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ABSTRACT

DURATION OF MAXIMUM DRAWDOWN IN OIL PRICES

Salcı-Bilici, Merve
M.S., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceren Vardar Acar

July 2018, 55 pages

Oil price is a vital financial aspect directing the economy in the global world. Changes

in the level of oil prices may affect the whole economy; at the same time economic

developments may affect the oil prices. For example, while lower oil prices could

inhibit financial development and spoil economic and political stability, higher oil

prices could cause an increase in inflation and a recession in an economy. Sharp

decreases and increases in oil prices have been notable in recent years. These fluctu-

ations in oil prices become one of the key indicators in macroeconomics. Therefore,

it is of utmost importance to analyze fluctuations in oil prices.

The purpose of this study is to estimate the duration that is the maximum drawdown

of highest possible drop in the oil prices. Maximum drawdown can be defined as

the indication of the highest possible market risk in finance. In order to detect the

maximum drawdown, super-cycles which are specified as total of an upward and a

downward movement are determined in the data set which is the oil prices collected

between the year 1948 and 2018. This is done by using filtering methods such as
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Hodrick-Prescott and Band Pass filter. Fractional Brownian motion process is used

for modeling the oil prices since the increments are observed to be dependent. We

have conducted simulation studies for calculating the expected value of the maximum

drawdown and expected value of the duration of the maximum drawdown. In this

study, comparison of simulation results and observed results from the real life data

set is provided in order to make prediction and give discussion on the duration of the

maximum drawdown of the oil prices.

Keywords: Oil Prices, Maximum Drawdown, Fractional Brownian Motion, Hodrick

Prescott Filter, Band-Pass Filter
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ÖZ

PETROL FİYATLARINDA MAKSİMUM DÜŞÜŞ SÜRESİ

Salcı-Bilici, Merve

Yüksek Lisans, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceren Vardar Acar

Temmuz 2018, 55 sayfa

Petrol fiyatı, küresel dünyada ekonomiyi yönlendiren hayati bir finansal unsurdur.

Petrol fiyatları seviyesindeki değişiklikler tüm ekonomiyi etkileyebilir; aynı zamanda

ekonomik gelişmeler petrol fiyatlarını etkileyebilir. Örneğin, düşük petrol fiyatları

finansal gelişmeyi engelleyebilir ve ekonomik ve politik istikrarı bozabilirken, daha

yüksek petrol fiyatları enflasyonda artışa ve ekonomide daralmaya neden olabilir. Son

yıllarda petrol fiyatlarındaki keskin düşüşler ve artışlar dikkat çekmektedir. Petrol

fiyatlarındaki bu dalgalanmalar, makroekonomideki temel göstergelerden biri haline

gelmiştir. Bu nedenle, petrol fiyatlarındaki dalgalanmaları analiz etmek son derece

önemlidir.

Bu çalışmanın amacı, petrol fiyatlarındaki olası en yüksek düşüşün tamamlanıp ta-

mamlanmadığını görmek ve maksimum kayıp süresini tahmin etmektir. Maksimum

kayıp, finansta mümkün olan en yüksek piyasa riskinin göstergesi olarak tanımlanabilir.

Maksimum kayıp miktarının tespiti için, veri kümesinde, bir yukarı ve bir aşağı doğru
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hareketin toplamı olarak belirtilen süper çevrimler belirlenir. Süper çevrimlerin belir-

lenmesi, Hodrick-Prescott ve Band Pass gibi filtreleme yöntemleri kullanılarak yapılır.

Petrol fiyatlarının modellenmesinde de fiyatlardaki değişimlerin bağımlı davranışları

nedeni ile Kesirli Brown Hareketi modeli kullanılmaktadır. Olası maksimum kayıpların

boyutunun ve süresinin beklenen değerini kestirebilmek için simülasyon çalışması

yapılmıştır. Bu çalışmada, petrol fiyatlarının maksimum kayıp süresinin tahmini ve

konunun tartışılabilmesi için, simülasyon sonuçlarınn gerçek veriler ile karşılaştırılması

verilmiştir.

Anahtar Kelimeler: Petrol fiyatları, Maksimum Kayıp, Kesirli Brown Hareketi, Hod-

rick Prescott Filtresi, Band-Pass Filtresi
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Oil price is a vital financial aspect directing the economy in the global world. Changes

in the level of oil prices may affect the whole economy; at the same time economic

developments may affect the oil prices. According to the Ferderer’s work (1996) on

oil price volatility and the macroeconomics [21], deterioration of oil market can have

an impact on the macroeconomics because they alter the price levels and cause the

oil price volatility increase as well. Because of the fact that volatility of oil prices

creates uncertainty, both oil exporting and importing countries’ economies cannot

be stable and these countries would go through financial crises. According to Yang

et. al (2002), the fact that higher prices of oil cause the inflation to escalate and

later economic recession in oil consuming countries is resulted from the negative

correlation between oil prices and economic activities [55]. For example, lower oil

prices could inhibit financial development and spoil economic and political stability.

Sharp decreases and increases in oil prices have been notable in recent years. For

instance, Baumeister and Kilian (2016) were interested in the magnitude of the fluc-

tuations in oil prices [3]. They also mentioned that economic decisions tend to be

affected by oil price shocks. These fluctuations in oil prices become one of the key

indicators in macroeconomics. Therefore, it is of utmost importance to analyze fluc-

tuations in oil prices. In this study, our aim is to estimate the maximum drawdown,

i.e. highest possible drop in the oil prices. Leal and Bendes (2003) states that a draw-

down is defined as the loss in percentual from the last local maximum to next local
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minimum in the price of an investment and it is accumulated over non-fixed time

intervals and its duration is also a random variable. The reason why the maximum

drawdown is important is that it serves as an insurance against adverse movements

of the price during a market turmoil [45]. Using duration of maximum drawdown,

information about duration of market recovery can be obtained. The data set we used

is West Texas Intermediate (Cushing, OK WTI) spot prices.

Data

Despite the fact that there are many different types of petroleum, West Texas Interme-

diate (WTI), Brent Petroleum and Dubai Fateh petroleum are considered as references

for other petroleum prices. WTI, Brent and Fateh petroleum are petroleum products

traded on financial markets such as the stock market and forex where non-physical

transactions are made.1

WTI contracts were first traded on the New York Mercantile Exchange (NYMEX).

In 2008, the Chicago Mercantile Exchange purchased NYMEX, and the transactions

went through the CME group. WTI Texas is known as light sweet American oil.

Also, WTI is the best quality oil in the world. It is ideal for petroleum and diesel

fuel production because it is light and slightly sulphurous (sweet). From among

crude oil prices, West Texas Intermediate (Cushing, OK WTI) spot price was cho-

sen and data we will use is taken from U.S. Energy Information Administration site

(www.eia.gov). Data starts from January 1947 and ends in May 2018. Frequency is

monthly. The nominal value of the prices in the economy is measured by the value of

the currency at the time, hence the real data is used for showing the price levels corre-

sponding to the Gross Domestic Product. In our analysis, real oil prices are created by

using Consumer Price Index (Index 1982-1984=100, Monthly, Seasonally Adjusted)
2. To convert nominal prices from several different years into real, nominal prices is

divided by the GDP of the corresponding year.

1 Information of oil are taken from the website www.businessinsider.com
2 CPI data is taken from Federal Reserve Bank of St. Louis (fred.stlouisfed.org)
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Figure 1.1: Real Spot Crude Oil Price: West Texas Intermediate (WTI)

Kaffel & Abid (2009) and Mostafaei (2013) wanted to obtain the most suitable stochas-

tic process for the crude oil prices in their articles [29], [41]. In these studies, the

simulation was conducted on the historical crude oil prices and Geometric Brownian

Motion is specified as optimal stochastic model for crude oil prices. For our study,

geometric version of Fractional Brownian motion (fBm) process is used for modeling

oil prices. fBm is a realistic model, because it is a process that exhibits long-term

or short-term dependent behavior and this dependency overlaps with the dependency

seen in real life data. This feature in real life coincides with up or down trend of

prices. The process S(t) which we use as a notation for oil price at time t is the

solution for the following stochastic differential equation driven by fBm:

dS(t) = µS(t)dt+ σS(t)dBH(t) (1.1)

where S(0) = s, µ & σ are constants which are greater than 0, and BH(t) are the con-

stant mean, constant volatility and the fractional Brownian motion respectively. Frac-

tional Brownian motion is identified through its Hurst parameter. Estimation of this

parameter takes an important role because fBm which have long-term or short-term

dependence and self-similarity properties is characterized by the Hurst parameter.

Hurst parameter refers to the “index of dependence” which relates to the autocorrela-

tions of the time series. For instance, if H takes the value in (0.5,1), a time series have

3



long-term dependence.

This master’s thesis is organized as follows. In the Second Chapter, fBm will be intro-

duced with its properties and the maximum drawdown and the duration of maximum

drawdown will be presented. Maximum drawdown, also known as maximum loss,

indicates the highest possible market risk in finance. Therefore, it is especially im-

portant both for investors and economists. In the Third Chapter, in order to detect the

maximum drawdown for the oil prices super-cycles will be introduced and the very

last super-cycle will be identified so that we can focus only on the part of the data

we are interested in. Super-cycles are specified as total of an upward and a down-

ward movements. This section describes how super-cycles extract from the series

by means of economic filtering methods. The used filtering methods are Hodrick-

Prescott and Band Pass filter. These filtering techniques help someone to decompose

the trend component from the series and smooth the data. Thanks to these filters,

the last super-cycle is identified. The starting point of the last super-cycle gives us

beginning of the data which is used for modeling. In Chapter 4, we check whether

the oil prices data fulfill the properties of the stochastic differential equation given in

Equation 1.1 and appropriateness of this model will be discussed. In order to check

the assumptions tests for normality, stationarity and dependency are conducted. The

results of each assumptions are given in the same part. Once we confirm, Equation

1.1 could be used as a model for our data set will continue with introducing the meth-

ods for estimating the Hurst parameter (H) which are R/S analysis, variance-time Plot

and Correlogram. As to verify our simulation codes for generation of fBm, we have

conducted simulation for calculating the expected maximum drawdown of standard

Brownian Motion. In the last chapter, comparison of simulation results with the real

life data set is provided in order to make prediction and give discussion on the dura-

tion of maximum drawdown of the oil prices.
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CHAPTER 2

MAXIMUM DRAWDOWN AND THE DURATION OF MAXIMUM

DRAWDOWN

2.1 Fractional Brownian Motion

Fractional Brownian motion (fBm) process was first studied by Kolmogorov (1940)

and Mandelbrot & Van Ness (1968). This process has caught attention of researchers’

from different disciplines. For instance some of these disciplines are physics, statis-

tics, biology and economics.

There are different Black-Scholes models established with the different stochastic

processes for example the Brownian movement and OrnsteinUhlenbeck process. Al-

though fBm is not a Markov process, it is used for modelling especially financial data

by replacing Brownian motion in Black-Scholes formula. Fractional Brownian Mo-

tion is more realistic, because fBm is a process that exhibits dependent behavior. fBm

is a generalization of Brownian motion (Bm) which captures the dependency seen in

real life.

Definition 2.1.1 Let (Ω,F ,P) be a probability space and let H be a constant in

the interval (0, 1). fBm, BH(t), with Hurst parameter H , is a continuous, Gaussian

process with zero mean and has this covariance function (t ≥ 0) [5]:

CovH(t) = E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H).

For H = 1/2, fBm corresponds to standard Brownian motion [5], where covariance
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function becomes:

E[B1/2(s)B1/2(t)] =
1

2
(t+ s− |t− s|) = min(t, s)

Fractional Brownian motion BH(t) has the following properties:

1. Assume BH(0) = 0 and E[BH(t)] = 0 for all t ≥ 0.

2. BH has homogeneous increments, i.e., BH(t + s) − BH(s) has the same law

of BH(t) for s, t ≥ 0.

3. BH is a Gaussian process and E[BH(t)2] = t2H , t ≥ 0, for all H ∈ (0, 1).

4. BH has continuous trajectories.

Correlation between two increments

When H parameter takes the value 1/2, the process becomes standard Bm and this

process has independent increments. However, the fBm process with H ̸= 1/2 has

dependent increments. From the definition of the fBm, the covariance for the two

processes BH(t+h)−BH(t) and BH(s+ t)−BH(s) with s+h ≤ t and t− s = nh

is

ρH(n) = E[((BH(t+ h)−BH(t))(BH(s+ h)−BH(s)))]

= E[BH(t+ h)BH(s+ h)]− E[BH(t+ h)BH(s)]

− E[(BH(t))BH(s+ h)] + E[BH(t)BH(s)]

=
1

2
[((t+ h)2H + (s+ h)2H − |(t+ h)− (s+ h)|2H)

− ((t+ h)2H + s2H − |(t+ h)− s|2H)

− (t2H + (s+ h)2H − |t− (s+ h)|2H)

+ (t2H + s2H − |t− s|2H)]

=
1

2
[−2(t− s)2H + (nh− h)2H + (nh+ h)2H ]

=
1

2
[−2(nh)2H + ((n− 1)h)2H + ((n+ 1)h)2H ].

(2.1)

6



So we have

E[((BH(t+h)−BH(t))(BH(s+h)−BH(s)))] =
h2H

2
[(n+1)2H+(n−1)2H−2n2H ].

In the view of the fact that fBm is a Gaussian process, it has a unique mean and the

covariance structure. However, having dependent increments may make somebody to

doubt about stationarity of fBm. A stationary process is a stochastic process whose

unconditional joint probability distribution does not change when shifted in time. We

can show the stationarity property in the following way:

E[((BH(t+ h)−BH(h))(BH(s+ h)−BH(h)))] =

E[BH(t+ h)BH(s+ h)]− E[BH(t+ h)BH(h)]

− E[(BH(h))BH(s+ h)] + E[BH(h)2]

=
1

2
[((t+ h)2H + (s+ h)2H − |(t+ h)− (s+ h)|2H)

− ((t+ h)2H + h2H − |(t+ h)− h|2H)

− (h2H + (s+ h)2H − |h− (s+ h)|2H)

+ (h2H + h2H − |h− h|2H)]

=
1

2
[t2H + s2H + |t− s|2H ]

= E[BH(t)BH(s)].

(2.2)

Since h does not affect BH(t). That is, it is obtained that [BH(t+h)−BH(h)] equals

to BH(t) in distribution.

Long-range dependence

Definition 2.1.2 Let (Yn)n∈N be a stationary time series and the long-range depen-

dent. The covariance of this processes ρ(n) := Cov(Yk, Yk+n) (Yn)n∈N satisfy:

lim
n→∞

ρ(n)

cn−α
= 1

where c is a constant and α ∈ (0, 1). [5]
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If n increases in a long-range dependent process, the dependence between Yk+n and

Yk declines gradually as :

∞∑
n=1

ρ(n) = ∞.

The fact that fBm exhibits long-range dependence property is proved by using the

covariance function. The covariance between the increments is:

ρH(n) : = E[(BH(t+ h)−BH(t))(BH(s+ h)−BH(s))]

=
h2H

2
[(n+ 1)2H + (n− 1)2H − 2n2H ].

(2.3)

By using the following expansions;

(1 + x)α = 1 + αx+
α(α− 1)x2

2
+ ...

(1− x)α = 1− αx+
α(α− 1)x2

2
− ...

covariance becomes:

ρH(n) = 1 + 2H
1

n
+

2H(2H − 1)

2

1

n2
+ 1− 2H

1

n
+

2H(2H − 1)

2

1

n2
+ ...

∼=
nH

2
(2H(2H − 1))

1

n2

= H(2H − 1)n2H−2.

(2.4)

According to the Definition 2.1.2, c equals to H(2H − 1) and α equals to 2 − 2H .

Therefore, for H > 1/2 the process has the property of long-range dependence be-

cause

lim
n→∞

ρH(n)

H(2H − 1)n2H−2
= 1. (2.5)
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In conclusion, we get

1. For H > 1/2,
∑∞

n=1 ρH(n) = ∞.

2. For H < 1/2,
∑∞

n=1 |ρH(n)| < ∞.

We can infer that there is a positive correlation between two increments BH(t+ h)−
BH(t) and BH(t+2h)−BH(t+h) for H > 1/2. On the contrary, for H < 1/2 these

two have a negative correlation. Long-range dependence is very useful and significant

property when observing the long-term behavior in the financial data. This property

can be captured easily in the correlation diagram.

Self-similarity

Definition 2.1.3 The real-values process Yt, t ≥ 0 is self-similar if for all a > 0 there

exists b > 0 such that

(Yat)t>0
law
= (bYt)t≥0.

This means that the finite-dimensional distributions of Yat, t ≥ 0 are identical to the

finite-dimensional distributions of bYt, t ≥ 0; i.e., if for every choice to t0, ..., tn and

any a ≥ 0,

(Yat1 , Yat2 , ..., Yatn)
d
= (bYt1 , bYt2 , ..., bYtn). (2.6)

If b = aH in Equation 2.6, it can be deduced that the process Yt, t ≥ 0 fulfills the

self-similarity property [5].

For H = 1/2, the self-similarity property of Standard Brownian Motion is recovered

as (B(a1/2t))t>0
law
= (a1/2B(t))t≥0.

As a result, if the distribution of a self-similar process is known over the unit interval,

this provides us opportunity to find the distribution of the process over the whole time

interval, i.e, scaling in time results in scaling in space.
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2.2 Duration of the Maximum Drawdown

Maximum drawdown, also known as maximum loss, indicates the highest possible

market risk in finance. Therefore, it is especially important for both investors and

economists. Financial mathematics provides a motivation for studying maximum

drawdown as a function of a stochastic process; see e.g. [45]. To quantify the risk

and to measure the performance of a stock, maximum drawdown is used. In addition,

it is used in portfolio selection for hedging the risk, [12]. It is also used in pricing

of Russian options, [52]. From risk management point of view, the magnitude of

risk sometimes is not sufficient enough to build a comprehensive risk evaluation of

extreme drawdown risks. For example, it is natural to examine the duration of the

maximum drawdown for extreme risks such as natural disasters, financial crises [32].

Caglar and Vardar-Acar (2013) asserts that the maximum possible loss for the loga-

rithm of a price process is almost equal to the maximum drawdown of fBm [8]. In

this study, our main goal is to estimate the duration of maximum drawdown of fBm

and compare the result to the duration of maximum drawdown in oil prices to check

whether the half of the last super-cycle is completed.

Maximum drawdown corresponds to the biggest value of all possible differences be-

tween a high and a low value. Eventually, the magnitude of maximum drawdown

is a crucial issue that shows us a lot about the current situation of prices in a spe-

cific time interval. For that matter, maximum drawdown affects how the investor and

government will behave.

Notation: Let BH(t) denote the fractional Brownian motion. Then, the mathematical

definition of Maximum Drawdown before time t is given as

MH
t : = sup

0≤u≤v≤t
(BH

u −BH
v )

= sup
0≤v≤t

(( sup
0≤u≤v

BH
u )−BH

v )

:= sup
0<v<t

DH
t

(2.7)

where DH
t is called the loss or the drawdown of the process. For MH

t for some

M > 0, the corresponding the duration of the maximum drawdown can be defined
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as;

E(MH
t ) = E( sup

0≤u≤v≤t
(BH

u −BH
v ))

= E( sup
0≤u

t
≤ v

t
≤1

(BH
u −BH

v ))

= E( sup
0≤u′≤v′≤1

(BH
u′t −BH

v′t))

= E( sup
0≤u′≤v′≤1

tH(BH
u′ −BH

v′ ))

= tHE( sup
0≤u′≤v′≤1

tH(BH
u′ −BH

v′ )) = tHE(MH
1 )

(2.8)

by the self similarity property of fBm.

Now suppose MH
t = m for some m > 0. Let HD

m = inf(t ≥ 0;DH
t = m) and

let ρ = sup(t ∈ [0, HD
m ];DH

t = 0). Then the duration of Maximum Drawdown is

defined as:

τm := HD
m − ρ

= inf(t ≥ 0;DH
t = m)− sup(t ∈ [0, HD

m ];DH
t = 0).

(2.9)

A fractional Brownian motion with Hurst parameter H = 1/2 corresponds to a stan-

dard Brownian motion. The expected value of the maximum drawdown for the stan-

dard Brownian motion is theoretically calculated and the exact value is found as√
π/2 ∼= 1.2533 (see [17]). For fractional Brownian motion, because of the non-

Markovian structure one can only obtain bounds for such calculations [15]. In fact,

for fBm theoretical bounds were provided for the expected value of the maximum

drawdown in [15].
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Figure 2.1: Demonstration of Maximum Drawdown and Duration of Maximum

Drawdown

Generally, financial data contains lots of descents and ascents in it. The maximum

drawdown is one of the fluctuations that should be analyzed in the data set. For our

analysis of estimation in order to obtain the maximum drawdown and the duration

of it, we need to determine the starting point or level of fluctuations at oil prices. In

the next chapter, we focus on distillation the starting point of the last business cycles

that has the last and the highest fluctuation in it. This cycle corresponds to the last

excursion with maximum height. And the excursion under running supremum with

maximum height in fact gives access to the maximum drawdown and its duration.

For analyzing the starting point of the last business cycle filtering techniques are

applied to the data set as given in [19] and the last super-cycle has been determined.

12



CHAPTER 3

SUPER-CYCLES AND FILTERING TECHNIQUES

In this chapter, we present the definition and the types of super-cycles, and filtering

methods. Before applying the statistical model and estimating the duration of the

maximum drawdown, we need to define the time interval on which we will study

from historical data. Examining the super-cycles will help us define this time interval.

There has been more than one super-cycle until today. We will be focusing on the last

cycle. The time interval of the super-cycles will be determined by using two well-

known filtering methods.

3.1 Super-cycles

The fluctuations in the time series constitute cycles. Basically, a cycle is defined as a

total of an upward and a downward movement [20]. Especially, price cycles are guide

for economists in price series. The duration of maximum drawdown corresponds

to the duration of half of a super-cycle. Some techniques could be applied to get

information on the duration of market recovery using maximum draw-up which is

symmetrically defined as maximum drawdown.

What attracted our interest in this topic is that sharp decreases and increases of oil

prices have been notable in recent years. After each sharp increase, tendency to de-

crease in oil prices cause someone to think of the existence of cyclical pattern. Ac-

cording to Hamilton (2011), when in the comprehensive point of economic activity

such pattern is seen that is named as “business cycle” [24]. The business cycle means

13



the fluctuations in the level of economic activities that are formed by expansions and

contractions. The long-term growth trend is shown below around these fluctuations:

Figure 3.1: Phases of the Business Cycle

Figure 3.1 shows the phases of the business cycles. From one peak to another one,

a full business cycle is observed. That is, a full business cycle consists of two peak

points and one trough point, besides some contraction and expansion points. A busi-

ness cycle can take months or years. It is very important to predict the cycles for

both economists and investors. It has been a guide to forecast whether economy will

shrink or expand.

There are several types of cycles. Palley (2011) states that cycles are categorized as

medium and long term cycles. Medium term cycles are also called as the basic cycles

and the long term cycles are also called as the super-cycles. He claims that these

cycles are “super” in two ways [44]:

1. These cycles are long term cycles which go upward around 10–35 years and

are completed in 20–70 years.

2. A large variety of industrial goods such as metals and non-renewable resources

are affected by these cycles.

The identification of super-cycles and determination of the current stage of the cycle

is important for both policy makers and market players, as it sheds light on price

movements in the upcoming period. Recently, studies that analyze the long term
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cycles in commodity prices have increased. Buyuksahin et. al (2016) states that

“Commodity prices tend to go through extended periods of boom and bust, known as

super-cycles” [7]. Also, in Erdem and Ünalmış’s article (2016), super-cycles in oil

prices have been mentioned in detail [19]. In order to identify the period of cycles

in our data, some economic filters are used. These filters are used for extracting the

cycle by detrending and smoothing [42]. In this study, we will not deal with these

filters in detail, we will just apply them to our data set in order to recognize where the

last super-cycle starts.

3.2 Filtering Methods and Application to Data

This section describes how super-cycles are extracted from the series by means of eco-

nomic filtering methods. In the analysis of macroeconomic time series, decomposing

the data into trend and cyclical elements is considerable application for segregating

short and long term behavior [40]. As mentioned earlier, the filtering techniques help

us to decompose the trend component and smooth the data. By means of these fea-

tures of filtering, we will identify entire super-cycles in the historical oil price data.

After the application of filters, the period of super-cycles can be observed graphically.

The cycles found from filters will be compared for validation of results. We will be

using the Hodrick-Prescott (HP) Filter and Band Pass (BP) Filter which are widely

used in identification and extraction of super-cycle components, [19]. According to

the comparison of results, the beginning date of the last super-cycle will be identified.

The data has been introduced in the first chapter. Before applying the filtering meth-

ods, we have examined the history of the monthly oil price data for both types Brent

and WTI. Up to 1970s, crude oil prices have been more stable.
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Figure 3.2: Spot Crude Oil Prices

Before the year 2000 there were three major events that affected oil prices in history.

There were the 1978 Iranian revolution, the 1980 Iran - Iraq war and the 1990 Iraq

invasion of Kuwait, respectively. When it comes to the 2000s, the types of events

affecting oil prices have been changed. Throughout the period, there only exists one

dramatic event which was in the year 2008. Oil prices experienced a peak value

which was 134 dollars per barrel in July 2008. As seen in the Figure 3.2, the price

was experienced a sharp decrease to the 40 dollars per barrel level in February 2009

[43]. As Hamilton (2011) says, this oil shock in 2008 resulted from dramatic changes

in supply or demand and the speculations, not because of destructive events like war,

revolution or invasion [25].
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3.2.1 Hodrick-Prescott Filter

The first filtering technique we used in this study is the Hodrick Prescott filter. Ac-

cording to Nilssson and Gyomai (2011), macroeconomic experts widely prefer this

filter for detrending and smoothing [42]. Generally, it is thought that the time series

consist of a combination of the trend and cycle component. It can be said that the

series is complex sinusoidal [42]. The reasons for choosing this filter are the fact that

application is more simple and it performs better than other filtering methods. [42].

HP filter is developed in 1981 and named by Hodrick and Prescott [27]. Original form

of filter for the trend estimation comes from a result of an optimization problem:

Yt = Tt + ct

minTt

∑
t

(Yt − Tt)
2 + λ

∑
t

[
(Tt+1 − Tt)(Tt + Tt−1)

]2

where Yt is the actual time series, Tt is the trend component, ct corresponds to the

cyclical component and the smoothing parameter is λ [42].

That filter decomposes time series Yt into a non-stationary time trend (Tt) and a sta-

tionary cyclical component (ct) [27]. That is to say, this filter computes the smoothed

series by minimizing the variance of Y around trend and minimizing the curvature

shape. The trend Tt is meant to detect the long run growth of Yt, and is the sum of

the squares of its second difference. ct is taken to reveal a business cycle component,

and corresponds to the deviations from trend component of series.

Value of the smoothness parameter λ

λ provides minimization between trend and cyclical component. Before application

of filter, the smoothing parameter λ should be determined. As it can be seen in the

Table 3.1, λ takes positive values, and generally it equals to 100 for annual data and

equals to 14400 for monthly data as given in [46].
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Table 3.1: Values of the Smoothness Parameter

frequency λ

annual 100

quarter 1600

monthly 14400

In this study, we used E-views software to apply the HP filter. Frequency of our

data is monthly, but for the practicality annual data is used and so the value of the

smoothness parameter λ is taken 100.

Figure 3.3: HP filter on Real Oil Prices

It is said that the first super-cycle took place between 1861 and 1947, because in

1880s oil has started to be commercialized [19]. The data taken from U.S. Energy

Information Administration 1 starts from 1947, therefore the first super-cycle is not

included in above figure.

In Figure 3.3, until 1966 oil prices seemed more stable because of price controls and
1 https://www.eia.gov/
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industrialization. Between 1966 and 1996, the second super-cycle can be observed.

This period started with the establishment of OPEC and were shaped by the effects

of second World War. It can be detected that the new and the last super-cycle has

started in the beginning of the 2000s. Also, we can see that oil prices hit their last

peak on 2012. [19] say that the beginning of the last super-cycle is around 1996.

The reason for evolution of the last super-cycle is the fact that high growth rates in

developing countries affect the oil demand positively. As cited in Erdem and Ünalmış

(2016), from the research of Pollin and Heintz, there are some opinions arguing that

high growth rate causes high liquidity and concentration of capital flows that play an

essential roles on increasing oil prices in the expansion period of last super-cycle [19].

Although the financial crisis in 2008 has generated sharp decrease, the rising trend

continued until 2014. Based on Erdem and Ünalmış’ findings (2016), the previous

cycles in oil prices took approximately 25-30 years [19]. Since they indicated that

the last super-cycle has started in 1996, it can be said that the expansion period has

finished. After 2014, prices has entered a downward trend. Decreases in this period

arose from low growth rate of developing countries, especially China [19]. As a

result, the time interval can be taken starting from the year 1996.

3.2.2 Band Pass Filter

The second filtering technique we used in this study is the Band Pass (BP) filter, also

known as Frequency filter, which is useful in a wide range of economic contexts. This

filtering method is developed by [14]. The BP filter extracts the cyclical components

of a given times series that lie within a specified range of frequencies or periods.

While using that filter, it is needed to specify the lower and upper bounds of periods

of the cycles of interest. Christiano and Fitzgerald (2003) states that the idea that

different frequency components of the data exists, is supported by the theory of the

spectral analysis of time series. They say that this theory does not need to be related to

any statistical model of the data and this makes the theory advantageous. It depends

on Spectral Representation Theorem in which any time series can be separated into

different frequency components. The ideal BP filter can be supplied by using this
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theory [14].

That is to say, they explain this filtering method derived from spectral representation

theorem provides a tool for extracting cyclical components. They stated that the BP

filter measures the components of the data at certain frequencies and all other compo-

nents are annihilated [14]. Similarly, Baxter and King (1999) clarifies that BP filter is

a filter passing through components of the time series with periodic fluctuations.

Before the application of that filter, some approximations are needed. In fact, data

should be infinite for the application of the ideal band pass filter to the data. In the

filtering study of Christiano and Fitzgerald (2003), they built some alternative optimal

linear approximations for the data length problem. For the optimal approximation, it

is needed to know the true time series representation of the raw data. Because it is

impossible to know this representation practically, it must be estimated. Therefore in

order to use this approximation, it is assumed that the data are produced by a pure

random walk. Then the random walk filter approximation can be used for the data not

produced by a random walk.

As mentioned before, in order to perform the ideal BP filter infinite data is needed.

Some kind of estimation for finitely data is required for linear approximation. [14]’s

suggestion for approximation is mentioned as Christiano Fitzgerald (CF) filter. CF

filter is generated from BP filter in order to solve the data length problem and it is not

symmetric but time-varying filter [2]. Besides, Nilsson and Gyomai (2011) show that

CF filter in the long run converges to the ideal filter [42].

Let Xt denote the data on which BP filter is applied, and Yt be the raw data. X̂t is

estimated by Xt of the observed sample Yt’s. CF filter makes (X̂t) as equal as possible

to Xt (object of interest) by diminishing the mean square error criterion in Equation

3.1 into the minimum level. Here, the problem in this minimization arises from the

unknown filter weights.

E[(Xt − X̂t)
2|Y ]

Y = [Y1, Y2, ..., YT ]
(3.1)
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Christiano and Fitzgerald (2003) applies the filter as follows. By supposing the iso-

lating the component from Yt with a period of oscillation between pl and pu, where

2 ≥ pl < pu < ∞[14]:

X̂t = B0Yt + ...+BT−1−tYT + B̃T−1YT

+B1Yt−1 + ...+Bt−2Y2 + B̃t−1Y1

(3.2)

for t = 3, 4, ..., T − 2.

Bj =
sin jb− sin ja

xj
, j ≥ 1

B0 =
b− a

π
, a =

2π

pu
, b =

2π

pl

(3.3)

and B̃T−t, B̃t−1 are simple linear functions of the Bj’s. (see [14] for the details)

As referred earlier, this filter allows someone to extract cyclical component at spec-

ified frequencies from time series. While using that filter, it is needed to specify

the lower and upper bounds of periods of the cycles of interest. According to study

of [56], Band Pass bounds for annual data are chosen as year interval (2,70). They

were the first to apply this filter to commodities and oil prices. This results from that

equation:

Actual ≡ BC(2, 8) + IC(8, 20) + SC(20, 70) + T (70,∞)

Actual ≡ BP (2, 70) + T (70,∞)
(3.4)

where BC is the business cycle, IC is the intermediate cycle, SC is the super-cycle

and T is the trend. According to this formula, series are equal to the sum of these

components and BP (2, 70) corresponds to cyclical component [56]. These bounds

of these components come from the year interval of cycles. In this way we separate

trend and cycle component from the price series. The calculated trend components

are shown in Appendix A.
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Figure 3.4: BP filter on Real Oil Prices

Likewise in the HP filter, this filter confirms that the last cycle starts around 1996 and

reaches its last peak at 2012. Same economic conditions can be seen from the Figure

3.4.
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CHAPTER 4

MODELING, ESTIMATION AND SIMULATION

4.1 Modeling using fBm

Typically, the price of a commodity is modeled by Black-Scholes process driven by

Brownian motion. Independent increments are needed for this model. However, in

real life it is quite difficult to come across with this property. Therefore Black-Scholes

model using fBm is more appropriate for capturing the dependence behavior in the

data.

4.1.1 Stochastic Model

Geometric fractional Brownian motion (GfBm) is the solution of Black-Scholes model

driven by fBm. This model is commonly used for financial data [39]. We implement

this model to our data since oil prices exhibits long-range dependence behavior.

Our assumption is that the oil price process S(t) follows the stochastic differential

equation:

dS(t) = µS(t)dt+ σS(t)dBH(t) (4.1)

where S(0) = s > 0. µ, σ > 0 and BH(t) are the drift (constant mean), constant

volatility and the fractional Brownian motion, respectively [5]. Explicitly, the solution

of the stochastic differential Equation 4.1 is:

S(t) = s · exp[σBH(t) + µt− 1

2
σ2t2H ] (4.2)
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∫ t

0

dS(t)

S(t)
=

∫ t

0

µdt+

∫ t

0

σdBH
t

= [log S(t)− logS(0)]

= log
S(t)

S(0)
= µt+ σBH(t)− 1

2
σ2t2H

(4.3)

or

= [log S(t)− logS(t− 1)]

= log
S(t)

S(t− 1)
= µ+ σBH(t)− 1

2
σ2 (4.4)

4.2 Assumption Check of fBm for Oil Prices

Referring to the properties of fBm, there are three assumptions to be validated:

1. Stationarity

2. Normality

3. Dependence of increments

Here, the starting year for the data set is chosen as January 1996 because of the fact

the last super-cycle starts at this date.
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4.2.1 Stationarity

Stationarity is primary property for testing the correlational structure of time series. In

a stationary process, the properties of the stochastic process do not change over time

[23]. In his article Chen (1991) states that ”Time series (Y1, Y2, ...) is stationary if the

joint distribution of any part of the series of Yt1 , Yt2 , ..., Ytk have the same distribution

with any other part of the series (Yt1+ϵ , Yt2+ϵ , ..., Ytk+ϵ
), where ϵ can be any integer”

[13]. In other words, shifting the time series has no effect on the distribution of series.

For Brownian motion model which is random walk process, the change in the series

(Yt − Yt−1) should be random. If this change is not random, then the process is not

stationary, and its variance increases with time t. In order to test the stationarity, we

are using two popular test: Kwiatkowski, Phillips, Schmidt and Shin (KPSS) test [31]

and Augmented Dickey Fuller (ADF) test [16].

KPSS test:

This is one of the most powerful test for testing unit root. The existence of unit root

shows non-stationarity [26].

Definition 4.2.1 Let Yt be the stochastic process given by ([9]):

Yt = αt + βt+ ut

αt = αt−1 + νt
(4.5)

t = 1, 2, ..., T and where ut and νt are assumed to be two independent stochastic

processes. Then, it is implied the variance σνt equals 0. Its hypothesis is:

• H0: Yt is trend (or level) stationary.

• H1: Yt is a unit root process.

25



The KPSS test can be calculated as follows:

• Regress Yt on a constant and trend and construct the Ordinary Least Squares

residuals e = (e1, e2, ..., eT )
′.

• Obtain the partial sum of the residuals.

St =
T∑
i=1

ei

• Find the test statistic

KPSS = T−2

n∑
t=1

St

σ̂2

where σ̂2 is the estimate of the long-run variance of the residuals.

We reject the null hypothesis if KPSS test statistic is large, so this means that the

series moving around its mean.

ADF test:

This test is also one of the commonly known unit root tests (see [16]).

The hypothesis of this test is the reverse version of KPSS test.

• H0: Yt is a unit root process.

• H1: Yt is trend (or level) stationary.

The basic Dickey-Fuller test is augmented in order to comply with higher order

ARMA(p,q) models by Said and Dickey. [49].
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ADF test equation:

Yt = ΦYt−1 +

p−1∑
j=1

ϕj∆Yt−j + θ0 + et (4.6)

or

∆Yt = (Φ− 1)Yt−1 +

p−1∑
j=1

ϕj∆Yt−j + θ0 + et (4.7)

which δ = (Φ− 1). For this equation, the hypothesis is arranged accordingly:

• H0: Φ = 1 or δ = 0

• H1: |Φ| < 1 or δ < 1

The test statistic of the test is

DFT =
δ̂

SE(δ̂)
.

If the test statistic is less than the critical value (tΦ=1 < CV or tδ=0 < CV ), the null

hypothesis is rejected. By applying the KPSS and ADF tests to monthly oil prices

starting from 1996 we observe the following results.
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Results:

Table 4.1: Kwiatkowski-Phillips-Schmidt-Shin Test

Table 4.2: Augmented Dickey Fuller Test

As it is seen from the Tables 4.1 and 4.2, the series are stationary. The test statistic

of KPSS test is greater than the critical value (0.05), the null hypothesis that series is

stationary is not rejected. Also, test statistic of ADF test is less than the critical value

(0.05), so the null hypothesis that series has a unit root is rejected.
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4.2.2 Normality

In Equation 4.4, the logarithm of the ratio St

St−1
corresponds to the differences of loga-

rithms of St’s and this difference is standardized with its mean and standard deviation

in order to apply the normality tests and plots:

logSt − logSt−1 ∼ N(µ− 1

2
σ2, σ2)

(logSt − logSt−1)− (µ− 1
2
σ2)

σ
∼ N(0, 1) (4.8)

Then, we can easily check normality with tests and plots. According to Marathe

and Ryan (2005), histogram can be used for visual check [36]. Also, Jarque Bera

normality test is applied as a statistical test. The hypothesis for this test is:

• H0: The distribution is normal.

• H1: The distribution is not normal.

P-value of the test will be taken into account, if the observed p-value is greater than

the specified level of significance α then the null hypothesis cannot be rejected.

Results:

We can check the normality of our series by using visual and testing tools. According

to the results, firstly oil price series fell short of normality expectations. The time

series did not distributed normally.
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Figure 4.1: Histogram and Normality test

The reason our data has longer tails than normal distribution was the economic shocks

especially in year 2008. When the data is analyzed, the time interval, which we

are using, contains the 2008 financial crisis. This crisis caused sharp decreases and

increases in the oil prices. After reaching the level of 134 dollars per barrel in July

2008, oil prices fell to its lowest level with 40 dollars per barrel in February 2009. To

overcome this outlier observations, we applied the Hodrick Prescott filter for the time

interval (1996-2018) and the results of filter are replaced by the real time series of the

crisis period. After that, normality is tested again.

Figure 4.2: Histogram and Normality test-2

In the second tests, with the probability 0.1713 of Jarque Bera test, the null hypothesis

that series are normally distributed could not be rejected. Thus, the normality of the

data is verified by histogram and Jarque Bera normality test (see Figure 4.2).
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4.2.3 Dependency

For checking the assumption of fBm model, it is also necessary to investigate whether

the increments are dependent. In order to detect this dependency, the serial correla-

tions diagram using auto-correlation function can be applied.

Definition 4.2.2 Let Xt be the response at time t with the mean E[Xt] = µt and

variance E[(Xt − µt)
2] = σ2

t . The auto-correlation function between two responses

[10]:

ρ(Xt1 , Xt2) =
E[(Xt1 − µt1)(Xt2 − µt2)]

σt1σt2

The time series having n observations X1, X2, ..., Xn, are paired as:

(X1, X2), (X2, X3), (X3, X4), ..., (Xn−1, Xn)

and these pairs will be treated as a bivariate data set. If the correlation between

consecutive pairs is computed , they are called as the auto-correlation coefficient or

serial correlation coefficient at lag 1 denoted by r1. The formula is:

r1 =

∑n−1
i=1 (Xi − X̄)(Xi+1 − X̄)/(n− 1)∑n

i=1(Xi − X̄)2/n

Likewise, for the lag k the formula is:

rk =

∑n−k
i=1 (Xi − X̄)(Xi+k − X̄)/(n− k)∑n

i=1(Xi − X̄)2/n

In order to test the serial correlation, correlogram is the best descriptive plot. Correl-

ogram is generated by serial correlations rk versus the lag k for k = 0, 1, 2, ...,M ,

where M < n. If the series have random observations (white noise), it is expected

that the serial correlations will be zero. However, for the financial data, it is hard to

expect independency of observations from one another. While examining the depen-

dency in correlogram, it is checked whether rk falls in confidence limits or not. These

limits are calculated as follows:

−1/(n− 1)± 1.96/
√
n

If sufficiently enough auto-correlations are not in the standard error bounds, correla-

tion of series is significantly different from zero at the 5 percent significance level.

31



Results: The hypothesis for the serial correlations is:

• H0: ρ0 = ρ1 = ... = ρk = 0 (There is no autocorrelation.)

• H1: At least one is different.

The dotted lines in the serial correlogram shows the confidence limits in the Figure

4.3. Most of the probabilities of the autocorrelations are not significantly different

than zero, then we can say that the null hypothesis is rejected. As a result, the in-

crements of the oil prices are dependent and as seen from the Figure 4.3 they exhibit

long-range dependence i.e. we expect the Hurst parameter H to be greater than 1/2.
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Figure 4.3: Serial Correlogram
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4.3 Estimation of Hurst parameter

In the literature, there are several methods to estimate the parameter Hurst (H), also

known as the self-similarity parameter. This is firstly put forward by Mandelbrot

& van Ness (1968). This estimation takes an important role in analyzing of series

because fBm having long-range dependence and self-similarity is characterized by

Hurst parameter. In this section, we introduce three methods for estimation of H ,

which are R/S analysis, Variance-time Plot and Correlogram.

4.3.1 The R/S Analysis

The R/S analysis is one of the first and most common method for the estimation of

H . This method has been existed first in hydrologist Hurst’s works on flow at Nile

river [28]. Hurst has noticed that after becoming long period of floods,there was a

long period of drought. Then, he has studied in order to calculate the flow of river.

Mandelbrot and Wallis (1969) has put forward the R/S analysis for the estimation

[35].

The statistic for the R/S analysis is calculated step by step as follows [54]:

• Divide a time series of length N into k sub-series of length n

• For each sub-series j = 1, 2, .., k

1. Find the mean Ej and standard deviation Sj

2. Subtract the sample mean from the data Yi,j in order to centralize: Zi,j =

Yi,j − Ej for j = 1, 2, .., k

3. Build a new time series Xi,j =
∑i

t=1 Zt,j for i = 1, 2, .., n

• Find the range Rj = max(X1,j, ..., Xn,j)−min(X1,j, ..., Xn,j)

• Re-scale the range Rj/Sj
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Lastly, the mean value of the re-scaled range for all sub-series of length n is calcu-

lated:

(R/S) =
1

k

k∑
j=1

Rj/Sj.

This ratio gives the re-scaled adjusted range or R/S statistic.

Asymptotically the R/S statistic has this relation:

(R/S)n ∼ cnH .

Therefore, in order to calculate the value of H we set a simple linear regression for

several values of n

log(R/S)n = log c+H log n.

4.3.2 Variance-time Plot

For the estimation of H parameter, the second method is the variance-time plot. This

method is based on logarithmic plots and uses the property of long-range dependence.

Variance of the sample mean inferred from the Theorem 2.2 in the book of Beran [4]

is V ar(X̄) ≈ cn2H−2 where c > 0.

For the estimation of H , we follow below steps [57]:

• Divide a time series of length N into mk sub-series of length k.

• Find the sample means Ȳ1, Ȳ2, ..., Ȳmk
with the integer time lag k lying in 2 ≤

k ≤ n/2.

• Find the overall mean by Ȳ = 1
mk

∑mk

j=1 Ȳj(k).

• Then, find the sample variance S2(k) of the sample means Ȳj(k), i = 1, 2, ...,mk

by

S2(k) = (mk − 1)−1

mk∑
j=1

(Ȳj(k)− Ȳ (k))2

After these calculations, the plot of logS2(k) against log k is drawn and the resulting

points are combined. The slope of the plot is used to obtain an estimation of H .
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4.3.3 The Correlogram

The last method for the estimation is the correlogram. The correlogram is widely

used to generate the plot of serial correlations versus different lag k, (k = 1, 2, ...,m

where m is less than the sample size). The sample autocorrelation is

ρ̂(k) =
γ̂(k)

γ̂(0)
.

where γ̂(k) and γ̂(0) are the serial correlations. While looking at the Autocorrelation

function (ACF) plot, two horizantal lines at the levels ∓2/
√
n which corresponds to

the significance level 0.005 are drawn. Inside the limits there is no correlation, but

lines that cross boundaries are considered as correlated. According to Sarker (2007),

”if the asymptotic decay of the correlation is hyperbolic, then the points in the plot

should be approximately scattered around a straight line with a negative slope of 2H-2

for the long memory processes but for short memory, the points should tend to diverse

to minus infinity at an exponential rate.”[51]. This method is not widely used and not

effective, also its bad sides takes part in article of Mandelbrot and Wallis (1969). H

can be estimated via this method by using that equation:

ρ̂(k) = Ĥ(2Ĥ − 1)k2Ĥ−1.

Application of Hurst parameter Estimation

In this thesis, for estimation of the Hurst parameter, the solution of the model in

Equation 5 is used. If we take the differences according to previous value, the distri-

bution of logSt − logSt−1 has no H parameter in it. For this reason, the difference

logSt − logS0 should be used. The distribution of this difference is:

logSt − logS0 ∼ N(µt− 1

2
σ2t2H , σ2t2H) (4.9)
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In R software, “pracma” package is used to estimate the Hurst parameter and “hurs-

texp” function calculates the estimators with some corrections [6]. After necessary

arrangements in the data are conducted, the following results are obtained:

Table 4.3: Results of the Estimation

Simple R/S Hurst estimation: 0.8485069

Corrected R over S Hurst exponent: 1.023286

Empirical Hurst exponent: 1.043707

Corrected empirical Hurst exponent: 1.007416

Theoretical Hurst exponent: 0.5538539

“hurstexp” calculates the Hurst exponent of a time series using R/S analysis, or cor-

rects it with small sample bias with slightly different approaches, see for example

Weron [54]. These approaches are a corrected R/S method, an empirical and cor-

rected empirical method, and theoretical Hurst exponent. In this study, we chose the

value of the simple R/S Hurst estimation as an H in the Table 4.4.
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4.4 Simulation

In order to generate the fBm and find out the duration of the maximum drawdown,

simulation study is conducted. We have generated the fBm process through MATLAB

code by Abry and Sellan method [1] with H = 1/2 up to time 100000 with 100000

simulations, collected maximum drawdown from 100000 paths and compared our

results with the theoretical expected value of maximum drawdown to check if we

calculated them correctly. We have calculated the maximum loss with the following

codes:

starttime = cputime;

A=zeros(Length,3);

L = Length;

H = HurstParameter;

N =NumberofSimulations;

data=zeros(N,2);

for s = 1:N

fBm= wfbm(H,L);

maxim(1)= fBm(1);

loss(1)=0;

for v=1:L-1;

if(maxim(v)<fBm(v+1))

maxim(v+1)=fBm(v+1);

else

maxim(v+1)=maxim(v);

end

loss(v+1)=maxim(v+1)-fBm(v+1);

end

A=[fBm’ maxim’ loss’] ;
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As an illustration of the results of simulation of fBm please refer to the Figure 4.4.

Figure 4.4: Simulations

From there on we have conducted simulation studies to estimate the maximum draw-

down of fractional Brownian motion for H > 1/2. We generated a 100000-step frac-

tional Brownian path, then calculated its maximum drawdown and the duration of

maximum drawdown. We repeated this algorithm 100000 times in order to calculate

the expectation of duration of maximum drawdown. While simulating the process,

we used the estimated Hurst parameter from the actual data.
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We have used the codes given below to calculate the maximum drawdown of the oil

prices:

maxloss=0;

maxim(1)=stdln(1);

loss(1)=0;

for v=1:t-1,

if(maxim(v)<stdln(v+1));

maxim(v+1)=stdln(v+1);

else

maxim(v+1)=maxim(v);

end

loss(v+1)=maxim(v+1)-stdln(v+1);

end

maxloss=max(loss);

Table 4.4: Results of the Simulation Study for Paths of 100000 steps

Simulation

The Expected Value of Maximum Drawdown 125.33

The Expected Value of the Duration of Maximum Drawdown 4169.3

The expectation of simulation of maximum drawdown and the duration of maximum

drawdown are 125.33 and 4169.3, respectively. By using the self-similarity property,

results are converted to unit time.

For t=1, the calculation of estimators through simulations with the simple R/S Hurst

estimator are that is:

HurstEstimate : 0.8485
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MH
1 =

MH
t

tH
=

M0.8485
100,000

100, 0000.8485

=
3, 980

100, 0000.8485
= 0.2276

τm,1 =
τm,t

t

=
τ3,980,100,000
100, 000

=
41, 658

100, 000
= 0.41658

In our data set we have 269 monthly data from the year 1996, so the results of sim-

ulation has been converted to the results for paths up to t = 269. By the self-similarity

property, we convert these values into t=269 by multiplying with 2690.8485 = 115.2510

and 269, respectively which are given in the Table 4.5.

M0.8485
269 = M0.8485

1 ∗ 2690.8485

= 0.2276 ∗ 115.2510

= 26.2311

τ26.2311,269 = τ3,980,1 ∗ 269

= 0.41658 ∗ 269

= 112.06

Also from the oil prices data set we have calculated the maximum drawdown and

corresponding duration for this 269 observations and observed the following results;

M0.8485
269 = 6.3217 τ6.3217 = 75
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Table 4.5: Comparison of the Simulation Study with the Actual Data Set for t=269,

Hurst Parameter=0.8485

Simulation Filtered data

The Expected Value

of the Maximum Drawdown 26.2311 6.3217

The Expected Value

of the Duration of Maximum Drawdown 112.06 75

For the time t = 269, the maximum drawdown and its duration observed from the

actual data set are both less than their expected values under fBm model. We conclude

the last super-cycle has not completed yet when compared to the expected values of

the model despite there is an increasing movement in the prices.
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CHAPTER 5

CONCLUSION

In this thesis, our aim was to estimate the duration of the maximum drawdown, i.e.

duration of the highest possible drop in the oil prices. The oil prices data were mod-

eled by GfBm. West Texas Intermediate (Cushing, OK WTI) spot price was chosen

from among crude oil prices and the data taken from U.S. Energy Information Ad-

ministration site (www.eia.gov) was used. Monthly data starts from January 1947 and

ends in May 2018. The nominal value of the prices in the economy is measured by

the value of the currency at the time, hence the real data is used for showing the price

level corresponds to the Gross Domestic Product. In order to apply model, real oil

prices are created by using Consumer Price Index (Index 1982-1984=100, Monthly,

Seasonally Adjusted).

Maximum drawdown, also known as maximum loss, is especially important for both

investors and economists. It indicates the highest possible market risk in finance. In

order to detect the maximum drawdown in the oil price data set in the light of our aim,

super-cycles which are specified as total of an upward and a downward movements

were detected. By using economic filtering methods, super-cycles were extracted

from the series. The economic filtering methods used were Hodrick Prescott and

Band Pass filter. These filtering techniques were applied to the data to decompose

the trend component from the series and smooth the data. Then, we identify super-

cycles in the historical oil price series. Thanks to these filters, the last super-cycle is

identified. The period of the last current super-cycle gives us the time interval of the

data which will be used for modeling. HP and BP filter show that the last cycle starts

around 1996 and reaches last peak point at 2012.
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Before observing the results of maximum drawdown and its duration from the actual

data and simulation studies, the assumptions of the fBm were checked for the real

life data. First of all, stationarity of increments is looked and the results of KPSS and

ADF tests show that series are stationary. Then, histogram and Jarque Bera normality

test validated the normality for the differences of logarithm of prices. Finally it has

been proven that the series have correlation.

Geometric version of fBm model is used for modeling oil prices. fBm is a realis-

tic model, because fBm is a process that exhibits long-term dependent behavior for

H > 1/2 and this dependency overlaps with the dependency seen in real life financial

data. In the literature, it is well known that Brownian motion gives good results on

logarithm of the series and catch the movements of oil prices but not dependency.

Therefore Bm can be replaced with fBm. Briefly, as mentioned in the Equations 4.3

and 4.4 the process driven by fBm is:

S(t) = S(0)eσB
H
t µt− 1

2
σ2t2H

or

S(t)

S(t− 1)
= eσB

H
1 µ− 1

2
σ2

For our data set oil prices of 269 months, Hurst parameter is estimated from R/S

analysis as 0.8485 approximately.

In order to generate the fBm and find out the maximum drawdown of it, simulation

was conducted. In these simulations, we have generated 100000 simulations of paths

with 100000 steps and calculated the average of 100000 maximum drawdowns and

100000 duration of maximum drawdowns for the purpose of the estimation. In the

simulation study, we used the estimated Hurst parameter H = 0.8485.
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Theoretically the expectation of maximum drawdown is found as 125.33 and the ex-

pectation of duration of maximum drawdown is 4169.3. In our data set we have 269

monthly data from the year 1996, so firstly the results of simulation have been con-

verted to the results for paths up to t = 1 by the self-similarity property. Then the

results for paths up to t = 269 have been created. Also from the filtered oil prices data

set we have calculated the maximum drawdown and corresponding duration for this

269 observations. Finally the expected maximum drawdown and duration of maxi-

mum drawdown from the filtered data equals to 6.3217 and 75, respectively. However

simulation results for the maximum drawdown and duration of maximum drawdown

for t = 269 equals to 26.2311 and 112.06, respectively.

As a result, for the time t = 269 the maximum drawdown and its duration observed

from the filtered data set are both less than their expected values under fBm model.

We conclude the last super-cycle has not completed yet when compared to the ex-

pected values of the model despite lately there is an increasing movement in the oil

prices.
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APPENDIX A

TABLES OF TIME SERIES

Table A.1: Results of the Filtering Study

Date Spot Oil Price HP trend BP trend

1948 1.841 2.287564267 -0.364722512

1949 2.570 2.379703018 -0.018457508

1950 2.570 2.467376127 0.092534481

1951 2.570 2.54802092 0.432728827

1952 2.570 2.620100964 0.632944593

1953 2.570 2.682299614 0.442771758

1954 2.716 2.732799219 0.027915761

1955 2.820 2.768659129 -0.521042684

1956 2.820 2.786770702 -0.898421071

1957 3.043 2.784538706 -0.550065906

1958 3.058 2.759700202 0.027663133

1959 2.975 2.712576863 0.60825008

1960 2.970 2.64647336 0.949837922

1961 2.970 2.567318595 0.731705942

1962 2.970 2.484276739 0.03491915

1963 2.970 2.410538773 -0.749681619

1964 2.945 2.364152915 -1.168241372

1965 2.920 2.368761991 -0.915532217
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Table A.2: Results of the Filtering Study-Cont.

Date Spot Oil Price HP trend BP trend

1966 2.937 2.453817301 -0.057328974

1967 3.027 2.654282523 0.969324979

1968 3.070 3.009953164 1.459159268

1969 3.295 3.564351905 1.266512328

1970 3.351 4.361601893 0.098171352

1971 3.560 5.44313276 -1.260259963

1972 3.560 6.840268117 -2.582644712

1973 3.873 8.565500246 -3.025232061

1974 10.373 10.59851875 3.065256786

1975 11.160 12.87208823 3.045218512

1976 12.645 15.3167181 2.403927282

1977 14.296 17.84579688 0.027230899

1978 14.850 20.34599593 -5.164733556

1979 22.404 22.66848863 -4.03416033

1980 37.375 24.6094884 5.407961821

1981 36.667 25.96256377 1.549796432

1982 33.636 26.64893839 -1.484281517

1983 30.395 26.69688027 -1.864176844

1984 29.276 26.20452806 1.530232989

1985 27.973 25.30700156 4.775184315

1986 15.050 24.17013533 -4.916878964

1987 19.200 22.98642389 0.564459605

1988 15.970 21.85716043 -2.937274009

1989 19.640 20.84577388 -0.267367824

1990 24.530 19.95682158 3.822230757
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Table A.3: Results of the Filtering Study-Cont.

Date Spot Oil Price HP trend BP trend

1991 21.540 19.18280311 0.749909294

1992 20.580 18.56194986 0.362371032

1993 18.430 18.15606519 -1.032693778

1994 17.200 18.04713292 -1.829768075

1995 18.430 18.31987627 -0.690183348

1996 22.120 19.0505471 2.575846484

1997 20.610 20.31649852 0.682332587

1998 14.420 22.22577816 -5.658204269

1999 19.340 24.88936867 -0.931556565

2000 30.380 28.34019492 9.11786279

2001 25.980 32.55568809 2.000664023

2002 26.180 37.53367741 -2.881090633

2003 31.080 43.20623523 -5.40274836

2004 41.510 49.39189713 -3.988923521

2005 56.640 55.78793633 1.693845409

2006 66.050 62.01280709 2.3019426

2007 72.340 67.6934843 0.999701462

2008 99.670 72.49731477 21.90387204

2009 61.950 76.13811048 -21.42366096

2010 79.480 78.60141026 -8.798506931

2011 94.880 79.73087184 2.969782991

2012 94.050 79.37893882 1.104549766

2013 97.980 77.54954613 8.238278718

2014 93.170 74.39333926 12.05430655

2015 48.660 70.26526828 -18.44099928

2016 43.290 65.70804984 -5.998734357

2017 50.800 61.04834792 20.27355225
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