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ABSTRACT

TIGHT CONTACT STRUCTURES ON SMALL SEIFERT FIBERED SPACES

Yılmaz, Kürşat

M.S., Department of Mathematics

Supervisor : Assoc. Prof. Dr. M. Fırat Arıkan

August 2018, 36 pages

Small Seifert fibered space is a Seifert fibered space with three exceptional fibers.
There is an invariant of Seifert fibered spaces which is called Euler number (e0). In
this thesis, the classification of tight contact structures on some small Seifert fibered
3-manifolds will be studied. The classifications are based on understanding the in-
teractions between different techniques and theories known as Dehn surgery, contact
surgery, the bypass technique, and the convex surface theory. In particular, we will
give the complete classification of the tight contact structures on small Seifert fibered
spaces having e0 less than or equal to -3, and greater than or equal to 1 by using the
work of Wu. Moreover, we will give some partial results when e0 is equal to -1 by
using the work of Mark and Tosun.

Keywords: Tight contact structures, Seifert fibered 3-manifolds
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ÖZ

KÜÇÜK SEİFERT LİF UZAYLARI ÜZERİNDEKİ SIKI KONTAKT
YAPILAR

Yılmaz, Kürşat

Yüksek Lisans, Matematik Bölümü

Tez Yöneticisi : Doç. Dr. M. Fırat Arıkan

Ağustos 2018 , 36 sayfa

Sadece üç istisnai lifi bulunan Seifert lif uzayına küçük Seifert lif uzayı denir. Küçük
Seifert lif uzayları üzerinde Euler sayısı (e0) olarak adlandırılan bir değişmez vardır.
Bu tezde 3-boyutlu küçük Seifert lif uzayları üzerinde sıkı kontakt yapıların sınıflan-
dırılması çalışılacaktır. Sınıflandırma Dehn surgery, kontakt surgery, bypass teknik-
leri ve konveks yüzey teorisinin birbirleri ile etkileşimleri baz alınarak yapılacaktır.
Özel olarak, Wu’nun çalışmaları kullanılarak Euler sayısı -3 den küçük eşit olan, ve
1 den büyük eşit olan küçük Seifert lif uzayları üzerindeki sıkı kontakt yapıların tam
sınıflandırılması verilecektir. Ayrıca Mark ve Tosun’un çalışmaları kullanılarak Euler
sayısı -1 olan küçük Seifert lif uzayları üzerindeki sıkı kontakt yapıların sınıflandırıl-
ması üzerine kısmi sonuçlar verilecektir.

Anahtar Kelimeler: Sıkı kontakt yapılar, Seifert lifli 3-boyutlu çokkatlılar
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CHAPTER 1

INTRODUCTION

One can trace the roots of the terminology related with contact geometry back to 1872,

when Sophus Lie first introduced the notion of contact transformation. His work

was a bit different than the modern understanding. He used this transformation as a

geometric tool to understand the solution spaces of differential equations which will

be later on called manifolds. Lie’s transformations were extensively studied in the late

19th century and at the first half of the 20th century among the famous mathematicians

H. Poincarè, F. Engel, E. Goursat, and E. Cartan. Nonetheless, contact geometry

could not become as famous as its twin sister, symplectic geometry.

In contrast, contact topology is not old as the contact geometry. It has only started

to been studied since 1970’s. Afterwards, the contact geometry and topology have

experienced some fruitful time, 3-dimensional contact manifolds became one of the

main interest, and contact structures are defined. One of them is tight and the other

one is overtwisted.

In 1989 [4], Eliashberg completed the classification of overtwisted contact structures

on 3-manifolds. Then people concentrated on the classification of tight contact struc-

tures on 3-manifolds, which is much more subtle than the classification of overtwisted

ones because of the various relations on the topology of underlying manifolds.

Gromov and Eliashberg [14],[5] showed that a fillable contact structure is tight. Since

then, it became the main tool to determine that whether the given contact structure on

a 3-manifold is tight or not. In addition, fillability is preserved by Legendrian surgery

[22], [6] which in turn gives affluent source of tight contact structures. Gompf’s work

[13] on Legendrian surgery enables us to construct tight contact structures on Seifert

1



fibered manifolds.

Instead of working with contact structure itself, people started to work on the singular

foliation on the embedded surfaces which is induced by contact structure on the given

manifold. In 1991 [12], Giroux came up with the idea of convex surface, which is an

embedded surface whose characteristic foliation is transversely intersects with some

curves. These curves are called dividing set which essentially determine the contact

structure in a small neighborhood. Afterwards, it became one of the most important

tool to study contact structures.

In 2000 [15], Honda developed a technique so-called bypass and he used this tech-

nique to split the manifold along convex surfaces into simpler pieces to analyze possi-

ble contact structures on them. By doing so, he classified all the contact structures on

solid tori, and Lens spaces. Inspiring by this work, in [7] Etnyre and Honda proved

the non-existence of tight contact structures on M(−1
2
, 1

3
, 1

5
) which corresponds to

the negatively oriented Poincarè homology sphere −Σ(2, 3, 5). Moreover, Colin [1]

showed that every oriented Seifert fibered spaces over a genus g surface (with g ≥ 1)

admits infinitely many non-isotopic tight contact structures.

As explained, it became really interesting to work on Seifert fibered manifolds over

the 2-sphere S2. Ghiggini and Schönenberger [10] showed that on the small Seifert

fibered spaces −Σ(2, 3, 11) and Σ(2, 3, 11) there are exactly one and two contact

structures respectively (one of them has Euler number e0 = −1 and the other one

has e0 = −2 respectively). Furthermore, Wu [23] gave the complete classification

for the small Seifert fibered spaces having e0 ≤ −3 and e0 ≥ 1. Also, in [20] Tosun

showed that the Bireskorn homology sphere −Σ(2, 3, 6n + 1) admits exactly n(n−1)
2

tight contact structure and in [19] Mark and Tosun showed that Σ(2, 3, 6n+1) admits

exactly two tight contact structures.

The outline of this thesis is as follows: In Chapter 2, some basic definitions and ex-

amples related with contact structures and contact 3-manifolds are given. In Chapter

3, some basics of convex surface theory and bypass technique are given. In Chapter

4, the definition of Seifert fibered manifolds and some classical invariants for Seifert

fibered manifolds are given. In Chapter 5, the classifications of tight contact structures

on some small Seifert fibered spaces is given.
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CHAPTER 2

PRELIMINARIES

In this chapter, we will recall some basic definitions and facts about contact geometry

in dimension three. In Subsection 2.1, we will define contact structures and give

some basic examples related to the given definitions. After recalling front projection

of Legendrian knots in Subsection 2.2, we will give some basics of surgery theory in

Subsection 2.3.

2.1 Contact Structures

Definition 2.1.1. Let M be a 3-dimensional manifold. A contact structure on M is a

maximally non-integrable hyperplane field ξ = ker(α) ⊂ TM such that the defining

differential 1-form α has to satisfy α ∧ dα 6= 0 in an open neighborhood of any point

p in M . Such a 1-form α is called a contact form. The pair (M, ξ) is called a contact

manifold.

Example 2.1.1. Consider the Euclidean Space R3 with the standard coordinates

(x, y, z) and 1-form α1 = dz + xdy. ξ1 = ker(α1) is a contact structure on R3

(see Figure 2.1).

Since α1 ∧ dα1 = (dz + xdy) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz 6= 0, so ξ1 = ker(α1) is a

contact structure on R3.

Example 2.1.2. Similarly, consider R3 with the standard coordinates (x, y, z) and

1-form α2 = dz + xdy − ydx. Then ξ2 = ker(α2) is also a contact structure on R3 .

Example 2.1.3. Let S3 be the unit 3-sphere in R4 with standard coordinates

3



Figure 2.1: The contact structure ker(dz + xdy).

(x1, y1, x2, y2). The 1-form α = x1dy1 − y1dx1 + x2dy2 − y2dy2 defines a contact

structure ξst on S3, which is called the standard contact structure on S3.

Definition 2.1.2. Two contact manifolds (M1, ξ1) and (M2, ξ2) are called contacto-

morphic if there exists a diffeomorphism f : M1 → M2 with Tf(ξ1) = ξ2, where

Tf : TM1 → TM2 denotes the derivative map of f . If ξi = ker(αi), i = 1, 2

this is equivalent to the existence of nowhere zero function λ : M1 → R such that

f ∗α2 = λα1. Such a map is called a contactomorphism.

Example 2.1.4. Two contact manifolds (R3, ξ1) and (R3, ξ2) given in the first two ex-

amples are contactomorphic via a contactomorphism given explicitly as

f(x, y, z) =
(x+ y

2
,
y − x

2
,
z + xy

2

)
. One can easily see that f ∗α2 = α1.

Proof. Let us use the coordinates (u, v, w) in the range R3 to avoid confusion. Con-

sider α2 = dw + udv + vdu. Then

f ∗(α2) = d

(
z +

xy

2

)
+

(
x+ y

2

)
d

(
y − x

2

)
−
(
y − x

2

)
d

(
x+ y

2

)
= dz +

ydx

2
+
xdy

2
+

(
x+ y

2

)(
− dx

2
+
dy

2

)
+

(
x− y

2

)(
dx

2
+
dy

2

)
= dz + xdy.
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Example 2.1.5. S3 is the one point compactification of R3. So, if we exclude one

point from S3 it will be diffeomorphic to R3. This diffeomorphism induces a con-

tactomorphism between (S3 \ {p}, ξst) and (R3, ξ2) and hence (R3, ξ1) of Example

2.1.1.

An explicit contactomorphism is given in the proof of Proposition 2.1.8 in [8].

Definition 2.1.3. An embedded disc D in a contact 3-manifold (M, ξ) is called an

overtwisted disk if TpD = ξ|p for every p ∈ ∂D. If such a disk exists in (M, ξ) then

the contact structure on M is called overtwisted. If there is no such disk then the

contact structure is called tight.

Example 2.1.6. Consider the R3 with the standard cylindrical coordinates (r, θ, z).

The 1-form αot = cosrdz + rsinrdθ gives a contact structure on R3 since

αot ∧ dαot =
(
1 +

sinr

r
cosr

)
rdr ∧ θ ∧ dz

is nowhere zero. The contact structure ξot = ker(αot) is called the standard over-

twisted contact structure on R3.

Definition 2.1.4. A 4-dimensional Stein manifold is a triple (X4, J, ψ) where J is

a complex structure on X , ψ : X → R is a proper map and the closed 2-form

ωψ = −d(dψ ◦ J) is non-degenerate. A contact 3-manifold (M, ξ) is said to be Stein

fillable if there is a compact (necessarily with boundary) Stein manifold (X4, J, ψ)

such that ∂X = M and the 1-form α := −(dψ ◦ J)|∂X defines ξ (i.e., ξ = ker(α)).

One way is to show that a given contact 3-manifold is tight, is to show it is holomor-

phically filled by a Stein 4-manifold, i.e., it is Stien fillable.

Remark 2.1.1. We note that the contact structures given in Example 2.1.1, 2.1.2,

2.1.3 are all tight: In 1982, Douady [3] showed that standard contact structure on

R3 has no overtwisted disk, hence it is tight. Also, the standard contact structure on

S3 is holomorphically filled by the unit 4-ball with standard complex structure, hence

it is tight.

Definition 2.1.5. Two contact structures ξ1 and ξ2 on a given 3-manifold M is said

to be homotopic if they are homotopic as tangent plane distributions, and they are

called isotopic if they are homotopic through contact structures.

5



Homotopy does not preserve the type of contact structure i.e., two contact structures

having different type (one of them is tight and the other one is overtwisted) may

be homotopic but they cannot be isotopic. For this reason, classification of contact

structures are made up to isotopy.

We can induce by Gray’s stability theorem that, on a closed contact 3-manifold M ,

two contact structures ξ1 and ξ2 are isotopic if and only if there exists an isotopy ϕt,

t ∈ [0, 1], of M such that ϕ0 = id and (ϕ1)∗(ξ1) = ξ2

Example 2.1.7. Let us consider ϕt : R3 → R3, given as

ϕt(x, y, z) =

(
x,

y

(1 + t)
, z +

txy

1 + t

)
,

where t ∈ [0, 1]. Clearly, ϕt is an isotopy of R3. Now consider the contact structures

ξ1 and ξ2 on R3 in the previous examples. One can easily see that ϕ0 = id and

ϕ∗1(α2) = α1. Hence, the contact structures given as the kernels of α1 and α2 on R3

are isotopic.

In [4], Eliashberg showed that if two different overtwisted contact structures on a

closed 3-manifold M have the same homotopy type, i.e., if they are homotopic, then

they are isotopic as well. But it is not true in general.

Definition 2.1.6. Given an orientation on M , if α∧ dα > 0, then the orientation of ξ

is said to be positive. If α ∧ dα < 0, then ξ is called negative. If there exists a global

1-form α, which defines ξ on M , then ξ is said to be co-orientable.

In this thesis, since we are working on contact 3-manifolds, any contact structure

will be positively co-oriented unless it is specified. So, it will be enough to fix the

orientation of M .

2.2 Legendrian Knots

Definition 2.2.1. A curve γ in a contact manifold (M, ξ) is called Legendrian if it is

everywhere tangent to ξ.

Definition 2.2.2. A smoothly embedded S1,i.e., a knot, in a contact manifold M is

called a Legendrian knot if it is Legendrian.

6



Definition 2.2.3. Two Legendrian knots L,L
′

are called Legendrian isotopic if there

is a smooth 1-parameter family Lt, t ∈ [0, 1], such that L0 = L and L1 = L
′
.

One of the basic invariants of Legendrian knots under Legendrian isotopies is the

contact framing, which is inherited from the contact planes on the manifold. If a

Legendrian knot L is given with a canonical framing Fr, then its contact framing can

be represented as a (twisting) number, t(L,Fr), which is the number of twists of the

contact planes along L measured relative to Fr.

Definition 2.2.4. LetL be a Legendrian knot in a contact 3-manifold (M, ξ), and Σ be

a Seifert surface of L. Since ξ is co-oriented, there necessarily exists a contact vector

field X of M which is everywhere transverse to the contact structure ξ on M and

hence transverse to the Legendrian knot L. Take the push off L
′

of L in the direction

determined by X . Then the Thurston-Bennequin number tb(L, ξ) is defined as the

signed intersection of L
′

with Σ.

Our aim is to construct tight contact structures on a 3-manifold. To do so, we start

with S3, and make some modifications which will be called surgery later on. For this

reason, we are interested in knots and links in S3 with its standard contact structure.

However, any knot or link in S3 misses at least one point. So, we will regard them as

a knot or a link in R3 with the standard contact structure ξ1 of it by using Example

2.1.5.

Definition 2.2.5. The projection of a Legendrian knot in (R3, ξ1), where ξ1 is the con-

tact structure given in Example 2.1.1, on to the yz-plane is called the front diagram

of the Legendrian knot.

Let L be an oriented Legendrian knot in (S3, ξst). Then using its front diagram

Thurston-Bennequin number can be calculated as follows:

tb(L) = writhe(L)− 1

2
(#cusps(L)).

Here, writhe is the sum of of all positive and negative intersections (see Figure 2.2),

and cusps are the singular points in the front diagram of the Legendrian knot.

7



+1 −1

Figure 2.2: Positive and negative intersections.

There is another numerical invariant r(L, ξ), namely rotation number, which is de-

fined to be the obstruction to the extension of tangent vectors of L to a non-vanishing

section of ξ|Σ. Here, as before Σ is a Seifert surface of L.

Remark 2.2.1. The Thurston-Bennequin number and rotation number of a null-

homologous Legendrian knot L depend on the relative homology class of the cho-

sen Seifert surface in H2(M ;L). But, in the special situation where H1(M) =

H2(M) = 0, all the Seifert surfaces are relatively homologous. And, hence, the

Thurston-Bennequin number depends only on L and rotation number depends only

on L and its orientation. In this case, we will denote them by tb(L) and r(L), respec-

tively.

2.3 Contact Dehn Surgery

Surgery is an essential tool to construct new manifolds. Instead of giving general

theory, in this subsection we will focus on Dehn surgery since we are working in

dimension three.

Let K be a knot in S3 and denote the tubular neighborhood of K as νK. Then νK

will be diffeomorphic to solid torus,D2×S1, since it is the only orientableD2-bundle

over S1. Let C be the closure of S3 \ νK of νK in S3. Consider S3 = νK ∪ C and

νK ∩ C = T 2.

H2(S3) H1(T 2) H1(νK)⊕H1(C) H1(S3)

0 Z⊕ Z Z⊕H1(C) 0

Then we can use some part of the Mayer-Vietoris sequence to get H1(C) ∼= Z. It is

well known thatH1(T 2) ∼= Z⊕Z and up to isotopy there are two distinct curves which

8



generate H1(T 2). One of them is called the meridian µ which generates the kernel

of the homomorphism H1(T 2) → H1(νK). The other one is called the preferred

longitude λ which generates the kernel of the homomorphism H1(T 2)→ H1(C).

We consider S3 as the oriented boundary of D4 which has the standard orientation.

We give T 2 = ∂(νK) the boundary orientation. Also, we assume that K is oriented

as well. Then orientation of λ can be given in such a way that it is isotopic to K in

νK as oriented curves and the orientation of µ is chosen such that it turns µ and λ

into a positive basis for that homology group. (see Figure 2.3)

K

λ
µ

Figure 2.3: Meridian µ and longitude λ.

With a proper choice of generator for H1(C) = Z, the homomorphism H1(T 2) →
H1(νK)⊕H1(C) can be identified by λ→ (1, 0) and µ→ (0, 1).

Definition 2.3.1. Let K be a knot in S3. Remove the tubular neighborhood νK of K

which is isomorphic to solid torus as mentioned before. Then, re-glue a solid torus

S1 × D2 by a diffeomorphism ∂(S1 × D2) → ∂(νK). This removing and re-gluing

operation is called Dehn surgery.

Denote the meridian ∗× ∂D2 as µ0 and the longitude S1×∗ as λ0 of S1×D2. Here

∗ denotes a point in S1 or in D2. Then the gluing map can be described by

µ0 → pµ+ qλ, λ0 → mµ+ nλ

and

p m

q n

 ∈ GL(2,Z) is the matrix representation of this operation.

A Dehn surgery along a knot K in S3 is determined by the image of µ0 since the

curve on ∂(νK) becomes homotopically trivial in the surgered manifold. As a matter

of fact, it is completely determined by the surgery coefficient p/q ∈ Q ∪ ∞, since

the diffeomorphism of ∂(S1 × D2) given by (λ0, µ0) → (λ0,−µ0) has the effect of

changing the signs of both p and q, extends to a solid torus that we glue back. So

9



there is no ambiguity to call this surgery as (p/q)-surgery. Here, p/q is called the

(topological) surgery coefficient. Note that ∞-surgery (p = ±1, q = 0) has no

effect on the manifold, so is to say it is topologically trivial.

Definition 2.3.2. A finite collection of disjoint knots is called a link.

Theorem 2.3.1 (Likorish[17], Wallace [21]). Any closed, connected, orientable 3-

manifold can be obtained by surgery along a link L in S3.

Definition 2.3.3. Let K be a knot in S3 with surgery coefficient k and let L be a

Legendrian realization of K. The contact surgery coefficient of L is the number

l = k−tb(L), where tb(L) denotes the Thurston-Bennequin number of L. Then (L, l)

gives a new surgery description which is called contact Dehn surgery. A Legendrian

surgery is a contact Dehn surgery with l = −1 .

By doing so, one can obtain another closed contact 3-manifold.

Example 2.3.1. 0-surgery on an unknot in S3 gives S1×S2. Similarly, +1 Legendrian

surgery on Legendrian unknot with tb = −1 gives again S1 × S2 but with a contact

structure on it. A surgery description can be given as in Figure 2.4.

0
+1

Figure 2.4: Topological 0- surgery and Legendrian +1 surgery on unknot.
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CHAPTER 3

CONVEX SURFACE THEORY AND BYPASS

In this chapter, we will define some basic concepts of convex surface theory and one

of the most useful technique which is introduced by Honda in [15], to understand

tight contact structures on a given 3-manifold, namely bypass. Also, we will give

some theorems which will be used in the last chapter.

Let us begin with defining contact vector fields:

Definition 3.0.1. Let X be a vector field on a contact 3-manifold (M, ξ). Denote the

local flow ofX by ψt. Note that, ifM is not closed, then the map ψt (for a fixed t 6= 0)

is not defined globally on M in general. By any means, the vector field X is called a

contact vector field if (ψt)∗(ξ) = ξ for all t ∈ R, i.e., ξ is preserved under the flow of

X .

Equivalently, a vector field X is a contact vector field if and only if LXα = κα for

some function κ : M → R. Note that this condition is independent of the choice of

the contact form α defining the given contact structure ξ.

Example 3.0.1. The vector field X = x ∂
∂x

+ y ∂
∂y

+ 2z ∂
∂z

is a contact vector field for

the standard contact structure ξ1 on R3 since LXα1 = 2α1.

Definition 3.0.2. An embedded surface Σ in a compact manifold (M, ξ) is said to be

convex if there exists a contact vector field transverse to Σ.

Let Σ be an embedded surface in a contact 3-manifold (M, ξ). Consider ξ∩TΣ. This

intersection gives a line field except at finitely many points where the tangent plane

of those points coincide with the 2-plane distribution of ξ. If we integrate this line
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field, we will get a foliation of Σ with the singularities at those points of tangencies.

This foliation is called characteristic foliation Σξ of Σ in (M, ξ).

Here is an equivalent definition of a convex surface:

Definition 3.0.3. An embedded surface Σ in a contact manifold (M, ξ) is said to be

convex if there exists a collection of curves ΓΣ for which the following conditions

hold:

(i) ΓΣ divides Σ into two different types of subsurfaces which we denote as Σ+ and

Σ−.

(ii) ΓΣ and the characteristic foliation Σξ of Σ intersect transversely.

(iii) There exists a vector fieldX in the direction of which the characteristic foliation

flows and a volume form ω such that the vector field X expands ω on Σ+ and

shrinks ω on Σ− and X point outward on Σ+.

The collection of curves ΓΣ is called the dividing curves which determines the con-

tact structure in an small neighborhood of the convex surface Σ according to the fol-

lowing theorem, by which we can determine the contact structure in a tubular neigh-

borhood of an embedded convex surface Σ.

Theorem 3.0.1 (Giroux Criterion). In a contact manifold (M, ξ) a convex surface

Σ has a tight neighborhood if and only if either one of the following holds:

• no component of dividing set bounds a disk

• Σ is sphere and the dividing set consists of just one connected component.

Example 3.0.2. Consider R3 with the contact structure ξ1 given as the kernel of

α1 = dz + xdy − ydx and Let X be the contact vector field given in Example 3.0.1.

This vector field is transverse to the unit sphere S2 so under this construction S2 is a

convex surface in R3.

In general, an embedded surface Σ may not be convex. However, Giroux [12] proved

that any embedded closed surface can be made convex by some smallC∞-perturbation.

The new surface will not exactly be the old one but it will be an isotopic copy.
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Lemma 3.0.1 (Edge Rounding). Let Σ1 and Σ2 be two convex surfaces in a contact

3-manifold (M, ξ) with collared Legendrian boundary and transversely intersecting

along a Legendrian curve γ. If Σ1 and Σ2 are oriented, then smoothing the intersec-

tion gives another oriented convex surface Σ. Smoothing the corner can be done in

such a way that it connects the dividing set of Σ1 and Σ2 such that positive regions

of Σ1 connect to positive regions of Σ2 (negative regions connects with the negative

regions respectively) which determines the dividing set of Σ.

Now it is time to explain what bypass is.

Definition 3.0.4. An embedded oriented overtwisted half disk D is called a bypass

disk for the convex surface Σ if it intersects with Σ along a Legendrian arc γ and γ

intersects with the set of dividing curves of Σ in 3 different points two of them are end

points of γ and the other is in between. Moreover, this intersection points are exactly

the elliptic points of γ. D may have other tangencies not along γ and they have to be

positive tangencies and have to alternate between elliptic and hyperbolic.

+ - +

+

+

+

Figure 3.1: A bypass disk.

Proposition 1 (Imbalance Principle). Consider S1× [0, 1] as a convex surface with

Legendrian boundary in a tight contact 3-manifold. If t0(S1 × 0) < t1(S1 × 1) ≤
0 then there exists necessarily a bypass along the S1 × 0 side. Here ti’s are the

reciprocals of the slopes in S1 × 0 and S1 × 1 respectively.

The next lemma from [10] gives an idea about the slopes of the dividing curves.

Lemma 3.0.2 (Twisting Number). Consider a Legendrian curve γ in a contact man-

ifold (M, ξ) with twisting number n relative to a fixed framing and a standard neigh-

borhood N of γ. If there exists a bypass attached to a Legendrian curve of ∂N with

13



slope r and 1
r
≥ n + 1, then there exists a Legendrian curve with twisting number

n+ 1 isotopic to γ.
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CHAPTER 4

SEIFERT FIBERED MANIFOLDS

In this chapter, we will give the definition of Seifert fibered spaces and some proper-

ties that they have together with the surgery description of them.

Definition 4.0.1. A generalized Seifert fibration is a triple (M,Σ, φ) where M is an

oriented 3-manifold, Σ is an either oriented or non-oriented surface and φ is a map

from M to Σ such that this triple is almost locally trivial S1-bundle.

For any element x of Σ there exists a local neighborhood of x, which can be seen as

D2, and φ−1(D2) ∼= D2 × S1. Then the mapping φ : D2 × S1 → D2 is defined by,

(rθ1θ2) → (rθp1θ
q
2) where θi ∈ S1 = {θ ∈ C : |θ| = 1}, r ∈ [0, 1] and p, q ∈ Z and

gcd(p, q) = 1. Here p, q are depending on the choice of x.

If p 6= 0 for every x ∈ Σ, then the triple is called a Seifert fibration and M is called a

Seifert fibered space.

A fiber is called regular if p = 1, otherwise it is called a singular fiber or exceptional

fiber. If p 6= 0, then locally an exceptional fiber can be considered as D2 × I having

the core {x} × I where the ends of solid cylinder is identified to form a solid torus

T 2 × S1 with a 2πq/p twist.

In general Σ need not to be orientable or compact but in this thesis we fix our surface

as S2 which is compact without boundary to use the fact that if Σ is compact then the

number of exceptional fibers is finite.

One can easily prove this fact: Since for every x ∈ Σ there exists only one D2

neighborhood of that point which has an exceptional lifting. By the assumption that

Σ is compact, it can be covered by finitely many such neighborhoods.
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By the reason above there is no ambiguity to consider the Seifert fibration (M,Σ, φ)

with closed oriented and connected surface Σ. If the fibration is as stated, we can

remove the solid torus neighborhood of the (finitely many) exceptional fibers of M

and corresponding D2 neighborhoods of Σ, to have a trivial S1-bundle over a con-

nected orientable surface with boundary. That is to say, M can be obtained from

Dehn surgery on some fibers of trivial bundle Σ × S1 → Σ. As mentioned in Defi-

nition 2.3.1, each Dehn surgery is determined with coprime integers (p, q), but in this

case there are #(exceptional fibers) many coprime integers (ai, bi).

Any such manifolds can be given as the following data: (g; (a1, b1), ..., (an, bn))

where g ≥ 0, ai, bi ∈ Z. Here g stands for the genus of the surface Σ and the

pairs (ai, bi) with gcd(ai, bi) = 0 stands for the surgery coefficients. Consider Σ0 as

an oriented surface of genus g with n punctures. In other words,

Σ0 = Σ \ (D2
1 ∪D2

2 ∪ ... ∪D2
n).

Then M0 can be defined as the trivial S1-bundle over Σ0 where ∂M0 = (S1
1 × S1) ∪

(S1
2 × S1) ∪ ... ∪ (S1

n × S1). Let R = Σ0 × {1}, Qi = R ∩ (S1
i × S1) and Hi =

{1} × S1 ⊆ S1
i × S1. By using this trivial bundle, Hi and Qi we can construct a

Seifert fibered space (M,Σ, φ) by gluing a solid torus Ti = D2 × S1 into the i’th

boundary complement S1
i × S1 via a diffeomorphism

ai bi

a′i b′i

 ∈ SL(2,Z) on the

boundary torus. So, the meridian µi = S1
i ×{1} ⊆ ∂Ti satisfies the homology relation

µi ∼= aiQi + biHi in the homology of ∂T .

Here M0 can be chosen in a way that µ0
∼= Qi + b0Hi where b0 ∈ Z. Then everything

will change accordingly with a parameter b0.

If we let λ = {1} × S1 ⊆ ∂T and µi ∼= aiQi + biHi, then λi ∼= a′iQi + b′iHi. So, it is

possible to solveHi andQi in terms of λi and µi. Doing so we get−a′iµi+aiλi = Hi

and b′iµi − biλi = Qi. In Ti, µi is trivial, so we have Hi
∼= aiλi and Qi

∼= −biλi in

the homology of Ti. So, the first row determines the surgery and ai is the number of

times Hi wraps around Ti and −bi is the number of times Qi wraps around Ti.

The above construction gives a description of 3-dimensional Seifert fibered manifold

M(g; (a1b1), (a2, b2), ..., (an, bn)). Here {g; (a1b1), (a2, b2), ..., (an, bn)} are called
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the Seifert invariants.

Seifert invariants are not unique in general but unique up to the following operations

[16]:

(i) adding or deleting any Seifert pair (a, b) = (1, 0),

(ii) replacing any (0,±1) by (0,∓1),

(iii) replacing each (ai, bi) by (ai, bi +Ki) provided that
∑
Ki = 0.

Definition 4.0.2. The Euler number of a Seifert fibered spaceM(g; (a1b1), ..., (an, bn))

is the number e0 = −
(
b0 +

∑bai/bic) where b0 ∈ Z is a parameter stated as above

and bxc is the greatest integer function.

Note that the Seifert manifold M is oriented and the corresponding Seifert invariants

do not depend on the orientation of the base surface Σ. If the orientation of Σ is

reversed, to preserve the orientation of M , the orientation of the fibers should be

reversed as well. Since both Qi and Hi are reversed, the homology relation aiQi +

biHi, which determines (ai, bi) does not effected. In other words, there exists a fiber

preserving self diffeomorphism of M preserving the orientation of M such that the

induced map Σ→ Σ reverses the orientation. Also, if the orientation ofM is reversed

then the sign of either Mi or Qi is reversed. So, ai/bi is changed with −ai/bi.

Definition 4.0.3. A Seifert fibered manifold M is called a small Seifert fibered man-

ifold if it has exactly three exceptional fibers.

Definition 4.0.4. Let p, q, r be relatively prime positive integers. Then the link of

singularity of {xp + yq + zr = 0} ∩ S5 ⊂ C3 gives an oriented Seifert fibered 3-

manifold having three singular fibers, which is called the Brieskorn homology sphere

and denoted by Σ(p, q, r).

If one of p, q or r is equal to 1, then it is identically a homeomorphic copy of S3.

Moreover, the Seifert invariants of positively oriented Brieskorn homology spheres

can be found by solving the following equation for the integers b0, b1, b2, b3:

b0pqr + b1qr + b2pr + b3pq = 1.
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In this thesis, we work with small Seifert fibered manifolds over S2. Since S2 has

no genus we abuse the notation: The manifold M(e0; (a1, b1), (a2, b2), (a3, b3)) will

represent the Seifert fibered space over S2 having the Euler number e0.

So, the Brieskorn homology sphere Σ(p, q, r) can be seen as M(e0;− b1
p
,− b2

q
,− b3

r
)

and a surgery representation of a small Seifert fibered space can be given as in Figure

4.1.

p
b1

q
b2

r
b3

b0

Figure 4.1: Standard surgery description for Σ(p, q, r).
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CHAPTER 5

CONSTRUCTING AND COUNTING THE TIGHT CONTACT

STRUCTURES

In this chapter we construct the tight contact structures on some small Seifert fibered

spaces. We start with topological surgery description of our manifolds. Then we

Legendrian realize the topological surgery description to a contact surgery description

having Legendrian surgeries only. This will give a lower bound for the number of tight

contact structures. At the end, by using convex surface theory, we try to get an upper

bound for the number of tight contact structures.

Case 1: e0 < −2

Let Σ be a pair of pants and let M(e0;−q1

p1

,−q2

p2

,−q3

p3

) be a small Seifert fibered

manifold having three singular fibers Fi, i = 1, 2, 3 satisfying the property that pi ≥ 2,

qi ≥ 1 and gcd(pi, qi) = 1. Note that bqi
pi
c ≤ −1 and so e0(M) < −2. Also,

assume that for each i = 1, 2, 3 we have
qi
pi

= [a
(i)
0 , a

(i)
1 , ..., a

(i)
mi

], where all a(i)
j ’s are

integers, a(i)
0 = −(bqi

pi
c + 1) ≤ −1 and a(i)

j ≤ −2 for all j ≥ 1. Denote the tubular

neighborhood of each singular fiber by Vi ∼= D2 × S1 and identify ∂Vi with R2 \ Z2,

having the basis {(1, 0)T , (0, 1)T}, such that the meridian direction of Vi is identified

with (1, 0)T . Since M \ (V1 ∪ V2 ∪ V3) ∼= Σ × S1, we can choose an identification

for −∂(M \ Vi) ∼= R2 \ Z2 such that (0, 1)T represents the direction of S1 fiber, and

(1, 0)T represents the direction of −({pt} × ∂Σ). Let Ti be the standard solid torus

and identify ∂Ti with R2 \ Z2 by identifying a meridian ∂D2 × {pt} with (1, 0)T

and a longitude {pt} × S1 with (0, 1)T . Then by using an orientation preserving

diffeomorphism Ai from the boundary ∂Ti of standard solid torus to −∂(M \ Vi),
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defined as

Ai =

pi ui

qi vi

 ∈ SL2(Z),

we can obtain M as M ∼= (Σ× S1) ∪A1∪A2∪A3 (T1 ∪ T2 ∪ T3).

Here Ai’s are called the attaching maps. The first column of Ai is determined by the

Seifert invariant corresponding to the exceptional fiber Fi and the second column is

determined in a way that pi ≥ ui > 0, qi ≥ vi > 0 and pivi − qiui = 1.

It is well known that 0- surgery on an unknot in S3 gives S2 × S1 and it is S1-bundle

over S2 which is a Seifert fibered space having no exceptional fiber. Take out three

points from the base space S2 to get Σ, pair of pants. The effect of this on the manifold

S2 × S1 is taking out three solid tori. If we glue back them via the diffeomorphisms

stated as above we can get the following surgery diagram (see Figure 5.1) for the new

Seifert fibered manifold M :

p1
q1

p2
q2

p3
q3

0

Figure 5.1: Standard surgery description for M(e0;−q1

p1

,−q2

p2

,−q3

p3

).

Consider the continued fraction expansion for each
pi
qi

= [a
(i)
0 , a

(i)
1 , a

(i)
2 , ..., a

(i)
mi ]. After

performing Rolfsen twist to each
pi
qi

component on the diagram we get the surgery

diagram as in Figure 5.2, since a(1)
0 + a

(2)
0 + a

(3)
0 = e0(M).

Since and
pi

qi + a
(i)
0 pi

= [a
(i)
1 , a

(i)
2 , ..., a

(i)
mi ], after performing slum-dunks to the new

coefficients, we get the surgery diagram as in Figure 5.3.

There are |(e0(M) + 1)
∏3

i=1

∏mi

j=1(a
(i)
j + 1)| many ways to Legendrian realize the

given topological surgery description in Figure 5.3, and all of them are non-isotopic

and holomorphically fillable by Proposition 2.3 on [13] and Theorem 1.2 in [18].
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p1

q1+a
(1)
0 p1

p2

q2+a
(2)
0 p2

p3

q3+a
(3)
0 p3

e0(M)

Figure 5.2: Surgery diagram after Rolfsen twist to each
pi
qi

.

a
(1)
m1 a

(1)
m1−1 a

(1)
2 a

(1)
1 e0(M) a

(2)
1 a

(2)
2 a

(2)
m2−1 a

(2)
m2

a
(3)
1

a
(3)
2

a
(3)
m3−1

a
(3)
m3

Figure 5.3: After slum-dunks and using continued fraction expansions.

So there are at least |(e0(M) + 1)
∏3

i=1

∏mi

j=1(a
(i)
j + 1)| many tight contact structures

on the manifold M(e0;− q1
p1
,− q2

p2
,− q3

p3
).

Now, by using Honda’s bypass technique, we will find an upper bound for the number

of the tight contact structures.

Consider M ∼= (Σ × S1) ∪A1∪A2∪A3 (T1 ∪ T2 ∪ T3) and let ξ be a tight contact

structure on M . We begin with isotoping ξ to make each Ti a standard neighborhood

of a Legendrian circle Li which is isotopic to Fi for each i = 1, 2, 3 with twisting

number ni ≤ −2, in other words by using Giroux flexibility theorem we make each

∂Ti convex with two dividing curves having the slope 1
ni

when measured with respect
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to the coordinates of ∂Ti as mentioned above. Let si be the slope of the dividing

curves after applying the attaching maps, i.e, si’s are the slope of the dividing curves

on −(M \ Vi). Applying the attaching maps we get si’s as:

si =
niqi + vi
nipi + ui

=
qi
pi

+
1

pi(nipi + ui)
.

By the reason that ni ≤ −2 we have bqi
pi
c < si <

qi
pi

. Giroux flexibility theorem

allows us to consider the slope of the Legendrain rulings as∞ when measured in the

coordinates of ∂Ti. For each i, pick a Legendrian ruling Li on ∂Ti. Consider the

vertical annulus A between T1 and T2 such that ∂A = L1 ∪ L2 and the interior of

A is contained in the interior of Σ × S1. Theorem 1.4 of [24] says that ξ does not

admit Legendrian vertical circles with twisting number 0. So A has dividing curves

which connects two boundary components L1 and L2. So, we isotope ∂T1 and ∂T2 by

attaching bypass disks corresponding to the boundary parallel dividing curves of A.

Since bypass attaching done in a small neighbourhood, T1 and T2 remains disjoint.

Moreover, ∂Ti’s remain minimal after each bypass. Doing so, we will end up with an

isotopic copy ofA having no boundary parallel dividing curve, i.e., all of the dividing

curves of A connects two boundary components. So, after an isotopy, the slopes of

the dividing curves of ∂T1 and ∂T2 become s′1 = k1
k

and s′2 = k2
k

where k ≥ 1 and

gcd(ki, k) = 1 for i = 1, 2. Since b qi
pi
c < si we have s′i ≥ b qipi c ≥ 0 for each i = 1, 2

and hence ki ≥ 0. That is true because of the reason that by Lemma 3.15 of [15]

if s′i < b qipi c, then s′i = ∞ which contradicts to Theorem 1.4 of [24]. Cut M open

along A ∪ ∂T1 ∪ ∂T2 and round the edges. So, we get a convex torus isotopic to the

boundary of T3 with two dividing curves and by using the Edge Rounding Lemma

we can calculate the slope s3 = −k1+k2+1
k

when measured in the coordinates of ∂T3.

By applying the inverse of the attaching map A3 we get the slope of the boundary

of the abstract solid torus as n3 = −kq3+(k1+k2+1)p3
kv3+(k1+k2+1)

, but this quantity is less than
q3
p3

. So, by Theorem 4.16 of [15], we can isotope ∂T 3 so that it has two dividing

curves and having the slope − q3
p3

But when measured in coordinates of ∂T3 this slope

is identically 0. Thus the maximal twisting number of a Legendrian vertical circle is

−1.

So, there exists an isotopic copy of ξ which allows us to find a Legendrian circle L in

the interior of Σ × S1 having twisting number −1, and consider each Ti as standard
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neighborhood of a Legendrian circle Li isotopic to Fi and with twisting number less

than or equal to 2. There is no ambiguity to assume that ∂Ti has Legendrian slope

∞ when measured as the standard coordinates of ∂Ti as mentioned before. Let Li be

the Legendrian ruling of ∂Ti. Then choose a convex vertical annulus Ai ∈ Σ × S1

for each i = 1, 2, 3 having the property that ∂Ai = L ∪ Li. So, the interior of each

Ai is contained in the interior of Σ × S1, and Ai ∩ Aj = L for any i 6= j. Since L

is maximally twisting, there is no boundary parallel arc on the L side in each Ai. So,

the dividing set ofA contains only two curves connecting L to Li and some boundary

parallel curves on the Li side. By adding bypasses along these boundary parallel

curves on Li sides, we isotope the ∂Ti to get the following convex decomposition:

M = M(e0;−q1

p1

,−q2

p2

,−q3

p3

) ∼= (Σ× S1) ∪A1∪A2∪A3 (T1 ∪ T2 ∪ T3).

Here each ∂Ti is minimal convex with the slope b qi
pi
c when measured in the coordi-

nates of Ti. when measured in the coordinates of−∂(M \Ti) this slopes corresponds

to −
qi − b qipi cpi
vi − b qipi cui

= −qi + (i0 + 1)pi
vi + (ai0ui)

. By the 4-th part of Lemma 2.1 of [23], there

are exactly 2 + b qi
pi
c+ b qi

pi
c+ b qi

pi
c = |e0(M) + 1| tight contact structures on Σ× S1

satisfying the boundary conditions and admitting no Legendrian vertical circle having

twisting number 0. Also, by Theorem 1.6.4 of [15] and Lemma 2.1 of [23], there are

exactly |∏mi

j=1(a
(i)
j + 1) tight contact structures on Ti satisfying the boundary condi-

tions. Hence, up to isotopy, there are exactly |(e0(M) + 1)
∏3

i=1

∏mi

j=1(a
(i)
j + 1)| tight

contact structures on M(e0;− q1
p1
,− q2

p2
,− q3

p3
) that we have already been constructed.

Moreover, all of them are holomorphically fillable, i.e., they can be seen as the bound-

ary of some Stein 4-manifolds.

Case 2: e0 > 0

Let M(e0; q1
p1
, q2
p2
, e0 + q3

p3
) be a small Seifert fibered space, where qi

pi
∈ (0, 1) are

Seiefert invariants. Since b qi
pi
c = 0 for all i, the Euler number of this manifold e0 =

b q1
p1
c + b q2

p2
c + b q3

p3
c + e0. Assume also that e0 is positive. Then standard surgery

diagram for this manifold is as in Figure 5.4.

After performing slam-dunk between the 0-framed component and − 1
e0+

q3
p3

-framed

component, we eliminate the − 1
e0+

q3
p3

-framed component and the final framing of the

0- framed component becomes e0 + q3
p3

, see Figure 5.5.
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−p1
q1 −p2

q2
− 1

e0+
q3
p3

0

Figure 5.4: Standard surgery diagram for M(e0; q1
p1
, q2
p2
, e0 + q3

p3
).

−p1
q1

e0 +
q3
p3

−p2
q2

Figure 5.5: After slum-dunk between 0-component and − 1
e0+

q3
p3

-component.

Then perform −1-Rolfsen twist to the component having the framing e0 + q3
p3

. After

doing so the new coefficients become−p1
q1
−1,−p2

q2
and− q3+e0p3

q3+(e0−1)p3
(see Figure 5.6).

−p1
q1
− 1 −p2

q2
− 1

− q3+e0p3
q3+(e0−1)p3

Figure 5.6: After -1-Rolfsen twist to e0 + q3
p3

-component.
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On the other hand, we have the following continued fraction expansions:

−p1

q1

− 1 = [a
(1)
0 − 1, a

(1)
1 , ..., a

(1)
l1

],

−p2

q2

− 1 = [a
(2)
0 − 1, a

(2)
1 , ..., a

(2)
l2

],

− q3 + e0p3

q3 + (e0 − 1)p3

= [−2, ...,−2, a
(3)
0 − 1, a

(3)
1 , ..., a

(3)
l3

].

Here, on the right hand side of the third equality we have e0 many −2’s just before

the term a
(3)
0 − 1. After performing some blow-ups we get the diagram in Figure 5.7.

a
(1)
l1 a

(1)
l1−1 a

(1)
1 a

(1)
0 − 1 a

(2)
0 − 1 a

(2)
1 a

(2)
l2−1 a

(2)
l2

−2

−2

a
(3)
l3−1

a
(3)
l3

Figure 5.7: After reversed Rolfsen twists.

There are |∏3
i=1 a

(i)
0

∏li
j=1(a

(i)
j + 1)| many ways to Legendrian realize this diagram

and all of which gives non-isotopic and holomorphically fillable tight contact struc-

tures. Hence on the manifoldM(e0; q1
p1
, q2
p2
, e0+ q3

p3
) there are at least |∏3

i=1 a
(i)
0

∏li
j=1(a

(i)
j +

1)| non-isotopic tight contact structures.

Now it is time to show that the upper bound for the number of tight contact structures

on M(e0; q1
p1
, q2
p2
, e0 + q3

p3
) is exactly |∏3

i=1 a
(i)
0

∏li
j=1(a

(i)
j + 1)|. To do so, we use the
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idea in the first case. Let us begin with defining {p(i)
j } and {q(i)

j } as below to define

the attaching maps.{
p

(i)
j = −a(i)

j p
(i)
j−1 − p(i)

j−2, j = 0, 1, ..., li

p
(i)
−2 = 0, p

(i)
−1 = 1,{

q
(i)
j = −a(i)

j q
(i)
j−1 − q(i)

j−2, j = 0, 1, ..., li

q
(i)
−2 = −1, q

(i)
−1 = 0.

From the equalities above we deduce that pi = p
(i)
li−1 and qi = q

(i)
li

. If we choose

ui = −p(i)
li

and vi = −q(i)
li−1 then pivi − qiui = 1. Now we can define orientation

preserving diffeomorphisms Ai : −∂Ti → ∂(M \ Vi) as:

Ai =



 pi −ui
−qi vi

 , i = 1, 2 p3 −u3

−q3 − e0p3 v3 + e0u3

 , i = 3.

Hence, our 3-manifold M can be seen as

M = M(e0;
q1

p1

,
q2

p2

, e0 +
q3

p3

) ∼= (Σ× S1) ∪A1∪A2∪A3 (T1 ∪ T2 ∪ T3).

Now let ξ be a tight contact structure on M . We know from Theorem 1.3 in [24] that

every tight contact structure ξ on M(e0; q1
p1
, q2
p2
, e0 + q3

p3
) admits a Legendrian vertical

circle L with 0 twisting. We start with isotoping ξ so that it contains a Legendrian

circle L with 0 twisting in the interior of Σ×S1 and tubular neighborhoods Vi of each

singular fiber Fi is isotopic to standard neighborhood Ti of Legendrian circles Li with

twisting number ni < 0, i.e., each ∂Ti is convex with two dividing curves having the

slope− 1
ni
< 0 when measured in the coordinates of ∂Ti. As before let si be the slope

of dividing curves of −∂(M \ Vi). Then by using the gluing maps Ai’s we get si’s as

follows:

si =


−niqi + vi
nipi − ui

=
−qi
pi

+
1

pi(nipi − ui)
, i = 1, 2

−n3(q3 + e0 + p3) + (v3 + e0u3)

n3pi − u3

= −e0 −
qi
pi

+
1

pi(nipi − ui)
, i = 3.

Choose ni’s in a way that ni � −1 which makes 1

b
(i)
0 +1

< si < − qi
pi

for i = 1, 2 and
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e0− 1

b
(3)
0 +1

< s3 < −e0− q3
p3

. The Legendrian vertical circle L, which is mentioned as

above, allows us to find a thickening V ′
i of each Vi such that V ′

i ’s are pairwise disjoint,

and −∂(M \ V ′
i ) is minimally convex, i.e., it has only two vertical dividing curves

when measured in the coordinates of−∂(M \V ′
i ). It directly follows from the Bypass

Attachment Lemma that we can find a minimal convex torus between Vi and V ′
i , of

course which is contained in the interior of V ′
i \ Vi, which is isotopic to −∂(M \ Vi)

that has dividing curve having the slope 1

1
(i)
0 +1

for i = 1, 2 and −e0 + 1

1
(3)+1
0

for i = 3.

Let V ′′
i be the solid torus bounded by that minimally convex torus and Σ

′′ × S1 =

M \ (V
′′

1 ∪ V
′′

2 ∪ V
′′

3 ). We start with the V ′′
i ’s. In the coordinates of −∂(M \ V ′′

i ) the

dividing curves of the boundary torus has slope (a
(i)
0 +1)qi+i

(a
(i)
0 +1)vi+ui

. But by the definitions

of ui and vi we have (a
(i)
0 +1)qi+i

(a
(i)
0 +1)vi+ui

= [a
(i)
li
, a

(i)
li−1, ..., a

(i)
2 , a

(i)
1 + 1]. But from Honda’s

result in [15] we know that up to isotopy there are exactly |∏li
j=1(a

(i)
j + 1)| tight

contact structures on each V ′′
i satisfying the given boundary condition. To finish the

proof we need Lemma 4.1 of [23] which says that if the three boundary component of

Σ× S1 has dividing curves of slopes −1,−1 and −n, then Σ× S1 can be factorized

as L1 ∪ L2 ∪ L3 ∪ (Σ
′ × S1) where Li’s are embedded thickened tori with minimal

twisting and the orientation of this solid tori determine the contact structure uniquely.

Now it is time to count tight contact structures on Σ
′′ × S1 satisfying the boundary

condition. Consider the thickened torus Li bounded by the ∂V ′
i − ∂V

′′
i which has

a continued fraction block which consists of |a(i)
0 | basic slices. Let L′

i be the basic

slice which is closest to ∂Vi and ∂L′
i = ∂V

′
i − ∂V

′′′
i , where ∂V ′′′

i is a minimal convex

torus with dividing curves of slope −1 for i = 1, 2 and −e0 − 1 for i = 3. Now let

us consider Σ
′ × S1 = M \ (V

′
1 ∪ V

′
2 ∪ V

′
3 ). By the above lemma, the tight contact

structure on (Σ
′ × S1) ∪ L′

1 ∪ L
′
2 ∪ L

′
3 is uniquely determined by the signs of the

basic slices L′
i. Since we are allowed to shuffle the signs of basic slices, let’s do it in a

way that all the basic slices closest to ∂V ′
i ’s have positive signs. Then the sign of L′

i is

uniquely determined by the number of positive basic slices in Li, and so is the number

of positive slices in Li \L′
i. So, the tight contact structure on (Σ

′×S1)∪L′
1∪L

′
2∪L

′
3

and Li \ L′
i is determined by this three numbers. However, there are |a(1)

0 a
(2)
0 a

(3)
0 |

many ways to choose these numbers. Hence, there are at most |a(1)
0 a

(2)
0 a

(3)
0 | tight

contact structures on Σ
′′ × S1 satisfying the given boundary condition. All together

we have at most |∏3
i=1 a0

∏li
j=1(a

(i)
j + 1)| tight contact structures on M . Since we
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have constructed |∏3
i=1 a0

∏li
j=1(a

(i)
j + 1)| non-isotopic tight contact structures M

has exactly |∏3
i=1 a0

∏li
j=1(a

(i)
j + 1)| tight contact structures up to isotopy.

In [9] Ghiggini, Lisca and Stipsitcz extended the case to e0 ≥ 0 by using handle body

decompositions which is not included in this thesis.

Case 3: e0 = −1 or e0 = −2

For the cases e0 = −1 and e0 = −2, there is no complete classification but some

partial results. For instance, in [11] Ghiggini and Van Horn-Morris showed that on

the Brieskorn homology sphere −Σ(2, 3, 6n − 1) for n ≥ 1, which has Euler num-

ber e0 = −2, there are n(n−1)
2

non-isotopic tight contact structures, by using the

idea that the first author used in [10]. Also, in [20], Tosun showed that the family

M = (−2; 1
2
, 2

3
, 5n+1

6n+1
) for n ≥ 1 has exactly n(n+1)

2
strongly fillable non-isotopic tight

contact structures at least n of which are Stein fillable and at least bn
2
c of them are

not Stein fillable. In that paper, he also counted the number of tight contact struc-

tures on small Seifert fibered manifold with e0 = −2, whose Seifert invariants sat-

isfy some condition, and constructed them. For the case e0 = −1, in [10] Ghiggini

and Schönenberger showed that the exact number of tight contact structures on both

Brieskorn homology spheres ±Σ(2, 3, 11). Here ± indicates the orientation of the

homology sphere, and one of which corresponds to the small Seifert fibered manifold

M(−2; 1
2
,−1

3
,− 2

11
) which has e0 = −2 and the other corresponds to the manifold

M(−1;−1
2
, 1

3
, 2

11
) which has e0 = −1. By using a similar idea as Ghiggini and Schö-

nenberger did in [10], Tosun and Mark [19] showed the following:

Theorem 5.0.1. The Brieskorn homology sphere Σ(2, 3, 6n+1) has exactly two tight

contact structures for any n ≥ 1, all of which are Stein fillable.

Similar to the first two cases, we start with the basic surgery description of Σ(2, 3, 6n+

1). To find the Seifert invariants we begin with solving the equation 3(6n + 1)b1 +

2(6n + 1)b3 + 6b3 = 1 for the integers b1, b2 and b3. To make it simple let us take

b1 = 1, b2 = −1 and b3 = −n. Then the basic surgery description for Σ(2, 3, 6n+ 1)

is as given in the left hand side of Figure 5.8.

After performing −1 Rolfsen twist to the component with framing 2 we get the new

framing of this component as −2 and 0-framed unknot will now gets -1. After three
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0

2 −3 − 6n+1
n

∼=

− 1
n

Figure 5.8: Surgery descriptions of Σ(2, 3, 6n+ 1).

handleslides we end up with a − 1
n

surgery on the right trefoil, see the right hand side

of Figure 5.8. To construct the contact structures, we Legendrian realize the right

trefoil, but unlike the previous cases we end up with rational framing which is −n+1
n

.

We know from the work of Ding, Geiges and Stipsicz in [2] that it is possible to

describe a rational surgery as a ±1 contact surgery along a Legendrian link. There

are two possible stabilizations of the given surgery description which are shown in

the right hand side of Figure 5.9, and they give non-isotopic Stein fillable contact

structures, since Legendrian links have different rotation numbers.

−n+ 1

n

n copy
−1

−1

−1

−1

n copy

Figure 5.9: Non-isotopic tight contact structures on Σ(2, 3, 6n+ 1).
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Now we need to show that the upper bound for the number of tight contact structures

is exactly two to finish the proof. Let us denote the tubular neighborhoods of each

singular fiber Fi as Vi for i = 1, 2 and 3. Then we make the same identification

as in the previous cases to fix a convention, i.e., we identify ∂Vi = R2 \ Z2 where

(1, 0)T is the direction of meridian. Since M \ (V1 ∪ V2 ∪ V3) ∼= Σ × S1, we fix

the identification for −∂(M \ Vi) ∼= R2 \ Z2 such that (0, 1)T represents the S1 fiber

direction and (1, 0)T represents the −({pt}× ∂Σ) direction. By doing so, we can see

M as the following union M = (Σ×S1)∪A1∪A2∪A3 (T1∪T2∪T3) where Ti’s are the

standard solid torus. Where the attaching maps Ai : ∂Ti → −∂(M \ Vi) defined by

A1 =

2 −1

1 0

 , A2 =

 3 1

−1 0

 , A3 =

6n+ 1 6n− 5

−n −n+ 1

 .

Let ξ be a tight contact structure on M . Using Giroux’s flexibility theorem, we can

assume each Fi Legendrian, and consider each Ti as a standard solid torus with bound-

ary slopes 1
ni

where ni < 0, and the number of dividing curves is exactly two. From

the convention mentioned above this slope 1
ni

corresponds to the vector (ni, 1)T . We

can assume that the slope of ruling curves of −∂(M \ Vi) to be infinity and we there-

fore call this curve vertical. Moreover, the slopes ni correspond to the slopes si

(measured in the coordinates of −∂(M \ Vi)) as follows:

s1 =
n1

2n1 − 1
, s2 = − n2

3n2 + 1
, s3 = − nn3 + n− 1

(6n+ 1)n3 + 6n− 5
.

Now, by thickening each Vi and by finding enough number of bypass disks, we show

that the numbers ni can be increase up to n1 = n2 = −2 and n3 = 0. To do so, we

consider the vertical annulus A between V1 and V2, which is assumed to be convex.

Here, there are two cases to be analyzed based on the slope of tori that A connects

and the configuration of the set of dividing curves of A (see Figure 5.10). Note

that the number of end points of ΓA on the boundary is exactly equal to the number

of intersections with the set of dividing curves Γ−∂(M\Vi) of the relevant boundary

component Vi. Since A is vertical and each of the boundary component has exactly

two dividing curves, this number of intersection is equal to twice the denominator of

the corresponding slope si.

Case 1: If 2n1 − 1 6= 3n2 + 1, then by imbalance principle there necessarily exists a

bypass on one side. This bypass my occur either on V1 side or V2 side, which allows
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A
V1 V2

Figure 5.10: The dividing curves (dashed lines) configuration of the annulus A.

us to increase either n1 or n2. On the other hand, since the ruling slopes on ∂V1 and

∂V2 are 2 and−3 respectively, Twisting Number Lemma allows us to increase n1 and

n2 to 0 and −1 respectively (as long as we remain in the case 1).

Case 2: If 2n1 − 1 = 3n2 + 1, and the set of dividing curves of A has no boundary

parallel arcs, then the dividing curves ofA run across from−∂(M\V1) to−∂(M\V2).

We cut A and round the corners to get a smooth manifold M \ (V1 ∪ V2 ∪ A) such

that ∂(M \ (V1 ∪ V2 ∪ A)) is smoothly isotopic to ∂(M \ V3) (see Figure 5.11). By

Edge Rounding Lemma, we compute the slope of the dividing curves of it as

s(Γ∂(M\V1∪V2∪A)) =
n1

2n1 − 1
− n2

3n2 + 1
− 1

2n1 − 1
=

n1 − 1

6n1 − 3
.

Then the corresponding slope on the ∂T3 can be calculated by first reversing the sign

and applying the inverse of the gluing map A3.

We have ∂(Γ∂T3) = A−1
3 (6n1−3,−n1+1)T =

−n1 + 3n+ 1

n1 − 3n+ 2
. On the other hand, this

quantity is less then −1 for all n1 ≤ 0 and n ≥ 1. So, for any negative n1 we can find

a convex neighborhood V ′
3 ⊂ V3 of the singular fiber F3 such that Γ∂V ′

3
= −1. When

measured in the coordinates of−∂(M \V ′
3 ) this slope become−1

6
which corresponds

to n3 = −1. Now take a vertical annulus between V1 and V ′
3 and compare the slopes

of denominators. Note that |2n1 − 1| > 6 as long as n1 < −2. Therefore, by using

imbalance principle we can find a bypass disk on V1 side, and by Twisting Number
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V1

V2

V3

∼= V1 ∪ V2 ∪ A

Figure 5.11: The isotopy between ∂(M \ (V1 ∪ V2 ∪ A)) and ∂(M \ V3).

Lemma we can continue to do the same process till n1 = −2. In a similar way, we

can show that it is possible to increase n2 to −2. So, the corresponding slopes, when

measured in the coordinates of −∂(M \Vi), becomes s1 = 2
5
, s2 = −2

5
and s3 = −1

6
.

Our claim is that the vertical annulus A between V1 and V2 has no boundary parallel

arcs in its dividing set if n1 = n2 = −2 and if the contact structure under considera-

tion is tight. To show this, assume that there exists a bypass disk on either V1 side or

the other. Since each boundary component of A has the same number of end points

of ΓA, there must be a bypass on each side. After attaching this bypass disks to each

Vi for i = 1, 2 resulting thickened convex neighborhoods, which we denote with the

same symbols, have slopes s1 = s(Γ−∂(M\V1)) = 1
3

and s2 = s(Γ−∂(M\V2)) = −1
2
.

Now, again by Imbalance Principle, there must be a bypass disk on V1 side since the

denominator of s1 > s2. Attach this bypass disk to find a further thickening of V1

with the slope s1 = 0. But this time the denominator of s2 is larger, so there must

exists a bypass on V2 side. After attaching this we find a thickening of V2 with slope

s2 = −1. At this point denominators agree again. In this case, there is no further

bypass or there exists bypass on both sides. In the latter case we can increase s1 up

to∞, and also s2 to∞. We end up with a vertical curve on −∂(M \ V1) with zero

twisting. But it contradicts to the fact in Lemma 4.11 of [10] that the maximal twist-

ing number of any tight contact structure on Seifert manifold M(−1
2
, 1

3
, r) is negative

for any r ≤ 1
5
. On the other hand, if the vertical annulus A has no boundary parallel

arc if s1 = 0 and s2 = −1. Then we can cut the manifold along the vertical annulus

A and round edges to get a torus with slope 0. When measured in the coordinates of

∂(V3) this slope becomes − n
n−1

. But this number is less than −6n+1
6n−5

for any n ≥ 1.
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Hence there exists a torus V ′
3 in V3 whose boundary is convex and has slope −6n+1

6n−5

(when measured in the coordinates of−∂(M \V ′
3 ) it corresponds to∞) which yields

the same contradiction that vertical Legendrian curve with twisting number 0.

So, the vertical annulus A cannot have boundary parallel arcs in its dividing set.

Without loss of generality we can assume that ΓA consists of horizontal arcs. Again,

we cut our manifold M along A and round the edges. As mentioned before ∂(M \
(V1 ∪ V2 ∪ A)) is isotopic to ∂(M \ V3) and by using Edge Rounding Lemma it has

slope 2
5
− 2

5
− 1

5
= −1

5
. Note that the slopes s1 = 2

5
and s2 = −2

5
corresponds to

slopes 1
n1

= −1
2

and 1
n2

= −1
2

respectively. In other words, V1 and V2 are the standard

tubular neighborhoods of the singular fibers Fi’s for i = 1, 2, and hence each carries

unique tight contact structure. On the other hand, the slope s3 = −1
5

corresponds

(in the coordinates of ∂V3) to −n+1
n

which has continued fraction [−2, ...,−2] (the

number of −2’s are exactly n), and by Theorem 2.3 of [15] we know that the solid

torus satisfying this boundary conditions admits exactly two tight contact structures,

which implies that our manifold M carries at most two tight contact structures. Since

we have constructed two non-isotopic tight contact structures on M , M has exactly

two non-isotopic tight contact structures.
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