

COMPARISON OF ITERATIVE ALGORITHMS

FOR PARAMETER ESTIMATION IN NONLINEAR REGRESSION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

GAMZE MUSLUOĞLU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

STATISTICS

SEPTEMBER 2018

Approval of the thesis:

COMPARISON OF ITERATIVE ALGORITHMS

FOR PARAMETER ESTIMATION IN NONLINEAR REGRESSION

submitted by GAMZE MUSLUOĞLU in partial fulfillment of the requirements for

the degree of Master of Science in Statistics Department, Middle East Technical

University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ayşen Dener Akkaya

Head of Department, Statistics

Prof. Dr. Ayşen Dener Akkaya

Supervisor, Statistics Dept., METU

Examining Committee Members:

Assoc. Prof. Dr. Ceylan Talu Yozgatlıgil

Statistics Dept., METU

Prof. Dr. Ayşen Dener Akkaya

Statistics Dept., METU

Assoc. Prof. Dr. Özlem Türker Bayrak

Inter Curricular Courses Dept., Çankaya University

Date: 07.09.2018

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Last name : Gamze Musluoğlu

Signature :

v

ABSTRACT

COMPARISON OF ITERATIVE ALGORITHMS

FOR PARAMETER ESTIMATION IN NONLINEAR REGRESSION

Musluoğlu, Gamze

MSc., Department of Statistics

Supervisor : Prof. Dr. Ayşen Dener Akkaya

September 2018, 104 pages

Nonlinear regression models are more common as compared to linear ones for real life

cases e.g. climatology, biology, earthquake engineering, economics etc. However,

nonlinear regression models are much more complex to fit and to interpret. Classical

parameter estimation methods such as least squares and maximum likelihood can also

be adopted to fit the model in nonlinear regression as well, but explicit solutions can

not be achieved unlike linear models. At this point, iterative algorithms are utilized to

solve the problem numerically. Since there is no extensive study which compiles,

classifies and compares the existing methods for nonlinear parameter estimation, the

objective of this study is to fill this gap. In our study, we aim to compile the methods

which are used for nonlinear parameter estimation purpose and compare them with

respect to several criteria such as bias, execution time, number of iterations etc. The

comparison will be conducted considering different scenarios which are small vs. large

sample sizes, good vs. poor initial values, normal vs. non-normal error terms, simple

vs complex models (with respect to number of parameters), and robustness. Both real

and simulated data are used in the comparative study.

vi

Keywords: Nonlinear Regression, Iterative Algorithms, Nonlinear Least Squares,

Nonlinear Parameter Estimation

vii

ÖZ

DOĞRUSAL OLMAYAN REGRESYONUN PARAMETRE TAHMİNİNDE

KULLANILAN TEKRARLI ALGORİTMALARIN KARŞILAŞTIRILMASI

Musluoğlu, Gamze

Yüksek Lisans, İstatistik

Tez Yöneticisi : Prof. Dr. Ayşen Dener Akkaya

Eylül 2018, 104 sayfa

Doğrusal olmayan regresyon modelleri, gerçek hayat problemlerinde doğrusal

modellere oranla daha yaygındır. İklim bilimi, biyoloji, deprem mühendisliği ve

ekonomi örnekler arasındadır. Ancak doğrusal olmayan regresyon modellerini kurmak

ve yorumlamak daha zordur. En küçük kareler ve en çok olabilirlik yöntemleri gibi

klasik parametre tahmin yöntemleri, doğrusal olmayan regresyon için de

kullanılmaktadır. Ancak doğrusal modellerde olduğu gibi kesin sonuçlara

ulaşılamamaktadır. Bu noktada bu sorunu numerik olarak çözmek için tekrarlı

algoritmalar kullanılır. Bu yöntemleri derleyen, sınıflandıran ve karşılaştıran geniş

çaplı bir çalışma olmadığı için, amacımız bu boşluğu doldurmaktır. Bu çalışmada,

doğrusal olmayan regresyon modellerinin tahmininde kullanılan yöntemleri derleyip,

onları yanlılık, yürütme zamanı, tekrar sayısı gibi kriterlere göre karşılaştırmayı

amaçlamaktayız. Karşılaştırma küçük ve büyük örneklem büyüklüğü, iyi ve kötü

parametre başlangıç değerleri, normal ve normal olmayan hata terimleri, basit ve

karmaşık modeller (parametre sayısına göre) ve sağlamlık gibi farklı senaryolar

üzerinden uygulanacaktır. Karşılaştırmalı çalışmada hem gerçek hem de benzetim

yolu ile elde edilmiş veri kullanılacaktır.

viii

Anahtar Kelimeler: Doğrusal Olmayan Regresyon, Tekrarlı Algoritmalar, Doğrusal

Olmayan En Küçük Kareler, Doğrusal Olmayan Parametre Tahmini

ix

To My Family

x

ACKNOWLEDGMENTS

Firstly, I would like to express my gratitude to my supervisor Prof. Dr. Ayşen Dener

Akkaya for her everlasting support on this work. She has been more than a supervisor

to me. I could not be able to complete this thesis without her guidance.

I also would like to thank my examining committee members Assoc. Prof. Dr. Ceylan

Talu Yozgatlıgil, Assoc. Prof. Dr. Özlem Türker Bayrak and Prof. Dr. Ashis SenGupta

for their valuable time and feedback.

My sincere gratitude is for my bestfriends Begüm Yentür, Seren Ergan, Nilay Kılıç

Ateş, Deniz Çelikel, Kaan Uyanık and Orçun Denemeç who helped me to get through

this process and listened to me whenever I am in need. Additionally, I am also grateful

for the guidance and support provided my dear co-workers Ezgi Ayyıldız, Buket

Coşkun, Duygu Varol and Elif Akça.

Finally, I want to thank my family, Hakan Musluoğlu, Sema Musluoğlu, Burcu

Musluoğlu and my fiancé Ali Berkcan Boylu. I cannot find the suitable words to

express how lucky I feel for having them by my side during this study. Thank you all.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xv

LIST OF ABBREVIATIONS ... xvi

CHAPTERS

1. INTRODUCTION .. 1

2. OVERVIEW OF NONLINEAR REGRESSION ANALYSIS 5

2.1 Model Specification ... 9

2.2 Parameter Estimation ... 11

2.3 Initial Values .. 11

3. ITERATIVE METHODS FOR THE PARAMETER ESTIMATION IN

NONLINEAR REGRESSION ... 13

3.1 Nonlinear Least Squares Estimation .. 13

3.2 Numerical Methods Used in Nonlinear Least Squares Estimation 14

3.2.1 Newton-Raphson Method ... 15

3.2.2 Gauss-Newton Method.. 18

3.2.3 Steepest Descent Method .. 20

3.2.4 Levenberg-Marquardt Method .. 22

3.2.5 Quasi-Newton Methods .. 24

3.2.5.1 Davidon–Fletcher–Powell Method .. 25

3.2.5.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 27

3.2.6 Nonlinear Conjugate Gradient Method ... 28

3.2.7 Nelder-Mead Method .. 30

xii

4. SIMULATION STUDY AND APPLICATION .. 33

4.1 Organization of the Simulation Study.. 33

4.1.1 Conditions for Comparison ... 34

4.1.1.1 Complexity of the Model ... 34

4.1.1.2 Distribution of the Error... 38

4.1.1.3 Goodness of Initial Values ... 39

4.1.1.4 Sample Size .. 40

4.1.1.5 Robustness in Errors .. 40

4.1.2 Simulation Scenarios .. 41

4.1.3 Comparison Criteria .. 43

4.1.3.1 Bias .. 43

4.1.3.2 Mean Squared Error ... 44

4.1.3.3 Execution Time .. 45

4.1.3.4 Number of Iterations .. 45

4.1.3.5 MSE for Overall Fit ... 46

4.2 Results of the Simulation Study and Application .. 47

4.2.1 Simple Model Results ... 47

4.2.1.1 Comparisons with respect to Error Distribution 49

4.2.1.2 Comparisons with respect to Sample Size ... 52

4.2.1.3 Comparisons with respect to Initial Values 55

4.2.1.4 Comparisons with respect to Robustness ... 59

4.2.2 Complex Model Results .. 65

4.2.2.1 Comparisons with respect to Error Distribution 67

4.2.2.2 Comparisons with respect to Sample Size ... 71

4.2.2.3 Comparisons with respect to Initial Values 75

4.2.2.4 Comparisons with respect to Robustness ... 78

5. CONCLUSION ... 87

REFERENCES .. 91

APPENDIX .. 95

xiii

LIST OF TABLES

TABLES

Table 4.1: Real data results of Chwirut1 with good initial values 48

Table 4.2: Real data results of Chwirut1 with poor initial values 48

Table 4.3: Large sample + normal error + good initial values (Chwirut1) 50

Table 4.4: Large sample + GL (b=0.5) error + good initial values (Chwirut1) 50

Table 4.5: Large sample + GL (b=2) error + good initial values (Chwirut1) 51

Table 4.6: Small sample + normal error + good initial values (Chwirut1) 52

Table 4.7: Small sample + GL (b=2) error + good initial values (Chwirut1) 53

Table 4.8: Large sample + GL (b=0.5) error + poor initial values (Chwirut1) 54

Table 4.9: Small sample + GL (b=0.5) error + poor initial values (Chwirut1) 54

Table 4.10: Large sample + normal error + poor initial values (Chwirut1) 56

Table 4.11: Large sample + GL (b=2) error + good initial values (Chwirut1) 57

Table 4.12: Small sample + GL (b=0.5) error + good initial values (Chwirut1) 58

Table 4.13: Large sample + error with outliers + good initial values (Chwirut1) 59

Table 4.14: Large sample + error with outliers + poor initial values (Chwirut1) 60

Table 4.15: Large sample + contaminated error + good initial values (Chwirut1) 61

Table 4.16: Small sample + contaminated error + good initial values (Chwirut1) 62

Table 4.17: Large sample + contaminated error + poor initial values (Chwirut1) 62

Table 4.18: Small sample + contaminated error + poor initial values (Chwirut1) 63

Table 4.19: Large sample + error with inliers + poor initial values (Chwirut1) 64

Table 4.20: Small sample + error with inliers + poor initial values (Chwirut1) 65

Table 4.21: Real data results of Thurber with good initial values 66

Table 4.22: Real data results of Thurber with poor initial values 66

Table 4.23: Large sample + normal error + good initial values (Thurber) 68

Table 4.24: Large sample + GL (b=0.5) error + good initial values (Thurber) 68

Table 4.25: Large sample + GL (b=2) error + good initial values (Thurber) 69

xiv

Table 4.26: Small sample + normal error + good initial values (Thurber) 71

Table 4.27: Small sample + GL (b=2) error + good initial values (Thurber) 73

Table 4.28: Large sample + GL (b=0.5) error + poor initial values (Thurber) 74

Table 4.29: Small sample + GL (b=0.5) error + poor initial values (Thurber) 74

Table 4.30: Large sample + normal error + poor initial values (Thurber) 75

Table 4.31: Large sample + GL (b=2) error + good initial values (Thurber) 76

Table 4.32: Small sample + GL (b=0.5) error + good initial values (Thurber) 77

Table 4.33: Large sample + error with outliers + good initial values (Thurber) 79

Table 4.34: Large sample + error with outliers + poor initial values (Thurber) 80

Table 4.35: Large sample + contaminated error + good initial values (Thurber) 81

Table 4.36: Small sample + contaminated error + good initial values (Thurber) 82

Table 4.37: Large sample + contaminated error + poor initial values (Thurber) 83

Table 4.38: Small sample + contaminated error + poor initial values (Thurber) 84

Table 4.39: Large sample + error with outliers + poor initial values (Thurber) 85

Table 4.40: Small sample + error with outliers + poor initial values (Thurber) 86

Table 4.41: Summary results for L-M method .. 89

xv

LIST OF FIGURES

FIGURES

Figure 3.1 2-simplex (triangle) and 3-simplex (tethadron) 30
Figure 4.1 The nonlinear regression curve of Chwirut1 36
Figure 4.2 The nonlinear regression curve of Thurber 37

xvi

LIST OF ABBREVIATIONS

BFGS Broyden-Fletcher-Goldfrab-Shanno

CG Conjugate Gradient

DFP Davidon-Fletcher-Powell

FR Fletcher-Reeves

GL Generalized Logistic

LS Least Squares

L-M Levenberg-Marquardt

ML Maximum Likelihood

MSE Mean Squared Error

NIST National Institute of Standards and Technology

NLS Nonlinear Least Squares

StRD Statistical Reference Datasets

1

CHAPTER 1

INTRODUCTION

Nature in general is nonlinear. That is the main reason of the popularity of nonlinear

regression in many different research fields. Nonlinear regression analysis is a

commonly used tool for explaining the relationship between a set of variables by

constructing a plausible model which contains nonlinear terms. It has applications in

countless research areas such as physics, biology, earthquake engineering, economics

etc. However, it has several difficulties in application such as model specification,

assignment of starting values for parameters and more importantly estimation of the

unknown model parameters which is the main focus for this study.

To estimate the model parameters and approximate a model fit, nonlinear least squares

procedure is the most commonly used method, but it is not straightforward as it is in

linear case. At this point, optimization algorithms offer help to overcome the

inconvenience of the equations resulting from the nonlinear least squares procedure.

Each method has different properties with pros and cons and there are numerous

algorithms for this purpose, in the literature. Hence, the user face with a serious

challenge when in the need of nonlinear regression analysis for his/her specific case.

At this point, comparative studies are very useful to help the user to be able to choose

the most suitable method for his/her case.

The fundamental to many numerical algorithms is Newton’s method of Isaac Newton

and it was first published in 1771 officially even though composed in 1685. His

version included the calculation of a sequence of complex polynomials to obtain an

approximation of the root of interest. Raphson (1697) reviewed the Newton’s method

and used successive approximations of the root rather than polynomials.

2

Throughout the following years, many researchers based their proposed algorithms on

this essential method. Gauss (1809) introduced his updated recursion formula which

drops the second derivative part of Newton-Raphson algorithm. In 1909, Debye

introduced the method of steepest descent which uses the negative gradient as search

direction and a reasonable step size to facilitate fast convergence. Both Gauss-Newton

and steepest descent method had strenghts and weaknesses so, Levenberg (1944)

merged their strong aspects to form a new and better algorithm. Based on Levenberg’s

study, Marquardt proposed an improved formula for the procedure in 1963. In 1964,

Fletcher and Reeves took the idea of the famous conjugate gradient method to

generalize it for nonlinear equations as well. Their method is called as nonlinear

conjugate gradient method in the literature. Besides all these gradient-based

algorithms, John Nelder and Roger Mead (1965) suggested their derivative-free

algorithm. Following these advances, quasi-newton algorithms were suggested, which

is a modification to fundamental Newton-Raphson method. This family of methods

uses different formulas to obtain an approximation to the inverse Hessian matrix. Most

popular ones were proposed by Broyden et al. (1970) and Davidon et al. (1991).

As mentioned briefly, numerous numerical algorithms exist for the purpose of

parameter estimation in nonlinear regression analysis. Yet, in the literature, there is

almost no comparative study which covers the most commonly used numerical

algorithms for the solution of nonlinear least squares procedure. The present studies

in the literature only focus on the performance of algorithms or the software packages

under ideal conditions. They do not take the possible scenarios into account such as

non-normality in the distribution of the error terms, selection of initial values, sample

size, complexity of the model function and robustness.

The aim of this study is to compare the existing and commonly used numerical

algorithms for nonlinear least squares problems under several conditions which can be

summarized as the conditions with the presence of normal or non-normal errors, small

or large sample size, selection of initial values for the iterations, simple or complex

models and robustness. As comparison criteria, bias and mean squared error for the

3

estimates of the model parameters, mean squared error of fit, execution time and

number of iterations will be used.

In this thesis, we make an introduction to the nonlinear regression analysis and explain

the difficulties related to it in Chapter 2. One of these difficulties is parameter

estimation problem which is our primary interest in this study. In Chapter 3, the

methods used for parameter estimation in nonlinear regression are introduced. These

methods are the most commonly used ones obtained through an extensive literature

review. The results of the comparisons for iterative methods based on both real data

and simulation study are given in Chapter 4. Finally, we summarize and conclude our

findings in Chapter 5.

4

5

CHAPTER 2

OVERVIEW OF NONLINEAR REGRESSION ANALYSIS

Regression analysis is a useful and commonly known tool which is used for describing

and modeling the relationship between variables. More specifically, it aims to examine

the dependency of an exploratory (or response) variable and explanatory (or predictor)

variables. It enables one to understand how response variable changes when the one

of the predictor variables is varied whereas the other predictor variables are fixed. To

sum up, the regression analysis is useful for

i. Examining the effect of the predictors on the response variable.

ii. Testing whether the predictors do well in estimating the response variable.

To construct a regression model thoroughly, one has to find the suitable regression

function which fits well to the data. Regression function can be linear or nonlinear

depending on the problem and the data.

When the model is linear, the procedure is called as linear regression analysis and

classical model function is

 𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖1 + ⋯ + 𝛽𝑝𝑋𝑖𝑝 +∈𝑖 , 𝑖 = 1,2, … . 𝑛 (2.1)

where

𝑌𝑖: response variable

6

𝑋𝑖𝑗′𝑠: regressor variables

𝛽𝑗′𝑠: regression parameters ; j=1,2,…p

∈𝑖: random error.

Linear regression analysis is a commonly used regression analysis which is very useful

in many statistical problems. It’s preferred due to its simplicity, yet efficiency and

statistical power. However, sometimes linear regression may not be appropriate due

to intrinsic nonlinear pattern in relations between parameters or variables and the

response. At this point, nonlinear regression analysis introduces the necessary

complexity. In such cases, it is more realistic to use nonlinear regression analysis since

many real life data do not follow a straight line pattern. Nonlinear data can be

encountered in many real life problems in various research fields like attenuation

relationships in earthquake engineering, tsunami modeling, weather forecasting in

climatology, growth of a plant in agriculture etc.

Nonlinear regression model is generally given by

 𝑌𝑖 = 𝑓(𝑋𝑖; 𝛽) + ∈𝑖 (2.2)

where

𝑌𝑖: response or dependent variable

𝑓(𝑋𝑖; 𝛽): model function whose at least one of the derivatives with respect to unknown

parameters contains at least one regression parameter, i.e., nonlinear in variables or

parameters.

∈𝑖: random error.

7

Nonlinearity can be considered in terms of variables and parameters. Nonlinearity in

variables can be handled by various transformation techniques. Here is a very simple

example for this type of nonlinear models.

 𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 +∈𝑖 (2.3)

In the model equation above, nonlinearity arises from 𝑋2 and one can simply define a

new variable, say 𝑍 = 𝑋2. Carrying out these type of classical transformations, the

models can be converted into a linear one. After that, the same procedure can be

followed as in linear regression. There is nothing complex with these models.

However, the second type of models are nonlinear in parameters and this type of

nonlinearity can cause some complexity in solving and commenting on the problem.

Models that are nonlinear in parameters can also be considered in two different forms.

The first one is called as intrinsically linear models which means they can be

transformed to linear models.

As an example, Cobb-Douglas production model can be shown.

 𝑌 = 𝛼 𝐿𝛽𝐾𝛾 ∗ ∈𝑖 (2.4)

where

𝑌: response variable (output)

L, K: regressor variables (labor and capital, respectively)

α, β, 𝛾: regression parameters

∈𝑖: random error.

8

The model in Equation 2.4 is clearly nonlinear in parameters, but it can be linearized

by using log-transformation. After log-transformation, the Equation 2.5 is obtained.

 ln(𝑌) = 𝛿 + 𝛽 ln(𝐿) + 𝛾 ln(𝐾) (2.5)

In the transformed model equation, 𝛿 stands for ln(𝛼) and other notations are the same.

The natural logarithm versions of the variables can be substituted with 𝑌∗, 𝐿∗ and 𝐾∗,

respectively. As it can be clearly seen, the resulting model is linear in its parameters

and ready to be solved by applying classical linear regression analysis procedure.

On the other hand, the second type that we will mention about is intrinsically nonlinear

models. They can not be transformed into a linear model unlike the first type. One

example for them is as below.

 𝑌 =
𝛽1

𝛽2
𝑒𝑥𝑝 [

−(𝑋−𝛽3)

2𝛽2
2] +∈𝑖 (2.6)

The model in Equation 2.6 is intrinsically nonlinear and should be treated as so. Thus,

the researcher should adopt nonlinear regression methods to estimate its parameters.

In this study, the main focus will be on estimation of intrinsically nonlinear models.

Though nonlinear regression models are very useful tools in solving complex

relations, it has some difficulties in practice. The important and problematic issues to

be careful about when conducting nonlinear regression analysis will be explained

briefly in the following sections.

9

2.1 Model Specification

Specification of the model in nonlinear regression analysis is a crucial step. Model

specification is about specifying the expectation function for the model and features

of the error term. Specification of the error term is also important because assumptions

about the error usually gives a direction to the researcher to conduct the analysis

properly. By direction, parameter estimation technique is referred.

In general, nonlinear models arise as solutions to differential equations. On the other

hand, the expectation function does not have to be in an explicit function form. For

example, compartmental type of models have an expected response which is a solution

to a set of differential equations.

There are variety of nonlinear models and their application areas can differ. It is not

very easy to choose the best model from a large list of nonlinear regression functions.

Before choosing the model, field of the research should be considered. In other words,

similar studies in the literature can be examined to be able to choose the right family

of models for the case. Moreover, plotting the data can be useful to see the structure

of the model.

Since it is not our main scope, we will just give some examples to most common

nonlinear regression models. Growth models are probably the most commonly used

type of nonlinear models. Growth models are usually used to illustrate how response

variable grows due to the changes in explanatory variable(s) (Montgomery et al.,

2012). Its fields of applications are extensive from engineering to the sciences. Growth

models are utilized to model the growth of an organism or bacteria in biology, growth

of animals, humans or even growth of economy etc. As mentioned, its applications are

extensive. Some of the commonly used growth models are explained briefly as

follows:

10

Logistic Growth Model

 𝑌𝑖 =
𝛼

1+𝑒𝑥𝑝(−𝛽−𝛿𝑡𝑖)
+∈𝑖 (2.7)

In the model (2.7), Y is the response variable and t is explanatory variable. 𝛼 , 𝛽 and

𝛿 are the unknown parameters for the given model. The parameters have different

explanations for different cases. In order to accommodate the parameters well, the data

should be understood clearly.

Exponential Growth Model

In the model (2.8), Y is the response variable while t is the explanatory variable. 𝑌0 is

the starting value of the response when t=0 and k is the growth rate parameter.

Interpretation of the parameters changes from case to case.

 𝑌𝑖 = 𝑌0 exp(𝑘𝑡𝑖) +∈𝑖 (2.8)

Gompertz Growth Model

Many re-parameterizations can be found in the literature for Gompertz growth

function. One and commonly used one is illustrated as in (2.9) (Tjorve and

Tjorve,2017).

 𝑌𝑖 = 𝛼. 𝑒𝑥𝑝(−𝑒𝑥𝑝(−𝑘(𝑡𝑖 − 𝛽))) +∈𝑖 (2.9)

11

2.2 Parameter Estimation

In contrast to simplicity of linear regression, things get a little complex for the

nonlinear regression models. Parameter estimation is not very easy since the model is

nonlinear in parameters and classical estimation techniques cannot provide exact

solutions. Similar to linear regression, parameter estimation can still be done by

following the least squares (LS) or maximum likelihood (ML) estimation procedures

though there are some differences. The objective function for the nonlinear model is

also nonlinear and to solve it, partial derivatives which are not easy to deal with in

most of the cases are necessary. Even if the partial derivatives are here, the findings

are not linear and the explicit solutions cannot be obtained directly. Moreover, making

comments on the parameter estimates becomes confusing. Thus, use of iterative

methods become inevitable in parameter estimation.

2.3 Initial Values

As mentioned earlier, to solve the parameter estimation problems in nonlinear

regression analysis, numerical algorithms are adopted to reach the optimal value.

Numerical algorithms are iterative which means the estimate is updated until the

convergence to the best possible solution is achieved. Hence, it should have some

starting value(s) to initiate the iterative process.

The goodness of initial values is highly important for the success of the numerical

method because poor assignment of initial values can result in very slow convergence,

convergence to local optima or no convergence at all. On the other hand, good starting

point gives the right direction to the algorithm and facilitate its performance in many

aspects. That is why assigning starting values well is an essential step in parameter

estimation problems in nonlinear regression.

12

There are many possible options to find good starting values. The first one is plotting

the data and interpreting the structure. It is simple yet very efficient way to decide on

the initial values. Another one is guessing it based on the interpretation of the

parameter of interest. For some models, model parameters have very clear meanings

and one can simply decide on the initial guess for them with the help of his/her

knowledge related to the field of subject. For instance, Fekedulegn, Siurtain and

Colbert (1999) discussed the nonlinear models used in agricultural research and stated

that the parameters in these models are meaningful in the field of agriculture, which

forms a basis to obtain good initial values. Even some formulas which provide good

initial guesses for some parameters are presented in the study. However, this only

applies to those specific family of models. In most of the cases, there are no such

formulas for initial value assignment. Third way to determine the initial values is using

linearization or stochastic algorithms such as genetic algorithm. They perform quite

well in this.

Since initial guesses play an important role on the performance of an algorithm in

converging to right optimal value, we want to test our selected algorithms both under

poorly and well selected initial values to see their robustness to it.

13

CHAPTER 3

ITERATIVE METHODS FOR THE PARAMETER ESTIMATION IN

NONLINEAR REGRESSION

In this chapter, focus is on the parameter estimation methods commonly used in

nonlinear regression analysis. Mainly, there are two estimation methods that is used

for this purpose, least squares and maximum likelihood. However, maximum

likelihood eventually becomes a least squares problem with both normal and non-

normal errors (Seber and Wild, 2003). That is why we only consider least squares

approach in this study.

3.1 Nonlinear Least Squares Estimation

Least squares principle is widely used for analyzing both linear and nonlinear models.

The basic idea behind the LS principle is minimizing the sum of squares of deviations

between the observed response variable Y and the fitted model value 𝑌̂.

 Let ∈ is used to denote the error term, the objective function S is obtained as follows:

 𝑆(𝛽) = ∑ (𝑌𝑖
𝑛
𝑖=1 − 𝑓(𝑋𝑖; 𝛽̂))2 = ∑ 𝑟𝑖

2 𝑛
𝑖=1 (3.1)

where

Y: response variable

𝑓(𝑋, 𝛽): regression model function

𝑟𝑖: residual.

14

Having obtained the objective function S(β), the procedure is carried out by taking the

derivatives of the objective function S(β) with respect to unknown parameters (𝛽𝑖′𝑠)

one by one. For each unknown parameter, a normal equation 𝑔(𝛽𝑖) =
𝜕𝑆(𝛽)

𝜕𝛽𝑖
= 0 is

obtained. Then, the corresponding estimate results are found by solving these normal

equations.

Application of LS principle to nonlinear models provides nonlinear set of normal

equations which are difficult to solve with simple algebra operations. Because

majority of nonlinear models does not have analytical solutions, iterative techniques

become necessary. In the following section, most commonly used iterative methods

developed and used to obtain nonlinear least sqaures (NLS) parameter estimates will

be presented.

3.2 Numerical Methods Used in Nonlinear Least Squares Estimation

Numerical algorithms are countless and they have similar working principles more or

less. Most of them starts with an initial guess and updates the current estimate

depending on its specific search direction and step size. The iteration process continues

until the convergence criterion is satisfied. Most of the time, convergence criterion is

the difference between the successive iterative values of the estimated parameters or

the corresponding value of the objective function. When one of them is smaller than 𝜀

which is a pre-defined very small quantity (e.g. 10−5 for this study.), the iterative

process comes to an end. It can be illustrated as below where 𝑘 denotes the iteration

number.

 𝑆(𝛽𝑘+1) − 𝑆(𝛽𝑘) < 𝜀 (3.2)

or

15

 𝛽𝑘+1 − 𝛽𝑘 < 𝜀 (3.3)

In other words, iteration continues improving the fit until there is no significant

change. Some algorithms may provide slow convergence while another one converges

in few iterations. Each algorithm has different properties and different attitudes

towards the problem.

3.2.1 Newton-Raphson Method

Newton-Raphson method, i.e. Newton’s method, is probably the most well-known

numerical algorithm used for nonlinear parameter estimation. The method forms a

basis to many other optimization algorithms in the literature. It is named after Isaac

Newton (1685) and Joseph Raphson (1697). The method tries to find an optimal

solution iteratively. To be able to do this, it only requires a starting value for the

algorithm and partial derivatives of the objective function. The basic idea behind

Newton-Raphson method is starting with a reasonable initial guess and successively

obtaining a better approximation to the root of the function of interest.

Newton-Raphson method is based on the quadratic approximation to the objective

function. The quadratic approximation is as follows where 𝛻 denotes the derivative

operator.

 𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘 +
1

2
𝛿𝑘𝑇

𝐻𝑘𝛿𝑘 (3.4)

where

𝛽𝑘: current estimate

𝛿𝑘, 𝛿𝑘𝑇
: step size at the kth iteration and its transpose

∇𝑆(𝛽𝑘) , 𝛻𝑆(𝛽𝑘)𝑇: first derivative of the model function at the current estimate and

its transponse

16

𝐻𝑘: second derivative at the current estimate (Hessian matrix).

The recursion formula obtained from this approximation is

 𝛽𝑘+1 = 𝛽𝑘 −
∇S(𝛽𝑘)

∇2S(𝛽𝑘)
 (3.5)

or equivalently,

 𝛽𝑘+1 = 𝛽𝑘 − 𝐻−1(𝛽𝑘) 𝑔(𝛽𝑘). (3.6)

In the recursion formula, some notations are used and they can be expressed as

 ∇𝑆(𝛽𝑘) = 𝑔(𝛽𝑘) = ∑ 𝑅𝑖(𝛽𝑘) ∇𝑅𝑖(𝛽𝑘)𝑛
𝑖=1 = 𝐽(𝛽𝑘)𝑇𝑅(𝛽𝑘) (3.7)

∇2𝑆(𝛽𝑘) = 𝐻(𝛽𝑘) = ∑ ∇𝑅𝑖(𝛽𝑘) ∇𝑅𝑖(𝛽𝑘)𝑇 + ∑ 𝑅𝑖(𝛽𝑘)∇2𝑅𝑖(𝛽𝑘)𝑛
𝑖=1

𝑛
𝑖=1 (3.8)

 = 𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝐴(𝛽𝑘) (3.9)

where

𝑔(𝛽𝑘): gradient (first derivative) of the function at 𝛽𝑘

𝐻(𝛽𝑘): Hessian evaluated at 𝛽𝑘

𝐽(𝛽𝑘): jacobian evaluated at 𝛽𝑘

𝑅(𝛽𝑘): residuals evaluated at 𝛽𝑘

17

𝐴(𝛽𝑘): second derivative part of the Hessian matrix.

Another way to show the recursion formula of Newton-Raphson is as following.

 𝛽𝑘+1 = 𝛽𝑘 + [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝐴(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘) (3.10)

Newton-Raphson method is a powerful method with a quadratic convergence

characteristic. Quadratic convergence is that as the convergence to the root occurs, the

difference between the root itself and the approximation is squared at each step. So, it

doubles the number of significant digits in every step. However, Newton-Raphson

method does not converge if certain conditions do not hold. The assumptions of

quadratic convergence proof should be met to guarantee that convergence will occur

for any specific function. The assumptions can be listed as follows:

i. f′ (β) ≠ 0; for all β .

ii. f′′ (β) is continuous.

iii. β0 is reasonably close to the true optimal value β∗.

In the assumptions above, f′(β) and f′′(β) denote the first and second derivatives of the

model function, respectively. Additionally, β0 refers to a set of initial values for the

model parameters.

In numerical analysis, it is common that the algorithm may not converge even in large

number of iterations. As it is highlighted in the third assumption, the convergence of

the algorithm is highly dependent to the choice of initial values for model parameters.

In other words, Newton-Raphson method has a very small region of convergence. It

works very well with good initial values which are very close to the solution.

18

On the other hand, bad initial guesses can lead to non-convergence of the algorithm.

As a result, it is very crucial to choose good initial values with small error. As stated

earlier, Newton-Raphson method is a fundamental method which is a basis for many

numerical algorithms suggested and studied in the literature. Some of the methods we

use in our study are modifications to this method and their difference will be explained

in detail.

3.2.2 Gauss-Newton Method

Gauss-Newton is a very commonly used optimization method for solving nonlinear

least squares problems. The method is also known as “linearization method”. Gauss-

Newton method is a modification of the classical Newton’s method. It simply ignores

the second derivative part 𝐴(𝛽) and this simplifies the recursion formula to solve.

The idea behind that elimination is that the second derivatives are assumed to be highly

small compared to first derivatives. That is why they differ only slightly with respect

to the derivative matrix that is used in computations. In many cases, they converge to

very close estimates.

The convergence rate can change from case to case. It may converge slowly or not

converge at all. The reason behind the convergence problem should be investigated

and solved to obtain realistic solutions. In general, linear convergence is expected

against Newton-Raphson’s quadratic convergence feature. The performance of Gauss-

Newton method is highly related to whether the second derivative part is important or

not. Here, importance refers to magnitude of the quantity. If it is not that important,

even quadratic convergence can be achieved.

It is a simple procedure compared to the other iterative schemes because it makes use

of only first derivative. Yet, it is efficient and convergent. Moreover, not using second

derivatives saves both time and storage.

19

The procedure simply uses the first-order Taylor series expansion. The method utilizes

a linear approximation to the regression function around the preset initial values of the

unknown parameters and it iteratively improves the estimate.

 𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘 (3.11)

And Equation 3.11 is equivalent to

 𝑆(𝛽𝑘+1) = 𝑆(𝛽𝑘) + ∇𝑆(𝛽𝑘) (𝛽𝑘+1 − 𝛽𝑘) (3.12)

which leads to

 𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘). (3.13)

As a result, the following recursion formula is obtained.

 𝛽𝑘+1 = 𝛽𝑘 + [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘)]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘) (3.14)

It continues until the convergence criterion mentioned in Equation 3.2 is satisfied.

Convergence can take long in some cases, but still for many real life cases it is very

useful.

20

3.2.3 Steepest Descent Method

Steepest descent method, or gradient descent method, is an optimization tool that is

used for minimization of the function of interest. The basic procedure starts with

deciding on the initial points and then taking the gradient of the model function at the

preset initial value(s). After obtaining the gradient of the function, the solution is

moved in the negative direction of the gradient and each time this happens,

convergence criterion is checked to see whether the optimal solution is obtained or

not. The process is repeated until convergence criterion is satisfied. The algorithm will

eventually converge when the gradient is 0 or very close to 0. The convergence

criterion needs to be selected beforehand. It is a very small value but larger than 0. To

summarize we can show the algorithm step by step.

Let S be the objective function that we want to minimize, which is convex and

differentiable. Also let us denote the unknown parameter vector as 𝜃.

i. Choose set of initial values 𝛽𝑘 (k=0, initially) and decide on the convergence

criterion.

ii. Take the gradient of the function that we want to minimize and evaluate it in

the set of initial values that is selected before. So, let 𝑔𝑘 = ∇𝑆(𝛽𝑘) and give

start to the iteration process.

iii. Set the search direction as the negative of the gradient evaluated at the current

point 𝛽𝑘.

iv. Choose a step size λ to use in the iteration process as a fixed value or choose a

different step size for each iteration which is called as adaptive step size.

v. The updated estimate is obtained with 𝛽𝑘+1 = 𝛽𝑘 − 𝜆 ∇𝑆(𝛽𝑘). Check if the

convergence is achieved. If not, repeat the process starting from the 2𝑛𝑑 𝑠𝑡𝑒𝑝

by setting k=k+1.

vi. Repeat the process until convergence happens.

21

One aspect to take into consideration while using this algorithm is estimating the step

size. It is very crucial because it may lead to divergence or slow convergence. Slow

convergence is not a desirable feature and when step size is too small it will take a

long time to convergence. When step size is too large iterations may diverge. Selection

of step size can be carried out with different methods in the literature such as line

search (Curry, 1944).

Steepest descent has a branch called steepest ascent. As understood by its name, it is

used for maximizing the objective function. In other words, while steepest descent

looks for the global minimum, steepest ascent searches the global maximum for a

particular problem. The algorithm follows the same steps as steepest descent with only

one difference. Unlike steepest descent, the solution is stepped in the positive direction

of the gradient of the function. This is because it aims to converge to the global

maximum. The recursion formula can be illustrated as in the Equation 3.15.

 𝛽𝑘+1 = 𝛽𝑘 + 𝜆 ∇𝑓(𝛽𝑘) (3.15)

In the formula above, 𝛽𝑘+1 is the updated estimate while 𝛽𝑘 is the current estimate.

As mentioned, only difference from the steepest descent is the direction that will be

followed in each iteration. All other main characteristics of steepest descent method

apply to steepest ascent, too.

22

3.2.4 Levenberg-Marquardt Method

Levenberg-Marquardt (L-M) method is one of the most famous methods used in

nonlinear parameter estimation. The method is developed by Marquardt as a

modification to the Gauss-Newton method in 1963. Since his work is based on a work

conducted by Levenberg (1944), the method is also called as Marquardt’s compromise

method in the literature.

In some problems, the conditions for 𝐽𝑇𝐽 may not hold. In other words, the matrix may

be singular or ill-conditioned. In such situations, Gauss-Newton algorithm may not

converge at all. Therefore, L-M method is developed as a modification to the Gauss-

Newton method to overcome the non-convergence problem of Gauss-Newton when

the Jacobian matrix is singular in some cases.

L-M method combines the features of Gauss-Newton method and the steepest descent

method altogether. The method of steepest descent tends to work well in early

iterations but as it comes closer to the optimal solution, starts to work slowly. On the

contrary, the situation is the complete opposite for Gauss-Newton method. So, as a

combination of these features, L-M method uses the strategy of steepest descent in

early iterations and then switches to Gauss-Newton as it gets closer to the end.

It makes use of the linearization vector of Gauss-Newton and the direction of gradient

descent method (Montgomery et al., 2012).

Based on that, Levenberg (1944) suggested a modification to the Gauss-Newton

algorithm with the increment

 𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝐿𝑒𝑣𝑒𝑛𝑏𝑒𝑟𝑔
𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝜂 𝐼]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘) (3.16)

where I denotes the identity matrix.

23

Moreover, 𝜂 is called as conditioning factor and it plays a very important role in

convergence. As 𝜂 goes to infinity the step becomes the steepest descent step and as 𝜂

goes to 0 it looks like Gauss-Newton step. This factor is used for adjustment.

Based on his idea, Marquardt (1963) suggested a modification to Levenberg’s

increment which is given by

 𝛽𝑘+1 − 𝛽𝑘 = 𝛿𝑀𝑎𝑟𝑞𝑢𝑎𝑟𝑑𝑡
𝑘 = [𝐽(𝛽𝑘)𝑇 𝐽(𝛽𝑘) + 𝜂 𝐷]−1 𝐽(𝛽𝑘)𝑇 𝑅(𝛽𝑘) (3.17)

where D is a diagonal matrix that usually consists of the diagonal entries of the matrix

𝐽𝑇𝐽.

About the rate of convergence, L-M is known to have quadratic convergence feature

when the jacobian at the current point is nonsingular. This is a very good characteristic

because quadratic convergence refers to a very fast convergence. However, there are

many problems that have problematic jacobians. In that case, its convergence property

deteriorates to linear convergence.

So, it can be concluded that implementation of L-M method is more complex than the

Gauss-Newton method, in general. There are modifications in the literature for this

method, too (see for example, Fan (2011)).

24

3.2.5 Quasi-Newton Methods

Quasi-Newton family of methods are generalization of classical Newton’s method.

Newton’s method is known to be very efficient and fast when necessary conditions

hold. But when one of them is absent, the method fails to converge properly. One of

these assumptions is the presence of second derivatives of the objective function.

However, second derivatives are not always easy to handle or even sometimes they

are not obtainable at all. For such cases, quasi-Newton method approximates the

inverse of the Hessian matrix at each iteration. This feature is one of the advantages

of quasi-Newton methods over Newton’s method. In Newton’s method, after

calculating Hessian matrix, its inverse should be obtained as a next step. Instead,

quasi-Newton directly approximates the inverse Hessian matrix, which makes the

whole procedure a more easier.

Approximation of the inverse Hessian matrix is conducted by analyzing the successive

gradients obtained from the same function of interest. In short, this modification is

carried out either to simplify the procedure of step direction calculation or not to

calculate second derivatives.

As in Newton’s method, quasi-Newton algorithms uses the quadratic approximation,

too. Its quadratic approximation to the objective function is as following:

 𝑆(𝛽𝑘 + 𝛿𝑘) = 𝑆(𝛽𝑘) + 𝛻𝑆(𝛽𝑘)𝑇𝛿𝑘 +
1

2
𝛿𝑘𝑇

𝐻𝑘𝛿𝑘 (3.18)

where

𝛽𝑘: current estimate

𝛿𝑘: step size at the kth iteration

∇𝑆(𝛽𝑘): first derivative at the current estimate

𝐻𝑘: second derivative at the current estimate (Hessian matrix).

25

General iterative scheme for quasi-Newton algorithms is

 𝛽𝑘+1 = 𝛽𝑘 − 𝛼𝑘𝐻𝑘
−1𝑔𝑘 (3.19)

where

𝐻𝑘: symmetric and nonsingular approximated Hessian matrix

𝑔𝑘: gradient

𝛼𝑘: step size obtained by line search.

The procedure is the same until the Hessian matrix calculation because quasi-Newton

methods do not directly calculate it, rather approximate it. In the literature, many

different approximation formulas for the inverse Hessian is suggested. The first quasi-

Newton algorithm belongs to William C. Davidon (1959) and then the method he

proposed was updated by Fletcher and Powell (1963). The method named after these

three statisticians as DFP method. As years go by, many modifications were developed

and became very popular. Commonly known modifications can be listed as Broyden-

Fletcher-Goldfarb-Shanno (Broyden et al., 1970), Davidon–Fletcher–Powell

(Davidon, 1991), Simple Rank 1 (Byrd, 1996) and Broyden’s method (Broyden,1965).

In this study, BFGS and DFP updating formulas are included due to their popularity.

They will be explained briefly in the following sections.

3.2.5.1 Davidon–Fletcher–Powell Method

The Davidon–Fletcher–Powell (DFP) method is the first member of quasi-Newton

family. It was first suggested by Davidon (1959) and his idea was improved by another

study (Fletcher and Powell, 1963). Even if many other algorithms were developed in

26

the literature through the years, DFP method is still one of the best quasi-Newton

algorithms.

Again the basic principle is straightforward, only the Hessian approximation

procedure is different. It offers updating formulas for both Hessian or inverse Hessian

directly. The latter is mostly preferred in practice.

The approximation to Hessian matrix is conducted with the Equation 3.20.

 𝐻𝑘+1 = (𝐼 −
𝜑𝑘𝛿𝑘𝑇

𝜑𝑘
𝑇𝛿𝑘

) 𝐻𝑘 (𝐼 −
𝛿𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

) +
𝜑𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

 (3.20)

where

𝜑𝑘 = ∇𝑆(𝛽𝑘 + 𝛿𝑘) − ∇𝑆(𝛽𝑘)

and

𝛾𝑘 =
1

𝜑𝑘
𝑇𝛿𝑘

 .

As stated, the method also suggests a formula for direct approximation to the inverse

Hessian matrix as in the Equation 3.21.

 𝐵𝑘+1 = 𝐵𝑘 +
𝛿𝑘𝛿𝑘𝑇

𝛿𝑘𝑇
𝜑𝑘

−
𝐵𝑘𝜑𝑘𝜑𝑘

𝑇𝐵𝑘

𝜑𝑘𝐵𝑘𝜑𝑘
𝑇

 (3.21)

The approximation is iteratively updated at each iteration. Another well-working

method from quasi-Newton family will be explained in the following section.

27

3.2.5.2 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is one of the most popular

quasi-Newton methods which is used for nonlinear unconstrained optimization

problems. The method is developed by Broyden, Fletcher, Goldfarb and Shanno

(1970).

The approximation formula for Hessian is shown as in the Equation 3.23.

 𝐻𝑘+1 = 𝐻𝑘 +
𝜑𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘

−
𝐻𝑘𝛿𝑘𝛿𝑘𝑇

𝐻𝑘
𝑇

𝛿𝑘𝑇
𝐻𝑘𝛿𝑘

 (3.23)

The method also offers a direct approximation to inverse Hessian as in the Equation

3.24.

 𝐵𝑘+1 = (𝐼 −
𝛿𝑘𝜑𝑘

𝑇

𝜑𝑘
𝑇𝛿𝑘) 𝐵𝑘 (𝐼 −

𝜑𝑘𝛿𝑘𝑇

𝜑𝑘
𝑇𝛿𝑘) +

𝛿𝑘𝑇
𝛿𝑘

𝜑𝑘
𝑇𝛿𝑘 (3.24)

where

 𝜑𝑘 = ∇𝑆(𝛽𝑘 + 𝛿𝑘) − ∇𝑆(𝛽𝑘) (3.25)

or equivalently

 𝜑𝑘 = ∇𝑆(𝛽𝑘+1) − ∇𝑆(𝛽𝑘) (3.26)

28

which is basically the difference between successive gradients. The approximation for

Hessian is updated at each iteration based on the previous approximation.

The above mentioned quasi-Newton methods are widely applicable for unconstrained

minimization problems and proven to be efficient. Since nonlinear parameter

estimation is a special case of unconstrained optimization, these methods are included

in our study.

3.2.6 Nonlinear Conjugate Gradient Method

Conjugate gradient (CG) is a numerical algorithm which is primarily used for large

system of linear equations. The method was first introduced by Eduard Stiefel and

Magnus Hestenes (1952). Although its main aim is not minimization, it is being used

for that purpose as well.

Conjugate gradient has a nonlinear version which is utilized to find the optimal value

in problems with nonlinear equations and it is called as nonlinear conjugate gradient

method. It makes use of the gradient of the objective function. The algorithm is

explained through the following steps:

i. Start with obtaining the classical steepest descent direction which is simply the

negative gradient of the function.

 𝛿𝑘 = −∇𝑆(𝛽𝑘) (3.27)

ii. Calculate the conjugate direction 𝐶𝑘 by using one of the formulas suggested in

the literature. Commonly used ones can be listed as Fletcher-Reeves, Polak–

Ribière and Hestenes-Stiefel. Our choice is Fletcher-Reeves method.

29

 𝐶𝑘
𝐹𝑅 =

𝛿𝑘𝑇
𝛿𝑘

𝛿𝑘−1𝑇
𝛿𝑘−1

 (3.28)

iii. Obtain the conjugate direction 𝑆𝑘 using the findings and update it at each

iteration.

 𝑆𝑘 = 𝛿𝑘 − 𝐶𝑘𝑆𝑘−1 (3.29)

iv. Find a reasonable step size 𝛼𝑘 by performing line search. Here, argmin

function finds the arguments that minimize the objective function.

 𝛼𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛 𝑆(𝛽𝑘 + 𝛼𝑆𝑘) (3.30)

v. Use the recursion formula to update the current estimate

 𝛽𝑘+1 = 𝛽𝑘 + 𝛼𝑘𝑆𝑘 (3.31)

vi. Continue until the convergence criterion is satisfied.

30

3.2.7 Nelder-Mead Method

Nelder-Mead algorithm is a well-known derivative-free method which is commonly

used in unconstrained optimization problems. The method is also known as simplex

search algorithm and it was suggested by John Nelder and Roger Mead (1965).

It does not require the calculation or approximation of the derivatives, so it is

applicable to non-differentiable functions as well. Its working principle is based on

simplex. The method makes use of simplex, which is a representation of triangle in

random dimensions. For example, a simplex has n+1 vertices when it is defined for a

problem in ℝ𝑛 and it is called as n-simplex. According to that, when we are working

with 2 dimensional space, the simplex has 3 vertices. When the dimension increases

to 3, number of vertices becomes 4. The shapes of the mentioned simplexes can be

observed in Figure 3.1.

Figure 3.1: 2-simplex (triangle) and 3-simplex (tetrahedron)

Algorithm for the Nelder-Mead method can be summarized as follows.

i. Construct an initial working simplex S. There exist numerous ways to obtain

an initial simplex and most commonly used technique is generating n+1

vertices around the pre-defined starting value.

31

ii. Check the convergence criterion. If not satisfied yet, transform the working

simplex. Four transformation approaches are available, namely, shrinkage,

expansion, reflection and contraction. The suitable one is applied to obtain the

updated simplex.

iii. Repeat the process until convergence to optimal solution is achieved.

Convergence criterion is up to the researcher however it is assumed that the

convergence is achieved when there is a very slight difference between the

successive simplexes.

Despite its simplicity in the idea and application, Nelder-Mead method is still

considered as very successful in practice. As a result, it is popular and preferred by

researchers from many different fields. Moreover, according to many sources, it is

among the best known derivative-free algorithms. Hence, Nelder-Mead method takes

part in our study on behalf of derivative-free methods.

32

33

CHAPTER 4

SIMULATION STUDY AND APPLICATION

4.1 Organization of the Simulation Study

In this section, simulation study is designed and carried out to compare the

performances of the selected numerical algorithms under several conditions. The

conditions taken into consideration are distribution of the error terms, sample size,

goodness of initial guesses for parameters, complexity of the model and robustness.

For this purpose, two models are selected: a simple model and a complex one. The

complexity of the model is based upon the number of parameters that the model

consists of.

The simulation study is performed for each combination of the possible scenarios that

we are interested in. Additionally, these simulations are executed for both simple and

complex models.

Codes for the Monte Carlo simulation study is written in the R program by using built-

in functions for the numerical algorithms. One of the codes is given in Appendix part

as an example.

In the following sections, organization of the simulation study will be explained in

detail and the results will be illustrated.

34

4.1.1 Conditions for Comparison

In this study, the aim is to compare the iterative methods in an extensive way which

means not only under ideal conditions, but also under poor conditions. There are many

conditions that may affect the performance of the methods. As statisticians, the first

one that comes up to mind is the non-normality in the distribution of the error terms.

In addition to non-normality, robustness of the estimated parameters to anomalies in

the error distribution, i.e. outliers, contamination and inliers are checked. Another

condition is directly related to optimization problems, i.e. initial values used to start

the iteration process. Moreover, sample size is considered as a significant factor

effecting the performance of the algorithms because it does on regression. Finally, the

number of parameters which can affect the performance of the iterative algorithms is

also examined. As a result, the simulation study is conducted for each one of the

combinations of all these conditions, separately. That allows us to make comparison

for any case, very clearly.

4.1.1.1 Complexity of the Model

Complexity of the model is one aspect that is taken into consideration through this

study. Here the word “complexity” refers to the number of parameters included in the

nonlinear regression model. In other words, higher the number of parameters is, more

complex the model is.

In nonlinear regression models, number of parameters does not directly depend on the

number of variables unlike linear models. Hence, the number of parameters are

presumed as reference to describe the complexity of the model. When the model gets

more complex, it is naturally harder to estimate the parameters. Since we want to test

the most commonly used algorithms under both situations, one simple and one

complex model are selected.

35

The models are taken from National Institute of Standards and Technology (NIST)

Statistical Reference Datasets (StRD) from the website

http://www.itl.nist.gov/div898/strd/. The website offers numerous models with their

reference datasets which are classified according to their level of difficulty as low,

medium and high. We have selected one model with low level of difficulty and another

with high level of difficulty.

Another advantage of this website is that it also offers the certified values for the

parameters. The certified values are reliable because they were approved by using at

least two numerical methods and different software packages. Presence of certified

values helps us to compare the outcomes that will be obtained from each algorithm we

will make use of.

Simple Model

The simple model is named as “Chwirut1” and taken from an ultrasonic response study

(Chwirut, 1979). In the model, the dependent variable Y is ultrasonic response, and

the independent variable is metal distance. Its reference dataset has 214 observations

and 3 unknown parameters. The data is observed, not simulated.

The model function is given by

 𝑌𝑖 =
𝑒−𝛽1𝑋𝑖

𝛽2+𝛽3𝑋𝑖
+ 𝜖𝑖 (4.1)

where 𝛽1, 𝛽2 and 𝛽3 are unknown parameters and 𝜖𝑖 is the error term.

The certified values for the unknown parameters are as following:

𝛽1
∗ = 0.1902 , 𝛽2

∗ = 0.0061 , 𝛽3
∗ = 0.0105.

36

The behavior of the relationship can be observed from Figure 4.1. As it can be clearly

seen, it has a decreasing trend with a curvature shape.

Figure 4.1: The nonlinear regression curve of Chwirut1

Complex Model

Second model is named as “Thurber” and taken from a semiconductor electron

mobility study conducted by Thurber (1979). It is called as complex model in this

study due to its higher number of parameters as compared to the former model.

Moreover, it is also classified as a difficult model and dataset in the website according

to different aspects as well.

The model has one response and one predictor variable again. They are the measure

of electron mobility and the natural log of the density, respectively. The data consists

of 37 observations.

37

The model function has 7 unknown parameters and is given by

 𝑌𝑖 =
𝛽1+𝛽2𝑋𝑖+𝛽3𝑋𝑖

2+𝛽4𝑋𝑖
3

1+𝛽5𝑋𝑖+𝛽6𝑋𝑖
2+𝛽7𝑋𝑖

3 + 𝜖𝑖 (4.2)

where 𝛽1, 𝛽2, 𝛽3, 𝛽4, 𝛽5, 𝛽6 and 𝛽7 are the unknown parameters included in the model

of interest and 𝜖𝑖 is the error term.

In addition, the certified values for these parameters are as follows:

 𝛽1
∗ = 1288.139 , 𝛽2

∗ = 1491.079 , 𝛽3
∗ = 583.238 , 𝛽4

∗ = 75.416 , 𝛽5
∗ = 0.966 ,

 𝛽6
∗ = 0.397 , 𝛽7

∗ = 0.049

Moreover, its curvy behavior can be observed in Figure 4.2.

Figure 4.2: The nonlinear regression curve of Thurber

38

4.1.1.2 Distribution of the Error

Error term is anything that differentiates the constructed model from its true version

and has always been the problematic part of any problem. Errors are often assumed as

normally distributed since it is the easiest way to run away from the problems that may

occur. On the other hand, normality assumption is hard to satisfy in real life problems.

However, researchers insist on believing that their error terms are normally

distributed. In fact, it can be any distribution and the assumption of normality may

cause problems. That is why it is included in this comparative study. The aim here is

to notice which one(s) of the numerical algorithms overcome this inconvenience more

efficiently.

We have selected the generalized logistic (GL) distribution as a non-normal

distribution for the error terms in this study. The probability distribution of generalized

logistic is given by

 𝑓(𝑒) =
𝑏

𝜎
𝑒𝑥𝑝(−𝑒

𝜎⁄)

{1+𝑒𝑥𝑝(−𝑒
𝜎⁄)}𝑏+1 − ∞ < 𝑒 < ∞ (4.3)

with the following properties

 𝐸(𝑒) = {Ψ(𝑏) − Ψ(1)} 𝜎 (4.4)

 𝑉(𝑒) = {Ψ′(𝑏) + Ψ′(1)} 𝜎2 (4.5)

where b>0, Ψ(𝑥) denotes the psi-function and Ψ′(𝑥) stands for its derivative.

39

In GL distribution, the shape parameter b is crucial. When it is equal to 1, the

distribution is classical logistic distribution. On the other hand, it is negatively skewed

when b<1 and positively skewed when b>1 (Akkaya and Tiku, 2010). Hence, it can

behave in any direction. That is why we have selected it as our non-normal distribution

and assign b=0.5 and b=2 to observe the performance results under both types of

skewness.

4.1.1.3 Goodness of Initial Values

As mentioned in the Section 2.3, goodness of initial values is one of the most crucial

aspects to take into consideration when the study involves optimization (Bates and

Watts, 2007). Since nonlinear parameter estimation is a special case of unconstrained

optimization, obtaining good starting values is one of the best steps that the researcher

can take to conduct nonlinear regression analysis successfully.

Respectively good starting guesses facilitates the convergence by leading the iteration

process in the right direction. Here, “good” refers to the value close to the real value

of the parameter. In our case, real value refers to the certified values provided by the

website itself. On the other hand, when the starting values are respectively poor, i.e.

farther from the certified values, iteration process can head to wrong direction and end

up with non-convergence, or it converges to optimal value very slowly. These cases

are not desired, so selection of good starting values should be emphasized.

It is always easier to converge when the process is initiated with a set of good starting

values. An efficient method should give plausible results under both conditions. That

is why the behavior of algorithms are tested under the presence of poor initial values

as well as good ones.

40

To select starting values efficiently, there are numerous ways as mentioned briefly in

Section 2.3. In this study, website from which the reference models taken provides 3

different sets of starting values which are close to the certified ones. So, we have taken

one of them as our set of good starting values. Based on that, a set of poor starting

values are derived by increasing the values of good ones with the ratio 50%.

4.1.1.4 Sample Size

Sample size is another issue that is important in any kind of regression analysis.

Regression analysis tries to explain the relationship between variables by constructing

a meaningful model. At this point, as sample size gets larger, the information it carries

gets bigger and this effects the model in a positive way. An estimator showing this

behavior is called as consistent. As a result, by performing a nonlinear regression

analysis, sample size issue is considered as a test condition.

During comparisons, n=250 and n=25 are taken as quite large and small sample sizes,

respectively to notice their distinctive effect on success of our numerical algorithms.

4.1.1.5 Robustness in Errors

Deviations from the assumed error distribution is highly frequent in many cases. As a

result, it is almost never for sure that the assumed distribution is fully accurate (Tiku

& Akkaya, 2004). To overcome this successfully, robustness of the estimators comes

into question. The estimators should be able to carry on its efficiency for an assumed

distribution and maintains high efficiency even in such deviations from the

distribution to be called as robust.

To test the robustness of the estimators of the variables and the model itself, we

designed outlier, contamination and inlier models for the cases in which the errors are

normally distributed.

41

Outlier Model

(n − r) Xi come from N(μ, σ2) and r (we do not know which) come from N(μ, 4σ2);

r = [0.5 + 0.1n] (integer value) and =0 and =1 without any loss of generality. In

other words, the standard deviation is doubled up for 10% of the observations (Tiku

and Akkaya, 2004).

Inlier Model

In the inlier model, a proportion of smallest or largest order statistics in a random

sample 1 2 n, , . . ,    from),(N 2 is replaced by
i() , 1,      so that the

displaced observations get located closer to  and are erroneous, and located within

  (Akkaya and Tiku, 2008).

Contamination Model

In this case, the normal error distribution is contaminated with another distribution

which is uniform (0, 1) with 10 percent, i.e., 0.90N(μ, )+0.10Uniform(0, 1), and =0

and =1 without any loss of generality (Tiku and Akkaya, 2004).

4.1.2 Simulation Scenarios

The conditions discussed in Section 4.1 form the base for this comparative study. Since

the aim is to test the iterative methods under many conditions, all possible

combinations of these conditions are assigned as a simulation scenario which increases

our cases to 24 for each model, i.e., simple and complex models. The point is that an

undesirable condition does not always occur when all other conditions are well-

behaved. All undesirable conditions can arise together or one at a time. That is why

the simulation study is designed by crossing over the levels of selected conditions.

42

This allows us to observe the behavior of the method under a wide range of situations

from best to the worst case possible.

Our simulation scenarios are presented as below:

1. Large sample + normally distributed errors + good initial values

2. Small sample + normally distributed errors + good initial values

3. Large sample + GL (b=0.5) distributed errors + good initial values

4. Small sample + GL (b=0.5) distributed errors + good initial values

5. Large sample + GL (b=2) distributed errors + good initial values

6. Small sample + GL (b=2) distributed errors + good initial values

7. Large sample + normally distributed errors + poor initial values

8. Small sample + normally distributed errors + poor initial values

9. Large sample + GL (b=0.5) distributed errors + poor initial values

10. Small sample + GL (b=0.5) distributed errors + poor initial values

11. Large sample + GL (b=2) distributed errors + poor initial values

12. Small sample + GL (b=2) distributed errors + poor initial values

13. Large sample + normally distributed errors with outliers + good initial values

14. Small sample + normally distributed errors with outliers + good initial values

15. Large sample + normally distributed errors with outliers + poor initial values

16. Small sample + normally distributed errors with outliers + poor initial values

17. Large sample + contaminated normal errors + good initial values

18. Small sample + contaminated normal errors + good initial values

19. Large sample + contaminated normal errors + poor initial values

20. Small sample + contaminated normal errors + poor initial values

21. Large sample + normally distributed errors with inliers + good initial values

22. Small sample + normally distributed errors with inliers + good initial values

23. Large sample + normally distributed errors with inliers + poor initial values

24. Small sample + normally distributed errors with inliers + poor initial values

43

These simulations scenarios are carried out both for simple model and complex

models, separately. So, it is possible to compare the results of similar conditions with

respect to the complexity of the model.

4.1.3 Comparison Criteria

To compare the success of commonly used numerical methods for estimating the

unknown parameters of a nonlinear regression model and reaching a reliable

conclusion, comparison should be based upon reliable criteria. The criteria used in this

comparative study are explained briefly in the following subsections.

4.1.3.1 Bias

The first criterion is bias in the estimators and is widely applicable in estimation

comparison problems. When evaluating the performance of a numerical algorithm, it

is highly crucial to obtain the closest estimate to the true value. It is basically the

difference between the estimated value and the true value of the parameter of interest.

 𝐵𝑖𝑎𝑠 = 𝐸(𝛽̂) − 𝛽 (4.6)

In Equation 4.6, 𝛽̂ is the parameter estimate and 𝛽 is the true value of the parameter

itself.

44

4.1.3.2 Mean Squared Error

Mean squared error (MSE) is the second criterion for our comparison study. It is a

measure of assessment for an estimator. In our study, the purpose is to see which

algorithm(s) provides the best estimates for the unknown parameters. That is why

MSE is selected as a criterion for comparison.

MSE is defined as

 𝑀𝑆𝐸 = 𝐸 [(𝛽̂ − 𝛽)
2

]. (4.7)

It can also be written as the summation of variance of the estimated value and squared

bias of it.

 𝑀𝑆𝐸 = 𝑉𝑎𝑟(𝛽̂) + 𝐵𝑖𝑎𝑠(𝛽̂)
2
 (4.8)

For real data case, variances are computed with the following formula.

 𝑉𝑎𝑟(𝛽̂) = 𝑆2 [𝐽′𝐽]−1 (4.9)

where

 𝑆 = √
∑ [𝑌𝑖−𝑓(𝑋𝑖,𝛽)]2𝑛

𝑖=1

𝑛−𝑝
. (4.10)

45

4.1.3.3 Execution Time

Execution time is another criterion for comparing the performance of numerical

algorithms. It is a measurement of speed, clearly. In fact, almost all numerical methods

are very fast and they differ from each other with milliseconds sometimes. However,

in this work this criterion is still preferred for assessment of the performance and

thought that it is important since for most of the real life cases, execution time becomes

distinctive.

In order to measure the execution time, we made use of a built-in function in R and

included the results in the output tables.

4.1.3.4 Number of Iterations

Iteration number refers to the quantity that how many times the estimate is updated

until convergence is achieved. It is an important characteristic in numerical studies

since it is directly related with the time and store management e.g. less number of

iterations saves both time and storage.

In this study, most of the numerical algorithms used have similar iteration processes

so that it is considered as a comparable criterion. However, as briefly explained in

Chapter 3, Nelder-Mead is a derivative-free simplex algorithm and it has a completely

different working principle for iteration. As a result, its number of iterations are not

comparable with the others. Nonetheless we keep it to compare its performance under

different conditions. In addition, number of iterations illustrated in the tables are

calculated by taking the average of the results obtained from 10000 runs.

46

4.1.3.5 MSE for Overall Fit

The comparison criteria in Section 4.1.3.1 and 4.1.3.2 are calculated for each

parameter that is being estimated. On the other hand, another criterion, called as mean

squared error for overall fit is needed to observe how well the estimated model fit.

Calculations for each fitted model is obtained by taking the average of the squared

residuals. Residuals are the difference between the observed value of the dependent

variable and its predicted value obtained from the estimated model fit and is given by

 𝑟𝑖 = 𝑌𝑖 − 𝑌𝑖̂ (4.11)

where 𝑌𝑖 denotes the actual value and 𝑌𝑖̂ denotes the predicted value of the response

variable.

Then, MSE for overall fit is obtained by

 𝑀𝑆𝐸(𝑓𝑖𝑡) =
∑ 𝑟𝑖

2𝑛
𝑖=1

𝑛
. (4.12)

47

4.2 Results of the Simulation Study and Application

In this section, results of the data application and simulation study will be illustrated.

The results are evaluated under all conditions one by one in order to discriminate the

effect of each condition separately.

4.2.1 Simple Model Results

The results of all simulated scenarios will be given under 4 subsections according to

distribution of errors, sample size, initial guesses and robustness. The model is the

“Chwirut1” model as explain in Section 4.1.1.1.

Real Data Case

Before moving on with the simulation study results, real data results with comments

are given. Real data results of Chwirut1 with good initial values are given in Table

4.1. As it can be observed from Table 4.1, except CG which is slightly higher, biases

and MSE values for the estimates of the parameters are more or less the same and

pretty small for all algorithms as desired. Another criterion is the MSE value for the

fitted model and they are very close to each other for all methods except CG which is

again not dramatically higher. When the execution time results are checked, the L-M

and DFP methods are observed as the fastest ones with 0.04 seconds. However, L-M

method converges with less number of iterations compared to DFP method as well as

the other methods. To conclude, all methods provide reasonable estimates for the real

data of the simple model when iterations are started with good initial values. To sum

up, from the best to the worst, the algorithms can be ordered as L-M > DFP > Newton

> BFGS > Nelder-Mead > CG.

48

Table 4.1: Real data results of Chwirut1 with good initial values

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

3.37x10-4 2.77x10-4 -3.21x10-3 2.64x10-4 -0.091 2.78x10-4

1.32x10-4 1.31x10-4 1.93x10-4 1.32x10-4 -1.17x10-3 1.31x10-4

2.84x10-5 3.09x10-5 9.49x10-6 2.85x10-5 3.41x10-3 3.09x10-5

MSE

7.74x10-5 2.21x10-4 4.84x10-5 6.47x10-7 8.13x10-3 2.01x10-7

4.43x10-5 1.46x10-6 1.24x10-9 1.42x10-6 7.24x10-6 5.41x10-8

3.18x10-6 4.51x10-8 6.38x10-9 5.28x10-7 1.16x10-5 1.65x10-10

Time 0.1 0.04 0.1 0.08 0.09 0.04

Iterations 22 8 12 146 10 13

MSE (fit) 11.14 11.14 11.16 11.14 12.23 11.14

Table 4.2: Real data results of Chwirut1 with poor initial values

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

5.16x10-4 2.77x10-4 -9.06x10-3 0.336 -0.091 2.78x10-4

1.33x10-4 1.31x10-4 1.42x10-4 2.78x10-3 -1.18x10-3 1.31x10-4

2.32x10-5 3.09x10-5 2.12x10-4 -8.02x10-3 3.41x10-3 3.09x10-5

MSE

1.04x10-7 1.84x10-4 1.28x10-5 0.142 8.41x10-3 4.77x10-7

2.42x10-6 3.62x10-5 2.25x10-8 4.76x10-6 1.54x10-6 5.72x10-7

6.89x10-7 2.96x10-7 5.14x10-7 4.51x10-5 6.41x10-5 5.57x10-9

Time 0.09 0.05 0.1 0.1 0.1 0.04

Iterations 25 14 32 144 10 17

MSE (fit) 11.14 11.14 11.18 16.43 12.23 11.14

The methods work well when iteration process is started with good initial values. The

question is that if they can pursue their performance with the presence of poorly

selected initial values. The results are presented in Table 4.2. When bias and MSE

values are examined, it is seen that for all methods except Nelder-Mead and CG, they

are close to each other. However, overall bias is ignorable even for Nelder-Mead and

CG. Except for CG and Nelder-Mead which is the worst, other algorithms sustain their

success in estimation with the same MSE for fit values.

49

The execution times are more or less the same as in the case of good initial values, i.e.,

there is no significant slowing down behavior. The number of iterations, on the other

hand, increased for most of the methods compared to the results given in Table 4.1.

Although the number of iterations shows a drastic incerase in Nelder-Mead, it still

provides a reasonably good fit. It can be concluded that all methods performed well

with poor initial values as well as good initial values for this data set and the model.

Simulated Data Case

After presenting real data results, the comparisons through simulation are given for

the simple model in the following sections.

4.2.1.1 Comparisons with respect to Error Distribution

As mentioned in Section 4.1.1.2, the algorithms are run for simulated data sets with

both normal and non-normal error terms.

As non-normal distribution, generalized logistic distribution are selected with two

different shape parameters. As a result, the algorithms are tested with both symmetric,

right-skewed and left-skewed error terms. Since the real data for the model shows a

right-skewed behavior, it is suspected that simulated data with right-skewed error may

result in better fit compared to the left-skewed competitor.

By taking other conditions fixed, the effect of error distribution on the performance of

the algorithms is considered. Firstly, consider the sample size is large and the iteration

process is initiated with good starting values.

50

Table 4.3: Large sample + normal error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-3.72x10-3 2.12x10-5 1.4x10-2 -2.71x10-5 9.01x10-2 -2.12x10-4

-6.67x10-6 7.28x10-8 1.07x10-4 -7.93x10-9 1.51x10-4 -6.70x10-7

7.55x10-5 -3.03x10-7 -3.66x10-4 6.91x10-7 2.02x10-3 5.05x10-6

MSE

3.56x10-4 1.50x10-5 1.33x10-2 1.92x10-5 8.12x10-3 1.41x10-5

1.14x10-9 1.51x10-10 6.48x10-8 1.62x10-10 3.20x10-8 1.35x10-10

1.44x10-7 6.51x10-9 2.52x10-6 8.21x10-9 4.39x10-6 6.09x10-9

Time 0.022 0.0025 0.0267 0.0297 0.0299 0.0066

Iterations 24.33 7.1 8.24 199.82 23.48 10.36

MSE (fit) 1.10 0.99 3.28 0.99 4.72 0.98

Table 4.4: Large sample + GL error (b=0.5) + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

3.55x10-2 3.71x10-2 5.07x10-2 3.7x10-2 -9.01x10-2 3.50x10-2

6.18x10-5 6.47x10-5 1.59x10-4 6.47x10-5 -1.56x10-4 6.69x10-5

-1.55x10-4 -1.88x10-4 -5.40x10-4 -1.8x10-4 2.69x10-3 -1.96x10-4

MSE

1.59x10-3 1.49x10-3 1.39x10-2 1.49x10-3 8.12x10-3 1.52x10-3

5.38x10-9 5.24x10-9 5.85x10-8 5.25x10-9 3.44x10-8 5.68x10-9

1.55x10-7 8.27x10-8 2.22x10-6 8.45x10-8 7.58x10-6 8.77x10-8

Time 0.025 0.0025 0.0267 0.0274 0.0343 0.0068

Iterations 24.78 7.02 8.09 188.7 21.06 10.78

MSE (fit) 6.60 6.54 7.99 6.54 12.61 6.58

51

Table 4.5: Large sample + GL error (b=2) + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-3.01x10-2 -2.45x10-2 -1.27x10-2 -2.47x10-2 -9.01x10-2 -2.50x10-2

-5.48x10-5 -4.47x10-7 6.89x10-5 -4.50x10-5 1.56x10-4 -4.59x10-5

2.25x10-4 1.09x10-4 -2.24x10-4 1.13x10-4 1.66x10-3 1.15x10-4

MSE

1.29x10-3 6.31x10-4 1.26x10-2 6.49x10-4 8.12x10-3 6.41x10-4

4.36x10-9 2.32x10-9 4.89x10-8 2.38x10-9 3.26x10-8 2.45x10-9

2.05x10-7 2.61x10-8 2.41x10-6 3.10x10-8 2.97x10-6 2.78x10-8

Time 0.0291 0.0029 0.0345 0.0268 0.0407 0.0074

Iterations 23.39 7.57 8.36 193.32 22.39 10.24

MSE (fit) 2.41 2.28 4.78 2.28 4.81 2.27

The results are presented in Tables 4.3, 4.4 and 4.5, respectively. The estimates with

good statistical properties are obtained when the errors are normally distributed, which

is expected. Under the non-normality assumption of errors, the results are plausible.

When the error distribution is right skewed, the estimates seem more precise compared

to the left skewed one. L-M, DFP and Nelder-Mead methods provided very close fits,

separately. Besides, Newton method competes with them. However, L-M stands out

with shortest execution time and least number of iterations, which makes it the best

for these cases.

The fits that BFGS method provided is generally on average looking at the presented

tables. However, BFGS method deals with the left-skewed errors more successfully

compared to its closest competitor conjugate gradient method. So, it can be concluded

that the conjugate gradient method gives the worst fit with the presence of any type of

error distribution.

To wrap things up, the most successful one under all these conditions seems to be L-

M method because it provides one of the best fits with the less number of iterations

and within the shortest amount of time. If the algorithms are ordered from the best to

the worst for this specific case, it should be as L-M > Nelder-Mead > DFP > Newton

> BFGS > CG.

52

We have interpreted the results obtained only when the good initials are assigned at

the beginning of the estimation process. The results obtained when the poor initials

are assigned under the same conditions are not given here since they are very similar

to good initials case.

4.2.1.2 Comparisons with respect to Sample Size

Sample size is another condition that is the interest of this comparative study as

mentioned in Section 4.1.1.4. It is classified as small and large sample size for this

study. The large sample size is determined as 250 while the small sample size is

determined as 25. The difference between them is significant since we want to

examine the behavior of algorithms under such situation. The aim here is to observe

which one(s) of them handles this situation better compared to its competitors when

other conditions are hold fixed, i.e., normally distributed errors and good initial values.

The simulation results are as presented in Table 4.3 and Table 4.6, for small and large

sample sizes. respectively.

Table 4.6: Small sample + normal error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-4.20x10-3 1.05x10-4 3.01x10-2 -3.37x10-4 -9.01x10-2 6.17x10-6

-1.01x10-5 -2.24x10-7 1.70x10-4 -2.76x10-6 -2.44x10-4 6.68x10-7

9.14x10-5 9.26x10-7 -7.58x10-4 1.32x10-5 2.39x10-3 1.52x10-6

MSE

5.87x10-4 1.83x10-4 6.80x10-3 2.22x10-4 8.12x10-3 1.78x10-4

6.81x10-9 4.35x10-9 7.91x10-8 5.66x10-9 1.01x10-7 6.51x10-9

2.70x10-7 9.35x10-8 2.21x10-6 1.20x10-7 6.38x10-6 9.47x10-8

Time 0.0195 0.0015 0.02 0.0207 0.0211 0.0041

Iterations 22.84 7.39 9.57 194.78 19.76 10.73

MSE (fit) 0.98 0.88 2.28 0.89 5.38 0.89

53

According to the results presented in Table 4.3 and Table 4.6, all methods perform

slightly better overall with smaller sample size under normally distributed errors and

good initial values conditions. Under such perfect conditions, this result may be

attributed to simulation error other than inconsistency. However, when the MSE fit

values are examined, it is crystal clear that L-M, Nelder-Mead and DFP methods

perform as the best and Newton-Raphson follows them. To sum up, they all perform

well under both situations and could easily handle the small sample size. They even

provide improved estimates with a slightly shorter amount of execution time with

small sample size.

Another comparison for sample size will be made with the simulated datasets when

error term is generated from generalized logistic distribution with a shape parameter

b=2. The initial values are assigned as close to the certified values, in other words

good initial values.

Table 4.7: Small sample + GL (b=2) error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-3.13x10-2 -2.49x10-2 5.31x10-3 -2.52x10-2 -9.01x10-2 -2.50x10-2

-6.74x10-5 -5.14x10-5 1.28x10-4 -5.41x10-5 -2.33x10-4 -5.07x10-5

2.71x10-4 1.33x10-4 -6.64x10-4 1.46x10-4 -1.93x10-3 1.32x10-4

MSE

1.73x10-3 9.78x10-4 4.09x10-3 1.03x10-3 8.12x10-3 9.72x10-4

1.65x10-8 1.15x10-8 5.59x10-8 1.28x10-8 8.49x10-8 9.94x10-9

4.50x10-7 2.09x10-7 1.68x10-6 2.34x10-7 4.38x10-6 2.01x10-7

Time 0.0232 0.0019 0.0248 0.0246 0.0252 0.0039

Iterations 21.58 7.52 9.73 188.48 20.31 10.34

MSE (fit) 2.14 2.02 3.64 2.02 5.42 2.06

According to the results presented in Table 4.5 and Table 4.7, same conclusions for

the previous comparison scenario apply to this situation as well. Again there is a slight

improvement in the estimates when the sample size is smaller. Based on bias and MSE

54

values of the estimates and MSE for overall fit, it can be concluded that the best ones

still are the L-M, Nelder-Mead and DFP methods. Besides these 3 methods, Newton’s

method performed quite well, too. Lastly, we will present the results for comparison

when the error has a generalized logistic distribution with the shape parameter b=0.5

and the initial values are poorly selected. Now, the presence of poor initials makes the

problem a little bit complex. Tables 4.8 and 4.9 show the corresponding results

regarding the both sample sizes, respectively.

Table 4.8: Large sample + GL (b=0.5) error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.14 0.036 0.056 0.252 5.193 0.047

5.92x10-5 6.37x10-5 1.18x10-4 2.76x10-4 -0.858 1.69x10-5

-8.65x10-4 -1.80x10-4 2.54x10-3 -3.01x10-3 -0.138 1.87x10-3

MSE

0.192 1.47x10-3 0.041 0.114 3906.9 8.48x10-3

2.07x10-7 5.02x10-9 2.45x10-7 5.77x10-7 228.4 5.39x10-7

2.78x10-5 7.92x10-8 4.38x10-4 6.56x10-5 19.99 3.55x10-4

Time 0.0223 0.0019 0.0236 0.0218 0.0228 0.0125

Iterations 35.19 11.06 20.85 229.9 47.61 14.71

MSE (fit) 17.75 6.585 60.67 22.52 1926 41.58

Table 4.9: Small sample + GL (b=0.5) error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.095 0.039 0.071 0.228 4.448 0.047

-1.17x10-3 8.05x10-5 -5.41x10-4 -1.25x10-4 -1.005 1.34x10-4

4.05x10-3 -2.48x10-4 2.67x10-3 -1.95x10-3 -0.123 1.94x10-4

MSE

0.125 2.99x10-3 0.049 0.099 2283.7 9.93x10-3

9.48x10-5 3.91x10-8 5.04x10-5 4.07x10-5 57.11 1.19x10-6

1.29x10-3 7.54x10-7 7.01x10-3 3.06x10-4 3.525 4.79x10-5

Time 0.0837 0.0011 0.0848 0.0836 0.0838 0.0047

Iterations 30.28 11.67 21.84 224.4 41.83 11.15

MSE (fit) 58.91 5.774 100.3 21.71 1590 29.64

55

The results imply that CG and DFP methods present worse outcomes when the sample

size decreases dramatically. Others almost satisfy consistency. They could not handle

both poor initials, negatively skewed error distribution and small sample size,

simultaneously. On the other hand, looking at the MSE for fit values, L-M, Nelder-

Mead and DFP methods provide better fits when the sample size is smaller. Although

CG method performs better for small samples as compared to all others it is the worst

one in terms of MSE for the fit. Overall, L-M method is clearly the best one among

them to handle the whole criteria represented in this section.

Comparison based on small and large sample sizes was the subject of this section and

results are interpreted with respect to both precision and consistency features. As a

final result, L-M seems to take the first place among the others.

4.2.1.3 Comparisons with respect to Initial Values

Initial value specification is a very important subject in any type of optimization

problem as explained briefly in Section 4.1.1.3. In our study, we define 2 sets of

starting values to initiate the estimation process. One of them is reasonably close to

the true solution which is called as certified values in our case. The other set was

selected as far from the true solution so that it is classified as poor initial values.

In this section of the study, the simulation results obtained for the simple model will

be shown and examined with both good and poor initial values under different

conditions.

The first comparison is carried out on the simulated dataset whose error term is

normally distributed and sample size is large. The results obtained by starting the

process with both good and poor initial values are compared and given in Tables 4.3

and 4.10, respectively. In fact, normally distributed errors and large sample size case

can be considered as ideal so successful results can be expected from all algorithms.

56

Looking at the presented results, when good initials were replaced by poor initials, all

methods except L-M method resulted in worse estimates with higher bias and MSE

values, respectively. Only L-M method preserved its performance in estimation.

When we look at the Table 4.3, we see that L-M method, Nelder-Mead method and

DFP method provided the best fits with very small and close MSE fit values. In

addition to them, Newton’s method followed them with a very close MSE for overall

fit value.

Table 4.10: Large sample + normal error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.094 5.69x10-5 0.015 0.237 6.078 0.011

1.92x10-5 1.18x10-7 3.45x10-5 2.59x10-4 -3.894 -6.34x10-5

-7.99x10-4 -1.26x10-6 -3.16x10-3 -3.29x10-3 -1.415 2.26x10-3

MSE

0.169 1.51x10-5 0.019 0.114 15334.4 6.89x10-3

3.71x10-8 1.56x10-10 3.10x10-7 4.84x10-7 10903.2 3.86x10-7

9.75x10-6 6.56x10-9 5.01x10-4 5.31x10-5 1724.5 4.16x10-4

Time 0.0206 0.0018 0.028 0.0192 0.032 0.0127

Iterations 34.63 11.18 20.74 232.7 45.03 15.24

MSE (fit) 9.315 0.991 60.29 17.63 2071 35.12

If the results in the Table 4.10 are checked, it can be seen that L-M method still is the

best while Newton-Raphson method follows it. Nelder-Mead method and DFP method

get worse when poor initial values are assigned in the beginning of the algorithm.

Moreover, BFGS method performs very poorly compared to the results with good

initial values. Lastly, conjugate gradient method is the worst for this case again since

it provides an unacceptable fit with biased estimates. Furthermore, if number of

iterations and execution time are checked in both tables, it can be observed that there

is an increase in the presence of poor initial values, which is not unexpected.

57

Another comparison between good and poor initial values is applied on the simulated

dataset whose error term is distributed as generalized logistic with shape parameter

b=2 and sample size is large and given in Table 4.5 and Table 4.11, respectively.

Table 4.11: Large sample + GL (b=2) error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.078 -0.024 -8.39x10-3 0.228 7.623 -8.20x10-3

-3.57x10-5 -4.45x10-5 -2.63x10-5 2.69x10-4 -0.795 -7.14x10-5

-5.71x10-4 1.07x10-4 4.51x10-3 -3.68x10-3 -0.192 2.30x10-3

MSE

0.167 6.24x10-4 0.029 0.107 7303.3 0.011

1.98x10-7 2.29x10-9 2.98x10-7 1.56x10-7 73.79 7.02x10-7

5.03x10-5 2.54x10-8 7.08x10-4 2.46x10-5 17.47 4.16x10-4

Time 0.0231 0.0022 0.0291 0.0208 0.0283 0.0142

Iterations 34.64 11.56 20.89 232.3 44.18 15.77

MSE (fit) 14.06 2.277 80.07 17.07 2172 42.65

When the results with good initial values are checked, it is clear that estimates are

plausible for almost all algorithms. In order, DFP method, L-M method, Nelder-Mead

method, Newton method provided good solution to the problem. On the other hand,

BFGS method and conjugate gradient method cannot be counted as very successful

beside them.

When poor initial values step in, L-M method becomes the best algorithm for the

problem by far. Biases and MSE values of the others get higher especially for BFGS

and conjugate gradient methods. Since conjugate gradient method failed drastically

for almost all cases when the model is simple, it is not woth to consider it for the

complex model.

58

Lastly, the comparisons based on the simulated data set with small sample size, left-

skewed error distribution which is GL(b=0.5) and poor and good initial values are

summarized in Table 4.9 and Table 4.12, respectively.

Table 4.12: Small sample + GL (b=0.5) error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

3.78x10-2 4.01x10-2 5.83x10-3 3.94x10-2 -9.01x10-2 3.97x10-2

7.01x10-5 7.48x10-5 2.20x10-4 7.19x10-5 -2.57x10-4 7.54x10-5

-1.92x10-4 -2.37x10-4 -7.95x10-4 -2.23x10-4 3.02x10-3 -2.22x10-4

MSE

3.19x10-3 3.01x10-3 7.42x10-3 3.03x10-3 8.12x10-3 2.99x10-3

3.31x10-8 3.19x10-8 8.87x10-8 3.38x10-8 1.41x10-7 3.28x10-8

8.44x10-7 7.14x10-7 2.01x10-6 7.51x10-7 1.01x10-5 7.03x10-7

Time 0.0191 0.0014 0.0219 0.0204 0.0203 0.0038

Iterations 23.46 7.39 8.1 193.49 19.99 10.99

MSE (fit) 5.92 5.86 7.26 5.87 12.63 5.75

L-M, Nelder-Mead, DFP and Newton-Raphson methods provide very close MSE for

overall fit value when iterations start with good initials. However, only L-M method

becomes robust under poor initials. Nelder-Mead and DFP method follow it in order

when MSE for overall fit is taken into consideration, but there is a significant

difference between the estimated fits. Other than that, the others could not suggest

reasonable fits. More importantly, conjugate gradient method failed to converge

seriously.

To conclude, only L-M method could handle the iteration process starting with set of

poor initial values. In addition to that, it achieves convergence with reasonably less

number of iterations and within the shortest amount of time.

59

4.2.1.4 Comparisons with respect to Robustness

Finally, the iterative methods are compared with respect to their robustness to

abnormalities in the error term. The comparison will be made under 3 subclasses

which are robustness to outliers, robustness to contamination and robustness to inliers

in error term.

Comparisons with respect to Robustness to Outliers in Errors

In this section, by assuming 10% of the errors comes from N(0,4), the performance

of the algorithms is evaluated. The first comparison will be carried out for the ideal

case whose results are illustrated in Table 4.3 and its version with outliers is given in

Table 4.13.

Table 4.13: Large sample + error with outliers + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-4.39x10-3 3.43x10-4 2.14x10-2 3.52x10-4 -9.01x10-2 4.46x10-4

-8.93x10-6 -5.72x10-8 1.05x10-4 -5.58x10-8 -1.67x10-4 8.47x10-7

9.53x10-5 -9.65x10-7 -4.41x10-4 -1.13x10-6 2.08x10-3 -6.91x10-6

MSE

4.27x10-4 1.92x10-5 1.59x10-2 1.93x10-5 8.12x10-3 1.98x10-5

1.42x10-9 1.90x10-10 3.03x10-8 1.89x10-10 3.39x10-8 1.96x10-10

1.76x10-7 7.75x10-9 2.96x10-6 7.81x10-9 4.53x10-6 9.66x10-9

Time
0.026 0.002 0.028 0.027 0.033 0.0045

Iterations
24.26 7.04 8.63 195.38 23.35 10.35

MSE (fit)
1.45 1.31 2.99 1.31 4.87 1.27

60

As it can be clearly concluded by comparing the results in both tables, ranking with

respect to overall performance does not change when the outliers are added to the error

term. MSE for the fit values slightly increased, but it is not that significant. To sum

up, all methods provide nearly perfect fits with or without outliers. However, this

conclusion is only for the ideal case. Under worse situations, the results may be

completely different. To prove this hypothesis, robustness of the algorithms against

outliers in the error distribution is checked for poor initial values and the results are

summarized in Table 4.10 and Table 4.14 .

Table 4.14: Large sample + error with outliers + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

3.24x10-3 1.73x10-3 0.165 0.597 2.413 1.65x10-2

-1.09x10-3 6.87x10-4 2.48x10-5 -4.45x10-4 -0.223 1.21x10-5

1.29x10-2 -6.75x10-4 2.06x10-2 7.94x10-3 0.303 -2.09x10-4

MSE

6.01x10-2 1.22x10-3 0.195 0.904 777.64 1.36x10-2

3.47x10-5 1.18x10-4 5.95x10-7 1.47x10-5 12.09 9.65x10-9

4.54x10-3 1.21x10-4 6.90x10-3 5.21x10-3 1.049 2.21x10-6

Time
0.028 0.006 0.044 0.026 0.0328 0.008

Iterations
38.04 15.02 24.18 244.8 39.17 13.67

MSE (fit)
126.78 6.05 262.38 175.39 3197.8 2.23

When the outcomes are examined, it can be seen that there is a significant difference

between the results of two cases. In the regular case, L-M method offers the best fit

which is almost perfect. After that, Newton-Raphson and Nelder-Mead methods

follows it with nearly plausible fits. On the contrary, conjugate gradient method fails

to converge and could not produce an acceptable fit. When outliers are added to the

error term, it is seen that L-M method still produces a good fit, but DFP method takes

over the first place in such case. It has better bias and MSE results than Levenberg

method.

61

Besides, Newton, BFGS and Nelder-Mead methods seem to have some problems in

converging looking at their MSE for overall fit values, which are high. Furthermore,

conjugate gradient is the worst one as usual. It certainly failed to converge.

Comparisons with respect to Robustness to Contamination in Errors

As discussed earlier, we contaminated the error distribution, which is standard normal

distribution, with standard uniform distribution to test the robustness of the algorithms

to contamination.

The simulation results obtained under the assumption of contaminated normal error

terms for both small and large sample sizes and good and poor intials are given as

follows.

Table 4.15: Large sample + contaminated error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-2.88x10-3 -1.13x10-3 -1.93x10-3 -1.12x10-3 -9.01x10-2 -1.53x10-3

-6.56x10-6 -2.68x10-6 7.31x10-5 -2.64x10-6 -1.45x10-4 -3.16x10-6

4.02x10-5 3.81x10-6 -1.47x10-4 3.55x10-6 1.97x10-3 1.32x10-5

MSE

1.76x10-4 1.24x10-5 5.63x10-4 1.25x10-5 8.12x10-3 1.62x10-5

7.83x10-10 1.11x10-10 9.49x10-9 1.10x10-10 3.07x10-8 1.18x10-10

7.29x10-8 5.17x10-9 2.26x10-7 5.19x10-9 4.13x10-6 5.95x10-9

Time
0.025 0.002 0.0256 0.0264 0.0261 0.0048

Iterations
25.03 7.12 8.25 199.18 22.86 10.38

MSE (fit)
0.97 0.92 1.41 0.92 4.39 0.92

62

Table 4.16: Small sample + contaminated error + good initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-5.82x10-3 -2.01x10-3 2.02x10-2 -2.01x10-3 -9.01x10-2 -1.73x10-3

-1.42x10-5 -4.32x10-6 1.51x10-4 -4.31x10-6 -2.79x10-4 -5.91x10-7

9.31x10-5 1.05x10-5 -6.39x10-4 1.05x10-5 2.45x10-3 2.44x10-7

MSE

5.55x10-4 1.54x10-4 2.35x10-3 1.54x10-4 8.12x10-3 1.46x10-4

6.23x10-9 4.32x10-9 3.67x10-8 4.31x10-9 1.46x10-7 3.31x10-9

2.51x10-7 8.17x10-8 1.15x10-6 8.17x10-8 7.02x10-6 7.41x10-8

Time
0.0231 0.001 0.0227 0.0221 0.0228 0.0018

Iterations
23.03 7.41 9.33 192.98 17.68 10.66

MSE (fit)
0.89 0.82 1.97 0.82 5.31 0.81

Table 4.17: Large sample + contaminated error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

8.75x10-2 -7.85x10-4 8.39x10-2 0.577 28.975 4.59x10-2

-2.28x10-3 -1.08x10-6 5.31x10-5 -5.51x10-4 -13.293 -1.21x10-4

1.85x10-2 -5.21x10-6 8.57x10-3 8.13x10-3 -6.233 5.93x10-3

MSE

0.283 1.31x10-5 8.34x10-2 0.841 80700.9 3.99x10-2

1.76x10-4 1.38x10-10 4.82x10-7 1.14x10-5 17835.16 5.05x10-7

7.25x10-3 5.66x10-9 3.31x10-3 3.73x10-3 4388.9 2.51x10-3

Time
0.0281 0.002 0.0358 0.0256 0.0336 0.0103

Iterations
37.92 14.91 24.59 255.19 39.28 13.16

MSE (fit)
198.14 0.91 116.88 220.52 3172.1 87.28

63

Table 4.18: Small sample + contaminated error + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

-6.21x10-2 6.35x10-3 0.114 0.936 1.115 6.93x10-2

-2.30x10-2 2.24x10-5 -8.67x10-3 -3.67x10-3 -0.877 2.38x10-5

7.55x10-2 -1.87x10-4 4.44x10-2 9.72x10-3 0.228 4.09x10-3

MSE

0.213 4.82x10-2 0.118 1.515 17.72 5.86x10-2

5.25x10-3 2.25x10-3 8.14x10-4 8.97x10-4 72.66 2.26x10-7

5.28x10-2 6.77x10-3 1.33x10-2 1.38x10-2 1.339 2.42x10-3

Time
0.0235 0.0012 0.0236 0.0233 0.0264 0.0056

Iterations
32.41 26.27 25.62 269.75 27.13 16.51

MSE (fit)
450.37 1.14 464.38 290.51 2437.8 19.34

The Tables 4.15 and 4.16 illustrate the results of the cases with good initial values

while Tables 4.17 and 4.18 covers the ones with poor initial values. When the first two

tables are examined and compared with their versions with no contamination, which

corresponds to the Tables 4.3 and 4.6, it is clearly seen that methods are not affected

by the presence of contamination in errors. Even they produced better fits when the

MSE for overall fit is checked. The execution time and the number of iterations do not

change significantly, too. Thus, it can be concluded that contamination does not

influence the performance of algorithms drastically when the iteration process is

started with plausible initial values. In other words, robustness in such situations is

achieved.

On the contrary, the results of the cases with poorly selected initial values are not

satisfying for most of the algorithms. In order to make reliable comments, Tables 4.17

and 4.18 are examined. It is very clear that only Levenberg-Marqaurdt method gives

a good fit. The other algorithms are not successful when contamination in errors and

poor initial values are present simultaneously.

64

Comparisons with respect to Robustness to Inliers in Errors

Lastly, robustness of algorithms to inliers is tested. We will only present the outputs

of the case when the initial values are poor because the results are not affected by

inliers when the initial values are good. Tables 4.19 and 4.20 demonstrates the cases.

Table 4.19: Large sample + error with inliers + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.113 3.51x10-5 0.109 0.541 0.717 2.48x10-2

-7.39x10-4 -1.25x10-6 -6.63x10-5 -8.28x10-5 -4.18x10-3 -2.38x10-5

8.26x10-3 2.77x10-6 1.22x10-2 2.10x10-3 0.357 4.92x10-4

MSE

0.289 8.38x10-6 0.110 0.728 0.515 2.01x10-2

3.02x10-5 8.04x10-11 3.06x10-6 7.17x10-6 2.94x10-5 1.48x10-7

3.23x10-3 3.26x10-9 3.55x10-3 2.63x10-3 0.131 5.33x10-5

Time 0.053 0.003 0.029 0.024 0.0315 0.005

Iterations
38.69 14.96 24.44 250.22 36.72 13.19

MSE (fit) 104.69 1.54 169.56 129.89 3108.9 21.19

65

Table 4.20: Small sample + error with inliers + poor initial values (Chwirut1)

 Newton L-M BFGS
Nelder-

Mead
CG DFP

Bias

0.112 3.27x10-2 0.144 1.035 0.702 8.25x10-2

-2.29x10-2 2.36x10-2 -5.09x10-3 -5.26x10-3 -3.01x10-2 5.55x10-5

7.51x10-2 -4.31x10-2 2.51x10-2 1.61x10-2 0.334 -1.01x10-3

MSE

5.706 6.72x10-2 0.206 1.891 0.496 6.75x10-2

5.25x10-3 3.14x10-3 8.24x10-4 1.32x10-3 1.76x10-3 7.21x10-8

5.06x10-2 1.27x10-2 4.62x10-2 2.35x10-2 0.119 1.06x10-5

Time
0.021 0.002 0.021 0.020 0.027 0.003

Iterations 33.07 23.67 27.34 274.33 33.81 15.68

MSE (fit)
530.67 5.68 354.57 193.07 2508.3 8.73

Under such conditions, L-M gives the best fit while conjugate gradient method gives

the worst one. Biases and MSE values are plausibly small for L-M and DFP methods.

The other methods cannot provide unbiased estimates with low MSE values for this

case. Since the gap between the provided fits are huge, there is no need to check other

comparison criteria in order to decide on the best one, which is clearly L-M method.

4.2.2 Complex Model Results

In this section of the study, simulation study conducted for the complex model, namely

“Thurber”, will be examined. Before the simulation study, real data solutions is given

with brief comments.

66

Real Data Case

Table 4.21: Real data results of Thurber with good initial values

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 1.421 0.139 -0.081 40.579 0.628

𝜷𝟐 -101.96 0.085 -17.031 -79.677 -55.527

𝜷𝟑 -74.977 0.242 -12.0 -63.177 -40.734

𝜷𝟒 -14.232 0.417 -1.998 -11.309 -7.626

𝜷𝟓 -0.083 -3.70x10-3 -0.015 -0.101 -0.046

𝜷𝟔 -0.040 -2.02x10-3 -8.09x10-3 -0.013 -0.023

𝜷𝟕 -0.014 -2.71x10-4 -3.51x10-3 -5.57x10-3 -8.41x10-3

MSE 𝜷𝟏 1.945 0.021 3.71x10-3 1564.74 0.352

𝜷𝟐 989.51 3.36x10-3 278.45 5978.26 3452.61

𝜷𝟑 4879.384 0.109 158.01 4012.34 1751.32

𝜷𝟒 241.84 0.193 3.568 148.91 61.13

𝜷𝟓 1.88x10-3 2.15x10-4 3.92x10-4 0.025 2.91x10-4

𝜷𝟔 6.92x10-4 5.81x10-6 7.41x10-4 8.81x10-4 3.52x10-4

𝜷𝟕 2.54x10-4 6.87x10-7 3.14x10-5 4.12x10-5 8.75x10-5

Time 0.01 0.06 0.41 0.04 0.02

Iterations 116 25 46 501 53

MSE (fit) 171.79 152.505 154.097 537.107 161.091

Table 4.22: Real data results of Thurber with poor initial values

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -13.171 0.139 0.957 -363.149 0.139

𝜷𝟐 -414.951 0.074 -10.344 -518.602 0.079

𝜷𝟑 -313.249 0.234 -7.607 -223.747 0.238

𝜷𝟒 -56.454 0.415 -1.164 -34.175 0.416

𝜷𝟓 -0.427 -3.71x10-3 -0.011 -0.071 -3.70x10-3

𝜷𝟔 -0.218 -2.03x10-3 -5.42x10-3 -0.212 -2.02x10-3

𝜷𝟕 8.87x10-3 -2.73x10-4 -2.19x10-3 -0.115 -2.72x10-4

MSE 𝜷𝟏 107.84 0.024 0.857 1478269 0.023

𝜷𝟐 21124.5 5.87x10-3 112.3 5762458 7.78x10-4

𝜷𝟑 84571.2 0.043 86.54 45988.1 1.15x10-3

𝜷𝟒 2945.11 0.108 1.223 1245.35 0.106

𝜷𝟓 0.195 2.13x10-4 1.59x10-4 3.33x10-3 2.01x10-5

𝜷𝟔 0.071 5.23x10-5 3.23x10-6 0.069 4.99x10-6

𝜷𝟕 8.11x10-5 8.14x10-7 5.89x10-6 0.012 6.95x10-7

Time 0.01 0.02 0.05 0.05 0.03

Iterations 113 13 55 502 87

MSE (fit) 2461.061 152.505 153.394 37650.81 152.506

67

The comparisons with real data under the assumption of good and poor initial values

are given in Table 4.21 and Table 4.22, respectively. It is clear that none of the methods

could provide a reasonable fit. That is the reason why this model and data is classified

as “high level of difficulty” in the website. The results are not good compared to the

results of the simple model. Since the number of parameters and complexity of the

model increased, the methods struggle.

In Table 4.21, the process is started with the set of good initial values and L-M

provides the best solution seemingly while the quasi-Newton methods follow it. On

the other hand, Nelder-Mead method fails because its MSE for overall fit is extremely

big.

The output with poor initial values are as given in Table 4.22 and it is seen that L-M

method stays the same with the almost same MSE fit value. Quasi-Newton methods

could preserve their performance as well and follows the L-M method. Consequently,

Newton’s method and Nelder-Mead method fail to converge in the presence of poor

initial values. They could not handle it and resulted in unacceptable fits. In terms of

execution time and iteration number there is no significant difference between the

algorithms as good and poor initials are considered. The order from the best to the

worst is as L-M > BFGS > DFP > Newton > Nelder-Mead.

Simulated Data Case

4.2.2.1 Comparisons with respect to Error Distribution

In this section, the same path used in Section 4.2.1.1 will be pursued for the complex

model this time. Other than the error distribution, all conditions are fixed and

comparisons are conducted based on that. Firstly, sample size is fixed as large together

with good initial values. Under these conditions, the results with 3 different error

distributions are obtained separately.

68

Table 4.23: Large sample + normal error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -2.46 1.81x10-3 -0.632 22.17 0.159

𝜷𝟐 -100.9 -4.51x10-3 -2.288 -103.3 -7.393

𝜷𝟑 -71.84 -2.41x10-3 -1.631 -62.04 -4.359

𝜷𝟒 -12.62 -3.04x10-4 -0.316 -9.68 -0.766

𝜷𝟓 -9.29x10-2 -4.37x10-6 -1.53x10-3 -9.51x10-2 -4.53x10-3

𝜷𝟔 -4.01x10-2 3.57x10-7 -1.54x10-3 -6.29x10-3 -1.33x10-3

𝜷𝟕 -3.08x10-3 -7.21x10-7 -4.51x10-4 -1.42x10-2 -1.99x10-3

MSE 𝜷𝟏 80.06 1.83x10-2 26.18 814.9 0.896

𝜷𝟐 10199.1 0.023 2186.4 13879.8 1426.17

𝜷𝟑 5174.8 0.129 1438.8 4183.1 505.945

𝜷𝟒 160.2 4.34x10-3 58.28 105.4 15.645

𝜷𝟓 8.71x10-3 2.21x10-7 1.45x10-3 0.011 5.64x10-4

𝜷𝟔 1.63x10-3 5.89x10-8 4.45x10-4 7.2x10-4 5.22x10-5

𝜷𝟕 4.73x10-5 2.47x10-9 6.19x10-5 6.64x10-4 1.01x10-4

Time 0.0400 0.004 0.1752 0.1083 0.1255

Iterations 124.1 9.04 41.19 501.3 42.33

MSE (fit) 203.3 0.97 37.73 519.6 17.11

Table 4.24: Large sample + GL (b=0.5) error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -4.104 -1.39 -2.01 21.69 -1.335

𝜷𝟐 -100.9 -13.5 -3.31 -102.9 -4.047

𝜷𝟑 -71.50 -0.554 -1.91 -61.89 -1.661

𝜷𝟒 -12.53 -0.069 -0.338 -9.65 -0.213

𝜷𝟓 -0.091 3.93x10-6 -1.04x10-3 -0.094 -1.27x10-3

𝜷𝟔 -0.039 -1.44x10-6 -1.34x10-3 -6.11x10-3 4.55x10-5

𝜷𝟕 -2.93x10-3 -1.59x10-6 -5.14x10-4 -0.013 -1.06x10-3

MSE 𝜷𝟏 105.1 2.05 19.69 795.9 1.957

𝜷𝟐 10216.8 3.29 2097.1 13582.8 792.941

𝜷𝟑 5126.7 1.16 1409.5 4150.9 352.458

𝜷𝟒 157.9 0.034 59.29 105.1 11.765

𝜷𝟓 8.52x10-3 1.45x10-6 1.29x10-3 0.011 4.40x10-4

𝜷𝟔 1.61x10-3 3.89x10-7 4.53x10-4 7.25x10-4 9.54x10-5

𝜷𝟕 4.52x10-5 1.64x10-8 -5.50x10-5 6.45x10-4 5.08x10-5

Time 0.0096 0.0025 0.0308 0.0259 0.1059

Iterations 123.5 8.94 29.89 501.2 43.89

MSE (fit) 206.2 6.41 41.21 545.9 20.011

69

Table 4.25: Large sample + GL (b=2) error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -1.37 1.01 0.34 22.41 1.191

𝜷𝟐 -100.9 0.963 -1.28 -102.35 -8.856

𝜷𝟑 -71.99 0.394 -1.14 -61.71 -5.413

𝜷𝟒 -12.65 0.049 -0.24 -9.71 -0.959

𝜷𝟓 -0.093 -8.88x10-6 -1.41x10-3 -0.095 -6.18x10-3

𝜷𝟔 -0.041 4.73x10-7 -1.49x10-3 -7.61x10-3 -1.86x10-3

𝜷𝟕 -3.28x10-3 6.26x10-7 -4.72x10-4 -0.014 -2.51x10-3

MSE 𝜷𝟏 71.83 1.050 20.17 822.1 2.177

𝜷𝟐 10212.9 1.432 2239.5 13234.1 1959.151

𝜷𝟑 5200.7 0.448 1429.6 4094.7 704.857

𝜷𝟒 161.48 0.012 58.03 104.6 21.795

𝜷𝟓 8.84x10-3 5.03x10-7 1.41x10-3 0.011 8.03x10-4

𝜷𝟔 1.65x10-3 1.33x10-7 4.71x10-4 6.58x10-4 8.53x10-5

𝜷𝟕 5.21x10-5 5.68x10-9 5.49x10-5 6.45x10-4 1.26x10-4

Time 0.0301 0.0053 0.1231 0.1100 0.1300

Iterations 124.2 9.01 41.09 501.4 42.20

MSE (fit) 213.4 2.23 29.71 519.7 15.29

The corresponding results are given in Table 4.23, Table 4.24 and Table 4.25. Overall,

L-M algorithm seems like the best one among them in estimating the parameters.

Moreover, it can be said that the other algorithms do not work that good compared to

the results of them with the simple model. Increase in the number of parameters and

model complexity affects the performance of the algorithms negatively. However,

DFP method and BFGS method still proposes plausible fits to the model even though

they are not very close to the ones proposed by L-M method. On the other hand,

Newton-Raphson method and Nelder-Mead method could not be successful in

estimation for these conditions. Their MSE fit values are so high that the fits are

unacceptable.

The results can be examined method by method with respect to performance, too. To

start with, L-M method provides the best fit for each distribution. Non-normality of

errors affects the accuracy of the fit very slightly, but still the fits are good enough.

The method works best with normal errors and worst with the left skewed generalized

logistic errors.

70

Moving on with DFP method, it is clear that the method offers the second best fit under

both conditions. When the corresponding MSE fit values are checked, it is clearly seen

that the method is very consistent. The biases and MSEs for the estimates seem

plausible, too. Furthermore, the method works best with the right skewed generalized

logistic errors.

In the third place, there is BFGS algorithm which comes from the same family of

methods with DFP method. The same conclusion applies to BFGS method as well. As

DFP method, it also works best with the right skewed generalized logistic errors which

means that quasi-Newton methods are not affected from non-normality of the error

term seriously for this problem. This may be a good feature when working with real

life problems.

Newton’s method is successful with the simple model under exact same conditions.

However, complexity of the model struggles the algorithm to converge to optimal

solution. For the complex model, Newton is clearly not a good choice. On the other

hand, the method is not affected by the non-normality significantly, but this

information is useless since it fails to solve the problem.

Finally, Nelder-Mead method is the worst one for this model and its suggested fits are

extremely far from being the optimal fit. Hence, there is no need to make further

comments on its results.

As in the simple model case, the conclusion with the poor initial values is not different

from the one with good initial values. The same comments apply to that case as well.

That is why the results of them are not presented in this section.

71

4.2.2.2 Comparisons with respect to Sample Size

In order to conduct the comparisons according to sample size, it is assumed that the

errors are normal and initial values are good as in the simple case. The results are given

in Table 4.23 and Table 4.26.

This scenario is considered as the best case scenario for this study since both errors

and initial values are well-conditioned. According to the tabulated results obtained

through simulation study, L-M method is the best one by far in both small and large

sample sizes. It provides the estimates with least bias and MSE values along with the

smallest MSE value for overall fit.

Except DFP, other methods satisfy statistical consistency. DFP competes with L-M

for when sample size is small. However, since L-M manages it with smaller number

of iterations within shorter amount of time, it can be concluded that it is the most

successful one for this comparison case. Specifically, Nelder-Mead and Newton’s

methods fail to converge to optimal solution and could not propose reasonable fits.

Table 4.26: Small sample + normal error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -5.97 6.81x10-4 -0.93 23.31 0.083

𝜷𝟐 -101.5 -0.081 -5.85 -97.91 -2.741

𝜷𝟑 -69.57 -0.065 -4.41 -61.97 -2.392

𝜷𝟒 12.52 -0.013 -0.91 -9.98 -0.539

𝜷𝟓 -0.083 -7.16x10-5 -4.26x10-3 -0.09 -2.16x10-3

𝜷𝟔 -0.038 -4.25x10-5 -3.31x10-3 -7.74x10-3 -1.36x10-3

𝜷𝟕 -9.42x10-3 -8.26x10-6 -9.49x10-4 -9.42x10-3 -4.02x10-4

MSE 𝜷𝟏 421.1 0.217 47.18 1006.2 0.204

𝜷𝟐 10612.3 26.45 5119.5 11548.9 274.563

𝜷𝟑 5053.3 18.59 2785.6 4072.1 201.735

𝜷𝟒 174.9 0.867 109.6 107.1 10.23

𝜷𝟓 7.29x10-3 1.75x10-5 3.14x10-3 0.013 1.65x10-4

𝜷𝟔 1.91x10-3 6.67x10-6 8.57x10-4 8.21x10-4 6.91x10-5

𝜷𝟕 2.76x10-4 6.02x10-7 1.64x10-4 8.97x10-4 6.93x10-6

Time 0.0042 0.0014 0.0197 0.0189 0.0525

Iterations 116.4 10.45 38.01 497.4 44.91

MSE (fit) 232.6 0.752 50.71 716.3 0.756

72

As clearly seen from the results, unlike the results of simple model case, other than L-

M and DFP methods, decrease in sample size affects the performance of the algorithms

in a negative way.

For the next comparison, the error distribution is selected as GL with the shape

parameter b=2 and the initial values are close to the true solution, i.e., good. Examining

Table 4.25 and Table 4.27, it can be clearly seen that L-M method is the best one again.

It is the fastest with least number of iterations and least biased estimates among all

algorithms.

DFP method provides the second best fit in both tables, but smaller sample size

improves its performance in estimation. On contrary, BFGS method gets worse unlike

DFP method when the sample size is converted from large to small. As a result, it is

not a good choice for small samples under such conditions. Finally, Nelder-Mead and

Newton methods fail for this case.

Their fits are nowhere near to a reasonable solution. Furthermore, if the results are

interpreted with respect to consistency, only BFGS and Nelder-Mead methods

produce better estimates when the sample size increases. This implies that they

produce consistent estimators. On the contrary, this conclusion does not apply to the

rest of the algorithms.

73

Table 4.27: Small sample + GL (b=2) error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -4.34 0.993 0.067 23.24 0.965

𝜷𝟐 -101.4 0.744 -5.774 -98.32 -2.458

𝜷𝟑 -69.99 0.220 -4.792 -62.21 -1.914

𝜷𝟒 -12.61 0.012 -1.041 -10.01 -0.393

𝜷𝟓 -0.084 -1.74x10-4 -4.93x10-3 -0.101 -2.48x10-3

𝜷𝟔 -0.038 -1.06x10-4 -3.77x10-3 -9.19x10-3 -1.13x10-3

𝜷𝟕 -9.28x10-3 -3.28x10-5 -1.03x10-3 -9.51x10-3 -6.61x10-4

MSE 𝜷𝟏 374.5 1.71 46.36 996.7 1.436

𝜷𝟐 10552.1 118.8 3540.8 11554.4 376.451

𝜷𝟑 5107.1 91.80 2229.8 4103.3 190.925

𝜷𝟒 177.9 4.92 97.03 108.5 7.468

𝜷𝟓 7.43x10-3 7.52x10-5 2.28x10-3 0.013 2.08x10-4

𝜷𝟔 1.92x10-3 3.31x10-5 7.83x10-4 8.22x10-4 4.62x10-5

𝜷𝟕 2.68x10-4 3.09x10-6 1.16x10-4 8.76x10-4 1.42x10-5

Time 0.0041 0.0019 0.0198 0.0189 0.0486

Iterations 117.0 10.47 37.95 497.5 43.29

MSE (fit) 209.8 1.806 52.12 713.9 3.092

Last but not least, final comparison is applied on the simulated datasets whose error

distribution is GL with shape parameter b=0.5 and the iteration process is started with

the set of poor initial values. The related outputs are given in Tables 4.28 and 4.29,

respectively. In this case, only L-M method is successful in estimating the model fit

because other algorithms have very high MSE fit values. Although DFP works well

with small sample size and good initial values, it fails in the presence of poor initial

values. They all produce highly biased estimates and they are not even acceptable.

This situation can be interpreted as convergence failure because they are not even close

to the certified values.

74

Table 4.28: Large sample + GL (b=0.5) error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 3.591 -1.387 -8.087 -136.06 0.981

𝜷𝟐 -243.9 -1.344 -26.70 -643.97 -88.991

𝜷𝟑 -152.9 -0.552 -20.27 -196.13 -58.939

𝜷𝟒 -25.71 -0.069 -4.05 -24.55 -10.486

𝜷𝟓 -0.186 -1.54x10-6 -0.022 -0.353 -0.066

𝜷𝟔 -0.059 -7.43x10-7 -0.015 0.034 -0.025

𝜷𝟕 -0.037 -1.30x10-6 -1.64x10-3 -0.182 -0.014

MSE 𝜷𝟏 380.3 2.044 2592.7 47481.4 26.705

𝜷𝟐 11858.6 3.291 25887.9 497516.5 44951.05

𝜷𝟑 44723.1 1.162 16904.1 68829.1 20321.15

𝜷𝟒 1388.7 0.034 726.5 5307.1 655.56

𝜷𝟓 0.067 1.47x10-6 0.017 0.244 0.026

𝜷𝟔 9.94x10-3 3.91x10-7 7.04x10-3 0.126 3.84x10-3

𝜷𝟕 3.12x10-3 1.61x10-8 5.62x10-4 0.046 1.12x10-3

Time 0.0175 0.0026 0.0393 0.0311 0.0901

Iterations 134.5 11.18 41.33 501.4 48.11

MSE (fit) 668.83 6.391 1504.2 19566.5 124.39

Table 4.29: Small sample + GL (b=0.5) error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -4.607 -1.443 -10.953 -149.678 -5.772

𝜷𝟐 -977.4 0.902 -0.369 -629.691 -57.73

𝜷𝟑 -832.9 0.574 -2.155 -219.169 -32.66

𝜷𝟒 -172.7 0.099 -0.383 -31.935 -5.091

𝜷𝟓 -0.758 1.74x10-3 -5.28x10-3 -0.353 -0.043

𝜷𝟔 -0.490 3.51x10-5 -9.67x10-3 -0.023 -0.013

𝜷𝟕 -0.145 5.16x10-4 7.11x10-3 -0.175 -8.97x10-3

MSE 𝜷𝟏 66484.7 4.667 3555.4 51691.2 2245.18

𝜷𝟐 5.35x109 3941.6 41384.9 4.60x105 40719.87

𝜷𝟑 4.59x109 1666.5 21563.1 75487.1 12156.55

𝜷𝟒 2.14x108 54.37 832.0 4541.1 366.52

𝜷𝟓 3195.1 2.35x10-3 0.025 0.227 0.025

𝜷𝟔 1758.1 4.10x10-4 8.34x10-3 0.121 2.97x10-3

𝜷𝟕 126.3 1.17x10-4 1.45x10-3 0.062 1.92x10-3

Time 0.0039 0.0018 0.0239 0.0235 0.0989

Iterations 131.5 12.71 45.52 499.1 47.87

MSE (fit) 1494.5 7.557 1316.4 18193.6 1611.6

75

To conclude, we can say that L-M algorithm is the only one to survive in each case.

In addition to that, DFP method can be counted as a choice when the sample size is

small and the initial values are selected properly. Other than that, the others are not

plausible to be used in such situations.

4.2.2.3 Comparisons with respect to Initial Values

As in the case of simple model, the algorithms are compared with respect to goodness

of initial values as well. The first case is when the errors are normally distributed and

the sample size is large. As mentioned earlier, this is considered as the ideal case. The

results for the cases that is solved by assigning good and bad initial values are

presented in Tables 4.23 and 4.30.

Table 4.30: Large sample + normal error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 4.863 1.81x10-3 -7.856 -138.09 2.135

𝜷𝟐 -243.8 -4.51x10-3 -25.89 -644.4 -66.767

𝜷𝟑 -153.6 -2.41x10-3 -19.62 -197.14 -39.083

𝜷𝟒 -25.93 -3.04x10-4 -3.891 -24.72 -6.158

𝜷𝟓 -0.188 4.37x10-6 -0.023 -0.353 -0.051

𝜷𝟔 -0.061 3.57x10-7 -0.016 -0.030 -0.013

𝜷𝟕 -0.037 7.21x10-7 -1.34x10-3 -0.181 -0.011

MSE 𝜷𝟏 352.9 0.018 2870.8 48362.1 49.915

𝜷𝟐 111881 0.222 25740.5 499200 39142.8

𝜷𝟑 45031 0.129 16078.5 67691.1 12180.2

𝜷𝟒 1403.3 4.34x10-3 669.1 4956.6 373.88

𝜷𝟓 0.068 2.21x10-7 0.017 0.247 0.024

𝜷𝟔 8.96x10-3 5.89x10-8 6.98x10-3 0.121 2.47x10-3

𝜷𝟕 3.13x10-3 2.47x10-9 5.28x10-4 0.045 9.20x10-4

Time 0.0323 0.0052 0.1260 0.1145 0.1218

Iterations 134.5 11.21 41.39 501.5 45.83

MSE (fit) 690.25 0.972 1654.3 19820.3 117.837

76

When results in Table 4.23 is analyzed, it can be seen that L-M achieved pretty good

convergence with very few number of iterations. The biases and MSE of the estimates

are negligibly small. Levenberg-Marquarth, DFP and BFGS methods provide fits that

may be considered as reasonable. The rest of the algorithms fail to converge.

On the other hand, when the case gets more complex with the assignment of poor

initial values at the beginning of the process, the results in Table 4.30 are observed.

As it is crystal clear that only L-M method could achieve to stay still. It only does the

job with more number of iterations, which is not very significant as long as the bias

and MSEs are good. The others fail drastically and produce highly biased estimates

with high MSE values.

Second comparison is done under the case in which the data is simulated with GL

errors with shape parameter b=2 and large sample size. The corresponding results are

presented in the Tables 4.25 and 4.31.

Table 4.31: Large sample + GL (b=2) error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 6.376 1.004 -6.196 -133.448 3.837

𝜷𝟐 -244.86 0.963 -23.362 -644.72 -93.267

𝜷𝟑 -153.07 0.394 -17.866 -195.694 -53.037

𝜷𝟒 -25.723 0.049 -3.570 -25.282 -8.102

𝜷𝟓 -0.189 -8.88x10-6 -0.021 -0.356 -0.073

𝜷𝟔 -0.059 4.73x10-7 -0.014 0.036 -0.016

𝜷𝟕 -0.037 6.26x10-7 -1.09x10-3 -0.183 -0.015

MSE 𝜷𝟏 323.6 1.050 2763.1 47444.1 86.308

𝜷𝟐 112848.4 1.432 23001.7 4.96x105 57821.18

𝜷𝟑 44816.1 0.448 14367.6 67993.1 15658.45

𝜷𝟒 1399.1 0.012 605.15 5018.6 481.58

𝜷𝟓 0.068 5.03x10-7 0.016 0.246 0.036

𝜷𝟔 9.04x10-3 1.33x10-7 6.27x10-3 0.125 3.71x10-3

𝜷𝟕 3.16x10-3 5.68x10-9 4.75x10-4 0.046 1.31x10-3

Time 0.0358 0.0055 0.1351 0.1161 0.1023

Iterations 134.5 11.19 41.25 501.51 48.33
MSE (fit) 652.53 2.225 1579.74 19761.01 164.93

77

Looking at the tabulated results for both good and poor initial value cases, it is seen

that nothing is different than the previous case. Only the results get worse with the

involvement of non-normal errors. Hence, all comments made on previous comparison

case is valid for this case, too. L-M method is the only one to overcome the obstacle

of poorly selected starting values.

Finally, the results of the simulated data for which error distribution is GL (b=0.5) and

sample size is small are discussed. This case is considered as the worst case among all

the simulation scenarios used in this study. Tables 4.29 and 4.32 illustrate the outputs

under the same distributional and sample size assumption but for poor and good initial

values, respectively.

Table 4.32: Small sample + GL (b=0.5) error + good initial values (Thurber)

 Newton L-M BFGS Nelder-Mead DFP

Bias 𝜷𝟏 -7.56 -1.38 -2.21 23.08 -1.278

𝜷𝟐 -101.6 -1.68 -7.31 -97.71 -7.810

𝜷𝟑 -69.21 -0.811 -5.25 -62.05 -5.169

𝜷𝟒 -12.41 -0.121 -1.07 -9.98 -0.988

𝜷𝟓 -0.082 -2.62x10-4 -4.46x10-3 -0.101 -4.64x10-3

𝜷𝟔 -0.038 -1.44x10-4 -3.43x10-3 -7.29x10-3 -2.02x10-3

𝜷𝟕 -9.21x10-3 -5.02x10-5 -9.42x10-4 -9.03x10-3 -1.22x10-3

MSE 𝜷𝟏 446.4 3.43 57.12 1036.5 4.187

𝜷𝟐 10751.8 267.2 3384.4 11325.9 823.951

𝜷𝟑 5098.1 201.9 2151.6 4077.9 389.023

𝜷𝟒 177.1 10.73 93.17 106.8 15.081

𝜷𝟓 7.18x10-3 1.69x10-4 2.14x10-3 0.013 3.88x10-4

𝜷𝟔 1.91x10-3 7.41x10-5 7.65x10-4 8.28x10-4 8.77x10-7

𝜷𝟕 2.65x10-4 6.74x10-6 1.21x10-4 8.61x10-4 4.09x10-5

Time 0.0043 0.0012 0.0193 0.0187 0.0508
Iterations 116.2 10.48 37.72 496.94 40.26
MSE (fit) 218.7 4.92 62.82 766.6 13.235

The results confirm that this case is the hardest one to deal with because even L-M is

affected. In the previous cases, L-M method did not offer a different result when poor

initials are assigned to the process.

78

However, this time its MSE for fit value slightly increased. Nevertheless, its fit is still

plausible compared to the others. Moreover, DFP method seems to offer the second

best fit in Table 4.32, but when poor initials are assigned, it fails badly just like the

rest of the algorithms.

4.2.2.4 Comparisons with respect to Robustness

In this final section of comparisons, the robustness of algorithms to outliers,

contamination and inliers in error term will be tested as it was done in Section 4.2.1.4

for the simple model.

Comparisons with respect to Robustness to Outliers in Errors

The procedure is exactly the same with the one for the simple model, i.e., 90% of the

errors are generated from N(0,1) and 10% from N(0,4). To test the performance of

algorithms with the presence of outliers in the error distribution, the ideal conditioned

case is examined. The tabulated values are given in Tables 4.33 and 4.34.

79

Table 4.33: Large sample + error with outliers + good initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 -2.653 5.51x10-3 -0.398 22.538 5.81x10-2

𝜷𝟐 -100.834 -3.48x10-2 3.467 -102.814 -4.108

𝜷𝟑 -71.616 -2.01x10-2 2.496 -60.578 -2.294

𝜷𝟒 -12.569 -2.95x10-3 0.462 -9.337 -0.385

𝜷𝟓 -9.21x10-2 -3.74x10-5 2.72x10-3 -9.36x10-2 -2.48x10-3

𝜷𝟔 -4.01x10-2 5.19x10-6 7.11x10-4 -4.89x10-3 -6.15x10-4

𝜷𝟕 -3.47x10-3 3.01x10-6 4.11x10-4 -1.48x10-2 -1.12x10-3

MSE 𝜷𝟏 94.933 2.35x10-2 3.091 757.01 0.306

𝜷𝟐 10174.2 0.279 1121.89 13124.65 594.91

𝜷𝟑 5134.51 0.157 471.81 4033.59 178.33

𝜷𝟒 158.292 5.28x10-3 15.968 108.85 5.052

𝜷𝟓 8.55x10-3 2.44x10-7 3.91x10-4 1.04x10-2 2.08x10-4

𝜷𝟔 1.62x10-3 6.82x10-8 1.01x10-4 7.73x10-4 1.42x10-5

𝜷𝟕 4.19x10-5 3.16x10-9 5.87x10-5 6.22x10-4 5.18x10-5

Time 0.0143 0.0031 0.0361 0.0305 0.0508

Iterations 124.0 8.98 40.92 501.55 40.57

MSE (fit) 191.31 1.28 17.02 502.86 11.79

If Table 4.33 is compared with Table 4.23 which covers the results of the ideal case

but normally distributed errors having no outliers, it can be seen that the MSE for fit

values and iteration numbers are more or less the same for each algorithm. According

to the results in the table, L-M algorithm provide the best fit again. The method is fast

to converge and needs only 8.98 iterations in average. Following it, quasi-Newton

methods provide plausible fits looking at their MSE for overall fit values. The others

are not good, especially Nelder-Mead. It is not unexpected because Nelder-Mead fails

from the beginning of the complex model. The method could not deal with the

complexity of the model.

The tabulated results for poor initial values are given in Table 4.34.

80

Table 4.34: Large sample + error with outliers + poor initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 3.381 3.17x10-2 -1.951 -164.87 2.456

𝜷𝟐 -236.87 4.24x10-2 -3.611 -663.62 -94.74

𝜷𝟑 -149.62 1.81x10-2 -2.991 -207.64 -62.06

𝜷𝟒 -25.31 2.48x10-3 -0.649 -28.73 -10.99

𝜷𝟓 -0.185 1.11x10-5 -3.23x10-3 -0368 -7.01x10-2

𝜷𝟔 -5.99x10-2 2.55x10-5 -4.04x10-3 4.31x10-3 -2.55x10-2

𝜷𝟕 -3.49x10-2 6.45x10-6 7.93x10-5 -0.177 -1.64x10-2

MSE 𝜷𝟏 507.78 2.55x10-2 141.51 58420.4 29.09

𝜷𝟐 109006.8 0.296 4308.2 552614.1 45149.74

𝜷𝟑 43929.8 0.173 2506.3 78792.0 20320.6

𝜷𝟒 1362.6 5.89x10-3 103.28 8798.7 654.31

𝜷𝟓 6.96x10-2 3.22x10-7 2.72x10-3 0.300 2.59x10-2

𝜷𝟔 8.13x10-3 7.96x10-8 1.59x10-3 0.137 3.87x10-3

𝜷𝟕 3.12x10-3 3.59x10-9 7.73x10-5 4.24x10-2 1.19x10-3

Time 0.0223 0.0035 0.0367 0.0322 0.0570

Iterations 134.46 11.35 42.59 501.21 41.17

MSE (fit) 928.4 1.27 307.84 22190.8 147.34

When the results in Table 4.34 are checked on its own, it can be seen that only L-M

method produces a good fit. The others are not plausible at all. There is no doubt about

the conclusion that L-M method is the only option for such cases.

Moreover, the results in the absence of outliers is given in Table 4.30. If the

performances of algorithms are compared, it is obvious that all methods get worse.

Actually, they are not good when the outliers are absent either. Hence, it can be

concluded that only L-M could handle the outliers and poor initial values together.

81

Comparisons with respect to Robustness to Contamination in Errors

In this part, the aim is to observe the change in the performance of the algorithms due

to contamination in errors.

Table 4.35: Large sample + contaminated error + good initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 -2.189 5.15x10-2 -0.621 22.87 0.102

𝜷𝟐 -101.1 5.90x10-2 -0.918 -104.4 -1.194

𝜷𝟑 -71.77 2.58x10-2 -0.438 -62.71 -0.345

𝜷𝟒 -12.57 3.34x10-3 -7.19x10-2 -9.756 -4.40x10-3

𝜷𝟓 -9.29x10-2 1.02x10-5 -2.64x10-4 -9.75x10-2 -9.50x10-4

𝜷𝟔 -3.97x10-2 4.03x10-6 -7.97x10-4 -6.80x10-3 2.01x10-4

𝜷𝟕 -3.31x10-3 5.22x10-7 -3.17x10-4 -1.40x10-2 -2.62x10-4

MSE 𝜷𝟏 57.86 2.01x10-2 8.182 866.2 1.014

𝜷𝟐 10237.1 0.212 217.01 13977.4 920.6

𝜷𝟑 5164.8 0.121 119.1 4223.7 597.7

𝜷𝟒 159.36 4.05x10-3 3.869 104.9 21.51

𝜷𝟓 8.70x10-3 2.03x10-7 1.94x10-4 1.18x10-2 9.28x10-4

𝜷𝟔 1.61x10-3 5.42x10-8 3.77x10-5 7.01x10-4 2.10x10-4

𝜷𝟕 5.07x10-5 2.45x10-9 7.63x10-6 6.88x10-4 7.93x10-6

Time 0.0143 0.0027 0.0389 0.0314 0.0344

Iterations 124.1 9.09 41.1 501.2 42.07

MSE (fit) 190.41 0.905 19.89 548.47 28.64

82

Table 4.36: Small sample + contaminated error + good initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 -5.492 8.52x10-2 -0.677 22.05 -4.23x10-2

𝜷𝟐 -102.3 3.03x10-2 -6.181 -102.63 -3.441

𝜷𝟑 -69.82 5.56x10-3 -4.831 -62.45 -2.439

𝜷𝟒 -12.54 1.79x10-3 -0.992 -9.741 -0.501

𝜷𝟓 -8.37x10-2 -7.24x10-5 -4.66x10-3 -0.103 -2.12x10-3

𝜷𝟔 -3.78x10-2 5.05x10-6 -3.36x10-3 -7.46x10-3 -1.14x10-3

𝜷𝟕 -9.79x10-3 1.86x10-5 -8.89x10-4 -1.05x10-2 -8.27x10-4

MSE 𝜷𝟏 377.1 0.208 47.23 892.8 2.637

𝜷𝟐 10561.3 20.87 2404.6 13501.2 392.6

𝜷𝟑 4994.5 13.75 1750.8 4309.4 195.6

𝜷𝟒 171.6 0.576 73.45 119.5 8.402

𝜷𝟓 7.23x10-3 1.68x10-5 1.56x10-3 1.38x10-2 1.40x10-4

𝜷𝟔 1.83x10-3 4.53x10-6 6.63x10-4 9.38x10-4 4.73x10-5

𝜷𝟕 2.44x10-4 3.57x10-7 9.37x10-5 1.06x10-3 3.15x10-5

Time 0.0038 0.0013 0.0241 0.0256 0.0128

Iterations 116.5 10.46 37.82 498.6 44.86

MSE (fit) 228.87 0.777 60.18 707.8 2.924

83

Table 4.37: Large sample + contaminated error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 6.201 5.40x10-2 -4.861 -134.1 3.101

𝜷𝟐 -241.3 4.25x10-2 -24.68 -649.4 -97.12

𝜷𝟑 -150.3 1.65x10-2 -20.26 -197.2 -56.47

𝜷𝟒 -25.23 2.12x10-3 -4.186 -25.12 -8.868

𝜷𝟓 -0.184 -3.69x10-6 -2.11x10-2 -0.361 -7.14x10-2

𝜷𝟔 -5.74x10-2 5.59x10-6 -1.49x10-2 3.62x10-2 -1.89x10-2

𝜷𝟕 -3.83x10-2 8.69x10-7 -1.86x10-3 -0.184 -1.66x10-2

MSE 𝜷𝟏 147.3 1.99x10-2 1788.3 46678.5 104.7

𝜷𝟐 111260.1 0.210 24210.9 508177.7 58643.9

𝜷𝟑 43948.6 0.121 16872.5 65571.1 16581.5

𝜷𝟒 1362.3 4.07x10-3 737.5 4922.8 472.8

𝜷𝟓 6.52x10-2 2.11x10-7 1.59x10-2 0.256 3.03x10-2

𝜷𝟔 8.73x10-3 5.16x10-8 6.79x10-3 0.121 3.19x10-2

𝜷𝟕 3.12x10-3 2.29x10-9 5.42x10-4 4.58x10-2 1.74x10-3

Time 0.0214 0.0033 0.0441 0.0354 0.0519

Iterations 134.6 11.17 41.61 501.5 47.32

MSE (fit) 496.9 0.906 1193.1 19707 230.1

84

Table 4.38: Small sample + contaminated error + poor initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 -5.508 -8.84x10-2 -12.23 157.6 -21.53

𝜷𝟐 -233.2 5.392 1.437 -608.7 -77.56

𝜷𝟑 146.6 2.668 -0.196 214.7 -47.99

𝜷𝟒 -24.97 0.362 0.138 -32.92 -8.411

𝜷𝟓 -0.182 4.27x10-3 -2.36x10-3 -0.329 -6.23x10-2

𝜷𝟔 -6.59x10-2 1.39x10-4 -1.13x10-2 -3.45x10-2 -2.72x10-2

𝜷𝟕 3.22x10-2 1.08x10-3 6.83x10-3 0.173 -1.08x10-2

MSE 𝜷𝟏 4216.1 2.01 4718.1 54424.8 9551.1

𝜷𝟐 153851.9 4071.3 45717.1 420743.8 36311.7

𝜷𝟑 64246.2 1211.7 24219.9 68384.1 14553.1

𝜷𝟒 2184.7 30.71 1152.5 3253.4 486.9

𝜷𝟓 9.32x10-2 2.62x10-3 2.51x10-2 0.201 2.41x10-2

𝜷𝟔 1.76x10-2 9.55x10-5 9.43x10-3 0.107 4.97x10-3

𝜷𝟕 4.32x10-3 1.49x10-4 2.09x10-3 5.91x10-2 6.86x10-4

Time 0.0058 0.0016 0.0261 0.0250 0.0139

Iterations 131.8 12.81 43.22 499.6 44.5

MSE (fit) 1504.3 6.232 1470.5 18644 7435.3

Firstly, when the results of the cases with and without contamination in error term are

compared, it can be concluded that the results are pretty much consistent.

Undoubtedly, the fits that are obtained from the datasets without contamination are

better. Yet, L-M algorithm is the only one which is not affected from contamination,

significantly. The method only worsens with the case of poor initial values and small

sample size. However, there is no dramatic change and the fit is still better than the

ones provided by the rest of the algorithms.

The other algorithms could not deal with the contamination and fails to produce a

plausible fit. Among them, Nelder-Mead algorithm is the worst one overall. It is not

unexpected because Nelder-Mead algorithm did not do a great job with the complex

model in all cases anyway. To conclude, it can be stated that only L-M method

becomes successful in the presence of contamination in errors.

85

Comparisons with respect to Robustness to Inliers in Errors

The final comparison condition for the complex model is the presence of inliers in the

error term. Again, only the results with poor initial values will be given since there is

no significant difference between them.

Table 4.39: Large sample + error with inliers + poor initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 5.024 -1.43x10-4 -7.109 -120.27 3.461

𝜷𝟐 -239.02 -6.56x10-3 -26.96 -665.39 -116.19

𝜷𝟑 -149.57 -4.40x10-3 -20.91 -191.27 -68.117

𝜷𝟒 -25.13 -7.54x10-4 -4.171 -23.575 -10.723

𝜷𝟓 -0.184 -2.70x10-6 -2.48x10-2 -0.381 -8.90x10-2

𝜷𝟔 -5.83x10-2 -3.46x10-6 -1.60x10-2 6.48x10-2 -2.29x10-2

𝜷𝟕 -3.69x10-2 -1.59x10-6 -7.57x10-4 -0.191 -1.83x10-2

MSE 𝜷𝟏 349.0 1.17x10-2 2906.7 43299.6 82.79

𝜷𝟐 109991.0 0.118 32012.0 541064.5 64169.5

𝜷𝟑 43761.5 6.69x10-2 20002.1 76367.5 18275.0

𝜷𝟒 1360.7 2.23x10-3 836.4 6495.7 524.43

𝜷𝟓 6.61x10-2 1.12x10-7 2.16x10-2 0.277 3.96x10-2

𝜷𝟔 8.66x10-3 2.88x10-8 8.06x10-3 0.141 3.54x10-3

𝜷𝟕 3.10x10-3 1.33x10-9 6.89x10-4 5.01x10-2 1.46x10-3

Time 0.0128 0.003 0.0366 0.0325 0.0508

Iterations 134.94 11.21 41.59 501.5 42.59

MSE (fit) 634.4 0.541 1882.9 18936.0 197.8

86

Table 4.40: Small sample + error with inliers + poor initial values (Thurber)

 Newton L-M BFGS Nelder-

Mead

DFP

Bias 𝜷𝟏 -5.437 -0.134 -6.684 -150.48 -2.242

𝜷𝟐 -233.45 3.750 5.187 -642.43 -46.27

𝜷𝟑 -146.14 2.132 0.671 -226.79 -16.27

𝜷𝟒 -24.77 0.348 -4.42x10-3 -32.46 -3.558

𝜷𝟓 -0.183 2.92x10-3 -3.21x10-3 -0.374 -3.21x10-2

𝜷𝟔 -6.49x10-2 5.29x10-4 -7.33x10-3 -2.48x10-2 3.58x10-3

𝜷𝟕 -3.16x10-2 8.11x10-4 7.16x10-3 -0.171 -1.21x10-2

MSE 𝜷𝟏 4076.3 0.981 3450.8 53528.5 1500.7

𝜷𝟐 159080.6 7823.9 41477.7 482584.2 37123.3

𝜷𝟑 67431.3 2684.2 20583.6 75529.1 8258.3

𝜷𝟒 2343.2 71.91 753.41 4210.8 246.15

𝜷𝟓 9.74x10-2 4.61x10-3 2.64x10-2 0.251 1.72x10-2

𝜷𝟔 1.90x10-2 3.24x10-4 7.53x10-3 0.114 2.10x10-2

𝜷𝟕 4.61x10-3 2.70x10-4 1.37x10-3 6.01x10-2 5.38x10-3

Time 0.0033 0.0021 0.0247 0.0230 0.0113

Iterations 131.87 12.64 43.58 498.39 44.71

MSE (fit) 1525.2 4.291 1098.1 18694.4 685.8

In Table 4.39, biases and MSEs are observed as very high for all algorithms except for

L-M method. L-M method produces practically unbiased estimates with low

variances. Looking at the MSE for overall fit values, it can be easily concluded that L-

M method is the only one that suggests a plausible, actually nearly perfect fit. The

others’ MSE fit values are so high that makes them unacceptable. In addition to that,

L-M method is the fastest one again with 0.0021 seconds, which is very fast.

On the other hand, Table 4.40 presents the results for the small sample case. In Table

4.40, biases and MSEs increase dramatically compared to the large sample case, again

except for L-M method. Nevertheless, there also is a slight increase in the bias and

MSE of L-M method. Despite that, L-M method is still the best one because bias and

MSE values are still the smallest. Moreover, its MSE for overall fit value implies that

the fit is very good, indeed. All comments for the former case apply to this one as well.

As a results, L-M method is the only option for such case.

87

CHAPTER 5

CONCLUSION

In this thesis, iterative methods that is commonly used for solving the parameter

estimation problems in nonlinear regression analysis are briefly explained and

comparative study on them is conducted with respect to several criteria under several

conditions. The aim is to see the performances of these numerical algorithms under

such conditions and superiorities over each other. Comments on the methods are given

with respect to their performance.

To be able to comment on their performances, Monte Carlo simulation study that

covers all possible situations is conducted. As a result of that, it is concluded that L-

M method is the most successful method among the others under almost all situations

that we have considered. It produces the estimates for parameters not only with the

least bias and MSE but also with least number of iterations and within shortest

execution time. The method performs quite well with non-normal errors, poor initial

values, complex models, outliers etc.

DFP method works quite good with the simple model under any condition. Under

cases with good initial values, it provides the best fit together with L-M and Nelder-

Mead methods. On the other hand, it gets worse as the conditions get more complex.

For instance, the method fails when the model is complex with poor initial values.

Newton’s method works well with the simple model, especially when the initial values

are close enough to the optimal solution. On the other hand, it could not handle the

complex model, properly. The performance of the method gets worse as the number

of parameters in the model increases.

88

BFGS method comes from the same family of methods as DFP method belongs to.

However, it could not be as successful as DFP method. In general, under all cases

considered in this study, the performance of BFGS method is moderate.

Nelder-Mead algorithm which is slightly different from the others in the sense making

no use of derivatives performs very well with the simple model, especially with good

initial values. It also results in plausible fits with poor initial guesses. On the other

hand, it becomes the worst one for the complex model. The reason is that as the number

of parameters increases, simplex used in the procedure becomes more complex due to

increase in the dimension. As a result, it is not recommended to be used in models

with high number of parameters.

Finally, nonlinear conjugate gradient can be concluded as the worst one, overall. The

method is so unsuccessful with the simple model that it is not included in the

simulation study for complex model.

To make a general comment on the findings, it can be stated that some algorithms

could easily converge to the global minimum while the others get stuck in the local

minimum. The reason is that the algorithms used in this study are local search

methods. Hence, there is a possibility to converge to local optima, which is not as

desired. In the literature, there are global search methods such as grid search and

genetic algorithm. They will be the subject of our further study.

The summary results of L-M method for each 24 simulation scenarios are presented

in Table 4.41. As it is clear, the method produced quite good results on any case that

is considered in this study. To conclude, L-M method is the most preferable algorithm

according to our simulation study and real data application results due to its efficiency,

precision, robustness and speed in nonlinear parameter estimation.

89

Table 4.41: Summary results for L-M method

 Chwirut1 Thurber

 MSE (fit) MSE (fit)

1.scenario 0.99 1.scenario 0.97

2.scenario 0.88 2.scenario 0.75

3.scenario 6.54 3.scenario 6.41

4.scenario 5.86 4.scenario 4.92

5.scenario 2.28 5.scenario 2.20

6.scenario 2.06 6.scenario 1.80

7.scenario 0.99 7.scenario 0.97

8.scenario 0.87 8.scenario 4.45

9.scenario 6.58 9.scenario 6.39

10.scenario 5.77 10.scenario 7.55

11.scenario 2.27 11.scenario 2.22

12.scenario 2.08 12.scenario 5.82

13.scenario 1.31 13.scenario 1.28

14.scenario 1.19 14.scenario 1.06

15.scenario 6.05 15.scenario 1.27

16.scenario 38.57 16.scenario 0.97

17.scenario 0.92 17.scenario 0.90

18.scenario 0.87 18.scenario 0.77

19.scenario 0.91 19.scenario 0.90

20.scenario 1.14 20.scenario 6.23

21.scenario 0.55 21.scenario 0.53

22.scenario 0.49 22.scenario 0.40

23.scenario 1.54 23.scenario 0.54

24.scenario 5.68 24.scenario 4.29

90

91

REFERENCES

Akkaya, A.D. & Tiku, M.L. TEST (2008) 17: 282. https://doi.org/10.1007/s11749-

006-0032-8

Bates, D.M., & Watts, D. G. (2007). Nonlinear regression analysis and its applications

(2nd ed.). New York: Wiley.

Broyden, C. G. (1965). A Class of Methods for Solving Nonlinear Simultaneous

Equations. Mathematics of Computation. American Mathematical Society. 19 (92):

577–593.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization

algorithms, Journal of the Institute of Mathematics and Its Applications, 6, 76–90.

Byrd, Richard H. (1996). Analysis of a Symmetric Rank-One Trust Region Method.

SIAM Journal on Optimization 6(4).

Chwirut, D., NIST (1979). Ultrasonic Reference Block Study.

Curry, H. B. (1944). The method of steepest descent for nonlinear minimization

problems, Quart. Appl. Math., 2, 258-261.

Davidon, W. (1991). Variable Metric Method for Minimization. SIAM J.

OPTIMIZATION, 1(1).

Debye, P. (1909). Näherungsformeln für die Zylinderfunktionen für große Werte des

Arguments und unbeschränkt veränderliche Werte des Index, Mathematische

Annalen, 67(4), 535–558.

92

Fekedulegn, D., Siurtain, M. M., & Colbert, J. (1999). Parameter estimation of

nonlinear growth models in forestry. Silva Fennica, 33(4), 327-336.

Fletcher, R. (1970). A New Approach to Variable Metric Algorithms, Computer

Journal, 13(3), 317–322.

Fletcher, R., & Powell, M. (1963). A rapidly convergent descent method for

minimization. Comput. J., 6, 163-168.

Fletcher, R., & Reeves, C. (1964). Function minimization by conjugate gradients. The

Computer Journal, 7(2), 149-154.

Gauss, C. (1809). Theoria motus corporum coelestium in sectionibus conicis solem

ambientium. Dover, New York.

Goldfarb, D. (1970). A Family of Variable Metric Updates Derived by Variational

Means, Mathematics of Computation, 24(109), 23–26.

Hestenes, M., & Stiefel, E. (1952). Methods of conjugate gradients for solving linear

systems. Journal of Research of the National Bureau of Standards, 49(6), 409.

Levenberg, K. (1944). A method for the solution of certain non-linear problems in

least squares. Quarterly of Applied Mathematics, 2(2), 164-168.

Marquardt, D. (1963). An Algorithm for Least-Squares Estimation of Nonlinear

Parameters. SIAM Journal on Applied Mathematics. 11(2), 431–441.

Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear

regression analysis (5th ed.). Hoboken, NJ: Wiley.

Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The

computer journal, 7(4), 308-313.

93

Newton, I. (1669). De analysi per aequations numero terminorum infinitas.

Raphson, J. (1697). Analysis aequationum universalis seu ad aequationes algebraicas

resolvendas methodus generalis, & expedita, ex nova infinitarum serierum methodo,

deducta ac demonstrata. Typis Tho. Braddyll, Prostant Venales Apud Johannem

Taylor, Ad Insigne Navis in Coemeterio D. Pauli, 1697.

Seber, G. A., & Wild, C. J. (2003). Nonlinear regression. Hoboken, NJ: John Wiley.

Shanno, David F. (July 1970). Conditioning of quasi-Newton methods for function

minimization, Mathematics of Computation, 24(111). 647–656.

Statistical Reference Datasets (StRD). (n.d.). Retrieved from

http://www.itl.nist.gov/div898/strd/

Thurber, R., NIST (1979). Semiconductor electron mobility modeling.

Tiku, M. L. & Akkaya, A. D. (2004). Robust estimation and hypothesis testing. New

Delhi: New Age International (formerly Wiley Eastern).

Tiku, M. L. Akkaya, A. D. (2010). Estimation in Multifactor Polynomial Regression

under Non- normality . Pak. J. Statistics, 25, 49-68.

Tjørve KCM, Tjørve E. Modelling avian growth with the Unified-Richards: As

exemplifed by wader-chick growth. Journal of Avian Biology. 2017.

http://www.itl.nist.gov/div898/strd/

94

95

APPENDIX

Simulation Study Codes in R for Thurber Model

#required packages

library(nlmrt)

library(minpack.lm)

library(optimx)

library(NISTnls)

library(Bhat)

n=250 #number of observations

M=10000 #number of trials

parm=7 #number of parameters in the model

Mse=NULL

Cf=matrix(ncol=parm , nrow=M)

Var=matrix(ncol=parm , nrow=M)

iter=NULL

Mselm=NULL

Cflm=matrix(ncol=parm , nrow=M)

Varlm=matrix(ncol=parm , nrow=M)

iterlm=NULL

96

Msegs=NULL

Cfgs=matrix(ncol=parm , nrow=M)

Vargs=matrix(ncol=parm , nrow=M)

itergs=NULL

Msenm=NULL

Cfnm=matrix(ncol=parm , nrow=M)

Varnm=matrix(ncol=parm , nrow=M)

iternm=NULL

Msecg=NULL

Cfcg=matrix(ncol=parm , nrow=M)

Varcg=matrix(ncol=parm , nrow=M)

itercg=NULL

modelfun=function(b,x) {

(b[1] + b[2]*x + b[3]*x^2 + b[4]*x^3) / (1 + b[5]*x + b[6]*x^2 + b[7]*x^3)

}

#starting value specification

startpar=c(1200,1400,500,65,0.7,0.3,0.03)

for (i in 1:M) {

#generating random data

pred=runif(n,-3.6,2)

#error generation

err=rnorm(n,0,1)

97

#true parameter values specification

b1t=1288 ; b2t=1491 ; b3t=583 ; b4t=75 ; b5t=0.97 ; b6t=0.40 ; b7t=0.05

resp=(b1t + b2t*pred + b3t*pred^2 + b4t*pred^3) / (1 + b5t*pred + b6t*pred^2 +

b7t*pred^3) +err

simdata=data.frame(resp,pred)

#using Newton-type method

func=function(b) {

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)

}

gnm=nlm(f=func , p=startpar , iterlim=500)

predicgn=modelfun(b=c(gnm$estimate[1:7]),x=pred)

residgn=resp-predicgn

Mse[i]=mean(residgn^2)

Cf[i ,]=c(gnm$estimate[1:7])

iter[i]=gnm$iterations

#using Levenberg-Marquardt method

model2=nlsLM(resp~(b1 + b2*pred + b3*pred^2 + b4*pred^3) / (1 + b5*pred +

b6*pred^2 + b7*pred^3) ,

start=c(b1=startpar[1],b2=startpar[2],b3=startpar[3],b4=startpar[4],b5=startpar[5],b6

=startpar[6],b7=startpar[7]) , data=simdata)

residlm=resp-predict(model2)

Mselm[i]=mean(residlm^2)

Cflm[i ,]=coef(model2)

iterlm[i]=model2$conv$finIter

98

#using BFGS method

func=function(b) {

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)

}

smm=optimx(fn=func , par=startpar , method="BFGS")

predicbfgs=modelfun(b=c(smm$p1,smm$p2,smm$p3,smm$p4,smm$p5,smm$p6,sm

m$p7),x=pred)

residgs=resp-predicbfgs

Msegs[i]=mean(residgs^2)

Cfgs[i ,]=c(smm$p1,smm$p2,smm$p3,smm$p4,smm$p5,smm$p6,smm$p7)

itergs[i]=smm$gevals

#using Nelder-Mead method

func=function(b) {

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)

}

nmm=optimx(fn=func , par=startpar , method="Nelder-Mead")

predicnm=modelfun(b=c(nmm$p1,nmm$p2,nmm$p3,nmm$p4,nmm$p5,nmm$p6,n

mm$p7),x=pred)

residnm=resp-predicnm

Msenm[i]=mean(residnm^2)

Cfnm[i ,]=c(nmm$p1,nmm$p2,nmm$p3,nmm$p4,nmm$p5,nmm$p6,nmm$p7)

iternm[i]=nmm$fevals

99

#using Davidon-Fletcher-Powell method

func=function(b) {

sum((resp-((b[1] + b[2]*pred + b[3]*pred^2 + b[4]*pred^3) /

(1 + b[5]*pred + b[6]*pred^2 + b[7]*pred^3)))^2)

}

x <- list(label=c("b1","b2","b3","b4","b5","b6","b7"),

est=startpar ,low=c(0,0,0,0,0,0,0),upp=c(2000,2000,1000,100,5,5,5))

modeldfp=ezgi(x, f=func)

residdav=resp-modelfun(b=modeldfp$est,x=pred)

Msedav[i]=mean(residdav^2)

Cfdav[i ,]=modeldfp$est

iterdav[i]=modeldfp$iter

}

#Newton-type results

#means of estimators

meangsb=NULL

for (i in 1:parm) {

meangsb[i]=mean(Cf[,i],na.rm=TRUE)

}

meangsb

#simulated variances of estimates

varsimgn=NULL

for (i in 1:parm) {

varsimgn[i]=var(Cf[,i],na.rm=TRUE)

}

varsimgn

100

#MSE value for the fit

mean(Mse)

#bias calculation for Gauss-Newton

truepar=c(1288,1491,583,75,0.97,0.40,0.05)

biasg=NULL

for (i in 1:parm) {

biasg[i]=mean(Cf[,i],na.rm=TRUE)-truepar[i]

}

biasg

#Mses of the estimates

Msegsb=NULL

for (i in 1:parm) {

Msegsb[i]=varsimgn[i]+biasg[i]^2

}

Msegsb

#number of iterations

mean(iter,na.rm=TRUE)

#Levenberg-Marquardt results

#means of estimators

meanlmb=NULL

for (i in 1:parm) {

meanlmb[i]=mean(Cflm[,i])

}

meanlmb

#simulated variances of estimates

varsimlm=NULL

101

for (i in 1:parm) {

varsimlm[i]=var(Cflm[,i])

}

varsimlm

#MSE values

mean(Mselm)

#bias calculation for L-M method

biaslm=NULL

for (i in 1:parm) {

biaslm[i]=mean(Cflm[,i])-truepar[i]

}

biaslm

#Mses of the estimates

Mselmb=NULL

for (i in 1:parm) {

Mselmb[i]=varsimlm[i]+biaslm[i]^2

}

Mselmb

#number of iterations

mean(iterlm,na.rm=TRUE)

#BFGS results

#means of estimators

meanbfgs=NULL

for (i in 1:parm) {

meanbfgs[i]=mean(Cfgs[,i])

}

meanbfgs

102

#simulated variances of estimates

varsimbfgs=NULL

for (i in 1:parm) {

varsimbfgs[i]=var(Cfgs[,i])

}

varsimbfgs

#MSE values

mean(Msegs)

#bias calculation for L-M method

biasbfgs=NULL

for (i in 1:parm) {

biasbfgs[i]=mean(Cfgs[,i])-truepar[i]

}

biasbfgs

#Mses of the estimates

Msebfgs=NULL

for (i in 1:parm) {

Msebfgs[i]=varsimbfgs[i]+biasbfgs[i]^2

}

Msebfgs

#number of iterations

mean(itergs,na.rm=TRUE)

#Nelder-Mead results

#means of estimators

meannm=NULL

for (i in 1:parm) {

meannm[i]=mean(Cfnm[,i])

}

103

meannm

#simulated variances of estimates

varsimnm=NULL

for (i in 1:parm) {

varsimnm[i]=var(Cfnm[,i])

}

varsimnm

#MSE values

mean(Msenm)

#bias calculation for Nelder-Mead

biasnm=NULL

for (i in 1:parm) {

biasnm[i]=mean(Cfnm[,i])-truepar[i]

}

biasnm

#Mses of the estimates

Msebnm=NULL

for (i in 1:parm) {

Msebnm[i]=varsimnm[i]+biasnm[i]^2

}

Msebnm

#number of iterations

mean(iternm,na.rm=TRUE)

#DFP results

#means of estimators

meandfp=NULL

for (i in 1:parm) {

meandfp[i]=mean(Cfdav[,i])

104

}

meandfp

#simulated variances of estimates

varsimdfp=NULL

for (i in 1:parm) {

varsimdfp[i]=var(Cfdav[,i])

}

varsimdfp

#bias calculation for DFP method

biasdfp=NULL

truepar=c(1288,1491,583,75,0.97,0.40,0.05)

for (i in 1:parm) {

biasdfp[i]=mean(Cfdav[,i])-truepar[i]

}

biasdfp

#Mses of the estimates

Msedfp=NULL

for (i in 1:parm) {

Msedfp[i]=varsimdfp[i]+biasdfp[i]^2

}

Msedfp

#number of iterations

mean(iterdav,na.rm=TRUE)

#MSE(fit)

mean(Msedav)

