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ABSTRACT

DENSITY FUNCTIONAL THEORY AND MOLECULAR DYNAMICS
SIMULATIONS OF CARBON NANOTUBES,

POLYETHERETHERKETONE AND THEIR INTERFACES

Toraman, Gözdenur
M.S., Department of Physics

Supervisor : Assoc. Prof. Dr. Hande Toffoli

Co-Supervisor : Assoc. Prof. Dr. Ercan Gürses

August 2018, 109 pages

Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. A nan-

otube can roughly be described as a rolled-up graphene sheet, which is a two di-

mensional hexagonal arrangement of carbon atoms, often referred to as a honeycomb

lattice. Carbon nanotubes, much like their parent material graphene, are characterized

by high strength, high Young modulus, durability and tunable electronic behavior. As

a result of these superior properties, CNTs have been used in diverse technologically

relevant applications over the decades since their successful synthesis. In particular,

CNT-polymer composites have gained considerable interest in the materials research

community in recent years. The testing, manipulating and design of viable mixtures

of nanotubes and polymers presents challenges from an experimental point of view.

For this reason, numerical modeling of nanotubes and nanotube reinforced polymers

is important.

The main objective of this thesis is to examine mechanical properties of carbon nan-

otubes, Poly Ether Ether Ketone (PEEK) polymer and physical properties of their
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interface by using Density Functional Theory (DFT) and Molecular Dynamics (MD)

techniques. PEEK is a semi-crystalline thermoplastic polymer which has remarkable

mechanical properties with a Young modulus of 3.6 GPa and a rather high melting

temperature ∼ 370◦C (when it is reinforced with CNTs this melting point can reach

390◦C). Thanks to these properties, PEEK is suitable for use in extreme conditions,

such as spacecraft, nuclear power plants, petroleum and geothermal wells.

Keywords: Carbon Nanotubes, Polymer, Interface, Molecular Dynamics, Density

Functional Theory
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ÖZ

KARBON NANOTÜPLERİN, POLİETERETERKETON VE
ARAYÜZLERİNİN YOĞUNLUK FONKSİYONELİ TEORİSİ VE

MOLEKÜLER DİNAMİK SİMULASYONLARI

Toraman, Gözdenur
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Doç. Dr. Hande Toffoli

Ortak Tez Yöneticisi : Doç. Dr. Ercan Gürses

Ağustos 2018 , 109 sayfa

Silindirik nanoyapısı ile karbon elementinin bir allotropu olan karbon nanotüpler,

2 boyutlu karbon atomlarının altıgen şeklinde dizilmesiyle oluşan bir grafen kat-

manının, silindir şeklinde bükülerek uçlarının birleştirildiği bir yapı olarak da tanım-

lanabilir. Karbon nanotüpler tıpkı ana malzemesi olan grafen gibi sağlam bir malzeme

olup yüksek elastisite modülüsüne ve ayarlanabilir elektronik özelliklere sahiptir.

Bu üstün özellikleri ve başarılı bir şekilde sentezlenebilmesi KNTleri son yıllarda

geniş teknoloji uygulamalarında kullanılabilir bir malzeme yapmaktadır. Özellikle,

son yıllarda karbon nanotüp-polimer kompozitler malzeme araştırma komüniteler-

ince büyük önem kazanmıştır. Deneysel açıdan test edilmesi, üretilmesi ve nanotüp-

polimer karışımlarının uygulanması bazı zorluklar içerdiğinden, nanotüplerin ve nan-

otüplerle güçlendirilmiş polimer kompozitlerin nümerik modellemesi büyük önem

taşımaktadır.

Bu tezin temel amacı, karbon nanotüplerin ve Poli Eter Eter Keton (PEEK) polimerinin

mekanik özelliklerini, bunun yanı sıra KNT/PEEK arayüz etkileşimlerinin doğasını,
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Yoğunluk Fonksiyoneli Teorisi (YFT) ve Moleküler Dinamik (MD) tekniği kulla-

narak incemelektir. PEEK polimeri 3.6 GPa seviyelerinde yüksek elastisite mod-

ülüne ve ∼ 370◦C gibi yüksek erime sıcaklığına sahip olan (bu değer KNTler ile

güçlendirildiğinde 390◦C seviyelerine ulaşabilmektedir) termoplastik bir malzeme

olup, bu özellikleri sayesinde uzay araçları, nükleer reaktörler, petrol ve jeotermal

kuyular gibi zorlu koşullarda kullanıma uygundur.

Anahtar Kelimeler: Karbon Nanotüpler, Polimer, Arayüz, Moleküler Dinamik, Yoğun-

luk Fonksiyoneli Teorisi
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CHAPTER 1

INTRODUCTION

Among the many allotropes of carbon, graphene [1] and CNT [2] are considered as

breakthrough discoveries in materials community based upon their remarkable ther-

mal, electronical and mechanical properties. They can be used in various applications

in different disciplines such as device technology [3], drug delivery [4], field emission

[5, 6], air and water filtration. Because of their light weight nature, extraordinary elas-

tic and electronic properties, they also serve as additives to improve various properties

of different matrices. Of particular importance is the CNT/polymer composites that

find increasing use in the aerospace industry [7]. In this chapter, we introduce the two

component of these composites, namely CNT and polymers. As carbon nanotubes

originate structurally from graphene, we also briefly present structural properties of

graphene.

Figure 1.1: Structural forms of carbon. (a) graphite, (b) diamond, (c) fullerene, (d)

CNT and (e) graphene. Reprinted from [3]
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1.1 Graphene and Carbon Nanotubes(CNTs)

1.1.1 Graphene

Graphene is a 2D allotrope of carbon that has a honeycomb lattice structure due to sp2

hybridization carbon of atoms. Because of their extraordinary mechanical properties,

graphene and graphene-based materials are used in composite materials as reinforce-

ment.

Figure 1.2: Honeycomb lattice structure of graphene sheet

In Figure 1.2 , ~a1 and ~a2 are lattice vectors of graphene sheet

~a1 =
a

2
(3,
√

3)

~a2 =
a

2
(3,−

√
3)

where a is the bond length between two carbon atoms (≈ 1.42 Å) . Reciprocal lattice

vectors of this graphene sheet satisfy the condition

~ai ·~bj = 2πδij

and given as

~b1 =
2π

3a
(1,
√

3)

~b2 =
2π

3a
(1,−

√
3)
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Graphene not only has excellent mechanical properties (Young’s modulus ≈ 1 TPa)

but also has remarkable thermal conductivity in the order of 5000 M/mk [8] high

electron mobility at room temperature (250,000 cm2/V s) [9], good electrical con-

ductivity. This variety of exceptional properties make graphene a viable nominee

for plenty of potential applications such as reinforcing agents in composite materials

[10], solar cells [11, 12], sensors, electronic circuits, display screens.

There are numerous experimental and computational studies in literature that con-

cern mechanical properties of graphene. Lee and co-workers [14] investigated elastic

properties of mono-layer graphene by nanoindentation in an atomic force microscope

and reported Young’s modulus of 1.0 TPa. Besides, Jiang et al [15] studied same

properties by using molecular dynamics (MD) and reported Young’s modulus results

of graphene increasing from 0.95 to 1.1 TPa with increasing size and it shows very

good agreement with the ones in experiment done by Lee and co-workers.

1.1.2 Carbon Nanotubes (CNTs)

Carbon nanotubes (CNTs) are 1D allotropes of carbon discovered by Iijima in 1991

[2]. Their cylindrical structure can roughly be visualized as a rolled-up graphene

sheet, which is a two-dimensional hexagonal arrangement of carbon atoms, often re-

ferred to as a honeycomb lattice. The diameter of these CNTs is on the order of a

nanometer, while their length can extend to several micrometers. CNTs, much like

their parent material graphene, are characterized by high strength, high Young’s mod-

ulus, durability and tunable electronic behavior.

As a result of these superior properties, CNTs have attrached considerable attention

from the materials community. They have been used in various applications in many

different scientific disciplines, such as energy storage, memory chips, sensors, bio-

logical applications [13]. In addition to these, CNTs are commonly used as reinforce-

ments in composite materials. Especially, in the field of aviation, CNT reinforced

polymer composites are important because of their light-weight nature, high stiffness

and axial strength. CNTs are therefore a very powerful candidate for future aircraft

and space vehicles. For instance, in 2012, NASA published a roadmap for future

potential usage of nanomaterials especially CNTs [16] where the impacts of nan-

otechnology in aeronautics, planetary science, and space exploration are mentioned.
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They emphasize the imminent advantages of utilizing CNTs such as reduced vehicle

mass, improved functionality and durability, enhanced damage tolerance, improved

self-healing characteristics, enhanced thermal protection, and control.

Due to its remarkable properties and potential applications, a large body of research

has been dedicated to the mechanical properties of CNTs. Nonetheless, there is siz-

able scatter in the results depending on methods used and parameters such as chiral-

ity, aspect ratio (length / diamater) of tube, wall thickness/number. Treacy et al. [19]

studied Young’s modulus of eleven different CNTs with different aspect ratio by using

transmission electron microscopy (TEM) and reported average Young’s modulus as

1.8 TPa which is several times higher than that of diamond. Another study conducted

by Wong et al. [20] by using AFM tips found a Young’s modulus value of MWCNTs

1.287 ± 0.59 TPa. Apart from the experimental studies, there are also computational

ones in literature that consider mechanical properties of CNTs. Young’s modulus

results in computational studies range from 0.5 to 5 TPa by using different methods

such as Molecular Dynamics (MD), emprical force constant model, density functional

theory (DFT) and tight-binding model [21].

1.1.2.1 Classification of CNTs

CNTs are divided into three groups according to their chirality; zig-zag, armchair and

chiral. In simple terms, chirality can be defined as the angle with which the graphene

sheet is rolled up into a CNT. Chiral vector of a CNT is defined as

~Ch = n~a1 + m~a2

where n and m are integers. The angle between ~a1 and ~a2, chiral angle designated

by n and m values determines the type of CNT i.e. the applying simple geometric

considerations, the chiral angle of a CNT can be calculated as

tanθ =
n−m√
3(n+m)
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Figure 1.3: (a) Chiral vector and chiral angle, (b) three types of CNTs. Reprinted

from [17]

Through similar considerations, the diameter of a CNT can also be calculated by

using n and m :

d =
a

π

√
n2 +m2 + nm

Chilarity of a CNT also determines its electronical properties. Due to discretization of

the Bloch wave vector which arises because of the cyclic boundary conditions around

the nanotube, for some chiralities the Fermi point of graphene does not coincide with

any states. As a result, CNTs may display metallic or semiconducting properties. In

particular, zigzag CNTs show metallic properties while armchair ones are semicon-

ducting. In addition, for the chiral ones, when the difference between n and m is a

multiple of three, CNT shows metallic properties.

The CNT fabrication process gives rise CNTs of different characters beyond con-

ductivity. CNTs may be simple cylinders with a single wall, called single-walled

nanotubes (SWCNTs) or may be composed of concentric cylinders forming multi-

walled nanotubes (MWCNTs) like in Figure 1.4. In the case of MWCNTs, the walls

are held together by van der Waals forces.
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Figure 1.4: Single-walled and multi-walled CNTs. Reprinted from [18]

1.2 Polymers

Polymers are large molecular structures that consists of many repeated sub-units

called monomers. The monomers vary in atomic number, number of atomic species

involved and structural complexity, however, polymers are generally characterized by

chain-like structures with carbon atoms in the backbone. They are low-density ma-

terials that have good corrosion resistance and low friction coefficient. Due to these

properties and their well-established production techniques, polymers are very good

candidates that can be used in different fields of industry. Polymers can be classi-

fied according to several different properties. According to their chemical structure,

they may fall into the category of homopolymers and co-polymers. Homopolymers

consist of a single type of monomer in the polymer chain while co-polymers consist

of two or more different types. They are further categorized as linear, branched and

cross-linked based on the spatial arrangement of the monomers. As it can be seen

from Figure 1.5 (b), in branched polymers there is a side chain that is connected to

the main chain while there is an interconnection between main chains in cross-linked

polymers. Another classification of polymers is according to their tacticity. Tacticity

is the sterochemical arrangement of the monomer units in a main polymer chain. In

isotactic polymers, side groups of monomers line up on the same plane whereas in

atactic polymers they have irregular arrangement. For the syndiotactic case, they are

arranged in an alternating pattern. Figure 1.5 shows types of polymers (a) according

to their chemical structure, (b) polymeric structure and (c) tacticity.

6



(a) according to chemical structure (b) according to polymeric structure

(c) according to arrangement of monomers.

Respectively, isotactic, syndiotactic and atac-

tic

Figure 1.5: Types of Polymers
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Polymers are further classified according to their behaviour at high temperatures.

Thermoplastic polymers melt at high temperatures and they solidify upon cooling.

Therefore, they are reusable/recyclable and environment-friendly materials. Poly

vinyl chloride (PVC), poly methyl methacrylate (PMMA), polyetylene (PE) are well

known examples of thermoplastics. On the other hand, thermoset polymers do not

show melting behaviour at high temperatures. Instead, the bonds between chains are

stimulated and the material burns. The reason behind this behaviour of thermosets

is that they possess high-degree of cross-linking that cause irreversible chemical re-

action causing material’s flame rather than melt. Epoxy resins, polyester resins and

melamine resins are common examples of thermosetting polymers. Finally, elas-

tomers are the types of polymers that have very weak inter-molecular forces, gener-

ally having low Young’s modulus and high failure strain compared with other mate-

rials. The most common example for elastomers is rubber.

In our study, we choose a thermoplastic polymer which is called PEEK (Poly-Ether-

Ether-Ketone) due to its excellent mechanical properties and environmental friendly

nature. PEEK has been declared to have lowest smoke and poisonous gas emission

of any other plastics [22]. It is a semi-crystalline, colorless, high-performance ther-

moplastic that has remarkable mechanical properties. Its commercial supplier Victrex

Inc. reported its elastic modulus as 4.0 GPa. It also has relatively high melting point

typically 370◦C for unreinforced case and when it is reinforced this value reach to

390◦C [22]. PEEK is suitable for use in harsh conditions such as nuclear power plants,

geothermal wells and high-pressure steam valves [22]. It is also a biocompatible ma-

terial and used in some medical applications such as prosthetics and dental fillings.

Therefore, these extraordinary properties as well as its high fatigue resistance and

resistance to radiation make PEEK an appropriate material to be used in aerospace

applications. Based on these properties mentioned above, we decide PEEK as our

matrix material to be used in CNT reinforced nanocomposite.

1.3 CNT/Polymer Nanocomposites

A composite material combines two or more different types of material. When are

they combined, the resultant has properties different from their individual compo-
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nents. Many composites consist of only two different types of materials; the material

that makes up the bulk of the composite and hosts the other materials is referred to

as the matrix while the materials that is added to modify the properties is called the

dispersed material or reinforcement. In particular, nanocomposites are mixtures of

matrix materials and strengthening agents with the latter having nanoscale dimen-

sion [23]. In the aerospace industry, there is great interest in structural materials that

have low densities with good mechanical properties and resistance to corrosion. As

it is challenging to find a single material to meet these demands, composite mate-

rials become popular in this industry. The main idea behind this type of materials

is to improve combinations of mechanical properties such as stiffness, toughness,

ambient and high-temperature strength [23] . Carbon fiber reinforced polymer com-

posites (CFRPs) are one of the most popular types of composite materials due to their

high stiffness and tensile strength and low weight. Typically, the diameters of car-

bon fibers are in the order of micro-meter. With the development of nanotechnology,

carbon nanotubes gained considerable attention from materials community because

they have higher strength-to-weight ratio than that of carbon fibers. Consequently,

CNT/Polymer nanocomposites have begun to replace thicker fibers in aerospace in-

dustry because of their comparable mechanical properties and lightweight nature that

increase fuel efficiency and reduce emissions [24] as mentioned earlier. With this

growing interest in CNTs and their composites in different fields and experimental

difficulties in measurements of their properties arising from their nano-scale dimen-

sions, simulation of CNTs and their composites come into prominence [43]

In this thesis, we aim to investigate mechanical properties of CNTs and physical

properties of CNT/Polymer interface to pave the way for creating a composite mate-

rial to improve mechanical properties of the PEEK polymer matrix by using CNTs

as reinforcement. First, the mechanical properties of CNTs are examined using Den-

sity Functional Theory (DFT) and Molecular Dynamics (MD). Following this initial

stage, a series of MD simulations are performed on PEEK chains to test thermostats

and interatomic potentials. Lastly, the physical properties of interface is investigated

again by both DFT and MD approaches.

Methods that we used in the calculations will be discussed in Chapter 2 and results of

the simulations will be given in the following chapters.
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CHAPTER 2

METHODS

2.1 The Importance of Computer Simulations

Today, computer simulations act as a bridge between theory and experiment and they

are crucial for understanding real world processes. One can test the accuracy of a

theory by performing computer simulations on the same system. Also, with com-

puter simulations, extreme conditions that are hard or even impossible to prepare in

laborotaries such as very high temperatures and pressures can be tested [34]. Hence,

computer simulations can also bring new perceptions into mechanisms of processes

that may not be understood by real-time experiments. Even if sometimes it has some

limitations, generally making simulations are cheaper and faster than performing ex-

periments [35]. Performing experiments at the nano-scale to measure constitutive

properties of systems such as Young’s modulus, shear modulus and Poisson’s ratio

is a challenging issue and one can resort to computer simulations for the calculation

of these material properties [36]. Various computer simulation techniques have been

developed over the years to accommodate different length and time scales. These

techniques range from the atomistic scale to the continuum scale. The complexity

of computer simulations for materials properties increases with the desired level of

accuracy. The density functional theory (DFT) method, for instance, yields accurate

results for such properties as elastic, electronic, vibrational, magnetic properties since

it explicity takes into account the electronic degrees of freedom. However, its high

computational demand limits its applicability to only a few hundreds (up to thou-

sand in the most optimistic case) atoms. Fortunately, in the case of elastic properties,

methods of lower accuracy that make use of empirical potentials work almost as well.
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In fact, the mechanical properties of materials have been modeled in the engineering

community for decades using much less demanding continuum models [37, 38]. The

combination of atomistic and continuum scale techniques provide a much more effi-

cient way to investigate mechanical properties of nano-scaled systems [39]. Molec-

ular Dynamics (MD) simulations are effective candidates to be used for this purpose

at the nano-scale [40].

In this chapter, the two techniques that we use in this thesis, namely DFT and MD

methods will be summarized briefly.

2.2 Density Functional Theory (DFT)

Density Functional Theory (DFT) is an ab-inito simulation technique for investigat-

ing properties of many-body systems that is based on electron density. The focus is

shifted from the complex many-body wavefunction to the much simpler electronic

density. In this section, this transition will be demonstrated starting from the many-

particle Schrodinger equation and proceeding to the density via the so-called Kohn-

Sham ansatz.

2.2.1 The Many-body Hamiltonian

In the quantum mechanical description of nature, it is thought that all desired knowl-

edge about the system is stored in wave-function which is obtained as a solution of

the Schrödinger equation. The Schrödinger equation in operator form can be written

as

ĤΨ = EΨ (2.1)

where Ĥ corresponds to Hamiltonian of system, Ψ and E are the wavefunction and

energy eigenvalue respectively. Many-body Hamiltonian of a system,

Ĥ = T̂ + V̂ (2.2)

is composed of the kinetic (T̂ ) and potential (V̂ ) terms. The potential term includes

three types of interaction; nucleus-nucleus, electron-electron and nucleus-electron.

Including two terms coming from kinetic energy of nuclei and electrons, many-body
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Hamiltonian consists of five terms,

Ĥ = T̂n + T̂e + V̂ee + V̂en + V̂nn (2.3)

Explicity, these terms can be written as

Ĥ =
−h̄2

2mn

Nn∑
I

52
~RI
− h̄2

2me

Ne∑
i

52
~RI

+
1

2

e2

4πε0

Ne∑
i

Ne∑
j 6=i

1

|~ri − ~rj|

+
1

2

e2

4πε0

Nn∑
I

Nn∑
J 6=I

ZIZJ

| ~RI − ~RJ |
− e2

4πε0

Ne∑
i=1

Nn∑
I=1

ZI

|~ri − ~RI |
(2.4)

where ~ri, ~RI represent position of ith electron and I th nucleus and ZI is the atomic

number of I th nucleus, Nn and Ne are the number of nucleus and electron respec-

tively.

In this equation given in 2.4, SI units are employed. Therefore, each term includes

certain cumbersome combinations of fundamental constants h̄, m, e and ε0. Also,

since we are now dealing with a atomic system, SI units can be inconvenient. Hence,

working with atomic units (a.u) simplifies the expression. In a.u, h̄ = m = 1
4πε0

=1 and

the fundamental energy in terms of Hartree which is the ground state energy of the

electron in the hydrogen atom. The length is measured in terms of the Bohr radius

(a0) which is the average ground state radius.

Since the mass of electron is much smaller than that of nuclei, the nuclei can be

treated as classical particles. This is called the Born-Oppenheimer approximation

[25]. By taking advantage of this approximation, the wavefunction can be separated

into a nuclear part and an electronic part. Thus, electronic part of Hamiltonian just

consist of kinetic energy of electron, electron-electron and electron-nuclei interaction

terms. Then, electronic Hamiltonian Ĥe expressed as:

Ĥe = T̂e + V̂ee + V̂en (2.5)

Expressed in a.u., the Hamiltonian in Eq. 2.5 reduces to

H = −1

2

Ne∑
i

52
i +

1

2

Ne∑
i

Ne∑
j 6=i

1

|~ri − ~rj|
−
∑
i,I

ZI

|~ri − ~RI |
(2.6)
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2.2.2 Definition of Density

Since the direct solution of the Schrödinger equation is a difficult task even for the

Helium atom, some alternative solutions needed to be developed for its numerical

solution for many-body systems. One possible solution, that gave rise to the devel-

opment of DFT, proposed by Hohenberg and Kohn in 1964 [26] states the electronic

energy can be written as a functional of electronic density. Functional can roughly be

defined as a real-valued function meaning that it maps a function to a number. The

electronic density operator is defined as a measure of contributions from each electron

described by

n̂(~r) =
N∑
i

δ(~r − ~ri) (2.7)

Expectation value of this operator can be found as

< n(~r) >=

∫
Ψ∗(~r1, ..., ~rN)

∑
i

δ(~r − ~ri)Ψ(~r1, ..., ~rN)d~r1...d~rN

=

∫
|Ψ(~r, ~r2..., ~rN)|2d~r2d~r3...d~rN +

∫
|Ψ(~r1, ~r..., ~rN)|2d~r1d~r3...d~rN

= N

∫
Ψ(~r1, ..., ~rN)|2d~r1...d~rN (2.8)

As a result of the assumption of a normalized wavefunction, the integral of n(~r) over

the entire space must yield the number of electrons.∫
n(~r)d~r = N (2.9)

2.2.3 Energy in terms of Density

The main goal of DFT is to eliminate wavefunction by expressing all terms in the elec-

tronic Hamiltonian in terms of density. With the aim to minimize the total electronic

energy with respect to the density, the ground state energy and the corresponding

electronic density can be obtained. This is made possible by the Hohenberg-Kohn

theorem and the basics of this theorem will be discussed in the following subsection.
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The electronic energy can be written as

Ee = 〈Ĥe〉 =

∫
Ψ∗ĤeΨ (2.10)

We shall now tackle each term in Eq. 2.6. separately and attempt to convert each cor-

responding energy term into a functional of density. We shall start with the nucleus-

electron energy. This term is the simplest one to handle since it does not containt any

derivatives and two-particle interaction.

Eext =

∫
Ψ∗(~r1, ~r2, ..., ~rN)

∑
i

vext(~ri)Ψ(~r1, ~r2, ..., ~rN)d~r1...d~rN

=

∫
vext(~ri)|Ψ(~r1, ~r2, ..., ~rN)|2d~r1 + ... (2.11)

By manipulating this integral, keeping in mind that the variables of integration are

interchangeable, we obtain the exact equation

Eext[n] =

∫
n(~r)vext(~r)d~r (2.12)

The electron-electron interaction can similarly be written as

Eee =

∫
Ψ∗(~r1, ~r2, ..., ~rN)V̂eeΨ(~r1, ~r2, ..., ~rN)d~r1d~r2...d~rN (2.13)

We know the form of V̂ee from Eq. 2.6, substituting this term into Eq. 2.13, we have

Eee =
1

2

∑
i 6=j

∫
Ψ∗(~r1, ~r2, ..., ~rN)

1

|~ri − ~rj|
Ψ(~r1, ~r2, ..., ~rN) (2.14)

Writing terms explicity in the sum and rearranging terms the integral becomes:

Eee =

∫
1

|~r1 − ~r2|
d~r1d~r2

(
1

2

∫
|Ψ(~r1, ~r2, ..., ~rN)|2d~r3d~r4...d~rN

)

+

∫
1

|~r1 − ~r3|
d~r1d~r3

(
1

2

∫
|Ψ(~r1, ~r2, ..., ~rN)|2d~r2d~r4...d~rN

)
+ ... (2.15)

There are N(N − 1) terms in this sum and it can easily be demonstrated that they are

all equal. With this Eee reduces to

Eee =
N(N − 1)

2

∫
1

|~r − ~r′|
d~rd~r′

(∫
Ψ(~r, ~r′, ..., ~rN)|2d~r3d~r4..d~rN

)
(2.16)
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The resulting expression in Eq. 2.16 can not be further simplified into a form in terms

of the single-particle electronic density. Instead, the two particle density can be used

to reduce it to Eq. 2.17.

n(2)(~r, ~r′) =
n(~r)n(~r′)

2

In an actual system, however, correlations exist even though they are ordinarily small

in the solid state. At the moment, we handle the presence of such correlations by

means of separating the two-particle density into a fully uncorrelated part and an

undetermined correction term:

n(2)(~r, ~r′) =
n(~r)n(~r′)

2
+4n(2)(r, r′)

With this final form of the two-particle density, Eee becomes:

Eee[n] =
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ +

∫
4n(2)(r, r′)

|~r − ~r′|
d~rd~r′ (2.17)

In this equation, the first term is called the Hartree energy which is nothing other than

the classical potential energy of a continuous charge distributions and the second

term contains all the quantum mechanical correlations. Lastly, expectation value of

the final term that is the kinetic energy of the electronic Hamiltonian can be written

as

T = −1

2

∫
Ψ∗(~r1, ~r2, ..., ~rN)52

i Ψ(~r1, ~r2, ..., ~rN)d~r1...d~rN (2.18)

This term is the one that hardest to deal with since it contains a derivative operator.

In order to make a connection with the electronic density, a methodology that relies

on single-particle operators must be made. Such an approach was proposed by Kohn-

Sham [27] that states that for every N-particle system, one can find an auxilary system

of non-interacting electrons such that the true ground state electron density is equal

to the sum norm squares of single-particle orbitals corresponding to the independent

electrons, called Kohn-Sham orbitals

n(~r) =
N∑
i=1

|Φi(~r)|2 (2.19)

By placing Eq. 2.19 into Eq. 2.18, we obtain the kinetic energy of non-interacting

particles. Obviously, this is not equal to the kinetic energy of the real, interacting
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system. Therefore, we once again express kinetic energy as single-particle energy

plus a correction term.

T = −1

2

∫
Φ∗n(~r)52 Φn(~r)d~r + ∆T (2.20)

In the end, putting all terms together, we obtain the ground state energy as:

E = −1

2

Ne∑
n

∫
Φ∗n(~r)52 Φn(~r)d~r +

∫
n(~r)vext(~r)d~r

+
1

2

∫
n(~r)n(~r′)

|~r − ~r′|
d~rd~r′ + ∆T + ∆Eee (2.21)

The last two correction terms is defined as the exchange-correlation energy and plays

a very crucial role in DFT by determining the accuracy of calculation.

2.2.4 Hohenberg-Kohn Theorems & Kohn-Sham Equations

The two fundamental theorems that set the foundations of DFT were proposed and

proved by Hohenberg and Kohn in 1964 [26]. Their first theorem states that there is a

one-to-one correspondence between ground state electronic density and the external

potential. In other words, no two unequal potentials can cause the same ground state

density.

The second theorem, which derives from the variational principle, states that a uni-

versal functional of energy can be defined in terms of the density. The exact ground

state is the global minimum of this functional.

δE

δn
= 0 (2.22)

To apply the second theory, in practice, functional derivative of Eq. 2.22 should be

taken with respect to the orbitals of the auxiliary system of non-interacting particles

in order to minimize ground state energy. Functional derivative gives :

δE

δΦ∗i (~r)
=

δE

δn(~r)

δn(~r)

Φ∗i (~r)
=

δTe
Φ∗i (~r)

+

[
δEext
δn(~r)

+
δEHartree
δn(~r)

+
δExc
δn(~r)

]
δn(~r)

Φ∗i (~r)
(2.23)
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Applying the orthonormality condition of the Kohn-Sham orbitals by defining La-

grange multipliers, obtain a Schrödinger-like system referred to as the Kohn-Sham

equations

[T̂e + V̂ext + V̂H + V̂xc]Φi = εiΦi (2.24)

Here, the terms in square brackets form Kohn-Sham Hamiltonian and the eigenvalues

εi terms are Kohn-Sham energies. Since, all the potential terms in the Kohn-Sham

equations depend on the density, the equation needs to be solved self-consistently.

2.2.5 van der Waals corrections

As it is mentioned in the section 2.2.3, expressing the ground state energy in terms of

the electronic density is the central idea of the DFT method. In Eq. 2.21, explicit form

of this ground state energy is given and this energy expression is formally exact except

the exchange-correlation energy term. For this term, commonly used approximations

techniques are the local density approximation (LDA) and the generalized gradient

approximation (GGA). While LDA depends solely on the density variable, GGA ne-

cessitates not only the density but also its gradient. With these techniques, DFT rapidy

became successful in a wide range of applications [28]. However, due to the nature

of these approximations, they neglect long-range and non-local interactions which is

the origin of the van der Waals (vdW) forces. In physical chemistry, vdW forces are

usually an umbrella term given to the collection of three forces between molecules;

permanent dipole-dipole, permanent dipole-induced dipole and two instantaneously

induced dipoles (generally known as London dispersion force) [28]. The vdW forces

are implemented in DFT as a correction to the expression of the exchange correlation

energy in terms of the electronic density, Exc[n]. The correction can be introduced

essentially in one of two ways. The classical, nondispersive portions of the vdW in-

teraction is already taken into account by conventional DFT. Dispersion corrections

on the other hand, require dynamic correlation, which are absent and must be handled

separately. The more straightforward method of correcting for the long-range disper-

sion contribution developed in several works such as Scoles [29, 30] and Grimme [31]

involves an empirical correction with the form C6/r
6
ij with a short-range truncation

to avoid singularities. In these approaches, usually termed DFT-D, C6 is an atom-
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dependent coefficient to the well-known 1/r6 term in the instantaneous dipole-dipole

interactions. While straightforward to implement and calculate, the atom-specific co-

efficient presents a problem in the DFT-D approaches. To introduce more generality,

self-consistent exchange-correlation that include non-local, long-range van der Waals

corrections have been introduced. Among the many renditions of such schemes, we

emply in particular the exchange-correlation functional names vdW-DF-C09, where

C09 refers to the Cooper correction [32], which corrects the overbinding due to the

DFT-DF correction.

Our DFT calculations were performed in Quantum Espresso software distributed free

under the GNU Public Licence [33].

2.3 Molecular Dynamics (MD)

Molecular Dynamics (MD) is a many-body simulation technique based on Newto-

nian mechanics. The key concept in MD simulations is the interatomic potentials.

These potential describe how a collection of atoms interact with each other. For rea-

sons of efficiency, the interatomic potentials in question only depend upon nuclear

coordinates, with the effects of the electrons taken into account through an adequate

number of parameters. Instead of solving quantum electronic problem, one can in-

troduce another strategy by expressing the electron-nuclei interaction by using an

empirical potential whose parameters are obtained by results of quantum mechanical

computations or experiments [35].

The force on the ith atom can be determined from the derivative of these potentials

as:

~Fi = −∇Ui(~r1, ~r2, ..., ~rN) (2.25)

where Fi and ri the force on the ith atom and the coordinate of the ith atom, respec-

tively.

In MD, trajectories of interacting atoms are found by the numerical solutions of the
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Newtonian equations of motion. Newton’s 2nd law can be written as:

~Fi = mi
d2~ri
dt2

(2.26)

In order to initiate the numerical integration of Eq. 2.26, initial positions and ve-

locities are needed. By updating positions and velocities in time, thermodynamic

averages can be calculated. The most commonly used integration techniques are the

so-called Verlet [41] and Velocity Verlet algorithms. The details of these algorithms

will be discussed in the following subsection. Our MD simulations performed us-

ing LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) an open

source code under GNU Public License called distributed freely by Sandia National

Laboratories [49].

2.3.1 Main Algorithms of MD

Most integration schemes them use Taylor expansion to numerically update positions

and velocities of the atoms. Euler, Verlet-Velocity Verlet, Leapfrog and Predictor-

Corrector algorithms are widely used Taylor-based integration schemes in MD sim-

ulations. An algorithm should be fast, memory and storage requirements, time-

reversible and reveal small divergence from the exact particle trajectories. These are

main desired features of an algorithm. Among the algorithms mentioned above, Verlet

and velocity Verlet algorithms are default integration schemes used in the LAMMPS

code and will be discussed briefly in the following two subsections.

2.3.1.1 Verlet Algorithm

This algorithm was first developed by Loup Verlet in 1967 [41]. By expanding the

position of the ith particle around an arbitrary moment in time using a small time

increment ∆t, we obtain

~ri(t+ ∆t) = ~ri(t) + ~̇ ir(t)∆t+
1

2
~̈ ir(t)∆t

2 +
1

3!

...
~ri(t)∆t

3 + .. (2.27)

~ri(t−∆t) = ~ri(t)− ~̇ri(t)∆t+
1

2
~̈ri(t)∆t

2 − 1

3!

...
~ri(t)∆t

3 + .. (2.28)
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Adding Eq. 2.27 and 2.28 eliminates all odd-powered ∆t terms reducing the equa-

tions to :

~ri(t+ ∆t) = 2~ri(t)− ~ri(t−∆t) + ~̈ri∆t
2 = 2~ri(t)− ~ri(t−∆t) +

Fi(t)

mi

∆t2 (2.29)

In this algorithm, the error is in the order of ∆t4. Hence, a smaller time step indicates

higher accuracy. This is a very basic, precise and stable algorithm and most of the

MD codes use it as a default algorithm. However, it does not calculate velocities of

atoms. Velocities, which are necessary for fundamental functions such as temperature

control, require an extra calculation, increasing the computational cost.

2.3.1.2 Velocity Verlet Algorithm

The Verlet algorithm can be adapted to yield the velocities all at once, resulting in the

velocity Verlet algorithm. The velocity Verlet algorithm is also based on the Taylor

expansion of the position given in Eq. 2.27 and 2.28. This time by subtracting these

two equations yields

~r(t+ ∆t)− ~r(t−∆t) = 2~̈r(t)∆t+O(∆t3) (2.30)

Here, velocity at time t basically found as:

~υ(t) =
~r(t+ ∆t)− ~r(t−∆t)

2∆t
+O(∆t2) (2.31)

Accuracy in this scheme is up to order ∆t2. Important property of these two algo-

rithms is that they are time-invariant such that if time is reversed from ∆t to −∆t,

algorithms remain same.

2.3.2 Thermodynamic Ensembles

2.3.2.1 Microcanonical Ensemble

Since the total energy is conserved in the Newton’s equations of motion, standard

MD simulations should in principle obey the microcanonical ensemble. In this en-

semble, in addition to total energy of system E, number of particles N and volume V
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remains constant during the simulation. In the equations of motion, the kinetic en-

ergy by itself is not conserved. Therefore, temperature of the system in this ensemble

fluctuates with time. Besides, because of the numerical errors during the integra-

tion, total energy can fluctuate. Generally, NVE ensembles are not usually preferred

since they are not represent experimental conditions. Experiments mostly correspond

to isothermal-isobaric (NPT), canonical (NVT) or grand-canonical (µVT) ensembles

[42].

2.3.2.2 Canonical Ensemble

In the canonical ensemble case, in addition to the number of particles N and volume

V temperature T is also constant. Constant temperature, in thermodynamical point

of view, means putting system in contact with a large heat bath. Practically this is

achieved by introducing a thermostat to the system to keep temperature constant in

some manner [47]. Details of some well-known thermostats used in MD simulations

will be discussed in the following subsections. Temperature in MD simulations is

calculated from the kinetic energy by using the following relation:

T (t) =
1

kBNf

∑
i

miυ
2
i (t) (2.32)

Here, Nf is the number of degrees of freedom and kB is the Boltzmann constant.

2.3.2.3 Isothermal-Isobaric Ensemble

In the isothermal-isobaric ensemble, as its name suggests, temperature T, pressure

P and number of particles N are constant. In this case, volume is considered as a

dynamical variable and changes during the simulation [42]. This ensemble can be a

suitable choice when the correct pressure and densities are point of interests in the

simulation.

2.3.3 Controlling Temperature in MD Simulations: Thermostat Concept

When performing MD simulations in the NVT or NPT ensemble, a thermostat must

be introduced to regulate the temperature of the system at desired values. There are
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some well-known thermostats within the context of MD simulations. In this subsec-

tion, basic principles of these commonly used thermostat algorithms will be discussed

briefly.

2.3.3.1 The Nosé-Hoover Thermostat

The Nosé-Hoover thermostat is an algorithm based on the extended Lagrangian, that

is a Lagrangian contains additional, artificial coordinates and velocities, first formu-

lated by Nosé [45] and improved by Hoover [46]. Nosé proposed a real system of N

particles with coordinates qi′, momenta pi′, time t’ and a fictitious system with coor-

dinates qi , momenta pi and time t. The relations between these two systems are given

as:

qi
′ = qi, pi

′ = pi/s, t′ =

∫ t

0

dt

s
(2.33)

where s is an additional degree of freedom. By using these relations given in Eq.

2.33, velocity of the real system can be written as:

dqi
′

dt′
= s

dqi
′

dt
= s

dqi
dt

(2.34)

In terms of variables of the fictitious system, the Lagrangian of extended system is

given as [45] :

LNose =
N∑
i

mi

2
s2q̇i

2 − φ(q) +
Q

2
ṡ2 − gkT lnS (2.35)

where Q is the effective mass associated with s and g is the number of degrees of

freedom of the system. Then this Lagrangian is used to calculate the Hamiltonian and

and the equations of motions of the extended system. The Nosé-Hoover is the default

thermostat used in LAMMPS and can be applied to a desired group of atoms by

defining the initial temperature Tstart, final temperature Tstop and damping parameter

Tdamp that defines the frequency with which the thermostat will be activated during

the simulation. Corresponding LAMMPS input for this thermostat is given below.

##Usage of Nosé-Hoover thermostat in LAMMPS

fix ID group-ID style_name Tstart Tstop Tdamp ...

fix 1 all nvt temp 300.0 300.0 100.0
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2.3.3.2 Velocity-rescaling

In this technique, velocity scaling is done at every time-step according to following

relation:

pi →
√
T0
T
pi (2.36)

Here, T0 is the target temperature and T is the temperature calculated from velocities

of atoms during simulation. Fluctuations in the temperature are not allowed during

the simulation. However, this technique has a disadvantage that is discontinuity in the

momentum because of velocity rescaling at each time-step [47].

2.3.3.3 The Berendsen Thermostat

Berendsen [48] introduced a new formulation to the velocity rescaling approach in

order to overcome the disadvantage of the traditional velocity rescaling technique.

This thermostat aims to correct deviations of actual temperature T from the initial

one T0 multiplying the velocities at each time step by a factor λ and it is given as :

λ =

√
1− δt

τ

(
1− T0

T (t)

)
(2.37)

where δt is the time-step, τ is the time constant of coupling parameter, T0 and T (t)

represent thermostat temperature and instantaneous temperature respectively. In the

Berendsen algorithm, the system is weakly coupled to an external heat bath to allow

temperature fluctuations [47]. Rate of change of temperature is given as

dT

dt
=
T0 − T
τ

(2.38)

where τ is the coupling parameter that regulates the interaction strength between the

heat bath and the system. The Berendsen thermostat is implemented in the LAMMPS

code and again can be activated by using similar parameters to those of the Nosé-

Hoover thermostat. Corresponding LAMMPS input for this thermostat is given be-

low.
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##Usage of Berendsen thermostat in LAMMPS

fix ID group-ID temp/berendsen Tstart Tstop Tdamp

fix 1 all temp/berendsen 300.0 300.0 100.0

2.3.3.4 The Langevin Thermostat

Langevin dynamics is a stochastic approach developed to model dynamics of molec-

ular systems. The basic idea of Langevin dynamics in a realistic scenario, molecules

are in environments with solvent molecules that lead to friction and collisions of these

molecules also create a perturbation for this system. Two additional force terms can

be appended to the Newton’s 2nd law to represent these effects.

~F = ~Fc + ~Ff + ~Fr (2.39)

In this equation, ~Fc is the conservative force which is computed from the inter-

atomic potential, ~Ff is the frictional drag term and ~Fr is the force caused by solvent

molecules at temperature T that collides with the atoms randomly. In the thermo-

stat implementation of Langevin dynamics, molecules interact randomly with this

stochastic heat bath. The usage of the Langevin termostat within the LAMMPS input

is given below.

##Usage of Langevin thermostat in LAMMPS

fix ID group-ID langevin Tstart Tstop Tdamp seed ...

fix 1 all langevin 300.0 300.0 100.0 48279

Since the Langevin thermotat is a stochastic approach in contrast to the Nosé-Hoover

and Berendsen thermostats, a random number generator is employed.

Each of these three (Nosé-Hoover, Berendsen and Langevin) thermostats have some

advantages and disadvantages depending on the applications they are used. We tested

these thermostats on a PEEK chain to decide which thermostat should be used in our
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simulations. The difference that we see between them in our test simulations, will be

given in the following result chapter.

2.3.3.5 The Flying Ice Cube Artifact

One of the well-known numerical integration errors faced in MD simulations is the

so-called flying ice-cube artifact [50]. This unexpected phenomenon is a consequence

of numerical errors in MD algorithms. Therefore, it is fully unphysical because of the

violation of the energy equipartition.

Harvey et al. in 1998 stated that periodic velocity rescaling leads to an unexpected

problem: a gradual bleeding of kinetic energy from high frequency modes such as

bond stretching and angle bending into low frequency modes [50]. This causes the

system to execute rigid rotations and translations with large angular or linear veloc-

ities, at the same time suppressing the internal degrees of freedom. This artifact is

mostly encountered in the MD simulations performed in vacuum. There are some

alternatives to avoid this artifact. Three of them are discussed in the original paper

of Harvey et al [50]. The first alternative is the reassignment of velocities instead

of rescaling, as done in the stochastic Andersen thermostat [51]. Velocities are reas-

signed periodically from Maxwell-Boltzman distribution for the desired temperature.

The second choice is making modifications on the algorithms that use velocity rescal-

ing technique. For example, one can reduce the frequency of scaling or increase

coupling times in the Berendsen heat bath. The third alternative is the removing the

center of mass motion. The translational and rotational motion of center of mass can

be removed periodically to avoid this artifact. In our calculations, when we encounter

with this problem, we choose to remove the center of mass motion. In LAMMPS, the

way of doing it is the fix momentum command that adjusts velocities in every N step

by zeroing linear and angular momentum of system. Its usage in the input is given

below.

## Usage of fix momentum command in LAMMPS

fix ID group-ID momentum N keyword values ...

fix 1 all momentum 100 linear 1 1 1 angular
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2.3.4 Controlling Pressure in MD Simulations: The Barostat Concept

In addition to controlling temperature by using thermostats, a barostat is needed to

keep pressure constant during the simulation. The NPT ensemble is often preferred

in MD simulations because most experiments are performed at constant pressure and

temperature. Pressure in MD simulations is calculated by using the Clausius virial

theorem. The virial is defined as

W TOT (~r1, ..., ~rN) =
N∑
i=1

~ri · ~F TOT
i (2.40)

By manipulating this equation using the Newton’s second law average virial can be

written as:

〈W TOT 〉 = lim
τ→∞

1

τ

∫ τ

0

N∑
i=1

~ri(t) ·mi~̈ri(t)dt (2.41)

Integration by parts to Eq. 2.41 yields the average virial equal to the twice of the total

kinetic energy with a minus sign,therefore, by using the equipartition theorem

〈W TOT 〉 = 〈W int〉+ 〈W ext〉 = −2〈K.E〉 = −3NkBT (2.42)

where W int and W ext is the internal and external virials respectively.

For an enclosed volume with side lengths Lx,Ly and Lz, pressure can be defined as

external force per applied area. Therefore, external virial of the system can be written

as:

〈W ext〉 =
N∑
i=1

~ri · ~F ext
i = Lx(−PLyLz) + Ly(−PLxLz)Lz(−PLxLy)

= −P (3LxLyLz) = −3PV (2.43)

Then, by substituting 2.43 into 2.42, pressure for an enclosed volume can be calcu-

lated as:

P =
NkBT

V
+

1

3V

N∑
i=1

~ri · ~F int
i (2.44)

Two types of barostating methods are available in the LAMMPS code: Nosé-Hoover

barostat and Berendsen barostat. The barostat adjusts volume to keep temperature
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constant as in the Berendsen thermostat, this time volume is multiplied by factor λ

given as

λ =

[
1− β∆t

τ
(P0 − P )

]1/3
(2.45)

where β is the isothermal compressibility, τ is the coupling time, P0 and P are desired

pressure and instantaneous pressure respectively. Corresponding LAMMPS input for

this barostat is given below.

## Usage of Berendsen barostat in LAMMPS

fix ID group-ID press/berendsen keyword Pstart Pstop Pdamp

fix 1 all press/berendsen iso 1.0 1.0 1000.0

When using the Berendsen barostat initial pressure Pstart, target pressure Pstop and

the time scale on which pressure is relaxed Pdamp values should be specified.

2.3.5 Interatomic Potentials

Interatomic potentials describe the nature of the interaction between the atoms. There

are a variety of interatomic potential functions developed for different purposes [44].

The relevant parameters of these potential functions are obtained either through ex-

periments or through higher accuracy, quantum mechanical methods such as DFT.

In the Eq. 2.46, many-body expansion of an empirical potential is given for the system

of N-atoms.

U(~r1, ~r2, ..., ~rN) =
∑
i

U1(~ri) +
∑
i

∑
j>i

U2(~ri, ~rj)

+
∑
i

∑
j>i

∑
k>j

U2(~ri, ~rj, ~rk) + ... (2.46)

The first term in the expansion is a one-body term, representing an external field,

the second term U2 represents the pair potential and the third one is the three-body

potential term. As we see from this expansion, there are pairwise and many-body
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potentials within the MD technique. Some commonly used interatomic potentials

can be listed for different types of systems:

Pairwise Potentials

• Lennard-Jones

• Morse

• Buckingham

Many-body potentials for metallic systems

• Embedded Atom Model (EAM)

• Finnis and Sinclair (FS)

Many-body potentials for covalently bonded systems

• Tersoff

• Stillinger-Weber

• Adaptive Reactive Intermolecular Bond Order Potential (AIREBO)

• Force Fields (Molecular Mechanics Potentials)

One of the widely used pairwise potential Lennard-Jones [53] will be discussed briefly

in the following subsection. Continuing on this issue, many-body potentials that we

use in our calculations Tersoff, AIREBO and Reactive Force Field (ReaxFF) also will

be described briefly.

2.3.5.1 Lennard-Jones Potential

Lennard-Jones [52, 53] is one of the simplest potentials that describes basic interac-

tion between neutral atoms and molecules. This potential successfully approximates
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van der Waals interactions in specifically in noble gases. The form of this pair poten-

tial is given as

ULJ = 4ε

[(σ
r

)12
−
(σ
r

)6]
(2.47)

Figure 2.1: Potential Energy graph of Lennard-Jones pair potential

In the Eq. 2.47, first term represents the short range Pauli repulsion term and the

second term represents long range attractive van der Waals interaction. The parame-

ters σ and ε are related to bond length and bond energy respectively and taken from

experimental data for each element.

In Fig.2.1 that shows potential energy graph of the Lennard-Jones, rmin is the equi-

librium distance between two atoms. Since in the CNT carbon atoms are covalently

bonded to each other, LJ is not a good choice to describe interaction of this material.

To prescribe the interaction of a CNT, three different interatomic potentials; Tersoff

[55], AIREBO [56] and different versions of ReaxFF [58, 61] are tested in our simu-

lations.
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2.3.5.2 Potentials for Carbon-based Systems

Tersoff Interatomic Potential

Tersoff is a three-body, bond order, empirical potential developed for covalent sys-

tems [54, 55]. The main idea of this potential is that in real life, environmental con-

ditions determine the strength of bonding, therefore, in the potential energy term,

environmental dependent parameters are used. The parameters are first developed for

silicon [54] and then for carbon [55]. It is also parametrized for germanium, that is to

say, this potential can be used in group IV semiconductors. In simple form, it is given

as:

E =
1

2

∑
i

∑
i 6=j

Uij (2.48)

In the Eq. 2.48, Uij can be written as:

Uij = fC(rij)[fR(rij) + bijfA(rij)] (2.49)

where fR(rij) and fA(rij) are repulsive and attractive pair potentials respectively and

fC(rij) is the cut-off function that is added to limit the potential range and reduce the

computational cost. The three-body contributions originate from the bij term in the

Eq.2.49. The bij term is the term that provides the environmental dependence of this

potential, as we expect, increase in the neighbor numbers lowers the strength of bond.

It can also be seen from the following definition of bij :

bij =
1

(1 + βnζnij)
1/2n

(2.50)

where ζij defines the neighbor numbers by considering the distance between them

and the bond angle term. Explicit form of this parameter is given as:

ζij =
∑
k 6=i,j

= fc(rij)g(θijk)e
[λ33(rij−rik)3] (2.51)

In the Eq.2.51, g(θijk) is the term that defines the bond angle formed between three

atoms. All the parameters for specific elements can be found in the papers. Corre-

sponding LAMMPS input for the Tersoff potential is given below.
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## Usage of Tersoff potential in LAMMPS

pair_style style

pair_coeff * * Si.tersoff Si ## path, name, element

Adaptive Reactive Intermolecular Bond Order Potential (AIREBO)

Bond order AIREBO potential is developed specifically for a system of hydrogen and

carbon atoms by Stuart et al. [56]. It consists of three energy terms given in the

following form:

EAIREBO =
1

2

∑
i

∑
i 6=j

(
EREBO
ij + ELJ

ij +
∑
k 6=i,j

∑
l 6=i,j,k

ETORSION
kijl

)
(2.52)

In Eq. 2.52, the first energy term is the second generation REBO potential developed

by Brenner et al. [57], the second term is the simple LJ interaction and the last term

is four-body torsional interaction energy. The EREBO energy provides reactive part

of the AIREBO potential and only defines two-body, short range interaction between

C-C, C-H and H-H. The usage of AIREBO potential in LAMMPS input is given

below.

## Usage of AIREBO potential in LAMMPS

pair_style airebo 3.0

pair_coeff * * CH.airebo C ## path, name, element

2.3.5.3 Reactive Force Field (ReaxFF)

Since the traditional potentials do not have the ability of modeling bond breaking and

bond formation features, they cannot successively model chemical reactions. Because

of this reason, the first version of the ReaxFF [58] was developed for hydrocarbons,

later corrected for the London dispersion [62] and improved for condensed phases of

carbon [61]. QM based methods offer more realistic results at the electronic level,

however, they have high computational cost when considering the full evolution of
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systems [63]. Empirical interatomic potentials require less computational cost but

they need pre-defined connectivity between atoms [63]. ReaxFF method acts as a

connection between these two QM based and classical techniques. In addition to

being a bond-order potential, it also describes bond formation and bond breaking

without any QM calculation.

Since it is a reactive potential, different from Tersoff and AIREBO, ReaxFF uses a

charge calculation scheme in MD simulations. This makes the ReaxFF more expen-

sive than other empirical potentials, although, not as much as QM based ones.

The total potential energy form in ReaxFF is given as :

UTotal = Ubond + Uover + Uangle + Utorsion + UvdW + UCoulomb (2.53)

In the Eq. 2.53, the first term Ubond is related to the interatomic distance and defines

the energy associated with bond formation between atoms. Uangle and Utors terms

represent the energies of three-body valence angle strain and four-body torsional an-

gle strain respectively. Uover term is called over-coordination energy that represents

energy penalty that is based on atomic valence rules. UCoulomb and UvdW terms come

from electrostatic and van der Waals interactions. In our calculations, we used three

different versions of the ReaxFF, namely ReaxFFCHO [58], ReaxFFC2013 [61] and

ReaxFFLG [62]. Corresponding LAMMPS input for ReaxFF potential is given be-

low.

## Usage of the ReaxFF-CHO in LAMMPS

pair_style reax/c lmp_control

pair_coeff * * ffield.reax.cho C H O

## Additional charge calculation scheme

fix ID group qeq/reax N cutlo cuthi tolerance params

fix 1 all qeq/reax 100 0.0 10.0 1.0e-6 param.qeq

In the charge equilibration scheme (qeq), Nevery represents the frequency with which

the qeq calculation will be performed, cutlo, cuthi are the low and high cutoff for

Taper radius, tolerance represents the precision to which charges will be equilibrated
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and params is the file name that contains parameters are taken from the potential file

and this file should include one line for each atom type.

2.3.6 Time step in MD

In MD simulations, the equations of motion are integrated by using discrete time

steps. One should be careful about choosing the suitable time step when performing

simulations. While large time steps reduce the computational expense, they give less

accurate results. On the other hand, choosing very small time steps to increase accu-

racy also increases the computational cost. In LAMMPS, all interatomic potentials

work in different unit systems. For example, while Tersoff and AIREBO potentials

work in metal units, the ReaxFF works in real units. Details of metal and real units

are given in the list below.

• For metal units:

– mass = grams/mole

– distance = Angstrom

– temperature = Kelvin

– energy = eV

– pressure = bars

– time = picoseconds

• For real units:

– mass = grams/mole

– distance = Angstroms

– temperature = Kelvin

– energy = Kcal/mole

– pressure = atmospheres

– time = femtoseconds
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CHAPTER 3

MECHANICAL PROPERTIES OF CARBON NANOTUBES

As mentioned in Chapter 1, CNTs have been used as reinforcements in composite

materials in recent applications. In accordance with this purpose, in this chapter,

mechanical properties of different CNTs will be examined using DFT and MD tech-

niques. In this chapter, computational details of these simulations and their results

will be discussed.

3.1 Mechanical Properties of Carbon Nanotubes by using DFT

3.1.1 Optimized Length Calculation

Our preliminary DFT studies start with the optimized length calculation for the (10,0)

zigzag CNT with 40 atoms periodic in the axial z-direction with length 4.26 Å dis-

played in Figure 3.1. Three different methods namely DFT-D, vdW-DF and vdW-DF-

C09 were used to calculate optimized length of this CNT with a PBE(Perdew-Burke-

Ernzerhof) pseudopotential. The energy cutoff was set to 40 Rydberg and 1x1x10

k-point mesh was used. In Figure 3.2, the graphs of cell parameter of CNT along

Figure 3.1: Unit cell of (10,0) zigzag CNT
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z-direction are given with three different functionals. While DFT-D overestimates

length of the CNT, vdW-DF with the exchange of Cooper (vdW-DF-C09) gives the

most accurate result for the length of CNT. Therefore, we used this functional in our

further DFT studies.

(a) DFT-D (b) vdW-DF

(c) vdW-DF-C09

Figure 3.2: Optimized length of (10,0) CNT with different functionals
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3.1.2 Young’s Modulus and Poisson’s Ratio Calculation

Young’s modulus (or modulus of elasticity) is related with the response of a material

under tension or compression deformations. This property implies the stiffness of

material and it can be defined as follows:

E =
1

V0

∂2U

∂ε2
(3.1)

where U is the strain energy, ε is the applied strain and V0 is the equilibrium volume

which is defined for a CNT as :

V0 = 2πR0L0h (3.2)

where R0 and L0 are equilibrium radius and length that corresponds to minimum

energy and h is the wall thickness of a CNT which is taken as 0.34 nm [64].

When a material is compressed/stretched in axial direction, it usually tends to ex-

pand/contract in the transverse directions. This phenomenon is called the Poisson

effect and is measured by the so-called Poisson’s ratio. For a CNT Poisson’s ratio can

be expressed by using the following relation:

ν = −1

ε

R−R0

R0

(3.3)

where ε is the strain along the axial direction, R0 is the unperturbed radius, and R is

the new radius under stress.

Young’s modulus calculation for (10,0) CNT is done with the following protocol;

first CNT is subjected to a series of compressive and extensive strains in the axial

z-direction. For each strain value, the CNT is allowed to evolve under interatomic

forces until a new equilibrium is reached. Following this, the graph of strain versus

energies corresponding to each strain is plotted as shown in the Figure 3.3 (a) and

fitted to a 2nd order polynomial within the -2% and +2% strain limits and Young’s

modulus is calculated by using the formula given in Eq. 3.1. Also, by using Eq. 3.3

given above Poisson’s ratio is calculated within the same strain limits.
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By means of a simple measurement of the Young’s modulus and Poisson’s ratio re-

sults for the (10,0) zigzag CNT are shown in Table 3.1. Here, we again compared the

three functionals, that are used the optimized length calculation part, for calculating

Young’s modulus and Poisson’s ratio of (10,0) CNT. There are numerous studies that

investigate the mechanical properties of CNTs with different methods. In most of the

studies, the Young’s modulus results vary from 0.5 TPa to 1.5 TPa depending on the

methods used. Hernández et al. [65] studied C and BxCyNz composite tubes by using

DFT and similar results are obtained with the vdW-DF-C09.

Table 3.1: Young’s modulus and Poisson’s ratio of a (10,0) one-unit cell CNT with

different functionals

Functional E [TPa] ν

DFT 0.99 0.173

vdW-DF 1.115 0.175

vdW-DF-C09 1.11 0.176

Hernández et al. [65] 1.22 0.27

(a) (b)

Figure 3.3: The graphs of (a) axial strain versus total energy and (b) axis versus radius

change for (10,0) CNT used in Young’s modulus calculation
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3.2 Mechanical Properties of CNTs by using MD

When characterizating the mechanical properties of CNTs by using molecular dy-

namics simulation technique, some important parameters must be chosen carefully in

order to represent real behaviour of CNTs [43]. The reliability of MD simulations

mainly depends on the choice of inter-atomic potential, thermostat, thermostat cou-

pling coefficient and time step. These parameters were already discussed in Chapter

2 in detail. In the literature, instead of a well-defined protocol, there are variety of

scattered results regarding the choices of these parameters. When studying CNTs

in MD simulations generally Tersoff, AIREBO and ReaxFF interatomic potentials

are preferred since these are developed for carbon based systems. We perform MD

simulations at 0 K and 300 K to examine mechanical properties of CNT under axial

loading. In both static loading (T=0K) and dynamic loading (T=300K), the same pro-

cedure is followed with the exception that in finite temperature case, we consider a

time average of the property in question. As in the DFT calculations, Young’s modu-

lus and Poisson’s ratio are calculated in the regions between -0.02 < ε < +0.02 strains.

3.2.1 Elastic Constants Under Static Loading

Our initial mechanical calculations were done using the Tersoff potential which is a

3-body potential function that is widely used for carbon, silicon and germanium ele-

ments as discussed before. First, Young’s modulus and Poisson’s ratio of a (5,0) one

unit cell CNT, shown in Figure 3.4, was investigated with the same protocol as was

used in DFT calculations. By using the definition in Equation 3.1, Young’s modulus

of CNTs with different chiralities were calculated and the results are given in Table

3.2. Our findings are in good agreement with previous DFT results and literature.

However, Poisson’s ratio results for these CNTs are found to be negative. In fact,

this is a well-known shortcoming of this potential noted also by Kiselev et al. [66]

who studied mechanical properties of graphene with the Tersoff potential reported

a negative value for Poisson’s ratio. Therefore, we move on our investigations with

AIREBO, ReaxFFCHO (developed by Chenoweth et al. [59]) and ReaxFFC2013 a re-

vised version of ReaxFF for carbon systems.
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Figure 3.4: Unit cell of (5,0) CNT

(a) (b)

Figure 3.5: (a) Strain versus energy and (b) strain versus radius graphs of (5,0) one

unit cell CNT modeled with Tersoff potential

Table 3.2: Young’s modulus of different CNTs by using Tersoff Potential

CNT Type E [TPa]

(5,0) Zigzag 0.99

(5,5) Armchair 1.17

(10,10) Armchair 1.18

(4,3) Chiral 1.12

(6,9) Chiral 1.17

In literature, several examples of successful simulations of graphene and CNTs done

using AIREBO can be seen [60, 67]. Nath and Kim [67] studied the nanomechanics

of CNTs by using three different potentials namely Tersoff, REBO and AIREBO and
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they concluded that AIREBO is much more reliable and accurate than other poten-

tials when calculating elastic properties of CNTs since it includes van der Waals and

torsional terms [67]. When we compare Young’s modulus and Poisson’s ratio results

given in Table 3.3 for CNTs with different chiralities displayed in Figure 3.6, we im-

mediately see that while AIREBO results show good agreement with both theoretical

and experimental Young’s modulus and Poisson’s ratio values reported in the litera-

ture, the ReaxFFCHO version slightly overestimates the Young’s modulus of CNTs

and gives Poisson’s ratio higher than experimental and theoretical values as stated by

Jensen et al. [68]. On the other hand, ReaxFFC2013 version, developed for investigat-

ing elastic properties and mechanical failure in carbon based materials, gives more

accurate results than the ReaxFFCHO parametrization [68].

Figure 3.6: 10 nm length CNTs with 3 different chirality used in the calculations.

Cyan represents the (10,10) armchair CNT, gray is the (10,0) zigzag and red one is

the (5,10) chiral. All of them are generated via Visual Molecular Dynamics (VMD)

tool.
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(a) (b)

Figure 3.7: (a) Strain versus energy and (b) strain versus radius plots of (10,0) 10 nm

zigzag CNT with AIREBO potential

Table 3.3: Young’s modulus and Poisson’s ratio of three different CNTs by using

AIREBO and two different ReaxFF potentials at T=0K

AIREBO ReaxFFCHO ReaxFFC2013

E [TPa] ν E [TPa] ν E [TPa] ν

(10,0) 1.01 0.19 1.15 0.93 0.76 0.53

(5,10) 0.94 0.24 1.23 0.97 0.78 0.54

(10,10) 0.91 0.26 1.27 0.98 0.77 0.52
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Buckling Behavior of CNTs

Buckling of a CNT appears as a non-linear response of CNTs to large deformations.

A structure is said to be "buckled" when it collapses suddenly under applied load to

release excess strain energy. The buckling behavior of a CNT depends on the aspect

ratio [21, 70] given as follows:

a =
L

D
(3.4)

where L is the length and D is th diameter of CNT.

Two different modes of buckling behavior have been identified in the literature: shell

buckling and Euler buckling [70]. While shell buckling behavior is observed in CNTs

with small aspect ratios, CNTs with large aspect ratios exhibit Euler buckling charac-

teristics. The buckling patterns of these two modes are given in Figure 3.8.

Figure 3.8: Geometry of shell buckling (left) and Euler (right) buckling cases for

(10,10) CNT with length of 9.6 nm and 29.5 nm respectively. Redrawn from Ref.

[71]
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(a) (b)

Figure 3.9: Strain versus Energy/Volume graphs of (10,10) CNT under compression

with aspect ratio (a) ~7 and (b) ~22 at T=0K

(a) Shell buckling of (10,10) CNT with L=10 nm

(b) Euler buckling of (10,10) CNT with L=30 nm

Figure 3.10: Buckled geometries of (10,10) CNT with two different aspect ratios

In the Figure 3.9, strain versus energy per volume graphs of (10,10) armchair CNTs

with two different aspect ratios are given. These two CNTs are chosen for a direct

comparison with the study of Feliciano and co-workers [71] who examined (10,10)

SWCNTs of lengths 9.6 nm (aspect ratio ~7) and 29.5 nm (aspect ratio ~22) by using

MD simulations where the bonding and non-binding interactions were modeled using

REBO and LJ potentials [52, 53] respectively. Their simulations were performed at

5 K with the Berendsen thermostat algorithm [48]. For the CNT with small aspect

ratio, they observe a shell buckling at the 3.5 % critical strain with a sudden drop in

the energy of the system. As seen from Figure 3.9, for the CNT with small aspect
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ratio (~7) we observe an abrupt change in the energy at 5 % strain at 0 K temperature.

On the other hand, while they observe Euler type of buckling for CNT with larger

aspect ratio ( ~22) at 1.6 % critical strain rate, this behavior is observed around 4 %

critical strain in our case (see Figure 3.9 (b)). To compare, in our simulations con-

ducted at 0 K temperature, CNTs with both small and large aspect ratios can sustain

compression deformation at higher strain rates than the ones in the study of Feliciano

and co-workers [71]. This difference can be explained by different temperatures and

interatomic potentials used.

Figure 3.11 shows the behavior of (10,0) CNT with an aspect ratio ~13 under large ax-

ial deformations. It can be concluded that, after -0.02 < ε < +0.02 strain limits CNT

starts to show non-linear behavior and CNT endures more stretching deformations

than compression.

Figure 3.11: The graph of strain versus energy per volume of (10,0) zigzag 10 nm

length CNT with AIREBO potential under large deformations at T=0K. Red line

shows elastic region that we take into account and the blue line shows the behavior of

CNT under larger deformations.

Shear (Torsional) Modulus

In literature, experimental studies on the mechanical properties of SWCNTs are lim-

ited, particularly for shear modulus, due to complexity of their characterization at the
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nano scale [73]. For this reason, their mechanical properties under torsional loading is

generally studied by using computational techniques. There are mainly three different

modeling approaches namely atomistic scale simulations including MD, the contin-

uum mechanics and continuum nanomechanics [73, 74]. In our calculations, torsional

deformation is applied on four different zigzag CNTs with equilibrium length 6.52 nm

and chilarities (5,0), (8,0), (10,0) and (12,0) at 0 K temperature. The energy associ-

ated with torsion was calculated by means of twisting either end of the nanotubes

in opposite directions and allowing the twisted nanotube to reach equilibrium. Once

twisted, the rings at the ends of the CNT are fixed during the equilibration states, as

shown in Figure 3.12. The associated energies corresponding to torsion angles were

plotted and fitted to 2nd order polynomial as shown in the Figure 3.13. The torsional

modulus of these four CNTs are calculated according to the following formula:

G =
L

J

d2U

dθ2
(3.5)

where L is the length, θ is the rotation angle, U is the energy corresponding to rotation

angle and J is the polar moment of inertia which can be defined for a CNT as follows:

J = 2πhR0

(
R2

0 +
h2

4

)
(3.6)

where h is the thickness and R0 equilibrium radius of a CNT which is assumed as

cylindrical shell.

Torsional rigidity (GJ), which is explained as material’s resistance to twisting de-

formation, can be found as a multiplication of shear modulus and polar moment of

inertia. in Eq.3.5 as

GJ = L
d2U

dθ2
(3.7)

According to the results, torsional modulus slightly increases with the increasing ra-

dius as shown in Figure 3.14 (a) as stated by Pereira et al. [73] , Wang et al. [75] and

Xiong et al. [77]. Torsional rigidity (GJ) also increases with increasing radius [73]

as in Figure 3.14 (b). This means that larger CNTs show more resistance to twisting

deformations.
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Figure 3.12: Applied torsion type

Figure 3.13: The graph of angle of rotation versus energy

Table 3.4: Shear modulus and torsional rigidity of four different CNTs with increasing

radius by using AIREBO Potential at 0 K temperature

CNT Radius [nm] G [TPa] GJ [TPaÅ
3
]

(5,0) 0.199 0.212 61.47

(8,0) 0.319 0.212 190.29

(10,0) 0.399 0.225 358.24

(12,0) 0.479 0.233 618.32
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(a) (b)

Figure 3.14: (a) The graph of CNT radius versus shear modulus and (b) CNT radius

versus torsional rigidity
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3.2.2 Elastic Constants Under Dynamic Loading

To calculate the Young’s modulus and the Poisson’s ratio at 300 K, first, ideally

formed CNTs are statically optimized using the conjugate gradient algorithm to find

their minimum energy configuration. They are then thermalized at 300K in the NVT

ensemble using Nosé-Hoover thermostat. Then, they are subjected to compressive

and tensile deformations for 500 ps within the -2 % and 2 % strain ranges with 0.001

ps/Å rate. Since ReaxFFCHO overestimates Poisson’s ratio of CNTs at 0 K tempera-

ture, AIREBO and ReaxFFC2013 versions are used to calculate mechanical properties

of CNTs. At the beginning 10 nm-long CNTs were considered, however, buckling

behavior was observed at low strain levels at T=300K. Therefore, 5 nm-long (10,0)

and (10,10) CNTs were used in the calculations.

Similar work was done by Bialoskórski and Rybicki [78] with the AIREBO potential

and Nosé-Hoover thermostat. They studied 400 CNTs of lengths around 170 Å and

radii ranging from 4.2 Å to 34.6 Å. In their work, they calculated Young’s modulus

and Poisson’s ratio in the negative (-2 % < ε < 0) and positive (0 < ε < 4 %) strain re-

gions separately and averaged. Their results are given in the Table 3.5 and compared

with our results that calculated the ranges of -2 % < ε < 0 compression and 0 < ε <

2% stretching regions as in Figure 3.15.

Table 3.5: Young’s modulus and Poisson’s ratio of CNTs calculated by using

AIREBO at T=300K

CNT E+ [TPa] E− [TPa] E [TPa] ν+ ν− ν

(10,0) 0.93 0.97 0.95 0.11 0.19 0.15

Ref. [78] 0.83 0.91 0.87 0.09 0.20 0.15

(10,10) 0.87 1.17 1.02 0.22 0.15 0.19

Ref. [78] 0.73 0.93 0.83 0.23 0.17 0.21

As compared with the AIREBO, while the ReaxFFC2013 slightly underestimates the

Young’s modulus, Poisson’s ratio values were found to be higher as in Table 3.6.
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Figure 3.15: Strain versus Potential energy plot of (10,0) CNT with L=5nm by using

ReaxFFC2013

Table 3.6: Young’s modulus and Poisson’s ratio of CNTs with two different chiralities

by using ReaxFFC2013 at T=300K

CNT E+ [TPa] E− [TPa] E [TPa] ν+ ν− ν

(10,0) 0.839 0.829 0.834 0.610 0.599 0.605

(10,10) 0.768 0.739 0.754 0.574 0.539 0.557
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CHAPTER 4

MOLECULAR DYNAMICS SIMULATIONS OF PEEK CHAINS

In this chapter, we first examine the conformers of PEEK monomer in vacuum.

We conduct a series of simulations with three different thermostats together with

ReaxFFCHO and ReaxFF-lg versions of the ReaxFF potential. We will compare our

results in addition to the ideal chain model of polymers.

4.1 Single PEEK Monomer in Vacuum

Preliminary MD calculations of PEEK polymer was initiated with the investigation of

its conformers in vacuum. In order to systematically search over the conformers of the

PEEK monomer, it is divided into 3 parts as shown in the Figure 4.1 and first by keep-

ing ring 2 and 3 fixed, ring 1 is rotated 180◦ around the x-axis by 1◦ increments and

an energy minimization is conducted following after every rotation. Rotation angle

versus energy graph is plotted as in Figure 4.3 and the minimum energy configuration

is found at 169◦ angle .

Figure 4.1: Rings of PEEK monomer. Carbons are represented with gray, hydrogens

are blue and oxygens are red.
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Ring 3 is rotated by keeping ring 1 and 2 fixed to find another possible minimum

energy configurations. This time energy minimum is observed at 17◦ rotated ring 3

configuration. Both minimum configurations of the PEEK monomer are displayed in

Figure 4.2.

169◦ (front view) 169◦ (top view)

17◦ (front view) 17◦ (top view)

Figure 4.2: Minimum configurations of the PEEK monomer

(a) (b)

Figure 4.3: Angle vs. Energy plots of PEEK monomer when (a) Ring 1 is rotated (b)

Ring 3 is rotated

In Figure 4.3, the highest energy points correspond to the closest distance of the

hydrogen atoms found at the joint parts of the sub-units.
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4.2 Thermostat and Potential Tests on PEEK Chains

When performing MD simulations, a thorough benchmarking process including the

selection and the fine-tuning of the thermostat must be carried out. In literature,

a large number of ReaxFF studies are conducted using either the Berendsen or the

Nose Hoover thermostat [69, 79]. In contrast, the Langevin thermostat is often not

preferred. Jensen et al. [69] tested the Berendsen and Nosé-Hoover thermostats

as well as the Langevin to investigate how a stochastic thermostat work with the

ReaxFF. These three thermostats with Chenoweth parametrization of the ReaxFF

(ReaxFFCHO) were tested on mechanical failure of carbon allotropes. They found

that thermostat type has no notable influence on mechanical response of carbon al-

lotropes yet damping parameter of thermostat can affect preticted behaviors. To this

end, we performed a series of MD simulations with these three thermostat algorithms

on PEEK chains with monomer lengths of 3,6 and 9. In addition to ReaxFFCHO ver-

sion, we also tested ReaxFF-lg version developed by Liu et al [62] which have been

reported to give more accurate mechanical properties for the PEEK polymer. Other

potentials (AIREBO, Tersoff and ReaxFFC2013) used for predicting mechanical prop-

erties of CNTs in previous chapter cannot be used when modeling PEEK polymer

since they do not contain carbon, hydrogen and oxygen parametrizations at once.

The end-to-end distance and the radius of gyration are two of the basic properties

associated with polymer chains. According to The Ideal Chain (or Freely-jointed

chain) model, that is the simplest model used for describing the characteristics of

polymer chains, the interaction between structural units (i.e. monomers) that create

polymer are neglected and they are assumed as a rigid rods with fixed length b that is

known as the Kuhn length. Therefore, an unfolded polymer has the length given by

following relation:

L = Nb (4.1)

where N is the number of Kuhn segments.

According to Figure 4.4, ~R can be calculated as a sum of individual components as:

~R = ~b1 +~b2 + .. =
N∑
i=1

~bi (4.2)
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When a polymer chain is long enough, these randomly oriented vectors cancel each

other and mean of end-to-end vector approximates zero.

〈~R〉 =
N∑
i=1

〈~bi〉 = 0 (4.3)

To avoid loss of information the square of end-to-end distance is used [80] and given

as:

~R2 =
N∑
i=1

~bi ·
N∑
j=1

~bj = nb2 + 2
∑∑

i<j

~bi ·~bj (4.4)

where n is the number of bond vectors.

The second term of the Eq. 4.4, the dot product of the two vectors depend on the bond

angle between them, hence : ∑∑
i<j

~bi ·~bj = b2cosθij (4.5)

Since the bond angle between these vector uniformly distributed between 0 to 2π

[80], this term does not contribute to Eq. 4.4 and thus it reduces to

〈R2〉 = nb2 (4.6)

The radius of gyration is another quantity that describes the chain size more mean-

ingful than the end-to-end distance since it gives a better understanding of the size of

polymer coil and can be measured directly [80, 82]. It also gives an understanding of

polymer folding and calculated by using the following formula:

~R2
g =

1

M

∑
i

(~ri − ~rcm)2 (4.7)

whereM is the total mass of atoms in the chain and ~rcm is the center of mass position.

According to this formula, a larger radius of gyration is indicative of a more extended

polymer whereas a smaller value points towards a folded configuration.
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Figure 4.4: End-to-end vector ~R and Kuhn length of an ideal chain (left) and radius

of gyration of polymer chain (right)

The general protocol that was used in these MD simulations on the PEEK chains

with three different length as follows: The simulation was performed within the NVT

ensemble at 10 K temperature with a time step of 0.1 fs for a duration of 1 ns. The

thermostat damping parameter was set to 100 (in time units) for all thermostats which

means temperature of the system was updated every 10 fs during 1 ns. The end-to-

end distance, radius of gyration, potential energy and temperature profiles have been

investigated as figures of merit in the comparison of thermostats and potentials.

The step that comes before the actual simulation, namely the creation of the monomer

in an acceptable, low energy conformer, is not a trivial task. PEEK chains that consist

of 3,6 and 9 monomers were created by using nanoHUB Polymer Modeler tool [81]

which in turn uses the configurational bias Monte Carlo (MC) option as shown in the

Figure 4.5.

In the following subsection, properties of these PEEK chains that were examined

under MD conditions at 10 K temperature, will be compared.

4.2.1 The Nosé-Hoover Thermostat

First, we investigated three different lengths of PEEK chain displayed in Figure 4.5 by

using the Nosé-Hoover thermostat with both ReaxFFCHO and ReaxFF-lg potentials.

In these calculations in vacuum, we encountered an unexpected numerical integration

artifact the so-called The Flying Ice Cube that was discussed in detail in Chapter 2.
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(a) 3 momomer PEEK chain with 104 atoms (b) 6 momomer PEEK chain with 206 atoms

(c) 9 momomer PEEK chain with 308 atoms

Figure 4.5: 3, 6 and 9 monomer PEEK chains created via nanoHUB Polymer Mod-

eler tool [81] by using configurational bias MC chain configurations option. Cyan

represents carbon atoms, white represents hydrogen and red ones are oxygen atoms

We faced these problem when we used the Berendsen thermostat as well as the Nosé-

Hoover thermostat. This artifact was avoided by using the fix momentum command in

the LAMMPS software that periodically removes the linear and angular momentum

of the system by adjusting the velocities of atoms.

The temperature, energy, end-to-end distance and radius of gyration quantities of the

system is recorded in every 500 fs time steps during 1 ns meaning that we collect

2000 data points during the simulations. Final configurations for both ReaxFFCHO

and ReaxFF-lg versions are displayed in Figure 4.6 and 4.9 for the initial cases in

Figure 4.5. We see that, except the 3-monomer length case, PEEK chains modeled

with ReaxFFCHO and ReaxFF-lg potential, polymer chains folded. In Figure 4.8 the

potential energy plot of 6-monomer length PEEK is displayed. It can be seen that

the polymer chain lowers it potential energy by folding as stated by Lindenmeyer

[83]. The energy drops until the 200 ps and then oscillates around equilibrium values

over the simulation. Folding of a chain can be understood by end-to-end distance

and radius of gyration graphs of chain. For instance, in Figure 4.7 that end-to-end

distance and radius of gyration of 3-monomer PEEK chain remains almost constant

meaning that chain folding did not occur for this case.
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(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.6: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

the ReaxFF-lg version and the Nosé-Hoover thermostat

(a) (b)

Figure 4.7: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and 9-

monomer PEEK chains modeled with ReaxFF-lg version and the Nosé-Hoover ther-

mostat

There are several important results that should be mentioned from the isolated poly-

mer studies. As can visually be seen in Figure 4.6 and more quantitatively in Figure

4.7, the longer chains are more likely to fold than 3-monomer polymer. For this par-

ticular rendition, realized using the ReaxFF-lg version of the ReaxFF potential, the

6-monomer polymer exhibits the smallest radius of gyration, i.e. the largest degree of

folding. Both the 6- and the 9-monomer polymers remain stable in their final config-

urations once they settle into it. The initial transitory period before the final config-

uration is found larger for the 6-monomer polymer. The behavior of the 3-monomer

polymer, on the other hand, is very different. In addition to remaining extended for

the entire duration of the simulation, it exhibits small extensional oscillations around

an average length. The folding of the larger polymers occur in discrete steps as seen
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in the potential energy plot of Figure 4.8 for the 6-monomer polymer.

For a comparison between the two versions of the ReaxFF potential, identical calcu-

lations were run with the ReaxFFCHO version, starting from the same initial config-

uration. The final configurations and the graphs of the end-to-end distance and the

radius of gyration are presented in Figures 4.9 and 4.10 respectively. The behavior

of the polymer chains were found to be similar varying degrees of folding observed

at all lengths. However, in this case, the 6-monomer polymer was found to exhibit

a more extended configuration while the 3- and 9-monomer polymers collapse into a

more compact structure. The fine-scale oscillations are present for the both 3- and the

6-monomer polymers in this case.

Figure 4.8: Potential energy plot of 6-monomer length PEEK chain modeled with

ReaxFF-lg potential and the Nosé-Hoover thermostat

(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.9: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

ReaxFFCHO version and the Nosé-Hoover thermostat
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(a) (b)

Figure 4.10: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and

9-monomer PEEK chains modeled with ReaxFFCHO version and the Nosé-Hoover

thermostat

Having seen that the two different versions of the potential yield qualitatively similar

results, we next explore the effects of the thermostat. In the next two subsections, we

repeat the above calculations using two different thermostats and compare the results

to those of Nosé-Hoover.

4.2.2 The Berendsen Thermostat

The results obtained with this thermostat are strikingly different from those of Nosé-

Hoover. The final configurations and analyses of the calculations performed using

the ReaxFF-lg version are displayed in Figures 4.11 and 4.12 while those for the

ReaxFFCHO versions are presented in Figures 4.13 and 4.14. The first difference that

can be mentioned is in the mode of the collapse. While in the Nosé-Hoover calcu-

lations, the folding is done via random coiling mechanism, in the results obtained

with the Berendsen thermostat, the folded structures appear more ordered. In this

final configurations obtained using the ReaxFF-lg version, bot the 6- and 9-monomer

chains are organized in a spiral. For the ReaxFFCHO version, on the other hand, they

form ultra-compact stacked structures that appear to be completely determined by

the π-π interaction between the aromatic rings of the chains. The behavior of the

two versions under this thermostat is therefore wildly different from one to another.
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Another interesting result is the fact that these compact, stacked structures seen in

the ReaxFFCHO version are reached very early in the simulation. Once the system is

trapped in these configurations, it is locked with minimal oscillations.

(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.11: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

ReaxFF-lg version and the Berendsen thermostat

(a) (b)

Figure 4.12: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and

9-monomer PEEK chains modeled with ReaxFF-lg version and the Berendsen ther-

mostat

(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.13: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

ReaxFFCHO version and the Berendsen thermostat
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(a) (b)

Figure 4.14: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and

9-monomer PEEK chains modeled with ReaxFF-lg version and the Berendsen ther-

mostat

4.2.3 The Langevin Thermostat

In this section, we repeat our calculations one final time under the stochastic Langevin

thermostat (results in Figures 4.15, 4.16, 4.17 and 4.18). Once again, the initial con-

figurations are the same as the other two configurations. This thermostat surprisingly

exhibits still more widely different behavior that the previous two. This time, the

folding is significantly reduced. In fact, within the duration of the 1 ns simulation,

the ReaxFF-lg version did not yield the folded structures. In the case of the Langevin

thermostat, at variance with the other two cases, the flying ice cube artifact was not

observed. However, the motion of the atoms were found to be rather restricted, as also

be observed elsewhere [69]. For the ReaxFFCHO version, a higher degree of folding

is observed, although still without a well-defined final state, in which the system is

securely trapped.
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(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.15: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

ReaxFF-lg version and the Langevin thermostat

(a) (b)

Figure 4.16: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and 9-

monomer PEEK chains modeled with ReaxFF-lg version and the Langevin thermostat

(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.17: Final configurations of 3, 6 and 9-monomer PEEK chains modeled with

ReaxFFCHO version and the Langevin thermostat
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(a) (b)

Figure 4.18: (a) End-to-end distance and (b) radius of gyration plots of 3, 6 and 9-

monomer PEEK chains modeled with ReaxFF-lg version and the Langevin thermostat
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4.2.4 Comparison of the thermostats

In this subsection, we present an overall comparison of the three thermostats in terms

of temperature fluctuations (Figures 4.19-[?]) and tendency to fold. In the same con-

text, we also present a comparison of the two versions of the ReaxFF potential. We

first notice that in all cases, the temperature control is successful. After a very brief

transient period, the average temperature reaches 10 K and oscillates around this

value. Overall, the Berendsen thermostat exhibits the smallest fluctuations, followed

closely by the Langevin thermostat. The fluctuations under the Nosé-Hoover scheme

is significantly larger and worsens in many cases as the simulation advances. The

differences in the amplitude of the fluctuations is much less pronounced, however,

for the ReaxFF-lg version. This is counterintuitive since the ReaxFF-lg version also

yields less compact structures. This difference may perhaps be attributed to the accu-

mulation of numerical errors, however, more detailed studies would be necessary to

come to a definitive conclusion.

(a) ReaxFF-lg (b) ReaxFFCHO

Figure 4.19: Temperature fluctuations of 3-monomer length PEEK chains with three

different thermostats when (a) ReaxFF-lg and (b) ReaxFFCHO is used
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(a) ReaxFF-lg (b) ReaxFFCHO

Figure 4.20: Temperature fluctuations of 6-monomer length PEEK chains with three

different thermostats when (a) ReaxFF-lg and (b) ReaxFFCHO is used

(a) ReaxFF-lg (b) ReaxFFCHO

Figure 4.21: Temperature fluctuations of 9-monomer length PEEK chains with three

different thermostats when (a) ReaxFF-lg and (b) ReaxFFCHO is used

In Figure 4.22, we present an example (6-monomer chain, ReaxFF-lg, Berendsen) of

the fluctuation amplitude as a function of polymer length. As expected from basic

thermodynamics, the relative size of the fluctuations are reduced as the atom number

in the polymer increases. The differences are of course rather subtle due to low value

of the temperature.

65



Figure 4.22: Temperature profiles of 3,6 and 9 monomer length PEEK modeled with

ReaxFF-lg potential and Berendsen thermostat

Table 4.1: Folding of PEEK chains

N-H Berendsen Langevin

LG CHO LG CHO LG CHO

3-PEEK 7 7 3 3 7 7

6-PEEK 3 3 3 3 7 3

9-PEEK 3 3 3 3 7 3

We conclude this part on the comparison of thermostats with some final remarks.

Surprisingly, the folding tendency of the polymers appear to be dependent upon the

choice of the thermostat. A summary of this is given in Table 4.1 where whether the

polymer is folded at the end of the simulation is indicated with a check or a cross. In

the majority of the cases, folding occurs. A stark exception is the Langevin thermo-

stat used in tandem with the ReaxFF-lg flavor where the final structures are extended

for all lengths. The Langevin stochastic thermostat does not cause the Flying ice cube

problem as the Nosé-Hoover and Berendsen thermostats. This unphysical phenomena

was prevented by periodically removing linear and angular momentum of the system.

On the other hand, when the Langevin thermostat is used, atoms move restrictedly.
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In longer polymer chains, additional folds can provide a further decrease in the en-

ergy [83]. As seen from our results, when the chain length is increased from 3 to 9

monomer, chain foldings occur more than once. In some cases, ReaxFFCHO together

with the Berendsen and Langevin thermostat, apart from folding, chain aggregation

was observed. The importance of this aggregation extends beyond the CNT/polymer

interface into the modelling of the bulk polymer. Due to this tendecy to aggregate,

model polymer matrices may develop an unreasonably porous structure under strain.

An example is provided here from our own calculations (Figure 4.23).

(a) (b)

Figure 4.23: Bulk PEEK modeled with Berendsen thermostat and ReaxFFCHO po-

tential at 300K. (a) Equilibrated (b) Strain applied

Since the Berendsen thermostat is the most preferred algorithm together with the

ReaxFF and it reduces the magnitude of temperature oscillations, thereby provides

more stability [69], we decided to move on our calculations with the Berendsen ther-

mostat together with the ReaxFF-lg version, that is earlier reported to successfully

estimates mechanical properties of PEEK [24].

4.2.5 Rod-like Configuration of 3, 6 and 9 monomer PEEK chains

To further investigate the dependence on initial configuration on folding behavior of

polymer chains, in this part, PEEK chains are created by using the rod-like configu-

ration option with 0◦ fixed torsion angles in the nanoHUB Polymer Modeler tool as

shown in Figure 4.24. This option maximizes the alignment of the monomers in the

polymer chain. This time only the Berendsen thermostat was used with the ReaxFF-
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lg potential. Final configurations of chains are shown in Figure 4.25.

(a) 3 momomer PEEK chain with 104 atoms (b) 6 momomer PEEK chain with 206 atoms

(c) 9 momomer PEEK chain with 308 atoms

Figure 4.24: 3, 6 and 9 monomer PEEK chains created via nanoHUB Polymer Mod-

eler tool [81] by using rod-like configuration option with 0◦ fixed torsion angles

Folding of chains was observed in all three lengths of PEEK chain as can be con-

cluded from their end-to-end distance and radius of gyration plots given in Figure

4.26. These results indicate that folding of polymer chains is independent from their

initial configurations at least for this thermostat. The radius of gyration for the poly-

mer is similar to the previous set of initial conditions, although in this case, it takes a

longer time to find this final configuration. This is expected since the initial condition

represents an extreme limit of extension.

(a) 3-PEEK (b) 6-PEEK (c) 9-PEEK

Figure 4.25: Final configurations of rod-like PEEK chains
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(a) (b)

Figure 4.26: (a) End-to-end distance and (b) radius of gyration graphs of 3, 6 and

9-monomer length rod-like PEEK chains
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CHAPTER 5

CNT/PEEK INTERFACE

Up to this point in the thesis, we have presented mechanical properties of CNTs with

different interatomic potentials under static and dynamical loadings varying the rele-

vant parameters such as chain length, thermostats and potentials. As stated previously,

the interfacial properties of the CNT and the polymer strongly affect the mechanical

properties of nanocomposite material. In this chapter, we aim to examine the CN-

T/PEEK interface by using both DFT and MD techniques to lead up to development

of their nanocomposites.

5.1 Covalent and Non-covalent Functionalization

As CNTs are used as reinforcing materials in polymer nanocomposites, investigation

of the interfacial properties is very crucial for understanding the load transfer between

the CNT and polymer components. The interaction between the CNT and the poly-

mer may be realized via covalent [85] or non-covalent [87] bonding. In particular,

longer-chain polymers have the ability to wrap around the CNT, forming particularly

stable interfaces. Introducing defects on the CNT can induce covalent bonding be-

tween CNT and polymer, however, this can cause a deterioration of the mechanical

properties [86]. Therefore, noncovalent functionalization is generally preferred when

reinforcing mechanical properties of polymer matrices. In addition to the application

at hand, it is reported that non-covalent wrapping of polymer chains around CNTs can

be used to increase solubility of CNTs in any solvent and organize CNT dispersion in

matrix materials [95]. As a means of systematically characterizing the interface and

the extent of the noncovalent interactions, we first investigated a single monomer of
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PEEK on breaking it down to its constituent aromatic rings on CNTs of different radii

and chiralities. The relevant adsorption energies are calculated by using both DFT and

MD calculations. ReaxFF-lg was used in all the MD calculations in this chapter. Even

though ReaxFF originally developed with an aim to describe reactive cases, its do-

main was extended to various studies including non-reactive cases [89]. In literature,

there are several studies treating CNT/Polymer interface with the ReaxFF [88]. To

complement and extend these studies and to ensure that the MD studies utilizing this

new parametrization are accurate,we conduct a preliminary benchmark study. Our

aim here is to compare DFT results of PEEK sub-units and its monomer with ReaxFF

to ensure the accuracy of MD results. Furthermore, this study provides clues regard-

ing the possible anchoring points of the polymer on the CNT ans a way to gain insight

into the mechanism of wrapping around the CNT.

5.2 DFT Calculations

We start by dividing the PEEK monomer into its sub-units and studying the inter-

action of each subunit separately with the CNT. In Figure 5.1, the three subunits of

the PEEK are seen, namely the benzene-like ring shown with label 3, C6H4O2 ring

labeled 1 and C6H6O2 between them with label 2. We begin our investigations by cal-

culating the DFT adsorption energies of these three subunits of the PEEK monomer

shown in Figure 5.2. Rings are placed 3 Å above the 3-unit cell (10,0) zigzag CNT

with length 13.05 Å and rotated by 30◦, 60◦ and 90◦ to find most favorable configu-

ration as shown in Figures 5.3, 5.4 and 5.5. The adsorption energies were performed

according to the formula

Eads = Esystem − ECNT − Emolecule (5.1)

where Eads is the adsorption energy, Esystem , ECNT and Emolecule are the energies

of the system, CNT and molecule respectively. The Quantum Espresso code suite

was used with the vdW-DF-C09 functional. The kinetic energy cut-off was set to 30

Ryd and a 1x1x8 k-point mesh was used. Adsorption energies and average distances

are given in Table 5.1. It can be seen that 90◦ rotated configuration has the highest

binding energy with the lowest distance.

Also, due to symmetry of benzene ring, 0◦ and 60◦ configuration have the same ge-
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Figure 5.1: Rings of PEEK monomer. Carbons are represented with gray, hydrogens

are blue and oxygens are red.

(a) C6H6 ring (b) C6H4O2 ring (c) C6H6O2 ring

Figure 5.2: Geometries of (a) C6H6 ,(b) C6H4O2, (c) C6H6O2 molecules

(a) Initial (b) 30◦ rotated (c) 60◦ rotated (d) 90◦ rotated

Figure 5.3: Initial, 30◦, 60◦ and 90◦ rotated configurations of C6H6 ring on (10,0)

zigzag CNT

ometry and almost same adsorption energy. Same conclusion can be made for 30◦

and 90◦ configurations as well.
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Next, the adsorption energies of C6H4O2 unit was calculated by using the same pro-

cedure. The results are given in Table 5.1. The initial configuration is the most

favorable configuration for this case and adsorption energies are higher than that of

benzene due to the existence of oxygen atoms.

(a) Initial (b) 30◦ rotated (c) 60◦ rotated (d) 90◦ rotated

Figure 5.4: Initial, 30◦, 60◦ and 90◦ rotated configurations of C6H4O2 ring on (10,0)

zigzag CNT

Last, C6H6O2 sub-unit was placed on CNT as shown in Figure 5.5 to calculate ad-

sorption energies. 90◦ rotated configuration is the favorable case and as compared

with the other two sub-units, C6H6O2 has highest adsorption energies in all its con-

figurations due to its atom number. The adsorption energies of C6H6O2 molecule are

also given in Table 5.1.

(a) Initial (b) 30◦ rotated (c) 60◦ rotated (d) 90◦ rotated

Figure 5.5: Initial, 30◦, 60◦ and 90◦ rotated configurations of C6H6O2 ring on (10,0)

zigzag CNT

As evidenced by the significantly larger adsorption energies of the oxygen-containing

sub-units, the adsorption geometries of the full PEEK polymers are expected to be

dictated by the orientations of the oxygens. As expected, the interactions between the

π-systems of the sub-units and the CNT result in rather high overall adsorption energy

values. This tendency of the molecules to assume a flat orientation with respect to the
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Table 5.1: Adsorption energies of C6H6, C6H4O2 and C6H6O2 ring on (10,0) zigzag

CNT

C6H6 C6H4O2 C6H6O2

EA [meV] d [Å] EA [meV] d [Å] EA [meV] d [Å]

0◦ -447.3 3.4900 -518.72 3.4438 -539.11 3.4133

30◦ -449.4 3.4917 -483.06 3.4684 -560.92 3.4033

60◦ -446.9 3.4633 -516.00 3.4411 -576.32 3.4083

90◦ -450.2 3.4067 -492.19 3.4822 -580.33 3.4133

CNT is expected to be in competition with the energy penalty to be paid when the H

atoms of the neighboring subunits are in proximity to each other, as discussed in the

previous section.

5.2.1 Full PEEK monomer on CNTs with different length, radius and chirality

The effect of length

In order to investigate the effect of length on the adsorption energies, PEEK monomer

on (10,0) zigzag CNT with three different lengths are examined. Three different

lengths used can be seen in Figure 5.6.

(a) PEEK on 13.05 Å CNT (b) PEEK on 21.75 Å CNT (c) PEEK on 26.01 Å CNT

Figure 5.6: PEEK monomer on top of (10,0) CNT with 3 different length

The initial configuration of the PEEK is taken from a 1 ns MD simulations at 10K

to reduce the computational cost of DFT simulations since the systems investigated
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here have large number of atoms (156, 236 and 276 atoms). The adsorption energy

results are given in the Table 5.2. Going from the smallest length to the next larger,

we observe a decrease of approximately 0.08 eV in the adsorption energy. This is due

to the reduction in the lateral interaction between the periodic copies of the molecule.

For the two larger sizes, however, the lateral interactions have already been eliminated

and there are no significant changes.

Table 5.2: Adsorption energies of full PEEK monomer on (10,0) zigzag CNT with

three different lengths

System 156-atoms 236-atoms 276-atoms

Lz [Å] 13.05 21.75 26.01

EA [eV] -1.3518 -1.2743 -1.2841

The effect of radius

To investigate the effect of radius, adsorption energies of (10,0), (12,0) and (15,0)

CNTs with length 26.01 Å, whos side and front views are given in Figures 5.7 and

5.8, are calculated and results are given in Table 5.3. Similarly, the initial configu-

ration of the PEEK monomer on top of CNTs are taken from the MD simulations.

Although increasing diameter appears to result in substantially increasing energies as

shown in Figure 5.9, the difference may also be due to the different initial conditions

determined by the MD calculation. Further study is needed to confidently establish

the relation between the adsorption energies and radius.

(a) PEEK on (10,0) CNT (b) PEEK on (12,0) CNT (c) PEEK on (15,0) CNT

Figure 5.7: PEEK monomer on 3 different zigzag CNTs (side view)
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(a) PEEK on (10,0) CNT (b) PEEK on (12,0) CNT (c) PEEK on (15,0) CNT

Figure 5.8: PEEK monomer on 3 different zigzag CNTs (front view)

Figure 5.9: Radius versus adsorption energy graph of 3 different zigzag CNTs

Table 5.3: Adsorption energies of full PEEK monomer on (10,0) zigzag CNT with

three different diameters

CNT (10,0) (12,0) (15,0)

Radius [Å] 3.99 4.79 5.99

EA [eV] -1.2841 -1.3745 -1.4145
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The effect of Chirality

The geometry of a CNT can also affect its interaction with molecules. To examine

this effect, as well as validate the effect of radius, we select three armchair CNTs

whose radii are nearly equal to that of previously studied (10,0), (12,0) and (15,0) re-

spectively. The axial lengths are also kept the same. Side and front views of selected

armchair CNTs can be seen in Figures 5.10 and 5.11. For both zigzag and armchair

cases, results show clear dependence radius of CNTs as in Tables 5.3 and 5.4. Since

CNTs of larger radii have larger surface area, polymer sustain larger surface that re-

sults in higher adsorption energies. Hence, one can make a conclusion that larger

CNTs are more useful to be used as a reinforcer materials [95].

(a) PEEK on (6,6) CNT (b) PEEK on (7,7) CNT (c) PEEK on (8,8) CNT

Figure 5.10: PEEK monomer on armchair CNTs with 3 different radius and length

25.01 Å (side view)

(a) PEEK on (6,6) CNT (b) PEEK on (7,7) CNT (c) PEEK on (8,8) CNT

Figure 5.11: PEEK monomer on armchair CNTs with 3 different radius and length

25.01 Å (front view)
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Table 5.4: Adsorption energies of full PEEK monomer on 3 different armchair CNTs

CNT (6,6) (7,7) (8,8)

Radius [Å] 4.15 4.84 5.53

EA [eV] -1.3702 -1.555 -2.114

Because of the different geometry of zigzag and armchair CNTs, their diameters can-

not exactly be the same. This small differences in their diameter cause difference in

their adsorption energies [95].

Results indicate that adsorption energies of armchair CNTs are higher than the ones

of zigzag type CNTs.

5.3 MD Calculations

5.3.1 CNT/Sub-units and CNT/PEEK-monomer Interfaces

In our CNT/PEEK interface MD calculations, first, sub-units on CNT and CNT/PEEK

monomer adsorption energies were calculated at 0K, 100K and 300K. In the 0K cal-

culations, after minimization of the system, final configurations of constitutive parts

namely, the CNT and the adsorbate of the composite system were separated and their

static energies at the final step are taken and adsorption energy was calculated by

using the Eq. 5.1.

Following the static calculations, CNT/sub-units and CNT/PEEK monomer adsorp-

tion energy calculations at 100K and 300K were performed in the NVT ensemble

by using the ReaxFF-lg [62] force field. Sub-molecules of PEEK and full PEEK

monomer were allowed to interact with CNT during 200 ps with a 0.1 fs time step.

Periodic boundary conditions were applied in all dimensions. All equation of motions

were integrated by using a velocity Verlet algorithm in the LAMMPS code and con-

stant temperature is achieved by the Berendsen thermostat algorithm with a damping

factor of 100 (in time units) meaning that thermostat is activated every 10 fs during

the simulation. The potential energy of the system is averaged using the last 50 ps
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of the simulation and potential energies of the polymer and the CNT are taken from

the last step of the simulation. This protocol will be called unfixed CNT case here-

upon in the text for short. In Table 5.5, ReaxFF and DFT adsorption energy results of

sub-molecules on 13.05 Å CNT is given.

Table 5.5: Adsorption energies (in meV) of sub-molecules on 13.05 Å (10,0) zigzag

CNT

System DFT ReaxFF

T=0K T=100K T=300K

CNT/C6H6 -450.2 -590.8 -578.7 -361.19

CNT/C6H4O2 -518.72 -578.1 -589.94 -716.76

CNT/C6H6O2 -580.33 -597.38 -553.41 -352.01

The ReaxFF calculations at 0 K and 100 K gave quite similar results with the DFT,

However, while the adsorption energy of C6H4O2 molecule considerably increases

with increasing temperature in the ReaxFF calculations, exactly opposite trend is ob-

served for the other two molecules. Similarly, length, radius and chirality dependence

of the full PEEK adsorption energies were computed at three temperatures mentioned

and compared to our previous DFT results. The results are given in Table 5.6. Ac-

cording to this table, ReaxFF results at 0 K and 100 K show very good agreement

with the DFT results. At the higher temperature of 300 K, the adsorption energy for

the smallest length is significantly larger than the lower temperatures. This differ-

ence attributed to the increased mobility of the monomer and the resulting ability to

find more stable adsorption configurations. For the two larger lengths, however, the

adsorption energies (indicated bold in Table 5.6) were found to be much lower. The

reasons behind this discrepancy will be discussed later in the text.

In Table 5.7, all adsorption energies were calculated with different chirality/radius are

given. The zigzag and armchair CNTs are taken to be 26.01 Å and 25.1 Å in length,

respectively, chosen so that these two types of CNTs are nearly equal in length. The

ReaxFF results at 0 K and 100 K temperature show very good agreement with DFT

results as shown in Figure 5.12 with a very slight overestimation. As in the previous

calculations, there appear lower adsorption energy results at the temperature of 300
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Table 5.6: Adsorption energies (in eV) of full PEEK monomer on (10,0) zigzag CNT

(unfixed) with different lengths

LCNT DFT ReaxFF

T=0K T=100K T=300K

13.05 -1.3518 -1.4207 -1.4241 -1.6526

21.75 -1.2743 -1.3548 -1.4128 -0.9255

26.01 -1.2841 -1.3520 -1.4137 -0.9955

K in some cases (shown in bold in Table 5.7). The reason behind this decrease will

be discussed later.

Table 5.7: Comparison of the interaction energies of full PEEK monomer on unfixed

CNTs with different radius calculated with DFT and MD techniques

DFT ReaxFF

T=0K T=100K T=300K

(10,0) -1.2841 -1.3520 -1.4137 -0.9955

(12,0) -1.3745 -1.4527 -1.5572 -1.5417

(15,0) -1.4145 -1.5477 -1.6321 -1.8294

(6,6) -1.3702 -1.4022 -1.4473 -0.9801

(7,7) -1.555 -1.4844 -1.5466 -1.0580

(8,8) -2.111 -1.5182 -1.5875 -1.5770

According to the results given in the Table 5.7, a dependence on the diameter of CNT

in the adsorption energies is observed. As the radius of a CNT increases, its curva-

ture decreases and provide a better settlement to the monomer on CNT that results

in higher adsorption energies [94, 95, 96]. On the other hand, no direct temperature

dependence is observed in some results. While adsorption energies increase with in-

creasing temperature for the (15,0) CNT, for other CNTs a decrease in adsorption

energy is observed from 100 K to 300 K. In Table 5.7, a different final configuration

of PEEK monomer on top of CNT (shown in Figure 5.13) is observed in adsorption
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Figure 5.12: Adsorption energies of zigzag CNTs with increasing radius calculated

by using DFT and ReaxFF

energies shown in bold. In the Mode 1 configurations, the ring in the middle of the

PEEK monomer tends to align with the axial CNT axis and the position of other por-

tions of the monomer are tilted. On the contrary, in the Mode 2 configurations, the

middle ring of the PEEK monomer is also tilted. The distance between the Mode 2

configurations of PEEK monomer with CNT is larger than the Mode 1 ones, therefore,

this can cause a decrease in the interaction energies. Here, we observe the competi-

tion between π-π interaction of between the CNT and the subunits of the monomer

and the angular energy penalty associated with the relative orientation of the subunits

with respect to each other. This issue was covered in Chapter 4. At 100 K, PEEK

monomer on all different CNTs can be found in the configuration labeled Mode 1 in

Figure 5.13 (a) while at 300 K some of the final configurations of PEEK are in Mode

2. Increase in temperature can trigger a new minimum configuration for these cases.

In MD calculations, performed with the Berendsen thermostat, temperatures of CNT

and PEEK were monitored separately during the simulation. It was observed that

while the temperature values of the system are around the desired values, the temper-

ature of the PEEK monomer is much lower. As an example, when system is at 100K,

temperature of the PEEK is around 20K. Nosé-Hoover and Langevin thermostats
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(a) Mode 1 (b) Mode 2

Figure 5.13: 2 different configuration of PEEK monomer on top of (10,0) CNT. Fig-

ure (a) shows the final configuration observed at 100 K and Figure (b) shows the one

at 300 K

were also tested to check the separate temperatures of CNT and PEEK components.

While the same behavior is observed in the Nosé-Hoover thermostat, in the Langevin

thermostat both CNT and PEEK temperatures reach the desired values with very large

fluctuations of the PEEK monomer. Temperature plots of these three thermostats are

given in Figure 5.14. As a comparison, the adsorption energies of the PEEK monomer

on top of (15,0) CNT is calculated by using these three thermostat algorithms and re-

sults are given in Table 5.8. It can be seen that the Langevin thermostat gives the

lowest adsorption energy result while the Berendsen gives the highest. Since the

Berendsen thermostat is the most commonly used temperature control algorithm with

the ReaxFF and the Langevin thermostat cause restricted movements of atoms later

result in no wrapping of PEEK chains around CNT, we proceed our MD calculations

with the Berendsen thermostat and continue to address the temperature problem in

different ways rather than switching to a different thermostat.

Table 5.8: Adsorption energies of full PEEK monomer on (15,0) zigzag CNT with

different thermostats

Thermostat Eb [eV]

Nosé-Hoover -1.5242

Berendsen -1.6321

Langevin -1.4360
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(a) Berendsen Thermostat (b) Nosé-Hoover Thermostat

(c) Langevin Thermostat

Figure 5.14: Temperatures of the system (shown with blue lines), CNT (with red

lines) and PEEK monomer (with green lines)

In most of the studies concerning CNT and polymer interfaces, CNT is kept fixed dur-

ing simulation due to its very small changes during simulation [97]. Since we have

faced a temperature decrease in PEEK polymer during simulations, we also tested this

protocol by treating atoms of CNT as frozen and compare with our previous results.

This protocol guarantees that the molecule always remains at the target temperature

with the payoff being that the CNT is effectively kept at zero. The results for the

frozen CNT case are given in following Tables 5.9 and 5.10.

According to these results, a decrease in the adsorption energies are observed with re-

spect to the previous protocol. However, the agreement with DFT results are still very

good. In this case, only adsorption in the Mode 1 configuration is observed. Apart
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Table 5.9: Adsorption energies (in eV) of full PEEK monomer on (10,0) zigzag fixed

CNT with different lengths

LCNT DFT ReaxFF

T=0K T=100K T=300K

13.05 -1.3518 -1.4207 -1.3184 -1.0292

21.75 -1.2743 -1.3548 -1.2549 -1.3265

26.01 -1.2841 -1.3520 -1.3946 -1.3864

Table 5.10: Comparison of the interaction energies of full PEEK monomer on fixed

CNTs with different radius calculated with DFT and MD techniques

DFT ReaxFF

T=0K T=100K T=300K

(10,0) -1.2841 -1.3520 -1.3946 -1.3864

(12,0) -1.3745 -1.4527 -1.4666 -1.0924

(15,0) -1.4145 -1.5477 -1.4882 -1.4210

(6,6) -1.3702 -1.4022 -1.4673 -1.2171

(7,7) -1.555 -1.4844 -1.3615 -1.3949

(8,8) -2.111 -1.5182 -1.5179 -1.2048

from this observation, we conclude that the new protocol does not yield qualitative

results that are significantly different from the previous protocol for the single PEEK

monomer.

5.3.2 CNT/PEEK Wrapping

Various experimental [90, 91] and MD studies [95, 96, 97] reported the non-covalent

wrapping of polymer chains around CNTs in literature. For polymers that have aro-

matic rings in their backbone, π-π stacking is the driving force [93]. After comparing

the DFT and MD results of CNT/sub-molecule and CNT/PEEK monomer adsorption

energies, we move on to study adsorption of the PEEK polymer with longer chain
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lengths. We again used the 3, 6 and 9-monomer PEEK chains as shown before in

Figure 4.5 and 4.24. In these calculations, we repeated the same protocol in the sin-

gle PEEK monomer calculations. Just the simulation time is increased from 200 ps

to 400 ps due to increase in the system size. Adsorption energies are calculated from

snapshots taken every 10 ps during the last 100 ps. Adsorption energy versus time

graphs are produced using the 10 adsorption energy results obtained in this way.

5.3.2.1 CNT and 3-monomer PEEK chain

First, 3-monomer length PEEK chain, created via random walk based configurational

bias Monte Carlo option, was placed on top of a 10 nm long (8,8) armchair CNT as

shown in Figure 5.15. In literature, armchair type CNTs have been reported to be

preferable for reinforcement [92].

(a) side view (b) front view

Figure 5.15: Initial configuration of 3-monomer PEEK on CNT (a) side view and (b)

front view

Adsorption energies were calculated at three different temperatures 1K, 100K and

300K by using the MD protocol mentioned above as unfixed CNT case. Adsorption

geometries and energies are given in Figure 5.16. As can be seen from these figures,

aromatic rings of PEEK placed parallel to the CNT as a consequence of π-π stacking

and result in higher adsorption energies as in Table 5.12.
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T=1K (side view) T=1K (front view)

T=100K (side view) T=100K (front view)

T=300K (side view) T=300K (front view)

Figure 5.16: Final configurations of 3-monomer PEEK chain at different temperatures
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(a) (b)

(c)

Figure 5.17: Adsorption energy graphs of 3-monomer PEEK chain on CNT at (a)

1 K, (b) 100 K and (c) 300 K. Blue lines show the 10 data and red lines are their

averaged values.
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5.3.2.2 CNT and 6-monomer PEEK chain

We continued our investigations by increasing repeat units of PEEK from three to six

monomers. The PEEK chain was placed on CNT as shown in Figure 5.18.

t=0 ps (side view) t=0 ps (front view)

Figure 5.18: Initial configuration of 6-monomer PEEK on CNT

In this case, increase in the chain length yields more wrapped geometry around CNT.

At 100 K temperature, PEEK chain fully wrapped around CNT as in Figure 5.19 and

resulted with the highest adsorption energy.

Similarly to the case of the single monomer, two separate protocols (fixed and un-

fixed) were both used. For the case of 6 -monomer PEEK at 300 K, apart from these

two procedures, we tested another protocol by controlling temperature of CNT and

PEEK components separately. In this case, CNT and PEEK both are at the tempera-

ture of 300 K. Final geometries of 6-monomer PEEK on top of CNTs using these 3

different procedures is given in Figure 5.21 and their adsorption energies is given in

Table 5.11.

In Figure 5.21, it can be seen that when CNT is kept fixed, PEEK chain does not

fully wrap around CNT. There is an interchain coiling in this case that causes a de-

crease in the adsorption energy. Rather than full wrapping, coiling of polymer chains

is reported in literature as well [97]. Instead of interacting with surface of CNT,

intramolecular interactions of polymer chains dominate causing lower adsorption en-

ergies.
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T=1K (side view) T=1K (front view)

T=100K (side view) T=100K (front view)

T=300K (side view) T=300K (front view)

Figure 5.19: Final configurations of 6-monomer PEEK on CNT at 1K, 100K and

300K

Table 5.11: Comparison of the adsorption energies of 6-monomer PEEK calculated

with three different protocols

6-PEEK

Unfixed Fixed Heated separately

Ea -7.5572 -5.4523 -6.0809

Ea/monomer -1.2595 -0.9087 -1.0135
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(a) (b)

(c)

Figure 5.20: Adsorption energy graphs of 6-monomer PEEK chain on CNT at 1 K,

100 K and 300 K. Blue lines show the 10 data and red lines are their averaged values.
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CNT fixed (side view) CNT fixed (front view)

Separately heated (side view) Separately heated (front view)

Figure 5.21: 300 K final configurations of 6-monomer PEEK chain on CNT when

CNT is fixed and system is separately heated
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5.3.2.3 CNT and 9-monomer PEEK chain

Finally, 9-monomer PEEK chain was placed on (8,8) CNT and was subjected to an

MD process. Full wrapping of PEEK chain was observed most likely encouraged by

the already somewhat wrapped initial configuration.

(a) side view (b) front view

Figure 5.22: Initial configuration of 9-monomer PEEK chain on top of CNT

The results obtained in this subsection are summarized in Table 5.12. As seen in this

table, the adsorption energies generally follow an increasing trend with increasing

polymer length. This dependence trivially arises from the increasing contact area.

A more adequate comparison can be made by considering the adsorption energies

per monomer. As the length of the polymer increases, the self-coiling rate is also

increased. As such, the fraction of aromatic chains (or equivalently atoms) in direct

contact with the CNT decreases. These calculations fail to identify a concrete trend

as a function of temperature.
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T=1K (side view) T=1K (front view)

T=100K (side view) T=100K (front view)

T=300K (side view) T=300K (front view)

Figure 5.23: Final configurations of 9-monomer PEEK chain on CNT at 1K, 100K

and 300K temperatures

Table 5.12: Average adsorption energies (in eV) and adsorption energies per

monomer of 3, 6 & 9-monomer PEEK chain on (8,8) armchair CNT with 10 nm

length at 1K, 100K & 300K

CNT/3-PEEK CNT/6-PEEK CNT/9-PEEK

Temperature Ea & Ea/monomer Ea & Ea/monomer Ea & Ea/monomer

T=1K -4.4106 / -1.4702 -7.9298/ -1.3216 -11.0467/ -1.2274

T=100K -4.1186 / -1.3728 -8.3505 / -1.3917 -10.8717 / -1.2079

T=300K -4.1421 / -1.3807 -7.5572 / -1.2595 -11.5565/ -1.2840
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(a) (b)

(c)

Figure 5.24: Adsorption energy graphs of 9-monomer PEEK chain on CNT at 1 K,

100 K and 300 K. Blue lines show the 10 data and red lines are their averaged values.
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5.3.2.4 Rod-like PEEK Chains

During our calculations so far, it came to our attention that the final configuration

of the polymer was heavily influenced by the initial configuration. As a means of

lowering the bias towards wrapped configurations, we test a set of different initial

configurations. In addition to 3, 6 and 9-monomer PEEK chains created via con-

figurational MC option, we studied rod-like PEEK chains on top of (8,8) CNT. For

these cases, we placed the chains on CNT with three different angles 0◦, 45◦ and 90◦

respectively. The schematic representation of initial configuration is given in Figure

5.25. This time, the length of CNT is taken as 5 nm for 3-monomer PEEK , 10 nm

for 6-monomer PEEK and 15 nm for 9-monomer PEEK. First, we once again tested

Figure 5.25: Schematic of initial configuration of rod-like PEEK chains on CNT

the fixed and unfixed protocols as described previously. Adsorption geometries are

given in Figure 5.26 for comparison. The average adsorption energy was calculated

as -4.55 eV for the fixed case and -10.29 eV for the other case. There is a significant

difference between these two results. While interchain coiling of PEEK chain leads

to a smaller degree of wrapping around CNT [97] when CNT is kept frozen, in the

unfixed configuration, the polymer preferentially selects a larger extent of interfacial

interaction. Since the assumption of fixing CNTs is widely preferred in literature to

reduce computational cost and simplify the simulations [95] and we have faced with

an artificial decrease in the temperature of PEEK during simulations, we present these

final set of results by considering CNTs frozen in their original positions. The aver-

age adsorption energies for rod-like PEEK chains were calculated with this protocol

and results are given in following Table 5.13.
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(a) Fixed case (b) Unfixed case

Figure 5.26: Final adsorption geometries (front views) of 45◦ rotated PEEK chain on

CNT at T=100K

Table 5.13: Average adsorption energies (in eV) of rod-like PEEKs chain with differ-

ent initials

CNT/3-PEEK CNT/6-PEEK CNT/9-PEEK

0◦ 45◦ 90◦ 0◦ 45◦ 90◦ 0◦ 45◦ 90◦

T=100K -2.06 -1.44 -1.33 -3.35 -4.06 -5.09 -5.48 -4.56 -6.47

T=300K -1.22 -1.36 -2.15 -3.20 -3.84 -5.99 -3.98 -4.49 -6.65

There is a significant decrease in the average adsorption energies of PEEK chains.

According to our calculations, adsorption energies are clearly dependent on initial

configuration of polymer. It is also observed that fixed CNTs increase interchain

coiling in PEEK chains while decreasing the interaction of polymer and CNT. The

coiled configurations of the chain found to be have significantly lower energy than

the initial case, therefore, the chain prefers to found its lower energy configuration

instead of interacting with the CNT.
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CHAPTER 6

CONCLUSION

In this thesis, we investigated the interface between carbon nanotubes (CNTs) and

an industrially important polymer, polyetheretherketone, abbreviated as PEEK. The

motivation behind this study derives from the great interest in the use of carbon-

based nanomaterials as reinforcing agents in polymer matrices. Since CNTs have

remarkable mechanical properties, they are used very often for this purpose. Here,

our main objective was to understand the interaction between CNT and PEEK to

provide input for the development of their nanocomposites.

In Chapter 3, we studied the mechanical properties of various CNTs with Tersoff

interatomic potential under static loading. We calculated a negative Poisson’s ra-

tio value for these CNTs, which is finding well documented in literature reported as

a shortcoming of this potential [66]. Then, the mechanical properties were calcu-

lated with three different interatomic potentials developed for carbon systems namely

AIREBO, ReaxFFCHO and ReaxFFC2013. We found that ReaxFFCHO overestimates

the Poisson’s ratio of CNTs as also stated in literature [68]. Hence, we carried out

our mechanical property investigations under dynamical loading with AIREBO and

ReaxFFC2013 potentials. For both Young’s modulus and Poisson’s ratio, good agree-

ment was found with literature for these two potentials.

In Chapter 4, the Nosé-Hoover, Berendsen and Langevin thermostats were tested on

isolated PEEK chains of three different lengths together with the two versions of

the ReaxFF potential namely ReaxFFCHO and ReaxFF-lg. These benchmark stud-

ies were conducted to identify the most suitable thermostat and potential to be used

in further calculations. In these simulations, performed in vacuum, we encountered

99



the so-called the flying ice cube artifact when we use the Nosé-Hoover and Berend-

sen thermostats. We prevented this artifact by demanding that the center of mass

linear and angular momentum be zero. This option is readily available in the code

suite used here, namely LAMMPS. Two important properties that give information

about polymer chains namely end-to-end distance and radius of gyration were inves-

tigated during these simulations which were used to assess the degree of folding of

the polymer chains. Based on the analysis of the results of this portion, the remaining

calculations were carried out using the ReaxFF-lg version together with the Berend-

sen thermostat which is mostly widely used temperature control scheme used in the

ReaxFF studies.

Finally, in Chapter 5, we investigated the interaction between CNT and PEEK with

both DFT and MD techniques. Our interface calculations began by dividing the PEEK

monomer into its sub-units and analyzing the interaction between these sub-units and

CNT. The purpose of this preliminary study was to understand the driving forces be-

tween adsorption geometries of the full monomer by looking at the details of the π-π

interaction with each aromatic ring and the CNT. Following this stage, the adsorption

energies of PEEK monomer on different CNTs were calculated by using the ReaxFF-

lg potential at 0 K temperature and the results showed very good agreement with the

DFT results by proving the accuracy of the ReaxFF potential. We then continued

the interface studies by examining the non-covalent wrapping mechanism of PEEK

around CNT. We used two different protocols when calculating adsorption energies

of PEEK chains. We adopted the common practice of keeping the CNT fixed during

our calculations. For these calculations, we have found that the adsorption energies

depend on the initial configuration of the polymer on CNT. For the two protocols that

we use, there is a noteworthy difference in the adsorption energies due to different

interaction mechanisms of the CNT and the polymer observed in these two cases.
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