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ABSTRACT

REINFORCEMENT LEARNING CONTROL FOR AUTOROTATION OF A
SIMPLE POINT-MASS HELICOPTER MODEL

Kopşa, Kadircan

M.S., Department of Aerospace Engineering

Supervisor : Assist. Prof. Dr. Ali Türker Kutay

August 2018, 69 pages

This study presents an application of an actor-critic reinforcement learning method

to a simple point-mass model helicopter guidance problem during autorotation. A

point-mass model of an OH-58A helicopter in autorotation was built. A reinforcement

learning agent was trained by a model-free asynchronous actor-critic algorithm, where

training episodes were parallelized on a multi-core CPU. Objective of the training was

defined as achieving near-zero horizontal and vertical kinetic energies at the instant

of touchdown. During each training episode, the agent was presented a reward at

each discrete time-step according to a multi-conditional reward function. Reward

function was programmed to output the negative of a weighted sum of squared vertical

and horizontal velocities at touchdown. The agent consists of two separate neural

network function approximators, namely the actor and the critic. The critic approx-

imates the value of a set of states. The actor generates a set of actions given a set

of states, sampled from a Gaussian distribution with mean values as output set of

the actor network. Updates to the parameters of both networks were calculated from

accumulated gradients during each episode and applied once per episode to improve
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training stability. RMSProp algorithm was used for optimization. Results achieved by

the agent indicates that the method is successful at guiding the point-mass helicopter to

the ground with minimal kinetic energy for most initial conditions. Controls generated

by the reinforcement learning agent were found to be similar to a helicopter pilot’s

technique.

Keywords: Reinforcement Learning, Helicopter Autorotation, Actor-Critic Algorithms,

Artificial Neural Networks
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ÖZ

BASİTLEŞTİRİLMİŞ BİR NOKTA-KÜTLE HELİKOPTER MODELİ
OTOROTASYONU İÇİN TAKVİYELİ ÖĞRENME KONTROLÜ

Kopşa, Kadircan

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Ali Türker Kutay

Ağustos 2018 , 69 sayfa

Bu çalışma, basitleştirilmiş bir nokta-kütle helikopterin otorotasyonda güdümü prob-

lemine bir eyleyici-eleştirici takviyeli öğrenme metodu uygulamasını sunmaktadır.

Otorotasyonda bir OH-58A helikopterinin nokta-kütle matematiksel modeli oluştu-

rulmuştur. Bir takviyeli öğrenme elemanı, modelden bağımsız bir eyleyici-eleştirici

algoritma tarafından, çok çekirdekli bir işlemci üzerinde paralel şekilde eğitilmiştir.

Öğrenmenin amacı, yere değme noktasında, sıfır değerine çok yakın yatay ve dikey

kinetik enerjiye ulaşmak olarak tanımlanmıştır. Öğrenme evreleri esnasında her bir

ayrık zaman adımında takviyeli öğrenme elemanı bir çoğul-şartlı ödül fonksiyonuna

bağlı olarak ödüllendirilmekte veya cezalandırılmaktadır. Ödül fonksiyonu yere değme

noktasında yatay ve dikey hızlarının karelerinin ağırlıklandırılmış toplamının nega-

tifini vermektedir. Takviyeli öğrenme elemanı eyleyici ve eleştirici olarak iki yapay

sinir ağı fonksiyon kestirimcisinden oluşmaktadır. Eleştirici, bir durum değişkeni

setinin değerini tahmin etmektedir. Eyleyici çıktıları, bir Gauss dağılımının orta nok-

tasını temsil etmektedir. Bu dağılımlardan örneklenen reel sayılar, durum değişkeni

setine karşılık gelen aksiyonları ifade etmektedir. Her iki yapay sinir ağının para-
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metrelerinin güncellenmesi, öğrenme evreleri esnasında toplanan kısmi türevlerden

hesaplanmakta ve öğrenme evresi sonunda bir defa gerçekleştirilmektedir. Optimizas-

yon için RMSProp algoritması kullanılmıştır. Takviyeli öğrenme elemanı tarafından

elde edilen sonuçlar, uygulanan metodun birçok başlangıç koşulu için nokta-kütle

helikopterin otorotasyonda minimum kinetik enerji ile yere değmesini sağlamakta

başarılı olduğunu göstermektedir. Takviyeli öğrenme elemanı tarafından uygulanan

kontroller, bir insan pilotun helikopter otorotasyonu esnasında uyguladığı kontrollere

benzerlik göstermektedir.

Anahtar Kelimeler: Takviyeli Öğrenme, Helikopter Otorotasyonu, Eyleyici-Eleştirici

Algoritmalar, Yapay Sinir Ağları
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CHAPTER 1

INTRODUCTION

Helicopter is a unique type of aircraft. Its capabilities such as hovering, flying back-

wards and laterally, and executing nap-of-earth operations make it widely used for

different tasks ranging from search and rescue missions to troop transportation into

and out of battle zones. Even though state-of-the-art helicopter technology is more

reliable and safer compared to past, emergencies do occur.

One of those emergencies for a helicopter is engine or drivetrain failure. Loss of engine

power supplied to the main rotor is critical, since lift of a helicopter is generated by

main rotor in contrast to an airplane where lift is supplied mostly by wings. Such an

emergency can be fatal for both the crew and the helicopter if the pilot fails in taking

correct actions for a safe landing.

Autorotative descent is the power-off maneuver executed by helicopter pilots for safe

landing after engine failure. During autorotation, the engine is disengaged from the

drive system; therefore, the rotor blades can freely rotate and the rotation of the blades

is achieved by the airflow in the upward direction. Without the power supplied by the

engine, this upward flow can be used to prevent main rotor rpm from slowing down to

a point of total loss of lift.

As a safety measure, helicopters are certified with a Height-Velocity diagram, which

designates a region to be avoided where safe landing can not be guaranteed if engine

failure occurs within this zone. The regions to be avoided establishes an envelope, in

which the pilot has enough total energy in terms of height and velocity that can be

used to maintain rotor rpm, and arrest the sink rate for a cushioned touchdown.
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Executing a successful autorotation and touchdown is arguably one of the most difficult

tasks for a helicopter pilot, for it requires considerable skill, and precision in timing.

The immediate effect of engine power loss on the helicopter is the slowing rotor and

an angular acceleration around the yaw-axis. At this point, the pilot must reduce the

collective pitch as soon as he/she is aware of the power loss. The reduced collective

helps in maintaining the rotor rpm by reducing the total drag of the rotor blades. For

conditions that require higher collective pitch such as high density altitude, heavy

loading, hovering or climbing, this entry phase is even more critical. After the

collective is lowered, the helicopter starts to descend. A steady-state sinking must be

established by the pilot as the air now flows upward through the rotor disk. Decrease

in the lift produced by the rotor blades due to the lowered collective is compensated

by the high angle of attack due to this upward flow. This steady descent phase is

achieved by the balancing of the available energy sources in the form of potential and

kinetic energy of the vehicle, and the energy stored due to the rotation of the rotor

blades. As the helicopter nears the ground, the pilot must execute a flare, reducing the

horizontal and vertical velocities simultaneously before touchdown. The flare can be

initiated by moving the cyclic stick rearward, as this action changes the orientation of

the rotor disk towards the back of the helicopter and results in an increase of the total

upward force, while reducing the forward speed. In other words, the kinetic energy

due to the speed of the helicopter are converted into additional provided torque in the

rotor, which in turn reduces sink rate. It should be noted that the added energy to the

rotor due to the flare can lead to overspeeding of the rotor and should be prevented

by the pilot by effectively using the collective stick. Finally, remaining energy in the

rotor is used to its full extent by increased collective pitch for a minimized sink rate

as the helicopter lands. This task of careful energy management in an emergency is

challenging at least for most pilots.

1.1 Literature Survey

Various studies investigated the possibility of improved autorotational characteristics

by proposing solutions to the problem in a wide spectrum. These proposed solutions

include passive concepts such as structural modifications of rotor systems, as well as
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active control of helicopters in the form of specialized automatic flight control and

planning systems for autorotative landing.

Rotational moment of inertia is an important factor in describing a rotor’s energy

storing capability. Heavier, high-inertia rotor blades are capable of storing more energy

than low-inertia blades. One approach was to increase the total rotor inertia passively

for better autorotational characteristics with a High Energy Rotor System (HERS) [39].

This method was applied to an OH-58A helicopter with a rotor system of modifiable

inertia blades and evaluated via flight tests [11].

Required torque, or power, of a rotor to operate at a nominal angular speed is largely

defined by the aerodynamics of the rotor. Without the power supplied by the engine

aerodynamic drag slows down the rotor angular speed rather quickly, unless the pilot

immediately reacts to the emergency by reducing the pitch angle of the rotor blades.

To nullify this effect, active addition of energy to the rotor were investigated in the

form of blade tip jets and flywheels [37, 23].

Solutions to the problem of safe landing after engine failure was investigated using

optimization techniques by various researchers for both hover and forward flight

in all-engines-inoperative and one-engine-inoperative conditions. Johnson studied

autorotative descent from hover condition using numerical optimization theory [14].

An important result of his work was that the optimal trajectory after power loss in

hover is purely vertical. Lee et al. extended on Johnson’s work by adding inequality

constraints to the numerical optimization problem and solving for optimal trajectories

at both hover and forward flight [18]. It should be noted that this study used different

settings for hover and forward flight conditions, as the hover condition was examined

only on the vertical dimension. A comparison of calculated optimal trajectories

and flight tests of the HERS system were also given in this study. Chen and Zhao

investigated optimal trajectories for one-engine-inoperative condition of a twin-engine

helicopter in multiple scenarios for different maneuvers including landing [6]. A

similar optimal control method was applied by Aponso and Bachelder for autorotation

training for pilots in a flight simulator environment [3]. They employed a real-time

trajectory optimization technique to find optimal flight path and controls depending

on the state of the helicopter. Bibik and Narkiewicz applied linear-quadratic control
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to solve the safe landing problem after engine power loss on a complex eight-degree-

of-freedom dynamic model [4]. Meng and Chen also investigated the optimal control

problem of autorotation for a six-degree-of-freedom rigid-body model [21]. They

found that the optimal solutions for the rigid-body model has good agreement with

the two-dimensional point mass model used in other references. Dalamagkidis et al.

used receding horizon neural network optimization on a vertical autorotation model

for model predictive control [10]. Tierney introduced the concept of a safe landing

set for the flare phase of autorotation, from which a safe landing is guaranteed [32].

Yomchinda et al. built on Tierney’s work by focusing on the descent phase trajectory

planning in order to ensure that the helicopter enters the safe landing set before flare

phase by optimally controlling the helicopter [40]. A follow-on paper by Yomchinda

et al. investigated a complete path planning algorithm in real-time for autorotation

in order to achieve safe landing on predefined locations [41]. Sunberg and Rogers

investigated a fuzzy-logic based, model-independent, multi-stage controller for safe

autorotative landing using a 6-degree-of-freedom model [25]. Abbeel et al. achieved

successful autonomous autorotation of an RC helicopter by a feedback controller

derived by differential dynamic programming once the task of autorotation is captured

from the flight data of autorotation landings performed by an expert pilot [1]. Lee and

Bang used a Q-Learning algorithm with radial basis function approximators in order

to find trajectories of safe landing during autorotation of a point-mass model [19].

1.2 Motivation of the Thesis

Automatic flight control systems and flight management systems are widely used

in state-of-the-art aircraft to reduce crew workload. However, under emergency

conditions pilots tend to fly themselves rather than letting autopilots have control

over the aircraft. While it is logical to have a human in charge for safety-critical

tasks, human pilots can suffer from stress, delayed responses, and limited ability to

process and use sensory input. Since a successful autorotation depends on pilot’s

correct and timely actions following an engine failure, it is considerably difficult for an

inexperienced pilot to execute. On the other hand, autopilots have the ability to process

every bit of information coming from sensors on an aircraft at all times without delay
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and make decisions according to this input. Therefore, autopilots that can execute

autonomous autorotation have great potential in reducing crew fatalities or loss of

aircraft [27].

Another potential application of autopilots which are capable of autonomous au-

torotation is the guiding of unmanned aerial vehicles through autorotative descent.

Unmanned rotorcraft may have a hard time recovering from such an emergency during

fully autonomous missions. Most experienced manned helicopter pilots follow their

instincts to time their actions during an autorotation, while using available sensor data

and visual cues simultaneously for a safe landing [27]. Lacking a pilot on board, it is

even more challenging to land an unmanned helicopter without engine power.

In this thesis, a machine agent is trained to execute autorotation landings following

total power loss. Reinforcement learning is applied to solve autorotation problem

from engine failure to touchdown. Reinforcement learning defines a framework for

solving problems that involve decision making, which is inherent to the problem of

autorotation as it requires both planning and control. It is used to train machine agents

which have the ability to act in an environment, relying on the state of the environment

and itself, to affect its future state. A scalar reward signal measures whether an agent’s

actions are good or bad. This signal is fed back to the agent to reinforce actions that

lead to positive outcomes for that particular set of states, and vice versa. In general, the

aim of the reinforcement learning is to train an agent for selecting actions to maximize

cumulative reward. Hence, given an objective, a machine agent can learn a control

strategy required to achieve the objective directly from its observations of the problem

domain, without relying on any supervision or prior knowledge [26].

Reinforcement learning – or machine learning in a broader context – has recently

been used for solving many human-level tasks, including playing video games directly

from pixels, exploring virtual labyrinths, and controlling physical systems. Early

research on reinforcement learning focused on problems with low dimensional state

and action spaces, where value of each state and action was stored separately in a

table [26]. Naturally, this approach can be applied on systems with discrete states and

actions only. Furthermore, if the dimensions of state and action spaces get bigger or

are continuous, storing values of each state-action pair in a table becomes intractable.
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Memory required for working with such a table is also inhibiting. Therefore, compact

function approximators that can deal with large state and action spaces must be used

to represent how good each state and/or action is and the agent’s behavior function.

Various studies have shown that neural networks can be successfully used as nonlinear

function approximators, which can replace large tables for storing values of the states

and actions [26]. This is not a coincidence, since neural networks were shown to have

the ability to approximate any arbitrary function by mapping a set of inputs to a set of

outputs in a black box manner [13].

Decision-making problems similar to the autorotation problem presented in this thesis

appear in many fields. One of these fields involving decision making is automatic

control of physical systems. In automatic control, a controller measures outputs of the

system to be controlled, and calculates actions using this feedback in order to achieve

desirable behavior of the system. Reinforcement learning, on the other hand, uses a

scalar reward signal conceptually similar to cost functions in optimal control, in order

to train an agent for optimal decision-making to control a process. Another important

difference between automatic control and reinforcement learning is that a model of the

system is necessary for most automatic control methods, while reinforcement learning

can derive optimal decisions from observations only.

It is important to show that control of the autorotative descent from the point of engine

failure to touchdown can be achieved in closed-loop by reinforcement learning while

taking into account the multi-phased nature of the autorotation, i.e. planning of the

maneuver. Classical control solutions to the problem would need different controllers

for each phase of the autorotation and trajectory generators to follow a predetermined

path. The ability of the agent trained by reinforcement learning to generalize from

previous experiences also make it a viable option for the problem at hand in case of

uncertainties, in contrast with most of the research in the field that focus on obtaining

open-loop optimal trajectories for a predefined set of initial conditions and that have

no robustness for uncertainty.
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1.3 Contributions of the Thesis

This thesis studies the application of a relatively new reinforcement learning approach

for the solution of continous-state continuous-action dynamical system control problem

in the context of helicopter autorotation. Although similar learning algorithms have

been applied to rotorcraft flight, this study differentiates from them, as the framework

presented here relies only on its observations without the incorporation of expert

pilot knowledge. Furthermore, this study shows that model-free control is possible

for difficult tasks of aircraft such as autorotation on a simplified point-mass model.

In addition, most of the previous studies on the subject focus on finding optimal

trajectories to be followed by some other control architecture, while this thesis presents

a feedback controller as its final product. This final form of the agent do not need

interpolation of optimal trajectory solutions for each entry condition to autorotation,

in contrast to aforementioned optimal solutions. Moreover, the trained agent is both

a planner and a controller; thus, it does not need transition logic from one controller

to another as it would be necessary for a multi-phased control architecture designed

separately for each autorotation phase. Finally, the trained agent is shown to be

capable of safe autorotation and landing of the point-mass helicopter model from

initial conditions within the Height-Velocity curve.

1.4 Thesis Outline

Remaining chapters of the thesis can be summarized as follows: A mathematical

model of the autorotation dynamics is presented in Chapter 2; reinforcement learning

framework with a background of the theory and the gradient based optimization for

training is explained in Chapter 3; problem formulation for autorotative descent with

actor-critic reinforcement learning is described in Chapter 4; simulation results for

various initial condition pairs of forward speed and altitude both inside and outside of

the Height-Velocity avoid zone are given in Chapter 5. Finally, Chapter 6 concludes

the thesis by summarizing the main results and discussing the future work.
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CHAPTER 2

MATHEMATICAL MODEL OF AUTOROTATION DYNAMICS

A mathematical model of the underlying dynamics of helicopter autorotation was

needed. For any dynamic system model there is a trade-off between model fidelity and

computational efficiency. Since reinforcement learning is essentially a trial-and-error

method, number of training episodes in a single run can easily be above the order of

106, which means marching the model forward even with large time steps on the order

of 0.1 during each episode is computationally expensive. Therefore, training process

for control of complex dynamic problems are rather time consuming on standard

workstations. To alleviate some of this heavy computational load and reduce training

time, a simple model with a fidelity high enough for capturing essential dynamics of

autorotation was necessary.

In [18] a point mass model of an OH-58A light single-rotor helicopter was built. This

helicopter was modified with a High Energy Rotor System (HERS), which enabled

researchers to change total rotational inertia of the rotor system, and thus the rotor

system Lock Number. The Bell Helicopter Company used this helicopter to perform

flight tests to assess autorotation characteristics for rotors with different Lock Numbers

[11]. Dynamic performance model of a helicopter in autorotation used in this study

is based on Lee’s work. This point mass model consists of two degree of freedom

aircraft dynamics in vertical plane and rotor dynamics.

2.1 Assumptions

As the model was built to reflect physics which govern autorotation in a simplified

manner, certain assumptions and simplifications were made.
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Helicopter motion is constrained to vertical plane only. For faster execution of the

training algorithm, state and control space dimensions were needed to be kept low.

Hence, model states only in vertical and longitudinal directions were considered.

Similarly, control input space consists of vertical and longitudinal components of

rotor thrust, excluding lateral and directional control channels unlike conventional

helicopters. To further reduce model complexity and number of states, a point mass

model was used.

Induced velocity is assumed to be triangular. Dynamics of the induced velocity is

neglected, so that change in inflow is independent of time. Momentum theory is

used to compute induced velocity over the rotor disk at each time step. An empirical

approximation is incorporated into inflow calculation at vortex ring state, where

momentum theory approximation of induced velocity is no longer valid [15]. Vortex

ring state is avoided during normal operation of a helicopter including autorotation;

therefore, the region of approximation for vortex ring state should never be visited,

and any errors introduced by this approximation can be considered negligible.

Power losses due to compressibility of air are neglected. Fuselage parasite drag is

assumed to be dependent on an equivalent flat plate drag area. Rotor profile power is

assumed independent of individual rotor blades’ angle of attack and a constant mean

profile drag coefficient is used throughout simulations. Air density is assumed constant

at all altitudes during autorotation.

Ground effect is neglected. Although it is known that ground effect causes an increase

in total aircraft lift when the aircraft is close to the ground, it is stated that ground

effect makes only a minor difference for the autorotation performance of a helicopter

[18].

Finally, the helicopter is assumed to be in steady forward flight when engine failure

occurs. Both training episodes and simulations start at the instant when engine power

is lost.
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2.2 Equations Of Motion

To represent dynamics of helicopter autorotation in equations of motion, a coordinate

system must be established. Position of the helicopter is defined by the distance from

the point of engine failure projected on the ground and corresponding states for vertical

and horizontal displacements are designated as h and x respectively. At the engine

failure point h = h0 and h is always negative until touchdown. Other model states are

vertical velocity w, horizontal velocity u, and rotor angular speed Ω.

Control variables are chosen as vertical and horizontal components of the thrust

coefficient CT , and denoted as CTz and CTx respectively. This choice of controls

can be treated as approximations for collective and longitudinal cyclic controls of a

conventional helicopter. The angle between thrust vector and vertical axis, which also

corresponds to the rotor tip path plane angle, is denoted as α . CTz and CTx can be

related to CT as:

CTz =CT cosα

CTx =CT sinα

(2.1)

It is obvious that control variables CTx and CTz are interchangable with the rotor thrust

coefficient CT and rotor tip path plane angle α . Longitudinal cyclic input can be

roughly approximated by the rotor tip path plane angle. Collective input at 75% span

of the rotor radius can be approximated from blade element theory as given in [14]:

θ0.75 =

(
1+ 3

2 µ2)(6CT
aσ

)
+ 3

2λ
(
1− 1

2 µ2)
1−µ2 + 9

4 µ4
(2.2)

where µ and λ are the advance ratio and the inflow ratio at the tip path plane respec-

tively. a is the blade lift curve slope and σ is the rotor solidity. Advance ratio µ was

calculated as:

µ =
ucosα +wsinα

ΩR
(2.3)

Here Ω is the rotor angular speed and R is the rotor radius. Calculation of inflow ratio

λ is given in Equation 2.13. a, σ and R are given in Table 2.1.
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2.2.1 Dynamic Equations

Force equilibrium of the point mass model in vertical and horizontal axes gives:

mẇ = mg−T cosα−Dsinθ

mu̇ = T sinα−Dcosθ

(2.4)

where m is the helicopter mass, g is the gravitational acceleration, T is the rotor thrust,

D is the helicopter parasite drag, and θ is the angle between total velocity vector and

the horizontal axis. ( ˙ ) notation represents the time rate of change of the states. Since

components of the thrust coefficient are control variables, magnitude and orientation

of the thrust vector can be controlled directly. Orientation of the thrust vector (or rotor

disk in space) is given by α . Magnitude of the thrust vector is given by:

T =CT [ρ(ΩR)2(πR2)] (2.5)

Here ρ is the air density, and R is the rotor radius. The parasite drag of the helicopter

is:

D =
1
2

ρ(u2 +w2) fe (2.6)

fe is the equivalent flat plate drag area of the helicopter. Trigonometric functions of

the angle θ in Equations 2.4 can be replaced by:

sinθ =
w√

u2 +w2

cosθ =
u√

u2 +w2

(2.7)

Equations 2.4 can now be rewritten in terms of control inputs and states as:

mẇ = mg−CTzρ(ΩR)2(πR2)− 1
2

ρw
√

u2 +w2 fe

mu̇ =CTxρ(ΩR)2(πR2)− 1
2

ρu
√

u2 +w2 fe

(2.8)

2.2.2 Rotor Dynamics

Under normal operating conditions the power required is supplied by the engine. In

case of an engine failure, a helicopter can use the energy stored in its main rotor for

safe landing. Energy balance equation for the rotor is:

IRΩΩ̇ = PS−PR (2.9)
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where IR is the total moment of inertia of the rotor around rotation axis, PS is the power

supplied to the main rotor by the engine, and PR is the total power required by the

main rotor. In the present study complete engine power loss scenario is investigated;

therefore, supplied engine power PS is assumed zero from the moment of engine power

loss until touchdown. Hence, Equation 2.9 can be expressed in terms of torque as:

IRΩ̇ =−Q

=−[ρ(πR2)(ΩR)2R]CQ

(2.10)

Q is the torque required by the main rotor, and CQ is the torque coefficient. In [18], CQ

is approximated by Equation 2.11, and a similar approximation is used in this study.

CQ =
1
8

σ c̄d +CT λ (2.11)

where σ is the rotor solidity ratio, c̄d is the mean profile drag coefficient of the

rotor blades, and λ is the inflow ratio. First term in Equation 2.11 comes from an

approximation to profile drag coefficient which is derived from the blade element

theory [12]. NACA 0012 is assumed as the airfoil of the main rotor blades of the

OH-58A helicopter; hence, mean profile drag coefficient is taken as c̄d = 0.0087 [12].

Second term is the result of the momentum theory, which represents the induced power

required to produce thrust [17]. To incorporate the rotor stall limit, Equation 2.11 is

modified such that:

CQ =

(
1
8

σ c̄d

)[
1+
(

CT/σ

(CT/σ)stall

)ns
]
+CT λ (2.12)

When ns is selected a large number as in [14], the profile power of the rotor increases

sharply when the rotor loading (CT/σ ) is greater than the stall limit. A value of ns = 20

is used here. Stall limit for the rotor loading is 0.15 for the OH-58A helicopter as

stated in [18].

Inflow ratio λ is defined as:

λ =
usinα−wcosα +ν

ΩR
(2.13)

where ν is the induced velocity of the rotor disk. Positive direction of induced velocity

is downward across the rotor disk and direction of the induced velocity vector is always

opposite of the direction of the thrust vector.
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2.2.3 Induced Velocity Calculation

Rotor induced velocity is given in [14] as a differential equation as follows:

τν̇ +ν = Kindνh fI fG (2.14)

where τ is a time constant of the order 0.14 for OH-58A helicopter used here [17],

and is therefore neglected, Kind is an empirical factor which is given by approximately

1.13 for triangular downwash distribution [18], νh is the reference induced velocity at

hover, fI is the ratio of the induced velocity at a given flight condition to νh, and fG is

the ground effect factor which is taken as unity, as it is ignored for this study.

Definition of the hover induced velocity νh is:

νh =

√
T

2ρπR2 (2.15)

It is safe to assume for the present study that thrust generated by main rotor at hover is

equal to the total weight of the helicopter, i.e. T = mg in Equation 2.15.

Parameter fI is calculated as given in [14]:

fI =

1/
√

b2 +(a+ fI)2 if (2a+3)2 +b2 > 1

a(0.373a2 +0.598b2−1.991) otherwise
(2.16)

where parameters a and b are:

a =
usinα−wcosα

νh
(2.17)

b =
ucosα +wsinα

νh
(2.18)

The first expression in Equation 2.16 is a result of the momentum theory [12]. Outside

of the region defined by the first expression is the vortex ring state, which is approxi-

mated empirically by the second expression [14]. Equation 2.16 is solved iteratively at

each time step.
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2.2.4 Kinematic Equations

Kinematic equations for the point mass model are:

ḣ = w (2.19)

ẋ = u (2.20)

Since the objective of the control method presented here is to touch the ground (h = 0)

with minimized vertical and horizontal speeds, state h is an input to the controller.

Since the controller needs to know when to flare or whether touchdown is imminent

depending on h, Equation 2.19 should be included in the dynamic model. On the

other hand, there is no constraint on the state x, since there are no predefined spots for

the helicopter to land on. Hence, the distance traveled horizontally is trivial for the

presented problem and Equation 2.20 can be omitted.

Values of the parameters used in the point mass model of OH-58A helicopter are given

in Table 2.1.

Table 2.1: Point mass model parameters of OH-58A

Parameter Value

ρ , air density, kg/m3 1.225

R, rotor radius, m 5.37

fe, equivalent flat plate area, m2 2.23

σ , rotor solidity 0.048

cd , mean profile drag coefficient 0.0087

m, helicopter mass, kg 1361

IR, rotational inertia of the rotor, kg·m2 436.71

Ω0, nominal rotor angular speed, rad/s 37.07

a, rotor blade 2-D lift curve slope 5.73
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2.2.5 Normalization of Variables

As in numerical optimization techniques, stability of gradient based learning algorithms

also depend on the appropriate scaling of the variables. Therefore, the states involved

in the equations of motion for the problem were scaled by using the rotor nominal

angular speed Ω0 and the rotor radius R. Various scaling factors were also used to

bring the nondimensional quantities to the order of 1. Normalized and scaled state

variables are given in Equations 2.21.

x1 =
w

0.1Ω0R

x2 =
u

0.1Ω0R

x3 =
Ω

Ω0

x4 =
h

10R

x5 =
Cx

0.01

x6 =
Cz

0.01

(2.21)

2.2.6 Validation of the Model

In order to validate the point-mass model detailed in previous sections, steady state

autorotation sink rates obtained from flight tests of OH-58A helicopter were compared

with those computed by the point-mass model. Figure 2.1 shows that the point-mass

model sink rates resemble those obtained from the flight tests. Flight test results for

steady state autorotative descent were taken from [11].
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Figure 2.1: Comparison of steady state sink-rates
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CHAPTER 3

REINFORCEMENT LEARNING FRAMEWORK

Traditional reinforcement learning setting is based on the assumption that both state

and action spaces are finite and small. However, many real world problems are in con-

tinuous domain, such as the autorotation problem presented here. The reinforcement

learning framework built for this thesis addresses the training of an agent to deal with

the real-valued, continuous state and action spaces that is inherent to physical system

control.

3.1 Reinforcement Learning Background

Reinforcement learning schema can be described with two main components, namely

the agent and the environment. The agent is the entity that learns to act on the

environment as desired by the designer. The environment is the system on which

the agent acts upon. A depiction of the agent-environment interaction can be seen in

Figure 3.1 In the context of this thesis, terms such as agent, environment and action

were used, which corresponds to the control system engineering terms as controller,

plant, and control signal respectively, in order to stay consistent with the broader field

of reinforcement learning.

3.1.1 Markov Decision Processes

A state is defined as Markov, if it has all the relevant information coming from the

history of the states that precedes it [26]. In other words, a Markov state represents

information of all of the states that had been visited previously before reaching to the
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Figure 3.1: Agent - Environment Interaction in a Reinforcement Learning Setting

current state. For example, a mid-game placement of chess pieces on the board is a

Markov state, as it contains all of the information from past moves. A more formal

definition of the Markov property can be made as: A state St is called Markov if and

only if P [St+1|St ] = P [St+1|S1,S2, . . . ,St ].

A reinforcement learning problem is called a Markov decision process (MDP) if

each state of the environment has the Markov property. In the context of continuous-

space continuous-action reinforcement learning, an MDP can be defined as a tuple

M= (S,A,T,R,γ). Here S∈Rn is the state space and A∈Rm is the action space. T is

a state transition function which is defined as T(s,a,s′) = P [St+1 = s′|St = s,At = a],

where t denotes a discrete time step, s is a state sampled from the state space S, a is

an action sampled from the action space A, and s′ describes a new state. As implied

by the definition, state transition function T is equal to the probability of transition

from a state s to another state s′, given an action a. For the continuous state space S,

the transition function T becomes a probability density function. R is a deterministic

reward function which gives the expected reward for transitioning from one state to

another under an action, i.e. R(s,a) = E [rt+1|St = s,At = a]. Finally, γ ∈ [0,1] is a

discount factor. Return of an MDP at any state s is defined as:

Rt = rt+1 + γrt+2 + γ
2rt+3 + · · ·=

∞

∑
k=0

γ
krt+k+1 (3.1)

As it is shown in Equation 3.1, discount factor γ is a measure of scaling future rewards

compared to the most recent reward. With values of γ closer to 1 delayed rewards

contribute more to the return Rt , while small values of γ prioritizes more immediate

rewards.
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If the transition function T is deterministic, i.e. taking an action a in a state s always

leads the process to the same next state s′, the MDP is considered deterministic.

From a system dynamics point of view, a deterministic transition function is roughly

equivalent to the dynamic equations describing a system in the form of s′ = f (s,a).

For time-invariant systems, an MDP describing a reinforcement learning task is called

a stationary MDP. An MDP is described as fully observable if all of the states and

actions relevant to an MDP are observable by the agent. This property holds generally

for mathematical models of dynamic systems to be controlled, as such systems are

modeled in sufficient detail by including all of the relevant information for the problem

solution.

The decision-making (or action-selection) of an MDP is described by a policy π . A

policy for an MDP represents the behavior of an agent and represents a mapping from

states to actions of an MDP. For a continuous action space, a stochastic policy function

is defined as a probability density function over the action space. Stochastic policies

are necessary for any reinforcement learning task, as the agent needs to explore action

space. One exploration method for continuous action spaces is Gaussian exploration,

where actions are sampled from a normal distribution around an approximated mean

value with a predefined or adaptive standard deviation.

Value functions of an MDP describe how good or bad each state and/or action is,

in terms of future reward. There are two types of value functions: the state-value

function and the action-value function. The state-value function gives the expected

return starting from a state s following policy π , whereas the action-value function is

the expected return starting from state s, and taking action a under a policy π . The

state-value function V π(s) and action-value Qπ(s,a) are:

V π(s) = Eπ [Rt |St = s] (3.2)

Qπ(s,a) = Eπ [Rt |St = s,At = a] (3.3)
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Equations 3.2 and 3.3 can be expressed as Bellman equations using the definition of

return in Equation 3.1. For a given policy π , Bellman equations for state-value and

action-value functions can be written as:

V π(s) = Eπ [rt+1 + γV π(St+1)|St = s] (3.4)

Qπ(s,a) = Eπ [rt+1 + γQπ(St+1,At+1)|St = s,At = a] (3.5)

Recursive nature of the Bellman equations of value functions gives insight for the

solution of MDPs. Iterative methods can be used to exploit the recursiveness in a

backward manner at each time step. An MDP is considered solved when the optimal

value function is found. Value functions that yield maximum return over all policies of

an MDP are called optimal value functions and defined as follows:

V ∗(s) = max
π

V π(s) (3.6)

Q∗(s,a) = max
π

Qπ(s,a) (3.7)

Another way of solving MDPs is the approximation of an optimal policy π∗. Policy

improvement theorem states that there is always a deterministic optimal policy π∗,

which is equal to or better than all other policies [26]. According to the theorem, the

optimal policy achieves the optimal value functions V ∗(s) and Q∗(s,a).

3.1.2 Solutions for Markov Decision Processes

Value-based model-free methods are used to approximate optimal value functions V ∗(s)

and Q∗(s,a) directly, from which an optimal policy can be indirectly obtained. These

methods represent value functions using function approximators. One reinforcement

learning method to approximate the optimal action-value function for control is Q-

learning [34]. In Q-learning an action-value function with parameters θ q is defined as

Q(s,a;θ q). The goal of the Q-learning algorithm is to update the parameters of the

function approximator by minimizing a loss function at each step until convergence to

the optimal action-value function Q∗(s,a). For the one-step Q-learning method, this

loss function is defined as follows:

L =

(
r+ γ max

a′
Q(s′,a′;θ

q)−Q(s,a,θ q)

)2

(3.8)
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This method employs a regression on the target which is defined as the first two terms

of the loss function in Equation 3.8, while the prediction of the function approximator

is the last term. Exploration for this method is generally achieved by the ε-greedy

method. One drawback of this method is that it has a practical application only on

finite, discrete action spaces. Since action selection via ε-greedy method relies on

evaluation of action-values of all possible actions at each state and choosing the action

with the maximum action-value for exploitation, it is less suitable for continuous

action-space problems.

Another class of methods for solving MDPs is policy-based model-free methods,

where the policy is approximated directly. This time, policy function π(s;θ q) is

parameterized and parameters are updated by a gradient ascent on an expected value of

the return. REINFORCE algorithm is an example of the policy-based methods, where

the parameters are updated in the direction of policy gradient ∇θ q logπ(s;θ q)Rt [38].

This gradient term is an unbiased estimate of the gradient of the return Rt with respect

to the parameters θ q [22]. In [38], it is shown that variance of this estimation can be

reduced by subtracting a function of the state known as the baseline bt(s) from the

return. Then, the total gradient for parameter update becomes ∇θ q logπ(s;θ q)(Rt −
bt(s)).

Value function estimates can be used as the baseline to reduce the variance, i.e.

bt(s)≈V π(s) [22]. This leads to a scaling of the gradient of the policy by a term that

can be expressed as the so called advantage. The advantage is defined as A(s,a) =

Q(s,a)−V (s), which can be interpreted as the difference in value between different

actions at the same state. When return Rt is used as an estimate of Q(s,a), the gradient

for policy parameter updates can be redefined as ∇θ q logπ(s;θ q)A(s,a).
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3.2 Function Approximation

Early research on reinforcement learning employed lookup tables for representation

of values for different state-action pairs. However, for an MDP that has large or

continuous state and action spaces, using such lookup tables are not practical. Most

state-of-the-art reinforcement learning researchers use function approximators for

storing policy and value functions in a compact manner.

One class of function approximators are linear approximators. Linear function approx-

imators can be written in a general form such as

f (s) = θ
T

φ(s) (3.9)

where θ is a vector of tunable parameters and φ(s) is a feature vector at state s.

Feature vectors are a function of a given state which maps states into predefined

features in a feature space Φ. A discussion of feature selection can be found in

[5]. Linear function approximators provide insight into convergence properties of

reinforcement learning algorithms, since they are easier to understand and linear in

parameters. Furthermore, linear approximators are simple to implement and cheaper

than nonlinear approximators in terms of computational resources. In reinforcement

learning problems with large or continuous state spaces, value functions of each state

can be represented with a linear approximator where the features can be taken as state

variables. However, this approach assumes that the value function for a given problem

is a linear combination of the state variables, which limits the solution to the set of

value functions in the form given in Equation 3.9. For problems that a useful feature

vector is hard to obtain, utility of linear approximators are limited.

The fact that linear approximators need hand-crafted features is a major disadvantage.

For model-free reinforcement learning methods the aim is to find solutions to an

MDP without relying on information about the problem domain. On the other hand,

nonlinear function approximators have been used for solving reinforcement learning

problems in a model-free fashion. While the same convergence properties can not

be easily obtained for nonlinear approximators, it is shown that good results can

be achieved for approximation of unknown functions inherent to the reinforcement

learning. One example of nonlinear approximators is the artificial neural network,

24



which had been used for many reinforcement learning tasks successfully, such as

backgammon [28, 29, 30], robotics [2, 20, 33, 7], and elevator dispatching [8, 9]. In

this thesis, the function approximation method was also chosen as a neural network

and a discussion of neural networks is given next.

Neural networks are inspired by biological nervous systems. As in these systems, they

are composed of simple elements working in parallel, with the aim of recognition

of more complex concepts. Neural networks have a layered structure where each

layer consists of units (or neurons) which hold simple activation functions. Between

each layer there are sets of weights which connects one layer to the next. Weights

of a neural network are the parameters for training or tuning a neural network for its

desired purpose. The objective of training a neural network is therefore to find suitable

weights for the problem at hand. Neural networks have been successfully used for

several tasks, including image and speech recognition, regression, classification, and

function approximation. There are three main subclasses of neural networks, namely,

feedforward neural networks, convolutional neural networks, and recurrent neural

networks. This study focuses on function approximation with feedforward neural

networks.

3.2.1 Feedforward Neural Networks

Feedforward neural networks consist of an input layer, one or more hidden layers, and

an output layer. An example of a single hidden layer feedforward neural network is

depicted in Figure 3.2. This configuration of a neural network will be used as a running

example for an explanation of how feedforward neural networks work in general. The

output of a single hidden layer network can be written in functional form as:

yi = g

(
L

∑
l=1

wil f

(
n

∑
j=1

vl jx j + vl0

)
+wi0

)
(3.10)

where i = 1,2, . . . ,m. Here, x j is the jth input variable, vl j is the weight connecting

input x j to hidden layer neuron hl , wil is the weight connecting hidden layer unit hl

to output layer neuron oi, and vl0 and wi0 are biases for hidden and output layers

respectively. f (.) and g(.) are activation functions that can be selected differently for

the specific purpose of the neural network.
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Figure 3.2: A single hidden layer feedforward neural network

Activation functions are predefined, usually nonlinear operations on scalar numbers.

There are several common activation functions in the literature, such as the sigmoid,

the hyperbolic tangent and the rectifier linear units (ReLU). Figure 3.3 depicts several

different activation functions.

ReLU activations were used throughout this thesis on hidden layers as it has several

advantages over the other common activation functions. Krizhevsky et al. found that

the convergence of stochastic gradient descent is accelerated by a factor of 6 by using

ReLU activations compared to the sigmoid and the hyperbolic tangent [16]. This

was attributed to the linear and non-saturating form of the ReLU as opposed to the

other two aforementioned activation functions. Another advantage of the ReLU is that

it can be represented with a simple, computationally cheap mathematical operation
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(d) Rectifier linear unit (ReLU)

Figure 3.3: Examples of activation functions

as in Equation 3.11, while the sigmoid and the hyperbolic tangent functions involve

expensive operations such as exponentials.

f (x) = max(0,x) (3.11)

Activation functions on the output layer of a neural network can also be defined

with one of the activation functions given in Figure 3.3 as well as a linear identity

function. For classification applications of neural networks sigmoid or hyperbolic

tangent activation functions on output layers can be considered, as the outputs of

the neural network is usually defined as probabilities of an input set belonging to a

class of outputs. For such problems, output is needed to be in the range oi ∈ [0,1] or

oi ∈ [−1,1], which can be achieved by sigmoid and hyperbolic tangent activations

respectively. On the other hand, for regression problems output is most commonly

defined as a vector of arbitrary real-valued numbers with regression targets which are
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also real-valued. Hence, linear functions were used on the output layer of the neural

networks in this thesis, in the form:

g(x) = x (3.12)

Bias terms vl0 and wi0 in Equation 3.10 are vectors containing parameters additional

to the weights of the neural network. These terms serve the purpose of shifting the

output of the activation functions on the input axis, without interfering with the inputs

of the neural network. Therefore, In Figure 3.2 outputs of bias nodes are defined as 1.

For a more compact representation of Equation 3.10, outputs of the hidden layer can

be written as:

zl = f

(
n

∑
j=1

vl jx j + vl0

)
(3.13)

where l = 1,2, . . . ,L. Using Equation 3.13, Equation 3.10 can be rewritten as:

yi = g

(
L

∑
l=1

wilzl +wi0

)
(3.14)

where i = 1,2, . . . ,m. Weights and biases can be represented in matrix form as param-

eters between the input layer and the hidden layer as:

V̄ =


v11 v12 . . . v1n

v21 v22 . . . v2n
...

... . . . ...

vL1 vL2 . . . vLn

 , bv =


v10

v20
...

vL0

 (3.15)

Similarly, weights and biases between the hidden layer and the output layer can be

represented in matrix form as:

W̄ =


w11 w12 . . . w1L

w21 w22 . . . w2L
...

... . . . ...

wm1 wm2 . . . wmL

 , bw =


w10

w20
...

wm0

 (3.16)

Using Equation 3.15 and Equation 3.16, output of the neural network can be written in

vector form as:

~y =~g
(

W̄~f (V̄~x+bv)+bw

)
(3.17)

28



Bias vectors can be augmented into weight matrices for convenience as defining

parameter matrices V and W which contain bias vectors in the first column as:

V =


v10 v11 v12 . . . v1n

v20 v21 v22 . . . v2n
...

...
... . . . ...

vL0 vL1 vL2 . . . vLn

 , W =


w10 w11 w12 . . . w1L

w20 w21 w22 . . . w2L
...

...
... . . . ...

wm0 wm1 wm2 . . . wmL

 (3.18)

Then, output of the neural network in augmented form becomes:

~y =~g
(
W f̂ (V x̂)

)
(3.19)

where x̂ = [1 x1 x2 . . . xn]
T and f̂ is the vector of activation functions on hidden layer

inputs augmented with 1 as the first entry such that f̂ =
[
1~f T

]T
. Similarly, if Equation

3.13 is written in vector form, one may obtain a more compact form of neural network

equations in terms of hidden layer outputs such as:

~z = f̂ (V x̂) (3.20)

and

~y =~g(W~z) (3.21)

It should be noted that hidden layer output vector~z is also augmented with 1 as its first

entry.

3.3 Backpropagation Method

Reinforcement learning dictates that a learning agent should update its parameters

with respect to a reinforcement signal provided by the environment based on the state

of the environment and the actions taken by the agent at that particular state. These

updates can be achieved if contribution of each network parameter to the error between

the output of a neural network and a target value which is expected from that neural

network is known. This is called the credit assignment problem. By knowing the

contribution of each parameter to the error, one can determine how that parameter can

be tuned in order to achieve better outputs. Backpropagation training algorithm was

introduced to solve the credit assignment problem [35, 36, 24]. This recursive process

of updating the parameters of the agent in the form of a neural network is the standard

29



method of training for reinforcement learning applications. Backpropagation algorithm

is a method which can be combined with gradient-based optimization algorithms in

order to find updates to the weights of a neural network.

In the scope of this thesis, backpropagation algorithm was employed in order to

calculate gradients of a prescribed loss function with respect to the parameters of a

neural network. Neural network configuration given in Figure 3.2 will be used again

as an example for the derivation of backpropagation method.

Output of the output layer of the neural network configuration given in Figure 3.2 is

defined by Equation 3.10, while the hidden layer outputs are described by Equation

3.13. Considering the bias values x0 and z0 can be defined as 1 as stated previously for

the vector form of the same equations, yi and zl can be defined as:

yi = g

(
L

∑
l=0

wilzl

)
(3.22)

zl = f

(
n

∑
j=0

vl jx j

)
(3.23)

In addition to the hidden layer outputs, some other intermediate quantities are defined

for convenience in order to derive the backpropagation method easily. Let the inputs

to the output layer and the hidden layer neurons are respectively u2
i and u1

l such that

u2
i =

L

∑
l=0

wilzl (3.24)

u1
l =

n

∑
j=0

vl jx j (3.25)

Then one can write

yi = g
(
u2

i
)

(3.26)

zl = f
(
u1

l
)

(3.27)
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Since backpropagation method is essentially a backward recursive chain rule scheme,

partial derivatives of yi and zl with respect to quantities appearing prior to them during

a forward pass of the neural network are needed. These partial derivatives can be

written as:

∂yi

∂wil
= g′

(
u2

i
)

zl (3.28)

∂yi

∂ zl
= g′

(
u2

i
)

wil (3.29)

∂ zl

∂vl j
= f ′

(
u1

l
)

x j (3.30)

∂ zl

∂x j
= f ′

(
u1

l
)

vl j (3.31)

where f ′(.) and g′(.) are the derivatives of the activation functions on hidden and

output layer neurons respectively.

For the purpose of derivation of the backpropagation algorithm, let weights of the

hidden and output layers are updated by the standard gradient descent. Therefore, one

can write the updates to the weights as:

wil ← wil +η
∂L

∂wil
(3.32)

vl j← vl j +η
∂L

∂vl j
(3.33)

where L is a cost function, and η is the learning rate. It should be noted that learning

rates for the hidden and output layers can be selected differently. In order to update

the weights of the network according to Equations 3.32 and 3.33, one must determine

the gradients of the cost function L with respect to the weights of the network.

Let inputs to the neural network be an input vector X , and the target output vector

for that input vector be Y . If the cost function L is defined as the least-squares error

between the target Y and the output vector of the network y, L can be written as:

L =
1
2

m

∑
i=1

e2
i (3.34)

where ei = Yi− yi.
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Gradients of the cost function L can now be determined using the chain rule. Gradients

for the weights wil are:

∂L
∂wil

=
∂L
∂u2

i

∂u2
i

∂wil
=

[
∂L
∂ei

∂ei

∂yi

∂yi

∂u2
i

]
∂u2

i
∂wil

(3.35)

then,

∂L
∂u2

i
=−g′

(
u2

i
)

ei (3.36)

∂L
∂wil

=−zl
[
g′
(
u2

i
)

ei
]

(3.37)

Gradients for the weights vl j can be similarly obtained as:

∂L
∂vl j

=
∂L
∂u1

l

∂u1
l

∂vl j
=

[
m

∑
i=1

∂L
∂u2

i

∂u2
i

∂ zl

∂ zl

∂u1
l

]
∂u1

l
∂vl j

(3.38)

then,

∂L
∂u1

l
=− f ′

(
u1

l
) m

∑
i=1

wil
[
g′
(
u2

i
)

ei
]

(3.39)

∂L
∂vl j

=−X j

[
f ′
(
u1

l
) m

∑
i=1

wil
[
g′
(
u2

i
)

ei
]]

(3.40)

The representations of the gradients can be simplified by defining backpropagated

errors of the network for hidden and output layers. The backpropagated error for the

output layer can be defined as:

δ
2
i =− ∂L

∂u2
i
= g′

(
u2

i
)

ei (3.41)

Similarly, for the hidden layer the backpropagated error is:

δ
1
l =− ∂L

∂u1
l
= f ′

(
u1

l
) m

∑
i=1

wilδ
2
i (3.42)

By combining the aforementioned equations for the backpropagation algorithm Equa-

tions 3.32 and 3.33 can be rewritten for the parameter updates as:

wil ← wil +ηzlδ
2
i ; i = 1,2, . . . ,m; l = 0,1, . . . ,L (3.43)

vl j← vl j +ηX jδ
1
l ; l = 1,2, . . . ,L; j = 0,1, . . . ,n (3.44)

Backpropagation method can also be transformed to matrix form, which makes com-

putation cheaper for computer programs optimized for matrix operations. In this form,
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the forward pass of the neural network is given by Equations 3.20 and 3.21, while the

backward pass can be described by:

e = Y − y (3.45)

δ
2 = diag

(
0 g′

(
u2))e (3.46)

δ
1 = diag

(
0 f ′

(
u1))Wδ

2 (3.47)

where, with u2 as a vector of size m, diag(u2) is an m×m diagonal matrix with entries

u2
1,u

2
2, . . . ,u

2
m on the diagonal. Hence, the parameter updates for the network becomes:

W ←W +ηz
(
δ

2)T
(3.48)

V ←V +ηX
(
δ

1)T
(3.49)

3.4 Optimization

Updates to the parameters θ q and θ v were performed by standard noncentered RM-

SProp algorithm as the optimization method [31]. RMSProp algorithm keeps a running

average of the squared gradients for each weight and then divides the gradient by this

running average of its recent decayed magnitude. Update rule is given in Equation

3.50:
g← αg+(1−α)(dθ)2

θ ← θ +η
dθ√
g+ ε

(3.50)

where g is the moving average of the gradients, α is the decay rate, dθ is the update

on the parameters of the corresponding function approximator, η is the learning rate,

and ε is a small constant to avoid division by zero.
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CHAPTER 4

PROBLEM FORMULATION

In the previous chapter, key reinforcement learning concepts were described. An

actor-critic algorithm that can be used to solve continuous space – continuous action

problems such as the helicopter autorotation in a model-free manner, is described in

this chapter.

A reinforcement learning task can be described with an environment, an agent which

acts upon the environment, and a reward signal emitted by the environment in response

to the actions taken by the agent to facilitate learning. This chapter begins with the

definition of the environment for the autorotation problem. Chosen reward function and

the rationale behind it are explained. Constraints specific to the autorotation dynamics

and their incorporation to the reward function are explained. Then, a description of the

actor-critic reinforcement learning structure is given. Finally, details of the training

process for the agent are presented.

4.1 Definition of Environment

In reinforcement learning context, the environment is defined as the outside world

that holds the dynamics of the problem to be solved. For helicopter autorotation,

the environment is described by the dynamical system equations given in Chapter

2. Autorotation problem is considered to be solved when touchdown with minimal

fuselage kinetic energy is achieved. In light of this, the main component of the reward

function is defined as the weighted sums of the squared horizontal velocity and vertical

velocity at touchdown.
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Acceptable velocities at the instant of touchdown was assumed to be less than u < 3

m/s and w < 1 m/s. Normalization was applied to the reward function in terms of rotor

tip speed, in order to bring the rewards to the order of 1. Objective of the reinforcement

learning algorithm is to maximize total obtained reward; hence, minimization of the

horizontal and vertical velocities should lead to higher rewards.

Environment states for the reinforcement learning task were also normalized. Normal-

ized environment states are model states given in Equation 2.21. At each discrete time

step, the environment receives actions from the agent, marches one step forward in

time, and generates next states and a scalar reward. It should be noted that output of

the reward function takes zero or negative values only throughout a training episode.

Fourth-order Runge-Kutta was used as the numerical approximation method to solve

for the ordinary differential equations of the point-mass model.

Actions generated by the agent were chosen to be the normalized changes to the

point-mass model inputs, denoted by ∆C̄x and ∆C̄z. This choice of actions were made

in order to prevent discontinuities in control inputs to the point-mass model at the

instant of engine failure. Note that ∆C̄x and ∆C̄z were normalized by a factor of 0.01

in order to bring the range of outputs to an order of 1.

4.1.1 Reward Function

Reward function generates a scalar reward at each time step which guides the training

of the agent. Reward signal is emitted by the environment and is a function of the state

of the environment. Reward functions can be considered as the designer’s tuning knobs

for reinforcement learning tasks as the desired behavior is defined through reward

functions.

Reward function for the autonomous autorotation task in this thesis have a multi-

conditional structure. Reward function is defined as a function of height h, vertical

velocity w, thrust coefficient over rotor solidity CT/σ , rotor angular speed Ω, and rotor

disk orientation α .
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Reward component with respect to height h is defined as:

rh =


−100(u2+3w2)

(Ω0R)2 if h >= 0

0 otherwise
(4.1)

Since acceptable touchdown velocity for vertical velocity is assumed to be one-third

of the horizontal velocity, a weight of 3 was multiplied with squared vertical velocity.

Multiplication with 100/(Ω0R)2 was performed for normalization. Negative sign

of the reward is due to the nature of reinforcement learning where the rewards are

maximized; hence, maximum reward from this component corresponds to minimum

vertical and horizontal velocities. It should be noted that rh takes a negative value only

at the instant of touchdown. Since h >= 0 is also a terminal condition, rh is obtained

once per episode. Note also that h is negative above the ground.

Vertical velocity component of the reward function, i.e. rw is calculated as:

rw =


10−w
1000 if w > 10

0 otherwise
(4.2)

Vertical velocity above 10 m/s is punished in order to prevent rotor overspeeding

usually observed with high vertical speeds. This definition of reward function compo-

nent ensures that the agent receives small negative rewards at each time step vertical

velocity is above 10 m/s.

Thrust coefficient over rotor solidity, or rotor loading, term of the reward is defined as:

r(CT /σ) =

0.15− CT
σ

if CT
σ

> 0.15

0 otherwise
(4.3)

Lee et al. stated that stall limit for the rotor loading is 0.15 for the OH-58A helicopter

[18]. After reaching this limit, profile drag coefficient of the rotor increases. This is a

major contributing factor of rotor angular speed loss and should be avoided. To ensure

that rotor loading remains below stall limit, a large penalty is applied to the agent at

every time step where stall limit is exceeded.
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Rotor angular speed also contributes to the reward function in a negative fashion in

case it is outside predefined limits, such that:

rΩ =


1.1Ω0−Ω

1000 if Ω > 1.1Ω0

Ω−0.7Ω0
1000 if Ω < 0.7Ω0

0 otherwise

(4.4)

Rotor speed Ω is not desired to operate outside limits defined in Equation 4.4. To

ensure that the agent learns not to drive the point-mass model above or below these

rotor speed limits, small penalties were associated with states that violates these limits.

Finally, reward function has a component corresponding to the rotor disk orientation

α:

rα =


30−α

2000 if α > 30

α+30
2000 if α <−30

0 otherwise

(4.5)

Rotor disk orientation α is desired to remain in the range [−30,30] to prevent excessive

maneuvering during autorotation, and values of α outside these limits were penalized

by a small negative reward.

Total reward is the sum of all terms mentioned above, such that:

r = rh + rw + r(CT /σ)+ rΩ + rα (4.6)

4.2 Agent Structure

The most significant part of the reinforcement learning task is the agent, as it is

the entity that infers the necessary actions to take to achieve an objective, given the

environment states. The agent consists of two neural network function approximators,

namely the critic network and the actor network. Actor-critic system architecture is

depicted in Figure 4.1
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Figure 4.1: Actor-Critic Architecture

4.2.1 The Critic Network

The critic network is a neural network function approximator with two hidden layers,

where each layer consists of 32 neurons. Inputs to the critic network are normalized

point-mass model states, concatenated with normalized control variables such that

s =
[
w̄ ū Ω̄ h̄ C̄x C̄z

]T . Output of the value function is a scalar V (s), which is the value

estimation of the state set defined by the inputs to the network. Critic network’s output

V (s) can be considered as an approximation to the expected total reward from a given

state set following a policy π . Parameters of the critic network including both weights

and biases are denoted as θ v throughout this chapter. Therefore, critic network is

denoted as V (s;θ v).

4.2.2 The Actor Network

The actor network is identical to the critic network in terms of structure, except that

its output is a vector of real numbers, namely µ(s;θ q) =
[
µCx µCz

]T . Output of the

actor network is defined as an input to the Gaussian distribution as the mean value in

order to determine the output of the policy π(s;θ q), where θ q are the parameters of

the actor network. To clarify, actions produced by the actor network are sampled from
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Gaussian distributions with mean values as actor network’s outputs, such that:

π(s;θ
q) =

[
∆C̄x ∆C̄z

]T (4.7)

where ∆C̄x and ∆C̄z are sampled from:

p(x) =
1√

2πσ
e−

(x−µ)2

2σ2 (4.8)

where σ is the standard deviation and µ as mean or center produced by the actor

network. This random sampling from Gaussian distribution is required to facilitate

exploration of action space by the agent. Reinforcement learning algorithm which will

be presented next requires exploration to obtain the optimal policy which achieves the

maximum reward starting from any state s from the state space.

4.3 Training Algorithm

Reinforcement learning algorithm used in this thesis follows the conventional termi-

nology of the broader reinforcement learning field. At each discrete time step t, the

agent observes the state of the environment st and executes an action at depending on

st and its current policy function π , while the environment receives the action at and

move to a new state st+1. The agent then receives a scalar reward rt , which measures

the success of a policy at that time step. Policy π describes the mapping of states st to

actions at as conceived by the agent. The aim of the general reinforcement learning

framework is to learn a policy from observations which maximizes the total reward

starting from any state st .

The algorithm used here is a model-free on-policy method which falls under the cate-

gory of policy-based methods, and it is a simplified version of the Asynchronous Ad-

vantage Actor-Critic (A3C) algorithm introduced in [22]. Policy-based reinforcement

learning focuses on estimating the optimal policy π∗, which is the policy maximizing

the future reward. The algorithm uses an actor-critic architecture, where the actor is

considered as the policy function π(st ;θ q) and the critic is an approximation to the

expected total reward from a given state st following the policy π , which is defined as

the value function V (st ;θ v). In this study, actor and critic were represented as function

approximators in the form of separate neural networks with θ q and θ v as parameters

(or weights) of the networks respectively.
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An important feature of the algorithm is the asynchronous execution of training. A

multi-core CPU was used for instances of training episodes. Each thread on the CPU

runs a worker process which performs training with its own copy of the actor network,

the critic network, the environment, and the numerical solver. Parallelization of the

training allows for different exploration policies for different threads; however, a

fixed exploration policy was used across all training threads here. For each episode,

a worker process initializes its own copy of the environment, and samples action at

from a Gaussian distribution with mean value as the output of the actor network and

standard deviation σ = 1. The environment then marches one step forward in time and

generates the reward achieved for that step. The action at , the state st and the reward

rt at each time step are stored in an array on memory. Upon reaching a terminal state,

the training episode ends and gradients necessary for updating network parameters θ q

and θ v are calculated via backpropagation using the stored at , st , and rt at each time

step. Gradients then summed up into a total gradient update for that single episode.

These accumulated gradients are sent to a parent process to update the main actor

and critic networks. Updated actor and critic networks are shared across each new

worker process on each thread in subsequent training episodes. This way of updating

the function approximator parameters is shown to have a stabilizing effect on training

without relying on experience replay methods, which require large memory spaces

[22]. As mentioned before, updates to the parameters θ q and θ v were handled by

RMSProp optimization. RMSProp is an improved version of standard gradient descent

optimization, which facilitates faster convergence and avoids potential plateaus of loss

functions by using the so called momentum of previous updates. Complete algorithm

used in this study is described in Algorithm 1 in Appendix.
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4.3.1 Network Parameter Updates

In this section, calculation of updates to the parameters of actor and critic networks

are explained. Details and rationale behind chosen update rules are given for both

networks.

4.3.1.1 Critic Network Updates

Aim of updating the critic network parameters is to train the critic network to give

better estimations of the values of all state sets in the state space. Therefore, the loss

function to be minimized for critic network updates takes the form as follows:

Jcritic,t =
1
2
(Rt−V (st ;θ

v))2 (4.9)

where Rt is the discounted total reward from time step t until the end of the training

episode, such that:

Rt = rt + γrt+1 + γ
2rt+2 + γ

3rt+3 + ...= rt + γRt+1 (4.10)

For the minimization of the cost Jcritic,t , gradients of the cost function with respect to

the critic network parameters are needed. From chain rule:

∂Jcritic,t

∂θ v =
∂Jcritic,t

∂V (st ;θ v)

∂V (st ;θ v)

∂θ v

=−(Rt−V (st ;θ
v))

∂V (st ;θ v)

∂θ v

(4.11)

where partial derivative of critic network output V (st ;θ v) with respect to the network

parameters θ v were calculated by backpropagation as detailed in Section 3.3. As a

result, update rule for the parameters of the critic network becomes:

dθ
v← dθ

v +(Rt−V (st ;θ
v))

∂V (st ;θ v)

∂θ v (4.12)

4.3.1.2 Actor Network Updates

Similar to the rationale of training the critic network, training of the actor network

aims to find a mapping from states to actions that maximizes total reward starting from
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any state st . The loss function to be minimized for actor network updates is:

Jactor,t =
1
2
(at−µ(st ;θ

q))2 (4.13)

where at is the sampled action from policy π . Gradients of this cost function with

respect to the actor network parameters were calculated as:

∂Jactor,t

∂θ q =
∂Jactor,t

∂ µ(st ;θ q)

∂ µ(st ;θ q)

∂θ q

=−(at−µ(st ;θ
q))

∂ µ(st ;θ q)

∂θ q

(4.14)

Gradients defined by Equation 4.14 do not serve the purpose of training the network

towards more suitable actions alone. In fact, using Equation 4.14 only would lead to

actions trained randomly for each state. To prevent this, updates are calculated such

that:

dθ
q← dθ

q +(at−µ(st ;θ
q))

∂ µ(st ;θ q)

∂θ q (Rt−V (st ;θ
v)) (4.15)

Error between the real value and estimated value of a state, i.e. Rt−V (st ;θ v), provides

the knowledge of when a better or worse than expected state is achieved through an

action. Hence, a positive error term means that actions which yielded better rewards

are reinforced, and a negative error means that actions performed worse than expected

are avoided. In other words, better than expected states push the outputs of the actor

value (center points of the Gaussian distribution) towards the sampled actions from

corresponding Gaussian distribution, which in turn makes those sampled actions more

likely to be taken by the agent in the future. Conversely, worse than expected states

push actor outputs away from sampled actions.

4.3.2 Hyperparameters of The Training Algorithm

Most of the hyperparameters of the training algorithm were found by trial-and-error.

Selected parameter values are: Time step for training episodes dt = 0.1, maximum

number of training episodes Nmax = 2∗106, discount factor γ = 0.99, actor learning rate

ηactor = 0.0003, critic learning rate ηcritic = 0.00015, RMSProp decay rate αd = 0.99

and RMSProp constant ε = 0.1.

Learning rates of both critic and actor networks were annealed linearly with episode

count so that when n = Nmax both learning rates approach zero.
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CHAPTER 5

SIMULATION RESULTS

Autorotation problem was formulated by utilizing a point-mass model and a reinforce-

ment learning agent. Then, the agent was trained in order to solve the problem by

minimizing the horizontal and vertical velocities of the point mass model at touch-

down; hence, kinetic energy at the instant of ground impact is minimized. States of

the point mass mathematical model was the vertical velocity w, the horizontal velocity

u, the rotor angular speed Ω, the height above the ground level h, and the horizontal

distance from the point of engine failure x. Since this study is not concerned with

landing the helicopter to a predefined landing spot, there are no constraints on the

horizontal distance state x. Therefore, x is not an input to the reinforcement learning

agent. Inputs to the model were defined as the horizontal thrust coefficient Cx and the

vertical thrust coefficient Cz.

Inputs to the reinforcement learning agent consists of model inputs, in addition to

the model states except the horizontal distance state, while outputs of the agent, i.e.

actions, were selected as changes to the horizontal and vertical thrust coefficients at

each time step, namely ∆Cx and ∆Cz. This choice of actions was preferred; because,

it prevents discontinuities in model control inputs Cx and Cz at the instant of engine

power loss.

Standard OH-58A helicopter has an Height-Velocity curve knee for 1360 kg gross

weight and a rotor Lock number of 5.43 as depicted in Figure 5.1. Low altitude region

which is also the part of standard flight manuals is not included here, since it depicts a

zone where the pilots do not feel comfortable during flare phase due to the proximity

of the tail boom to the ground and there is a risk of contact between the tail and the

ground. Because the study presented in this thesis is conducted with a point-mass
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model of a helicopter in autorotation, this low speed region of the H-V diagram is

irrelevant. Inside the low-speed knee region of the depicted diagram, safe landing

through autorotation is not guaranteed by the helicopter manufacturer.
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Figure 5.1: OH-58A H-V diagram for Gross Weight = 1360 kg, Lock number = 5.43

It should be noted that hover condition is not included in the training algorithm and

the resulting agent was not tested for autorotation starting from hover. This is due to

the fact that optimal trajectory for autorotation from hover is purely vertical, and a

more meaningful training algorithm could be set up by omitting horizontal velocity

state u, and horizontal thrust coefficient input Cx from the dynamical equations. This

approach would reduce the problem to one-dimensional motion in vertical plane and
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would naturally find trajectories which are purely vertical. Optimal trajectories for

vertical autorotation are investigated in [14].

Various conditions were selected from the regions both inside and outside the knee of

the H-V diagram in order to investigate the agent’s performance against the effects of

autorotation entry height and entry speed. Selected test conditions are given in Table

5.1 and plotted against the H-V diagram in Figure 5.2.

Table 5.1: Autorotation Entry Conditions

Entry Condition 1 2 3 4 5 6

Height [m] 40 40 60 175 90 40

Airspeed [m/s] 5 20 2 5 5 30

Test conditions 1, 5, and 4 were selected to investigate the agent’s performance during

autorotation from different entry heights for a forward velocity of 5 m/s. Entry heights

for these conditions are 40 m, 90 m, and 175 m respectively. Similarly, test conditions

1, 2, and 6 were used for observing the effect of different autorotation horizontal entry

speeds from the same entry height of 40 m. For these test conditions entry speeds are

5 m/s, 20 m/s, and 30 m/s in ascending order. Test condition 3 was selected in order

to be able to investigate a near-hover entry condition to the autorotation. Therefore,

forward speed for test condition 3 was selected as 2 m/s. All test conditions were at

steady-state level flight condition before the engine power loss.
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Figure 5.2: Test points on OH-58A H-V diagram

5.1 Interpretation Of The Results

A detailed presentation of the results achieved by the reinforcement learning agent

can be found in Figure 5.3 for an autorotation maneuver from an entry height of 40 m

and at 5 m/s initial forward speed. This test case corresponds to the test condition 1 in

Table 5.1.

Initially, the collective was decreased by the agent in order to arrest the rotor speed

decay. Forward velocity was increased from 5 m/s, since the speed of minimum

required power is above the initial speed. An important result of this study is that the
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(b) Time variation of vertical velocity w
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(c) Time variation of altitude h
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(d) Time variation of rotor angular speed Ω
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(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.3: Autorotation trajectory for test condition 1

49



agent learns to find an optimal forward speed during autorotation at which the descent

is steady and sink-rate can be held constant at a reasonable value. Due to the actions

taken above, initial response of the point-mass model is an increase in vertical velocity

up to a maximum of 11 m/s. However, this increase of vertical velocity is necessary in

order to maintain rotor angular speed. The agent then executes a flare maneuver by

a rearward tilt of the rotor disk, while simultaneously increasing collective in order

to prevent the rotor from overspeeding. Flare maneuver reduces both the forward

speed and the vertical speed of the helicopter to near zero values. From that point on,

the agent uses the remaining energy in the rotor for a cushioned landing by further

increasing the collective. This energy extraction from the main rotor can be observed

from the rotor speed decay after the flare phase of the maneuver. At the instant of

touchdown horizontal velocity is below 3 m/s; however, the agent did not succeed in

keeping a touchdown vertical velocity below 1 m/s. Hence, the agent could not meet

the success criteria and this test condition corresponds to a failed landing.

Trajectories for the test condition 2 are given in Figure 5.4. This test has an entry

height of 40 m, and an entry speed of 20 m/s.

Similar to the test condition 1, collective input is decreased as the first response to

the engine loss at t = 0. However, the agent managed to maintain the rotor speed

and vertical velocity at a limited range without needing a sharp drop in collective,

as depicted in Figure 5.4e. Horizontal velocity kept almost constant until the flare

at t = 4 seconds. Rotor disk angle was close to 30 degrees backwards at maximum

tilt. The agent managed to touch the ground with zero rotor disk angle, unlike the

previous condition. Collective input trend is similar to the test condition 1; however,

maximum collective used throughout the maneuver is less, which is due to the fact

that the initial condition of horizontal velocity is close to the maximum endurance

speed of the helicopter. Finally, touchdown was performed at zero horizontal velocity

and vertical velocity is below 1 m/s; therefore, it can be concluded that the agent was

successful in landing the helicopter for test condition 2.

Trajectories of remaining test conditions are given in Figures 5.5 to 5.8.
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(a) Time variation of horizontal velocity u
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(b) Time variation of vertical velocity w
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(c) Time variation of altitude h
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(d) Time variation of rotor angular speed Ω
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(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.4: Autorotation trajectory for test condition 2
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(a) Time variation of horizontal velocity u
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(b) Time variation of vertical velocity w
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(c) Time variation of altitude h
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(d) Time variation of rotor angular speed Ω

0 1 2 3 4 5 6 7 8 9 10

Time [s]

1

2

3

4

5

6

7

8

9

10

C
ol

le
ct

iv
e 

In
pu

t [
de

g]

(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.5: Autorotation trajectory for test condition 3
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(c) Time variation of altitude h
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(d) Time variation of rotor angular speed Ω
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(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.6: Autorotation trajectory for test condition 4
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(b) Time variation of vertical velocity w
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(d) Time variation of rotor angular speed Ω
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(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.7: Autorotation trajectory for test condition 5
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(d) Time variation of rotor angular speed Ω
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(e) Time variation of collective control
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(f) Time variation of rotor disk angle

Figure 5.8: Autorotation trajectory for test condition 6
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5.2 Monte Carlo Simulations of Random H-V Initial Conditions

Some success criteria must be defined to measure the ability of the trained agent to

safely land the helicopter after engine power loss. A reasonable measure for horizontal

speed can be defined as u < 3 m/s, while the vertical velocity limit for successful

touchdown was taken as w < 1 m/s. The vertical speed criteria used here is considered

stringent, as Lee et al. used approximately w < 2.5 m/s as their success criteria for the

same helicopter [18].

After training is completed, the agent was tested against random initial conditions both

inside and outside H-V curves for OH-58A at different gross weights of 1360 kg, 1250

kg, 1100 kg and 1000 kg. These tests show that the agent can successfully land the

point-mass helicopter model in autorotation for the majority of the test points for all

gross weight parameters. Results given in Figures 5.9 to 5.12 show that number of

random test cases which result in a failed landing according to the aforementioned

success criteria decreases with decreasing gross weight. It is evident from the results

that unsuccessful test cases appear mostly at the low total energy region at autorotation

entry, which is not surprising since there is more available energy for a successful

autorotative landing for high altitude and/or high speed entry points. Total speed

achieved by the agent at touchdown with respect to the entry points were also given for

different gross weight configurations. Similar to the successful/failed landing results,

touchdown speeds were observed to be smaller for decreasing gross weight, and low

total energy at autorotation entry leads to higher touchdown speeds.
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Figure 5.9: Monte Carlo simulation results of random autoration entry points for

m = 1360 kg
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Figure 5.10: Monte Carlo simulation results of random autoration entry points for

m = 1250 kg
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Figure 5.11: Monte Carlo simulation results of random autoration entry points for

m = 1100 kg
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Figure 5.12: Monte Carlo simulation results of random autoration entry points for

m = 1000 kg
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5.3 Effect of Number of Training Episodes on Agent Performance

Total number of training episodes during reinforcement learning plays an important

factor on the agent performance. To demonstrate the effect of number of training

episodes on the agent’s behaviour after training is completed, a series of simulations

were conducted with the point-mass model at m = 1360 kg gross weight. Simulations

were run for 2500 randomly selected initial condition points for autorotation entry

height and entry speed. It should be noted that agents trained for varying number of

training episodes were tested against the same randomly chosen initial condition set.

Random initial conditions for entry height was selected such that h0 ∈ [0,200] meters.

Initial entry speeds were chosen from u0 ∈ [0,40] meters per second. To show how the

agent behaves at early stages of learning, the agent’s performance were measured after

the first five multiples of 100K training episode intervals. After that, measurements

were taken at every multiple of 500K training episodes for a total number of episodes

of 2 million. Performance of the agent after each interval were measured in terms of 1)

the ratio of the number of successful landing cases to all cases starting from the initial

condition set according to the criteria given in Section 5.2, and 2) average of the total

touchdown speed achieved by the agent for each initial condition. Results were given

in Table 5.2. Results show that training for more episodes increase the success rate of

the agent up to 94%, while reducing average touchdown speed to roughly 0.5 m/s.

Table 5.2: Agent performance with varying training intervals

Number of episodes % of successful landings Average touchdown speed [m/s]

100K 2.28 2.13

200K 84.44 1.39

300K 89.80 1.11

400K 90.32 0.93

500K 92.44 0.83

1M 94.40 0.72

1.5M 94.08 0.62

2M 94.52 0.56
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CHAPTER 6

CONCLUSION

In this thesis, a reinforcement learning approach was followed in order to obtain an

autonomous autorotation controller for the OH-58A helicopter. The main objective

of the thesis was to show that reinforcement learning algorithms can be used to train

machine agents without prior knowledge of a model or the environment, for the

challenging task of safe landing through helicopter autorotation. Another objective

of the study was to show that a reduction to the Height-Velocity restriction curve can

be achieved by a machine agent, such that the machine agent can successfully land a

helicopter, starting autorotation within the aforementioned H-V curve.

A point-mass model of the OH-58A helicopter in autorotation was built to be used in

the reinforcement learning framework as the environment. The point-mass model is a

variation of the widely used two-dimensional model introduced in Reference [14]. This

mathematical model captures the governing dynamics of the helicopter autorotation,

with two degrees of freedom in vertical plane and rotor dynamics. Since reinforcement

learning tasks for complex dynamical system control problems are computationally

expensive and time consuming, a simple model which captures the essential dynamics

of autorotation was necessary. The point-mass model satisfies this necessity.

Reinforcement learning tasks need machine agents to infer actions from encountered

states. Goal of the training algorithms of such machine agents is to obtain a mapping

from states to actions that satisfies designer’s specifications of how a task should be

done. Such an agent was constructed by two neural network function approximators,

namely the critic network and the actor network. The critic network’s purpose is to

learn and evaluate the value of each state, and then send this feedback to the actor.

The actor network takes this feedback, and determines whether the agent’s recent
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actions according to a policy led the agent to a better or worse state than the critic

expected and update its parameters accordingly. The critic network learns the value of

states by utilizing discounted returns from each training episode and updating towards

minimizing a loss function to better represent each state’s value. These returns are

obtained by evaluating a reward function which is defined by designer to shape the

desired behavior of the agent. The actor network’s outputs were defined as center

points of Gaussian distributions with standard deviations of 1. In order to facilitate

learning, a machine agent needs exploration of different parts of the state and action

spaces. The agent’s policy is to sample from these distributions to determine actions at

each state during training, in search of a better action which yields more rewards in

the long run. Updates to the critic and the actor networks were found by a gradient

based optimization algorithm called RMSProp. Gradients necessary for calculating

the updates were found by backpropagation method.

After training was completed, performance of the agent was tested against various

autorotation initial conditions both inside and outside the Height-Velocity diagram of

OH-58A helicopter. During these tests, behavior of the agent was found to be similar

to human pilots. The reinforcement learning agent achieves success criteria of u < 3

m/s and w < 1 m/s at the instant of touchdown for five out of six initial conditions.

When the trajectories of these conditions were examined, it was observed that the

agent had learned to execute a flaring maneuver for all starting conditions without

any prior knowledge of such a maneuver’s necessity or any guidance on how or when

to execute a flare. In addition to this, the agent tries to achieve a sink rate near the

minimum sink rate at approximately 23 m/s forward speed during the steady descent

phase of the autorotation maneuver without such prior information during or after

training. Autorotation trajectory with an entry height of 40 m and entry speed of

20 m/s is a clear evidence of this behavior, as the agent tilts the rotor disk forward

following the entry and increases its forward speed slightly.

It was observed that rotor angular speed is maintained in the range as defined by the

corresponding reward function term. However, it is evident that these limits can be

tightened for better rotor speed control over the course of autorotation, since the agent

clearly has the freedom in all test cases to further reduce the collective input just after

autorotation entry to further arrest the decay in rotor angular speed. In addition to this,
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it was found that rotor loading limit was not violated during the test cases and the rotor

stayed clear of the stall region.

Monte Carlo simulations of random autorotation entries at different heights and forward

velocities for different gross weights were conducted. As it was shown, majority of

the Height-Velocity restriction zone were cleared by the agent. Inside the knee of the

H-V diagram the agent fails to achieve successful landing criteria for entry speeds

up to 20 m/s and entry heights up to roughly 50 meters for 1360 kg gross weight.

However, outside of this particular zone, the agent achieves successful landing except

entry heights below 5 meters. It was shown that the area cleared by the agent for lower

gross weight parameters increases with decreasing gross weight, since lower gross

weight gives room for better energy management as there is more rotational energy of

the rotor to be used for maneuvering instead of arresting the sink-rate. Touchdown

speeds with respect to different entry conditions for different weights were also given.

It was observed that touchdown speeds decrease with decreasing gross weights, which

is also due to the fact that rotor kinetic energy left before touchdown is larger for low

gross weight configurations. The agent uses this excess energy for a more cushioned

touchdown.

Although the trained agent performed well, reinforcement learning methods such as

the one used in this thesis have their own shortcomings. First, there is not a proof of

guaranteed stability for nonlinear reinforcement learning controllers in the sense of

control theory. Furthermore, the agent needs to extensively explore the state and action

spaces to have a meaningful understanding of the problem at hand. This makes having

a cluster of high performance computing machines a necessity for larger problems.

Furthermore, real world application of such a reinforcement learning algorithm is

not feasible for training in real time, due to the intensive processing and memory

requirements of such algorithms. In addition, need for exploration inhibits real time

training of safety critical equipment such as aircraft. However, trained agents can

be deployed on aircraft, after extensive testing and high-fidelity simulation. Finally,

reinforcement learning algorithms generally involve extensive tuning of parameters by

trial-and-error.
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Assuming that a feasible agent was trained for autonomous autorotation as described

in this thesis, application of such an agent on a helicopter would need sensor data to

operate. At its current state, the agent needs inertial forward and downward velocities,

altitude above ground, and rotor angular speed. Velocities can be measured by an

inertial navigation system, while altitude above ground information can be obtained by

a radar altimeter. Rotor angular speed can be obtained by utilizing a shaft encoder or

tachometer. Given all these sensor information, the agent can run on a flight computer

continuously during autorotation for safe landing.

6.1 Future Work

In light of the conclusions derived above following items can be considered for future

research in this thesis’ subject:

• Actuator models for control inputs can be added for more realistic responses of

the helicopter. This might necessitate changes to the agent architecture, such as

using recurrent neural network function approximators instead of feedforward

neural networks for actor and critic, in order to take time delay of the actuator

models into account.

• Training can be conducted with a full 6-degree-of-freedom high-fidelity heli-

copter mathematical model for a more comprehensive analysis of reinforcement

learning algorithms.

• Reinforcement learning can be applied on top of an automatic flight control

system as a reference generator for upper modes of such a control system. This

may help reduce the concerns on stability of the aircraft throughout flight.

• Trained agent can be integrated into a flight simulator and be used as a pilot

training tool for autorotation.

• Stability of the dynamical systems under control by reinforcement learning

agents can be further investigated for guarantee of stability proofs such as

stability in the sense of Lyapunov.
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APPENDIX A

ASYNCHRONOUS LEARNING ALGORITHM

Algorithm 1 Asynchronous Learning Algorithm
1: Initialize the global environment, actor, critic

2: Initialize global training episode counter n = 1

3: repeat

4: Reset gradients dθ q = 0 and dθ v = 0

5: Create worker with its own copy of environment, actor, critic

6: Copy global parameters θ q and θ v to local network parameters θ q′ and θ v′

7: tstart = 1, t = tstart

8: repeat

9: Get state st

10: Perform action at sampled from policy π(st ;θ q′) with mean µ(st ;θ q′)

11: Get reward rt and next state st+1

12: t← t +1

13: until st is the terminal state

14: R = 0

15: for i = t−1 to tstart do

16: R← ri + γR

17: dθ v← dθ v− 1
2

∂ (R−V (si;θ v′))2

∂θ v′

18: dθ q← dθ q− (R−V (si;θ v′))1
2

∂ (ai−µ(si;θ q′))2

∂θ q′

19: end for

20: Perform global network parameter updates using dθ v and dθ q with RMSProp

optimization

21: n← n+1

22: until n > nmax
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