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ABSTRACT

A GENERALIZED CORRELATED RANDOM WALK APPROXIMATION
TO FRACTIONAL BROWNIAN MOTION

Coşkun, Buket

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceren Vardar Acar

July 2018, 70 pages

The application of fractional Brownian Motion (fBm) has drawn a lot of attention in a

large number of areas, ranging from mathematical finance to engineering. The feature

of long range dependency limited due to the value of Hurst parameter H ∈ (1/2, 1)

makes fBm the desired process for stochastic modelling. The simulation of fBm is

also vital for the application in such fields. Hence, the development of an algorithm

to simulate an fBm is required in both theoretical and practical aspects of fBm. In this

study, we mainly propose a new fBm generation method by using the Hurst parameter

and the correlation structure based on this parameter and suggest an algorithm to gen-

erate correlated random walk converging to fBm, with Hurst parameter,H ∈ (1/2, 1).

The increments of this random walk are simulated from Bernoulli distribution with

proportion p, whose density is constructed using the link between correlation of mul-

tivariate Gaussian random variables and correlation of their dichotomized binary vari-

ables. We prove that the normalized sum of trajectories of this proposed random walk

yields a Gaussian process whose scaling limit is the fBm.

v



Keywords: Fractional Brownian Motion, Simulation, Random Walks, Discretization,

Convergence

vi



ÖZ

GENELLEŞTİRİLMİŞ İLİŞKİLİ RASSAL YÜRÜYÜŞÜN KESİRLİ BROWN
HAREKETİNE YAKINSAMASI

Coşkun, Buket

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceren Vardar Acar

Temmuz 2018, 70 sayfa

Kesirli Brown hareketinin (kBh) uygulamaları matematiksel finanstan mühendisliğe

kadar bir çok alanda dikkat çekmektedir. Hurst parametre değerinin H ∈ (1/2, 1)

olması nedeniyle sınırlanan uzun dönem bağımlılık özelliği kBh’yi stokastik model-

leme için aranan süreç yapmaktadır. kBh ’nin simülasyonu bu alanlardaki uygula-

maları açısından da önemlidir. Bu yüzden fBm üreten bir algoritmanın gelitirilmesi

kBh için hem teorik hem de pratik açıdan gereklidir. Bu çalışmadaki temel amacımız

H ∈ (1/2, 1) olan, bu Hurst parametresini ve parametreye bağlı korelasyon yapısını

kullanarak yeni bir kBh üretme yöntemi ve kBh’ye yakınsayan ilişkili rassal yü-

rüyüş süreci üreten bir algoritma önermektir. Bu rassal yürüyüşlerdeki artışlar, çok

değişkenli Gauss tipi rassal değişkenin korelasyonu ile onun ikili olarak kesikli hali-

nin korelasyonu arasındaki ilişki kullanılarak ulaşılan dağılama sahip p oranından ge-

len Bernolli dalmndan üretilir. Bizde bu önerilen rassal yürüyüşten normalleştirilmiş

toplamlarının ölçeklendirilmiş limiti kBh olan Gaussian sürecini ürettiğini kanıtladık.
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CHAPTER 1

INTRODUCTION AND MOTIVATION

Most of the real data displaying long-range dependence can be modeled with self-

similar processes. Fractional Brownian motion (fBm) is one of the simplest models

demonstrating long-range dependence. In recent years, this phenomenon has become

quite popular due to its applications in many areas. For instance, in the field of math-

ematical finance, Roger [31] has proposed an fBm model for the movement of share

prices. In communication systems, Leland et al. [24] use the increments of fBm

for modeling of Ethernet local area network (LAN) traffic. In biology, Lim and Mu-

niandy [26] use the discrete-time version of fBm to model the non-coding sequence

of human DNA by recognizing a DNA sequence as a fractal random walk.

Fractional Brownian motion has introduced by Kolmogorov [21] for the development

of turbulence theory. It has named after Mandelbrot and Van Ness [28] since they

define a fractal integral representation with respect to a standard Brownian motion,

which can be generalized to fBm in the presence of dependent increments.

An fBm, denoted by BH(t), is a centred Gaussian process with stationary increments

such that E[BH(t)BH(u)] = C2

2
(t2H + u2H − |t − u|2H) for all t, u ≥ 0, where C

denotes the scale parameter, and H denotes the Hurst parameter or the parameter of

self- similarity. It is already known that the increments of fBm can be either positively

or negatively correlated depending on the Hurst parameter. In particular, an fBm

with parameter H = 1/2 corresponds to a standard Brownian Motion. For H ∈
(0, 1

2
), its increments are negatively correlated and display short-range dependence. In

contrast, for H ∈ (1
2
, 1), the auto-covariance of the fBm increments is positive. Thus
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two consecutive increments tend to have the same directions. Such fBm is called

persistent. In addition, for such H , fBm has the long-range dependence property.

Thanks to this property, fBM has been applied to many areas of science. Another nice

characteristic of fBm is that it has stationary Gaussian increments, called fractional

Gaussian noise (fGn), whose cumulative sum displays an fBm sample.

The simulation (or generation) of fBm has drawn a lot of attention due to its applica-

tions in diverse areas. In the literature, there is a large number of simulation methods.

For instance, the method studied by Hosking [18] implicitly computes the fGn covari-

ance matrix. The Cholesky method proposed by Asmussen [2] also uses the Cholesky

decomposition. This method is applied to the same matrix, but the covariance matrix

of fBm can also be used for Cholesky method. Another approach is the fast Fourier

transform (FFT) method developed by Davies and Harte [9]. In this method, FFT

algorithm is used in order to generate an fGn sample. Then, the covariance matrix

of fGn is buried in a circulant covariance matrix, and this circulant matrix is diago-

nalized with FFT algorithm. In another study, the integral representation introduced

by Mandelbrot and Van Ness [28] is used for a direct approximation of fBm. An-

other approach of generating an fBm process is the wavelet transform method. The

method firstly generate the wavelet coefficients referring to an orthogonal basis. The

fBm is reached via an inverse wavelet transformation. The fast implementation of this

method is given in Abry and Sellan [1]. The other approximate and fast technique is

the random midpoint displacement method proposed by Lau et al. [23]. He used an

approach based on counting of the conditional distribution of fGn like the Hosking

method. ts only difference is the generation based on the condition distribution given

the last certain points instead of all past points.

Due to the content of this study, we also concentrate on several random walk ap-

proximations of fBm. Donsker’s theorem expresses that standard Brownian motion

can be constructed by random walks. As an analogue of this theorem, fBm can also

be constructed by random walks. Taqqu [35] uses the normal random variables to

show convergence. Dasgupta [8] shows this approximation by using the binary ran-

dom variables and the stochastic integral representation of fBm. On the other hand,
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Sottinen [33] defines a random walk which convergences weakly to fBm by using

a kernel function that converts the standard Bm to fBm for long-range dependence

case. Szabados [34] uses moving average of an appropriate nested sequence of ran-

dom walks uniformly converge to fBm when H ∈ (1
4
, 1). This approximation use the

discrete form of moving average representation. Enriquez [16] proves that normal-

ized correlated random walk converges weakly to fBm. The construction relies on

correlated random walks including discrete time processes such that the distribution

of each jump is a function of the preceding jump, which is defined as the parameter

of persistence. Konstantopoulos and Sakhanenko [22] has introduced scaled random

walks which use the weighted sum of iid random variables, converges to fBm under

the sufficient condition for the weak convergence of normalized sums to fBm with

H > 1
2
. Lindstrom [27] provides the same approximation with Konstantopoulos [22]

for the case H < 1
2
.

The motivation of this study is to propose an fBm generation method by using the

Hurst parameter and a correlation structure based on this parameter. For this purpose,

we generate a correlated random walk which converges to fBm. In order to show this

convergence, we write our theorem and prove it theoretically. In light of this theorem,

we present a new simulation algorithm for fBm by using the correlated random walk.

Our fBm construction is the generalization of the construction given by Enriquez [16].

His construction depends on the persistent random walks with a persistence parame-

ter, which corresponds to the probability of producing the same jump as the last. As

an enhancement to Enrique’s study [16], our fBm construction use correlated random

walks depending on a correlation structure counted by using the given Hurst parame-

ter and the discretization proportion. Moreover, we use the relationship between the

correlation of multivariate normal random variables and the correlation of their dis-

cretized version in order to establish a link between the persistence parameter and the

discretization proportion.

This thesis is organized as follows. Chapter 2 provides the definitions and notations

used throughout the paper. In addition, some important fBm simulation methods are

expressed. The realization and discretization of fBm are presented in Chapter 3. Fur-

3



thermore, After discretization, simulation results are given. Chapter 4 is devoted to

the generation of fBm. The generation is performed in two steps. First, a relationship

between the discretization proportion and persistence parameter is provided. Then

the convergence of the correlated random walk to fBm is proved. In Chapter 5, a new

algorithm is proposed to generate correlated random walks which converge to fBm.

We give a brief review of this study and state our main results in the final chapter.

4



CHAPTER 2

DEFINITIONS, NOTATIONS AND SIMULATION METHODS

2.1 Random Walk

The random walk is the stochastic process that is one of the most fundamental topics

in probability theory. The term "random walk" was originally proposed by Pearson

[30] in a letter to Nature in 1905. In this paper, he asks his readers a question. Sup-

pose a man starts its walk at a point and walks one step in a straight line, then he

walks another step. After he repeats this process n times, he wants to know the dis-

tance he takes in n steps. Lord Rayleigh, physicist and 1904 Nobel physics winner,

solved this question asymptotically. In earlier 1900s, the theory of random walk was

also developed by economist Louis Bachelier in his thesis. He proposed the random

walk as a financial time series model.

It is obviously seen that the random walk model is quite versatile and interdisci-

plinary. The question of Pearson stemmed from modelling of mosquito infestation in

a forest, which is related to biology. Rayleigh’s work related to physics and Bache-

lier’s to economics. Today, the theory of random walk is useful in many disciplines

like chemistry, ecology, computer sciences, psychology as well as biology, physics

and economics.

After expressing the history of the random walk, now let us present the formal defini-

tion.
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2.1.1 Definition and Properties

Assume X1, X2, ... are independent, identically distributed (iid) binary random vari-

ables. Each takes the value 1 with the probability of p and −1 with the probability of

q = 1 − p. The integer-time stochastic process {Sn, n ≥ 1} which is a sum of these

iid random variables, is called a random walk.

Sn =
n∑

i=0

Xi. (2.1)

If p = q = 1
2
, the random walk is called symmetric random walk. For instance, if a

fair coin is flipped repeatedly, the coin will be either tail with the probability of p or

will be head with the probability of 1 − p. Suppose that the respective probabilities

of tail and head are represented by p and 1− p, then Sn is represented by the number

of heads minus the number of tails in the first n toss.

Figure 2.1: Random walk simulation for n=20 step size

Basic properties of a symmetric random walk are presented as follows:

i The random walk starts at time zero, S0 = 0.

6



ii The expectation of a symmetric random walk process is equal to zero. The

expectation of each increment can be calculated as E(Xi) = 1
2
× 1 + 1

2
×

−1 = 0. Since the expected value of each increment takes the value of 0. The

expectation of random walk is defined as E(Sn) = E(X1 +X2 + ... +Xn) =

E(X1) + E(X2) + ...+ E(Xn) = 0.

iii The variance of a symmetric random walk process equals the number of steps

by independence. Similarly, the variance is obtained by V (Sn) = V (X1 +

X2 + ... + Xn) = V (X1) + V (X2) + ... + V (Xn) = n by independence of

the increments. Note that each increment is distributed with variance V (Xi) =

E(Xi)
2 − [E(Xi)]

2 = 1.

iv A symmetric random walk process has independent increments. For any finite

set of discrete times ni such that i = 1, ..., k with 0 ≤ n0 ≤ n1 ≤ ..... ≤ nk, the

increments (Sn1 − Sn0), (Sn2 − Sn1), ..., (Snk
− Snk−1

) are independent from

each other. These increments are distributed with zero meanE[Sni+1
−Sni

] = 0

and finite variance V ar[Sni+1
− Sni

] = ni+1 − ni.

E[Sni+1
− Sni

] = E(

ni+1∑
j=ni

Xj) =

ni+1∑
j=ni

E(Xj) = 0 (2.2)

V ar[Sni+1
− Sni

] = V ar(

ni+1∑
j=ni

Xj) =

ni+1∑
j=ni

V ar(Xj) =

ni+1∑
j=ni

1 = ni+1 − ni

(2.3)

v A symmetric random walk has Markov property. This property states that the

future state of the process does not depend on past only when the current state

is given. (Sn, nϵZ+) is Markov if and only if, for all nϵZ, E[Sn+1|Sn, ..., S1] =

E[Sn+1|Sn].

vi A symmetric random walk is a martingale. A martingale is defined as an

integer-time stochastic process {Zn;n ≥ 1} with the propertiesE|Sn| <∞ for

all n ≥ 1. In Equation (2.1), Xi’s are identically and independently distributed

with zero mean. By applying the Markov property, the conditional expectation

7



can be rewritten as

E[Sn+1|Sn] = E[Xn+1 + Sn|Sn, ..., S1] (2.4)

= E[Xn+1] + E[Sn]

= E[Sn].

2.1.2 Distribution of Random Walk

We can benefit from the Bernoulli process to find the distribution of Sn. Let us convert

the random walk into Bernoulli distribution by using the transformation Yi = 1
2
(Xi +

1). Since Xi takes the value 1 or −1, Yi takes the 1 or 0, respectively. Dn represents

the sum of Yi. From literature, it is well known that the sum of Bernoulli trials follows

the Binomial distribution. Therefore, Dn =
∑n

i=1
1
2
(Xi + 1) follows the binomial

distribution with parameters n and 1
2
. When

∑n
i=1Xi is substituted by Sn, Dn is

1
2
(Sn + n). Then, the probability of Sn can be written as

P (Sn = y) = P (2Dn − n = y) = P (Dn =
y + 1

2
) =

(
n

n+ y

)
1

2n
(2.5)

for r = −n,−(n− 2), ..., (n− 2), n.

2.2 Brownian Motion

In 1827, the Scottish Botanist Robert Brown discovered a motion of the pollen grains

of some plants in liquids. While examining this movement, he realized that the place

of the pollen particles had changed in a random motion. This phenomenon was de-

scribed as Brownian motion in the paper of Brown [5]. However, the correct answer

for the reason of pollen particles’ motion could not be given until the discovery of

the kinetic theory by Einstein [14]. He noticed that this motion stemmed from the

collusion of the molecules in the liquid. After the physical construction of Brownian

motion by Brown [5] and Einstein [14], the mathematical foundation was given by

some mathematicians like Weiner [36], Donsker [13], Kolmogorov [21], Levy [25].

In recent years, this stochastic process has become a very significant one that is widely

8



used in many disciplines such as economics, finance, biology, mathematical statistics,

physics and management science. Especially, nowadays, it is used to model the stock

prices and financial markets.

Definition 1 A Brownian motion (Bm) {Wt} at time t ≥ 0 defined on the probability

space (Ω, F, P ) is a real-valued stochastic process such that

i Wt has almost surely continuous path.

ii For all 0 ≤ t1 ≤ t2 ≤ ..... ≤ tk and k ≥ 0 , Wt1 −Wt0 ,Wt2 −Wt1 , ....,Wtk −
Wtk−1

are independent random variables, that is, W (t) has independent incre-

ments.

iii For all 0 ≤ u ≤ t and h + u ≥ 0, the law of Wt −Wu is the same with the

law of Wt+h −Wu+h. Besides, the law of Wt −Wu normally distributed with

expectation zero and variance t − u. Hence, Wt has stationary and normal

increments.

Figure 2.2: Brownian motion simulation for n=500 step size

9



Since the increments of a Brownian motion are distributed normally, the linear trans-

formation of independent Gaussian random vector (Wt1 ,Wt2 , ...,Wtk) is jointly nor-

mally distributed for all 0 ≤ t1 < t2..... ≤ tk. Note that if all vectors are Gaussian,

then the stochastic process Wt is also a Gaussian. Thus, the process {Wt : t ≥
0} is a Gaussian process with zero mean and covariance function Cov(Wt,Wu) =

σ2min(u, t). The covariances, for all u ≤ t, between increments is given by

Cov(Wt,Wu) = E(WtWu)− E(Wu)E(Wt) = E(WtWu).

Now substituting (Wt −Wu) +Wu in Wt, we obtain

Cov(Wt,Wu)) = E(((Wt −Wu) +Wu)Wu)

= E((Wt −Wu)Wu) + E(Wu
2). (2.6)

As the increments are independent, the covariance between increments is then given

by

Cov(Wt,Wu) = E(Wu
2) = V ar(Wu) = σ2u (2.7)

Similarly, for all t ≤ u, the covariance equals to σ2t, or equivalently, Cov(Wt,Wu) =

σ2min(u, t). Moreover, Brownian motion is a Markov process. Assume now that

{Wt : t ≥ 0} is a stochastic process. The Markov property says that if we know the

process {Wt : t ≥ 0} on the interval [0, s], for the prediction of the future {Wt : t ≥
s} this is as useful as just knowing the endpoint Ws.Suppose that Wt is a stochastic

process on probability space with filtration Ft, collection of σ algebra (Ω,F ,P), is

called a Markov process if

P (Wt+u|Ft) = P (Wt+u|W0,W1,W2, ...,Wt)

= P (Wt+u|Wt) (2.8)

holds for every u ≥ t. Note that if Wt is a Bm, the process Wt+u−Wu is independent

of the process Wu by independency of the increments.

Besides, Brownian motion is a martingale, that is, it owns the martingale property.

For fix 0 ≤ u ≤ t, a stochastic process Wt with filtration Ft is a martingale if the

process Wt is integrable and the statement E(Wt|Fu) = Wu is almost surely true.

10



Recall that Bm has zero mean, E(Wt) = 0. Hence, E(Wt) is obviously integrable

since the condition E(Wt) ≤ ∞ holds. Then

E[Wt|Fu] = E[(Wt −Wu) +Wu|Fu] = E[Wt −Wu|Fu] + E[Wu|Fu]. (2.9)

Since the processWt−Wu is independent of Ft, we haveE(Wt−Wu|Fu) = E(Wt−
Wu) = 0. We get

E[Wt|Fu] = Wu + E[Wt −Wu] = Wu. (2.10)

Thus, Wt is a martingale.

Brownian motion has one basic property, which is called the invariance property.

This property identifies a transformation on the space of functions, which changes

the individual Brownian random functions but leaves their distribution unchanged.

If a Bm is exposed to transformations, these transformed ones are also Bm. After

transformations, their distributions remains stable but their Brownian functions are

altered. Suppose that the process Wt is a standard Bm. The scaling version β−1Wβ2t,

the time shifted version Wt+α−Wt, the symmetric form −Wt, and the time inversion

form tW1/t is also a standard Bm for any α, β > 0 and t > 0.

2.3 Fractional Brownian Motion

Firstly, Kolmogorov [21] has introduced fractional Brownian motion with the name

of "Wiener spiral". Then Mandelbrot and Vann Ness [28] have determined its name as

fractional Brownian motion (fBm). They have also suggested a representation of fBm

with respect to the standard Brownian motion. fBm is the abbreviation of fractional

Brownian motion which is generally used in the literature. The dependence of fBm

increments is qualified by a parameter, called Hurst, named after hydrologist Harold

Edwin Hurst. In the study of Hurst [19], he has used the Hurst index to define the

irregularity of Nile River in rate of flow. Moreover, he has used R/S analysis, which

is one of the techniques in time series analysis, for modelling hydrological processes

like flow, precipitation to estimate the Hurst parameter.
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Definition 2 A fractional Brownian motion is a centered Gausssian process {BH(t), t ≥ 0}
with the covariance function

E[BH(t)BH(u)] =
1

2
(t2H + u2H − |t− u|2H). (2.11)

This process has a parameter H ∈ (0, 1), called the Hurst parameter.

The fBm satisfies the following properties:

• BH(0) = 0, the processes is beginning at point 0.

• BH(t) has stationary increments. This means the process BH(t+ u)−BH(u)

has the same distribution as BH(t) for u, t ≥ 0.

E[(BH(t+ k)−BH(k))(BH(u+ k)−BH(k))]

= E[BH(t+ k)BH(u+ k)]− E[BH(u+ k)BH(k)]− E[BH(k)BH(u+ k)]

+ E[BH(k)BH(k)]

=
1

2
[t+ k]2H + [u+ k]2H − |t− u|2H − [(t+ k)2H + k2H − t2H ]

− [(u− k)2H + k2H − u2H ] + 2k2H ]E[BH(1)]

=
1

2
(t2H + u2H − |t− u|2H)E[BH(1)] = E[BH(t)BH(u)] (2.12)

• BH(t) is a Gaussian process with the variance of BH(t) = t2H for all t ≥ 0

and H ∈ (0, 1). We know

V [BH(t)] = E[(BH(t))2]− E[BH(t)]2. (2.13)

The expectation of BH(t) is zero by the definition of Brownian motion, then

E[(BH(t))2] =
1

2
(t2H + t2H − |t− t|2H) = t2H (2.14)

• BH(t) has continuous trajectories.

• There is a correlation between two increments. The increments of fBm are

also called fractional Gaussian noise (fGn), which can be written as [BH(t)]−
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[BH(t−1)]. The distribution of fGn is Gaussian with zero mean and covariance

function, for u+ k ≤ t and t− u = km,

ρH(n) = Cov(BH(t+ k)−BH(t), BH(u+ k)−BH(u))

=
1

2
k2H [(m+ 1)2H + (m− 1)2H − 2m2H ], (2.15)

where H represents the Hurst parameter.

Equation (2.15) will be zero for H = 1/2. Then this equation corresponding

to a standard Brownian motion owns independent increments. However, for

H ̸= 1/2, the increments are not independent. If 1/2 < H < 1, the increments

are positively correlated. For this H , the fBm is said to be persistent. This

means that the direction (up or down) of a jump is more likely to be followed

by a jump with the same direction. In other words, when the fBm declines in

the past, then declining in the future is more possible.

Figure 2.3: Fractional Brownian motion path with H=0.7
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Contrarily, if 0 < H < 1/2, fBm is said to have negatively correlated in-

crements, a property of anti-persistence. This means that a jump up is more

likely to be followed by a jump down. For 0 < H < 1/2, they have negative

correlation. This case refers to short range dependence. In other words, it is

anti-persistent, that is, when the fBm declines in the past, then rising in the

future is more possible, or conversely.

Figure 2.4: Fractional Brownian motion path with H=0.3

• The increments of fBm display long-range dependence whenH > 1
2
. A station-

ary sequence (Ym)m∈N has the characteristic of long-range dependence with the

condition that ρ(m) = Cov(Yh, Yh+m) ensures limn→∞
ρ(m)
bm−β = 1, where b is

any constant and β ∈ (0, 1). Therefore, when m goes to infinity, Equation

(2.15) converges to H(2H− 1)m2H−2. When limn→∞
ρH(m)

H(2H−1)m2H−2 = 1, fBm

increments have long-range dependence for the case H > 1
2
.

• fBm BH(t) is a self similar process as BH(λt) and λ−HBH(t) have the same

laws.
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2.4 Simulation Methods of Fractional Brownian Motion

Recently, fBm has been very popular thanks to its application in various fields such as

economics, finance, engineering, hydrology, and communication. Hence, many peo-

ple have shown a lot of interest in the simulation of fBm. Both exact and approximate

techniques are proposed for the simulation of fBm because of the fractal structure

which is hard to manage in the numerical calculation. In this part of the study, we

present the most widely used methods to simulate a fractional Brownian motion.

2.4.1 Hosking Method

The Hosking method which is proposed by Hosking [18], is based on the generation

of a stationary Gaussian process depending on a covariance function. This algo-

rithm simulates a fractional Gaussian sequence Zk. In other words, it calculates the

conditional distribution Zr+1 given the past samples Zr, ...., Z1, Z0. In fact, this con-

ditional distribution is Gaussian with expectation and variance which are functions of

r. Therefore, recursive simulation of Zr+1 can be done by generating standard normal

random variable Z0.

Assume that γ(k) = E(XrXr+k) represents the autocovariance function and let us

take γ(0) = 1 for simplicity. M(r) = γ(ij)i,j=0,...,r denotes the covariance matrix,

d(r) is the (r+1) column vector with elements d(r)k = γ(k+1), k = 0, ..., r. Let us

define the matrix G(r) = (1(i = r − j))i,j=0,...,r such that 1 stands for the indicator

function. Hence, the matrix M(r + 1) can be decomposed as

M(r + 1) =

[
1 d(r)T

d(r) M(r)

]
=

[
M(r) G(r)d(r)

d(r)TG(r) 1

]
.

The conditional distribution can be expressed with mean µr+1 = E(Zr+1|Zr, ..., Z0)

and variance δ2r+1 = V ar(Zr+1|Zr, ..., Z0). Then Xr+1 can be generated from a stan-

dard normally distributed Z0. Since we know µn, δ2r and ιr = d(r)TG(r)M(r)−1d(r),

next estimation of the mean and the variance can be generated recursively by using
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the recursion

δ2r+1 = δ2r −
(λ(r + 2)− ιr)

2

δ2r+1

. (2.16)

In order to generate an fBm sample, the cumulative sum can be computed from the

initial recursion µ1, δ21 and ι0.

2.4.2 Cholesky Method

The Cholesky method introduced by Asmussen [2] uses the Cholesky decomposition

of the covariance matrix. It implies that the covariance matrix Π(r) can be separated

as L(r)L(r)T , where L(r) denotes an (r+1)×(r+1) lower triangular matrix and "T "

stands for the transpose. Assume that ljk represents the element (j, k) of the matrix

L(r) for j, k = 0, 1, ..., r. Then L(r) corresponds to the lower triangular matrix if

ljk = 0 for k > j. Note that this separation is possible only when L(r) is a symmetric

positive definite matrix.

The matrix scheme can be written as
Υ(0) Υ(1) . . . Υ(r)

Υ(1) Υ(0) . . . Υ(r − 1)
...

...
. . .

...

Υ(r) Υ(r − 1) . . . Υ(0)

 =


l00 0 0 0

l10 l11 0 0
...

...
. . .

...

l00 l01 . . . l00

×


l00 l10 . . . lr0

0 l11 . . . lr1
...

...
. . .

...

0 0 . . . lrr

 .
It can easily be seen that l200 = Υ(0), l10l00 = Υ(1) and l210 + l211 = Υ(0) for j = 1. If

j ≥ 1, the entries of the matrix L(r) can be identified by

lj0 =
Υ(j)

l00
,

lj,k =
1

lkk

(
Υ(j − k)−

k−1∑
i=0

ljilki

)
0 < k ≤ n,

l2jj = Υ(0)−
j−1∑
i=0

l2ji.

Then, Yr+1 =
∑r+1

i=0 lr+1,iVi generates the fractional Gaussian noise sequence for

given iid standard normal variables (Vj)j=0,...,r+1. If we consider this in a matrix

form, the main idea is to simulate Y (r) = L(r)V (r) recursively. When Υ(r) is a
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positive definite matrix, this guarantees the non-negativity of l2jj . Then, the covariance

structure of Y (r) can be obtained as

Cov(Y (r)) = Cov(L(r)V (r)) = L(r)Cov(V (r))L(r)T = L(r)L(r)T = Υ(r).

(2.17)

Although the numerical implementation of the Cholesky method is simple, it has

drawbacks because of the storage in memory.

2.4.3 Fast Fourier Transform Method

This approach has firstly proposed by Davies et al. [9]. In later times, both Dietrich

and Newsam [12] and Wood and Chan [37] have also developed this method. Similar

to Hosking and Cholesky techniques, the aim of this method is to derive the square

root of covariance matrix. Suppose that sample size is M and for a ∈ M , the size

of covariance matrix is M = 2a. For obtaining the square root of covariance matrix,

the key idea is to embed covariance matrix in a circulant covariance matrix with size

2M = 2a+1. Then, the circulant covariane matrix G can be defined as



υ(0) υ(1) . . . υ(M − 1) 0 υ(M − 1) . . . υ(2) υ(1)

υ(1) υ(0) . . . υ(M − 2) υ(M − 1) 0 . . . υ(3) υ(2)
...

...
. . .

...
...

...
...

...
...

υ(M − 1) υ(M − 2) . . . υ(0) υ(1) υ(2) . . . υ(M − 1) υ(0)

0 υ(M − 1) . . . υ(1) υ(0) υ(1) . . . υ(M − 2) υ(M − 1)

υ(M − 1) 0 . . . υ(2) υ(1) υ(0) . . . υ(M − 3) υ(M − 2)
...

...
. . .

...
...

...
...

...
...

υ(1) υ(2) . . . 0 υ(M − 1) υ(M − 2) . . . υ(1) υ(0)


Here, υ(.) represents the covariance function of fGn. The algorithm can be conducted

by the following theorem. If every circulant matrix G is split into G = CQCT , where

Q is the dioganal matrix of eigenvalues of G, and C stands for the unitary matrix

identified as

(C)ij =
1√
2M

exp(−2πk
ij

2M
), for i, j = 0, ..., 2M − 1 (2.18)
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where i =
√
−1. The matrix Q can be formed from eigenvalues given by

λk =
2M−1∑
i=0

wiexp(2πk
ij

2M
), for i, j = 0, ..., 2M − 1 (2.19)

where wi refers to i + 1 th element of the first row of G. In order to obtain an fBm

sample, below steps can be followed.

Step 1) Find the eigenvalues by using Equation (2.19).

Step 2) Compute V = CTQ. For the derivation of the matrix V , apply the following

simulation scheme;

• Derive two standard normal random variables V0 and VM

• Derive two independent standard normal random variables Q(1)
i and Q(2)

i and

obtain

Vi =
1√
2
Q

(1)
i + kQ

(2)
i

V2M−i =
1√
2
Q

(1)
i − kQ

(2)
i

Step 3) Calculate X = CQ1/2V such that

Xk =
1√
2M

2M−1∑
i=0

√
λiViexp(2πk

ij

2M
) (2.20)

More efficiently, this computation is applied by Fast Fourier Transformation. A sam-

ple of fGn can be generated by taking the first M elements of X . The advantages of

this method its speed.

Note that the function "fbm(H,n)" allows the generation of fBm with hurst parameter

H and lenght n by fast Fourier transform method in R. This function can be reach

from "somebm" package in R.

2.4.4 Stochastic Representation Method

Recall that fBm is defined by Mandelbroth and Van Ness [28] through stochastic in-

tegral representation in terms of Brownian Motion. The main point is to approximate
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this integral through Riemann sums in order to simulate the process.

By approximating the integral representation

BH(t) =
1

Γ(1
2
+H)

(∫ 0

−∞
(t− s)H− 1

2 − (−s)H− 1
2dB(s) +

∫ t

0

(t− s)H− 1
2dB(s)

)
,

(2.21)

where B(s) represents standard Bm and Γ. denotes gamma function, if the first inte-

gral part of Equation (2.21) is truncated, say at −b, then the approximation given by

B̃H(t) = CH

( 0∑
k=−b

[(n− k)H−1/2 − (−k)H−1/2B1(k)] +
n∑

k=0

(n− k)H−1/2B2(k)
)
,

(2.22)

for n = 1, 2, ..., N where CH is the constant depending on H , B1 and B2 represents

the iid standard normal vectors. If the truncation parameter increases, the approxi-

mation is more efficient. However, this method is not best way to simulate the fBm

despite its simplicity.

2.4.5 The Wavelet-Based Synthesis Method

The wavelet-based simulation procedure is proposed by Arby and Sellan [1]. They

suggest a wavelet representation which decorrelates the high-frequencies, that is,

BH(t) =
∞∑

k=−∞

ϕH(t− k)Sk
h +

∞∑
i=0

∞∑
k=−∞

λi(k)2
iHψH(2

it− k)− b0, (2.23)

where b0 represents an arbitrary constant, Sk
h is a partial sum of fractional ARIMA

(0, H − 1
2
, 0), λi(k) is iid Gaussian random variables for i ≥ 0, k ∈ Z , ϕH is a

properly selected fractional scaling function, and ψH is a wavelet. Especially, the

functions ϕH and ψH are identified via a connected orthogonal scaling function and a

wavelet associated with a multiresolution analysis.

Decorrelation of the high frequencies of Equation (2.23) which means the indepen-
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dency of the Gaussian coefficients λi(k), enables a fast simulation of fBm. Let

Sk
h(ι) = 2ι(H + 1)

∫
R
(BH(t) + b0)f(2

ιt−k)dt (2.24)

be the conveniently normalized approximation coefficients in the wavelet extention

of fBm at the scale 2−ι, where the function f : R → R is biorthogonal to the scaling

function ϕH . The algorithm includes high and low pass filters, symbolized by v(r) and

u(r) with r = 1
2
+H , respectively. As indicated by Arby and Sellan [1], the fractional

filters v(r) and u(r) enable the link

v(r) = g(r) ∗ v, u(r) = f (r) ∗ v,

where v and u are the high and low-pass filters associated with the initial Multiresolu-

tion analysis, * represents a convolution and the filters g(r) = {g(r)n } and f (r) = {f (r)
n }

are identified by z-transformations as

g(r) = (1 + z−1)r =
∑∞

n=−∞ g
(r)
n z−n,

f (r) = (1− z−1)−r =
∑∞

n=−∞ f
(r)
n z−n.

In practice, as the filters v(r) and u(r) are infinite and g(r)n may diverge as n → ∞,

Arby and Sellan [1] propose to set

v(r) = g(1) ∗ tg(d) ∗v, u(r) = f (1) ∗ tf (d) ∗u (2.25)

where d = H − 1
2
, tg(d) and tf (d) denote g(d) and f (d) truncated at some a priori

defined cutoff level.

Here, the opinion is to generate a fractional ARIMA (0, H + 1
2
, 0) sequence of a

finite length and use Equation (2.24) with truncated filters given by Equation (2.25) to

generate a much longer process Sk
h(ι) at required approximation level ι. The properly

normalized sequence Sk
h(ι) is taken for the approximation of fBm at the scale 2−ι.

Note that the simulation can easily be done by MATLAB with "wfbm(H,L)" code

which returns fBm signals of the Hurst parameter 0 < H < 1 and length L. This

code follows the algorithm proposed by Arby and Sellan [1].
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2.4.6 Random Midpoint Displacement

Lau et al.[23] put forward to the random midpoint displacement (RMD) approach

based on the counting of the conditional distribution of fGn like Hosking method. Its

only difference is the generation of the conditional distribution Zn+1 given last certain

generated points rather than all past sample points. The general form of RMD, called

Conditionalized RMD, is also proposed by Narros [29]. The only difference from

RMD is to use more sample points in conditional part.

Let W (t) denote the fBm and Xj,k is the fGn of a certain interval k in a given level

j. Initially, the conditional distribution of {Z(1
2
)|Z(0)Z(1)} is computed. Then, fGn

becomes Xj,k = Z(k2−j) − Z((k − 1)2−j) for j = 1, ..., k, k = 1, ..., 2i. For a

different j, a scaled sample of fGn with size 2i has a relation given by

Xj,2k−1 +Xj,2k = Xj−1,k (2.26)

An fBm sample can be obtained by taking sum of these scaled fGn sample. Due to

Equation (2.26), it is sufficient to generate Xj,k for odd k. Suppose that the sample

points Xj,1, ..., Xj,2m are generated for m ∈ 0, 1, ..., 2i−1 − 1. Then, by condition at

the past values, the point Xj,2m+1 can be computed as

Xj,2m−1= e(j,m)(Xj,max(2m−s+1,1), ..., Xj,2m, Xj−1,m+1, .., Xj−1,min(m+r,2j−1))
′

+
√
φ(j,m)Vj,m, (2.27)

where e(j,m) is a row vector such that

e(j,m)(Xj,max(2m−s+1,1), ..., Xj,2m, Xj−1,m+1, .., Xj−1,min(m+r,2j−1))
′

=E[Xj,2m−1|(Xj,max(2m−s+1,1), ..., Xj,2m, Xj−1,m+1, .., Xj−1,min(m+r,2j−1))
′]

and Vj,m represents an independent set of Gaussian variables, φ(j,m) stands for the

scalar given by

V ar[Xj,2m−1|(Xj,max(2m−s+1,1), ..., Xj,2m, Xj−1,m+1, .., Xj−1,min(m+r,2j−1))
′]

Here, the expectation and the variance are conditioned on the number of intervals

which is shown by integers s and m. For more detailed information, see Dieker [11].

21



2.4.7 Simulation by Random Walks

In our study, we propose random walks that converge to fBm. Therefore, we focus

specially on random walk approximation to fBm which are available in the literature.

Donsker theorem expresses that a standard Bm can be constructed by the random

walk. As analogue of this theorem, fBm can also be constructed by random walks.

Sottinen [33] defines a random walk which converges weakly to fBm by using fol-

lowing kernel representation of fBm in respect of a standard Brownian Motion for the

case H > 1
2

as follows:

B(t) =

∫ t

0

k(t, s)dWs, (2.28)

where W is a standard Bm and k(t, s) is the kernel function. He proposes a theorem

that a random walk B(n)(t) can be constructed by using the transformation given in

Equation (2.28). Let

B(n)(t) =

∫ t

0

k(n)(t, s)dW (n)
s , (2.29)

where k represents the kernel,W (n)
s denotes the scaled random walk such thatW (n)

s =

1√
n

∑[nt]
i=1 ϵ

(n)
i where ϵ(n)i denotes the iid random variable with zero mean and variance

1. Then the random walk B(n)(t) converges weakly to fBm.

He shows the convergence in two steps. First is shpwing that the following finite-

dimensional distribution of random walk Z(n),

X(n) =
a∑

j=1

cjZ
(n)(tj) (2.30)

for random c1, c2, · · ·ca and t1, t2 · ··, ta ∈ [0, T ], converge to the finite-dimensional

distribution of fBm. Second part includes the tightness of the random walk Z(n).

Konstantopoulos [22] introduces the random walks which are obtained by the weighted

sums of iid random variables under the condition given in Equation (2.33). Initially,

the following random variable {Yi, i ∈ Z} can be defined by the weighted sum of

random walks {Xj, j ∈ Z}.

Yi =
∞∑

j=−∞

Xjwi−j (2.31)
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where {wi} represents the weights.In order to generalize it, they define a scaled pro-

cess for f(n) > 0 as

Zn,t = (f(n))−1

[nt]∑
j=1

Xi. (2.32)

Konstantopoulos [22] also asserts that if the condition

Vn =
∑

(wj+1 + · · ·+ wj+n) ∼ Ln2H as n→ ∞ (2.33)

is satisfied, then the process Zn,t converges weakly to fBm.

Lindstrom [27] provides the same approximation with Konstantopoulos [22]. Con-

versely, he is interested in the caseH < 1/2. Eventhough, forH > 1/2, it is adequate

to show Equation (2.33) to prove the convergence. For H < 1/2, due to the delicate

calculation of the integral, Lindstrom [27] uses the representation given in Equation

(2.21).

On the other hand, Szabados [34] utilizes moving average of an appropriate nested

sequence of simple random walks uniformly converge to fBm for the caseH ∈ (1
4
, 1).

This approximation use the discrete form of moving average representation in given

Equation (2.21) by Mandelbrot and Vann Ness [28].

2.4.8 Construction by Correlated Random Walk

Taqqu [35] uses the normal random variables to show the convergence. In his study,

he proves the weak convergence of normalized sum of stationary random variables

that display long range dependence. He states the theorem as

Theorem 1 The sequence BN
t weakly converges to B̄t with the properties;

i B̄t is almost surely continuous.

ii B̄(0) = 0
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iii B̄t is self similar with order H i.e;

P (B̄kt1 ≤ y1, B̄kt2 ≤ y2, · · · , B̄ktq ≤ yq)

= P (kHB̄t1 ≤ y1, k
HB̄t2 ≤ y2, · · ·, kHB̄tq ≤ yq)

iv For λ ≤ 1
H

, E(B̄t) = 0 and E|B̄t|λ <∞.

if the sequence BN
t on Skorokhod space D[0, 1] presented by Sokorokhod [32] as an

option of uniform topology to work on weak convergence of a stochastic process with

jumps and satisfies the conditions;

i BN
t =

M[Nt]

L(N)N2H where MN =
∑N

j=1Xj , L is slowly varying function and Xi

represents the stationary sequence with zero mean.

ii As N → ∞, E(MN)2 = O(N2HL(N)).

iii As N → ∞, E|(MN)|2d = O((E(MN)2))d).

iv When N → ∞, finite dimensional distribution of BN
t converge.

Notably, the proof of this theorem is provided in his paper based on Bilingsley [4].

Lemma 1 For a stationary Gaussian Sequence Yi with E(Yi) = 0, E(Y 2
i ) = 1 and

correlation r(k) = E(YiYi+k);

ZN(t) =
1

aN

Nt∑
i=1

Yi (2.34)

under the condition that aN 2 asymptotically equals toN2HL(N), that is V ar(
∑Nt

i=1 Yi)

asymptotically proportional toN2HL(N) asN → ∞, weakly converges to
√
CBH(t)

as N → ∞ if the condition

N∑
j=1

N∑
i=1

r(j − i) ∼ CN2HL(N) as n→ ∞ (2.35)

,

where C is a positive constant and L represents a slowly varying function for r(k) ∼
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k2H−2L(k) in the case H > 1/2 and r(k) ∼ −k2H−2L(k) in the case H < 1/2 with

r(0) + 2
∑∞

k=1 r(k) = 0.

Here, the notation "∼" corresponds to asymptotic equivalence. He also states that

the same consequences are satisfied for aN 2∗ ∼ 2
2H(2H−1)

N2HL(N) which we have

used by showing our convergence theorem. Moreover, Enriquez [16] proves that

normalized CRW converges weakly to fBm. This paper is more crucial since we

propose a correlated random walk which generalizes the construction of persistent

random walk mentioned in Enriquez [16]. Thus, we underline this method in this

section. He separates fBm into two cases as H ≥ 1
2

and H < 1
2
. We focus on the

construction for the first case throughout this study. He defines the correlated random

walk with a parameter, called the persistence parameter ρ, referring to the probability

of the next jump being the same as the previous jump with jump sizes of −1 and +1.

Definition 3 A discrete process Xρ is called the correlated random walk having per-

sistence parameter ρ for all ρ ∈ [0, 1] if the process satisfy following conditions;

i The process is starting at 0, Xρ
0 = 0.

ii All X ′
j s are identically distributed with probability 1/2, P (Xj = −1) = 1/2

and P (Xj = +1) = 1/2.

iii For all n ≥ 1, the jump or increment ϵρn = Xρ
n − Xρ

n−1 is almost surely equal

to −1 and +1 .

iv For all n ≥ 1, ρ = P (ϵρn+1 = ϵρn|σ(X
ρ
k , 0 ≤ k ≤ n)

Furthermore, the correlation between two increments ϵρ with n step distance is calcu-

lated as follows.

Proposition 1 For all n ≥ 0 and m ≥ 1, we have

E[ϵρmϵ
ρ
m+n] = (2ρ− 1)n
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Then, P ρ is defined, which is the law of correlated random walk Xρ. After adding

randomness to persistence, instead of persistence ρ, probability measure µ on [0, 1]

is assigned and used. Hence, the law of correlated random walk is related to µ.

Therefore, the law of correlated random walk is based on measure µ and Xρ is P µ :∫ 1

0
P ρdµ(ρ).

Moreover, the representation of the increments ϵρ are converted to ϵµ = Xµ
n −Xµ

n−1.

Thus, Proposition 1 is modified as below:

Proposition 2 For all n ≥ 0 and m ≥ 1 we have

E[ϵµmϵ
µ
m+n] =

∫ 1

0

(2ρ− 1)ndµ(ρ)

Then, the proof of convergence theorem depending on the construction of the CRW,

is given in Enriquez [16].

Theorem 2 For H ∈ (1
2
, 1), let µH with density 23−2H(1−H)(1−ρ)1−2H denote the

probability on [1
2
, 1] and (XµH ,i)i≥1 be a sequence of independent process with law

P µH
. Then

LD lim
N→∞

L lim
M→∞

aH
XµH ,1

[Nt] +XµH ,2
[Nt] ...+XµH ,M

[Nt]

NH
√
M

= BH(t)

where cH = H(2H−1)
Γ(3−2H)

, L and LD denotes the convergence in distribution and the

convergence in the sense of weak convergence in the Skolorohod topology on D[0, 1],

the space of cadlag functions on [0, 1].

It is obviously seen that CRWXµ with the law of P µ weakly converges to fBmBH(t)

by Lemma1. This convergence is shown in two steps. First one is that the summation

of great number of paths converges to a discrete Gaussian process by CLT. Secondly,

when this Gaussian process, which satisfies the correlation condition stated in Taqqu

[35], is scaled, it converges to fBm.

In Enriquez [16], it is also emphasized that the theorem is conducted for probabil-

ity measure having moments of 1
n2−2HL(n)

given in Taqqu [35]. However, choosing

µH is appropriate for simulation purposes.
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CHAPTER 3

REALIZATION AND DISCRETIZATION OF FRACTIONAL BROWNION

MOTION

Just as a random walk converges to a standard Brownian motion, it is expected that the

correlated random walk converges to fBm. Enriquez [16] proves that the correlated

random walk with persistence parameter convergences to fBm. We consider whether

a correlated random walk with discretization parameter also converges to fBm. In this

chapter, it is initially mentioned how a random walk converges to Brownian motion.

Then, theoretical variance-covariance matrix of fBm increments is created and MVN

data is generated. And then, this generated data is discretized with a proportion p.

Finally, simulation results using dicretized variables are presented.

3.1 Convergence of Random Walks to Brownian Motion

Let Sn =
∑n

j=0Xj be one dimensional simple random walk. If the Xj’s are merged

by linear interpolation, then St can be defined for non-integer, t ∈ [0, n], satisfying

n ≤ t ≤ n+ 1.

St=Sn + (t− n)Xn+1

=
n∑

j=0

Xj + (t− n)Xn+1 (3.1)

Now, let us rescale the random walk by taking 1/
√
n as step size for each step instead

of step size 1 in simple random walk and compress time to the interval [0, 1]. Then,
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the scaled random walk is obtained as

W n
t =

1√
n

nt∑
j=0

Xj. (3.2)

In this rescaled process, there are number of nt steps and each has ± 1√
n

step size.

This ± 1√
n

step size is taking in time unit 1
n

. Recall that the expectation of each Xj is

zero and the variance of it equals 1. Hence, W n
1 can be written as

W n
1 =

∑n
j=0Xj − E(

∑n
j=0Xj)√

V (
∑n

j=0Xj)
. (3.3)

By Central Limit Theorem, as n → ∞, W n
1 converges in distribution to a standard

Normal distribution. Similarly, by CLT, Wt
n converges in distribution to normal dis-

tribution N(0, t).

W n
t =

1√
n

nt∑
j=0

Xj =
√
t

∑nt
j=0Xj − ntE(X1)√

ntV (X1)
(3.4)

Assume 0 ≤ s ≤ t ≤ 1, the sum of n(t−s) iid random variablesW n
t −W n

s converges

in distribution to a normal distribution N(0, t− s) by Central Limit Theorem.

W n
t −W n

s =
1√
n

nt∑
j=0

Xj −
1√
n

ns∑
j=0

Xj =
1√
n

nt∑
j=ns

Xj

=
√
t− s

∑nt
j=nsXj −

√
n(t− s)E(X1)√

n(t− s)V (X1)
(3.5)

When n→ ∞, the independency of (W n
s −W n

0 ,W
n
t −W n

s ) can be seen as below.

Assume m ≤ ns ≤ m+ 1, then

W n
s −W n

0 =
1√
n

ns∑
j=0

Xj =
1√
n

m∑
j=0

Xj +
(ns−m)Xm+1√

n
(3.6)

W n
t −W n

s =
1√
n

nt∑
j=ns

Xj =
(m+ 1− ns)Xm+1√

n
+

1√
n

nt∑
j=m+2

Xj (3.7)

Note that the only common term is Xm+1. If n → ∞, this term will be negligible.
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Then, any pair of W n
s − W n

0 and W n
t − W n

s become independent Normal random

variables with W n
s − W n

0 ∼ N(0, s) and W n
t − W n

s ∼ N(0, t − s) . Therefore,

for all 0 ≤ t1 ≤ · · · ≤ tk ≤ 1, the processes Wt1 ,Wt2 − Wt1 , · · ·,Wtk − Wtk−1

converge to independent normal random variables with expectations 0 and variances

t1, t2 − t1, · · ·tk − tk−1 as n→ ∞.

Briefly, the random walk converges to;

i As n→ ∞ , W n
1 → W1 ∼ N(0, 1) and W n

t → Wt ∼ N(0, t) .

ii As n→ ∞ , W n
t −W n

s → Wt −Ws ∼ N(0, t− s) .

iii Wt1 ,Wt2 −Wt1 , · · ·,Wtk −Wtk−1
are independent normal variables. Each has

zero expectations and variances of t1, t2 − t1, · · ·tk − tk−1, respectively.

3.2 Variance-Covariance Matrix of Fractional Brownian Motion

It is known that fBm {BH
t , t ≥ 0} is a Gaussian process with zero mean and covari-

ance function

Cov[BH(j)BH(k)] =
1

2
[j2H + k2H − 2|j − k|2H ],

whereH ∈ (0, 1) is the parameter of fBm, called Hurst index. fBm has also stationary

Gaussian increments, called fractional Gaussian noise (fGn). The covariance of fGns

can be calculated by using Equation (3.8).

Cov[BH(j)−BH(j − 1))(BH(k)−BH(k − 1))]

=E[BH(j)−BH(j − 1))(BH(k)−BH(k − 1))]− E[BH(j)−BH(j − 1)]

E [(BH(k)−BH(k − 1))]
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Since the second part of the equation is zero, we have

=E[BH(j)BH(k)−BH(j)BH(k − 1)−BH(j − 1)BH(k)

+BH(j − 1)BH(k − 1)]

=E[BH(j)BH(k)]− E[BH(j)BH(k − 1)]− E[BH(j − 1)BH(k)]

+E[BH(j − 1)BH(k − 1)]

Let us substitute Equation (3.8) into Equation (3.8).

=
1

2
[j2H + k2H − 2|j − k|2H ]− 1

2
[j2H + (k − 1)2H − 2|j − k + 1|2H ] (3.8)

− 1

2
[(j − 1)2H + k2H − 2|j − k − 1|2H ] + 1

2
[(j − 1)2H + (k − 1)2H

− 2|j − k|2H ]

=
1

2
[j2H + k2H − 2|j − k|2H − j2H − (k − 1)2H + 2|j − k + 1|2H

− (j − 1)2H − k2H + 2|j − k − 1|2H + (j − 1)2H + (k − 1)2H − 2|j − k|2H ]

=
1

2
[|j − k + 1|2H + |j − k − 1|2H − 2|j − k|2H ]

Suppose that j − k = m for k < j, the autocovariance function of the increments for

m th lag corresponds to

γ(m)=E[BH(k +m)−BH(k +m− 1))(BH(k)−BH(k − 1))]

=
1

2
[|m+ 1|2H + |m− 1|2H − 2m2H ] (3.9)

Let us obtain the variance of the increments.

V (BH(j)) = E[(BH(j))2] = γ(0)=
1

2
[12H + | − 1|2H − 02H ] = 1 (3.10)

Since the variance of the increments is equal to 1 , the autocorrelation function of the

increments for m th lag is equal to Equation (3.9).

Then, in order to make discretization in time, fBm is divided into the number of

n time intervals in the interval [0, t]. Suppose the interval length is equal to λ = t
n

.

Then, the covariance structure of the increments can be written as

γ(m)=
1

2
[|λ(m+ 1)|2H + |λ(m− 1)|2H − 2|λm|2H ]. (3.11)
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Let us take t = 1 to squeeze the fBm points to the interval [0,1]. Thus, for m =

j − k, j = 0, 1, 2, ..., n and k = 0, 1, 2..., j, the variance-covariance matrix of fBm

increments can be produced as follows:



V (B 1
n
−B0)Cov(B 1

n
−B0, B 2

n
−B 1

n
) . . . . . . . . . . . . Cov(B1 −Bn−1

n
, B 1

n
−B0)

V (B 2
n
−B 1

n
) . . . . . . . . . . . . Cov(B1 −Bn−1

n
, B 2

n
−B 1

n
)

...
. . .

...
...

. . . V (Bn−1
n

−Bn−2
n

)Cov(B1 −Bn−1
n

, Bn−1
n

−Bn−2
n

)

. . . . . . . . . V (B1 −Bn−1
n

)


(3.12)

3.3 Multivariate Normal Data Generation

It is known that one way to generate fBm is to simulate Multivariate Gaussian random

variables with the covariance matrix. Therefore, we generate MVN values with the

theoretical correlation matrix of fBm increments to obtain the matrix (3.12). Recall

that the covariance and correlation of increments are the same. As we use the co-

variance matrix of increments, after conducting simulations, we sum them to obtain

a realization of fBm.

It is easy to obtain a sample data from Multivariate Gaussian distribution. Assume

Z ∼ Nq(µ,Σ) where Σ is q × q, positive definite, that is |Σ−1| > 0, symmetric

variance-covariance matrix, and µ denotes the vector of mean. The sample data from

MVN distribution is derived by the Cholesky decomposition of the covariance matrix

Σ and univariate standard normal vector. As long as z = (z1, z2, · · ·, zq) are q inde-

pendent standard normal random variables, Z ′ = µ+ V z is the random sample from

MVN such that Σ is decomposed into multiplication of lower and upper triangular

matrix, Σ = V V T .

We apply the Cholesky method for partitioning the covariance matrix of fGn to find

the square root of it which is given in (3.12). Let δn denote a positive definite and n×n
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variance covariance matrix of fBm increments. By the Cholesky method, δn can be

split into the multiplication of lower and upper triangular matrix, ΛnΛ
T
n . Then, a sam-

pleX = µ+Λnz from the MVN distribution is generated. Here, z = (z1, z2, ..., zn) is

the standard normal vector, µ the mean vector. Here, we take the mean as zero vector

since the expectation of fGn is equal to zero.

In our case, for each j = 1, 2, · · ·, k, we firstly generate the normal random vector

Xj = ΛnZ, where Z is a standard normal random vector. Λn is n×n lower triangular

matrix decomposing from the variance covariance matrix of fBm increments through

Cholesky method.

Indeed, we generate the number of k replications of Xj with N(0,Λn). The vec-

torXj for j = 1, ..., k is the j th fBm trajectory. The entryXji refers to i th increment

of j th fBm trajectory. Then, we obtain the n dimensional multivariate normal random

variables with n× n covariance matrix as shown below.

X =



X11 X12 X13 . . . . . . . . . X1n

X21 X22 X23 . . . . . . . . . X2n

X31 X32 X33 . . . . . . . . . X3n

...
...

... . . . ...
...

...

Xj,1Xj,2Xj,3 . . .Xj,i . . .Xj,n

...
...

...
...

...
...

...

Xk1 Xk2 Xk3 . . . . . . . . . Xkn


(3.13)

Here, as seen from matrix (3.12), n corresponds to the number of time intervals for a

trajectory of fBm. Let us take the sum of each row and n → ∞, each converges to

fBm. In order to understand whether the generation is correct, we again compute the

covariance matrix and see that it matches up with the theoretical covariance matrix of

fBm.
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3.4 Discretization of Generated Multivariate Normal Data

We focus on the discertization of MVN generated in the previous section. Hence, in

this section, we introduce the discretization procedure and dichotomous variables

In literature, different from innate binary variables such as male or female, yes or

no, success or failure, some dichotomous variables are created via discretization of

continuous ones. These binary variables such as body length of a person with stat-

ues short or tall, high or low amount of money, can be produced by threshold value.

Dichotomous variables are more crucial for many scientific fields, despite their draw-

backs like information loss, low reliability. Nonetheless, these variables are easy to

implement to be used in many areas such as psychology, criminology, biology, and

sociology.

It is well known that a correlation among two continuous variables is generally cal-

culated with the Pearson correlation. On the other hand, provided that these two are

dichotomized via a threshold term, the correlation name will change. Tetrachoric cor-

relation coefficient is assigned for correlation between two dichotomies variable be-

fore discretization. After discretization, the correlation between these dichotomized

variables is called phi correlation coefficient.

Demirtas and Vardar-Acar [10] emphasize that when both variables are discretized,

the magnitude of these correlations can easily be transformed to the binary case under

the normality assumption. Suppose that the distribution of two continuous variables

is bivariate normal. After dichotomization of bivariate normal variables, the connec-

tion between the tetrachoric correlation and the phi coefficient is known.

Let Zi’s denote the normal variables. These are dichotomized to produce Yi’s which

represent binary variables. Assume that Y1, Y2, ..., Yj is a J binary random vari-

ables, such that E[Yj] = pj for j = 1, 2, ...., J and Corr[Yj, Yk] = σjk for j =

1, 2, ..., J − 1; k = 2, 3..., J . Let Z = (Z1, Z2, ..., ZJ)
T represents the J-dimensional
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multivariate normal random variables with zero mean and Corr[Zj, Zk] = δjk for

j = 1, 2, ..., J − 1; k = 2, 3..., J .

Then, there is a link between tetrachoric correlation (δjk) and phi coefficient (σjk)

as below:

σjk =
[Φ(z(pj), z(pk), δjk)− pjpk]√

pj(1− pj)pk(1− pk)
, (3.14)

where z(pi) represents pi th quantile of standard normal distribution for i=1,2.

Φ[z1, z2, δ] is the cumulative distribution function of standard bivariate normal with

correlation coefficient δ. Explicitly, Φ[z1, z2, δ] =
∫ z1
−∞

∫ z2
−∞ f(z1, z2, δ)dz1dz2 where

f(z1, z2, δ) = [2π−1(1− δ)
−1
2 ]× exp[−(z1

2 − 2z1z2δ + z2
2]/2(1− δ2).

Note that the link in Equation (3.14) has introduced by Emrich [15]. This relation

is used in simulation study to generate binary outcomes. Once J dimentional MVN

random variables Z = (Z1, Z2, ...ZJ)
T are generated, binary variables is determined

by setting Yj = 1 if Zj ≤ z(pj) and Yj = 0 if Zj > z(pj). Then, the expectation and

correlation structure for binary variables are obtained as follows:

E[Yj] = P [Yj = 1] = P [Zj ≤ z(pj)] = pj

and

corr(Yk, Yj)= cov(Yk, Yj)/(pkqkpjqj)
1/2

=[P{Yk = 1, Yj = 1} − pkpj]/(pkqkpjqj)
1/2

=[P{Zk ≤ z(pk), Zj ≤ z(pj)} − pkpk]/(pkqkpjqj)
1/2

=[Φ(z(pk), z(pj), δjk]− pkpj]/(pkqkpjqj)
1/2.

After generating the normal outcomes (Zj), binary variables (Yj) can be defined by

setting Yj = 1 for Zj ≤ z(pj) and 0 if otherwise. Equivalently, binary random

variables can be created by setting Yj = 1 if Zj ≥ z(1 − pj), without causing any

change in the correlation.
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The relation for non-normality case is also available. In this situation, we can employ

power polynomials that established upon the assertion that the first four moments of

the distribution ordinarily reflect its characteristics. The polynomial transformation,

Y = eZ3 + fZ2 + gZ + h where e, f , g and h are some constants, Z represents the

standard normal distribution and Y is standardized. Hence, these constants, which

can be calculated by moments, are included in the distribution of Y . Equations ob-

tained by profiting from moments of standard normal distribution can be settled via

some optimization techniques. Then, correlations among non-normal variables can

be written with respect to correlation among normal variables. When this equation

is combined with the Equation (3.14), the relationship for non-normal case can be

reached.

Since fBm is a Gaussian process, we focus on the relationship for the normal case.

When setting of binary variables is Yj = 0 if Zj > z(pj) and Yj = 1 if Zj ≤ z(pj),

Y can take the value 1 or 0. However, random walk process Sn =
∑n

i=0 Yi is the sum

of identically distributed binary random variables Y1, Y2, ..., Yn. Thus, Y can take the

value of 1 or −1 with the probability of p or (1− p), respectively.

And so, let us take Yj = 1 if Zj > z(p) and take Yj = −1 if Zj ≤ z(p). First of all,

in order to compute the correlation, we find

E[Yj]=1P (Yj = 1) + (−1)P (Yj = −1)

=1P [Zj > z(p)] + (−1)P [Zj ≤ z(p)]

= (−1)p+ 1(1− p) (3.15)

=1− 2p

and

E[Yj
2]=12P [Yj = 1] + (−1)2P [Yj = −1]

=1P [Zj > z(p)] + 1P [Zj ≤ z(p)]

= p+ (1− p) = 1. (3.16)
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Then, the variance is obtained as

V ar[Yj] = E[Yj
2]− E[Yj]

2 = 1− (1− 2p)2

= 4p(1− p). (3.17)

We also calculate

E[YjYk] = 1 · 1 · P [Yj = 1, Yk = 1] + (−1) · (−1) · P [Yj = −1, Yk = −1]

+ (−1) · 1 · P [Yj = −1, Yk = 1] + 1 · (−1) · P [Yj = 1, Yk = −1]

=P [Zj > z(p), Zk > z(p)] + P [Zj ≤ z(p), Zk ≤ z(p)]

−P [Zj ≤ z(p), Zk > z(p)] − P [Zj > z(p), Zk ≤ z(p)]. (3.18)

In order to calculate this expectation, note that

P [Zj ≤ z(p), Zk ≤ z(p)] = Φ[z(p), z(p), δjk] (3.19)

and P [Zj ≤ z(p)] = p, P [Zj > z(p)] = 1− p and Equation (3.19) is known from the

relation between the bivariate and dichotomous random variables.Moreover,

P [Zj > z(p), Zk ≤ z(p)]=P [Zj ≤ z(p)] − P [Zj ≤ z(p), Zk ≤ z(p)]

= p− Φ[z(p), z(p), δjk]

(3.20)

and

P [Zj > z(p), Zk > z(p)]=P [Zj > z(p)] − P [Zj > z(p), Zk ≤ z(p)]

= (1− p)− (p− Φ[z(p), z(p), δjk])

=Φ[z(p), z(p), δjk]− 2p+ 1. (3.21)

Therefore,

E[YjYk]= [Φ(z(p), z(p), δjk)− 2p+ 1] + [Φ(z(p), z(p), δjk)]

−[p− Φ(z(p), z(p), δjk)]− [p− Φ(z(p), z(p), δjk)]

=4Φ(z(p), z(p), δjk)− 4p+ 1 (3.22)

36



Now, let us calculate the correlation.

Corr(YjYk) =
E[YjYk]− E[Yj][Yk]√
V ar(Yj)V ar(Yk)

(3.23)

By using Equations(3.16), (3.17) and (3.22), we get

Corr(YjYk) =
4Φ(z(p), z(p), δjk)− 4p+ 1− [1− 2p]2

4p(1− p)

=
Φ(z(p), z(p), δjk)− p2

p(1− p)
(3.24)

As a result, a correlated binary data consisting of 1 and −1 which will form our newly

suggested dependent random walk possesses a certain covariance structure σjk =

[Φ(z(p), z(p), δjk)− p2]/p(1− p) for p = pj = pk.

3.5 Simulation Studies

In this section, we carry out a simulation study to foresee whether the correlated ran-

dom walk with a different parameter, called discretization proportion, can also conver-

gences to fBm. As mentioned earlier, a random sample from the MVN distribution is

discretized depending on corresponding normal quantiles given the proportions. After

discretization of MVN data, we simultaneously simulate binary and normal variables.

Whereas the normal variables correspond to fBm, the binary variables correspond to

the correlated random walk.

We simultaneously draw a simulated fBm path and a correlated random walk path.

Firstly, we simulate various fBm paths by using some well-known methods such as

the Cholesky method, the wavelet based simulation method, and the fast Fourier trans-

form method. In addition, we generate our fBm paths by using different values of the

Hurst parameter H .

Several examples of these paths are displayed in the following figures. In Figure

3.1, the fBm path highlighted with black color is simulated via Cholesky method.
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Figure 3.1: Simulated path with H=0.1 by Cholesky Method

Firstly, fBm with Hurst parameter 0.1 is generated. When H < 0.5, the time series

has an anti-persistent behaviour. Thus, H = 0.1 generates an fBm series with the

characteristic of mean-reverting, which means that the movement with a direction

(up or down) is more likely followed by a movement with opposite direction. After

discretization of fBm increments (fBm jumps), we obtain a sample path from the

binary distribution. The path highlighted with pink color represents the cumulative

sum of these binary values. The comparison of two paths indicates that they are liable

to show similar behaviours. It can be seen that two paths are quite similar in terms of

the directions of the path and the peaks along the path. However, in some of the time

points, small gaps exist between the two paths.

In Figure 3.2, an fBm path is represented by the black line. This path is generated by

Cholesky method. Here, different from Figure 3.1, fBm is simulated with the Hurst

parameter of 0.3. Here, fBm is a persistent series. The comparison of two paths

indicates that they move in a similar manner. However, in some of the time points,

gaps are obviously seen.The pink line shows the correlated random walk path which

is obtained from discretized fBm increments. When fBm and CRW are drawn in

Figure 3.2, it can be seen that the directions of the jumps resemble each other.
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Figure 3.2: Simulated path with H=0.3 by Cholesky Method

In Figure 3.3, an fBm path highlighted with black color is also derived via Cholesky

method. Here, an fBm with Hurst index 0.6 is generated. Note that the Hurst pa-

Figure 3.3: Simulated path with H=0.6 by Cholesky Method

rameter for the case H > 1/2 indicates a persistent series. A persistent series means

that the direction (up or down ) of the next value is more likely to be the same as

the direction of the current value. Firstly, an fBm sample is generated by Cholesky

method.Then, the differences between the sample points (increments) are discretized
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via the relationship given in Equation 3.14. Hence, we obtain a sample data from the

binary distribution. Then, the cumulative sum of these binary values represents the

correlated random walk path.This random walk path is drawn in Figure 3.3 with the

pink line. When these two paths (fBm and correlated random walk) are are drawn in

3.3, it can be said that they look like each other with respect to the direction of the

jumps.

Figure 3.4: Simulated path with H=0.8 by Cholesky Method

The black line in Figure 3.4 represents the fBm path with Hurst parameter H = 0.8.

This path is simulated by Cholesky method. Here, fBm has a parameter of H >

1/2. This shows the presence of a long-range dependence. A long-range dependent

process is the same as a long-memory process. Initially, binary data is derived by

discretization of fBm path. Then, the pink line indicates the correlated random walk

that refers to the cumulative sum of these binary values. If we compare the fBm and

its random walk version, it is observed that two move in similar directions at each

time point. Furthermore, it can easily be seen that gaps in Figure 3.4 are narrower

than gaps in Figures 3.1, 3.2 and 3.3 which are obtained by fBm with all other Hurst

parameters.

In order to compare different methods, fBm’s with the same Hurst parameters are also

generated by using fast Fourier transform method proposed by Davies et al.[9].
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Figure 3.5: Simulated path with H=0.1 by Fast Fourier Transform Method

Figure 3.5 shows the generated fBm path highlighted with black by using fast Fourier

transform method. Here, we again generate an fBm path with Hurst dimension 0.1.

This dimension corresponds to an anti-persistence series which exhibits a time series

with many jagged lines. Then, the red line stands for the correlated random walk

corresponding to discretized fBm increments. The random walk path highlighted

with red color is the cumulative sum of binary values. The comparison of fBm and

correlated random walk shows that the directions of consecutive jumps are the same.

Yet, there are some gaps between them. Let us now look at the same case forH = 0.3.

Figure 3.6: Simulated path with H=0.3 by Fast Fourier Transform Method
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If we look at Figure 3.6, the line drawn with black represents the fBm path which

is generated via FFT method. This simulation is done for the Hurst parameter 0.3

which means that if the series is an up movement then the next movement is more

likely to be down. Let us discretize these fBm increments. Then, we obtain a sample

path from binary distribution. Then, the red line represents the correlated random

walk which is generated by taking the cumulative sum of these binary values. For the

FFT method, we obtain the closer results for this Hurst index by the comparison of

Cholesky method stated in Figure 3.2.

Figure 3.7: Simulated path with H=0.6 by Fast Fourier Transform Method

When Figures 3.7 and 3.8 are analyzed, it can be seen that fBm paths highlighted with

black color are generated via FFT method for Hurst indexes H = 0.6 and H = 0.8,

respectively. Each shows a persistent series. For the value of H = 0.6, if the last

move is up, then there is a 60% chance that the next move again is up. For the

value of 0.8, the series is less jagged than for the value of 0.6. When an fBm path is

discretized, the cumulative sum of these values is drawn with the red line. Then, we

can say that the red and black lines show similar behavior in terms of the direction

of the jumps. Moreover, the gaps between them are small. This means that when the

Hurst parameter increases, the closer results are obtained.

As illustrated in Figures 3.9 and 3.10, an fBm path is simulated by using the Wavelet

based simulation procedure proposed by Abry and Sellan [1]. Firstly, the fBm path
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Figure 3.8: Simulated path with H=0.8 by Fast Fourier Transform Method

highlighted with black color is drawn for Hurst dimensionsH = 0.1 andH = 0.3, re-

spectively. After fBm increments are discretized to create binary values, these values

are summed and drawn with orange line as can be seen from Figures 3.9 and 3.10.

Figure 3.9: Simulated path with H=0.1 by Wavelet Based Simulation Method

Note that this sum corresponds to correlated random walk. Then, it is obviously seen

that both fBm and CRW move in the same direction. For the Hurst parameters of 0.1

and 0.3, this method gives better results than the Cholesky and FFT method. If we
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Figure 3.10: Simulated path with H=0.3 by Wavelet Based Simulation Method

Figure 3.11: Simulated path with H=0.6 by Wavelet Based Simulation Method

compare Figures 3.9 and 3.10, when the Hurst parameter increases, the behavior of

the direction get better and gaps decrease. In Figures 3.11 and 3.12, simulation of fBm

with Hurst values H = 0.6 and H = 0.8 is carried out by using the wavelet based

transformation method. H > 1/2 shows the presence of a long-range dependency in

time series. Note that long-range dependence is the same as a long-memory process.
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Figure 3.12: Simulated path with H=0.8 by Wavelet Based Simulation Method

A long-memory process implies that past increment (jump) is auto-correlated with an

increment in the future. In all figures of Section 3.5, fBm is represented by black line.

If the increments of this fBm are discretized in order to build up binary values, then

the sum of these values is drawn with orange line as can be seen from Figures 3.11

and 3.12. If we compare these two plots, the jumps of both paths move in the same

direction. Conversely, the approximation in Figure 3.12 seems more efficient.

As a summary, all simulation plots are obtained using various values of H and dif-

ferent kinds of fBm generation methods. The differences between fBm points (incre-

ments) are discretized through the relationship given in Equation 3.14. Thus, we get

binary values. If we take the cumulative sum of these binary values, we get a random

walk path. The correlated random walk paths are shown in all plots with colourful

lines according to simulation methods. After these two paths (fBm and random walk)

are drawn in the same plots, it can be said that they look like each other with respect

to the direction of the jumps for all Hurst parameters. However, when the Hurst pa-

rameter is approximate to one, simulation paths are close to each other. Moreover,

the best result is given by wavelet based transform method since gaps between two

paths are small for the whole Hursth values H .

As a conjecture from these simulations, the question of "Do these generated correlated
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random walks converges to fBm for all discretization proportions ?" arises. Even if

there are some gaps in the figures, this gives us an idea about how the convergence

depends on some conditions for the value of p. After encountering the paper of En-

riquez [16], we find the density of discretization proportion p which allows that the

correlated random walk converges to fBm. Therefore, we suggest a new algorithm

of generating fBm for a given Hurst parameter, H > 1/2. Next chapter presents the

theoretical background and the proof.
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CHAPTER 4

THEORETICAL CONSTRUCTION OF CORRELATED RANDOM WALK

As mentioned in the previous chapter, We have noted that the main questions, which

arise from our simulation study, are i) Do the correlated random walk with explicit

discretization proportion converge to fBm ? ii) Can we write an algorithm to gener-

ate an fBm through such correlated random walk? For examining the first question,

we conduct a relation between persistence parameter and sicretization proportion in

Section 4.1. For considering the second question, we prove the convergence of a cor-

related random walk with discretization proportion to fBm in Section 4.2. The study

of Enriquez [16] guides us in finding the relationship, showing the convergence, and

proposing the simulation algorithm to generate an fBm..

4.1 Relation between Persistence ρ and Discretization Proportion p of Frac-

tional Brownian Motion

Recall that the definition of CRW with persistence parameter ρ is given in Definition

3. In order to establish a connection between p and ρ, we utilize from the fourth item

(iv) given in Definition 3. According to this item,

P (ϵρn+1 = ϵρn) = ρ, (4.1)

where ϵρn = Xρ
n − Xρ

n−1 corresponds to the increments or jumps in each time step,

takes values of +1 or −1.

In order to prevent any confusion, the notation of Y is defined as the binary variable

instead of ϵ. Hence, the Equation (4.1) turns into
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P (Y ρ
n+1 = Y ρ

n ) = ρ (4.2)

Since the value of Y can only take the value of +1 or −1, both Yn+1 and Yn can also

take the value +1 or −1. Thus,

P (Y ρ
n+1 = Y ρ

n )=P (Y
ρ
n+1 = 1, Y ρ

n = 1) + P (Y ρ
n+1 = −1, Y ρ

n = −1)

=P [Zρ
n+1 > z(p), Zρ

n > z(p)] + P [Zρ
n+1 ≤ z(p), Zρ

n ≤ z(p)],

Substitute Equation (3.19) and (3.21) into Equation (4.3), then,

ρ = Φ(z(p), z(p), δn,n+1)− [2p− 1] + Φ(z(p), z(p), δn+1,n)

= 2Φ(z(p), z(p), δn,n+1)− 2p+ 1 (4.3)

where δn,n+1 =

 1 γ(1)

γ(1) 1

 is the correlation matrix, where γ(1) denotes one step

correlation of fBm increments and P (Z ≤ z(p)) = p is the proportion of discretiza-

tion, Φ is the cumulative distribution function of the standard bivariate normal vari-

ables and z(p) represents p th quantile of the standard normal distribution.

After observing this relationship, we define our correlated random walk as shown

below.

Definition 4 The correlated random walk Xp with discretization probability p is a

discrete-time process, such that

i Walk is starting at 0, X0 = 0.

ii All X ′
j s are identically distributed with probability p, P (Xj = −1) = p and

P (Xj = +1) = 1− p.

iii For all n ≥ 1, Yn = Xn −Xn−1 is equal to −1 and +1 almost surely.

iv For all n ≥ 1, P (Yn+1 = Yn|σ(Xp
k , 0 ≤ k ≤ n)) = 2Φ(z(p), z(p), δn,n+1) −

2p+ 1
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The density of persistence is known from Theorem 2 in Chapter 2. To reach the

density of the discretization proportion, we apply the transformation of persistence

by using the relationship given in Equation (4.3).

On [1
2
, 1], the density function of the persistence ρ is

fρ(ρ) = (1−H)23−2H(1− ρ)1−2H . (4.4)

Let us change the variable by using the relationship ρ = 2Φ[z(p), z(p), δn+1,n]−2p+

1. Then, the density function of p is obtained as

fp(p) = (1−H)23−2H(1− (2Φ[z(p), z(p), δn+1,n]− 2p+ 1))1−2H |J |, (4.5)

where |J | is the Jacobian term with equality

|J | = | d
dp

2[Φ(z(p), z(p), δn+1,n]− 2p+ 1|.

Hence,

fp(p)= (1−H)23−2H(2p− 2Φ(z(p), z(p), δn+1,n)
1−2H

×| d
dp

2Φ(z(p), z(p), δn+1,n − 2p+ 1|

4.2 Theoretical Convergence of Correlated Random Walk to Fractional Brow-

nian Motion

After conducting our simulation study, we come up with the question that "Does cor-

related random walks generated by discretization with any probability p converge to

fBm? ". This seemed to be a natural question because the gaps are observed between

the correlated random walk and fBm. Through the work of Enriquez [16], we prove

the convergence of the correlated random walk to fBm by using Equation (4.6) corre-

sponding to the density of the discretization proportion.

The idea behind the convergence theorem consists of two stages. Firstly, let us gener-

ate different correlated random walk paths made up of −1 and +1. When we take the
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sum of N th steps of each random walk for k ≥ 1, then the summation is normally

distributed as the number of paths gets larger. Then, the result of the limit generates

a discrete centered Gaussian sequence.

Second, by using the Lemma 5.1 in Taqqu [35], a discrete Gaussian sequence is

summed and multiplied with a constant a and divided into NH , then it converges

weakly to fBm BH(t). This is feasible if the sum of all correlations between station-

ary Gaussian sequences satisfies the conditions in Taqqu [35].

In the following theorem , we prove how a correlated random walk with discretization

proportion, which satisfies explicit density, converges to fBm.

Theorem 3 Let µH be the distribution function of discretization proportion with den-

sity fp(p) = (1−H)23−2H(2p−2Φ(z(p), z(p), δn+1,n)
1−2H | d

dp
2Φ(z(p), z(p), δn+1,n−

2p+ 1 and (XµH ,i)i≥1 be a sequence of independent process,

lim
N→∞

lim
M→∞

aH
XµH ,1

[Nt] +XµH ,2
[Nt] ...+XµH ,M

[Nt]

NH
√
M

= BH(t)

where aH =
√

H(2H−1)
Γ(3−2H)

, N is the number of time steps and M be the number of

trajectories, BH(t) is the fBm with Hurst index H ∈ [1/2, 1].

Proof Let XµH ,i
k be k th step of i th binary variables −1 or +1 trajectory for 1 ≤ i ≤

M where M represents the number of trajectories.

It is known that CLT states that for any independent random sequence Xn, sample

mean or sum of this sequence is distributed normally for large sample size n.

Thus, CLT proposes that limM→∞
XµH,1

k +XµH,2
k ...+XµH,M

k√
M

is the discrete Gaussian pro-

cess because the expectationE[
∑M

i=1(X
µH ,i)] = 0 and variance V ar[

∑M
i=1(X

µH ,i)] =

M with the variance of binary variables V ar(Xi) = 1.

Suppose that this discrete Gaussian Process is (ZH
k )k≥1. It has stationary increments

εHk = (ZH
k+1 − ZH

k ) with E[εHk ] = 0 and E[(εHk )
2] = 1 and E[εHk ε

H
k+n] is found as
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follows:

By Proposition 2, n step correlation is written as:

r(n) = E[εHk ε
H
k+n] =

∫ pupper

plower

[2 · (2Φ(z(p), z(p), δn,n+1)− 2p+ 1)− 1]ndp(p),

(4.6)

where plower and pupper denotes the range of p values satisfying the inequality

1

2
≤ 2Φ[z(p), z(p), δn,n+1]− 2p+ 1 < 1.

Here, dp(p) = d
dp
(Pp) = fp(p)dp, where Pp denotes the law of correlated random

walk Xp. Then substitute fp(p)dp given in Equation (4.6) into Equation (4.6), we

observe

=

∫ pupper

plower

[4Φ(z(p), z(p), δn,n+1)− 4p+ 1]n(1−H)23−2H

×(2p− 2Φ(z(p), z(p), δn,n+1))
1−2H d

dp
(2Φ(z(p), z(p), δn,n+1)− 2p+ 1)dp.

In order to solve the integral, let us change the variable.

ν= 4Φ(z(p), z(p), δn,n+1)− 4p+ 1

ν − 1 = 4Φ(z(p), z(p), δn,n+1)− 4p

ν − 1

2
= 2Φ(z(p), z(p), δn,n+1)− 2p

ν − 1

2
+ 1= 2Φ(z(p), z(p), δn,n+1)− 2p+ 1

ν + 1

2
= 2Φ(z(p), z(p), δn,n+1)− 2p+ 1

By taking the derivative of both side with respect to p,

d(ν+1
2
)

dp
= d

dp
[2Φ(z(p), z(p), δn,n+1)− 2p+ 1]

d
(ν + 1

2

)
= d

dp
[2Φ(z(p), z(p), δn,n+1)− 2p+ 1]dp
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Now, the range of p becomes

1

2
≤ ρ ≤ 1

1

2
≤ 2Φ(z(p), z(p), δn,n+1)− 2p+ 1 ≤ 1. (4.7)

Equivalently,

0 ≤ 4Φ(z(p), z(p), δn,n+1)− 4p+ 1 ≤ 1

0 ≤ ν ≤ 1 (4.8)

Thus,

r(n) = (1−H)23−2H

∫ 1

0

νn
(1− ν

2

)1−2H

d
(ν + 1

2

)

= (1−H)23−2H

∫ 1

0

νn
(1− ν)1−2H

21−2H

1

2
dν

=
(1−H)23−2H

22−2H

∫ 1

0

νn(1− ν)1−2Hdν. (4.9)

Note that
∫ 1

0
νn(1− ν)1−2Hdν corresponds to the Beta function with parameter (n+

1, 2− 2H). Hence r(n) becomes

r(n)= (2− 2H)
Γ(n+ 1),Γ(2− 2H)

Γ(n+ 3− 2H)

= (2− 2H)
n!(1− 2H)!

(n+ 2− 2H)!

∼n→∞=Γ(3− 2H)
1

n2−2H
. (4.10)

The Equation (4.10) can be rearranged as:

=
1

a2H

H(2H − 1)

n2−2H
where aH =

√
H(2H − 1)

Γ3− 2H
(4.11)
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such that

a2H

N∑
i=1

N∑
j=1

r(|i− j|)=a2H(r(0) +
N−1∑
i=1

[r(0) + 2
i∑

k=1

r(k)]) (4.12)

∼n→∞ N2H

In Taqqu [35], Theorem 2.1 and Lemma 5.1 bring this conclusion directly.
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CHAPTER 5

PROPOSING AN ALGORITHM FOR GENERATING FRACTIONAL

BROWNIAN MOTION THROUGH CORRELATED RANDOM WALK

By considering the relationship between the persistence parameter and the discretiza-

tion proportion, we are able to construct a new correlated random walk which con-

verges to fBm. Initially, we obtain the values of p which satisfy the density given in

Equation (4.6). This is done via the density of persistence and the relationship given

in Equation (4.3).

Now let us consider

F (a)=P (ρ ≤ a) = u, where u is from Uniform (0, 1).

=

∫ a

1
2

fρ(ρ)dρ

=

∫ a

1
2

23−2H(1−H)(1− ρ)1−2Hdρ

Let ϑ = 1− ρ, then

u=

∫ 1−a

1
2

(1−H)23−2Hϑ1−2H(−dϑ)

= (H − 1)23−2H

∫ 1−a

1
2

ϑ1−2Hdϑ
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=(H − 1)23−2H

∫ 1−a

1
2

ϑ1−2Hdϑ

=(H − 1)23−2H ϑ1−2H

2− 2H

∣∣∣1−a

1
2

=22−2H [22−2H − (1− a)2−2H ]

and

1− (2− 2a)2−2H =u

(2− 2a)2−2H =1− u

2(1− a)= (1− u)
1

2−2H

a=1− (1− u)
1

2−2H

2
(5.1)

Obviously, the proportion ρ has the density of 1− (1−u)
1

2−2H

2
forH > 1/2. The values

obtained from the Equation (5.1) are replaced by ρ given in the relationship between

the persistence and the discretization proportion. Thus, the proportion ρ takes the

values which satisfy the equation

−(1− u)
1

2−2H

4
= Φ(z(p), z(p), δn,n+1)− p. (5.2)

When the dichotomous values are generated using the value of p which satisfies the

density given in Equation (5.2) and these values are generated for a large number of

trajectories, their sum corresponds to the values of the correlated random walk. And

so, by Theorem 3 in Chapter 4, if the sums of these CRW points for each time step

are scaled by NH
√
M , this process converges weakly to fBm for the large number of

trajectories M , and the large number of time steps N.
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By using Theorem 3, we propose the following algorithm to simulate the fBm.

i Obtain p values from the equation

−(1− u)
1

2−2H

4
= Φ(z(p), z(p), δn,n+1)− p

,where u is from Uniform(0, 1) distribution.

ii Simulate M independent {pj} j = 1, 2, ...,M for M trajectories.

iii Simulate M replications according to

If ti = 1, ϵj1 = 2×Bernoulli(1
2
)− 1 for Xj

1 = ϵj1.

If ti > 1, ϵjti = ϵjti−1
× (2×Bernoulli(2Φ[z(pj), z(pj), δn,n+1]− 2pj)

,where Xj
ti = Xj

ti−1
+ ϵjti

iv For each ti, compute

BH
ti

= aH
XµH ,1

[Nti]
+XµH ,2

[Nti]
...+XµH ,M

[Nti]

NH
√
M

.

In this algorithm, the construction of the fBm is similar to the construction of the

standard BM from random walks. However, in reality, this algorithm may not suffi-

ciently give fast results due to the simulation for the large number of paths.

By using this algorithm, the samples of fBm are obtained as the following figures.

Figures 5.1 and 5.2 are obtained using the number of 300 time steps and the num-

ber of 100.000 trajectories. These plots refer approximately to fBm paths. However,

as the number of time steps is increased, CRW converges faster. Here, we take less

number of time steps in order to facilitate the visibility.
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Figure 5.1: Fractional Brownian Motion Path from Correlated Random Walk with

H=0.6

Figure 5.2: Fractional Brownian Motion Path from Correlated Random Walk with

H=0.8
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CHAPTER 6

CONCLUSION

In this thesis, our aim is to propose a new fBm generation method by using given

Hurst parameter and using the correlation structure based on this parameter. Our

generation is the generalized version of Enriquez [16]. He has suggested an fBm

construction through a persistent random walk with a parameter of persistence. This

parameter refers to the probability of making the same jump as the previous one.

Besides, the literature [10,14] consists of the connection between the Pearson corre-

lation and the phi coefficient. We know that a correlation between two continuous

variables is calculated with the Pearson correlation. On the other hand, the phi co-

efficients represents the correlation between two dichotomous variables is. In this

study, the Pearson correlation corresponds to the correlation between the bivariate

normal random variables. The phi coefficient corresponds to the correlation between

the correlated binary outcomes which are created from the discretization of the gen-

erated normal outcomes. We propose an optional method for the construction of an

fBm by using the relationship between the normally distributed continuous variables

and their discretized version. Enriquez [16] generates a persistent random walk with

persistence parameter in order to construct an fBm. As an improvement to the study

of Enriquez [16], we generate a correlated random walk with a correlation structure

calculated using the given Hurst parameter and the discretization proportion, to con-

struct an fBm. Furthermore, we write our theorem to show that the correlated random

walk with discretization proportion converges to fBm. This theorem enables us to

develop a new algorithm for the simulation of fBm.

Diverse properties of the fBm such as self similarith and long-range dependence are
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characterized by the Hurst parameter H . One reason for the application of fBm is

that it has a long memory when H > 1/2. Thus, we generate our fBm for the case

H > 1/2.

In the introduction chapter, we describe the development of our motivation in this

study. In Chapter 2, we continue with introducing the main definitions, notations and

properties that we need for presenting our study. We also review the major simulation

methods for generating an fBm. In Chapter 3, we mention the convergence of a

random walk to a standard Brownian motion. Then the variance-covariance matrix of

fBm increments are created and multivariate normal vectors are generated by using

the Cholesky decomposition. Due to the definition of the CRW, we then discretize

the increments with a proportion p, and take the cumulative sum of the discretized

increments to obtain a CRW sample. We perform the discretization for generating

fBm samples by using different simulation methods and Hurst parameters. When a

theoretical fBm sample and its discretized form are compared, we realize that these

two lines move in the same direction for all values of p. Hence, we consider that

we can generate a CRW converging to an fBm by using the discretization procedure.

Here, we profit from the paper of Enriquez [16] in order to prove the convergence.

Afterwards, in chapter 4, we establish a link between the persistence parameter ρ

and the discretization proportion p. Then, we describe our correlated random walk

which is generated from discretized Bernoulli variables with proportion p. An explicit

density is assigned to this proportion thanks to the link given in Equation (4.3). It is

easily seen that the correlated random walk with a discretization proportion which

has an explicit density converges to fBm. We show the convergence based on the fact

that the great number of such random walks produce discrete Gaussian process after

sum of the whole random walks is normalized. When this process owns a correlation

that satisfies the terms specified in Taqqu [35], it converges to fBm. Based on this

convergence, we propose a new algorithm for simulating an fBm in Chapter 5. We

also provide our proposed MATLAB codes.

Recall that we mention the construction of fBm for the long-range dependence through-

out this study. As a future study, we may also consider the construction of fBm for
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the short-range dependence. The short-range dependence corresponds to the presence

of negatively correlated increments. In the presence of short-range dependence, the

definition of the persistence must be changed. Then, the persistence means the prob-

ability of having the opposite jump to the last one. In addition, as in this study, using

the lemma in Taqqu [35] is not enough to get the convergence. We need also to show

the tightness of the family of the processes by controlling the criterion in Billingsley

[4]. Therefore, we are leaving it for the future study.
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APPENDIX A

APPENDIX A

Here the Matlab codes for given algorithm in Chapter 4 is offered.

function [fBMpath] = fBmalgorithm (H,n,M)

%

% This function help to generate fractional Brownian motion by correlated random

walks with Hurst index H.

%

% Input:

% H <- Hurst parameter

% n <- number of time steps

% M <- number of trajectories

%

% Output:

% fBmpath <- An fBm path constructed from correlated random walk

%

% Step 1: Find suitable p values

%

% One step correlation of fBm increments

fbmcorr = 0.5*((abs(2))ˆ(2*H)+(abs(2-1-1))ˆ(2*H)-2*(abs(2-1))ˆ(2*H));

for i=1:M;

u=rand;
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value(1,i)=((-1)*(1-u) ˆ (1/(2-2*H)))/4;

end

p= 0:0.01:0.5;

for j=1:51

pr = p(1,j);

mu = [0 0];

bivarcorr=[1 fbmcorr; fbmcorr 1];

cdfprob = mvncdf([norminv(pr,0,1),norminv(pr,0,1)],mu,bivarcorr);

cal(1,j)=cdfprob-pr;

end

for i=1:M;

for j=1:50;

if (value(1,i) <=cal(1,51))

pm(1,i)= 0.5;

elseif (value(1,i)<= cal(1,j)) && (value(1,i) >= cal(1,j+1))

pm(1,i)= p(1,j+1);

end

end

end

% Step 2:Obtain M independent p values for M trajectories

for i=1:M;

pe = pm(1,i);

cdfprob = mvncdf([norminv(pe,0,1),norminv(pe,0,1)],mu,bivarcorr);

trp(1,i) = 2*cdfprob-2*pe+1;

end
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% Step 3:Construct M correlated random walk trajectories

for i=1:M;

pe=pm(1,i);

cdfprob = mvncdf([norminv(pe,0,1),norminv(pe,0,1)],mu,bivarcorr);

trp(1,i)=2*cdfprob-2*pe+1;

end

for k=1:M

u=rand;

if (u <= 0.5 );

ber=0;

else

ber=1;

end

E(k,1)=2*ber-1;

mj= trp(1,k);

for w=2:n

u=rand;

if (u <= mj);

berpj=0;

else

berpj=1;

end

E(k,w)=E(k,w-1)*(2*berpj - 1);

end

end
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for j=1:M;

X(j,1)=E(j,1);

for i=2:n;

X(j,i)=X(j,i-1)+E(j,i);

end

end

Step 4: Generate a fBm path by using Theorem 3.

for k=1:n;

btjpath(1,k) = (sqrt(H*(2*H-1)/gamma(2*H-1))*sum(X(:,k))/((sqrt(M))*nˆH));

end
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