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KIVANÇ YİĞİT ÇINGILOĞLU
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ABSTRACT

HIDDEN SECTOR THROUGH DARK HIGGS: A NONMINIMAL
EXTENSION

Çıngıloğlu, Kıvanç Yiğit

M.S., Department of Physics

Supervisor : Prof. Dr. İsmail Turan

September 2018, 80 pages

In this thesis, a non-minimal extension of the SM with an additional non-abelian

SU(2) symmetry is studied. Hidden sector opens innumerable portals for apprehen-

sion of theories beyond the SM, hence there is a wide set of gauge extensions with

their own symmetries, providing viable DM candidates. Higgs mechanism and Higgs

particle play a crucial role to understand how DM weakly interacts with the SM par-

ticles. There may exist unrevealed intensity frontiers in Higgs’ decay modes, and the

DM can show up through those interaction channels. Although DM has not been

observed so far, there are strong evidences and indirect observations for its exis-

tence. Imposing these observational constraints on the results of non-minimal ex-

tensive model, a consistent region for parameter space of the DM candidates can be

expressed via methods of statistical physics. One of the first DM abundance studies

has been written by Lee and Weinberg in 1977 by considering evolution of DM after

it decouples from the cosmic heat reservoir. But in original work, only annihilation

channels of the DM are considered.
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However the model can be extended to include coannihilation channels as well, pro-

vided that the associated Feynman diagrams are given including dark sector particles.

In this study, such extensions will be explored.

Keywords: Non-Abelian Gauge Theory, Hidden Sector, Scalar Portal, Symmetry

Breaking, Dark Boson, Dark Matter, Relic Abundance
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ÖZ

KARANLIK HİGGS ÜZERİNDEN GİZLİ SEKTÖR: MİNİMAL OLMAYAN
BİR UZANTI

Çıngıloğlu, Kıvanç Yiğit

Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. İsmail Turan

Eylül 2018 , 80 sayfa

Bu tezde, Standart Model’in abelyen olmayan bir SU(2) simetri uzantısı çalışıldı.

Gizli sektör, Standart Model’in ötesindeki teorilerin anlaşılması için sayısız mik-

tarda geçit açmaktadır, bu yüzden de kendi simetrileri dahilinde karanlık madde için

aday olan geniş bir ölçü uzantısı var olmaktadır. Higgs mekanizması ve Higgs par-

çacığı, Karanlık Madde’nin Standart Madde parçacıkları ile nasıl zayıf ölçekte etki-

leştiğini açıklamak için önemli bir rol oynamaktadır. Karanlık Madde kendini, hâli-

hazırdaki Higgs parçacığının tamamlanmamış bozunum kanallarından birinde muh-

temelen gösterebilir. Her ne kadar Karanlık Madde doğrudan gözlemlenmemiş olsa

da, varlığını kanıtlayan kuvvetli kanıtlar ve dolaylı gözlemler mevcuttur. Ve bu göz-

lemsel sınırlamaları, minimal olmayan genişletilmiş modele uygulayarak, Karanlık

Madde parçacıklarının parametreleri hakkında istatistiksel fiziği kullanarak tutarlı bir

aralık belirlenebilir. Karanlık Madde kalıntı yoğunluğu hakkında çalışmalardan ilki,

Lee ve Weinberg tarafından 1977 yılında, karanlık madde parçacıklarının kozmik ısı

kaynağından koptuktan sonraki evrimlerini inceleyerek yazılmıştır. Fakat özgün ça-

lışmada, karanlık maddenin sadece çarpışma kanalları çalışılmıştır.
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Lakin modeller, karanlık sektör parçacıklarının ilgili Feynman diagramlarını belirte-

rek, yan çarpışmaları da dahil edecek şekilde genişletilebilir. Bu çalışmada, bu tarz

genişletmeler araştırılacaktır.

Anahtar Kelimeler: Abelyen Olmayan Ölçü Teorisi, Gizli Sektör, Skaler Geçit, Si-

metri Kırılması, Karanlık Bozon, Karanlık Madde, Kalıntı Yoğunluğu
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CHAPTER 1

INTRODUCTION

For more than a century, dozens of elementary and composite particles have been

proposed, modelled and discovered eventually. Countless number of painstaking ef-

forts had been dealt to excavate underlying idea of the fundamental interactions of the

universe. Although relativistic quantum field theory had already been formalised, a

severe boost came after Gell-Mann’s proposal of particle multiplets regardless of the

absence of group theory. Countless number of experimental activity have been con-

ducting via colliders day after day, nevertheless theoretical physics has always tried

to consolidate experimental studies and also fills the gaps among the fundemental

interactions. Studies started with formulation of quantum electrodynamics, which is

one of the remarkable outcomes of QFT, inspired further theoretical studies in differ-

ent aspects of physics. Once the group theory and symmetry properties of particles

had been comprehended on behalf of an extended scope, naturally there has been an

escalation among physicists to unify symmetry properties and fundamental theories.

Einstein’s General Theory of Relativity [64] seems to working perfectly on cosmic

scales, currently theoretical physis could not propose a consistent mathematical for-

malism to express gravity in quantum scale. Incompatibility appears due to enor-

mous difference of couplings between gravity and the rest of the fundamental forces

and also due to dimensional insufficiency. However, efforts for the quantum gravity

scheme have also developed paths for lesser unification models, such as Electroweak

Theory and the Grand Unification Theory.

Dynamics of particles are completely determined by the action principle, in which

the physics must be invariant with respect to different inertial observers.
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Such constraint and dictation for satisfying invariance led to many frameworks which

are somehow variant of each other. The SM can still be considered as the best model

we have to describe classification of particles and to express the interactions among

them. The SM can be mainly considered as gauge field theory, that is combination

of group theory and QFT. Hence all basic symmetries of the SM can be considered

as gauge symmetries. Cosmic integrity of the most particles are assured by these

symmetries. But there are more specifications about the SM particles beside the sym-

metry properties. One cannot avoid to include their internal properties; which leads

to statistical distinction among them. Spin as a pioneer of this ’distinction’, plays a

crucial role to understand what lies within and beyond.

Furthermore, the SM is not the whole story and far from to be completed. The

progress of physics have always left unanswered questions more than it found an

explanation to unknown. Hence there remains a set of issues in the SM such as:

asymmetry of matter-anti-matter abundance in the universe, origin of the fundamen-

tal composition of matter-energy densities like dark matter, dark energy and the SM

particle, the Big Bang initial scenario etc.

Consequently, innumerable models have been proposed to extend the SM and try to

comprehend what is missing in the theories at current stage. Since we are interested

in the Hidden Sector extension models, the SM gauge content will be introduced

first via Lagrangian formalism , then we try to extend it with additional symmetry

group of ’dark or hidden sector’. Higgs mechanism will play a significant role even

in the dark sector. A non-minimal extension of the SM will be introduced via scalar

portal. And symmetry breaking mechanism for the extended Lagrangian will reveal

one massive scalar boson and three massive vector gauge bosons, namely dark vector

bosons as a consequence of additional SU(2)d gauge symmetry analogous to one in

the SM. Moreover these dark gauge bosons will be modelled as dark matter candidates

and obviously their internal properties completely depend on the model parameters

introduced at the Lagrangian level. Furthermore, absence and presence of additional

dark symmetries will support a solid background for DM model to be stable. Then

their cosmic abundances left out from Big Bang will be studied via expressions of

statistical mechanics.
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CHAPTER 2

THE STANDARD MODEL

The Standard Model is a renormalizable gauge field theory constructed with Lie

groups SU(3)C⊗SU(2)L⊗U(1)Y . The SM is classified by bosonic and a fermionic

sectors. Bosonic sector is responsible from mediating the three of four interactions in

nature. And the fermionic sector is the ingridient of ordinary matter. But the gravity

as a fundemental force in the universe cannot be described within the regime of the

SM and hence another motivation arises to look for physics beyond it. Firstly the

strong interactions of quarks and mediator gluons described by SU(3)C gauge group.

And the second one is the electroweak theory as a unification of weak and electromag-

netic interactions of leptons and quarks via by gauge group SU(2)L⊗U(1)Y , which

was proposed by Glashow-Weinberg-Salam(GWS) model [1, 2, 3]. And the third one

is Yukawa interactions mediated by scalar fields (spin− 0).

Statistical distinction of fermions and bosons is mainly motivated by their intrinsic

quantum numbers. Bosons can occupy the same quantum state and obey Bose-

Einstein statistics, whereas fermions cannot occupy in the same state as a result of

Pauli exclusion principle, hence they obey Fermi-Dirac statistics. Leptons interact

only via electroweak interaction since they have zero color charge. On the other

hand, quarks can experience the presence of both electroweak and strong interac-

tions. Fermions interact differently as a result of their helicities, that is handedness,

which is the direction of their spin relative to their momenta. Left-handed fermions

are SU(2) doublets whereas right-handed fermions are singlets.
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Vector gauge bosons in the SM constitue eight massless gluon fields Ga
µ for strong in-

teractions, three massive gauge fieldsW±
µ , Z0 for weak interactions and one massless

photon field Aµ for electromagnetic interactions.

Underlying idea of the SM Lagrangian formalism and relevant gauge field theory

are based on insisting the global phase transformations of each gauge group to hold

locally in spacetime. Hence the correction of free-field Lagrangians ends up with a

source or current term respectively for each interaction, that ensures the local gauge

invariance of the total Lagrangian.

2.1 Quantum Electrodynamics

Quantum electrodynamics(QED) is based on mainly Dirac equation and U(1) local

gauge invariance. One of the biggest achievement of QFT led to renormalizable rela-

tivistic theory of photons and electrically charged fermions.

To dictate Lfree,ferm to hold locally in U(1) phase transformation:

ψ
′ → eiqα(x)ψ (2.1)

on the fermion field, which is satisfying free field Lagrangian:

Lf = ψ̄(iγµ∂µ −m)ψ (2.2)

requires U(1)em gauge covariant derivative:

Dµ = ∂µ + ieAµ (2.3)

that fixes the local gauge symmetry of Lagrangian via the kinetic term, whereas the

gauge field Aµ satisfies the transformation:

Aµ → Aµ + ∂µλ(x). (2.4)

The final form of the QED Lagrangian is

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν . (2.5)

Local gauge invariance of U(1)em abelian group leads to an interaction term between

gauge field Aµ and fermion field ψ is written as1

Jµem = eψ̄γµQψ. (2.6)
1 (For an explicit derivation, see appendix A.8).
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Electromagnetic current turns out to be a conserved current in the QED as a conse-

quence of Noether theorem [4]. And the field strength tensor of U(1) group, defines

the kinetic term of gauge field

F µν = ∂µAν − ∂νAµ. (2.7)

Then it becomes apparent why gauge the gauge field Aµ has to be massless, since

Proca mass term is forbidden by gauge invarience imposed on Lagrangian. And there

is no finite region of validity for the local gauge invariance, so the interaction has to

extend upto infinity, which assures the mediator to become massless.

In summary, global invariance of fermionic fields is dictated to hold also locally un-

der the given gauge symmetry (2.1). Physical significance of gauge transformations

depends on variation from point to point in space. Thus ordinary covariant derivative

must be modified to relate the change itself in gauge transformation. On top of that

the geometry requires the term Aµ to turn into a quantized massless spin-1 field and

the corresponding excitation is photon.

Yang-Mills theory [5] had demonstrated that the local gauge symmetries can be ex-

tended to larger non-abelian gauge groups. But a various non-trivial problems arise

when expressing unified theory of weak interactions and electromagnetism.

SU(2)⊗U(1) gauge fields must be added into Lagrangian without mass terms to guar-

antee local gauge invarience of the associated group. The masses of the fermions

occurs as another problem since the weak interaction violates parity conservation as

a result of coupling variations for different helicity states. From a theoretical point of

view, these problems are fixed by the spontaneous symmetry breaking of the related

Lagrangian.
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2.2 Electroweak Theory

As mentioned earlier, the weak interactions are known to violate parity conserva-

tion, and fermion fields are actually combinations of chiral states due to their helicity

eigenvalues(±1)

ψ = ψL + ψR (2.8)

with the definiton of the chirality operators:

ψL =
1− γ5

2
ψ ; ψR =

1 + γ5

2
ψ. (2.9)

In the SM, the fermions come as families of left-handed weak-isospin doublets of

leptons LiL and quarks Qi
L and also right-handed weak-isospin singlets of leptons

eiR(νiR) and quarks uiR(diR):

Li =

νe
e


L

,

νµ
µ


L

,

ντ
τ


L

; Qi =

u
d


L

,

c
s


L

,

t
b


L

(2.10)

eiR = eR , µR , τR (2.11)

uiR = uR , cR , tR ; diR = dR , sR , bR. (2.12)

The left-handed fermions are isospin doublets (I = 1
2
), whereas the right-handed

fermions come as isospin singlets (I = 0), and they are invariant obviously under

weak isospin rotations. Each doublet family has 3rd component of weak isospin I3

and I3 is related to the weak hypercharge (average charge of multiplet Y = A + S)

in terms of SU(2) generators

Q = I3 +
Y

2
. (2.13)

It is apparent that left-handed Dirac fields transform as doublet under SU(2) while

right-handed fields do not. Hypercharge values assure the fermions to possess cor-

rect electric charge. Isodoublets differ by unit electric charge. For quarks: qu, qd =

+2e
3
, −e

3
and leptons: ql, qν = −e, 0. Quark fields have also color charge and each of

them comes in triplet of these 3 colors whereas leptons have zero color charge hence

they are singlets.
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This property ensures the hypercharge cancellation in each generation hence gauge

invariance keeps Lagrangian neutral related to hypercharge [6]. That is,∑
f

Yf = 0.

The electroweak theory obligates the existence of four massless gauge bosons to me-

diate the unified theory. Two of them are electrically charged and other two are neu-

tral. On the other hand it is well known experimental fact that the weak interaction

has short range [7]. So the mediators of this fundemental force are required to be

massive.

SU(2)L non-abelian group symmetry indicates that there should be three vector fields

W i
µ(i = 1, 2, 3) associated with the generators of given group T i = 1

2
τ i in terms of

generalized Pauli matrices τ i. Group members are normalized as Tr(τ iτ j) = 2δij

and are also satisfy the commutation relations [T i, T J ] = iεijkT k. By using chiral

doublets and ladder operators of SU(2): σ± = 1
2
(σ1 ± iσ2), weak isospin currents

are defined as analogous to Jemµ (2.6)

~J±µ = x̄Lγµτ
±xL. (2.14)

The physical meaning of currents (2.14) is that it reveals the interaction between

components of the doublet. Furthermore it is possible to construct 3rd component of

weak isospin neutral current:

J3
µ =

1

2
x̄Lγµτ

3xL =
1

2
ν̄LγµνL −

1

2
ēLγµeL. (2.15)

Due to the presence of doublet xL, triplet form of weak isospin currents can be writ-

ten. In return, this ends up with the SU(2) symmetry group. However the neutral

current in the expression (2.15) is not observed as given form since it only couples to

left-handed fermions, meaning it is in the form of 1
2
γµ(1−γ5) vector-axial(V-A) cou-

pling. But experiments has shown that neutral current also couples to right-handed

fermions (e.g: neutral weak coupling of Z0). Hence this observation sparks the sign

where the electromagnetic interaction must come into theory. Obviously the electro-

magnetic interaction couples to both chiral fermion states as a consequence of parity

conservation.
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As it is seen from equation (2.8), the electromagnetic current:

Jµem = eψ̄γµQψ = −ēγµe = −ēRγµeR − ēLγµeL (2.16)

couples only to one member of the chiral doublet. There has to be another neutral

current which itself is independent of SU(2)L, meaning, this current must remain as

singlet under rotations and electromagnetic current must reveal itself somehow when

combined with neutral part of weak isospin current J iµ. Then Gell-Mann’s relation

[8] (Q = I3 + 1
2
Y ) is to be extended for the electroweak mixing phenomena. Weak

hypercharge current is defined as

JYµ = ψ̄γµψ = 2Jemµ − 2J3
µ = 2(−ēγµe)− 2(

1

2
ν̄LγµνL −

1

2
ēLγµeL)

= −2ēRγµeR − 1ēLγµeL − 1ν̄LγµνL

(2.17)

where the eigenvalues of hypercharge current given in bold numbers. Consequently

SU(2)L⊗U(1)Y symmetry group is constructed with chiral states. Various quantum

numbers of fermions are given in table (2.1).

Fermion Qf I3
W YL YR

νe , νµ , ντ 0 +1
2
−1 0

e− , µ− , τ− −1 −1
2
−1 −2

u , c , t +2
3

+1
2

+1
3

+4
3

d , s , b −1
3
−1

2
+1

3
−2

3
Table 2.1: Electric charge Q, weak isospin component I3 and weak hypercharge Y

assignments of the fundemental fermions

So far, four currents of SU(2)L⊗U(1)Y symmetry group have been mentioned and

the two of them are charged and have the V-A coupling structure in terms of conserved

current. And other two remains neutral. One violates the parity conservation whereas

the other does not. And the general case of weak isospin currents is

~Jµ =
1

2
x̄Lγµ~τxL, (2.18)
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and the electromagnetic current is summed over particles in doublet

Jemµ =
2∑
i=1

= Qi(Ū i
LγµU

i
L + Ū i

RγµU
i
R). (2.19)

In 1967 Weinberg and Salam [2] applied Higgs mechanism to SU(2)⊗U(1) gauge

theory. They claimed that three isospin weak currents ~Jµ couples to a weak isotriplet

of vector boson ~W µ with strength g, whereas the weak hypercharge current JYµ cou-

ples to and isosinglet Bµ with strength g′

2
. Thus the interaction term of gauge fields

with the weak isospin and weak hypercharge currents appears in the electroweak La-

grangian similiar to expressions (2.5) and (2.6)

LintEW = −i[g ~Jµ. ~W µ +
g′

2
JYµ B

µ]. (2.20)

In the light of Yang-Mills theory [5], their strategy was quite similar to U(1) local

gauge invariance. But this time insisting on SU(2)⊗U(1) gauge groups, taken to-

gether by gauge transformations on both chiralities

xL → x
′

L = ei
~α(x). ~T+iβ(x)Y ; xR → x

′

R = eiβ(x)Y xR. (2.21)

However Lagrangian (2.2) is not invariant under transformation (2.21). Invariance of

the Lagrangian is recovered from the gauge covariant derivative of SU(2)L⊗U(1)Y :

DL
µ = ∂µ − i

g′

2
Y Bµ − ig ~T . ~Wµ ; DR

µ = ∂µ − i
g′

2
Y Bµ. (2.22)

Altogether, the electroweak part of SM Lagrangian appears in a closed form for both

quark and lepton chiralities as

LEW =
∑
ψ

= ψ̄γµ(∂µ − i
g′

2
Y Bµ − ig ~T . ~Wµ)ψ (2.23)

where τ gives non-zero only for left-handed fields, and Y acts on both left and right-

handed fields. But the kinetic term of vector fields is not gauge invariant contrary

to U(1)em, hence it requires a modification for a non-abelian case, since each gauge

group defines its own field tensor. It is given for SU(2) group as follows:

~Wµν =
1

ig
[Dµ, Dν ] = ∂µ ~Wν − ∂ν ~Wµ − g ~Wµ × ~Wν , (2.24)
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in which the last term is pure consequence of non-abelian structure of the group

members(τ i). And gauge symmetry of the field components is given by

~Wµ → ~Wµ −
1

g
∂~α− ~α× ~Wµ. (2.25)

So the Lagrangian for combined group becomes

LG = −1

4
~W µν . ~Wµν −

1

4
Bµν .Bµν . (2.26)

Equations (2.23) and (2.26) give the complete electroweak Lagrangian. Notice that

introducing mass terms for both the fermions or the gauge fields, violates the local

SU(2)L gauge invariance (2.37). But such constraint contradicts with experiment

since gauge bosons are observed massive. Therefore, interaction of scalar field and

gauge fields through broken symmetry plays a paramount virtue for theory to remain

renormalizable. The SM Higgs mechanism will be discussed after introducing QCD

briefly for completeness and state the full SM Lagrangian at the end.

2.3 Color Gauge Theory and Quantum Chromodynamics

Quantum chromodynamics (QCD) is a non-abelian SU(3)C gauge field theory that

describes the strong interactions. Interaction itself is mediated by eight massless

gauge bosons called gluons. Any elementary particle with non-zero color charge

experiences the presence of gluons. Since the characteristic that distinguishes quarks

from leptons is color, strong interactions and QCD are based on local color gauge

symmetry of quark triplets. Unlike QED, QCD vertices could include 3-gluon or 4-

gluon couplings since gluons come with bicolor structure and this is purely due to the

non-abelian structure of gauge group which will be clearer soon. Hence their vertices

are not just based on quark-gluon-antiquark combination. The possibility of color

quantum numbers reflects a continous symmetry of the Lstrong. Underlying idea of

group theory of QCD is based on two emprical facts:

• Quarks are color triplets,

• All the known hadrons are color singlets.

Consequently the non-abelian structure of the QCD leads to two important results

[9, 10]:
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1. Color confinement: QCD coupling constant gs = αs
4π

, scales with energy of

interaction. At large distances αs is relatively large, hence the perturbative

methods for Feynman rules cannot be applied.

When a qq̄ pair is forced to separate, the colour field mediated by the exchanged

gluons increases the coupling constant αs, in return that leads to creation of a

new qq̄ pair from the vacuum. Furthermore this phenomena becomes more fa-

vorable with increasing energy. Hence this reason explains why quarks are not

observed as free state in nature, but the physical states (hadrons) are colorless

combinations of quarks bounded together.

2. Asymptotic freedom: The coupling constant decreases at small distances ap-

proaching to zero, meaning that quarks can be asymptotically considered as

free particles. Thus the small value of αs allows to use perturbation methods

for higher level contributions.

For a color triplet ψj , whose dynamics is given by the Lagrangian

Lf = ψ̄j(iγ
µ∂µ −m)ψj. (2.27)

The task follows from extension of Yang-Mills theory to U(3) group. And group

U(3)≡U(1)×SU(3) transformation: U → eiθei
~T .~α; in which the global phase trans-

formation is already invariant. And dictation of local gauge invariance for free La-

grangian similiar to previous cases via SU(3)C symmetry

S = eigs~α.
~T = ei

gs~α.~λ
2 (2.28)

where T a = 1
2
λa are the members of SU(3) group and called Gell-mann matrices.

Group members have non-abelian structure, hence their commutations and normal-

ization properties are given by [λa, λb] = 2ifabcλc and Tr(λaλb) = 2δab where the

structure constant is an antisymmetric tensor, obeys the following relation

fabc =
−i
4
Tr([λa, λ]λc).

To ensure the gauge invariance (2.28) for the Lagrangian (2.27) with color triplet ψj ,

one must change the ordinary derivative with gauge covariant derivative belonging to

gauge group once again

∂µ → Dµ = ∂µ + igs ~T . ~Gµ. (2.29)
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Unlike the weak interactions, the gauge covariant derivative of SU(3) group is appli-

cable to both chiralities. And the gauge fields satisfy the symmetry:

Ga
µ → Ga

µ −
1

gs
∂µαa − fabcαbGc

µ. (2.30)

However all the above expressions do not define the QCD theory completely. To

finalize SU(3)C gauge invariance, the gluon field strength tensor through the kinetic

term, must be identified

Ga
µν =

1

igs
[Dµ, Dν ] = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν (2.31)

for all expressions appear in this section a = 1, ...., 8. So the QCD Lagrangian ap-

pears in SU(3)c gauge invariant form

LQCD = ψ̄j(iγ
µDµ −m)ψj −

1

4
Ga
µνG

µν
a . (2.32)

Insisting on local gauge invariance for the free Lagrangian brings a new term defin-

ing the interaction between gauge fields and components of color triplet. If Noether

theorem and Hamilton principe applied to Lagrangian (2.32) through infinitesimal

transformations of SU(3)C , it all ends up with conserved current:

~J cµ =
gs
2
ψ̄γµ~λψ (2.33)

that is, the color current plays a source role. But the most distinguishing characteristic

comes from the field strength tensor which makes gauge Lagrangian not just purely

kinetic, but also allows it to include self-couplings of gluon fields. Extra term appear-

ing in (2.31) brings 3-gluon and 4-gluon interactions from the part of the Lagrangian

and these self-couplings are given in fig.(2.1).

L ⊃ ψ̄ψ +G2 + gsψ̄ψG+ g2
sG

4

Figure 2.1: The predicted QCD interaction vertices arising from the requirement of

SU(3) local gauge invariance.
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2.4 The Unified Framework and the SM Lagrangian

It is possible and convenient to add up all symmetries into higher gauge symmetry

and hence the Lagrangian of the SM for further convenience can be divided into four

parts.

LSM = Lkinetic + Lgauge + Lhiggs + Lyukawa (2.34)

where the first term includes the kinetic terms of fermions

Lkin = Q̄i
L(iγµDµ)Qi

L + ūiR(iγµDµ)uiR + d̄iR(iγµDµ)diR

+ L̄iL(iγµDµ)LiL + ēiR(iγµDµ)eiR.
(2.35)

Larger gauge symmetry group defines now gauge covariant derivative with all gauge

field contributions:

Dµ = ∂µ − i
g′

2
Y Bµ − i

g

2
τ iW i

µ − i
gs
2
λaGa

µ (2.36)

and the 3rd term of equation (2.36) is absent when the gauge covariant derivative acts

on right-handed fermions. Consequently the 4th term is not present when it acts on

leptonic fields since they have zero color charge. At current stage, all the fermions are

seen to be massless. Because the chiral states fermions are not in complex conjugated

representations. More clearly fermion mass terms:

Lmass = −mψ̄ψ = −mψ̄(
1− γ5

2
+

1 + γ5

2
)ψ = −m(ψ̄RψL + ψ̄LψR), (2.37)

mix the left-handed and right-handed chiralities hence they violate the gauge in-

variance and excluded from the SM Lagrangian. A Majorana mass term LM =

−1
2
M(ν̄Rc νR + ν̄Rν

c
R) is not possible since all the fermions carry hypercharge. But

the fermion kinetic term possesses 5 global U(3) symmetries for both chiral states of

quarks and leptons.

The Yukawa potential [11] expression contains all of the allowed couplings of the

Higgs scalar H and the fermion fields, but violates these symmetries.

Lyuk = −Yijψ̄iLφψ
j
R = −Y u

ij Q̄
i
LεHu

j
R − Y

d
ijQ̄

i
LHd

j
R − Y

e
ijL̄

i
LHe

j
R + h.c. (2.38)
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The strength of the interactions between the Higgs and the fermions which is called

Yukawa couplings are embeeded into Y u, Y d, Y e, and these are 3 × 3 complex ma-

trices have again to be added by hand since they cannot be determined theoretically,

hence they will be deduced by experiments. And the symmetries of the SM will

be broken seperately when the scalar field is situated into vev. The Yukawa inter-

actions are also responsible for fermion masses. The presence of massless media-

tors: photons and gluons suggest that GSM = SU(3)C⊗SU(2)L⊗U(1)Y must be

broken down to QCD (SU(3)C), and electromagnetism (U(1)em). However the sym-

metry SU(3)C⊗U(1) is unbroken and vector-like, that leads to both chiral states of

all fermions transform under the same representation.

Finally the 3rd part of the Lagrangian is the Higgs sector. It contains the Higgs po-

tential

V (H) = µ2H†H + λ(H
†
H)2 (2.39)

as well as the kinetic term so that

LH = (DµH)†DµH − V (H). (2.40)

The mass terms for the gauge bosons will be revealed from the kinetic term after

the Higgs field acquires the vacuum expectation value. One can naively consider

that whenever ’relevant’ gauge covariant derivative acts on Higgs field and subjected

to Higgs potential, spontaneous symmetry breaking mechanism ends up with corre-

sponding masses of gauge bosons as a consequence of Goldstone theorem. In the

final section of the SM, Higgs mechanism [12, 13, 14] and electroweak symmetry

breaking sector will be expressed.

So far, the mass terms of fermions and gauge bosons are excluded from the SM La-

grangian to preserve the gauge invariance. Now, the main objective of Weinberg-

Salam model is to generate the massive gauge bosons while preserving the renormal-

izability of the EW theory. As mentioned in the previous section, the gauge symmetry

of the EW interactions belongs to SU(2)L⊗U(1)Y group.
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However, breaking of such symmetry and appearance of the massive gauge bosons re-

quire at least 3 degrees of freedom and this is the place where the Goldstone theorem

[15, 16] comes in. Goldstone bosons give their dofs to the longitudinal polarization

component of the massive gauge bosons. Then with a suitable choice of parameters,

masses of Z0 and W± bosons can be obtained while keeping the photon massless.

After the symmetry breaking process, there will remain one massive scalar corre-

sponding to field excitations in the direction of chosen physical vacuum state.

In 1967, Weinberg [2] considered an invariant SU(2) complex doublet composed of

scalar fields:

φ =

φ+

φo

 =

 1√
2
(φ1 + iφ2)

1√
2
(φ3 + iφ4)

 (2.41)

where the superscript denotes the electric charge in each component and φ1,2,3,4 are

just real scalar fields. Conventionally the lower part of the doublet is needed be elec-

trically neutral, which corresponding to Z0 and γ with mγ = 0. Upper part differs by

unit of electric charge to correspond other two massive gauge bosons W±. Thus the

third isospin components of the doublet is written as: I3
φ+

= 1
2

; I3
φ0

= −1
2
. Rewriting

the Higgs Lagrangian explicitly (2.40):

LH = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ
†
φ)2 , (m2 < 0, λ > 0) (2.42)

however this Lagrangian alone is not gauge invariant. It is crucial to keep in mind that

the addition of Lgauge is obligatory. And the gauge covariant derivative expression

(2.36) reduces to

Dµ = ∂µ + i
g′

2
Y Bµ + i

g

2
τ iW i

µ. (2.43)

In the regime (m2 < 0, λ > 0) of equation (2.42), rewriting the Higgs potential term

by term:

V (φ) =
µ2

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4) +

λ

4
(φ2

1 + φ2
2 + φ2

3 + φ2
4)2.

The extremum of the Higgs potential is obtained for the case (µ2 < 0)

∂V (φ)

∂φi
= 0→ ∂V (φ)

∂φ3

= µ2φ3 + λφ3(φ2
1 + φ2

2 + φ2
3 + φ2

4).
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Since µ2 < 0, the extremum of this potential can be chosen by the following relation:

µ2 = −λ(φ2
1 + φ2

2 + φ2
3 + φ2

4). But there is an infinite choice for the ground state, so

choosing

φ1 = φ2 = φ4 = 0 and φ2
3 = −µ

2

λ
= v2,

breaks the field symmetry appearing in the expression (2.42). Hence the vacuum

expectation value occurs as a consequence of the previous choice

〈φ〉0 = 〈0|φ |0〉 =
1√
2

0

v

 . (2.44)

Again, this particular v.e.v is chosen as a result of the component φ+, which carries an

electric charge, that is absent in the ground state and making it neutral in agreement

with the nature. And it will be apparent later that this choice preserves the U(1)em

gauge invariance and keeps mγ = 0. Consequently the SSB mechanism expresses

how the Goldstone bosons transfers their d.o.f’s to the polarization vector of the gauge

bosons.

Observe that none of the generators individually keeps the vacuum state invariant:

τ iφ0 = (τ i)
1√
2

0

v

 6= 0 , Y φ0 =

1 0

0 1

 1√
2

0

v

 6= 0

all broken, however Q = −1
2

+ 1
2

with eigenvalue yφ = 1 keeps the g.s invariant

φ
′
0 = eiαQφ0φ0 = φ0

(τ 3 + Y )φ0 =

[1 0

0 −1

+

1 0

0 1

] 1√
2

0

v

 = 0.

So the ground state does not obey the initial SU(2)L⊗U(1)Y symmetry of the La-

grangian but corresponds to sub-symmetry group U(1)em, thus the vacuum state re-

mains neutral. This is the underlying concept how a larger symmetry group chooses

a smaller gauge symmetry after the symmetry breaking mechanism.

Perturbing the complex scalar doublet around the v.e.v will give rise to the masses of

the gauge bosons. In order to describe the excitations from the vacuum, a parametriza-

tion of the scalar doublet φ around the φ0 has to be identified in terms of the four

fields: θ1, θ1, θ1 and h and also with the SU(2) generators.
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Since physics is invariant under the SU(2)L⊗U(1)Y rotation, vev’s of the scalars

remains constant in a spacetime rotations. Thus it becomes,

φ(x) = e−iα
i(x) τ

i

2
1√
2

 0

v + h(x)

→ ei(θ
i(x)−α

i(x)
2

)τ i 1√
2

 0

v + h(x)

 . (2.45)

This rotation can also be written with irreducible representation of SU(2)L⊗U(1)Y

group [6].

Invariance of the Lagrangian gives us a chance to eliminate the three Goldstone

bosons ξi. This is called the unitary gauge and it plays a significant role in the Gold-

stone theorem. Either choosing Bµ → B
′
µ = Bµ + 1

gv
(∂µξi) at the Lagrangian level

(will be used in next section) or simply choosing αi(x) = 2θi(x) returns the scalar

doublet to the perturbed state around its vev:

φ(x) =
1√
2

 0

v + h(x)

 , (2.46)

such that the complex scalar doublet still satisfies vev:

〈0|φ†φ |0〉 = −µ
2

2λ
= v2 , 〈0|h(x) |0〉 = 0 , (2.47)

whereas the lower component of doublet

H(x) = v + h(x)→ 〈0|H(x) |0〉 = v

The H-field in the vacuum state is constant. And the corresponding particle is Higgs

boson, that is the perturbation of the vacuum field with h(x)
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2.5 The Masses of the SM Gauge Bosons

The mass terms can be identified by writing the Lagrangian such that it respects to

the SU(2)L⊗U(1)Y symmetry

Dµφ = (∂µ + i
g′

2
Y Bµ + i

g

2
τ iW i

µ)
1√
2

 0

v + h(x)


=

1√
2

∂µ + ig
′

2
Bµ + ig

2
W 3
µ ig

2
(W 1

µ − iW 2
µ)

ig
2
(W 1

µ + iW 2
µ) ∂µ + ig

′

2
Bµ − ig2W

3
µ

 0

v + h


=

 ig
2
W+
µ (v + h)

1√
2
(∂µh− i(v + h)(g

2
W 3
µ −

g
′

2
Bµ)


(Dµφ)† =

(
−ig

2
W−
µ (v + h) 1√

2
(∂µh+ i(v + h)(g

2
W 3
µ −

g
′

2
Bµ)

)
where the eigenvalue of hypercharge for Higgs doublet is chosen as Y = 1 and the

field ladder operators: W±
µ = 1√

2
[W 1

µ ± iW 2
µ ] have already been substituted into the

above expression.

Next, performing the contraction of the gauge covariant terms in the Higgs Lagrangian

(2.42):

(Dµφ)†(Dµφ) =
g2

4
(v+h)2W−

µ W
µ
++

1

2
∂µh∂

µh+
1

8
(v+h)2(gW 3

µ−g
′
Bµ)(gW 3µ−g′Bµ).

(2.48)

Only the quadratic terms of the gauge fields are required since they correspond to the

mass term: 1
2
M2W i

µW
µi

Lgauge,masses =
1

2
(gv)2W+

µ W
µ− +

1

8
v2
(
W 3
µ Bµ

) g2 −gg′

−gg′ (g
′
)2

W µ3

Bµ

 ,

(2.49)

and comparing expression (2.49) to the mass term in the Proca Lagrangian, reveals

the masses of the gauge bosons W±

MW± =
1

2
gv . (2.50)

Therefore the masses of theW± bosons are purely determined by the coupling strength

of the SU(2)L gauge interaction and the vev of the Higgs field.
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Checking 2nd term in the expression (2.49):

1

8
v2
(
W 3
µ Bµ

)
M̃

W µ3

Bµ

 , where M̃ =

 g2 −gg′

−gg′ (g
′
)2

 (2.51)

is an off-diagonal mass matrix. But expression (2.51) reveals a physical consequence

in which the gauge fields W 3
µ and Bµ are coupled together. The physical bosonic

states propagate as an independent eigenstates of the free particle Hamiltonian. If

such basis exists then the related mass matrix should be diagonal and the masses of

the neutral gauge bosons correspond to the eigenvalues of the mass matrix.

M̃ . → (g2 − λ)((g
′
)2 − λ)− (gg

′
)2 = 0→ λ1 = 0 , λ2 = g2 + g

′2

If the neutral part of the Lagrangian is rewritten in terms of the eigenvalues of the

mass matrix, then it becomes:

Lneutral,bosons =
1

8
v2[gW 3

µ − g
′
Bµ]2 + 0[g

′
W 3
µ + gBµ].

And now the physical fields Aµ and Zµ are the eigenvectors of the mass matrix. And

the neutral part of the Lagrangian in physical state basis can be written as

Lneutral,bosons =
1

2

(
Aµ Zµ

)0 0

0 1
4
v2(g2 + g

′2)

Aµ
Zµ

 . (2.52)

Finally the masses of the neutral gauge bosons can be identified as

MA = 0 , MZ =
1

2
v
√
g2 + g′2 . (2.53)

And if it is solved for the normalized eigenvectors of the mass matrix, the physical

fields appear in the following form:

Aµ =
g
′
W 3
µ + gBµ√
g2 + g′2

, Zµ =
gW 3

µ − g
′
Bµ√

g2 + g′2
. (2.54)

The superposition corresponding to theZ0 boson, which is related to the neutral Gold-

stone boson of the broken symmetry, has acquired mass through the Higgs mechanism

while the photon field has remained massless. And using the Gell-Mann relation [8]

on the electroweak currents gives a relation for coupling ratios:

g
′

g
=
ge sin θw
ge cos θw

= tan θw.
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Due to recent relation, equation (2.54) can be rewritten as follow

Aµ = Bµ cos θw +W 3
µ sin θw , Zµ = −Bµ sin θw +W 3

µ cos θw. (2.55)

Hence the mass of the Z0 boson can be written by using the Weinberg angle:

MZ =
1

2
gv sec θw =

MW

cos θw
, (2.56)

and the last part of the EW symmetry breaking process is due to Higgs potential. By

writing the chosen vacuum in the expression: φ†φ = 1
2
(v + h)2 of the V (φ) with a

substitution: v2 = −µ2

λ
, rewrites the scalar potential around the vev:

V (φ)φ0 =
µ2v2

2
− µ2h2 − µ2h3

v
− 1

4

µ2h4

v2
.

The first term is just constant and therefore has no effect on the equation of motion.

And the next term is directly related to the mass term of the Lagrangian. We can

deduce the following expression [17]:

MH =
√

2µ =
√

2λv (2.57)

Since g and MW are related to the Fermi constant, one can obtain [18]:

GF√
2

=
g2

8M2
W

→ v2 =
1√
2GF

→ v ≈ 246GeV, (2.58)

〈0|φ†φ |0〉 =
v2

2
u (174GeV )2. (2.59)

The rest of the terms with h2 and W±h indicate self-couplings of the h and the gauge

bosons W± , so the trilinear and quadrilinear couplings can be read off from the

Lagrangian and illustrated in fig. (2.2)

LSW =
1

4
g2v2W−

µ W
µ+ +

1

2
g2vW−

µ W
µ+h+

1

4
g2W−

µ W
µ+hh. (2.60)
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Figure 2.2: Trilinear and quadrilinear couplings of the Higgs field to the gauge bosons

The equation(2.59) sets a scale for the electroweak symmetry breaking process. Such

energy density corresponds to a temperature of roughly 1015K. According to the Big

Bang model of the universe, the SU(2)L⊗U(1)em→ U(1)em symmetry breaking had

distinguished the electromagnetism and the weak force in a time period ≈ 10−11s

after the cosmic inflation had begun.

Fermions can also acquire their masses by interacting with the Higgs field. After

the symmetry breaking process, the interaction terms between the fermion fields and

the Higgs field(arise from the Yukawa potential 2.38), generate the masses of the

fermions, and these masses are proportional to the Yukawa couplings: M i
f = 1√

2
gifv.

However neutrinos cannot acquire mass since there is no right-handed neutrino has

been observed yet. Furthermore, quarks are triplets under the SU(3)C color symme-

try; similarly the mass matrix must be diagonalized to obtain the mass eigenstates of

the physical quarks. But such variation of parameters will lead to various mass eigen-

states for the each generation. In return, different generations will be mixed through

the weak interactions hence the CP violation occurs.

Finally, by comparing relative couplings of neutral current and charged current of the

weak interactions; there has to be a parameter which scales to unity in the SM [19].

ρ =
M2

W

M2
Z(cos θW )2

= 1.

But to be tested by experimental methods.

As a last word in this section; the SM contains 25 free parameters:

• 2 parameters for the Higgs’ vev→ µ and λ.

• 12 Yukawa couplings(fermion masses) to the Higgs field(neutrinos are included
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since oscillations are observed).

• 8 mixing angles of the PMNS and the CKM matrices [20].

• 3 fundemental couplings ge, gw and gs [21] for the gauge groupsU(1)Y ,SU(2)L,

SU(3)c respectively.

22



2.6 Shortcomings of the SM and Theories Beyond the SM

The Standard Model has accomplished many theoretical predictions consistent with

the results of particle detectors, hence it is the best elementary particle theory at the

current stage. Although a large number of free parameters are available, there are

several unanswered questions in which the SM has not found complete solutions yet.

First of all, neutrinos are observed as oscillating between the different flavor types

[22]. Such phenomenon indicates that they have to be massive. A minimal extension

of the SM shows that, by adding right-handed neutrinos, it is possible to express the

Majorana mass terms for neutrinos. Second argument follows that the SM is unable to

express a rigid theoretical conclusion why there is observed matter-antimatter asym-

metry in the universe. This asymmetry is characterized by the baryon-photon ratio

[23, 24]:

η =
nb − nb̄
nγ

, (2.61)

where the baryon, antibaryon and photon densities are given in the expression (2.61).

According to the results of WMAP [25, 26] η ≈ 6.19× 10−10.

Thus the baryogenesis theories[27, 28] focuses on explaining why the η is not zero.

Then there exists a cosmological observation, indicating that the SM does not in-

clude the dark matter, which accounts approximately 83% of the total mass in the

universe[29] and known to interact weakly with the SM particles.

2.6.1 Dark Matter

The origin of the dark matter is still unknown and its existence is deduced merely

by the gravitational interaction. Inner composition of the dark matter has not been

revealed yet. The first proposal of the DM is related to insufficiency of mass through

the galaxies [30], since the observed mass could not produce such orbital velocity

of the galaxies. In 1933, Fritz Zwicky studied the dynamics of the galaxies through

the Coma Cluster[31]. By using the virial theorem on the Newtonian gravity among

particles in galaxy and considering nebulae as a uniform spherical shape with radius

a R; a simple model ended up with expression: 2T̄ = −Ūg, where Ūg =
−3GM2

tot

5R
.

23



But if that is the case, then the total mass of the observed galaxy should be

Mtot =
5Rv̄2

3G
.

However, Zwicky observed the brightest nebulae throughout the Coma cluster and

came up with an approximation that Mtot � Rv̄2

5G
. And the average mass of a galaxy

in the Coma Cluster should be approximately 4 ⊗ 1010M� with an average galactic

luminosity: L = 8.5×107L�. Thus there has to be some non-luminous matter which

accounts for the most of the total mass throughout the Coma Cluster. Finally more

reliable values of the galaxy masses has been computed by the gravitational lensing

method [32], which does not directly depend on the orbital dynamics. And the mass

value obtained in this way is in great agreement with the rotation curves [33].

Figure 2.3: Left: The rotation curve of the NGC 6503. The bold line is the contribu-

tion of the DM. Right: Observations of the Bullet Cluster. Red cloud indicates a hot

gas, observed in the X-ray regime, whereas the blue cloud demonstrates the existence

of the DM due to the gravitational lensing

There exist more arguments for the DM, a tangible results of the Cosmic Microwave

Background(CMB) [34], which gives information about the evolution of the universe.

Nonuniformly distributed CMB propagated through the photon-baryon field until the

decoupling stage [35]. Matching out the theory with the peak values of power distri-

bution has concluded conceivable DM density in the universe [36].
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There are several dark matter candidates such as baryonic mass as a possible DM can-

didate, forming dense bodies known as massive astrophysical compact halo objects

(MACHOs), and weakly interacting massive particles(WIMPs) [37, 38]. A WIMP

can be any particle that interacts with a strength of the order of the weak interaction

and a has a mass approximately the weak scale.

Analysis of the structure formation of the DM gives a set of classification for the DM:

• Cold dark matter(CDM), non-relativistic at the decoupling stage [40, 41],

• Warm dark matter(WDM), energies of rest mass at the decoupling. [42],

• Hot dark matter(HDM), relativistic at the decoupling.

Only the CDM model will be considered in the next sections, otherwise relativistic

particles(HDM) would cause the universe to be less dense than it is today. And by

writing an SU(2)d symmetric dark sector, the dark gauge boson will be considered as

possible DM candidates for a further scope, where the stability of the DM candidates

will be given by the custodial symmetry [43].
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CHAPTER 3

THE HIDDEN SECTOR

Despite the theoretical physics leaves unanswered questions more than yesterday,

physicists try to develop more sophisticated methods to answer questions beyond

the SM. And the era of the hidden sector had already begun to comprehend what lies

beyond the SM. Each extension methodology brings its own particles, symmetries and

interactions, but ”hidden from the everyday observation”, because the experimental

insufficiency prevents us from observing the scale of these interactions with the SM

particles. But the hidden(or dark) sector had influenced a broad range of study to

conceive the nature of the dark matter. There are many possibilities for the DM

models in which the DM fields are being designated similiar to the SM fields and

mostly the non-/abelian gauge theories are extended to the hidden sector to construct

viable DM frameworks.

Regarding a hidden sector, constrained to low energies, includes electrically neutral

states and possibly neutral under the SM gauge groups too. Hence a set of interac-

tions regarding the both sectors, can be parametrized in a compact form of the sector

operators:

Lint =
k+l=n+4∑
k,l,n

OkHSOlSM
Λn

where superscripts denote the canonical dimensions of the sector operators and Λ is

indicating a cutoff scale > TeV

A wide spectrum of the DM studies are being motivated by the gravitational interac-

tions as a consequence of the first observations of Zwicky.
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Thus, almost every extension relies on the gauge theory, requires the aid of the Higgs

mechanism in the hidden sector or so called ”dark Higgs”. And obviously there is a

’zoo’ for the non-baryonic DM candidates.

Figure 3.1: Dark Matter related theories beyond the Standard Model

There are also DM candidates at cosmic scales, such as MACHOs, black holes, dwarf

type stars. But these are out of scope at this study. However these cosmic structures

can include a small fraction of the DM abundance, hence other objects with masses

ranging between 10−5eV to 104M�, have been introduced to consolidate the DM relic

density. However, it is crucial to keep in mind that, no candidate excludes an other;

otherwise it would be trivial to imply that the DM is composed of one substructure

alone. The most common candidates are listed in the subsections.
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3.1 Neutrino Portal

Neutrinos had been proposed as a viable DM candidates because of their massive

presence and weak scale of interactions. But the relic density for the DM cannot

be fulfilled with the neutrino masses. Even if neutrinos considered as a part of the

DM, there is an upper limit for neutrino abundance: Ωνh
2 < 0.07 [49] is obviously

far from total DM abundance. There are more constraints about the neutrino relic

density but they are beyond the scope of this study. On the other hand, there exists

a proposal about the Sterile neutrinos, interacting only by the gravitational force and

considered as the mass generation mechanism for the left-handed neutrinos. One of

the logical explanation for the neutrino oscillations can be expressed via the see-saw

mechanism. Once a right-handed neutrino is allowed to exist, a possible mass term

appears in the Lagrangian. Since right-handed neutrinos do not couple to any gauge

field, the Majorana mass term can be expressed for right-handed neutrinos:

Lmajorana ≈ ν̄RMDνL + ν̄LMDνR +
1

2
ν̄RMMν

c
R +

1

2
ν̄cRMMνR

in terms of the matrix

≈ 1

2

 0 MD

MD MM

 .

The mass eigenvalues for the ’physical states’: 1
4
(MM ±

√
M2

M + 4M2
D) and with

an approximation: MD < MM , leads to two mass eigenvalues MM

2
and − M2

D

2MM
. One

is extremely massive particle and the other is a very light neutrino. And the massive

neutrino can be considered as a DM candidate.
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3.2 Axion Portal

Axions are pseudo-scalars, which are directly related to the U(1) SSB belongs the

Peccei-Quinn model. The related symmetry of that model have been proposed to

terminate the strong CP problem of the QCD. However, stellar cooling and supernova

processes imposes an approximate limit for the axion masses: � 0.01eV . Moreover,

they are predicted as weakly interacting with the SM particles, hence they could not

be in thermal contact with cosmic heat reservoir at the early stage of the universe.

Axions are less likely to be considered as a DM candidate than the others, since

obtaining their number density is a complex process to end up with associated DM

abundance.[45]-[48]

3.3 Vector Portal

It is possible to define a vector portal for the DM through a dark gauge field Z
′
µ

with additional U(1)
′ internal dark gauge symmetry. Vector portal Lagrangian also

contains an additional scalar field Φ
′ , which is charged under the additional U(1)

′

dark symmetry. The dark gauge field Z ′µ obtains mass term through radiative SSB

via the CW mechanism. Specific SM fermionic fields can contain U(1)′ charge, and

the interactions are written in terms of the kinetic mixing between Z ′µ and the SM

hypercharge field.

A basic approach to the kinetic mixing, in which the SM connected to a dark abelian

gauge sector can be expresed as:

Lint =
ξ

2
F µνZ

′

µν ,

where the terms F µν and Z ′µν are the field strength tensors of the photon and the dark

photon respectively, and ξ is the scale of the kinetic mixing between U(1) and U(1)
′

gauge symmetries. Which is experimentally constrained to a small value (ξ2 << 1).
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It should be noted that the generic case for the kinetic mixing, is that the one be-

tween the U(1)Y hypercharge and the U(1)dark. But it is sufficient to include only

the U(1)QED and the U(1)dark mixing in the regime: m2
γ′
� m2

Z . But for a higher

energy scales, F µν should be replaced with the hypercharge field strength. However,

for an energy range of ≈GeV, coupling to the Z is ignored.

Expressing the Higgs portal via the coupling of the new scalar Φ
′ to the SM Higgs,

the radiative SSB in the dark sector(singlet) triggers the EW SSB process in the Higgs

sector. Consequently, the model is forged with an additional Dirac fermion ψ′ , that

is charged under U(1)′, which can behave as CDM. Furthermore, the model contains

extra observer fermions ξ′ and RH neutrinos νR, these are just natural consequences

to assure anomaly cancellation, nevertheless, they cannot alter the phenomenology.

Once the SSB of the U(1)
′ sector occurs;

Lint ≈ ξZ
′

µJ
µ
em +

m2
Z′

vZ′
h
′|Z ′µ|2

where the interaction of the dark Higgs h′ and Z ′µ bosons has already been included

above, and will pose significant signatures for h′ boson. Despite this model demon-

strates considerable facility, there remains a wide range of sophisticated phenomeno-

logical results. Such models with the kinetic mixing have recently been under inves-

tigation for the WIMPs DM, since they are charged under the U(1)
′ too.

There are two domains for the non-trivial DM candidates based on this U(1)
′ sector:

1. ξ ≤ 10−7 − 10−6 when the sub-GeV gauge bosons may exist with a decay

length cτ several meters. For such case mh′ > mZ′ , permits quick h′ decay

2. ξ ≈ 10−4 − 10−2 and mZ′ > mh′ ; in such interval, fast decaying vector gauge

boson and long-lived h′ occurs with a decay width of O(ξ2).

Both possibilities are ideal candidates for a fixed target search. For a detailed search

see ref. [76]
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3.4 Scalar Portal

Scalar portal or more conventionally the Higgs portal, describes a coupling in the

form: H†H . Consider a new scalar singlet ΦHS , which belongs to the hidden sector,

where its connection to the Higgs portal can be written in a generic form of dimension

3 and 4 operators

Lscalar,int = (H†H)(λΦ2
DS + αΦDS) = hv(λΦ2

DS + αΦDS) + ....,

One would obviously obtain H = 1√
2

 0

v + h

 after the SSB of the EW symmetry.

Furthermore, if α = 0, then there would be an additional Z2 symmetry to ensure the

stability of ΦDS scalar. Such constraint suggests a firm assertion for the scalar portal

leads to viable DM candidates. Moreover, the hidden sector coupled to the scalar

portal may not be totally bosonic, thus one can connect additional fermionic fields

XHS to the ΦDS scalar, if the renormalizability of the given model is provided. In

such a case, the Lagrangian will simply contain a term of the form X̄XOhSM .

3.4.1 A Minimal Extension

The minimal extension of the SM with hidden sector can be performed by considering

an additional scalar ΦDS in a real singlet form, whereas the Higgs is still a complex

doublet. The DM abundance is the underlying motivation for the introduction of such

minimal extension. Although a detailed study of the minimal scalar extension has

already been studied [50, 51], it will be enlightening to review it in a short discussion.

Starting from the potential of the scalar portal for the minimal extension

V (Φ,ΦDS) = V (Φ)− µ2
DSΦ2

DS +
λDS

4
Φ4
DS +

λsd
2
|ΦDS|2|Φ|2

as mentioned in the section (3.4), Φ3
DS and ΦDS|Φ|2 terms can be added but then,

the stability of the DM candidate must be abandoned. Thus the potential expression

obeys Z2 symmetry: ΦDS → −ΦDS

The SM scalar doublet obtains a non-zero vev as usual, which breaks theZ2 symmetry

by choosing a particular vacuum.
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Minimizing the potential reveals parametric relations through the given minimal ex-

tension and the SM. Simply quoting from the identical complex doublet of the SM

(2.41), and evaluating the extremum of the potential gives:

∂V

∂φ3

∣∣∣∣
0

=
∂V

∂ΦDS

∣∣∣∣
0

= 0,

which leads to the relations:

µ2 =
1

4
(λv2 + λsdv

2
d) , µ2

ΦDS
=

1

4
(λDSv

2
d + λsdv

2).

By using a rotational matrix identical to the NMEHS section (3.11), one can diago-

nalize the mass matrix of the real scalar fields:

M̃2 =
1

2

 λv2 λsdvvd

λsdvvd λDSv
2
d


where the mixing angle for the mass eigenstates given by the relation:

tan(2α) =
2λsdvvd

λv2 − λDSv2
d

,

with the mass eigenstates:

h
′
= φ3 cosα− ΦDS sinα ; Φ

′

DS = φ3 sinα + ΦDS cosα.

Indeed the limit α → 0, indicates vd = 0, in which the mass matrix for the neutral

fields, becomes diagonal. Furthermore, the Higgs field obviously approaches to the

physical Higgs with h′ = φ3 and m2
h′

= λv2

2
in which the superposition with dark

sector vanishes.

Now, the dark scalar boson is the only candidate for the DM, hence the DM abun-

dance will depend on this mere dark sector particle and the relevant parameters of the

minimal extension model. Once the cross sections for the annihilation channels are

given:

1. Higgs channel Φ
′
DSΦ

′
DS → h

′
h
′

2. Vector channel Φ
′
DSΦ

′
DS →W±W±,Z0Z0

3. fermion channel Φ
′
DSΦ

′
DS →f̄f ,
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and relevant Lagrangians for these 4 point interactions:

LS =
λsd
4
vh
′
Φ2
DS +

λ

4
vh
′3 +

λsd
8
h
′2Φ2

LV =
2M2

W

v
gµνh

′
W µ+W ν− +

M2
Z

v
gµνhZ

µZν

LF =
M2

F√
2v
h
′
ψ̄iψi.

with the total cross section obtained by[51]: σtot = σh′ + σZ0 + σW± +
∑
σf .

Once the annihilation channels for the Φ
′
DS are obtained, an approximate solution for

the relic abundance is given by following a short version of the next chapter (3)1:

ΩDMh
2 ≈ 5.2× 108GeV −1

mΦ
′
DS

xfrozenβ(xfrozen)
,

where β(x) =

√
π
45
g∗(

m
′
ΦDS

x
)(8πGN)−

1
2

m
Φ
′
DS

x2 〈σv〉 (x) and the rest of the parameters:

xfrozen, yeq are identical to the ones in the next chapter(4).

Plotting the relic abundance of the MEHS model relative to the Planck’s result [53]

versus the mass of the dark scalar is given in fig.(3.2), which is taken from [50, 51]:

Figure 3.2: Plot for the relative DM abundance versus the mass of the dark scalar. The

curves from top to down correspond λsd values: 0.2, 0.5, 1.0 and 2.0, respectively.

Red region excluded by the 2σ limit imposed on h′ → Φ
′
DSΦ

′
DS decay ratio and gray

region excluded by the results of Planck satellite.

1 It will be sufficient to discuss the results of the minimal extension since a set of derivations for the non-
minimal extension will be expressed explicitly in the chapter-4.
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3.5 Non-Abelian Dark Higgs Portal

By extending the SM with an additional SU(2) dark gauge symmetry, a possible in-

teraction of the hidden sector vector multiplets and the SM particles can be expressed

via the Higgs portal. Since the SM contains SU(2) symmetry, there has to be an extra

SU(2) symmetry for the dark sector as well. The kinetic mixing between the SM

gauge groups and the non-abelian dark sector SU(2)d is not allowed as a result of

individual gauge invariance, also the scalar potential cannot contain invariant terms

of cross sector couples like Φ†SM .ΦDS . All the SM particles are considered as singlets

under the SU(2)d gauge group. Then, the only invariant cross sector term is in the

form of quadratic scalar interaction: λs(Φ
†
SM .ΦSM)(Φ†DS.ΦDS), that leads the gauge

bosons acts as thermal WIMPS. Thus the mixing of both sectors will be proportinal

to the scalar coupling.

Furthermore, it is possible to write expressions for the dark sector in analogy with

the SM. But the U(1) gauge symmetry is excluded [43] (kinetic mixing Fµν,dF
µν
Y

forbidden), so only the SU(2) gauge bosons will be defined. These gauge bosons will

be modeled as viable DM fields. The stability of the dark gauge bosons W a
d is given

by the custodial symmetry, which is associated to the gauge symmetry and also to

the particle content of the model [44]. And the masses of the dark gauge bosons will

appear through the interaction with the dark scalar boson ΦDS which interacts only

with the dark sector particles. Similar to the SM, the dark scalar field has a non-zero

vev, such that breaks the symmetry when the field is perturbed around this vev. Finally

the equivalent Lagrangian reveals the masses of gauge bosons. It will be clearer in the

next section that the interaction between the cross sectors is always mediated by the

scalars. And this requirement gives an interpretation why the DM and mass content

is related through the Higgs portal. Such interaction term λsd(Φ
†
SM .ΦSM)(Φ†DS.ΦDS)

in the extended Lagrangian, permits intersector matter evolution, hence it will be

possible to evaluate the DS and the SM matter densities after the cosmic inflation.

It will be assumed that the DM and SM particles were in thermal equilibrium at

early times of the universe. As a consequence of the cosmic inflation, the interaction

between them had waned. At some point, the DM has left the heat reservoir and they

have evolved independently. Such assumption allows us to determine the DM density.
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Analogy of the SM and the custodial symmetry help to write down G′ = SU(2)d

gauge covariant derivative to assure the dark sector’s invariance as following

Dµ,d = ∂µ + i
gd
2
τaW a

µ,d =

 ∂µ + igd
2
W 3
µ,d

gd
2

(iW 1
µ,d +W 2

µ,d)

gd
2

(iW 1
µ,d −W 2

µ,d) ∂µ − igd2 W
3
µ,d

 , (3.1)

in which the exclusion of the U(1)d gauge group mentioned earlier. And the field

strength tensor of the SU(2)d non-abelian gauge group given by:

W a
µν,d =

1

igd
[Dµ,d, Dν,d] = ∂µW

a
ν,d − ∂νW a

µ,d − gdεabcW b
µ,dW

c
µ,d (3.2)

where the term W a
µ,d forms dark vector multiplets of the SU(2)d gauge group and

a = 1, 2, 3 as usual. The point of interest is based on the scalar potential, in which the

conventional Higgs potential constrained by the renormalizability of the model given

along with the interaction term of two sectors(dimension-4).

Hence extension of the scalar potential with dark sector becomes

V (ΦSM ,ΦDS) = µ2
ΦSM

Φ†SMΦSM + λSM(Φ†SMΦSM)2

+ µ2
DSΦ†DSΦDS + λDS(Φ†DSΦDS)2 + λsd(Φ

†
SMΦSM)(Φ†DSΦDS)

(3.3)

And writing the extended Lagrangian for the two sectors and recall that ΦSM → H

and ΦDS → Φ for a simpler convention,

Lext = LSM,kin + LSM,gauge + Lyuk + (DµH)†(DµH)

− 1

4
W a
µν,dW

µν,a
d + (Dµ,dΦ)†(Dµ

dΦ)− V (H,Φ).
(3.4)

Hence the Higgs and the dark scalar doublet Φ expressions are more familiar.

Dark scalar doublet model is defined by three parameters µ2
Φ,λDS , and the parameter

defining the coupling to the SM: λsd. Where the first two are the internal property of

the dark sector. But λDS is unconstrained and arbitrary, hence it can be set to a small

value for perturbation methods if required for the self interactions in the dark sector.

However there are some general constraints on the couplings of the model given, and

they ensure the stability of the vacuum and the limitations of the symmetry breaking

mechanism.

36



The presence of the vacuum indicates that the potential must be bounded from below.

And the lower limit is assured by the quadratic terms of the potential with the unitary

gauge. If the potential V (H,Φ) is written explicitly with only terms of 4th order of

scalars under a slight modification:

V (H,Φ) = λh(H
†.H)2 + λDS(Φ†.Φ)2 − 2

√
λDSλh|H|2|Φ|2

+ 2
√
λDSλh|H|2|Φ|2 + λsd|H|2|Φ|2

(3.5)

• λh, λDS > 0

• λsd > −2
√
λhλDS

for the V (H,Φ) to remains positive. Conventionally, scalar doublets of the both sec-

tors can be written in terms of 4 real fields as a non-minimal extension to the SM:

(2.41)

ΦDS =

ζ+
DS

ζ0
DS

 =

 1√
2
(ζ1 + iζ2)

1√
2
(ζ3 + iζ4)

 . (3.6)

The symmetry breaking of the SU(2)d and the SU(2)L⊗U(1)Y when the potential

equation (3.3) is minimized: ∂V (H,Φ)
∂φ3

= ∂V (H,Φ)
∂ζ3

= 0. Both the dark scalar and the

Higgs boson acquires non-zero vevs:

v2
h =

λsdµ
2
Φ

2
− µ2

HλΦ

λhλΦ −
λ2
DS

4

v2
d =

λsdµ
2
h

2
− µ2

Φλh

λhλΦ −
λ2
DS

4

, (3.7)

and choosing one of them breaks the symmetry of the gauge groups SU(2)L⊗U(1)Y

and SU(2)d, then perturbing the Higgs and the dark scalar doublet around their vevs

respectively do not change the eom; so the scalar vevs remain invariant. Recalling the

Goldstone theorem [16], that justifies to writen down

〈Φ′〉0 = e
i~τ .

~ξ
2vΦ

1√
2

 0

vd + ηd

 =
1√
2

 0

vd + ηd

 = 〈Φ〉0 .

Moreover, the unitary gauge gives the freedom to transfer 3 dofs of the Goldstone

bosons ξid into the longitudinal polarization of the gauge bosons by choosing the free-

dom: W ′

µ,d = Wµ,d + 1
gdvd

(∂µξ
i
d).
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Rewriting the extended Lagrangian (3.4) in terms of the both perturbed scalar fields

and substituting the given dark unitary gauge ends up with the following expression:

Lext =LSM +
1

2
(∂µη

′

d)(∂
µη
′

d)−
1

4
W a
µν,dW

µν,a
d +

1

8
(gdvd)

2W a
µ,dW

µ,a
d

+
1

8
g2
dη
′2
d W

a
µ,dW

µ,a
d +

1

4
g2
dvdη

′

dW
a
µ,dW

µ,a
d − λsd

2
(η
′

d + vd)
2(H†H)

− µ2
Φ

2
(η
′

d + vd)
2 − λΦ

4
(η
′

d + vd)
4

(3.8)

In the SM, there is an SU(2)L⊗U(1)Y symmetry since the fermions exist. So the

gauge bosons W± and Z0 are not mass-degenerate and hence they are unstable. But

the Lagrangian (3.8) demonstrates an important consequence: there exists a custodial

SO(3) symmetry in the dark gauge bosons(W a
d ) component space; in return, this

symmetry forbids the SU(2)d triplets to decay into any SO(3) singlets(SM particles

or η′d). As it will be clearer soon, these dark gauge bosons will be degenerate in

the mass eigenvalues, and their decay modes are absolutely forbidden unless higher-

dimensional operators occur in the Lagrangian(3.8). These consequences indicate

why the SU(2)d non-abelian gauge extension offers viable DM candidate since they

have survived up to current stage of the cosmic inflation [52].

Furthermore this stability constraint can be seen from the absence of a such term of

the form ∂µW
a
µ,d, which produces unstable gauge bosons in the theory.

To get the masses of the scalar bosons, rewriting the expression (3.7) with a slight

change:

µ2
H = −(

v2
dλsd
2

+ v2
hλh) , µ2

Φ = −(
v2
hλsd
2

+ v2
dλd). (3.9)

However the terms appear in this form(3.9) are not physical mass eigenvalues. If the

equation (3.9) is solved for the eigenvalues of the mass matrix:

m2
h′

= λhv
2
h + λdv

2
d ∓

√
λ2
sdv

2
dv

2
h + λ2

hv
4
h − 2λdλhv2

hv
2
d + λ2

dv
4
d

m2
η
′
d

= λhv
2
h + λdv

2
d ±

√
λ2
sdv

2
dv

2
h + λ2

hv
4
h − 2λdλhv2

hv
2
d + λ2

dv
4
d

(3.10)

Depending on the recent experiments, which have not observed the DM particles so

far; equation (3.10) gets (+) sign if λdv2
d>λhv

2
h since the DM particles are considered

conventionally heavier than the physical Higgs unless the mixing angleα is large.
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But small mixing angle regime is also considered above for the further objectives, thus

(−) sign indicates λdv2
d<λhv

2
h. The physical mass eigenstates are those diagonalize

the mass matrix M̃2 and they are given by the linear combination of h and ηd2:

h′
η
′

d

 =

cosα − sinα

sinα cosα

h

ηd

 ; cosα =

(
1 +

µ2
h − 2v2

hλh
µ2
h − 2v2

dλd

)− 1
2

. (3.11)

The relations among the parameters (4.3) of the NMEHS model can be constructed

with a number generator. However the generated values must obey the cosmological

constraints deduced by the experimental data of the Planck[53]. Some parameters

can be fixed to reduce the degrees of freedom throughout the model given. This

non-minimal extension in it’s current stage, depends on the parameters λh, λd, λsd, gd

and vh. But v2
h = 1√

2GF
is already known in the SM and mh′ ≈ 125.2GeV [17].

Such fixing of the parameters can be used for phenomenological purposes through a

modification of the expression (3.10)

λ2
sd =

(m2
h′
− 2λhv

2
h)(m

2
h′
− 2λdv

2
d)

v2
hv

2
d

, (3.12)

where the coupling of the scalar mixing has also symmetric characteristic under

mh′ ↔ mη
′
d
, that is expected from the small mixing angle regime. This is where

the WIMPs model will be discussed in the next section. And if α approaches zero,

the scalar coupling of the both sector vanishes and familiar results:

m2
h′

= 2λhv
2
h and m2

η
′
d

= 2λdv
2
d occur.

The motivation of the extended model of the SM, is to acquire the masses of the dark

gauge bosonsW a
d , and it can be obtained from the expression (3.8) with a degenerate

mass spectrum:

MWa
d

=
gdvd

2
. (3.13)

This result shows that why gd is chosen to be an independent parameter, since the

dark gauge bosons plays role for the DM fields.

2 From now on the 3rd components of the doublets will be expressed as φ3 → h and ζ3 → ηd for an elegant
notation.
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Moreover, the linear combination given by the expression (3.11) has an illuminating

conclusion: all of the SM particles that can couple to the Higgs field can also interact

with the dark scalar field ηd as well. Such conclusion is just one of the arguments

why the DM feels the presence of the gravitational interaction. And if required, one

can find the physical state based Lagrangian at elsewhere [43].

Unconstrained and arbitrariness condition of the coupling values have an essential

importance, these conditions permits to use of the perturbative methods on the higher

level Feynman diagrams.

In the last section of this study, statistical methods and the relic abundance for the

DM particles will be discussed through the annihilation and the semi-annihilation

Feynman diagrams of the gauge bosons by inclusion of the both sectors.
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CHAPTER 4

RELIC DENSITY FOR NON-ABELIAN DARK MATTER

Main requirements for the dark matter candidates are listed as follow [39]:

• It must weakly interact with baryons and photon due to cosmological con-

straints.

• It must be non-baryonic at large amounts since baryonic density Ωbh
2 ≈ 0.022

constituting a small amount throughout entire matter density [36]

• It is probably non-relativistic (CDM), since relativistic DM particles could

cause less dense cosmic structures.

• It must have lifetime longer than the age of the universe or its creation-annihilation

rates must be equal.

Three of these four requirements are either used or needed as a result of the model

extension, that is considered in the previous section. The last requirement can be

considered as ’axiom’ due to the results of the modern cosmology.

Relic abundance of a particle is defined as remaining or present density that survives

after the Big Bang in terms of cosmology literature. Latest results from the Planck

Satellite [53] express the DM relic density ΩDMh
2 ≈ 0.1187. The DM relic abun-

dance is mainly motivated to study evolution of WIMPs. Conventionally most of the

Big Bang models assume that the dark matter and the SM particles were in thermal

equilibrium.
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Consequently all particle species in the early universe can be given as heat reservoir

for the DM and the SM particles, in that case the Boltzmann statistics can be used for

the density evolution, otherwise they fall out of thermodynamical equilibrium.

When the interaction strength of two sectors drops below the expansion rate of the

universe, equilibrium breaks down and both sectors become decoupled [54]. This is

the point where the individual evolutions of the SM and the DM particles had begun.

The relic abundance for the DM is given as a inverse function of the average temper-

ature through the cosmic inflation

Y =
nDM
T 3

,

where nDM is the number density of the DM candidates, and only way to change the

number of particles is through creation or annihilation processes. Once annihilation

and creation rates are relatively smaller than the cosmic expansion rate, that is the

Hubble constant H(t) [55, 56], then the DM density becomes too small for the anni-

hilations to change the particle number. After the decoupling stage of both sectors,

the number of the DM particles will remain unaltered, but the number density nDM

will decrease due to the cosmic expansion. In the light of these predictions, cross

sections for each of the DM gauge bosons will be discussed throughout the following

subsection via statistical mechanics whenever it is needed.

4.1 Boltzmann Statistics and DM Relic Density Calculation

By considering cosmology approach, creation and annihilation of particles in early

stage of the universe could occur either in a thermal process or through a phase trans-

formation. But this study based on the former, since WIMPs assumed to be thermal

relic. An elementary expression for the annihilation rate per particle is

Γ = nσv,

where n is the number density, v is the thermally averaged velocity of the particles

and σ is the cross section of the given interaction.
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As the cosmic inflation proceeds, the mean free path of particles increased, hence

annihilation rate became less favorable. Furthermore, low average temperature of the

universe led to difficulties for the formation of new heavy particles, hence so called

’freeze-out’ scenario begun. Fundamental statistical mechanics can be used for the

evaluation of the number densities in the non-relativistic regime at equilibrium. In

such a case, the number density is

neq =

(
mT

2π

) 3
2

e−
m
T .

After the early stage interactions through the entire cosmic expansion [52], the DM

was absent in the cosmic heat reservoir, and having a freeze-out energy density. To

construct the DM relic abundance; the freeze-out temperature for the DM in which it

had left the cosmic heat reservoir, must be expressed. And one of the main assump-

tions is based on ’mean free path’ for the DM particles, hence the further calculations

would be simplified. And a conventional way to describe the decoupling stage, is to

indicate an initial condition [54]: Γ = H where the annihilation rate approaches to

the Hubble parameter.

The Boltzmann equation for the number density of the j-particle in the absence of

interactions becomes:
dnjeq
dt

+ 3
ȧ

a
njeq = 0. (4.1)

That expression ensures that the number of particles in a fixed physical volume, re-

mains constant. But the modification comes from interactions; the number density is

decreased in an expanding volume by a factor: n ∝ a−3

a−3d(nja3)

dt
= Cj(ni), (4.2)

where the right hand side includes collision terms which depends on the given spe-

cific interactions. This is the Boltzmann equation, simply devoted to express time-

dependent number density of the given nj particle in an expanding universe. Focusing

on assumptions of CDM mentioned earlier and keeping existence of kinetic energy

after the decoupling stage.
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And since the interactions of 3 or more particles at initial state is less favorable,

strictly focusing on two body interactions:

1 + 2 � 3 + 4,

where particle 1 and particle 2 can annihilate producing particles 3 and 4 and vice

versa. Following the tracks of the number density n1, the rate of density change of n1

given by the difference between the rates for producing and destroying the species.

Thus there can be a claim of both terms in the Boltzmann equation

a−3dn
1a3

dt
= −An1n2 +Bn3n4, (4.3)

where the first term in the right hand side stands for the destruction, and the second

term for the production of particles with unknown coefficients A and B respectively.

A quick justification comes from the use of both statistical mechanics and collision

theory as follow

a−3dn1a
3

dt
=

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

× (2π)4δ(4)(P µ
1 + P µ

2 − P
µ
3 − P

µ
4 )|M|2

[f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)].

(4.4)

Since the interactions are present, the left hand side of the equation (4.4) indicates

that the density multiplied with the scale factor cubed demonstrate the mechanism

of the expanding universe, which grows by a3 with fixed number of particles, hence

the number density falls off rapidly by a−3. And the functional terms are probability

expressions; these are mere consequence of statistical mechanics of particles. The

rate of producing particle-1 is scaled with the occupation functions of particles f3,f4

whereas destruction terms are proportional with f1,f2. For the term (1 ± f), plus

sign for bosons and minus sign for fermions due to Pauli exclusion principle. And

focusing on statistical mechanics of interacting particles in which chemical potential

(µ) is present. But assuming thermal equilibrium and sufficiently low temperatures

that is smaller than (E−µ), such a domain allows to ignore quantum statistics namely

fi terms, statistical distribution can be written

f(E) ∝ e
µ−E
kbT ,
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where kb is the Boltzmann constant. Furthermore, omitting the occupation factors,

the last term of the equation (4.4) can be written approximately

[f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)] ≈ e−
(E1+E2)

T [e
(µ3+µ4)

T − e
(µ1+µ2)

T ],

where the energy conservation E1 + E2 = E3 + E4 has already been used. By using

the number density of the ith particle via the grand canonical distribution:

ni = gie
µi
T

∫
d3p

(2π)3
e−

Ei
T = e

µi
T nieq,

where the equilibrium number density is simply quoted as

nieq = gi

∫
d3p

(2π)3
e−

Ei
T

hence the expression can be rewritten as follow

[f3f4(1± f1)(1± f2)− f1f2(1± f3)(1± f4)] = e−
(E1+E2)

T

[
n3n4

neq3 n
eq
4

− n1n2

neq1 n
eq
2

]

So, finally introducing the thermally averaged cross section

〈σv〉T =
1

neq1 n
eq
2

∫
d3p1

(2π)32E1

∫
d3p2

(2π)32E2

∫
d3p3

(2π)32E3

∫
d3p4

(2π)32E4

× e−
(E1+E2)

T × (2π)4δ(4)(P µ
1 + P µ

2 − P
µ
3 − P

µ
4 )|M|2

that redefines the Boltzmann equation [57]

a−3d(n1a
3)

dt
= neq1 n

eq
2 〈vσ12→34〉

(
n3n4

neq3 n
eq
4

− n1n2

neq1 n
eq
2

)
(4.5)

Since the DM is constitution of massive particles and these were assumed to be in

the thermal equilibrium with the SM particles through the early stage of universe,

thus it will be suitable to check the CDM relic abundance after the decoupling. The

Boltzmann equation can be written in a compact form as follow

a−3d(n1a
3)

dt
= 〈σv〉 (n2

1,eq − n2
1).

Or a more conventional form in terms of the Hubble parameter

ṅi + 3Hni = −〈σv〉
[
n1n2 −

(
n1n2

n3n4

)
eq

n3n4

]
(4.6)

At this point, coannihilation parameters are not included yet.
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The dark gauge bosons W a
d of the NMEHS, are the DM candidates, hence the evo-

lution of the dark bosons is to be evaluated once they decouple from the cosmic heat

reservoir.The equilibrium densities depend merely on the temperature and the mass

terms for the given system. Since the dark gauge bosons are mass degenerate as a con-

sequence of the U(1)d symmetry absence, neqi will be identical for each candidate. So,

it is expected to obtain the same annihilation and coannihilation cross sections from

the respective Feynman diagrams. All possible annihilation and coannihilation dia-

grams are given below for the non-abelian dark gauge bosons in figs. (4.1) and (4.2)

Figure 4.1: Diagrams contributing annihilation cross sections

Figure 4.2: Diagrams contributing coannihilation cross sections
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It was expressed in equation (3.11), that the physical eigenstates are in the form of

linear combination, hence they interact with the SM particles; in return, this interac-

tion leads them to decouple from the cosmic heat reservoir after the DM gauge bosons

had left. It is assumed that in the CDM scenario, both densities of the physical scalars

remain unaltered after the decoupling, hence they obey a quasistatic equilibrium con-

dition to maintain their equilibrium densities:

nη′d
= neq

η
′
d,

; nh′ = neq
h′
.

Boltzmann equation is rewritten for all degenerate dark gauge bosons W a
d (a =

1, 2, 3), and this time including the coannihilation cross sections, since they obviously

change the DM particle density throughout the model.

The Boltzmann equation for each dark gauge boson is

dn1

dt
+ 3Hn1 = 〈σannv〉 (n2

eq − n2
1)− 〈σcoannv〉

×
[
(nanb −

nc
neq

n2
eq) + (nanc −

nb
neq

n2
eq)− (nbnc −

na
neq

n2
eq)

]
dn2

dt
+ 3Hn2 = 〈σannv〉 (n2

eq − n2
2)− 〈σcoannv〉

×
[
(nbnc −

na
neq

n2
eq) + (nbna −

nc
neq

n2
eq)− (ncna −

nb
neq

n2
eq)

]
dn3

dt
+ 3Hn3 = 〈σannv〉 (n2

eq − n2
3)− 〈σcoannv〉

×
[
(ncna −

nb
neq

n2
eq) + (ncnb −

na
neq

n2
eq)− (nanb −

nc
neq

n2
eq)

]
Once more, the mass degeneracy of the dark gauge bosons simplifies these equations,

time evolution of the densities are symmetric under particle numbers and all of them

decouple from the heat reservoir at the same equilibrium density. Thus they simplify

ṅa + 3Hna = 〈σannv〉 (n2
eq − n2

a)− 〈σcoannv〉na(na − neq) . (4.7)

The total DM density with degeneracy is just ntot = 3n. The expression(4.7) is

called as the Lee-Weinberg equation [58], that describes the evolution of WIMPs after

they decouple from a heat reservoir. But the solution of this equation is a non-trivial

problem and requires some simplifications [59].

47



Starting from the relation of total entropy density of the universe and the relic abun-

dance parameter Y = n
s

stot = 2π2g∗(T )
T 3

45
, (4.8)

where g∗ standas for relativistic degrees of freedom:

g∗(T ) =
∑
bosons

gi(
Ti
T

)3 +
7

8

∑
fermions

gi(
Ti
T

)3 (4.9)

Invoking the conservation of entropy per moving volume sa3=constant, the Lee-

Weinberg equation is rewritten as

sẎ = 〈σannv〉 s2(Y 2
eq − Y 2

a )− 〈σcoannv〉Y (Ya − Yeq) (4.10)

Furthermore, a new change of parameters introduced as x = T
mWd

recovers modifica-

tion of the equation (4.7)

dY

dx
= 2π2g∗(T )

m3
Wd
x2

45H
[〈σannv〉 (Y 2 − Y 2

eq) + 〈σcoannv〉Y (Y − Yeq)] (4.11)

For a given average 〈σv〉 (x) the equation (4.11) requires a numerical solution. But

there is an approximation for the modified equation. Keeping in mind that the uni-

verse was extremely hot at the beginning of the cosmic inflation x = T
mWd

> 1 such

that fluctuations of the relic density from the equilibrium value was recovered very

fast, and that condition allows to use quasistatic approach. As the cosmic inflation

goes on, the temperature of the universe decreased. And the DM particles approach

to non-relativistic limit x � 1, in this limit equilibrium relic abundance and its spe-

cific value at certain point have been distinguished from each other. Decoupling stage

is defined in terms of relative seperation between specific abundance and equilibrium

abundance in the order δ ≈ O(1)

δ =
Ydecouple − Yeq

Yeq
;
dYdecouple

dx
= (1 + δ)(

dYeq
dx

). (4.12)

To find out the temperature of the decoupling stage in freeze-out scenario; adding

equation (4.11) into the expression (4.12) with redefinition of the parameters:

γ = x−1 =
mWd
T

, and yeq = eγYeq.
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Substituting all these definitions into (4.11) and rewriting the following relation:

dY

dx

∣∣
x=xdecouple

=

[
(1 + δ)

(dyeq
dγ
− yeq

)
(−γ2e−γ)

]∣∣∣∣
γ=γdecouple

, (4.13)

and using functional iteration of the Mathematica

e
mWd
T =

[
T 42π2g∗(T )y2

eq

45mWd
H(dyeq

dγ
− yeq)(1 + δ)

(
〈σannv〉 δ(δ+2)+〈σcoannv〉 δ(δ+1)

)]∣∣
x=xdec

(4.14)

where, the condition T
mWd

∣∣
decouple

> 1 must hold for the Boltzmann distribution in

which the equilibrium abundance is given by [60]:

Yeq =
neq
seq

=
45gnM

2K2

4π4g∗T 2
(4.15)

where neq =
m2
Wd

T

2π2 K2(x) and K2(x) is defined as the modified Bessel function of the

second kind. Using equation (4.14) one gets

Tfrozen = mWd

[
log

[
T 4
frozen2π

2g∗(T )y
2
eq

45mWd
H(

dyeq
dγ − yeq)(1 + δ)

(
〈σannv〉 δ(δ + 2) + 〈σcoannv〉 δ(δ + 1)

)]]−1

.

(4.16)

The equation (4.16) will demonstrate the relation between Tfrozen −mWd
. It is nec-

essary to evaluate annihilation and coannihilation cross sections.

Once (
mWd
T

)initial value is given logarithmically, relation between the dark gauge

bosons and the decoupling temperature can be plotted. And as mentioned before,

having the dark gauge bosons degenerate mass will drastically simplify the computa-

tion of the diagram amplitudes

4.2 Scattering Amplitudes for DM Gauge Bosons

First of all, the vertex factors must be extracted from each relevant interaction. Writ-

ing each interaction term in the Lagrangian (3.8) and changing the derivatives with the

momentum operator(i~∂µ → pµ) and extracting the involved field parameters from

the interaction Lagrangians, we obtain the vertex factors for the dark gauge bosons.

Then quoting the mixing angle for the physical eigenstates from the equation (3.11)

cosα =

(
1 +

µ2
h − 2v2

hλh
µ2
h − 2v2

dλd

)− 1
2

.
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The vertex factors for VVSS, FFS, VVV, SSS and VVS type interactions are depicted

in figs. (4.3) to (4.6)1

Figure 4.3: The relevant vertex factors for four-point VVSS type of interactions

Figure 4.4: The relevant vertex factors for three-point FFS and VVV type of interac-

tions

1 For an elegant notation, redefining λsd → ξ.
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Figure 4.5: The relevant vertex factors for three-point SSS type of interactions

51



And finally coupling SM bosons to dark gauge bosons and dark scalars

Figure 4.6: The relevant vertex factors for three-point VVS type of interactions

Mandelstam variables and special functions will be introduced whenever required.

On the way of calculating the scattering amplitudes, the Higgs boson partial widths

are taken from [61]. The analytical matrix element expressions for the following

annihilation and coannihilation diagrams shown in figs. (4.1) and (4.2)
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MWd,aWd,b→h′h′ =
i

2
gµνvdg

2
d

1

(s−m2
h′

+ imh′Γh′ )

[
3ξvd cos2 α sinα− 3ξvh sin2 α cosα

− 6λhvh cos3 α + 6λdvd sin3 α

]
− i

2
gµνvdg

2
d cosα

1

(s−m2
η
′
d

)
×[

− ξvd cos3 α + 2ξvd sin2 α cosα + 2ξvh cos2 α sinα− ξvh sin3 α

− 6λhvh cos2 α sinα− 6λhvd sin2 α cosα

]
+
i

2
gµνg

2
d sin2 α

− i

4
gµσgνλv

2
dg

4
d sin2 α

1

(t−m2
Wd

)

(kσkλ
m2
Wd

− gσλ
)

− i

4
gµσgνλv

2
dg

4
d sin2 α

1

(u−m2
Wd

)

(pσpλ
m2
Wd

− gσλ
)

(4.17)

MWd,aWd,b→η
′
dη
′
d

=
i

2
gµνvdg

2
d cosα

1

(s−m2
η
′
d

)
[3ξvd sin2 α cosα + 3ξvh cos2 α sinα

+ 6λhvh sin3 α + 6λdvd cos3 α] +
i

2
gµνvdg

2
d sinα

1

(s−m2
h′

+ imh′Γh′ )

×
[
− 2ξvd cos2 α sinα + ξvd sin3 α− ξvh cos3 α + 2ξvh sin2 α cosα

− 6λhvh sin2 α cosα + 6λdvd cos2 α sinα

]
+
i

2
gµνg

2
d cos2 α

− i

4
gµσgνλv

2
dg

4
d cos2 α

1

(t−m2
Wd

)

(kσkλ
m2
W

− gσλ
)

− i

4
gµσgνλv

2
dg

4
d cos2 α

1

(u−m2
Wd

)

(pσpλ
m2
Wd

− gσλ
)

(4.18)

MWd,aWd,b→W+W− =− i

4
gµνvdg

2
d cosα

1

(s−m2
η
′
d

)
gσλg

2vh sinα

− i

4
gµνvdg

2
d sinα

1

(s−m2
h′

+ imh′Γh′ )
gσλvhg

2 cosα

(4.19)
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MWd,aWd,b→ZZ =− i

4
gµνvdg

2
d cosα

1

(s−m2
η
′
d

)
gσλvh cosα

(
g cos θW + g

′
sin θW

)2

− i

4
gµνvdg

2
d sinα

1

(s−m2
h
′ + imh′Γh′ )

gσλvh cosα

×
(
g cos θW + g

′
sin θW

)2

(4.20)

MWd,aWd,b→ff̄ =− i

4
√

2
gµνvdg

2
d cosα

1

(s−m2
η
′
d

)
gσλYf sinα

− i

4
√

2
gµνvdg

2
d sinα

1

(s−m2
h
′ + imh′Γh′ )

gσλYf cosα

(4.21)

MWd,aWd,b→Wd,ch
′ =

i

2
vdg

3
dεijl

[
gµν(ki − kj)γ + gνγ(2kj + ki)µ + gγµ(−2ki − kj)ν

]
× 1

(ki + kj)2 −m2
Wd

[
(ki + kj)

γ(ki + kj)
β

m2
Wd

− gγβ
]
gβσ sinα

+
i

2
vdg

3
dεilk

[
gµγ(2ki − kk)σ + gγσ(2kk − ki)µ + gσµ(−ki − kk)γ

]
× 1

(ki − kk)2 −m2
Wd

[
(ki − kk)γ(ki − kk)β

m2
Wd

− gγβ
]
gβν sinα

(4.22)

only the mixing angle changes forWd−Wd−η
′

d vertex as compared toWd−Wd−h
′ ,

thanks to the symmetry of linear combinations of the mass eigenstates, so that

MWd,aWd,b→Wd,cη
′
d

=
i

2
vdg

3
dεijl

[
gµν(ki − kj)γ + gνγ(2kj + ki)µ + gγµ(−2ki − kj)ν

]
× 1

(ki + kj)2 −m2
Wd

[
(ki + kj)

γ(ki + kj)
β

m2
Wd

− gγβ
]
gβσ sinα

+
i

2
vdg

3
dεilk

[
gµγ(2ki − kk)σ + gγσ(2kk − ki)µ + gσµ(−ki − kk)γ

]
× 1

(ki − kk)2 −m2
Wd

[
(ki − kk)γ(ki − kk)β

m2
Wd

− gγβ
]
gβν cosα

(4.23)
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Having all scattering amplitudes for the annihilation and coannihilation channels at

hand, cross sections for these interactions can be obtained by using the center of mass

frame. Two body scattering amplitude for 1 + 2 → 3 + 4 in the CM-frame is given

by: (
dσ

dΩ

)
CM

=

(
1

8π

)2
S

(E1 + E2)2

| ~Pf |
|~Pi|
|M|2δ(4)(p1 + p2 − p3 − p4) (4.24)

where | ~Pf | = 1
2(E1+E2)

√
λ((E1 + E2)2,m2

3,m
2
4) in terms of triangle function λ. Then

total cross section is obtained from integration over entire solid angle

σCM =

∫ π

0

∫ 2π

0

(
dσ

dΩ

)
CM

sinψdψdφ

Expressions (4.17) - (4.24) are substituted into the thermal averaged cross section

[62, 63] for annihilation and coannihilation channels in terms of modified Bessel

functions K1, K2 of the first and the second kind respectively:

〈σann,cov〉T =

∫ ∞
4mWd

s
√
s− 4m2

Wd
K1(

√
s
T

)σann,cov

16Tm4
Wd
K2

2(
mWd
T

)
ds. (4.25)

Due to Hambye’s model [43, 44], in the mass range
m
h
′

2
< mWd

< mh′ , which

is rather less likely; if the physical Higgs is heavier than the dark gauge boson Wd

within WIMP regime; the result is just the minus of expression (3.10). Then the an-

nihilation channels of the dark gauge bosons to the dark scalar become Boltzmann

suppressed. Hence the annihilation cross sections into the SM particles by Higgs to-

tal width Γh′ become[61]

〈σv〉 =
v2
dg

4
d sin2 α

8
√
s

gµσgνλ
Γh′ (
√
s)

(s−m2
h′

)2 + Γh′ (mh′ )

(
kµ1k

ν
1

m2
Wd

− gµν
)(

kσ2k
λ
2

m2
Wd

− gσλ
)

(4.26)

for k1, k2 four-momentum of the incoming dark gauge bosons.
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Taking Boltzmann suppresion into account and for small mixing angles in which the

Higgs h′ approaches the SM Higgs. Hence eliminating the annihilation and coanni-

hilation channels with the dark scalar in the final states are negligible. Let us quote

the expression (4.16) for Tfrozen −mWd
relation:

Tfrozen =mWd

[
log

[
T 4
frozen2π2g∗(T )y2

eq

45mWd
H(dyeq

dγ
− yeq)(1 + δ)

×
(
〈σannv〉 δ(δ + 2) + 〈σcoannv〉 δ(δ + 1)

)]]−1
.

Using model parameter [44] for average velocity of the CDM in WIMP regime

(constrained by theoretical limits) gives 〈v〉T ≈
√

3Tf
mWd

≈ 1
2.8

and considering early

stage interval for freeze-out parameter xfrozen =
mWd
Tf
≈ 25 − 35, it is ready for fur-

ther discussion. Once an iterative solution method applied on the expression (4.16)

consecutively, relation betweenmWd
and Tf can be plotted. Choice of the initial value

γi =
mWd
Tf

= 30 and interval for the mixing angle α = [0◦, 89◦] ends up with the graph

in fig.(4.7)

Figure 4.7: Relation between mass of dark gauge boson and decoupling temperature

Since Boltzmann suppresions leads to small angles for mixing, h′ is drawn to the SM

Higgs limit. Furthermore, for small angles(bright dots), decoupling temperature is

relatively higher; that is a pure consequence of cross section at small angles.

56



4.3 Non-Abelian Dark Matter Relic Abundance

To get a better comprehension about relic density, let us start from the Robertson-

Walker metric, which is a solution of the Einstein field equations [64] for isotropic

expanding universe given by

ds2 = −dt2 + a2(t)

(
r2 + r2dθ2 + r2sin2θdφ2 +

dr2

1−Kr2

)
= gµνdx

µdxν (4.27)

where the constant K is the curvature of space and can take values K = −1, 0, 1

depending on the geometry of spacetime: open,flat and closed. Because the cosmic

expansion has been observed, the scale factor a = a(t) is time-dependent. Further-

more, evolution of scale factor is given by the Friedmann equation [65], which is an

another solution of the Einstein field equations.

H2(t) +
K

a2
=

8πGN

3
ρtot ; ρ =

π2

30
g∗T

4 (4.28)

in which the total energy density has main components ρtot = ρmatter +ρrad+ρvac. It

is seen from the Friedmann equation, if K = 0 flat universe, then the energy density

will be equal to the critical density

ρc =
3H2

8πGN

(4.29)

The equation (4.28) can be written in a more conventional form

K

H2a2
+ 1 =

ρ

( 3H2

8πGN
)
≡ Ω (4.30)

where Ω = ρ
ρc

.

In general, energy density parameter of the universe is Ω 6= 1. Although Ω0 = 1

is predicted by cosmic inflation, Ω(t) is effected by various number of parameters.

Clearly, total energy density has main components Ω0 = ΩΛ + ΩM where ΩM =

ΩDM+Ωb. But from the equation(4.30) K
H2a2 = Ω−1, thus the variations from Ω0 = 1

can be realized as contribution from curvature expansion rate ΩK = − K
H2

0a
2
0
. The total

parameter can be written in terms of its components Ωtot = ΩΛ + ΩM + ΩK = 1

Consistency of observations and the Big Bang nucleosynthesis (BBN) [66] imposes

an upper limit to the baryonic density Ωbh
2 ≤ 0.019 [67]. Due to absence of direct

measurement of the DM, an estimation of ΩDMh
2 relies on the asymmetry in CMB

[35].
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Linear relation between dark gauge boson’s mass mWd
and Tf utilizes calculation of

the non-abelian DM relic density. Taking attention back to the relic density expression

for the dark gauge bosons (4.11)

dY

dx
= 2π2g∗(T )

m3
Wd
x2

45H
[〈σannv〉 (Y 2 − Y 2

eq) + 〈σcoannv〉Y (Y − Yeq)],

and considering the stage after decoupling of the DM because of cooling of the uni-

verse Y � Yeq, Y 2
eq term is neglected and the expression (4.11) reduces to

dY

dx
= 2π2g∗(T )

m3
Wd
x2

45H

[
Y 2
(
〈σannv〉+ 〈σcoannv〉

)
− Y Yeq

(
〈σcoannv〉

)]
(4.31)

At this stage, omitting the Yeq term recovers the original solution proposed by [58].

The second term in expression (4.31) has a contribution only within the immediate

decoupling stage and it can be neglected if annihilation channels dominate the total

cross section 〈σannv〉 � 〈σcoannv〉

dY

dx
= 2π2g∗(T )

m3
Wd
x2

45H
Y 2 〈σv〉 . (4.32)

That is the Lee-Weinberg expression for the relic density with 〈σv〉 = 〈σannv〉 +

〈σcoannv〉. Solution can be obtained numerically [68] as depicted in fig. (4.8)

Figure 4.8: The DM relic density as a function of mDM
T

. Before the decoupling stage

(x < xf ), density approaches to the equilibrium limit(dashed line). After the decou-

pling stage, relic density stays almost constant as time evolves(bold line).
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However actual solution for the expression (4.31) requires some simplifications. By

looking to expression (4.28); H ∝ √ρtot for flat space(K = 0), and ρ ∝ T 4, thus

H ∝ x2. By considering this dependence, a simplification rises; x
2

H
remains unaltered

and also recall that 〈σv〉T remains constant. Moreover, an approximation for relativis-

tic degrees of freedom as a function of entropy through early stage of the universe is

given by [60]:

g∗(T ) ≈ g∗s(T ) = 2 + 6.θ(T −mW ) + 3.θ(T −mZ) + 3.3θ(T −mWd
) + 3.

7

4

+
7

2
.
∑
e,µ,τ

θ(T −mi) +
∑
scalars

giθ(T −mi)

+ θ(T − TQCD)

(
2.8 +

21

2
.
∑
quarks

θ(T −mi)

)
= θ(T − TQCD)

[
2.8 +

21

2

(
θ(T −mu) + θ(T −md) + θ(T −mc)

+ θ(T −ms) + θ(T −mb) + θ(T −mt)

)]
+ 3.

7

4
+ 2

+
7

2

(
θ(T −me) + θ(T −mµ) + θ(T −mτ )

)
+ 2.3θ(T −mW )

+ 3θ(T −mZ) + θ(T −mh′ ) + θ(T −mη
′
d
) + 3.3θ(T −mWd

)

(4.33)

where TQCD ≈ 0.25. The evolution of relativistic degrees of freedom for only the

SM particle content is shown in fig.(4.9)

To compute Ypresent; equation (4.31) is to be integrated with the assumptions above.[69,

70]

Ypresent ≈
[
2π2g∗(T )

m3
Wd
x2

45H

(
〈σannv〉+ 〈σcoannv〉

)]−1

frozen

(4.34)

Energy density for the dark gauge bosons can be given as

ρpresent = mWd
npresent = mWd

spresent
sfrozen

Hfrozen

(〈σannv〉frozen + 〈σcoannv〉frozen)

=
g∗s(Tpresent)

g∗s(Tfrozen)

√
8πGNmWd

T 3
γ,present

Tf (〈σannv〉frozen + 〈σcoannv〉frozen)

√
4π3g∗(Tf )

45

(4.35)
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Figure 4.9: The evolution of relativistic dofs g∗(T ) in early stage of universe consid-

ering the SM particle content [62]. The dotted line indicates the number of effective

dof in entropy g∗s

And furthermore; given the masses of the dark sector particles, constrained by the

limitation of the NADM model, and the respective model parameters (3.4). By sub-

stituting the average values mWd
≈ 325GeV and mη

′
d
≈ 2950GeV . The numerical

solutions to expression (4.34) are shown in fig. (4.10)

Figure 4.10: A numerical solution for Y . Blue line typically approaches to the equi-

librium value. Lee-Weinberg behavior and solution to equation(4.31) without approx-

imation, holds at considerable amount as a result of suppresion.
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Finally, relic density for each dark sector particle at the current stage, can be given in

terms of critical density[71]

ΩWa
d
h2 =

ρa,present
ρc

=
ρa,present
ργ

Ωγh
2 (4.36)

Defining the photon energy density and the photon relic abundance at the current

cosmic stage as a function of average temperature2 〈T 〉 ≈ 2.7K, and also writing the

normalised Hubble parameter explicitly: h = 0.7. Using all of them to define the

photon relic abundance Ωpresent
γ :

εpresentγ =
π2

15~3c3
(kBT )4 → Ωpresent

γ =
ρpresentγ

ρc
=

8π3GN

45~3c5H2
present

(kbTpresent)
4

= 2.47× 10−5h−2.

(4.37)

Adding the equation (4.37) into the equation (4.36), and having the dark gauge bosons

mass degenerate in the given model, we simply multiply by factor 3, hence the total

relic abundance for the SU(2)d particles becomes

(Ωh2)tot = 3ΩWa
d
h2

≈ 2.58× 10−10

(
g
Tf
∗
(mWd

Tf

))− 1
2 1

(〈σannv〉frozen + 〈σcoannv〉frozen)
.

(4.38)

In the light of the expression (4.26) and the results of (4.7), the relic abundance com-

pletely depends on the number of relativistic dof after the decoupling stage and ther-

mal cross section of the DM candidates. Although the NMEHS model can yield a

wide range of DM abundance by considering variation on the model parameters, it

is expected to deduce a reasonable abundance by choosing3 mWd
≈ 325GeV with

Tf ≈ 10.8GeV corresponding to g∗s(T ) ≈ 100 with inclusion of the dark sector

particles. Hence the final value becomes

(Ωh2)tot =
2.58× 10−10

10× 2.2× 10−9
≈ 0.012

2 The present value for the Hubble parameter gives the energy density as ρc = 1.054× 10−5h2GeV.cm−3.
3 Both large and small mixing angle of parameter space can produce the desired DM abundance, however

some of the particular regions are excluded by experimental contraints.
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Each value for the decoupling condition plotted in fig.(4.7), determines a distinct

number for relativistic degrees of freedom. Because each of the SM particles are

available in different freeze-out temperature and hence defining possible dofs for the

dark gauge bosons to interact. Considering both mixing angle regime, numerical

solutions to the equation (4.38) are shown in fig. (4.11)

Figure 4.11: The relic abundance given by the SU(2)d sector gauge bosons, the lower

purple dashed line sets a limit as 10% for the SU(2)d model’s contribution to the

observed result of Planck satellite and the upper green dashed line stands for the

Planck’s observation

The upper and lower values of the experimental constraints on the parameters of

SU(2)d gauge group were chosen as a result of logical consistency. Since there is

no strict constraint for the DM to be composed of one elementary particle such as

Wd, the relic abundance of the non-abelian SU(2)d DM produced by the given model

is set to a lower limit: 10% of the relic abundance observed by Planck satellite, via

generating reasonable values for the parameter space. Leaving aside the suppresion of

DM co/annihilation channels; logical values of thermal averages are chosen to satisfy

the criteria specified above.
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In fig. (4.11) we see that for the small angles, mWd
< 200GeV values are discarded

since they exceed the relic abundance value observed by the Planck satellite. And for

the large mixing angle values, relatively heavier dark gauge bosons mWd
> 200GeV

are not so efficient to yield a considerable amount 10% of the Planck’s observation.

Furthermore, whenever the dark gauge bosons Wd are present, the minimum of the

dof will be insufficient to produce relic abundance at the scale of Planck’s results,

since the relic abundance is inversly proportional to term g∗s

The interval for DM relic density due to the given extension can produce higher

amounts of density if these parameters are changed depending on the current situ-

ation. However a wide range of parameter space is still allowed by the experimental

constraints given in fig.(4.12):

Figure 4.12: The extended plotting for the masses of SU(2)d dark particles. Blue lines

is consistent with the experimental results. Whereas red lines stand for parameter

interval, ruled out by observation of Planck satellite.
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We can offer a quick justification for the mass interval of the dark gauge bosons Wd

along with their co/annihilation cross sections proposed in this study. Assuming the

DM is composed of one particle, it is possible to estimate its mass limit for this one

particle by comparing the DM relic abundance with the Planck’s data. In the regime

when the radiation stage is overwhelming, it is still the same strategy to specify the

decoupling moment: H ≈ T 2
decouple

√
8πGN . Thus freeze-out condition gives

nfreeze−out ≈
T 2
freeze

√
8πGN

〈σv〉
.

If number density for equilibrium case in the non-relativistic regime is substituted as

we did in chapter-5(4.1), one gets

(mDMTfreeze)
3
2 e
−mDM

Tf ≈
T 2
freeze

√
8πGN

〈σv〉

√
xfreezee

−xfreeze ≈
√

8πGN

mDM 〈σv〉

At this point, assuming energy level at the scale of EW interaction σ ≈ G2
Fm

2
DM and

mDM ≈ 100GeV , hence xfreeze ≈ 20, the DM relic density can be written with a

slight modification

ΩDM =
mDMn

Tpresent
DM

ρc
=
mDMT

3
present

ρc

npresent
T 3
present

≈
T 3
presentxfreeze

√
8πGN

ρc 〈σv〉

where Tpresent ≈ 2.7K and substituting other parameters from [72, 73], one finally

reaches

ΩDMh
2 ≈ (1.8− 4.5)× 10−27cm3/s

〈σannv〉
(4.39)

and considering Planck’s result ΩDMh
2 ≈ 0.118, and approximate value for average

cross section 〈σv〉 ≈ (2−5)×10−26cm3/s ≈ 2×10−9GeV −2 ≈1pb, the experimental

relic density can be matched [74].

Cross section at the scale of 1pb corresponds to energy level of weak interactions with

the corresponding masses scale around 100 − 1000GeV . That falls into the WIMPs

regime and it is mainly motivated due to Planck’s result and sets a theoretical limit for
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extended models as if DM is a composed of only one particle type. This can be taken

as another motivation for WIMPs to study from the extended hidden sector models.

Although WIMPs’ domain consolidating a practical approach for the DM models;

there would still be remaining Higgs channels to be checked for in LHC. In return,

these decay modes can open up ways for extensive parametrization of the DM models

through the hidden sector.
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CHAPTER 5

CONCLUSION

For the minimal extension model with singlet scalar, Φ
′
DS is the only DM candidate.

Moreover, if α → 0, then it gives vanishing vev vd = 0 for the singlet Φ
′
DS , such

condition is necessary if Φ
′
DS to be considered as viable DM candidate. However,

such vanishing vev for dark scalar ends up with a diagonal mass matrix for neutral

fields, hence h′ = φ3 with m2
h′

= λv2

2
and mΦ

′
DS

= λsdv
2

2
− 2µ2

ΦDS
occur. Which

is obviously less than
m
h
′

2
, in return, there can be a Higgs decays channel h′ →

ΦDSΦDS . But this decay channel is surely ’hidden’ from experimental results, since

the dark scalar ΦDS does not interact with the SM gauge bosons and fermions. But

the inclusion of hidden decay channel affects only total width of Higgs. Thus it can

be written as:
Γtot

ΓSM,tot

= 1 +
Γhid

ΓSM,tot

where the unity in the r.h.s surely counts for all the SM Higgs decay channels. And

additional hidden decay channel through dark sector puts some limits on the minimal

model constraints (e.g. λsd) once compared to fluctuations of Higgs decay channels

observed in LHC. But such limitations in the parameter space of MEHS model are

beyond the scope of the study.

If DM abundance for this model is dictated to yield 100% of Planck’s observation,

mass interval for dark scalar must be in 1-3 TeV scale. But in the NMEHS model,

there are two possible DM candidates, dark gauge bosons W a
d or η′d. Without the dark

scalar, NMEHS yields less than 10% of the Planck’s observation due to LHC data and

has problems about the Higgs vacuum stability. Hence to satisfy reasonable value for

DM abundance, dark scalars must be contained through the model.
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Parameters space of NADM model is completely governed by total relic density due

to Planck’s observation. And there are two regions for parameter space requiring

attention. In the small mixing angle limit, h′ tends to the SM higgs, hence two sectors

begin to decouple. And the figure (4.12) shows a direct relation between mηd and

mWd
. For a special case mWd

<
m
h
′

2
, then annihilation through physical higgs will

be suppressed kinematically. And such constraint also leads to mη
′
d
< mh′ , thus α

has to get larger values to obtain correct relic density as Planck observed, which can

be seen from (4.12); at small angles, low mWd
values are ruled out. Moreover, the

interval mWd
≈ 100 − 200 GeV almost totally is discarded along with parameter

space corresponding to this limit, since they give the desired DM abundance. And

finally if mWd
> 200 GeV , then dark scalar η′d passes beyond TeV scale and mixing

angle tends to small values in which the resolution of two sectors weaken. Although

small mixing angle parameter space ends up with higher DM abundance, it sets also

an experimental weakness for interactions to be observed.

Changing the parameter space to obtain total DM abundance is theoretically allowed,

nevertheless, higher abundance also enhances triviality of the given model. It would

be a whimsical proposal to consider DM, corresponding exactly to density given by

the SU(2)d dark gauge bosons, since there are additional firm candidates for DM

abundance such as MACHOs,providing a large fraction for relic density.
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APPENDIX A

NOETHER’S THEOREM AND CONSERVED CURRENTS

Continous symmetries and conserved currents of field theories are directly related

via Noether’s Theorem. If the Lagrangian density of the system has a continous

differential symmetry; then there has to be a conserved current for the associated field.

And dynamics of the given system is completely described by the Action principle.

Starting from the Lagrangian function, simply L = L(φi, φi,µ, x
ν). The objective is

to extract conserved quantitites from spin − 1
2

Lagrangian, regardless of component

number. Furthermore, each U(N) group is also defined as U(1)⊗SU(N), global

phase transformation of each lie group is a crucial tool to obtain those conserved

quantities. For a generic dirac field Ψ, consider the following infinitesimal U(1)

transformations:

ψ → ψ
′
= (1 + iε)ψ ; ψ̄ → ψ̄′ = (1− iε)ψ̄ (A.1)

where

δψ = iεψ ; δψ̄ = −iεψ̄ ; δ(∂µψ) = iε(∂µψ) ; δ(∂µψ̄) = −iε(∂µψ̄)

(A.2)

The Action principle indicates that
∫
Ldt = 0 or δL = 0 where L = L(ψ, ψ,µψ̄, ψ̄,µ)

δL =
∂L
∂ψ

δψ +
∂L

∂(∂µψ)
δ(∂µψ) +

∂L
∂ψ̄

δψ̄ +
∂L

∂(∂µψ̄)
δ(∂µψ̄)

= iε
∂L
∂ψ

ψ + iε
∂L

∂(∂µψ)
(∂µψ)− iε∂L

∂ψ̄
ψ̄ − iε ∂L

∂(∂µψ̄)
(∂µψ̄) = 0

(A.3)

Defining the following term:

∂L
∂(∂µψ)

∂µψ = ∂µ

(
∂L

∂(∂µψ)
ψ

)
−
(
∂µ
( ∂L
∂(∂µψ)

))
ψ, (A.4)
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rewriting (A.3):

δL = iε

[
∂L
∂ψ
− ∂µ

( ∂L
∂(∂µψ)

)]
ψ + iε∂µ

(
∂L

∂(∂µψ)
ψ

)
− iε

[
∂L
∂ψ̄
− ∂µ

( ∂L
∂(∂µψ̄)

)]
ψ̄ − iε∂µ

(
ψ̄

∂L
∂(∂µψ̄)

)
.

(A.5)

It is clearly seen for Lagrange field equations: ∂µ

(
∂L
∂φi,µ

)
− ∂L

∂φi
= 0 ; 1st and 4th

terms of(A.5) vanish, what remains is:

δL = iε∂µ

[
∂L

∂(∂µψ)
ψ − ψ̄ ∂L

∂(∂µψ̄)

]
= 0. (A.6)

Without loss of generality, for each fermion Lagrangian, kinetic and interaction terms

can be written as

LEM,EW,QCD =
3∑

ga=1

ψ̄(iγµ∂µ −m)ψ − gaψ̄γµ ~TψV a
µ . (A.7)

The contiunity equation is recognized from (A.6) ∂µJ
µ = 0, and combined with the

Lagrange equations; Jµa appears as conserved current in the field:

Jaµ = gaψ̄γµ ~Tψ. (A.8)

Once the generator of each group acts on the generic fermionic field, we recover the

familiar results (2.6), (2.18) and (2.33)
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APPENDIX B

GOLDSTONE THEOREM

B.1 Classical Definition

Define a Lagrangian symmetric under the group G1, and the vacuum state of this

system remains invariant under G2,which is a subgroup of G1. Expressing U(G1)

as the transformation operator for the given group acting on a field φ. Similarly for

the subgroup; U(G2). As long as we stick with constant fields, first order derivative

of the given potential vanishes, and the potential remains invariant under U(G1) for

sure.

V (φ) = V (U(G1)φ)

= V ((1 + iεaT a)φ)
(B.1)

And the expansion of the potential for infinitesimal transformations:

V (φ) =V (φ) +
∂V

∂φj
iεaT aφ+O|ε2|

→ ∂

∂φk

(
∂V

∂φj
T ajlφl

)
= 0.

. (B.2)

Using the vacuum state expression

∂

∂φk

(
∂V

∂φi
T ailφl

)
=

∂2V

∂φi∂φj
T ajlφl +

∂V

∂φi
T aik

∣∣∣∣
〈φ0〉

, (B.3)

we obtain the following relation:

0 = MkiT
a
il 〈φl〉0 + 0. (B.4)

No one arguing about invariance of the vacuum under subgroup: φ0 = U(G2)φ0,

however this invariance is not preserved under G1: φ0 6= U(G1)φ0 −→ T ail 〈φl〉0 6= 0
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Conclusion: If T a corresponds to a broken generator, we end up with T a 〈φ0〉 6= 0,

then Mik will have a null eigenvector with null eigenvalues. Which mainly asserts

that, there would be massless particles since the eigenvalues of mass matrix corre-

sponds directly to particle states. ”Each broken generator brings a massless scalar”.

B.2 Quantum Definition

Noether’s theorem simply expresses that, every continuous symmetry is associated to

its generators T . For the quantum limit this expression is connected to the operators,

in which T commutes with the Hamiltonian [H,T ] = 0. If system has zero vacuum

energy H |0〉 = 0 and the vacuum is invariant under the symmetry T then simply we

have eiT θ |0〉 = |0〉

Consider an infinitesimal field transformation:

φj → φ
′

j = φj + αa(δφ)aj , (B.5)

where φj can stand for both fermionic and bosonic fields. It is possible to obtain well

known conserved current by using Noether’s theorem

Qa =

∫
Ja0 d

3x,

with the conserved current:

Jaµ = − δL
δ(∂µφj)

(δφ)aj . (B.6)

And recalling canonical momentum density:

πj =
δL

δ(∂0φj)
. (B.7)

Commutation relations given as

[πj(~r1), φk(~r2)] = −iδ3(~r1 − ~r2)δjk, (B.8)

where the conserved charges obey the algebra:

[Qa, Qb] = ifabcQc. (B.9)
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If we use the above relations; temporal components of currents satisfy the following

algebra:

[Ja0 (~r1, t), J
b
0(~r2, t)] = ifabcJ c0(~r1, t)δ

3(~r1 − ~r2). (B.10)

Now, allow Q be a symmetry charge; say U(1), and the corresponding conserved

current Jµ. If one can assert the vacuum state |0〉 would not be destroyed by this

generator, thus it would not stand for actual vacuum state.

Q |0〉 6= 0. (B.11)

Invoking current conservation by seperating temporal and spatial parts:∫
[∂µJ

µ, φ0]d3x = ∂0

∫
[J0, φ0]d3x+

∫
S

[ ~J, φ0] ~dS = 0. (B.12)

A well known generalization by taking the surface, extending to the infinity where

the currents vanish. Hence second term in the r.h.s dissapears, and what remains is

d

dt
[Q(t), φ0] = 0, (B.13)

which follows as

〈0| [Q, φ0] |0〉 = ξ 6= 0. (B.14)

Explicitly ξ can be shown after integrating over ~r1

ξ =
∑
n

(2π)3δ3(~pn)

[
〈0| J0(0) |n〉 〈n|φ(0) |0〉 e−iEnt − 〈0|φ(0) |n〉 〈n| J0(0) |0〉 eiEnt

]
6= 0.

(B.15)

Seen from the above relation that if En 6= 0, then two distinct eigenvalue parts would

not cancel each other, hence expression(B.15) cannot be constant. To provide con-

stancy for the above expression, one must impose that the intermediate states have to

be massless; such dictation is assured by the fact ξ 6= 0. So there must be a massless

state for every broken generator.

〈n|φ0 |0〉 6= 0 ; 〈0| J0(0) |n〉 6= 0 (B.16)

as a conseqence of Nambu-Goldstone theorem [16].

It is concluded that, spontaneously broken symmetry of the vacuum Q |0〉 6= 0 show-

ing the excitations of the system with a frequency vanishing in the low momentum

limit.
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Goldstone’s theorem foresees massless states in RQM regime, while in the NRQM

limit, a typical example comes from solid state that corresponds to collective excita-

tions with zero energy gap.
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