried models in predicting ratcheting behavior.

Another study was done by Abdel-Karim and Ohno on kinematic hardening model

suitable for ratcheting with steady state [1]. The model contained two kinds of dy-

namic recovery terms. One was included in all values while the other activates after

a threshold value. Experiments include ratcheting in multiaxial, uniaxial loading as

well as cyclic stress relaxation and nonproportional cyclic straining. The conclu-

sions that the authors come up with are the kinematic hardening model obtained was

successful in predicting multiaxial ratcheting as well as the uniaxial ratcheting and

dynamic recovery term which occurs all times is less effective than the one appears

only after a critical state of back stress.

Bari and Hassan studied on anatomy of coupled constitutive models for ratcheting

simulation [3]. They investigated the performance of simulating ability to predict

ratcheting of five plastic constitutive models. Included models in this research were

Prager, A-F, Chaboche, Ohno-Wang and Guionnet models. The term "coupled" was

used because the models mentioned in the study have their plastic modulus calcula-

tion coupled with its kinematic hardening rules using consistency condition. They

found out Prager and A-F models fail to simulate ratcheting. Chaboche and Ohno-

Wang models predict uniaxial ratcheting well but overpredict the biaxial ratcheting.

Guionnet model also failed to predict the true amount of biaxial and uniaxial ratch-

eting. However, it was eligible at one of the loading path of biaxial experiment.

After all, they suggested uncoupling of the plastic modulus calculation and kinematic
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hardening rule. Another suggestion of the study was that in multiaxial ratcheting

simulation, the material parameters should be found from the multiaxial experiments.

In 2001, Bari and Hassan tested the ability of uncoupled models to predict multiaxial

ratcheting [4]. In the paper, coupled models were defined as the models in which plas-

tic modulus calculations were related to kinematic hardening rule using consistency

condition. However, in the uncoupled models, kinematic hardening rule and plastic

modulus calculation is separated. Therefore, multiaxial ratcheting investigations by

using coupled model may not reflect the cases appropriately. In this research, rules

proposed by Armstrong-Frederick, Voyiadjis-Sivakumar, Philips-Tang, Philips-Lee,

Philips-Lu, Tseng-Lee, Kaneko and Xia-Ellyin were analyzed first. After that, a new

model constructed using modified Dafalias-Popov model and kinematic hardening

rule of Chaboche, which partitions the Armstrong-Frederick rule was investigated.

Moreover, Ohno-Wang model’s predictions are also included. The most interesting

part of the results was that Kaneko kinematic hardening rule with Dafalias-Popov

model was found to produce negative ratcheting. Among the tried models, modified

Dafialas-Popov was found to be very close to experimental values. Other models

were also seemed good to predict but there were different loading types. Not all of

the models gave good results for all type of loadings. The different loadings were

uniaxial cycle, axial strain cycle with constant internal pressure, bowtie and reverse

bowtie cycle.

In 2002, a new study of Bari and Hassan was published which is focused on improve-

ment of the cyclic plasticity modeling to predict multiaxial ratcheting [5]. In this

study, several cyclic plasticity models were investigated in their capacity of simulat-

ing uniaxial and biaxial ratcheting responses. These models are derived by Chaboche,

Ohno-Wang, McDowell, Jiang-Sehitohlu, Vojiadjis-Basuroychowdhury and Abdel

Karim-Ohno. The assumption made in the research was the shape of yield surface

does not change during loading. As a result, for uniaxial ratcheting, response was

only affected by the calculation of plastic modulus. On the other hand, in multiaxial

ratcheting, kinematic hardening rule used in the cyclic plasticity model was found

dominant on the prediction. It was concluded that when the parameters were calcu-

lated considering only uniaxial loading case, models failed to predict ratcheting in

multiaxial case. In this paper, a new rule introducing a parameter which is dependent
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on the multiaxial experiment was involved. At the end, adequacy of estimation of

ratcheting had improved.

Mahbadi and Eslami has considered Prager and Armstrong-Frederick models to sim-

ulate ratcheting for both isotropic and anisotropic materials with axial loading, bend-

ing and thermal variation [26]. In the paper, the curves for strain hardening in com-

pressive and tensile loading were assumed to be the same. Reverse plasticity was

defined in this paper as zero accumulation of plastic deformation after each cycle.

This is what the authors reached for simulation of ratcheting of isotropic materials

using Prager model. On the other hand, for anisotropic materials, the model came up

some amount of ratcheting. As for Armstrong-Frederick model, non-zero mean stress

gives ratcheting but zero mean stressed and strain controlled experiments advances no

ratcheting, i.e., reversed plasticity is reached.

Chen et al. have worked on uniaxial ratcheting. This time, the focus was on the

high number of cycles [9]. The model proposed by Burlet-Cailletaud predicted shake

down and model proposed by Ohno-Wang overpredicted the ratcheting. In this study,

a new parameter, namely Delobelle parameter, was added on cyclic plasticity model

to make a balance of shakedown and overprediction of the two mentioned models.

In the conclusion, the new model proposed was found to give better results for high

number of loading cycles.

After the study of uniaxial ratcheting response, Chen and Jiao had worked on appli-

cation of a modified kinematic hardening rule for multiaxial ratcheting prediction [8].

In their study, as in uniaxial ratcheting response research, the parameter that gives

a compromise between Burlet-Cailletaud and Ohno-Wang model, namely the Delo-

belle parameter, was used. With the addition of the new term, predictions were quite

well for all loading paths.

Kulkarni et al. have made a study on uniaxial and biaxial ratcheting study using

SA333 Gr.6 steel [25]. In the study, other than implementing different cyclic plastic-

ity models, effect of amplitude of loading was examined. Influence of frequency of

the loading cycles were another concern for the authors in this research. In the con-

clusion, it was found that uniaxial racheting response depends stress history, value of

mean stress and amplitude of the cycle. Shakedown was also observed in the exper-
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iments. The frequency was not effective on the ratcheting rate. Ratcheting rate only

depended on stress history and stress amplitude. In the biaxial case, ratcheting was

observed in circumferential direction and no ratcheting was observed on longitudinal

direction.

Gupta et al. looked for the ratcheting behavior of SA333 Gr.6 steel used for pip-

ing components [15]. The focus was not on the different models’ ability to predict

ratcheting. After the experiments, it was found that softening occurs during the strain

cycling. Stress rate and stress ratio were effective on the ratcheting. Also, Lüders

bands influences the cyclic deformation behavior of the material.

Kang and Kan studied on time dependent ratcheting using three kind of constitutive

models [24]. These were unified viscoplastic model of AbdelKarim-Ohno, creep plas-

ticity model and creep viscoplasticity model. As a result of the experiments, it was

observed that unified viscoplastic model of AbdelKarim-Ohno was not able to pre-

dict time dependent ratcheting. With the creep plasticity model, with a proper creep

law, time dependent ratcheting might be predicted well for the cases in which creep

was dominated by deformation. For the weak creep behavior, the ratcheting estima-

tions were poor in this model. The third model mentioned namely the viscoplasticty

creep superposition model was able to simulate time dependent ratcheting behavior

in various stress rates with various hold times.

Yaguchi and Takahashi’s research included ratcheting of viscoplastic materials with

cyclic softening using 9Cr-1Mo steel [39]. The material showed viscoplastic behavior

as well as cyclic softening. Both uniaxial and biaxial experiments were included in

the study. Experiments were done on temperatures between 200°C and 600°C. In

the stress controlled uniaxial ratcheting tests, the material response of ratcheting was

unexpectedly high. Accumulation has been observed around zero mean stress. Also,

under a slightly negative mean stress, ratcheting occurred in the opposite direction.

This was another unexpected result. Under uniaxial loading, ratcheting depended on

the loading rate and cyclic softening behavior as well as the maximum stress and

the stress ratio. When stress rate was smaller or the hold time is longer, material

exhibited larger ratcheting at high temperatures. Stress history was also effective. For

multiaxial loading, increase in mean stress and alternating strain increases the rate of
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ratcheting. It proposed in the paper that the reason of unexpected ratcheting result

might be the tension-compression asymmetry of the material.

Chen et al. did experiments on multiaxial ratcheting using four types of constitu-

tive models which are Ohno-Wang model, McDowell model, Jiang-Sehitoglu model

and AbdelKarim-Ohno model [10]. As a result of the experiments, researchers have

reported that Ohno-Wang and McDowell models overpredicted multiaxial ratchet-

ing. Jiang-Sehitoglu model was found more adequate than these former two. In

AbdelKarim-Ohno Model, when the parameter used for calculation of backstress was

calculated using multiaxial experiments, predictions were found well. However, for

uniaxial cases, this parameter made model failed in predicting uniaxial ratcheting. In

this study, an alteration of dynamic recovery term in the classical nonlinear model

was done and with this way, predictions improved significantly. A new multiplier

was attached to the formula. Whether the parameters were determined from uniaxial

or multiaxial experiments had a significant effect on results as in AbdelKarim-Ohno

model.

Mahbadi and Eslami did a research whose goal is to decide the type and level of

stresses that cause to ratcheting or shakedown [27]. Thick spherical vessels and cylin-

drical vessels were the specimens. As in the first study published by these two authors,

Armstrong-Frederick and Prager models are used. The conclusion reached is kine-

matic hardening rule dependent on Prager model gives shakedown for isotropic thick

sphere of cylindrical vessels. As for anisotropic materials with the same specimens,

ratcheting occurs. Armstrong-Frederick model brings an amount of ratcheting and it

is close to obtained experimental results.

Rahman et al. followed an experimental procedure of cyclic bending of pressur-

ized pipes for investigating the availability of cyclic plasticity models in predicting

ratcheting behavior. Prager, Besseling, Chaboche, Ohno-Wang, Abdel Karim-Ohno,

Bari-Hassan, and Chen-Jiao models were implemented in their study [34]. It has

been reported that models were inadequate to predict ratcheting for the loading case

in the study when parameters had been calculated from material response. Modi-

fied Chaboche model (also known as Bari-Hassan model) was the one specializes on

the parameter determination. With the improvement of this, estimation of ratcheting
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behavior was enhanced. However, for the authors, this improvement was not suffi-

cient. Therefore, it was suggested that the models should be enhanced and structural

characteristics such as residual stress, anisotropy needed to be added to the models.

Hassan et al. pointed out the effect of non-proportionality of loading on ratcheting

behavior in both uniaxial and multiaxial cases [20]. As a result of this, all the mod-

els considered in the paper were rate insensitive and temperature independent ones.

Four different load paths were investigated. The first one was uniaxial and the oth-

ers were all multiaxial loading paths. Cyclic plasticity models adopted in this study

were modified Chaboche and multi-mechanism models. Chaboche’s first model gave

good predictions only for proportional loading. Therefore, modified version of it was

used in the study. The multi-mechanism model has not been frequently used in the

earlier studies. In that model, plastic strain was divided. After the experiments, it

was concluded that Chaboche model’s predictions were well for uniaxial loading,

shear ratcheting, axial and shear strain ratcheting of square-two square paths. Multi-

mechanism model simulated uniaxial ratcheting good but overpredicted the other two

mentioned. Therefore, for low cycle analyses, improvement in the modeling should

be enhanced especially for non-proportional loadings.

Halama and his coworkers has a study of general cyclic plasticity [16]. In that, ratch-

eting is also included. Some of embedded models in commercial finite element pack-

ages were tried. In the paper, ratcheting was defined as "cylic creep". Throughout the

thesis, this term refers to ratcheting. However, in this work, radius of yield surface

was also changed and calculations were done considering this.

2.2 Studies on Finite Element Modeling

In this part, past studies about finite element methods that contribute to this thesis are

involved. In the light of these studies, accuracy of the results are enhanced and time

of analyses are decreased.

Chung and Cho worked on determining the error using energy concept [11]. They

conducted a research to detect whether an analysis gives the correct result or not,

using the relation between kinetic energy and internal energy of the system. Their
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experiments were on drawing process. Tool velocity was very slow. Hence, their

investigation was for quasi static processes. In conclusion of their study, it could be

seen that when ratio of kinetic to internal energy is one tenth, analysis is reliable for

quasi static case.

Harewood and McHugh focused on comparison of implicit and explicit analyses [17].

They used crystal plasticity by implementing user subroutines on ABAQUS. Other

than their comments on implicit and explicit analyses, their main conclusions were

that explicit method is much more preferable than implicit method in complex load-

ing. Implicit method’s ability to get results in cases which requires small time incre-

ments is limited.

Sun, K.H. Lee and H.P. Lee published a paper about explicit and implicit analyses

comparison, too [37]. Their investigations was on crash of an elastic bar and a cylin-

drical disk to a rigid wall. Their conclusion was that for small time problems, explicit

method was better and for problems in which stress waves were not too big, implicit

method should be preferred.

Hughes and Liu tried to develop a stability rule for both implicit and explicit analy-

ses [22]. They used several algorithms namely Newmark algorithms and predictor-

corrector algorithms. Applying some methods and conducting experiments, they con-

cluded that implicit analysis is unconditionally stable while explicit analysis has al-

ways require some conditions to be stable.

Other than implicit-explicit analyses papers, there are some other studies for mass

scaling. Olovsson, Unosson and Simonsson’s method for a different type of mass

scaling increased the crtical time step [30]. With this way, analysis time was de-

creased. Their key point on modification of mass scaling was detecting some rigid

body motions and subtracting them from scaling. With a new formulation for density

increment, they reached a better and faster way of explicit finite element analysis.

In another study a different type of mass scaling to increase the critical time step was

adopted [29]. Their method was adding some terms to mass matrix. By doing this,

largest eigenvalues were lessened meaning that critical time step was bigger. This

resulted in greater time incrementation and time elapsed was smaller.
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Sun did a research on shear locking and hourglass effects with reduced integration

elements using MSC Nastran, ABAQUS and ANSYS [36]. His study was done by

using a single material beam and a composite beam. It recommends users to avoid

using first order elements for no shear locking. Another important recommendation

of this paper is to avoid using coarse meshes because of possible hourglass effect.
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CHAPTER 3

THEORETICAL BACKGROUND

3.1 Introduction

In forming the constitutive equations for a plastic deformation, three typical proper-

ties that must be defined; yield function, flow rule and hardening rule. One of the key

points of constitutive equation is selection of the hardening type

Yield criterion determines the loading level on which material passes to plastic region.

Boundary between elastic and plastic regions is represented with a surface in stress

space. This surface is defined for each criterion differently. In this thesis, von-Mises,

Hill and Aretz yield criteria will be used. When plastic deformation starts, the yield

surface either translates or enlarges or both translates and enlarges to include cur-

rent state within the yield surface, as defined by the consistency condition. A yield

criterion can be defined as

f(σ,α) = κ (3.1)

where σ is the stress tensor, α is the backstress tensor and κ is the hardening param-

eter.

Flow rule relates increments of plastic deformation to increment of stresses. Generic

form of the flow rule is

dεpij = dλ
∂Q

∂σij
(3.2)

where dλ is called plastic multiplier. In associated flow rule, function Q is the same

as yield criteria. If it is different from the yield function, the flow rule is called non

associated flow rule. In this thesis, associated flow rule is adopted. Further, kinematic
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hardening formulation is effective on flow rules.

Hardening rules determine the behavior of yield surface. Isotropic, kinematic and

combined hardening types were developed to predict the material behavior in plastic

range. In isotropic hardening, the yield surface’s shape and size in the stress space

changes. Its radius enlarges with additional loading after yield point. However, center

of the yield surface remains in its original position. This means after a loading which

is beyond yielding limit, yield stress is proportionally increased in reverse direction.

In another type of hardening, yielding occurs in a smaller amount of stress in the

reverse direction because center of the yield surface shifts. Forward and backward

paths do not intercept the yield surface on the same absolute value of stress. This is

called as Bauschinger effect. The behavior inspired by this effect is called kinematic

hardening. In kinematic hardening, size and shape of the yield surface do not change.

The situation in which both the location of center and size of yield surfaces changes

is combined hardening. Schematic representation of three approaches is given in

Figure 3.1.

Figure 3.1: Schematic of three approaches to hardening

In this thesis, elastoplastic analysis with kinematic hardening will be used. All of

the models in this study are rate independent. Therefore, incremental plasticity is

used. Elastic calculations are held at first. Assuming the material as purely elastic, a

trial stress will be determined. Using different yield criteria, it will be detected that

whether the material exceeded the yield limit. In case the yield limit is not exceeded,

next increment will start with further loading. After passing the yield point, radial

return algorithm will be activated. In this algorithm, plastic multiplier dλ will be
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determined. After that, plastic stresses, strains and shift tensor will be found. Shift

tensor, α is zero at the beginning. It is updated in further steps.

First of all, additive decomposition is valid in incremental approach. Therefore,

dε = dεp + dεe (3.3)

where dε is the total strain increment, dεp is the plastic strain increment and dεe is

the elastic strain increment.

In elastic calculation part, Hooke’s Law with Lame constants is used. The increment

of the elastic strain is:

dεe =
1 + ν

E
dσ − ν

E
tr(dσ)I (3.4)

Or inversely, the stress increment is defined as:

dσ = λδtr(dεe) + 2µdεe (3.5)

where in last two equations, I is unit tensor, δ is Kronecker delta tensor. Lame con-

stants λ and µ are defined as

λ =
νE

(1 + ν)(1− 2ν)
(3.6)

µ =
E

2(1 + ν)
(3.7)

In plastic part, associated flow rule is used:

dεp = dλ
∂F

∂σ
(3.8)

where F is the yield function. After determining plastic multiplier, plastic strain is

found by using the flow rule. Then the stress increment can be written as:

dσ′ = 2µdε′ − dλ σ′tr −α′

||σ′tr −α′||
(3.9)

It is obtained by subtracting "plastic stress" from the initial trial stress. The plastic

stress is

dσ′p = dλ
σ′tr −α′

||σ′tr −α′||
(3.10)

and the trial stress is

dσ′tr = 2µdε′ (3.11)

σ′tr = σ′old + dσ′tr (3.12)
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3.2 Yield Functions

Up to now, most researches have assumed materials as fully isotropic. Therefore,

von-Mises is the common yield criterion for almost all of the studies. However,

microstructure of materials may also has an effect on behavior during cyclic load-

ing since there can be significant differences in mechanical responses on certain di-

rections. Therefore, an anisotropic yield criterion should also be used in analyses.

Therefore, three different yield criteria were used namely von-Mises, Hill and Aretz.

3.2.1 Von-Mises Yield Function

Von-Mises yield function can be written as:

J2 − σ2
Y = 0 (3.13)

where J2 is the second stress invariant. This function can be explicitly given for

kinematic hardening as:

f =

√
3

2
(σ′ij − α′ij) : (σ′ij − α′ij)− σY = 0 (3.14)

where σ′ij is the stress in deviatoric space, α′ij is backstress tensor in the deviatoric

space, and σY is the initial yield stress.

3.2.2 Hill48 Yield Function

Hill48 yield function is:

2f = F (σ22−σ33)2 +G(σ33−σ11)2 +H(σ11−σ22)2 +2Lσ2
23 +2Mσ2

31 +2Nσ2
12−1

(3.15)
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where the constants F,G,H,L,M, and N are:

F =
1

2

(
1

Y 2
+

1

Z2
− 1

X2

)
(3.16)

G =
1

2

(
1

Z2
+

1

X2
− 1

Y 2

)
(3.17)

H =
1

2

(
1

X2
+

1

Y 2
− 1

Z2

)
(3.18)

L =
1

2R2
(3.19)

M =
1

2S2
(3.20)

N =
1

2T 2
(3.21)

where X , Y and Z are yield stresses in x, y and z direction, respectively. R, S and T

are yield stresses for pure shear in yz, xy and xz planes. For the case L = M = N =

3F = 3G = 3H , this rule reduces to von-Mises yield criterion.

Hill’s yield function can be written in terms of Lankford parameters. A Lankford

parameter is denoted with r and is defined as the ratio of width strain to thickness

strain.

r =
dεpw
dεpt

(3.22)

r in any direction can be written as:

rθ =

∂F (σij) sin
2 θ

∂σxx
+

∂F (σij) cos
2 θ

∂σyy
− 2

∂F (σij) sin θ cos θ
∂σxy

∂F (σij)
∂σxx

+
∂F (σij)
∂σyy

(3.23)

Using anisotropy coefficients in 0°, 45°and 90°, anisotropic behavior of the materials

is defined and yield criterion can be written as

σ2
xx −

2r0
1 + r0

σxxσyy +
r0(1 + r90)

r90(1 + r0)
σyy +

(r0 + r90)

r90(1 + r90)
(2r45 + 1)σ2

xy = σ2
Y (3.24)

where σY is the yield stress in x direction.

3.2.3 Aretz Yield Function

Aretz yield function is proposed for anisotropic materials as:

|σ1|m + |σ2|m + |σ1 − σ2|m = 2Y m
ref (3.25)
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where σ1 and σ2 are principal stresses and Yref is the yield stresses of the material

and m is a constant.

Equation (3.25) was rearranged and written in a more general form as:

|σ′1|m + |σ′2|m + |σ′′1 − σ′′2 |m = 2Y m
ref (3.26)

The transformation equations for σ′1, σ
′
2, σ

′′
1 and σ′′2 are:

σ′1 =
a8σ11 + a1σ22

2
+

√(
a2σ11 − a3σ22

2

)2

+ (a4)2σ12σ21 (3.27)

σ′2 =
a8σ11 + a1σ22

2
−

√(
a2σ11 − a3σ22

2

)2

+ (a4)2σ12σ21 (3.28)

σ′′1 =
σ11 + σ22

2
+

√(
a5σ11 − a6σ22

2

)2

+ (a7)2σ12σ21 (3.29)

σ′′2 =
σ11 + σ22

2
−

√(
a5σ11 − a6σ22

2

)2

+ (a7)2σ12σ21 (3.30)

where the parameters a1, a2, ..., a8 are anisotropy parameters.

The yield function can be represented as:

F (ai, σ) = σ̄(ai, σ)− Yref ≤ 0 (3.31)

where the equivalent stress σ̄ is

σ̄ =

[
1

2
(|σ′1|m + |σ′2|m + |σ′′1 − σ′′2 |m)

]1/m
(3.32)

Although this model was created for plane stress problems, it can be applied to biaxial

analyses in this thesis since the specimen is a hollow tube with a small thickness and

the finite element model is full symmetric.
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3.3 Kinematic Hardening Rules

In this section, six of these models will be defined. The backstress tensor is included

in the yield functions. Since associated flow rule is used, hardening rules is effective

on plastic strain prediction. In this thesis, the incremental hardening is defined as a

function of several parameters.

dα = f(σ, dε̄, dεp,α′,n) (3.33)

3.3.1 Prager Kinematic Hardening Rule

Prager introduced the kinematic hardening and proposed the following model.

dα = Cdεp (3.34)

where dα is the backstress and C is a constant. It is a general and simple approach.

Almost no material shows linear hardening. However, this model is a good starting

point to improve simulations by modifying or adding terms. In fact, it can be used

to predict stresses and loads in non-cyclic loading with not significant errors. The

material constant C in Equation 3.34 is determined by using simple tension test ex-

periments. Also in this model, the plastic modulus Ep is always constant. Ep can be

determined from the following equation:

1

Et
=

1

E
+

1

Ep
(3.35)

whereEt represents the tangential modulus on the plastic side during the elastoplastic

analyses. Figure 3.2 shows how the modulus values are defined where E is elastic

modulus and σY is the initial yield stress.

3.3.2 Armstrong-Frederick Kinematic Hardening Rule

A-F rule is the ancestor of nonlinear kinematic hardening models that are currently

being used for ratcheting simulations [2]. It has a dynamic recovery term which

makes the model nonlinear. Translation of yield surface is defined as:

dα = Cdεp − γα′dε̄ (3.36)
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Figure 3.2: Representation of linear plastic behavior

where α′ is deviatoric backstress, γ is a material constant and dε̄ is equivalent plastic

strain which is defined as:

dε̄ =

√
2

3
dεp : dεp (3.37)

Addition of second term in the backstress tensor increment formula as well as non-

constant plastic modulus makes the model possible to create open loops with cyclic

loading. Therefore, this can model ratcheting in both uniaxial and multiaxial loading.

Plastic modulus calculation is derived from hardening rule through consistency con-

dition. Implementing the condition, plastic modulus is obtained as:

Ep = C ± γα(ii) (3.38)

where α(ii) is the backstress in the direction of loading. Minus sign in Equation 3.38

indicates forward loading, which is the analyzed direction of ratcheting to where plas-

tic strain accumulation is expected to occur. Plus sign implies the direction is the

reversed.

3.3.3 Burlet-Cailletaud Kinematic Hardening Rule

Burlet-Cailletaud rule is another type of nonlinear kinematic hardening model [6]. It

is obtained by modifying the second term of A-F hardening rule. Dynamic recovery

term becomes radial return or radial evanescence term with this alteration. The model
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is given as

dα = Cdεp − γ (α′ : n) ndε̄ (3.39)

where n is the direction of plastic strain. In uniaxial ratcheting experiments, the

evanescence term has no difference with the second term of A-F rule since direction

of loading is unique. Its effect can only be observed in multiaxial case.

3.3.4 Chaboche Kinematic Hardening Rule

This is a partitioned nonlinear kinematic hardening rule [7]. Backstress tensor is

obtained by adding terms to each other. There are two versions of this model. The

first one consists of three partitions. The second is obtained by adding a threshold

term and includes four partitions.

First version of the model is written as

dα =
3∑
i=1

dαi (3.40)

dαi = Cidε
p − γiα′idε̄ (3.41)

where i = 1, 2, 3 and constants Ci, γi are determined from experiments.

Plastic modulus is found as

Ep = (C1 ± γ1) + (C2 ± γ2) + (C3 ± γ3) (3.42)

again minus sign indicates forward loading and plus sign indicates reverse loading.

All of the partitions are in the same form with A-F kinematic hardening rule. First

partition has a large modulus and shakes down rapidly. Second one represents a

nonlinear portion which acts as a transition between this large modulus portion and

third nonlinear portion. At last, third portion simulates the linear part when γ3 = 0.

However, when it is a non-zero term, term becomes nonlinear. Ratcheting continues

to occur and shake down is retarded from where shake down occurs on zero value of

γ3.

Second version of Chaboche model includes a threshold term as the fourth partition

which is

dαi = Cidε
p − γiα′i

〈
1− ᾱ′i

f(αi)

〉
dε̄ (3.43)
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for i = 4. In Equation 3.43, <> is McCauley’s bracket in which < a >= a for a > 0

and < a >= 0 for a ≤ 0. In the bracket, function f is defined as:

f(αi) =

[
3

2
α′i : α′i

]1
2

(3.44)

3.3.5 Bari-Hassan Kinematic Hardening Rule

Bari-Hassan kinematic hardening model has also two versions as partitioned and not

partitioned [5]. The first version is defined as

dα = Cdεp − γ [δα′ + (1− δ)(α′ : n)n] dε̄ (3.45)

where δ is "Delobelle paratemer". In plastic modulus calculation, Delobelle param-

eter is not included for this proposed model. When Delobelle parameter δ = 0,

Equation 3.45 turns out to be B-C model and for δ = 1, it is exactly the same as A-F

model.

The second version is proposed as partitioned model.

dα =
M∑
i=1

dαi (3.46)

dαi = Cidε
p − γi [δα′i + (1− δ)(α′i : n)n] dε̄ (3.47)

for i = 1, 2, 3 and

dαi = Cidε
p − γi [δα′i + (1− δ)(α′i : n)n]

〈
1− ᾱ′i

f(αi)

〉
dε̄ (3.48)

for i = 4.

As can be seen, this model becomes Chaboche hardening rule when δ = 1. Plastic

modulus calculation for this part does not include Delobelle parameter too. Therefore,

one can determine the plastic modulus by just using Chaboche rule’s formula. The

Delobelle parameter is expected to give a compromise between over prediction of

A-F model and lower prediction of Chaboche model.
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3.3.6 Ohno-Wang Kinematic Hardening Rule

Ohno-Wang model has also two different versions [28]. The first version of this model

is:

dα =
M∑
i=1

dαi (3.49)

dαi = Cidε
p − γiα′i

〈
dεp :

α′i
f(αi)

〉
H

[
αi

2 −
(
Ci
γi

)2
]

(3.50)

where H is the Heaviside step function. Input in the Heaviside step function shows

that when hardening or backstress tensor reaches the value of
Ci
γi

, second term ceases

and model becomes linear again. This prevents the formula from creating ratcheting

strain after a certain point. Therefore, a second version, which replaces a power term

instead of this Heaviside step function is written.

dαi = Cidε
p − γiα′i

〈
dεp :

αi
f(αi)

〉(
f(αi)

Ci/γi

)mi

(3.51)

where mi is another material constant. With this second version, the cessation of

ratcheting is avoided. For uniaxial loading, this model creates reasonable results.

Plastic modulus calculation is complicated for this model. It is also obtained by

adding the partitions one by one. Also, Delobelle parameter is again not included in

the calculation.

Ep =
M∑
i=1

Hi (3.52)

(Ep)i = γi

[
Cidε

p −
(
ᾱi
Ci

)mi

(αi : n)

〈
dεp : αi
āidε̄

〉]
(3.53)

There are studies using this model by eight decomposition and twelve decomposition.

There is no significant difference between them. Hence, for the sake of simplicity in

subroutine coding, eight decomposition of second version is used in this study.
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CHAPTER 4

FINITE ELEMENT ANALYSES

In solid mechanics, there are numerous analytic solutions to the problems. For sim-

ple loading cases and geometries, the displacements and resultants can be evaluated

analytically. However, when the case is complicated, exact analytic solutions cannot

always be found. As a result, specific numerical solution techniques are developed.

One of the recent techniques is the Finite Element Method. In this method the material

is divided into smaller domains or elements that have simpler geometries and smaller

dimensions. All of the elements are connected next to each other. For each of these

elements, simpler trial solutions can be assumed for getting approximate solution.

Also, coefficients of these trial solutions have some correspondence with the physics

of the problem in finite element method.

Finite element method is widely used in the solution of mechanics problems as a result

of its simplicity and strength in solving complicated problems. In this thesis, although

the geometry is simple, the loading conditions and material behavior are complicated.

Hence, a package that should give a flexibility on implementing different material

behaviors and loading types is necessary. Finite element package Abaqus is used

for all of the analysis for this reason. It gives opportunity to imply different plastic

models through its own subroutines. These subroutines can be run by connecting a

Fortran compiler to Abaqus.

Several features are considered during finite element analyses to obtain reliable results

in the shortest time possible. First of all, analyses should be performed in such a

way that the most trustworthy results can be get. Therefore, optimum method, either

explicit analysis or implicit analysis should be determined. Then, appropriate element
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type should be specified. Either 3D or 2D elements can be used and correct element

type should be selected. Number of meshes or elements should be optimized because

as the element number increases, time consumption of analyses also increases. On

the other hand, correct results may not be obtained by using few number of elements.

There are some other methods to decrease time consumption of analyses such as mass

scaling and time scaling.

VUMAT user subroutines are written for implementing different kinematic hardening

rules to the package. A complete constitutive model can be introduced in the coding.

Therefore, both elastic and inelastic parts are considered in the subroutines. Radial

return algorithm, which is also known as predictor method is used to get stress values

in each increment.

4.1 Implicit and Explicit Analysis

In the solutions, dynamic analysis module of Abaqus is utilized. The case for this

study is nonlinear analysis since materials exhibits nonlinear hardening behavior. For

ratcheting, there is cyclic loading causing material to deform plastically in each cycle

by small amounts such that the deformation cannot be simulated efficiently by static

analysis.

In dynamic analysis, there two ways of integration. These are implicit methods and

explicit methods. Explicit analysis determines the variables on time t+ ∆t using the

values of t. This method is always conditionally stable. Stability limit for increment is

the time that an elastic stress wave propagates the smallest element dimension. On the

contrary, implicit analysis has no limit for time increment. This method determines

the variables of time t + ∆t by using the values of both t and t + ∆t. As a result, a

system of nonlinear equations arise. Therefore, solution of a problem using implicit

method takes more time. The number of increments are far greater in explicit analysis.
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4.1.1 Formulation of Implicit Analysis

Generic equations of implicit method for dynamic problems are well described in

[37].

For implicit dynamic analysis

Mü(i+1) + (1 + α)Ku(i+1) − αKu(i) = F (i+1) (4.1)

where M is mass matrix, K is stiffness matrix, F is the force matrix and u is dis-

placement vector. Once ü is determined from Equation 4.1, the velocity vector is

found as:

u̇(i+1) = u̇(i) + ∆t((1− γ)ü(i) + γü(i+1) (4.2)

and the displacement vector is:

u(i+1) = u(i) + ∆tu̇(i) + ∆t2((
1

2
− β)ü(i) + βü(i+1)) (4.3)

where the constants are β = 1
4
(1− α2), γ = 1

2
− α, and 1

3
≤ α ≤ 0. These values are

automatically chosen by Abaqus unless another value is specified by the user.

For problems that necessitate small time increments such as ratcheting cases, implicit

analysis is unable to give results. Therefore, for analyses of all nonlinear kinematic

hardening rules, explicit scheme is used throughout the analysis.

4.1.2 Formulation of Explicit Analysis

The governing equation of the explicit analysis is:

Mü(i) = F (i) − I(i) (4.4)

where M is mass matrix, F is load vector and I is internal force vector. After ü is

solved by above equation, u̇ can be found as:

u̇(i+1) = u̇(i+ 1
2
) +

1

2
∆t(i+1)ü(i+1) (4.5)

The displacement vector equations are as follows:

u̇(i+ 1
2
) = u̇(i− 1

2
) +

∆t(i+1) + ∆t(i)

2
ü(i) (4.6)
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u(i+1) = u(i) + ∆t(i+1)u̇(i+ 1
2
) (4.7)

where the superscripts i− 1
2

and i + 1
2

represents the values at the midpoint times of

increments. For the first increment, if not specified, velocities and accelerations are

zero at the beginning.

In explicit method, small time increments are needed. Since the results of previous

increments are used for calculating the values at the next increment, divergence can

easily occur. To avoid divergence, there are some stability conditions. The maximum

increment time should satisfy the condition:

∆t ≤ 2

ωmax
(4.8)

where ωmax is the maximum eigenvalue of the system. When there is damping, the

inequality turns out to be

∆t ≤ 2

ωmax
(
√

1 + η2 − η) (4.9)

where η is the fraction of critical damping in the highest mode.

In Abaqus Explicit, time increments are determined automatically. The stability con-

dition in (4.8) can also be explained as:

∆t = min

(
Le
cd

)
(4.10)

where Le is characteristic length of an element which can be defined as the smallest

length in the meshing and cd is the wave speed throughout the body whose formula

is:

cd =

√
λ+ 2µ

ρ
(4.11)

where λ and µ are Lame constants, ρ is the density of material.

4.2 Radial Return Algorithm

In the subroutines, radial return algorithm is used to determine stresses and elastic-

plastic strains in plastic region. Total strains are known from finite element solution.
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First, material is assumed to be purely elastic and elastic predictor stress is calculated

using total strain. After that, using an algorithm, plastic strains are found and stress

increments are obtained. By subtracting the plastic strain and stress from the trial

state, all of the required values can be found.

4.2.1 Return Algorithm for Linear Plasticity

In this algorithm, plastic multiplier is derived from linear plasticity. It can be shown

that dλ = dε̄. Therefore, flow rule can be obtained as:

dεp =
3

2
(Spr −α0)dε̄/σpr (4.12)

where Spr is the trial stress, that is, the value of stress assuming the material is purely

elastic at the beginning, in deviatoric space. Using several steps of manipulation,

equivalent plastic strain is found as:

dλ = dε̄ =
σpr − σy
h+ 3µ

(4.13)

Using this algorithm, new stress and strain (both elastic and plastic) values can be

found. The linear plasticity model for determining plastic multiplier gives reasonable

results. Therefore, it can be used in the analyses.

4.2.2 Return Algorithm for Nonlinear Plasticity

Equation 4.12 also holds for nonlinear plasticity. However, calculation of equivalent

plastic strain is different. Using Newton-Raphson method starting with dλ = 0 and

ε̄n+1 = ε̄n, where ε̄n+1 and ε̄n are plastic strains in next and previous steps, respec-

tively. Then the series of equations are

f = ||ηtr|| − (2µ+ h(ε̄n+1))dλ− κ(ε̄n+1) (4.14)

∂f

∂dλ
= −(2µ+ h)− ∂h

∂εp
dλ− ∂κ

∂εp
(4.15)

dλ = dλ− f

∂f/∂dλ
(4.16)

ε̄n+1 = ε̄n + dλ (4.17)

where ||ηtr|| = ||Spr −α0||. Procedure is stopped when f ≈ 0.
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4.3 Methods for Decreasing the Time Consumption

Since the time increments are small and high number of loading cycles are to be

utilized, methods for decreasing the analysis time without deviating the results are

required. For this purpose, mass scaling is used. Mass scaling is suitable for the

analysis of the current thesis since the dynamic analyses are being performed at slow

speeds that can be considered as quasi-static and all of the tried models are rate-

independent. Also, different from time scaling, mass scaling does not change the

natural time schedule.

Mass scaling can be used to change the mass of a whole body or portion of it. It

may be defined for one step of the analysis or for total time steps, called "fixed mass

scaling". Moreover, it can be changed during the step, called "variable mass scaling".

Scaling can be done in several ways.

1. A factor that increases the masses of specified elements may be given as input

by user.

2. A minimum time increment may be given. ABAQUS will arrange the mass

scaling values accordingly. However in this method, all of the elements’ masses

will be scaled until the minimum time increment becomes equal to a specified

value. Therefore while doing this, some of the elements’ time scales may get

too large. This is avoided by defining a scaling provided in third way.

3. Unlike in second method only the elements whose increments are less than

specified value are modified. By this way, time increments for all elements get

close to each other.

In this study, second method has been adopted for applicability of mass scaling.

Mass scaling artificially increases the densities of the elements. In equation (4.11)

wave speed of the element was given. It contains density in the denominator having

a square root function. Therefore, if the mass of an element is scaled by a factor c2,

wave speed of the element is decreased by c. This means the stable time increment

limit is increased by factor c, speeding up the analyses.
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Although mass scaling seems to be greatly advantageous method, it may have some

adverse effects. Since the masses of bodies increase, dynamic effects should be care-

fully considered. If the mass of the material is increased so much, inertial forces may

become dominant in the model and may cause results to be deteriorated especially

for quasi static analyses. Also, program may miss some important values through

enlarged time steps.

An optimum mass scaling analysis was done. Internal and kinetic energies and strains

for mass scaling values of 0 to 2500 have been observed. After the analyses, it was

seen that mass scaling can not be used for this model. Maximum strain reached by

last cycle became higher than the model with no mass scaling. Strain values deviated

from the original analysis starting from low mass scaling. Although energy values

got higher by increasing mass scaling factor, condition of quasi-static analysis was

protected (Figure 4.1 and Figure 4.2). High mass scale distorted the strain. Total

accumulated strains were close to each other, that is, the overall predicted ratcheting

was the same at different mass scaling factors which is not reliable for all of the

models since there occurred a huge amount of strain at the end. Therefore, analysis

for ratcheting frequency can be performed only for scaling factor of 10.

Another method for decreasing time consumption is increasing the load rate. One

way of defining cyclic loading is using periodic option which involves Fourier series

to define the loading as shown in Equation (4.18).

f(x) = C0 +
∑

A0sin(ωx) +B0cos(ωx) (4.18)

where ω is frequency of the function. Load function may be given as sinusoidal wave

in which B0 = 0. C0 represents the mean load or displacement around which the

variable load or displacement will be given.

Rate of loading is changed by arranging ω value. However, if ω is too large, stress

waves becomes high and quasi static analysis cannot be carried on because of domi-

nant dynamic effects. To avoid this dynamic effect, kinetic energy to internal energy

ratio should be kept lower than 0.1. Therefore, a compromise between low loading

rate that makes analysis time so large and high loading rate that makes dynamic ef-

fects dominant should be found. For this purpose, a series of analyses at different

load frequencies was performed. Analyses of high load frequency can deviate from
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quasi static analysis. Unexpected dynamic effects are also prone to affect the results.

This can be avoided by using lower frequencies in the loading. However, then anal-

ysis time increases. It can speed up by increasing the frequency. Therefore, series

of analyses having a frequency spectrum of π to 20π has been run. It was observed

that the model is quasi-static for all of the cycle speeds as kinetic energy to internal

energy ratio is low enough in Figure 4.4 and Figure 4.5. Moreover, under 5π, kinetic

energy was almost zero. Kinetic energy increases with increasing frequency. Internal

energy also gets higher while processing 3.14 to 62.80. Still analysis is confined to

use a loading frequency of 15.70 due to increasing strain values.

4.4 Mesh Dependency

Numbers and type of these meshes are important for analyses to give correct results.

Therefore, a mesh dependency analysis should be done for validation of obtained

results. If elements are too many, the analysis will run too long. On the contrary,

if the number of elements is so small, then necessary number of integration points

cannot be reached and obtained values may differ from the actual case.

To find optimum element number, analyses of ratcheting with A-F model by using

different runs starting from 27 element to 10,800 element were done. Internal and

kinetic energies and strain values were monitored. Since all of the models have been

written in rate independent form, dynamic effects are avoided. Therefore, a quasi

static analyses was followed. It is observed in Figure 4.7 and Figure 4.8 that this con-

dition is satisfied for all number of meshes since kinetic energy values are at accept-

able degree compared to internal energy. Another important data is the strain values

since the main concern of the subject is accumulation of the strain. For mesh num-

bers smaller than 1200-1400, there existed deviations. However, when mesh number

increases further, stable results were obtained. As Figure 4.9 shows, analyses can be

done by using about 1200 element since the values are stabilized after that point.
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4.5 The Used Model

Due to axisymmetry of the part, axisymmetric element "CAX4R" is used in the anal-

yses. This is a 4-node continuum element for explicit method. It uses reduced in-

tegration. Mesh number is concluded as 1200. Frequency value has come out to be

lower than 15.70 and mass scaling factor can at most be 10. For all of different kine-

matic hardening models with different yield criteria, the finite element analyses are

performed using this model.

39



Figure 4.1: Internal energy vs mass scale factor

Figure 4.2: Kinetic energy vs mass scale factor
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Figure 4.3: Maximum strain vs mass scale factor

Figure 4.4: Internal energy vs frequency
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Figure 4.5: Kinetic energy vs frequency

Figure 4.6: Maximum strain vs frequency
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Figure 4.7: Internal energy vs mesh number

Figure 4.8: Kinetic energy vs mesh number
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Figure 4.9: Maximum strain vs mesh number
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CHAPTER 5

RESULTS

In this chapter, results of the analyses considering different kinematic hardening rules

and yield functions are presented. Models have been run for both uniaxial and biaxial

loading conditions.

5.1 Uniaxial Ratcheting

In this section, results of uniaxial ratcheting of a solid rod are presented for von-Mises

yield criterion and six different kinematic hardening rules are used. Mechanical prop-

erties of the material are given in Table 5.1. The contstants K and n characterizes the

stress-strain diagram of material according to the model σ = Kεn. The dimensions of

this work piece are given in Figure 5.1. Stress and strain controlled ratcheting results

are included in all subsections. While one end of the rod was hold fixed, loading or

displacement was applied from the other end during the analyses. For each model,

except Prager, analyses for four different mean stresses and four different alternating

stresses were performed for stress controlled cycling.

σy(MPa) σu(MPa) E(MPa) ν K(MPa) n

241 420 200000 0.3 564 0.17

Table 5.1: Mechanical properties of the material
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Figure 5.1: Specimen of uniaxial analyses

5.1.1 Prager Model

Since Prager model did not simulate any ratcheting for any loading conditions, only

result of stress controlled analyses with 80 MPa mean stress and 220 MPa alternating

stress is given in Figure 5.2.

Figure 5.2: Stress-strain behavior of Prager model in uniaxial loading for σm =

80MPa, σa = 220MPa
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5.1.2 Armstrong-Frederick Model

Four different mean stress values; 40 MPa, 60 MPa, 80 MPa and 100 MPa were

applied for A-F model while the alternating stress was taken as 210 MPa for all mean

stresses. Figure 5.3 - Figure 5.6 show the variation of the axial strain of the bar,

εz, for mean stress values 40 MPa, 60 MPa, 80 MPa and 100 MPa, respectively.

In Figure 5.7, the variation of maximum ratcheting strain with respect to number

of cycles are shown for different mean stresses at constant alternating stress. It is

observed that accumulated strain increases with increasing mean stress.

Four different alternating stress values; 150 MPa, 180 MPa, 210 MPa and 240 MPa

were applied for A-F model while mean stress was kept at 80 MPa for all alternating

stresses. Figure 5.8 - Figure 5.11 show the variation of the axial strain of the bar, εz,

for alternating stress values 150 MPa, 180 MPa, 210 MPa and 240 MPa, respectively.

In Figure 5.12, the variation of ratcheting strain with respect to number of cycles

are shown for different alternating stresses at constant mean stress. It is seen that

increasing alternating stress increases the amount of ratcheting strain.

Figure 5.13 shows the stress strain response for symmetric strain cycling with an

amplitude of εz = 0.002mm/mm. After several cycles of hardening, the material

has shaken down and strain hardening has stopped.
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Figure 5.3: A-F model with σm = 40MPa and σa = 210MPa

Figure 5.4: A-F model with σm = 60MPa and σa = 210MPa
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Figure 5.5: A-F model with σm = 80MPa and σa = 210MPa

Figure 5.6: A-F model with σm = 100MPa and σa = 210MPa
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Figure 5.7: Variation of ratcheting strain for different mean stress values for A-F

model where σY is the initial yield stress of the material
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Figure 5.8: A-F model with σm = 80MPa and σa = 150MPa

Figure 5.9: A-F model with σm = 80MPa and σa = 180MPa
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Figure 5.10: A-F model with σm = 80MPa and σa = 210MPa

Figure 5.11: A-F model with σm = 80MPa and σa = 240MPa
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Figure 5.12: Variation of ratcheting strain for different alternating stress values for

A-F model where σY is the initial yield stress of the material

Figure 5.13: Cyclic hardening of A-F model with εa = 0.002
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5.1.3 Burlet-Cailletaud Model

Since this model’s results are the same as with A-F model, they are not included

separately to avoid repetition.

5.1.4 Chaboche Model

Four different mean stress values; 40 MPa, 60 MPa, 80 MPa and 100 MPa were

applied for Chaboche model while the alternating stress was taken as 210 MPa for all

mean stresses. Figure 5.14 - Figure 5.17 show the variation of the axial strain of the

bar, εz, for mean stress values 40 MPa, 60 MPa, 80 MPa and 100 MPa, respectively.

In Figure 5.18, the variation of maximum ratcheting strain with respect to number

of cycles are shown for different mean stresses at constant alternating stress. It is

concluded that increase in the mean stress increases the ratcheting strain.

Four different alternating stress values; 150 MPa, 180 MPa, 210 MPa and 240 MPa

were applied for Chaboche model while mean stress was kept at 80 MPa for all al-

ternating stresses. Figure 5.19 - Figure 5.22 show the variation of the axial strain of

the bar, εz, for alternating stress values 150 MPa, 180 MPa, 210 MPa and 240 MPa,

respectively. In Figure 5.23, the variation of ratcheting strain with respect to number

of cycles are shown for different alternating stresses at constant alternating stress. It

is concluded that increase in the alternating stress increases the ratcheting strain.

Figure 5.24 shows the stress strain response for symmetric strain cycling with an

amplitude of εz = 0.002mm/mm. In every strain cycle, hardening was observed.

Shakedown was seen in this model after several cycles.
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Figure 5.14: Chaboche model with σm = 40MPa and σa = 210MPa

Figure 5.15: Chaboche model with σm = 60MPa and σa = 210MPa
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Figure 5.16: Chaboche model with σm = 80MPa and σa = 210MPa

Figure 5.17: Chaboche model with σm = 100MPa and σa = 210MPa
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Figure 5.18: Variation of ratcheting strain for different mean stress values for

Chaboche model where σY is the initial yield stress of the material

57



Figure 5.19: Chaboche model with σm = 80MPa and σa = 150MPa

Figure 5.20: Chaboche model with σm = 80MPa and σa = 150MPa
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Figure 5.21: Chaboche model with σm = 80MPa and σa = 210MPa

Figure 5.22: Chaboche model with σm = 80MPa and σa = 240MPa
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Figure 5.23: Variation of ratcheting strain for different alternating stress values for

Chaboche model where σY is the initial yield stress of the material

Figure 5.24: Cyclic hardening of Chaboche model with εa = 0.002
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5.1.5 Bari-Hassan Model

Four different mean stress values; 40 MPa, 60 MPa, 80 MPa and 100 MPa were

applied for B-H model while the alternating stress was taken as 210 MPa for all mean

stresses. Figure 5.25 - Figure 5.28 show the variation of the axial strain of the bar,

εz, for mean stress values 40 MPa, 60 MPa, 80 MPa and 100 MPa, respectively.

In Figure 5.29, the variation of maximum ratcheting strain with respect to number

of cycles are shown for different mean stresses at constant alternating stress. It is

observed that accumulated strain increases with increasing mean stress.

Four different alternating stress values; 150 MPa, 180 MPa, 210 MPa and 240 MPa

were applied for B-H model while mean stress was kept at 80 MPa for all alternating

stresses. Figure 5.30 - Figure 5.33 show the variation of the axial strain of the bar, εz,

for alternating stress values 150 MPa, 180 MPa, 210 MPa and 240 MPa, respectively.

In Figure 5.34, the variation of ratcheting strain with respect to number of cycles are

shown for different alternating stresses at constant mean stress. The conclusion is

increasing alternating stress increases the amount of ratcheting strain.

Figure 5.35 shows the stress strain response for symmetric strain cycling with an

amplitude of εz = 0.002mm/mm. After several cycles of hardening, the material

has shaken down and strain hardening has stopped.
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Figure 5.25: B-H model with σm = 40MPa and σa = 210MPa

Figure 5.26: B-H model with σm = 60MPa and σa = 210MPa
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Figure 5.27: B-H model with σm = 80MPa and σa = 210MPa

Figure 5.28: B-H model with σm = 10MPa and σa = 210MPa
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Figure 5.29: Variation of ratcheting strain for different mean stress values for B-H

model where σY is the initial yield stress of the material

Figure 5.30: B-H model with σm = 80MPa and σa = 150MPa
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Figure 5.31: B-H model with σm = 80MPa and σa = 180MPa

Figure 5.32: B-H model with σm = 80MPa and σa = 210MPa
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Figure 5.33: B-H model with σm = 80MPa and σa = 240MPa

Figure 5.34: Variation of ratcheting strain for different alternating stress values for

B-H model where σY is the initial yield stress of the material
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Figure 5.35: Cyclic hardening of B-H model with εa = 0.002

5.1.6 Ohno-Wang Model

Four different mean stress values; 40 MPa, 60 MPa, 80 MPa and 100 MPa were

applied for O-W model while the alternating stress was taken as 210 MPa for all

mean stresses. Figure 5.36 - Figure 5.39 show the variation of the axial strain of the

bar, εz, for mean stress values 40 MPa, 60 MPa, 80 MPa and 100 MPa, respectively.

In Figure 5.40, the variation of maximum ratcheting strain with respect to number

of cycles are shown for different mean stresses at constant alternating stress. It is

observed that accumulated strain increases with increasing mean stress.

Four different alternating stress values; 150 MPa, 180 MPa, 210 MPa and 240 MPa

were applied for O-W model while mean stress was kept at 80 MPa for all alternating

stresses. Figure 5.41 - Figure 5.44 show the variation of the axial strain of the bar, εz,

for alternating stress values 150 MPa, 180 MPa, 210 MPa and 240 MPa, respectively.

In Figure 5.45, he variation of ratcheting strain with respect to number of cycles are

shown for different alternating stresses at constant mean stress. The conclusion is

increasing alternating stress increases the amount of ratcheting strain.

Figure 5.46 shows the stress strain response for symmetric strain cycling with an
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amplitude of εz = 0.002mm/mm. After several cycles of hardening, the material

has shaken down and strain hardening has stopped.

Figure 5.36: O-W model with σm = 40MPa and σa = 210MPa

Figure 5.37: O-W model with σm = 60MPa and σa = 210MPa
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Figure 5.38: O-W model with σm = 80MPa and σa = 210MPa

Figure 5.39: O-W model with σm = 100MPa and σa = 210MPa
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Figure 5.40: Variation of ratcheting strain for different mean stress values for O-W

model where σY is the initial yield stress of the material

Figure 5.41: O-W model with σm = 80MPa and σa = 150MPa
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Figure 5.42: O-W model with σm = 80MPa and σa = 180MPa

Figure 5.43: O-W model with σm = 80MPa and σa = 210MPa
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Figure 5.44: O-W model with σm = 80MPa and σa = 240MPa

Figure 5.45: Variation of ratcheting strain for different alternating stress values for

O-W model where σY is the initial yield stress of the material
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Figure 5.46: Cyclic hardening of O-W model with εa = 0.002mm/mm

5.1.7 Comparison of the Results of Uniaxial Ratcheting for Different Kine-

matic Hardening Models

Comparison of the maximum strain accumulations is given in Figure 5.47 - Fig-

ure 5.50 for different mean stress values of σm = 40MPa, σm = 60MPa, σm =

80MPa, σm = 100MPa respectively at constant alternating stress σa = 210MPa

and for different alternating stress values σa = 150MPa, σa = 180MPa, σa =

210MPa, σa = 240MPa in Figure 5.51 - Figure 5.54 respectively at constant mean

stress σm = 80MPa.
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Figure 5.47: Comparison of models with σm = 40MPa and σa = 210MPa

Figure 5.48: Comparison of models with σm = 60MPa and σa = 210MPa
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Figure 5.49: Comparison of models with σm = 80MPa and σa = 210MPa

Figure 5.50: Comparison of models with σm = 100MPa and σa = 210MPa
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Figure 5.51: Comparison of models with σa = 150MPa and σm = 80MPa

Figure 5.52: Comparison of models with σa = 180MPa and σm = 80MPa
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Figure 5.53: Comparison of models with σa = 210MPa and σm = 80MPa

Figure 5.54: Comparison of models with σa = 240MPa and σm = 80MPa

Prager model was expected to give closed hysteresis loops for each load cycle. The

model model did not give any amount of ratcheting with cyclic loading as seen in
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Figure 5.2. Although this model gives acceptable results for simple tension or com-

pression tests, it can not be used to simulate cyclic loading. Neither the increasing

deformation nor the shakedown phenomena can be observed since there is no open

hysteresis loops.

A-F model gave high amount of ratcheting compared to the other proposed ones. It

was concluded that shakedown (cessation of accumulation of strain) started to occur

after a cycle number of about 40 for A-F model. Another observation was the fact

that for low mean stresses, the accumulation rate increases for this model. On the

other hand, ratcheting values are observed to be higher and accumulation rates are

observed to be lower as mean stress or alternating stresses increase. However, A-F

model is easily applicable because of its simplicity in coding. Also, since the number

of iterations are not too much compared to the recent models, elapsed time for this

model to complete the analysis is shorter. The over prediction of this model also holds

for strain controlled loading.

The line of yield surface shift is the same for all load cycles in uniaxial loading.

Therefore, the inner product of the surface normal n with itself in the second term

become unity and results are the same with A-F model for uniaxial ratcheting of B-C

model. The only effect of this modification on second term can only be observed in

biaxial loading.

Originally, Chaboche model has been created to compensate the high strain values

given by A-F model. However, the procedure for parameter determination, made the

first version of the model fail. When a fourth partition having a threshold value was

introduced, there existed some amount of ratcheting. This amount is observed to give

fairly smaller predictions than A-F model. It is one of the most suitable models to

simulate uniaxial ratcheting. Shakedown was reached earlier than A-F model in four

partitioned Chaboche model. The accumulation rate was not affected much by chang-

ing mean and alternating stress values unlike A-F model. However, total accumulated

strains have been increased with increasing mean and alternating stress values. The

hardening rate is smaller than A-F model in same range of strain cycling.

Regardless of this Dolebelle parameter, first version of B-H model has no difference

with A-F or B-C models for uniaxial ratcheting since the radial evanescence term does
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not differ. As a result of this inefficiency on uniaxial ratcheting simulation of B-H

model, second version has been performed. It was seen that Bari-Hassan model pre-

dicts ratcheting more than A-F model. However, shakedown was observed in smaller

number of cycles than A-F model.

When the results are analyzed, O-W estimated the least amount of ratcheting among

all models in this study. The most important modification was the step function in-

cluded in the second term. By this way, no strain was accumulated until a certain

value of stress and hence, this model is appropriate to give close estimations to actual

cases.

As a conclusion of this part, different kinematic hardening models have been analyzed

in their response to cyclic loading and accumulation of plastic strain. The simplest

analyses were uniaxial loading. B-H model has given the highest amount of ratch-

eting. A-F model had the second highest amount. The lowest predictions have been

done by Chaboche and O-W models. O-W model had the least amount of ratcheting

in uniaxial loading.

5.2 Biaxial Ratcheting

In biaxial loading, both stress and strain controlled loading were applied to specimen.

A circular hollow tube was used as test specimen with 25.4 mm outside diameter and

1.27 mm thickness as seen in Figure 5.55. Material properties are given in Table 5.1.

The hollow tube was subjected to an alternating longitudinal stress or strain while

there was a constant internal pressure. Different ranges of stress and strain were

applied. In the analyses von Mises yield criterion, Hill yield criterion and Aretz yield

criterion were used for different kinematic hardening models.

79



Figure 5.55: Specimen of biaxial analyses

5.2.1 Von Mises Yield Criterion

The von-Mises yield criterion is applied for six different kinematic hardening models.

5.2.1.1 Armstrong-Frederick Model

For A-F model, Figure 5.56 - Figure 5.58 show longitudinal strain versus transverse

strain under 3 MPa, 4.7 MPa and 6 MPa internal pressures for strain controlled sym-

metric cyclic loading with strain amplitude (εz)a = 0.005mm/mm. Figure 5.59

presents cycle number versus transverse strain under different internal pressures with

0.005 mm/mm alternating strain.

Figure 5.60 - Figure 5.62 show longitudinal strain εz versus tangential strain in strain

controlled cyclic loading with strain amplitudes 0.002 mm/mm, 0.005 mm/mm and

0.008 mm/mm and p = 4.7 MPa internal pressure. Figure 5.59 presents cycle num-

ber versus tangential strain under different alternating strains with 4.7 MPa internal

pressure.

Figure 5.64 - Figure 5.66 show longitudinal strain versus transverse strain in stress

controlled analysis under 2.5 MPa, 4 MPa and 5.796 MPa internal pressures and
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σa = 240MPa, σm = 40MPa. In Figure 5.67 and Figure 5.68, the accumulation of

strain in both directions with changing longitudinal stress are shown.

Figure 5.56: A-F model with p = 3MPa and (εz)a = 0.005mm/mm

Figure 5.57: A-F model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.58: A-F model with p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.59: A-F model with different internal pressures and constant alternating

strain (εz)a = 0.005mm/mm
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Figure 5.60: A-F model with p = 4.7MPa and (εz)a = 0.002mm/mm

Figure 5.61: A-F model with p = 4.7MPa and (εz)a = 0.005mm/mm

83



Figure 5.62: A-F model with p = 4.7MPa and (εz)a = 0.008mm/mm

Figure 5.63: A-F model with different alternating strains and p = 4.7MPa
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Figure 5.64: A-F model with p = 2.5MPa and σa = 240MPa, σm = 40MPa

Figure 5.65: A-F model with p = 4MPa and σa = 240MPa, σm = 40MPa
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Figure 5.66: A-F model with p = 5.796MPa and σa = 240MPa, σm = 40MPa

Figure 5.67: Ratcheting in transverse direction in stress controlled loading for A-F

model

86



Figure 5.68: Ratcheting in longitudinal direction in stress controlled loading for A-F

model

5.2.1.2 Burlet-Cailletaud Model

For B-C model, Figure 5.69 - Figure 5.71 show longitudinal strain versus transverse

strain under 3 MPa, 4.7 MPa and 6 MPa internal pressures for strain controlled sym-

metric cyclic loading with strain amplitude (εz)a = 0.005mm/mm. Figure 5.72

presents cycle number versus transverse strain under different internal pressures with

0.005 mm/mm alternating strain.

Figure 5.73 - Figure 5.75 show longitudinal strain εz versus tangential strain in strain

controlled cyclic loading with strain amplitudes 0.002 mm/mm, 0.005 mm/mm and

0.008 mm/mm and p = 4.7 MPa internal pressure. Figure 5.72 presents cycle num-

ber versus tangential strain under different alternating strains with 4.7 MPa internal

pressure.

Figure 5.77, Figure 5.78 and Figure 5.79 show longitudinal strain versus transverse

strain in stress controlled analysis under 2.5 MPa, 4 MPa and 5.796 MPa internal

pressures and σa = 240MPa, σm = 40MPa.
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Figure 5.69: B-C model with p = 3MPa and (εz)a = 0.005mm/mm

Figure 5.70: B-C model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.71: B-C model with p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.72: B-C model with different internal pressures and and constant alternating

strain (εz)a = 0.005mm/mm

89



Figure 5.73: B-C model with p = 4.7MPa and (εz)a = 0.002mm/mm

Figure 5.74: B-C model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.75: B-C model with p = 4.7MPa and (εz)a = 0.008mm/mm

Figure 5.76: B-C model with different alternating strains and p = 4.7MPa

91



Figure 5.77: B-C model with p = 2.5MPa and σa = 240MPa, σm = 40MPa

Figure 5.78: B-C model with p = 4MPa and σa = 240MPa, σm = 40MPa
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Figure 5.79: B-C model with p = 5.796MPa and σa = 240MPa, σm = 40MPa

5.2.1.3 Chaboche Model

For Chaboche model, Figure 5.80 - Figure 5.82 show longitudinal strain versus trans-

verse strain under 3 MPa, 4.7 MPa and 6 MPa internal pressures for strain controlled

symmetric cyclic loading with strain amplitude (εz)a = 0.005mm/mm. Figure 5.83

presents cycle number versus transverse strain under different internal pressures with

0.005 mm/mm alternating strain.

Figure 5.84 - Figure 5.86 show longitudinal strain εz versus tangential strain in strain

controlled cyclic loading with strain amplitudes 0.002 mm/mm, 0.005 mm/mm and

0.008 mm/mm and p = 4.7 MPa internal pressure. Figure 5.83 presents cycle num-

ber versus tangential strain under different alternating strains with 4.7 MPa internal

pressure.

Figure 5.88, Figure 5.89 and Figure 5.90 show longitudinal strain versus transverse

strain in stress controlled analysis under 2.5 MPa, 4 MPa and 5.796 MPa internal

pressures and σa = 240MPa, σm = 40MPa.
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Figure 5.80: Chaboche model with p = 3MPa and (εz)a = 0.005mm/mm

Figure 5.81: Chaboche model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.82: Chaboche model with p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.83: Chaboche model with different internal pressures and constant alternat-

ing strain (εz)a = 0.005mm/mm
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Figure 5.84: Chaboche model with p = 4.7MPa and (εz)a = 0.002mm/mm

Figure 5.85: Chaboche model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.86: Chaboche model with p = 4.7MPa and (εz)a = 0.008mm/mm

Figure 5.87: Chaboche model with different alternating strains and p = 4.7MPa
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Figure 5.88: Chaboche model with p = 2.5MPa and σa = 240MPa, σm = 40MPa

Figure 5.89: Chaboche model with p = 4MPa and σa = 240MPa, σm = 40MPa
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Figure 5.90: Chaboche model with p = 5.796MPa and σa = 240MPa, σm =

40MPa

5.2.1.4 Bari-Hassan Model

For B-H model, Figure 5.91 - Figure 5.93 show longitudinal strain versus transverse

strain under 3 MPa, 4.7 MPa and 6 MPa internal pressures for strain controlled sym-

metric cyclic loading with strain amplitude (εz)a = 0.005mm/mm. Figure 5.94

presents cycle number versus transverse strain under different internal pressures with

0.005 mm/mm alternating strain.

Figure 5.95 - Figure 5.97 show longitudinal strain εz versus tangential strain in strain

controlled cyclic loading with strain amplitudes 0.002 mm/mm, 0.005 mm/mm and

0.008 mm/mm and p = 4.7 MPa internal pressure. Figure 5.59 presents cycle num-

ber versus tangential strain under different alternating strains with 4.7 MPa internal

pressure.

Figure 5.99, Figure 5.100 and Figure 5.101 show longitudinal strain versus transverse

strain in stress controlled analysis under 2.5 MPa, 4 MPa and 5.796 MPa internal

pressures and σa = 240MPa, σm = 40MPa.
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Figure 5.91: B-H model with p = 3MPa and (εz)a = 0.005mm/mm

Figure 5.92: B-H model with p = 4.7MPa and (εz)a = 0.005mm/mm

100



Figure 5.93: B-H model with p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.94: B-H model with different internal pressures and constant alternating

strain (εz)a = 0.005mm/mm
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Figure 5.95: B-H model with p = 4.7MPa and (εz)a = 0.002mm/mm

Figure 5.96: B-H model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.97: B-H model with p = 4.7MPa and (εz)a = 0.008mm/mm

Figure 5.98: B-H model with different alternating strains and p = 4.7MPa
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Figure 5.99: B-H model with p = 2.5MPa and σa = 240MPa, σm = 40MPa

Figure 5.100: B-H model with p = 4MPa and σa = 240MPa, σm = 40MPa
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Figure 5.101: B-H model with p = 5.796MPa and σa = 240MPa, σm = 40MPa

5.2.1.5 Ohno-Wang Model

For O-W model, Figure 5.102 - Figure 5.104 show longitudinal strain versus trans-

verse strain under 3 MPa, 4.7 MPa and 6 MPa internal pressures for strain controlled

symmetric cyclic loading with strain amplitude (εz)a = 0.005mm/mm. Figure 5.105

presents cycle number versus transverse strain under different internal pressures with

0.005 mm/mm alternating strain.

Figure 5.106 - Figure 5.108 show longitudinal strain εz versus tangential strain in

strain controlled cyclic loading with strain amplitudes 0.002 mm/mm, 0.005 mm/mm

and 0.008 mm/mm and p = 4.7 MPa internal pressure. Figure 5.105 presents cy-

cle number versus tangential strain under different alternating strains with 4.7 MPa

internal pressure.

Figure 5.110, Figure 5.111 and Figure 5.112 show longitudinal strain versus trans-

verse strain in stress controlled analysis under 2.5 MPa, 4 MPa and 5.796 MPa inter-

nal pressures and σa = 240MPa, σm = 40MPa.
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Figure 5.102: O-W model with p = 3MPa and (εz)a = 0.005mm/mm

Figure 5.103: O-W model with p = 4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.104: O-W model with p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.105: O-W model with different internal pressures and constant alternating

strain (εz)a = 0.005mm/mm
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Figure 5.106: O-W model with p = 4.7MPa and (εz)a = 0.002

Figure 5.107: O-W model with p = 4.7MPa and (εz)a = 0.005
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Figure 5.108: O-W model with p = 4.7MPa and (εz)a = 0.008

Figure 5.109: O-W model with different alternating strains and p = 4.7MPa
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Figure 5.110: O-W model with p = 2.5MPa and σa = 240MPa, σm = 40MPa

Figure 5.111: O-W model with p = 4MPa and σa = 240MPa, σm = 40MPa
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Figure 5.112: O-W model with p = 5.796MPa and σa = 240MPa, σm = 40MPa

5.2.2 Comparison of the Results of Different Kinematic Hardening Models

Finally, a comparison of kinematic hardening models with experimental data in [18]

is given in Figure 5.113 for 4.7 MPa internal pressure and 0.005 mm/mm alternating

strain.

Without experimental data, comparison of the models for biaxial ratcheting with in-

ternal pressures of 3MPa and 6MPa and strain amplitude of 0.005 are given in Fig-

ure 5.114 and Figure 5.115. The comparison of models with 4.7MPa internal pressure

and strain amplitude of 0.002 mm/mm and 0.008 mm/mm are given in Figure 5.116

and Figure 5.117.

It is seen that increasing internal pressure and strain amplitudes increases the ratchet-

ing strain for all of the models.
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Figure 5.113: Comparison of experimental values and ratcheting results of kinematic

hardening models for p = 4.7MPa and (εz)a = 0.005mm/mm

Figure 5.114: Comparison of ratcheting results of kinematic hardening models for

p = 3MPa and (εz)a = 0.005mm/mm
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Figure 5.115: Comparison of ratcheting results of kinematic hardening models for

p = 6MPa and (εz)a = 0.005mm/mm

Figure 5.116: Comparison of ratcheting results of kinematic hardening models for

p = 4.7MPa and (εz)a = 0.002mm/mm
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Figure 5.117: Comparison of ratcheting results of kinematic hardening models for

p = 4.7MPa and (εz)a = 0.008mm/mm

In biaxial loading, it was observed that the closed hysteresis loops in the stress strain

diagram of Prager model were present for all directions of loading. Plastic strain

sticks in a constant value. Thefore, Prager model did not give any amount of strain

accumulation.

A-F model had the largest estimation to biaxial ratcheting. This is an expected result

since there are no term that takes the effect of yield surface normal into account

although the surface normal changes in each cycle. Since there is no consideration

about multidirectional movement of yield surface, it is a similar analysis with uniaxial

loading. The only term that includes the direction concept is the first one which is the

linear proposal of Prager model. Therefore, its contribution to A-F model to adapt

from uniaxial loading to biaxial loading is ineffective. As a result, A-F model is not

eligible for simulating biaxial ratcheting.

B-C model’s results deviated from A-F model unlike the case in uniaxial loading since

the surface normal is not the same in every load cycle. Over prediction of A-F model

has been decreased by this model. However, B-C model did not give the smallest
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amount of ratcheting. Overprediction was still existing. Therefore, additional models

were proposed for simulation of cyclic loading. One of these models is the first

version of B-H model. However, that model did also not give reasonable results.

In the Chaboche’s model the accumulations have been decreased in the simulations

significantly. As in the uniaxial case, in biaxial loading, this model behaves more

stable since the accumulation rates are lower than the others. Chaboche model has

given the least amount of ratcheting among all of the other tried models.

The Bari-Hassan model in which the Dolebelle parameter was used and detected to

give a value between A-F and Chaboche model at the end of the analyses.

The good performance of Ohno-Wang model in uniaxial ratcheting did not hold for

biaxial ratcheting. After A-F model, this model is the second one estimating the

highest amount of ratcheting in tangential direction. Hence, although it suits the

uniaxial cyclic loading cases, its use in biaxial loading is poor.

5.3 Hill48 Yield Criterion

In this part, analysis of ratcheting using anisotropic material assumption with Hill48

yield criterion is performed. Figure 5.118 - Figure 5.120 show ratcheting of A-F,

Chaboche and O-W models with 4.7 MPa internal pressure and 0.005 mm/mm axial

alternating strain.

5.3.1 Armstrong-Frederick Model

In Figure 5.118, result of A-F hardening model with Hill yield criterion is presented.
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Figure 5.118: A-F model with p = 4.7MPa and (εz)a = 0.005mm/mm

5.3.2 Chaboche Model

Figure 5.119 shows result of Chaboche hardening model with Hill yield criterion.

Figure 5.119: Chaboche model with = 4.7MPa and (εz)a = 0.005mm/mm

5.3.3 Ohno-Wang Model

In Figure 5.120, result of O-W hardening model with Hill yield criterion is given.
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Figure 5.120: O-W model with p = 4.7MPa and (εz)a = 0.005mm/mm

5.3.4 Comparison of Different Kinematic Hardening Models

Figure 5.121 presents time strain accumulation behaviors of Prager, A-F, Chaboche

and O-W models with 4.7 MPa internal stress and 0.005 mm/mm alternating strain.

It is observed that Prager model did not give any ratcheting in conjunction with Hill’s

yield criterion also. The order of kinematic hardening models remained same for

Hill’s yield criterion compared to von Mises criterion. A-F model had the largest

estimation. Chaboche model has given the lowest amount of ratcheting. Ratcheting

rates are close to the obtained by constitutive models with von-Mises criterion.
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Figure 5.121: Three models with p = 4.7MPa and (εz)a = 0.005mm/mm

5.4 Aretz Yield Criterion

The ratcheting results of constitutive models using A-F, Chaboche and O-W models

together with Aretz yield criterion are presented in this section. Figure 5.122 - Fig-

ure 5.124 show ratcheting of A-F, Chaboche and O-W models with 4.7 MPa internal

pressure and 0.005 mm/mm alternating axial strain.

5.4.1 Armstrong-Frederick Model

In Figure 5.122, result of A-F hardening model with Aretz yield criterion is presented.
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Figure 5.122: A-F model with p = 4.7MPa and (εz)a = 0.005mm/mm
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5.4.2 Chaboche Model

Figure 5.123 shows the result of Chaboche hardening model with Aretz yield crite-

rion.

Figure 5.123: Chaboche model with p = 4.7MPa and (εz)a = 0.005mm/mm

5.4.3 Ohno-Wang Model

In Figure 5.124, results of O-W hardening model with Aretz yield criterion is given.

Figure 5.124: O-W model with p = 4.7MPa and (εz)a = 0.005mm/mm
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5.4.4 Comparison of Different Kinematic Hardening Models

Figure 5.125 presents cycle number strain behaviors of three models in 4.7 MPa in-

ternal stress and 0.005 mm/mm alternating strain. In Figure 5.125, results of different

different kinematic hardening models with Aretz yield criterion are compared. It is

observed that A-F had the largest amount of ratcheting while Chaboche had the lowest

amount.

Figure 5.125: Three models with p = 4.7MPa and (εz)a = 0.005mm/mm

5.5 Comparison of Ratcheting for Using Different Yield Criteria

In this section, a comparison of three yield criteria von Mises, Hill48 and Aretz for

A-F model is presented. Figure 5.126 - Figure 5.128 show the results of three yield

criteria obtained by using A-F, Chaboche and O-W models.

It is seen that higher ratcheting is observed for Aretz criterion where the least values

are obtained by von Mises criterion for all kinematic hardening models.
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Figure 5.126: Comparison of three yield criteria for A-F model for p = 4.7MPa and

(εz)a = 0.005mm/mm

Figure 5.127: Comparison of three yield criteria for Chaboche model for p =

4.7MPa and (εz)a = 0.005mm/mm
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Figure 5.128: Comparison of three yield criteria for O-W model in for p = 4.7MPa

and (εz)a = 0.005mm/mm

123



124



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

In this thesis, ratcheting responses of isotropic and anisotropic materials to both uni-

axial and biaxial loading were investigated. For this purpose, symmetric and un-

symmetric stress and strain cycles were applied. Six different kinematic hardening

models and three different yield criteria were used. Following conclusions have been

acquired from the current study:

1. Prager model does not give strain accumulation for uniaxial and biaxial loading.

It is not appropriate to simulate cyclic strain accumulation.

2. In uniaxial loading, the order of the ratcheting from highest to lowest is as

follows: Bari-Hassan, Armstrong-Frederick and Burlet-Cailletaud, Chaboche,

Ohno-Wang models for all cases.

3. Burlet-Cailletaud model gives the same result with Armstrong-Frederick model

for uniaxial loading since the unit inner product of surface normal on the radial

evanescence term.

4. In uniaxial loading, highest amount of ratcheting is obtained in Bari-Hassan

model. The possible reason is the parameter determination of this model which

was developed to get a value which balances the Chaboche and Armstrong-

Frederick models.

5. Increasing mean stress and stress amplitude increases the ratcheting amount

for all of the models used in uniaxial loading. However, accumulation rate, i.e,
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the plastic strain increase in each cycle, is different. The largest ratcheting in-

crease is obtained by Armstrong-Frederick model while the smallest ratcheting

increase is observed in Chaboche model.

6. Chaboche and Ohno-Wang model’s performances are acceptable for uniaxial

loading. Therefore, these two can be used to simulate uniaxial ratcheting of

materials in cyclic loading.

7. In biaxial loading, from highest ratcheting to lowest order is as follows: Armstrong-

Frederick, Ohno-Wang, Bari-Hassan, Burlet-Cailletaud and Chaboche for all

cases.

8. For biaxial case studied in this thesis, Chaboche model gives the closest re-

sults to the experiments with a slight over estimation. The other models are

significantly above the desired values.

9. For different mean and alternating stresses, analyses give similar results as the

total value of mean and alternating stresses are taken into account.

10. Introduction of Aretz yield function has increased the ratcheting. This is most

probably because of the decrease in yield strength of longitudinal direction.

Since the radius of yield surface decreased, accumulated plastic strain has been

increased in return algorithm. The analyses results of constitutive models with

obtained with Hill’s yield criterion are observed to be slightly higher than the

ones obtained by using von-Mises criterion.

6.2 Future Work

As a first future work, a model that predicts both uniaxial and multiaxial cases ad-

equately can be developed. Another future work may include micro deformations

of the materials because there are few studies that concern the effect of anisotropy

and micro structural behaviors on ratcheting. In conclusion, this thesis can be a door

to find a model that gives correct amount of ratcheting both uniaxial and multiaxial

conditions for both isotropic and anisotropic materials.

126



REFERENCES

[1] M. Abdel-Karim and N. Ohno. Kinematic hardening model suitable for ratchet-
ting with steady-state. International Journal of Plasticity, 16(3):225–240, 2000.

[2] P. J. Armstrong. A mathematical representation of the multiaxial bauschinger
effect. CEBG Report RD/B/N, 731, 1966.

[3] S. Bari and T. Hassan. Anatomy of coupled constitutive models for ratcheting
simulation. International Journal of Plasticity, 16(3):381–409, 2000.

[4] S. Bari and T. Hassan. Kinematic hardening rules in uncoupled modeling for
multiaxial ratcheting simulation. International Journal of Plasticity, 17(7):885–
905, 2001.

[5] S. Bari and T. Hassan. An advancement in cyclic plasticity modeling for multi-
axial ratcheting simulation. International Journal of Plasticity, 18(7):873–894,
2002.

[6] H. Burlet and G. Cailletaud. Modeling of cyclic plasticity in finite element
codes. Proc. of Constitutive Laws for Engineering Materials: Theory and Ap-
plications, Desai et al., Elsevier, Tucson, AZ, pages 1157–1164, 1987.

[7] J. Chaboche and D. Nouailhas. Constitutive modeling of ratchetting ef-
fects—part i: experimental facts and properties of the classical models. Journal
of Engineering Materials and Technology, 111(4):384–392, 1989.

[8] X. Chen and R. Jiao. Modified kinematic hardening rule for multiaxial ratchet-
ing prediction. International Journal of Plasticity, 20(4):871–898, 2004.

[9] X. Chen, R. Jiao, and K. Kim. Simulation of ratcheting strain to a high number
of cycles under biaxial loading. International journal of solids and structures,
40(26):7449–7461, 2003.

[10] X. Chen, R. Jiao, and K. S. Kim. On the ohno–wang kinematic hardening rules
for multiaxial ratcheting modeling of medium carbon steel. International Jour-
nal of Plasticity, 21(1):161–184, 2005.

[11] W. Chung, J. Cho, and T. Belytschko. On the dynamic effects of explicit fem
in sheet metal forming analysis. Engineering Computations, 15(6):750–776,
1998.

127



[12] E. Corona, T. Hassan, and S. Kyriakides. On the performance of kinematic
hardening rules in predicting a class of biaxial ratcheting histories. International
Journal of Plasticity, 12(1):117–145, 1996.

[13] Y. Dafalias and E. Popov. A model of nonlinearly hardening materials for com-
plex loading. Acta mechanica, 21(3):173–192, 1975.

[14] P. Delobelle, P. Robinet, and L. Bocher. Experimental study and phenomenolog-
ical modelization of ratchet under uniaxial and biaxial loading on an austenitic
stainless steel. International Journal of Plasticity, 11(4):295–330, 1995.

[15] C. Gupta, J. Chakravartty, G. Reddy, and S. Banerjee. Uniaxial cyclic deforma-
tion behaviour of sa 333 gr 6 piping steel at room temperature. International
journal of pressure vessels and piping, 82(6):459–469, 2005.

[16] R. Halama, J. Sedlák, and M. Šofer. Phenomenological modelling of cyclic
plasticity. In Numerical Modelling. InTech, 2012.

[17] F. Harewood and P. McHugh. Comparison of the implicit and explicit finite
element methods using crystal plasticity. Computational Materials Science,
39(2):481–494, 2007.

[18] T. Hassan, E. Corona, and S. Kyriakides. Ratcheting in cyclic plasticity, part ii:
multiaxial behavior. International journal of plasticity, 8(2):117–146, 1992.

[19] T. Hassan and S. Kyriakides. Ratcheting of cyclically hardening and softening
materials: I. uniaxial behavior. International Journal of Plasticity, 10(2):149–
184, 1994.

[20] T. Hassan, L. Taleb, and S. Krishna. Influence of non-proportional loading
on ratcheting responses and simulations by two recent cyclic plasticity models.
International Journal of Plasticity, 24(10):1863–1889, 2008.

[21] T. Hassan, Y. Zhu, and V. C. Matzen. Improved ratcheting analysis of piping
components. International journal of pressure vessels and piping, 75(8):643–
652, 1998.

[22] T. J. Hughes and W. Liu. Implicit-explicit finite elements in transient analysis:
stability theory. Journal of applied Mechanics, 45(2):371–374, 1978.

[23] Y. Jiang and H. Sehitoglu. Modeling of cyclic ratchetting plasticity, part i: de-
velopment of constitutive relations. Journal of Applied Mechanics, 63(3):720–
725, 1996.

[24] G. Kang and Q. Kan. Constitutive modeling for uniaxial time-dependent ratch-
eting of ss304 stainless steel. Mechanics of Materials, 39(5):488–499, 2007.

128



[25] S. Kulkarni, Y. Desai, T. Kant, G. Reddy, Y. Parulekar, and K. Vaze. Uniaxial
and biaxial ratchetting study of sa333 gr. 6 steel at room temperature. Interna-
tional journal of pressure vessels and piping, 80(3):179–185, 2003.

[26] H. Mahbadi and M. Eslami. Cyclic loading of beams based on the prager and
frederick–armstrong kinematic hardening models. International Journal of Me-
chanical Sciences, 44(5):859–879, 2002.

[27] H. Mahbadi and M. Eslami. Cyclic loading of thick vessels based on the prager
and armstrong–frederick kinematic hardening models. International Journal of
Pressure Vessels and Piping, 83(6):409–419, 2006.

[28] N. Ohno and J.-D. Wang. Kinematic hardening rules with critical state of dy-
namic recovery, part i: formulation and basic features for ratchetting behavior.
International journal of plasticity, 9(3):375–390, 1993.

[29] L. Olovsson, K. Simonsson, and M. Unosson. Selective mass scaling for ex-
plicit finite element analyses. International Journal for Numerical Methods in
Engineering, 63(10):1436–1445, 2005.

[30] L. Olovsson, M. Unosson, and K. Simonsson. Selective mass scaling for thin
walled structures modeled with tri-linear solid elements. Computational Me-
chanics, 34(2):134–136, 2004.

[31] L. Portier, S. Calloch, D. Marquis, and P. Geyer. Ratchetting under tension–
torsion loadings: experiments and modelling. International Journal of Plastic-
ity, 16(3):303–335, 2000.

[32] B. Postberg and E. Weiß. Simulation of ratcheting of aisi 316l (n) steel under
nonproportional uniaxial loading and high number of load cycles using the ohno
and wang nonlinear kinematic material model. International journal of pressure
vessels and piping, 77(5):207–213, 2000.

[33] W. Prager. A new methods of analyzing stresses and strains in work hardening
plastic solids. J. Appl. Mech.(ASME), 23:493–496, 1956.

[34] S. M. Rahman, T. Hassan, and E. Corona. Evaluation of cyclic plasticity mod-
els in ratcheting simulation of straight pipes under cyclic bending and steady
internal pressure. International Journal of Plasticity, 24(10):1756–1791, 2008.

[35] M. Ruggles and E. Krempl. The influence of test temperature on the ratchetting
behavior of type 304 stainless steel. J. Eng. Mater. Technol.(Trans. ASME),
111(4):378–383, 1989.

[36] E. Q. Sun. Shear locking and hourglassing in msc nastran, abaqus, and ansys.
In Msc software users meeting, 2006.

129



[37] J. Sun, K. Lee, and H. Lee. Comparison of implicit and explicit finite element
methods for dynamic problems. Journal of Materials Processing Technology,
105(1):110–118, 2000.

[38] N. Tseng and G. Lee. Simple plasticity model of two-surface type. Journal of
Engineering Mechanics, 109(3):795–810, 1983.

[39] M. Yaguchi and Y. Takahashi. Ratchetting of viscoplastic material with cyclic
softening, part 1: experiments on modified 9cr–1mo steel. International Journal
of Plasticity, 21(1):43–65, 2005.

[40] F. Yoshida. A constitutive model of cyclic plasticity. International Journal of
Plasticity, 16(3):359–380, 2000.

[41] F. YOSHIDA, S. YAMAMOTO, M. ITOH, and M. OHMORI. Bi-axial strain
accumulations in mechanical ratcheting. Bulletin of JSME, 27(232):2100–2106,
1984.

130


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	Motivation
	Research Objectives
	Scope of the Research
	Outline of the Thesis

	Literature Survey
	Studies about Ratcheting
	Studies on Finite Element Modeling

	Theoretical Background
	Introduction
	Yield Functions
	Von-Mises Yield Function
	Hill48 Yield Function
	Aretz Yield Function

	Kinematic Hardening Rules
	Prager Kinematic Hardening Rule
	Armstrong-Frederick Kinematic Hardening Rule
	Burlet-Cailletaud Kinematic Hardening Rule
	Chaboche Kinematic Hardening Rule
	Bari-Hassan Kinematic Hardening Rule
	Ohno-Wang Kinematic Hardening Rule


	Finite Element Analyses
	Implicit and Explicit Analysis
	Formulation of Implicit Analysis
	Formulation of Explicit Analysis

	Radial Return Algorithm
	Return Algorithm for Linear Plasticity
	Return Algorithm for Nonlinear Plasticity

	Methods for Decreasing the Time Consumption
	Mesh Dependency
	The Used Model

	Results
	Uniaxial Ratcheting
	Prager Model
	Armstrong-Frederick Model
	Burlet-Cailletaud Model
	Chaboche Model
	Bari-Hassan Model
	Ohno-Wang Model
	Comparison of the Results of Uniaxial Ratcheting for Different Kinematic Hardening Models

	Biaxial Ratcheting
	Von Mises Yield Criterion
	Armstrong-Frederick Model
	Burlet-Cailletaud Model
	Chaboche Model
	Bari-Hassan Model
	Ohno-Wang Model

	Comparison of the Results of Different Kinematic Hardening Models

	Hill48 Yield Criterion
	Armstrong-Frederick Model
	Chaboche Model
	Ohno-Wang Model
	Comparison of Different Kinematic Hardening Models

	Aretz Yield Criterion
	Armstrong-Frederick Model
	Chaboche Model
	Ohno-Wang Model
	Comparison of Different Kinematic Hardening Models

	Comparison of Ratcheting for Using Different Yield Criteria

	Conclusion and Future Work
	Conclusion
	Future Work

	REFERENCES

