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ABSTRACT

GENERALIZED CHILLINGWORTH CLASSES ON SUBSURFACE
TORELLI GROUPS

Ünlü Eroğlu, Hatice

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Korkmaz

August 2018, 61 pages

The Torelli group is the subgroup of the mapping class group that acts trivially on ho-

mology. Putman’s subsurface Torelli groups are an important construction for work-

ing with the Torelli group, as they restore the functoriality essential for the inductive

arguments on which mapping class group arguments are invariably based. The other

important structure on the Torelli group is the Johnson homomorphism. The con-

traction of the image of the Johnson homomorphism is the Chillingworth class. In

this thesis, a combinatorial description of the Chillingworth class is derived for the

subsurface Torelli groups. This thesis also brings in the naturality and uniqueness

properties on the map whose image is the dual of the Chillingworth classes of the

subsurface Torelli groups. Moreover, a relation between the Chillingworth classes

of the subsurface Torelli groups and the partitioned Johnson homomorphism is pre-

sented.

Keywords: the Torelli group, the Johnson homomorphism, the Chillingworth class
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ÖZ

ALTYÜZEY TORELLİ GRUPLARI ÜZERİNDE GENELLEŞTİRİLMİŞ
CHILLINGWORTH SINIFLARI

Ünlü Eroğlu, Hatice

Doktora, Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Mustafa Korkmaz

Ağustos 2018 , 61 sayfa

Torelli grubu, gönderim sınıfları grubunun homoloji üzerinde aşikar şekilde etki eden

alt grubudur. Gönderim sınıfları argümanlarının zaman zaman dayandırıldığı tüme-

varım argümanları için funktörlük özelliğini yeniden kurduğundan dolayı Putman’ın

altyüzey Torelli grupları Torelli gruplarıyla çalışmada önemli bir inşadır. Torelli grup-

ları üzerinde diğer önemli bir yapı Johnson homomorfizmasıdır. Johnson homomor-

fizmasının görüntüsünün büzülmesi Chillingworth sınıfını verir. Bu tezde, altyüzey

Torelli grupları için Chillingworth sınıfının kombinatoryal bir tanımı türetilmektedir.

Bu tez, görüntüsü altyüzey Torelli gruplarının Chillingworth sınıflarının duali olan

dönüşüme doğallık ve teklik özelliklerini de kazandırır. Ayrıca, altyüzey Torelli grup-

larının Chillingworth sınıfları ve bölüntülü Johnson homomorfizması arasındaki bağ-

lantı sunulmaktadır.

Anahtar Kelimeler: Torelli grubu, Johnson homomorfizması, Chillingworth sınıfı
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CHAPTER 1

INTRODUCTION

Let Σg,n be a compact connected oriented smooth surface of genus g with n boundary

components. For closed surfaces, we prefer to use the notation Σg. For g ≥ 0 and

0 ≤ n ≤ 1, the Torelli group of Σg,n, denoted I(Σg,n), is the normal subgroup of the

mapping class groupM(Σg,n) of Σg,n that acts trivially on H1(Σg,n;Z). We have the

following exact sequence:

1→ I(Σg,n)→M(Σg,n)→ Sp(2g,Z)→ 1.

In this exact sequence Sp(2g,Z) is well understood, being a matrix group. We there-

fore see that understanding the mapping class group boils down to understanding

I(Σg,n). Moreover, the Torelli group arises in research areas such as algebraic geom-

etry and 3-manifold theory. For instance, integral homology 3-spheres are obtained

by using the Torelli group.

Inductive arguments on subsurfaces are implicit in most proofs involving mapping

class groups [18, 19, 12]. In such arguments a certain functoriality property of the

mapping class group is absolutely essential [26]. Proofs in the mapping class group

theory are typically structured as follows: the theorem is proven on a subsurface such

as a pant or a 4-holed sphere. Functoriality is then used to extend the result to a larger

surface.

In [26], Putman defined the subsurface Torelli groups in order to use inductive argu-

ments in the Torelli group. An embedding of a subsurface Σg,n into a larger surface

Σg′ gives a partition P of the boundary components of Σg,n recording which of the

boundary components of Σg,n become homologous in Σg′ [5]. Putman [26] defined

the subsurface Torelli group I(Σg,n,P) by restricting I(Σg′) to Σg,n . Different em-
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beddings of Σg,n give different Torelli groups. See Figure 3.1 in Chapter 3. This

is because different embeddings induce different maps from the homology of Σg,n

into the homology of Σg′ . In order to capture this information, Putman defined the

notion of a partitioned surface (Σg,n,P), where P is the partition of the boundary

components of Σg,n.

The resulting subsurface Torelli groups, I(Σg,n,P), defined in [26] restore functo-

riality and are therefore of central importance to the study of the Torelli group. For

instance, they were used to give the first complete, verifiable proof that the Torelli

group of surfaces with genus at least 2 is generated by bounding pair maps and Dehn

twists around separating simple closed curves.1 The subsurface Torelli groups were

also used to obtain an efficient generating set for the Torelli group in [27], Theorem

A and Theorem B.

The Johnson homomorphism τ : I(Σg,1) → ∧3H1(Σg,1;Z) is a surjective homo-

morphism. The Johnson homomorphism determines the abelianization of I(Σg,1)

mod torsion in the following sense:

Theorem 1.0.1 ([16], Theorem 3). For g ≥ 3,H1(I(Σg,1);Z) ∼= W⊕∧3H1(Σg,1;Z),

where W consists of 2-torsion and
∧3H1(Σg,1;Z) is the image of the Johnson homo-

morphism.

As no finite presentation for the Torelli group is known, the finiteness information

inherent in the abelianization of the Torelli group is an important tool. For exam-

ple, Putman showed in [27], Theorem A, that I(Σg,1) has a generating set growing

cubically with respect to genus. Theorem 1.0.1 shows that H1(I(Σg,1);Z) has rank

cubic in the genus. Since H1(I(Σg,1);Z) is the quotient of I(Σg,1) by its commutator

subgroup [I(Σg,1), I(Σg,1)], the number of elements in a generating set of I(Σg,1) is

greater than or equal to the number of elements in a generating set of H1(I(Σg,1);Z).

Therefore, the number of elements in a generating set for I(Σg,1) must grow at least

cubically in g.

Analogues of the Johnson homomorphism can be found in different parts of math-

ematics, such as 3- manifold topology (e.g. [9], Section 2.3), the geometry of the
1 This fact is usually attributed to Birman and Powell [1, 25]. However, the Birman- Powell proof was based

on unpublished material, and generally considered too unwieldy to be checked.
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moduli space of curves (e.g. [11], Section 3 and 4), and number theory (e.g. [20]).

The Chillingworth class is the tensor contraction of the image of the Johnson homo-

morphism. More details can be found in Subsection 2.2.2. The Chillingworth homo-

morphism t : I(Σg,1) → H1(Σg,1;Z) is a homomorphism sending each f ∈ I(Σg,1)

to the Chillingworth class of f .

In [22], the Johnson homomorphism was extended by Morita to give a crossed ho-

momorphism on the entire mapping class group. Thus, the Chillingworth homomor-

phism can be extended to M(Σg,1) by composing the extended Johnson homomor-

phism with the tensor contraction.

Morita [21] also proved the following isomorphisms:

H1(M(Σg,1);H1(Σg;Z)) ∼= H1(M(Σg,∗);H
1(Σg;Z)) ∼= Z.

Here Σg,∗ is obtained by attaching a disc to ∂Σg,1 with a fixed point ∗, where each ele-

ment of the mapping class groupM(Σg,∗) is assumed to fix ∗. Since the cohomology

group H1(M(Σg,1);H1(Σg,1;Z)) is infinite cyclic, any two crossed homomorphisms

from M(Σg,1) to H1(Σg,1;Z) differ by a multiplicative constant and addition of a

coboundary. Therefore, any crossed homomorphism M(Σg,1) → H1(Σg,1;Z) re-

stricts to a constant multiple of the Chillingworth homomorphism on I(Σg,1). Earle

[7] first constructed a crossed homomorphism fromM(Σg,∗) toH1(Σg; (1/(2g − 2))Z).

By multiplying this crossed homomorphism by (2g − 2) we get a crossed homomor-

phismM(Σg,∗)→ H1(Σg;Z). Hence we attribute the definition of the Chillingworth

class to Earle.

In this thesis, we construct a combinatorial description of the Chillingworth class of

the subsurface Torelli groups via winding numbers in the projective tangent bundle.

Given the definition of Putman’s subsurface Torelli groups, the difficulty in finding

a combinatorial description via winding numbers is to make sense of the winding

number of an arc with end points on the boundary of the subsurface. By defining a

difference cocycle on the projective tangent bundle of the surface we are able to make

sense of the winding number of the difference of two arcs.

The rest of this thesis is structured as follows:

3



In Chapter 2, basic definitions and theorems related to the Torelli group, the Johnson

homomorphism and the Chillingworth class are given. We have provided a survey

of different constructions given by Trapp in [29] and Furuta (see [23]) for obtaining

crossed homomorphisms on the mapping class group using winding numbers. Both

of these constructions have been shown to be equivalent by using difference cocycles.

Chapter 3 presents subsurface Torelli groups defined by Putman in [26]. The parti-

tioned Johnson homomorphism constructed by Church [5] is discussed.

In Chapter 4, we construct a well-defined map ẽX : I(Σg,n,P) → HP1 (Σg,n,Z) us-

ing the projective tangent bundle of Σg,n. Here, X is a nonvanishing vector field on

Σg,n andHP1 (Σg,n,Z) denotes the homology group defined by Putman [26]. We show

that ẽX is a homomorphism. We define a symplectic basis for the homology group

HP1 (Σg,n,Z) and call the dual of ẽX(f) the Chillingworth class of f . One reason for

calling this dual the Chillingworth class, is that it is shown to factor through the parti-

tioned Johnson homomorphism. Therefore, we obtain a combinatorial description of

the Chillingworth class of the subsurface Torelli groups using the projective tangent

bundle of Σg,n.

We use the Torelli category T Surf defined by Church [5], which is the refinement of

the category TSur defined by Putman [26]. The Torelli group is a functor from T Surf

to the category of groups and homomorphisms [26]. For a morphism i : (Σg,n,P)→
(Σg′,n′ ,P ′) of T Surf and a nonvanishing vector field X on Σg′,n′ , we prove the fol-

lowing:

Theorem 1.0.2. There exists a homomorphism i′∗ such that the following diagram

commutes:

I(Σg,n,P)
i∗ //

ẽY
��

I(Σg′,n′ ,P ′)
ẽX
��

Hom(HP1 (Σg,n;Z),Z)
i′∗

// Hom(HP
′

1 (Σg′,n′ ;Z),Z)

(1.1)

Here Y is the restriction of X to Σg,n.

We also prove that ẽY is unique in the sense that it is the only nontrivial homomor-

phism such that diagram (1.1) commutes. We also get a commutative diagram for the

Chillingworth homomorphism t(Σg,n,P) : I(Σg,n,P)→ HP1 (Σg,n;Z).

4



CHAPTER 2

BACKGROUND

In the first section of this chapter, we review the Torelli group. In the second section,

we give definitions of the Johnson homomorphism, which is an important tool in the

study of the Torelli group. Moreover, the Chillingworth class, the contraction of the

Johnson homomorphism, and some of its properties are examined.

2.1 The Torelli Group

We start this section by giving basic definitions.

Let Σg,n be a compact connected oriented smooth surface of genus g with n boundary

components. If n = 0, we denote the surface as Σg. When the genus and the number

of boundary components are not important, we will use Σ to denote the surface. Let

Diff+(Σg,n, ∂Σg,n) be the group of orientation-preserving diffeomorphisms of Σg,n

onto itself which fix the boundary components of Σg,n pointwise. The mapping class

group of Σg,n is the group of all isotopy classes of elements of Diff+(Σg,n, ∂Σg,n)

where isotopies fix the boundary pointwise. LetM(Σg,n) denote the mapping class

group of Σg,n.

Throughout this thesis, we will be working with representatives of mapping classes

that fix a neighborhood of the boundary pointwise. We will use the notation f ◦ h or

fh to denote the composition of maps, where h is assumed to be applied first.

Definition 2.1.1. A simple closed curve on Σg,n is an embedding S1 → Σg,n. An arc

on Σg,n is an embedding α : [0, 1]→ Σg,n such that α−1(∂Σg,n) = {0, 1}.

When we say a closed curve or an arc, we will generally refer to their images.

5



We will denote a curve and its isotopy class by the same notation. A diffeomorphism

and its isotopy class will also be denoted by the same symbol.

When we cut a surface along a simple closed curve γ on the surface, if we obtain

more than one connected components, then we call γ a separating curve. Otherwise,

γ is called a nonseparating curve.

Let γ be a simple closed curve on Σg,n. A tubular neighborhood of γ is homeo-

morphic to an annulus S1 × [0, 1]. Let Ψ denote a diffeomorphism from the tubular

neighborhood of γ to S1 × [0, 1]. Represent elements of S1 by complex numbers of

norm 1. Define a diffeomorphism Φ : S1 × [0, 1] → S1 × [0, 1] mapping (z, t) to

(e−2πitz, t). Notice that Φ is the identity on the boundary components. The composi-

tion Ψ−1 ◦ Φ ◦Ψ gives a self diffeomorphism on the chosen tubular neighborhood of

γ. Extending Ψ−1 ◦Φ ◦Ψ to the entire surface by the identity map in the complement

we get a self diffeomorphism of Σg,n. This extended diffeomorphism Tγ is called a

Dehn twist around γ.

We will now define the symplectic representation and the Torelli group.

There is an action of the mapping class group on the first homology group of the

surface defined as follows:

Let φ be a diffeomorphism of the surface Σg,1 whose restriction to the boundary is

the identity. It is well known that φ induces an automorphism φ∗ : H1(Σg,1;Z) →
H1(Σg,1;Z). If φ is isotopic to ψ, then we get φ∗ = ψ∗. Therefore, we have a well-

defined homomorphism

ρ :M(Σg,1)→ Aut(H1(Σg,1;Z)).

Since H1(Σg,1;Z) ∼= H1(Σg;Z) ∼= Z2g, an isomorphism between Aut(H1(Σg,1;Z))

and GL(2g,Z) is obtained by choosing a basis for homology. Choose a symplectic

basis {a1, a2, . . . , ag, b1, b2, . . . , bg} of H1(Σg,1;Z), i.e. a basis with the property that

ai · aj = bi · bj = 0,

ai · bj = δij,

for all 1 ≤ i, j ≤ g, where δij is the Kronecker delta and ai · bj denotes the algebraic

intersection number of the homology classes ai with bj . The mapping class group

6



M(Σg,1) preserves the orientation of Σg,1 and the intersection pairing. Hence we

have a representation

ρ :M(Σg,1)→ Sp(2g,Z).

The homomorphism ρ : M(Σg,1) → Sp(2g,Z) is a surjective homomorphism (see

[8], Section 6.3.2). It is called the symplectic representation ofM(Σg,1). Applying

the same argument we also get the surjective homomorphism

ρ :M(Σg)→ Sp(2g,Z).

The subgroup ofM(Σg) acting trivially onH1(Σg;Z) is a normal subgroup ofM(Σg)

and is called the Torelli group. In other words, the Torelli group is the kernel of the

symplectic representation ρ :M(Σg)→ Sp(2g,Z). It will be denoted by the symbol

I(Σg). The notation I(Σg,1) will be used for the kernel of the symplectic representa-

tion ρ :M(Σg,1)→ Sp(2g,Z). The following exact sequence is obtained:

1→ I(Σg,1)→M(Σg,1)→ Sp(2g,Z)→ 1.

Birman and Powell [1, 25] proved that I(Σg,1) is generated by Dehn twists about

separating simple closed curves and bounding pair maps. A bounding pair (α, β) is a

pair of disjoint, homologous, nonseparating, simple closed curves. A bounding pair

map is given by TαT−1
β for a bounding pair (α, β). The genus of a bounding pair

is the genus of the subsurface of Σg,1 not containing the boundary of Σg,1. In [17],

Theorem 2, Johnson showed that for g ≥ 3, I(Σg,1) is generated by bounding pair

maps of genus 1.

2.2 The Johnson Homomorphism and The Chillingworth Class

In this section, we give equivalent definitions of the Johnson homomorphism. We

also give the combinatorial description of the Chillingworth class for surfaces with

one boundary component and for closed surfaces.

7



2.2.1 The Johnson Homomorphism

There are various definitions of the Johnson homomorphism. In this subsection, we

will review some of them. For further information, see [14, 15, 8].

The Johnson homomorphism was first defined by using the action of I(Σg,1) on the

universal two step nilpotent quotient of the free group π := π1(Σg,1, ∗) where ∗ ∈
∂Σg,1 [14].

Define elements of the lower central series of π as follows:

π1 := π, π2 := [π, π], πi := [π, πi−1].

Consider the following central short exact sequence

1→ π2/π3 → π/π3 → π/π2 → 1.

Take two elements a and b of π/π2, noting that π/π2 can be identified withH1(Σg,1;Z).

If ã, b̃ ∈ π/π3 are lifts of a and b, we obtain an isomorphism between
∧2H1(Σg,1;Z)

and π2/π3 by sending a ∧ b to [ã, b̃].

The Johnson homomorphism τ : I(Σg,1) → Hom(H1(Σg,1;Z), π2/π3) is the ho-

momorphism defined as τ(f)(a) = f(ã)ã−1. By the previous paragraph we can

identify Hom(H1(Σg,1;Z), π2/π3) with Hom(H1(Σg,1;Z),
∧2H1(Σg,1;Z)). There is

a canonical isomorphism of Hom(H1(Σg,1;Z),
∧2H1(Σg,1;Z)) with H∗1 (Σg,1;Z) ⊗

∧2H1(Σg,1;Z). It is also known thatH∗1 (Σg,1;Z) is isomorphic toH1(Σg,1;Z) by the

algebraic intersection pairing. Consequently, the Johnson homomorphism is of the

form τ : I(Σg,1) → H1(Σg,1;Z) ⊗∧2H1(Σg,1;Z). Moreover, Johnson showed that

the image of the Johnson homomorphism is exactly
∧3H1(Σg,1;Z). In this way, a

homomorphism

τ : I(Σg,1)→
3∧
H1(Σg,1;Z)

is obtained [14].

Johnson also defined the Johnson homomorphism on closed surfaces [14].

Let D denote a closed disc in Σg and Σg,1 denote Σg \ D◦, where D◦ is the interior

of D. Any diffeomorphism of Σg,1 can be extended by the identity diffeomorphism
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on D. Therefore, a surjective homomorphism pD :M(Σg,1) →M(Σg) is obtained.

Consider the following exact sequence

1→ Ker pD → I(Σg,1)→ I(Σg)→ 1.

Since any two liftings f ′ and f ′′ of f ∈ I(Σg) differ by a multiple k ∈ Ker pD,

τ(f ′) = τ(f ′′) + τ(k). Therefore, the Johnson homomorphism on a closed surface is

a surjective homomorphism

τ1 : I(Σg)→
3∧
H1(Σg;Z)/τ(Ker pD).

Moreover,
∧3H1(Σg;Z)/τ(Ker pD) and τ1(f) are independent of the choice of D. It

follows that τ1 is a well- defined homomorphism.

Let {a1, b1, a2, b2, . . . , ag, bg} be a symplectic basis for H1(Σg;Z). Consider the map

u : H1(Σg;Z)→ ∧3H1(Σg;Z) taking x to (
∑g

i=1 ai∧bi)∧x which is injective when

g ≥ 2. Note that
∑g

i=1 ai ∧ bi does not depend on the chosen symplectic basis [14].

Lemma 2.2.1 ([14], Lemma 7A). τ(Ker pD) = Im u, where Im u denotes the image

of u.

Notice that u is an isomorphism onto its image. Identifying Im u with H1(Σg;Z), we

have the Johnson homomorphism in the form

τ1 : I(Σg)→
3∧
H1(Σg;Z)/H1(Σg;Z).

Another definition of the Johnson homomorphism was given by using mapping tori

[15]. Let f ∈ I(Σg,1). Build the mapping torus

Mf =
Σg,1 × [0, 1]

(x, 1) ∼ (f(x), 0)
.

Since f is an element of the Torelli group, for an oriented simple closed curve γ in

Σg,1, f([γ]) is homologous to [γ]. Therefore, there exists an immersed surface S in

Σg,1 × {0} whose boundary is γ − f(γ). The union γ × [0, 1] ∪ S is a closed surface

Σγ in Mf .

Let x ∧ y ∧ z ∈ ∧3H1(Σg,1;Z) and let us represent each homology class x, y, z

by an oriented multicurve in Σg,1. Let Σx,Σy,Σz be the closed oriented surfaces
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obtained as in the previous paragraph. Then a homomorphism τ2 : I(Σg,1) →
Hom(

∧3H1(Σg,1;Z),Z) that agrees with τ is defined to be τ2(f)(x ∧ y ∧ z) =

Σx · Σy · Σz, where Σx · Σy · Σz denotes the algebraic intersection number.

In [15], Johnson gave a third definition of the Johnson homomorphism via the Jacobi

variety of Σg,∗. Recall that Σg,∗ is obtained by attaching a disc to ∂Σg,1 with a fixed

point ∗ and each element of the mapping class group M(Σg,∗) fixes ∗. For further

information, see [11, 6].

In [24], a combinatorial description of the Johnson homomorphism on Σg,∗ is given

by using the action of the mapping class group on the decorated Teichmüller space.

2.2.2 The Chillingworth Class

In this subsection, we will give basic definitions and constructions. This section also

provides a survey of the different ways in which it is possible to use difference cocycle

to obtain crossed homomorphisms on the mapping class group.

Let us choose a Riemannian metric on Σg,n with which we define a norm on TxΣg,n,

the tangent space to Σg,n at x ∈ Σg,n, for each x ∈ Σg,n. The unit tangent bundle

UT (Σg,n) is a fiber bundle that consists of vectors of unit length in the tangent bundle

TΣg,n.

Winding Number: Now we will give the definition of the winding number given by

Chillingworth from [3]. Informally, given a nonvanishing vector field X , the winding

number of a smooth closed oriented curve γ on a surface is defined as the number

of rotations its tangent vector makes with respect to X as γ is traversed once in the

positive direction.

Recall that, to start off with, we are assuming the surface has nonempty boundary

so that a nonvanishing vector field X on Σg,n exists. By choosing an appropriate

parametrisation for a smooth closed curve, it can be assumed without loss of general-

ity that the curve has a nonvanishing tangent vector at each point of the curve.

Let s : S1 → Σg,n be a smooth closed oriented curve with s(S1) = γ and pr :

UT (Σg,n)→ Σg,n be the natural projection map sending each unit vector v ∈ TxΣg,n
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to x. We can define a pullback of the unit tangent bundle by s. The total space of the

pullback bundle is defined as follows:

{(z, v) ∈ S1 × UT (Σg,n) : s(z) = pr(v)}

If prs : T2 → S1 denotes the projection map onto the first factor, there is a map F

which is an isomorphism on each fiber such that the following diagram commutes:

T2 F //

prs

��

UT (Σg,n)

pr

��
S1

s
// Σg,n

(2.1)

Here T2 denotes a torus, S1 × S1.

Given a vector field X , we can construct a section X̃s : S1 → T2 such that F ◦ X̃s =

X̃ ◦ s where X̃(x) = X(x)/‖X(x)‖ for x ∈ Σg,n. This section is defined so that

X̃s(z) = (z, X̃(s(z))) for every z ∈ S1. As one can notice that X̃s represents an

element of π1(T2). Since the fundamental group of the torus is abelian, we do not

write the base point in the expression of the fundamental group of T2.

By using the tangent map ds : TS1 → TΣg,n, we get a map d0s : S1 → UT (Σg,n)

defined by

d0s(z) = ds((z, 1))/‖ds((z, 1))‖s(z).

The latter map pulls back to a unique section Y s : S1 → T2 such that F ◦ Y s = d0s.

The projection map prs induces the homomorphism prs∗ : π1(T2) → π1(S1). If E0

denotes the fiber, S1, and is : E0 → T2 is the inclusion map, we have the following

exact sequence

0→ π1(E0)→ π1(T2)→ π1(S1).

Since prs∗(X
s) = prs∗(Y

s), we get

is∗(w
s) = Y s(Xs)−1

for some unique ws ∈ π1(E0). A choice of orientation of TxΣg,n for x ∈ Σg,n induces

an orientation of E0. Therefore, we can identify ws with an integer. The winding

number wX(γ) of γ with respect to X is the integer ws.
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Lemma 2.2.2 ([3], Lemma 2.6). Let X be a nonvanishing vector field on Σg,n. If γ

is a nullhomotopic, smooth simple closed curve, then wX(γ) = ±1 depending on the

orientation of γ.

Theorem 2.2.3 ([3], Theorem 5.3). Let X be a nonvanishing vector field on Σg,n. Let

γ1 and γ2 be smooth homotopic closed curves which are not null homotopic. Assume

that both of them are in minimal position. Then they satisfy

wX(γ1) = wX(γ2).

Let x be a point on Σg,n. We can define a function wX : π1(Σg,n, x) → Z such that

for any nontrivial element β ∈ π1(Σg,n, x), wX(β) is defined to be wX(γ) where γ is

a smooth closed oriented curve in minimal position which is homotopic to β. See [3],

Definition 2.8.

By Lemma 2.2.2, it is easily seen that wX : π1(Σg,n, x)→ Z is not a homomorphism,

as illustrated by the following example from [3]. Let Σ1,1 be a punctured torus and X

be a parallel vector field on Σ1,1 with respect to a Euclidean metric, as shown in Figure

2.1. Let x be a point on Σ1,1. Choose generators of π1(Σ1,1, x) such that the tangent

to a is everywhere parallel to X , and the tangent to b is everywhere perpendicular to

X . Then wX(a) = wX(b) = 0. The commutator of a and b is freely homotopic to the

boundary of Σ1,1. However, in Figure 2.1 one can see that wX(aba−1b−1) = +1 6=
wX(a) + wX(b)− wX(a)− wX(b).

a

b b

a

Figure 2.1: A punctured torus and a parallel vector field on it.

Lemma 2.2.4 ([3], Lemma 5.7). Let ∂1, ∂2, . . . , ∂n be boundary components of Σg,n

with the orientations induced from Σg,n. If X is a nonvanishing vector field on Σg,n,
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then
n∑

i=1

wX(∂i) = ±(n+ 2g − 2).

The sign depends on the orientation of Σg,n.

Difference Cocycle: We will define the difference cocyle introduced by Chilling-

worth in [3]. In fact, this definition is based on the obstruction theory exposed in

[28]. In Part III of [28], the difference cochain is explained in detail.

For two nonvanishing vector fields X1 and X2 and for a Riemannian metric on Σg,n,

one can define sections X̃1 and X̃2 of UT (Σg,n) by X̃1(x) := X1(x)/‖X1(x)‖ and

X̃2(x) := X2(x)/‖X2(x)‖ for x ∈ Σg,n. Let γ = s(S1) be a closed oriented curve.

Consider the diagram (2.1). The compositions X̃1s and X̃2s pull back to unique

sections X̃s
1 and X̃s

2 from S1 to T2, respectively. We have is∗(u
s) = X̃s

1(X̃s
2)−1 for

some us ∈ π1(E0) ∼= Z. We can identify us with an integer.

The following definition is given by Chillingworth in [3], Section 4.

Definition 2.2.5. Let v1, v2, . . . , v2g+n−1 be smooth simple closed curves on Σg,n,

based at x, whose homotopy classes generate π1(Σg,n, x). Then {[v1], [v2], . . . , [v2g+n−1]}
is a basis of H1(Σg,n;Z). A difference cocycle is a homomorphism

d(X1, X2) : H1(Σg,n;Z)→ Z

sending each basis element [vi] to the corresponding number usi , where vi = si(S
1).

Let γ = s(S1) be any closed oriented curve. Since γ is freely homotopic to a product

of vi or their inverses, from the definition of us we have

us = d(X1, X2)[γ].

From the definitions of difference cocyle and winding number of a smooth closed

oriented curve γ, we get the following lemma:

Lemma 2.2.6 ([3], Lemma 4.1). d(X1, X2)[γ] = wX2(γ)− wX1(γ).

It may not be clear that d(X1, X2) is well-defined. That is, one may not see that the

image of [γ] does not change for different choice of representatives. First, consider the
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b1 a2 b2

c

x

a1

Figure 2.2: Orientable genus-2 surface with one boundary.

following example. Then we will explain well-definedness of the difference cocycle

in the general case.

Example 2.2.7. Consider a cellular decomposition of Σ2,1. Take a 0-cell x on the

boundary of Σ2,1. Choose 1-cells a1, b1, a2, b2, c as shown in Figure 2.2. There is a

single 2-cell Σ2,1\{a1, b1, a2, b2, c} which will be denoted by τ . Let 〈τ〉 and 〈x〉 be the

free abelian groups with bases {τ} and {x}, respectively. Let 〈a1, b1, a2, b2, c〉 be the

free abelian group with basis {a1, b1, a2, b2, c}. We have the cellular chain complex

0→ 〈τ〉 ∂2→ 〈a1, b1, a2, b2, c〉 0→ 〈x〉 → 0.

The image of ∂2 is ∂2(τ) = a1 + b1 − a1 − b1 + a2 + b2 − a2 − b2 + c = c. Here ∂2

denotes the boundary map.

For two nonvanishing vector fields X1 and X2 on Σ2,1, we have a map d(X1, X2)

assigning an integer to each generating 1-cycle. This map is defined on the free

abelian group generated by {a1, b1, a2, b2, c} and has image in Z. We want to show

that it induces a map from H1(Σ2,1;Z) to Z. Since the boundary of the two cell is c,

we need to show that d(X1, X2)(c) = 0.

By Lemma 2.2.4, we have wX1(c) = wX2(c) = −3. By Lemma 2.2.6, d(X1, X2)(c) =

wX2(c)−wX1(c) = 0 is obtained. Moreover, again by Lemma 2.2.4 and Lemma 2.2.6

it can easily be seen that for any separating curve γ we have d(X1, X2)(γ) = 0.

Hence we have a homomorphism

d(X1, X2) : H1(Σ2,1;Z)→ Z.

The map is defined analogously for Σg,n when g 6= 2 and n ≥ 1. We need to show

that d(X1, X2)(c1 + c2 + . . . + cn) = 0, where {ci} are 1-cells around the boundary
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components. By Lemma 2.2.4, we have

n∑

i=1

wX1(ci) =
n∑

i=1

wX2(ci).

By Lemma 2.2.6, we conclude that

n∑

i=1

d(X1, X2)(ci) =
n∑

i=1

wX2(ci)−
n∑

i=1

wX1(ci) = 0.

Since d(X1, X2) is defined on the free abelian group generated by 1-cycles and has

image in Z, it is a homomorphism. Therefore,

n∑

i=1

d(X1, X2)(ci) = d(X1, X2)(c1 + . . .+ cn) = 0,

as desired. Thus, a cell complex structure on Σg,n gives an analogous homomorphism

d(X1, X2) : H1(Σg,n;Z)→ Z.

The Chillingworth Class: Difference cocyles will enable us to define the Chilling-

worth class introduced first by Earle in [7]. See also [4]. We will give the Johnson’s

definition from [14]. In [14], Johnson defined the following homomorphism

e : I(Σg,1)→ H1(Σg,1;Z)

such that e(f)([γ]) = wX(fγ) − wX(γ). To show that e(f) is really a cohomology

class, the difference cocycle will be used. Observe that wfX(fγ) = wX(γ). There-

fore, we have the equality wX(fγ) = wf−1X(γ). We obtain that

e(f)[γ] = wX(fγ)− wX(γ) = wf−1X(γ)− wX(γ) = d(X, f−1X)[γ].

We conclude that e(f) is a difference cocycle.

Lemma 2.2.8 ([14], Lemma 5A). The cohomology class e(f) does not depend on the

chosen vector field X .

Lemma 2.2.9 ([14], Lemma 5B). The map e is a homomorphism.

For f ∈ I(Σg,1), in Section 5 of [14], Johnson dualized the class e(f) to a homology

class t(f) defined as follows: [γ] · t(f) = e(f)[γ] . The homology class t(f) is called

the Chillingworth class of f .
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Another combinatorial description of the Chillingworth class can be given by using

curve complexes. In [13], Irmer proved that the Chillingworth class can be defined to

be a signed stable length function. However, we will not explain this definition here.

Let C :
∧3H1(Σg,1;Z)→ H1(Σg,1;Z) be the tensor contraction map given by

C(x ∧ y ∧ z) = 2[(x · y)z + (y · z)x+ (z · x)y],

where · denotes the intersection pairing of homology classes.

For example, C(a1 ∧ b1 ∧ b2) = 2b2 where {a1, b1, a2, b2, . . . , ag, bg} is a symplectic

basis of H1(Σg,1;Z).

Theorem 2.2.10 ([14], Theorem 2). For f ∈ I(Σg,1), t(f) = C(τ(f)), where τ is the

Johnson homomorphism. Equivalently, the following diagram is commutative:

I(Σg,1) τ //

t

&&

∧3H1(Σg,1;Z)

Cvv
H1(Σg,1;Z)

Corollary 2.2.11 ([14], Corollary 1). Let f = TβT
−1
δ with (β, δ) a pair of disjoint,

oriented, simple closed curves bounding a subsurface of Σg,1 of genus k. Then t(f) =

2k[β].

Now we want to define the first cohomology group H1(M(Σg,1);H1(Σg,1;Z)) of

M(Σg,1) with coefficients in H1(Σg,1;Z) [2, 21].

There is an action ofM(Σg,1) on H1(Σg,1;Z) via the symplectic representation ρ as

in Section 2.1. If we identify H1(Σg,1;Z) with Hom(H1(Σg,1;Z),Z), the action of

M(Σg,1) on H1(Σg,1;Z) is defined to be φ1u(x) = u((φ1)−1
∗ (x)) = u(ρ(φ−1

1 )(x)),

where φ1 ∈M(Σg,1), u ∈ H1(Σg,1;Z) and x ∈ H1(Σg,1;Z).

Let Z1(M(Σg,1);H1(Σg,1;Z)) denote the set of all crossed homomorphisms d :

M(Σg,1) → H1(Σg,1;Z). A crossed homomorphism d is a function d : M(Σg,1) →
H1(Σg,1;Z) such that d(φ1φ2) = d(φ1) + φ1d(φ2) for any φ1, φ2 ∈M(Σg,1).

Let m be a fixed element of H1(Σg,1;Z). Define a function dm : M(Σg,1) →
H1(Σg,1;Z) by dm(φ1) = φ1m−m. Such a function dm is called a principal crossed
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homomorphism. Let B1(M(Σg,1);H1(Σg,1;Z)) denote the set of all such principal

crossed homomorphisms.

The first cohomology group of M(Σg,1) with coefficients in H1(Σg,1;Z) is defined

as Z1(M(Σg,1);H1(Σg,1;Z))/B1(M(Σg,1);H1(Σg,1;Z)).

Similarly, we can define H1(M(Σg,1);H1(Σg,1;Z)). Let Z1(M(Σg,1);H1(Σg,1;Z))

be the set of all crossed homomorphisms fromM(Σg,1) to H1(Σg,1;Z). For a fixed

m′ ∈ H1(Σg,1;Z), a principal crossed homomorphism dm′ is defined as dm′(φ1) =

(φ1)∗m
′ −m′. Let B1(M(Σg,1);H1(Σg,1;Z)) be the set of all such principal crossed

homomorphisms. Then

H1(M(Σg,1);H1(Σg,1;Z)) := Z1(M(Σg,1);H1(Σg,1;Z))/B1(M(Σg,1);H1(Σg,1;Z)).

We can obtain crossed homomorphisms via difference cocycles. Two crossed homo-

morphisms defined by Trapp and Furuta will be defined and then it will be shown

that these definitions are equivalent by realizing that they are difference cocycles. Of

course, this is not a new result. Morita and Trapp were aware of this.

In [29], Trapp defined a crossed homomorphism

eX :M(Σg,1)→ H1(Σg,1;Z)

as follows:

eX(f)[γ] = wX(fγ)− wX(γ)

for any f ∈ M(Σg,1), [γ] ∈ H1(Σg,1;Z). Here X is a nonvanishing vector field on

Σg,1. Trapp showed that eX is a crossed homomorphism such that

eX(fh) = eX(f)ρ(h) + eX(h)

for any f, h ∈M(Σg,1), where ρ :M(Σg,1)→ Sp(2g;Z) is the symplectic represen-

tation.

We now outline the construction of a crossed homomorphism from [23], Section 4.

Recall that there is a Riemannian metric on Σg,1. Let f ∈ M(Σg,1) and X be a

nonvanishing vector field on Σg,1. Consider the vector field fX . Note that fX is

nonvanishing since X is nonvanishing. Let S1 denote the set of angles mod 2π.
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Furuta defined a mapping

Θf : Σg,1 → S1

as follows: Let the map Θf (p) := ∠(Xp, (fX)p) measure the angle mod 2π from Xp

to (fX)p with respect to the fixed orientation on Σg,1. Consider the cohomology class

[Θf ] := Θ∗f ([S
1]) ∈ H1(Σg,1;Z), where [S1] is the generator of H1(S1;Z). Taking

the Poincaré dual of [Θf ], we get kX(f) ∈ H1(Σg,1;Z). Namely, Furuta defined a

mapping kX :M(Σg,1) → H1(Σg,1;Z) which is well-defined depending only on the

choice of the nonvanishing vector field X .

Proposition 2.2.12 ([23], Proposition 4.1). The map kX : M(Σg,1) → H1(Σg,1;Z)

is a crossed homomorphism. Its cohomology class [kX ] does not depend on the non-

vanishing vector field X and is a generator of H1(M(Σg,1);H1(Σg,1;Z)).

Now our aim is to relate these two crossed homomorphisms introduced by Furuta and

Trapp.

Proposition 2.2.13. The crossed homomorphism defined by Trapp is related to Fu-

ruta’s definition by [Θf−1 ][γ] = eX(f)[γ] for any f ∈ M(Σg,1) and any [γ] ∈
H1(Σg,1;Z).

Proof. Let X be a nonvanishing vector field on Σg,1. By the construction of the

difference cocycle, if X̃ and f̃−1X rotate m and n-times, respectively, around the

fiber on the unit tangent bundle UT (Σg,1) restricted to γ, X̃s and f̃−1X
s

are homo-

topic to maps sending θ to (θ,mθ) and θ to (θ, nθ), respectively. Here S1 denotes

the set of angles mod 2π. By composing with the projection map on the second

component pr2 : T2 → S1, we get pr2 ◦ X̃s : S1 → S1 sending θ to mθ and

pr2 ◦ f̃−1X
s

: S1 → S1 sending θ to nθ. We can consider the image of the difference

cocyle d(X, f−1X)[γ] as the degree of the map S1 → S1 sending θ to (m− n)θ.

Now consider the map Θf−1 : Σg,1 → S1 such that Θf−1(p) = ∠(X)p, (f
−1X)p).

Observe that d(X, f−1X)[γ] = deg(Θf−1|γ). Indeed, the induced map (Θf−1)∗ :

H1(Σg,1;Z) → H1(S1;Z) will give us a cohomology class, which is d(X, f−1X),

after identifying H1(S1;Z) with Z.
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Consequently, we have

[Θf−1 ][γ] = (Θf−1)∗([γ]) = deg(Θf−1|γ) = d(X, f−1X)[γ] = eX(f)[γ]

for any smooth representative γ.

Dualize eX(f) to a homology class tX(f), i.e. tX(f) is defined by [γ] · tX(f) =

eX(f)[γ]. Then tX : M(Σg,1) → H1(Σg,1;Z) depends on the choice of the non-

vanishing vector field X . By using the same method used in the proof of Proposi-

tion 2.2.12 we can show that tX is a crossed homomorphism and the cohomology

class [tX ] ∈ H1(M(Σg,1);H1(Σg,1;Z)) is independent of the vector field X .

The Chillingworth Class for Closed Surfaces: When a surface of genus at least 2

is closed, any vector field on the surface has singularities. This makes it necessary to

modify the definition of the Chillingworth class for closed surfaces.

First, assume that X is a vector field on R2 and it has an isolated singularity at the

origin. Consider a circle around 0 so that there is no other singularity inside this

circle. Define the index of X at 0, denoted by ind0(X), to be the degree of the map

u : S1 → S1 u(z) =
X(z)

‖X(z)‖ .

Namely, the index of a singularity of a vector field is the number of revolutions

counted with sign made by the vector field when S1 is traversed once in a coun-

terclockwise direction. If the vector field makes one counterclockwise turn along S1,

then the index of the singularity is +1. If the vector field makes a clockwise revolu-

tion, the singularity of the vector field has index −1.

Now, let X be a vector field on the closed oriented surface Σg and let X have an

isolated singularity at v. For every point y ∈ Σg, there is a neighbourhood U of y in

Σg diffeomorphic to an open discD ⊂ R2. Let φ : D → Σg be a local parametrization

sending the origin of R2 to v. Notice that for each x ∈ D, there is an isomorphism

dφx from R2 to the tangent space of Σg at φ(x). If we pull back X on Σg by φ, we

get a vector field on D. Note that dφx is an isomorphism of R2 with Tφ(x)Σg for each

x ∈ D. The pullback of X is given by

φ∗X(x) = dφ−1
x X(φ(x)).
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Notice that if X has a singularity at v, then φ∗X has a singularity at 0. Define the

index ofX at v as indv(X) = ind0(φ∗X). This definition is independent of the choice

local parametrization. For more information, see [10].

Theorem 2.2.14 (Poincaré). Let X be a smooth vector field on a smooth closed ori-

ented surface Σ with only finitely many singularities p1, p2, . . . , pn. Then the sum of

the indices of X equals the Euler characteristic of the surface:

n∑

i=1

indpi(X) = χ(Σ).

Poincaré proved this theorem in 1885. Then Hopf generalized this theorem for higher

dimensional manifolds in 1927. In the general case, it is called the Poincaré- Hopf

Theorem.

By using this theorem we can conclude that if the genus of a closed surface Σg is

greater than 1, it will not admit any continuous nonvanishing vector field.

Chillingworth defined the winding number of homotopy classes of curves on surfaces.

To make this work, it is necessary to assume that all the singularities are concentrated

at one point v with index 2− 2g.

Theorem 2.2.15 ([3], Theorem 6.1). Let X be a vector field with only one singularity

v. Let γ1 and γ2 be two smooth, homotopic closed curves not passing through v which

are not null homotopic. Assume that both of them are in minimal position. Then they

satisfy

wX(γ1) = wX(γ2) mod (2g − 2).

We are now ready to give the definition of the Chillingworth class on closed surfaces

Σg ( c.f. [14], Section 6). By following the same method in the definition of the Chill-

ingworth class of f ′ ∈ I(Σg,1), we obtain a well-defined class t(f) in 2H1(Σg;Z)

mod (2g − 2) for f ∈ I(Σg).

The following theorem shows that t(f) = C(τ(f)) for any f ∈ I(Σg).

Theorem 2.2.16 ([14], Theorem 3). For g ≥ 2, we have a commutative diagram
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0 K
∧3H1(Σg;Z)/H1(Σg;Z) H1(Σg;Z)mod (g − 1) 0

I(Σg)

1
2
C

τ 1
2
t

where C :
∧3H1(Σg;Z) → H1(Σg;Z) is the tensor contraction map and K =

Ker C. The row is exact and the Johnson homomorphism τ is surjective.
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CHAPTER 3

SUBSURFACE TORELLI GROUPS

In this chapter, we introduce the subsurface Torelli groups and the partitioned Johnson

homomorphism. This chapter is required background for the next chapter.

3.1 Subsurface Torelli Groups

We start this section by giving basic definitions from the category theory. We then

define the subsurface Torelli groups and give properties of them. This section is based

on the work of Putman in [26].

Definition 3.1.1. A category C consists of the following data:

• A collection Obj(C) of objects A,B,C, . . .

• For every pair of objects A,B ∈ Obj(C), a collection MorpC(A,B) of mor-

phisms f, h, k, . . .

Each morphism specifies domain and codomain objects. The notation f : A→
B denotes a morphism with domain A and codomain B.

• Each A ∈ Obj(C) has an element idA of MorpC(A,A), called the identity

morphism on A.

• Given morphisms f : A → B and h : B → C, there is a composition h ◦ f :

A→ C.

These data must satisfy the following properties:
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• If f ∈ MorpC(A,B), h ∈ MorpC(B,C) and k ∈ MorpC(C,D), then k ◦ (h ◦
f) = (k ◦ h) ◦ f .

• If f ∈ MorpC(A,B), then idB ◦ f = f = f ◦ idA.

Definition 3.1.2. Let C and D be two categories. A functor F from C to D, denoted

F : C → D, is a morphism sending each object A ∈ C to an object F (A) of D and

each morphism f ∈ MorpC(A,B) to a morphism in F (f) ∈ MorpD(F(A),F(B))

such that

• F (h ◦ f) = F (h) ◦ F (f) for all f ∈ MorpC(A,B) and h ∈ MorpC(B,C),

• F (idA) = idF (A) for all A ∈ Obj(C).

Definition 3.1.3. Let F and G be two functors from C toD. A natural transformation

is an assignment to each A ∈ C a morphism ηA : F (A) → G(A) in D such that for

every morphism f : A→ B in C, the following is commutative in D.

F (A)
F (f) //

ηA
��

F (B)

ηB
��

G(A)
G(f)

// G(B)

(3.1)

Suppose that a compact connected oriented surface Σ with boundary is embedded in a

compact connected oriented surface Σ′. Let i : Σ ↪→ Σ′ be an embedding and identify

Σ with i(Σ). The inclusion map i induces a map i∗ : M(Σ) → M(Σ′) between

mapping class groups, defined by extending diffeomorphism Σ → Σ to Σ′ → Σ′

by the identity on Σ′ \ Σ. In other words, let C be the category such that objects

are surfaces and morphisms are embeddings. Let D be a category whose objects are

groups and whose morphisms are homomorphisms. The mapping class group,M, is

a functor from C to D.

Putman defined in [26] the subsurface Torelli groups such that the Torelli group is

a functor. In order to get functoriality he introduced the notion of partitioned sur-

faces. The following example shows the necessity of the partitioning of boundary

components of the subsurface.
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Example 3.1.4. Assume that we have two embeddings of Σ1,5 into closed oriented

surfaces of genus 4, Σ4 and Σ′4 as in Figure 3.1. Let i : Σ1,5 ↪→ Σ4 be the em-

bedding on the left-hand side and j : Σ1,5 ↪→ Σ′4 be the embedding on the right-

hand side. Assume that we have a subgroup I(Σ1,5) satisfying i∗(I(Σ1,5)) ⊂ I(Σ4),

i−1
∗ (I(Σ4)) = I(Σ1,5) and j∗(I(Σ1,5)) ⊂ I(Σ′4), j−1

∗ (I(Σ′4)) = I(Σ1,5).

Σ1,5 Σ1,5

γγ

Σ4 Σ′
4

Figure 3.1: Two different embeddings of Σ1,5 into Σ4 and Σ′4.

On the right-hand side in Figure 3.1, Tγ is an element of I(Σ′4). From the equality

j−1
∗ (I(Σ′4)) = I(Σ1,5), we get that Tγ is an element of I(Σ1,5). By i∗(I(Σ1,5)) ⊂
I(Σ4), we obtain that Tγ is an element of I(Σ4). But, since γ is not a separating

curve on Σ4, Tγ is not an element of I(Σ4). We get a contradiction. Thus, there is not

such a group. We conclude that i−1
∗ (I(Σ4)) and j−1

∗ (I(Σ′4)) are different groups.

Therefore, it is necessary to define the notion of a partitioned surface. A partitioned

surface is the pair (Σ,P) consisting of a surface Σ and a partition P of the boundary

components of Σ. Each element Pk of P is called a block.

For a given embedding i : Σ ↪→ Σg, let the connected components of Σg \ Σ◦ be

{S0, S1, . . . , Sm} and let Pk denote the set of boundary components of Sk for each

k ∈ {0, . . . ,m}. Here, Σ◦ denotes the interior of Σ. Consider the partition

P = {P0, P1, . . . , Pm}.

Then i : Σ ↪→ Σg is called a capping of (Σ,P) (c.f. [26]).

Definition 3.1.5 ([26]). For a partitioned surface (Σ,P), the subsurface Torelli group

I(Σ,P) is defined as the subgroup i−1
∗ (I(Σg)) ofM(Σ) for any capping i : Σ ↪→ Σg.

In [26], Section 3, a special homology group HP1 (Σ;Z) is defined on a partitioned

surface (Σ,P) such that I(Σ,P) is the kernel ofM(Σ)→ Aut(HP1 (Σ;Z)).
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Consider a partition

P = {{∂1
1 , . . . , ∂

1
k1
}, . . . , {∂m1 , . . . , ∂mkm}}.

Suppose the boundary components ∂ji are oriented so that
∑

i,j[∂
j
i ] = 0 in H1(Σ;Z).

Define the homology group

H
P
1 (Σ;Z) := H1(Σ;Z)/∂HP1 (Σ;Z),

where

∂HP1 (Σ;Z) =
〈
([∂1

1 ] + . . .+ [∂1
k1

]), . . . , ([∂m1 ] + . . .+ [∂mkm ])
〉
⊂ H1(Σ;Z).

Definition 3.1.6 ([26], Section 3.1). Let (Σ,P) be a partitioned surface, and let Q
denote a set containing one point from each boundary component of Σ. The homology

group HP1 (Σ;Z) is defined to be the image of the following subgroup of H1(Σ,Q;Z)

in H1(Σ,Q;Z)/∂HP1 (Σ;Z):

〈{[h] ∈ H1(Σ,Q;Z)| either h is a simple closed curve or h is an arc a connecting

two boundary curves in the same block of P and with ∂a ∈ Q}〉

One can easily see thatM(Σ) acts on HP1 (Σ;Z).

Theorem 3.1.7 ([26], Theorem 3.3). The subsurface Torelli group I(Σ,P) is the

subgroup ofM(Σ) that acts trivially on HP1 (Σ;Z).

A P-separating curve on a partitioned surface (Σ,P) is a simple closed curve γ with

[γ] = 0 in HP1 (Σ;Z). A P-separating curve is a separating curve on Σg for any

capping Σ ↪→ Σg. A twist about P-bounding pair is defined to be Tγ1T
−1
γ2

, where γ1

and γ2 are disjoint, nonisotopic simple closed curves and [γ1] = [γ2] in HP1 (Σ;Z).

Similarly, a P-bounding pair is also a bounding pair on Σg for any capping Σ ↪→ Σg.

Theorem 3.1.8 ([26], Theorem 1.3). For g ≥ 1, I(Σg,n,P) is generated by twists

about P-separating curves and twists about P-bounding pairs.

A category TSur was defined in [26]. The objects of TSur are partitioned sur-

faces (Σ,P) and the morphisms from (Σg1,n1 ,P1) to (Σg2,n2 ,P2) are exactly those
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embeddings i : Σg1,n1 ↪→ Σg2,n2 which induce morphisms i∗ : I(Σg1,n1 ,P1) →
I(Σg2,n2 ,P2). The embeddings satisfy the following condition: for any P1-separating

curve γ, the curve i(γ) must be a P2-separating curve. In this thesis, we will use the

refinement of this category defined by Church in [5]. See Definition 3.2.2 in the next

section.

Theorem 3.1.9 ([26], Theorem 3.6). Let (Σg1,n1 ,P1) and (Σg2,n2 ,P2) denote parti-

tioned surfaces. If there is an embedding i : Σg1,n1 ↪→ Σg2,n2 , then

i∗(I(Σg1,n1 ,P1)) ⊂ I(Σg2,n2 ,P2)

if and only if i is a morphism in the category TSur.

The next theorem shows that partitioning the boundary components is a minimum

requirement for obtaining functoriality.

Theorem 3.1.10 ([26], Theorem 3.8). Let i : Σg1,n1 ↪→ Σg2,n2 be an embedding. If

P2 is a partition of the boundary components of Σg2,n2 , then there is some partition

P1 of the boundary components of Σg1,n1 so that I(Σg1,n1 ,P1) = i−1
∗ (I(Σg2,n2 ,P2)).

3.2 The Partitioned Johnson Homomorphism

In this section, we define the partitioned Johnson homomorphism given by Church in

[5].

A totally separated surface is a surface with a partition of the boundary components

such that each element of the partition contains only one boundary component.

Remark 3.2.1. Given a partitioned surface, a minimal totally separated surface con-

taining Σ can be constructed as follows: Let Σ be given with a partition P . For each

P ∈ P with |P | = n, we attach a sphere with n + 1 boundary components to the n

boundary components in P of Σ to obtain Σ̂ with a partition P̂ . Each element of the

partition P̂ contains only one boundary component. If it is needed to fix basepoints

∗ on ∂Σ and ∗̂ on ∂Σ̂, the assumption is also made so that basepoints ∗̂ and ∗ are on

the boundary of the same n + 1 holed sphere attached to Σ. The resulting surface is

an example of what will be called a totally separated surface. See Figure 3.2 as an

example.
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∂1
1

∂1
2

∂1
3

∂2
1

∂3
1

∂3
2

Figure 3.2: A partitioned surface (Σ1,6, {{∂1
1 , ∂

1
2 , ∂

1
3}, {∂2

1}, {∂3
1 , ∂

3
2}}) and a totally

separated surface containing it.

Notation: Given a partitioned surface (Σ,P), the partitioned surface (Σ̂, P̂) will

denote a minimal totally separated surface containing Σ.

Note that H P̂1 (Σ̂;Z) is isomorphic to HP
1 (Σ;Z) and it can be considered as the first

homology group of the closed surface Σ obtained by attaching a disc to each boundary

component of Σ̂.

Definition 3.2.2 ([5], Section 2.3). The Torelli category T Surf is the category defined

as in the previous section with some additional conditions. Objects of this category

are partitioned surfaces (Σ,P , ∗). A morphism from (Σ1,P1, ∗1) to (Σ2,P2, ∗2) is an

embedding i : Σ1 ↪→ Σ2 satisfying the following conditions:

• i takes P1-separating and P1-nonseparating curves to P2-separating and P2-

nonseparating curves, respectively.

• ∗1 and ∗2 can be connected by an arc in Σ2 \ Σ◦1.

• i extends to an embedding î : Σ̂1 ↪→ Σ̂2.

The embedding illustrated in Figure 3.3 is not a morphism in T Surf. Because there

is no embedding from Σ̂2,5 to Σ̂6,6.

Note that if we have a morphism i : (Σ1,P1, ∗1) → (Σ2,P2, ∗2), then there is an

embedding Σ̂1 ↪→ Σ2.

If we are not dealing with the fundamental group of the partitioned surface (Σ,P , ∗),

we will not mention ∗ and denote the partitioned surface simply by (Σ,P).

By means of the third condition for a morphism i : (Σ1,P1) → (Σ2,P2), one
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∂1
1

∂1
2

∂1
3

∂1
4

∂1
5

∂
′1
1

∂
′1
2

∂
′1
3

∂
′2
1

∂
′2
2

∂
′2
3

Figure 3.3: An embedding (Σ2,5, {P1}) into (Σ6,6, {P ′1, P ′2}), where P1 =

{∂1
1 , ∂

1
2 , ∂

1
3 , ∂

1
4 , ∂

1
5}, P ′1 = {∂′11 , ∂

′1
2 , ∂

′1
3 } and P ′2 = {∂′21 , ∂

′2
2 , ∂

′2
3 }.

can define the induced map H1(Σ̂1;Z) → H1(Σ̂2;Z) canonically. We get a map

H P̂1
1 (Σ̂1;Z)→ H P̂2

1 (Σ̂2;Z) by using the first condition in the definition.

In order to define the Johnson homomorphism on a partitioned surface, Church con-

structed the lower central series of the fundamental group on a partitioned surface

(Σ,P , ∗). Take π := π1(Σ, ∗) and define T (Σ,P) to be the kernel of the composition

π1(Σ, ∗)→ H1(Σ;Z)→ H P̂1 (Σ̂;Z).

Lemma 3.2.3 ([5], Lemma 3.1). Let (Σ,P , ∗) be a partitioned surface and let P =

{P0, P1, . . . , Pk}. Consider a P- separating curve γi which separates all boundary

components in the block Pi from all boundary components in the block Pj for i 6= j

when the surface is cut along it. Let ζi ∈ π be a representative of γi. Then T (Σ,P)

is generated by [π, π] together with ζ1, . . . , ζk (c.f. Figure 3.4).

Σ Σ̂

z0

z1

z2

z3

∂0
1

∂1
1

∂1
2

∂2
1∂2

2

∂3
1

∂3
2

∂3
3

ζ1

ζ̂1

A3

A2

A1ζ3

Figure 3.4: A partitioned surface (Σ1,8, {{∂0
1}, {∂1

1 , ∂
1
2}, {∂2

1 , ∂
2
2}, {∂3

1 , ∂
3
2 , ∂

3
3}}) and

a totally separated surface containing it.

Consider the central series defined by

πT1 = π, πT2 = T (Σ,P), πTj = 〈[πT1 , πTj−1], [πT2 , π
T
j−2]〉 for j ≥ 3.
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Let π̂ denote π1(Σ̂, ∗̂). Since T (Σ̂,P) is the kernel of the composition π̂ → H1(Σ̂;Z)→
H P̂1 (Σ̂;Z) and the composition is surjective, we obtain that π̂/T (Σ̂,P) ∼= H P̂1 (Σ̂;Z).

To define the partitioned Johnson homomorphism, start with the short exact sequence

1→ T (Σ̂,P)/[T (Σ̂,P), π̂]→ π̂/[T (Σ̂,P), π̂]→ π̂/T (Σ̂,P)→ 1,

or renaming the terms in this short exact sequence, we get

1→ N(Σ,P)→ E(Σ,P)→ H P̂1 (Σ̂;Z)→ 1.

Considering this exact sequence, the partitioned Johnson homomorphism is defined

similarly to the original definition of the Johnson homomorphism after guaranteeing

that the Torelli group I(Σ,P) acts trivially on N(Σ,P) and H P̂1 (Σ̂;Z).

The Torelli group I(Σ,P) acts trivially on N(Σ,P) and H P̂1 (Σ̂;Z) (c.f. [5]).

Definition 3.2.4 ([5], Chapter 5). The action of I(Σ,P) onE(Σ,P) = π̂/[T (Σ̂,P), π̂]

gives a homomorphism

τ(Σ,P) : I(Σ,P)→ Hom(H P̂1 (Σ̂;Z), N(Σ,P))

which will be called the partitioned Johnson homomorphism. The partitioned John-

son homomorphism is defined as follows:

τ(Σ,P)(ϕ)(x) = ϕ(x̃)x̃−1,

where x̃ ∈ π̂ is a lift of x ∈ H P̂1 (Σ̂;Z).

Note that well-definedness of τ(Σ,P) comes from the definition of the Johnson ho-

momorphism. More explicitly, if x̃′ is another lifting of x, we have x̃′ = x̃y′ for

some y′ ∈ N(Σ,P). Let ϕ ∈ I(Σ,P). Then ϕ(x) = x and ϕ(x̃) = yx̃ for some

y ∈ N(Σ,P). Since I(Σ,P) acts trivially on N(Σ,P), we obtain that ϕ(x̃′) =

ϕ(x̃y′) = ϕ(x̃)ϕ(y′) = ϕ(x̃)y′. Therefore, we get ϕ(x̃′)x̃′−1 = ϕ(x̃)y′(x̃y′)−1 =

ϕ(x̃)x̃−1 = y. As one can notice, we use the same notation ϕ for the induced maps

on π̂, E(Σ,P) and H P̂1 (Σ̂;Z). By using the fact that N(Σ,P) is central, it can be

shown that τ(Σ,P)(ϕ) is a homomorphism. By using the fact that I(Σ,P) acts triv-

ially on N(Σ,P) and H P̂1 (Σ̂;Z), we get that τ(Σ,P) is a homomorphism.
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Given a surface (Σ,P , ∗) with P = {P0, P1, . . . , Pk}, let zi be the boundary compo-

nent of Σ̂ corresponding to Pi ∈ P for each 1 ≤ i ≤ k. The image of the generator ζ̂i

of T (Σ̂,P) in N(Σ,P) is the generator zi.

Let Ai be an arc from the basepoint ∗̂ to zi, (see Figure 3.4 as an example). For

each Pi, we obtain a map N(Σ,P) → Z by intersecting elements with arcs Ai. In

particular, if x̃ ∈ π̂ represents the class x ∈ N(Σ,P), let x · Ai denote the algebraic

intersection number of x̃ with Ai. This number is independent of the choice of Ai [5].

Definition 3.2.5 ([5], Definition 5.5). The homomorphism

δi : Hom(H P̂1 (Σ̂;Z), N(Σ,P))→ H P̂1 (Σ̂;Z)

is defined to be

f(x) · Ai = x · δi(f).

The image of τ(Σ,P): Unlike the classical Johnson homomorphism N(Σ,P) is not

isomorphic to
∧2H P̂1 (Σ̂;Z). We have the isomorphism N(Σ,P) ∼=

∧2H P̂1 (Σ̂;Z)⊕
Zk. Here,

∧2H P̂1 (Σ̂;Z) is the image of [π̂, π̂] and the Zk factor is spanned by

z1, . . . , zk. Note that the intersection y 7→ y · Ai vanishes on
∧2H P̂1 (Σ̂;Z) and satis-

fies zj · Ai = δij .

The projection N(Σ,P)�
∧2H P̂1 (Σ̂;Z) induces a projection

Hom(H P̂1 (Σ̂;Z), N(Σ,P))�Hom(H P̂1 (Σ̂;Z),
2∧
H P̂1 (Σ̂;Z))

∼=
2∧
H P̂1 (Σ̂;Z)⊗H P̂1 (Σ̂;Z). (3.2)

Let D(Σ,P) ≤ H P̂1 (Σ̂;Z) be the subspace spanned by the homology classes of the

boundary components of Σ and let Di ≤ D(Σ,P) be the subspace spanned by the

homology classes of the boundary components in Pi ∈ P . Note that P0 is the block

that contains the boundary component ∂0
i0

such that the basepoint ∗ ∈ ∂0
i0

. Finally, let

D(Σ,P)⊥ denote the subspace of H P̂1 (Σ̂;Z) spanned by H1(Σ;Z).

Definition 3.2.6 ([5], Definition 5.8). The subspaceW(Σ,P) ≤ Hom(H P̂1 (Σ̂;Z), N(Σ,P))

consists of homomorphisms f : H P̂1 (Σ̂;Z) → N(Σ,P) satisfying the following con-

ditions:
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(I) the image in
∧2H P̂1 (Σ̂;Z)⊗H P̂1 (Σ̂;Z) of f under the projection (3.2) is contained

in the subspace
∧3H P̂1 (Σ̂;Z) ≤ ∧2H P̂1 (Σ̂;Z)⊗H P̂1 (Σ̂;Z).

(II) for i ≥ 1, δi(f) ∈ D(Σ,P)⊥ and for any a ∈ Di, f(a) = δi(f) ∧ a.

(III) for any a ∈ D0, f(a) = 0.

Theorem 3.2.7 ([5], Theorem 5.9). W(Σ,P) = Im τ(Σ,P).

Recall that as Church stated in [5], Definition 5.12, W(Σ,P) can be considered as a

subspace of
∧3H P̂1 (Σ̂;Z)⊕ (Zk ⊗H P̂1 (Σ̂;Z)) where k = |P̂| − 1. Basis elements of

W(Σ,P) will be shown to be a ∧ b ∧ c for the
∧3H P̂1 (Σ̂;Z) component and as zi ∧ x

for (Zk ⊗H P̂1 (Σ̂;Z)).

Definition 3.2.8 ([5], Definition 5.13). Let (Σ,P) and (Σ′,P ′) be partitioned sur-

faces and let zj be the boundary component of Σ̂ corresponding to Pi ∈ P for each

1 ≤ i ≤ k. If Σ′ is obtained from Σ by attaching a disk to zj , pi is defined as follows:

pi : W(Σ,P) → W(Σ′,P ′)

a ∧ b ∧ c 7→ a ∧ b ∧ c

zj ∧ x 7→ 0

zk ∧ x 7→ zk ∧ x for k 6= j

Now consider a morphism i : (Σ,P) → (Σ′,P ′) satisfying the condition that for

each connected component U of Σ′ \ Σ◦, the set of boundary components of U is

not contained in the set of boundary components of Σ. Decompose Σ̂′ \ Σ̂◦ into

subsurfaces {Uj}, where Uj ∩ Σ̂ = zj . The group H
Pj

1 (Ûj;Z) is identified with

a subspace of HP
′

1 (Σ̂′;Z). Let wUj
∈ ∧2H

Pj

1 (Ûj;Z) be the intersection form on

H
Pj

1 (Ûj;Z), and let z1
j , . . . , z

l
j be the boundary components of Uj such that zkj ∩Σ̂ = ∅

for 1 ≤ k ≤ l. We define pi as follows.

pi : W(Σ,P) → W(Σ′,P ′)

a ∧ b ∧ c 7→ a ∧ b ∧ c

zj ∧ x 7→ (wUj
+ z1

j + . . .+ zlj) ∧ x

Note that in N(Uj,Pj) we have zj = wUj
+ z1

j + . . .+ zlj .
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Theorem 3.2.9 ([5], Theorem 5.14). For any morphism i : (Σ,P) → (Σ′,P ′) of

T Surf and morphism i∗ : I(Σ,P) → I(Σ′,P ′), pi : W(Σ,P) → W(Σ′,P ′) satisfies

τ(Σ′,P ′)i∗(ϕ) = piτ(Σ,P)(ϕ) for all ϕ ∈ I(Σ,P).

Proposition 3.2.10 ([5], Proposition 6.1). If (Σ,P) is a partitioned surface and γ is

a P-separating curve, then we have τ(Σ,P)(Tγ) = 0.

Proposition 3.2.11 ([5], Proposition 6.3). Let (Σ,P) be a partitioned surface. Let

TαT
−1
β be a twist about P-bounding pair and ζ be a P-separating curve that forms

the boundary of a pair of pants with α ∪ β. Assign an orientation to each curve so

that the pair of pants lies on the left side of ζ and the right side of α and β (or vice

versa). If the homology class of α is [α] and z denotes the class of ζ in N(Σ,P), then

we get τ(Σ,P)(TαT
−1
β ) = z ∧ [α] in W(Σ,P).
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CHAPTER 4

GENERALIZED CHILLINGWORTH CLASSES

In this chapter, we establish and prove our main results. We construct a well-defined

map ẽX by means of the projective tangent bundle. We prove that ẽX and the homo-

morphism obtained by taking the dual of ẽX(f) for any f ∈ I(Σ,P), which is the

Chillingworth homomorphism from the subsurface Torelli groups to HP1 (Σ;Z), sat-

isfy the naturality property. Moreover, we show that ẽX is the unique homomorphism

satisfying naturality. Finally, we give the relation between the Chillingworth classes

of the subsurface Torelli groups and the partitioned Johnson homomorphism.

In this chapter, if (Σ1,P1) and (Σ2,P2) are partitioned surfaces, then by an em-

bedding i : (Σ1,P1) ↪→ (Σ2,P2) of partitioned surfaces, we mean a morphism

i : (Σ1,P)→ (Σ2,P) of T Surf given in Definition 3.2.2.

4.1 Winding Number In The Projective Tangent Bundle

This section starts with the definition of the projective tangent bundle and aims to find

a well-defined map ẽX : I(Σ,P)→ Hom(HP1 (Σ;Z),Z) with the naturality property.

Let Σ be a smooth compact connected oriented surface with nonempty boundary.

Let us choose a Riemannian metric on Σ. Let UT (Σ) be the unit tangent bundle

of Σ. Since Σ has nonempty boundary, there are nonvanishing vector fields on Σ.

Choice of two nonvanishing vector fields which are orthogonal to each other gives a

parallelization of Σ. The unit tangent bundle UT (Σ) is therefore homeomorphic to

Σ× S1.

By using this unit tangent bundle, the projective tangent bundle PT (Σ) is constructed
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as follows: By identifying antipodal points in each fiber S1, we obtain a fiber bundle

whose fiber is RP1, which is homeomorphic to S1. The projective tangent bundle

PT (Σ) is also homeomorphic to the product Σ×S1 since Σ has nonempty boundary.

Let {[αi]}i∈I ∪ {[xj], [yj]}j∈J be a basis for HP1 (Σ;Z). Here, I and J are finite index

sets and each αi is an arc, and each xj, yj is a simple closed curve. We assume that all

representatives are smooth and are in minimal position. If (Σ,P) is a totally separated

surface, then I is the empty set. If Σ is a sphere with boundary components, J is the

empty set.

In this thesis, we always take representatives of mapping classes fixing points in a

regular neighborhood of each boundary component. Therefore, f(αi) and αi have

the same tangent vectors on a small neighborhood of the boundary components. We

denote by f(αi) ∗ α−1
i the closed curve obtained by first traversing the arc f(αi) then

αi with the reversed orientation. The resulting closed curve has two nondifferentiable

points on the boundary of the subsurface. Since f(αi) and αi have the same tangent

vectors at the end points, in the projective tangent bundle we can calculate the winding

number of closed oriented curves having two such nondifferentiable points on the

boundary. When we concatenate arcs to obtain a closed curve, we will assume that

the tangent spaces of the arcs at the end points coincide.

Winding Number: The winding number in the projective tangent bundle is defined

in analogy to the winding number in the tangent bundle. Changing the unit tangent

bundle in the diagram (2.1) with the projective tangent bundle PT (Σ) and applying

the same argument in the construction of the winding number, we obtain the con-

struction of the winding number in the projective tangent bundle. Winding number

in the projective tangent bundle will be defined for smooth closed oriented curves or

for closed oriented curves constructed by concatenating a pair of smooth arcs as just

described.

Denote the winding number in the projective tangent bundle of a closed oriented curve

γ with respect to a nonvanishing vector field X by w̃X(γ). Since S1 is a double cover

of RP1, for a smooth closed oriented curve γ we have wX(γ) = w̃X(γ)
2

.

Construction of ẽX: Let X be a nonvanishing vector field on a partitioned surface
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(Σ,P) and f be an element of the subsurface Torelli group. Choose a set of simple

closed curves representing a basis of H1(Σ;Z). Assigning an integer to each basis

element determines a homomorphism from H1(Σ;Z) to Z. This integer is chosen to

be the total number of times that X rotates relative to f−1X as we traverse the basis

element. This homomorphism, denoted by d(X, f−1X), is defined in Definition 2.2.5.

By Lemma 2.2.6, we have

d(X, f−1X)[γ] = wX(fγ)− wX(γ),

for any smooth closed oriented curve γ. In the projective tangent bundle we get

d(X, f−1X)[γ] =
w̃X(fγ)− w̃X(γ)

2
.

Since f fixes every boundary component of Σ, d(X, f−1X)[∂] = 0 for any bound-

ary component ∂. Therefore, d(X, f−1X) induces a homomorphism d(X, f−1X) :

H
P
1 (Σ;Z)→ Z defined by

d(X, f−1X)[γ] =
w̃X(fγ)− w̃X(γ)

2
.

Now our aim is to get a well-defined map

d̃(X, f−1X) : HP1 (Σ;Z)→ Z

mapping an element [α] ofHP1 (Σ;Z) to the half of the number of times thatX rotates

relative to f−1X in the projective tangent bundle as we traverse α.

· · ·

fh

h h1

Figure 4.1: Extension of a subsurface with two boundary components to a surface

with one boundary component by attaching a sphere with 3 holes.

For a closed oriented curve γ, we define

d̃(X, f−1X)[γ] = d(X, f−1X)[γ].

Now, let h be a smooth oriented arc whose endpoints are on the boundary components

of Σ contained in the same element of P and let f ∈ I(Σ,P). Since f fixes all points
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of a regular neighborhood of the boundary components, h and f(h) have the same

tangent spaces at the end points and f(h) ∗ h−1 is a closed oriented curve with two

cusps. We define

d̃(X, f−1X)[h] :=
w̃X(f(h) ∗ h−1)

2
.

For each P ∈ P with |P | = n, let us attach a sphere with n+1 boundary components

to the n boundary components in P of Σ to obtain Σ̂ with a partition P̂ as in Re-

mark 3.2.1. Thus, (Σ̂, P̂) is totally separated. Extend X to the obtained larger surface

Σ̂ so that it is again a nonvanishing vector field on Σ̂. For simplicity, the extension

will also be denoted by X . Let h1 be a smooth oriented arc in the complement of Σ

whose end points are ∂h (c.f. Figure 4.1). Let γ := h ∗ h1 denote the smooth closed

oriented curve obtained by concatenating h and h1. Notice that we choose a consis-

tent orientation for h1 to get a closed oriented curve γ. We parametrize γ such that its

initial and terminal points are on one of the boundary components of the subsurface

Σ. Then fγ is isotopic to f(h) ∗ h1.

Remark 4.1.1. The winding number in the tangent bundle of the concatenation of

smooth closed oriented curves is not equal to the sum of the winding numbers of each

smooth closed oriented curve if tangent vectors of the curves at the concatenation

point are not parallel. That is, if α and β are smooth closed oriented curves with a

common basepoint, in general we have wX(α ∗ β) 6= wX(α) + wX(β). However,

the winding number in the projective tangent bundle of the concatenation of smooth

closed oriented curves is equal to the sum of the winding numbers of each smooth

closed oriented curve if the tangent spaces of the curves at the end points are the

same. Therefore, we obtain the following equalities:

w̃X(fγ)− w̃X(γ)

2
=

w̃X(fγ ∗ γ−1)

2

=
w̃X(f(h) ∗ h1 ∗ (h ∗ h1)−1)

2

=
w̃X(f(h) ∗ h−1)

2
.

One can easily observe that the obtained equality

w̃X(fγ)− w̃X(γ)

2
=
w̃X(f(h) ∗ h−1)

2

does not depend on the choice of the arc representative h1 on Σ̂ \ Σ◦.
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Lemma 4.1.2. Let h be a smooth oriented arc representing a homology class [h] in

HP1 (Σ;Z). Then the number w̃X(f(h)∗h−1)
2

is independent of the choice of the repre-

sentative of [h].

Proof. Let [h] = [h′] be inHP1 (Σ;Z). Then we have [h∗h′−1] = 0 inHP1 (Σ;Z). Since

the embedding (Σ,P) ↪→ (Σ̂, P̂) of partitioned surfaces takes P-separating curves to

P̂-separating curves by the first condition of Definition 3.2.2, we get [h ∗h′−1] = 0 in

H P̂1 (Σ̂;Z). We have [γ] = [γ′] by using the following equalities:

[h ∗ h′−1] = [h ∗ h1 ∗ h−1
1 ∗ h′−1] = [h ∗ h1]− [h′ ∗ h1] = 0,

where [γ′] = [h′ ∗ h1].

Since we have

w̃X(fγ)− w̃X(γ)

2
=
w̃X(fγ′)− w̃X(γ′)

2
,

for any smooth homologous simple closed curves γ and γ′ in H P̂1 (Σ̂;Z), we get

w̃X(f(h) ∗ h−1)

2
=
w̃X(f(h′) ∗ h′−1)

2
.

Lemma 4.1.3. The map d̃(X, f−1X) : HP1 (Σ,Z)→ Z is a homomorphism.

Proof. For smooth closed oriented curves γ1 and γ2 by the definition of d(X, f−1X),

we have

d̃(X, f−1X)[γ1 ∗ γ2] = d̃(X, f−1X)[γ1] + d̃(X, f−1X)[γ2].

Let h1 and h2 be smooth oriented arcs whose endpoints are on the boundary compo-

nents of Σ contained in the same element of P and let us assume that initial point of

h2 is the same as the terminal point of h1. Let [h] denote the sum of two homology
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classes [h1] and [h2]. We obtain the following equalities:

d̃(X, f−1X)[h1] + d̃(X, f−1X)[h2] =
w̃X(f(h1) ∗ h−1

1 )

2
+
w̃X(f(h2) ∗ h−1

2 )

2

=
w̃X(h−1

1 ∗ f(h1))

2
+
w̃X(f(h2) ∗ h−1

2 )

2

=
w̃X(h−1

1 ∗ f(h1) ∗ f(h2) ∗ h−1
2 )

2

=
w̃X(f(h1) ∗ f(h2) ∗ h−1

2 ∗ h−1
1 )

2

=
w̃X(f(h1 ∗ h2) ∗ (h1 ∗ h2)−1)

2

= d̃(X, f−1X)[h1 ∗ h2]

= d̃(X, f−1X)[h].

Now let γ be a smooth oriented arc whose homology class [γ] is the sum of a homol-

ogy class [h′] whose representatives are arcs and a homology class [α] with closed

curve representatives. As in the previous paragraph of Remark 4.1.1, we can obtain

a smooth closed oriented curve α′ by concatenating h′ with a smooth oriented arc in

the complement of Σ. Hence, we have

d̃(X, f−1X)[h′] + d̃(X, f−1X)[α] =
w̃X(f(h′) ∗ h′−1)

2
+
w̃X(fα)− w̃X(α)

2

=
w̃X(fα′)− w̃X(α′)

2
+
w̃X(fα)− w̃X(α)

2

= d̃(X, f−1X)[α′ ∗ α]

= d̃(X, f−1X)[h′ ∗ α] (by Remark 4.1.1)

= d̃(X, f−1X)[γ].

Definition 4.1.4. The map ẽX : I(Σ,P) → Hom(HP1 (Σ;Z),Z) is defined to be

ẽ(f) := d̃(X, f−1X). More explicitly, it is defined as follows:

If [γ] has a smooth closed curve representative γ,

ẽX(f)[γ] :=
w̃X(fγ)− w̃X(γ)

2
.

If h is a smooth oriented arc representing a homology class [h] in HP1 (Σ;Z),

ẽX(f)[h] :=
w̃X(f(h) ∗ h−1)

2
.
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Lemma 4.1.5. The map ẽX : I(Σ,P)→ Hom(HP1 (Σ;Z),Z) is a homomorphism.

Proof. It is easy to see that ẽX(fg)[γ] = ẽX(f)[γ] + ẽX(g)[γ] for a smooth closed

oriented curve γ by Lemma 2.2.9.

For a smooth oriented arc αi,

ẽX(fg)[αi] =
w̃X(fg(αi) ∗ α−1

i )

2

=
w̃X(f(gαi) ∗ g(α−1

i ) ∗ g(αi) ∗ α−1
i )

2

=
w̃X(f(gαi) ∗ g(α−1

i ))

2
+
w̃X(g(αi) ∗ α−1

i )

2

= ẽX(f)[g(αi)] + ẽX(g)[αi].

Since g ∈ I(Σ,P), g(αi) and αi represent the same element of HP1 (Σ;Z). Hence we

get

ẽX(fg) = ẽX(f) + ẽX(g).

The homomorphism ẽX depends on the choice of the nonvanishing vector field X .

For instance, consider surfaces S1 and S2 containing S shown as in Figure 4.2.

S

S

γ

γ

δ

δ

S1

S2

z

z

a

a

Figure 4.2: Different extensions of S with respect to the same partition.

Choose nonvanishing vector fields X1 and X2 on surfaces S1 and S2, respectively.

Consider the restrictions of the vector fields X1 and X2 to S. Winding numbers of

z with respect to X1|S and X2|S are different by Lemma 2.2.4. Indeed, we have

wX1|S(z) = −1 and wX2|S(z) = −3. By using again Lemma 2.2.4, we can see that

ẽX1|S(TγT
−1
δ )[a] and ẽX2|S(TγT

−1
δ )[a] are different numbers. These numbers are 2

and 4, respectively.
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4.2 Symplectic Basis for HP1 (Σ;Z)

In this section, we introduce a symplectic basis for HP1 (Σ;Z).

Let (Σ,P) be a partitioned surface of genus g with the partition

P = {{∂1
1 , . . . , ∂

1
k1
}, . . . , {∂m1 , . . . , ∂mkm}}.

LetQ be a subset of the boundary ∂Σ containing exactly one point from each bound-

ary component.

Let us choose a set of simple closed curves {x1, y1, x2, y2, . . . , xg, yg} on Σ satisfying

• xi ∩ xj = ∅, xi ∩ yj = ∅, yi ∩ yj = ∅ for i 6= j,

• xi intersects yi transversely at one point, and

• under the filling map

H1(Σ;Z)→ H1(Σ;Z)

{[xi], [yi] | i = 1, . . . , g} maps to a symplectic basis of H1(Σ;Z). Here, Σ

denotes the closed surface obtained by gluing a disc along each boundary com-

ponent.

For each l = 1, 2, . . . ,m, choose oriented arcs hlj connecting ∂lj ∩ Q to ∂lj+1 ∩ Q for

j = 1, 2, . . . , kl − 1 such that

• hlj are disjoint from xi, yi,

• hlj are pairwise disjoint except perhaps at endpoints,

• each hlj is oriented so that the algebraic intersection number of the homology

classes [hlj] and [∂l1 + · · · + ∂lj] is 1, where the orientations of the boundary

components are induced from the orientation of the surface.

The union of the sets

• {[x1], [y1], . . . , [xg], [yg]},
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• {[h1
1], [h1

2], . . . , [h1
k1−1], [h2

1], . . . , [h2
k2−1], . . . , [hm1 ], . . . , [hmkm−1]},

• { [∂1
1 ], [∂1

1 +∂1
2 ], . . . , [∂1

1 +· · ·+∂1
k1−1], [∂2

1 ], . . . , [∂2
1 +· · ·+∂2

k2−1], . . . , [∂m1 ], . . . ,

[∂m1 + · · ·+ ∂mkm−1]}

is a basis B of HP1 (Σ;Z).

In this basis, {xi, yi} are closed curves, the {hlil}s are arcs, and {∂lil}s are boundary

curves as shown in Figure 4.3.

This basis B has the following properties:

• î([xi], [xj]) = î([yi], [yj]) = 0, î([xi], [yj]) = δij, for all 1 ≤ i, j ≤ g,

• î([hli], [∂l1 + · · ·+ ∂lj]) = δij, for all 1 ≤ i, j ≤ kl − 1, 1 ≤ l ≤ m,

• î([hlj], [xi]) = î([hlj], [yi]) = 0, for all 1 ≤ i ≤ g, 1 ≤ j ≤ kl − 1, 1 ≤ l ≤ m,

• î([∂l1 + · · ·+ ∂lj], [xi]) = î([∂l1 + · · ·+ ∂lj], [yi]) = 0, for all 1 ≤ i ≤ g, 1 ≤ j ≤
kl − 1, 1 ≤ l ≤ m.

Here, δij denotes the Kronecker delta and î(·, ·) denotes the algebraic intersection

number. Note that although the endpoints of the representatives of homology basis

elements [hlj] coincide with [hlj+1] on ∂Σ, we define the algebraic intersection of arcs

î([hlj], [h
l
j+1]) to be 0 for all 1 ≤ j ≤ kl − 1, 1 ≤ l ≤ m.

h1
1

h1
2

h1
3

x1 x2

y1 y2

h2
1

∂1
1

∂1
2

∂1
3

∂1
4

∂2
1

∂2
2

Figure 4.3: An example illustrating homology basis elements of HP1 (Σ2,6;Z), where

P = {{∂1
1 , ∂

1
2 , ∂

1
3 , ∂

1
4}, {∂2

1 , ∂
2
2}}.
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We now define the dual of a homology class of HP1 (Σ;Z) by using this intersection

form. Note that the intersection form î is nondegenerate. Therefore the map

D : HP1 (Σ;Z)→ Hom(HP1 (Σ;Z),Z)

sending [x] ∈ HP1 (Σ;Z) to î(·, [x]) is an isomorphism.

4.3 Naturality and Uniqueness of ẽX

In this section, we show that ẽX is natural and that it is the unique homomorphism

from I(Σ,P) to Hom(HP1 (Σ;Z),Z) satisfying the naturality.

Remark 4.3.1. Suppose that (Σ,P) is a totally separated surface with boundary

components z1, z2, . . . , zn, so that P = {{z1}, . . . , {zn}} and that Σ′ is a partitioned

surface with a partition P ′ such that there is an embedding (Σ,P) ↪→ (Σ′,P ′) of

partitioned surfaces. For 1 ≤ j ≤ n, let Vj be a connected component of Σ′ \ Σ◦

containing zj as a boundary component and let Pj be the partition of the boundary

of Vj consisting of {zj} and a subset of P ′. Hence, if P ∈ Pj and P 6= {zj} then

P ∈ P ′. If i 6= j, then Vi ∩ Vj = ∅ and hence HPi
1 (Vi;Z) ∩ HPj

1 (Vj;Z) = {0}.
Since Vj ∩ Σ = zj , we have HPj

1 (Vj;Z) ∩HP1 (Σ;Z) = {[zj]} = {0}. By identifying

H
Pj

1 (Vj;Z) and HP1 (Σ;Z) with their images in HP
′

1 (Σ′;Z), we can write

HP
′

1 (Σ′;Z) = HP1 (Σ;Z)⊕HP1
1 (V1;Z)⊕ · · · ⊕HPn

1 (Vn;Z).

If Σ is totally separated with the partition P and if i : (Σ,P) ↪→ (Σ′,P ′) is an

embedding of partitioned surfaces, then there is a natural projection

r∗ : HP
′

1 (Σ′;Z)→ HP1 (Σ;Z)

which gives a natural homomorphism

r∗ : Hom(HP1 (Σ;Z),Z)→ Hom(HP
′

1 (Σ′;Z),Z).

Note also that if Σ is not totally separated, HPj

1 (Vj;Z) ∩ HP1 (Σ;Z) has a nontriv-

ial element for some j. Therefore, in this case HP
′

1 (Σ′;Z) is not isomorphic to

HP1 (Σ;Z)⊕HP1
1 (V1;Z)⊕ · · · ⊕HPn

1 (Vn;Z).
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Proposition 4.3.2. Let Σ be a totally separated surface with the partition P and

let i : (Σ,P) ↪→ (Σ′,P ′) be an embedding of partitioned surfaces. Let X be a

nonvanishing vector field on Σ′ and let Y denote the restriction of X to Σ. Then the

homomorphism ẽY is natural in the sense that the diagram

I(Σ,P)
i∗ //

ẽY
��

I(Σ′,P ′)
ẽX
��

Hom(HP1 (Σ;Z),Z)
r∗
// Hom(HP

′
1 (Σ′;Z),Z)

(4.1)

commutes.

Proof. Let f ∈ I(Σ,P), and let i∗(f) = f̃ . Thus (the class of) the diffeomorphism

f̃ is equal to f on Σ and is the identity on the complement Σ′ \ Σ. We show that

r∗(ẽY (f)) = ẽX(f̃).

Let γ be a smooth oriented simple closed curve in Σ representing a basis element of

HP1 (Σ;Z). Then, we have

r∗(ẽY (f))[γ] = ẽY (f)(r∗[γ]) = ẽY (f)[γ] =
w̃Y (fγ)− w̃Y (γ)

2

and

ẽX(f̃)[γ] =
w̃X(f̃γ)− w̃X(γ)

2
=
w̃X(fγ)− w̃X(γ)

2
.

Since Y is the restriction of X to Σ, we have r∗(ẽY (f))[γ] = ẽX(f̃)[γ].

Now let γ′ be a smooth closed oriented curve or smooth oriented arc in some Vj

representing a homology basis element in HPj

1 (Vj;Z). In this case, r∗(ẽY (f))[γ′] =

ẽY (f)(r∗([γ
′])) = 0 because r∗([γ′]) = 0. Since f(γ′) = γ′, we have

ẽX(f̃)[γ′] =
w̃X(f̃γ′)− w̃X(γ′)

2
=
w̃X(γ′)− w̃X(γ′)

2
= 0.

Since HP
′

1 (Σ′;Z) is the direct sum of HP1 (Σ;Z) and H
Pj

1 (Vj;Z), it follows that

r∗(ẽY (f)) = ẽX(f̃) for every f in I(Σ,P), and hence r∗ẽY = ẽXi∗.

Suppose now that Σ is any surface with a partition P = {P1, P2, . . . , Pn}, |Pl| = nl,

and that Σ̂ is the totally separated surface, with the partition P̂ , obtained by gluing a

sphere Sl with nl + 1 holes along the boundary components in Pl, i.e. the minimal
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totally separated surface containing Σ (c.f. Remark 3.2.1). For an l = 1, 2, . . . , n,

suppose that Pl = {∂l1, ∂l2, . . . , ∂lnl
}. For each j = 1, 2, . . . , nl − 1, choose smooth

arcs klj on the complement Σ̂\Σ◦ connectingQ∩∂lj toQ∩∂lj+1. Here, klj are pairwise

disjoint except perhaps at endpoints. Let us orient each klj so that concatenation hlj∗klj
is a smooth closed oriented curve in Σ̂, where [hlj] is an element of the basis B defined

in Section 4.2. Let Pl = {Pl, {zl}} be the partition of the boundary of Sl, where zl is

the boundary component of Σ̂. Then Kl = {[klj]} is a set of basis elements with arc

representatives of HPl
1 (Sl;Z). Let K denote the union K1 ∪K2 ∪ · · · ∪Kn.

Let us fix the symplectic basis B of HP1 (Σ;Z) defined as in Section 4.2.

We then have an isomorphism

ψK : HP1 (Σ;Z)→ H P̂1 (Σ̂;Z)

mapping the basis elements with closed curve representatives to itself and [hlj] to

[hlj ∗ klj].

By using ψK , we get the isomorphism

ψ∗K : Hom(H P̂1 (Σ̂;Z),Z)→ Hom(HP1 (Σ;Z),Z)

defined to be ψ∗K (χ) = χ ◦ ψK for any χ ∈ Hom(H P̂1 (Σ̂;Z),Z).

Proposition 4.3.3. Let (Σ,P) be a partitioned surface and let (Σ̂, P̂) be the minimal

totally separated surface containing Σ. Let i : (Σ,P) ↪→ (Σ̂, P̂) be the inclusion

so that it is an embedding of partitioned surfaces. Let X be a nonvanishing vector

field on Σ̂ and let Y denote the restriction of X to Σ. Then the homomorphism ẽY is

natural in the sense that the diagram

I(Σ,P)
i∗ //

ẽY
��

I(Σ̂, P̂)

ẽX
��

Hom(HP1 (Σ;Z),Z) Hom(H P̂1 (Σ̂;Z),Z)
ψ∗Koo

(4.2)

commutes.

Proof. Let f ∈ I(Σ,P), and let i∗(f) = f̃ . Thus f̃ is equal to f on Σ and is the

identity on the complement Σ̂ \ Σ. We show that ẽY (f) = ψ∗K ẽX(f̃).
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For any homology basis element [γ] ∈ HP1 (Σ;Z) with a smooth closed oriented curve

representative γ, we have

ẽY (f)[γ] =
w̃Y (fγ)− w̃Y (γ)

2

and

ψ∗K ẽX(f̃)([γ]) = ẽX(f̃)(ψK [γ])

= ẽX(f̃)[γ]

=
w̃X(f̃γ)− w̃X(γ)

2

=
w̃X(fγ)− w̃X(γ)

2
.

Since X = Y on Σ, we get the desired equality.

For any homology basis element [hlj] ∈ HP1 (Σ;Z) with a smooth oriented arc repre-

sentative hlj , we have

ẽY (f)[hlj] =
wY (f(hlj) ∗ (hlj)

−1)

2

and

ψ∗K ẽX(f̃)[hlj] = ẽX(f̃)(ψK [hlj])

= ẽX(f̃)[hlj ∗ klj]

=
w̃X(f̃(hlj ∗ klj))− w̃X(hlj ∗ klj)

2
.

Since we are working in the projective tangent bundle and we assume that represen-

tatives of mapping classes fix a regular neighborhood of the boundary components,

we get

ψ∗K ẽX(f̃)[hlj] =
w̃X(f̃(hlj ∗ klj) ∗ (hlj ∗ klj)−1)

2

=
w̃X(f(hlj) ∗ klj ∗ (klj)

−1 ∗ (hlj)
−1)

2

=
w̃X(f(hlj) ∗ (hlj)

−1)

2

=
w̃Y (f(hlj) ∗ (hlj)

−1)

2
.

Therefore, we obtain the equality ẽY = ψ∗K ẽXi∗. This finishes the proof.
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Note that commutativity of diagram (4.2) does not depend on the choice of basis

{[klj]} ∈ HPl
1 (Sl;Z).

Proposition 4.3.2 and Proposition 4.3.3 imply the following theorem.

Theorem 4.3.4. Let (Σ,P) and (Σ′,P ′) be partitioned surfaces and i : (Σ,P) ↪→
(Σ′,P ′) be an embedding of partitioned surfaces. Let X be a nonvanishing vector

field on Σ′ and let Y denote the restriction of X to Σ. Then there exists a homo-

morphism i′∗ such that the homomorphism ẽY is natural in the sense that the diagram

I(Σ,P)
i∗ //

ẽY
��

I(Σ′,P ′)
ẽX
��

Hom(HP1 (Σ;Z),Z)
i′∗

// Hom(HP
′

1 (Σ′;Z),Z)

(4.3)

commutes.

Proof. Let Σ be a surface with a partition P = {P1, P2, . . . , Pn}, |Pl| = nl. For an

l = 1, 2, . . . , n, suppose that Pl = {∂l1, ∂l2, . . . , ∂lnl
}. For each j = 1, 2, . . . , nl − 1,

choose smooth oriented simple arcs klj on the complement Σ′ \Σ◦ connectingQ∩ ∂lj
to Q ∩ ∂lj+1. Here, klj are pairwise disjoint except perhaps at endpoints. We consider

a closed tubular neighbourhood of the union ∂l1 ∪ ∂l2 ∪ · · · ∪ ∂lnl
∪ kl1 ∪ · · · klnl−1. This

tubular neighbourhood is homeomorphic to a sphere Sl with nl + 1 holes. Let us

consider now the minimal totally separated surface (Σ̂, P̂) containing Σ and all Sl as

a subsurface.

Let us fix bases B and K as in Proposition 4.3.3.

Consider the composition of the embedding ĵ : (Σ,P) ↪→ (Σ̂, P̂) of partitioned

surfaces with the embedding j′ : (Σ̂, P̂) ↪→ (Σ′,P ′) of partitioned surfaces. Let

Ŷ denote the restriction of X to Σ̂. After showing that both diagrams in (4.4) are

commutative, our proof will be complete.

I(Σ,P)
ĵ∗ //

ẽY
��

I(Σ̂, P̂)
j′∗ //

ẽ
Ŷ
��

I(Σ′,P ′)
ẽX
��

Hom(HP1 (Σ;Z),Z)
(ψ∗K )−1

// Hom(H P̂
1 (Σ̂;Z),Z)

r∗
// Hom(HP

′
1 (Σ′;Z),Z)

(4.4)
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Proposition 4.3.2 implies the commutativity of the right-hand side in diagram (4.4).

Proposition 4.3.3 gives the commutativity of the left-hand side in diagram (4.4).

Remark 4.3.5. Theorem 4.3.4 remains true for any capping i : (Σ,P) ↪→ Σg under

the condition that the chosen vector field X on Σg has only one singularity in the

complement of Σ̂.

Proposition 4.3.6. The homomorphism ẽY is unique in the sense that it is the only

nontrivial homomorphism from I(Σ,P) to Hom(HP1 (Σ;Z),Z) such that diagram (4.3)

commutes.

Proof. Let Σ̂ be a totally separated surface obtained from Σ as in Remark 3.2.1. Since

an embedding i : (Σ,P) ↪→ (Σ′,P ′) of partitioned surfaces can be considered to be

the composition of the two embeddings (Σ,P) ↪→ (Σ̂, P̂) ↪→ (Σ′,P ′) of partitioned

surfaces, we will consider the diagram (4.4).

First, we show the uniqueness of ẽŶ such that the right side of diagram (4.4) is com-

mutative. The second step will be to show the uniqueness of ẽY such that the left side

of diagram (4.4) is commutative. This will finish our proof.

Now let us consider the embedding (Σ̂, P̂) ↪→ (Σ′,P ′) of partitioned surfaces. We

have r∗ ◦ ẽŶ = ẽX ◦ j′∗. Let us assume that there is another homomorphism G :

I(Σ̂, P̂)→ Hom(H P̂1 (Σ̂;Z),Z) satisfying the naturality condition, r∗ ◦G = ẽX ◦ j′∗.
Our aim is to show that ẽŶ = G, hence proving the proposition for this case. Since

both G and ẽŶ satisfy the naturality condition, we get r∗ ◦ ẽŶ = r∗ ◦ G. Since r∗ is

onto, r∗ is injective, which implies that ẽŶ = G.

Now consider the embedding (Σ,P) ↪→ (Σ̂, P̂ ) of partitioned surfaces for the second

part of the proof. We need to show that ẽY : I(Σ,P) → Hom(HP1 (Σ;Z),Z) is

the unique homomorphism satisfying the naturality property. Let F : I(Σ,P) →
Hom(HP1 (Σ;Z),Z) be another homomorphism such that ẽŶ ◦ ĵ∗ = (ψ∗K )−1 ◦ F .

Recall that (ψ∗K )−1 : Hom(HP1 (Σ;Z),Z)→ Hom(H P̂1 (Σ̂;Z),Z) is defined such that

(ψ∗K )−1(χ) = χ ◦ ψ−1
K for any χ ∈ Hom(HP1 (Σ;Z),Z). Observe that (ψ∗K )−1 is

an isomorphism because ψK is an isomorphism. Hence by composing both sides of
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(ψ∗K )−1 ◦ ẽY = (ψ∗K )−1 ◦ F with ψ∗K , we get the equality ẽY = F .

This finishes the proof.

Corollary 4.3.7. For an embedding i : (Σ,P) ↪→ Σg,1 of partitioned surfaces, ẽY

depends only on the embedding. That is, ẽY is independent of the vector field Y

obtained by restricting the vector field X on Σg,1 to Σ.

Proof. Choose a nonvanishing vector field X1 different from X on Σg,1. Let Y1 be

the restricted vector field of X1 to Σ.

We aim to show that for any f ∈ I(Σ,P), ẽY (f) = ẽY1(f). By Theorem 4.3.4, we

have ẽX(i∗(f)) = i′∗(ẽY (f)) and ẽX1(i∗(f)) = i′∗(ẽY1(f)). By Lemma 2.2.8, eX(f̃)

defined by eX(f̃)[γ] = wX(f̃γ) − wX(γ) is independent of the choice of X . Since

by the definition of ẽX we have eX(f̃) = ẽX(f̃) for any f̃ ∈ I(Σg,1), ẽX(f̃) is also

independent of the choice of X . Therefore, we obtain ẽX(f̃) = ẽX1(f̃).

Now we have two homomorphisms ẽY and ẽY1 from I(Σ,P) to Hom(HP1 (Σ;Z),Z)

such that diagram (4.3) commutes. By Proposition 4.3.6, we conclude that ẽY (f) =

ẽY1(f).

4.4 Naturality of the Chillingworth Homomorphism

In this section, we show that the Chillingworth homomorphism is natural. We find

a relation between the Chillingworth classes of the subsurface Torelli groups and the

partitioned Johnson homomorphism. Finally, we give an example to see this relation.

For an element f ∈ I(Σ,P), let us define the dual of ẽY (f) which we call the Chill-

ingworth class of f . The algebraic intersection form for HP1 (Σ;Z) gives t(Σ,P)(f)

defined by:

î([γ], t(Σ,P)(f)) = ẽY (f)[γ].

Therefore, we get the Chillingworth homomorphism:

t(Σ,P) : I(Σ,P)→ HP1 (Σ;Z).
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Let (Σ,P) ↪→ (Σ′,P ′) be an embedding of partitioned surfaces. Fix a symplectic

basis B of HP1 (Σ;Z) defined in Section 4.2. Recall that HP ′1 (Σ′;Z) is isomorphic to

H P̂1 (Σ̂;Z)⊕HP1
1 (V1;Z)⊕HP2

1 (V2;Z)⊕ · · · ⊕HPn
1 (Vn;Z) as in Remark 4.3.1.

As in the previous section, take a nonvanishing vector field X on Σ′. Restrict X to

the subsurface Σ and call the restriction Y .

Lemma 4.4.1. Let s∗ : H P̂1 (Σ̂;Z) → HP
′

1 (Σ′;Z) be the inclusion map and D be the

isomorphism defined in Section 4.2. Then the following diagram commutes:

I(Σ,P)
i∗ //

ẽY
��

I(Σ′,P ′)
ẽX
��

Hom(HP1 (Σ;Z),Z)
i′∗ //

D−1

��

Hom(HP
′

1 (Σ′;Z),Z)

D−1

��
HP1 (Σ;Z)

s∗◦ψK // HP
′

1 (Σ′;Z)

(4.5)

Proof. We showed in Theorem 4.3.4 that the upper square in diagram (4.5) com-

mutes. Hence our aim is to show that the lower square also commutes. Here, the

image of i′∗ : Hom(HP1 (Σ;Z),Z) → Hom(HP
′

1 (Σ′;Z),Z) is defined as the com-

position of (ψ∗K )−1 and r∗ defined as before. Let χ ∈ Hom(HP1 (Σ;Z),Z). Then

i′∗(χ)[γ] = χ(ψ−1
K r∗)[γ] for any [γ] ∈ HP ′1 (Σ′;Z). Recall that r∗ is the projection of

HP
′

1 (Σ′;Z) on H P̂1 (Σ̂;Z). Commutativity of the lower square is proven by showing

commutativity of diagram (4.6).

Hom(HP1 (Σ;Z),Z)
(ψ∗K )−1

// Hom(H P̂1 (Σ̂;Z),Z) r∗ // Hom(HP
′

1 (Σ′;Z),Z)

HP1 (Σ;Z)
ψK //

D

OO

H P̂1 (Σ̂;Z)
s∗ //

D

OO

HP
′

1 (Σ′;Z)

D

OO
(4.6)

We will analyze 2 cases for the square on the left of diagram (4.6).

Clearly, ψ−1
K : H P̂1 (Σ̂;Z) → HP1 (Σ;Z) preserves the algebraic intersection form, i.e.

for any a, b ∈ H P̂1 (Σ̂;Z) we have î(a, b) = î(ψ−1
K (a), ψ−1

K (b)).

Case 1: For any homology class [x] of HP1 (Σ;Z) with a closed curve representative,

we have

(ψ∗K )−1(D([x]))[γ] = D([x])(ψ−1
K ([γ])) = î(ψ−1

K [γ], [x]) (4.7)
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and

D(ψK ([x]))[γ] = D([x])([γ]) = î([γ], [x]). (4.8)

For simplicity, [x] denotes both an element in HP1 (Σ;Z) and its image under the

isomorphism ψK . In (4.7), [x] is an element of HP1 (Σ;Z), whereas in (4.8), [x] is

an element of H P̂1 (Σ̂;Z). Hence, we can consider [x] in (4.7) to be ψ−1
K ([x]). The

following gives the commutativity for [x]:

(ψ∗K )−1(D([x]))[γ] = î(ψ−1
K [γ], [x])

= î(ψ−1
K [γ], ψ−1

K ([x]))

= î([γ], [x])

= D(ψK ([x]))[γ]

for all [γ] in H P̂1 (Σ̂;Z).

Case 2: For the basis elements [hlj] of HP1 (Σ;Z), we will show that left-hand side of

diagram (4.6) commutes. We have

(ψ∗K )−1(D([hlj]))[γ] = D([hlj])(ψ
−1
K ([γ])) = î(ψ−1

K [γ], [hlj]) (4.9)

and

D(ψK ([hlj]))[γ] = D([hlj ∗ klj])([γ]) = î([γ], [hlj ∗ klj]). (4.10)

As in Case 1, the last term in (4.9) denotes the algebraic intersection number in

HP1 (Σ;Z) and the last term in (4.10) denotes the algebraic intersection number in

H P̂1 (Σ̂;Z).

By the same reasoning as in the previous case,

î(ψ−1
K [γ], [hlj]) = î(ψ−1

K [γ], ψ−1
K ([hlj ∗ klj])) = î([γ], [hlj ∗ klj])

for all [γ] in H P̂1 (Σ̂;Z).

Finally, for the left-hand side of diagram (4.6) we have (ψ∗K )−1 ◦D = ψK ◦D. This

shows commutativity for the left-hand side of diagram (4.6).

Now our aim is to show that the square in the right-hand side of diagram (4.6) com-

mutes. Recall that s∗ : H P̂1 (Σ̂;Z)→ HP
′

1 (Σ′;Z) is the inclusion map.
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Let [x] be an element ofH P̂1 (Σ̂;Z). For any homology basis element [γ] ∈ HP ′1 (Σ′;Z)

the lemma follows:

r∗(D([x]))[γ] = D([x])(r∗([γ])) = î(r∗([γ]), [x])

D(s∗([x]))[γ] = D([x])([γ]) = î([γ], [x]).

If a representative of [γ] is contained in the complement of Σ̂, r∗([γ]) = 0. Hence

r∗(D([x]))[γ] = 0. Since a representative of [x] is contained in Σ̂, D(s∗([x]))[γ] = 0

is obtained.

If a representative of [γ] is contained in Σ̂, r∗([γ]) = [γ] and so r∗(D([x]))[γ] =

D(s∗([x]))[γ] as desired.

Consequently, we have proven that diagram (4.6) commutes. Since dual maps D are

isomorphisms, we obtain that diagram (4.5) is also commutative. We conclude that

s∗ ◦ ψK ◦ t(Σ,P) = t(Σ′,P ′) ◦ i∗ by diagram (4.5).

Corollary 4.4.2. The following diagram is commutative and hence we get the follow-

ing equality: t(Σ,P) = ψ−1
K ◦r∗ ◦C ◦pi ◦τ(Σ,P), where C is the contraction map. Here,

τ(Σ,P) is the partitioned Johnson homomorphism defined in Definition 3.2.4, pi is the

map defined in Definition 3.2.8.

W(Σ,P)

pi

,,
I(Σ,P)

t(Σ,P)

''

τ(Σ,P)

OO

i∗ //

ẽY
��

I(Σg,1)

ẽX
��

t

((

τ //
∧3H1(Σg,1;Z)

C

��
Hom(HP1 (Σ;Z),Z)

i′∗ //

D−1

��

H1(Σg,1;Z) D−1
// H1(Σg,1;Z)

ψ−1
K ◦r∗rr

HP1 (Σ;Z)

(4.11)

Proof. We need to confirm that each triangle and square is commutative. The par-

titioned Johnson homomorphism is natural (c.f. Theorem 3.2.9). Hence, the upper

triangle is commutative. We showed in Theorem 4.3.4 that the left square in the

middle part is commutative. The commutativity of the right square in the middle fol-

lows from Theorem 2.2.10 and the definition of the Chillingworth class. Finally, the

commutativity of the lower triangle follows from Lemma 4.4.1.
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We now provide an example to verify the equality t(Σ,P) = ψ−1
K ◦ r∗ ◦ C ◦ pi ◦ τ(Σ,P)

in Corollary 4.4.2. We assume that there is an embedding Σ ↪→ Σg,1.

Example 4.4.3. Let (Σ,P) be a partitioned surface of genus g. Choose a basis for

the fundamental group of the partitioned surface Σ as in Figure 4.4. Notice that

[α1, β1] . . . [αg, βg]ζn . . . ζ0 = 1.

Note that if [αi] and [βi] denote the homology classes of αi and βi in HP1 (Σ;Z),

respectively, the image of the partitioned Johnson homomorphism can be written as

τ(Σ,P)(f) =

g∑

i=1

τ(Σ,P)(f)([αi])⊗ [βi]− τ(Σ,P)(f)([βi])⊗ [αi],

for any f ∈ I(Σ,P) (c.f. [5, 14]).

. . .

α1

β1

ζn

...

ζ0

Figure 4.4: An example illustrating basis elements of π1(Σ, ∗).

Now, for simplicity let (Σ,P) denote (Σ1,2, {{z0}, {z}}) and i : (Σ,P) ↪→ Σg,1 be

an embedding of partitioned surfaces. Assume that in the complement Σg,1 \ Σ◦,

z bounds a genus k subsurface which does not contain the boundary of Σg,1 as a

boundary component. Let X be a nonvanishing vector field on Σg,1 and Y be the

restriction of X to Σ.

We first compute the right-hand side of the equation t(Σ,P) = ψ−1
K ◦ r∗ ◦C ◦ pi ◦ τ(Σ,P)

in the case that TγT−1
δ is a twist about P-bounding pair as in Figure 4.5.

Notice that TγT−1
δ (α) = αζ , so TγT−1

δ (α)α−1 = [α, ζ]ζ .

We have TγT−1
δ (β) = ζ−1βζ , so TγT−1

δ (β)β−1 = [ζ−1, β].

Let [α], [β] be the homology classes of α and β in HP1 (Σ;Z), and let z denote the

class of ζ in N(Σ,P). Therefore, we have

τ(Σ,P)(TγT
−1
δ ) = z ⊗ [β].
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Since z bounds a genus k subsurface in Σg,1, we have z =
∑k

i=1([αi] ∧ [βi]) in
∧2H1(Σk,1;Z) where {[α1], [β1], . . . , [αk], [βk]} is a symplectic basis of H1(Σk,1;Z).

Therefore, we have

pi ◦ τ(Σ,P)(TγT
−1
δ ) = (

k∑

i=1

([αi] ∧ [βi]))⊗ [β].

After composing with the tensor contraction map C, we have

C ◦ pi ◦ τ(Σ,P)(TγT
−1
δ ) = 2k[β].

Finally,

ψ−1
K ◦ r∗ ◦ C ◦ pi ◦ τ(Σ,P)(TγT

−1
δ ) = 2k[β].

α

β

ζ

z

γ

δ

γ

δ

z

z0

z0

αβ

ζ

Figure 4.5: A basis for the fundamental group of Σ1,2 and bounding pair (γ, δ) em-

bedded in Σ1,2.

We now calculate the left-hand side of the equation t(Σ,P) = ψ−1
K ◦ r∗ ◦C ◦ p ◦ τ(Σ,P).

We need to show that D−1(ẽY (TγT
−1
δ )) = 2k[β]. As seen in Figure 4.5, TγT−1

δ is the

identity on every homology basis element except [α]. Recall that Y is the restriction of

the nonvanishing vector field X on Σg,1 to Σ1,2. We may assume that Y is orthogonal

to α by using Corollary 4.3.7. Therefore, w̃Y (α) = 0. Since we have

ẽY (TγT
−1
δ )[α] =

w̃Y (TγT
−1
δ (α))− w̃Y (α)

2
,

we need to find w̃Y (TγT
−1
δ (α)) to compute ẽY (TγT

−1
δ )[α]. We will use the argument

in Lemma 2.2.4. If one wants to calculate w̃Y (TγT
−1
δ (α)) without knowledge of genus

in the connected component of Σg,1 \ Σ◦1,2 not containing the boundary component,

w̃Y (z) needs to be known. If we did not fix any embedding and a vector field on Σg,1,

w̃Y (z) could take on any even integer value.
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As a corollary of Lemma 2.2.4, Chillingworth states that wX(z) = ±(2k − 1) where

the sign of wX(z) depends on the orientation of z. In our example, it can be shown

that wX(z) = 2k − 1 and so w̃Y (z) = 2(2k − 1). Let us cut Σ1,2 along α and

TγT
−1
δ (α). Then consider the pair of pants with one of the boundary components

z. Glue discs D1, D2 and D3 along α, TγT−1
δ (α) and z, respectively. Extend the

nonvanishing vector field Y to the resulting sphere such that in each Di, i = 1, 2, 3,

there will be at most one singularity. By the Poincaré-Hopf Theorem, the sum of the

indices of the extended vector field is 2. Since Y is orthogonal to α, inD1 the extended

vector field has a singularity of index 1. By a diffeomorphism, we can consider the

gluing discs as unit discs in R2. There is therefore a notion of constant vector field on

the discs. Since wX(z) = 2k − 1, the index of the singularity on D3 is calculated as

follows:

Let X ′ denote a constant vector field on the discs. Recall the definition of d(Y,X ′)

form Subsection 2.2.2.

By Lemma 2.2.6, we have

wX′ (z)− d(Y,X ′)[z] = wY (z).

Since the boundary of D3 is clockwise oriented, −d(Y,X ′)[z] corresponds to the

index of the singularity in D3. We find that the singularity v3 in D3 has index 2k.

Therefore, index of the singularity v2 in D2 needs to be indv2(Y ) = 1 − 2k. Then by

using the formula

wX′ (TγT
−1
δ (α))− d(Y,X ′)[TγT

−1
δ (α)] = wY (TγT

−1
δ (α)),

we get wY (TγT
−1
δ (α)) = 2k. Here since the boundary of D2 has the orientation

in the counterclockwise direction, d(Y,X ′)[TγT
−1
δ (α)] = indv2(Y ) = 1 − 2k. As a

conclusion, we get ẽY (TγT
−1
δ )[α] = 2k and so,

D−1(ẽY (TγT
−1
δ )) = t(Σ,P)(TγT

−1
δ ) = 2k[β].
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