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ABSTRACT

NONLINEAR VIBRATION ISOLATION OF INERTIAL MEASUREMENT
UNIT

Donmez, Ata
M. Sc., Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Ender Cigeroglu

Co-Supervisor: Assist. Prof. Dr. Gékhan Osman Ozgen

July 2018, 155 pages

In engineering systems, dynamic parameters of systems such as acceleration,
velocity, etc. are measured instantaneously to provide feedback for control systems.
Since measurement equipment is sensitive to vibratory environment, performance
of them is directly related to how effectively vibration is isolated. Linear vibration
isolation systems have limitations due to static deflections and damping
characteristic. Therefore, nonlinear elements can be used to improve isolation

performance.

In this thesis, firstly the vibration isolation of the engineering systems is considered.
Then the problem is narrowed to inertial measurement units (IMUs) and the specific
vibration isolation issues of the IMUs are studied. Mathematical model of linear six
degrees of freedom vibration isolation system containing a mechanical structure
mounted on elastomeric elements is achieved. For a given isolator position and
mass properties of the system, system matrices are obtained. Modal properties of
the isolated system, response to harmonic, random excitations and static deflections
under static loadings are considered as critical parameters to evaluate effectiveness

of the isolation.



In shaker table, sine sweep and random vibration experiments are performed on an
IMU suspended on commercial rubber isolators. Experiment and analysis software

results are compared.

In the next step, nonlinear elements such as high-static-low-dynamic-stiffness and
special version of it, quasi-zero-stiffness, geometrically nonlinear damping and dry
friction are implemented to a single degree of freedom system. The nonlinear
differential equations of motion of the isolation system are converted into a set of
nonlinear algebraic equations by using harmonic balance method, which are solved
by using Newton’s method with arc-length continuation. Several case studies are
performed and the effect of nonlinearities on the isolation performance is studied.
Validation of the solution method is performed by both time simulations and
experiments. Multi-Harmonic displacement profiles are applied to quad-lap
elastomer isolator by means of servo position control. Dynamic properties of the
rubber isolator under multi-harmonic displacement profile is investigated. Then,
isolation performance is studied analytically for the rubber isolator whose dynamic

properties are obtained experimentally.

Keywords: Nonlinear Vibration Isolation, Inertial Measurement Unit, Quasi-Zero-

Stiffness, Dry Friction, Nonlinear Damping
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0z

ATALETSEL OLCUM BiRiIMLERININ DOGRUSAL OLMAYAN
YONTEMLER KULLANILARAK TITRESIM IZOLASYONU

Doénmez, Ata
Yiiksek Lisans., Makina Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Ender Cigeroglu
Ortak Tez Yéneticisi: Dr. Ogr. U. Gokhan Osman Ozgen

Temmuz 2018, 155 Sayfa

Miihendislik ~sistemlerinde, ivme, hiz gibi dinamik parametreler kontrol
algoritmalarina geri besleme saglamak amaciyla anlik olarak olciiliir. Olgiim
cihazlan titresim girdilerine karsi hassas oldugundan, olglim sonuglari mekanik
titresimlerden etkilenmektedir. Bu nedenle, bu tip 6l¢iim cihazlarinin performansi
mekanik titresimlerin etkin oldugu ortamdan ne kadar izole edildigi ile dogrudan
iligkilidir. Dogrusal izolasyon sistemlerinin statik yer degistirme, soniimleme
karakteristigi vb. sorunlardan performanslari kisitlidir. Dogrusal olmayan elemanlar

kullanilarak daha efektif tasarimlar elde edilebilmektedir.

Bu tez kapsaminda, 6 serbestlik dereceli dogrusal sistemin matematiksel modeli
olusturulmustur. Titresim takozu konumlar1 ve kiitle 6zellikleri verilen bir izolasyon
sisteminin, sistem matrisleri elde edilmistir. Sistemin modal ozellikleri, harmonik
ve rastgele titresim girdilerine cevabi, statik yiikler altindaki yer degistirme
miktarlar1 kullanilarak izolasyon sistemi degerlendirilmistir. Piyasadan elde edilen
titresim takozlar1 ile izole edilmis bir ataletsel 6l¢iim birimi ile sarsici lizerinde
siniis tarama, rastgele titresim testleri yapilmistir. Test ve analiz program sonuglari

kiyaslanmistir.
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Bir sonraki adimda ise, dogrusal olmayan direngenlik, dogrusal olmayan
soniimleme ve kuru siirtinme gibi dogrusal olmayan elemanlar, tek serbestlik
dereceli izolasyon sistemine entegre edilmistir. Dogrusal olmayan diferansiyel
hareket denklemleri harmonik dengeleme yontemi kullanilarak dogrusal olmayan
cebirsel denklemlere donistirilmiistiir. Bu cebirsel denklemler Newton Metodu
kullanilarak ¢6ziilmiistiir. Eklenen dogrusal olmayan elemanlarin performansi
dogrusal sistemle kiyaslanmigtir. Coziim metodunun dogrulamasi zaman
simiilasyonlar1 ve deneysel ¢alismalar ile gerceklestirilmistir. Dogrusal olmayan
deplasman profilleri, servo pozisyon kontrollii deney diizenegi kullanilarak “quad-
lap” kauguk izolatore uygulanmistir. Kauguk malzemenin dogrusal olmayan
dinamik karakteristigi bu testler ile elde edilmistir. Dogrusal olmayan dinamik

karakteristige sahip kaucuk izolatdriin izolasyon performansi incelenmistir.

Anahtar kelimeler: Dogrusal Olmayan Titresim izolasyonu, Ataletsel Olger

Birimleri, Kuru Siirtiinme, Dogrusal Olmayan Soniimleme
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CHAPTER 1

BACKGROUND AND LITERATURE SURVEY

1.1 Introduction

The vibration isolation is a fundamental issue for solving several engineering
problems such as preventing sensitive equipment from failure, ride comfort for
vehicle technology, reducing noise in measuring devices etc. The main goal of the
linear isolation systems is reducing the amplitude of mechanical vibrations
transmitting from harsh environment to the system to be isolated as much as
possible. This can be possible by introducing elastic elements between the
environment and the device. The dynamics of an isolator can be simply defined as a
mechanical filter which shapes the frequency spectrum of mechanical excitation.
The stop and pass frequency region of this filter is determined by natural frequency

and damping properties of the system. A linear mass/spring/damper system has
transmissibility that is less than unity at excitation frequencies of w? > % ,\Where k

is the stiffness of the mount and m is the mass being supported [1]. While
decreasing k increases the isolation region, it causes static deflection problems.
With the linear passive vibration isolation techniques, it is not possible to decrease
the natural frequency of the structure beyond certain limits due to the static

deflection under acting of gravitational forces.

In mechanical systems, damping is another important property for the vibration
isolation purposes. It is a vibration energy dissipation mechanism; hence, the

resonance response depends on the damping characteristic of mechanical system



Although increasing damping in a mechanical system decreases the vibration

amplitude at the resonance, it has an adverse effect in the isolation region [2].

The above considerations are the basis of the linear isolation systems. However,
inertial measurement units are designed to measure accelerations. Therefore,
mechanical vibrations and dynamics of the isolation system affect response of the
IMU in terms of bias, noise and phase lag each of which might cause catastrophic
problems in control systems fed by IMU. In other words, phase response of the
isolation system also should be considered while designing isolation systems, which
is usually not a basic design parameter of linear isolation systems. Although
increasing damping decrease the resonance amplitudes, it may result in excessive
phase lags at IMU response. Thus, vibration isolation of IMUs requires additional

considerations.
1.2 Motivation

The motivation of this thesis is about the improving vibration isolation performance
of inertial measurement units introducing nonlinear isolation techniques and dealing
with the additional requirements of the IMU vibration isolation design problem.
First, optimum linear passive isolation is obtained and then effects of nonlinear
elements on this system is observed on a single degree of freedom vibratory system

both analytically and experimentally.

Inertial measurement units are widely used in aerospace industry to provide control
feedback to autopilot algorithms and sometimes navigate the aircraft for short range
applications. Satellites, helicopters, jet aircrafts, missiles, unmanned air vehicles

(UAV) and micro air vehicles can be examples of these applications [3].

IMUs consist of accelerometers and gyroscopes to provide linear acceleration and
rotation rates in six degrees of freedom. Ideally, accelerometers and gyros would
measure only rotational rate and accelerations. However, due to asymmetry of their
mechanical design and manufacturing inaccuracies, they are sensitive to mechanical

vibrations. This sensitivity results in measurement error of IMU, which is known as



Vibration Rectification Error (VRE). This error can be defined as the constant error
that occurs when vibratory disturbances exist. Moreover, this error is a function of
vibration amplitude. Thus, for many applications it may not be possible to use
Kalman Filters to track bias drift due to VRE [4]. If an IMU is used for navigation
purposes, the key importance of an IMU may be this bias drift due to the fact that

navigation requires integration of IMU response [5, 6].

Other adverse effects of vibratory disturbances to IMU operation are its failure risk
and the fact that harsh environment reduce reliability of IMU. Vibration and shock
induced failure or structural damage of IMUs can be found in many experimental
observations [3] [7] [8]. Furthermore, the reliability of IMU is crucial especially for
military applications [3] [8].

Using linear vibration isolation systems, both VRE and protection of IMU from
structural failure can be encountered. However, phase delays in operating frequency
range of IMU and static deflections due to low stiffness of isolator, limit isolation
performance. In this thesis, by utilizing nonlinear elements such as high-static-low-
dynamic-stiffness (HLDS) or special version of it, quasi-zero-stiffness (QZS), dry
friction and geometrically nonlinear damping, isolation performance is enhanced

beyond linear system performance.
1.3 Thesis Layout

This thesis consists of five chapters. First chapter is devoted to introduction to
problem and literature survey. Basis of vibration isolation, operating principles of
inertial measurement units and the need of vibration isolation for different type of
IMUs are explained in this chapter. Moreover, geometrically nonlinear isolators are
introduced and the advantages of them are discussed.

In chapter 2, six degrees of freedom mathematical model of vibration isolation
system is explained. Firstly, mass, stiffness and structural damping matrices are
obtained by given mass and isolator properties. Theoretical development of

analyses; modal, harmonic, random, static and shock is discussed. Vibration



analysis program and its graphical user interface are introduced. The analysis
software is verified via shaker table experiments. In shaker table, sine sweep and
random are performed for an IMU isolated by commercial rubber isolators. The

experiment and analysis software results are compared.

Chapter 3 is based on nonlinear vibration isolators. Firstly, the effect of High-Static-
Low-Dynamic-Stiffness mechanism is discussed. Nonlinear differential equation of
motion is converted into nonlinear algebraic equations by utilizing single harmonic
balance method. Nonlinear forcing is approximated by using Taylor Series
Expansion. Fourier coefficients of nonlinear forcing are obtained analytically.
Nonlinear algebraic equations are solved by Newton’s Method with arc-length
continuation. Using same solution approach, dry friction and geometrically
nonlinear damping are studied as well. Stability of the steady state harmonic
solutions is considered by Hill’s method. Validation of solution method is

performed by time simulations.

Chapter 4 is devoted to dynamic characterization of nonlinear elastomer having
negative stiffness mechanism. Nonlinear displacement profiles for single harmonic
oscillation of rigid mass is applied via servo-position-controlled motor. Force across
nonlinear isolator and the displacement are measured. Physical nonlinearities and

damping characteristic are investigated.

In Chapter 5, thesis study is summarized and conclusions are presented. Future

improvements are suggested.
1.4 Literature Survey

In literature, there are variety of studies on vibration and shock isolation using
active and passive vibration isolation techniques and recently the nonlinear
isolators. In this chapter firstly, passive and active vibration isolation techniques are
discussed, then the problem is narrowed to Inertial Measurement Units which is one

of the sensitive measurement unit widely used in the aerospace industry.



1.4.1 Vibration Isolation Techniques

In the passive vibration isolation problem, system is isolated from the vibratory
environment by means of “isolators”, which are generally made up of a rubber like
materials (Figure 1-1). Considering the cost and compactness, the passive vibration
isolation is widely used method in the industry [9] [10] [11]. Furthermore, passive
vibration isolation system does not require any power supply and electronics [8]
[12]. This also reduces the maintenance cost and increase the reliability of the
system. However, the isolation performance is highly depended on the
environmental conditions such as temperature and the frequency content of the
input [13] [14] [15] [16].

x(t)
g m
z(t)
k< dy©

Figure 1-1 SDOF Vibration Isolation System

Passive vibration isolation technique is based on the mechanically filtering the input
vibrations over a frequency range. This frequency range is determined by the
natural frequencies and damping characteristic of the isolated system [17].
Considering the frequency response function of a single degree of freedom system
shown in Figure 1-2, vibrations coming from the environment is filtered out at the
isolation region. Around the resonance region, however, excitation is amplified and

this may cause issues especially for the sensitive measurement devices.
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Figure 1-2 Transmissibility of SDOF Vibratory System

In literature, there are variety of study on passive vibration isolation systems and
their design procedure. Yoon, studied on the vibration isolation of the micro electro
mechanical systems (MEMS) and indicated the importance of the isolation
especially for the measurement devices [7]. Yoon mentioned that vibration causes
unpredictable false outputs that cannot be compensated by electronic filters and
these errors may generate critical and systemic problems. Baytemir developed a
software that performs static, modal, random and harmonic response analyses and
optimization on selection of the vibration isolators for a given system in
MATLAB® environment [18] [19]. Moreover, in his study, Baytemir tabulated the
current studies and their capabilities. For instance, Song studied on MSC ADAMS
based vibration isolation design software. This program is specialized for the design
of the engine vibration isolation system (engine mount system) [55]. In addition,
there are many studies based on commercial software such as ANSYS, LS-DYNA
and ProE/Mechanica [20] [21] [22]. In their studies, analysis is performed in the
commercial analysis software. Thesis study of the Cinarel focused on the vibration
isolation of the inertial measurement devices. In addition to response characteristics,
Cinarel also considered the elastic center of the system which is an important

measure for an IMU [8] [12].



Active vibration isolation is another isolation technique for reducing
transmissibility of the system to be isolated. In passive isolation systems, control
force is dependent on the natural dynamics of the isolator. Hence, this force cannot
be adjusted once the system is designed. The system responses, however, are sensed
and control actions are applied to the system according to desired control values in
active vibration isolation [23]. On the other hand, this system requires sensors,
actuators, control algorithms and power supply, which makes the system
complicated [24]. Basic schematic of an AVI system can be seen in Figure 1-3. Its
main advantage over the passive isolation system is performance at the resonance
region. It doesn’t have resonance problems unlike the passive vibration isolation
systems. However, because of the complexity of the system, the reliability of the
system is reduced. Moreover, AVI increases the cost of the design and requires

power, which may be a disadvantage for the aerospace applications [23].
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Figure 1-3 Active Vibration Isolation

1.4.2 Inertial Measurement Unit

Inertial measurement units are basically defined as a measurement device which
uses 3 linear accelerometers to measure the acceleration and 3 rate gyros to measure
rotational velocity. The axes of an inertial measurement unit can be seen in Figure
1-4. Three accelerometers are placed in X, Y and Z axes which are orthogonal each
other [25]
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Figure 1-4 IMU Measurement Axes

Studies on inertial measurement units are the result of need of the autonomous
navigation systems for military applications [26] [27]. Autonomous means all the
necessary information is measured by the aircraft itself. Hence, the system is
protected from the jam thread. The acceleration feedback is provided by the IMUs
for the autopilot control algorithms of the tactical and ballistic missiles. In addition,
the position information of the aircraft can be calculated by utilizing IMU
acceleration and rate measurements. Although Global Positioning System may
provide more accurate positioning, it is an external signal for the aircraft and might
be jammed from the enemy, which is a crucial issue for the military applications.
Therefore, in order to navigate a military aircraft, the aircraft accelerations and
rotational rates should be measured accurately, and the noise should be filtered out
[3] [26] [27]. To illustrate, during the operation, a missile body is exposed to
mechanical vibrations due to propulsion, aerodynamic flow etc. Hence, vibration
isolation is a critical issue in order to eliminate the negative effects of these
vibrations. In other words, the motivation for vibration and shock isolation of an
IMU 1is not only protection of the electronic parts from the failure but also
increasing measurement accuracy of the device in terms of noise and bias at the

Sensor response.

Although vibration and shock isolation are critical for the measurement

performance of IMU, it changes the dynamics of the IMU, i.e., it may cause



measurement errors as well. Zaiss studied on IMU measurement errors and defines
the characteristics of these errors [4]. The errors due to mechanical filtering

(vibration isolation) are as follows

e Misalignment

e Phase delay

e Altered magnitude response
Misalignment should be considered during the design of an IMU isolation system.
If static and/or dynamic deflections become excessive, the positioning of the IMU
in the aircraft may lead to misalignment. To reduce the resonance response of the
system, damping is integrated to the system. However, this causes phase delay in
the IMU response. This delay can result in “artificial” coning and sculling and can
cause attitude and position drift [4]. Also based on environmental conditions such
as temperature and frequency content of excitations, magnitude response changes

due to physical nonlinearities of the isolators.

The motivation for the vibration isolation may vary based on the way that IMU uses
to measure accelerations and rotational rates. Therefore, the effects of mechanical

vibrations on inertial measurement unit performance should be identified.

1.4.3 Classification of the Inertial Measurement Units

Inertial measurement units are generally classified as their gyroscope mechanism,
since the almost all inertial measurement units have MEMS based accelerometers.
In addition, the vibration is the target input for the accelerometers and its dynamical
behavior can be predicted unlike the gyroscopes [7]. Therefore, isolation of

mechanical vibrations is more critical for gyroscope measurement accuracy.

According to IMU gyroscopes, they can be classified in two main group, which are
unconventional and conventional. The diagram of the classification can be seen in
Figure 1-5. According to type of the IMU, the motivation for the vibration and
shock isolation might differ.



For the aerospace applications of the inertial measurement units, unconventional
gyroscopes are commonly used due to the practical reasons such as weight and

dimensions [25]. Therefore, in this thesis unconventional gyroscopes are discussed.

Gyroscopes

Conventional
(Mechanical)

Unconventional

Mems Based
Vibratory

Optical

RLG J— Fiber Optical

Figure 1-5 Classification of the Gyroscopes

1.4.3.1 Optical Gyroscopes

In the industry, two types of optical gyroscopes are available. One of these, Ring
Laser Gyroscopes(RLG), consists of the optical parts (corner prisms, mirrors etc)
and sensitive electronics (Figure 1-6). Therefore, these optical parts should be
protected from the vibratory environment. RLG is based on creating a continuous
light path using three or more mirrors. The working principle can be basically
explained by the fact that the both laser beams oscillate at the same optical
frequency, when the sensor is stationary. However, due to rotation in the
perpendicular axis, optical frequency changes. By utilizing this change, the angular

rotation rate is measured [25].
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Figure 1-6 Ring Laser Gyroscopes [25]

The other common type of the optical gyroscopes is called as Fiber Optic
Gyroscope. As can be seen in Figure 1-7 light beam is split into two beams that
propagate in opposite directions. Then, these two beams are combined and observed
by a detector. If there is no rotation, two light beams are identical and there is no
phase angle. However, if the coil is rotated, then this rotation leads to a phase
difference between the light beams. Using this phase difference, angular velocity is
measured. Its main advantages on RLG gyroscopes can be shorten as compactness,
having low bias and cost. However, vibration leads to distortion of the coil and this
causes the measurement errors. In addition, similar to RLG gyroscopes, vibration
and shock may harm the optical parts of the fiber optic gyroscopes and it should be

isolated from mechanical vibrations and shock [25].

11
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Figure 1-7 Fiber Optic Gyroscopes [25]

1.4.3.2 MEMS Based Gyroscopes

MEMS based gyroscopes are devices which measure the angular rate of a system
using the Coriolis Forces. The measurement mechanism can be seen in Figure 1-8.
Basically, drive mass is excited at its resonance frequency and Coriolis force is
measured from the sense mass. By utilizing this force, angular rate is measured [7]
[25].

Sense Mass

Drive Mass

Figure 1-8 MEMS based Gyroscope

As can be seen from Figure 1-9, The main advantage of the MEMS based IMUs is

their low cost. However, MEMS based IMUs cannot provide as high performance

12



as optical gyros. Although, up to a bias level of 0.01deg/hour, MEMS based IMUs
are feasible, their performance is limited by this value with the current technology
[26] [27].

IFOG = Interferometric Fiber Optic Gyro
MEMS = Micro-Electro-Mechanical Systems
IO = Integrated Optics
100,000 LAS QUARTZ = Coriolis Sensor
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1,000
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1ug 25 pg 500 pg 1mg 10 mg 100 mg 1000 mg

Performance

Figure 1-9 Cost/Performance Chart for IMUs [26]

Unlike the accelerometers, vibrations in the sense direction of MEMS gyros causes
unpredictable errors in the output and cannot be compensated with the electronics.
Although high Q factor is a desired characteristic for the sensitivity of the gyro, it
also means amplification of the undesired mechanical vibration amplitudes and
distortions in the signal output. Increasing resonant frequency so that the vibration
input does not contain signal around resonant frequency may solve the problem but
increasing resonant frequency results in decreasing the displacement amplitude in
the sense direction [7]. Another problem may be fatigue for the MEMS gyroscopes.
Vibration may cause micro cracks, bonding area cracks etc.

1.4.4 Isolator Models

For the passive vibration isolation purposes, viscoelastic materials are widely used
in the industry [28] [29] [9] [30]. Damping characteristic of the viscoelastic
materials is still an open research area and there is no complete mathematical model
considering the whole characteristics of the viscoelastic material for the both time

domain and frequency domain dynamic analysis. There exist linear models

13



describing the dynamic behavior of the viscoelastic materials. These models are
based on the different combination of the linear spring and viscous damper [31]
[32] [14]. One of them is Voigt Model which is shown in Figure 1-10 a. In this
model spring and viscous damper is connected in parallel. Because of their

analytical simplicity, it is used widely for modeling elastomeric isolators.

C
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Figure 1-10 (a) Voigt Model (b) Maxwell Model

However, the dynamic test results of the elastomeric materials show that frequency
dependency of the isolator cannot be represented in Voigt Model [31] [33].
Maxwell Model is an alternative approach for the linear isolator model Figure 1-10
b. This model consists of a serial combination of the spring and viscous damper.
Although Maxwell Model is useful for the linear time domain analysis, for the
frequency analysis, frequency depended complex stiffness model (structural
damping model) is more effective. Furthermore, commercial isolator test results and
their catalog values represented in structural damping model as given in Equation
(1-1) [31] [18].

k" = (1 + ni)E, (1-1)

where k* is the complex stiffness, 77 is the loss factor and E is the stiffness. These
linear models do not consider the nonlinearity of the viscoelastic materials.
However, it is well-known that isolator parameters are function of

e Temperature
e Frequency

e Dynamic strain [30].
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The temperature dependency of elastomer which is a viscoelastic material is shown
in Figure 1-11. As can be seen from Figure 1-11, stiffness decreases as the
temperature increases for different types of viscoelastic materials such as EPDM
(Ethylene Propylene Diene Monomers), IR (Isoprene Rubber), SBR (Styrene-
Butadiene Rubber), NR (Natural Rubber).

TEMPERATURE, °C

-20 0 20 40 60 80 100
T L] T T T I I T T
ool s | i .
\ \
\ser \
w \ \
> 260 Y 3
\
ES L \
g N
- \ '
T 220 |j— \
i N
a \
: N N
[ N N\
= 180}— o N
8 N \
x
I'(S EPDM \\\ \
# 140 \-
fu \\\
5 “\
(=] Y
= 100 ' NR
% %b"‘:‘::.:-.—-:._"""ﬁ-.."'-———...
g i e S e .':-_-._.__‘_-‘-.:._____:
% s0—(a)
o
-20 10 40 70 100 120 160 190 220

=

TEMPERATURE, *F

Figure 1-11 Temperature and frequency dependency [9]

In stress strain curve of the natural rubber is shown in Figure 1-12. As can be seen
from the Figure 1-12, the stress-strain curve is also nonlinear for the viscoelastic
materials [34]. In addition to analytical difficulties, implementation of these
nonlinearities requires a lot of testing and of course knowledge of the dynamical
behavior of the elastomer completely.
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Figure 1-12 Stress Strain Curve of the Elastomer Tensile Specimen [34]

1.45 System Models and Design Criteria

In literature, six-degree-of-freedom mathematical model is widely used for the
vibration isolation system design [18]. The global coordinate frame is attached to
the center of the gravity of the rigid body. The isolators are modeled as 3 mutually
orthogonal complex stiffnesses and loss factors. As can be seen in Figure 1-13, they
can be attached to any position on the rigid body with any orientation. According

the coordinates of the isolator, stiffness matrix is written.

Y
A

X X

k, +in.k,

Figure 1-13 Mathematical Model
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With the position vector of the isolators and their orthogonal complex stiffness
properties, stiffness matrix can be written [28]. Since the global coordinate frame is
placed on center of gravity of the rigid body, mass matrix is a six-by-six matrix
containing mass and mass moment of inertias. By utilizing the stiffness and mass
matrixes, equation of motion can be written for the six-degree-of-freedom model as
follows: [17]

(M3} + [K + iH){x} = {f). (1-2)
where {x} is the displacement vector, [M] is the mass matrix, [K] is the stiffness, [H] is
the structural damping matrix. From six-degree-of-freedom model, below analysis

can be performed.
e Modal Analysis-obtaining natural frequencies and mode shapes
e Harmonic Response Analysis
e Static Deflection Analysis
e Random Vibration Analysis

The system is designed according to objective function which is combination of the
above analyses. In order to obtain accurate analysis results and optimum design, the
system parameters and system inputs should be known accurately. If the test data
exist for the system input and parameters, reliable results can be obtained using
these test data. For example, Kaul uses the test data to obtain the road load profile
while designing engine mount of a motorcycle [35]. However, in system design
stage, the test data may not be available. In this case, standards might be helpful to
derive the system excitation levels. MIL-STD-810 is outcome of a lot of test results
performed in all over the world. It is possible to have the test method and vibration
profile for a specific system such as military aircrafts (helicopters, jets) and
operational conditions (Landing, gunfire, takeoffs etc.) [36]. An example profile can
be seen in Figure 1-14. The Wo value is determined according to operational

conditions defined in the standard.
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Figure 1-14 Jet Aircraft Vibration Exposure [36]

1.4.6 Nonlinear Isolators

As stated before, the passive isolation techniques are widely used due to its cost
effectiveness and simplicity. Recently, nonlinear isolators have become a popular
research area and there are variety of studies about the theory and application of the
nonlinear isolators [37] [38]. These nonlinear isolators can be implemented to
applications where the ultra-low frequency isolation is needed such as measurement
devices, automotive industry (passenger comfort, vehicle seat isolation) and
aerospace applications. Recent studies show that in addition to nonlinearity of the
isolators which is discussed in Section 1.4.4, using geometrical nonlinearities which
are integrated to the system intentionally, isolator performance can be improved
[39]. These nonlinearities can be categorized by stiffness nonlinearities and

damping nonlinearities or combination of them.

1.4.6.1 Stiffness Nonlinearities

A linear mass/spring/damper system has transmissibility is less than unity at
excitation frequencies w > /2k/m,where k is the stiffness of the mount and m is

the mass being supported [1]. While decreasing k increases the isolation region, it

causes static deflection problems due to the dead weight of the system to be
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isolated. Therefore, it is not possible to decrease the natural frequency of the
structure that is isolated by using linear passive vibration isolation techniques,
beyond some specific limits [40] [41]. Static deflection can be defined as deflection
under deadweight of system that is supported by an elastic foundation. In addition
to deadweight, continuous acceleration of moving base may also contribute to this
deflection. Especially for the measurement devices used in military application
might be exposed to approximately continuous 60g-100g based on the application
such as missiles, gun fire etc. [26] [27]. Furthermore, isolation motivation for
sensitive measurement devices not only the protection of the equipment but also the
eliminating the negative effects of the mechanical vibrations on the measurement
accuracy. For the inertial measurement units, increasing linear viscous damping
and/or lowering natural frequency creates the phase delays at low frequencies which
might be the working frequency range of the IMU. This trend can be seen in Figure
1-15. Although increasing linear damping reduce resonance amplitudes, phase
response starts to bend at lower frequencies. In addition, isolation region
performance is affected adversely. For the navigation algorithms, this delay may
cause the instability problems for the system [4]. Therefore, isolation system

parameter should be chosen carefully considering phase response.

From this point of view, thanks to nonlinear isolators having High-Static-Low-
Dynamic-Stiffness (HSLDS) or quasi-zero-stiffness nonlinear isolators these
disadvantages can be eliminated [42] [43]. Huang explained the HSLDS isolators as
a non-linear vibration isolator that utilizes negative stiffness mechanisms to obtain
ultra-low frequency isolation, while static deflections are considerably lower than
the linear isolators [44].
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Figure 1-15 Effect of Viscous Damping on Frequency Response Function

If the parameters are designed carefully, even quasi—zero-stiffness around the
equilibrium point can also be obtained [45] [46]. In the literature, the HSLDS or
quasi-zero-stiffness characteristic is achieved by combining negative stiffness
correctors with a positive stiffness which carries the deadweight. Many methods for
obtaining negative stiffness were reviewed by the Ibrahim in his review of passive

vibration isolation methods [39].

Few of these methods are placing the stiffness element horizontal to the excitation
directions, using buckled beams (Euler Beams) [39], magnetic negative stiffness
correctors [47] and combination of the buckled beams and the geometrical
nonlinearities [48]. The negative stiffness mechanism is shown in the Figure 1-16.

The model consists of a rigid mass m, vertical spring of stiffness k, preloaded
horizontal spring stiffness k, [40]. In this system, all the elements are physically

linear. However due to the horizontal springs, system is geometrically nonlinear.

For the small perturbations from the equilibrium position, horizontal springs act as a
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negative stiffness spring and this stiffness is nonlinear due to kinematic relationship
between the force and the displacement. Therefore, for an input range the dynamic

stiffness is much smaller than the static stiffness which carries the deadweight of

the system [49].

Figure 1-16 Nonlinear Isolator Model [40]

force

‘L'
displacement

Figure 1-17 Force Displacement Curve [40]

The force and displacement curve of the mechanism shown in Figure 1-16 can be

seen in Figure 1-17. As can be seen from Figure 1-17, the stiffness of the
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geometrically nonlinear isolator is cubic like. If parameters are designed carefully,
even quasi—zero-stiffness mechanism can be obtained. Le studied on the same
mechanism and obtain a design for the low frequency vibration isolation of the

vehicle seat [50].

In addition, Huang studied on the HSLDS nonlinear isolators built by Euler beams
formed negative stiffness corrector. The stiffness model which is used in this study
is represented in Figure 1-18. Four buckled Euler beams are placed obliquely to
behave as the stiffness corrector. “V” shape grooves support the beams and
constrain them. These beams are relaxed at initial state. Then, it buckles due to the
vertical load. When it reaches the final position, the static load is carried out by the

vertical linear spring [48].

Buckled
Euler beams

Linear k
isolator

Fixture

Figure 1-18 Euler beam formed negative stiffness corrector [48]

Zhou obtained the quasi zero stiffness isolator using the cam roller mechanism [51].
The disengagement of the cam roller mechanism is considered in a piecewise
nonlinear dynamic model. In Zhou’s study, the effect of the system damping and
the input forcing level is discussed. Huang presented a quasi-zero-stiffness using
knife edge supported beam and obtain a compact design for a nonlinear isolator
[52]. Shaw suggested a design methodology using the two simple parameters that

are defined in his study. The effect of these two parameters is discussed [53].

Meng utilized the disk springs to obtain anti-restoring force and studied the effect of
the overload and underload conditions [54]. Sun showed that the quasi-zero-

stiffness mechanism can be obtained by the scissor-like structured platform. In this
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design, all the components are linear. The geometrical nonlinearities come from the
special geometry of the scissor like platform. Sun states that the scissor like
nonlinear isolator have better isolation performance than the quasi-zero-stiffness
isolators in terms of loading capacity and stability. In this type of structure,
damping (joint friction, horizontal friction and air damping) is also implemented to
the system nonlinearly. Thanks to damping, stability performance is improved, and
it is shown that jumping phenomena can be avoided [55] [56]. This mechanism is
studied for multi-direction vibration isolation problems and QSZ vibration isolation

performance is obtained in three directions [57].

In the one stage QSZ vibration isolation systems, the rate of the isolation is limited
to —2log(w) which is equal to 40dB/decade [17]. To improve the rate of the
isolation region, two stage vibration isolation was studied by Lu. After
implementation of the second stage, the system become two-degrees-of-freedom

system and the rate of the isolation increases to 80dB/decades [58].

In these studies, using the Taylor series expansion, nonlinear equations due to
geometry of the isolator are reduced to polynomials and using single harmonic

balance method or averaging method the nonlinear problem is solved [44].

The other method for obtaining the QSZ stiffness is using magnetism. Carella
suggested a compact quasi-zero-stiffness mechanism using two linear mechanical
springs and magnets [59]. Instead of using linear horizontal pre-compressed springs,
magnets in repulsion is added horizontally to the system as indicated in Xu’s study.
To overcome the mistuned mass problems, tunable QSZ isolator was presented by
Zhou. By integrating electromagnets to the system, magnetic field and magnetic
forces can be tuned [60]. Furthermore, magnetic levitation method also offers a
QSZ stiffness mechanism around an equilibrium point [61]. The six-degrees-of-
freedom characteristic was analyzed by Zhu [62]. Moreover, Wu studied on a
magnetic spring with negative stiffness (MS- NS) [47]. Likely the Euler beam
formed correctors, magnetic spring acts as a negative stiffness for small
perturbations around the equilibrium position. The system model can be seen in

Figure 1-19. Wu states that the natural frequency of the system can be reduced
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while the system can carry the same dead weight by using the negative stiffness
correctors (Figure 1-19 (a)). Another alternative is anti-spring systems [39]. The
magnets are displaced one with respect to other in the vertical direction. The
mechanism is shown in Figure 1-19 (b). Ibrahim placed this mechanism at the end
of a cantilever beam and obtains anti restoring force which reduces the natural

frequency of the cantilever beam.

a) Central magnet b) m m R
. _ | U

Outer magnet

Figure 1-19 (a) Negative Magnetic Spring (b) Anti-spring system

The main disadvantage of these nonlinear isolators is dependency of the
performance on the system inputs. If the system input levels are not determined
precisely, the system response may be different than the design limits and jumping
phenomena may be observed since the cubic stiffness exist in the equation of
motion [44] [45]. Even, the system resonance response might be greater than the
linear isolation system [63]. The other problem with the nonlinear passive isolators
1s mistuning of the isolated mass. For the overload an underload case, the bias term
in the response affects isolation performance adversely [44, 52]. Meng discussed
the effect of the mistuned mass and states that the resonance frequency increases
when the system is overloaded or underloaded and FRFs become highly nonlinear.

[54].

1.4.6.2 Damping Nonlinearities

To improve the isolation performance, another important nonlinearity is studied on
the damping characteristic of vibration isolators. In the mechanical systems,

damping is an important property for the vibration isolation purposes. It is a
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vibration energy dissipation mechanism and therefore the resonance response
depends on the damping characteristic of the mechanical system. Although
increasing damping in a mechanical system decreases the vibration amplitude at the
resonance, it leads to higher vibration transmissibility at isolation region. [64]. Also,
it bends the phase diagram of the response at lower frequencies than the resonance
frequency. If the system to be isolated is a measuring device, this lag may become
important. Ideal damping behavior for this type of isolation problem would be
decreasing resonance amplitude without bending phase diagram for the stiffness-
controlled region. Studies show that desired damping characteristic can be achieved
by cubic damping type nonlinear element. There are varies of studies on the
vibration characteristic of the cubic damping mechanism. Jing studied on the
frequency domain analysis and theoretical background of the cubic damping
mechanism [65, 66]. Lv generalized the nonlinear damping force and studies on the
effect of the order of the nonlinearity and the nonlinear damping ratios [67]. H.
Laalej verified the effect of the cubic damping experimentally [68]. In his study,
cubic damping characteristic is provided by active control force. In addition, Jazar
suggests that similar characteristics can be achieved geometrically nonlinear
damping. [64]. This system is physically more achievable than the cubic damping.
In Figure 1-20, geometrically nonlinear damping is demonstrated. Mickens and
Tang studied on the free vibrations of this system [69, 2]. Tang and Brennan
explained the vibration transmission characteristic of this system and comprise with

the cubic damping [70].
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Figure 1-20 Cubic Damping Mechanism

Cheng, combined the QZS mechanism with the geometrically nonlinear damping
[71]. With the combination of the nonlinear damping and QZS isolator, the stability
performance is improved, and it is shown that unbounded response to base
excitation can be eliminated. Also, highly nonlinear behavior of the QZS can be
improved and jumping phenomena is avoided by utilizing geometrically nonlinear

damping.

Dry friction is another nonlinear damping mechanism used in mechanical systems
such as large space structures and turbomachinery [72, 73, 74, 75, 76]. Macro-slip
model is widely used in the literature for dynamic analysis of dry friction due to its
mathematical simplicity. Macro-slip model assumes the entire friction as either
slipping or complete-stuck. Friction damper is generally modeled as a spring one
end of which slip if the spring force exceeds certain value (Figure 1-21). Therefore,
damping is only effective at resonance regions if slip force is chosen carefully.
However, in the case where friction damper is in complete stuck mode, it introduces

additional stiffness to the system.
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Figure 1-21 Dry Friction Model [77]

Another damping mechanism used for the isolation purposes is eddy current
damper. From the basics of the electromagnetic theory, eddy currents are generated
when a conductive plate is moved through a stationary magnetic field [78, 79].
Because of the electrical resistance of the conductive material, eddy currents
generate heat on the conductive material. For a continuously moving conductive
metal, electromotive force (emf) is generated which is proportional to the velocity

of the conductive metal Figure 1-22.

Velocity

Eddy
Currents

Figure 1-22 Eddy Current Damping Mechanism [80]

This results in dissipative forcing with proportional to velocity. Since eddy Current

damping mechanism is non-contacting damping forces, they are widely used in
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motor brake systems, non-contact measurement devices. Recently, this mechanism
is used for attenuation of the vibration amplitudes. Sodano uses eddy current
damper for suppression of membrane vibrations [80, 81]. In his study, theoretical
development for the eddy current damper with the beam model is performed and
test results is discussed.

The methods used for obtaining High-Static-Low Dynamic stiffness isolator and

nonlinear damping are summarized in Figure 1-23.

Nonlinear
Isolators
[ I |
HSLD Nonlinear
Stiffness Damping
|
[ | | |
Precompressed : Scissor | | Cubic
Springs Magnetic Mechanism Two Stage Damping
(Horizantical)
i Horizontal
Twosprings .
] —  Viscous
\\ Euler Buckled and Magnet Damper
Beam
|| Horizontal Scissor
Magnets || Mechanism
— Dry Friction
— Eddy Current

Figure 1-23 Nonlinear Isolators
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CHAPTER 2

LINEAR ISOLATION SYSTEMS

2.1 Mathematical Model

2.1.1 Isolator Model

In this chapter, isolators are modeled as elastic elements containing linear stiffness
and structural damping in its 3 orthogonal axes. As stated in Chapter 1, dynamic
properties of elastomers are dependent on environmental conditions such as
temperature, dynamic strain and frequency spectrum of excitation. In this chapter,

these parameters are assumed to be constant.

Damping properties of industrial elastomeric isolators are generally given in
hysterical damping model and damping characteristic is defined as loss factor.
Therefore, stiffness and loss factor of an isolator in 3 mutual orthogonal axes must
be defined in the mathematical model. Torsional stiffness, torsional damping and

mass of the isolator are neglected.

Isolator can be added to 6 degrees of freedom model in any position and orientation
(Figure 2-1). For ease of calculations, global reference frame is taken as center of
gravity of the rigid body. Principal elastomer axes can be reduced to global
reference frame by defining position vector and angles between principle axes and
global reference frame. Global reference frame and isolator axes can be seen in
Figure 2-2. Isolator properties are defined in Q, P, R axes. If the isolator is attached
to the system with angle, isolator stiffness can be written for global frame axes
using Equations (2-1) to (2-6).
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Figure 2-1 Isolator Model

Figure 2-2 Global Reference Frame [19]

kex = kpad, + kg, + koa?, (2-1)

kyy = ka2, + ka2, + k.02, (2-2)
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kyz = kya, + kyaZ, + ke, (2-3)
Ky = kpap@yp + Kgygttyg + K@y, (2-4)

Kz = kpQup@yp + kg@gQug + ki r @y, (2-5)

_ (2-6)
ky, = kpayyty, + keoty aq + kray,ay,,

where a represents the angles between global reference frame and principle axes,
ky, ky, kq are the principles stiffness values, kyy,kyy, Kz Kkyy, kyz ky, are the

reduced stiffness values.

2.1.2 Vibration Isolation System

As can be seen in Figure 2-1, rigid mass to be isolated has 3 linear and 3 rotational
degrees of freedom. Therefore, system has six equations of motion which are given
in Equations (2-7) to (2-12). These equations can be found in literature [28, 18]. In
these equations, x, y, z are defined as displacement of rigid mass in X,Y,Z axes of
global reference frame. a, 8,y are rotational displacements, a,, a,, a, are position
vector of isolator with respect to global reference frame. Since this mathematical
model is used for isolation purposes, forcing is defined as base excitation in 3 linear
axes of global reference frame. In other words, F, ,, M,, , are taken as zero.
System inputs are displacement of the base which are defined as
W, U, W, Qin, Bins Vin- Mo Lyxs Ly, Iz0 Ly, 1y 2, I, @re mass properties of the rigid body
at center of gravity. Taking stiffness of the isolator as complex stiffness i.e. k* =

(1 + in)k, damping characteristic of the isolator is represented in the model.

mi + Lk (x —u) + 2oy, (v — V) + Zkyy (z — W) + E(ky,a,
- kxyaz) (CZ - ain) + z:(kxxaz - kxzax)(ﬁ - ﬁin) (2_7)
+ Z(kxyax = Kz @) ) (Y —Vin ) = F,

my + Zk,y, (x — u) + Zky, (y — v) + Zky,(z — w) + E(k,,a,
- kyyaz)(a - ain) + z:(kxyaz - kyzax)(ﬁ - ﬁin) (2_8)
+ Z(kyyax = kxyay)(¥ —Vin ) =,

mZ + Zky, (x —u) + Zk,,(y — v) + Zk,,(z — w) + E(k,,a,
- kyzaz) (0{ - ain) + z“(kxzaz - kzzax) (.3 - .Bin) (2'9)
+ 2:(kyzax - kxzay)(y —Yin) =F,
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Lt — LB — L,V + 2(kay — kyya,) (x —w) + 2(k,,ay
—kyya)(y—v) + 2k, a, —kya,)(z—w)+ Z(kyya%
+ ka3 - 2ky,a,a,)(a— ay) + E2(k_aya, + kya.a,
—k,aa, —kya2)(B—B,)+ 2(k,,aya, + ky,a.a,
= kyya:a, — k@)Y =¥y, ) = My,

I8 — I, = Iy¥ + 2k, 0, = kipa) (x —w) + 3k, a,
- kyzax)(y —-v)+ Z(kxzaz - kzzax)(z —w)
+3(k_aya, + ky,a.a, — k,a.a, —kya2)(a@—ap)
+ Z(kxxag + kzzaazc - kazaxaz)(ﬁ - ﬁm) + Z(kxyaxaz
+ kxzaxay - kxxayaz - kyzaazc) (V - ym) = My'

LV = L@ = L + 2(k a0 — keea))(x —w) + Z(k,,, ar
—kya)(y—v) + E(kyzax — ki) (z —w)
2k, aya; +ky,a:a, — Kyyaa, — k03) (@ — Qi)
+ 2:(kxyaxay + kxzaxay - kxxayaz - kyzaﬁzc) (ﬁ - Bm)
+2(k,,a} + kyya? — 2k a.a,) (¥ —¥,,) = M,,

(2-10)

(2-11)

(2-12)

where X represents the sum of reduced stiffness of each isolator. Equations of

motions can be written in matrix form following as

[M]{x} + ([K] + i[HD{x} = {F}.

Mass and stiffness matrices represented in Equation (2-13) are given by

m 0 0 0 0 0

0 m O 0 0 0

0 0 m 0 0 0
MI=10 0 0 I, —I, —IL.}
0 0 0 —L, I, -I,
0o 0 0 -1, —Iyz 1,, ]
K11 Ky Kiz3 Kiu Kis Kie
Ky1 Kz Kyz Ky Kjs Kpe
K] = K31 K3, K33 K3y Kizs Ksze

Coefficients of stiffness matrix are given by Equation (2-16) and (2-36)
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Kll = kaxr (2'16)

K1 = Ky1 = Zkyy, (2-17)

K13 = K31 = Zky,, (2-18)

K14 = K41 = Z(kyay — kyya,), (2-19)

Kis = K51 = E(kxx@; — Ky Qy), (2-20)

K16 = Ke1 = E(kyya, — kyray), (2-21)

Ky = Tk, (2-22)

K33 = K32 = Zky,, (2-23)

Ky4 = K4y = 2(ky,a) — kyya,), (2-24)

Kys = K5; = Z(kyya, — kyay), (2-25)

K6 = Koz = E(kyyay, — kyyay), (2-26)

K33 = Zk,,, (2-27)

K34 = Ku3 = Z(k,,a, — ky,a;,), (2-28)

K35 = Ks3 = E(ky.a, — k;,a,), (2-29)

K36 = Ke3 = E(ky,a, — ky,ay), (2-30)

Ky = Z(kyya§ + ka5 — 2ky,a,a,, (2-31)

Kus = Ksa = 2(k aya, + ky,a.a, — kyya.a, — kyya2), (2-32)
Kis = Kes = X(k, aya, + ky,aza, — kyya.a, — ky,0%), (2-33)
Kss = 2(k, a2 + k,,a% — 2k, ,a,.a,, (2-34)

Kse = Kes = Z(k,,ax0; + ky,0,0y — kix@ya, — ky,a3), (2-35)
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Kee = E(k_a% + ky,a% — 2k, a,a,), (2-36)

xx Y

Structural damping matrix H can be found by multiplying stiffness matrix by loss

factor assuming all loss factor of isolators are same.

[H] = n[K]. (2-37)
If isolators with different loss factors are used, structural damping can be found by
using the same equations with stiffness matrix coefficients. k terms in the equations

must be replaced by h which can be found by multiplying k with related loss factor.
(2-38)

n

Z ho= Y nk.

n
i=1 i=1
where n is the number of the isolators. As stated before, input vector is defined as

base excitation and F can be calculated as Equation (2-39) to (2-45) .

F=1g (2-39)

n n n

Fi= Z(kxxi + ik Ju+ Z(kxyl. + i1 Ky Jv + Z(k"zi + i ez Jw, (2-40)
i=1 = i -
n n n

Fy = ;(kxyi + lnikxyi)u + ;(kyyi + lTlikyyl,)U + ;(kyzi + mikyzi)w, (2-41)

Fs= Zlacxzi i ey Ju+ Z(kyzi +in ey, v+ Zlaczzi +inle, I, (2-42)

n
Fy= z (— (kyyl-azl' + inikyyiazl.) v+ (kzzl.ayi + inikzzl'ayi) w
=1
. . 2-43

+ (kle.ayi + lnikﬂiayi) u-— (kxyiazl' + lnikxyl-azl') u ( )

+ (kyziayi + inikyziayi) v— (kle.azl. + inikle.azl.) W),
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F5:

-

Il
N

<(kxxl.azl. + inikxxl.azl.) u-— (kzzl.axi + inikzzl.axl.) w
l

- (kxziaxl. + inikle.axi) u+ (kxyl-azl' + inikxyiazi) v (2-44)

— (kyziaxl. + inikyziaxi) v+ (kle.azl. + inikle.azl.) w),

n
Fo= (— (kxxl.ayi + inikxxl.ayi) u+ (kyyl-axi + inikyyiaxl.) v
=1

—

. . 2-45
- (kxyl,axl. + mikxyiaxl') u— (kxyl,ayi + mikxyl,ayi) v ( )

+ (kyzl-axi + i”ikyziaxi) w— (kle.ayi + inikle.ayi) W),
Excitation vector can be also represented in terms of system matrices as given in
Equation (2-46).

[M]{x} + ([K] + i[HD{x} = (K] + i[HD{Xin}, (2-46)

where x;,, is the excitation vector.

2.1.3 Dynamics Analyses

Dynamic analyses by utilizing the mathematical model are given by
e Modal Analysis
e Static Deflection Analysis
e Harmonic Analysis
e Random Vibration Analysis

e Shock Analysis

2.1.3.1 Eigenvalue Problem-Modal Analysis

In this analysis, eigenvalue problem is solved, and undamped natural frequencies
and mode shapes are obtained. Mode shapes and natural frequencies are critical
parameters to obtain the harmonic responses and to evaluate the isolation
performance. Undamped equation of motion is given by

(IK] - w®[M]) (U} = 0. (2-47)
where U is 6x1 displacement vector in 6 degrees of freedom. Equation (2-47) has

solution only if determinant of [K] — w? [M] equals to zero.
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[K] — w?[M]| = 0. (2-48)
Since stiffness and mass matrices are 6x6 matrices, there are six w values make

determinant zero and these are defined as undamped natural frequencies of the

system. Related mode shape can be found following as

(IK] - w?[M]) (U} =0..i=1..6. (2-49)

2.1.3.2 Static Displacement Analysis

Since stiffness matrix is obtained, displacement can be calculated for given static

loading vector {F}.

{F} = [K]{xstatic}- (2'50)

By multiplying by inverse of stiffness matrix, static displacements are given by

{Xstatic} = [K]_l{F}- (2'51)
This response is critical for evaluating isolator displacement limit under maximum

accelerations.

2.1.3.3 Harmonic Analysis

Since size of the system is six degrees of freedom, matrix inversion can be
performed easily utilizing package programs such as MATLAB, MathCAD etc.
Therefore, receptance matrix method is used in harmonic response analysis. Since
steady state solutions are harmonic for harmonic excitations, response can be
represented by complex numbers. Detailed information about the assumed solution

method can be found in [17, 8]. If equation of motion is rewritten in complex form,

[M]{x} + ([K] + i[HD{x} = (K] + i[HD{xn}- (2-52)
If stiffness is defined as function of frequency, equation of motion is given by

[M]{x} + ([K(w)] + i[H(w)D{x} = ([K(w)] + i[H(0)D{xXin}. (2-53)
In Equation (2-53) {x} is replaced by {X"e!®t} . Since frequency of steady state

solution is same with the input frequency,
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(—w?[M] + [K(w)] + i[H(0)D{X"}
= ([K(w)] + i[H(0) D{Xin},

(X} = (~w?[M] + [K(@)] + i[H@)]) " (K(@)] + i[H@)D{Xm}.  (2-55)
Receptance matrix is given by

(2-54)

o = (—w?[M] + [K(@)] + i[H(@)]) (2-56)
The response at center of gravity of the rigid mass can be transformed to response
of any given point by utilizing transformation matrix that is given as Equation
(2-57)

(X3} = 8] {yﬁ} - {yﬁ } S (2-57)
Zp Zp

Xp

where {X},} is the response at given position P whose position vector is defined as {}’p}
VA

P

with respect to global reference frame and [R] is the rotation matrix [18].

[R]

1 0 0 cos(B) 0 sin(B)][cos(y) —sin(y) O (2-58)
=10 cos(a) - sin(a)] [ 0 1 0 ] [sin(y) cos(y) 0]-
0 sin(a) cos(a) Ilsin(B) 0 cos(B) 0 0 1

2.1.3.4 Random Vibration Analysis

In engineering applications, vibrations inputs are not finite. Therefore, Fourier
transform cannot be applied, and input function cannot be represented by
harmonics. In this case, statistical methods are utilized [8, 18]. Especially, for
military applications vibration inputs are generally defined as Power Spectral
Density (PSD). Thus, observing response of isolation system under random
excitations is critical. For six degrees of freedom system input spectral density

matrix is given by

Sex 0 0 0 0 0
0 S, 0 0 0 0

s 0O 0 S, 00 of 959

Sal=10 0 & o o0 o (2-59)
0 0 0 00 0
Lo 0 0 0 0 O
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[Sin] which is given as acceleration power density, can be converted into

displacement spectrum density.

.
Singisy (i) = in(L ) (2-60)

w?

In modal domain, displacement spectral density is given by

-1

[Snin] =[] [Sindisp] [¢T*] : (2-61)
Frequency response function is given by
[Snout] = [T] [Snin] [T]T*’ (2'62)
where
w; ... 0
[T1=|: @+ imlal (2-63)
0 .. wy
w; +nwii —w? .. 0
[a] = ( : : D (2-64)
0 . Wyt i—w?

The details of the random vibration analysis can be found in [18].

2.1.3.5 Shock Analysis

This analysis is performed in time domain by using 4™ order Runge-Kutta solver of
MATLAB Simulink. Since there is no solution for hysteric damping in time
domain, H matrix should be converted into viscous damping matrix C using
Equation (2-65).

0
an(n : ] [¢] (2'65)

where ¢, is the modal damping ratio, [¢] is the normalized modal matrix. Relationship
between modal damping coefficient and loss factor can be approximated as
Equation (2-66) assuming loss factor of all isolator is same.

N[

{0 ™ (2-66)
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Block diagram of the time simulation is given in Figure 2-3. {x} is defined as 6x1

position vector.

f({u,v,w}) ) f {x} f {x}

A 4

Figure 2-3 Simulink Model for Time Simulation

2.2 Developed Vibration Isolation Analysis Software-VI1ASoft

To analyze different vibration isolation design alternatives and evaluate their
response, a graphical user interface (GUI) shown in Figure 2-4 is developed. GUI
consists of 3 subgroups

e Create Model

e Analysis

e Results and Reporting
As can be seen in Figure 2-4 switching pages is performed by ribbon menu. In
addition, software warns user about performed software activities via information

box. User can see the current configuration at left bottom of the program.
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Figure 2-4 Vibration Isolation Analysis Program VIASoft

2.2.1 Creating Model

In this section, user creates isolation model by entering mass and isolator properties
which are stiffness values, position vectors, loss factors and inertia values. If
dynamic test data is available for isolator, it can be entered to program by using the
“Isolator Test Data” panel. Configuration can be saved, and it can be called for
further analyses. “Save/Load Configuration” options can be seen in Figure 2-5.
Required properties to define one isolator are following as

e Loss factors and stiffness values in 3 principal axes

e Position vector of isolator with respect to center of mass (X,Y,Z)

e Rotation angles
After entering these values, isolator is added to the software and added isolators can
be seen in table which is shown in Figure 2-5. In addition, isolator positions are

shown graphically. Isolator properties which added to system can be updated by
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“Edit Isolator” button. Likely, mass properties are updated by “Update Mass Prop”
button.
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Figure 2-5 Create Model

2.2.2 Analysis

In this section, required system inputs for analyses are entered. For different
configurations, analyses can be saved with different names to see and compare
different configurations easily. Available analyses are given by

e Modal Analysis

e Harmonic Analysis

e Static Deflection Analysis

e Random Vibration Analysis

e Shock Analysis in Time Domain
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2.2.2.1 Modal Analysis

Since this analysis is performed by using only system matrices (mass and stiffness),
it is not needed to define any system input. 6 natural frequencies of the system are

shown on the screen and results are saved in entered analysis name (Figure 2-6).
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Figure 2-6 Modal Analysis

2.2.2.2 Harmonic Analysis

In this section, user enters the frequency range and the excitation levels. Then
pressing “Perform Analysis” button system results are saved in entered analysis
name. Frequency Response Functions can be obtained by simply entering “1” for

excitation levels (Figure 2-7).
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Figure 2-7 Harmonic Analysis

2.2.2.3 Static Displacement Analysis

In this section user defines the constant acceleration level of the base. Then forcing
is calculated by simply multiplying acceleration values in [g] by mass for each axis.
Especially, for the military application, maximum isolator displacements i.e. strain
levels should be known under maximum acceleration. As can be seen in Figure 2-8,
static deflections of isolator and rigid mass are calculated by software under 1 g
gravity i.e. weight of the rigid body in Y direction. Static deflection of any desired

position can be obtained “Results” section.
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Figure 2-8 Static Displacement Analysis

2.2.2.4 Random Vibration Analysis

In this section, user defines the random vibration profile in 3 linear axes of global
reference frame. Interface is written so that users enter profiles that is given in table
easily as the way defined in MIL-STD-810 G. User first choose the axes and then,
enter table values point by point. In addition, PSD can be defined to software in

“.mat” format. Screenshot of the interface can be seen in Figure 2-9.
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Figure 2-9 Random Vibration Analysis

2.2.2.5 Shock Analysis in Time Domain

In this section, user defines the half sine shock profile for 3 linear axes of global
reference frame (Figure 2-10). Amplitude and the duration of half sine and time
simulation duration are entered to software. By pressing “Perform Analysis” button,

time simulation is started.
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Figure 2-10 Shock Analysis

2.2.3 Results and Reporting

In this section, user postprocesses and compares different analyses results obtained
in “Analysis” Section. Firstly, user chooses analysis on which user wants to work
by “Choose Analysis” section that is shown in Figure 2-11 and Figure 2-12. Then
software lists the available analyses. As can be seen in Figure 2-11, modal analysis
results are shown by animation. In addition, time domain shock analysis is animated

by representing rigid body as cuboid.
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“Generate Report” button creates analysis report using all required model
information and analysis results. In addition, results and data set can be saved in a
proper structure by using “Save Analysis” button. Example of analysis report is

shown in Figure 2-13.

Vibration Analysis Report-VIASoft®

Table of Contents

Isolator Properties

Analysis Results

Natural Frequencies of the system
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2 06 00 06 4 4 fa = =
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0 o 0 -30.0000 200.0000 1.0000
0 0 0 -0.5000 1.0000 260.0000

Figure 2-13 Analysis Report Cover Page

2.3 Verification of Developed Analysis Software

In the literature, the verification of the similar six degrees-of-freedom vibration
isolation mathematical model was conducted by commercial Finite Element
Analysis (FEA) software [18]. In this study, the vibration analysis software is
verified by both experiments and finite element analyses. Firstly, modal analysis is

performed by using a commercial finite element software to ensure that system
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matrices are obtained properly by developed vibration analysis software. Harmonic

response and random response analyses are verified by shaker table experiments.

2.3.1 Finite Element Method

In order to verify the modal analysis software developed in MATLAB, a rigid mass
having six degrees of freedom is modeled in ANSYS. Results obtained from
developed software VIASoft and ANSYS are compared. The rigid body, which is

suspended by four isolators, is shown in Figure 2-14

Isolators

0,000 0,200 10,400 (rm)
[ —EIa—— E—m|

0,100 0,300

Figure 2-14 Rigid Body with Isolators

The inertial properties of the rigid mass are given by Table 2-1. These values are
obtained by Computer Aided Drawings (CAD) programs.

Table 2-1 Inertial Properties

M [kg] 62.1886
I [kgm?] | 0.3483
I, [kgmz] 0.4644
I, [kgm?] | 05319
I, [kgm?] | -0.0041
I, [kgmz] 0.0054
I, [kgmz] 0.0043
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As can be seen from Figure 2-14, rigid body is suspended by four isolators. The
stiffness and loss factor values of the isolators is given by Table 2-2. Isolator
position vectors with respect to C.G. of the rigid mass is given by Table 2-3.

Table 2-2 Isolator Stiffness and Loss Factors

Isolator | Stiffness-X | Stiffness-Y | Stiffness-Z | Loss
[N/m] [N/m] [N/m] Factor

1 120000 120000 120000 0.1

2 120000 120000 120000 0.1

3 120000 120000 120000 0.1

4 120000 120000 120000 0.1

Table 2-3 Isolator Positions

Isolator | Position-X [mm] | Position-Y [mm] | Position-Z [mm]
1 -128.7 101.1 73.2
2 121.3 101.1 73.2
3 -128.7 -98.9 73.2
4 121.3 -98.9 73.2

Then, modal analysis is performed, and the undamped natural frequencies are
compared in Table 2-4. As can be seen from Table 2-4, the results are agreed well,
and maximum error does not exceed %0.12. Therefore, it can be concluded that for
a given mass and isolator properties system matrices are obtained properly by

developed software.
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Table 2-4 Undamped Natural Frequencies

Mode Number | FEA VIASoft Error [%]
1 10.472 Hz 10.474 Hz 0.0191
2 11.400 Hz 11.401 Hz 0.0088
3 13.983 Hz 13.982 Hz 0.0072
4 24.049 Hz 24.078 Hz 0.1206
5 247713 Hz 24.799 Hz 0.1050
6 25.052 Hz 25.080 Hz 0.1118

2.3.2 Experimental Studies

Harmonic response and random response analyses of the vibration isolation analysis
software are verified by conducting shaker table experiments on an isolation
system. The results obtained from the experiments and analysis program are
compared. Sine sweep and random vibration experiments are performed, and
accelerations are measured during the experiments. Experiments are performed for
an inertial measurement unit which is suspended by four LORD- SMB003-0500-9,
FLEX-BOLT® SMALL SANDWICH mounts (Figure 2-15). The system is
modeled in the vibration analysis software as well. After creating the model,

software visualizes the isolators positions and the IMU as shown in Figure 2-16.

D —t==—tiea— C —

)

A A -
THREAD—/ B je=—

MINIMUM
THREAD DEPTH

Figure 2-15 LORD Rubber Sandwich Isolator
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Figure 2-16 Representation of Isolator Position in the Software

The experiment schematic can be seen in Figure 2-17. Three accelerometers are
mounted on the IMU and acceleration data is recorded via data acquisition card
(DAQ). In order to measure the excitations, one triaxial accelerometer is placed on
the shaker table.

IMU Accelerometers
X
Rubber
Isolator Y
q Z
[ / \
Shaker
table DAQ

Figure 2-17 Experiment Schematic

During the experiments, the equipment that is listed in Table 2-5 is used. SIRIUS 8
ICP channel cards are used for data acquisition. Sensitivities of the accelerometers

are selected according to expected acceleration levels.

The experiment matrix is shown in Table 2-6. For each 3 axes, sine sweep and
random vibration are performed. Sine sweep and random vibration tests are
repeated for different excitation levels to observe the effect of dynamic strain on

stiffness.
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Table 2-5 Experiment Equipment

Accelerometer Descrinti
escription i i
Model p Figure Quantity
Triaxial, mini (5 gm) high
PCB® Model tl, mini (5 gm) hig U
sensitivity, ICP® accel., - 3
356A32 P N
100 mV/g
Triaxial, high sensitivity,
PCB® Model ]
ceramic shear ICP® 1
356A16
accel., 100 mV/g
DEWESOFT 16 ICP Channel Data =
SIRIUS®-8XACC Acquisition Card \ 2
\\\ \ .>

Table 2-6 Experiment Matrix

Test Excitation Excitation o
Number | Direction Type Excitation Parameters
1 X Axis Sine Sweep 20-200 Hz Constant Acceleration-1g
2 X Axis Sine Sweep 20-200 Hz Constant Acceleration-2g
3 X Axis Sine Sweep 20-200 Hz Constant Acceleration-4g
4 X Axis Random 20-2000 Hz 2 grms White Noise
5 Y Axis Sine Sweep 20-200 Hz Constant Acceleration-1g
6 Y Axis Sine Sweep 20-200 Hz Constant Acceleration-2g
7 Y Axis Sine Sweep 20-200 Hz Constant Acceleration-4g
8 Y Axis Random 20-2000 Hz 2 grms White Noise
9 Z Axis Sine Sweep 20-200 Hz Constant Acceleration-1g
10 Z Axis Sine Sweep 20-200 Hz Constant Acceleration-2g
11 Z Axis Sine Sweep 20-200 Hz Constant Acceleration-4g
12 Z Axis Random 20-2000 Hz 2 grms White Noise

53




2.3.3 Harmonic Response Analysis Verification

In order to verify the harmonic response analysis of the software, sine sweep
experiment is conducted in 3 orthogonal axes of the isolation prototype. The time
signal that is shown in Figure 2-18 is converted in to frequency domain by utilizing
Fast Fourier Transform (FFT) algorithm of MATLAB. Transmissibility is
calculated by Equation (2-67).

FFT (%)

m . (2-67)

Transmissibility (w) =

where X is the response accelerations and ii is the excitation acceleration. The
isolation prototype inertia properties are obtained from the Computer Aided Design
(CAD) software. The isolator positions and stiffness properties are entered to the
software and excitation in translational axes are applied. The response accelerations
are obtained for C.G. of the rigid mass and then transformed to response at

acceleration mounting positions.
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Figure 2-18 Acceleration Time Signal
Experiment results and software analysis results are compared in Figure 2-19 to

Figure 2-27. As stated in Section 1.4.4, the isolator stiffness and damping properties

are depended on the excitation frequency, dynamic strain and temperature. As can
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be seen from Figure 2-19 to Figure 2-27, as dynamic strain increases, stiffness of
the isolators decreases, and resonance frequencies thus decrease as well. The
deviation of analysis software result from experiments can be explained by the
assumptions made in the analyses, the approximations used for calculating system
parameters and measurement errors. These assumptions and approximations can be
listed as follows

e There is no torsional stiffness of isolators

e Loss factor and stiffness are constant

e Mass matrix of IMU is approximated by a CAD software

e Accelerometer positions w.r.t. global reference frame is approximated by a
CAD software

e Isolator positions w.r.t. global reference frame is approximated by a CAD
software
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Figure 2-19 X Axis Response — Excitation in Y Axis
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Figure 2-23 Y Axis Response — Excitation in Z Axis

57



w N

Transmissiblity [g/g]
[\*]

Z Axis Response - Sine Sweep Excitation in Z Axis

—Experiment Constant 1g
- - Experiment Constant 2g

Experiment Constant 4g

----Software Result / \‘\
A}

0
20 40 60 80 100 120 140 160 180 200
Frequency [Hz]
Figure 2-24 Z Axis Response — Excitation in Z Axis
X Axis Response - Sine Sweep Excitation in X Axis
4 —Experiment Constant 1g r'
- - Experiment Constant 2g !"
35 Experiment Constant 4g /

’ ----Software Result /

3
o
a5
2
e
‘w2
2
£
215
g
= 1 I N

0.5
0 |
20 40 60 80 100 120 140 160 180

Frequency [Hz]

Figure 2-25 X Axis Response — Excitation in X Axis
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2.3.4 Random Vibration Analysis Verification

In order to verify the random vibration analysis, pink noise between the frequency
range 20-2000 Hz is applied in 3 translational axes of the isolation prototype. The
PSD acceleration excitations for software analyses are taken from the accelerometer
data that is mounted on the shaker table. PSD accelerations of the C.G. are
calculated then they are transformed to accelerometer mounting points. Software
analysis results and experiment results are plotted Figure 2-28 to Figure 2-36. As
can be seen from the figures, analysis and experiments agree well for the cases
where the excitation and the measurement axes are the same. For the other cases,
deviations can be explained by the assumptions and approximations that are listed
in Section 2.3.3. Furthermore, at higher frequencies, internal resonances of the

rubber isolator or the IMU can be seen from the response curves.
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Figure 2-28 PSD Acceleration X Axis - Excitation in X Axis
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CHAPTER 3

NONLINEAR ISOLATION SYSTEMS

The limitations of the linear isolation systems are explained in Chapter 1. In this
chapter, the nonlinear elements such as “High-Static-Low-Dynamic-Stiffness”,
“Nonlinear Damping” and “Dry Friction Damper” are utilized in order to improve

the isolation performance.
3.1 High Static Low Dynamic Stiffness Isolators

Static deflections due to static loadings limit the isolation performance of linear
vibration isolation systems. Studies on nonlinear vibration isolators show that using
geometrical nonlinearities which are integrated to the system intentionally, isolator
characteristic can be improved [42, 44]. Quasi-zero stiffness (QZS) mechanisms,
i.e. nonlinear isolators with high static and low dynamic stiffness characteristic, are
used to decrease the natural frequency of the isolation structure and improve the
isolation performance of the system while having the same loading capacity [45].
However, the resulting system is highly nonlinear and unstable solutions may occur
as well. Therefore, isolation performance is highly dependent on system inputs and
parameters. If system input levels are not determined precisely, system response
may deviate from the design limits and jump-phenomena may be observed due to
the cubic stiffness nonlinearity existing in the equation of motion [59]. Another
disadvantage of the quasi-zero-stiffness isolators is mistuning of the weight of the
isolated system. If the weight of the isolated system deviates from the its rated
value, equilibrium point shifts and bias term is thus observed in the response [44].
Since the mechanism does not operate around the equilibrium point where the

stiffness is very low, resonance frequency increases.

In this section, a single degree of freedom system with a nonlinear isolator having

QZS mechanism is considered. The nonlinear differential equations of motion of the
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isolation system are converted into a set of nonlinear algebraic equations by using
harmonic balance method, which are solved by using Newton’s method with arc-

length continuation.

In addition to exact nonlinear forcing expression, validation of Taylor Series
expansion of forcing, which is a method widely used by many researchers, is
discussed [42]. Several case studies are performed and the effect of stiffness and

loading deviations on the isolation performance is studied.

3.1.1 Stiffness Model of HSLDS isolator

The stiffness properties of the HSLDS mechanism is studied in detail by Carrella
[45]. The corresponding mechanism is shown in Figure 3-1. Two pre-compressed
spring which are hinged at both ends are placed horizontally. These springs are
defined as the “negative stiffness” since they provide force in the direction of the
motion. Although all of the components are linear, the forcing is nonlinear because

of the kinematic relation between the force and displacement.

b)

a)

Figure 3-1 Nonlinear isolator with negative stiffness mechanism (a) initial unloaded

state (b) equilibrium point

When the system at the equilibrium position, the vertical component of the
compressed springs is zero Figure 3-1b. kj is the parameter of the “horizontal
springs and k,, c, are the parameters of the vertical spring and damper. The

distance between the two ends of the horizontal elements is y(t); the free length of
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the horizontal spring is L,; length of the horizontal spring at equilibrium point is a.

The free body diagram of the mass for the static loadings can be seen in Figure 3-2.

fe p ky(x, — x)

f m

Figure 3-2 Free Body Diagram of the Mass

When loading f is applied to the mass, it will deflect from its equilibrium point.
The amount of deflection is defined as x. The vertical force component of the

horizontal springs can be found as follows [40, 82].

fo=[sinb = 2ky(L, —y) (3-1)

X
VxZ ¥ a?
The relationship between the vertical displacement of the mass and the distance
between two ends of the horizontal dashpots is given as

y(t) =/x? + a?. (3-2)
Considering the vertical spring and payload, the total vertical force created by the

spring elements can be obtained as

L
mg = fi + 2k, (ﬁ — 1>x + k, (x, — x), (3-3)
x?+a

where x, = /L% + a%. Assuming mg = k,x,, the non-dimensional form can be
obtained as
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==Y

= 1——|+1]%, 3-4
k,a 4 xX2+1 ( )
where § = Ly/a,y = 2kp/k,, X = x/a.

The effect of non-dimensional parameters can be seen in Figure 3-3 and Figure 3-4.
From Figure 3-3, it can be concluded that increase of L,/a ratio may result in even
overall negative stiffness around the equilibrium point. Likely, if stiffer horizontal
springs relative to vertical ones are placed, effect of negative stiffness becomes
more dominant and overall negative stiffness may be obtained (Figure 3-4). The
quasi zero stiffness characteristic can be obtained by proper selection of § and y.
The stiffness can be obtained by differentiating the non-dimensional force
displacement equation with respect to X = x/a as follows

o)
k@ =y |1-——|+1 (3-5)
X%+ 17
1 7
)/
’
’
Vs
/ s
R
0.5 " S |
// g
—~ //’
- PR
<5 R
, 0 /»___7__;.—/-", =
QO—} l/,/ ///
//" /// —'5 =1.2
osf 5=14
e ’
S 5=16
// /7
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_1 ’ Vi | |
-1 -0.5 0 0.5 1
X

Figure 3-3 Effect of 6 on nonlinear stiffness
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Figure 3-4 Effect of ¥ on nonlinear stiffness

Equation (3-1) can be expanded by using Taylor series around equilibrium point
[40].

L
x) =2k (1——O)x+k X), 3-6
fk( ) h \/m v( ) ( )

 £1(0)

PG = ) =, (37

n=0

@ L, 12k,L, 32kyL, 5 2kyL,

fk pp(x) = (kv+2kh (1—;))364—5 ;3 x3—§ ahS 5 Ea—};x7+0(x9), (3'8)

where £,'P? is the Taylor Series Expansion of the loading f; . In the non-

dimensional form,

fih(x)

1 3 5
=(1 1-— o - 3 5 a5 - A7 a9 ) 3-9
ra (1+y1- &)=+ 2y6x 8)/5x + 16y6x +0(x%). (3-9)
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The exact nonlinear spring force and the Taylor Series expansion comparison can
be seen in Figure 3-5.

0.5r

fi'"/ (k)

— FEzact Solution

-0.5

----3th order expansion

- - bth order expansion

F. Tth order expansion

-1 -0.5 0 0.5 1

~

X

Figure 3-5 Taylor Series Expansion of QZS Isolator

If the QZS condition is satisfied, non-dimensional stiffness k(%) is equal to zero.
Then,

y(1-46)+1=0. (3-10)
Taylor Series Expansion can be reduced to following form,
f(x) 3 3 5 5 7 9
— vS73 — 2SR5 4 vs% £9). 3-11
fa y&x 8y6x + 16y6x + 0(%%) (3-11)

3.1.2 Response to Base Excitation

For a single mass, isolated by a nonlinear isolator the equation of motion can be
obtained as

mit + cx + ky (x = x0) + 2k (1 — 75 ) u = c2(t) + ky 2(8) —mg,  (3-12)

where u(t) is the relative displacement defined as u(t) = x(t) — z(t). The isolator
model for the base excitation is shown in Figure 3-6.
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Figure 3-6 Base Excitation Model

For a single harmonic base input as z(t) = Z sin(wt), the response of the mass can
as well be assumed harmonic in the following form x(t) = X, + X, sin(wt) +
X, cos(wt) by utilizing a single harmonic representation. If the expression, k,x, =
mg, is satisfied, then there is no bias term (X, = 0) at the response. In the
following sections, the effect of stiffness and loading deviations, which makes the
nonlinearity asymmetric, is investigated. Thus, the response is written in general
form containing bias term. Similarly, the relative motion can be written in the

following form

u(t) = Uy + Usin(wt + ¢) = Uy + U sin(y). (3-13)
where, U, is the bias term in the relative displacement response, U is the amplitude
of relative displacement response. For ease of calculation, wt + ¢ is represented as
1. By using a single harmonic Fourier Series representation, the nonlinear forcing

can be written as follows
fn = an + fns Sin(wt + ¢) + fnc cos(a)t + ¢)1 (3'14)

fa = fno + (fas COS @ + frcsin @) sin(wt) (3-15)
+ (fne cos @ + frs sin @) cos(wt).

where £, is the single harmonic representation of the nonlinear forcing, f,, is the
bias terms, f,,; and f,,. are the sine and cosine Fourier Coefficients respectively. In
order to validate Taylor Series Expansion, Fourier coefficients of both exact

nonlinear forcing and Taylor Series representation of forcing are calculated. By
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using the exact nonlinear forcing expression, Fourier coefficients can be calculated

as
1 21T
fo=3z] (Fu)aw, (3-16)
fac = lfzn(F ) cos(¥) dp (3-17)
nc — ), nlg ’
1 21T
fo=z | (Fu)sm@ay. (319

where Fy; _ is total vertical stiffness force and the exact forcing is given by

L,
V (Uq + U sin(¥))? + a2

By using Taylor Series Expansion defined in (3-9), nonlinear forcing can be

Fnls = 2k, (1 — > (Uy + Usin(y)). (3-19)

approximated as follows

FufP = ay(U'sin@))? + as (U sin())® + a; (U sin($))’, (3-20)

kL 3 kyL
where a; = 23", as = hoo

4 as

, Ay = g% Analytical solutions can be obtained
using Taylor Series expansion for no bias (X, =0)and QZS(y (1 -8)+1=10)
conditions. For the case in which nonlinear exact forcing formulation is used,

Fourier Coefficients are calculated by numerical integration. Analytical solutions of

approximate Fourier Coefficients are given by

fro=2 f " (a5 (U sin())* + a5 (U sin())®
nc — T o 3 5 (3-21)
+ 4y (U sin($))”) cos(P) dyp,

2 w
fas = E (J (aB(U Sin(lp))3 + as(U Sin(l[l))s
0

(3-22)
+ a, (U sin(y))7) sin(y) dl[l).
Integrals can be evaluated as
fac =0, (3-23)
3 5 35
fnS=Za3U3+Ea5U5+6—4a7U7. (3'24)
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Then, nonlinear differential equation of motion, Equation (3-12) can be converted
in to set of nonlinear algebraic equations by using Harmonic Balance Method
(HBM) [83] and the resulting nonlinear algebraic equations of motion can be

obtained as follows

kV 0 0 Xo fno
Rx,w)=]|0 k,—w?m —c,0 [{Xs{+<{fost—
0 C, kv - a)zm XC fnc (3_25)
kvxo —mg
{ k,Z } =0,
C,wZ

where R(x, w) is the nonlinear vector function, x is the vector of unknowns and

Xo =+/L% —a?. As stated before, Equation (3-25) is written in general form
containing bias term. However, if the condition, k,x, = mg is satisfied, then

Xo, frno are equal to zero.

The solution of the resulting set of nonlinear algebraic equations is obtained by
utilizing Newton’s method with arc-length continuation in order to follow the
solution path even it reverses its direction. The additional arc-length equation is
defined as follows which represents as an n-dimensional sphere in which the
solution is sought

h(qx) = AgiAqy — s* = 0. (3-26)
Here g, = Xk ®k}T, Aqx = qx — qi—1, k corresponds to the k™ solution point
and s is the radius of the hypothetical sphere. A single step of Newton’s iteration

with arc-length continuation can be given as

oR(a,) OR(¢)]"

i i 0x dw R(q,‘()}
at = qi — - . { I (3-27)
“ “ |on(ql) an(al)| n(a)
ox dw

where i is the number of iterations. Details of the solution method can be found in
[84, 85]
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3.1.3 Stability of steady state solutions

Since it is a vibration isolation problem, stability of the solution is important
parameter for the isolation performance. Especially, if the system to be isolated is a
measurement device, the instability of the solution may result in chaotic
measurements. Periodic solutions can be found by HBM. However, it doesn’t
provide any information about stability of the solution. Stability of the solution can
be found by Hill’s Method which is based on the Floguet Theory. Below eigenvalue
problem can be used to obtain Flogquet exponentials which contains information
about stability of the solution [86, 87, 88]

R
(E + A4, + AZAZ) ¢ =0, (3-28)

where ¢ is the complex Eigenvector, Z—i is the Jacobian Matrix. A; and A, are

defined following as

Alzdiag([z“;m i m],...,[ZHé"m i), (3-29)

AZ - 12H®m. (3'30)
H is number harmonics and ® is Kronecker tensor product. Since Jacobian g—i is

already available, one can obtain complex eigenvalues A;. Assume that for single
harmonic solution, Jacobian is given by
OR a1 Ay
— = 3-31
d0x [a21 azz]' (3-31)
Then determinant is given by
A*m? + 2%2(a;ym — 4m?w?may, — c?)
+ A(—2a,;0om + 2wma,, — a,,¢ — cayq) (3-32)
+ a1103; — 12051 = 0.
As stated in the [88], only two complex eigenvalues A which have smallest
imaginary parts are corresponds to Floquent exponents. The limit point should

satisfy the below conditions,
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dR aR\"
—) = — _ (3-33)
det(ax> 0 and (6x> d+0
Stability of the solution can be determined by checking whether real part of the 4; is

positive or not. Therefore, condition for the stability follows that

Re(}) <0i=1.2. (3-34)

3.1.4 Validation of Taylor Series Expansion

As stated in Section 3.1.1, assuming relatively small oscillations, Taylor Series
representation can be used to evaluate integrals analytically. In literature, there are
variety of studies which approximates the QZS nonlinear forcing as 3th order
polynomial [71]. Shaw considered 5th order polynomial in his study for
representation of QZS system [53]. In this section frequency response functions
obtained by 3th, 5th and 7th order polynomials and numerical integration method
are compared to obtain valid parameter range for the Taylor Series Expansion. The
parameter set that is given by Table 2-5 is used for the validation of the solution.
3th order polynomial solution is obtained by setting as = 0,a, = 0. Likely, 5th

order polynomial solution is obtained by setting a; = 0.

Table 3-1 Parameter Set Used in Analyses

m=1kg k, = 20 000 N/m
k;, = 10 000 N/m a=0.08m
L, =0.016 m £, =0.015

where &, = % 2 == and w is excitation frequency.

c
2/k,m’ Wo = wo
Frequency response functions can be seen in Figure 3-7, Figure 3-8 and Figure 3-9.
As can be seen in Figure 3-7, 3th order polynomial approximation starts to deviate

as base excitation increases. 3th order expansion starts to deviate Z = 0.035 while

5th and 7th order expansions give accurate result up to Z = 0.045.

75



(o]

BN |

o]

P |
— {
- “'\\ :
o
7

)]

Z = 0.025 3th order expansion e

- Z = 0.025 Numerical Integration

Absolute Transmissibility
=N

3+ —Z = 0.035 3th order expansion R
- Z = 0.035 Numerical Integration
oL i
10 i
0 1 1 1 I T
0 0.05 0.1 0.15 0.2 0.25 0.3

Q
Figure 3-7 Comparison of Taylor Series Expansion and numerical integration ‘- -
‘:unstable solutions ‘-.-° Taylor Series ‘—* Numerical Integration, 3th order

approximation

—
o
T

Z = 0.025 7th order expansion
-—-Z = 0.025 Numerical Integration
—Z =0.035 Tth order ezpansion
o= Z = 0.035 Numerical Integration||
—Z = 0.045 Tth order expansion
---Z = 0.045 Numerical Integration

0 |
0 0.1 02 03 04 05 06 07 08
Q

Absolute Transmissibility
o

w
T

Figure 3-8 Comparison of Taylor Series Expansion and numerical integration ‘- -
‘:unstable solutions ‘-.-* Taylor Series ‘—* Numerical Integration, 5™ order

approximation

76



25 . T . . .

)]
o

-
(@)

—_
o

Z =0.025 5th order expansion
-7 = 0.025 Numerical Integration
— 7 =0.035 5th order expansion
—--7 = 0.035 Numerical Integration
— 7 = 0.045 5th order expansion
—--7 =0.045 Numerical I ntegration

Absolute Transmissibility

(@)

0 ; ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Q

Figure 3-9 Comparison of Taylor Series Expansion and numerical integration ‘- -
‘:unstable solutions ‘-.-* Taylor Series ‘—* Numerical Integration, 7 order

approximation

Accuracy of the frequency response functions of the Taylor Series expansion
depends not only base excitation but also vertical damping. To map the effect of
base excitation and vertical damping coefficient, error is defined as

max(lFRFTaylor series|)

max(lFRFNumeric Integration D

E[%)] = (3-35)

The results are tabulated at Table 3-2-3. It can be concluded that 5th order
representation provides more accurate results for greater damping coefficient and
base excitation range.
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Table 3-2 Error Values of 3th Order Taylor Series Expansion

Error [%]| §&,=0.015 £, =0.017 | §=0.02 | & =0.022
Z =0.030 0.0569 0.036 ~0 ~0

Z =0.034 5.548 0.071 0.001 ~0

Z =0.036 > 100 0.287 0.009 ~0

Z =0.040 > 100 > 100 0.1 ~0.014

Table 3-3 Error Values of 5th Order Taylor Series Expansion

Error [%] | &,=0.015 §,=0.017 | & =0.02 | & =0.022
Z =0.030 ~0 ~0 ~0 ~0

Z =0.035 1.27 ~0 ~0 ~0

Z = 0.040 15.37 2.18 ~0 ~0

Z =0.060 46.69 38.59 26.07 17.51

Z =0.080 61.15 55.41 46.57 40.52

Table 3-4 Error Values of 7th Order Taylor Series Expansion

Error [%] | &,=0.015 §&=0.017 | §,=0.02 | & =0.022
Z=0.030 ~0 ~0 ~0 ~0
Z=0.035 0.0484 ~0 ~0 ~0
Z =0.043 > 100 4.87 ~0 ~0
Z = 0.045 > 100 > 100 0.0084 ~0
Z = 0.055 > 100 > 100 > 100 3.25

3.1.5 Effect of QZS Isolation System

In order to satisfy the QZS condition, stiffness at the equilibrium point must be

equal to zero as can be seen from the Equation (3-5). The non-dimensional

parameters, which are defined in Equation (3-4), are taken asd =2,y =1, &,

0.015. Different base excitations with different amplitudes are applied to the
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nonlinear isolator which satisfies the quasi-zero-stiffness condition. The frequency
response function (FRF) is given in Figure 3-10. As the base excitation amplitude
increases, FRF bends towards higher frequencies due to the cubic stiffness effect of
the QZS mechanism. The adverse effect of the QZS mechanism can be eliminated
by increasing damping in the system. However, increasing the linear damping

affects the isolation region adversely [2].

Linear System~___

—2/a=0.05 i

--Z/a=0.035 S

7/a=0.03 A

o'l | —Z/a=0.025 g
Linear System Py

Absolute Transmissibility
=
o

-1
10
1072 107 10°

[w/wn]

Figure 3-10 Effect of QZS Mechanism and nonlinear damping § =2,y =1, ¢, =
0.015

3.1.6 Load and Stiffness Deviation

Load and stiffness of the isolation system can be deviated from the design values.
These can be due to parameter uncertainties and/or due to the constant acceleration
of the base which can be observed in aircraft platforms. Therefore, the load on the
isolation system deviates and equilibrium points shifts from the point where x = 0.
This results in bias term in the Equation (3-13) and affects the isolation

performance adversely. The absolute transmissibility curve for different normalized
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deadweights is shown in Figure 3-11, where w is the ratio of actual weight to design
weight. It is observed that even slight deviations in weight result in an increase of
the resonance amplitudes. The bias term of the response also increases due to
deviation of the isolation weight which is shown in Figure 3-12.

w = 0.989
- -1 = 1.007

—t
o
T

— = 1.019
w = 0.917
—w =1

(0¢]
T
I

Absolute Transmissibility

Figure 3-11 Effect of Load Deviations- Absolute Transmissibility § = 2,y = 1,
&, =0.015,Z/a = 0.035

The horizontal stiffness of the system may vary from its design value due to
manufacturing errors and environmental conditions as a result of which the isolation
performance may change as well. Absolute transmissibility function curves for
different y = 2k, /k,, values are shown in Figure 3-13. As the ratio of horizontal
spring stiffness to vertical spring stiffness decreases, the resonance frequency

increases.
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Figure 3-13 Effect of stiffness deviations § = 2, ¢, = 0.02,Z/a = 0.035
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3.2 Geometrically Nonlinear Viscous Damping

In mechanical systems, damping is an important property for the vibration isolation
purposes. It is a vibration energy dissipation mechanism; hence, the resonance

response depends on the damping characteristic of the mechanical system.

Although increasing damping in a mechanical system decreases the vibration
amplitude at the resonance, it has an adverse effect in the isolation region [64] [2].
Higher damping ratios results in higher vibration transmissibility at the isolation
region where transmissibility is lower than unity. Moreover, as linear viscous
damping ratios increase, phase delay at lower frequencies increases, which might be
a disadvantage for vibration isolation of measurement devices. Therefore, ideally, a
damping mechanism would decrease resonance amplitudes, provide less phase
delay at lower frequencies and low transmissibility at higher frequencies. Studies
show that this damping characteristic can be achieved by use of cubic damping type
nonlinear element [65, 66]. A more physically obtainable version of the cubic
damping mechanism, i.e. geometrically damping mechanism, is studied by the Tang
[70]. This mechanism is obtained by attaching a viscous damper horizontally to the
system which behaves as cubic damping. With the combination of the nonlinear
damping and QZS isolator, the stability performance of the isolation system is

improved and unbounded response to base excitation can be eliminated [71].

3.2.1 Geometrically Nonlinear Damping Model

In this section, two viscous dampers are added to the system horizontally (Figure
3-14). When the system at the equilibrium position, the vertical component of the
compressed springs is zero Figure 3-1b. ¢ is the parameter of the “horizontal
viscous damper” and k,,, c, are the parameters of the vertical spring and damper.
The distance between the two ends of the horizontal elements is y(t); the free

length of the horizontal spring is L,.
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3

Figure 3-14 Nonlinear isolator with negative stiffness mechanism and geometrically

nonlinear damping (a) initial unloaded state (b) equilibrium point

The vertical component of the damping force can be obtained as

2cpx?

=" 3-36
fd (az + xz) X, ( )
And the non-dimensional form of it can be written as,
2
Ja > (3-37)

2c,%  (1+3%2)

where X is the non-dimensional displacement which is defined as X = x/a.

For sinusoidal displacement input at different excitation levels, non-dimensional
damping force is obtained, and it is given as a function of non-dimensional velocity
and non-dimensional displacement in Figure 3-15 and Figure 3-16. For linear
damping force this non-dimensional damping force is equal to 1 and it is
independent of displacement. However, from Equation (3-37), it can be said that
around the equilibrium point non-dimensional damping parameter is equal to zero
since the angle between the damping force vector and vertical axes is equal to 90
degrees (Figure 3-15). Furthermore, the effective region of the nonlinear damping

expands with increase of the amount of the displacement (Figure 3-16).

It should be noted that damping force is not only function of velocity, but it is also

function of the displacement. Therefore, the adverse effect of the damping on the
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isolation region can be eliminated since the nonlinear damping coefficient decreases

as the displacement amplitude decreases.
1r
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Figure 3-15 Non-dimensional damping force vs velocity for different sinusoidal

excitation levels

Figure 3-16 Non-dimensional damping force vs position for sinusoidal excitation

3.2.2 Response to Base Excitation

Geometrically nonlinear damping forcing is given by Equation(3-38).
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_ 2cp(Ug + U sin(y)))? ]
Fu, = (@ + (Uy + Usin@))?) (wU cos(y)). (3-38)

where U, is the bias term in the relative displacement response, U is the amplitude

of relative displacement response. Then nonlinear differential equation of motion of

single degree of freedom vibratory system becomes

. c 1k 25 (1 L, 2chu2 .
mi + cx + ky, (x — xp) + h( _m)u+(a2+u)u (3-39)

=cz(t) + k, z(t) — mg
To solve the nonlinear differential equation (3-39), the procedure explained in

Section 3.1.2 is used.

The adverse effect of the QZS mechanism can be eliminated by increasing damping
in the system. However, increasing the linear damping affects the isolation region
adversely. This can be overcome by including nonlinear damping into the isolation
system without affecting the isolation performance.

The effect of the increased nonlinear damping is studied for normalized base
excitation amplitude of Z/a = 0.035 and the results obtained are given in Figure
3-17. It can be clearly seen that as nonlinear damping increases the resonance
amplitudes decreases and resonance frequency shifts towards lower frequencies

while the isolation performance of the system is not affected.
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Figure 3-17 Effect of nonlinear damping 6 = 2,y =1, &, = 0.015,Z/a = 0.035

3.2.3 Validation of Single Harmonic Solution Method

In order to validate the results obtained by harmonic balance method, solution of the
case with base input of Z/a = 0.035 is obtained by time domain integration
utilizing a 4th order Runge Kutha method and the comparison is given in Figure
3-18.

It can be seen that results obtained by HBM and time integration method agree well
with each other; therefore, it can be concluded that a single harmonic representation

is sufficient for this problem.
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Figure 3-18 Comparison of Time Domain and HBM Z/a = 0.035 6§ =2,y =1,
&, =0.015, &, = 0.05

3.2.4 Conclusion

A nonlinear isolation system with quasi-zero stiffness and geometrically nonlinear
damping is considered in Section 3.1 and Section 3.2. The nonlinear differential
equations of the system are converted into a set of nonlinear algebraic equations by
using Single Harmonic Balance Method (SHBM). The resulting set of nonlinear
algebraic equations are solved by using Newton’s method with arc-length
continuation. In order to validate the results obtained by SHBM, solution of the
same system is obtained by using time integration and the results obtained are
compared with each other which verifies the solutions obtained by HBM. Several
case studies are performed in order to investigate the effect of certain system
parameters. As the input motion amplitude increases, the use of only QZS has
issues due to increased vibration amplitude and resonance frequency. This problem

is overcome by the use of geometrically nonlinear damping which decreases both
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the vibration amplitude and resonance frequency without affecting the isolation

performance of the system.

In addition to these, the effect of variations in isolator stiffness and load are studied.
As the deviations increases the amplitude of the vibrations increase and the
resonance frequency of the system shifts towards higher frequencies. Therefore,
possible deviations of these parameters need to be considered in the design of such
nonlinear isolation systems in order to eliminate the adverse effects due to

uncertainties.
3.3 Dry Friction-Isolator 1

To increase the effectiveness of the isolation region for different excitation levels,
nonlinear damping is introduced in Section 3.2. In this chapter, dry friction, another
nonlinear damping mechanism, is implemented to HSLDS isolation system.
Hysteresis loop of dry friction combined with QZS is obtained and mathematical
model is introduced. Harmonic balance method is used to convert nonlinear
differential equations to set of nonlinear algebraic equations. Analytical
approximate solution of harmonic balance methods is obtained for single
harmonics. Isolation performance under base excitation is studied for different base
excitation levels. Stability of the steady state solutions are also considered by Hill’s

method that is explained in Section 3.1.3.

3.3.1 Dry Friction Model

Dry Friction implemented system can be seen in Figure 3-19. As can be seen from
Section 3.1.1, the stiffness of the overall system is cubic like and the effective range
of the isolation system is limited. Unstable solutions can be obtained due to cubic
like stiffness behavior. However, proposed isolator system starts to slip when
stiffness force exceeds the slip force. Therefore, additional damping is introduced in
the system and nonlinear behavior can be limited. As can be seen from Figure 3-19,
kj, is the parameter of horizontal spring, k, and c, are the parameter of vertical
spring and viscous damper. As stated in Section 3.1.1, the overall vertical stiffness

is nonlinear and dependent on the position. Therefore, overall stiffness can be
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defined as a position dependent nonlinear stiffness element as shown in Figure 3-19
(b).
a) x(t)

1 7

m g
fnl E

= k3xj + ksx? + 0(xf)

%7 (t) x(6)

Figure 3-19 QZS Isolation system with dry friction (a) schematic drawing (b)

equivalent dry friction model

Friction force, f4,,, can be obtained as Equation (3-40) assuming that it is elasto-

perfectly plastic,

fa(xg)  stick condition,

sgn(x)Fs slip condition. (3-40)

fdry :{

where f,,;(x¢) is the nonlinear stiffness force, Fs is the slip force, x is the absolute
displacement of the mass. The displacement x is defined in Figure 3-19. Hysteresis

loop for this isolator can be seen in Figure 3-20 for the sinusoidal input. For the

ease of calculations wt is taken as 1.
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Figure 3-20 Hysteresis loop for the proposed isolator

For sinusoidal input x = X sin, dry friction, f;,,, can be written as

fuGp) 5 <P <,

37 (3-41)
—Fs P <Y< 23

fdry =

where,

1, = asin (— ;%) (3-42)
and f;(xf) is the nonlinear stiffness force. For the complete stuck mode, the
forcing is nonlinear due to the kinematic relationship between the vertical
component of the horizontal spring force and the displacement vector. The same
mechanism, i.e. negative stiffness mechanism, is studied in Section 3.1 in detail.
Based on the static and dynamic analyses performed in Section 3.1, exact
formulation of the nonlinear stiffness force at the complete stuck mode can be

written as
(3-43)

Lo

/2 2
xf+a

90

fur(xp) = kn | 1 - xp + ky X



Referring the hysteresis loop shown in Figure 3-20, x; can be taken as
(X siny — A) where g < Y < ;. Therefore, for the complete stuck mode, dry

friction force f3,,, can be rewritten following as

fdry
Lo . . T
:{kh<1—\/(XSinw_A)z+a2>(Xsm1/)—A)+k,,(Xsml/)—A). ,E<1/)<1p1 (3_44)
| ~Fs h<w<

To calculate the nonlinear forcing angle transition angle 4, two unknowns g where
the slip starts and A where the force equals to zero must be found. These unknowns
can be found by solving Equation (3-45) and (3-46).

L,
=k - —A)+k —A),x =X, -
Fs h<1 \/(X—A)2+a2> K-ty K- A x=X (3-43)

Fs =ky B+A)+k,(B+A4), x= —p. (3-46)

(- Te)
V(B + A)? + a?
In Equation (3-45) and (3-46), nonlinear stiffness force is written by using exact
formulation. Assuming relatively small oscillations around the equilibrium point,
59 order Taylor Series Expansion which is obtained in Sec.3.1.1 can be used. Then

equations can be written in the following form

Fs =k3(X — A)3 + ks (X — A)5, (3-47)
Fs = k3(B + A)® + ks(B + A)S. (3-48)
where k; = %RZ?, ks = —%k’;o .

Two unknowns S and A are calculated from the solution of nonlinear algebraic
equations (Equation (3-49) to (3-52))

ks(ps + (—Sst)(p4 + (k3 + 10X2k5)(p3 + (—3Xk3 — 10X3k5)(p2

+ (3X2ksy 4 5X*ks)p — X3ks + Fs — X5ks = 0, (3-49)

A = Real Root(¢;),..,i = 1..7, (3-50)
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ksp® + 5Aks@* + (ks + 104%ks) 3 + (34k; + 1043ks) p? (3-51)
+ (34%k; + 5A%ks) @ + A3k; — Fs + A%ks = 0,

B = Real Root(¢;),..,i = 1..7. (3-52)

3.3.2 Response to Base Excitation

For a single mass isolated by a nonlinear isolator the equation of motion can be
obtained as
mi + cx + f,(u, Fs) = cz(t). (3-53)

where u(t) is the relative displacement defined as u(t) = x(t) — z(t). The isolator

model for the base excitation is shown in Figure 3-21.

x(t)
A
m g
xp(t)
kh
—/ "\ AN\
y(t)
W e 4

Figure 3-21 Base excitation model of the nonlinear isolator

For a single harmonic base input as z(t) = Z sin(wt), the response of the mass can
as well be assumed harmonic in the following form x(t) = X;sin(wt) +
X, cos(wt) utilizing a single harmonic representation. Similarly, the relative motion

can be written in the following form
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u(t) = Usin(wt + ¢) = U sin(y). (3-54)
Equation of motion can be studied under two conditions; complete stick condition

and stick-slip condition.

3.3.2.1 Stick-Slip Mode

For complete stick condition where (k3U2 + ksU>) > Fs, nonlinear forcing £, is

given by

3 (3-55)

s (U sin() — A)? + ks (U sin(ih) — A)° g <y <
fdry =
—Fs ll)l < lp < 7

By using a single harmonic Fourier Series representation as Section 3.1, the

nonlinear forcing can be written as follows
fn = fns sin(wt + @) + f,,. cos(wt + @), (3-56)

fo = (fus cOs ¢ + fyc sin @) sin(wt) (3-57)
+ (fne cOs @ + frs sin @) cos(wt).

where f,,s and f,,. are the sine and cosine Fourier coefficients, f,,is the nonlinear
forcing. Fourier coefficients can be calculated as given in Equation (3-58) and
(3-59) for the case where stick slip condition i.e. (k3U3 + ksU®) > Fs is satisfied,

Py
fre = %< | (ks(Usin(p) — A)° + ks (U sin() — A)°) cos(p) dyp
2

i (3-58)

+ ? —Fs cos(y) dl/J>,

P,
2 r¥:
fos = E( T (k3 (U sin(y) —A)* + ks(U sin(y) — A)®) sin(yh) dyp
2 i (3-59)
2
+f —Fssin(y) dl,[)).
Then, Fourier coefficients can be written as,
7
2 .

foe = ;(BO + ZBnU + Fs(1 4+ sin(¥y)) > (3-60)
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7
2
fns = p- (CO + Z C,U"—Fs cos(t/)1)>.
n=1

Coefficients defined in Equation (3-60) and (3-61) can be calculated as

BO = — Sin(l/)l) Asks + k5A5 - Sin(lpl) A3k3 + k3A3,

3 5 5 3
Bl = Esln(¢1)2A2k3 - EA4k5 + Esln(lpl)zA‘l-kS - EA2k3,

10 10
BZ = _?Sin(lpl)3A3k5 + Ak3 - Sin(lpl)3Ak3 + ?A3k5,

1 5 1 5
B; = _Zkg + Esm(l/)l)A‘ ksA% + Zsm(lpl)4 ks — EAZkS,
B, = ksA — sin(y,)° ksA,

101
Bs = —gks + gsm(llh) ks,

Co = k3 A® cos(,) + ksA® cos(ihy),

3 2 : 3 2 5 4 :
¢, = —EA k3 cos(4) sin(y,) + EA ks, — EA ks cos(y,) sin(y,)

3 2 5 4 5 4
—ZA k3T[—ZA k57‘[+§A kslpl,

10
C, = Ak; Sin@/ﬁ)z cos(yq) + ?A3k5 Sin(¢1)2 cos(¥1)

20
+ ?A3k5 cos(1) + 24k; cos(yy),

15 5 1
C; = TksAZI/h - EksAZ sin(¢1)3 cos(Pq) — 4 ks Sin(¢1)3 cos(¥,)

3 15 _ 3
+ §k3¢1 - TksA cos(y4) sin(ypy) — EkﬂT

15

3
— 5 ks A% — S ks cos(py) sin(3hy),

Cy = ksAsin(r)* cos(py) +3 ksAcos(p) + 5 ksAsin(y)? cosCpy),
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(3-67)
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(3-71)
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5 > >
Co = — Ek5 cos(51/)1) sin(y,) — ﬁks sin(y,)3 cos(yy) + 1—6k51/11

1
- 3—2 kst — g ks sm(1/;1)5 cos(1y),

(3-73)

3.3.2.2 Complete Stuck Mode

For complete stuck condition where (ksU3 + ksU®) < Fs, nonlinear forcing is

given by

fary = k3 (U sin(¥))? + ks (U sin())°. (3-74)
Fourier coefficients can be calculated as given in Equation (3-75) and (3-76) where
(k3U3 + ksU®) < Fs,

2 Y
fre =2 | Ges(Usin@))® + ks(Usin @)D cosd dp,  (375)
0

2 Y
fos == | GesUSInG)® + ks(Usin ) sin @y dp. (370
0

Integrals can be evaluated as follows:
fae =0, (3-77)

3 5
fos = Zk3U3 + Ek5U5. (3-78)

3.3.2.3 Solution

After obtaining Fourier Coefficients for complete stuck and stick-slip conditions,
nonlinear differential equation of motion Equation (3-106) can be converted in to
set of nonlinear algebraic equation. Using Harmonic Balance Method (HBM), the
resulting nonlinear algebraic equations of motion can be obtained as follows for
stick-slip mode,

—mw?Usin(¥) + cw cos(y) + fnssin(y) + fnc cos(y) =

w?mZ sin(wt).

where w is the excitation frequency, Z is the base excitation amplitude. Balancing

(3-79)

sine and cosine harmonics and introducing the phase,
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(% - mw2> U cos(¢p) — (fyuec + cwl) sin(¢p) = w?mZ, (3-80)
(% B me) Usin(¢) + (fye + cwlU)cos(¢) = 0. (3-81)

Using sin(¢)? + cos(¢)? =1,

2 (3-82)
(% B mwz) u*+ (fnc + C(‘))Z = w*m?Z2.

To find w from this 4" order polynomial,

a,w* + a,w? + ayw + ay =0, (3-83)
where a, = (U2 —Z%)m? ,a, = U?c? = 2f,;mU —2mU , a; = 2cUf,. , a, =

2.+ ;2 + 2f,s. Solution of quadric equation is given by

Wy, = —Pr VPs " Pe (3-84)
: 2 2
Wy, =Dty YPs 7P (3-85)
4772 2
where,
p1 = 2a, + 27a4a, — 72a40,a,, (3-86)
pz = pl + \/—4(0,2 + 12a4a0) + pf, (3'87)
2412 3\%
a a,a )
ps = — 7 °+3a4, (3-88)
3a4\/%
_ |l (3-89)
D4 3a4 + p3;
2az (3-90)
p5 - 3a4 p3:
pe = — ok, (3-91)
A4Ps

For complete stuck mode, since f,,. = 0 the equation can be reduced to quadratic

equation by replacing w? in Equation (41) by A.

96



a,w* + ayw? + ay = 0. (3-92)

Then,

—a, + 2 _
(U1,2=\/ a, *+a; 4a4a0. (3-93)

3.3.2.4 Absolute and Relative Transmissibility

For solution of absolute displacement which is defined as

x(t) = Usin(wt + ¢) + Z sin(wt). (3-94)
phase ¢ shall be found from Equation (3-81). Then the magnitude of the absolute

transmissibility is given by

X _WUcos(¢) +2)* + (Usin(¢))? (3-95)
VA Z '

The relative transmissibility is defined as U/Z.

3.3.3 Validation of the Solution Method

To validate the results obtained by harmonic balance method, solution of the case
with Z = 0.035 and &, = 0.015 by Hybrid Dynamical System Simulation utilizing
ODE45 solver. To determine the slip-stick states, zero-crossing detection (ZCD)
method explained in [89] is used. ZCD algorithms employ a discrete state, which
remembers the most recent sign of the F,;; — Fs and x(t) and is updated when these

values cross zero. Zero-crossing events are defined as follows

{|fn (u,Fs)| — Fs stick to slip,

x(t) slip to stick. (3-96)

When zero-crossing events are detected, transition equations are written as follows

{x'f (t) = z(t) sticktoslip, (3-97)

X¢(t) = x(t) slip to stick.

Displacements x; and x are defined in Figure 3-19. Comparison of single harmonic

assumption and hybrid dynamical system simulation results is given by Figure 3-22.
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As can be seen Figure 3-22, the steady state solutions and time simulation response
are agreed well except small deviations around the resonance where relative
displacement has its peak value. Therefore, it can be concluded that single harmonic

balance method can be used to represent the dynamics of the isolator.
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Figure 3-22 Time Simulation Results, ‘- -’:unstable solutions

Jump down phenomena can be seen in Figure 3-23 which is HDSS result in time
domain. When the slip force is exceeded by the nonlinear stiffness force, system is
translated from complete stick mode to stick-slip mode and jump down to another

solution.
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Figure 3-23 Jump down phenomena

3.3.4 Comparison of the Proposed Isolator with QZS vibration isolation
system

The non-dimensional parameters are taken as § = 2,y = 1, &, = 0.015. Different
base excitations with different excitation amplitudes are applied to the nonlinear
isolator which satisfies the quasi-zero-stiffness condition. The frequency response
function(FRF) is given in Figure 3-24. As the base excitation amplitude increases
FRF bends towards higher frequencies due to the cubic stiffness effect of the QZS
mechanism. It can be observed that the resonance amplitudes are reduced thanks to
damping that is introduced by dry friction damper. When slip starts, damping
introduced in the system and resonance amplitudes are thus reduced. Stability of the

steady state solutions are obtained by the procedure explained in Section 3.1.3

Table 3-5 Parameter Set

m=1kg k, = 20000 N/m
ky, =20000 N/m a=0.08m
L, =0.016 m &, = 0.015
)
Q=— o = |k
Wy, n m
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3.3.5 Effect of Slip Force Amplitude

The effect of the increased slip force is studied for normalized base excitation
amplitude of Z/a = 0.035. Absolute and relative transmissibility curves are given
in Figure 3-25. It can be clearly seen that as slip force decreases resonance
amplitudes decreases and resonance frequency shifts towards lower frequencies
while the isolation performance of the system at higher frequencies is not affected.
However, the slip force is limited by the deadweight. Slip force must be greater than
the deadweight. Even if, the case where Fs =5 N provides enhanced isolation
performance, it is not possible to obtain this system practically since deadweight

mg = 9.81 N for this particular example.
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Figure 3-24 Effect of QZS Mechanism and dry friction § = 2,y = 1, &, = 0.015,°-

-’:unstable solutions
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3.3.6 Performance Comparison of Linear Viscous Damper and Dry Friction
Damper

As stated in Section 1.4.6.2., increasing linear viscous damping also provides the
reduced resonance amplitudes and unstable steady state solutions can be eliminated.
However, it effects non-resonance regions adversely [64, 70]. This effect can be
seen in Figure 3-26. Two responses having the same resonance amplitude are
compared. One of them has dry friction and linear damping coefficient equals to
zero. Other response contains only linear damping mechanism and QZS, i.e.,
Fs = oo. It can be said that resonance amplitude can be reduced without effecting
the non-resonance regions by means of dry friction. Since dry friction is in complete
stuck mode at higher frequencies, it acts as only stiffness element. Thus, there is no

energy dissipation from dry friction damper.
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Figure 3-26 Comparison with dry friction and linear viscous damping

6 =2, vy=1,Z/a = 0.045, ‘- -’:unstable solutions

In physical system, obtaining viscous damping in the Figure 3-19 may not be
practical. Therefore, the effect of viscous damping coefficient in response is
studied. Absolute and relative transmissibility for different damping ratios graphs
are given in Figure 3-27 and Figure 3-28 respectively. Since the dry friction
provides damping in stick slip mode, it is possible to have bounded and stable

solutions around resonance region without linear viscous damper.
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3.3.7 Conclusion

In this section, a nonlinear isolator having combination of QZS and dry friction

damper is studied. Using single harmonic balance method, nonlinear differential
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equations are converted into set of nonlinear algebraic equations. Fourier
coefficients are obtained analytically for full stuck and stick-slip modes and
stability of the steady state solutions are observed. From time simulation analysis, it
can be said that single harmonic balance is sufficient to represent response of the
system. Isolation performance of the isolator is compared to classical QZS isolation
systems. It is observed that, input dependency of isolator can be eliminated by
integrating dry friction damper. Since dry friction damping force only effective at
resonance region, it does not affect the isolation region transmissibility. Thus,
adverse effect of linear viscous damper is eliminated. Decreasing slip force reduces
the resonance amplitudes. However, dry friction shall carry deadweight of the
system. Therefore, minimum dry friction should be greater than the deadweight of
the system to be isolated. Since system has damping mechanism due to dry friction,

viscous damper can be removed from the isolator.
3.4 Dry Friction-Isolator 2

Although Dry Friction Isolator - 1 provides low frequency isolation and nonlinear
damping, QZS mechanism may not be an alternative since it reduces the oscillations
in working frequency range. Therefore, HSLDS systems can be considered and
resonance frequency can be set according to cut-off frequency of the IMU. In this
section, a nonlinear isolator having dry friction and HSLDS is considered. The
unloaded and loaded condition of the proposed isolator can be seen in Figure 3-29.
At the equilibrium point, horizontal spring is in compress and its vertical
component is zero. However, this compressed spring starts to soften the total
vertical stiffness when the system oscillates around the equilibrium point. In the
equilibrium point, dry friction is in full stuck. Therefore, stiffness of the dry friction
contributes to total vertical stiffness. When slip force exceeds by the stiffness force

of the dry friction, system starts to slip, and damping is introduced in the system.

Unlike the “Dry Friction Isolator-1”, this system does not have any slip force limit

since the weight is carried by total vertical stiffness.
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Figure 3-29 HSLDS and Dry Friction Vibration Isolation System

Referring isolator proposed in Figure 3-29, k;, is the stiffness of the horizontal
spring and k,, ¢, are the parameters of the vertical dashpot, k; is the parameters of
the spring of the friction element. The distance between the two ends of the
horizontal spring is y(t); the free length of the horizontal spring is L,. When
loading f;, is applied to the mass, it will deflect from its equilibrium point. The
amount of deflection is defined as x. L, is defined in Figure 3-29. Then the vertical
component of the horizontal springs can be found as stated in Equation (3-1). Total
stiffness force for full stuck condition is given by
Lo

where x, = W- To satisfy the equilibrium point without slipping, slip force,

fi —mg =k, (1 — )x + ky(x — x5) + ke(x — x, + Lq), (3-98)

Fs, must be greater than the spring preload yielding

Fs > ke(Ly — x,). (3-99)

Other condition for the equilibrium point follows that
mg = kyx, + ke(Ly — x,). (3-100)
Slip force and the friction stiffness are important parameters for the isolation

performance. After obtaining optimum values for slip force and stiffness of dry

friction, equilibrium point can be adjusted by considering Equation(3-99) and
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(3-100). Assuming that equilibrium and complete stuck conditions are satisfied,
total stiffness force takes the form

=kp(1 Lo k, + k 3-101

fi = h( —ﬁ>x+(u+ £)X. (3-101)

The non-dimensional form of the stiffness force is given by

W N ()/ (1 B 5526_|_ 1) + 1) X, (3-102)

where 6 = Lo/a, y = kp/(ky, + k). From Equation (3-104), it can be seen that
non-dimensional total stiffness force is same with the Equation (3-4). Therefore,
effects of non-dimensional parameters on stiffness can be seen in Figure 3-3 and
Figure 3-4. Increasing the ratio of horizontal stiffness to total vertical stiffness,
including dry friction spring and vertical spring, results in negative stiffness around
equilibrium point and quasi-zero-stiffness can be achieved. As can be seen in Figure
3-3 and Figure 3-4, the effect of § and y are similar to each other. If one tries to
decrease stiffness around the equilibrium point, it can be achieved by increasing
& and/or y according to design limitations. It can be concluded that total vertical
stiffness, horizontal stiffness and ratio off free-length of horizontal spring to link

length are basic parameters to define stiffness characteristic of isolator.

3.4.1 Dynamic analysis of Proposed Isolator

Dry Friction implemented to system can be seen in Figure 3-30. As stated in
Section 3.1.1, the stiffness of the overall system is cubic like and the effective range
of the isolation system is limited. Unstable solutions can be obtained due to cubic
like stiffness behavior. However, proposed isolator system starts to slip when
stiffness force exceeds the slip force. Therefore, additional damping is introduced in
the system and nonlinear behavior can be limited. In the dynamic analysis of the dry
friction damper, macro-slip model is used, in which the normal load, Fs/u, is

constant and the damper is either full stuck or stick-slip.
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x(t)

(a) (b)
Figure 3-30 Dry Friction Damper (a) schematic drawing (b) Hysteresis Loop

Hysteresis loop for this isolator can be seen in Figure 3-30 b for a sinusoidal
displacement input x(t) = X sin wt, where Fs is the slip force, X is the amplitude
of the oscillation and u is the friction coefficient between the surfaces. The force
across the two ends of the dry friction damper for a sinusoidal excitation of x(t) can

be expressed as

m
—Fs + ks(x + 6) ,E<a)t<1/11

fdry = 37 (3'103)
—Fs Y <wt< -
where,
§=—"" (3-104)
ky
] 0
, = asin (_ )_(>_ (3-105)

3.4.2 Response to Base Excitation

For a single mass isolated by a nonlinear isolator, the equation of motion can be

obtained as
y ke (1 L, i
mx +cx + ky ( - —m> x + ky (x = x0) + fary (3-106)

=k,z+ cz(t) —mg,
where u(t) is the relative displacement defined as u(t) = x(t) — z(t). The isolator

model for the base excitation is shown in Figure 3-31.
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Figure 3-31 Base excitation model of the nonlinear isolator

For a single harmonic base input as z(t) = Z sin(wt), the response of the mass can
as well be assumed harmonic in the following form x(t) = X, sin(wt) +
X, cos(wt) utilizing a single harmonic representation. Similarly, the relative

motion, u(t) = x(t) — z(t) can be written in the following form

u(t) = Usin(wt + ¢) = Usin(y). (3-107)
Since macro-slip model is used to model dynamic behavior of the dry friction
damper, the dry friction element undergoes complete stuck motion or alternating
stick slip motion. Therefore, equation of motion is examined according to which
state the dry friction undergoes and it is solved for full stuck motion and stick-slip

motion.

By using a single harmonic Fourier Series representation, the nonlinear forcing can

be written as follows

fn = fns Sin(wt + ¢) + fnc COS((Dt + ¢)l (3'108)
fa = (fas €S @ + frc sin @) sin(wt)
+ (fc €OS @ + frs sin @) cos(wt). (3-109)

where f,,s and f,,. are the sine and cosine Fourier Coefficients
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3.4.2.1 Complete Stuck Motion

When the dry friction damper in complete stuck condition, i.e. the maximum spring

force does not exceed the slip force (kU < F's), force across to the two ends of the

damper is given by

fdry = ka- (3-110)
For both cases, the vertical component of the horizontal spring, f's, follows that
fs = ka (1 Lo ) (3-111)
s = - | X -
" Vet a2

Then, total nonlinear forcing can be written as sum of the horizontal spring force

and force across the two ends of dry friction damper:

fa=f+t fdry- (3-112)
Fourier coefficients of nonlinear forcing can be given for complete stuck mode as
follows:
f 1f2n<k <1 Lo >+k>U in(y) cos(¥) dy, (3-113)
= - - sin cos , -
“owly "\ JUsm)z+az)
f 1f2n<k <1 Lo >+k>U in(y) sin(y) dyp.  (3-114)
= — — Sin Sin . -
®omly P\ JWUsm@)z+az)
After evaluating the integrals Fourier coefficients for complete stuck mode
becomes,
fac =0, (3-115)
2k, L, a?EllipticK (L)
P T O V- 1
=—| zUr
Y R UVaZ + U2
U (3-116)
2kyL,Va? + U?EllipticE (—)
a?+ U?
- 7 + keU.
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3.4.2.2 Stick-Slip Motion

This motion is observed when the maximum spring force exceeds the slip force
(kU > Fs). Then, force across to the two ends of the damper is given in Equation
(3-103) by utilizing hysteresis loop. As can be seen from the hysteresis loop shown

in Figure 3-30b, the stick slip motion is symmetric. Therefore, the Fourier
coefficients are found by evaluating the integrals between (g 37") as follows:

3

2( (¥ 2
foe = E(L (—Fs + ks (U sin(¥) + 8)) cos(y) dy + f —Fs cos(¥) dy
2 1

(3-117)

" L, .
Jen (1 - dy )
+f0 " <1 JUsn@)? + aZ) Y sin) costh) w)

s 3
fns = z( (—Fs + k¢ (U sin(¥) + 8)) sin(¥) dy + ’ —Fssin(y) dy

Vs
T\ JZ Y1

(3-118)

8 Lo . .
+ fo kn (1 — \/(U ST a2> U sin(y) sin(y) dl[)).

Evaluating the integrals analytically results in the following coefficients

+— (3-119)

cos(y)?U 5 4Fs
2 1

_2 S si
fnc_E< Slﬂ(l/)l)—

U
2k, L, a?EllipticK (—)
h*~o p /—az +U2

UNaZ + U2

2kpL,Va? + U?EllipticE (L)
a’? +U?

Leu
U Al

RN
N| =

fns = UT[kh +

(3-120)

1 . 1
— EU cos Y4 sinyy + Ekalpl — kgbcosyhy |.
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3.4.2.3 Solution

For the solution of the equation of motion, the same procedure explained in Section
3.3.2.3 is used. Using Harmonic Balance Method (HBM), the resulting nonlinear
algebraic equations of motion can be obtained as follows for stick-slip mode,

k, — mw?Usin(¥) + cw cos(y) + fns sin(y) + fnc cos(y) =

w?mZ sin(wt). (3-121)

After evaluating the Fourier Coefficient of nonlinear forcing, equation is the same
with (3-79). Therefore, the solution obtained by (3-93) is used. Moreover, absolute
and relative transmissibility are obtained by (3-95).

3.4.3 Isolation Performance

Frequency response functions are plotted for different slip force values using the
equations derived in Section 3.4.1. Below parameter set is used in calculations.

Table 3-6 Parameter Set

m=1kg k, =18 000 N/m
k, = 18 000 N/m a=008m
L, =0.015m £, = 0.02
kr = 2000 N/m R s
n m
w
0=—
(*)n
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Figure 3-32 Frequency Response Functions for different sliding friction force

values (discrete points are time simulations)

As it can be seen from Figure 3-32, time simulations and solutions that are obtained
by utilizing single harmonic balance method are in agreement except small
deviations around resonance where slip force equals to 20 N. Thus, it can be
concluded that single harmonic balance method is sufficient to model dynamics of
the problem. It should be noted that decrease sliding friction force results in
decrease of resonance frequency and reduction of resonance amplitudes. However,
after some point, resonance starts to increase and more sensitive to change of
sliding friction force. Thus, it can be concluded that there is an optimum sliding

friction force for reducing resonance amplitude.

Furthermore, it can be concluded that the low frequency isolation is obtained thanks
to negative stiffness mechanism. Natural frequency of the system is reduced to
approximately 0.35-0.45 of minimum possible natural frequency of the linear
isolation system that can carry the deadweight of the mass. Since it enlarges the

isolation frequency region, the performance is enhanced significantly.
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Another important effect of dry friction on isolation performance is phase response
of SDOF vibratory system. As stated in Section 1, while designing isolation system
for measurement devices such as accelerometers and gyroscopes, both Frequency
Response Functions (FRF) which indicates how vibration amplitudes effectively are
reduced and phase response should be taken into account. Phase response of the
isolation system is shown in Figure 3-33. Results show that damping introduced by
dry friction is only effective when system in stick-slip mode. When vibration
amplitudes are relatively small i.e. isolator in complete stuck mode, system phase
response is same with the SDOF system having linear viscous damper. However,
around resonance, phase response starts to bend due to the additional damping
introduced by dry friction. Unless slip force is chosen carefully, both amplitude and
phase response might be affected adversely. In addition, as can be seen from Figure
3-33, there is phase delay in even at low frequencies due to viscous damper in the
isolator. Considering this and adverse effect of linear damping in isolation region, it
can be advisable to have viscous damping as least as possible. Since dry friction
introduce damping around resonance, there is no need to increase linear viscous

damping to reduce the resonance amplitudes.

0

-0.5
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-2.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Q

Figure 3-33 Phase response of dry friction isolator-2
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Since the system performance is highly sensitive to slip force, performance plot is
achieved for different slip force values and results are shown in Figure 3-34.
Maximum response of FRF plot for each sliding friction force is obtained. For this
particular problem, optimum sliding force can be chosen as 10 N considering Figure
3-33 and Figure 3-34 together. Even if, Fs = 5 N provides minimum resonance
amplitude, system is very sensitive to variation of system parameters and phase

delays increases at lower frequencies [77]

Designed isolator is analyzed under different excitation levels and results are
compared with linear isolation system in Figure 3-35. Due to horizontal stiffness
corrector, resonance frequency is reduced to 0.45 of linear system. Moreover, dry
friction reduces the resonance amplitudes and adverse effect of nonlinear horizontal

springs are eliminated.

0.016

0.012

Max Response

0.008

0.004

0 5 10 15 20 25 30 35
Slip Force — F's

Figure 3-34 Performance plot of dry friction isolator

Maximum of FRFs for different excitation levels is shown in Figure 3-36. It can be
concluded that isolation performance is affected adversely for less excitation levels
than designed value since dry friction isolator starts to slip at higher frequencies. It
should be noted that Figure 3-35 emphases the absolute transmissibility defined in
Equation (3-94). In order to calculate the response, absolute transmissibility should

be multiplied by base excitation amplitude.
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After achieving optimum sliding friction force and § and y, dry friction stiffness
and vertical spring stiffness and other design parameters can be determined by using

equilibrium equations Equation (3-99) and (3-100).
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3.4.4 Conclusion

High-static-low-dynamic stiffness mechanism is combined with a dry friction
damper. Equation of motion of the proposed isolator is obtained. Nonlinear
differential equations are converted into a set of nonlinear algebraic equations for
both complete stuck and slip-stick conditions by utilizing single harmonic balance
method. The resulting quadric equation where the isolator undergoes stick slip
mode and quadratic equation where isolator experiences complete stuck mode is
solved analytically. Frequency response functions are obtained for different slip
forces. It is observed that decrease in slip force reduces the resonance amplitude.
However, after some point, resonance amplitude starts to increase since introduced
damping due to dry friction decreases and amplitudes become more sensitive to
deviation of slip force. Therefore, there is an optimum value which minimize the
resonance amplitude. In addition, resonance frequency is decreased thanks to HSLD
stiffness mechanism. The proposed isolator provides low-frequency isolation, less
phase delay and limited resonance amplitude under different base excitation levels
at the same time, each of which improves the isolation performance significantly
and satisfies the requirements of vibration isolation problem of measurement
devices. In addition, adverse effect of linear viscous damping on isolation region

and highly nonlinear response of HSLD stiffness mechanism are eliminated.
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CHAPTER 4

EXPERIMENTAL INVESTIGATION OF DYNAMICS OF THE
GEOMETRICALLY NONLINEAR SHEAR ELASTOMER ISOLATOR

4.1 Dynamic Characterization of Rubber Isolator

The dynamic analysis of the High-Static-Low-Dynamic-Stiffness isolators are
performed in Chapter 3. Their main advantage is that they lower the natural
frequency of the system while providing relatively higher dead weight loading
capacity. However, the system response is highly input depended due to its
geometrically nonlinear dynamic characteristic. Though increasing linear damping
eliminates these drawbacks of nonlinearity, it effects the isolation regions adversely
and it may not even be applicable due to practical reasons. Since elastomers are
widely used in the industry and easy to integrate into the isolation systems, a novel
elastomer isolator, which has high static low dynamic stiffness and geometrically
nonlinear damping, is designed. Dynamic behavior of this novel isolator is studied
theoretically considering its physical nonlinearities such as loss factor and dynamic
stiffness dependence on dynamic strain. Approximate analytical solutions are
obtained by utilizing single harmonic balance method. Then, on a shear EPDM
specimen, the displacement profile that the isolator experiences are applied, and
force-displacement histories are recorded by using servo-position-control
experiment setup. Damping and stiffness characteristics are achieved for different

response amplitudes of the mass to be isolated.
4.2 Geometrically and Physically Nonlinear Rubber Isolator

The passive isolators, which are generally made up of rubber like materials, are
widely used in the industry since it provides cost effective solutions and does not
require any additional power supply and control electronics unlike active isolation

systems [28].
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However, the system parameters such as stiffness and loss factor are highly
nonlinear, and they are dependent on environmental and operational conditions such
as preload, dynamic strain, temperature, frequency [29]. Furthermore, the isolation
performance is generally limited by the static loading capacity. Although decreasing
stiffness of the isolator enlarges the isolation frequency range by decreasing natural
frequency, the loading capacity decreases due to static deflections under the acting
of gravitational forces [39].

Recently, geometrically nonlinear isolators, which enhance the isolation
performance of passive isolators, have become a popular research area.
Geometrically nonlinear isolators generally consist of pre-stressed horizontal
springs. This geometric nonlinearity provides high static low dynamic stiffness
characteristic which provides low frequency and relatively high loading capacity
together. In literature, there are variety of study which analyze the dynamics of the
passive nonlinear isolators both theoretically and experimentally. Furthermore, a lot
of different design to obtain high static low dynamic stiffness are available. lvana,
in her study, considers the physical nonlinearities (softening behavior) in addition to
geometrical studies as well [49]. Ivana states that softening behavior of oblique
prestressed springs improves the isolation performance. However, the main
drawback of passive nonlinear isolators is its input depended dynamics. Since the
stiffness of QZS isolators is cubic like, increasing excitation adversely affects the
isolation performance. Therefore, jumping phenomena may be observed due to

unstable solutions

To eliminate drawback of input dependency, damping in the system, which is a
vibration energy dissipation mechanism of the isolators, can be increased. As a
result, resonance amplitudes are reduced, and stabile solutions can be obtained for
relatively larger excitation range. However, increasing damping adversely affect the
isolation region and increase the transmissibility at the isolation frequency range.
Therefore, an ideal damping mechanism should decrease the resonance amplitudes
without effecting vibration transmissibility at isolation region. As stated in Section

3.2, cubic damping is only effective at resonance region and desired characteristic
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can be obtained by means of cubic damping mechanism. Previous studies used
linear viscous dampers with constant damping coefficients and only considers the

geometrical nonlinearities.

Referring the advantages of the geometrically nonlinear isolators, it is aimed to
achieve a rubber isolator having HSLDS and geometrically nonlinear damping.
Furthermore, since viscoelastic materials are widely used in industry and it provides
cost effective solutions, it is important to have a nonlinear isolator that is made up
of viscoelastic materials and provides advantages of geometrically nonlinear
isolators. This isolator is modeled so that nonlinear dynamics of rubber like
materials are represented. Therefore, in this chapter, physical and geometrical
nonlinearities of passive elastomer QZS isolator are studied both theoretically and
experimentally. Since commercial test results are generally represented in structural
damping model and it is mathematically useful in frequency analysis, complex
stiffness model is used in the model. For different excitation levels, system
parameters are obtained experimentally. Nonlinear displacement profile that isolator
experiences is applied by servo position-controlled experiment setup. Then
dynamics of the isolator is studied by utilizing harmonic balance method.

Approximate analytical solutions are obtained.

4.3 Mathematical Development

4.3.1 Stiffness Model

The model of the proposed isolator can be seen in Figure 4-1. The horizontal rubber
isolator has static-dynamic stiffnesses and loss factor which are function of dynamic
strain. These system parameters are also function of frequency and temperature.
Since experiments are conducted for a limited frequency range, effect of frequency

is neglected, and temperature is assumed to be constant.
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Rubber Isolator

Figure 4-1 Geometrically and Physically Nonlinear Rubber Isolator

The relative displacement is defined as u(t) = x(t) — z(t). Then, horizontal
displacement can be written in following form
y(t) =+u?+a? - Lo. (4-1)

Equation (4-1) can be normalized as follows:

y@) =vur+1-46, (4-2)

where t = u/a, § = Lo/a and y = y/a. Equation (4-2) can be approximated by
using Taylor Series Expansion.

1
5 PR e
Japp(t) = 1 =8 + -2 + H.0.T. (4-3)

where 4, is the Taylor Series expansion of horizontal displacement. Exact
formulation and Taylor Series Expansion is compared in Figure 4-2. As expected,
around the equilibrium point approximate horizontal displacement and exact

expression agree with each other.
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Figure 4-2 Taylor Series Expansion of Horizontal Displacement

For harmonic base excitation as z(t) = Z sin wt , the normalized relative response
of the mass can be assumed as @i(t) = U sin(wt + ¢) = U sin(yp) where &t = u/a.

The Fourier coefficients of y(t) are given as

1
fo=gn) 0 (@-4)
. 1 21
Y, = —j y cos(2y) dy. (4-5)
21 ),
Evaluating the integrals results in following form,
. 1_
¥ = 1+ZU2 — 6, (4-6)
7= _Lpe (4-7)
2 4 '

Fourier Coefficients of horizontal displacement function is plotted in Figure 4-3. As
expected, the bias term (preload) decreases, and the amplitude of the first harmonic,
(Y,) increases as normalized relative displacement increases. Since static and
dynamic stiffnesses are different for viscoelastic materials, amplitudes of Fourier

Coefficients are important to model nonlinear forcing [28].
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Figure 4-3 Fourier Coefficients of Horizontal Displacement Function

Forcing across the single elastomer isolator is shown in Figure 4-4. As can be seen
from Figure 4-3, dynamic and stiffness are different and dependent on relative
displacement amplitude. Loss factor is also dependent on relative displacement

amplitude.

ksec (U), kdyn(U) hh(U) Fh(t)

Figure 4-4 Forcing Across Elastomer

Forcing across the single elastomer isolator is given by
Fy, o~ S 5 .
P kstcYo + kgynY, cos 24 — hy Y, sin 2. (4-8)

The vertical component of the forcing, E,, can be calculated as
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A~

F, _ _ ~ i
— = (ky.Yo+ ky,,Y, cos2y — h, Y, sin 20 ) ——. -
a ( stc dyn'2 17[) hi2 ¢)m (4 9)

Then, normalized version of total vertical stiffness force including the vertical

spring can written in the following form

_ R, _ _ il A
Fv = akv = 2(ystCY0 + ydanZ COoS le}) \/ﬁZ:H + U, (4_10)

where ysee = ksec/ky @nd Yayn = kayn/kv, 1y = hn/ky.

The effect of non-dimensional parameters y,;. and y4,,,can be seen in Figure 4-5
and Figure 4-6. As can be seen from Figure 4-5, increase in ys. may result in
negative stiffness around the static equilibrium point. Therefore, the ratio of static
stiffness rate of the horizontal rubber isolator, k., to vertical stiffness rate k,

should be determined carefully.
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Figure 4-5 Effect of y¢:. on Normalized Force

Similarly, as the ratio of dynamic stiffness rate of the horizontal rubber isolator,

kayn, to vertical stiffness rate k,, increases, total stiffness around the equilibrium

decreases.
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Figure 4-6 Effect of y4,, on Normalized Force

4.3.2 Damping Model

As stated before, damping characteristic of viscoelastic materials are physically
nonlinear. In other words, loss factor is dependent on dynamic strain amplitude and
frequency content of the excitation [28]. However, proposed isolator has
geometrical nonlinearities as well. Therefore, the mathematical model is developed
so that both geometrical and physical nonlinearities are taken into account. Since
experiments were performed at limited frequency range, the frequency dependency
is neglected in this study. Thus, the hysteric damping coefficient, h;,, is function of

only relative displacement amplitude U.

The vertical component of the geometrically and physically nonlinear damping
force for sinusoidal displacement of the rigid body is given by
F, . il (4-11)
£ = 2(—h,Y; cos 2y ) ——.
a = 2T cos ) sy

Equation (4-11) can be normalized as follows

= P 2t cos ) L (4-12)
= = 2(—nY, cos 2¢) ———.
b kdyna 2 ViiZ + 1
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where n = hy /kgyn. The effect of loss factor can be seen in Figure 4-7. In Figure
4-7, only geometrical nonlinearity is considered. Physical nonlinearity is considered
after experimentally dynamic characterization of the viscoelastic material in Section
4.5. Due to the kinematic relationship between the force and displacement, damping
force is equal to zero around the static equilibrium point. The advantages of the
geometrically nonlinear dampers are discussed in Section 3.2. Moreover, increase in

loss factor leads to increase in damping force, as expected.

Normalized Damping Force

n=0.7

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
Normalized Relative Displacement ()

Figure 4-7 Effect of Loss Factor on Normalized Damping Force

4.3.3 Base Excitation and Approximate Analytical Solution

For a single mass the equation of motion can be written as
mil + k,u + c,u + frs sin wt +f,5 cos wt = —mZ + mg — k,x,. (4-13)

where x, = Va? + Lo?.
By using a single harmonic Fourier series representation and the nonlinear stiffness

and damping models, resultant nonlinear forcing can be written as follows

E, = fus sin(y) + fyc cos(). (4-14)
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where ¢ = wt + ¢. Fourier coefficient can be evaluated as

1 21
f‘l’lS = _.f <2(kStCYO + kdanZ COS 21!}
0

s
. U sin(y) . (4-15)
— hy, Y,sin 2 dy,
nYasin29) S w))2> sin(y) dy
1 2T
fre = —f (Z(kstCYo + KgqynY2 cOS 29
TJy
U sin(y) (4-16)
— hy,Y, sin 2y) > cos(y) dy.
" Ja2 + (Usin())?

After evaluating the Fourier coefficients and assuming mg = k,x,, the nonlinear
differential equation of motion can be transformed into set of nonlinear algebraic
equations by utilizing single harmonic representation.
(k, — mw?)Usin(y)
+ cwU cos(y) (4-17)
+ fnssin(y) + fnc cos(y) = w?*mZ sin(wt).

Balancing sine and cosine harmonics and introducing the phase,

(% + kv o mw2> Y COS(¢) - (fnc + CCUU) Sln((l)) = wzmz’ (4_18)
(% + k, — mw?)Usin(¢) + (fyc + cwlU)cos(¢) = 0. (4-19)

By using sin(¢)? + cos(¢)? = 1,

(% + k, — mw?)2U? + (f. + hU)? = 0*m?Z2. (4-20)

To find w from this 4™ order polynomial,
a,w* + ayw? + a0 + ay = 0. (4-21)

where a, = (U? —Z*)m? ,a, = U%c? — 2f,;mU — 2k,mU, a; = 2cUfy.,a, =

2 + 2 + 2f,sk, + k2. Solution of quadric equation is given in Section 3.3.2.3.
4.4 Experimental Procedure

In dynamic characterization experiments, it was aimed to achieve a relationship
between the vertical harmonic motion of the rigid mass and the dynamic properties

of the rubber isolator such as stiffness and loss factor.
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In order to conduct dynamic characterization of geometrically and physically
nonlinear rubber isolator, a servo position controlled experiment setup was
designed. In this experiment setup, preload and position is controlled dynamically.
The horizontal displacement vector, y(t), and the relative displacement vector u(t)
are shown in Figure 4-8. At the equilibrium point where horizontal springs are
preloaded, horizontal displacement vector is equal to a — L, where L, is the free
length of the horizontal springs and a is the link length of the horizontal spring at

equilibrium point.

Equilibrium Point

Figure 4-8 Horizontal Displacement Vector

An example of a displacement profile in time domain is shown in Figure 4-9. In
Figure 4-9, the horizontal displacement vector is calculated for the case where L, =
0.5, a=02, U=0.5. As expected, at the equilibrium point, horizontal
displacement, y(t) is equal to —0.3, which is preload of the horizontal spring
(a — L,). For different relative displacement (U) amplitudes and frequencies, the

displacement y(t) is calculated by using Equation (4-22).

y(t) =+ u?+ a? — Lo. (4-22)

In the dynamic characterization experiments, horizontal displacement y(t) is
applied to a quad-lap shear rubber specimen and it is controlled by servo position
control algorithm whose block diagram is shown in Figure 4-10. In other words,

reference position signal defined in Figure 4-10 is equal to horizontal displacement
y(8).
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Figure 4-9 Displacement Profile in time domain, L, = 0.5,a = 0.2, U = 0.5

The schematics of the servo position control loop and the experiment setup are
shown in Figure 4-10 and Figure 4-11 respectively. As can be seen from Figure
4-10, there is a closed-loop control algorithm to control the displacement of the one
end of the quad-lap isolator. The position feedback is supplied by motor encoder.
The reference displacement y(t), which is defined in Equation (4-22), is applied by
servo position-controlled BLDC motor. The rotation of the BLDC motor is
transformed to linear motion via ball screw mechanism (Figure 4-11). The
displacement and force are measured by force transducer and laser displacement
sensor synchronously.

Servo BLDC Motor | Actual Force
Referencej. Position Voltage Ball Screw Position| Shear Transducer
Position Specimen
- Controller Mech.

_ DAQ
Laser Displacement

Sensor

Motor Encoder

Figure 4-10 Experiment Setup Block Diagram

128



Laser
Displacement

Quadlap Shear Sensor
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\

Nut
BLDC Motor

Encoder

Ball Screw

Base

Figure 4-11 Experiment Setup Schematic

Prototype of the experimental setup can be seen in Figure 4-12. The control
algorithm defined in Figure 4-10 runs at Servo Position Motor Driver. Target PC
communicates with the Motor Driver via RS 485 serial communication protocol in

order to feed reference position and acquire the force and displacement data.

BLDC
Motor

Servo Position
Controller-
Motor Driver

Shear
Specimen

Figure 4-12 Experiment Setup
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As a servo position controller, cascaded control strategy which is shown in Figure

4-13 is utilized. In the Figure 4-13, 6,5, 0., i.r are the position, velocity and

current references of the DC electric motor respectively. 8,.¢, Ogct, iace defines the
actual values of position, velocity and current. The controller of the outer loop,
position control loop, is Gc,. The inner loop is the velocity loop, and the controller
is defined as Gc,. The innermost loop is the current control loop and the controller
is defined as Gc;. V}, and G,, describes the voltage applied to electric motor and
transfer function of the DC electric motor. The controller parameters are designed
by considering the interested frequency range.

gref + .~ 0,

Ge e Gc;

|
o~
2
e
=
L T

Bact

Figure 4-13 Servo Position Controller Block Diagram

The block diagram of DC motor mathematical model can be seen in Figure 4-14
where L is the inductance, R is the resistance, K; is the torque constant, T, is the
torque at the ouput shaft of the motor, J is the total inertial load, K;, is the back EMF

constant, T, is the disturbance torque and C is the viscous damping coefficient.

Ty
4oy K » 1 16 |1 o
_ S

Ist+R| Tm Js+C

B%‘

Figure 4-14 DC Motor Model
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4.5 Dynamic Characterization of Elastomer

The basic dimensions of shear specimen can be seen in Figure 4-15. As an isolator,
quad-lap shear configuration is preferred since it is symmetric in compression and

tension directions.

20 mm

Figure 4-15 Rubber Specimen

For single harmonic oscillation of the rigid body, reference displacement is given

as,

y(t) =/ (Usinwt)? + a2 — Lo, (4-23)

where U is the relative displacement amplitude of the rigid mass, w is the frequency
of the single harmonic motion of the rigid mass, free length of the horizontal rubber
isolator Lo is equal to 50 mm and the length of the horizontal rubber isolator at
equilibrium point a is taken as 47.50 mm considering the maximum allowable
stress for shear specimen. The dynamic properties of the elastomer such as static-
dynamic stiffness and loss factor are calculated by Equation(4-24) to (4-32)

experimentally.

Yoexp — ifznyexp dlp, (4'24)
2m J,
21
yem = % j VP cos 24) di, (4-25)
0
Foexp — ifanexp dlp, (4'26)
21 J,
2
cmexp — % FeXP cos 2 ¢d¢, (4-27)
0
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1 21
F, P = P Fe*P sin 2 pdyp, (4-28)
0
exp
k exp _ FO (4-29)
stc Y,
F, exp ]
Kayn®? = % (4-30)
exp
pexp _ Fas (4-31)
h Y, exp
2
REXP
nexp = —n (4-32)
k.. €D’
dyn

where y®*P FeP gre the time history of the experiment force data; Y,**" is the
displacement due to the preload, F,°*?; ,**P F,.**? F,.°*? are the coefficients of
the first harmonics of the displacement and force respectively; kg..“*" is the ratio of
the preload F,**?, and the bias term in the displacement Y, **; kg,,,“*" is the ratio
of the first harmonic cosine term of the force F,.**P, to first harmonic term of the
displacement Y, °*P;Structural damping coefficient is the ratio of the first harmonic
sine term of the force F,,**?, to first harmonic term of the displacement ¥,**? and
loss factor n*? is the ratio of structural damping coefficient, k¥ to dynamic
stiffness, kg, 7.

Dynamic stiffness characterization experiment results are shown in Figure 4-16 to
Figure 4-18. The relative displacement level is increased gradually, and experiments
are repeated for a frequency range 0.5 to 4 Hz. It should be noted that these
frequencies are defined for u(t) = U sin wt while y(t) = Y, + Y, cos 2wt as can be
seen in Figure 4-9. From the Figure 4-16, it can be said that dynamic stiffness has
logarithmic decrease with respect to relative displacement of single mass.
Furthermore, increase in frequency results in increasing dynamic stiffness. Based on
the experiment data, a logarithmic function whose parameters are defined in

Equation (4-24) is fitted. The logarithmic function is saturated at 220 N/mm.

Kayn = —67.39InU +321.93 N/mm. (4-33)
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Figure 4-16 Effect of Relative Displacement Amplitude on Dynamic Stiffness

Static stiffness of the elastomer for different excitation levels and frequencies are
shown in Figure 4-17. As can be seen in Figure 4-17, the static stiffness is almost

constant. Therefore, it is taken following as

kee =92 N/mm. (4-34)
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Figure 4-17 Effect of Relative Displacement Amplitude on Static Stiffness
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To represent the relative displacement dependency, 4™ order polynomial is placed

as Equation (4-35). Referring the figures from Figure 4-18 to Figure 4-18, the

frequency dependency can be neglected for the frequency range in which

experiments are conducted.

4.6

n=-3.110"°U*+ 0.0013U3 — 0.021U2% + 0.15U — 0.21. (4-35)
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Figure 4-18 Effect of Relative Displacement Amplitude on Loss Factor

Isolation Performance

After obtaining elastomer dynamic properties such as kgyy,, ks, 7 experimentally

isolation performance is investigated by analytical methods. The parameter set that

is used in the dynamic analysis is given by Table 4-1.

Table 4-1 Parameter Set

m=7kg k, = 11.5N/mm
kgt =92 N/mm a=47.5mm
L, =50mm & =0.01

kayn = —67.39InU +321.93 N/mm | w, = 6.45 Hz

n=-3.110"°U*+ 0.0013U3% — 0.021U2% + 0.15U — 0.21
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The absolute transmissibility and relative displacement graphs for different base
excitations can be seen in Figure 4-19 and Figure 4-20 respectively. The equation of

motion of the linear isolation system is given by
mu + kyu + c,u = —mZ. (4-36)

In Equation (4-37), it was assumed that vertical stiffness k,, is the softest spring
that can be achieved by considering the static deflections. Then, nonlinear forcing
terms obtained by Equation (4-15) and (4-16) are added and the results are
compared. As can be seen from the Figure 4-19, the resonance frequency of the
SDOF vibratory system is reduced to 0.4 of linear isolation system that has the
lowest possible natural frequency. Moreover, as can be expected from Figure 4-5
and Figure 4-6, increase in base excitation results in increasing resonance frequency

due to cubic like stiffness of the isolator.

Since the experiment is conducted for a relative displacement range, the analyses
are performed in the same range as well. As can be seen from Figure 4-20, the
maximum relative displacement amplitude is approximately 8 mm while

experiments are performed up to 15 mm.
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Figure 4-19 Absolute Transmissibility for Different Excitation Levels
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Figure 4-20 Relative Displacement Response for Different Excitation Levels

4.7 Performance Comparison of Proposed Isolator with QZS lIsolator

In this section, the performance of geometrically nonlinear rubber isolator and QZS
mechanism is compared. The quasi-zero-stiffness mechanism is shown in Figure

4-21 and this mechanism is studied in Section 3.1 in detail.

x(t)
k]’l m T kh lg)

| amVAVAVAVeS | —\/\\—e

Figure 4-21 Quasi-Zero-Stiffness Isolator

To obtain quasi-zero-stiffness around the equilibrium point, Equation (4-37) should
be satisfied.
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L (4-37)

Where y = 2k, /k, and 6 = Lo/a .

mechanism consist of oblique spring and nonlinear elastomer isolator, Lo, a, &, and

To compare the performance of QZS

k., are taken as the values defined in Table 4-1. Horizontal stiffness is determined
so that Equation (4-37) is satisfied. Then the peak absolute transmissibility and
resonance frequencies are compared in Table 4-2 and Table 4-3. Normalized
resonance frequency is defined as the ratio of the frequency, where the
transmissibility has its peak value, to natural frequency of the linear isolation

system.

Table 4-2 Peak Absolute Transmissibility Comparison

Excitation Level | Linear Isolation QZSs Nonlinear Rubber
[Z/a] System Mechanism Isolator
0.005 50 1 19.76
0.008 50 71.79 13.28
0.010 50 124.4 12.26
0.015 50 167.9 11.36

Table 4-3 Normalized Resonance Frequency Comparison

Excitation Level | Linear Isolation QZSs Nonlinear Rubber
[Z/a] System Mechanism Isolator
0.005 1 ~0 0.402
0.008 1 1.436 0.506
0.010 1 2.487 0.539
0.015 1 3.358 0.631

As it can be seen from Table 4-2 and Table 4-3, nonlinear rubber isolator has
enhanced isolation performance for wider excitation range with respect to Quasi-
Zero-Stiffness Mechanism. The main reason is that nonlinear rubber isolator
introduces damping around the resonance region where the relative displacement
has its maximum value. Thus, it can be concluded that the drawback of the QZS
isolator can be eliminated by utilizing geometrically nonlinear rubber isolator. As

stated in the Section 3.2, geometrically nonlinear viscous damping provides the
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same advantages. However, it might not be practical to design such a viscous
damper physically by considering the cost, operational conditions and the size of

the viscous damper.
4.8 Conclusion

In this chapter, dynamic model for geometrically nonlinear rubber isolator which
provides high static low dynamic stiffness characteristic and nonlinear damping, is
obtained. Unlike the previous studies, physical nonlinearities of the rubber material
are also taken into account. It can be concluded that the dynamic stiffness and static
stiffness are different for rubber materials, which changes the dynamics of the
isolator considerably. These stiffnesses and damping properties are defined as the
function of the relative displacement of the rigid mass. Furthermore, it is observed
that physically more practical version of the geometrically nonlinear viscous
damper defined in Section 3.2 can be obtained by means of rubber isolators. The

performance of the isolator under different excitation levels is studied.
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CHAPTER 5

DISCUSSION, CONCLUSION AND FUTURE WORK

5.1 Discussion on the Performance of Proposed Nonlinear Isolators

In this study, based on the goals that are defined in Section 3, four nonlinear
isolators were proposed. Each of these four nonlinear isolators has different
advantages and disadvantages which are explained in Chapters 3 and 4 based on the
analytical performance investigation. These four nonlinear isolators are illustrated

together in Figure 5-1.

b)

z(t)

Figure 5-1 Proposed Isolators (a) Proposed Isolator-1, (b) Proposed Isolator-2,
(c) Proposed Isolator-3, (d) Proposed Isolator-4
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Performance of them were investigated and presented in Chapters 3 and 4. In this
chapter for the same excitation level, absolute transmissibilities of four nonlinear
isolators were compared. As can be seen in Figure 5-2, Proposed Isolators 1 and 2
have the widest isolation region since their stiffness characteristic was adjusted so
that around the equilibrium point stiffness is equal to zero. Although they might be
preferable in other isolation applications, these isolators may not be useful for
isolation of an IMU, since they do not provide measurement frequency range to the
IMU. Furthermore, phase response starts to bend at very low frequencies which

might be the measurement frequency range of the IMU.

Natural frequencies of the Proposed Isolator 3 and 4 were reduced to approximately
0.4 of the linear system containing vertical linear spring and viscous damper, in
order to provide a measurement frequency range to IMU. Since Proposed Isolator-3
has dry friction element, nonlinear behavior was limited as can be seen in Figure
5-2. Due to the fact that damping elements are placed horizontally in Proposed
Isolators 3 and 4, phase response starts to bend around the resonance region, which

eliminates the drawback of the linear viscous damping.

2
10 § Linear Isolator
—+Proposed Isolator 1]
-+ Proposed Isolator 2|
-»-Proposed Isolator 3|
10 Proposed Isolator 4
107 ¢ :

Absolute Transmissibility

|
0 0.5 1 15
Normalized Frequency w/wy,

Figure 5-2 Absolute Transmissibility Comparison of the Proposed Isolators
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Figure 5-3 Phase Response of the Proposed Isolators

5.2 Conclusion

Passive isolation system can be designed and analyzed using the software and
procedure developed in this study. Assuming that the dynamic behavior of vibration
isolators is linear, required dynamic analyses can be achieved by Vibration Isolation
Analysis Program VIASoft which utilizes six degrees of freedom mathematical
model. User-friendly graphical user interface provides ease of analyzing 6 DOF
vibration isolation system and reporting analysis results. The verification of the
analysis software is conducted by shaker table experiments. The effect of dynamic
strain amplitude on the dynamic properties of the rubber isolator are investigated. It
is observed that as dynamic strain increases, stiffness of the viscoelastic isolator

decreases and resonance frequencies shift towards lower frequencies.

The drawbacks and limitations of vibration isolation problem of inertial
measurement unit with linear assumptions are discussed. Since IMUs measure the
acceleration and the rotational rates, phase delays and the resonances in working
frequency range should be also taken into account while designing isolation system

of the IMU. Moreover, it should be noted that linear vibration isolation system has
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limitations due to the fact that decreasing stiffness lowers natural frequency and
increases the static deflections as well. Thus, there is a trade-off between the dead
weight capacity and the natural frequency of the system, which determines the
isolation region. Another important observation is that increasing linear viscous
damping increases vibration transmissibility on the isolation region and it increases
the phase delays at lower frequencies than the resonance frequency, which might be
the working frequency range of the isolated inertial measurement unit. Therefore,
although increasing damping in the system reduces the resonance amplitudes, it

might cause phase delay issues.

Having these observations, it is aimed to enhance isolation performance by utilizing
geometrically nonlinear isolators. Dynamic analysis of High-Static-Low-Dynamic-
Stiffness mechanism is carried out. The nonlinear equation of motion is derived. By
utilizing Singe Harmonic Balance Method, the nonlinear differential equation is
converted into set of nonlinear algebraic equations and stability of the harmonic
solutions is considered by Hill’s Method. Moreover, excitation levels and viscous
damping coefficient ranges, where Taylor Series expansion is valid, are determined.
From the dynamic analyses, it is concluded that HSLDS mechanism reduces the
natural frequency of the isolation system while providing the same dead load
capacity thanks to its prestressed horizontal springs. However, this isolator response
is highly nonlinear and thus the response is highly dependent on the excitation
levels and the system parameters. The effect of stiffness and loading deviations on
the system performance is also studied and it is observed that system performance is
highly dependent on the static equilibrium point. Since these deviations introduce
bias in the response, overall stiffness increases, and resonance frequencies and
amplitudes increase. Therefore, combination of geometrically nonlinear stiffness

mechanisms and geometrically nonlinear damping mechanisms is introduced.

Geometrically nonlinear damping mechanism which consists of oblique linear
viscous dampers is studied. Due to geometry of the isolator, damping is only
effective at the resonance region. Therefore, unlike the linear isolation systems, it

does not affect the isolation region performance and it does not introduce phase
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delay at lower frequencies while decreasing the resonance amplitudes. However, it
may not be practically possible to have oblique viscous dampers considering the
size of the viscous dampers. Therefore, combination of dry friction, which is
another nonlinear damping element, and HSLDS mechanism is studied and
improved results are obtained due to stick slip characteristic of the dry friction
isolator. The validation of single harmonic solution assumption is conducted by
time simulations. The isolation performance of the combination of nonlinear
damping and nonlinear stiffness and performance of only nonlinear stiffness
isolators are compared. It is observed that input dependency of the nonlinear
isolators can be eliminated by integrating dry friction which is effective only at

resonance regions.

Having observed the advantages of the geometrically nonlinear isolators, a
mathematical model is derived for oblique pre-compressed rubber isolators since
the rubber isolators are widely used in the industry as passive vibration isolator.
Unlike the previous studies, this isolator has not only geometrical nonlinearities but
also physical nonlinearity which is dynamic strain amplitude dependency of
stiffness and loss factor of the rubber isolator. Furthermore, it is observed that the
dynamic and static stiffnesses are different for the rubber isolators. After deriving a
mathematical model which contains physical and geometrical nonlinearities,
dynamic characterization of this isolator is conducted by experiments. A servo
position control system is designed and multi harmonic displacements are applied to
the quad-lap shear rubber specimen. Force and position are measured
simultaneously. Damping and stiffness properties, which are function of vibration
amplitude of the rigid mass, are derived. It is observed that dynamic stiffness of the
elastomer specimen decreases logarithmically if dynamic strain amplitude
increases. However, dynamic strain amplitude slightly affects the static stiffness of
the rubber isolator, which might be neglected in the dynamic strain range applied
during the experiments. Loss factor—dynamic strain relation is modeled as forth
order polynomial based on the experiment data. Isolation performance is
investigated for the rubber isolator whose dynamic properties are obtained
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experimentally. It is observed that combination of HSLDS mechanism and
nonlinear damping can be achieved by rubber isolators which are the most common
material for vibration isolators in the industry. The performance is compared with
the QZS vibration isolation systems and it can be concluded that nonlinear rubber
isolator has enhanced isolation performance due to its nonlinear damping

characteristic.
5.3 Future Work

In the linear vibration analysis software, there were simplifications. Torsional
stiffness and damping of the isolators were neglected. Moreover, only frequency
dependency of the stiffness and loss factor of the isolators was considered.
However, it is a well-known fact that the dynamic properties of the rubber isolators
are dependent on the temperature and the dynamic strain amplitude. Therefore, in
order to improve the vibration isolation analysis software, temperature and dynamic
strain amplitude dependency of the isolators and torsional stiffnesses can be
implemented to the software. Furthermore, the force and displacement curves of the
rubber isolators are not symmetric based on the geometry of them. Thus, stiffness of
the isolators is dependent on the payload, i.e. the static equilibrium point. Force and
displacement curve of each isolator can be taken into account. Referring the shock
analysis, only time simulations with viscous damper are available. Shock response
spectrum analysis can be implemented to the analysis program and validation can
be performed experimentally. Moreover, isolator dynamic properties can be added
to the software by entering the material and dimensions. By utilizing a material

library, dynamic properties can be calculated.

Referring the nonlinear isolators, the effect of system parameter deviations and
static equilibrium point was only considered for HSLDS mechanism and
geometrically nonlinear viscous damper. Dynamic analysis of dry friction isolators
with bias term can be encountered. Furthermore, verification of the dynamic
analysis of the nonlinear isolators having dry friction damper was conducted by

time simulations. These analyses can be verified by experiments. Furthermore, in a
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future study, these nonlinear isolators can be implemented to six-degree-of-freedom

space and the performance in multi-degree-of-freedom model can be studied.

Finally, in this thesis, dynamic characterization of the nonlinear rubber isolator was
studied and the response of the isolator under the multi-harmonic excitation was
considered. In a future study, this isolator can be implemented to a single-degree-of-
freedom system and the shaker experiments can be conducted to study the isolation

performance of the isolators.
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