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ABSTRACT

THE INFLUENCE OF SOME EMBEDDING PROPERTIES OF
SUBGROUPS ON THE STRUCTURE OF A FINITE GROUP

Kızmaz, M.Yasir
Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Gülin Ercan

August 2018, 56 pages

In a finite group G, a subgroup H is called a TI-subgroup if H intersects trivially

with distinct conjugates of itself. Suppose that H is a Hall π-subgroup of G which

is also a TI-subgroup. A famous theorem of Frobenius states that G has a normal

π-complement whenever H is self normalizing. In this case, H is called a Frobenius

complement and G is said to be a Frobenius group. A first main result in this thesis

is the following generalization of Frobenius’ Theorem.

Theorem. Let H be a TI-subgroup of G which is also a Hall subgroup of NG(H).

Then H has a normal complement in NG(H) if and only if H has a normal comple-

ment in G. Moreover, if H is nonnormal in G and H has a normal complement in

NG(H) then H is a Frobenius complement.

In the above configuration, the groupG need not be a Frobenius group, but the second

part of the theorem guarantees the existence of a Frobenius group into which H can

be embedded as a Frobenius complement.

Another contribution of this thesis is the following theorem, which extends a result of
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Gow (see Theorem 1.0.1) to π-separable groups. This result shows that the structure

of a π-separable group admitting a Hall π-subgroup which is also a TI-subgroup is

very restricted.

Theorem. Let H be a nonnormal TI-subgroup of the π-separable group G where π

is the set of primes dividing the order ofH . Further assume thatH is a Hall subgroup

of NG(H). Then the following hold:

a) G has π-length 1 where G = Oπ′(G)NG(H);

b) there is an H-invariant section of G on which the action of H is Frobenius. This

section can be chosen as a chief factor of G whenever Oπ′(G) is solvable;

c) G is solvable if and only if Oπ′(G) is solvable and H does not involve a subgroup

isomorphic to SL(2, 5).

In the last chapter we focus on giving alternative proofs without character theory for

the following two solvability theorems due to Isaacs ( [5], Theorem 1 and Theorem

2). Our proofs depend on transfer theory and graph theory.

Theorem. Let G be a finite group having a cyclic Sylow p-subgroup. Assume that

every p′-subgroup of G is abelian. Then G is either p-nilpotent or p-closed.

Theorem. Let G be a finite group and let p 6= 2 and q be primes dividing |G|. Suppose

for every proper subgroupH ofG which is not a q-group nor a q′-group that p divides

|H|. If qa is the q-part of |G| and p > qa− 1 or if p = qa− 1 and a Sylow p-subgroup

of G is abelian then no primes but p and q divide |G|.

Keywords: TI-subgroups, normal complement, Frobenius group, p-nilpotent, p-closed
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ÖZ

BAZI ALTGRUP YERLEŞME ÖZELLİKLERİNİN
BİR SONLU GRUBUN YAPISI ÜZERİNE ETKİLERİ

Kızmaz, M.Yasir
Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Gülin Ercan

Ağustos 2018 , 56 sayfa

Sonlu bir G grubunun kendisinden farklı eşlenikleriyle kesişimleri sıradan olan H

altgrubuna TI-altgrup denir.H’nin TI-altgrup olma özelliği taşıyan bir Hall π-altgrubu

olduğunu varsayalım. Frobenius’un meşhur bir teoremi gösteriyor ki, eğer H öz nor-

malleştiren bir alt grupsa,G grubunun bir normal π-tamlayanı vardır. Bu durumdaH ,

Frobenius tamlayanı diye adlandırılır ve böyle gruplara da Frobenius grup denir.

Bu tezin ilk ana sonucu, Frobenius teoreminin bir genellemesi olarak elde ettiğimiz

aşağıdaki teoremdir.

Teorem. H , G’nin bir TI-altgrubu ve NG(H)’nin bir Hall altgrubu olsun. O zaman

H’nin G içinde bir normal tamlayanı olması için gerek ve yeter koşul H’nin NG(H)

içinde bir normal tamlayanı olmasıdır. EğerH ,G de normal değilse veH’ninNG(H)

içinde bir normal tamlayanı varsa, H bir Frobenius tamlayanıdır.

Yukarıdaki kurguda, G’nin bir Frobenius grup olması gerekmese de; teoremin ikinci

kısmı, H’nin, bir Frobenius grubun içine Frobenius tamlayanı olarak gömülebilece-

ğini garanti eder.
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Tezin diğer bir katkısı ise, Gow’a ait bir sonucu (Bkz. Teorem 1.0.1) π-ayrışabilir

gruplara genelleyen aşağıdaki teoremdir. Burada Hall π-altgrubu TI olma özelliği

taşıyan π-ayrışabilir grupların yapısının çok sınırlı olduğu gösterilmektedir.

Teorem. π kümesi H’nin mertebesini bölen asalların kümesi olmak üzere; H , π-

ayrışabilir bir grup olanG’nin normal olmayan bir TI-altgrubu olsun. Aynı zamanda

H’ninNG(H)’ye ait bir Hall altgrubu olduğunu varsayalım. O zaman aşağıdaki özel-

likler sağlanır.

a) G’nin π-uzunluğu 1’e eşittir ve G = Oπ′(G)NG(H) olur;

b) G’nin öyle bir H-değişmez kesiti vardır ki H’nin bu kesit üzerindeki etkisi Frobe-

nius’tur. Oπ′(G) çözülebilir olduğunda; G’nin bu kesiti, G nin bir ana kesiti olarak

seçilebilir.

c)G’nin çözülebilir olması için gerek ve yeter koşul Oπ′(G)’nin çözülebilir olması ve

H’nin SL(2, 5)’e izomorf olan bir altgrup içermemesidir.

Son olarak, Isaacs’e ait aşağıdaki iki ayrı çözülebilirlik teoremine ( [5], Teorem 1 and

Teorem 2) karakter teoriden bağımsız, sadece transfer teori ve çizge teorisi kullanarak

alternatif ispatlar sunacağız.

Theorem. Her Sylow p-altgrubu döngüsel ve her p′-altgrubu abelyen olan sonlu bir

grup ya p-kapalıdır, ya da p-nilpotenttir.

Theorem. p 6= 2 ve q, sonlu G grubunun mertebesini bölen asallar olsunlar. G’nin

q-altgrup ya da q′-altgrup olmayan her altgrubunun mertebesinin p’ye bölündüğünü

kabul edelim. qa, |G| nin q-kısmı olmak üzere p > qa − 1 veya p = qa − 1 ve Sylow

p-altgruplarının abelyen olsun. Bu durumda G nin mertebesini yalnız p ve q asalları

bölebilir.

Anahtar Kelimeler: TI-altgrup, normal tamlayan, Frobenius grup, p-nilpotent, p-

kapalı
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CHAPTER 1

INTRODUCTION

In the theory of finite groups, one of the questions of particular interest is how the

embedding properties of certain types of subgroups can influence the structure of the

whole group. The present thesis contributes to this kind of research by studying the

impact of different kinds of embeddings of some special subgroups. More specifi-

cally, this work has two main targets considered in chapters 3 and 4; the first of which

is to extend some results due to Gow and Frobenius by weakening their assumptions,

and the second of which is to give alternative proofs for two solvability theorems due

to Isaacs. Unlike the original proofs, we do not appeal to character theory.

We shall, from now on, assume that all groups under discussion are finite, and firstly

give a precise description of our results presented in Chapter 3.

A nontrivial subgroup H of a group G is called a TI-subgroup if H ∩ Hx = H or

trivial for any x ∈ G. Clearly, any normal subgroup is also a TI-subgroup but it

is not very interesting beside normality. Hence we mostly consider nonnormal TI-

subgroups. Being a TI-subgroup is a subgroup embedding property which forms the

central concept of Chapter 3 of this thesis. Historicaly our results begin with Frobe-

nius groups. In one of his celebrated works Frobenius proved that a self normalizing

TI-subgroup H of a group G has a normal complement in G, by using his theory

of induced characters. In this case, H is called a Frobenius complement. Moreover,

such groups G are named as Frobenius groups after him and they are well studied. It

is now over 100 years old and no purely group theoretical proof is still known. From

another point of view, in case a groupH acts on a groupK by automorphisms in such

a way that every nonidentity element ofH acts onK fixed point freely, the semidirect

product KH is a Frobenius group with complement H where the action of H on K is
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called Frobenius. Note also that we call H as a Frobenius complement if there exists

a group on which H has a Frobenius action. The structure of Frobenius complements

were investigated by Burnside and Zassenhaus: Sylow subgroups of Frobenius com-

plements are cyclic or generalized quaternion, moreover Frobenius complements are

solvable unless they contain subgroups isomorphic to SL(2, 5). Notice that Frobenius

complements are Hall subgroups of Frobenius groups, and so there are two natural

questions to ask for a given Hall subgroup H which is also a nonnormal TI-subgroup

of a group G:

Question A Under what conditions is H a Frobenius complement ?

Question B Under what conditions does H have a normal complement in G ?

In 1975, Gow obtained a partial answer to Question A, namely he proved the follow-

ing:

Theorem 1.0.1. (Gow) Let H be a Hall subgroup of the solvable group G such that

H is also a nonnormal TI-subgroup of G. Then H has an irreducible representation

on some elementary abelian section of G on which each of its nonidentity elements

acts without fixed points.

In the present thesis, we extend his result to π-separable groups as a more general

answer to Question A by proving

Theorem 1.0.2. Let H be a nonnormal TI-subgroup of the π-separable group G

where π is the set of primes dividing the order of H . Further assume that H is a Hall

subgroup of NG(H). Then the following hold:

a) G has π-length 1 where G = Oπ′(G)NG(H);

b) there is an H-invariant section of G on which the action of H is Frobenius. This

section can be chosen as a chief factor of G whenever Oπ′(G) is solvable;

c) G is solvable if and only if Oπ′(G) is solvable and H does not involve a subgroup

isomorphic to SL(2, 5).

It is apparent that the first statement of part (b) extends the result of Gow to π-

separable groups and says additionally that the section under consideration can be

2



chosen as a chief factor of G whenever Oπ′(G) is solvable. By parts (a) and (c) we

obtain a further determination of the structure of G.

Clearly in (c) we give a necessary and sufficient condition for a group G, satis-

fying the hypothesis of the theorem, to be solvable. Notice that, under the hy-

pothesis of above theorem, we have G = Oπ′(G)NG(H). On the other hand, by

Schur-Zassenhaus theorem (see 2.1.25), H has a complement in NG(H), say Q, and

hence the equality G = Oπ′(G)HQ holds. This need not be a semidirect product as

Oπ′(G) ∩Q may not be trivial.

Recall that a double Frobenius group is defined to be a group K such that K =

(Ao B)o C where AB and BC are Frobenius groups. Here B is a nonnormal TI-

subgroup of K and K = ANK(B) as NK(B) = BC. The structure of the group G,

in somehow, resembles the structure of a double Frobenius group. More precisely, we

obtained the following theorem showing that G has a factor group containing double

Frobenius groups under some additional hypothesis.

Theorem 1.0.3. Assume that the hypothesis of Theorem 1.0.2 hold. Assume further

that H is of odd order with [Oπ′(G), H] = Oπ′(G) and that Oπ′(G) is solvable with

Q � Oπ′(G)′. Set G = G/Oπ′(G)′. Then

a) G = (Oπ′(G)oH)oQ;

b) Q is an abelian group acting faithfully on H;

c) Oπ′(G)[H, β]〈β〉 is a double Frobenius group for every element β ∈ Q of prime

order.

A next question is to determine the structure of Oπ′(G). It seems that it may be really

difficult to answer as examples of similar questions show.

In proving the above theorem we need to obtain some new technical results which will

be given below. The following proposition is quite important as it gives a sufficient

condition which guarantees the conjugacy of Hall π-subgroups. Namely we prove

that there is a single conjugacy class of Hall π-subgroups whenever Hall π-subgroups

are TI-subgroups. This condition also guarantees that any π-subgroup is contained

in a Hall π-subgroup. It should be noted that a group G may have nonisomorphic

Hall π-subgroups. In this case, it is not possible that they are conjugate in G. On the
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other hand, even if all Hall-π subgroups are conjugate in G, it might be the case that

some of π-subgroups of G are not contained in any Hall π-subgroups.

Proposition 1.0.4. Let G be a group containing a Hall π-subgroup H which is also

a TI- subgroup. Then any π-subgroup of G is contained in a conjugate of H . In

particular, the set of all Hall π-subgroups of G forms a single G-conjugacy class.

The next theorem guarantees that the subgroup H in the hypothesis contains a Hall

subgroup which has a normal complement in G under some additional assumption.

Theorem 1.0.5. Assume that the hypothesis of Theorem 1.0.2 holds. Assume further

that a Sylow 2-subgroup of H is abelian and Q is a complement of H in NG(H).

Then CH(Q) is a Hall subgroup of G having a normal complement in G.

This theorem is obtained by using the result below which is of independent interest

too, especially for researchers studying coprime action.

Proposition 1.0.6. Let A be a group acting coprimely on G by automorphisms. As-

sume that Sylow subgroups of G are cyclic. Then,

a) CG(A) is a Hall subgroup of G;

b) G = [G,A]o CG(A);

c) the group [G,A] is cyclic.

We are now ready to present the most important result of this thesis as a full an-

swer to Question B by finding a necessary and sufficient condition for a Hall TI-

subgroup to have a normal complement. It generalizes the classical result of Frobe-

nius which asserts that for a Frobenius group G with complement H , the set N =

(G−
⋃
g∈GH

g) ∪ {1} is a normal subgroup of G with G = NH . Namely, we prove

the following.

Theorem 1.0.7. Let H be a TI-subgroup of G which is also a Hall subgroup of

NG(H). Then H has a normal complement in NG(H) if and only if H has a normal

complement inG. Moreover, ifH is nonnormal inG andH has a normal complement

in NG(H) then H is a Frobenius complement.

In this framework we may state the following open question:
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Conjecture. Let H be a TI-subgroup of G which is also a Hall π-subgroup of

NG(H). Then G/Oπ(G) ∼= NG(H)/Oπ(NG(H)).

Recall that this dissertation has two targets the second of which is to give character

free proofs to the following two solvability theorems due to Isaacs.

Theorem A Let G be a finite group having a cyclic Sylow p-subgroup. Assume that

every p′-subgroup of G is abelian. Then G is either p-nilpotent or p-closed.

Theorem B Let G be a finite group and let p 6= 2 and q be primes dividing |G|.
Suppose for every proper subgroup H of G which is not a q-group nor a q′-group that

p divides |H|. If qa is the q-part of |G| and p > qa − 1 or if p = qa − 1 and a Sylow

p-subgroup of G is abelian then no primes but p and q divide |G|.

It should be noted that the lack of a character-free proof for a theorem would always

be very impressive to the group theorists. We achieve these alternative proofs using

some basic transfer theoretical facts in reducing the structure of a minimal counterex-

ample to a hypothetical simple group. Then, the structure of the commuting graph of

involutions of the group G lead us to the final contradiction that G is 2-closed. In this

sense, our proofs are important as they do not use the complex machinery of character

theory.

We close this chapter by an outline of the thesis:

Chapter 2 includes all necessary preparation from general group theory, group action,

especially coprime action, and transfer theory. Most of them are well known results

which will be referred throughout the thesis.

Section 3.1 contains key propositions which will be needed to prove the main results

in Chapter 3 while Section 3.2 includes some technical lemmas pertaining to the

proofs. In Section 3.3 we present the results obtained as an answer to Question A. We

close Chapter 3 by Section 3.4 including a generalization of Frobenius’ theorem.

Chapter 4 is devoted to the character free proofs of two solvability theorems of Isaacs.

It begins with Section 4.1 consisting of graph theoretical preparation which we need

in the proofs. Sections 4.2 and Section 4.3 includes, in turn, the proof of Theorem A

and the proof of Theorem B.
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CHAPTER 2

BACKGROUND MATERIAL

This chapter is devoted to a review of general group theoretical facts, and to some

crucial results related to group action, especially coprime action and Frobenius action,

and transfer theory. They will be referred throughout the thesis.

2.1 General group theoretical part

Definition 2.1.1. Let G be a group. We define the commutator subgroup G′ of G by

G′ = 〈[g, h] = g−1h−1gh | g, h ∈ G〉.

Lemma 2.1.2. Let G be a group and N C G. Then G/N is abelian if and only if

G′ ≤ N .

Lemma 2.1.3. [7, pages 113,114] Let G be a group and g, h, k ∈ G. Then the

following identities hold:

(i) [g, h][h, g] = 1.

(ii) [gh, k] = [g, k]h[h, k].

(iii) [g, hk] = [g, k][g, h]k.

Definition 2.1.4. Let G be a group and let H,K ≤ G be subgroups. Then the com-

mutator of H and K, denoted by [H,K], is defined to be

[H,K] = 〈[h, k] | h ∈ H, k ∈ K〉.

Since the generators of [H,K] are the inverses of the generators of [K,H], we have

[H,K] = [K,H].

7



Note that the multiple commutator group [A1, A2, . . . , An−1, An] is recursively de-

fined to be [[A1, A2, . . . An−1], An] for n > 2 where {Ai | i = 1, . . . , n} is a collection

of subgroups of G. Similarly, we define [G,G, . . . , G]n = [[G,G . . . , G]n−1, G] for

n > 2.

Lemma 2.1.5. [7, Lemma 4.1] Let G be a group and let H,K be subgroups of G.

Then [H,K] E 〈H,K〉.

Lemma 2.1.6. [7, Lemma 4.9] (Three subgroup lemma) Let X, Y, Z be subgroups

of an arbitrary group G, and suppose that [X, Y, Z] = 1 and [Y, Z,X] = 1. Then

[Z,X, Y ] = 1.

Definition 2.1.7. A group G is called solvable if it has a normal subgroup series

1 = N0 ≤ N1 ≤ N2 . . . ≤ Nk = G such that Ni+1/Ni is abelian for i = 0, . . . , k−1.

Corollary 2.1.8. For a solvable group G, we have H ′ < H for each nontrivial sub-

group of H of G.

Lemma 2.1.9. [9, Theorem 5.46] Let N be a minimal normal subgroup of a solvable

group G. Then N is an elementary abelian p-group.

Lemma 2.1.10. [9, Theorem 5.45 (ii)] Let G be a group and N C G. Then G is

solvable if and only if both N and G/N are solvable.

Definition 2.1.11. Let G be a group. We define the center of G by

Z(G) = {g ∈ G | gx = xg for all x ∈ G}.

Definition 2.1.12. A group G is called nilpotent if it has a normal subgroup series

1 = N0 ≤ N1 ≤ N2 . . . ≤ Nk = G such that Ni+1/Ni ≤ Z(G/Ni) for i =

0, . . . , k − 1.

Definition 2.1.13. Let G be a group and p be a prime. We call G a p-group if each

element of G is of order pk for some nonnegative integer k.

Theorem 2.1.14. [7, Theorem 1.22] LetG be a nilpotent group and letH be a proper

subgroup of G. Then H < NG(H).

Theorem 2.1.15. [7, Theorem 1.26] Let G be a group. Then the following are equiv-

alent.
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a) G is nilpotent.

b) NG(H) > H for every proper subgroup H of G.

c) Every maximal subgroup of G is normal.

d) Every Sylow subgroup of G is normal.

e) G is the internal direct product of its nontrivial Sylow subgroups.

Corollary 2.1.16. Let G be a p-group. Then G is nilpotent.

Lemma 2.1.17. [9, Theorem 5.9 (i)] A group G is nilpotent if and only if G/Z(G) is

nilpotent.

Lemma 2.1.18. A group G is nilpotent if and only if [G,G, . . . , G]n = 1 for some

integer n.

Corollary 2.1.19. Let G be a nilpotent group and 1 6= N CG. Then N ∩Z(G) 6= 1.

Definition 2.1.20. For a group G, the intersection of all of maximal subgroups of G

is called the Frattini subgroup of G, which is denoted by Φ(G).

Lemma 2.1.21. [7, Lemma 4.5] Let N E P , where P is a p-group. Then P/N is

elementary abelian if and only if Φ(P ) ≤ N .

Theorem 2.1.22. [7, Corollary X.19] (NC-Theorem) Let G be a group and H be

a subgroup of G. Set N = NG(H) and C = CG(H). Then C C N and N/C is

isomorphic to a subgroup of Aut(H).

Lemma 2.1.23. (Dedekind Rule) Let A,B and C be subgroups of a group G. If

A ≤ C then A(B ∩ C) = AB ∩ C.

Proof. Let x ∈ A(B ∩C). Then x = as where a ∈ A and s ∈ B ∩C. It follows that

as ∈ AB. SinceA ≤ C, as is also an element ofC. Thus we getA(B∩C) ⊆ AB∩C.

Now let x = ab ∈ AB ∩ C where a ∈ A and b ∈ B. Since ab ∈ C and A ≤ C,

b ∈ C. It follows that b ∈ B∩C and x ∈ A(B∩C). Therefore AB∩C ⊆ A(B∩C),

and hence we have the desired equality.

Definition 2.1.24. Let G be a group and H be a subgroup of G. We say that H

has a complement in G, if there exists a subgroup K of G such that G = HK and

H ∩K = 1. Moreover, such K is called a normal complement whenever K EG.
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Theorem 2.1.25. [7, Theorem 3.8 and 3.12] (Schur-Zassenhaus Theorem) LetG be

a group and N EG such that gcd(|N |, |G : N |) = 1. Then there exists a complement

of N in G. Moreover, any two complements of N are conjugate by an element of N

whenever N or G/N is solvable.

Theorem 2.1.26. [7, Corollary X.7] Let G be a cyclic group. Then for each positive

divisor d of |G|, there is a unique subgroup of G of order d.

Theorem 2.1.27. [7, Lemma X.14] Let G be a cyclic group. Then Aut(G) is an

abelian group of order ϕ(|G|), where ϕ is Euler’s totient function.

Lemma 2.1.28. [7, Lemma X.15] Let N C G, where G is a group, and let C be

characteristic in N . Then C CG.

Lemma 2.1.29. Let G be a group and F = {Ni C G | i ∈ I} be a family of normal

subgroup of G where I is an finite index set. Then the group G/(
⋂
i∈I
Ni) is isomorphic

to a subgroup of
∏
i∈I
G/Ni.

Definition 2.1.30. A group G is called p-closed if it has a unique Sylow p-subgroup

P , that is, P EG.

Lemma 2.1.31. All subgroups of a p-closed group G are p-closed.

2.2 Group action

Definition 2.2.1. Let G be a group and Ω be a set. Let “." be a operation such that

g.x ∈ Ω for all g ∈ G and x ∈ Ω. We say that the group G acts on the set Ω if the

following are satisfied:

a) e.x = x for all x ∈ Ω where e is the identity element of G.

b) g1(g2.x) = (g1g2).x for all g1, g2 ∈ G and x ∈ Ω.

One can observe that each element of G induces a permutation on the set Ω. As a

consequence, we have a homomorphism ϕ : G → Sym(X). Conversely, if we have

a homomorphism ϕ : G→ Sym(X) then we may obtain a group action by setting

g.x = ϕ(g)(x)
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for all g ∈ G and x ∈ Ω.

Thus existence of such a homomorphism can be given as a equivalent definition of a

group action.

It should be noted that we also use notation xg to denote g.x when convenient.

Let G be act on Ω. The set Ox = {g.x | g ∈ G} is called an orbit of G for each

element x ∈ Ω. On the other hand, the subgroup StabG(x) = {g ∈ G | g.x = x} of

G is called the stabilizer of x in G. It is well known as the orbit-stabilizer theorem

(see [8], Corollary 4.10) that

|G : StabG(x)| = |Ox|.

It is easy to see that the set of all distinct orbits constitutes a partition of Ω. Then one

can obtain

|Ω| =
∑
x∈Ω0

|G : StabG(x)|

where Ω0 is the set of representatives of each orbits. The action of G on Ω is called

transitive if there is a single orbit, that is, for each x, y ∈ Ω, there exists g ∈ G such

that g.x = y.

Theorem 2.2.2. Let G be a group acting on a set Ω and let H be a subgroup of G

such that the action of H on Ω is transitive. Then the equality

StabG(α)H = G

holds for all α ∈ Ω.

Proof. Let g ∈ G and α ∈ Ω. Clearly gα ∈ Ω and there exists h ∈ H such that

hgα = α. Then hg ∈ Stab(α) and so g ∈ h−1Stab(α). Since g is arbitrary, the result

follows.

Definition 2.2.3. LetA andG be groups. We say thatA acts onG via automorphisms

if there is a homomorphism ϕ from A to Aut(G). In that case, we denote ϕ(a)(g) as

ga for all a ∈ A and g ∈ G.

In this case, ker(ϕ) = CA(G) = {a ∈ A | ga = g, ∀g ∈ G} and A/CA(G) is

isomorphic to a subgroup of Aut(G). We say that A acts faithfully on G if CA(G) =

1.

11



We also note that CG(A) = {g ∈ G | ga = g for all a ∈ A} forms a subgroup of G,

which is called the subgroup of fixed points of A in G.

Clearly, we can form the semidirect product Γ = GoϕA and consider CA(G), [G,A]

and CG(A) as subgroups of Γ.

Lemma 2.2.4. [7, Lemma 4.20] Let A act on G via automorphisms. Then [G,A] is

the unique smallest A-invariant normal subgroup of G such that the induced action

of A on the factor group is trivial.

Lemma 2.2.5. Let Γ be a group given by Γ = Go A. Then NΓ(A) = CG(A)A.

Proof. Clearly, NΓ(A) = NΓ(A) ∩ Γ = NΓ(A) ∩ GA. By Lemma 2.1.23, NΓ(A) =

A(G ∩ NΓ(A)) = ANG(A). On the other hand, [NG(A), A] ≤ G ∩ A = 1, and so

NG(A) ≤ CG(A). This yields that NG(A) = CG(A), and hence NΓ(A) = CG(A)A

as desired.

Lemma 2.2.6. Let A act on G via automorphisms. A subgroup H of G is A-invariant

if and only if [H,A] ≤ H . Moreover, if H and K are both A-invariant subgroups of

G then [H,K] is also A-invariant. In particular, [H,A] is A-invariant whenever H is

A-invariant.

Lemma 2.2.7. Let A act on G via automorphisms and N be an A-invariant normal

subgroup of G. Then the equality [G,A]N/N = [G/N,A] holds.

Definition 2.2.8. We say that A acts on G coprimely if A acts on G via automor-

phisms and gcd(|A|, |G|) = 1.

Theorem 2.2.9. [7, Lemma 3.24] (Glauberman) Let A act on G coprimely. Assume

that A or G is solvable. Further assume that the group GA acts on Ω such that the

action of G on Ω is transitive. Then A fixes at least one point of Ω. Moreover, for any

two fixed points α, β of A in Ω, there exists c ∈ CG(A) such that αc = β.

Corollary 2.2.10. [7, Theorem 3.23] Let A act on G coprimely. Assume that A or G

is solvable. Then for each prime p, the following hold:

a) There exists an A-invariant Sylow p-subgroup of G.

b) If S and T are A-invariant Sylow p-subgroups of G then there exists c ∈ CG(A)

such that Sc = T whenever A or G is solvable.
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Corollary 2.2.11. [7, Corollary 3.23] Let A act on G coprimely. Assume that A or G

is solvable. Then every A-invariant p-subgroup is contained in an A-invariant Sylow

p-subgroup of G.

Theorem 2.2.12. [7, Theorem 3.26] Let A act on G coprimely. Assume that A or G

is solvable. Then any two elements of CG(A) which are conjugate by an element of

G are also conjugate by an element of CG(A).

Corollary 2.2.13. [7, Corollary 3.28] Let A act on G via automorphisms and let N

be an A-invariant normal subgroup of G. Assume that gcd(|A|, |N |) = 1 and that A

or N is solvable. Writing G = G/N , we have CG(A) = CG(A).

Corollary 2.2.14. [7, Corollary 3.29] Let A act on G coprimely. Then the action of

A on G is trivial if and only if the induced action of A on G/Φ(G) is trivial.

Lemma 2.2.15. [7, Lemma 3.32] Let A act on G coprimely. Assume that A or G is

solvable and let P ∈ Sylp(G) be A-invariant. Then P ∩ CG(A) ∈ Sylp(CG(A)).

Theorem 2.2.16. [7, Lemma 4.28] Let A act on G coprimely. Assume that A or G

is solvable. Then the equality G = [G,A]CG(A) holds.

Lemma 2.2.17. [7, Lemma 4.29] LetA act onG coprimely. Then [G,A,A] = [G,A].

Theorem 2.2.18. [7, Theorem 4.34] (Fitting) Let A act on an abelian group G

coprimely. Then the equality G = [G,A]× CG(A) holds.

Corollary 2.2.19. LetA act coprimely on a cyclic p-group P . Then either [P,A] = P

or [P,A] = 1, equivalently, CP (A) = P or CP (A) = 1.

Proof. By Theorem 2.2.18, we have P = [P,A]× CP (A). Since P is cyclic, it has a

unique subgroup of order p. This forces that either [P,A] = 1 or CP (A) = 1, that is,

[P,A] = P .

2.3 Dihedral and Quaternion groups and their automorphism groups

Definition 2.3.1. A group G is called dihedral if it contains a nontrivial cyclic sub-

group C of index 2 such that each element of G \ C is an involution.
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Lemma 2.3.2. A dihedral group G of order greater than 4 has a unique cyclic sub-

group C of index 2. In this case, C is also a characteristic subgroup of G.

Proof. Let G be a dihedral group of order greater than 4. Then G has a cyclic sub-

group C of index 2 where the set G \ C consists of involutions. Assume D = 〈y〉
is another cyclic subgroup of G of index 2. We have |y| > 2 as |G| > 4. Since

y /∈ G \C, we obtain that y ∈ C, and hence D = C as desired. The uniqueness of C

yields that C is characteristic in G.

Remark 2.3.3. The dihedral group G = {1, a, b, c} of order 4 is isomorphic to Klein

4-group, that is, Z2 × Z2. Aut(G) acts on the set G \ {1}, and hence it is isomorphic

to a subgroup of S3. One can easily check that the cycles α = (a, b, c) and β = (a, b)

induce automorphisms on G, and hence Aut(G) ∼= S3.

Lemma 2.3.4. [7, Lemma 2.14 (a)] Let G be a group with a cyclic subgroup C of

index 2 and i ∈ G \ C be an involution. Then for each g ∈ C, gi = g−1 if and only if

G is a dihedral group.

Lemma 2.3.5. [7, Lemma 2.14 (b)] Let G be a group and i, j be two involutions

in G. Set D = 〈i, j〉. Then D is a dihedral group with cyclic subgroup C = 〈ij〉 of

index 2.

Definition 2.3.6. Let G be a 2-group with a cyclic subgroup C of index 2. Then G is

called a quaternion group if there exists y ∈ G \C of order 4 such that xy = x−1 for

each x ∈ C.

Lemma 2.3.7. Let G be a quaternion group. Then the following hold;

a) G has a unique involution z, which is contained in Z(G).

b) The quotient G/〈z〉 is a dihedral group.

Proof. Let C = 〈x〉 be a cyclic subgroup G of index 2 and y ∈ G \C of order 4 such

that xy = x−1.

(a) Since C is a cyclic 2-group, it has a unique involution, say z. We claim that z is

the only involution of G, that is, there is no involution in the set G \ C. Suppose not

and pick a ∈ G \ C. Then a = xny for some n ∈ Z as the set G \ C is equal to the
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right coset Cy. Now,

a2 = (xny)(xny) = y(y−1xny)(xny) = yx−nxny = y2 6= 1.

Consequently, z is the unique involution in G, and hence z ∈ Z(G).

(b) Set G = G/〈z〉. Since z ∈ C, we clearly have |G : C| = 2 and C is cyclic. As

y2 is an involution, we also have y2 = z by part (a). Thus, y is an involution lying

in the set G \ C such that xy = xy = x−1. Hence G is a dihedral group by Lemma

2.3.4.

Theorem 2.3.8. Let G be a dihedral 2-group with |G| > 4 or a quaternion group

with |G| > 8. Then Aut(G) is a 2-group.

Proof. Suppose first that G is a dihedral group of order greater than 4 and let C be

a cyclic subgroup of index 2. Then C is a characteristic subgroup of G by Lemma

2.3.2.

Let α ∈ Aut(G) of odd order. Note that α induces the trivial automorphism on G/C

as G/C ∼= Z2. On the other hand, α also induces the trivial homomorphism on C as

|Aut(C)| = 2k−1 by Theorem 2.1.27, where |C| = 2k. Then [G,α, α] = 1, and hence

[G,α] = 1 by Lemma 2.2.17. Thus, α = 1 as required.

Suppose next that G is a quaternion group of order greater than 8 and let z be the

unique involution in G. Notice that 〈z〉 is a characteristic subgroup of G. Pick α ∈
Aut(G) of odd order. Then G = G/〈z〉 is a dihedral group by Lemma 2.3.7. Since

|G| > 4, we have [G,α] = 1 by the above argument. Since [〈z〉, α] = 1, we get

[G,α, α] = 1, and hence [G,α] = 1 by Lemma 2.2.17.

Corollary 2.3.9. Let G be a quaternion group. Then Aut(G) is solvable.

Proof. By the above theorem, we only need to consider the case that G is the quater-

nion group of order 8. Let z be the unique involution of G. Then Aut(G) acts

on G/〈z〉 via automorphisms, where G/〈z〉 is a dihedral group of order 4, that is,

G/〈z〉 ∼= Z2×Z2 by Lemma 2.3.7. Let K be the kernel of this action. Then we have

[G,K] ≤ 〈z〉 and Aut(G)/K is isomorphic to a subgroup of Aut(Z2 × Z2) = S3,

which is solvable. Therefore, it is sufficient to show that K is solvable by Lemma
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2.1.10. Let 1 6= k ∈ K of odd order. As [k, 〈z〉] = 1, we get [G, k] = [G, k, k] = 1

by Lemma 2.2.17. This contradicts the fact that [G, k] 6= 1 as k ∈ Aut(G). It follows

that K is a 2-group, and so Aut(G) is solvable as desired.

2.4 Hall subgroups and p-nilpotency

Definition 2.4.1. A subgroupH of a groupG is called a Hall subgroup if gcd(|H|, |G :

H|) = 1. Moreover, we call H a Hall π-subgroup to emphasize that |H| is a π-

number for a prime set π.

Note that Hall π-subgroups may not exist for a prime set π in general. The following

theorem guarantees the existence of Hall subgroups in solvable groups.

Theorem 2.4.2. [2, Theorem 4.1] (Hall) Let G be a solvable group and let π be a

set of primes. Then G has a Hall π-subgroup. Moreover, any two Hall π-subgroups

of G are conjugate in G and each π-subgroup of G is contained in a Hall π-subgroup

of G.

Definition 2.4.3. Let G be a group and π be a set of primes. We say that G is π-

separable, if there exists a normal subgroup series 1 = N0 ≤ N1 ≤ . . . ≤ Nk = G

such that Ni+1/Ni is either π-group or π′-group for i = 0, . . . , k − 1.

Lemma 2.4.4. Let G be a π-separable group. Then all subgroups of G are π-

separable.

Proof. Suppose that G is π-separable group, that is, there is a normal subgroup series

1 = N0 ≤ N1 ≤ . . . ≤ Nk = G

such that Ni+1/Ni is either π-group or π′-group for i = 0, . . . , k − 1. Let H be a

subgroup of G. Set Hi = Ni ∩ H for each i. Clearly each Hi is normal in H , and

hence

1 = H0 ≤ H1 ≤ . . . ≤ Hk = H

is a normal subgroup series in H .
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Now consider the group Ni+1/Ni. We have

(Ni+1/Ni) ∩ (HNi/Ni) = (H ∩Ni+1)Ni/Ni

which is a subgroup of Ni+1/Ni. Observe that

(H ∩Ni+1)Ni/Ni
∼= H ∩Ni+1/(H ∩Ni+1 ∩Ni) = H ∩Ni+1/H ∩Ni = Hi+1/Hi.

It then follows that Hi+1/Hi is isomorphic to a subgroup of Ni+1/Ni. Thus, each

Hi+1/Hi is either π-group or π′-group, and hence H is π-separable.

Theorem 2.4.5. [7, Theorem 3.20] Let G be a π-separable group. Then G has a

Hall π-subgroup.

In a group G, Oπ(G) is defined to be the largest normal π-subgroup of G.

Theorem 2.4.6. [7, Theorem 3.13] (Hall-Higman) Let G be a π-separable group

such that Oπ′(G) = 1. Then

CG(Oπ(G)) ≤ Oπ(G).

Definition 2.4.7. Let G be a π-separable group. The π-length of G is the minimum

possible number of π-factors that are π-groups in any normal series of G in which

each factor is either π-group or π′-group.

Definition 2.4.8. Let G be a group and let π be a prime set. We say that G has a

normal π-complement if G has a normal Hall π′-subgroup. In the case where G has

a normal π-complement for π = {p} then G is called a p-nilpotent group.

Lemma 2.4.9. All subgroups of a p-nilpotent group are p-nilpotent.

Proof. Let G be a p-nilpotent group, that is, G has a normal Hall p′-subgroup N .

Let H ≤ G. Then H ∩ N is a normal π-subgroup of H . Since G/N is p-group,

HN/N ∼= H/H ∩ N is also p-group. It follows that H ∩ N is a normal Hall p′-

subgroup of H , and hence H is p-nilpotent.

Lemma 2.4.10. If G is a group which is p-nilpotent for each prime p-dividing its

order, then G is nilpotent.
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Proof. Let G be a group which is p-nilpotent for each prime p dividing |G| and let P

be a Sylow p-subgroup of G. We claim first that P CG. Let us proceed by induction

on the order of G. We may assume that G is not a p-group. Let q be a prime dividing

the orderG such that q 6= p. Then by the hypothesis,G has a normal Hall q′-subgroup

N , which contains P . Note that N is a proper group satisfying the hypothesis and so

P E N by induction. Then P is a characteristic subgroup of N , and hence P C G.

Since p is arbitrary, we see by Theorem 2.1.15 that G is nilpotent.

Theorem 2.4.11. [8, Lemma 8.10] (Frattini argument) LetG be a group andNEG.

Assume that H is a Hall π-subgroup of N such that any Hall π-subgroup of N is

conjugate to H . Then the equality G = NG(H)N holds.

Proof. It follows as a corollary of Theorem 2.2.2.

2.5 Transfer and fusion

Definition 2.5.1. Let G be a group and H ≤ G. A right transversal set for H in G is

a set constructed by choosing exactly one element from each right coset of H in G.

Definition 2.5.2. Let G be a group and H ≤ G. For each right transversal T for H

in G, we define the action of G on T by t.g = s for any t, s ∈ T and g ∈ G where

Htg = Hs.

It is trivial to check that the "dot operation" is really an action. Notice that tg(t.g)−1 ∈
H for any t ∈ T and g ∈ G. We call this action as a "dot action".

Definition 2.5.3. Let G be a group and H ≤ G. Let T = {ti | i = 1, 2 . . . , n} be a

right transversal for H in G. The map V : G→ H defined by

V (g) =
n∏
i=1

tig(ti.g)−1

is called a pretransfer map from G to H .

Definition 2.5.4. Let G be a group and H ≤ G. The map v : G → H/H ′ defined

by v(g) = V (g)H ′ where V is a pretransfer map from G to H is called the transfer

map from G to H/H ′.
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Theorem 2.5.5. [7, Theorem 5.1] LetG be a group and letH ≤ G. Then the transfer

map v from G to H/H ′ is independent of the choice of the right transversal used to

define it.

Notice that v is also independent of an ordering of elements of T . Thus, we may write

V (g) =
∏
t∈T

tg(t.g)−1 instead of V (g) =
n∏
i=1

tig(ti.g)−1.

Theorem 2.5.6. [7, Theorem 5.2] Let G be a group and H ≤ G. Then the transfer

map v from G to H/H ′ is a homomorphism.

Lemma 2.5.7. [7, Lemma 5.5] Let G be a group and H ≤ G. Let V be a pretransfer

map from G to H constructed by using the right transversal T . Fix an element g ∈ G
and let T0 be the set of orbit representatives of the dot action of 〈g〉 on the set T and

let nt denote the length of the orbit represented by t for t ∈ T0. Then the following

hold:

a) tgntt−1 ∈ H for all t ∈ T0.

b) V (g)H ′ = (
∏
t∈T0

tgntt−1)H ′.

Lemma 2.5.8. [7, Lemma 5.11] Let H be a Hall subgroup of G and let v be the

transfer map from G to H/H ′. Then v(G) = v(H), and so |H : H ∩Ker(v)| = |G :

ker(v)|.

Definition 2.5.9. Let G be a group and let H ≤ K ≤ G. We say that K controls

G-fusion in H if any two elements of H which are conjugate by an element of G are

also conjugate by an element of K.

Theorem 2.5.10. (Wielandt) Let G be a group having a nilpotent Hall π-subgroup.

Then any two nilpotent Hall π-subgroups of G are conjugate in G.

Proof. We proceed by induction on the order of G. Let H and K be nilpotent Hall

π-subgroups of G. Let P ∈ Sylp(H) and Q ∈ Sylp(K). Then there exists x ∈ G

such that P = Qx and hence P ≤ H ∩Kx. Since both H and Kx are nilpotent, we

get H,Kx ≤ NG(P ). If NG(P ) < G then H and Kx are conjugate in NG(P ) by the

inductive hypothesis. Thus, we may assume that P CG. In this case H/P and Kx/P

are conjugate in G/P by induction, that is, H/P = (Kx/P )y = Kxy/P for some

y ∈ G. It follows that H = Kxy, which concludes the proof.
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Remark 2.5.11. What Wielandt proved is more general than what we stated. He

proved that any two Hall π-subgroups of G are conjugate under the hypothesis of the

above theorem. Yet, we shall not need this stronger form.

Now by using the Wielandt’s Theorem, we state [7, Lemma 5.12] in a stronger form.

Lemma 2.5.12. Let G be a group and let H be a nilpotent Hall π-subgroup of G.

Then NG(H) controls G-fusion in CG(H).

Proof. Let x, xg ∈ CG(H). Then x is contained in both CG(H) and CG(Hg−1
), and

hence H,Hg−1 ≤ CG(x). There exists y ∈ CG(x) such that Hy = Hg−1 by Theorem

2.5.10. We have yg ∈ NG(H) and xyg = xg, completing the proof.

We also give [7, Theorem 5.18] in a general setting.

Theorem 2.5.13. Let H be an abelian Hall π-subgroup of G and let v be the transfer

map from G to H/H ′. Then

ker(v) ∩H ∩ Z(NG(H)) = 1.

Proof. Let x ∈ ker(v) ∩H ∩ Z(NG(H)). Since x ∈ ker(v), we get

1 = v(x) =
∏
t∈T0

txntt−1

by Lemma 2.5.7(b). Note that xnt ∈ H as x ∈ H and txntt−1 ∈ H by Lemma

2.5.7(a). Since H is abelian, we have H ≤ CG(H). Then by Lemma 2.5.12, NG(H)

controls G-fusion in H , and hence xnt and txntt−1 are also conjugate by an element

of NG(H). However, xnt ∈ Z(NG(H)) and hence, xnt = txntt−1. Thus, 1 = v(x) =∏
t∈T0

txntt−1 =
∏
t∈T0

xnt = x|G:H|. Since x is a π-element and |G : H| is a π′-number,

we obtain that x = 1, which completes the proof.

Corollary 2.5.14. Let H be an abelian Hall π-subgroup of G. Then

G′ ∩H ∩ Z(NG(H)) = 1.

Corollary 2.5.15. (Burnside) Let H be Hall π-subgroup of G. Assume that H ≤
Z(NG(H)). Then G has a normal π-complement.
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Proof. By Theorem 2.5.13, ker(v) ∩ H ∩ Z(NG(H)) = ker(v) ∩ H = 1. Since

|G : ker(v)| = |H : ker(v) ∩ H| = |H| by Lemma 2.5.8, we get G = ker(v)H .

Then ker(v) is the desired normal π-complement.

Corollary 2.5.16. Let P be a cyclic Sylow p-subgroup of G. Then either G is p-

nilpotent or P ≤ G′.

Proof. Assume that P � G′ and let α ∈ NG(P ) of p′-order. Note that [P, α] < P

as [P, α] ≤ G′. We have [P, α] = 1 by Corollary 2.2.19. On the other hand, P is the

unique Sylow p-subgroup of NG(P ) and centralized by p-elements of NG(P ). Thus,

P ≤ Z(NG(P )), and hence G is p-nilpotent by Burnside theorem (see 2.5.15).

Corollary 2.5.17. Let P be a cyclic Sylow p-subgroup of G where p is the smallest

prime dividing the order of G. Then G is p-nilpotent.

Proof. If P ∼= Cpk then |Aut(P )| = φ(pk) = pk−1(p − 1). By Theorem 2.1.22,

|NG(P )/CG(P )| divides pk−1(p−1). Since p is the smallest prime dividing the order

of G, we get q = p. This contradicts the fact that |NG(P )/CG(P )| is a p′-number.

Therefore NG(P ) = CG(P ), that is, P ≤ Z(NG(P )). Thus G is p-nilpotent by

Burnside theorem (see 2.5.15).

Corollary 2.5.18. Let G be a group whose Sylow subgroups are all cyclic. Then G is

solvable.

Proof. We proceed by induction on the order G. Let P ∈ Sylp(G) where p is the

smallest prime dividing the order of G. Then G has a normal p-complement, say N

by Corollary 2.5.17. Since N satisfies the hypothesis, we see that N is solvable by

induction. On the other hand, G/N ∼= P , and hence G/N is also solvable. As a

consequence, G is solvable by Lemma 2.1.10.

Definition 2.5.19. Let G be a group and let π be a set of primes. We define Aπ(G)

as the smallest normal subgroup of G such that G/Aπ(G) is an abelian π-group.

Similarly, we defineOπ(G) as the smallest normal subgroup ofG such thatG/Oπ(G)

is a π-group.

21



Definition 2.5.20. Let H be a subgroup of G. We define the focal subgroup H of G

by

FocG(H) = 〈{x−1y | x ∈ H and y ∈ xG ∩H}〉.

Now we state ( [7], Theorem 5.21) in a stronger form.

Theorem 2.5.21. (Focal Subgroup Theorem) [7, Theorem 5.21]

LetH be a Hall π-subgroup ofG and let v be the transfer map fromG toH/H ′. Then

FocG(H) = H ∩G′ = H ∩ Aπ(G) = H ∩ ker(v).

Proof. We first show that

FocG(H) ≤ H ∩G′ ≤ H ∩ Aπ(G) ≤ H ∩ ker(v).

Since FocG(H) is generated by some commutators, it is contained in G′. It is clear

that FocG(H) ≤ H , and so FocG(H) ≤ H∩G′. SinceG′ ≤ Aπ(G) by Lemma 2.1.2,

we also getH∩G′ ≤ H∩Aπ(G). As v : G→ H/H ′ andH/H ′ is abelian,G/ker(v)

is an abelian π-group. Thus we have Aπ(G) ≤ ker(v), and hence H ∩ Aπ(G) ≤
H ∩ ker(v).

It remains to show that H ∩ ker(v) ≤ FocG(H) to conclude the proof. Let x ∈
H ∩ ker(v) and let V be a pretransfer map from G to H . Then we have

H ′ = v(x) = V (x)H ′ = (
∏
t∈T0

txntt−1)H ′

by Lemma 2.5.7(b). It follows that (
∏
t∈T0

txntt−1) ∈ H ′. Notice that both txntt−1 and

xnt are elements of H , and hence txntt−1x−nt ∈ FocG(H). Now

H ′ = (
∏
t∈T0

txntt−1x−ntxnt)H ′ = (
∏
t∈T0

txntt−1x−nt)
∏
t∈T0

(xnt)H ′ ≤ FocG(H).

Since (
∏
t∈T0

txntt−1x−nt) ∈ FocG(H), we get
∏
t∈T0

(xnt) = x|G:H| ∈ FocG(H). It then

follows that x ∈ FocG(H) as x is a π-element and |G : H| is a π′-number.

Theorem 2.5.22. Let G be a group and let P ∈ Sylp(G). Then G is p-nilpotent if

and only if P controls G-fusion in itself.
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Proof. First assume thatN is the normal p-complement ofG. Let x, xg ∈ P for some

g ∈ G. Then g = nh for some n ∈ N and h ∈ P . It follows that Nxg = Nxh, and

hence x−gxh ∈ P ∩N = 1. Thus xg = xh. As a consequences, P controls G-fusion

itself.

Conversely, assume that P controls G-fusion in itself. Let O = Op(G), K = O ∩ P
and A = Ap(O). Since A is characteristic in O and O is normal in G, we have

ACG. Moreover, G/A is a p-group as G/O and O/A are both p-groups. Therefore

O = A. Notice that K ∈ Sylp(O). Then by the focal subgroup theorem (see 2.5.21),

FocO(K) = K ∩ A = K. Now assume that K 6= 1. Since P -controls G-fusion in

itself, if two elements ofK are conjugate by an elementO then they are also conjugate

by an element of P . It then follows that FocO(K) ≤ FocP (K). As K C P , we get

K = FocO(K) ≤ FocP (K) = [P,K] < K. This contradiction shows that K = 1

and O is the desired normal p-complement.

2.6 Frobenius groups and TI-subgroups

Definition 2.6.1. Let A be a nontrivial group acting on a group G via automor-

phisms. We say that the action of A on G is Frobenius (or A acts Frobeniusly on G)

if CG(a) = 1 for each nonidentity element a of A.

Lemma 2.6.2. Let A be a group acting on G via automorphism. Then A acts on G

Frobeniusly if and only if CA(g) = 1 for each nonidentity element g ∈ G.

Proof. Suppose first that the action of A on G is Frobenius, that is, CG(a) = 1 for

each nonidentity element a ∈ A. Let g be an arbitrary nonidentity element of G. If

1 6= x ∈ CA(g) then 1 6= g ∈ CG(x), which is not the case. Thus CA(g) = 1 for all

1 6= g ∈ G.

Now assume that CA(g) = 1 for each nonidentity element g ∈ G. Let a be an

arbitrary nonidentity element of A. If 1 6= y ∈ CG(a) then 1 6= a ∈ CA(y), which

is not the case. Thus, CG(a) = 1 for all 1 6= a ∈ A, that is, A acts Frobeniusly on

G.
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Lemma 2.6.3. [7, Lemma 6.1] Let a group A have Frobenius action on a group G.

Then we have |G| ≡ 1 mod |A|. In particular, a Frobenius action is also a coprime

action.

Proof. For each nonidentity x ∈ G, we have |A/CA(x)| = |A| due to the Frobenius

action by Lemma 2.6.2. Hence the result follows.

Corollary 2.6.4. [7, Corollary 6.1] Let a group A have Frobenius action on a group

G. Suppose that N is an A-invariant normal subgroup of G. Then the induced action

of A on G/N is also Frobenius.

Proof. Let a be a nonidentity element of A. By the above lemma, A acts on G

coprimely. Thus, we have CG/N(a) = CG(a)N/N = N by Corollary 2.2.13, which

proves the claim.

Theorem 2.6.5. [7, Theorem 6.3] Let a group A have Frobenius action on a nontriv-

ial group G. If |A| is even then A contains a unique involution and G is abelian.

Definition 2.6.6. Let G be a group and H ≤ G. We say that H is a TI-subgroup of

G if for every g ∈ G, H ∩ Hg = H or H ∩ Hg = 1, that is, H ∩ Hg = 1 for all

g ∈ G \NG(H).

Lemma 2.6.7. Let G be a group and H be a TI-subgroup of G. Then the following

hold.

a) Hg is a TI-subgroup of G for each g ∈ G.

b) If K ≤ G then H ∩K is a TI-subgroup of K.

c) Every characteristic subgroup of H is also a TI-subgroup of G.

Proof. a) Assume that Hg ∩Hgx 6= Hg. Then we get

(Hg ∩Hgx)g
−1

= H ∩Hgxg−1 6= Hgg−1

= H.

Since H is a TI-subgroup, we get H ∩Hgxg−1
= 1, and so Hg ∩Hgx = 1g = 1. It

follows that Hg is also a TI-subgroup.

b) Let K be a subgroup of G and set S = H ∩K. Suppose that S ∩ Sk 6= 1 for some

k ∈ K. Then we get H ∩Hk 6= 1, as S ∩Sk ≤ H ∩Hk. It follows that Hk = H , and

hence Sk = (H ∩K)k = Hk ∩K = H ∩K = S. Thus, S is a TI-subgroup of K.
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c) Let C be a characteristic subgroup of H and let x ∈ G \ NG(C). Then we have

CCNG(H). It follows that x /∈ NG(H), and henceC∩Cx ≤ H∩Hx = 1. Therefore,

C is a TI-subgroup of G as desired.

A subgroup H of G is called self normalizing if NG(H) = H .

Definition 2.6.8. Let G be a group and H be a proper subgroup of G. Then G is

called a Frobenius group with complement H if H is a self normalizing TI-subgroup

of G.

Theorem 2.6.9 (Frobenius). Let G be a Frobenius group with complement H . Then

the set N = (G \
⋃
g∈GH

g) ∪ {1} is a normal subgroup of G. Moreover, G = NH

and N ∩H = 1.

Definition 2.6.10. Let G be a Frobenius group with complement H . The normal

subgroup N = (G \
⋃
g∈GH

g) ∪ {1} of G is called a Frobenius kernel of G.

Lemma 2.6.11. Let G be a Frobenius group with complement H . Then H is a Hall

subgroup of G.

Proof. Let X be a set of representatives of the double coset (H,H) in G. Then we

have |G| =
∑
x∈X
|HxH|. Note that if x ∈ H then |HxH| = |H| and otherwise,

|HxH| = |H(xHx−1)x| = |H(Hx−1

)| = |H||xHx−1|/|(H ∩Hx)| = |H|2.

It follows that |G| = |H| + k|H|2 for some k. Then we have |G : H| = 1 + k|H|,
and hence gcd(|H|, |G : H|) = 1 as desired.

By the above lemma, we may consider Theorem 2.6.9 as a normal π-complement

theorem where π is the prime set of H .

Lemma 2.6.12. Let G be a Frobenius group with complement H and kernel N . Then

the conjugation action of H on N is a Frobenius action.

Proof. Let h be a nonidentity element of H and pick n ∈ CN(h). It then follows

that hn = h, and hence 1 6= h ∈ H ∩ Hn. We obtain now that H = Hn as H is a

TI-subgroup. Then n ∈ NG(H) ∩N = H ∩N = 1, which forces that n = 1. Thus
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we get CN(h) = 1 for all 1 6= h ∈ H , that is, the action of H on N is Frobenius as

required.

The following lemma is the dual of the above lemma.

Lemma 2.6.13. Let H be a group acting Frobeniusly on the group N . Then the

semidirect product G = N oH is a Frobenius group with complement H and kernel

N .

Proof. First we observe that NG(H) = H . By Lemma 2.2.5, we have NG(H) =

CN(H)H . Pick 1 6= h ∈ H . It follows that CN(H) ≤ CN(h) = 1 due to Frobenius

action, and hence NG(H) = H as required.

Suppose next that H ∩Hg 6= 1 for some g ∈ G. Now g = hn for some h ∈ H and

n ∈ N . Then we have H ∩ Hn 6= 1, and hence hn ∈ H for some h 6= 1. It follows

that h−1hn = [h, n] ∈ H ∩ N = 1. Thus we get n = 1 due to the Frobenius action.

This gives H ∩Hg = H , and hence H is a self normalizing TI-subgroup of G. As a

result, G is a Frobenius group with complement H .

It remains to show that N is the Frobenius kernel of G. Obviously

N ⊆ (G \
⋃
g∈G

Hg) ∪ {1}

and hence it is enough to observe that they have the same cardinality. By a simple

counting argument, we get

|(G \
⋃
g∈G

Hg) ∪ {1}| = |G| − (|H| − 1)|G : H| − 1 + 1 = |G : H| = |N |.

This completes the proof.

The above lemma leads to an equivalent definition of a Frobenius complement. Namely,

a groupH is said to be a Frobenius complement if it has a Frobenius action on a group

N .

Theorem 2.6.14. [7, Theorem 6.7] Let G be a group and let 1 < N C G. Suppose

that CG(n) ≤ N for each nonidentity element n ∈ N . Then G is a Frobenius group

with kernel N .
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Proof. Let p be a prime dividing the order of N and let P ∈ Sylp(G). Since 1 6=
P ∩ N E P , Z(P ) ∩ (P ∩ N) = Z(P ) ∩ N 6= 1 by Corollary 2.1.19. Let now

1 6= z ∈ Z(P ) ∩N . Then P ≤ CG(z) ≤ N , and hence p is not a divisor of |G : N |.
This shows that gcd(|N |, |G : N |) = 1, and so there exists a complement H in G by

Schur-Zassenhaus theorem (see 2.1.25).

Notice that for every 1 6= n ∈ N , we have CH(n) = 1 as CG(n) ≤ N . Thus,

the conjugation action of H on N is Frobenius by Lemma 2.6.2, and hence G is a

Frobenius group by Lemma 2.6.13 as claimed.

Definition 2.6.15. Let G be a group. A partition Ω of G is a collection of subgroups

ofG such thatG =
⋃
H∈Ω

H and for every distinct pairH,K ∈ Ω, we haveH∩K = 1.

Lemma 2.6.16. [7, Lemma 6.8] Let A be a group acting on an abelian group U via

automorphisms. Suppose that A has a partition Ω and U has an element whose order

is not a divisor of |Ω| − 1. Then there exists H ∈ Ω such that CU(H) 6= 1.

Now we state a weaker version of [7, Theorem 6.9].

Lemma 2.6.17. Let A be an elementary abelian p-group. If A is a Frobenius com-

plement then A is a cyclic group of order p.

Proof. Suppose that a noncyclic elementary abelian p-groupA has a Frobenius action

on a group N . Then A contains a subgroup B which is isomorphic to Zp×Zp. Let Ω

be set of all subgroups of B whose order is p. Clearly Ω is a partition of B.

Due to the Frobenius action, B acts coprimely on N , and hence N has a B-invariant

Sylow r-subgroup R for any prime r dividing the order of N by Corollary 2.2.10 .

Now Z(R) is also B-invariant. Since |Ω| − 1 = p which is coprime to r, we get

CZ(R)(H) 6= 1 for some H ∈ Ω by the previous lemma. This contradiction shows

that A is cyclic of order p.

Corollary 2.6.18. LetA be a Frobenius complement and let P be a Sylow p-subgroup

of A for a prime p dividing |A|. Then P has a unique subgroup of order p.

Proof. We may suppose that A has a Frobenius action on a group N . As Z(P ) 6= 1,

let U be a subgroup of Z(P ) of order p. If V is another subgroup of order p then
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UV ∼= Zp×Zp, and the action of UV on N is also Frobenius. This is not possible by

Lemma 2.6.17. Thus U is the unique subgroup of P of order p.

Theorem 2.6.19. [7, Theorem 6.9] Let P be a p-group having a unique subgroup of

order p. Then P is either cyclic or p = 2 and P is generalized quaternion.

Corollary 2.6.20. [7, Corollary 6.17] Let A be a Frobenius complement. Then each

Sylow subgroup of A is cyclic or generalized quaternion.

Corollary 2.6.21. LetA be a Frobenius complement of odd order. ThenA is solvable.

Proof. This follows directly from Corollary 2.5.18.

In general, a Frobenius complement need not to be solvable. The following theo-

rem provides a necessary and sufficient condition for a Frobenius complement to be

solvable.

Theorem 2.6.22. [4, Theorem 16.7 (d)] Let A be a Frobenius complement. Then A

is solvable if and only if A does not contain a subgroup isomorphic SL(2, 5).

Theorem 2.6.23 ( [6], Theorem 8.22). Let H be a Hall subgroup of G and suppose

that whenever two elements of H are conjugate in G, they are already conjugate in

H . Assume that for every elementary subgroup E of G, if |E| divides |H|, then E is

conjugate to a subgroup of H . Then H has a normal complement in G.

Definition 2.6.24. Let Γ be a group and N E Γ. Assume that N has a complement

G in Γ, where G is a Frobenius group with complement H and kernel K. Then Γ is

called a double Frobenius group if NK is also a Frobenius group.

We close this chapter by giving a proof of a famous result due to Thompson. He

proved in 1959 that Frobenius kernels are nilpotent. We first consider solvable Frobe-

nius kernels (see [7], Theorem 6.22).

Lemma 2.6.25. Let N be a solvable Frobenius kernel. Then N is nilpotent.

Proof. Let N be a minimal counterexample to the theorem. Now there exists a group

A acting Frobeniusly on N . Without loss of generality, we may assume that A is
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of prime order. Note that Z(N) = 1, because otherwise N/Z(N) is nilpotent by

inductive hypothesis, which is not the case by Lemma 2.1.17.

Let M be a minimal normal A-invariant subgroup of N . Then M is an abelian p-

subgroup of N by Lemma 2.1.9. Due to coprime action of A on N , there is an

A-invariant Sylow q-subgroup Q of N for any prime q dividing |N | by Corollary

2.2.10. If MQ 6= N then MQ is nilpotent by induction, and hence [M,Q] = 1. Since

q is arbitrary, we see that elements of M are centralized by each Sylow q-subgroup of

N where p 6= q. Let P ∈ Sylp(G). Since M C P , Z = Z(P ) ∩M 6= 1 by Corollary

2.1.19, and hence we get 1 < Z ≤ Z(N). This contradictions shows that N = MQ.

SinceAQ is a Frobenius group, it has a partition Ω consisting ofQ and |Q| conjugates

of A. Then |Ω| − 1 = |Q| which is coprime |M |. Then some member of Ω fix an

nontrivial element in M . Since A and its conjugates acts without nontrivial fixed

points, we get CM(Q) 6= 1, and hence Z(N) 6= 1. This contradiction completes the

proof.

Theorem 2.6.26. (Thompson) [7, Theorem 6.22] Let G be a group and let P ∈
Sylp(G) where p is an odd prime. If for every nontrivial characteristic subgroup X

of P , NG(X) is p-nilpotent then so is G.

Theorem 2.6.27. [7, Theorem 6.24] Frobenius kernels are nilpotent.

Proof. Let N be a Frobenius kernel and let A be a group having Frobenius action on

N . We claim that N is solvable and proceed by induction on |N |. We may assume

that |N | has an odd prime divisor p.

We may choose P ∈ Sylp(N) such that P is A-invariant by Corollary 2.2.10. Let X

be a nontrivial characteristic subgroup of P then X is A-invariant. Set M = NN(X).

Note that M is also an A-invariant subgroup of N . It follows that M/X is also a

Frobenius kernel by Corollary 2.6.4, and hence M/X is solvable by induction. Since

X is a p-group, we obtain that M is solvable by Lemma 2.1.10. Then we have M is

nilpotent by Lemma 2.6.25. Since X is arbitrary, we get N is p-nilpotent by Theorem

2.6.26.

Let H be the normal Hall p′-subgroup of N . Then by induction applied to H , H is
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solvable, and hence N is solvable as N/H is a p-group. It follows that N is nilpotent

by Lemma 2.6.25.
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CHAPTER 3

FINITE GROUPS HAVING NONNORMAL TI-SUBGROUPS

In the present chapter, the structure of a finite group G having a nonnormal TI-

subgroup H which is also a Hall π-subgroup is studied. As a generalization of a

result due to Gow, we prove that H is a Frobenius complement whenever G is π-

separable. This is achieved by obtaining the fact that Hall TI-subgroups are conjugate

in a finite group. We also prove two theorems about normal complements one of

which generalizes a classical result of Frobenius.

3.1 Key propositions

We first obtain a sufficient condition which guarantees the conjugacy of Hall π-

subgroups. This condition also guarantees that any π-subgroup is contained in a

Hall π-subgroup. It should be noted that a group G may have nonisomorphic Hall

π-subgroups. In this case, it is not possible that they are conjugate in G.

On the other hand, even if all Hall-π subgroups are conjugate in G, it might be the

case that some π-subgroups of G are not contained in any Hall π-subgroups. For

example, let G = S5 and H ∈ Hall{2,3}(G). It can be easily checked that any

Hall{2,3} subgroup of G is isomorphic to S4 and they are conjugate in G. Set K =

〈(1, 2, 3)(4, 5)〉. ThenK is a {2, 3}-subgroup which is not contained in any conjugate

of H as S4 has no element of order 6.

Proposition 3.1.1. Let G be a group containing a Hall π-subgroup H which is also

a TI-subgroup. Then any π-subgroup of G is contained in a conjugate of H . In

particular, the set of all Hall π-subgroups of G forms a single G-conjugacy class.
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Proof. Let K be a π-subgroup of G which is not contained in any conjugate of H .

Let P ∈ Sylp(K) for a prime p dividing the order ofK. It should be noted that Sylow

p-subgroups of H are also Sylow p-subgroups of G, and hence there exists x ∈ G

such that P ≤ Hx. Set T = Hx ∩ K. Then T is a TI-subgroup of K by Lemma

2.6.7(b). Note that T is nontrivial as P is contained in T . Pick an element n from

NK(T ). Notice that Hx is also a TI-subgroup of G by Lemma 2.6.7(a). Then

1 6= T = T n ≤ Hx ∩Hxn

and so n normalizes Hx, which forces that n ∈ Hx, because otherwise the π-group

Hx〈n〉 contains Hx properly. It follows that T is a self normalizing TI-subgroup of

K, and hence T is a Hall subgroup of K by Lemma 2.6.11.

Let now q be a prime dividing |K:T | and pick Q ∈ Sylq(K). A similar argument as

above shows that Q ≤ Hy ∩K for some y ∈ G. Set S = Hy ∩K. Clearly, the group

S is also a self normalizing TI-subgroup of K. If T ∩ Sk 6= 1 for some k ∈ K, then

Hx ∩ Hyk 6= 1, and hence Hx = Hyk since Hx is also a TI-subgroup by Lemma

2.6.7(a). This forces the equality T = Sk which is not possible as q is coprime to the

order of T . Thus we have T ∩ Sk = 1 for all k ∈ K. As a consequence we get

S ⊆ (K −
⋃
k∈K

T k) ∪ {1}

and hence ⋃
k∈K

Sk ⊆ (K −
⋃
k∈K

T k) ∪ {1}

A simple counting argument shows that

|K| − |K|
|S|

+ 1 ≤ |K|
|T |

,

and so,

1 < 1 +
1

|K|
≤ 1

|S|
+

1

|T |
.

This inequality is possible only when |S| = 1 or |T | = 1, which contradicts the

fact that both S and T are nontrivial. Thus, K is contained in a conjugate of H , in

particular, if K is a Hall π-subgroup of G then K = Hg for some g ∈ G, completing

the proof.
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The following proposition will be used in the proof of a normal complement theorem,

namely Theorem 3.3.8. It should be noted that it is of independent interest too, as it

provides some new information on the influence of a coprime action.

Proposition 3.1.2. Let A be a group acting coprimely on G by automorphisms. As-

sume that Sylow subgroups of G are cyclic. Then,

a) CG(A) is a Hall subgroup of G;

b) G = [G,A]o CG(A);

c) the group [G,A] is cyclic;

d) A is abelian if the action of A on G is faithful.

Proof. a) Let p a prime dividing the order of CG(A). We may choose an A-invariant

Sylow p-subgroup P of G by Corollary 2.2.10. Then CP (A) ∈ Sylp(CP (A)) by

Lemma 2.2.15 and P = [P,A]× CP (A) by Theorem 2.2.18. As CP (A) is nontrivial

and P is cyclic, we get CP (A) = P . Hence p is coprime to the index of CG(A) in G.

b) By Theorem 2.2.16, we have G = [G,A]CG(A), and so it suffices to show that

C = CG(A) ∩ [G,A] = 1. Assume the contrary and let p the smallest prime dividing

the order of C. Let P ∈ Sylp(C). Notice that C = C[G,A](A), and hence C is a Hall

subgroup of [G,A] by part a). It follows that P is also a Sylow subgroup of [G,A].

Now we claim that P controls [G,A]-fusion in itself. Let x, xg ∈ P for some x ∈ P
and g ∈ [G,A]. Since P ≤ C and C controls [G,A]-fusion in C by Theorem 2.2.12,

there exists c ∈ C such that xg = xc. On the other hand, we obtain that P has a

normal p-complement in C by Corollary 2.5.17, and hence P controls C-fusion in P

by Theorem 2.5.22. It follows that there exists t ∈ P such that xc = xt, which proves

the claim.

Thus, [G,A] has a normal p-complementN , that is, [G,A] = NP by Theorem 2.5.22.

This leads to

[G,A,A] = [NP,A] = [N,A] ≤ N < [G,A]

which is not possible by Lemma 2.2.17. Thus, C = CG(A) ∩ [G,A] = 1 as claimed.

c) It is enough to show that K = [G,A] is nilpotent because all Sylow subgroup

of G are cyclic. We can assume that K is nontrivial. Note that A acts on K fixed

point freely by b), that is, CK(A) = 1. Due to coprimeness, we may choose an
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A-invariant Sylow p-subgroup P of K for an arbitrary prime p dividing the order

of K by Corollary 2.2.10. Clearly, NK(P ) is also an A-invariant subgroup of K so

that L = NK(P )A acts on P via automorphisms. Note that Aut(P ) is abelian by

Theorem 2.1.27, and hence L/CL(P ) is abelian by Theorem 2.1.22. It follows that

[NK(P ), A] ≤ L′ ≤ CL(P )

by Lemma 2.1.2. Since

CNK(P )(A) = NK(P ) ∩ CK(A) = 1,

we get [NK(P ), A] = NK(P ) by Theorem 2.2.16. Then P ≤ Z(NK(P )) and so K

is p-nilpotent by Corollary 2.5.15. As p is arbitrary, K is nilpotent by Lemma 2.4.10.

d) Suppose that the action of A on G is faithful, that is, CA(G) = 1. Set B =

CA([G,A]). Since [G,B] ≤ [G,A], we get [G,B,B] = 1. Due to coprimeness, it is

obtained that [G,B] = 1 by Lemma 2.2.17, and hence B ≤ CA(G) = 1. It follows

that A is isomorphic to a subgroup of the automorphism of the cyclic group [G,A],

which is abelian by Theorem 2.1.27. Therefore, A is abelian as desired.

3.2 Some technical lemmas

In this section, we present four lemmas which will be frequently used in proving the

main results of this chapter. The first one is a generalization of the fact that a self

normalizing TI-subgroup is also a Hall subgroup (see Lemma 2.6.11).

Lemma 3.2.1. Let H be a TI-subgroup of a group G. Then H is a Hall subgroup of

G if and only if H is a Hall subgroup of NG(H).

Proof. One direction is trivial to show. Let H be a Hall subgroup of NG(H), and let

p be a prime dividing both |H| and |G : H|. Pick P ∈ Sylp(H), Q ∈ Sylp(G) such

that P < Q. Since P < NQ(P ) by Theorem 2.1.15, we may choose x ∈ NQ(P )−P .

As H ∩ Hx is nontrivial, we have x ∈ NG(H). This forces that x ∈ H since H is

a Hall subgroup of NG(H). Then P 〈x〉 is a p-subgroup of H containing P properly.

This contradiction completes the proof.
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Remark 3.2.2. It should be noted that the lemmas below can be proven by using the

conjugacy part of Schur-Zassenhaus theorem and by Feit-Thompson’s odd order the-

orem. Here, we present proofs without appealing to the odd order theorem. Although

Lemma 3.2.3 is well known, Lemma 3.2.4 and Lemma 3.2.5 are both new.

Lemma 3.2.3. LetG be a group andN be a normal subgroup ofGwith a complement

H . If (|H|, |N |) = 1 and H is a TI-subgroup of G then for each prime p dividing the

order of N , there is an H-invariant Sylow p-subgroup of N .

Proof. By the Frattini argument (see 2.4.11), NG(P )N = G for any P ∈ Sylp(N).

Clearly, we have K = N ∩NG(P )ENG(P ) and |NG(P ) : K| = |G : N |. Then |K|
is coprime to |NG(P ) : K|. By the existence part of Schur-Zassenhaus theorem (see

2.1.25), NG(P ) = KU where |U | = |G : N | = |H|. It follows by Proposition 3.1.1

that U = Hg ≤ NG(P ) for some g ∈ G, that is, H normalizes P g−1 as required.

Lemma 3.2.4. Let N be a normal subgroup of G and H be a TI-subgroup of G with

(|H|, |N |) = 1. Then NG(H) = NG(H) where G = G/N .

Proof. It is clear that NG(H) ≤ NG(H). Let X be the full inverse image of NG(H)

in G. Then NG(H) is contained in X and HN E X . By Proposition 3.1.1, every

complement ofN inHN is a conjugate ofH . Then the Frattini argument (see 2.4.11)

implies the equalityNX(H)N = X . AsNX(H) = NG(H), we haveX = NG(H)N .

Then X = NG(H) as claimed.

It should be noted that a homomorphic image of a TI-subgroup need not be a TI-

subgroup of the image. Therefore, the following lemma provides a sufficient condi-

tion for which the image of a TI-subgroup is also a TI-subgroup.

Lemma 3.2.5. Let H be a TI-subgroup of G and N be a normal subgroup of G with

(|N |, |H|) = 1. Then HN/N is a T.I subgroup of G/N .

Proof. Set T = HN ∩HgN for g ∈ G. Then

T = T ∩HN = T ∩HgN.

As N ≤ T , we have

T = N(T ∩H) = N(T ∩Hg).

35



Note that (|N |, |T∩H|) = 1 and T∩H is a TI-subgroup of T . Then the complements

T ∩H and T ∩Hg are conjugate by an element of N by Proposition 3.1.1, that is,

(T ∩H)n = T ∩Hn = T ∩Hg

for some n ∈ N . Thus,

T ∩Hn = T ∩Hn ∩Hg = 1 or Hn = Hg.

If the former holds, then T = N . If the latter holds, then T = HN .

So, we have either T = HN or T = N . As a result, HN/N is a TI-subgroup of

G/N because HN/N ∩HgN/N = T/N is either trivial or equal to HN/N .

3.3 π-separable groups having nonnormal Hall TI-subgroups

In this section, we give a sufficient condition for a Hall TI-subgroup to be a Frobe-

nius complement in π-separable groups. The following theorem of Gow provides a

sufficient condition for a Hall TI-subgroup to be a Frobenius complement in solvable

groups.

Theorem 3.3.1. (Gow) LetG be a solvable group and letH be a Hall subgroup ofG,

which is a nonnormal TI-subgroup of G. Then H has an irreducible representation

on some elementary abelian section of G in which each of its nonidentity elements

acts without fixed points.

Now we obtain an extension of his result to π-separable groups as a more general

answer to Question A posed in Chapter 1. Namely, we prove the following:

Theorem 3.3.2. Let H be a nonnormal TI-subgroup of the π-separable group G

where π is the set of primes dividing the order of H . Further assume that H is a Hall

subgroup of NG(H). Then the following hold:

a) G has π-length 1 where G = Oπ′(G)NG(H);

b) there is an H-invariant section of G on which the action of H is Frobenius. This

section can be chosen as a chief factor of G whenever Oπ′(G) is solvable;

c)G is solvable if and only ifOπ′(G) is solvable andH does not involve any subgroup

isomorphic to SL(2, 5).
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Remark 3.3.3. Parts (a) and (b) of Theorem 3.3.2 not only generalize Theorem 3.3.1

but also determine the structure of the group G under the weaker hypothesis that H

is a Hall subgroup of NG(H). Yet, it turns out to be equivalent to assuming that H

is a Hall subgroup of G. (See Lemma 3.2.1). Here is an example showing that the

condition of π-separability is indispensable.

Example 3.3.4. Let K = A5 and H be a Sylow 5-subgroup of K. H is a TI-

subgroup ofK asH is of prime order and is a Hall subgroup ofNK(H). The onlyH-

invariant subgroups of K are NK(H), H and the trivial subgroup where |NK(H)| =
10. Hence, it is easy to see that both (a) and the first part of Theorem 3.3.2 (b) fail to

be true.

We next present an example which shows that the second part of Theorem 3.3.2 (b)

is not true in case Oπ′(G) is nonsolvable even if G satisfies other hypotheses.

Example 3.3.5. Let N = SL(2, 27) and α ∈ Aut(N) of order 7 which arises from

the nontrivial automorphism of the field with 27 elements. Set G = N〈α〉. Then

〈α〉 is a nonnormal Hall TI-subgroup of G. Since N is simple, 〈α〉 does not have

Frobenius action on any chief factor of G, and so the second part of Theorem 3.3.2

(b) fails to be true.

Proof of Theorem 3.3.2. a) Note thatH is a Hall subgroup ofG by Lemma 2.1. Then

we have Oπ(G) = 1 as H is a nonnormal TI-subgroup of G. This forces that

Oπ′(G) 6= 1 since G is π-separable. Set G = G/Oπ′(G). Notice that H is a T.I

subgroup of G by Lemma 3.2.5.

Assume that H is not normal in G. Then Oπ(G) is trivial. On the other hand Oπ′(G)

is also trivial, and so G is trivial which is not the case. Thus, H is normal in G, and

so the lower π-series of G is as follows;

1 < Oπ′(G) < HOπ′(G) ≤ G.

NowG = NG(H) = NG(H) by Lemma 3.2.4, and hence we haveG = Oπ′(G)NG(H)

as claimed.

b) LetG be a minimal counterexample to part (b). Suppose thatH ≤ K < G. Clearly

K is π-separable by Lemma 2.4.4 and H is a TI-subgroup of K by Lemma2.6.7(b).
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If H is not normal in K, then we get an H-invariant section of K on which the action

of H is Frobenius by induction. This leads to a contradiction as each section of K is

also a section of G. Thus we have H CK.

Let now R be an H-invariant subgroup of Oπ′(G) with RH 6= G. Then we have

H ≤ RH < G, and hence H C RH by the previous argument. It then follows

that [H,R] ≤ R ∩ H = 1. In particular, If HOπ′(G) 6= G then [H,Oπ′(G)] = 1.

As Oπ(G) = 1, we obtain CG(Oπ′(G)) ≤ Oπ′(G) by Theorem 2.4.6. It follows

that H ≤ Oπ′(G), which is a contradiction. Hence the equality G = Oπ′(G)H

holds. Lemma 3.2.3 guarantees the existence of an H-invariant Sylow p-subgroup

P of Oπ′(G) for any prime p dividing the order of Oπ′(G). If P 6= Oπ′(G), then

[P,H] = 1. Since p is arbitrary, we obtain [H,Oπ′(G)] = 1 which is impossible.

Thus, G = PH with [P,H] 6= 1 where P = Oπ′(G).

Note that [P,H] is H-invariant as P is H invariant by Lemma 2.2.6. If [P,H] 6= P ,

then [P,H] = [P,H,H] = 1 by Lemma 2.2.17, which is not the case. Thus we obtain

that [P,H] = P , and hence

P/P ′ = [P,H]P ′/P ′ = [P/P ′, H]

by Lemma 2.2.7. Notice that

P/P ′ = [P/P ′, H]× CP/P ′(H)

by Theorem 2.2.18, and hence CP/P ′(H) = 1. We also observe that H is a TI-

subgroup of G = (P/P ′)H by Lemma 3.2.5, and

NG(H) = CP/P ′(H)H = H

by Lemma 2.2.5, that is, H is a self normalizing TI-subgroup of G. As a conse-

quence, G is a Frobenius group, completing the proof of the first part of (b).

Suppose next that Oπ′(G) is solvable. Set L = [Oπ′(G), H]. Note that L 6= 1 by

Theorem 2.4.6, and hence L′ < L by Corollary 2.1.8. It is almost routine to check that

action ofH on L/L′ is Frobenius by using Lemma 3.2.5 as in the previous paragraph.

Observe that L is normalized by both NG(H) and Oπ′(G) by Lemma 2.2.6, and so L

is normal in G = Oπ′(G)NG(H). Therefore, we observe that any chief factor of G

between L and L′ is a chief factor on which the action of H is Frobenius.
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c) Assume that Oπ′(G) is solvable and H does not involve any subgroup isomorphic

to a SL(2, 5). As H is a Frobenius complement by part (b), H must be solvable by

Theorem 2.6.22. Set G = G/Oπ′(G). Now

G = Oπ′(G)NG(H) = NG(H)

by part (a). NG(H) has a normal π-complement by Schur-Zassenhaus theorem (see

2.1.25), say Q. Then we get

G = NG(H) = H oQ.

Therefore, it suffices to show that Q is solvable by Lemma 2.1.10.

Note that Q acts faithfully on H as CG(H) ≤ H by Theorem 2.4.6. Due to co-

primeness, for each p ∈ π, there exists a Q-invariant Sylow p-subgroup of H by

Corollary 2.2.10. Let Ω be set of all Q-invariant Sylow subgroups of H . Notice

that
⋂
X∈Ω

CQ(X) = 1 as the action of Q on H is faithful. It follows now that

Q ∼= Q/(
⋂
X∈Ω

CQ(X)) is isomorphic to a subgroup of
∏
X∈Ω

Q/CQ(X) by Lemma

2.1.29. Since each member of Ω is either cyclic or generalized quaternion by Corol-

lary 2.6.20, the group Q/CQ(X) is solvable for all X ∈ Ω by Corollary 2.3.9 and

Theorem 2.1.27. Thus
∏
X∈Ω

Q/CQ(X) is solvable, and hence Q is solvable as de-

sired.

Remark 3.3.6. Under the hypothesis of Theorem 3.3.2, we haveG = Oπ′(G)NG(H).

On the other hand, by Schur-Zassenhaus theorem (see 2.1.25), H has a complement

in NG(H), say Q. Set O = Oπ′(G). Then we have the equality G = OHQ. Note

that this need not be a semidirect product as O ∩Q may not be trivial. From now on,

we write G as OHQ whenever the hypothesis holds.

The structure of G, in somehow, resembles the structure of a double Frobenius group.

More precisely, the following theorem shows that under some additional hypothesis,

there is a factor group of G containing double Frobenius groups.

Theorem 3.3.7. Assume that the hypothesis of Theorem 3.3.2 hold. Assume further

that H is of odd order with [O,H] = O and that O is solvable with Q � O′. Set

G = G/O′. Then

a) G = (O oH)oQ;
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b) Q is an abelian group acting faithfully on H;

c) O[H, β]〈β〉 is a double Frobenius group for every element β ∈ Q of prime order.

Proof. a) Note that Q normalizes O oH , and hence, it is sufficient to show that

O ∩ Q = 1. We have [O,H] = [O,H] = O by Lemma 2.2.7. Since O = [O,H] ×
CO(H) by Theorem 2.2.18, we obtain that CO(H) = 1. Pick x ∈ Q ∩ O. Then

[x,H] ≤ H ∩O = 1, and hence x ∈ CO(H) = 1. This proves (a).

b) Since HO/O = Oπ(G/O), the action of QO/O on HO/O is faithful by Theorem

2.4.6. Then Q acts faithfully on H , and so the action of Q on [H,Q] is also faithful.

Corollary 2.6.20 implies that each Sylow subgroup of H is cyclic because H is a

Frobenius complement of odd order. By Proposition 3.1.2, we get [H,Q] is cyclic. It

follows that Q is abelian as Q is isomorphic to a subgroup of Aut([H,Q]).

c) Notice that Q is nontrivial as Q � O′. Let β ∈ Q of prime order. Notice that

[H, β] is nontrivial since Q acts faithfully on H . The group OH is Frobenius as H

is a self normalizing TI-subgroup of OH . Then O[H, β] is also a Frobenius group.

By Proposition 3.1.2(b), β acts fixed point freely on [H, β], and so O[H, β]〈β〉 is a

double Frobenius group as claimed.

Theorem 3.3.8. Assume that the hypothesis of Theorem 3.3.2 holds. Assume further

that a Sylow 2-subgroup of H is abelian and Q is a complement of H in NG(H).

Then CH(Q) is a Hall subgroup of G having a normal complement in G.

Proof. H is a Frobenius complement by Theorem 3.3.2(b), and so every Sylow sub-

groups of H is cyclic as Sylow 2-subgroups of H are abelian by Corollary 2.6.20. It

follows by Proposition 3.1.2 that CH(Q) is a Hall subgroup of H . Then CH(Q) is

also a Hall subgroup of G. Set N = O[H,Q]Q. Clearly N is a group. Proposition

3.1.2 yields that CH(Q) and [H,Q] have coprime orders, and hence CH(Q) and N

have coprime orders. Then CH(Q) ∩ N = 1. We also observe that CH(Q) normal-

izes N and CH(Q)N = G as G = OHQ. Consequently, N is the desired normal

complement for CH(Q) in G.
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3.4 A generalization of Frobenius’ theorem

In this section, we give a full answer to Question B stated in Chapter 1, by finding a

necessary and sufficient condition for a Hall TI-subgroup to have a normal comple-

ment. Namely we prove,

Theorem 3.4.1. Let H be a TI-subgroup of G which is also a Hall subgroup of

NG(H). Then H has a normal complement in NG(H) if and only if H has a normal

complement inG. Moreover, ifH is nonnormal inG andH has a normal complement

in NG(H) then H is a Frobenius complement.

This result appears to be a nice application of Theorem 3.3.2 and Proposition 3.1.1.

The proof uses the important result known as Brauer-Suzuki theorem (see 2.6.23).

Proof of Theorem 3.4.1. Assume thatH has a normal complement inG, sayN . Then

NG(H) = G ∩NG(H) = NH ∩NG(H) = H(N ∩NG(H))

by Dedekind rule (see 2.1.23). Then N ∩ NG(H) is the desired normal complement

of H in NG(H). Assume now that H has a normal complement Q in NG(H). Then

NG(H) = QH and [Q,H] ≤ H ∩Q = 1. We show first that H controls G-fusion in

H: To see this, let x and xg be elements of H for a nonidentity element x ∈ H and

for some g ∈ G. Now x ∈ H ∩ Hg−1 , and so H = Hg−1 as H is a TI-subgroup,

that is, g ∈ NG(H). Then g = sh for s ∈ Q and h ∈ H . Since [Q,H] = 1, we

have xg = xsh = xh establishing the claim. Note that by Lemma 3.2.1, H is a Hall

π-subgroup of G for the prime set π of H . Then every π-subgroup is contained in a

conjugate of H by Proposition 3.1.1. Now appealing to Brauer-Suzuki theorem (see

2.6.23), we see that G has a normal π-complement. This proves the first claim of the

theorem.

Finally assume that H has normal complement in NG(H) and NG(H) < G. By the

argument above, G has a normal π-complement where π is the prime set of H . It

follows that G is π-separable, and hence H is a Frobenius complement by part (b) of

Theorem 3.3.2.

Theorem 3.4.1 can be regarded as a generalization of the classical result of Frobenius

which asserts the following;
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Corollary 3.4.2 (Frobenius). Let H be a proper subgroup of G with H ∩Hx = 1 for

all x ∈ G−H . Then the set N = (G−
⋃
g∈GH

g) ∪ {1} is a normal subgroup of G

where N is a complement for H in G.

No character free proof of Frobenius theorem is known. Yet under additional assump-

tion that H is solvable, a character free proof is well known. We shall prove Theorem

3.4.1 without using character theory when H is assumed to be solvable.

Proof of Theorem 3.4.1 (by assuming H is solvable.) We will only show that if H has

a normal complement in NG(H) then H has a normal complement in G since the rest

of the proof in the previous version is already character free. We may assume that H

is not normal in G. We proceed by induction on the order of G. As in the previous

version, we can obtain that H controls G-fusion in H and H is a Hall π-subgroup of

G. Then Aπ(G) ∩H = H ′ by Theorem 2.5.21. Set Aπ(G) = A. Note that H ′ < H

by the hypothesis, and hence A < G.

If H ′ = 1 then A is the desired normal complement. Then we may assume that

H ′ 6= 1. Now NG(H ′) ≥ NG(H) as H ′ is a characteristic subgroup of H . Assume

NG(H ′) 6= NG(H) and pick x ∈ NG(H ′)\NG(H). It follows that 1 6= H ′ ≤ H∩Hx,

which is a contradiction. Thus, NG(H ′) = NG(H) and NG(H ′) has a normal π-

complement. ThenNA(H ′) has a normal π-complement. SinceH is Hall π-subgroup

and A C G, H ′ is also a Hall π-subgroup of A. Lemma 2.6.7(c) implies that H ′ is a

TI-subgroup of G, and hence H ′ is a TI-subgroup of A by Lemma 2.6.7(b). As a

result the pair (H ′, A) satisfies the hypothesis of the claim, and hence A has a normal

complement N by induction applied to A.

Note that N C G as N is characteristic subgroup of A. Moreover, G = HA =

H(H ′N) = HN . Since N is a π′-group, H ∩N = 1 and the result follows.

One can pose the following open question;

Conjecture 3.4.3. Let H be a TI-subgroup of G which is also a Hall π-subgroup of

NG(H). Then G/Oπ(G) ∼= NG(H)/Oπ(NG(H)).
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CHAPTER 4

CHARACTER FREE PROOFS FOR TWO SOLVABILITY THEOREMS

DUE TO ISAACS

4.1 Introduction

Main purpose of this chapter is to provide character free proofs for the following two

results below due to Isaacs ( [5], Theorem 1 and Theorem 2).

Theorem A Let G be a finite group having a cyclic Sylow p-subgroup. Assume that

every p′-subgroup of G is abelian. Then G is either p-nilpotent or p-closed.

Theorem B Let G be a finite group and let p 6= 2 and q be primes dividing |G|.
Suppose for every proper subgroup H of G which is not a q-group nor a q′-group that

p divides |H|. If qa is the q-part of |G| and p > qa − 1 or if p = qa − 1 and a Sylow

p-subgroup of G is abelian then no primes but p and q divide |G|.

Indeed, the original proofs of both theorems by Isaacs too do not involve any character

theoretical arguments when p 6= 3. We present a more elementary proof of Theorem

A that shortens the proof of the case p 6= 3 and handles the case p = 3 in a character

free way by using graph theoretical methods. We also provide a proof for Theorem

B in case where p = 3 using the same graph theoretical arguments. Yet, we shall not

cover the case p 6= 3 for Theorem B because we made no improvement in this case.

The following example shows that in Theorem A the condition that P is cyclic is

unavoidable.
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Example 4.1.1. Let G = A5 and p = 2. Then every p′-subgroup of G is abelian and

Sylow p-subgroup of G is Klein 4-group. Yet G is simple.

Another example shows that the condition that every p′-subgroup is abelian in Theo-

rem A is also indispensable.

Example 4.1.2. Let G = S4 and p = 3. Then Sylow p-subgroup of G is cyclic but

some of p′-subgroups of G are not abelian. Yet G is neither p-closed nor p-nilpotent.

4.2 Preliminaries

Definition 4.2.1. A graph is an ordered pair Γ = (V,E) where V is the set of vertices

of Γ and E is the set of edges of Γ which consists of unordered pairs {u, v} where u

and v are distinct elements of V .

Let Γ be a graph and u, v ∈ V . We say that u and v are adjacent if and only if

{u, v} ∈ E(Γ). We write u ∼ v whenever u and v are adjacent.

An automorphism σ of Γ is a permutation of the set V , that is σ ∈ Sym(V ), such that

uσ ∼ vσ if and only if u ∼ v for all u, v ∈ V . The set of all distinct automorphisms

of Γ forms a group which is called the automorphism group of Γ and denoted by

Aut(Γ).

Let u ∈ V . Then the degree of u, denoted by deg(u), is defined to be the number of

the vertices in V which are adjacent to u. Γ is called n-regular if deg(u) = n for all

u ∈ V .

Lemma 4.2.2. Let Γ be a graph and σ ∈ Aut(Γ). Then deg(u) = deg(uσ) for all

u ∈ V . In particular, if G ≤ Aut(Γ) acts on V transitively then Γ is n-regular for

some n ∈ N.

Let Γ be a graph and V = {v1, v2, . . . vn}. The adjacency matrix A of Γ is a n × n
matrix where

Aij =

1, vi ∼ vj

0, otherwise.
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Let u, v ∈ V . A walk of length r from u to v is a sequence of vertices satisfying

u = u0 ∼ u1 ∼ . . . ∼ ur−1 ∼ ur = v.

Theorem 4.2.3. [1, Lemma 8.1.2] Let Γ be a graph with V = {v1, v2, . . . vn}. Let

A be the adjacency matrix of Γ. Then (Ar)ij is equal to the number of the walks of

length r from vi to vj for any pair i, j.

The proposition below, a special case of the well known “friendship problem" in

graph theory (see [3]), will be needed in proving the case p = 3 in both Theorem A

and Theorem B.

Proposition 4.2.4. Let Γ be an n-regular graph with the property that for any two

distinct vertices there is exactly one common neighbour. Then Γ is a triangle.

Proof. Let m denote the number of vertices of Γ. We shall simply count in two

ways the number of the triples (x, y, z) where x and y are distinct vertices and z is

the unique common neighbour of x and y. Since the pair (x, y) uniquely determines

z, we have m(m − 1) such triples. On the other hand, for each z the number of

corresponding pairs (x, y) is n(n− 1), and hence the count is equal to mn(n− 1). It

follows that m = n2 − n+ 1.

Assume that n > 2 and let A be the adjacency matrix of Γ. Then A2 = (n− 1)I + J

where J is the matrix where all entries are 1. Note that AJ = nJ since Γ is n-regular.

We pick now a prime divisor p of n − 1 and regard A and J as matrices over the

field Zp. Then we have A2 = J and AJ = nJ = J as n ≡ 1 mod p, and hence

Ap = J . In characteristic p, tr(Ap) = tr(A)p and tr(A) = 0. Thus, we obtain that

0 ≡ tr(Ap) ≡ tr(J) ≡ n2 − n + 1 ≡ 1 mod p which is a contradiction. Thus we

have n = 2, that is, Γ is a triangle as claimed.

The following lemma ( [5], Lemma 2) will also be needed.

Lemma 4.2.5. Let H be an abelian group with a collection {Ki | i ∈ I} of proper

subgroups such that H =
⋃
i∈I
Ki and Ki∩Kj = 1 for i 6= j. Then H is an elementary

abelian p-group for some prime p.

45



4.3 Proof of Theorem A

Assume that the theorem is false and let G be a minimal counterexample to the theo-

rem. Note that each proper subgroup of G satisfies the hypothesis and hence is either

p-nilpotent or p-closed. Pick a Sylow p-subgroup P ofG and letK be the subgroup of

P of order p. There exists a normal p-complement Q in NG(P ) by Schur-Zassenhaus

theorem (see 2.1.25). That is, NG(P ) = PQ. Since G is not p-nilpotent, NG(P ) is

not p-nilpotent by Corollary 2.5.15. So we clearly have [P,Q] 6= 1. We shall derive a

contradiction over a series of steps.

(1) Op(G) = 1.

Assume the contrary. It is easy to see that the group G/Op(G) satisfies the hypoth-

esis of the theorem and hence is either p-nilpotent or p-closed. If it is p-closed then

P/Op(G) C G/Op(G) and so P C G, which is not the case. Thus, G/Op(G) is

p-nilpotent, that is, G = NP where N/Op(G) is the normal Hall p′-subgroup of

G/Op(G).

Note thatG/N ∼= P/P ∩N is cyclic, and soG′ ≤ N by Lemma2.1.2. SinceG′ ≤ N ,

P is not contained in G′. It follows that G is p-nilpotent by Corollary 2.5.16. This

forces that Op(G) = 1 as desired.

(2) NG(K) = NG(P ) is a maximal subgroup.

The containment NG(P ) ≤ NG(K) holds due to the fact that K is a characteristic

subgroup of P . Since NG(P ) is not p-nilpotent, NG(K) is not p-nilpotent by Lemma

2.4.9. As G has no nontrivial normal p-subgroup by (1), NG(K) is proper in G.

It follows that NG(K) is p-closed, and hence NG(K) ≤ NG(P ). Then we have

NG(K) = NG(P ).

Let now M be a maximal subgroup of G containing NG(P ). Since NG(P ) is not p-

nilpotent, M is not p-nilpotent, and so M is p-closed. Thus, NG(P ) = M as desired.

(3) G is simple.
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Suppose that G has a nontrivial proper normal subgroup N. Then N is either p-

nilpotent or p-closed and accordingly N has either a nontrivial characteristic p′-

subgroup or a nontrivial characteristic p-subgroup. In particular, we have either

Op′(G) 6= 1 or Op(G) 6= 1. Notice that Op(G) = 1 by (1), and so V = Op′(G) 6= 1.

The group G/V satisfies the hypothesis of the theorem, and hence it is either p-

nilpotent or p-closed. If the former holds then G = NP where N/V is the normal

Hall p′-subgroup of G. It follows that N is also a p′-subgroup as both N/V and V

are also p′-subgroup. Yhis forces that N ∩ P = 1, and hence G is p-nilpotent, which

is not the case.

Therefore G/V is p-closed, and hence PV is a normal subgroup of G. Now

G = NG(P )PV = NG(P )V = QPV

by the Frattini argument (see 2.4.11). Note that the group V Q is abelian by the

hypothesis, and so [V,Q] = 1. Thus, we get [V, P,Q] = [Q, V, P ] = 1. This yields

[P,Q, V ] = 1 by the three subgroup lemma (see 2.1.6). Note that [P,Q] C PQ by

Lemma 2.1.5. Since [P,Q] is also centralized by V , we get [P,Q] C QPV = G. It

follows that [P,Q] = 1 by (1), which is a contradiction. This contradiction shows

that G is simple.

(4) |R| ≡ 1 mod p for each R ∈ Sylr(G) where r 6= p, in particular, we have

|G : P | ≡ 1 mod p.

Let R ∈ Sylr(G) for a prime r 6= p and S ∈ Sylp(NG(R)). Assume that S = 1.

Then NG(R) is abelian by the hypothesis, and hence G is r-nilpotent by Corollary

2.5.15. This is not possible by (3), and hence S 6= 1.

Note that

CR(S) ≤ Z(NG(R)) ∩R

as p′-elements of NG(R) act trivially on R. Since Z(NG(R)) ∩ R ∩ G′ = 1 by

Corollary 2.5.14 and G = G′, we get CR(S) = 1 whence |R| ≡ 1 mod p.

(5) Q is a Hall subgroup of G such that CQ(P ) 6= 1 and |NG(Q)| is divisible by p.

Since |G : NG(P )| ≡ |G : P | ≡ 1 mod p, we have |Q| ≡ 1 mod p. If Q acts
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faithfully on P , then |Q| ≤ p− 1 by Theorem 2.1.27. It follows that Q = 1 which is

impossible. Thus CQ(P ) 6= 1 as claimed. Since both P and Q centralize CQ(P ), we

have CQ(P ) ≤ Z(NG(P )). Then we get

CG(CQ(P )) ≥ PQ = NG(P ).

Since NG(P ) is a maximal subgroup of G by (2), we have either CG(CQ(P )) = G or

CG(CQ(P )) = NG(P ). If the former holds then 1 6= CQ(P ) ≤ Z(G), which is not

possible by (3). Then we obtain CG(CQ(P )) = NG(P ).

Let R0 ∈ Sylr(Q) and R ∈ Sylr(G) such that R0 ≤ R for a prime r dividing

|Q|. Notice that N = NG(R0) satisfies the conclusion of the theorem and hence is a

solvable group. We can pick a Hall p′-subgroup H of N such that R ≤ H . On the

other hand CQ(P ) ≤ Q ≤ N as Q is abelian by the hypothesis. Then CQ(P ) ≤ Hn

for some n ∈ N by Theorem 2.4.2. Now Hn ≤ CG(CQ(P )) = NG(P ) as H is

abelian. In particular, Rn ≤ NG(P ) = PQ whence R = R0. Therefore Q is a Hall

subgroup of G as desired.

One can also observe that |NG(Q)| is divisible by p because otherwise G has normal

π-complement for the prime set π of |Q| by Burnside theorem (see 2.5.15).

(6) p = 3 and Q is an elementary abelian group of order 4.

Recall that |NG(Q)| is divisible by p by (5), and pick α ∈ NG(Q) of order p. We can

observe that α /∈ P : If not, [Q,α] ≤ P ∩ Q = 1 and so CP (Q) 6= 1. It follows that

[P,Q] = 1 by Corollary 2.2.19, which is impossible. Therefore, P, Pα, . . . , Pαp−1

are all distinct.

Set Z = CQ(P ). For distinct i, j ∈ {0, 1, . . . , p − 1}, Zαi ∩ Zαj centralizes both

NG(P )α
i and NG(P )α

j , two distinct maximal subgroups of G. The fact that Z(G) =

1 implies Zαi ∩ Zαj
= 1.

Let |Z| = c. Then c2 divides |Q| as Z ⊕ Zα ≤ Q. Letting |Q| = c2t we have

p | (c2t− 1) by (4). Notice also that due to the faithful action of Q/Z on P , |Q/Z| =
ct | (p− 1) by Theorem2.1.27. If p = 2 then Q = Z, and hence [P,Q] = 1, which is

impossible. Then p is an odd prime and hence Q/Z is cyclic.
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Notice that p | (p−1
ct

+ c) since p | (p − 1 + c2t) and ct | (p − 1). As both p−1
ct

and c

divide p − 1, we get p−1
ct

+ c < 2p and so p−1
ct

+ c = p. Now p−1
ct

+ ct > p − 1,

that is, the product of p−1
ct

and ct is smaller than their sum, and hence we have either

ct = 1 or p − 1 = ct. Since c > 1, ct = p − 1. The equation p−1
ct

+ c = p gives that

c = p− 1 and t = 1. That is |Q| = (p− 1)2. We get Q =
⋃
Zαi as

|
⋃

Zαi | = p(p− 2) + 1 = |Q|.

It follows by Lemma 4.2.5 that the group Q is elementary abelian and hence |Q/Z| =
q = p− 1. As a consequence p = 3 and Q is an elementary abelian group of order 4.

(7) Final contradiction.

Let I be the set of all involutions in G. Note that Q is a Sylow 2-subgroup of G

which is elementary abelian of order 4 by the previous step. If NG(Q) does not act

transitively on I ∩ Q, then one of the involutions in Q is contained in Z(NG(Q)) ∩
Q ∩ G′, which is impossible by Corollary 2.5.14. Thus NG(Q) acts transitively on

I ∩Q and hence the action of G on I by conjugation is also transitive.

Let Γ be the graph where the vertex set of Γ is I and two distinct vertices are adjacent

if and only if they commute in G. We claim that for any two distinct vertices i, j ∈ I
there is a unique vertex which is adjacent to both i and j: To see this we assume first

that i and j commute. Then k = ij commutes with both i and j. Since {1, i, j, k} is

a Sylow 2-subgroup, k is unique as claimed.

Assume next that [i, j] 6= 1. Then the group D = 〈i, j〉 is a nonabelian dihedral

group by Lemma 2.3.5 and hence |D| is divisible by p by the hypothesis. Without

loss of generality we may assume that K ≤ D. Then i and j are both contained in

NG(K) = NG(P ). Clearly

Z = CQ(P ) ≤ Z(NG(P )).

Since [K,Q] 6= 1, we have Z = Z(NG(P )). Then the unique involution in Z com-

mutes with both i and j. Let l be another involution commuting with both i and j.

Then [D, l] = 1 which implies that [K, l] = 1. Thus we have [P, l] = 1 by Corollary

2.2.19. Now l ∈ Z establishing the claim.
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Since the action of G on I is transitive, the graph Γ is n-regular for some n and so

|I| = 3 by Proposition 4.2.4. As a consequence G has a unique Sylow 2-subgroup.

This contradiction completes the proof. �

We give next a proof of Theorem B when p = 3, the only case in the original proof

where the character theory is used.

4.4 Proof of Theorem B

Assume the theorem is false. As in the original proof due to Isaacs, the structure of a

minimal counterexample G to the theorem is as follows:

Let P ∈ Sylp(G) and Q ∈ Sylq(G). Then

1. G is a simple group with p = 3 and q = 2.

2. Q is an elementary abelian 2-group of order 4.

3. |NG(P )| = 4|P | and |CG(P )| = 2|P |.

4. G acts transitively on the set of involutions I by conjugation.

5. P is an abelian TI-subgroup.

Now let i, j be two involutions in G. If i and j commute then ij is the unique in-

volution which commutes with both i and j. If [i, j] 6= 1, then D =< i, j > is a

nonabelian dihedral group by Lemma 2.3.5. Since D is not a q-group, |D| is divisible

by p. LetK be a subgroup ofD of order p. Without loss of generality we may assume

that K ≤ P .

Note that if g ∈ G normalizes K then 1 6= K ≤ P ∩ P g, and hence P g = P due

to the fact that P is an TI-subgroup of G. It follows that both i and j are elements

of NG(P ). Then i and j both commute with the unique involution c contained in

CG(P ) ≤ NG(P ). If t is another involution which commutes with both i and j, then
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t centralizes K and t ∈ NG(P ). As t 6= c, the Sylow 2-subgroup {1, t, c, tc} acts

trivially on K. |NG(P )| = 4|P | implies that

K ≤ Z(NG(P )) ∩ P ∩G = Z(NG(P )) ∩ P ∩G′

which is a contradiction by Corollary 2.5.14. One can consider the commuting graph

Γ of involutions ofG and easily see as in the proof of Theorem A that Γ is an n-regular

graph so that for any two distinct vertices there is exactly one common neighbour.

Now Proposition 4.2.4 yields that |I| = 3. As a consequence Q C G, which is the

final contradiction. �
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• 2012-2017, TÜBİTAK 2211-Domestic Doctorate Fellowship

• B.S. in Mathematics with high honours, METU, 2012

CONFERENCES

• Advances In Group Theory And Applications 2014, Italy

• Zassenhaus Group Theory Conference 2015 (contributed talk)

55



• Finite Groups And Their Automorphisms 2017 (contributed talk)

PUBLICATIONS

• M. Y. Kızmaz (2018) Character free proofs for two solvability theorems due to

Isaacs, Communications in Algebra, 46:6, 2631-2634

• M.Y. Kızmaz, A sufficient condition for fixed points of a coprime action to have

a normal complement. Archiv der Mathematik, 1-3.

• M.Y. Kızmaz, Finite Groups Having Nonnormal T.I. Subgroups (Accepted in

International Journal of Algebra and Computation)

• M.Y. Kızmaz, On The Number Of Topologies On A Finite Set (Accepted in

Algebra and Discrete Mathematics)

56


	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF SYMBOLS
	Introduction
	Background material
	General group theoretical part
	Group action 
	Dihedral and Quaternion groups and their automorphism groups
	Hall subgroups and p-nilpotency
	 Transfer and fusion
	Frobenius groups and TI-subgroups

	Finite Groups Having Nonnormal TI-subgroups
	Key propositions
	Some technical lemmas
	-separable groups having nonnormal Hall TI-subgroups 
	A generalization of Frobenius' theorem

	Character free proofs for two solvability theorems due to Isaacs
	Introduction
	Preliminaries
	Proof of Theorem A
	Proof of Theorem B

	REFERENCES
	CURRICULUM VITAE

