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ABSTRACT 

 

COMPARISON OF ITERATIVE ALGORITHMS  

FOR PARAMETER ESTIMATION IN NONLINEAR REGRESSION 

 

 

 

Musluoğlu, Gamze 

MSc., Department of Statistics 

Supervisor : Prof. Dr. Ayşen Dener Akkaya 

 

 

 

September 2018, 104 pages 

 

Nonlinear regression models are more common as compared to linear ones for real life 

cases e.g. climatology, biology, earthquake engineering, economics etc. However, 

nonlinear regression models are much more complex to fit and to interpret. Classical 

parameter estimation methods such as least squares and maximum likelihood can also 

be adopted to fit the model in nonlinear regression as well, but explicit solutions can 

not be achieved unlike linear models. At this point, iterative algorithms are utilized to 

solve the problem numerically. Since there is no extensive study which compiles, 

classifies and compares the existing methods for nonlinear parameter estimation, the 

objective of this study is to fill this gap. In our study, we aim to compile the methods 

which are used for nonlinear parameter estimation purpose and compare them with 

respect to several criteria such as bias, execution time, number of iterations etc. The 

comparison will be conducted considering different scenarios which are small vs. large 

sample sizes, good vs. poor initial values, normal vs. non-normal error terms, simple 

vs complex models (with respect to number of parameters), and robustness. Both real 

and simulated data are used in the comparative study.  
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ÖZ 

 

DOĞRUSAL OLMAYAN REGRESYONUN PARAMETRE TAHMİNİNDE 

KULLANILAN TEKRARLI ALGORİTMALARIN KARŞILAŞTIRILMASI 

 

 

 

Musluoğlu, Gamze 

Yüksek Lisans, İstatistik 

Tez Yöneticisi : Prof. Dr. Ayşen Dener Akkaya 

 

 

 

Eylül 2018, 104 sayfa 

 

Doğrusal olmayan regresyon modelleri, gerçek hayat problemlerinde doğrusal 

modellere oranla daha yaygındır. İklim bilimi, biyoloji, deprem mühendisliği ve 

ekonomi örnekler arasındadır. Ancak doğrusal olmayan regresyon modellerini kurmak 

ve yorumlamak daha zordur. En küçük kareler ve en çok olabilirlik yöntemleri gibi 

klasik parametre tahmin yöntemleri, doğrusal olmayan regresyon için de 

kullanılmaktadır. Ancak doğrusal modellerde olduğu gibi kesin sonuçlara 

ulaşılamamaktadır. Bu noktada bu sorunu numerik olarak çözmek için tekrarlı 

algoritmalar kullanılır. Bu yöntemleri derleyen, sınıflandıran ve karşılaştıran geniş 

çaplı bir çalışma olmadığı için, amacımız bu boşluğu doldurmaktır. Bu çalışmada, 

doğrusal olmayan regresyon modellerinin tahmininde kullanılan yöntemleri derleyip, 

onları yanlılık, yürütme zamanı, tekrar sayısı gibi kriterlere göre karşılaştırmayı 

amaçlamaktayız. Karşılaştırma küçük ve büyük örneklem büyüklüğü, iyi ve kötü 

parametre başlangıç değerleri, normal ve normal olmayan hata terimleri, basit ve 

karmaşık modeller (parametre sayısına göre) ve sağlamlık gibi farklı senaryolar 

üzerinden uygulanacaktır. Karşılaştırmalı çalışmada hem gerçek hem de benzetim 

yolu ile elde edilmiş veri kullanılacaktır. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Nature in general is nonlinear. That is the main reason of the popularity of nonlinear 

regression in many different research fields. Nonlinear regression analysis is a 

commonly used tool for explaining the relationship between a set of variables by 

constructing a plausible model which contains nonlinear terms. It has applications in 

countless research areas such as physics, biology, earthquake engineering, economics 

etc. However, it has several difficulties in application such as model specification, 

assignment of starting values for parameters and more importantly estimation of the 

unknown model parameters which is the main focus for this study.  

To estimate the model parameters and approximate a model fit, nonlinear least squares 

procedure is the most commonly used method, but it is not straightforward as it is in 

linear case. At this point, optimization algorithms offer help to overcome the 

inconvenience of the equations resulting from the nonlinear least squares procedure. 

Each method has different properties with pros and cons and there are numerous 

algorithms for this purpose, in the literature. Hence, the user face with a serious 

challenge when in the need of nonlinear regression analysis for his/her specific case. 

At this point, comparative studies are very useful to help the user to be able to choose 

the most suitable method for his/her case. 

The fundamental to many numerical algorithms is Newton’s method of Isaac Newton 

and it was first published in 1771 officially even though composed in 1685. His 

version included the calculation of a sequence of complex polynomials to obtain an 

approximation of the root of interest. Raphson (1697) reviewed the Newton’s method 

and used successive approximations of the root rather than polynomials.  
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Throughout the following years, many researchers based their proposed algorithms on 

this essential method. Gauss (1809) introduced his updated recursion formula which 

drops the second derivative part of Newton-Raphson algorithm. In 1909, Debye 

introduced the method of steepest descent which uses the negative gradient as search 

direction and a reasonable step size to facilitate fast convergence. Both Gauss-Newton 

and steepest descent method had strenghts and weaknesses so, Levenberg (1944) 

merged their strong aspects to form a new and better algorithm. Based on Levenberg’s 

study, Marquardt proposed an improved formula for the procedure in 1963. In 1964, 

Fletcher and Reeves took the idea of the famous conjugate gradient method to 

generalize it for nonlinear equations as well. Their method is called as nonlinear 

conjugate gradient method in the literature. Besides all these gradient-based 

algorithms, John Nelder and Roger Mead (1965) suggested their derivative-free 

algorithm. Following these advances, quasi-newton algorithms were suggested, which 

is a modification to fundamental Newton-Raphson method. This family of methods 

uses different formulas to obtain an approximation to the inverse Hessian matrix. Most 

popular ones were proposed by Broyden et al. (1970) and Davidon et al. (1991). 

As mentioned briefly, numerous numerical algorithms exist for the purpose of  

parameter estimation in nonlinear regression analysis. Yet, in the literature, there is 

almost no comparative study which covers the most commonly used numerical 

algorithms for the solution of nonlinear least squares procedure. The present studies 

in the literature only focus on the performance of algorithms or the software packages 

under ideal conditions. They do not take the possible scenarios into account such as 

non-normality in the distribution of the error terms, selection of initial values, sample 

size, complexity of the model function and robustness. 

The aim of this study is to compare the existing and commonly used numerical 

algorithms for nonlinear least squares problems under several conditions which can be 

summarized as the conditions with the presence of normal or non-normal errors, small 

or large sample size, selection of initial values for the iterations, simple or complex 

models and robustness. As comparison criteria, bias and mean squared error for the  
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estimates of the model parameters, mean squared error of fit, execution time and 

number of iterations will be used.  

In this thesis, we make an introduction to the nonlinear regression analysis and explain 

the difficulties related to it in Chapter 2. One of these difficulties is parameter 

estimation problem which is our primary interest in this study. In Chapter 3, the 

methods used for parameter estimation in nonlinear regression are introduced. These 

methods are the most commonly used ones obtained through an extensive literature 

review. The results of the comparisons for iterative methods based on both real data 

and simulation study are given in Chapter 4.  Finally, we summarize and conclude our 

findings in Chapter 5. 
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CHAPTER 2 

 

OVERVIEW OF NONLINEAR REGRESSION ANALYSIS 

 

 

Regression analysis is a useful and commonly known tool which is used for describing 

and modeling the relationship between variables. More specifically, it aims to examine 

the dependency of an exploratory (or response) variable and explanatory (or predictor) 

variables. It enables one to understand how response variable changes when the one 

of the predictor variables is varied whereas the other predictor variables are fixed. To 

sum up, the regression analysis is useful for 

 

i. Examining the effect of the predictors on the response variable. 

ii. Testing whether the predictors do well in estimating the response variable. 

 

To construct a regression model thoroughly, one has to find the suitable regression 

function which fits well to the data. Regression function can be linear or nonlinear 

depending on the problem and the data.  

When the model is linear, the procedure is called as linear regression analysis and 

classical model function is 

 

                          𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 +∈𝑖 ,     𝑖 = 1,2, … . 𝑛                      (2.1) 

 

where 

𝑌𝑖: response variable 
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𝑋𝑖𝑗′𝑠: regressor variables            

𝛽𝑗′𝑠: regression parameters      ; j=1,2,…p 

∈𝑖: random error. 

 

Linear regression analysis is a commonly used regression analysis which is very useful 

in many statistical problems. It’s preferred due to its simplicity, yet efficiency and 

statistical power. However, sometimes linear regression may not be appropriate due 

to intrinsic nonlinear pattern in relations between parameters or variables and the 

response. At this point, nonlinear regression analysis introduces the necessary 

complexity. In such cases, it is more realistic to use nonlinear regression analysis since 

many real life data do not follow a straight line pattern. Nonlinear data can be 

encountered in many real life problems in various research fields like attenuation 

relationships in earthquake engineering, tsunami modeling, weather forecasting in 

climatology, growth of a plant in agriculture etc.  

Nonlinear regression model is generally given by 

 

                                                  𝑌𝑖 = 𝑓(𝑋𝑖; 𝛽) + ∈𝑖                                                (2.2) 

 

where 

𝑌𝑖: response or dependent variable 

𝑓(𝑋𝑖; 𝛽): model function whose at least one of the derivatives with respect to unknown 

parameters contains at least one regression parameter, i.e., nonlinear in variables or 

parameters. 

∈𝑖: random error. 

 

 



7 

 

Nonlinearity can be considered in terms of variables and parameters. Nonlinearity in 

variables can be handled by various transformation techniques. Here is a very simple 

example for this type of nonlinear models. 

 

                                                       𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 +∈𝑖                                               (2.3) 

 

In the model equation above, nonlinearity arises from 𝑋2 and one can simply define a 

new variable, say 𝑍 = 𝑋2. Carrying out these type of classical transformations, the 

models can be converted into a linear one. After that, the same procedure can be 

followed as in linear regression. There is nothing complex with these models. 

However, the second type of models are nonlinear in parameters and this type of 

nonlinearity can cause some complexity in solving and commenting on the problem.  

Models that are nonlinear in parameters can also be considered in two different forms. 

The first one is called as intrinsically linear models which means they can be 

transformed to linear models.  

As an example, Cobb-Douglas production model can be shown. 

 

                                               𝑌 = 𝛼 𝐿𝛽𝐾𝛾 ∗ ∈𝑖                                                                 (2.4) 

   

where 

𝑌: response variable (output) 

L, K: regressor variables (labor and capital, respectively) 

α, β, 𝛾: regression parameters 

∈𝑖: random error.  
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The model in Equation 2.4 is clearly nonlinear in parameters, but it can be linearized 

by using log-transformation. After log-transformation, the Equation 2.5 is obtained. 

 

                                     ln(𝑌) = 𝛿 + 𝛽 ln(𝐿) + 𝛾 ln(𝐾)                                                  (2.5) 

 

In the transformed model equation, 𝛿 stands for ln(𝛼) and other notations are the same. 

The natural logarithm versions of the variables can be substituted with 𝑌∗, 𝐿∗ and 𝐾∗, 

respectively. As it can be clearly seen, the resulting model is linear in its parameters 

and ready to be solved by applying classical linear regression analysis procedure.  

On the other hand, the second type that we will mention about is intrinsically nonlinear 

models. They can not be transformed into a linear model unlike the first type. One 

example for them is as below. 

 

                                             𝑌 =
𝛽1

𝛽2
𝑒𝑥𝑝 [

−(𝑋−𝛽3)

2𝛽2
2 ] +∈𝑖                                                     (2.6) 

 

The model in Equation 2.6 is intrinsically nonlinear and should be treated as so. Thus, 

the researcher should adopt nonlinear regression methods to estimate its parameters. 

In this study, the main focus will be on estimation of intrinsically nonlinear models. 

Though nonlinear regression models are very useful tools in solving complex 

relations, it has some difficulties in practice. The important and problematic issues to 

be careful about when conducting nonlinear regression analysis will be explained 

briefly in the following sections. 
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2.1 Model Specification 

 

Specification of the model in nonlinear regression analysis is a crucial step. Model 

specification is about specifying the expectation function for the model and features 

of the error term. Specification of the error term is also important because assumptions 

about the error usually gives a direction to the researcher to conduct the analysis 

properly. By direction, parameter estimation technique is referred. 

In general, nonlinear models arise as solutions to differential equations. On the other 

hand, the expectation function does not have to be in an explicit function form. For 

example, compartmental type of models have an expected response which is a solution 

to a set of differential equations. 

There are variety of nonlinear models and their application areas can differ. It is not 

very easy to choose the best model from a large list of nonlinear regression functions. 

Before choosing the model, field of the research should be considered. In other words, 

similar studies in the literature can be examined to be able to choose the right family 

of models for the case. Moreover, plotting the data can be useful to see the structure 

of the model. 

Since it is not our main scope, we will just give some examples to most common 

nonlinear regression models. Growth models are probably the most commonly used 

type of nonlinear models. Growth models are usually used to illustrate how response 

variable grows due to the changes in explanatory variable(s) (Montgomery et al., 

2012). Its fields of applications are extensive from engineering to the sciences. Growth 

models are utilized to model the growth of an organism or bacteria in biology, growth 

of animals, humans or even growth of economy etc. As mentioned, its applications are 

extensive. Some of the commonly used growth models are explained briefly as 

follows: 
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Logistic Growth Model 

                                                        𝑌𝑖 =
𝛼

1+𝑒𝑥𝑝(−𝛽−𝛿𝑡𝑖)
+∈𝑖                                         (2.7) 

 

In the model (2.7), Y is the response variable and t is explanatory variable. 𝛼 , 𝛽 and 

𝛿 are the unknown parameters for the given model. The parameters have different 

explanations for different cases. In order to accommodate the parameters well, the data 

should be understood clearly. 

 

Exponential Growth Model 

In the model (2.8), Y is the response variable while t is the explanatory variable. 𝑌0 is 

the starting value of the response when t=0 and k is the growth rate parameter. 

Interpretation of the parameters changes from case to case. 

 

                                                              𝑌𝑖 = 𝑌0 exp(𝑘𝑡𝑖) +∈𝑖                                             (2.8) 

 

Gompertz Growth Model 

Many re-parameterizations can be found in the literature for Gompertz growth 

function. One and commonly used one is illustrated as in (2.9) (Tjorve and 

Tjorve,2017). 

 

                                       𝑌𝑖 = 𝛼. 𝑒𝑥𝑝(−𝑒𝑥𝑝(−𝑘(𝑡𝑖 − 𝛽))) +∈𝑖                             (2.9) 
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2.2 Parameter Estimation 

 

In contrast to simplicity of linear regression, things get a little complex for the 

nonlinear regression models. Parameter estimation is not very easy since the model is 

nonlinear in parameters and classical estimation techniques cannot provide exact 

solutions. Similar to linear regression, parameter estimation can still be done by 

following the least squares (LS) or maximum likelihood (ML) estimation procedures 

though there are some differences. The objective function for the nonlinear model is 

also nonlinear and to solve it, partial derivatives which are not easy to deal with in 

most of the cases are necessary. Even if the partial derivatives are here, the findings 

are not linear and the explicit solutions cannot be obtained directly. Moreover, making 

comments on the parameter estimates becomes confusing. Thus, use of iterative 

methods become inevitable in parameter estimation.  

 

2.3 Initial Values 

 

As mentioned earlier, to solve the parameter estimation problems in nonlinear 

regression analysis, numerical algorithms are adopted to reach the optimal value. 

Numerical algorithms are iterative which means the estimate is updated until the 

convergence to the best possible solution is achieved. Hence, it should have some 

starting value(s) to initiate the iterative process.  

The goodness of initial values is highly important for the success of the numerical 

method because poor assignment of initial values can result in very slow convergence, 

convergence to local optima or no convergence at all. On the other hand, good starting 

point gives the right direction to the algorithm and facilitate its performance in many 

aspects. That is why assigning starting values well is an essential step in parameter 

estimation problems in nonlinear regression. 
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There are many possible options to find good starting values. The first one is plotting 

the data and interpreting the structure. It is simple yet very efficient way to decide on 

the initial values. Another one is guessing it based on the interpretation of the 

parameter of interest. For some models, model parameters have very clear meanings 

and one can simply decide on the initial guess for them with the help of his/her 

knowledge related to the field of subject. For instance, Fekedulegn, Siurtain and 

Colbert (1999) discussed the nonlinear models used in agricultural research and stated 

that the parameters in these models are meaningful in the field of agriculture, which 

forms a basis to obtain good initial values. Even some formulas which provide good 

initial guesses for some parameters are presented in the study. However, this only 

applies to those specific family of models. In most of the cases, there are no such 

formulas for initial value assignment. Third way to determine the initial values is using 

linearization or stochastic algorithms such as genetic algorithm. They perform quite 

well in this. 

Since initial guesses play an important role on the performance of an algorithm in 

converging to right optimal value, we want to test our selected algorithms both under 

poorly and well selected initial values to see their robustness to it. 
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CHAPTER 3 

 

ITERATIVE METHODS FOR THE PARAMETER ESTIMATION IN 

NONLINEAR REGRESSION 

 

 

In this chapter, focus is on the parameter estimation methods commonly used in 

nonlinear regression analysis. Mainly, there are two estimation methods that is used 

for this purpose, least squares and maximum likelihood. However, maximum 

likelihood eventually becomes a least squares problem with both normal and non-

normal errors (Seber and Wild, 2003). That is why we only consider least squares 

approach in this study. 

 

3.1 Nonlinear Least Squares Estimation 

 

Least squares principle is widely used for analyzing both linear and nonlinear models. 

The basic idea behind the LS principle is minimizing the sum of squares of deviations 

between the observed response variable Y and the fitted model value 𝑌̂. 

 Let   ∈ is used to denote the error term, the objective function S is obtained as follows: 

 

                                         𝑆(𝛽) = ∑ (𝑌𝑖
𝑛
𝑖=1 − 𝑓(𝑋𝑖; 𝛽̂))2 = ∑  𝑟𝑖

2 𝑛
𝑖=1                          (3.1) 

where 

Y: response variable 

𝑓(𝑋, 𝛽): regression model function 

𝑟𝑖: residual. 
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Having obtained the objective function S(β), the procedure is carried out by taking the 

derivatives of the objective function S(β) with respect to unknown parameters (𝛽𝑖′𝑠) 

one by one. For each unknown parameter, a normal equation  𝑔(𝛽𝑖) =
𝜕𝑆(𝛽)

𝜕𝛽𝑖
= 0 is 

obtained. Then, the corresponding estimate results are found by solving these normal 

equations.  

Application of LS principle to nonlinear models provides nonlinear set of normal 

equations which are difficult to solve with simple algebra operations. Because 

majority of nonlinear models does not have analytical solutions, iterative techniques 

become necessary. In the following section, most commonly used iterative methods 

developed and used to obtain nonlinear least sqaures (NLS) parameter estimates will 

be presented. 

 

3.2 Numerical Methods Used in Nonlinear Least Squares Estimation 

 

Numerical algorithms are countless and they have similar working principles more or 

less. Most of them starts with an initial guess and updates the current estimate 

depending on its specific search direction and step size. The iteration process continues 

until the convergence criterion is satisfied. Most of the time, convergence criterion is 

the difference between the successive iterative values of the estimated parameters or 

the corresponding value of the objective function. When one of them is smaller than 𝜀 

which is a pre-defined very small quantity (e.g. 10−5 for this study.), the iterative 

process comes to an end. It can be illustrated as below where 𝑘 denotes the iteration 

number. 

                                                     𝑆(𝛽𝑘+1) − 𝑆(𝛽𝑘) < 𝜀                                                             (3.2) 

or 
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                                                   𝛽𝑘+1 − 𝛽𝑘 < 𝜀                                                       (3.3) 

 

In other words, iteration continues improving the fit until there is no significant 

change. Some algorithms may provide slow convergence while another one converges 

in few iterations. Each algorithm has different properties and different attitudes 

towards the problem. 

 

3.2.1 Newton-Raphson Method 

 

Newton-Raphson method, i.e. Newton’s method, is probably the most well-known 

numerical algorithm used for nonlinear parameter estimation. The method forms a 

basis to many other optimization algorithms in the literature. It is named after Isaac 

Newton (1685) and Joseph Raphson (1697). The method tries to find an optimal 

solution iteratively. To be able to do this, it only requires a starting value for the 

algorithm and partial derivatives of the objective function. The basic idea behind 

Newton-Raphson method is starting with a reasonable initial guess and successively 

obtaining a better approximation to the root of the function of interest. 

Newton-Raphson method is based on the quadratic approximation to the objective 

function. The quadratic approximation is as follows where 𝛻 denotes the derivative 

operator. 

                          𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘 +
1

2
𝛿𝑘𝑇

𝐻𝑘𝛿𝑘                                  (3.4) 

where 

𝛽𝑘: current estimate 

𝛿𝑘, 𝛿𝑘𝑇
: step size at the kth iteration and its transpose 

∇𝑆(𝛽𝑘) , 𝛻𝑆(𝛽𝑘)𝑇: first derivative of the model function at the current estimate and 

its transponse 
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𝐻𝑘: second derivative at the current estimate (Hessian matrix). 

The recursion formula obtained from this approximation is  

 

                                                𝛽𝑘+1 = 𝛽𝑘 −
∇S(𝛽𝑘)

∇2S(𝛽𝑘)
                                                                      (3.5) 

 

or equivalently, 

 

                                          𝛽𝑘+1 = 𝛽𝑘 − 𝐻−1(𝛽𝑘) 𝑔(𝛽𝑘).                                          (3.6) 

 

In the recursion formula, some notations are used and they can be expressed as   

 

                  ∇𝑆(𝛽𝑘) = 𝑔(𝛽𝑘) = ∑ 𝑅𝑖(𝛽𝑘) ∇𝑅𝑖(𝛽𝑘)𝑛
𝑖=1 = 𝐽(𝛽𝑘)𝑇𝑅(𝛽𝑘)                  (3.7) 

 

∇2𝑆(𝛽𝑘) = 𝐻(𝛽𝑘) = ∑ ∇𝑅𝑖(𝛽𝑘) ∇𝑅𝑖(𝛽𝑘)𝑇 + ∑ 𝑅𝑖(𝛽𝑘)∇2𝑅𝑖(𝛽𝑘)𝑛
𝑖=1

𝑛
𝑖=1               (3.8) 

 

                                       = 𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝐴(𝛽𝑘)                                                     (3.9) 

 

where 

𝑔(𝛽𝑘): gradient (first derivative) of the function at 𝛽𝑘 

𝐻(𝛽𝑘): Hessian evaluated at 𝛽𝑘 

𝐽(𝛽𝑘): jacobian evaluated at 𝛽𝑘 

𝑅(𝛽𝑘): residuals evaluated at 𝛽𝑘 
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𝐴(𝛽𝑘): second derivative part of the Hessian matrix. 

Another way to show the recursion formula of Newton-Raphson is as following.  

 

                           𝛽𝑘+1 = 𝛽𝑘 + [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝐴(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘)                 (3.10) 

 

Newton-Raphson method is a powerful method with a quadratic convergence 

characteristic. Quadratic convergence is that as the convergence to the root occurs, the 

difference between the root itself and the approximation is squared at each step. So, it 

doubles the number of significant digits in every step. However, Newton-Raphson 

method does not converge if certain conditions do not hold. The assumptions of 

quadratic convergence proof should be met to guarantee that convergence will occur 

for any specific function. The assumptions can be listed as follows: 

 

i. f′ (β) ≠ 0; for all β .  

ii. f′′ (β) is continuous. 

iii. β0 is reasonably close to the true optimal value β∗. 

 

In the assumptions above, f′(β) and f′′(β) denote the first and second derivatives of the 

model function, respectively. Additionally, β0 refers to a set of initial values for the 

model parameters. 

In numerical analysis, it is common that the algorithm may not converge even in large 

number of iterations. As it is highlighted in the third assumption, the convergence of 

the algorithm is highly dependent to the choice of initial values for model parameters. 

In other words, Newton-Raphson method has a very small region of convergence. It 

works very well with good initial values which are very close to the solution.  



18 

 

On the other hand, bad initial guesses can lead to non-convergence of the algorithm. 

As a result, it is very crucial to choose good initial values with small error. As stated 

earlier, Newton-Raphson method is a fundamental method which is a basis for many 

numerical algorithms suggested and studied in the literature. Some of the methods we 

use in our study are modifications to this method and their difference will be explained 

in detail. 

 

3.2.2 Gauss-Newton Method 

 

Gauss-Newton is a very commonly used optimization method for solving nonlinear 

least squares problems. The method is also known as “linearization method”. Gauss-

Newton method is a modification of the classical Newton’s method. It simply ignores 

the second derivative part 𝐴(𝛽)  and this simplifies the recursion formula to solve. 

The idea behind that elimination is that the second derivatives are assumed to be highly 

small compared to first derivatives. That is why they differ only slightly with respect 

to the derivative matrix that is used in computations. In many cases, they converge to 

very close estimates.  

The convergence rate can change from case to case. It may converge slowly or not 

converge at all. The reason behind the convergence problem should be investigated 

and solved to obtain realistic solutions. In general, linear convergence is expected 

against Newton-Raphson’s quadratic convergence feature. The performance of Gauss-

Newton method is highly related to whether the second derivative part is important or 

not. Here, importance refers to magnitude of the quantity. If it is not that important, 

even quadratic convergence can be achieved. 

It is a simple procedure compared to the other iterative schemes because it makes use 

of only first derivative. Yet, it is efficient and convergent. Moreover, not using second 

derivatives saves both time and storage.  
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The procedure simply uses the first-order Taylor series expansion. The method utilizes 

a linear approximation to the regression function around the preset initial values of the 

unknown parameters and it iteratively improves the estimate.  

 

                                                𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘                                   (3.11) 

 

And Equation 3.11 is equivalent to  

 

                                     𝑆(𝛽𝑘+1) = 𝑆(𝛽𝑘) + ∇𝑆(𝛽𝑘) (𝛽𝑘+1 − 𝛽𝑘)                                   (3.12) 

which leads to  

 

                  𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘).                         (3.13) 

 

As a result, the following recursion formula is obtained. 

 

                   𝛽𝑘+1 = 𝛽𝑘 + [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘)                                               (3.14) 

 

It continues until the convergence criterion mentioned in Equation 3.2 is satisfied. 

Convergence can take long in some cases, but still for many real life cases it is very 

useful. 
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3.2.3 Steepest Descent Method 

 

Steepest descent method, or gradient descent method, is an optimization tool that is 

used for minimization of the function of interest. The basic procedure starts with 

deciding on the initial points and then taking the gradient of the model function at the 

preset initial value(s). After obtaining the gradient of the function, the solution is 

moved in the negative direction of the gradient and each time this happens, 

convergence criterion is checked to see whether the optimal solution is obtained or 

not. The process is repeated until convergence criterion is satisfied. The algorithm will 

eventually converge when the gradient is 0 or very close to 0. The convergence 

criterion needs to be selected beforehand. It is a very small value but larger than 0. To 

summarize we can show the algorithm step by step. 

Let S be the objective function that we want to minimize, which is convex and 

differentiable. Also let us denote the unknown parameter vector as 𝜃. 

i. Choose set of initial values  𝛽𝑘 (k=0, initially) and decide on the convergence 

criterion. 

ii. Take the gradient of the function that we want to minimize and evaluate it in 

the set of initial values that is selected before. So, let 𝑔𝑘 = ∇𝑆(𝛽𝑘) and give 

start to the iteration process. 

iii. Set the search direction as the negative of the gradient evaluated at the current 

point 𝛽𝑘. 

iv. Choose a step size λ to use in the iteration process as a fixed value or choose a 

different step size for each iteration which is called as adaptive step size. 

v. The updated estimate is obtained with 𝛽𝑘+1 = 𝛽𝑘 − 𝜆 ∇𝑆(𝛽𝑘). Check if the 

convergence is achieved. If not, repeat the process starting from the 2𝑛𝑑  𝑠𝑡𝑒𝑝 

by setting k=k+1. 

vi. Repeat the process until convergence happens. 
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One aspect to take into consideration while using this algorithm is estimating the step 

size. It is very crucial because it may lead to divergence or slow convergence. Slow 

convergence is not a desirable feature and when step size is too small it will take a 

long time to convergence. When step size is too large iterations may diverge. Selection 

of step size can be carried out with different methods in the literature such as line 

search (Curry, 1944). 

Steepest descent has a branch called steepest ascent. As understood by its name, it is 

used for maximizing the objective function. In other words, while steepest descent 

looks for the global minimum, steepest ascent searches the global maximum for a 

particular problem. The algorithm follows the same steps as steepest descent with only 

one difference. Unlike steepest descent, the solution is stepped in the positive direction 

of the gradient of the function. This is because it aims to converge to the global 

maximum. The recursion formula can be illustrated as in the Equation 3.15. 

 

                                       𝛽𝑘+1 = 𝛽𝑘 + 𝜆 ∇𝑓(𝛽𝑘)                                                (3.15) 

 

In the formula above, 𝛽𝑘+1 is the updated estimate while 𝛽𝑘 is the current estimate. 

As mentioned, only difference from the steepest descent is the direction that will be 

followed in each iteration. All other main characteristics of steepest descent method 

apply to steepest ascent, too. 
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3.2.4 Levenberg-Marquardt Method 

 

Levenberg-Marquardt (L-M) method is one of the most famous methods used in 

nonlinear parameter estimation. The method is developed by Marquardt as a 

modification to the Gauss-Newton method in 1963. Since his work is based on a work 

conducted by Levenberg (1944), the method is also called as Marquardt’s compromise 

method in the literature.  

In some problems, the conditions for 𝐽𝑇𝐽 may not hold. In other words, the matrix may 

be singular or ill-conditioned. In such situations, Gauss-Newton algorithm may not 

converge at all. Therefore, L-M method is developed as a modification to the Gauss-

Newton method to overcome the non-convergence problem of Gauss-Newton when 

the Jacobian matrix is singular in some cases. 

L-M method combines the features of Gauss-Newton method and the steepest descent 

method altogether. The method of steepest descent tends to work well in early 

iterations but as it comes closer to the optimal solution, starts to work slowly. On the 

contrary, the situation is the complete opposite for Gauss-Newton method. So, as a 

combination of these features, L-M method uses the strategy of steepest descent in 

early iterations and then switches to Gauss-Newton as it gets closer to the end. 

It makes use of the linearization vector of Gauss-Newton and the direction of gradient 

descent method (Montgomery et al., 2012). 

Based on that, Levenberg (1944) suggested a modification to the Gauss-Newton 

algorithm with the increment 

 

                𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝐿𝑒𝑣𝑒𝑛𝑏𝑒𝑟𝑔
𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝜂 𝐼]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘)      (3.16) 

 

where I denotes the identity matrix. 
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Moreover, 𝜂 is called as conditioning factor and it plays a very important role in 

convergence. As 𝜂 goes to infinity the step becomes the steepest descent step and as 𝜂 

goes to 0 it looks like Gauss-Newton step. This factor is used for adjustment.  

Based on his idea, Marquardt (1963) suggested a modification to Levenberg’s 

increment which is given by 

 

       𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝑀𝑎𝑟𝑞𝑢𝑎𝑟𝑑𝑡
𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝜂 𝐷]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘)                (3.17) 

 

where D is a diagonal matrix that usually consists of the diagonal entries of the matrix 

𝐽𝑇𝐽.  

About the rate of convergence, L-M is known to have quadratic convergence feature 

when the jacobian at the current point is nonsingular. This is a very good characteristic 

because quadratic convergence refers to a very fast convergence. However, there are 

many problems that have problematic jacobians. In that case, its convergence property 

deteriorates to linear convergence. 

So, it can be concluded that implementation of L-M method is more complex than the 

Gauss-Newton method, in general. There are modifications in the literature for this 

method, too (see for example, Fan (2011)). 
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3.2.5 Quasi-Newton Methods 

 

Quasi-Newton family of methods are generalization of classical Newton’s method. 

Newton’s method is known to be very efficient and fast when necessary conditions 

hold. But when one of them is absent, the method fails to converge properly. One of 

these assumptions is the presence of second derivatives of the objective function. 

However, second derivatives are not always easy to handle or even sometimes they 

are not obtainable at all. For such cases, quasi-Newton method approximates the 

inverse of the Hessian matrix at each iteration. This feature is one of the advantages 

of quasi-Newton methods over Newton’s method. In Newton’s method, after 

calculating Hessian matrix, its inverse should be obtained as a next step. Instead, 

quasi-Newton directly approximates the inverse Hessian matrix, which makes the 

whole procedure a more easier.  

Approximation of the inverse Hessian matrix is conducted by analyzing the successive 

gradients obtained from the same function of interest. In short, this modification is 

carried out either to simplify the procedure of step direction calculation or not to 

calculate second derivatives. 

As in Newton’s method, quasi-Newton algorithms uses the quadratic approximation, 

too. Its quadratic approximation to the objective function is as following:  

 

                                 𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘 +
1

2
𝛿𝑘𝑇

𝐻𝑘𝛿𝑘                       (3.18) 

where 

𝛽𝑘: current estimate 

𝛿𝑘: step size at the kth iteration 

∇𝑆(𝛽𝑘): first derivative at the current estimate 

𝐻𝑘: second derivative at the current estimate (Hessian matrix). 
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General iterative scheme for quasi-Newton algorithms is   

 

                                                         𝛽𝑘+1 = 𝛽𝑘 − 𝛼𝑘𝐻𝑘
−1𝑔𝑘                                                (3.19) 

 

where 

𝐻𝑘: symmetric and nonsingular approximated Hessian matrix  

𝑔𝑘: gradient  

𝛼𝑘: step size obtained by line search. 

 

The procedure is the same until the Hessian matrix calculation because quasi-Newton 

methods do not directly calculate it, rather approximate it. In the literature, many 

different approximation formulas for the inverse Hessian is suggested. The first quasi-

Newton algorithm belongs to William C. Davidon (1959) and then the method he 

proposed was updated by Fletcher and Powell (1963). The method named after these 

three statisticians as DFP method. As years go by, many modifications were developed 

and became very popular. Commonly known modifications can be listed as Broyden-

Fletcher-Goldfarb-Shanno (Broyden et al., 1970), Davidon–Fletcher–Powell 

(Davidon, 1991), Simple Rank 1 (Byrd, 1996) and Broyden’s method (Broyden,1965). 

In this study, BFGS and DFP updating formulas are included due to their popularity. 

They will be explained briefly in the following sections. 

 

3.2.5.1 Davidon–Fletcher–Powell Method 

 

The Davidon–Fletcher–Powell (DFP) method is the first member of quasi-Newton 

family. It was first suggested by Davidon (1959) and his idea was improved by another 

study (Fletcher and Powell, 1963). Even if many other algorithms were developed in 
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the literature through the years, DFP method is still one of the best quasi-Newton 

algorithms.  

Again the basic principle is straightforward, only the Hessian approximation 

procedure is different. It offers updating formulas for both Hessian or inverse Hessian 

directly. The latter is mostly preferred in practice. 

 

The approximation to Hessian matrix is conducted with the Equation 3.20. 

 

                               𝐻𝑘+1 = (𝐼 −
𝜑𝑘𝛿𝑘𝑇

𝜑𝑘
𝑇𝛿𝑘

) 𝐻𝑘 (𝐼 −
𝛿𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

) +
𝜑𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

                                   (3.20) 

where 

𝜑𝑘 = ∇𝑆(𝛽𝑘 + 𝛿𝑘) − ∇𝑆(𝛽𝑘) 

and 

𝛾𝑘 =
1

𝜑𝑘
𝑇𝛿𝑘

 . 

 

As stated, the method also suggests a formula for direct approximation to the inverse 

Hessian matrix as in the Equation 3.21. 

 

                                             𝐵𝑘+1 = 𝐵𝑘 +
𝛿𝑘𝛿𝑘𝑇

𝛿𝑘𝑇
𝜑𝑘

−
𝐵𝑘𝜑𝑘𝜑𝑘

𝑇𝐵𝑘

𝜑𝑘𝐵𝑘𝜑𝑘
𝑇

                                           (3.21) 

 

The approximation is iteratively updated at each iteration. Another well-working 

method from quasi-Newton family will be explained in the following section. 
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3.2.5.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 

 

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is one of the most popular 

quasi-Newton methods which is used for nonlinear unconstrained optimization 

problems. The method is developed by Broyden, Fletcher, Goldfarb and Shanno 

(1970).  

The approximation formula for Hessian is shown as in the Equation 3.23. 

 

                                        𝐻𝑘+1 = 𝐻𝑘 +
𝜑𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

−
𝐻𝑘𝛿𝑘𝛿𝑘𝑇

𝐻𝑘
𝑇

𝛿𝑘𝑇
𝐻𝑘𝛿𝑘

                                                 (3.23) 

 

The method also offers a direct approximation to inverse Hessian as in the Equation 

3.24. 

 

                            𝐵𝑘+1 = (𝐼 −
𝛿𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘) 𝐵𝑘 (𝐼 −

𝜑𝑘𝛿𝑘𝑇

𝜑𝑘
𝑇𝛿𝑘) +

𝛿𝑘𝑇
𝛿𝑘

𝜑𝑘
𝑇𝛿𝑘                              (3.24)      

                         

 

where 

                                              𝜑𝑘 = ∇𝑆(𝛽𝑘 + 𝛿𝑘) − ∇𝑆(𝛽𝑘)                                                  (3.25)  

 

or equivalently 

 

                                                𝜑𝑘 = ∇𝑆(𝛽𝑘+1) − ∇𝑆(𝛽𝑘)                                                      (3.26) 
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which is basically the difference between successive gradients. The approximation for 

Hessian is updated at each iteration based on the previous approximation.  

The above mentioned quasi-Newton methods are widely applicable for unconstrained 

minimization problems and proven to be efficient. Since nonlinear parameter 

estimation is a special case of unconstrained optimization, these methods are included 

in our study. 

 

3.2.6 Nonlinear Conjugate Gradient Method 

 

Conjugate gradient (CG) is a numerical algorithm which is primarily used for large 

system of linear equations. The method was first introduced by Eduard Stiefel and 

Magnus Hestenes (1952). Although its main aim is not minimization, it is being used 

for that purpose as well.  

Conjugate gradient has a nonlinear version which is utilized to find the optimal value 

in problems with nonlinear equations and it is called as nonlinear conjugate gradient 

method. It makes use of the gradient of the objective function. The algorithm is 

explained through the following steps: 

 

i. Start with obtaining the classical steepest descent direction which is simply the 

negative gradient of the function. 

 

                                                            𝛿𝑘 = −∇𝑆(𝛽𝑘)                                                 (3.27) 

 

ii. Calculate the conjugate direction 𝐶𝑘 by using one of the formulas suggested in 

the literature. Commonly used ones can be listed as Fletcher-Reeves, Polak–

Ribière and Hestenes-Stiefel. Our choice is Fletcher-Reeves method. 
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                                                            𝐶𝑘
𝐹𝑅 =

𝛿𝑘𝑇
𝛿𝑘

𝛿𝑘−1𝑇
𝛿𝑘−1

                                                    (3.28) 

 

iii. Obtain the conjugate direction 𝑆𝑘 using the findings and update it at each 

iteration. 

 

                                                         𝑆𝑘 = 𝛿𝑘 − 𝐶𝑘𝑆𝑘−1                                                  (3.29) 

 

iv. Find a reasonable step size 𝛼𝑘 by performing line search. Here, argmin 

function finds the arguments that minimize the objective function. 

 

                                                 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆(𝛽𝑘 + 𝛼𝑆𝑘)                                         (3.30) 

 

v. Use the recursion formula to update the current estimate  

 

                                                    𝛽𝑘+1 = 𝛽𝑘 + 𝛼𝑘𝑆𝑘                                                           (3.31) 

 

vi. Continue until the convergence criterion is satisfied. 
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3.2.7 Nelder-Mead Method 

 

Nelder-Mead algorithm is a well-known derivative-free method which is commonly 

used in unconstrained optimization problems. The method is also known as simplex 

search algorithm and it was suggested by John Nelder and Roger Mead (1965). 

It does not require the calculation or approximation of the derivatives, so it is 

applicable to non-differentiable functions as well. Its working principle is based on 

simplex. The method makes use of simplex, which is a representation of triangle in 

random dimensions. For example, a simplex has n+1 vertices when it is defined for a 

problem in ℝ𝑛 and it is called as n-simplex. According to that, when we are working 

with 2 dimensional space, the simplex has 3 vertices. When the dimension increases 

to 3, number of vertices becomes 4. The shapes of the mentioned simplexes can be 

observed in Figure 3.1. 

 

 

Figure 3.1: 2-simplex (triangle) and 3-simplex (tetrahedron) 

 

Algorithm for the Nelder-Mead method can be summarized as follows. 

 

i. Construct an initial working simplex S. There exist numerous ways to obtain 

an initial simplex and most commonly used technique is generating n+1 

vertices around the pre-defined starting value. 
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ii. Check the convergence criterion. If not satisfied yet, transform the working 

simplex. Four transformation approaches are available, namely, shrinkage, 

expansion, reflection and contraction. The suitable one is applied to obtain the 

updated simplex. 

iii. Repeat the process until convergence to optimal solution is achieved. 

Convergence criterion is up to the researcher however it is assumed that the 

convergence is achieved when there is a very slight difference between the 

successive simplexes. 

 

Despite its simplicity in the idea and application, Nelder-Mead method is still 

considered as very successful in practice. As a result, it is popular and preferred by 

researchers from many different fields. Moreover, according to many sources, it is 

among the best known derivative-free algorithms. Hence, Nelder-Mead method takes 

part in our study on behalf of derivative-free methods. 
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CHAPTER 4 

 

SIMULATION STUDY AND APPLICATION 

 

 

4.1 Organization of the Simulation Study 

 

In this section, simulation study is designed and carried out to compare the 

performances of the selected numerical algorithms under several conditions. The 

conditions taken into consideration are distribution of the error terms, sample size, 

goodness of initial guesses for parameters, complexity of the model and robustness.  

For this purpose, two models are selected: a simple model and a complex one. The 

complexity of the model is based upon the number of parameters that the model 

consists of.  

The simulation study is performed for each combination of the possible scenarios that 

we are interested in. Additionally, these simulations are executed for both simple and 

complex models. 

Codes for the Monte Carlo simulation study is written in the R program by using built-

in functions for the numerical algorithms. One of the codes is given in Appendix part 

as an example. 

In the following sections, organization of the simulation study will be explained in 

detail and the results will be illustrated.  
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4.1.1 Conditions for Comparison 

 

In this study, the aim is to compare the iterative methods in an extensive way which 

means not only under ideal conditions, but also under poor conditions. There are many 

conditions that may affect the performance of the methods. As statisticians, the first 

one that comes up to mind is the non-normality in the distribution of the error terms. 

In addition to non-normality, robustness of the estimated parameters to anomalies in 

the error distribution, i.e. outliers, contamination and inliers are checked. Another 

condition is directly related to optimization problems, i.e. initial values used to start 

the iteration process. Moreover,  sample size is considered as a significant factor 

effecting the performance of the algorithms because it does on regression.  Finally, the 

number of parameters which can affect the performance of the iterative algorithms is 

also examined. As a result, the simulation study is conducted for each one of the 

combinations of all these conditions, separately. That allows us to make comparison 

for any case, very clearly. 

 

4.1.1.1 Complexity of the Model 

 

Complexity of the model is one aspect that is taken into consideration through this 

study. Here the word “complexity” refers to the number of parameters included in the 

nonlinear regression model.  In other words, higher the number of parameters is, more 

complex the model is. 

In nonlinear regression models, number of parameters does not directly depend on the 

number of variables unlike linear models. Hence, the number of parameters are 

presumed as reference to describe the complexity of the model.  When the model gets 

more complex, it is naturally harder to estimate the parameters. Since we want to test 

the most commonly used algorithms under both situations, one simple and one 

complex model are selected. 
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The models are taken from National Institute of Standards and Technology (NIST) 

Statistical Reference Datasets (StRD) from the website 

http://www.itl.nist.gov/div898/strd/.  The website offers numerous models with their 

reference datasets which are classified according to their level of difficulty as low, 

medium and high. We have selected one model with low level of difficulty and another 

with high level of difficulty.  

Another advantage of this website is that it also offers the certified values for the 

parameters. The certified values are reliable because they were approved by using at 

least two numerical methods and different software packages. Presence of certified 

values helps us to compare the outcomes that will be obtained from each algorithm we 

will make use of. 

 

Simple Model 

 

The simple model is named as “Chwirut1” and taken from an ultrasonic response study 

(Chwirut, 1979). In the model, the dependent variable Y is ultrasonic response, and 

the independent variable is metal distance. Its reference dataset has 214 observations 

and 3 unknown parameters. The data is observed, not simulated.  

The model function is given by 

 

                                                    𝑌𝑖 =
𝑒−𝛽1𝑋𝑖

𝛽2+𝛽3𝑋𝑖
+ 𝜖𝑖                                                                         (4.1)   

 

where 𝛽1, 𝛽2 and 𝛽3 are unknown parameters and 𝜖𝑖 is the error term. 

The certified values for the unknown parameters are as following: 

𝛽1
∗ = 0.1902 , 𝛽2

∗ = 0.0061 , 𝛽3
∗ = 0.0105. 
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The behavior of the relationship can be observed from Figure 4.1. As it can be clearly 

seen, it has a decreasing trend with a curvature shape. 

 

 

Figure 4.1: The nonlinear regression curve of Chwirut1 

 

 

Complex Model 

 

Second model is named as “Thurber” and taken from a semiconductor electron 

mobility study conducted by Thurber (1979). It is called as complex model in this 

study due to its higher number of parameters as compared to the former model. 

Moreover, it is also classified as a difficult model and dataset in the website according 

to different aspects as well. 

The model has one response and one predictor variable again. They are the measure 

of electron mobility and the natural log of the density, respectively. The data consists 

of 37 observations.  
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The model function has 7 unknown parameters and is given by 

 

                                                𝑌𝑖 =
𝛽1+𝛽2𝑋𝑖+𝛽3𝑋𝑖

2+𝛽4𝑋𝑖
3

1+𝛽5𝑋𝑖+𝛽6𝑋𝑖
2+𝛽7𝑋𝑖

3 + 𝜖𝑖                                        (4.2) 

 

where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 and 𝛽7 are the unknown parameters included in the model 

of interest and 𝜖𝑖 is the error term. 

In addition, the certified values for these parameters are as follows: 

 𝛽1
∗ = 1288.139 , 𝛽2

∗ = 1491.079 , 𝛽3
∗ = 583.238 , 𝛽4

∗ = 75.416 ,  𝛽5
∗ = 0.966 , 

 𝛽6
∗ = 0.397 , 𝛽7

∗ = 0.049 

Moreover, its curvy behavior can be observed in Figure 4.2. 

 

 

Figure 4.2: The nonlinear regression curve of Thurber 
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4.1.1.2 Distribution of the Error 

 

Error term is anything that differentiates the constructed model from its true version 

and has always been the problematic part of any problem. Errors are often assumed as 

normally distributed since it is the easiest way to run away from the problems that may 

occur. On the other hand, normality assumption is hard to satisfy in real life problems. 

However, researchers insist on believing that their error terms are normally 

distributed. In fact, it can be any distribution and the assumption of normality may 

cause problems. That is why it is included in this comparative study. The aim here is 

to notice which one(s) of the numerical algorithms overcome this inconvenience more 

efficiently. 

We have selected the generalized logistic (GL) distribution as a non-normal 

distribution for the error terms in this study. The probability distribution of generalized 

logistic is given by 

 

                                       𝑓(𝑒) =
𝑏

𝜎
𝑒𝑥𝑝(−𝑒

𝜎⁄ )

{1+𝑒𝑥𝑝(−𝑒
𝜎⁄ )}𝑏+1            − ∞ < 𝑒 < ∞                              (4.3) 

 

with the following properties 

 

                                                   𝐸(𝑒) = {Ψ(𝑏) − Ψ(1)} 𝜎                                          (4.4) 

 

                                               𝑉(𝑒) = {Ψ′(𝑏) + Ψ′(1)} 𝜎2                                           (4.5) 

 

where b>0,  Ψ(𝑥) denotes the psi-function and Ψ′(𝑥) stands for its derivative. 
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In GL distribution, the shape parameter b is crucial. When it is equal to 1, the 

distribution is classical logistic distribution. On the other hand, it is negatively skewed 

when b<1 and positively skewed when b>1 (Akkaya and Tiku, 2010). Hence, it can 

behave in any direction. That is why we have selected it as our non-normal distribution 

and assign b=0.5 and b=2 to observe the performance results under both types of 

skewness. 

 

4.1.1.3 Goodness of Initial Values 

 

As mentioned in the Section 2.3, goodness of initial values is one of the most crucial 

aspects to take into consideration when the study involves optimization (Bates and 

Watts, 2007). Since nonlinear parameter estimation is a special case of unconstrained 

optimization, obtaining good starting values is one of the best steps that the researcher 

can take to conduct nonlinear regression analysis successfully. 

Respectively good starting guesses facilitates the convergence by leading the iteration 

process in the right direction. Here, “good” refers to the value close to the real value 

of the parameter. In our case, real value refers to the certified values provided by the 

website itself. On the other hand, when the starting values are respectively poor, i.e. 

farther from the certified values, iteration process can head to wrong direction and end 

up with non-convergence, or it converges to optimal value very slowly. These cases 

are not desired, so selection of good starting values should be emphasized. 

It is always easier to converge when the process is initiated with a set of good starting 

values. An efficient method should give plausible results under both conditions. That 

is why the behavior of algorithms are tested under the presence of poor initial values 

as well as good ones. 
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To select starting values efficiently, there are numerous ways as mentioned briefly in 

Section 2.3. In this study, website from which the reference models taken provides 3 

different sets of starting values which are close to the certified ones. So, we have taken 

one of them as our set of good starting values. Based on that, a set of poor starting 

values are derived by increasing the values of good ones with the ratio 50%.  

 

4.1.1.4 Sample Size 

 

Sample size is another issue that is important in any kind of regression analysis. 

Regression analysis tries to explain the relationship between variables by constructing 

a meaningful model. At this point, as sample size gets larger, the information it carries 

gets bigger and this effects the model in a positive way. An estimator showing this 

behavior is called as consistent. As a result, by performing a nonlinear regression 

analysis, sample size issue is considered as a test condition.  

During comparisons, n=250 and n=25 are taken as quite large and small sample sizes, 

respectively to notice their distinctive effect on success of our numerical algorithms.  

 

4.1.1.5 Robustness in Errors 

 

Deviations from the assumed error distribution is highly frequent in many cases. As a 

result, it is almost never for sure that the assumed distribution is fully accurate (Tiku 

& Akkaya, 2004).  To overcome this successfully,  robustness of the estimators comes 

into question. The estimators should be able to carry on its efficiency for an assumed 

distribution and maintains high efficiency even in such deviations from the 

distribution to be called as robust.  

To test the robustness of the estimators of the variables and the model itself, we 

designed outlier, contamination and inlier models for the cases in which the errors are 

normally distributed.  
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Outlier Model 

(n − r) Xi come from N(μ, σ2) and r (we do not know which) come from N(μ, 4σ2);  

r = [0.5 + 0.1n] (integer value) and  =0 and =1 without any loss of generality. In 

other words, the standard deviation is doubled up for 10% of the observations (Tiku  

and Akkaya, 2004). 

 

Inlier Model 

In the inlier model, a proportion of smallest or largest order statistics in a random 

sample 1 2 n,  ,  .  .  ,     from ),(N 2 is replaced by 
i( ) ,   1,       so that the 

displaced observations get located closer to   and are erroneous, and located within 

   (Akkaya and Tiku, 2008). 

 

Contamination Model 

In this case, the normal error distribution is contaminated with another distribution 

which is uniform (0, 1) with 10 percent, i.e., 0.90N(μ, )+0.10Uniform(0, 1), and  =0 

and =1 without any loss of generality (Tiku  and Akkaya, 2004). 

 

4.1.2 Simulation Scenarios 

 

The conditions discussed in Section 4.1 form the base for this comparative study. Since 

the aim is to test the iterative methods under many conditions, all possible 

combinations of these conditions are assigned as a simulation scenario which increases 

our cases to 24 for each model, i.e., simple and complex models. The point is that an 

undesirable condition does not always occur when all other conditions are well-

behaved. All undesirable conditions can arise together or one at a time. That is why 

the simulation study is designed by crossing over the levels of selected conditions. 
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This allows us to observe the behavior of the method under a wide range of situations 

from best to the worst case possible. 

Our simulation scenarios are presented as below: 

1. Large sample + normally distributed errors + good initial values 

2. Small sample + normally distributed errors + good initial values 

3. Large sample + GL (b=0.5) distributed errors + good initial values 

4. Small sample + GL (b=0.5) distributed errors + good initial values 

5. Large sample + GL (b=2) distributed errors + good initial values 

6. Small sample + GL (b=2) distributed errors + good initial values 

7. Large sample + normally distributed errors + poor initial values 

8. Small sample + normally distributed errors + poor initial values 

9. Large sample + GL (b=0.5) distributed errors + poor initial values 

10.  Small sample + GL (b=0.5) distributed errors + poor initial values 

11.  Large sample + GL (b=2) distributed errors + poor initial values 

12. Small sample + GL (b=2) distributed errors + poor initial values 

13. Large sample + normally distributed errors with outliers + good initial values 

14. Small sample + normally distributed errors with outliers + good initial values 

15. Large sample + normally distributed errors with outliers + poor initial values 

16. Small sample + normally distributed errors with outliers + poor initial values 

17. Large sample + contaminated normal errors + good initial values 

18. Small sample + contaminated normal errors + good initial values 

19. Large sample + contaminated normal errors + poor initial values 

20. Small sample + contaminated normal errors + poor initial values 

21. Large sample + normally distributed errors with inliers + good initial values 

22. Small sample + normally distributed errors with inliers + good initial values 

23. Large sample + normally distributed errors with inliers + poor initial values 

24. Small sample + normally distributed errors with inliers + poor initial values 
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These simulations scenarios are carried out both for simple model and complex 

models, separately. So, it is possible to compare the results of similar conditions with 

respect to the complexity of the model. 

 

4.1.3 Comparison Criteria 

 

To compare the success of commonly used numerical methods for estimating the 

unknown parameters of a nonlinear regression model and reaching a reliable 

conclusion, comparison should be based upon reliable criteria. The criteria used in this 

comparative study are explained briefly in the following subsections. 

 

4.1.3.1 Bias 

 

The first criterion is bias in the estimators and is widely applicable in estimation 

comparison problems. When evaluating the performance of a numerical algorithm, it 

is highly crucial to obtain the closest estimate to the true value. It is basically the 

difference between the estimated value and the true value of the parameter of interest. 

 

                                                                   𝐵𝑖𝑎𝑠 = 𝐸(𝛽̂) − 𝛽                                              (4.6) 

 

In Equation 4.6, 𝛽̂ is the parameter estimate and 𝛽 is the true value of the parameter 

itself.  
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4.1.3.2 Mean Squared Error 

 

Mean squared error (MSE) is the second criterion for our comparison study. It is a 

measure of assessment for an estimator. In our study, the purpose is to see which 

algorithm(s) provides the best estimates for the unknown parameters. That is why 

MSE is selected as a criterion for comparison. 

MSE is defined as  

 

                                                           𝑀𝑆𝐸 = 𝐸 [(𝛽̂ − 𝛽)
2

].                                                       (4.7)  

 

It can also be written as the summation of variance of the estimated value and squared 

bias of it.  

                                                         𝑀𝑆𝐸 = 𝑉𝑎𝑟(𝛽̂) + 𝐵𝑖𝑎𝑠(𝛽̂)
2
                                      (4.8) 

 

For real data case,  variances are computed with the following formula. 

                                                    𝑉𝑎𝑟(𝛽̂) = 𝑆2 [𝐽′𝐽]−1                                           (4.9) 

where 

                                                     𝑆 = √
∑ [𝑌𝑖−𝑓(𝑋𝑖,𝛽)]2𝑛

𝑖=1

𝑛−𝑝
.                                                 (4.10) 
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4.1.3.3 Execution Time 

 

Execution time is another criterion for comparing the performance of numerical 

algorithms. It is a measurement of speed, clearly. In fact, almost all numerical methods 

are very fast and they differ from each other with milliseconds sometimes. However, 

in this work this criterion is still preferred for assessment of the performance and 

thought that it is important since for most of the real life cases, execution time becomes 

distinctive. 

In order to measure the execution time, we made use of a built-in function in R and 

included the results in the output tables. 

 

4.1.3.4 Number of Iterations 

 

Iteration number refers to the quantity that how many times the estimate is updated 

until convergence is achieved. It is an important characteristic in numerical studies 

since it is directly related with the time and store management e.g. less number of 

iterations saves both time and storage.  

In this study, most of the numerical algorithms used have similar iteration processes 

so that it is considered as a comparable criterion. However, as briefly explained in 

Chapter 3, Nelder-Mead is a derivative-free simplex algorithm and it has a completely 

different working principle for iteration. As a result, its number of iterations are not 

comparable with the others. Nonetheless we keep it to compare its performance under 

different conditions. In addition, number of iterations illustrated in the tables are 

calculated by taking the average of the results obtained from 10000 runs. 
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4.1.3.5 MSE for Overall Fit 

 

The comparison criteria in Section 4.1.3.1 and 4.1.3.2 are calculated for each 

parameter that is being estimated. On the other hand, another criterion, called as mean 

squared error for overall fit is needed to observe how well the estimated model fit. 

Calculations for each fitted model is obtained by taking the average of the squared 

residuals. Residuals are the difference between the observed value of the dependent 

variable and its predicted value obtained from the estimated model fit and is given by 

 

                                                               𝑟𝑖 = 𝑌𝑖 − 𝑌𝑖̂                                                            (4.11) 

 

where 𝑌𝑖 denotes the actual value and 𝑌𝑖̂ denotes the predicted value of the response 

variable. 

 

Then, MSE for overall fit is obtained by 

 

                                                       𝑀𝑆𝐸(𝑓𝑖𝑡) =
∑ 𝑟𝑖

2𝑛
𝑖=1

𝑛
.                                                          (4.12) 
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4.2 Results of the Simulation Study and Application 

 

In this section, results of the data application and simulation study will be illustrated. 

The results are evaluated under all conditions one by one in order to discriminate the 

effect of each condition separately.  

 

4.2.1 Simple Model Results 

 

The results of all simulated scenarios will be given under 4 subsections according to 

distribution of errors, sample size, initial guesses and robustness. The model is the 

“Chwirut1” model as explain in Section 4.1.1.1. 

 

Real Data Case 

Before moving on with the simulation study results, real data results with comments 

are given. Real data results of Chwirut1 with good initial values are given in Table 

4.1.  As it can be observed from Table 4.1, except CG which is slightly higher, biases 

and MSE values for the estimates of the parameters are more or less the same and 

pretty small for all algorithms as desired. Another criterion is the MSE value for the 

fitted model and they are very close to each other for all methods except CG which is 

again not dramatically higher. When the execution time results are checked, the L-M 

and DFP methods are observed as the fastest ones with 0.04 seconds. However, L-M 

method converges with less number of iterations compared to DFP method as well as 

the other methods. To conclude, all methods provide reasonable estimates for the real 

data of the simple model when iterations are started with good initial values. To sum 

up, from the best to the worst, the algorithms can be ordered as L-M > DFP > Newton 

> BFGS > Nelder-Mead > CG. 
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Table 4.1: Real data results of Chwirut1 with good initial values 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

3.37x10-4 2.77x10-4 -3.21x10-3 2.64x10-4 -0.091 2.78x10-4 
 

1.32x10-4 1.31x10-4 1.93x10-4 1.32x10-4 -1.17x10-3 1.31x10-4 
 

2.84x10-5 3.09x10-5 9.49x10-6 2.85x10-5 3.41x10-3 3.09x10-5 

MSE 

 

7.74x10-5 2.21x10-4 4.84x10-5 6.47x10-7 8.13x10-3 2.01x10-7 
 

4.43x10-5 1.46x10-6 1.24x10-9 1.42x10-6 7.24x10-6 5.41x10-8 
 

3.18x10-6 4.51x10-8 6.38x10-9 5.28x10-7 1.16x10-5 1.65x10-10 

Time 0.1 0.04 0.1 0.08 0.09 0.04 

Iterations 22 8 12 146 10 13 

MSE (fit) 11.14 11.14 11.16 11.14 12.23 11.14 

 

Table 4.2: Real data results of Chwirut1 with poor initial values 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

5.16x10-4 2.77x10-4 -9.06x10-3 0.336 -0.091 2.78x10-4 
 

1.33x10-4 1.31x10-4 1.42x10-4 2.78x10-3 -1.18x10-3 1.31x10-4 
 

2.32x10-5 3.09x10-5 2.12x10-4 -8.02x10-3 3.41x10-3 3.09x10-5 

MSE 

 

1.04x10-7 1.84x10-4 1.28x10-5 0.142 8.41x10-3 4.77x10-7 
 

2.42x10-6 3.62x10-5 2.25x10-8 4.76x10-6 1.54x10-6 5.72x10-7 
 

6.89x10-7 2.96x10-7 5.14x10-7 4.51x10-5 6.41x10-5 5.57x10-9 

Time 0.09 0.05 0.1 0.1 0.1 0.04 

Iterations 25 14 32 144 10 17 

MSE (fit) 11.14 11.14 11.18 16.43 12.23 11.14 

 

The methods work well when iteration process is started with good initial values. The 

question is that if they can pursue their performance with the presence of poorly 

selected initial values. The results are presented in Table 4.2. When bias and MSE 

values are examined, it is seen that for all methods except Nelder-Mead and CG, they 

are close to each other. However, overall bias is ignorable even for Nelder-Mead and 

CG. Except for CG and Nelder-Mead which is the worst, other algorithms sustain their 

success in estimation with the same MSE for fit values. 



49 

 

The execution times are more or less the same as in the case of good initial values, i.e., 

there is no significant slowing down behavior.  The number of iterations, on the other 

hand, increased for most of the methods compared to the results given in Table 4.1.  

Although the number of iterations shows a drastic incerase in Nelder-Mead, it still 

provides a reasonably good fit.  It can be concluded that all methods performed well 

with poor initial values as well as good initial values for this data set and the model. 

 

Simulated Data Case 

After presenting real data results, the comparisons through simulation are given for 

the simple model in the following sections. 

 

4.2.1.1 Comparisons with respect to Error Distribution 

 

As mentioned in Section 4.1.1.2, the algorithms are run for simulated data sets with 

both normal and non-normal error terms.  

As non-normal distribution, generalized logistic distribution are selected with two 

different shape parameters. As a result, the algorithms are tested with both symmetric, 

right-skewed and left-skewed error terms. Since the real data for the model shows a 

right-skewed behavior, it is suspected that simulated data with right-skewed error may 

result in better fit compared to the left-skewed competitor. 

By taking other conditions fixed, the effect of error distribution on the performance of 

the algorithms is considered. Firstly, consider the sample size is large and the iteration 

process is initiated with good starting values. 
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Table 4.3: Large sample + normal error + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

-3.72x10-3 2.12x10-5 1.4x10-2 -2.71x10-5 9.01x10-2 -2.12x10-4 
 

-6.67x10-6 7.28x10-8 1.07x10-4 -7.93x10-9 1.51x10-4 -6.70x10-7 
 

7.55x10-5 -3.03x10-7 -3.66x10-4 6.91x10-7 2.02x10-3 5.05x10-6 

MSE 

 

3.56x10-4 1.50x10-5 1.33x10-2 1.92x10-5 8.12x10-3 1.41x10-5 
 

1.14x10-9 1.51x10-10 6.48x10-8 1.62x10-10 3.20x10-8 1.35x10-10 
 

1.44x10-7 6.51x10-9 2.52x10-6 8.21x10-9 4.39x10-6 6.09x10-9 

Time 0.022 0.0025 0.0267 0.0297 0.0299 0.0066 

Iterations 24.33 7.1 8.24 199.82 23.48 10.36 

MSE (fit) 1.10 0.99 3.28 0.99 4.72 0.98 

 

 

Table 4.4: Large sample + GL error (b=0.5) + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

3.55x10-2 3.71x10-2 5.07x10-2 3.7x10-2 -9.01x10-2 3.50x10-2 
 

6.18x10-5 6.47x10-5 1.59x10-4 6.47x10-5 -1.56x10-4 6.69x10-5 
 

-1.55x10-4 -1.88x10-4 -5.40x10-4 -1.8x10-4 2.69x10-3 -1.96x10-4 

MSE 

 

1.59x10-3 1.49x10-3 1.39x10-2 1.49x10-3 8.12x10-3 1.52x10-3 
 

5.38x10-9 5.24x10-9 5.85x10-8 5.25x10-9 3.44x10-8 5.68x10-9 
 

1.55x10-7 8.27x10-8 2.22x10-6 8.45x10-8 7.58x10-6 8.77x10-8 

Time 0.025 0.0025 0.0267 0.0274 0.0343 0.0068 

Iterations 24.78 7.02 8.09 188.7 21.06 10.78 

MSE (fit) 6.60 6.54 7.99 6.54 12.61 6.58 
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Table 4.5: Large sample + GL error (b=2) + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

-3.01x10-2 -2.45x10-2 -1.27x10-2 -2.47x10-2 -9.01x10-2 -2.50x10-2 
 

-5.48x10-5 -4.47x10-7 6.89x10-5 -4.50x10-5 1.56x10-4 -4.59x10-5 
 

2.25x10-4 1.09x10-4 -2.24x10-4 1.13x10-4 1.66x10-3 1.15x10-4 

MSE 

 

1.29x10-3 6.31x10-4 1.26x10-2 6.49x10-4 8.12x10-3 6.41x10-4 
 

4.36x10-9 2.32x10-9 4.89x10-8 2.38x10-9 3.26x10-8 2.45x10-9 
 

2.05x10-7 2.61x10-8 2.41x10-6 3.10x10-8 2.97x10-6 2.78x10-8 

Time 0.0291 0.0029 0.0345 0.0268 0.0407 0.0074 

Iterations 23.39 7.57 8.36 193.32 22.39 10.24 

MSE (fit) 2.41 2.28 4.78 2.28 4.81 2.27 

 

The results are presented in Tables 4.3, 4.4 and 4.5, respectively. The estimates with 

good statistical properties are obtained when the errors are normally distributed, which 

is expected. Under the non-normality assumption of errors, the results are plausible. 

When the error distribution is right skewed, the estimates seem more precise compared 

to the left skewed one. L-M, DFP and Nelder-Mead methods provided very close fits, 

separately. Besides, Newton method competes with them. However, L-M stands out 

with shortest execution time and least number of iterations, which makes it the best 

for these cases. 

The fits that BFGS method provided is generally on average looking at the presented 

tables. However, BFGS method deals with the left-skewed errors more successfully 

compared to its closest competitor conjugate gradient method. So, it can be concluded 

that the conjugate gradient method gives the worst fit with the presence of any type of 

error distribution.  

To wrap things up, the most successful one under all these conditions seems to be L-

M method because it provides one of the best fits with the less number of iterations 

and within the shortest amount of time. If the algorithms are ordered from the best to 

the worst for this specific case, it should be as L-M > Nelder-Mead > DFP > Newton 

> BFGS > CG. 
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We have interpreted the results obtained only when the good initials are assigned at 

the beginning of the estimation process. The results obtained when the poor initials 

are assigned under the same conditions are not given here since they are very similar 

to good initials case. 

 

4.2.1.2 Comparisons with respect to Sample Size 

 

Sample size is another condition that is the interest of this comparative study as 

mentioned in Section 4.1.1.4. It is classified as small and large sample size for this 

study. The large sample size is determined as 250 while the small sample size is 

determined as 25. The difference between them is significant since we want to 

examine the behavior of algorithms under such situation. The aim here is to observe 

which one(s) of them handles this situation better compared to its competitors when 

other conditions are hold fixed, i.e., normally distributed errors and good initial values. 

The simulation results are as presented in Table 4.3 and Table 4.6, for small and large 

sample sizes. respectively. 

 

Table 4.6: Small sample + normal error + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

-4.20x10-3 1.05x10-4 3.01x10-2 -3.37x10-4 -9.01x10-2 6.17x10-6 
 

-1.01x10-5 -2.24x10-7 1.70x10-4 -2.76x10-6 -2.44x10-4 6.68x10-7 
 

9.14x10-5 9.26x10-7 -7.58x10-4 1.32x10-5 2.39x10-3 1.52x10-6 

MSE 

 

5.87x10-4 1.83x10-4 6.80x10-3 2.22x10-4 8.12x10-3 1.78x10-4 
 

6.81x10-9 4.35x10-9 7.91x10-8 5.66x10-9 1.01x10-7 6.51x10-9 
 

2.70x10-7 9.35x10-8 2.21x10-6 1.20x10-7 6.38x10-6 9.47x10-8 

Time 0.0195 0.0015 0.02 0.0207 0.0211 0.0041 

Iterations 22.84 7.39 9.57 194.78 19.76 10.73 

MSE (fit) 0.98 0.88 2.28 0.89 5.38 0.89 
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According to the results presented in Table 4.3 and Table 4.6, all methods perform 

slightly better overall with smaller sample size under normally distributed errors and 

good initial values conditions. Under such perfect conditions, this result may be 

attributed to simulation error other than inconsistency. However, when the MSE fit 

values are examined, it is crystal clear that L-M, Nelder-Mead and DFP methods 

perform as the best and Newton-Raphson follows them. To sum up, they all perform 

well under both situations and could easily handle the small sample size. They even 

provide improved estimates with a slightly shorter amount of execution time with 

small sample size.  

Another comparison for sample size will be made with the simulated datasets when 

error term is generated from generalized logistic distribution with a shape parameter 

b=2. The initial values are assigned as close to the certified values, in other words 

good initial values. 

 

Table 4.7: Small sample + GL (b=2) error + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

-3.13x10-2 -2.49x10-2 5.31x10-3 -2.52x10-2 -9.01x10-2 -2.50x10-2 
 

-6.74x10-5 -5.14x10-5 1.28x10-4 -5.41x10-5 -2.33x10-4 -5.07x10-5 
 

2.71x10-4 1.33x10-4 -6.64x10-4 1.46x10-4 -1.93x10-3 1.32x10-4 

MSE 

 

1.73x10-3 9.78x10-4 4.09x10-3 1.03x10-3 8.12x10-3 9.72x10-4 
 

1.65x10-8 1.15x10-8 5.59x10-8 1.28x10-8 8.49x10-8 9.94x10-9 
 

4.50x10-7 2.09x10-7 1.68x10-6 2.34x10-7 4.38x10-6 2.01x10-7 

Time 0.0232 0.0019 0.0248 0.0246 0.0252 0.0039 

Iterations 21.58 7.52 9.73 188.48 20.31 10.34 

MSE (fit) 2.14 2.02 3.64 2.02 5.42 2.06 

 

According to the results presented in Table 4.5 and Table 4.7, same conclusions for 

the previous comparison scenario apply to this situation as well. Again there is a slight 

improvement in the estimates when the sample size is smaller. Based on bias and MSE  
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values of the estimates and MSE for overall fit, it can be concluded that the best ones 

still are the L-M, Nelder-Mead and DFP methods. Besides these 3 methods, Newton’s 

method performed quite well, too. Lastly, we will present the results for comparison 

when the error has a generalized logistic distribution with the shape parameter b=0.5 

and the initial values are poorly selected. Now, the presence of poor initials makes the 

problem a little bit complex. Tables 4.8 and 4.9 show the corresponding results 

regarding the both sample sizes, respectively. 

 

Table 4.8: Large sample + GL (b=0.5) error + poor initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

0.14 0.036 0.056 0.252 5.193 0.047 
 

5.92x10-5 6.37x10-5 1.18x10-4 2.76x10-4 -0.858 1.69x10-5 
 

-8.65x10-4 -1.80x10-4 2.54x10-3 -3.01x10-3 -0.138 1.87x10-3 

MSE 

 

0.192 1.47x10-3 0.041 0.114 3906.9 8.48x10-3 
 

2.07x10-7 5.02x10-9 2.45x10-7 5.77x10-7 228.4 5.39x10-7 
 

2.78x10-5 7.92x10-8 4.38x10-4 6.56x10-5 19.99 3.55x10-4 

Time 0.0223 0.0019 0.0236 0.0218 0.0228 0.0125 

Iterations 35.19 11.06 20.85 229.9 47.61 14.71 

MSE (fit) 17.75 6.585 60.67 22.52 1926 41.58 

 

Table 4.9: Small sample + GL (b=0.5) error + poor initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

0.095 0.039 0.071 0.228 4.448 0.047 
 

-1.17x10-3 8.05x10-5 -5.41x10-4 -1.25x10-4 -1.005 1.34x10-4 
 

4.05x10-3 -2.48x10-4 2.67x10-3 -1.95x10-3 -0.123 1.94x10-4 

MSE 

 

0.125 2.99x10-3 0.049 0.099 2283.7 9.93x10-3 
 

9.48x10-5 3.91x10-8 5.04x10-5 4.07x10-5 57.11 1.19x10-6 
 

1.29x10-3 7.54x10-7 7.01x10-3 3.06x10-4 3.525 4.79x10-5 

Time 0.0837 0.0011 0.0848 0.0836 0.0838 0.0047 

Iterations 30.28 11.67 21.84 224.4 41.83 11.15 

MSE (fit) 58.91 5.774 100.3 21.71 1590 29.64 
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The results imply that CG and DFP methods present worse outcomes when the sample 

size decreases dramatically. Others almost satisfy consistency.  They could not handle 

both poor initials, negatively skewed error distribution and small sample size, 

simultaneously. On the other hand, looking at the MSE for fit values, L-M, Nelder-

Mead and DFP methods provide better fits when the sample size is smaller. Although 

CG method performs better for small samples as compared to all others it is the worst 

one in terms of MSE for the fit. Overall, L-M method is clearly the best one among 

them to handle the whole criteria represented in this section. 

Comparison based on small and large sample sizes was the subject of this section and 

results are interpreted with respect to both precision and consistency features. As a 

final result, L-M seems to take the first place among the others.  

 

4.2.1.3 Comparisons with respect to Initial Values 

 

Initial value specification is a very important subject in any type of optimization 

problem as explained briefly in Section 4.1.1.3. In our study, we define 2 sets of 

starting values to initiate the estimation process. One of them is reasonably close to 

the true solution which is called as certified values in our case. The other set was 

selected as far from the true solution so that it is classified as poor initial values. 

In this section of the study, the simulation results obtained for the simple model will 

be shown and examined with both good and poor initial values under different 

conditions. 

The first comparison is carried out on the simulated dataset whose error term is 

normally distributed and sample size is large. The results obtained by starting the 

process with both good and poor initial values are compared and given in Tables 4.3 

and 4.10, respectively. In fact, normally distributed errors and large sample size case 

can be considered as ideal so successful results can be expected from all algorithms.  
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Looking at the presented results, when good initials were replaced by poor initials, all 

methods except L-M method resulted in worse estimates with higher bias and MSE 

values, respectively. Only L-M method preserved its performance in estimation. 

When we look at the Table 4.3, we see that L-M method, Nelder-Mead method and 

DFP method provided the best fits with very small and close MSE fit values. In 

addition to them, Newton’s method followed them with a very close MSE for overall 

fit value. 

 

Table 4.10: Large sample + normal error + poor initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

0.094 5.69x10-5 0.015 0.237 6.078 0.011 
 

1.92x10-5 1.18x10-7 3.45x10-5 2.59x10-4 -3.894 -6.34x10-5 
 

-7.99x10-4 -1.26x10-6 -3.16x10-3 -3.29x10-3 -1.415 2.26x10-3 

MSE 

 

0.169 1.51x10-5 0.019 0.114 15334.4 6.89x10-3 
 

3.71x10-8 1.56x10-10 3.10x10-7 4.84x10-7 10903.2 3.86x10-7 
 

9.75x10-6 6.56x10-9 5.01x10-4 5.31x10-5 1724.5 4.16x10-4 

Time 0.0206 0.0018 0.028 0.0192 0.032 0.0127 

Iterations 34.63 11.18 20.74 232.7 45.03 15.24 

MSE (fit) 9.315 0.991 60.29 17.63 2071 35.12 

 

If the results in the Table 4.10 are checked, it can be seen that L-M method still is the 

best while Newton-Raphson method follows it. Nelder-Mead method and DFP method 

get worse when poor initial values are assigned in the beginning of the algorithm. 

Moreover, BFGS method performs very poorly compared to the results with good 

initial values. Lastly, conjugate gradient method is the worst for this case again since 

it provides an unacceptable fit with biased estimates. Furthermore, if number of 

iterations and execution time are checked in both tables, it can be observed that there 

is an increase in the presence of poor initial values, which is not unexpected. 
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Another comparison between good and poor initial values is applied on the simulated 

dataset whose error term is distributed as generalized logistic with shape parameter 

b=2 and sample size is large and given in Table 4.5 and Table 4.11, respectively.   

 

Table 4.11: Large sample + GL (b=2) error + poor initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

0.078 -0.024 -8.39x10-3 0.228 7.623 -8.20x10-3 
 

-3.57x10-5 -4.45x10-5 -2.63x10-5 2.69x10-4 -0.795 -7.14x10-5 
 

-5.71x10-4 1.07x10-4 4.51x10-3 -3.68x10-3 -0.192 2.30x10-3 

MSE 

 

0.167 6.24x10-4 0.029 0.107 7303.3 0.011 
 

1.98x10-7 2.29x10-9 2.98x10-7 1.56x10-7 73.79 7.02x10-7 
 

5.03x10-5 2.54x10-8 7.08x10-4 2.46x10-5 17.47 4.16x10-4 

Time 0.0231 0.0022 0.0291 0.0208 0.0283 0.0142 

Iterations 34.64 11.56 20.89 232.3 44.18 15.77 

MSE (fit) 14.06 2.277 80.07 17.07 2172 42.65 

 

 

When the results with good initial values are checked, it is clear that estimates are 

plausible for almost all algorithms. In order, DFP method, L-M method, Nelder-Mead 

method, Newton method provided good solution to the problem. On the other hand, 

BFGS method and conjugate gradient method cannot be counted as very successful 

beside them. 

When poor initial values step in, L-M method becomes the best algorithm for the 

problem by far. Biases and MSE values of the others get higher especially for BFGS 

and conjugate gradient methods. Since conjugate gradient method failed drastically 

for almost all cases when the model is simple, it is not woth to consider it for the 

complex model.  
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Lastly, the comparisons based on the simulated data set with small sample size, left-

skewed error distribution which is GL(b=0.5) and poor and good initial values are 

summarized in Table 4.9 and Table 4.12, respectively. 

 

Table 4.12: Small sample + GL (b=0.5) error + good initial values (Chwirut1) 

  Newton L-M BFGS 
Nelder-

Mead   
CG DFP 

Bias 

 

3.78x10-2 4.01x10-2 5.83x10-3 3.94x10-2 -9.01x10-2 3.97x10-2 
 

7.01x10-5 7.48x10-5 2.20x10-4 7.19x10-5 -2.57x10-4 7.54x10-5 
 

-1.92x10-4 -2.37x10-4 -7.95x10-4 -2.23x10-4 3.02x10-3 -2.22x10-4 

MSE 

 

3.19x10-3 3.01x10-3 7.42x10-3 3.03x10-3 8.12x10-3 2.99x10-3 
 

3.31x10-8 3.19x10-8 8.87x10-8 3.38x10-8 1.41x10-7 3.28x10-8 
 

8.44x10-7 7.14x10-7 2.01x10-6 7.51x10-7 1.01x10-5 7.03x10-7 

Time 0.0191 0.0014 0.0219 0.0204 0.0203 0.0038 

Iterations 23.46 7.39 8.1 193.49 19.99 10.99 

MSE (fit) 5.92 5.86 7.26 5.87 12.63 5.75 

 

L-M, Nelder-Mead, DFP and Newton-Raphson methods provide very close MSE for 

overall fit value when iterations start with good initials. However,  only L-M method 

becomes robust under poor initials. Nelder-Mead and DFP method follow it in order 

when MSE for overall fit is taken into consideration, but there is a significant 

difference between the estimated fits. Other than that, the others could not suggest 

reasonable fits. More importantly, conjugate gradient method failed to converge 

seriously.          

To conclude, only L-M method could handle the iteration process starting with set of 

poor initial values. In addition to that, it achieves convergence with reasonably less 

number of iterations and within the shortest amount of time. 
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4.2.1.4 Comparisons with respect to Robustness  

 

Finally, the iterative methods are compared with respect to their robustness to 

abnormalities in the error term. The comparison will be made under 3 subclasses 

which are robustness to outliers, robustness to contamination and robustness to inliers 

in error term. 

 

Comparisons with respect to Robustness to Outliers in Errors 

In this section, by assuming 10% of the errors comes from N(0,4),  the performance 

of the algorithms is evaluated. The first comparison will be carried out for the ideal 

case whose results are illustrated in Table 4.3 and its version with outliers is given in 

Table 4.13. 

 

Table 4.13: Large sample + error with outliers + good initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

-4.39x10-3 3.43x10-4 2.14x10-2 3.52x10-4 -9.01x10-2 4.46x10-4 

 

-8.93x10-6 -5.72x10-8 1.05x10-4 -5.58x10-8 -1.67x10-4 8.47x10-7 

 

9.53x10-5 -9.65x10-7 -4.41x10-4 -1.13x10-6 2.08x10-3 -6.91x10-6 

MSE 

 

4.27x10-4 1.92x10-5 1.59x10-2 1.93x10-5 8.12x10-3 1.98x10-5 

 

1.42x10-9 1.90x10-10 3.03x10-8 1.89x10-10 3.39x10-8 1.96x10-10 

 

1.76x10-7 7.75x10-9 2.96x10-6 7.81x10-9 4.53x10-6 9.66x10-9 

Time 
0.026 0.002 0.028 0.027 0.033 0.0045 

Iterations 
24.26 7.04 8.63 195.38 23.35 10.35 

MSE (fit) 
1.45 1.31 2.99 1.31 4.87 1.27 
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As it can be clearly concluded by comparing the results in both tables, ranking with 

respect to overall performance does not change when the outliers are added to the error 

term. MSE for the fit values slightly increased, but it is not that significant. To sum 

up, all methods provide nearly perfect fits with or without outliers. However, this 

conclusion is only for the ideal case. Under worse situations, the results may be 

completely different. To prove this hypothesis, robustness of the algorithms against 

outliers in the error distribution is checked for poor initial values and the results are 

summarized in Table 4.10 and Table 4.14 . 

 

Table 4.14: Large sample + error with outliers + poor initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

3.24x10-3 1.73x10-3 0.165 0.597 2.413 1.65x10-2 

 

-1.09x10-3 6.87x10-4 2.48x10-5 -4.45x10-4 -0.223 1.21x10-5 

 

1.29x10-2 -6.75x10-4 2.06x10-2 7.94x10-3 0.303 -2.09x10-4 

MSE 

 

6.01x10-2 1.22x10-3 0.195 0.904 777.64 1.36x10-2 

 

3.47x10-5 1.18x10-4 5.95x10-7 1.47x10-5 12.09 9.65x10-9 

 

4.54x10-3 1.21x10-4 6.90x10-3 5.21x10-3 1.049 2.21x10-6 

Time 
0.028 0.006 0.044 0.026 0.0328 0.008 

Iterations 
38.04 15.02 24.18 244.8 39.17 13.67 

MSE (fit) 
126.78 6.05 262.38 175.39 3197.8 2.23 

 

When the outcomes are examined, it can be seen that there is a significant difference 

between the results of two cases. In the regular case, L-M method offers the best fit 

which is almost perfect. After that, Newton-Raphson and Nelder-Mead methods 

follows it with nearly plausible fits. On the contrary, conjugate gradient method fails 

to converge and could not produce an acceptable fit. When outliers are added to the 

error term, it is seen that L-M method still produces a good fit, but DFP method takes 

over the first place in such case. It has better bias and MSE results than Levenberg 

method. 
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Besides, Newton, BFGS and Nelder-Mead methods seem to have some problems in 

converging looking at their MSE for overall fit values, which are high. Furthermore, 

conjugate gradient is the worst one as usual. It certainly failed to converge. 

 

Comparisons with respect to Robustness to Contamination in Errors 

As discussed earlier, we contaminated the error distribution, which is standard normal 

distribution, with standard uniform distribution to test the robustness of the algorithms 

to contamination.  

The simulation results obtained under the assumption of contaminated normal error 

terms for both small and large sample sizes and good and poor intials are given as 

follows. 

 

Table 4.15: Large sample + contaminated error + good initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

-2.88x10-3 -1.13x10-3 -1.93x10-3 -1.12x10-3 -9.01x10-2 -1.53x10-3 

 

-6.56x10-6 -2.68x10-6 7.31x10-5 -2.64x10-6 -1.45x10-4 -3.16x10-6 

 

4.02x10-5 3.81x10-6 -1.47x10-4 3.55x10-6 1.97x10-3 1.32x10-5 

MSE 

 

1.76x10-4 1.24x10-5 5.63x10-4 1.25x10-5 8.12x10-3 1.62x10-5 

 

7.83x10-10 1.11x10-10 9.49x10-9 1.10x10-10 3.07x10-8 1.18x10-10 

 

7.29x10-8 5.17x10-9 2.26x10-7 5.19x10-9 4.13x10-6 5.95x10-9 

Time 
0.025 0.002 0.0256 0.0264 0.0261 0.0048 

Iterations 
25.03 7.12 8.25 199.18 22.86 10.38 

MSE (fit) 
0.97 0.92 1.41 0.92 4.39 0.92 
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Table 4.16: Small sample + contaminated error + good initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

-5.82x10-3 -2.01x10-3 2.02x10-2 -2.01x10-3 -9.01x10-2 -1.73x10-3 

 

-1.42x10-5 -4.32x10-6 1.51x10-4 -4.31x10-6 -2.79x10-4 -5.91x10-7 

 

9.31x10-5 1.05x10-5 -6.39x10-4 1.05x10-5 2.45x10-3 2.44x10-7 

MSE 

 

5.55x10-4 1.54x10-4 2.35x10-3 1.54x10-4 8.12x10-3 1.46x10-4 

 

6.23x10-9 4.32x10-9 3.67x10-8 4.31x10-9 1.46x10-7 3.31x10-9 

 

2.51x10-7 8.17x10-8 1.15x10-6 8.17x10-8 7.02x10-6 7.41x10-8 

Time 
0.0231 0.001 0.0227 0.0221 0.0228 0.0018 

Iterations 
23.03 7.41 9.33 192.98 17.68 10.66 

MSE (fit) 
0.89 0.82 1.97 0.82 5.31 0.81 

 

 

Table 4.17: Large sample + contaminated error + poor initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

8.75x10-2 -7.85x10-4 8.39x10-2 0.577 28.975 4.59x10-2 

 

-2.28x10-3 -1.08x10-6 5.31x10-5 -5.51x10-4 -13.293 -1.21x10-4 

 

1.85x10-2 -5.21x10-6 8.57x10-3 8.13x10-3 -6.233 5.93x10-3 

MSE 

 

0.283 1.31x10-5 8.34x10-2 0.841 80700.9 3.99x10-2 

 

1.76x10-4 1.38x10-10 4.82x10-7 1.14x10-5 17835.16 5.05x10-7 

 

7.25x10-3 5.66x10-9 3.31x10-3 3.73x10-3 4388.9 2.51x10-3 

Time 
0.0281 0.002 0.0358 0.0256 0.0336 0.0103 

Iterations 
37.92 14.91 24.59 255.19 39.28 13.16 

MSE (fit) 
198.14 0.91 116.88 220.52 3172.1 87.28 
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Table 4.18: Small sample + contaminated error + poor initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

-6.21x10-2 6.35x10-3 0.114 0.936 1.115 6.93x10-2 

 

-2.30x10-2 2.24x10-5 -8.67x10-3 -3.67x10-3 -0.877 2.38x10-5 

 

7.55x10-2 -1.87x10-4 4.44x10-2 9.72x10-3 0.228 4.09x10-3 

MSE 

 

0.213 4.82x10-2 0.118 1.515 17.72 5.86x10-2 

 

5.25x10-3 2.25x10-3 8.14x10-4 8.97x10-4 72.66 2.26x10-7 

 

5.28x10-2 6.77x10-3 1.33x10-2 1.38x10-2 1.339 2.42x10-3 

Time 
0.0235 0.0012 0.0236 0.0233 0.0264 0.0056 

Iterations 
32.41 26.27 25.62 269.75 27.13 16.51 

MSE (fit) 
450.37 1.14 464.38 290.51 2437.8 19.34 

 

The Tables 4.15 and 4.16 illustrate the results of the cases with good initial values 

while Tables 4.17 and 4.18 covers the ones with poor initial values. When the first two 

tables are examined and compared with their versions with no contamination, which 

corresponds to the Tables 4.3 and 4.6, it is clearly seen that methods are not affected 

by the presence of contamination in errors. Even they produced better fits when the 

MSE for overall fit is checked. The execution time and the number of iterations do not 

change significantly, too. Thus, it can be concluded that contamination does not 

influence the performance of algorithms drastically when the iteration process is 

started with plausible initial values. In other words, robustness in such situations is 

achieved. 

On the contrary, the results of the cases with poorly selected initial values are not 

satisfying for most of the algorithms. In order to make reliable comments, Tables 4.17 

and 4.18 are examined. It is very clear that only Levenberg-Marqaurdt method gives 

a good fit. The other algorithms are not successful when contamination in errors and 

poor initial values are present simultaneously. 
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Comparisons with respect to Robustness to Inliers in Errors 

Lastly, robustness of algorithms to inliers is tested. We will only present the outputs 

of the case when the initial values are poor because the results are not affected by 

inliers when the initial values are good. Tables 4.19 and 4.20 demonstrates the cases. 

 

Table 4.19: Large sample + error with inliers + poor initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

0.113 3.51x10-5 0.109 0.541 0.717 2.48x10-2 

 

-7.39x10-4 -1.25x10-6 -6.63x10-5 -8.28x10-5 -4.18x10-3 -2.38x10-5 

 

8.26x10-3 2.77x10-6 1.22x10-2 2.10x10-3 0.357 4.92x10-4 

MSE 

 

0.289 8.38x10-6 0.110 0.728 0.515 2.01x10-2 

 

3.02x10-5 8.04x10-11 3.06x10-6 7.17x10-6 2.94x10-5 1.48x10-7 

 

3.23x10-3 3.26x10-9 3.55x10-3 2.63x10-3 0.131 5.33x10-5 

Time 0.053 0.003 0.029 0.024 0.0315 0.005 

Iterations 
38.69 14.96 24.44 250.22 36.72 13.19 

MSE (fit) 104.69 1.54 169.56 129.89 3108.9 21.19 
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Table 4.20: Small sample + error with inliers + poor initial values (Chwirut1) 

 Newton L-M BFGS 
Nelder-

Mead 
CG DFP 

Bias 

 

0.112 3.27x10-2 0.144 1.035 0.702 8.25x10-2 

 

-2.29x10-2 2.36x10-2 -5.09x10-3 -5.26x10-3 -3.01x10-2 5.55x10-5 

 

7.51x10-2 -4.31x10-2 2.51x10-2 1.61x10-2 0.334 -1.01x10-3 

MSE 

 

5.706 6.72x10-2 0.206 1.891 0.496 6.75x10-2 

 

5.25x10-3 3.14x10-3 8.24x10-4 1.32x10-3 1.76x10-3 7.21x10-8 

 

5.06x10-2 1.27x10-2 4.62x10-2 2.35x10-2 0.119 1.06x10-5 

Time 
0.021 0.002 0.021 0.020 0.027 0.003 

Iterations 33.07 23.67 27.34 274.33 33.81 15.68 

MSE (fit) 
530.67 5.68 354.57 193.07 2508.3 8.73 

 

Under such conditions, L-M gives the best fit while conjugate gradient method gives 

the worst one. Biases and MSE values are plausibly small for L-M and DFP methods. 

The other methods cannot provide unbiased estimates with low MSE values for this 

case. Since the gap between the provided fits are huge, there is no need to check other 

comparison criteria in order to decide on the best one, which is clearly L-M method.  

 

4.2.2 Complex Model Results 

 

In this section of the study, simulation study conducted for the complex model, namely 

“Thurber”, will be examined. Before the simulation study, real data solutions is given 

with brief comments. 

 

 

 

 



66 

 

Real Data Case 

Table 4.21: Real data results of Thurber with good initial values 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 1.421 0.139 -0.081 40.579 0.628 

𝜷𝟐 -101.96 0.085 -17.031 -79.677 -55.527 

𝜷𝟑 -74.977 0.242 -12.0 -63.177 -40.734 

𝜷𝟒 -14.232 0.417 -1.998 -11.309 -7.626 

𝜷𝟓 -0.083 -3.70x10-3 -0.015 -0.101 -0.046 

𝜷𝟔 -0.040 -2.02x10-3 -8.09x10-3 -0.013 -0.023 

𝜷𝟕 -0.014 -2.71x10-4 -3.51x10-3 -5.57x10-3 -8.41x10-3 

MSE 𝜷𝟏 1.945 0.021 3.71x10-3 1564.74 0.352 

𝜷𝟐 989.51 3.36x10-3 278.45 5978.26 3452.61 

𝜷𝟑 4879.384 0.109 158.01 4012.34 1751.32 

𝜷𝟒 241.84 0.193 3.568 148.91 61.13 

𝜷𝟓 1.88x10-3 2.15x10-4 3.92x10-4 0.025 2.91x10-4 

𝜷𝟔 6.92x10-4 5.81x10-6 7.41x10-4 8.81x10-4 3.52x10-4 

𝜷𝟕 2.54x10-4 6.87x10-7 3.14x10-5 4.12x10-5 8.75x10-5 

Time 0.01 0.06 0.41 0.04 0.02 

Iterations 116 25 46 501 53 

MSE (fit) 171.79 152.505 154.097 537.107 161.091 

 

Table 4.22: Real data results of Thurber with poor initial values 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -13.171 0.139 0.957 -363.149 0.139 

𝜷𝟐 -414.951 0.074 -10.344 -518.602 0.079 

𝜷𝟑 -313.249 0.234 -7.607 -223.747 0.238 

𝜷𝟒 -56.454 0.415 -1.164 -34.175 0.416 

𝜷𝟓 -0.427 -3.71x10-3 -0.011 -0.071 -3.70x10-3 

𝜷𝟔 -0.218 -2.03x10-3 -5.42x10-3 -0.212 -2.02x10-3 

𝜷𝟕 8.87x10-3 -2.73x10-4 -2.19x10-3 -0.115 -2.72x10-4 

MSE 𝜷𝟏 107.84 0.024 0.857 1478269 0.023 

𝜷𝟐 21124.5 5.87x10-3 112.3 5762458 7.78x10-4 

𝜷𝟑 84571.2 0.043 86.54 45988.1 1.15x10-3 

𝜷𝟒 2945.11 0.108 1.223 1245.35 0.106 

𝜷𝟓 0.195 2.13x10-4 1.59x10-4 3.33x10-3 2.01x10-5 

𝜷𝟔 0.071 5.23x10-5 3.23x10-6 0.069 4.99x10-6 

𝜷𝟕 8.11x10-5 8.14x10-7 5.89x10-6 0.012 6.95x10-7 

Time 0.01 0.02 0.05 0.05 0.03 

Iterations 113 13 55 502 87 

MSE (fit) 2461.061 152.505 153.394 37650.81 152.506 
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The comparisons with real data under the assumption of good and poor initial values 

are given in Table 4.21 and Table 4.22, respectively. It is clear that none of the methods 

could provide a reasonable fit. That is the reason why this model and data is classified 

as “high level of difficulty” in the website. The results are not good compared to the 

results of the simple model. Since the number of parameters and complexity of the 

model increased, the methods struggle. 

In Table 4.21, the process is started with the set of good initial values and L-M 

provides the best solution seemingly while the quasi-Newton methods follow it. On 

the other hand, Nelder-Mead method fails because its MSE for overall fit is extremely 

big. 

The output with poor initial values are as given in Table 4.22 and it is seen that L-M 

method stays the same with the almost same MSE fit value. Quasi-Newton methods 

could preserve their performance as well and follows the L-M method. Consequently, 

Newton’s method and Nelder-Mead method fail to converge in the presence of poor 

initial values. They could not handle it and resulted in unacceptable fits. In terms of 

execution time and iteration number there is no significant difference between the 

algorithms as good and poor initials are considered. The order from the best to the 

worst is as L-M > BFGS > DFP > Newton > Nelder-Mead. 

 

Simulated Data Case 

4.2.2.1 Comparisons with respect to Error Distribution 

 

In this section, the same path used in Section 4.2.1.1 will be pursued for the complex 

model this time. Other than the error distribution, all conditions are fixed and 

comparisons are conducted based on that. Firstly, sample size is fixed as large together 

with good initial values. Under these conditions, the results with 3 different error 

distributions are obtained separately. 
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Table 4.23: Large sample + normal error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -2.46 1.81x10-3 -0.632 22.17 0.159 

𝜷𝟐 -100.9 -4.51x10-3 -2.288 -103.3 -7.393 

𝜷𝟑 -71.84 -2.41x10-3 -1.631 -62.04 -4.359 

𝜷𝟒 -12.62 -3.04x10-4 -0.316 -9.68 -0.766 

𝜷𝟓 -9.29x10-2 -4.37x10-6 -1.53x10-3 -9.51x10-2 -4.53x10-3 

𝜷𝟔 -4.01x10-2 3.57x10-7 -1.54x10-3 -6.29x10-3 -1.33x10-3 

𝜷𝟕 -3.08x10-3 -7.21x10-7 -4.51x10-4 -1.42x10-2 -1.99x10-3 

MSE 𝜷𝟏 80.06 1.83x10-2 26.18 814.9 0.896 

𝜷𝟐 10199.1 0.023 2186.4 13879.8 1426.17 

𝜷𝟑 5174.8 0.129 1438.8 4183.1 505.945 

𝜷𝟒 160.2 4.34x10-3 58.28 105.4 15.645 

𝜷𝟓 8.71x10-3 2.21x10-7 1.45x10-3 0.011 5.64x10-4 

𝜷𝟔 1.63x10-3 5.89x10-8 4.45x10-4 7.2x10-4 5.22x10-5 

𝜷𝟕 4.73x10-5 2.47x10-9 6.19x10-5 6.64x10-4 1.01x10-4 

Time 0.0400 0.004 0.1752 0.1083 0.1255 

Iterations 124.1 9.04 41.19 501.3 42.33 

MSE (fit) 203.3 0.97 37.73 519.6 17.11 

 

 

Table 4.24: Large sample + GL (b=0.5) error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -4.104 -1.39 -2.01 21.69 -1.335 

𝜷𝟐 -100.9 -13.5 -3.31 -102.9 -4.047 

𝜷𝟑 -71.50 -0.554 -1.91 -61.89 -1.661 

𝜷𝟒 -12.53 -0.069 -0.338 -9.65 -0.213 

𝜷𝟓 -0.091 3.93x10-6 -1.04x10-3 -0.094 -1.27x10-3 

𝜷𝟔 -0.039 -1.44x10-6 -1.34x10-3 -6.11x10-3 4.55x10-5 

𝜷𝟕 -2.93x10-3 -1.59x10-6 -5.14x10-4 -0.013 -1.06x10-3 

MSE 𝜷𝟏 105.1 2.05 19.69 795.9 1.957 

𝜷𝟐 10216.8 3.29 2097.1 13582.8 792.941 

𝜷𝟑 5126.7 1.16 1409.5 4150.9 352.458 

𝜷𝟒 157.9 0.034 59.29 105.1 11.765 

𝜷𝟓 8.52x10-3 1.45x10-6 1.29x10-3 0.011 4.40x10-4 

𝜷𝟔 1.61x10-3 3.89x10-7 4.53x10-4 7.25x10-4 9.54x10-5 

𝜷𝟕 4.52x10-5 1.64x10-8 -5.50x10-5 6.45x10-4 5.08x10-5 

Time 0.0096 0.0025 0.0308 0.0259 0.1059 

Iterations 123.5 8.94 29.89 501.2 43.89 

MSE (fit) 206.2 6.41 41.21 545.9 20.011 
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Table 4.25: Large sample + GL (b=2) error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -1.37 1.01 0.34 22.41 1.191 

𝜷𝟐 -100.9 0.963 -1.28 -102.35 -8.856 

𝜷𝟑 -71.99 0.394 -1.14 -61.71 -5.413 

𝜷𝟒 -12.65 0.049 -0.24 -9.71 -0.959 

𝜷𝟓 -0.093 -8.88x10-6 -1.41x10-3 -0.095 -6.18x10-3 

𝜷𝟔 -0.041 4.73x10-7 -1.49x10-3 -7.61x10-3 -1.86x10-3 

𝜷𝟕 -3.28x10-3 6.26x10-7 -4.72x10-4 -0.014 -2.51x10-3 

MSE 𝜷𝟏 71.83 1.050 20.17 822.1 2.177 

𝜷𝟐 10212.9 1.432 2239.5 13234.1 1959.151 

𝜷𝟑 5200.7 0.448 1429.6 4094.7 704.857 

𝜷𝟒 161.48 0.012 58.03 104.6 21.795 

𝜷𝟓 8.84x10-3 5.03x10-7 1.41x10-3 0.011 8.03x10-4 

𝜷𝟔 1.65x10-3 1.33x10-7 4.71x10-4 6.58x10-4 8.53x10-5 

𝜷𝟕 5.21x10-5 5.68x10-9 5.49x10-5 6.45x10-4 1.26x10-4 

Time 0.0301 0.0053 0.1231 0.1100 0.1300 

Iterations 124.2 9.01 41.09 501.4 42.20 

MSE (fit) 213.4 2.23 29.71 519.7 15.29 

 

The corresponding results are given in Table 4.23, Table 4.24 and Table 4.25. Overall, 

L-M algorithm seems like the best one among them in estimating the parameters. 

Moreover, it can be said that the other algorithms do not work that good compared to 

the results of them with the simple model. Increase in the number of parameters and 

model complexity affects the performance of the algorithms negatively. However, 

DFP method and BFGS method still proposes plausible fits to the model even though 

they are not very close to the ones proposed by L-M method. On the other hand, 

Newton-Raphson method and Nelder-Mead method could not be successful in 

estimation for these conditions. Their MSE fit values are so high that the fits are 

unacceptable. 

The results can be examined method by method with respect to performance, too. To 

start with, L-M method provides the best fit for each distribution. Non-normality of 

errors affects the accuracy of the fit very slightly, but still the fits are good enough. 

The method works best with normal errors and worst with the left skewed generalized 

logistic errors. 
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Moving on with DFP method, it is clear that the method offers the second best fit under 

both conditions. When the corresponding MSE fit values are checked, it is clearly seen 

that the method is very consistent. The biases and MSEs for the estimates seem 

plausible, too. Furthermore, the method works best with the right skewed generalized 

logistic errors. 

In the third place, there is BFGS algorithm which comes from the same family of 

methods with DFP method. The same conclusion applies to BFGS method as well. As 

DFP method, it also works best with the right skewed generalized logistic errors which 

means that quasi-Newton methods are not affected from non-normality of the error 

term seriously for this problem. This may be a good feature when working with real 

life problems. 

Newton’s method is successful with the simple model under exact same conditions. 

However, complexity of the model struggles the algorithm to converge to optimal 

solution. For the complex model, Newton is clearly not a good choice. On the other 

hand, the method is not affected by the non-normality significantly, but this 

information is useless since it fails to solve the problem. 

Finally, Nelder-Mead method is the worst one for this model and its suggested fits are 

extremely far from being the optimal fit. Hence, there is no need to make further 

comments on its results. 

As in the simple model case, the conclusion with the poor initial values is not different 

from the one with good initial values. The same comments apply to that case as well. 

That is why the results of them are not presented in this section. 
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4.2.2.2 Comparisons with respect to Sample Size 

 

In order to conduct the comparisons according to sample size, it is assumed that the 

errors are normal and initial values are good as in the simple case. The results are given 

in Table 4.23 and Table 4.26. 

This scenario is considered as the best case scenario for this study since both errors 

and initial values are well-conditioned. According to the tabulated results obtained 

through simulation study, L-M method is the best one by far in both small and large 

sample sizes. It provides the estimates with least bias and MSE values along with the 

smallest MSE value for overall fit.  

Except DFP, other methods satisfy statistical consistency. DFP competes with L-M 

for when sample size is small. However, since L-M manages it with smaller number 

of iterations within shorter amount of time, it can be concluded that it is the most 

successful one for this comparison case. Specifically, Nelder-Mead and Newton’s 

methods fail to converge to optimal solution and could not propose reasonable fits. 

 

Table 4.26: Small sample + normal error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -5.97 6.81x10-4 -0.93 23.31 0.083 

𝜷𝟐 -101.5 -0.081 -5.85 -97.91 -2.741 

𝜷𝟑 -69.57 -0.065 -4.41 -61.97 -2.392 

𝜷𝟒 12.52 -0.013 -0.91 -9.98 -0.539 

𝜷𝟓 -0.083 -7.16x10-5 -4.26x10-3 -0.09 -2.16x10-3 

𝜷𝟔 -0.038 -4.25x10-5 -3.31x10-3 -7.74x10-3 -1.36x10-3 

𝜷𝟕 -9.42x10-3 -8.26x10-6 -9.49x10-4 -9.42x10-3 -4.02x10-4 

MSE 𝜷𝟏 421.1 0.217 47.18 1006.2 0.204 

𝜷𝟐 10612.3 26.45 5119.5 11548.9 274.563 

𝜷𝟑 5053.3 18.59 2785.6 4072.1 201.735 

𝜷𝟒 174.9 0.867 109.6 107.1 10.23 

𝜷𝟓 7.29x10-3 1.75x10-5 3.14x10-3 0.013 1.65x10-4 

𝜷𝟔 1.91x10-3 6.67x10-6 8.57x10-4 8.21x10-4 6.91x10-5 

𝜷𝟕 2.76x10-4 6.02x10-7 1.64x10-4 8.97x10-4 6.93x10-6 

Time 0.0042 0.0014 0.0197 0.0189 0.0525 

Iterations 116.4 10.45 38.01 497.4 44.91 

MSE (fit) 232.6 0.752 50.71 716.3 0.756 
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As clearly seen from the results, unlike the results of simple model case, other than L-

M and DFP methods, decrease in sample size affects the performance of the algorithms 

in a negative way. 

For the next comparison, the error distribution is selected as GL with the shape 

parameter b=2 and the initial values are close to the true solution, i.e., good. Examining 

Table 4.25 and Table 4.27, it can be clearly seen that L-M method is the best one again. 

It is the fastest with least number of iterations and least biased estimates among all 

algorithms. 

DFP method provides the second best fit in both tables, but smaller sample size 

improves its performance in estimation. On contrary, BFGS method gets worse unlike 

DFP method when the sample size is converted from large to small. As a result, it is 

not a good choice for small samples under such conditions. Finally, Nelder-Mead and 

Newton methods fail for this case. 

Their fits are nowhere near to a reasonable solution. Furthermore, if the results are 

interpreted with respect to consistency, only BFGS and Nelder-Mead methods 

produce better estimates when the sample size increases. This implies that they 

produce consistent estimators. On the contrary, this conclusion does not apply to the 

rest of the algorithms. 
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Table 4.27: Small sample + GL (b=2) error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -4.34 0.993 0.067 23.24 0.965 

𝜷𝟐 -101.4 0.744 -5.774 -98.32 -2.458 

𝜷𝟑 -69.99 0.220 -4.792 -62.21 -1.914 

𝜷𝟒 -12.61 0.012 -1.041 -10.01 -0.393 

𝜷𝟓 -0.084 -1.74x10-4 -4.93x10-3 -0.101 -2.48x10-3 

𝜷𝟔 -0.038 -1.06x10-4 -3.77x10-3 -9.19x10-3 -1.13x10-3 

𝜷𝟕 -9.28x10-3 -3.28x10-5 -1.03x10-3 -9.51x10-3 -6.61x10-4 

MSE 𝜷𝟏 374.5 1.71 46.36 996.7 1.436 

𝜷𝟐 10552.1 118.8 3540.8 11554.4 376.451 

𝜷𝟑 5107.1 91.80 2229.8 4103.3 190.925 

𝜷𝟒 177.9 4.92 97.03 108.5 7.468 

𝜷𝟓 7.43x10-3 7.52x10-5 2.28x10-3 0.013 2.08x10-4 

𝜷𝟔 1.92x10-3 3.31x10-5 7.83x10-4 8.22x10-4 4.62x10-5 

𝜷𝟕 2.68x10-4 3.09x10-6 1.16x10-4 8.76x10-4 1.42x10-5 

Time 0.0041 0.0019 0.0198 0.0189 0.0486 

Iterations 117.0 10.47 37.95 497.5 43.29 

MSE (fit) 209.8 1.806 52.12 713.9 3.092 

 

Last but not least, final comparison is applied on the simulated datasets whose error 

distribution is GL with shape parameter b=0.5 and the iteration process is started with 

the set of poor initial values. The related outputs are given in Tables 4.28 and 4.29, 

respectively. In this case, only L-M method is successful in estimating the model fit 

because other algorithms have very high MSE fit values. Although DFP works well 

with small sample size and good initial values, it fails in the presence of poor initial 

values. They all produce highly biased estimates and they are not even acceptable. 

This situation can be interpreted as convergence failure because they are not even close 

to the certified values.  
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Table 4.28: Large sample + GL (b=0.5) error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 3.591 -1.387 -8.087 -136.06 0.981 

𝜷𝟐 -243.9 -1.344 -26.70 -643.97 -88.991 

𝜷𝟑 -152.9 -0.552 -20.27 -196.13 -58.939 

𝜷𝟒 -25.71 -0.069 -4.05 -24.55 -10.486 

𝜷𝟓 -0.186 -1.54x10-6 -0.022 -0.353 -0.066 

𝜷𝟔 -0.059 -7.43x10-7 -0.015 0.034 -0.025 

𝜷𝟕 -0.037 -1.30x10-6 -1.64x10-3 -0.182 -0.014 

MSE 𝜷𝟏 380.3 2.044 2592.7 47481.4 26.705 

𝜷𝟐 11858.6 3.291 25887.9 497516.5 44951.05 

𝜷𝟑 44723.1 1.162 16904.1 68829.1 20321.15 

𝜷𝟒 1388.7 0.034 726.5 5307.1 655.56 

𝜷𝟓 0.067 1.47x10-6 0.017 0.244 0.026 

𝜷𝟔 9.94x10-3 3.91x10-7 7.04x10-3 0.126 3.84x10-3 

𝜷𝟕 3.12x10-3 1.61x10-8 5.62x10-4 0.046 1.12x10-3 

Time 0.0175 0.0026 0.0393 0.0311 0.0901 

Iterations 134.5 11.18 41.33 501.4 48.11 

MSE (fit) 668.83 6.391 1504.2 19566.5 124.39 

 

Table 4.29: Small sample + GL (b=0.5) error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -4.607 -1.443 -10.953 -149.678 -5.772 

𝜷𝟐 -977.4 0.902 -0.369 -629.691 -57.73 

𝜷𝟑 -832.9 0.574 -2.155 -219.169 -32.66 

𝜷𝟒 -172.7 0.099 -0.383 -31.935 -5.091 

𝜷𝟓 -0.758 1.74x10-3 -5.28x10-3 -0.353 -0.043 

𝜷𝟔 -0.490 3.51x10-5 -9.67x10-3 -0.023 -0.013 

𝜷𝟕 -0.145 5.16x10-4 7.11x10-3 -0.175 -8.97x10-3 

MSE 𝜷𝟏 66484.7 4.667 3555.4 51691.2 2245.18 

𝜷𝟐 5.35x109 3941.6 41384.9 4.60x105 40719.87 

𝜷𝟑 4.59x109 1666.5 21563.1 75487.1 12156.55 

𝜷𝟒 2.14x108 54.37 832.0 4541.1 366.52 

𝜷𝟓 3195.1 2.35x10-3 0.025 0.227 0.025 

𝜷𝟔 1758.1 4.10x10-4 8.34x10-3 0.121 2.97x10-3 

𝜷𝟕 126.3 1.17x10-4 1.45x10-3 0.062 1.92x10-3 

Time 0.0039 0.0018 0.0239 0.0235 0.0989 

Iterations 131.5 12.71 45.52 499.1 47.87 

MSE (fit) 1494.5 7.557 1316.4 18193.6 1611.6 
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To conclude, we can say that L-M algorithm is the only one to survive in each case. 

In addition to that, DFP method can be counted as a choice when the sample size is 

small and the initial values are selected properly. Other than that, the others are not 

plausible to be used in such situations. 

 

4.2.2.3 Comparisons with respect to Initial Values 

 

As in the case of simple model, the algorithms are compared with respect to goodness 

of initial values as well. The first case is when the errors are normally distributed and 

the sample size is large. As mentioned earlier, this is considered as the ideal case. The 

results for the cases that is solved by assigning good and bad initial values are 

presented in Tables 4.23 and 4.30. 

 

Table 4.30: Large sample + normal error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 4.863 1.81x10-3 -7.856 -138.09 2.135 

𝜷𝟐 -243.8 -4.51x10-3 -25.89 -644.4 -66.767 

𝜷𝟑 -153.6 -2.41x10-3 -19.62 -197.14 -39.083 

𝜷𝟒 -25.93 -3.04x10-4 -3.891 -24.72 -6.158 

𝜷𝟓 -0.188 4.37x10-6 -0.023 -0.353 -0.051 

𝜷𝟔 -0.061 3.57x10-7 -0.016 -0.030 -0.013 

𝜷𝟕 -0.037 7.21x10-7 -1.34x10-3 -0.181 -0.011 

MSE 𝜷𝟏 352.9 0.018 2870.8 48362.1 49.915 

𝜷𝟐 111881 0.222 25740.5 499200 39142.8 

𝜷𝟑 45031 0.129 16078.5 67691.1 12180.2 

𝜷𝟒 1403.3 4.34x10-3 669.1 4956.6 373.88 

𝜷𝟓 0.068 2.21x10-7 0.017 0.247 0.024 

𝜷𝟔 8.96x10-3 5.89x10-8 6.98x10-3 0.121 2.47x10-3 

𝜷𝟕 3.13x10-3 2.47x10-9 5.28x10-4 0.045 9.20x10-4 

Time 0.0323 0.0052 0.1260 0.1145 0.1218 

Iterations 134.5 11.21 41.39 501.5 45.83 

MSE (fit) 690.25 0.972 1654.3 19820.3 117.837 
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When results in Table 4.23 is analyzed, it can be seen that L-M achieved pretty good 

convergence with very few number of iterations. The biases and MSE of the estimates 

are negligibly small.  Levenberg-Marquarth, DFP and BFGS methods provide fits that 

may be considered as reasonable. The rest of the algorithms fail to converge. 

On the other hand, when the case gets more complex with the assignment of poor 

initial values at the beginning of the process,  the results in Table 4.30 are observed. 

As it is crystal clear that only L-M method could achieve to stay still. It only does the 

job with more number of iterations, which is not very significant as long as the bias 

and MSEs are good. The others fail drastically and produce highly biased estimates 

with high MSE values.  

Second comparison is done under the case in which the data is simulated with GL 

errors with shape parameter b=2 and large sample size. The corresponding results are 

presented in the Tables 4.25 and 4.31. 

 

Table 4.31: Large sample + GL (b=2) error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 6.376 1.004 -6.196 -133.448 3.837 

𝜷𝟐 -244.86 0.963 -23.362 -644.72 -93.267 

𝜷𝟑 -153.07 0.394 -17.866 -195.694 -53.037 

𝜷𝟒 -25.723 0.049 -3.570 -25.282 -8.102 

𝜷𝟓 -0.189 -8.88x10-6 -0.021 -0.356 -0.073 

𝜷𝟔 -0.059 4.73x10-7 -0.014 0.036 -0.016 

𝜷𝟕 -0.037 6.26x10-7 -1.09x10-3 -0.183 -0.015 

MSE 𝜷𝟏 323.6 1.050 2763.1 47444.1 86.308 

𝜷𝟐 112848.4 1.432 23001.7 4.96x105 57821.18 

𝜷𝟑 44816.1 0.448 14367.6 67993.1 15658.45 

𝜷𝟒 1399.1 0.012 605.15 5018.6 481.58 

𝜷𝟓 0.068 5.03x10-7 0.016 0.246 0.036 

𝜷𝟔 9.04x10-3 1.33x10-7 6.27x10-3 0.125 3.71x10-3 

𝜷𝟕 3.16x10-3 5.68x10-9 4.75x10-4 0.046 1.31x10-3 

Time 0.0358 0.0055 0.1351 0.1161 0.1023 

Iterations 134.5 11.19 41.25 501.51 48.33 
MSE (fit) 652.53 2.225 1579.74 19761.01 164.93 
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Looking at the tabulated results for both good and poor initial value cases, it is seen 

that nothing is different than the previous case. Only the results get worse with the 

involvement of non-normal errors. Hence, all comments made on previous comparison 

case is valid for this case, too. L-M method is the only one to overcome the obstacle 

of poorly selected starting values. 

Finally, the results of the simulated data for which error distribution is GL (b=0.5) and 

sample size is small are discussed. This case is considered as the worst case among all 

the simulation scenarios used in this study. Tables 4.29 and 4.32 illustrate the outputs 

under the same distributional and sample size assumption but for poor and good initial 

values, respectively. 

 

Table 4.32: Small sample + GL (b=0.5) error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-Mead DFP 

Bias 𝜷𝟏 -7.56 -1.38 -2.21 23.08 -1.278 

𝜷𝟐 -101.6 -1.68 -7.31 -97.71 -7.810 

𝜷𝟑 -69.21 -0.811 -5.25 -62.05 -5.169 

𝜷𝟒 -12.41 -0.121 -1.07 -9.98 -0.988 

𝜷𝟓 -0.082 -2.62x10-4 -4.46x10-3 -0.101 -4.64x10-3 

𝜷𝟔 -0.038 -1.44x10-4 -3.43x10-3 -7.29x10-3 -2.02x10-3 

𝜷𝟕 -9.21x10-3 -5.02x10-5 -9.42x10-4 -9.03x10-3 -1.22x10-3 

MSE 𝜷𝟏 446.4 3.43 57.12 1036.5 4.187 

𝜷𝟐 10751.8 267.2 3384.4 11325.9 823.951 

𝜷𝟑 5098.1 201.9 2151.6 4077.9 389.023 

𝜷𝟒 177.1 10.73 93.17 106.8 15.081 

𝜷𝟓 7.18x10-3 1.69x10-4 2.14x10-3 0.013 3.88x10-4 

𝜷𝟔 1.91x10-3 7.41x10-5 7.65x10-4 8.28x10-4 8.77x10-7 

𝜷𝟕 2.65x10-4 6.74x10-6 1.21x10-4 8.61x10-4 4.09x10-5 

Time 0.0043 0.0012 0.0193 0.0187 0.0508 
Iterations 116.2 10.48 37.72 496.94 40.26 
MSE (fit) 218.7 4.92 62.82 766.6 13.235 

 

The results confirm that this case is the hardest one to deal with because even L-M is 

affected. In the previous cases, L-M method did not offer a different result when poor 

initials are assigned to the process.  
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However, this time its MSE for fit value slightly increased. Nevertheless, its fit is still 

plausible compared to the others. Moreover, DFP method seems to offer the second 

best fit in Table 4.32, but when poor initials are assigned, it fails badly just like the 

rest of the algorithms. 

 

4.2.2.4 Comparisons with respect to Robustness  

 

In this final section of comparisons, the robustness of algorithms to outliers, 

contamination and inliers in error term will be tested as it was done in Section 4.2.1.4 

for the simple model. 

 

Comparisons with respect to Robustness to Outliers in Errors 

The procedure is exactly the same with the one for the simple model, i.e.,  90% of the 

errors are generated from N(0,1) and 10% from N(0,4). To test the performance of 

algorithms with the presence of outliers in the error distribution, the ideal conditioned 

case is examined. The tabulated values are given in Tables 4.33 and 4.34. 
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Table 4.33: Large sample + error with outliers + good initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 -2.653 5.51x10-3 -0.398 22.538 5.81x10-2 

𝜷𝟐 -100.834 -3.48x10-2 3.467 -102.814 -4.108 

𝜷𝟑 -71.616 -2.01x10-2 2.496 -60.578 -2.294 

𝜷𝟒 -12.569 -2.95x10-3 0.462 -9.337 -0.385 

𝜷𝟓 -9.21x10-2 -3.74x10-5 2.72x10-3 -9.36x10-2 -2.48x10-3 

𝜷𝟔 -4.01x10-2 5.19x10-6 7.11x10-4 -4.89x10-3 -6.15x10-4 

𝜷𝟕 -3.47x10-3 3.01x10-6 4.11x10-4 -1.48x10-2 -1.12x10-3 

MSE 𝜷𝟏 94.933 2.35x10-2 3.091 757.01 0.306 

𝜷𝟐 10174.2 0.279 1121.89 13124.65 594.91 

𝜷𝟑 5134.51 0.157 471.81 4033.59 178.33 

𝜷𝟒 158.292 5.28x10-3 15.968 108.85 5.052 

𝜷𝟓 8.55x10-3 2.44x10-7 3.91x10-4 1.04x10-2 2.08x10-4 

𝜷𝟔 1.62x10-3 6.82x10-8 1.01x10-4 7.73x10-4 1.42x10-5 

𝜷𝟕 4.19x10-5 3.16x10-9 5.87x10-5 6.22x10-4 5.18x10-5 

Time 0.0143 0.0031 0.0361 0.0305 0.0508 

Iterations 124.0 8.98 40.92 501.55 40.57 

MSE (fit) 191.31 1.28 17.02 502.86 11.79 

 

If Table 4.33 is compared with Table 4.23 which covers the results of the ideal case 

but normally distributed errors having no outliers, it can be seen that the MSE for fit 

values and iteration numbers are more or less the same for each algorithm. According 

to the results in the table, L-M algorithm provide the best fit again. The method is fast 

to converge and needs only 8.98 iterations in average. Following it, quasi-Newton 

methods provide plausible fits looking at their MSE for overall fit values. The others 

are not good, especially Nelder-Mead. It is not unexpected because Nelder-Mead fails 

from the beginning of the complex model. The method could not deal with the 

complexity of the model. 

The tabulated results for poor initial values are given in Table 4.34. 
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Table 4.34: Large sample + error with outliers + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 3.381 3.17x10-2 -1.951 -164.87 2.456 

𝜷𝟐 -236.87 4.24x10-2 -3.611 -663.62 -94.74 

𝜷𝟑 -149.62 1.81x10-2 -2.991 -207.64 -62.06 

𝜷𝟒 -25.31 2.48x10-3 -0.649 -28.73 -10.99 

𝜷𝟓 -0.185 1.11x10-5 -3.23x10-3 -0368 -7.01x10-2 

𝜷𝟔 -5.99x10-2 2.55x10-5 -4.04x10-3 4.31x10-3 -2.55x10-2 

𝜷𝟕 -3.49x10-2 6.45x10-6 7.93x10-5 -0.177 -1.64x10-2 

MSE 𝜷𝟏 507.78 2.55x10-2 141.51 58420.4 29.09 

𝜷𝟐 109006.8 0.296 4308.2 552614.1 45149.74 

𝜷𝟑 43929.8 0.173 2506.3 78792.0 20320.6 

𝜷𝟒 1362.6 5.89x10-3 103.28 8798.7 654.31 

𝜷𝟓 6.96x10-2 3.22x10-7 2.72x10-3 0.300 2.59x10-2 

𝜷𝟔 8.13x10-3 7.96x10-8 1.59x10-3 0.137 3.87x10-3 

𝜷𝟕 3.12x10-3 3.59x10-9 7.73x10-5 4.24x10-2 1.19x10-3 

Time 0.0223 0.0035 0.0367 0.0322 0.0570 

Iterations 134.46 11.35 42.59 501.21 41.17 

MSE (fit) 928.4 1.27 307.84 22190.8 147.34 

 

When the results in Table 4.34 are checked on its own, it can be seen that only L-M 

method produces a good fit. The others are not plausible at all. There is no doubt about 

the conclusion that L-M method is the only option for such cases. 

Moreover, the results in the absence of outliers is given in Table 4.30.  If the 

performances of algorithms are compared, it is obvious that all methods get worse. 

Actually, they are not good when the outliers are absent either. Hence, it can be 

concluded that only L-M could handle the outliers and poor initial values together. 
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Comparisons with respect to Robustness to Contamination in Errors 

In this part, the aim is to observe the change in the performance of the algorithms due 

to contamination in errors. 

 

Table 4.35: Large sample + contaminated error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 -2.189 5.15x10-2 -0.621 22.87 0.102 

𝜷𝟐 -101.1 5.90x10-2 -0.918 -104.4 -1.194 

𝜷𝟑 -71.77 2.58x10-2 -0.438 -62.71 -0.345 

𝜷𝟒 -12.57 3.34x10-3 -7.19x10-2 -9.756 -4.40x10-3 

𝜷𝟓 -9.29x10-2 1.02x10-5 -2.64x10-4 -9.75x10-2 -9.50x10-4 

𝜷𝟔 -3.97x10-2 4.03x10-6 -7.97x10-4 -6.80x10-3 2.01x10-4 

𝜷𝟕 -3.31x10-3 5.22x10-7 -3.17x10-4 -1.40x10-2 -2.62x10-4 

MSE 𝜷𝟏 57.86 2.01x10-2 8.182 866.2 1.014 

𝜷𝟐 10237.1 0.212 217.01 13977.4 920.6 

𝜷𝟑 5164.8 0.121 119.1 4223.7 597.7 

𝜷𝟒 159.36 4.05x10-3 3.869 104.9 21.51 

𝜷𝟓 8.70x10-3 2.03x10-7 1.94x10-4 1.18x10-2 9.28x10-4 

𝜷𝟔 1.61x10-3 5.42x10-8 3.77x10-5 7.01x10-4 2.10x10-4 

𝜷𝟕 5.07x10-5 2.45x10-9 7.63x10-6 6.88x10-4 7.93x10-6 

Time 0.0143 0.0027 0.0389 0.0314 0.0344 

Iterations 124.1 9.09 41.1 501.2 42.07 

MSE (fit) 190.41 0.905 19.89 548.47 28.64 
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Table 4.36: Small sample + contaminated error + good initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 -5.492 8.52x10-2 -0.677 22.05 -4.23x10-2 

𝜷𝟐 -102.3 3.03x10-2 -6.181 -102.63 -3.441 

𝜷𝟑 -69.82 5.56x10-3 -4.831 -62.45 -2.439 

𝜷𝟒 -12.54 1.79x10-3 -0.992 -9.741 -0.501 

𝜷𝟓 -8.37x10-2 -7.24x10-5 -4.66x10-3 -0.103 -2.12x10-3 

𝜷𝟔 -3.78x10-2 5.05x10-6 -3.36x10-3 -7.46x10-3 -1.14x10-3 

𝜷𝟕 -9.79x10-3 1.86x10-5 -8.89x10-4 -1.05x10-2 -8.27x10-4 

MSE 𝜷𝟏 377.1 0.208 47.23 892.8 2.637 

𝜷𝟐 10561.3 20.87 2404.6 13501.2 392.6 

𝜷𝟑 4994.5 13.75 1750.8 4309.4 195.6 

𝜷𝟒 171.6 0.576 73.45 119.5 8.402 

𝜷𝟓 7.23x10-3 1.68x10-5 1.56x10-3 1.38x10-2 1.40x10-4 

𝜷𝟔 1.83x10-3 4.53x10-6 6.63x10-4 9.38x10-4 4.73x10-5 

𝜷𝟕 2.44x10-4 3.57x10-7 9.37x10-5 1.06x10-3 3.15x10-5 

Time 0.0038 0.0013 0.0241 0.0256 0.0128 

Iterations 116.5 10.46 37.82 498.6 44.86 

MSE (fit) 228.87 0.777 60.18 707.8 2.924 
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Table 4.37: Large sample + contaminated error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 6.201 5.40x10-2 -4.861 -134.1 3.101 

𝜷𝟐 -241.3 4.25x10-2 -24.68 -649.4 -97.12 

𝜷𝟑 -150.3 1.65x10-2 -20.26 -197.2 -56.47 

𝜷𝟒 -25.23 2.12x10-3 -4.186 -25.12 -8.868 

𝜷𝟓 -0.184 -3.69x10-6 -2.11x10-2 -0.361 -7.14x10-2 

𝜷𝟔 -5.74x10-2 5.59x10-6 -1.49x10-2 3.62x10-2 -1.89x10-2 

𝜷𝟕 -3.83x10-2 8.69x10-7 -1.86x10-3 -0.184 -1.66x10-2 

MSE 𝜷𝟏 147.3 1.99x10-2 1788.3 46678.5 104.7 

𝜷𝟐 111260.1 0.210 24210.9 508177.7 58643.9 

𝜷𝟑 43948.6 0.121 16872.5 65571.1 16581.5 

𝜷𝟒 1362.3 4.07x10-3 737.5 4922.8 472.8 

𝜷𝟓 6.52x10-2 2.11x10-7 1.59x10-2 0.256 3.03x10-2 

𝜷𝟔 8.73x10-3 5.16x10-8 6.79x10-3 0.121 3.19x10-2 

𝜷𝟕 3.12x10-3 2.29x10-9 5.42x10-4 4.58x10-2 1.74x10-3 

Time 0.0214 0.0033 0.0441 0.0354 0.0519 

Iterations 134.6 11.17 41.61 501.5 47.32 

MSE (fit) 496.9 0.906 1193.1 19707 230.1 
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Table 4.38: Small sample + contaminated error + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 -5.508 -8.84x10-2 -12.23 157.6 -21.53 

𝜷𝟐 -233.2 5.392 1.437 -608.7 -77.56 

𝜷𝟑 146.6 2.668 -0.196 214.7 -47.99 

𝜷𝟒 -24.97 0.362 0.138 -32.92 -8.411 

𝜷𝟓 -0.182 4.27x10-3 -2.36x10-3 -0.329 -6.23x10-2 

𝜷𝟔 -6.59x10-2 1.39x10-4 -1.13x10-2 -3.45x10-2 -2.72x10-2 

𝜷𝟕 3.22x10-2 1.08x10-3 6.83x10-3 0.173 -1.08x10-2 

MSE 𝜷𝟏 4216.1 2.01 4718.1 54424.8 9551.1 

𝜷𝟐 153851.9 4071.3 45717.1 420743.8 36311.7 

𝜷𝟑 64246.2 1211.7 24219.9 68384.1 14553.1 

𝜷𝟒 2184.7 30.71 1152.5 3253.4 486.9 

𝜷𝟓 9.32x10-2 2.62x10-3 2.51x10-2 0.201 2.41x10-2 

𝜷𝟔 1.76x10-2 9.55x10-5 9.43x10-3 0.107 4.97x10-3 

𝜷𝟕 4.32x10-3 1.49x10-4 2.09x10-3 5.91x10-2 6.86x10-4 

Time 0.0058 0.0016 0.0261 0.0250 0.0139 

Iterations 131.8 12.81 43.22 499.6 44.5 

MSE (fit) 1504.3 6.232 1470.5 18644 7435.3 

 

Firstly, when the results of the cases with and without contamination in error term are 

compared, it can be concluded that the results are pretty much consistent. 

Undoubtedly, the fits that are obtained from the datasets without contamination are 

better. Yet, L-M algorithm is the only one which is not affected from contamination, 

significantly. The method only worsens with the case of poor initial values and small 

sample size. However, there is no dramatic change and the fit is still better than the 

ones provided by the rest of the algorithms. 

The other algorithms could not deal with the contamination and fails to produce a 

plausible fit. Among them, Nelder-Mead algorithm is the worst one overall. It is not 

unexpected because Nelder-Mead algorithm did not do a great job with the complex 

model in all cases anyway. To conclude, it can be stated that only L-M method 

becomes successful in the presence of contamination in errors. 
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Comparisons with respect to Robustness to Inliers in Errors 

The final comparison condition for the complex model is the presence of inliers in the 

error term. Again, only the results with poor initial values will be given since there is 

no significant difference between them. 

 

Table 4.39: Large sample + error with inliers + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 5.024 -1.43x10-4 -7.109 -120.27 3.461 

𝜷𝟐 -239.02 -6.56x10-3 -26.96 -665.39 -116.19 

𝜷𝟑 -149.57 -4.40x10-3 -20.91 -191.27 -68.117 

𝜷𝟒 -25.13 -7.54x10-4 -4.171 -23.575 -10.723 

𝜷𝟓 -0.184 -2.70x10-6 -2.48x10-2 -0.381 -8.90x10-2 

𝜷𝟔 -5.83x10-2 -3.46x10-6 -1.60x10-2 6.48x10-2 -2.29x10-2 

𝜷𝟕 -3.69x10-2 -1.59x10-6 -7.57x10-4 -0.191 -1.83x10-2 

MSE 𝜷𝟏 349.0 1.17x10-2 2906.7 43299.6 82.79 

𝜷𝟐 109991.0 0.118 32012.0 541064.5 64169.5 

𝜷𝟑 43761.5 6.69x10-2 20002.1 76367.5 18275.0 

𝜷𝟒 1360.7 2.23x10-3 836.4 6495.7 524.43 

𝜷𝟓 6.61x10-2 1.12x10-7 2.16x10-2 0.277 3.96x10-2 

𝜷𝟔 8.66x10-3 2.88x10-8 8.06x10-3 0.141 3.54x10-3 

𝜷𝟕 3.10x10-3 1.33x10-9 6.89x10-4 5.01x10-2 1.46x10-3 

Time 0.0128 0.003 0.0366 0.0325 0.0508 

Iterations 134.94 11.21 41.59 501.5 42.59 

MSE (fit) 634.4 0.541 1882.9 18936.0 197.8 
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Table 4.40: Small sample + error with inliers + poor initial values (Thurber) 

 Newton L-M BFGS Nelder-

Mead 

DFP 

Bias 𝜷𝟏 -5.437 -0.134 -6.684 -150.48 -2.242 

𝜷𝟐 -233.45 3.750 5.187 -642.43 -46.27 

𝜷𝟑 -146.14 2.132 0.671 -226.79 -16.27 

𝜷𝟒 -24.77 0.348 -4.42x10-3 -32.46 -3.558 

𝜷𝟓 -0.183 2.92x10-3 -3.21x10-3 -0.374 -3.21x10-2 

𝜷𝟔 -6.49x10-2 5.29x10-4 -7.33x10-3 -2.48x10-2 3.58x10-3 

𝜷𝟕 -3.16x10-2 8.11x10-4 7.16x10-3 -0.171 -1.21x10-2 

MSE 𝜷𝟏 4076.3 0.981 3450.8 53528.5 1500.7 

𝜷𝟐 159080.6 7823.9 41477.7 482584.2 37123.3 

𝜷𝟑 67431.3 2684.2 20583.6 75529.1 8258.3 

𝜷𝟒 2343.2 71.91 753.41 4210.8 246.15 

𝜷𝟓 9.74x10-2 4.61x10-3 2.64x10-2 0.251 1.72x10-2 

𝜷𝟔 1.90x10-2 3.24x10-4 7.53x10-3 0.114 2.10x10-2 

𝜷𝟕 4.61x10-3 2.70x10-4 1.37x10-3 6.01x10-2 5.38x10-3 

Time 0.0033 0.0021 0.0247 0.0230 0.0113 

Iterations 131.87 12.64 43.58 498.39 44.71 

MSE (fit) 1525.2 4.291 1098.1 18694.4 685.8 

 

In Table 4.39, biases and MSEs are observed as very high for all algorithms except for 

L-M method. L-M method produces practically unbiased estimates with low 

variances. Looking at the MSE for overall fit values, it can be easily concluded that L-

M method is the only one that suggests a plausible, actually nearly perfect fit. The 

others’ MSE fit values are so high that makes them unacceptable. In addition to that, 

L-M method is the fastest one again with 0.0021 seconds, which is very fast.  

On the other hand, Table 4.40 presents the results for the small sample case. In Table 

4.40, biases and MSEs increase dramatically compared to the large sample case, again 

except for L-M method. Nevertheless, there also is a slight increase in the bias and 

MSE of L-M method. Despite that, L-M method is still the best one because bias and 

MSE values are still the smallest. Moreover, its MSE for overall fit value implies that 

the fit is very good, indeed. All comments for the former case apply to this one as well. 

As a results, L-M method is the only option for such case. 
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CHAPTER 5 

 

CONCLUSION 

 

 

In this thesis, iterative methods that is commonly used for solving the parameter 

estimation problems in nonlinear regression analysis are briefly explained and 

comparative study on them is conducted with respect to several criteria under several 

conditions. The aim is to see the performances of these numerical algorithms under 

such conditions and superiorities over each other. Comments on the methods are given 

with respect to their performance. 

To be able to comment on their performances, Monte Carlo simulation study that 

covers all possible situations is conducted. As a result of that, it is concluded that L-

M method is the most successful method among the others under almost all situations 

that we have considered. It produces the estimates for parameters not only with the 

least bias and MSE but also with least number of iterations and within shortest 

execution time. The method performs quite well with non-normal errors, poor initial 

values, complex models, outliers etc. 

DFP method works quite good with the simple model under any condition. Under 

cases with good initial values, it provides the best fit together with L-M and Nelder-

Mead methods. On the other hand, it gets worse as the conditions get more complex. 

For instance, the method fails when the model is complex with poor initial values. 

Newton’s method works well with the simple model, especially when the initial values 

are close enough to the optimal solution. On the other hand, it could not handle the 

complex model, properly. The performance of the method gets worse as the number 

of parameters in the model increases. 
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BFGS method comes from the same family of methods as DFP method belongs to. 

However, it could not be as successful as DFP method. In general, under all cases 

considered in this study, the performance of BFGS method is moderate.  

Nelder-Mead algorithm which is slightly different from the others in the sense making 

no use of derivatives performs very well with the simple model, especially with good 

initial values. It also results in plausible fits with poor initial guesses. On the other 

hand, it becomes the worst one for the complex model. The reason is that as the number 

of parameters increases, simplex used in the procedure becomes more complex due to 

increase in the dimension. As a result, it is not recommended to be used in models 

with high number of parameters. 

Finally, nonlinear conjugate gradient can be concluded as the worst one, overall. The 

method is so unsuccessful with the simple model that it is not included in the 

simulation study for complex model.  

To make a general comment on the findings, it can be stated that some algorithms 

could easily converge to the global minimum while the others get stuck in the local 

minimum. The reason is that the algorithms used in this study are local search 

methods. Hence, there is a possibility to converge to local optima, which is not as 

desired. In the literature, there are global search methods such as grid search and 

genetic algorithm. They will be the subject of our further study. 

The summary results of L-M method for each 24 simulation scenarios are presented 

in Table 4.41. As it is clear, the method produced quite good results on any case that 

is considered in this study. To conclude, L-M method is the most preferable algorithm 

according to our simulation study and real data application results due to its efficiency, 

precision, robustness and speed in nonlinear parameter estimation. 
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Table 4.41: Summary results for L-M method 

 Chwirut1  Thurber 

 MSE (fit)  MSE (fit) 

1.scenario 0.99 1.scenario 0.97 

2.scenario 0.88 2.scenario 0.75 

3.scenario 6.54 3.scenario 6.41 

4.scenario 5.86 4.scenario 4.92 

5.scenario 2.28 5.scenario 2.20 

6.scenario 2.06 6.scenario 1.80 

7.scenario 0.99 7.scenario 0.97 

8.scenario 0.87 8.scenario 4.45 

9.scenario 6.58 9.scenario 6.39 

10.scenario 5.77 10.scenario 7.55 

11.scenario 2.27 11.scenario 2.22 

12.scenario 2.08 12.scenario 5.82 

13.scenario 1.31 13.scenario 1.28 

14.scenario 1.19 14.scenario 1.06 

15.scenario 6.05 15.scenario 1.27 

16.scenario 38.57 16.scenario 0.97 

17.scenario 0.92 17.scenario 0.90 

18.scenario 0.87 18.scenario 0.77 

19.scenario 0.91 19.scenario 0.90 

20.scenario 1.14 20.scenario 6.23 

21.scenario 0.55 21.scenario 0.53 

22.scenario 0.49 22.scenario 0.40 

23.scenario 1.54 23.scenario 0.54 

24.scenario 5.68 24.scenario 4.29 
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APPENDIX 

 

Simulation Study Codes in R for Thurber Model 

 

 

#required packages 

library(nlmrt) 

library(minpack.lm) 

library(optimx) 

library(NISTnls) 

library(Bhat) 

 

n=250 #number of observations 

M=10000  #number of trials 

parm=7 #number of parameters in the model 

 

Mse=NULL 

Cf=matrix(ncol=parm , nrow=M) 

Var=matrix(ncol=parm , nrow=M) 

iter=NULL 

 

Mselm=NULL 

Cflm=matrix(ncol=parm , nrow=M) 

Varlm=matrix(ncol=parm , nrow=M) 

iterlm=NULL 

 

 

 



96 

 

 

Msegs=NULL 

Cfgs=matrix(ncol=parm , nrow=M) 

Vargs=matrix(ncol=parm , nrow=M) 

itergs=NULL 

 

Msenm=NULL 

Cfnm=matrix(ncol=parm , nrow=M) 

Varnm=matrix(ncol=parm , nrow=M) 

iternm=NULL 

 

Msecg=NULL 

Cfcg=matrix(ncol=parm , nrow=M) 

Varcg=matrix(ncol=parm , nrow=M) 

itercg=NULL 

 

modelfun=function(b,x) { 

(b[1] + b[2]*x + b[3]*x^2 + b[4]*x^3) / (1 + b[5]*x + b[6]*x^2 + b[7]*x^3) 

} 

 

#starting value specification 

startpar=c(1200,1400,500,65,0.7,0.3,0.03)  

 

for (i in 1:M) { 

#generating random data  

pred=runif(n,-3.6,2) 

#error generation 

err=rnorm(n,0,1) 
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#true parameter values specification 

b1t=1288 ; b2t=1491 ; b3t=583 ; b4t=75 ; b5t=0.97 ; b6t=0.40 ; b7t=0.05 

resp=(b1t + b2t*pred + b3t*pred^2 + b4t*pred^3) / (1 + b5t*pred + b6t*pred^2 + 

b7t*pred^3) +err 

simdata=data.frame(resp,pred) 

 

#using Newton-type method 

func=function(b) { 

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /  

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)  

} 

gnm=nlm(f=func , p=startpar , iterlim=500) 

predicgn=modelfun(b=c(gnm$estimate[1:7]),x=pred) 

residgn=resp-predicgn 

Mse[i]=mean(residgn^2) 

Cf[i , ]=c(gnm$estimate[1:7]) 

iter[i]=gnm$iterations 

 

#using Levenberg-Marquardt method 

model2=nlsLM(resp~(b1 + b2*pred + b3*pred^2 + b4*pred^3) / (1 + b5*pred + 

b6*pred^2 + b7*pred^3) ,  

start=c(b1=startpar[1],b2=startpar[2],b3=startpar[3],b4=startpar[4],b5=startpar[5],b6

=startpar[6],b7=startpar[7]) , data=simdata) 

residlm=resp-predict(model2) 

Mselm[i]=mean(residlm^2) 

Cflm[i , ]=coef(model2) 

iterlm[i]=model2$conv$finIter 
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#using BFGS method 

func=function(b) { 

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /  

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)  

} 

smm=optimx(fn=func , par=startpar , method="BFGS") 

predicbfgs=modelfun(b=c(smm$p1,smm$p2,smm$p3,smm$p4,smm$p5,smm$p6,sm

m$p7),x=pred) 

residgs=resp-predicbfgs 

Msegs[i]=mean(residgs^2) 

Cfgs[i , ]=c(smm$p1,smm$p2,smm$p3,smm$p4,smm$p5,smm$p6,smm$p7) 

itergs[i]=smm$gevals 

 

#using Nelder-Mead method 

func=function(b) { 

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /  

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)  

} 

nmm=optimx(fn=func , par=startpar , method="Nelder-Mead") 

predicnm=modelfun(b=c(nmm$p1,nmm$p2,nmm$p3,nmm$p4,nmm$p5,nmm$p6,n

mm$p7),x=pred) 

residnm=resp-predicnm 

Msenm[i]=mean(residnm^2) 

Cfnm[i , ]=c(nmm$p1,nmm$p2,nmm$p3,nmm$p4,nmm$p5,nmm$p6,nmm$p7) 

iternm[i]=nmm$fevals 
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#using Davidon-Fletcher-Powell method 

func=function(b) { 

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /  

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)  

} 

x <- list(label=c("b1","b2","b3","b4","b5","b6","b7"), 

est=startpar ,low=c(0,0,0,0,0,0,0),upp=c(2000,2000,1000,100,5,5,5)) 

modeldfp=ezgi(x, f=func ) 

residdav=resp-modelfun(b=modeldfp$est,x=pred) 

Msedav[i]=mean(residdav^2) 

Cfdav[i , ]=modeldfp$est 

iterdav[i]=modeldfp$iter 

 

} 

 

#Newton-type results 

#means of estimators 

meangsb=NULL 

for (i in 1:parm) { 

meangsb[i]=mean(Cf[,i],na.rm=TRUE) 

} 

meangsb 

#simulated variances of estimates 

varsimgn=NULL 

for (i in 1:parm) { 

varsimgn[i]=var(Cf[,i],na.rm=TRUE) 

} 

varsimgn 
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#MSE value for the fit 

mean(Mse) 

#bias calculation for Gauss-Newton 

truepar=c(1288,1491,583,75,0.97,0.40,0.05) 

biasg=NULL 

for (i in 1:parm) { 

biasg[i]=mean(Cf[,i],na.rm=TRUE)-truepar[i] 

} 

biasg 

#Mses of the estimates 

Msegsb=NULL 

for (i in 1:parm) { 

Msegsb[i]=varsimgn[i]+biasg[i]^2 

} 

Msegsb 

#number of iterations 

mean(iter,na.rm=TRUE) 

 

#Levenberg-Marquardt results 

#means of estimators 

meanlmb=NULL 

for (i in 1:parm) { 

meanlmb[i]=mean(Cflm[,i]) 

} 

meanlmb 

#simulated variances of estimates 

varsimlm=NULL 
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for (i in 1:parm) { 

varsimlm[i]=var(Cflm[,i]) 

} 

varsimlm 

#MSE values 

mean(Mselm) 

#bias calculation for L-M method 

biaslm=NULL 

for (i in 1:parm) { 

biaslm[i]=mean(Cflm[,i])-truepar[i] 

} 

biaslm 

#Mses of the estimates 

Mselmb=NULL 

for (i in 1:parm) { 

Mselmb[i]=varsimlm[i]+biaslm[i]^2 

} 

Mselmb 

#number of iterations 

mean(iterlm,na.rm=TRUE) 

 

#BFGS results 

#means of estimators 

meanbfgs=NULL 

for (i in 1:parm) { 

meanbfgs[i]=mean(Cfgs[,i]) 

} 

meanbfgs 
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#simulated variances of estimates 

varsimbfgs=NULL 

for (i in 1:parm) { 

varsimbfgs[i]=var(Cfgs[,i]) 

} 

varsimbfgs 

#MSE values 

mean(Msegs) 

#bias calculation for L-M method 

biasbfgs=NULL 

for (i in 1:parm) { 

biasbfgs[i]=mean(Cfgs[,i])-truepar[i] 

} 

biasbfgs 

#Mses of the estimates 

Msebfgs=NULL 

for (i in 1:parm) { 

Msebfgs[i]=varsimbfgs[i]+biasbfgs[i]^2 

} 

Msebfgs 

#number of iterations 

mean(itergs,na.rm=TRUE) 

 

#Nelder-Mead results 

#means of estimators 

meannm=NULL 

for (i in 1:parm) { 

meannm[i]=mean(Cfnm[,i]) 

} 
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meannm 

#simulated variances of estimates 

varsimnm=NULL 

for (i in 1:parm) { 

varsimnm[i]=var(Cfnm[,i]) 

} 

varsimnm 

#MSE values 

mean(Msenm) 

#bias calculation for Nelder-Mead 

biasnm=NULL 

for (i in 1:parm) { 

biasnm[i]=mean(Cfnm[,i])-truepar[i] 

} 

biasnm 

#Mses of the estimates 

Msebnm=NULL 

for (i in 1:parm) { 

Msebnm[i]=varsimnm[i]+biasnm[i]^2 

} 

Msebnm 

#number of iterations 

mean(iternm,na.rm=TRUE) 

 

#DFP results 

#means of estimators 

meandfp=NULL 

for (i in 1:parm) { 

meandfp[i]=mean(Cfdav[,i]) 
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} 

meandfp 

#simulated variances of estimates 

varsimdfp=NULL 

for (i in 1:parm) { 

varsimdfp[i]=var(Cfdav[,i]) 

} 

varsimdfp 

#bias calculation for DFP method 

biasdfp=NULL 

truepar=c(1288,1491,583,75,0.97,0.40,0.05) 

for (i in 1:parm) { 

biasdfp[i]=mean(Cfdav[,i])-truepar[i] 

} 

biasdfp 

#Mses of the estimates 

Msedfp=NULL 

for (i in 1:parm) { 

Msedfp[i]=varsimdfp[i]+biasdfp[i]^2 

} 

Msedfp 

#number of iterations 

mean(iterdav,na.rm=TRUE) 

#MSE(fit) 

mean(Msedav) 

 

 


