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ABSTRACT

ELECTRICITY PRICE FORECASTING USING HYBRID TIME SERIES
MODELS

Taş, Büşra

M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan Yozgatlıgil

July 2018, 86 pages

Accurate forecasting of hourly electricity price is very important in a competitive

market. Decision makers highly benefit from accurate forecasting. Because electric-

ity cannot be stored, shocks to demand or supply affect the electricity prices. As a

result, electricity prices show high volatility. Additionally, it may have multiple levels

of seasonality. Therefore, forecasting with conventional methods is very difficult.

In this study, hybrid models are constructed with Seasonal Autoregressive Integrated

Moving Average (SARIMA), TBATS and Neural Network models for the analysis of

hourly electricity prices in Turkey. Time series can contain both linear and nonlinear

patterns. Thus, using a hybrid model can give better results in forecasting. Both

linear and nonlinear parts of the time series can be modeled by this approach. While

SARIMA model and TBATS model are used to capture the linear behavior of the

electricity price series. Neural Network is used to model the nonlinearity in the series.

Electricity demand is used as exogenous variable. Different combinations of hybrid
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models and individual models are compared in terms of forecasting performance.

The results indicate that mostly hybrid models outperform the individual models in

one-week ahead and one-day ahead forecasting.

Keywords: Electricity Price Forecasting, Hybrid Method, Artificial Neural Network,

NARX, Time Series
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ÖZ

HİBRİT ZAMAN SERİSİ MODELLERİYLE ELEKTRİK FİYAT TAHMİNİ

Taş, Büşra

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan Yozgatlıgil

Temmuz 2018, 86 sayfa

Rekabetçi piyasalarda saatlik elektrik fiyatlarının doğru öngörülmesi çok önemli-

dir. Karar vericiler doğru öngörülerden oldukça yararlanmaktadır. Elektrik depola-

namadığı için talep ve arzda meydana gelen şoklar elektrik fiyatlarını etkilemektedir.

Sonuç olarak elektrik fiyatları yüksek dalgalanma göstermektedir. Buna ek olarak bir-

den fazla mevsimselliğe sahip olabilir. Bu sebeple geleneksel yöntemlerle öngörülerin

doğru bir şekilde elde edilmesi güçtür.

Bu çalışmada, Türkiye’deki saatlik elektrik fiyatlarının modellenmesi için SARIMA,

TBATS ve yapay sinir ağları modelleri kullanılarak hibrit modeller oluşturulmuştur.

Zaman serilerinde hem doğrusal hem de doğrusal olmayan yapılar bulunabilir. Bu

nedenle, hibrit modeller öngörüde daha iyi sonuçlar verebilir. SARIMA ve TBATS

modeller elektrik fiyatlarının doğrusal hareketini yakalamak için kullanılırken, seri-

deki doğrusal olmayan yapıyı modellemek için sinir ağları kullanılmıştır. Elektrik

talebi dışsal değişken olarak kullanılmıştır. Hibrit modellerin farklı kombinasyonları
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ve tekli modeller öngörü performansına göre karşılaştırılmıştır. Sonuçlara göre bir

haftalık ve bir günlük öngörülerde hibrit modeller çoğunlukla tekli modellere göre

daha iyi performans göstermiştir.

Anahtar Kelimeler: Elektrik Fiyat Tahmini, Hibrit Metot, Yapay Sinir Ağları, NARX,

Zaman Serileri
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CHAPTER 1

INTRODUCTION

In many countries all around the world, the electric power industry is converting to

a competitive market. Since 1980, many reforms have been made to reduce the gov-

ernment control in many sectors. Most of the major economies started liberalization

of energy market in the early 1990s by some deregulations. The first step of these

reforms is separation of some functions of electricity market. These functions are

generation, transmission, distribution and marketing of electricity. These functions

need to be carried out by private firms to ensure competition. Nowadays, electricity

is traded according to market rules by contracts in many countries.

Electricity is a commodity that cannot be stored. This means that it is necessary to

have a balance between production (supply) and consumption (demand). Demand

shows high variability since it depends on weather, business activities, etc. Addition-

ally, variation of supply depends on demand. Therefore, spot prices show seasonality

at multiple levels and high volatility. There are also unexpected excessive changes

in the price which are called spikes or jumps. These features make forecasting very

difficult with conventional methods. There are various studies on electricity price

forecasting in the literature.

According to Weron [1], there are five categories of electricity price forecasting meth-

ods.

• Multi-agent models are multi-agent simulation, equilibrium and game theoretic

models.
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• Fundamental models define the price characteristics by modeling the effects of

some significant factors on the electricity price.

• Reduced-form models are quantitative, stochastic models which define statisti-

cal properties over time.

• Statistical models are application of statistical techniques on electricity price.

• Computational intelligence models are artificial intelligence-based, non-parametric,

non-linear statistical models.

There are many studies that use hybrid methods which combine methods from these

groups. In this study, hybrid methodology is adopted for electricity price forecasting

by using statistical models and computational intelligence models. Time series can

contain both linear and nonlinear patterns. Generally, statistical models are not very

good at capturing nonlinear structure in the series while computational intelligence

models are not good at modelling linear part. Besides that using only a computational

intelligence model like neural network model can cause overfitting problem. Thus,

combining these two types of models by using a hybrid model can give better results

in forecasting. A taxonomy of electricity price modelling methods can be seen in

Figure 1.1.

The motivation behind this study is to find the method that has the best forecasting

performance for electricity prices in Turkey. The electricity consumption of the previ-

ous day is considered to have an effect on electricity prices of current day. Therefore,

electricity consumption of the previous day is taken as electricity demand which is

included as an exogenous variable to the modelling. First aim of this study is to con-

struct a hybrid model for an hourly series with an exogenous variable. This aim is

fulfilled by conducting several hybrid models with different combinations of various

methods. Second aim is to compare forecast performances of different hybrid models

and also individual models. The comparison is made according to one-week ahead

forecast and one-day ahead forecast. The results are similar for both cases. The con-

tribution of this study to the literature is that as far as our knowledge it is the first

application of hybrid method to forecast hourly electricity prices in Turkey.

2



Figure 1.1: A taxonomy of electricity price modelling methods [1]

This thesis has mainly six sections. The next chapter is about electricity markets. It

presents the characteristics of an electricity market. Then it summarizes the liberal-

ization movements of electricity markets in the world and in Turkey. In chapter 3,

literature research on electricity price forecasting is presented. The first 3 parts cover

the studies around the world while 4th part covers the studies in Turkey. The first

section reviews traditional time series models. The second section includes computa-

tional intelligence models in the literature. The third section shows studies on hybrid

models. The last section reviews electricity price forecasting studies in Turkish elec-

tricity market. In chapter 4, methodology behind this study is explained. The first

section shows AR-type and ARX-type models. The second section presents some of

the exponential smoothing methods. The third section presents artificial neural net-

work models. Last section of this chapter shows the hybrid methodology which is

the main method of this thesis. Chapter 5 presents the modeling of one-day ahead

and one-week ahead forecasting of Turkish electricity prices. This chapter consists of

two sections which are hybrid models and individual models. Chapter 6 is devoted to

3



conclusion and future work. Appendix A contains time series plots of actual values

and predicted values and table of RMSE values for prediction performances of all

models.
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CHAPTER 2

ELECTRICITY MARKET

Electricity is a form of energy which can be used in a wide range of application areas

such as heat, light and power [2]. Additionally, it can be generated from other sources

such as coal, natural gas, oil, nuclear power etc.

Before the deregulation process in the electricity markets, regulators fixed prices as

a function of generation, transmission and distribution costs and so there were not

much uncertainty in prices [3]. After the deregulation process, prices are determined

by supply and demand. Suppliers buy energy from generators and sell it to the cus-

tomers according to demand. Therefore, prices are determined hourly by intersection

of total demand and supply in the market pool. Indirectly, electricity can be stored

via hydroelectric schemes or storage of generator fuel. However, it cannot be physi-

cally stored directly, so production and consumption of electricity should be balanced.

Therefore, shocks to demand or supply have an impact on electricity spot prices. Due

to non-storability of the electricity, prices show extremely high volatility in all mar-

kets, and this makes electricity price forecasting challenging.

Demand and supply have significant roles in the volatility. Since electricity is a

needed commodity, electricity demand is very price-inelastic. Price-inelastic demand

means that even if the price of electricity increase excessively, demand for electricity

will decrease a small amount. In this study, electricity demand is used as exogenous

factor in modeling the electricity price. It is also difficult to model the unanticipated

extreme changes in prices which is called spikes or jumps. After the jumps, prices

have a tendency to move back to its prior value rapidly. This is another characteristic
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of the electricity price series which is called mean reversion.

Electricity demand highly depends on economic activities, weather conditions and

amount of sunlight. These factors create seasonal behaviors in the prices. There can

be intra-daily, weekly and intra-year seasonality. The existence of multiple levels of

seasonality is another challenge in the modelling.

In short, the general characteristics of electricity price series in competitive markets

are [4]:

• High volatility

• Multiple seasonality (daily, weekly seasonality)

• Calendar effect (holidays)

• Spikes

• Nonconstant mean and variance

• High frequency

2.1 Liberalization of Electricity Markets

Operations in the electricity markets are generation, wholesale, transmission and dis-

tribution [5]. Generation of the electricity can be made in two ways that are by fuel

fired power plants or by using renewable energy sources. Wholesale is the sale of

electricity in large quantities and at low prices, to customers who are allowed to make

bilateral contracts with the suppliers. Transportation of electricity from power plants

to substations is called transmission. Distribution is the sale and distribution of elec-

tricity to users. In vertically integrated electricity markets; generation, transmission

and distribution are managed by the same state-owned company. In deregulated elec-

tricity markets, these operations are operated by private companies yet transmission

is generally performed by the state owned company.
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Liberalization is the splitting the generation, transmission and distribution of elec-

tricity to make the market competitive. This way generation and transmission will

be improved and prices will be determined by the demand-supply balance. Since the

1980s, liberalization of electricity markets has started worldwide. In these reforms,

common idea was privatizing state monopolies and decreasing government controls

[6].

Liberalization of the electricity market started with Chile in 1982. This reform was

based on the idea of splitting generation and distribution companies. In 1990, elec-

tricity market of England and Wales is reorganized. Then, these reforms followed by

the opening of Nordic market in 1992. The number of liberalized electricity markets

is increasing around the world, especially in European countries [7].

2.1.1 Turkish Electricity Market

The financial resources were limited in Turkey after World War 1 [8]. Therefore,

investments cannot be made in the electricity sector and electricity was traded from

foreign companies. Since the early 1960s, electricity sector has grown as a result of

rapid industrialization [9]. In 1963, the Ministry of Energy and Natural Resources

(MENR) of Turkey was founded. In 1970, the Turkish Electricity Authority (TEK)

was established as an integrated monopoly by combining all electricity activities ex-

cept distribution, which was assigned to municipalities until 1982 [10]. TEK had

the monopoly power until 1984. There have been important changes in monopolistic

electricity system of Turkey.

In 1984, private entities were allowed to take in charge of generation, transmission

and distribution activities of electricity. Three different financial models were tried to

fulfill investment needs of electricity sector. However, these models were in need of

a guarantee from Treasury [10].

Turkey started to restructure its electricity market in the early 2000 with the introduc-

tion of the first Electricity Market Law. The law was revised in 2012, 2013 and 2016.

With the deregulations, the aim is to ensure a transparent and competitive industry .
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Energy Market Regulatory Authority (EMRA; EPDK in Turkish) was established to

control market players and regulate market rules. In 1993, TEK was separated into

two companies: the Turkish Electricity Generation Transmission Company (TEAS)

was responsible of generation and transmission, and the Turkish Electricity Distribu-

tion Co. (TEDAS) was responsible for distribution and retail sale activities. In 2001,

TEAS was further separated into three companies, Electricity Generation Company

(EÜA), Turkish Wholesale Company (TETA) and Turkish Electricity Transmission

Company (TEA) which were responsible for generation, trading and transmission re-

spectively [9]. Energy Market Regulatory Authority (EPDK) was also established to

control market players and regulate market rules [11].

After liberalization, participants could sell and buy electricity in a liberal market en-

vironment [11]. Nowadays, the price of electricity is settled in the balancing and

settlement market or by bilateral contracts between parties [12]. TETAS is respon-

sible for purchasing the energy within the provisions of vesting contracts between

the government and private parties. Since 2015, the wholesale electricity market in

Turkey has been operated by Energy Exchange Istanbul (EXIST) [13]. There are two

electricity spot markets which are day-ahead and intra-day markets. A daily double-

sided blind auction is held in the day-ahead market under the principle of uniform

pricing. On the other hand, intra-day market is operated under continuous trading

mechanism. Since spot market has an impact on electricity prices, forecasting is very

important for market participants.
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CHAPTER 3

LITERATURE REVIEW

Many studies have been carried out on spot electricity price forecasting and electricity

demand modeling after the market deregulation. Since electricity cannot be stored,

there should be a balance between production and consumption. This lead to some

specific price dynamics such as daily, weekly and annual seasonality and sudden price

spikes. Therefore, electricity price forecasting is very important in a competitive

market. Market participants can obtain huge financial gains with accurate forecasting.

Hahn et al. [14] classify forecasting methods into two categories: classical time se-

ries and regression methods and artificial intelligence and computational intelligence

methods. There are also hybrid models which is the combination of two or more

different categories.

Most of the studies mentioned in this chapter is the summary of work of Weron [1]

who already reviewed most of the studies on electricity price forecasting (EPF) from

1989 to 2013. Studies published after 2013 are also mentioned.

3.1 Classical Time Series and Regression Methods

Time series and regression methods predict the current price from previous values

of price and explanatory variables and also current value of explanatory variable by

using a mathematical relation. They usually have limited power to model nonlinear

behavior of electricity prices.
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3.1.1 Regression Models

In multiple regression, the aim is to learn the relationships between input variables

and a target variable. In EPF, lagged electricity prices are included as regressors.

Kim et al. [15] use wavelet decomposition with multiple regression. The regression

coefficients are found by using the wavelet decomposition detail series and the pre-

dicted demand. Then, one-day ahead price forecast is obtained. Conejo, Contreras et

al. [16] used a similar method for hourly electricity price. Schmutz and Elkuch [17]

also apply multiple regression for price forecasting.

Koopman, Ooms, and Carnero [18] forecast daily electricity spot prices by using

seasonal periodic regression models with ARIMA, ARFIMA and GARCH distur-

bances. Karakatsani and Bunn [19] use data from British market to conduct a re-

gression model for half-hourly load periods, and compare its day-ahead forecasting

performance to regime-switching regression models. Bordignon et al. [20] utilize lin-

ear regression and time-varying parameter regression models with different forecast

combinations.

Azadeh et al. [21]) introduce a method which changes between the predictions of

different models according to some rules, and make long term forecasting. Jonsson et

al. [22] propose a methodology which focuses on the effect of the predicted system

load and wind power generation.

3.1.2 AR-type Time Series Models

In an ARMA(p, q) model, the current value of Xt depends on p past values of X and

q previous values of the noise. AR-type models are the most basic time series models

for forecasting.

Cuaresma et al. [23] use data from German European Energy Exchange market to

apply ARMA processes for short-run EPF. In a related study, Weron and Misiorek

[24] utilize different autoregressive models to forecast prices in the California market.
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Misiorek et al. [25] use an AR model to compare with more complex models in the

California market. Jonsson et al. [22] also use a simple AR model for short-run EPF.

Haldrup and Nielsen [26] use seasonal ARFIMA models to forecast the Nord Pool

market prices. Lagarto et al. [27] forecast the one-day ahead Spanish market prices

by using an ARIMA model applied to the conjectural variations of the firms. They

conclude that it is slightly better than a standard ARIMA model.

Amjady and Hemmati [28]; Che and Wang [29]; Cruz et al. [30]; and Tan et al. [31]

also use AR-type models in EPF. In these papers, they compare the performance of

more complicated models or hybrid models including neural networks, support vector

machines or GARCH components.

3.1.3 ARX-type Time Series Models

There are also external factors that affect electricity price which are called exoge-

nous variables. Time series models with exogenous variables can be used to discover

the relationship between prices and other significant variables. These models can be

considered as generalizations of existing models. For example, ARX, ARMAX, ARI-

MAX and SARIMAX are extended versions of AR, ARMA, ARIMA and SARIMA,

respectively. In EPF, there are a lot of studies with time series models with exogenous

variables.

Nogales et al. [4] call ARMAX model transfer function and ARX model dynamic

function and use them for forecasting hourly prices in California and Spain. The

results are significantly better than models proposed by Contreras et al. [32]. Nogales

et al. [33] use the same methods for a different series. Conejo, Contreras et al. [16]

use different models to compare for short term EPF: three time series models, namely

a wavelet multivariate regression technique, and a multilayer perceptron (MLP) with

one hidden layer.

Weron and Misiorek [24] and Misiorek et al. [25] employ 24 ARX models, one for

each hour of the day, by using load forecast as exogenous variable and three dummies
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for weekly seasonality. They found that these models have a better performance than

a single ARIMA model for all hours [32], and have a worse performance than the

transfer function and dynamic regression models [4].

Knittel and Roberts [34] use different models for one-day ahead price forecasting

in the California market, a seasonal ARMA model with the temperature, squared

temperature and cubed temperature as explanatory variables is one of these models.

Zareipour et al. [35] find 3 hours ahead and 24 hours ahead forecast of Ontario energy

price. The forecast performances of ARMAX and ARX models are compared with

ARIMA models.

Weron and Misiorek [36] use various time series models for one-day ahead EPF us-

ing hourly spot prices and loads in California and hourly spot prices and air temper-

atures from Nordic market. These models are AR models which are spike prepro-

cessed, threshold, semiparametric and mean-reverting jump diffusions. They found

that models with the electricity load as the explanatory variable usually have better

performance than only price models. Additionally, semiparametric models, and the

smoothed nonparametric ARX model, perform better than other models and they per-

form well under different market conditions.

Lira et al. [37] make one-day ahead EPF for Colombian market by using a fuzzy logic

model and ARMAX models which identified by a Kalman filter. The input variables

in the models are reservoir levels and load. Cruz et al. [30] compare the accuracies

of various models: SARIMA, double seasonal exponential smoothing, dynamic re-

gression and a feedforward neural network, and conclude that their accuracies can be

increased significantly by including the system operators wind generation forecasts.

Kristiansen [38] changes the model of Weron and Misiorek [36] to involve Nordic

demand and Danish wind power as explanatory variables and predicts prices together

for all hours. Caihong and Wenheng [39] introduce a new method for the system iden-

tification of multi-input, single output ARMAX models using the CPSO algorithm on

California market. Bordignon et al. [20] use an ARMAX model in the analysis with

different forecast combinations.
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3.1.4 Exponential Smoothing

Exponential smoothing is commonly used in electricity load forecasting, however

there are not many studies on EPF.

THETA method is proposed by Assimakopoulos and Nikolopoulos [40] which is a

variant of exponential smoothing method. The method was performed in the M3

forecasting competition (Makridakis and Hibon, [41]).

Cruz et al. [30] use double seasonal exponential smoothing to compare with more

sophisticated models in Spanish market. They found that exponential smoothing has

a slightly better performance than ARIMA for hourly electricity prices. On the other

hand, these models perform worse than dynamic regression models or neural network

models.

3.1.5 Threshold Autoregressive Models

Threshold Autoregressive (TAR) model is proposed by Tong and Lim [42] which

assumes that the regime can be determined by an observable variable relative to a

threshold value. Exogenous variables can be included by extending TAR model to

TARX model. Besides, some of the nonlinear time series models are Self Excit-

ing TAR (SETAR) model, Smooth Transition AR (STAR) model and Logistic STAR

(LSTAR) model.

Robinson [43] builds an LSTAR model to electricity prices in the Great Britain mar-

ket, and shows that its performance is much better than linear autoregressive alterna-

tives. Stevenson [44] adjusts AR and TAR processes to wavelet filtered half-hourly

series and concludes that the forecast performance of TAR model surpasses the AR

model. Rambharat et al. [45] offer a SETAR model with temperature as input vari-

able and a gamma distributed jump component for the daily data from Pennsylvania.

The model is estimated by using Markov chain Monte Carlo method.

Weron and Misiorek [46] use California market data to conduct TAR and TARX mod-

13



els with electricity load as the exogenous variable. The last hour of previous day is

used as threshold variable in the TARX models. A multi-step optimization procedure

is used to estimate threshold levels of every hour. In another study, Misiorek et al.

[25] use an expanded range of threshold variables for testing. As a result, they found

that using the difference between the mean prices for yesterday and eight days ago as

threshold variable gives better forecasting performance. Then, Weron and Misiorek

[36] use the same TARX models for Nord Pool data. They conclude that mean errors

of TARX models are the worst in a more regular period, there is a great difference

between the actual price and predicted value.

Chen and Bunn [47] use logistic smooth transition regression to test that electricity

spot price dynamics show a pattern of varying intra-day nonlinear functions of other

significant variables. They built different models for different periods of the day

which are off-peak, morning peak and evening peak.

3.1.6 Heteroskedasticity and GARCH-type models

In the linear AR and ARX-type models, homoscedasticity (constant variance) as-

sumption must be satisfied. However, electricity spot prices show nonlinear dynam-

ics which cause heteroscedasticity. Engle [48] proposed the Autoregressive Condi-

tional Heteroskedastic (ARCH) for the problem of heteroscedasticity and Bollerslev

[49] extended this model and propose the Generalized Autoregressive Conditional

Heteroskedastic (GARCH) model. In EPF, GARCH model is generally used with an

AR-type model where the residuals of the regression part are modeled with a GARCH

process.

In the study of Knittel and Roberts [34], an AR-EGARCH model is used for EPF in

California. They conclude that this model is better than other models for crisis period,

but it has the worst performance for pre-crisis period. Garcia et al. [50] deduce that

ARIMA-GARCH performs better than an ARIMA model when there is high volatility

and price spikes.

Diongue et al. [51] use prices from Germany to examine conditional mean and con-
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ditional variance forecasts by a dynamic model with a k-factor GIGARCH process.

This model has a better forecasting performance than SARIMA-GARCH model.

Karakatsani and Bunn [52] use three modeling approaches and one of the conclusions

is that allowing for the time-varying responses of prices to market fundamentals can

give more accurate volatility estimates than an explicit GARCH model.

Tan et al. [31] apply a wavelet decomposition to price series in the Spanish and PJM

electricity markets, then predict each subseries by an ARIMA-GARCH model or a

GARCH model.

Gianfreda and Grossi [53] use the Italian power market data to examine the effect of

technologies, market concentration, congestions and volumes on price dynamics by

applying the model of Koopman et al. [18] which uses periodic extensions of dy-

namic long-memory regression models with autoregressive conditional heteroscedas-

tic errors. They conclude that the models perform better when these factors are taken

into account. Huurman et al. [54] use GARCH-type time-varying volatility models to

forecast Scandinavian electricity prices. The results show that models extended with

weather forecasts perform better.

3.2 Computational (Artificial) Intelligence Models

Computational intelligence methods are computational methods that have been de-

signed to handle the problems which traditional methods cannot solve effectively.

They are considered as intelligent because of their ability to adapt to complex dy-

namic systems. The main categories are artificial neural networks, fuzzy systems and

support vector machines.

Artificial neural networks can be classified into two groups given in Figure 3.1,

namely feed-forward neural networks and recurrent neural networks which will be

explained in detail in the next chapter.
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Figure 3.1: A taxonomy of artificial neural networks that are most commonly used in

EPF

3.2.1 Feed-forward Neural Networks

Feed-forward neural network is an example of static neural networks which obtains

output directly from the input [55].

Aggarwal et al. [56] use back-propagation training algorithm for the MLP in EPF

applications. Another training algorithm is Levenberg-Marquardt algorithm, there

are several applications in EPF such as Catalão et al. [57]; Pindoriya et al. [58];

and Rodriguez and Anders [59]. Pao [60] uses a generalized delta learning rule.

Zhang and Luh [61] apply neural networks using decoupled extended Kalman filter

as an integrated adaptive learning and CI estimation method with a modified U-D

factorization method.

There are more complicated methods; for example, Gareta et al. [62] apply a com-

bination of univariate MLP networks where different networks forecast maximum,

minimum and medium values of the electricity price. Hu et al. [63] use a market con-

centration index as an exogenous variable in MLP and conclude that it has an effect
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on forecasts. Besides that, MLP network has been used by Chen et al. [64]; Cruz

et al. [30]; Garcia-Ascanio and Mate [65]; Gareta et al. [62]; Mandal et al. [66];

Pindoriya et al. [58]; and Yamin et al. [67]. Additionally, RBF network has been

applied by Guo and Luh [68]; Lin, Gow, and Tsai [69]; Pindoriya et al. [58]; and Yao

et al. [70].

Amjady and Keynia [28] use a multi-layer perceptron model where the numbers of

hidden and input units are specified by an iterative method. Chaâbane [71] build a

model to predict the residuals of an ARFIMA model by using a MLP with past prices

as inputs. Huang et al. [72] use a particle swarm optimization to optimize the network

structure. Guo and Luh [68] propose a procedure with MLP and RBF network.

3.2.2 Recurrent Neural Networks

Recurrent neural network is an example of dynamic neural networks which obtains

the output by using the current input, and the previous inputs, outputs, and/or hidden

states of the network [55]. Elman neural network is a popular recurrent neural net-

work which consists of an input layer, a context layer, a hidden layer and an output

layer. Gradient algorithm can be used to train recurrent networks.

Anbazhagan and Kumarappan [73] obtain short-term price forecasts in the Spanish

market by using Elman networks. They conclude that this network performs better

than ARIMA, wavelet-ARIMA, MLP, fuzzy ANN and wavelet-ARIMA-RBF net-

works. However, simple recurrent networks have a poor performance for long run

forecast.

Lin, Horne, Tino, and Giles [74] proposed nonlinear autoregressive models with ex-

ogenous inputs (NARX) to solve this problem. NARX Neural Network will be ex-

plained in detail in the next chapter. Andalib and Atry [75] apply a NARX model to

forecast hourly Ontario energy prices where demand is used as explanatory variable.

17



3.2.3 Fuzzy Neural Networks

Fuzzy logic is a mathematical logic in which instead of an input taking a value of 0 or

1, it can possess a degree of truth anywhere between 0 and 1. Fuzzy neural networks

(FNN) combine ANNs with fuzzy logic [76], [77].

Hong and Hsiao [78] apply fuzzy logic to EPF by using fuzzy-c-means to catego-

rize historical data into three clusters and employ a recurrent network for forecasting.

Vahidinasab et al. [79] utilize a MLP for price forecasting in a similar method. Ro-

driguez and Anders [59] construct an adaptive-network-based fuzzy inference system

(ANFIS) and they show that their model have a better performance than a MLP. Am-

jady [80] built a FNN model in Spanish electricity market and show that their method

performs better than ARIMA, wavelet-ARIMA, MLP or a RBF network.

Meng et al. [81] train a RBF network by using fuzzy-c-means. Azadeh et al. [21]

propose an integrated, multistep algorithm which combines three ANNs, seven fuzzy

regressions and one standard regression model to obtain long-term EPF. The algo-

rithm changes between the predictions of the different methods. It is concluded that

the standard and fuzzy regressions have better performance than ANN.

3.2.4 Support Vector Machines

The support vector machine (SVM) is a supervised learning method used for clas-

sification, regression and outlier detection. SVM produces nonlinear boundaries by

building a linear boundary in a large, transformed version of the feature space (Hastie

[82]).

Sansom et al. [83] compare SVM to MLP with the same inputs, and results show that

the SVM perform better in forecasting. Zhao et al. [84] use a SVM model to forecast

the electricity price.

Fan et al. [85] and Niu et al. [86] use Self-organizing maps (SOM) classifiers to

cluster hourly electricity price, then employ SVM to predict the prices in each group.
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3.3 Hybrid Models

Hybrid models divide the data into two parts. The first part is modelled by traditional

methods such as regression or time series models. Then, the errors are modelled by

using computational intelligence models such as artificial neural networks or fuzzy

logic models. Hybrid methodology is explained in Chapter 4.6 in detail. In this thesis,

hybrid methodology is adopted as forecasting method since its promising results in

electricity markets.

Conejo et al. [16] introduce a wavelet-ARIMA technique for one-day ahead predic-

tion of electricity price for Spanish market. They conclude that the performance of

the wavelet-ARIMA is better than that of an ARIMA process. Similarly, Shafie-Khah

et al. [87] find a hybrid method to forecast one-day ahead prices. In this model, a

wavelet transform gives a time series, an ARIMA model is utilized to obtain a linear

forecast, and after that a radial basis function network is employed to fix the estima-

tion error of the wavelet-ARIMA forecast.

Yan and Chowdhury [88] propose a hybrid mid-term EPF model integrating a least

squares support vector machine (LSSVM) and ARMAX models. The model has

better forecasting accuracy compared to only LSSVM model.

Gonzalez et al. [89] test the performances of two hybrid models for predicting the

one-day ahead spot electricity prices. The first model is a hybrid method which uses

a supply stack modeling with an econometric model. The second model is an ex-

tended version of the first one which involves logistic smooth transition regression

(LSTR) to represent regime-switching for periods of structural change. The forecast-

ing performances of these models are better than non-hybrid models.

Wu and Shahidehpour [90] apply a hybrid ARMAX-GARCH adaptive wavelet neu-

ral network model in the PJM market. The ARMAX model is employed to model

the linear relationship between the price and electricity load; the GARCH model is

applied to explain the heteroskedastic character of residuals; and the wavelet neural

network is utilized to show the nonlinear effect of load on electricity prices.
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Amjady and Hemmati [28] propose a hybrid model with an application in Spanish

market, they show that the method is better than a standard ARIMA model, a wavelet-

ARIMA model or a fuzzy ANN.

For the RBF network, Jain et al. [91], Rutkowski [77] use a hybrid learning algorithm

which is a combination of a supervised algorithm and an unsupervised algorithm.

Shafie-Khah et al. [87] build a hybrid wavelet-ARIMA-RBF network where a RBF

network adjusts the estimation error of the wavelet-ARIMA forecast.

In most of the cases, RBF and MLP are used as a part of hybrid models or used to

compare with more complicated methods. Gonzalez et al. [92] use MLP in a hybrid

hidden Markov model. Mori and Awata [93] use regression trees with RBF networks

to find one-step ahead price forecasts. Keynia and Amjady [94] employ a hybrid MLP

network model for forecasting PJM data and compare to other MLP models.

Sharma and Srinivasan [95] use a hybrid model which involves a Fitz-Hugh Nagumo

model with an Elman network and a feed-forward ANN for forecasting in Australia,

Ontario, Spain and California markets. Fitz-Hugh Nagumo model is a dynamic model

which is used to model spiking.

Catalão et al. [96] offer a hybrid method that uses a wavelet transform, particle swarm

optimization and an adaptive-network-based fuzzy inference system.

Che and Wang [97] use support vector regression and ARIMA models to build a

hybrid model called SVRARIMA. They conclude that this hybrid model performs

better than some of the ANN models and ARIMA models. Yan and Chowdhury [98]

use PJM data to build a hybrid mid-term EPF model consists of least-squares SVM

and ARMAX models. Chaâbane [99] construct a hybrid model in Nord Pool market,

which uses the features of ARFIMA and least-squares SVM, and they show that it

performs better than individual models.
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3.4 EPF Studies in Turkey

After the commencement of liberalization process in Turkey, the number of studies

on EPF has increased significantly. The reason of this is the importance of making an

accurate forecast for electricity prices in a competitive market.

Özmen et al. [100] propose a modelling approach to forecast next-days electricity

price in each period which are day, peak, and night. They conclude that CMARS and

RCMARS techniques perform better than dynamic regression.

Ünlü [5] examines electricity price as a univariate stochastics process and also exam-

ines with temperature as a two-dimensional stochastics process.

Kölmek and Navruz [11] conduct simulation studies about price modeling via arti-

ficial neural networks for forecasting one-day ahead electricity price. The selected

ANNs performance is compared with a time series model.

Zakeri [8] builds a time series model to obtain short-term forecasts of hourly elec-

tricity prices using multiple regression method. Lagged price values, demand and

dummy variables for Saturdays and Sundays are employed as exogenous variables.

Gökgöz and Filiz [101] use ANN for one-day ahead electricity price forecasting in

Turkey. They use different training algorithms, number of neurons and transfer func-

tions to create different neural network models.

Benli [102] compares nineteen forecasting methods including Double exponential

smoothing and ARIMA models for four various electricity tariffs pricing (monochromic,

day, peak and night) in Turkey. He concludes that Holt Winters exponential smooth-

ing model outperforms for the time period 2011 to 2014.

Yıldız et al. [103] use an ANN model based on feed forward back propagation ap-

proach for one-day ahead price forecasting by using a series of four years period.

Ugurlu et al. [104] utilize Recurrent Neural Networks for Turkish one-day ahead

electricity market. The results indicate that 3-layered Gated Recurrent Units (GRU)
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have better performance than other neural network models and statistical methods.

Ugurlu et al. [105] use hourly electricity prices in Turkey to make one-day ahead

predictions by using various univariate models. They conclude that the SARIMA

model is successful under the given conditions.
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CHAPTER 4

METHODOLOGY

4.1 AR-type Models

Time series models use past values of variables in order to predict their future values.

In forecasting, the reliability of the model should be based on performance of test

sample [106].

The time series model using Box-Jenkins approach has been proposed by Box and

Jenkins [107] based on works of Yule [108] and Wold [109]. Autoregressive Moving

Average (ARMA) models are estimated with this approach. ARMA models are time

series models that are widely used in time series forecasting.

The ARMA model is denoted as ARMA(p,q) which is given as Equation 4.1.

ẏt − ϕ1ẏt−1 − ...− ϕpẏt−p = ϵt + θ1ϵt−1 + ...+ θqϵt−q (4.1)

where ẏt = yt−µ and µ is the process mean. In Equation 4.1, ẏt is a stationary series.

Coefficients ϕ and θ are autoregressive and moving average parameters respectively.

Orders of autoregressive and moving average parameters are respectively p and q.

Random errors, ϵt , are assumed to be independently and identically distributed white

noise process with a mean of zero and a constant variance of σ2 which is generally

denoted as WN(0, σ2). There is no common factor between autoregressive part (1−
ϕ1B − ϕ2B

2 − ...− ϕpB
p) and moving average part (1 + θ1B + θ2B

2 + ...+ θqB
q)

where B is backshift operator, defined by Byt = yt−1 . These polynomials can be
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represented by ϕ(B) and θ(B) .

Thus ARMA(p, q) model can also be denoted as Equation 4.2,

ϕ(B)ẏt = θ(B)ϵt. (4.2)

When q = 0, then equation becomes an AR(p) model. If p = 0, the model becomes

MA(q) model.

4.1.1 Autoregressive Integrated Moving Average (ARIMA) Models

ARMA, AR and MA models are only applicable for stationary time series. How-

ever, most of the real life examples of price series are not stationary. If the series

become stationary by taking difference, the autoregressive integrated moving average

(ARIMA) model is implemented. The ARIMA model is denoted as ARIMA(p, d, q)

which is given as Equation 4.3.

ϕ(B)(1−B)dẏt = θ(B)ϵt (4.3)

where d is the dth difference operator. If there is no need to take difference then d is

equal to 0 and ARIMA model can be called ARMA model.

4.1.2 Seasonal Autoregressive Integrated Moving Average (SARIMA) Models

When there is a stochastic seasonal periodicity within the series, SARIMA models

are used to describe the behavior of the series. The SARIMA model is denoted as

SARIMA(p, d, q)(P,D,Q)s which is given as Equation 4.4.

ϕ(B)Φ(Bs)(1−B)d(1−Bs)Dẏt = θ(B)Θ(Bs)ϵt (4.4)

where B is the backshift operator, defined by Bsyt = yt−s. Coefficients ϕ and θ
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are autoregressive and moving average parameters, respectively. Coefficients Φ and

Θ are seasonal autoregressive and seasonal moving average parameters, respectively.

Orders of nonseasonal autoregressive and moving average parameters are p and q,

and orders of the seasonal autoregressive and moving average parameters are P and

Q, respectively; d and D denote nonseasonal and seasonal differences, respectively.

Random errors, ϵt , are assumed to be independently and identically distributed with

a mean of zero and a constant variance of σ2.

By taking ȳt = (1 − B)d(1 − Bs)Dyt , seasonal unit root is removed so SARIMA

model is converted to SARMA. Thus, estimation of ARIMA and Seasonal ARIMA

models is similar to estimation of ARMA model.

Box-Jenkins approach which is used to model ARIMA models was described in the

book by George Box and Gwilym Jenkins in 1970 [107]. The steps of Box-Jenkins

modelling approach are as follows:

1. Data Preparation

Transformation and differencing are made in this part. Power transformations

are applied to stabilize the variance. Then, series is differenced when there is

a stochastic trend. Differencing is taking the difference between consecutive

observations or between observations according to seasonal period. Differenc-

ing is done to make the data stationary. Stationarity is necessary in building

an ARIMA model that will be used for forecasting. There are stationarity tests

such as KPSS test or unit root tests such as ADF test to decide on the existence

of a trend in the series.

2. Model Selection

ACF-PACF graphs of transformed and differenced series are used to identify

potential ARIMA models. It is possible to identify one or several potential

models for the given time series by using the autocorrelation function and the

partial autocorrelation function of the realizations. Additionally, model selec-

tion tools such as Akaike’s Information Criterion and Bayesian Information

Criterion are used to select the best model.
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3. Parameter Estimation

After tentative model is specified, values of model coefficients are estimated

mostly using maximum likelihood estimation (MLE) technique.

4. Model Checking

The last step of model building is the diagnostic checking of model adequacy.

The assumptions about the errors of the estimated model are checked in this

step of the process. If some assumptions are not satisfied, the model is not

adequate. Then, it is necessary to return to model selection step to select a

better tentative model.

5. Forecasting

The future values of the series are predicted by using the model selected. The

minimum MSE forecasts are used. Since ARMA type models are stochastic

models, forecasts tend to converge to the process mean when forecast period is

far from the forecast origin. Therefore, short term forecasts give good results.

4.2 ARX-type Models

The SARIMA process only use the previous values of price and the error to predict the

future values. However, there are also external factors that may affect electricity price

which are called exogenous variables. The ARIMA model is extended into ARIMA

model with exogenous variable X , called ARIMAX(p, d, q).

The autoregressive moving average model with exogenous variable, ARIMAX(p, d, q)

can be represented by

ϕ(B)(1−B)dẏt = βXt + θ(B)ϵt (4.5)

where Xt is the previous day’s demand of electricity and β is its coefficient. The least

square estimation and maximum likelihood estimation methods can be used for the

estimation of ARX-type models. Besides that, other estimation methods can be used.
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When there is seasonality in the series, Seasonal ARIMAX (SARIMAX) model is

employed to capture seasonality.

4.3 GARCH Models

In ARIMA estimation, constant variance assumption may not hold. The models

where this assumption does not hold is called heteroskedastic. A variance that changes

over time has implications for the validity and efficiency of statistical inference about

parameters [110].

The Autoregressive Conditional Heteroskedastic (ARCH) class of models was intro-

duced by Engle [48]. He showed that mean and variance of the series can be modelled

simultaneously. The ARCH(q) model takes the conditional variance as time depen-

dent, so the conditional variance is denoted by an autoregressive process, which is a

weighted sum of squared previous observations:

ϵ̂2t = α0 + α1ϵ̂
2
t−1 + α2ϵ̂

2
t−2 + ...+ αq ϵ̂

2
t−q + vt (4.6)

where vt is a white-noise process.

Bollerslev [49] extended Engles [48] ARCH model by developing a method that lets

the conditional variance to be an ARMA process. GARCH stands for Generalized

Autoregressive Conditional Heteroskedasticity while the ARIMA models are aimed

at modeling and forecasting the changing price itself, GARCH process can measure

the implied volatility of a time series due to price spikes [111], [50].

Let the squared error process be

ϵ2t = v2t ht (4.7)

where σ2
v = 1 is basically a white noise process and

ht = c+

p∑
i=1

αiht−i +

q∑
i=1

βiϵ
2
t−i (4.8)
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gives the conditional variance of ϵt which is an ARMA process. GARCH(p, q) model

becomes ARCH(q) model when p = 0.

ARCH and GARCH models have become very popular in that they enable the re-

searcher to estimate the variance of a series at a point in time [112]. GARCH models

can be combined with an AR-type model, it is called a (S)AR(IMA)-GARCH model,

where the residuals of the regression part are modelled with a GARCH process.

In this study, the SARIMAX-GARCH model is used in Model 5, where the residuals

of the regression part are modelled further with a GARCH process.

4.4 Exponential Smoothing Models

Exponential Smoothing is a deterministic forecasting method which was developed

in the late 1950s by the works of Brown [113], Holt [114] and Winters [115]. Fore-

casts are weighted averages of past observations. As observations get older, weights

decrease exponentially [116].

The method of simple exponential smoothing, Brown [113], takes the forecast for the

previous period and adjusts it using the forecast error. The forecast for the next period

is

ŷt+1 = αyt + (1− α)ŷt (4.9)

where α is a smoothing parameter between 0 and 1. The most recent observation yt

is weighted with a weight value α, and the most recent forecast ŷt is weighted with a

weight of 1− α.

4.4.1 Holt Winters Exponential Smoothing Method

Holt Winters is an exponential smoothing method which is designed for series with

trend and seasonality. Holt Winters method is based on three smoothing equations:

one for the level, one for trend, and one for seasonality. Taylor [117] extended the

linear version of the Holt-Winters method to incorporate a second seasonal compo-
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nent and develops the following double seasonal Holt Winters exponential smoothing

method.

yt = lt−1 + bt−1 + s
(1)
t + s

(2)
t + dt (4.10a)

lt = lt−1 + bt−1 + αdt (4.10b)

bt = bt−1 + βdt (4.10c)

s
(1)
t = s

(1)
t−m1

+ γ1dt (4.10d)

s
(2)
t = s

(2)
t−m2

+ γ2dt (4.10e)

where m1 and m2 are periods of the seasonal cycles and dt is a white noise random

variable representing the prediction error. lt and bt show the level and trend compo-

nents of the series at time t respectively, and s
(i)
t denotes the ith seasonal component

at time t. α, β, γ1, γ2 are the smoothing parameters ranging over [0,1].

4.4.2 Trigonometric Seasonal Models

TBATS (Trigonometric Seasonal, Box-Cox Transformation, ARMA residuals, Trend

and Seasonality) Model is proposed by De Livera et al. [118]. The Equation 4.10 can

be extended to Equation 4.11 to include a Box-Cox transformation, ARMA errors

and trigonometric seasonal patterns as follows. This method allows to capture more

than two seasonal periodicities within the series.

The algorithm that is used in the TBATS modelling is shown in Equation 4.11.
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y
(w)
t =


ywt − 1

w
w ̸= 0,

logyt w = 0,

(4.11a)

y
(w)
t = lt−1 + ϕbt−1 +

T∑
i=1

s
(i)
t−mi

+ dt (4.11b)

lt = lt−1 + ϕbt−1 + αdt (4.11c)

bt = (1− ϕ)b+ ϕbt−1 + βdt (4.11d)

s
(i)
t = s

(i)
t−mi

+ γidt (4.11e)

dt =

p∑
i=1

φidt−i +

q∑
i=1

θiϵt−i + ϵt (4.11f)

where m1, ...,mT show the seasonal periods, lt is the local level in period t, b is the

long-run trend, bt is the short-run trend in period t, s(i)t denotes the ith seasonal com-

ponent at time t, dt represents an ARMA(p, q) process and ϵt is a white noise process

with zero mean and constant variance σ2. α, β, γi for i = 1, ..., T are smoothing

parameters, ranging in [0,1].

Trigonometric seasonal components is represented in the Equation 4.12.

s
(i)
t =

ki∑
j=1

s
(i)
j,t (4.12a)

s
(i)
j,t = s

(i)
j,t−1cosλ

(i)
j + s

∗(i)
j,t−1sinλ

(i)
j + γ

(i)
1 dt (4.12b)

s
∗(i)
j,t = −sj,t−1sinλ

(i)
j + s

∗(i)
j,t−1cosλ

(i)
j + γ

(i)
2 dt (4.12c)

where γ
(i)
1 and γ

(i)
2 are the smoothing parameters. λ(i)

j = 2πj/mi. s
(i)
j,t is the stochas-

tic level of the ith seasonal component, the stochastic growth in the level of the ith

seasonal component that is necessary to define the change in the seasonal compo-

nent over time by s
∗(i)
j,t . For even mi values, ki = mi/2 and for odd mi values

ki = (mi − 1)/2 where ki is the number of harmonics that is needed for the ith

seasonal component.
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4.5 Artificial Neural Networks (ANN)

Learning is described as ability of improving behavior through studying on experi-

ences [119]. A learning algorithm is a technique used to work on data to get con-

venient patterns for application in a new situation. The learning problems can be

categorized as supervised and unsupervised learning. In supervised learning, the pur-

pose is to predict the value of an outcome based on input measures; in unsupervised

learning, the aim is to identify the relationships among input measures [82]. Super-

vised learning uses classification and regression techniques to build predictive models

while unsupervised learning mostly uses clustering.

The artificial neural network is a supervised learning technique which was proposed

for pattern recognition purposes [120]. Yet, it can be used as regression as well. ANN

is developed as generalizations of mathematical models of human neural biology, the

similarity can be seen in Figure 4.1.

Figure 4.1: A biological neuron and an artificial neural network [121]

The network model is mostly determined by the characteristics of the data and no

prior assumption is needed to build the model [122]. In the network, units are con-
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nected with links and each link has a weight. It captures complicated relationships

between input and output information with the network structure. A unit (node) gets

inputs, multiplies by a numeric weight, adds bias value, forms an output by an acti-

vation function and it learns by adjusting the weights. The purpose of adding bias is

adjusting the threshold of activation function.

The relationship between the output and inputs for single hidden layer feedforward

network model has the following representation:

yt = α0 +

q∑
j=1

αjf(β0j +

p∑
i=1

βijyt−i) + ϵt (4.13)

where i = 0, 1, 2, ..., p; j = 1, 2, ..., q; yt is output, yt−1, ..., yt−p are inputs, αj and βij

are model parameters which are connection weights; p is the number of input nodes

and q is the number of hidden nodes; f is the hidden layer activation function which

is generally sigmoid (logistic) function that is given in Equation 4.14. Activation

function is required to bring nonlinearity into the network. The sigmoid function

converts the real valued numbers to numbers in the range between 0 and 1.

f(x) =
1

1 + exp(−x)
(4.14)

The transformation happens according to activation function in hidden and output

layers. For training, back-propagation algorithm is widely used which is based on

gradient descent. The training set put into the input layer, output values are obtained

and compared with actual values. The weights are changed according to error which

is the difference of estimated value and actual value. The aim is to find a set of

weights that minimizes error (cost). Learning cycle can be seen in Figure 4.2, each

cycle is called epoch. The weights are modified until convergence is reached. This

process is known as a back propagation which mainly uses chain rule. As a result, the

future values are predicted from the past values by the neural network model.

There are two major types of neural networks: dynamic and static [55]. In static

neural networks, output is calculated directly from the input. In a feedforward neural
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Figure 4.2: Neural network learning cycle [55]

network, the process follows a single direction which is from input to output. There

is no feedback component which can be seen in Figure 4.3. On the other hand, the

output depends on the current and previous inputs, outputs, and hidden states in a

dynamic neural network. Recurrent neural network model is an example of a dynamic

network as can be seen in Figure 4.4.

Figure 4.3: Example of three-layered feed-forward neural network
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Figure 4.4: Example of three-layered recurrent neural network

Feedforward neural network models are used to make one-step-ahead prediction of

a time series. For making multi-step-ahead prediction, the model’s output should be

fed back to the input regressor for a fixed number of time steps, so recurrent neural

network should be used. Recurrent neural networks are also useful to show nonlinear

dynamical mappings, which is widely found in nonlinear time series prediction [123].

4.5.1 Nonlinear Autoregressive with Exogenous Inputs (NARX)

Discrete time nonlinear systems can be modelled by the nonlinear autoregressive

moving average with exogenous inputs (NARMAX) model [124]. Chen et al. [125]

build NARMAX model by using neural network. The method used in this study is

non-linear autoregressive exogenous (NARX) neural network model which is a re-

current dynamic neural network model. In feedback dynamic neural networks, the

output of the network depends on current input, previous inputs and outputs of the

network. NARX model is based on ARX-type models, so it allows exogenous inputs
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in the network. In this type of network, future values of a time series yt can be pre-

dicted from past values of that time series and past values of another time series xt.

Therefore, it is a useful method for time series prediction.

NARX model can be written as

yt = f [yt−1, yt−2, ..., yt−dy , xt−1, xt−2, ..., xt−dx ] (4.15)

where y and x are outputs and inputs of the model respectively and dy and dx are

output and input delays of the model.

NARX NN models are useful for modelling long term dependencies in time series

data since the time delays captured by dy and dx. In this study, feedback dynamic

neural network is used which depends on previous inputs and outputs of the series.

Figure 4.5: Example of NARX neural network
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4.6 Hybrid Methods

The methods mentioned in this chapter are successful at different circumstances. For

instance, ARIMA models are good at modelling linear time series, however they are

not very good at capturing nonlinear structure. In real life problems, it is not easy

to know the characteristics of data structure completely. Therefore, using hybrid

methodology which has both linear and nonlinear modelling capabilities will be a

better choice for modelling series like electricity price.

Zhang [122] states that a time series can be considered as a combination of a linear

autocorrelation structure and nonlinear component as follows

yt = Lt +Nt (4.16)

where linear component is represented by Lt and nonlinear component is shown by

Nt. These components should be estimated from the series. First, linear component

will be modelled by ARIMA or TBATS. Then, the residuals from these models will

have only the nonlinear relationship. The residuals can be obtained by taking differ-

ence of actual values and predicted values as in Equation 4.17.

et = yt − L̂t (4.17)

where et represents the residual of linear model at time t and L̂t is the estimated value

at time t. To be an adequate linear model, no linear correlation structure should be

left in its residuals. To find the nonlinear relationship, residuals can be modelled by

ANN.

et = f(et−1, et−2, ..., et−n) + ϵt (4.18)

where f is transformation function in ANN and ϵt is random error. The forecast from

ANN and forecast from the first model are combined to obtain forecast of the series

yt which is denoted by

ŷt = L̂t + N̂t. (4.19)
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CHAPTER 5

ANALYSIS

In this study, price forecasts are obtained by using hybrid methodology which is ex-

plained in section 4.6. Different hybrid models are constructed by using methods

which are discussed in the previous chapter. For predicting the linear part of the

model, SARIMA and TBATS models are used. For nonlinear part, NARX Neural

Network, NAR Neural Network methods are used. Hybrid models are built with

combination of these models. Additionally, exogenous variable is included at dif-

ferent stages for different hybrid models. These models are compared according to

forecast performances. In addition, individual models which are SARIMA, TBATS

and NN are also compared with hybrid models. Time series plots of predicted values

and actual values and table of prediction performances for training set can be found in

Appendix A. Linear modelling is implemented in R and NN model is built using Neu-

ral Network Time Series Tool in MATLAB. There are packages available for neural

network modelling in R, however it is more convenient to use MATLAB for this part

of the analysis. It provides many options for training and it is easier to add exogenous

variables in MATLAB.

Short run and medium run forecasts are obtained by using these models. So, there are

two results from each model. Short run forecast is 24 hours (1 day) ahead prediction

and medium run forecast is 168 hours (1 week) ahead prediction. To act fast in the

market, accurate short run forecasting is very important. One may consider daily or

hourly forecasting than weekly forecasting.

RMSE and MAPE are used to compare the model performances. These are most
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commonly used accuracy measures in time series analysis.

5.1 Data Description

The data set used in this study is hourly electricity price (in TL/MWh) and hourly

electricity demand (in MWh) of Turkey. Series is starting from 1st January 2012 to

15th January 2018. This time period is equivalent to 52944 hours. There are multiple

seasonality (daily, weekly, monthly) in the price series. However, only daily and

weekly seasonality have significant effects in the models built. So, daily and weekly

seasonal periods are included in all the models in this study.

At first, we have a look at data structure. We have two variables which are hourly

electricity price and demand.

Figure 5.1: Time Series Plot of Electricity Price

From the time series plots in Figures 5.1, 5.2, it can be seen that there are some

significant spikes at both variables. The reason of huge spikes in February 2012

and December 2016 in Figure 5.1 is supply shortage of natural gas to power plants.

Petroleum Pipeline Company (BOTAŞ in Turkish) cut off 90% of natural gas supply
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Figure 5.2: Time Series Plot of Electricity Demand

to power plants, therefore electricity spot prices increased up to 1200%. An interest-

ing fact about the price series is that minimum price for electricity is zero. Sometimes

electricity was traded for free since it cannot be stored. The variance of price is very

high. Generally, there is high volatility in electricity prices. Demand variable has a

repeated pattern over time. In addition, there is a slightly increasing trend.

Linearity of the price and demand are tested by Teraesvirta’s neural network linearity

test which uses a Taylor series expansion of the activation function to find a suitable

test statistic [126]. The null hypothesis of linearity in mean is rejected with p-values

smaller than 2.2× 10−16 for both demand and price series with a significance level of

0.05. Therefore, it is concluded that they are both nonlinear.

5.2 Demand Forecast

To make a prediction about electricity prices, we should predict the future values

of demand which is the exogenous variable in all models. Double Seasonal Holt

Winters Exponential Smoothing Method gives the best forecast performance among
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other methods such as SARIMA, TBATS and NAR NN. It can be seen from Figure

5.3 and Figure 5.4 that the actual values and forecast values are very close to each

other at most of the time points.

Figure 5.3: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Demand

Figure 5.4: Time Series Plot of Actual Values and One-day Ahead Forecast Values of

Demand
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5.3 Hybrid Models

5.3.1 Model 1: SARIMA and NARX

Algorithm that is used in Model 1 for electricity price forecasting is as follows:

• Step 1. A model with dummy variables is constructed to eliminate weekly

seasonality. Since SARIMA models in R can only have one seasonal period, it

is required to examine one type of seasonality with dummy variables.

• Step 2. SARIMA model is constructed with the residuals of the model in step

1.

• Step 3. NARX neural network model is used for modelling the residuals of the

model in step 2 and demand is used as input variable.

• Step 4. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 5. Forecasts are combined with the hybrid model by using the forecasts

from DSHW. Forecast values from SARIMA model, forecast values from NN

model and coefficients of model with dummy variables are added together.

Figure 5.5: ACF and PACF Plots of Price

41



Figure 5.6: ACF Plot of Price

Price variable does not look stationary from ACF-PACF plots in Figure 5.5. There are

both hourly and weekly seasonality. Weekly seasonality can be seen from the peaks

at times of 168 at Figure 5.6 which shows ACF for longer lags than the Figure 5.5.

Dummy variables are made for days of the week. A model is constructed with price

as response, dummy variables as covariates without an intercept term. Thus, weekly

seasonality is captured by means of daily dummies.

Table 5.1: Coefficients, Standard Errors and p-values of model with dummy variables

Coefficients S.E. P-value

Mon 151.5541 0.5860 <2e-16

Tues 155.7753 0.5860 <2e-16

Wed 155.2993 0.5860 <2e-16

Thur 156.5983 0.5860 <2e-16

Fri 156.0184 0.5860 <2e-16

Sat 150.3039 0.5860 <2e-16

Sun 131.9824 0.5851 <2e-16
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All dummy variables look significant in Table 5.1. Estimated dummy model is repre-

sented in Equation 5.1. Then we examine the residuals of this model.

ŷt =151.55Mon+ 155.77Tues+ 155.29Wed+ 156.59Thur

+ 156.02Fri+ 150.3Sat+ 131.98Sun
(5.1)

Stationarity of the residuals is tested by KPSS test by rejecting the null hypothesis for

level stationarity with a p-value equals to 0.01 which is smaller than significance level

0.05. Therefore, residuals are not stationary according to KPSS test. Additionally, R

code ndiffs gives the number of differences required to make the series stationary and

it states that one regular difference should be taken to obtain a stationary process.

Therefore, a regular difference is taken. Then, stationarity is checked again.

Figure 5.7: ACF and PACF Plots of Differenced Residuals

In Figure 5.7 which shows ACF-PACF plots of the differenced residuals, it looks like

there is seasonality. From the result of nsdiffs which gives the number of seasonal

differences required to make the series stationary, one can conclude that a seasonal

difference should be taken.

After taking the seasonal difference, it can be concluded that there is no need for

taking difference again by looking at the results of ndiffs and nsdiffs codes in R.
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Figure 5.8: Time Series Plot of of Differenced and Seasonal Differenced Residuals

Figure 5.9: ACF and PACF Plots of Differenced and Seasonal Differenced Residuals

Differenced series have zero mean and there are some spikes which can be seen in

Figure 5.8. However, it can be concluded that series looks stationary after taking

regular and seasonal difference by looking at Figure 5.9 and the results of ndiffs and

nsdiffs codes in R.

44



So, we can fit a SARIMA model with differenced residuals of the first model. Orders

are decided by looking at ACF-PACF plots given in Figure 5.9. Significance of the

lags are checked by fitting models with different orders. The best model having the

smallest BIC is obtained as

(1 + 0.232− 0.137B2 − 0.206B3 − 0.314B4)(1− 0.072B24 − 0.056B48 − 0.044B72)

(1−B)(1−B24)yt = (1− 0.015B − 0.409B2 − 0.262B3 − 0.277B4)

(1− 0.932B24)ϵt
(5.2)

Table 5.2: Coefficients and Standard Errors of SARIMA Model

Coefficients S.E.

ar1 -0.232 0.0510

ar2 0.1371 0.0330

ar3 0.2062 0.0397

ar4 0.3139 0.0292

ma1 -0.0152 0.0520

ma2 -0.4090 0.0424

ma3 -0.2622 0.0446

ma4 -0.2774 0.0380

sar1 0.0725 0.0052

sar2 0.0563 0.0050

sar3 0.0444 0.0049

sma1 -0.9322 0.0026

Then, we check the assumptions of residuals of the SARIMA model.

First, normality assumption is checked. P-value of the Jarque-Bera Normality Test

equals to 2.2×10−16 which is smaller than α = 0.05. So, null hypothesis which states

that residuals are normally distributed is rejected. Therefore, it can be concluded that

residuals are not normally distributed.
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Then, correlation of residuals is checked by using Box Pierce Test for correlation.

P-value of this test is 0.3914 which is greater than α = 0.05. This means that null

hypothesis which says that residuals are not correlated is failed to reject. Thus, this

assumption is satisfied.

Figure 5.10: ACF-PACF Plots of Squared Residuals of SARIMA Model

ACF- PACF plots of squared residuals given in Figure 5.10 show that there are some

lags that are out of white noise band. So, there is heteroscedasticity. Therefore,

it can be concluded that some assumptions about the residuals are not satisfied. In

the beginning of modelling process, Box-Cox transformation is used to stabilize the

variance. However, it does not solve the problems about assumptions. So, Box-Cox

transformation step is excluded from the analysis. Because of the high variation in

the series, residuals follow a heavy tailed distribution. So, there is nonlinearity in the

residuals that we will try to explain this by NN model.

NARX NN model is used to model the residuals of SARIMA model. In NARX NN

Levenberg-Marquardt algorithm is used for training. Mean squared error (MSE) is

used to find the best fit. The network for this model can be seen in Figure 5.11.

For forecasting purpose, closed-loop network is used which can be seen in Figure

5.12. For other models in this study, closed-loop network will not be shown since the
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delays are the same with the open-loop ones. In this network, 24 is the number of

delays for both input and target variable and number of hidden layers is 10. These

values are decided by trying different numbers and comparing the performances. In

these networks, w denotes weights and b denotes bias term. Moreover, x is demand

variable and y shows the residuals of SARIMA model in Equation 5.2.

Figure 5.11: NARX Neural Network for Model 1

Figure 5.12: Closed-loop NARX Neural Network for Model 1

In the final step of Model 1, forecast from SARIMA model, forecast from NARX NN

model and coefficients of the dummy model are combined to obtain the final forecast

values for the electricity price. All these processes are performed for one-week ahead

prediction and one-day ahead prediction.

Table 5.3: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 1

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead 1.588 225.767 15.025 11.491 0.4185 6.545

One-day ahead 5.849 422.222 20.548 16.971 2.532 9.905
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Figure 5.13: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 1

Figure 5.14: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 1

Figure 5.13 and Figure 5.14 show the actual values and forecast values of electricity

price for 168 hours and 24 hours, respectively. It can be concluded that actual values

and forecast values are close to each other. For one-week ahead forecast in Figure

5.13, the model captures the behavior very well at most of the times. In the final 24
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hours, the real series has an unexpected movement, so most of the models are not very

successful at capturing this behavior. Therefore, comparing one-day ahead forecast

performances will be a good measure to see which model is better at modelling the

unexpected behaviors in the series. For one-week ahead forecast in Figure 5.14, at

some points forecast values show a different pattern from the actual values yet it is

the best daily forecast among all models.

5.3.2 Model 2: SARIMAX and NAR NN

Algorithm that is used in model 2 for electricity price forecasting is as follows:

• Step 1. A model with dummy variables is constructed to eliminate weekly

seasonality.

• Step 2. SARIMA model of residuals of the model in step 1 is built with demand

as an exogenous variable.

• Step 3. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 4. NAR neural network model is used for modeling the residuals of the

model in step 2.

• Step 5. Forecasts are combined with the hybrid model by using the forecasts

from DSHW. Forecast values from SARIMA model, forecast values from NN

model and coefficients of model with dummy variables are added together.

The difference between first and second hybrid models are the inclusion of exogenous

variable. In the second one, demand is included in the linear part, so the SARIMA

model becomes SARIMAX model. Again, weekly seasonality will be eliminated by

the same dummy model which is constructed with price as response, dummy variables

as covariates without an intercept term. Estimated dummy model is shown in the

following equation. Then, a SARIMAX model will be built by the residuals of this

model.
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ŷt =151.55Mon+ 155.77Tues+ 155.29Wed+ 156.59Thur

+ 156.02Fri+ 150.3Sat+ 131.98Sun
(5.3)

Table 5.4: Coefficients and Standard Errors of SARIMAX Model

Coefficients S.E.

ar1 -0.0555 0.0644

ar2 0.1225 0.0451

ar3 0.1454 0.0394

ar4 0.3030 0.0287

ma1 -0.2109 0.0651

ma2 -0.3502 0.0604

ma3 -0.1553 0.0435

ma4 -0.2614 0.0351

sar1 0.0802 0.0051

sar2 0.0659 0.0050

sar3 0.0487 0.0049

sma1 -0.9423 0.0024

demand 0.0049 0.0001

SARIMAX(4, 1, 4)(3, 1, 1)24 model can also be shown as follows

(1 + 0.055B − 0.1225B2 − 0.145B3 − 0.303B4)(1− 0.080B24 − 0.066B48

− 0.049B72)(1−B)(1−B24)yt = (1− 0.211B − 0.350B2 − 0.155B3 − 0.261B4)

(1− 0.942B24)ϵt + 0.005xt

(5.4)

Assumptions of residuals of SARIMAX model will be checked. The results of the

diagnostic checking are same with the SARIMA model in the previous hybrid model.
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In Jarque-Bera Normality Test, the null hypothesis that residuals are normally dis-

tributed is rejected with a p-value equals to 2.2× 10−16 at 0.05 significance level. In

Box Pierce Test, the null hypothesis which states that residuals are not correlated is

failed to reject with a p-value 0.2928 which is greater than 0.05 significance level.

ACF-PACF plots of squared residuals show that there is heteroscedasticity. Again,

a NN model will be used in following stages to try to explain nonlinearity in the

residuals.

Figure 5.15: NAR Neural Network for Model 2

In this model, demand is not included in the neural network because it is included in

the linear part. Therefore, Nonlinear Autoregressive (NAR) Neural Network model

is used in the nonlinear part to model residuals of SARIMAX model. In NAR NN,

Levenberg-Marquardt algorithm is used for training and mean squared error (MSE)

is used to find the best fit. The network for this model can be seen in Figure 5.15. In

this networks, 24 is the number of delays and number of hidden layers is 12. These

values are decided by trying different numbers and comparing their performances.

Table 5.5: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 2

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead -3.122 302.303 17.387 13.691 -2.005 7.733

One-day ahead 24.647 917.168 30.285 26.844 13.153 14.633

The second hybrid model is also good at capturing general movement of the series.

However, forecast values are greater than actual values at most of the time points in

the series which can be seen in Figure 5.16. Therefore, this makes the RMSE and
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MAPE values greater than the previous model. There is also a significant decrease

in the performance of one-day ahead prediction in the Model 2 when comparing with

Model 1 which also can be seen in Figure 5.17.

Figure 5.16: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 2

Figure 5.17: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 2
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5.3.3 Model 3: TBATS and NARX NN

Algorithm that is used in model 3 for electricity price forecasting is as follows:

• Step 1. A TBATS model is conducted for electricity price with daily and weekly

seasonality

• Step 2. NARX neural network model is used for modeling the residuals of the

TBATS model and demand is used as input variable.

• Step 3. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 4. Forecasts are combined with the hybrid model by using the forecasts

from DSHW. Forecast values from TBATS model and forecast values from NN

model are added together.

In the third hybrid model, TBATS model is used in linear part instead of SARIMA

model. In TBATS, multiple levels of seasonality can be included in the model.So,

there is no need to make a model with dummy variables. As a result, number of steps

in the algorithm decreases. Additionally, there is no assumption about the errors of

the model.

msts (Multi-Seasonal Time Series) command in R is used for reading time series with

multiple seasonality [127]. In this study, the seasonal periods are 24 and 168 (7*24)

because we have hourly data.

TBATS model that is used in this hybrid model is TBATS(1, 0,0, 0.82, <24,5>,

<168,4>). First value is Box-Cox parameter which is 1, so it means that there is

no need to make a Box-Cox transformation. The error is modelled as an ARMA(0, 0)

process and phi = 0.82 is the damping parameter. The number of Fourier terms

used for daily seasonal period is 5 and the number of Fourier terms used for weekly

seasonal period is 4 in this model.
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Smoothing parameters of this model are:

Alpha: 0.7757752

Beta: -0.1572273

Gamma-1 Values: 0.007573274 0.001725114

Gamma-2 Values: -0.0004319049 -0.002426854

Then, NARX NN model is used to model the residuals of TBATS model. In NARX

NN Levenberg-Marquardt algorithm is used for training. Mean squared error (MSE)

is used to find the best fit. The network for this model can be seen in Figure 5.18.

In this networks, 24 is the number of delays for both input and target variable and

number of hidden layers is 10. These values are decided by trying different numbers

and comparing the performances.

Figure 5.18: NARX Neural Network for Model 3

Table 5.6: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 3

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead 14.485 468.645 21.648 18.381 7.554 10.023

One-day ahead 12.559 555.738 23.574 19.990 6.253 11.419

For one-week ahead forecast in Figure 5.19, it can be seen that the predicted values

are smaller than real values. The performance of this model is worse than Model 1

and Model 2. However, for one-day ahead prediction, it is better than the Model 2.
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Figure 5.19: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 3

Figure 5.20: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 3
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5.3.4 Model 4: TBATS with regressor and NAR NN

Algorithm that is used in model 4 for electricity price forecasting is as follows:

• Step 1. A TBATS model with demand as exogenous variable is conducted for

electricity price with daily and weekly seasonality.

• Step 2. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 3. Neural network model is used for modeling the residuals of the TBATS

model.

• Step 4. Forecasts are combined with the hybrid model by using the forecasts

from DSHW. Forecast values from TBATS model and forecast values from NN

model are added together.

It will be tested that how will be the effect of including the exogenous variable in

linear part for TBATS and NN hybrid model. In R, tbats command ignores the ex-

ogenous variable, so auto.arima command is used with Fourier terms as additional

covariates [128]. Daily and weekly seasonality are added to TBATS model with de-

mand as regressor. The number of Fourier terms are selected by minimizing the AICc

and BIC. The order of the ARIMA model is also selected by minimizing the AICc in

the auto.arima function.

The selected TBATS model has 6 Fourier terms for daily seasonal period, and 1

Fourier term for weekly seasonal period. ARIMA model is selected as ARIMA(1,1,5).

Nonlinear Autoregressive (NAR) Neural Network model is used in nonlinear part to

model residuals of TBATS with regressor model. In NAR NN, Levenberg-Marquardt

algorithm is used for training and mean squared error (MSE) is used to find the best

fit. The network for this model can be seen in Figure 5.21. In this networks, 24 is

the number of delays and number of hidden layers is 9. These values are decided by

trying different numbers and comparing their performances.
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Figure 5.21: NAR Neural Network for Model 4

Table 5.7: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 4

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead 1.989 610.995 24.718 19.799 1.362 10.945

One-day ahead 24.179 926.284 30.435 26.519 13.209 14.912

Figure 5.22: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 4

For one-week ahead forecasting in Figure 5.22, forecast values and predicted values

have a similar behaviour over time. However, it can be seen that the range of predicted

values is greater than the range of actual values. Thus, it is not a very good model

for one-week ahead forecast. Besides that, the results of one-day ahead forecasting

which are given in Figure 5.23 are similar to Model 2.
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Figure 5.23: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 4

5.4 Individual Models

Additionally, individual models are built to compare forecast performance with hy-

brid models, demand is also used as an exogenous variable in these models too.

5.4.1 Model 5: Seasonal Autoregressive Moving Average Model with Exoge-

nous Input (SARIMAX)

Algorithm that is used in model 5 for electricity price forecasting is as follows:

• Step 1. A model with dummy variables are constructed to eliminate weekly

seasonality.

• Step 2. SARIMAX model of residuals of the model in step 1 is built with

demand as an exogenous variable.

• Step 3. Variance of the residuals are modelled with a GARCH Model. GARCH

only affects the forecast prediction intervals when we use the standardized
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residuals. Standardized residuals are obtained as subtracting conditional mean

from the residuals and dividing by the square root of the conditional variance.

• Step 4. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 5. Forecasts are obtained by combining with the forecasts from DSHW.

Same SARIMAX model in the model 2 is fitted to residuals of weekly dummy model

which is SARIMAX(4, 1, 4)(3, 1, 1)24. As aforementioned ACF-PACF plots of squared

residuals show that there are some lags, which are out of white noise bands. GARCH

model will be built to model variance of the residuals, since there is heteroscedastic-

ity. GARCH(24,1) model is selected as the best model.

Table 5.8: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 5

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead -4.625 367.670 19.175 15.437 -2.773 8.658

One-day ahead 20.313 719.604 26.825 24.019 10.685 13.175

In Figure 5.24, generally the forecast values are close to actual values but there are

some differences between forecast values and real values at higher values of price.

In Figure 5.25, forecast values are smaller than actual values, so it is not a very good

model when there is an abrupt change. SARIMA models give good results in forecast-

ing when the series is linear. However, they are not easy to apply when assumptions

are not satisfied.
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Figure 5.24: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 5

Figure 5.25: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 5
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5.4.2 Model 6: TBATS

Algorithm that is used in model 6 for electricity price forecasting is as follows:

• Step 1. A TBATS model is built with demand as an exogenous variable.

• Step 2. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 3. Forecasts are obtained by combining with the forecasts from DSHW.

The TBATS model in the Model 4 is used solely. The number of Fourier terms and

orders of the ARIMA model are selected by minimizing the AICc and BIC. The

TBATS model has 6 Fourier terms for daily seasonality, 1 Fourier term for weekly

seasonality and ARIMA model is ARIMA(1,1,5).

Table 5.9: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 6

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead 2.635 606.980 24.637 19.737 1.734 10.935

One-day ahead 23.374 885.281 29.754 26.126 12.712 14.697

In Figure 5.26, predictions have the same data structure with the actual values but the

range of predicted values is higher. Figure 5.27 indicates that Model 6 is not very

successful at one-day ahead forecasting.
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Figure 5.26: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 6

Figure 5.27: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 6
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5.4.3 Model 7: Nonlinear Autoregressive with Exogenous Input Neural Net-

works

Algorithm that is used in model 7 for electricity price forecasting is as follows:

• Step 1. A NARX Neural Network model is built with demand as an exogenous

variable.

• Step 2. Forecasts for demand is obtained by DSHW exponential smoothing

method.

• Step 3. Forecasts are obtained by combining with the forecasts from DSHW.

In the final model, only NARX NN model is used to forecast the electricity price.

In NARX NN Levenberg-Marquardt algorithm is used for training. Mean squared

error (MSE) is used to find the best fit. The network for this model can be seen in

Figure 5.28. In this networks, 24 is the number of delays for both input and target

variables and number of hidden layers is 10. These values are decided by trying

different numbers and comparing the performances.

Figure 5.28: NARX Neural Network for Model 7

In Figure 5.29, forecast values are very close to the real values at most of the times.

But at peak points, the forecast values are greater than real values. For one-day ahead

forecasting, it performs better than most of the models in this study which can be seen

in Figure 5.30. It can be concluded that NN models are good at series with sudden

movements.
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Table 5.10: Accuracy measures for one-week ahead and one-day ahead forecasts of

Model 7

Forecast ME MSE RMSE MAE MPE MAPE

One-week ahead 4.016 292.878 17.114 13.602 1.970 7.559

One-day ahead 8.916 481.607 21.945 18.258 4.287 10.433

Figure 5.29: Time Series Plot of Actual Values and One-week Ahead Forecast Values

of Model 7

Figure 5.30: Time Series Plot of Actual Values and One-day Ahead Forecast Values

of Model 7
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5.5 Overall Results

One-week ahead and one-day ahead forecast performances of all models are shown

in Table 5.11. RMSE and MAPE are used as accuracy measures.

Table 5.11: Forecast Performances

Weekly Forecast Daily Forecast

MODEL RMSE MAPE RMSE MAPE

SARIMA-NARX NN 15.025 6.545 20.548 9.905

SARIMAX-NAR NN 17.387 7.733 30.285 14.633

TBATS-NARX NN 21.648 10.023 23.574 11.419

TBATS with reg- NAR NN 24.718 10.945 30.435 14.912

SARIMAX 19.175 8.658 26.825 13.175

TBATS with reg 24.637 10.935 29.754 14.697

NARX NN 17.114 7.559 21.946 10.433

Model 1 which is a hybrid SARIMA-NARX NN model outperforms other models

in both one-week ahead and one-day ahead forecasting. Model 7 which is NARX

NN model has the second best forecasting performance among all models. These

results indicate that NARX NN model is a suitable method for time series like hourly

electricity price. However, it is better to combine with a SARIMA model in a hybrid

model.

Moreover, the results indicate that Model 1 is better than Model 2, and Model 3 is bet-

ter than Model 4 in both one-week ahead and one-day ahead forecasting. This means

that including exogenous variable demand in NN gives more accurate results.
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CHAPTER 6

CONCLUSION

After the deregulations of Turkish electricity market in 2001, accurate electricity price

forecasting has become a significant issue in the market. It is a difficult task to make

accurate forecasts due to high volatility, multiple levels of seasonality and nonlinear

relationships. As a result, there are numerous studies on electricity price forecasting.

In this thesis, several hybrid models are built by using SARIMA, TBATS and NN. In

most cases, hybrid models outperform the individual ones. TBATS is more practical

than SARIMA model, since multiple seasonality can be included in the R function

and there is no need to check the assumptions for residuals. However, SARIMA

models perform better for Turkish hourly electricity prices. It can be also concluded

that among individual models, NARX NN has the best performance especially for

one-day ahead forecast where an unexpected behavior has occurred.

Overall, hybrid model SARIMA-NARX NN has the best forecast performance for

both one-week ahead and one-day ahead forecasting. This hybrid model outperforms

its individual models that are SARIMAX and NARX NN. Another result is that in-

cluding demand in nonlinear part of hybrid model as exogenous variable gives better

result than including in linear part. The reason of this can be the nonlinearity in the

demand series.

From the time series plots of actual values and forecast values, it can be deduced that

some methods have better performance in the time periods that have high volatility.

In the time series plots of weekly forecasts, it is clear that there is an unexpected

movement in actual values in the last 24 hours. Therefore, results indicate that NARX
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NN and SARIMA-NARX NN hybrid models have the most accurate forecasts when

there is an unforeseen, nonlinear behavior.

In Appendix A, prediction performances of models for the train set is examined. A

one week period has randomly chosen for time series plots in this chapter. According

to RMSE values, hybrid models with TBATS have the best prediction performance

for train set. However, main concern of this study is forecasting of future values.

Therefore, comparison of the models is made according to performances for test set

which is given in Table 5.11.

In conclusion, it is advisable to use SARIMA-NARX NN model for one-week ahead

prediction. For forecasting oneday ahead or shorter time periods like one hour, it is

recommended to employ NARX NN since it is more practical than a hybrid model and

performance of NARX NN model is similar to SARIMA-NARX NN hybrid model.

For future studies, different models can be used in hybrid models. For instance,

time series regression models and SARFIMA models are alternatives for SARIMA

or TBATS. For the series in this study, SARFIMA models could give better results

than SARIMA models because the series has long memory characteristics. However,

there is no package for SARFIMA models in R, we could not have a chance to use

SARFIMA models. Thus, an R package can be developed for SARFIMA models

for future work. Instead of NN, threshold autoregressive (TAR) model, Self-Exciting

Threshold AutoRegressive (SETAR) model, regime switching models and support

vector regression can be used.
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APPENDIX A

PREDICTION PERFORMANCES

Figure A.1: Time Series Plot of Actual Values and Predicted Values from Model 1

Figure A.2: Time Series Plot of Actual Values and Predicted Values from Model 2
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Figure A.3: Time Series Plot of Actual Values and Predicted Values from Model 3

Figure A.4: Time Series Plot of Actual Values and Predicted Values from Model 4
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Figure A.5: Time Series Plot of Actual Values and Predicted Values from Model 5

Figure A.6: Time Series Plot of Actual Values and Predicted Values from Model 6
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Figure A.7: Time Series Plot of Actual Values and Predicted Values from Model 7

Table A.1: Prediction Performances

MODEL RMSE

SARIMA-NARX NN 23.224

SARIMAX-NAR NN 22.771

TBATS-NARX NN 18.193

TBATS with reg-NAR NN 18.877

SARIMAX 20.355

TBATS with reg. 21.859

NARX NN 40.846
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