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ABSTRACT

MIXTURE OF VINES FOR DEPENDENCE MODELING: FINITE MIXTURE
AND CD-VINE APPROACHES WITH APPLICATIONS

Evkaya, Ömer Ozan

Ph.D., Department of Statistics

Supervisor : Assoc. Prof. Dr. Ceylan T. Yozgatlıgil

Co-Supervisor : Prof. Dr. A. Sevtap Selçuk-Kestel

July 2018, 165 pages

Recently, there has been an increasing interest on the combination of copulas with a
finite mixture model. By a finite mixture, a suitable weighted sum of a parametric
densities are tied together in a probabilistic manner. The combination of vine copulas
incorporated into a finite mixture model is also beneficial to capture hidden structures
in a data set. On the other hand, there are limited number of studies about the mixture
of vine copulas. In this dissertation, different mixture of vines are proposed for
expressing the complex and hidden dependencies in a multivariate data. Firstly, the
mixture of vine copulas with different dependence structures are offered to capture the
complex association in higher dimension. For this reason, finite mixture of C-vine is
studied with different copula pairs. Thereafter, finite mixture of C- and D-vines have
been tested with the same copula family. Lastly, as a novel approach, finite number
of C-vines are incorporated into a D-vine copula model to derive the association
between several variables. The values of cumulative distribution functions for each
component having C-vine structure are combined with D-vine by considering the
temporal ordering of the components. The performance of the proposed models are
tested using simulated and real data sets, then the corresponding results are interpreted
in depth.

Keywords: Vine mixture, Finite mixture model, CD-vine mixture, Optimization
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ÖZ

BAĞIMLILIK ANALİZİ İÇİN VİNE COPULA KARIŞIMI: UYGULAMALARLA
SONLU KARIŞIM VE CD-VİNE YAKLAŞIMI

Evkaya, Ömer Ozan

Doktora, İstatistik Bölümü

Tez Yöneticisi : Doç. Dr. Ceylan T. Yozgatlıgil

Ortak Tez Yöneticisi : Prof. Dr. A. Sevtap Selçuk-Kestel

Temmuz 2018 , 165 sayfa

Son yıllarda, sonlu karışım modelleri ile copulaların bir araya getirilmesi konusundaki
çalışmalara artan bir ilgi vardır. Sonlu karışım modeli yardımıyla, parametrik yoğunluk
fonksiyonları uygun ağırlıklar verilerek olasılıksal olarak bir araya getirilmektedir.
Verilen veri setinde gizli bağımlılıkların anlaşılmasında, sonlu karışım modelleri ile
birleştirilmiş farklı vine copula kombinasyonları da yardımcı olmaktadır. Öte yandan,
literatürde sonlu karışım yaklaşımı ile ilgili sınırlı sayıda çalışma bulunmaktadır. Bu
doktora tezinde, çok boyutlu verilerde saklı olan bağımlılık yapısı için vine copula
karışımları önerilmiştir. İlk olarak, yüksek boyutlu verilerde yer alan saklı kompleks
ilişkinin yakalanması için, farklı bağımlılık yapılarına sahip vine copula karışımları
sunulmuştur. Buna göre, farklı bağımlılık yapılarını ifade eden copulalar yardımıyla,
sonlu sayıda C-vine karışım modelleri önerilmiştir. Ayrıca, sonlu sayıda C- ve D-vine
model karışımı aynı copula ailesi kullanılarak test edilmiştir. Son olarak, bir çok
değişken arasındaki bağımlılık yapısının incelenmesini sağlayan özgün CD-vine mode-
li çalışılmıştır. Buna modelde, sonlu sayıda C-vine copula modellerinin birikimli
dağılım fonksiyon değerleri, D-vine copula modeli içerisine eklenmiştir. Önerilen
modellerin başarısı, benzetim tabanlı ve gerçek veriler kullanılarak test edilmiş, sonuç-
lar detaylı olarak yorumlanmıştır.

Anahtar Kelimeler: Vine karışımı, Sonlu karışım modeli, CD-vine karışımı, Optimizasyon
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CHAPTER 1

INTRODUCTION

In this chapter, first the motivation of the study and related dependence measures are

explored by giving short theoretical background. Besides, fundamentals of copula

functions are summarized to understand the basic framework. Finally, the main

objective of the thesis study is briefly mentioned at the end.

1.1 Background and Motivation

Copulas have became a popular tool in multivariate modeling, and they have been

used for many real life problems where the multivariate dependence is of great interest

and the usual multivariate normality assumption is violated. They successfully cover

both negative and positive dependence, including the case of independence and incor-

porating the asymmetric dependence structure as well. Interest in copulas has been

growing rapidly as a statistical tool to capture the complex dependence structure

between several random variables. As copulas have different attractive and distinct

properties, the number of copula-based models extensively increased in many research

areas including actuarial science, finance, neuroscience and environmental based stu-

dies. On the other hand, in contrast to wide range of its applications in bivariate

case, the extension of copulas to the higher dimensions has many drawbacks in

practice. The reason comes from the fact that standard multivariate copulas like

Gaussian (Normal), student-t and other archimedean types lack flexibility to model

the dependence in higher dimensions with other limitations such as restriction on

parameter space. For this reason, vine copulas have been proposed and considered in
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various research fields recently.

Vine copula framework offers a powerful and flexible modeling tool to detect the

complex dependence structures by using bivariate copulas. Different vine copulas are

available to identify dependence pattern in higher dimensions in terms of different

pair copula families. Briefly, vine copulas are graphical type of statistical models

designed to overcome the limitations of standard copulas in higher dimensions. They

allow to express a multivariate copula by using the suitable bi-variate copulas in a

hierarchical manner. For this reason, construction of a vine copula and its inference

for multivariate data primarily relies on the pair copula decomposition. Meanwhile, as

a result of large number of possible decompositions for conditional density functions

inside of the whole multivariate density, there are many ways to generate vines.

Among those constructions, two popular types of vine copulas widely used by resear-

chers are called the Canonical(C) and Drawable(D) vines in the literature.

Latterly, there has been an increasing interest on the combination of copulas with

a finite mixture model to get more flexible density functions. Within the context

of the finite mixture model, a suitable weighted sum of parametric densities are

tied together in a probabilistic manner. Such a framework is useful to reveal the

complex dependence patterns observed for random variables and more flexible in

terms of statistical modeling. The combination of vine copulas incorporated into a

finite mixture model is also beneficial for capturing hidden structures in a multivariate

data. On the other hand, apart from various studies about mixture of bivariate copula

functions, there exist limited number of studies about the mixture of vine copulas in

the literature.

In that respect, the study of Kim et al. [22] and the corresponding results is the

main motivation and inspiration of this dissertation. As a first step, the possible

improvements of the study belonging to [22] are considered. In order to derive

various forms of mixture of vines, 2/3 component, 3 dimensional C-vine mixture

models and 2 component, 4 dimensional C-vine mixture with various copula families

are considered. Additionally, the same procedure is extended to combine both C-vine

and D-vine tree structures under 2 component 4 dimensional case. Finally, as a novel

method, instead of using classical finite mixture setup, CD-vine mixture model has
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been proposed. Under this framework, finite number of C-vine copula models are

incorporated into a D-vine copula model to derive the dependence pattern between

several random variables. The multivariate cumulative distribution function (c.d.f)

values are obtained for each component of the mixture and then are combined with

the help of D-vine copula in terms of temporal dependence among the components. In

this new mixture model, the parameter estimation and inference for full multivariate

density is required to maximize log-likelihood function in two consecutive steps with

required initials. After testing proposed mixture models using simulated data, real

life examples were exploited by using two different financial data sets.

1.2 Basics of Dependence Measure

The dependence between random variables is one of the crucial research topic in

many fields of mathematics, primarily one of the most widely studied one in statistics.

A vast number of studies have been introduced for different dependence concepts in

the literature by offering useful applications. From the probabilistic point of view,

knowing the distribution function for several random variables is one of the efficient

way of understanding the association among multivariate outcomes. For this purpose,

copulas or copula functions are very promising to focus on the joint behavior of

random variables without putting strict restrictions on their marginal distributions.

This method is a very practical tool for identifying multivariate distributions. Even if

it has a relatively short history in statistics literature, copulas have been considered in

the probability literature for the last 50 years. The interrelation between the dependence

properties and measures of association is one of the corner stone for understanding

how copulas can be used in this field of study [28]. For that purpose, widely used

dependence measures are briefly explained below.

One of the widely accepted measures of dependence is the product moment correlation,

simply called as Pearson’s linear correlation, denoted by ρ. This linear dependence

measure can be easily computed, defined briefly as follows,

Definition 1.2.1. For two random variables, X and Y with E[X] < ∞, E[Y ] < ∞,

V ar[X] < ∞ and V ar[Y ] < ∞, the Pearson’s correlation for population is defined

as:
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ρ(X, Y ) =
Cov(X, Y )

σXσY
. (1.2.1)

whereCov(X, Y ) = E(XY )−E(X)E(Y ) calculates the covariance of given random

variables, σX and σY are standard deviations of random variablesX and Y , respectively.

In this formulation, given fraction in Equation 1.2.1 can be expanded to express the

following expression with sample size n,

ρ̂(X, Y ) =

∑n
i (Xi −X)(Yi − Y )√∑n

i (Xi −X)2

√∑n
i (Yi − Y )2

. (1.2.2)

where X and Y are sample mean values of X and Y . These measures are calculated

based on the given sample with n observations. Three main properties of ρ(X, Y )

can be summarized as follows:

• −1 ≤ ρ(X, Y ) ≤ 1, here the lower and upper bounds exhibit perfect negative

and positive linear correlation for two random variables, respectively.

• If X and Y are independent, then ρ(X, Y ) = 0. But, the converse of this

expression is not true.

• ρ(αX + β, γY + δ) = sgn(αγ)ρ(X, Y ) for all α and γ ∈ R \ 0 and β, δ ∈
R, which shows additionally that linear correlation is invariant under strictly

increasing linear transformations.

Although, Pearson correlation is easy to calculate and has many useful properties,

it measures only linear correlation between continuous random variables. For this

reason, it is not useful to capture non-linear dependence structure. Moreover, there

exist some statistical problems with ρ(X, Y ), such as not being a robust measure.

Thus, other dependence measures are required to avoid these deficiencies, which

brings us definition of rank correlation and related dependence measures defined over

the concepts of concordance and discordance.

Informally, two random variables are called concordant if large values of one tend

to be associated with large values of the other and likewise small values of one with
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small values of the other [28]. More precise definitions for the concordance and

discordance are glued together as follows:

Definition 1.2.2. Let (X, Y ) be vector of continuous random variables with two

observations (xi, yi) and (xj, yj) for arbitrary values of i and j. Then,

(xi, yi)

and

(xj, yj)

are concordant if

(xi − xj)(yi − yj) > 0

and discordant if

(xi − xj)(yi − yj) < 0

Based on these definitions, two widely known correlation measures are defined using

different constructions. First one is called Spearman’s rho (ρS) and is developed to

measure the correlation between the ranked data. The second rank based measure is

the sample version of the measure of association, namely Kendall’s tau (ρτ ), defined

in terms of concordance.

Definition 1.2.3 (Spearman’s rho ρS). Let X and Y be two random variables having

marginal distribution functions as FX , FY and joint distribution function FX,Y . Then,

the estimator of ρS is defined as

ρ̂S(X, Y ) =
12

n(n2 − 1)

n∑
i=1

(rank(Xi)−
n+ 1

2
)(rank(Yi)−

n+ 1

2
). (1.2.3)

where n is the sample size, rank(Xi) and rank(Yi) denotes the rank of an observation.

Besides, Xi and Yi gives the position of Xi and Yi in the ordered random sample. For

instance, rank(Xi) is defined as follows, i.e.

rank(Xi) = 1 +
∑
Xj<Xi

j +
1

2

∑
j 6=i,Xj=Xi

j

.
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and rank(Yi) has very similar expression. The population version of ρS is given by,

ρS(X, Y ) = ρ(FX(X), FY (Y )). (1.2.4)

where ρ is the usual linear correlation.

Definition 1.2.4 (Kendall’s ρτ ). Let (X1, Y1), (X2, Y2), · · · (Xn, Yn) denote a random

sample of n observations from a vector (X, Y ) of continuous random variables. Let

c and d are the number of concordant and discordant pairs within each pair of

observations of totally
(
n
2

)
distinct pairs, denoted by (Xi, Yi) and (Xj, Yj) in the

sample. Then, an estimate of Kendall’s rank correlation is defined as,

ρ̂τ =
c− d(
n
2

) =

(
n

2

)−1∑
i<j

sgn(Xi −Xj)(Yi − Yj). (1.2.5)

The population version of ρτ (X, Y ) for independent and identically distributed random

vectors with (X1, Y1) and (X2, Y2) is given by,

ρτ (X, Y ) = P[(X1 −X2)(Y1 − Y2) > 0]− P[(X1 −X2)(Y1 − Y2) < 0]. (1.2.6)

In addition to their important advantages, there is a well-defined relationship between

the parameter of the copula functions and above-mentioned rank-based correlation

measures. Equivalently, these measures are copula-based and can be expressed in

terms of copulas. Although both rank based correlations measure the probability of

concordance between random variables with respect to given copula family, values of

ρS and ρτ are still quite different. Detailed explanation and related proofs about both

dependence measures can be found in [28] with clear examples. Here, to make a more

precise explanation, the relationship between copula functions and both correlation

measures is described in the following theorem.

Theorem 1.2.5. LetX and Y be continuous random variables whose copula function

is C. Then the population version of Spearman’s rho for X and Y (can be either

denoted by ρ(X, Y ) or ρC) is defined by,
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ρ(X, Y ) = ρC = 12

∫∫
︸︷︷︸
I2

C(u, v) du dv − 3. (1.2.7)

In a similar manner, the population version of Kendall’s tau for X and Y (can be

either denoted by τ(X, Y ) or τC) is defined by,

τ(X, Y ) = τC = 4

∫∫
︸︷︷︸
I2

C(u, v) dC(u, v)− 1 = 4E[C(U, V )]− 1. (1.2.8)

where I2 = I × I is the unit square for I = [0, 1].

Above theorem briefly summarizes the role of concordance in copula functions. There

are other rank-based correlation measures and all derivations of important results,

mainly stated above, are important to understand basis of copula theory. Interested

reader can read Chapter 5 of [28] in detail, but, the rest of the findings about correlation

measures are not scope of this thesis. For this reason, it is time to go further on the

problem of constructing multivariate distributions which are consistent with given

marginal distributions and correlations more deeply. For a departure point, the next

section introduces the theoretical framework of copula functions.

1.3 Theoretical framework for Copulas

In this part, the generalization of the "non-decreasing" notion for univariate functions,

main concept applicable to multivariate functions, is presented. This construction is

the key for understanding the basis of copula functions. In this respect, some notations

and definitions will be recalled to build the preliminary part of the copula theory step

by step. The first focus is the definition of a "2-increasing" function, described as a

two dimensional analogy of a one variable non-decreasing function,

Definition 1.3.1. Let S1 and S2 be nonempty subsets of R where R is the extended

real line, i.e. [−∞,∞]. H be a two-place real function such thatDom(H) = S1×S2

and whose domain is a subset of R
2

= [−∞,∞]× [−∞,∞], called as extended real
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plane and range is a subset of R. Let B = [x1, x2] × [y1, y2] be a rectangle all of

whose vertices are in Dom(H). Then, the H-volume of B is defined as,

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1) (1.3.1)

Here, a 2-place real function H is called 2-increasing (referred as quasi-monotone)

if VH(B) ≥ 0 holds for all rectangles B whose vertices are elements of Dom(H).

As a result of Definition 1.3.1, following lemmas can be presented for the continuity

of quasi-copulas, indeed copulas.

Lemma 1.3.2. Let S1 and S2 be nonempty subsets of R, and H be a 2-increasing

function with Dom(H) = S1 × S2. Let x1, x2 ∈ S1 with x1 ≤ x2 and similarly y1, y2

∈ S2 with y1 ≤ y2. Then,

H(t, y2)−H(t, y1)

and

H(x2, t)−H(x1, t)

are non-decreasing functions over S1 and S2, respectively. As a direct result of this

lemma, a 2,increasing function H is non-decreasing in each argument results in the

following lemma,

Lemma 1.3.3. Let S1 and S2 be nonempty subsets of R, and H be a 2-increasing

function with Dom(H) = S1 × S2. Assume that a1 and a2 be least elements of the

subsets S1 and S2, respectively. The function H from S1 × S2 to R is grounded if

H(x, a2) = H(a1, y) = 0 ∀ (x, y) in its Dom(H). In this case, the function H is

called grounded 2-increasing and it is non-decreasing in each argument.

After defining the "grounded 2-increasing" function, the last crucial lemma for the

construction of copula functions appears as follows,

Lemma 1.3.4. Let S1 and S2 be nonempty subsets of R, and H be a grounded

2-increasing function with margins, and Dom(H) = S1 × S2. Let (x1, y1) and

(x2, y2) be any points in its domain. Then,
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|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|

where F and G are cumulative distribution functions for random variables X and Y ,

respectively. Above-mentioned definitions and lemmas are required to define copula

functions in two steps. Firstly, sub-copulas are defined, which are a certain class

of grounded 2-increasing functions with their margins. Then, copula functions as

sub-copulas with domain I2 = I × I are described.

Definition 1.3.5. A two-dimensional sub-copula, or simply 2-sub-copula is a function

C ′ which satisfies the given properties below:

• Dom(C ′) = S1 × S2 in which S1 and S2 are subsets of I = [0, 1].

• C ′ is grounded 2-increasing function

• ∀ u in S1 and ∀ v in S2, the equalities C
′
(u, 1) = u and C

′
(1, v) = v are

satisfied. Here, the range of C
′
, (i.e. Ran(C

′
)) is also a subset of I since

0 ≤ C
′
(u, v) ≤ 1 holds ∀(u, v) in Dom(C

′
).

Definition 1.3.6. A two-dimensional copula, shortly copula is a 2-sub-copula with

domain I2 which satisfies certain properties listed below:

• For every u and v in I ,

C(u, 0) = C(0, v) = 0 and

C(u, 1) = u and C(1, v) = v;

• For every u1, u2, v1 and v2 in I with u1 ≤ u2 and v1 ≤ v2,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0

There exists small differences between sub-copulas and copulas, but this small distinc-

tion is still important for Sklar’s Theorem, the corner stone of the copula theory.

Besides, most of the properties of copulas are indeed the properties of sub-copulas.

To illustrate another important inequality, satisfied by both sub-copulas and copulas,

given below,

Theorem 1.3.7. Let C
′

be a subcopula. Then for every (u, v) in Dom(C
′
),

max(u+ v− 1, 0) ≤ C
′ ≤ min(u, v) is satisfied. Since every copula is a sub-copula,
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given inequality holds for copulas for every (u, v) in I2,

W (u, v) ≤ C(u, v) ≤ M(u, v) where commonly denoted functions W (u, v) =

max(u + v − 1, 0) and M(u, v) = min(u, v) are lower and upper bounds for the

copula function C(u, v).

This inequality primarily identifies the boundaries of copulas functions, generally

referred as "Frechet-Hoeffding bounds". Later on, Sklar’s Theorem and other related

subjects will be discussed in Chapter 2 by keeping mind this general background.

Interested reader can find all details about theoretical framework for the construction

of copula functions in Chapter 2 of [28]. For this reason, this section is concluded by

the main goal of thesis study, for summarizing the potential of the study.

1.4 Objective of the study

This dissertation aims to make practical and meaningful contribution to the field

of mixture of vines. In this study, the mixture of vine copulas are proposed for

expressing the different dependencies hidden in a multivariate data set. As a first

approach, the finite mixture of C-vine copulas with different dependence structures

are proposed to capture the complex hidden association in higher dimension. In that

respect, various copula families are considered and in some cases distinct pairs are

used to construct each component separately. Furthermore, finite mixture of C- and

D-vine models is proposed to define more powerful mixture density function in terms

of different tree structures. Afterwords, as a novel approach, finite number of C-vine

copula models are incorporated into a D-vine copula model to derive the dependence

structure between several random variables. For this mixture model, c.d.f. values

obtained from the different components of C-vine copulas are combined with the

help of D-vine method by considering the temporal ordering of the components.

The original motivation of CD-vine modeling approach directly relies on one of

the agricultural problem, about the dependence among the growing periods of any

crop yield. As a summary, for a specific crop, there is a unique requirement for

climatic or soil based needs during its growth stages. For an accurate agricultural risk

management decisions, the identification and understanding the dependence among
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the growth stages for a specific crop yield is very crucial. In that respect, above

declared CD-vine model can be a useful tool to detect any hidden dependence both

within and between growth periods in terms of pre-selected explanatory variables for

a crop yield. With this approach, dependence structure between variables at each time

point is explained by C-vine model and dependence among the time points is captured

by D-vine model.

In general, the whole research is dedicated to the mixture of vine copulas field and

the performance of the proposed models are tested using both simulated and real data

sets. Having all experiences on simulated data sets, two different real life examples

are studied in the field of finance by giving advantages and drawbacks of the proposed

mixture models. For this reason, two different data sets have been investigated inclu-

ding various major stock indices in the world. Finite mixture of C-vine model and the

proposed CD-vine framework is implemented with these data sets separately.

The rest of this thesis is organized as follows: Chapter 2 summarizes main properties

of copulas and vine copulas with respect to their foundations. Besides, important

and widely known copula families are briefly described with their advantages and

limitations in bivariate case. Afterwords, the main reason for the rise of vine copulas

is explained in detail. The recall for the mixture of vines proposed by [22] with

the short literature review is presented in Chapter 3. Furthermore, various finite

mixture models are presented and then the novel CD-vine mixture model is proposed.

Thereafter, Chapter 4, summarizes the numerical findings of the above mentioned

mixture models based on simulated data and real life examples. Finally, in Chapter 5,

the main conclusions of this study are highlighted with its advantages and drawbacks

by giving possible further research directions and related open problems.
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CHAPTER 2

METHODOLOGICAL FRAMEWORK

Under this chapter, the building blocks of copula functions are recalled briefly. There

after, widely known and considered bivariate copula families are described with their

certain properties. The advantages of those bivariate distributions are discussed with

its main drawbacks, which open the next door; the rise of vine copulas. The construc-

tion of vine copulas, a kind of graphical multivariate distribution representation, is

simply explained with two special cases in the end.

2.1 Copulas and Their Properties

2.1.1 Preliminaries

The history of copula models started with the problem of deriving bivariate distribution

function for given marginal distributions, F1 and F2 for two random variables X1 and

X2, respectively [16]. Later on, the notion of copula was first introduced by [35].

The main motivation behind the copula framework is the attempt of answering the

questions of how to construct multivariate distributions with different margins and

how to separate the dependence structure from their margins [16]. In this sense, the

basic definition for copula functions is given as follows:

Definition 2.1.1. A copula is a multivariate distribution whose marginals are all

uniform over [0, 1]. For a p-dimensional vector U on the unit hyper cube, a copula C

is defined as,
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C(u1, u2, ..., up) = Pr(U1 ≤ u1, U2 ≤ u2, ..., Up ≤ up). (2.1.1)

This definition is the main result of the Sklar’s theorem [35], namely building block

of the theory of copulas, given below.

Theorem 2.1.2. (Sklar’s Theorem) Let F be a p-dimensional distribution function

with univariate margins F1, F2, ..., Fp. Let Aj denote the range of Fj and Aj =

[−∞,∞] where j = 1, 2, ..., p. Then, there exists a copula function C s.t. for all

(x1, x2, ..., xp) ∈ [−∞,∞] satisfies the following:

F (x1, x2, ..., xp) = C(F1(x1), F2(x2), ..., Fp(xp)). (2.1.2)

where the random variables X1, ..., Xp are assumed to be continuous.

Such a copula C, defined in Equation 2.1.2, is unique whenever all F1, F2, ..., Fp

are continuous marginal distributions. Conversely, if C is a copula and F1, ..., Fp

are distribution functions, then function F is a multivariate distribution function with

margins F1, ..., Fp. In particular, C can be interpreted as the cumulative distribution

function of a p dimensional random variable on [0, 1]p with uniform margins.

Corresponding density of copula function is denoted by c, calculated as c(x1 · · ·xp) =
∂pC(x1···xp)

∂x1···∂xp

2.1.2 Copula Related Dependence Measures

To understand the relationship among multivariate outcomes, copulas seem to be very

promising. More simply, above mentioned joint distribution F given in Equation

2.1.2 contains the dependence structure of the random variables. Such a necessity

for copulas comes from numerous fallacies concerning correlation, when especially

outside of the elliptical world. In case of linear correlation, there exist certain deficien-

cies for multivariate models different from normal case. These shortcomings have

been solved with an elegant movement into the alternative correlation measures,

briefly summarized in Chapter 1.
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Thanks to the concepts of concordance and discordance, two widely known rank

correlations are defined as Spearman ρ and Kendall’s τ . For both rank based correlation

measures, the common term in their formulations is naturally the rank of the observation,

illustrated below;

rank(Xi) = 1 +
∑
Xj<Xi

j +
1

2

∑
j 6=i,Xj=Xi

j. (2.1.3)

where Equation 2.1.3 identifies the position of the i’th observation for a given random

variable, X , within in the ordered random sample. These two alternative correlation

measures can be recalled one more time in terms of the copula function, as it is

mentioned in Chapter 1. Above described nonparametric correlation measures ρ̂S(X, Y )

and ρ̂τ (X, Y ) could be expressed as,

ρ̂S(X, Y ) = 12

∫∫
V

(C(u, v)− uv) du dv. (2.1.4)

ρ̂τ (X, Y ) = 4

∫∫
V

C(u, v)dC(u, v)− 1. (2.1.5)

where V = I2 is the unit square in 2-dimensional space and dC(u, v) = ∂2C(u,v)
∂u∂v

dudv.

Here, both equations 2.1.4 and 2.1.5 allow us to make a conversion from the rank

based correlation measure to the parameter of copula functions and vice versa. In

this study, as it is suggested in the literature, the main focus is Kendall τ values

for measuring dependence among continuous variables in the numerical applications

[17]. Furthermore, apart from above measures, another important dependence measures

within the context of copulas is briefly explained below.

2.1.2.1 Tail Dependence

It is a well known fact that, linear correlation has vital fallacies for heavy-tailed

distributions. Tail dependence phenomenon directly relates to existence of association

in extreme values, mainly defined based on tails. Suppose X and Y are two random

variables having distributions Fx and Fy, respectively. One can derive two important
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asymptotic measures for tail dependence, called the coefficient of upper and lower

tail dependence.

The upper version of this coefficient, denoted by λu, for X and Y is given as,

lim
t→1−

P (Y > F−1
y (t)|X > F−1

x (t)) = λu, (2.1.6)

where λu ∈ [0, 1] and F−1(t) = inf(x|F (x ≥ t)) with t ∈ (0, 1). For nonzero values

of λ, the pair (X, Y ) are called asymptotically dependent in the upper tail. Otherwise,

ie. λ = 0 they are asymptotically independent. Similarly, the coefficient of lower tail

dependence, i.e. λl is defined below,

lim
t→0+

P (Y ≤ F−1
y (t)|X ≤ F−1

x (t)) = λl, (2.1.7)

where λl ∈ [0, 1] exists. The interpretation of the number λl is similar to λu. Since

the equations 2.1.6 and 2.1.7 include conditional probabilities, there exist a certain

connection between those measures and copulas. In brief, λ measure is indeed a

function of bivariate copula for X and Y . In case of the continuity of Fx and Fy and

existence of given limits, both equations 2.1.6 and 2.1.7 can be rewritten in terms of

copula functions, as follows,

λu = lim
t→1−

P (Y > F−1
y (t)|X > F−1

x (t))

= lim
t→1−

P (Y > F−1
y (t), X > F−1

x (t))

P (X > F−1
x (t))

= lim
t→1−

C(t, t)

1− t
.

(2.1.8)

where C(t, t) = 1 − 2t + C(t, t) and C is the unique copula function for the pair

(X, Y ). In a similar manner,
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λl = lim
t→0+

P (Y ≤ F−1
y (t)|X ≤ F−1

x (t))

= lim
t→0+

P (Y ≤ F−1
y (t), X ≤ F−1

x (t))

P (X ≤ F−1
x (t))

= lim
t→0+

C(t, t)

t
.

(2.1.9)

Based on equations 2.1.8 and 2.1.9, one can observe that the calculation of λ is easy

to handle if the corresponding copula function C has a closed form, to understand

the tail dependence as an asymptotic property. This tail dependence measure gives a

reasonable information about the joint behavior in extremes asymptotically. On the

other hand, for higher dimensions, λmeasure for tail dependence is not so straightfor-

ward like in bivariate case. When it comes to the mixture of vines, the derivation of

these tail dependence measures is not an ordinary calculation certainly.

2.1.3 Parametric Copula Families

This subsection primarily introduces the concept of copulas with their representations

mathematically and graphically. The most frequently used copula families can be

classified generally as elliptical and archimedean ones. There are more than 100

types of copula families in the literature and many of them are widely used in different

research areas. Within this subsection, main copula families are described with their

fundamental properties.

For the construction of copula density function, firstly, the marginal distributions

should be decided and then these values are transformed into uniform numbers using

probability integral transformation. In other respects, the departure point is modeling

residuals when the random variables are univariate time series. In this modeling

setup, even if these residuals do not ensure the normality conditions, the derivation of

multivariate density function is still possible via copulas.
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2.1.3.1 Elliptical Copulas

An elliptical copula is the copula function generated from an elliptical distribution

by Sklar’s theorem. General discussion about elliptical distributions can be found in

[15].

Definition 2.1.3. Let F be the multivariate c.d.f. of an elliptical distribution. Let

Fi be CDF of the i’th margin and F−1
i be its inverse function (quantile function) for

i = 1, ..., p. The elliptical copula determined by F is

C(u1, ..., up) = F [F−1
1 (u1) + ...+ F−1

i (up)]. (2.1.10)

For instance ; normal copulas (derived from bivariate normal with zero means, unit

variances and correlation ρ) and student t-copulas (derived from bivariate t-distribu-

tion with zero mean, degree of freedom ν and association ρ) are two types of elliptical

family. Both of them play a predominant role within the elliptical class and their

usage appears in diverse fields of applications.

Definition 2.1.4 (Gaussian (Normal) Copula). The p-variate Gaussian or Normal

copula function could be defined as

C(u1, · · · , up; Σ) = Φp
Σ(Φ−1(u1) · · ·Φ−1(up)). (2.1.11)

where Σ denotes the correlation matrix (includes dependence structure), Φp
Σ standardi-

zed p-variate normal and Φ−1 represents the quantile function of a univariate standard

normal distribution [20]. In the bivariate case, normal copula family has no tail

dependence.

Definition 2.1.5 (Student-t copula). Assume that Z ∼ N(0,Σ) and νS =
√
ν√
S

with S

is distributed as X2(ν), where ν is the degrees of freedom (d.f.) for given chi-squared

variable S. Here, Y ≡ νSZ has a t-distribution with df ν [20]. When the Sklar’s

Theorem applied with the definition of ρij ≡
∑
ij√∑
ii

∑
jj

for 1 ≤ i, j ≤ p, Student-t

copula function is derived as,

C(u1, · · · , up; ν, ρ) = tpν,ρ(t
−1
ν (u1) · · · t−1

ν (up)). (2.1.12)
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In equation 2.1.12, t−1
ν is the inverse of the classical univariate t-distribution function.

Differently from Gaussian copula, bivariate Student t-copula function exhibits both

upper and lower tail dependence, which can be calculated by using equations 2.1.8

and 2.1.9, respectively.

2.1.3.2 Archimedean Copulas

Under this subsection, another important class, archimedean copulas are summarized

and discussed briefly. With this approach, the study of a multivariate copula could be

reduced to a single univariate function [25]. The building block for the construction

of such a family, directly based on generator functions ϑ is defined below,

Definition 2.1.6. An archimedean copula is constructed through a generator ϑ as

C(u1, ..., up) = ϑ[−1](ϑ(u1) + ...+ ϑ(up)). (2.1.13)

where ϑ[−1] is the pseudo-inverse of the generator ϑ, defined by

ϑ[−1](t) ≡

 ϑ−1(t) 0 ≤ t ≤ ϑ(0),

0 ϑ(0) ≤ t ≤ ∞.
(2.1.14)

In bivariate case,

C(u1, u2) = ϑ[−1](ϑ(u1) + ϑ(u2)). (2.1.15)

defines the so-called archimedean bivariate copula function. Here, in Equation 2.1.15,

ϑ is called the generator of copula. For instance, Gumbel copula family is generated

from ϑ = (−ln(t))θ, where θ ≥ 1 and it controls the degree of dependence. Similar

construction exists for different archimedean type copulas having various tail depen-

dence structures.

Among all archimedean type families, Clayton, Gumbel and Frank are well known

copula functions. Different copula families stand for deriving distinct dependence

structures. For example, elliptical copulas and Frank copula are preferable to examine

the symmetric dependence structures. On the other hand, Clayton and Gumbel are

useful to identify the tail dependencies at lower and upper quantiles, respectively.
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Table 2.1 summarizes bivariate copulas having certain distributional assumptions.

Bivariate standard normal with parameter, ρ, bivariate Student-t distribution with

parameter ρ and degrees of freedom, d. Besides, Frank, Clayton, Gumbel and Joe

families defined over [0, 1] in Table 2.1 are bivariate copulas with parameter θ. Finally,

independence copula family shows no dependence pattern among the variables so that

the parameter is directly equals to zero.

Table 2.1: The most widely used copula families and their parameter spaces

Copula Family Cθ(u, v)

Parameter (θ)

Normal φρ(φ
−1(u), φ−1(v)) =

∫ φ−1(u)

−∞

∫ φ−1(v)

−∞
1

2π
√

1−ρ2
exp(− s2−2ρst+t2

2(1−ρ2)
) dsdt

ρ ∈ (−1, 1)

Student-t td,ρ(t
−1
d (u), t−1

d (v)) =
∫ t−1

d (u)

−∞

∫ t−1
d (v)

−∞
1

2π
√

1−ρ2
(1 + s2−2ρst+t2

d(1−ρ2)
)−

d+2
2 dsdt

ρ ∈ (−1, 1); d ∈ (0,∞)

Frank (−1
θ
) ln[1 + (exp−θu−1)(exp−θv−1)

(exp−θ−1)
]

θ ∈ (−∞,∞) \ {0}
Clayton (u−θ + v−θ − 1)−

1
θ

θ ∈ (0,∞)

Gumbel exp[−(u−θ + v−θ)−
1
θ ]

θ ∈ [1,∞)

Joe (1− ((1− u)θ + (1− v)θ − (1− u)θ(1− v)θ)
1
θ )

θ ∈ [1,∞)

Independence uv

θ = 0

For the dependence structure within the above-mentioned copula families, a set of

useful noteworthy pictures are presented. Each copula family has own tail dependence

properties and this dependence is controlled by the parameter, generally denoted as

θ. To visualize, the following contour plots are beneficial way of understanding each

copula function, presented in Figure 2.1.

In Figure 2.1, all the margins are assumed to be normal. On the other hand, generally

speaking, margins are converted into uniform numbers before the construction of

copula functions. For visualizing various tail dependencies with uniform margins,

both surface and contour plots are displayed in Figure 2.2 with the same parameter

value. In both Figures 2.1 and 2.2, different tail dependence patterns for each family

can be visualized clearly. For instance, Clayton family represents a lower (left) tail

dependence but Gumbel and Joe copulas exhibit an upper (right) tail dependence
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Figure 2.1: Bivariate Copula Families with Normal Margins

structure. Generally, all of those mentioned copula families are asymmetric type of

copulas except Normal, Student-t and Frank copulas, presented in Figure 2.1.

As it is mentioned above, the parameter of the related copula family controls the

degree of dependence over its natural parameter space. For instance, certain fixed

changes on the dependence parameter can be visualized in Figure 2.3 for Clayton

copula with its contour plots. Here, whenever the parameter θ increases, the contour

lines get more dense in the lower tail to identify the increased dependence.

Along with one parameter copula families, other copula families are constructed

based on the rotations or extensions of the existed ones, called as associated copulas.

Among those special families, survival (rotated) copulas deserves more attention

since they are more convenient to measure the negative dependencies within different

tail structures. For example, Clayton, Gumbel, Joe rotated with 90, 180 and 270

degrees are some examples of those new families. To illustrate, various tail dependence

structures for rotated versions are graphed in Figure 2.4 for Gumbel family. Similar

impacts can be visualized for the rotated versions of other copula functions. All of

those copula families appeared in various research fields, and this notion became

increasingly popular at the end of nineties. For the interested reader, the monographs

of [28] and [20] are referred to give more details about copulas.
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Figure 2.2: Surface and Contour Plots of Frank, Clayton and Gumbel families
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Figure 2.3: Contour Plots of Clayton families with different parameters
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Figure 2.4: Contour Plots of Rotated versions of Gumbel family

2.2 Motivation for Vines

Even if they are very practical to model the dependence structure between variables,

the use of copulas is still challenging in higher dimensions, where standard multivariate

copulas suffer from rather inflexible structures. Certainly, it is not so realistic to

extend elliptical and archimedean copula families directly to higher dimensions. Actua-

lly, in some cases it is not possible to do so without losing from their beneficial

properties. For this reason, considerable efforts have been undertaken to increase the

flexibility of multivariate copula models beyond the scope of elliptical and archimedean

copulas.

2.2.1 Preliminaries

Many multivariate data structures exhibit; different marginal distributions having

non-symmetric dependencies like heavy tail dependence pattern between some pairs.

For such data sets, standard parametric distributions such as the Gaussian or multiva-

riate t distribution are not efficient to identify the correct relationship. Moreover,

standard elliptical and archimedean copulas do not allow to use different models
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between pairs of variables, even if some of archimedean families can be extended to

higher dimensions. For this reason, the analysis of high dimensional data requires

more flexible multivariate stochastic models in copula framework. Considerable

efforts have been undertaken to increase the flexibility of multivariate copula models

and vine copulas (vines) are among the best-received of such efforts.

Vine copulas use unconditional and conditional bivariate copulas to describe a multiva-

riate distribution [6]. A set of linked trees, called as vines, describe a vine copula’s

factorization of the multivariate copula density function into the density functions

of its pair copulas (see [6], [14] ). Vine copula models have proven themselves

as a very flexible class of multivariate copula models with regard to symmetry and

tail dependence for pairs of variables. The full specification requires the choice of

vine tree structure, copula families for each pair copula term and their corresponding

parameters. Historically, Joe [19] gave a probabilistic construction of multivariate

distribution functions based on simple building blocks called pair-copulas. Bedford

and Cooke [5], [6] organized these constructions in a graphical way called regular

vines and gave expression for the joint density function. Estimation for the Gaussian

case was considered in the book by Kurowicka and Cooke [14]. Besides, Aas et al.

[1] used the Pair Copula Construction (PCC) to establish flexible multivariate model

based on pair-copulas such as bivariate Gaussian, Student-t, Gumbel and Clayton

copulas and provided their likelihood expressions. A recent survey by [13] about

vine models is proposed and it is available for interested readers.

2.2.2 Representation of Vines

A vine copula structure is simply defined as a nested set of trees describing the

pairwise copula functions unconditionally at the first tree and conditionally for the

rest of connected trees. This construction is presented by Bedford and Cooke [5] as

follows

Definition 2.2.1. Let V = T1, ..., Tp−1 denote the regular vine for p variables, where

Ti is a connected tree with nodes Ni = 1, ..., p and edges Ei for i = 2, ..., p − 1. In

this tree structure, Ti is a connected tree with nodes Ni = Ei−1.

A regular vine with p variables is a vine where two edges in tree i are connected by
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an edge in tree i+ 1, only if these edges share a common node. In general, there are

totally p(p− 1)/2 possible edges in a regular vine for p variables [14].

Formally, vine copulas are multivariate copula constructions building on bivariate

copulas and this framework is called PCC generally [1]. To clarify, the procedure of

PCC for multivariate p.d.f. in p-dimension is defined as follows [5]:

Definition 2.2.2. Given

f(x1, · · · , xp) =

(
p∑
t=2

f(xt|x1, · · · , xt−1)

)
f1(x1). (2.2.1)

and for distinct values of i, j, i1, · · · , ik with i < j and i1 < · · · < ik define,

ci,j|i1,··· ,ik = ci,j|i1,··· ,ik(F (xi|xi1 , · · · , xik), F (xj|xi1 , · · · , xik)). (2.2.2)

where f and c denote probability density function (p.d.f.) of original marginals and

copula density function, respectively. Then, one can rewrite the conditional p.d.f,

f(xt|x1, · · · , xt−1), in terms of conditional copulas as,

f(xt|x1, · · · , xt−1) = c1,t|2,··· ,t−1f(xt|x2, · · · , xt−1)

=

(
t−2∑
s=1

cs,t|s+1,··· ,t−1

)
ct−1,tft(xt).

(2.2.3)

Afterwords, by using equation 2.2.3 the joint p.d.f., given in equation 2.2.1 becomes

f(x1, · · · , xp) =

(
p−1∑
j=1

p−j∑
i=1

ci,i+j|i+1,··· ,i+j−1

)(
p∑

k=1

fk(xk)

)
. (2.2.4)

for s = i, t = i+ j given in Equation 2.2.4.

The decomposition presented in Equation 2.2.3 suggests that there is no unique way of

deriving the multivariate copula, as different orderings of the variables might lead to

a different estimations. For this reason, the full specification of a vine copula requires

the choice of vine tree structure, determining copula families for each pair copula

and estimating their corresponding parameters. Therefore, regular vine construction
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can be made as a sequence of bivariate unconditional and conditional copulas, given

below more formally,

Definition 2.2.3. As Ti, Ni and Ei defined, an p dimensional vine tree structure

V = T1, . . . , Tp−1 consists of consecutive p − 1 linked trees satisfying the following

conditions [6]:

• Tree T1 is a tree having nodes 1 to p,

• Tree Tj has p+ 1− j nodes and p− j edges, where j = 2, · · · , p− 1

• Edges in tree Tj become nodes in tree Tj+1,

• Two nodes in tree Tj+1 can be joined by an edge only if the corresponding edges

in tree Tj share a node, called as Proximity Condition (PC).

For this tree construction, it has been shown that the edges could be defined by two

nodes, called conditioning and conditioned nodes [5], [14].

2.2.3 Regular Vine Tree Structure

In general, vine is kind of a useful graphical tool to label constraints in multivariate

distributions. Among those, regular vine, a flexible tool for modeling high-dimensional

dependence, is a special case in which all constraints are unconditional or conditional

2-dimensional [20]. By following Definition 2.2.3, tree structure of a Regular vine

(R-vine) on 5 variables can be visualized below, in Figure 2.5.

Based on the R-vine tree structure presented visually, the density of a regular vine

distribution is defined by the product of pair copula densities over the p(p − 1)/2

edges identified by the regular vine tree structure and the product of the marginal

densities. To illustrate, the multivariate density function for 5 variables can be written

simply as below,
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f(x1, x2, x3, x4, x5) = f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

c14(F1(x1), F4(x4))c15(F1(x1), F5(x5))c24(F2(x2), F4(x4))

c34(F3(x3), F4(x4))c12|4(F1(x1), F2(x2)|F4(x4))

c13|4(F1(x1), F3(x3)|F4(x4))c45|1(F4(x4), F5(x5)|F1(x1))

c23|14(F2(x2), F3(x3)|F1(x1), F4(x4))

c35|14(F3(x3), F5(x5)|F1(x1), F4(x4))

c25|134(F2(x2), F5(x5)|F1(x1), F3(x3), F4(x4)).

(2.2.5)

As a technical brief, T1 has 5 nodes and 4 edges and, nodes (1, 5) and (1, 4) in tree

T2 are joined by an edge sharing the node 1 coming from T1 in Figure 2.5. This tree

structure is just an example for R-vine, but the main focus of this study includes two

special vine trees.

2.2.4 Special Types of Vines

There are infinitely many ways of constructing such a vine tree structure in a multivariate

case. Among the others, two of them deserve more attention having special tree

structure, introduce (C)anonical and (D)rawable vine copulas.

Definition 2.2.4 (C-vine). It is a type of regular vine distribution for which each tree

has a unique node that is connected to all other nodes of the tree. It uses only star

like trees and it is useful for ordering by importance. For example, for 5 dimensional

multivariate density, assuming that the first variable is selected as the root node of

the first tree (T1) and the corresponding C-vine tree structure is represented in Figure

2.6. Besides, the corresponding probability density function can be written as,
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f(x1, x2, x3, x4, x5) = f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

c12(F1(x1), F2(x2))c13(F1(x1), F3(x3))c14(F1(x1), F4(x4))

c15(F1(x1), F5(x5))c23|1(F2(x2), F3(x3)|F1(x1))

c24|1(F2(x2), F4(x4)|F1(x1))c25|1(F2(x2), F5(x5)|F1(x1))

c34|12(F3(x3), F4(x4)|F1(x1), F2(x2))

c35|12(F3(x3), F5(x5)|F1(x1), F2(x2))

c45|123(F4(x4), F5(x5)|F1(x1), F2(x2), F3(x3)).

(2.2.6)

Definition 2.2.5 (D-vine). D-vine is another special case for regular vine tree structure

having no node in any tree is connected to more than two edges. It uses only path

like trees and beneficial for temporal ordering of variables. For example, for 5

dimensional multivariate density, D-vine model is represented by Figure 2.7 and its

density function can be written as,

f(x1, x2, x3, x4, x5) = f1(x1)f2(x2)f3(x3)f4(x4)f5(x5)

c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))c34(F3(x3), F4(x4))

c45(F4(x4), F5(x5))c13|2(F1(x1), F3(x3)|F2(x2))

c24|3(F2(x2), F4(x4)|F3(x3))c35|4(F3(x3), F5(x5)|F4(x4))

c14|23(F1(x1), F4(x4)|F2(x2), F3(x3))

c25|34(F2(x2), F5(x5)|F3(x3), F4(x4))

c15|234(F1(x1), F5(x5)|F2(x2), F3(x3), F4(x4)).

(2.2.7)

For the sake of simplicity, the related dependence parameter is dropped for each

unconditional and conditional density functions for equations in 2.2.6 and 2.2.7.

The generalizations of both special vines are possible, the corresponding probability

density function for C-vine and D-vine for p variables are formulated below, respectively.

f(x1, · · · , xp) =

[
p∏

k=1

.fk(xk)

]
.

[
p−1∏
i=1

p−i∏
j=1

ci,i+j|1,··· ,i−1

]
. (2.2.8)
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f(x1, · · · , xp) =

[
p∏

k=1

.fk(xk)

]
.

[
p−1∏
j=1

p−j∏
i=1

ci,i+j|i+1,··· ,i+j−1

]
. (2.2.9)

It is noteworthy to mention that, the likelihood calculation for D-vine is more complica-

ted than that for the C-vine. For the detailed model selection procedure will be

established within the context of mixture of vines in Chapter 3 later on, but still

the work flow for fitting any suitable vine model is vital to emphasize after defining

vine copulas. For this reason, modified sequential selection, discussed in [20], was

summarized as a closing part of this section. For any regular vine construction, the

following steps could be followed for the model selection:

1. Determine which copula family is suitable in T1 by checking any tail dependence

or asymmetries with the plot of original data.

2. Estimate the related parameters for the selected copula families using the given

data.

3. Transform the necessary observations for T2, by using copula parameters in T1

and the conditional (h-) functions.

4. Determine now the best suitable family in T2, like the followed procedure in

T1.

5. Continue this process until describing the properties of last tree, for instance T5

is the last tree for R-vine in Figure 2.5, and other two specific cases given in

Figures 2.6 and 2.7.

Here, the main drawback of this mechanism is not insuring a globally optimal fit. As

another approach, information-based model inference or optimal truncation methods

are also available in the literature, but those topics are out of scope of this dissertation.

Interested reader could follow Chapters 3, 11 and 12 of [20]. In this study, mixture

of C-vines has been focused with archimedean type pair copula families. Besides,

in 3-dimensional case, C- and D-vine models are identical [1] so that the proposed

mixture models cover both special types. In 4-dimensional case, however, C-vine

mixture model differs certainly from D-vine structure.
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CHAPTER 3

MIXTURE OF VINES

In this chapter, main motivation behind finite mixture models is presented with recent

studies in the literature. Afterwords, two different proposed mixture models are

discussed within the following three subsequent sections. First of all, finite mixture of

C-vines are studied with various scenarios and different parameter estimation methods.

Thereafter, same finite mixture model framework is applied to both C- and D-vine

to construct another type of multivariate data. Finally, as a novel model, CD-vine

approach was proposed under a distinct multivariate setting with complex dependence

patterns. Primarily, the parameter estimation part is the focus of this thesis study and

numerous optimization methods are considered to find the estimated parameters of

mixture models.

3.1 Brief Literature

In the literature, there are limited studies about such type of mixture models in terms

of vines. Besides, until this time, only D-vines are considered under finite mixture

model to construct a more sophisticated multivariate density functions [22], [33].

Apart from these studies, most of the studies related to mixture model primarily

based on the implementation of a limited set of copula families, but applied in various

disciplines.

Previously, Vrac et al. [37] studied on partitioning the atmospheric profiles of tempera-

ture and humidity to characterize air masses. A model-based clustering approach

has been applied to a set of data for capturing air masses and Frank copula family
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is considered to identify the dependence between the variables. They developed a

model which allows to work on distribution of data, instead of only numerical values

to cluster the profiles in terms of mixture density, with the satellite observations. The

results of proposed model resulted in relevant clusters for climatology [37]. Within

the same year, Cuvelier and Noirhomme-Fraiture [11] proposed a mixture of Clayton

copulas for clustering purposes again. They extended the model proposed by [37]

from bivariate case to higher dimensions, with n-dimensional Clayton copula. It

has been proven that the mixture model with the Clayton copula was successful to

identify dependence structure. Besides, clustering based on Clayton family gave

better results like other classical methods [11]. Afterwords, Hu [18] employed a

mixture of Gaussian, Gumbel and Gumbel Survival to model the dependence of

monthly returns between a pair of stock indexes by capturing left or right tail dependen-

ce. This method relied on two parameter set; dependence and weight parameters,

which control the degree and shape of dependence, respectively. Four stock market

indices from different regions were considered in monthly base and empirical findings

have powerful insights about risk management and asset pricing [18].

Several years later, Arakelian and Karlis [3] investigated the finite mixture of copulas

for clustering purposes with respect to dependence properties of data. Finite mixture

of copulas were exploited with its certain properties and illustrated with the help of

widely used bivariate copula families, namely Gaussian, Gumbel, Frank, Joe and

Clayton copulas. In their study, both static and dynamic weight parameters for the

finite mixture model were studied and the potential of their method was illustrated

using daily log-returns from major stock markets. From a different perspective, these

approaches are extended to higher dimensions with vine copula methodology, the

departure point of this thesis [22]. A mixture of D-vine copulas was proposed in

order to reveal and fully understand the complex and hidden dependence patterns in a

multivariate setting [22]. Both simulated and real life data examples were employed

in detail to understand the convenience of the proposed D-vine mixture and daily

precipitation data was considered to detect the association among four meteorological

stations located in four different municipalities. A similar research has been conducted

by [33] for clustering purposes using various set of available data. In that respect,

they have been compared the classical clustering methods with D-vine based mixture
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model with a limited set of copula families. Thereafter, Kosmidis and Karlis [24]

implemented copula framework for clustering purposes using both continuous and

discrete multivariate data. Besides, they highlighted outstanding findings about the

parameter identification depending on the choice of copulas for the components,

including rotated versions for the known families.

In the light of above summarized studies, the primary goal of this thesis is manifold.

As a first contribution, the study of [22] is extended by covering C-vines in finite

mixture model, instead of looking at only D-vine. Besides, for the construction of

mixture models, various copula families are considered for each component. For

this study, well known and widely applicable archimedean copulas are focused under

proposed models and some of their rotated versions are also covered, like it was

discussed by [24]. Secondly, the same finite mixture model is implemented to combine

both C- and D-vines. Finally, as a novel contribution of the study, CD-vine model has

been proposed, unlike finite mixture model. In this framework, finite C-vine models

are incorporated with the help of D-vine copulas. All of above proposed models, main

interest of this study is the parameter estimation of the mixture models via different

optimization routines. Moreover, model identification problem and improvement of

model selection procedure has been discussed, instead of focusing on clustering.

3.2 Proposed Mixture Models

In this dissertation, numerous improvements of the study of [22] are considered.

In order to derive distinct finite mixture of vine copulas, two main scenarios are

considered. As a first one, 2 component 3 dimensional C-vine mixture models with

different copula families are studied. In this modeling setup, mixture of C-vines

are equivalent to D-vine mixture because of the dimensionality. In this 3 dimensional

case, 3 component C-vine mixtures are also considered with same and different copula

families. Secondly, the dimension has been increased and 2 component, 4 dimensional

C-vine mixture models are investigated with various copula families. Afterwords,

similar approach is studied for the combination of C- and D-vines. In this framework,

2 component 4 dimensional C- and D-vine finite mixture is investigated via predefined

multivariate data set. In all cases, the main focus is the Frank pair copula during the
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construction.

After studying above finite mixtures, as a novel improvement, CD-vine mixture model

have been proposed. Under this setup, finite number of C-vine copula models are

incorporated into a D-vine copula model to derive the dependence between several

random variables. The multivariate distribution functions are derived empirically for

each component of mixture model then tied together by the help of D-vine copula by

considering the temporal ordering of the components. In this modeling framework,

the parameter estimation and inference for full multivariate density is required to

maximize log-likelihood function in two separate steps, the maximization of the

log-likelihood function from C-vine first and then from D-vine part. This two step

process is similar to the idea of Inference for Margins (IFM) technique, widely consi-

dered method for parameter estimations [19].

Within the following subsections, inference for finite mixture of C-vines and the

recently established CD-vine mixture model is presented. For this reason, the detailed

derivations for each mixture model is elaborated in terms of various copula families.

Thereafter, the considered optimization tools are briefly covered at the end, the model

selection procedure with modified GOF tests is exhibited finally.

3.2.1 Inference for Mixture of C- and D- Vines

Under finite mixture model, generally, p-dimensional C-vine copula density can be

written as below,

f(x;φCV ) =

p∏
k=1

fk(xk)

p−1∏
i=1

p−i∏
j=1

ci,i+j|1:(i−1)

(F (xi|x1, · · · , xi−1), F (xi+j|x1, · · · , , xi−1);βi,(i+j)|1:(i−1)).

(3.2.1)

where fk(xk) denotes the marginal densities, ci,i+j|1:(j−1) are the bivariate copula

density functions with parameter(s)βi,(i+j)|1:(i−1), F (xk| · · · ) denotes the conditional

distribution functions and φCV is the set of all parameters in p-dimensional C-vine

density [6].
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There exist one root node in the tree construction of C-vine model which results in

following density formulation in 4-dimension given as [1],

f(x1, x2, x3, x4;φCV ) = c12(F (x1), F (x2); β12)c13(F (x1), F (x3); β13)

c14(F (x1), F (x4); β14)

c23|1(F (x2|x1), F (x3|x1); β23|1)c24|1(F (x2|x1), F (x4|x1); β24|1)

c34|12(F (x3|x1, x2), F (x4|x1, x2); β34|12)
4∏

k=1

fk(xk). (3.2.2)

Here, the parameter vector for the above written density function in Equation 3.2.2

is φCV = (β12, β13, β14, β23|1, β24|1, β34|12). Under such multivariate framework, full

inference on C-vine copula can be derived using the log-likelihood function presented

as [1],

L(φ) =

p−1∑
i=1

p−i∑
j=1

N∑
n=1

log ci,i+j|1:(i−1)(F (xi,n|x1,n, ..., xi−1,n), F (xi+j,n|x1,n, ..., xi−1,n);βi,(i+j)|1:(i−1)).

(3.2.3)

and it requires three consecutive steps [22]:

1. Decide which variable should be used as a root node in the first tree T1 of a

C-vine copula (i.e. joining the variables in which the root node variable is

selected based on its significant relations with other variables)

2. Then, specify the family type and parametric shape of each pair-copula function

in an assumed C-vine copula model.

3. Estimate all parameters of C-vine by maximizing the log-pseudo likelihood

function given in Equation 3.2.3

The finite mixture model is introduced for combining m component C-vine densities

to detect complex and hidden dependence structure in a multivariate data. Under this
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establishment, EM algorithm is used to estimate the parameters in mixture model. To

illustrate, suppose a p-dimensional random vector X=(X1, · · · , Xp) is generated

from a mixture of M - component C-vine densities, where its density function is

defined as,

g(x,θ) =
M∑
m=1

πmf(x,φm). (3.2.4)

where πm is the mixing proportion of the m-th component such that 0 < πm < 1 and∑M
m=1 πm = 1. Besides, φm is the m-th component-specific parameter vector for the

C-vine density described in Equation 3.2.4 [22]. In this notation, θ is the set of all

parameters with dimension p and parameter space is denoted by Θ, which includes

the full product space (i.e. the simplex of πm and the cross product space of φm).

Besides, p is the total number of free parameters to be estimated in the mixture model

and p = (M − 1) +
∑M

m=1 dim(φm). For the estimation of Equation 3.2.4, both the

number of components M and the parameters θ are required to estimate based on

EM-algorithm, proposed by [12].

Assume that observations with sample size N randomly drawn from a M component

C-vine density given in Equation 3.2.4, denoted as xk=(xk,1, · · · , xk,N ) where k =

1, · · · , p. Then, log-likelihood of θ, g(x,θ) is described as,

L(θ) = log(
N∏
n=1

g(xn,θ)) = log(
N∏
n=1

M∑
m=1

πmf(xn,φm)). (3.2.5)

To show that whether xn drawn from them-th component (znm = 1) or not (znm = 0),

zn=(zn1, · · · , znm, · · · , znM) latent variables are generated. Here, zn is independently

and identically distributed (i.i.d.) random variable from a multinomial distribution.

More formally, zn is Mult(M,π = (π1, · · · , πm)) where the log-likelihood for the

complete data set yn=(xn,zn), namely L(θ)c, is given as,
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L(θ)c = log
N∏
n=1

M∏
m=1

[πmf(xn,φm)]znm

=
N∑
n=1

M∑
m=1

znm log(πm) +
N∑
n=1

M∑
m=1

znm log(f(xn,φm)).

(3.2.6)

For the inference on L(θ)c, the repeated E-th and M-th steps of the EM algorithm

are executed to compute the successive estimates, θs, based on initial values θ0.

This repetitive procedure is the key point for parameter estimations and described

as follows:

[E’th-step]

It calculates the conditional expectation of L(θ)c given the observed data and current

parameter estimates for θ. This computation is equivalent to finding posterior probability

of xn belongs to the m-th component, given the current values of the parameters

which is formulated as [22],

ẑnm
(s) = E[znm|x, θs] = P [znm = 1|x, θs] =

π
(s)
m f(xn,φ

(s)
m )∑M

l=1 π
(s)
l f(xn,φ

(s)
l )

. (3.2.7)

[M’th-step]

This second step estimates the parameters for each component independently, (π(s+1)
1 ,

· · · , π(s+1)
m ,· · · , π(s+1)

M ) and (φ
(s+1)
1 , · · · , φ(s+1)

m , · · · , φ(s+1)
M ) by maximizing the expected

complete-data log-likelihood obtained from E’th-step.

For the weights, there exists a closed form solution, denoted by π(s+1)
m =

∑N
n=1 ẑnm

(s)

N
.

Afterwords, the estimation of φ(s+1)
m in the m-th component C-vine density function

is equivalent to obtain the parameter estimates weighted by ẑnm
(s) for the parameters

in a C-vine density in Equation 3.2.4. In this case, the second term in Equation
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3.2.6 must be maximized to obtain the estimation for φm. For each component, this

maximization can be considered independently.

Under this framework, both steps are continued until the predefined termination criteria

is satisfied (i.e. L(θs+1)−L(θs) < 10−6 or 10−3 ). As a result of a nice property of EM

algorithm, the log-likelihood is not decreased during the iteration. For this reason, the

given algorithm is run with suitable starting values drawn from the parameter space

and parameter estimates are calculated as a mean value of multiple iterations. For the

model comparison part, three well known model selection criteria values are used, as

they have been considered in the study of [22].

• Akaike’s Information Criterian

AIC = −2 log(L(θ̂)) + 2p. (3.2.8)

• Bayesian Information Criterian

BIC = −2 log(L(θ̂)) + p log(n). (3.2.9)

• Consistent AIC (CAIC)

CAIC = −2 log(L(θ̂)) + p(log(n) + 1). (3.2.10)

where θ̂ is the estimate of p-dimensional θ defined in Equation 3.2.4 and p is the total

number of parameters to be estimated in the mixture model. For the model selection

part, as a supporting tool, suitable Goodness-of-fit (GOF)tests are considered. For this

reason, both Clarke and Vuong GOF tests, proposed by [10] and [38], are modified to

compare two different mixture of vines. Additionally, details for this modification is

summarized at the end of this chapter. To sum up, the receipt for the full inference on

the mixture of C-vines can be summarized as follows:

1. Derive the normalized ranks of p-dimensional observed data

2. Decide the root node of each C-vine density by calculating all pairwise correla-

tions.

3. Consider different copulas for all pairs to specify the family and parametric

shape of each pair-copula in an assumed C-vine

40



4. Given a copula family, investigate a vine mixture with M components and

estimate its parameters in each model by employing the EM- algorithm

5. Select the best model by comparing all available models in terms of model

selection tools (AIC, BIC, CAIC values and GOF tests).

Above summarized procedure is valid also for D-vine with small differences. In the

simulation part, finite mixture of C- and D-vines is proposed and has been tested with

simulated data set. For this reason, D-vine modeling steps are summarized below

similar to the C-vine model. In general, p-dimensional D-vine copula density can be

written as,

f(x;φDV ) =

p∏
k=1

fk(xk)

p−1∏
i=1

p−i∏
j=1

cj,(j+i)|(j+1):(j+i−1)

(F (xj|xj+1, ..., xj+i−1), F (xj+1|xj+1, ..., xj+i−1);βj,(j+i)|(j+1):(j+i−1)).

(3.2.11)

where fk(xk) denotes the marginal densities, cj,(j+i)|(j+1):(j+i−1) are the bivariate

copula density functions with parameter(s) βj,(j+i)|(j+1):(j+i−1), and φDV is the set

of all parameters in D-vine density. For instance, in 4 dimensional case (i.e. p = 4),

Equation 3.2.11 becomes;

f(x1, x2, x3, x4;φDV ) = c12(F (x1), F (x2); β12)c23(F (x2), F (x3); β23)

c34(F (x3), F (x4); β34)c13|2(F (x1|x2), F (x3|x2); β13|2)

c24|3(F (x2|x3), F (x4|x3); β24|3)

c14|23(F (x1|x2, x3), F (x4|x2, x3); β14|23)
4∏

k=1

fk(xk).

(3.2.12)

where φDV =(β12, β23, β34, β13|2, β24|3, β14|23) includes totally 6 copula parameters used

in unconditional and conditional pairs. The full inference on D-vine copula is directly

based on the identification of the pair copulas and estimation of their parameters,

similar to C-vine framework.
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Assuming that N observed samples are available like xk = (xk,1, ..., xk,N), where

k = 1, 2, ..., p and each random variable Xk follows standard uniform distribution

(s.t. fk(xk = 1)). Commonly, when the distributions of margins are not known,

the normalized ranks of the data are used for the inference purposes as they keep

the largest amount of information about the joint dependence between variables [29].

In general, log-likelihood function for D-vine density over the parameters and its

exemplified version in case of p = 4 is given in equations below, respectively.

L(φDV ) =

p−1∑
i=1

p−i∑
j=1

N∑
n=1

log cj,(j+i)|(j+1):(j+i−1)

(F (xj,n|xj+1,n, ..., xj+i−1,n), F (xj+1,n|xj+1,n, ..., xj+i−1,n);βj,(j+i)|(j+1):(j+i−1)).

(3.2.13)

where again, φDV is the set of all parameters in D-vine density. For p = 4, Equation

3.2.13 becomes as follows, with its corresponding parameters,

L(φDV ) =
N∑
n=1

[log c12(x1,n, x2,n; β12) + log c23(x2,n, x3,n; β23) + log c34(x3,n, x4,n; β34)

+ log c13|2(F (x1,n|x2,n), F (x3,n|x2,n); β13|2)

+ log c24|3(F (x2,n|x3,n), F (x4,n|x3,n); β24|3)

+ log c14|23(F (x1,n|x2,n, x3,n), F (x4,n|x2,n, x3,n); β14|23)].

(3.2.14)

Under this modeling setup, full inference is accomplished by the following consecutive

steps [22]:

1. Decide which variables are used at the first tree T1 of a D-vine copula and order

of variables using (tail) dependencies (i.e. joining the variables which have the

strongest (tail) dependencies)

2. Specify the family and parametric shape of each pair-copula in an assumed

D-vine copula
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3. Given a copula family, fit a mixture of vines with M components and estimate

its parameters in each model by employing the EM-algorithm

4. Select the best model by comparing all available models in terms of model

selection tools (AIC, BIC, CAIC values and GOF tests).

For the components of finite mixture of C-vines, various copula families are implemen-

ted like Clayton, Gumbel, Frank families and the possible rotated versions to extend

the pool of copula families. Here, this construction is exemplified with Clayton

and Survival Clayton families by assuming the case of 2 component, 3 dimensional

mixture model. Besides, Gumbel family is illustrated for the mixture model, construc-

ted in 4 dimension. With the same family, CD-vine mixture representation is presented

at the end of model construction part.

3.2.1.1 2 Component 3 dimensional C-vine Mixtures

To construct a 2 Component 3 dimensional mixture of C-vines, all pair copulas in

the 1’st and 2’nd component are assumed to be Clayton and Survival Clayton family,

respectively. For the sake of simplicity, derivation for the 1’st component of mixture

model is presented in detail below. Thereafter, the obtained density functions for the

2’nd component are directly summarized.

For the first component, all pairs are modeled by Clayton copula and its copula

function for pairs (x1, x2) with parameter β12 is defined as,

C(x1, x2; β12) = (x−β121 + x−β122 − 1)
−1
β12 exp(−[(− log x1)β12 + (− log x2)β12 ]

1
β12 ).

(3.2.15)

and its probability density function obtained using the second order derivative of

C(x1, x2; β12) as follows (after cancellations and possible rearrangements);
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c(x1, x2; β12) =
∂2C(x1, x2; β12)

∂x1∂x2

=
∂[ −1

β12
(x−β121 + x−β122 − 1)

−1
β12
−1

(−β12)x−β12−1
2 ]

∂x1

=
∂[(x−β121 + x−β122 − 1)

−1
β12
−1
x−β12−1

2 ]

∂x1

= (−1− β12)
(x−β121 + x−β122 − 1)

−1
β12
−2

(−β12)x−β12−1
1 x−β12−1

2

β12

= (β12 + 1)(x1x2)−β12−1(x−β121 + x−β122 − 1)
−1
β12
−2
.

Similarly, c(x1, x3; β13) can be written as,

c(x1, x3; β13) =
∂2C(x1, x3; β13)

∂x1∂x3

=
∂[ −1

β13
(x−β131 + x−β133 − 1)

−1
β13
−1

(−β13)x−β13−1
3 ]

∂x1

=
∂[(x−β131 + x−β133 − 1)

−1
β13
−1
x−β13−1

3 ]

∂x1

= (−1− β13)
(x−β131 + x−β133 − 1)

−1
β13
−2

(−β13)x−β13−1
1 x−β13−1

3

β13

= (β13 + 1)(x1x3)−β13−1(x−β131 + x−β133 − 1)
−1
β13
−2
. (3.2.16)

For the calculation of conditional density of c23|1, it is necessary to use h-functions

and derive F (x2|x1) and F (x3|x1). Their computations are briefly presented below

in detail.

x21 = F (x2|x1) =
∂C(x1, x2; β12)

∂x1

= x−β12−1
1 (x−β121 + x−β122 − 1)

−1
β12
−1
. (3.2.17)

x31 = F (x3|x1) =
∂C(x1, x3; β13)

∂x1

= x−β13−1
1 (x−β131 + x−β133 − 1)

−1
β13
−1
. (3.2.18)
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Then, obtained values of x21 and x31 are used as inputs of the conditional density

function c23|1 with Clayton formula given above. Thereafter, conditional density c23|1

is derived as,

c23|1 = c23|1(x21, x31; β23|1)

= (β23|1 + 1)(x21x31)−β23|1−1((x21)−β23|1 + (x31)−β23|1 − 1)
−1
β23|1

−2
. (3.2.19)

when x21 and x31 are replaced in Equation 3.2.19 to write c23|1 as a function of x1, x2

and x3 with required parameters, namely β12, β13 and β23|1, obtained as follows,

c23|1 = c23|1(x21, x31; β23|1)

= (β23|1 + 1)(x−β12−1
1 (x−β121 + x−β122 − 1)

−1
β12
−1

x−β13−1
1 (x−β131 + x−β133 − 1)

−1
β13
−1

)−β23|1−1

((x−β12−1
1 (x−β121 + x−β122 − 1)

−1
β12
−1

)−β23|1

+(x−β13−1
1 (x−β131 + x−β133 − 1)

−1
β13
−1

)−β23|1 − 1)
−1
β23|1

−2

= (β23|1 + 1)(x−β12−β13−2
1 )−β23|1−1

((x−β121 + x−β122 − 1)
−1
β12
−1

(x−β131 + x−β133 − 1)
−1
β13
−1

)
−1
β23|1

−1

((C12(x1, x2; β12))−β23|1 + (C13(x1, x3; β13))−β23|1 − 1)
−1
β23|1

−2
. (3.2.20)

where both

C12 = (x−β12−1
1 (x−β121 + x−β122 − 1)

−1
β12
−1

). (3.2.21)

C13 = (x−β13−1
1 (x−β131 + x−β133 − 1)

−1
β13
−1

). (3.2.22)

are functions of pairs (x1, x2) and (x1, x3) with the corresponding parameters β12 and

β13, respectively. Then, 3-dimensional C-vine density function, which describes the

dependence pattern in 1’st component with Clayton pairs, given below,
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log f1 = [log c12 + log c13 + log c23|1]

= log(β12 + 1) + (−β12 − 1) log(x1x2) + (
−1

β12

− 2) log(x−β121 + x−β122 − 1)

+ log(β13 + 1) + (−β13 − 1) log(x1x3) + (
−1

β13

− 2) log(x−β131 + x−β133 − 1)

+ log(β23|1 + 1) + (−β23|1 − 1)(−β12 − β13 − 2) log(x1)+

(−β23|1 − 1)((
−1

β12

− 1) log(x−β121 + x−β122 − 1) + (
−1

β13

− 1) log(x−β131 + x−β133 − 1))

+(
−1

β23|1
− 2) log((x21)−β23|1 + (x31)−β23|1 − 1).

(3.2.23)

In a similar manner, all unconditional and conditional densities of 2’nd component

based on Survival Clayton family can be described. Two main identities for the

construction of survival copulas in bivariate case (rotated with 180◦) are presented

below for both copula distribution and density functions, abbreviated as C180(x1, x2)

and c180(x1, x2), respectively. The meaning of such a rotation can be visualized in

Figure 2.4 in Chapter 2.

C180(x1, x2) = x1 + x2 − 1 + C(1− x1, 1− x2). (3.2.24)

c180(x1, x2) = c(1− x1, 1− x2). (3.2.25)

where C(1 − x1, 1 − x2) and c(1 − x1, 1 − x2) are transformed versions of original

functions in bivariate case. In this study, one of the rotated copula families is Survival

Clayton (SClay). Here, the log-likelihood function construction for the 2’nd component,

having all pair copulas are SClay are described below. For 3 dimensional case, cSClay12

and cSClay13 are defined by using above identities given in Equations 3.2.24 and 3.2.25.

cSClay12 (x1, x2; β12) = cSClay12 = (1 + β12)((x1 − 1)(x2 − 1))−β12−1

((1− x1)−β12 + (1− x2)−β12 − 1)
−1
β12
−2
. (3.2.26)

cSClay13 (x1, x3; β13) = cSClay13 = (1 + β13)((x1 − 1)(x3 − 1))−β13−1

((1− x1)−β13 + (1− x3)−β13 − 1)
−1
β13
−2
. (3.2.27)
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For the conditional density function of SClay, again xSClay21 = F (x2|x1) and xSClay31 =

F (x3|x1) values are derived for the calculation of cSClay23|1 , their computations are

presented below in detail,

xSClay21 = F (x2|x1) =
∂C180(x1, x2)

∂x1

= 1− (1− x1)−β12−1((1− x1)−β12 + (1− x2)−β12 − 1)
−1
β12
−1
. (3.2.28)

xSClay31 = F (x3|x1) =
∂C180(x1, x3)

∂x1

= 1− (1− x1)−β13−1((1− x1)−β13 + (1− x3)−β13 − 1)
−1
β13
−1
. (3.2.29)

Thereafter, conditional density function, cSClay23|1 , has been derived by following the

similar construction using xSClay21 = x21 and xSClay31 = x31 are input values.

cSClay23|1 (x21, x31; β23|1) = cSClay23|1 = (1 + β23|1)

((x21 − 1)(x31 − 1))−β23|1−1

((1− x21)−β23|1 + (1− x31)−β23|1 − 1)
−1
β23|1

−2
. (3.2.30)

After deriving all those density functions, log-likelihood function from C-vine having

SClay pair copulas can be defined as,

log f1 = [log cSClay12 + log cSClay13 + log cSClay23|1 ]

= log(β12 + 1) + (−β12 − 1) log((x1 − 1)(x2 − 1))

+ (
−1

β12

− 2) log((1− x1)−β12 + (1− x2)−β12 − 1)

+ log(β13 + 1) + (−β13 − 1) log((x1 − 1)(x3 − 1))

+ (
−1

β13

− 2) log((1− x1)−β13 + (1− x3)−β13 − 1)

+ log(β23|1 + 1) + (−β12 − 1)(log((1− x1)−β12−1((1− x1)−β12

+ (1− x2)−β12)
−1
β12
−1

) + log((1− x1)−β13−1((1− x1)−β13 + (1− x3)−β13)
−1
β13
−1

))

+ (
−1

β23|1
− 2) log(((1− x1)−β12−1((1− x1)−β12 + (1− x2)−β12 − 1)

−1
β12
−1

)−β23|1

+ ((1− x1)−β13−1((1− x1)−β13 + (1− x3)−β13)
−1
β13
−1

)−β23|1 − 1).

(3.2.31)

Under the finite mixture model, the density function for 2’nd component is derived by

using Equation 3.2.31 and maximized by EM algorithm similar to the 1’st component.
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These log-likelihood constructions for each components can be derived by using all

other copula families in a similar manner easily.

3.2.1.2 2 Component 4 dimensional C-vine Mixtures

When the dimension is increased from 3 to 4, totally 3 unconditional copulas, 2

conditional copulas with only one conditioning variable and 1 conditional copula with

two conditioning variables are required to write the multivariate density function. For

the sake of simplicity, 4 dimensional C-vine density is discussed for only Gumbel

family for the 1’st component of the mixture model.

In addition to the calculation of conditional copulas with only one conditioning variable,

additional 1 conditional copula with two conditioning variable is required in 4 dimen-

sional case. To illustrate, by recalling the 3 dimensional case,

φCV1 = (β1
12, β

1
13, β

1
14, β

1
23|1, β

1
24|1, β

1
34|12)

includes totally 6 pair copula parameters in 4 dimensional C-vine construction. The

written superscript value denotes that parameters belong to the 1’st component. Assu-

ming that, all pairs are Gumbel, the joint density calculation has required to obtain

6 pair copula parameters. Let f1(x1:4;φCV1) be the joint density modeled by C-vine

with Gumbel pairs, one can write the following 4 dimensional density function as,

log f1 = log c12 + log c13 + log c14 + log c23|1 + log c24|1 + log c34|12. (3.2.32)

with the corresponding parameter space φCV1 . Similarly, all those bivariate copula

density function in terms of Gumbel family can be calculated as second order partial

derivative of C(xi, xj; θ) in general. Here, calculations of all c12, c13 and c14 are

presented below,

c12 =
C(x1, x2; β12)

x1x2

[log x1 log x2]β
1
12−1

G12(x1, x2; β1
12)[G12(x1, x2; β1

12) +
β1

12 − 1

(− log x1)β
1
12 + (− log x2)β

1
12

]. (3.2.33)
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c13 =
C(x1, x3; β13)

x1x3

[log x1 log x3]β
1
13−1

G13(x1, x3; β1
13)[G13(x1, x3; β1

13) +
β1

13 − 1

(− log x1)β
1
13 + (− log x3)β

1
13

]. (3.2.34)

c14 =
C(x1, x4; β14)

x1x4

[log x1 log x4]β
1
14−1

G14(x1, x4; β1
14)[G14(x1, x4; β1

14) +
β1

14 − 1

(− log x1)β
1
14 + (− log x4)β

1
14

]. (3.2.35)

where

G12(x1, x2; β1
12) = [(− log x1)β

1
12 + (− log x2)β

1
12 ]

1

β112
−1
. (3.2.36)

G13(x1, x3; β1
13) = [(− log x1)β

1
13 + (− log x3)β

1
13 ]

1

β113
−1
. (3.2.37)

G14(x1, x4; β1
14) = [(− log x1)β

1
14 + (− log x4)β

1
14 ]

1

β114
−1
. (3.2.38)

To obtain the unconditional density functions, described expressions in Equations

3.2.36, 3.2.37 and 3.2.38 are used in Equations 3.2.33, 3.2.34 and 3.2.35, respectively

and then their logarithms are evaluated to find the first three terms in Equation 3.2.32.

Afterwords, for the next tree, log c23|1 and log c24|1 are required. log c24|1 can be

obtained similar to the log c23|1 by changing the role of x3 by x4 in the conditional

density calculation. In this construction, c23|1 copula density incorporates x21 and x31

with parameters β1
12, β1

13 and β1
23|1. Similarly, c24|1 copula function incorporates the

input values defined as x21 and x41 and includes the parameters β1
12, β1

14 and β1
24|1.

For the computation of c23|1 and c24|1, conditional CDF’s are required to compute with

the help of h functions [1]. For this purpose, F (x2|x1), F (x3|x1) and F (x4|x1) are

calculated as inputs of the conditional bivariate densities of c23|1 and c24|1 below,
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x21 = F (x2|x1) = h21(x2|x1) =
∂C(x1, x2; β12)

∂x1

= C(x1, x2; β1
12)

(− log x1)β
1
12−1

x1

G12(x1, x2; β1
12)

= exp(−[(− log x1)β
1
12 + (− log x2)β

1
12 ]

1

β112 )
(− log x1)β

1
12−1

x1

G12(x1, x2; β1
12).

(3.2.39)

x31 = F (x3|x1) = h31(x3|x1) =
∂C(x1, x3; β13)

∂x1

= C(x1, x3; β1
13)

(− log x1)β
1
13−1

x1

G13(x1, x3; β1
13)

= exp(−[(− log x1)β
1
13 + (− log x3)β

1
13 ]

1

β113 )
(− log x1)β

1
13−1

x1

G13(x1, x3; β1
13).

(3.2.40)

x41 = F (x4|x1) = h41(x4|x1) =
∂C(x1, x4; β14)

∂x1

= C(x1, x4; β1
14)

(− log x1)β
1
14−1

x1

G14(x1, x4; β1
14)

= exp(−[(− log x1)β
1
14 + (− log x4)β

1
14 ]

1

β114 )
(− log x1)β

1
14−1

x1

G14(x1, x4; β1
14).

(3.2.41)

Above described input values given in Equations 3.2.39, 3.2.40 and 3.2.41 are replaced

for finding both log c23|1 and log c24|1 function, formulated below,

log c23|1 = (−((− log(x21))β
1
23|1 + (− log(x31))β

1
23|1)β

1
23|1)

− log(x21x31) + (−2 +
2

β1
23|1

) log(((− log(x21))β
1
23|1 + (− log(x31))β

1
23|1))

+(β1
23|1 − 1) log(log(x21) log(x31))

+ log(1 + (β1
23|1 − 1)(((− log(x21))β

1
23|1 + (− log(x31))β

1
23|1))

−1

β1
23|1 )

(3.2.42)
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log c24|1 = (−((− log(x21))β
1
24|1 + (− log(x41))β

1
24|1)β

1
24|1)

− log(x21x41) + (−2 +
2

β1
24|1

) log(((− log(x21))β
1
24|1 + (− log(x41))β

1
24|1))

+(β1
24|1 − 1) log(log(x21) log(x41))

+ log(1 + (β1
24|1 − 1)(((− log(x21))β

1
24|1 + (− log(x41))β

1
24|1))

−1

β1
24|1 )

(3.2.43)

where x21, x31 and x41 are defined in Equations 3.2.39, 3.2.40 and 3.2.41 previously.

In the above setup, the values of functions G12, G13 and G14 are required either to

calculate both log c23|1 and log c24|1. Finally, the most challenging part of the density

Equation of 3.2.32 is the last term. Here, log c34|12 requires two conditioning variable

and h-functions must be used in a different manner. As an input of c34|12 function,

F (x3|x1, x2) and F (x4|x1, x2) must be derived using h-functions recursively. Based

on the general formula given below,

F (xj|x1, x2, · · · , xj−1) =
∂Cj,j−1|1,··· ,j−2(F (xj|x1, · · · , xj−2), F (xj−1|x1, · · · , xj−2))

∂F (xj−1|x1, · · · , xj−2)
.

(3.2.44)

For j = 3, one can derive the following conditional CDF F (x3|x1, x2) with two

conditioning variables x1, x2.

F (x3|x1, x2) =
∂C2,3|1(F (x3|x1), F (x2|x1))

∂F (x2|x1)
=
∂C2,3|1

∂x21

. (3.2.45)

where x21 = F (x2|x1) from the definition of h-functions. So, one need to compute

the following partial derivative for F (x3|x1, x2) with Gumbel family, represented

below,

F (x3|x1, x2) =
∂(exp(−[(− log x21)β23|1 + (− log x31)β23|1 ]

1
β23|1 ))

∂x21

= (exp(−[(− log x21)β23|1 + (− log x31)β23|1 ]
1

β23|1 ))

(
−1

β23|1
)[(− log x21)β23|1 + (− log x31)β23|1 ]

1
β23|1

−1
(β23|1)(− log x21)β23|1−1(

−1

x21

).

(3.2.46)
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Similarly, F (x4|x1, x2) can be obtained using the similar conditional density function.

The only difference is the replacement of x31 and x41 and its derivation given as,

F (x4|x1, x2) =
∂(exp(−[(− log x21)β24|1 + (− log x41)β24|1 ]

1
β24|1 ))

∂x21

= (exp(−[(− log x21)β24|1 + (− log x41)β24|1 ]
1

β24|1 ))

(
−1

β24|1
)[(− log x21)β24|1 + (− log x41)β24|1 ]

1
β24|1

−1
(β24|1)(− log x21)β24|1−1(

−1

x21

).

(3.2.47)

Finally, c34|12 density function is derived by using both F (x3|x1, x2) = x3|12 and

F (x4|x1, x2) = x4|12 as input values. Based on this computation, Equation 3.2.32

is completely derived and ready to use for generating 4-dimensional C-vine with all

pairs are Gumbel family.

c34|12 = exp(−[(− log x3|12)β
1
34|12 + (− log x4|12)β

1
34|12 ]

1

β1
34|12 )

(− log x3|12)β
1
34|12−1

x3|12

(− log x4|12)β
1
34|12−1

x4|12

G34|12(x3|12, x4|12; β1
34|12)

[G34|12(x3|12, x4|12; β1
34|12) +

β1
34|12 − 1

(− log x3|12)β
1
34|12 + (− log x4|12)β

1
34|12

]. (3.2.48)

where

G34|12(x3|12, x4|12; β1
34|12) = [(− log x3|12)β

1
34|12 +(− log x4|12)β

1
34|12 ]

1

β1
34|12

−1

. (3.2.49)

Now, take the logarithm of the function c34|12 presented in Equation 3.2.48 to complete

the all terms of the log-likelihood function of C-vine density having Gumbel families

for each pair in 4-dimension. For the rest, logarithm of all unconditional c12, c13,

c14 and conditional c23|1, c24|1 and c34|12 density functions are replaced in Equation

(3.2.32).

In this section, only the detailed construction for Clayton- SurClay in 3-dimensional

case and Gumbel family in 4-dimensional case is presented. Certainly, similar calculati-

ons are available for other considered archimedean families. However, it has been
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thought that above derivations are enough to give a general idea for a mixture model

construction.

3.2.2 CD-Vine Approach

As a new mixture model, finite C-vine copulas are combined with a D-vine framework.

The main motivation behind such a mixture model construction is based on the fact

that the dependence pattern of multivariate data can change over time. Equivalently,

C-vine mixture model can include different copulas over various time intervals and

each C-vine copula model can be attached to each other by using D-vine methodology.

Even if the finite mixture model based mixture of C-vine copula density is established

with its all parameters in multivariate data (case p = 4), the main purpose of the

study is to combine these densities using D-vine copula method instead of using

finite mixture framework. The main difference for the construction of CD-vine that it

requires the parameter knowledge belonging to C-vine part before modeling D-vine

for the dependence among the components. To illustrate, the following mixture

model is established with required properties. Assume that 3 component C-vine

copula densities are generated using same or different pair copulas where p = 4

(to differ from D-vine structure, p ≥ 4 must be satisfied). To illustrate, Figure 3.1 is

presented based on 3 component C-vine density with different pair copula families for

Components 1, 2 and 3, respectively. Under this setup, f1(x1:4;φCV1), f2(x1:4;φCV2)

and f3(x1:4;φCV3) denote the multivariate C-vine density for each component with

their corresponding parameter space. For instance; φCV1 includes totally 6 pair copula

parameters given in the form of φCV1 = (β1
12, β

1
13, β

1
14, β

1
23|1, β

1
24|1, β

1
34|12). In total, for

3 component C-vine density modeling with different pair copulas in each component

has required to obtain 18 pair copula parameters.

In this modeling framework, CV1, CV2 and CV3 are multivariate random variables to

denote the observed values obtained from each component with their corresponding

density functions f1(x1:4;φCV1), f2(x1:4;φCV2) and f3(x1:4;φCV3) respectively. To

visualize, the following Figure 3.2 presents the mixture of CD-vine based on observed

values coming from C-vines with the help of D-vine copula approach.

Based on Figure 3.2, DV12 and DV23 at T1 are unconditional pair copulas to combine
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Figure 3.1: 3-Component C-vine density with different pair copulas
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Combination of 1CV , 2CV  and 3CV  using D-Vine Copula Framework 
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Figure 3.2: CD-Vine Mixture Model Tree Structure
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the pairs (CV1, CV2) and (CV2, CV3) with copula parameters θDV12 and θDV23 respecti-

vely. For the next tree, T2, conditional bivariate copula, denoted byDV13|2, comes into

play to derive the density of the pairs (CV1, CV3) given CV2 based on D-vine copula

tree structure. In this mixture, totally there are

M × (p(p− 1)/2) +M(M − 1)/2 = 18 + 3 = 21

parameters required to estimate for expressing the full inference on CD-vine mixture

model. One can write the mixture model density for this example p = 4 and M = 3

as follows,

g(x; Γ) = DV12(F (cv1), F (cv2); θDV12)DV23(F (cv2), F (cv3); θDV23)

DV13|2(F (cv1|cv2), F (cv3|cv2); θDV13|2)

f1(x1, x2, x3, x4;φCV1)f2(x1, x2, x3, x4;φCV2)

f3(x1, x2, x3, x4;φCV3).

where cv1, cv2 and cv3 are observations specifically extracted from the multivariate

C-vine densities defined via empirical multivariate cumulative distribution functions.

Γ denotes the all necessary copula parameters to be estimated for maximizing the

log-likelihood of function g(x; Γ) based on given sample, where

Γ = (φCV1 , φCV2 , φCV3 , θDV12 , θDV23 , θDV13|2).

This CD-vine mixture setup is explained below with Gumbel family in detail.

Consider a simple case including 3 component C-vine copula densities generated

by Gumbel copula pairs where p = 4. Under this assumption, let f1(x1:4;φCV1),

f2(x1:4;φCV2) and f3(x1:4;φCV3) denote the multivariate C-vine densities for each

component with their corresponding parameter space φCV1 , φCV2 and φCV3 , which

can be expressed with the following general notation.

φCVi = (βi12, β
i
13, β

i
14, β

i
23|1, β

i
24|1, β

i
34|12). (3.2.50)

for i = 1, 2, 3 where i is the component number. Gumbel family is useful to identify

the upper tail dependencies, with a positive association. Generally, the bivariate

copula function C(x1, x2; θ) is given below with the corresponding parameter space,
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θ ∈ [1,∞). For the full inference of CD-vine mixture under the proposed setup,

Gumbel copula and its probability density function recalled one more time as follows,

C(x1, x2; θ) = exp(−[(− log x1)θ + (− log x2)θ]
1
θ ). (3.2.51)

c(x1, x2; θ) =
∂C(x1, x2; θ)

∂x1∂x2

. (3.2.52)

After the construction of the pair copulas via Gumbel family for each component,

the dependence between the components is modeled by using temporal ordering of

the variables. Thus, CD-vine mixture model based on Gumbel copula pairs for each

tree are generated. For the full inference on CD-vine mixture model, the following

log-likelihood function can be written based onN observations randomly drawn from

CD-vine mixture model,

L(Γ) = log(
N∏
n=1

g(x; Γ))

=
N∑
n=1

[(logDV12(F (cv1), F (cv2); θDV12) + logDV23(F (cv2), F (cv3); θDV23)

+logDV13|2(F (cv1|cv2), F (cv3|cv2); θDV13|2))

+(log f1(x1:4;φCV1) + log f2(x1:4;φCV2) + log f3(x1:4;φCV3))].

(3.2.53)

where the sum of log fi(x1:4;φCVi) for i = 1, 2, 3 as last three red terms represent

the contribution to the log-likelihood function from each C-vine component, and

the first three blue terms denote the contribution to the function L(Γ) from mixture

model by considering the interactions of each component with D-vine copula. Since

the copula parameters of blue colored terms directly dependent on the parameters

required in red colored terms, two step maximization is beneficial to estimate all

parameters stated in the related parameter space at the beginning. For this reason, it

is important to first maximize the red colored terms of the log-likelihood function

to derive φCV1 , φCV2 , φCV3 . Afterwords, one can estimate θDV12 , θDV23 , θDV13|2 by

maximizing the blue colored terms of L(Γ) in Equation 3.2.53.
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To illustrate, the first term of red colored terms of the log-likelihood function is

summarized below for the first component, as a product of conditional and uncondi-

tional Gumbel densities,

log f1(x1:4;φCV1) = log[c12(x1, x2; β1
12)c13(x1, x3; β1

13)c14(x1, x4; β1
14)

c23|1(F (x2|x1), F (x3|x1); β1
23|1)c24|1(F (x2|x1), F (x4|x1); β1

24|1)

c34|12(F (x3|x1, x2), F (x4|x1, x2); β1
34|12)]. (3.2.54)

Given log f1(x1:4;φCV1) function in Equation 3.2.54 is simplified and corresponding

dependence parameters are suppressed for the rest of CD-vine mixture model, presented

below,

log f1 = [log c12 + log c13 + log c14 + log c23|1 + log c24|1 + log c34|12]. (3.2.55)

In Equation 3.2.55, all log-transformed versions of Gumbel copulas are denoted by

log c12, log c13 log c14, log c23|1, log c24|1 and c34|12 with their corresponding parameters.

These functions are derived previously in Equations 3.2.33, 3.2.34, 3.2.35, 3.2.42,

3.2.43 and 3.2.48. For this reason, the detailed construction of is reviewed only for

log c12 below,

c12 =
∂2C(x1, x2; β12)

∂x1∂x2

=
∂

∂x1

[C(x1, x2)(
1

x2

(− log x2)β
1
12−1)[(− log x1)β

1
12 + (− log x2)β

1
12 ]

1

β112
−1

]

=
1

x2

(− log x2)β
1
12−1[

∂C12

∂x1

G12(x1, x2; β1
12) + C12

∂G12(x1, x2; β1
12)

∂x1

]

=
C(x1, x2; β12)

x1x2

[log x1 log x2]β
1
12−1G12(x1, x2; β1

12)[G12(x1, x2; β1
12)

+
β1

12 − 1

[(− log x1)β
1
12 + (− log x2)β

1
12 ]β

1
12

]

=
C(x1, x2; β12)

x1x2

[log x1 log x2]β
1
12−1G12(x1, x2; β1

12)

[G12(x1, x2; β1
12) +

β1
12 − 1

(− log x1)β
1
12 + (− log x2)β

1
12

].

(3.2.56)
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whereG12(x1, x2; β1
12) = [(− log x1)β

1
12+(− log x2)β

1
12 ]

1

β112
−1

. After taking the natural

logarithm of c12 density function and arranging all the terms, the following formula

has been derived for log c12,

log c12 = log(C(x1, x2; β12))− log(x1x2) + (β1
12 − 1) log(log(x1) log(x2))

+ log(G12) + log(G12 +
β1

12 − 1

[(− log x1)β
1
12 + (− log x2)β

1
12 ]

).

(3.2.57)

In a similar manner, one can write the formula for log c13 and log c14 using G13 and

G14, given in Equations 3.2.37 and 3.2.38, as follows,

log c13 = log(C(x1, x3; β13))− log(x1x3) + (β1
13 − 1) log(log(x1) log(x3))

+ log(G13) + log(G13 +
β1

13 − 1

[(− log x1)β
1
13 + (− log x3)β

1
13 ]

).

(3.2.58)

log c14 = log(C(x1, x4; β14))− log(x1x4) + (β1
14 − 1) log(log(x1) log(x4))

+ log(G14) + log(G14 +
β1

14 − 1

[(− log x1)β
1
14 + (− log x4)β

1
14 ]

).

(3.2.59)

For the computations of log c23|1 and log c24|1, Equations (3.2.42) and (3.2.43) are

already available. Besides, the construction of log c34|12 is obvious after deriving

Equation (3.2.48). To sum up, log f1(x1:4;φCV1) can written as a sum of all above

mentioned unconditional and conditional Gumbel copula densities for the first compo-

nent. Here, new analogue functions, G̃12, G̃13, G̃14, G̃23|1, G̃24|1, G̃34|12, x̃21, x̃31, x̃41,

x̃3|12, x̃4|12 are generated as they given below, for writing log f1(x1:4;φCV1) function

in a more rigorous way.

G̃12 = G̃12(x1, x2; β1
12) = [(− log x1)β

1
12 + (− log x2)β

1
12 ]. (3.2.60)
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G̃13 = G̃13(x1, x3; β1
13) = [(− log x1)β

1
13 + (− log x3)β

1
13 ]. (3.2.61)

G̃14 = G̃14(x1, x4; β1
14) = [(− log x1)β

1
14 + (− log x4)β

1
14 ]. (3.2.62)

x̃21 = exp (−G̃12)
1

β112 (G̃12)
1
β12
−1 (− log(x1))β12−1

x1

. (3.2.63)

x̃31 = exp (−G̃13)
1

β113 (G̃13)
1
β13
−1 (− log(x1))β13−1

x1

. (3.2.64)

x̃41 = exp (−G̃14)
1

β114 (G̃14)
1
β14
−1 (− log(x1))β14−1

x1

. (3.2.65)

where G̃12, G̃13 and G̃14 are defined above as in Equations (3.2.60), (3.2.61) and

(3.2.62), respectively.

G̃23|1 = G̃23|1(x̃21, x̃31; β1
23|1) = [(− log x̃21)β

1
23|1 + (− log x̃31)β

1
23|1 ]. (3.2.66)

G̃24|1 = G̃24|1(x̃21, x̃41; β1
24|1) = [(− log x̃21)β

1
24|1 + (− log x̃41)β

1
24|1 ]. (3.2.67)

where x̃21, x̃31 and x̃41 are defined above as in Equation 3.2.63, 3.2.64 and 3.2.65,

respectively.

x̃3|12 = exp (−G̃23|1)
1

β1
23|1 (G̃23|1)

1
β23|1

−1 (− log(x̃21))β23|1−1

x̃21

. (3.2.68)

x̃4|12 = exp (−G̃24|1)
1

β1
24|1 (G̃24|1)

1
β24|1

−1 (− log(x̃21))β24|1−1

x̃21

. (3.2.69)

where G̃23|1 and G̃24|1 are presented in Equations 3.2.66 and 3.2.67, respectively.

Finally,
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G̃34|12 = G̃34|12(x̃3|12, x̃4|12; β1
34|12) = [(− log x̃3|12)β

1
34|12 + (− log x̃4|12)β

1
34|12 ].

(3.2.70)

in which, both x̃3|12 is described in Equation (3.2.68) and similarly, x̃4|12 is defined

in Equation (3.2.69). After combining above displayed necessary functions given in

Equations 3.2.60-3.2.70, log f1(x1:4;φCV1) function can be written as,

log f1(x1:4;φCV1) = (−G̃12)
1

β112 − log(x1x2) + (−2 +
2

β1
12

) log(G̃12)

+(β1
12 − 1) log(log(x1) log(x2)) + log(1 + (β1

12 − 1)(G̃12)
−1

β112 )

(−G̃13)
1

β113 − log(x1x3) + (−2 +
2

β1
13

) log(G̃13)

+(β1
13 − 1) log(log(x1) log(x3)) + log(1 + (β1

13 − 1)(G̃13)
−1

β113 )

(−G̃14)
1

β114 − log(x1x4) + (−2 +
2

β1
14

) log(G̃14)

+(β1
14 − 1) log(log(x1) log(x4)) + log(1 + (β1

14 − 1)(G̃14)
−1

β114 )

(−G̃23|1)
1

β1
23|1 − log(x̃21x̃31) + (−2 +

2

β1
23|1

) log(G̃23|1)

+(β1
23|1 − 1) log(log(x̃21) log(x̃31)) + log(1 + (β1

23|1 − 1)(G̃23|1)
−1

β1
23|1 )

(−G̃24|1)
1

β1
24|1 − log(x̃21x̃41) + (−2 +

2

β1
24|1

) log(G̃24|1)

+(β1
24|1 − 1) log(log(x

′

21) log(x̃41)) + log(1 + (β1
24|1 − 1)(G̃24|1)

−1

β1
24|1 )

(−G̃34|12)
1

β1
34|12 − log(x̃3|12x̃4|12) + (−2 +

2

β1
34|12

) log(G̃34|12)

+(β1
34|12 − 1) log(log(x̃3|12) log(x̃4|12)) + log(1 + (β1

34|12 − 1)(G̃34|12)
−1

β1
34|12 ).

(3.2.71)

As a second part of the mixture model, it is possible to transform the obtained values

cv1 ,cv2, cv3 to pseudo-observations one more time to construct the D-vine part of

the CD-vine mixture model. At this step, estimated parameters φCVi for i = 1, 2, 3

are considered for the computation of θDV12 , θDV23 , θDV13|2 of again Gumbel pairs.

Under such a mixed modeling, pseudo-observations defined over cv1 and cv2 tied with
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Gumbel family. However, cv2 is combined with cv3 as unconditional Gumbel copulas

at tree T1 (so it is required to write c23). As a final step, (cv1, cv2) and (cv2, cv3) are

combined together and obtain the conditional Gumbel pair copula c13|2 for tree T2.

To maximize the second part of the CD-vine mixture model, following functions are

defined to conclude the full inference on parameter estimation,

logDV12 = logC(x1, x2; θDV12) + [(− log x1) + (− log x2)]

+ (θDV12 − 1)(log(− log x1) + log(− log x2))

+ (
1

θDV12
− 1) log((− log x1)θDV12 + (− log x2)θDV12 )

+ log[G12DV (x1, x2; θDV12) +
θDV12 − 1

[(− log x1)θDV12 + (− log x2)θDV12 ]
].

(3.2.72)

logDV23 = logC(x2, x3; θDV23) + [(− log x2) + (− log x3)]

+ (θDV23 − 1)(log(− log x2) + log(− log x3))

+ (
1

θDV23
− 1) log((− log x2)θDV23 + (− log x3)θDV23 )

+ log[G23DV (x2, x3; θDV23) +
θDV23 − 1

[(− log x2)θDV23 + (− log x3)θDV23 ]
].

(3.2.73)

where

G12DV (x1, x2; θDV12) = [(− log x1)θDV12 + (− log x2)θDV12 ]
1

θDV12
−1
. (3.2.74)

G23DV (x2, x3; θDV23) = [(− log x2)θDV23 + (− log x3)θDV23 ]
1

θDV23
−1
. (3.2.75)

For the derivation ofDV13|2, one can rearrange the related terms as it is given for c23|1.

By using the same idea, DV13|2 is constructed by using x12 and x32 given below,

x12 = C(x1, x2; θDV12)
(− log x2)θDV12−1

x2

G12DV (x1, x2; θDV12). (3.2.76)

x32 = C(x2, x3; θDV23)
(− log x2)θDV12−1

x2

G23DV (x2, x3; θDV23). (3.2.77)

where x1, x2 and x3 are equivalently used for second step pseudo-observations defined

over cv1, cv2 and cv3;G12DV (x1, x2; θDV12) is the analogue of functionG12(x1, x2; β1
12)

defined previously and G23DV (x2, x3; θDV23) is a new function defined in Equation
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3.2.75. Using these functions, the closed form of DV13|2 can be written as,

DV13|2 = exp(−[(− log x12)
θDV13|2 + (− log x32)

θDV13|2 ]
1

θDV13|2 )

(− log x12)
θDV13|2−1

x12

(− log x32)
θDV13|2−1

x32

DV 12;32(x12, x32; θDV13|2)[DV
12;32(x12, x32; θDV13|2)

+
(θDV13|2 − 1)

[(− log x12)
θDV13|2 + (− log x32)

θDV13|2 ]
].

(3.2.78)

where DV 12;32(x12, x32; θDV13|2) = [(− log x12)
θDV13|2 + (− log x32)

θDV13|2 ]
1

θDV13|2
−1

.

More clearly, logDV13|2 can be written as follows,

logDV13|2 = (−[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2 )
1

θDV13|2

+EDV
12 (x1, x2; θDV12) + EDV

23 (x2, x3; θDV23)

+(θDV13|2 − 1)[log[EDV
12 (x1, x2; θDV12)] + log[EDV

23 (x2, x3; θDV23)]]

+(
1

θDV13|2
− 1) log[[EDV

12 (x1, x2; θDV12)]
θDV13|2 + [EDV

23 (x2, x3; θDV23)]
θDV13|2 ]

+ log[[[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2 ]
1

θDV13|2
−1

+
θDV13|2 − 1

[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2
].

(3.2.79)

where

EDV
12 (x1, x2; θDV12) = − logC12 − log(

1

x2

)− (θDV12 − 1) log(− log x2)

− logG12DV (x1, x2; θDV12). (3.2.80)

EDV
23 (x2, x3; θDV23) = − logC23 − log(

1

x2

)− (θDV23 − 1) log(− log x2)

− logG23DV (x2, x3; θDV23). (3.2.81)

For the maximization of the blue colored terms of the Equation (3.2.53), the sum of

Equations (3.2.72), (3.2.73) and (3.2.79) are required. This last optimization problem

over the parameters of D-vine part almost complete the inference of parameters for the

proposed CD-vine mixture model. This whole sum described above can be summarized
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as,

(logDV12(F (cv1), F (cv2); θDV12) + logDV23(F (cv2), F (cv3); θDV23)

+logDV13|2(F (cv1|cv2), F (cv3|cv2); θDV13|2))

= (θDV12 − 1) log(− log x1) + (− log x1) + (θDV23 − 1) log(− log x3) + (− log x3)

+ log[G12DV (x1, x2; θDV12) +
θDV12 − 1

[(− log x1)θDV12 + (− log x2)θDV12 ]
]

+ log[G23DV (x2, x3; θDV23) +
θDV23 − 1

[(− log x2)θDV23 + (− log x3)θDV23 ]
]

(−[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2 )
1

θDV13|2

+(θDV13|2 − 1)[log[EDV
12 (x1, x2; θDV12)] + log[EDV

23 (x2, x3; θDV23)]]

+(
1

θDV13|2
− 1) log[[EDV

12 (x1, x2; θDV12)]
θDV13|2 + [EDV

23 (x2, x3; θDV23)]
θDV13|2 ]

+ log[[[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2 ]
1

θDV13|2
−1

+
θDV13|2 − 1

[EDV
12 (x1, x2; θDV12)]

θDV13|2 + [EDV
23 (x2, x3; θDV23)]

θDV13|2
].

(3.2.82)

Finally, above mentioned two-stage maximization procedure for CD-vine model can

be summarized with the following steps to estimate all parameters,

1. Construct three C-vine models in 4-dimensional case having sample size N

using Gumbel family for each pair, but for instance different parameter values.

2. For the parameter estimation, first put some initials for the related parameters

of each C-vine component to maximize the red part of the likelihood function

given in 3.2.53.

3. After deriving the estimates for each component, generate C-vine copula data

in 3 dimension with estimated parameters and evaluate (EMCDF) of it to derive

N × 3 matrix based on approximated parameters

4. Define pseudo-observations over the each column ofN×3 matrix and use them

to maximize the blue part of the likelihood function with some predetermined

initials for parameters of D-vine copula in 3 dimension.
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5. Compare the original and estimated parameters based on different iterations,

investigate the best model from driven data and any model identification problem

in CD-vine mixture model.

For all above mentioned procedures for both finite mixture of C-vines and CD-vine

mixture model is summarized at the end of the study. For both proposed methods,

their pseudo codes are presented in Appendix C separately.

3.3 About Parameter Estimation

For all above described mixture models, the most fragile part is the estimation of

parameters. The performance and success of the proposed models is highly related

to the implementation of suitable optimization algorithm for the maximization of the

log-likelihood. With this objective, various derivative free optimization routines are

implemented for finding the parameter estimates. For this reason, those different tools

are briefly stated in terms of their main features before going further on simulated

examples.

3.3.1 Derivative Free Optimization Tools

In this subsection, the considered derivative free algorithms are briefly explained.

The reason for such methods is directly depends on the complex nonlinear functions

resulted from mixture of vines. Furthermore, it is not so practical to derive analytical

derivatives for all mixture densities based on various dependence parameters.

3.3.1.1 Hooke-Jeeves Algorithm

Hooke-Jeeves (hjk) is a kind of direct search method that use only function values.

This algorithm creates a set of search directions to identify the search span completely

[23]. An iterative process has been used to combine exploratory moves and heuristic

pattern moves. More clearly, the detailed steps for this approach is presented below

in Algorithm 1. In this following algorithm, xb is the base point, fb = f(xb) value of
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the base function, xC is called stencil center and sf is the status flag for displaying

the failure of exploratory move, namely ExploratoryMove(xb, xC , f, h, sf ). Then,

in the second part (PatternMove(x, f, h)), x is the initial iterate for the best point

and f is the objective function and this part completes the exploratory move. In this

algorithm, given PatternMove(x, f, h) is the repeated process until the satisfaction

of stopping criteria.

Above described hjk algorithm shares the property of its suitable extension to bound

constraint problems naturally. In this calculation, both consecutive steps, Exploratory

and Pattern moves restrict parameter space to a feasible set. Simply, hjk method with

a box constraint is abbreviated as hjkb for the rest of the study. For further properties

of hjk algorithm, the well known book by [21] is available for the interested reader.

3.3.1.2 Differential Evolution Algorithm

Differential Evolution (DEoptim) algorithm is a kind of heuristic method to solve

optimization problems globally in an effective way [27]. Equivalently, DEoptim

implements the idea of differential evolution to optimize a real valued function by

using a suitable parameter vector. This is a technique that each generation transforms

a set of parameters into another one to find the best set of members more likely to

minimize the given objective function [27]. From a given parameter vector, the next

one is generated by the scaled difference of two randomly selected parameter vectors

within this algorithm.

There are certain crucial parameters for this algorithm, denoted simply by NP , CR

andF to express the number of parameter vectors in the population, crossover probabi-

lity and a positive scale factor, respectively. Here, at the initial generation DEoptim

guesses the optimal value from NP and each generation creates a new population

from the current members via differential mutation method. The algorithm stops

after some set number of generations, or after the objective function value has been

reduced below some threshold.
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Algorithm 1 hjk algorithm

Require: ExploratoryMove(xb, xC , f, h, sf )

fb ← f(xb), d = 0 where xC ← xb + d with xcb = xb,

sf = 0, fcb← f(xcb), xt = xC

for j = 1 to N do

p← xt+hvj; h is the pattern size and vj is the j’th column of a direction matrix.

if f(p) ≥ fb then

p← xt − hvj
else

xt ← xcb ← p

fb = f(xcb)

end if

end for

if xcb 6= xb then

sf = 1

xb ← xcb

end if

Require: PatternMove(x, f, h) xb = x, xC = x, sf = 1, x is the initial for best

point

Call ExploratoryMove(xb, xC , f, h, sf )

while sf = 1 do

i) d← x− xb;xb = x;xC = x+ d

ii) Call ExploratoryMove(xb, xC , f, h, sf )

if sf = 0, xC = x then

Call ExploratoryMove(xb, xC , f, h, sf )

end if

end while

Require: hjk(x, f, hk)

for k = 1 to · · · do

PatternMove(x, f, h)

end for
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To sum up, DEoptim algorithm directly depends on repeated calculations to bring the

population to a global minimum of an objective function. Briefly, DEoptim algorithm

is explained below in Algorithm 2. The described consecutive steps for DEoptim

algorithm, initialization, mutation, recombination and selection continue until the

stopping criterion is reached. For further reading about DEoptim, [31] is suggested

for the interested readers.

Algorithm 2 DEoptim algorithm
xi,g : current population members, where i and g denote the vectors that make

up the population and indexes generation where i = 1, 2, · · · , N .

Define upper and lower bounds for each parameter and consider randomly

selected initials uniformly over [xLj , x
U
j ].

xLj ≤ xj,i,1 ≤ xUj

Then, a trial mutant parameter vector, from three randomly selected members of

the population

vi,g+1 ← xr1,g + F (xr2,g − xr3,g)
In general F < 1, it is called mutation factor and vi,g+1 is called the donor vector.

Consider a uniform number randj,i, Irand is a random integer from

[1, 2, · · · , NP ] where NP is the number of parameters. vi,g+1 6= xi,g is satisfied

by Irand.

if randj,i ≤ CR or j = Irand then

uj,i,g+1 ← vj,i,g+1

else if randj,i > CR and j 6= Irand then

uj,i,g+1 ← xj,i,g

end if

where i = 1, 2, · · · , N ; j = 1, 2, · · · , NP .

Then, target vector xi,g is compared with trial vector vi,g+1, one with the lowest

objective function value is attained to the next generation

if f(ui,g+1) ≤ f(xi,g) then

xi,g+1 ← ui,g+1

else if f(ui,g+1) > f(xi,g) then

xi,g+1 ← xi,g

end if
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3.3.1.3 Spectral Projected Gradient Algorithm

For an unconstrained optimization problem, spectral projected gradient (spg) algorithm

is a version of Quasi-Newton secant methods, originally comes from the recursive

relationship, defined as,

xk+1 = xk − αkB−1
k ∇f(xk). (3.3.1)

where Bk+1sk = yk and sk−1 = xk − xk−1, yk−1 = ∇f(xk) −∇f(xk−1) are crucial

variables for the initial step length in Barzilai-Borwein (BB) iteration algorithm [4].

Namely, in this BB case the unconstrained minimization is defined as xk+1 = xk +

αkdk where dk = −λk∇f(xk) [9]. In this framework, spg method is a spectral

method to solve convex constrained optimization problems having the form xk+1 =

xk + αkdk where dk is the search direction defined as follows,

dk = PΩ(xk − λk∇f(xk))− xk. (3.3.2)

In this Equation 3.3.2, PΩ is the Euclidean projection onto set Ω and λk is the related

spectral step length choice described as,

λk =
sTk−1sk−1

sTk−1yk−1

. (3.3.3)

After giving brief aspects of the above-mentioned optimization problem with respect

to spectral step length, spg algorithm is summarized as follows in Algorithm 3. For

further details about the convergence properties and some extensions of spg, [8] is

suggested for the interested readers.
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Algorithm 3 spg algorithm
Assume γ ∈ (0, 1) is the decrease parameter, M ≥ 1 with safeguarding

parameters 0 < σ1 < σ2 < 1 for quadratic interpolation and 0 < λmin <

λmax <∞ for the spectral step length. x0 and λ0 ∈ (λmin, λmax) are given,

if x0 6∈ Ω then

Redefine x0 = PΩ(x0) and set k ← 0

end if

if ||PΩ(xk − λk∇f(xk))− xk||∞ ≤ ε then

xk is an approximate stationary point

end if

dk ← PΩ(xk−λk∇f(xk))−xk and calculate αk with parameters γ, M , σ1 and σ2.

xk+1 ← xk + αkdk

sk ← xk+1 − xk and yk ← ∇f(xk+1)−∇f(xk)

if sTk yk ≤ 0 then

λk+1 ← λmax

else

λk+1 ← max(λmin,min(
sTk sk
sTk yk

, λmax))

end if

Set k ← k + 1 and turn back.

αk is called the non-monotone line search and it is calculated based on

fmax ← max(fxk−j |0≤j≤min(k,M−1)) where M is the integer parameter to impose a

functional decrease every M iterations, set α← 1.

if fxk+k ≤ fmax + γα∇f(xk)Tdk then

αk ← α

end if
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3.3.1.4 Memetic Algorithms with Local Search Chains (Rmalschains) Algorithm

Another global optimization tool used in this study is simply called MA-LS Chains,

abbreviated as Rmalschains within Chapter 4 whenever it is used. Briefly, it is a

hybridization between Evolutionary Algorithm (EA) and Local Search (LS) by taking

advantages of both techniques at the same time [7]. In continuous optimization

problems, MA-LS-Chains has proven in terms of their efficiency in literature.

Rmalschains uses steady-state genetic algorithm (SSGA) as EA and allows to improve

the same solution many times while creating an LS chain. After finding the initial

population, the repeated mechanism is maintained in the population. Whenever SSGA

captures a new best solution, then this solution is improved by LS chain. Certainly,

the details of Rmalschains algorithm requires various methods like Covariance Matrix

Adaptation Evolution Strategy (CMA-ES), which works best. For the sake of simplicity,

only general scheme of Rmalschains is described below in Algorithm 4 and for further

details [26] is referred.

Algorithm 4 Rmalschains algorithm
Generate Initialpopulation

while ¬termination− condition do

Perform SSGA with nfrec evulations where SSGA is steady-state genetic

algorithm and nfrec is certain amount of evaluations. Build set SLS , refined

by LS chains where SLS is the set with the individuals of the population that

have never been improved.

Take best individual cLS

if cLS ∈ LS then

Initialize LS operator with LS state stored with cLS .

else

Initialize LS operator with default LS.

end if

Apply LS algorithm to cLS with Istr and give crLS .

cLS ← crLS

Store final LS state with crLS
end while
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3.4 About Model Selection

Apart from naive information criteria values, some practical Goodness of Fit (GOF)

tests are proposed for the comparison of vine mixtures. For that reason, Clarke and

Vuong tests, available for vine copula models, are extended for mixture models. First

of all, with the aim of comparing two mixture models to identify whether they are

equivalent or significantly different from each other, Clarke test for mixture model

is implemented. Thereafter, a new version of Vuong test is studied to conclude that

which mixture model is preferable. With the upcoming two subsections, both mixture

versions of Clarke and Vuong tests are briefly described.

3.4.1 Clarke test for Mixture of Vines (ClarkeMixV)

As an extension of the test proposed by [10], the new test allows to compare two

vine mixture model. Besides, this test enables us to derive information about the

mixture model generated via simulated data and constructed based on the estimated

parameters of the best model.

Definition 3.4.1. Let g1(x; Γ1) and g2(x; Γ2) be two competing vine mixtures with

their corresponding estimated parameters Γ̂1 and Γ̂2, respectively. To test the statistical

indistinguishability of the two models,

• H0 : P (mi > 0) = 0.5

• H1 : P (mi > 0) 6= 0.5 for i = 1, · · · , N

where mi = log(g1(x;Γ̂1)

g2(x;Γ̂2)
) for sample size N . Under statistical equivalence of the two

models, the following statistics is calculated

Cstats =
N∑
i=1

1(0,∞)(mi). (3.4.1)

where 1 denotes the indicator function, andCstats is distributed Binomial with parame-

ters N and p = 0.5 in Equation 3.4.1. Based on the obtained critical values, mixture
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model g1 is statistically equivalent to model g2 if Cstats is not significantly different

from E(Cstats) = N · p = N
2

.

The result of new Clarke test enables to make inference on indiscernibility of both

base and the fitted models via simulated data.

3.4.2 Vuong test for Mixture of Vines (VuongMixV)

Classical Vuong test can be performed to select the superior model between two vine

copula densities [38]. Under this modeling setup, it is redefined for comparing two

mixture models in terms of the likelihood-ratio.

Definition 3.4.2. Let g1(x; Γ1) and g2(x; Γ2) be two competing vine mixtures with

their corresponding estimated parameters Γ̂1 and Γ̂2, respectively. Besides, mi =

log(g1(x;Γ̂1)

g2(x;Γ̂2)
) is given for N observations. The standardized sum ν is calculated as

follows,

Vstats = ν =
1
N
·
∑N

i=1mi√∑N
i=1(mi −m)2

. (3.4.2)

and it is proven that ν is asymptotically standard normal. Based on the hypothesis

test given below,

• H0 : E(mi) = 0 for all i = 1, · · · , N

• H1 : E(mi) 6= 0 at least one of i = 1, · · · , N

one of the mixture models is preferred at a certain level, α, based on the following

comparisons.

• if ν > φ−1(1− α
2
), the mixture model g1 is preferable to model g2

• if ν < −φ−1(1− α
2
), the mixture model g2 is preferable to model g1

• if |ν| ≤ φ−1(1− α
2
) is satisfied, there is no decision about the selection among

both models.
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where φ−1 is the inverse of the standard normal distribution function in the comparison

part above.

For the model comparison part, Vuong test enables to decide which mixture model is

the best one among the mentioned mixture models by using simulated data set. Both

GOF tests are core tests for the model selection part by supporting or disproving the

result of classical information criteria values.
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CHAPTER 4

NUMERICAL RESULTS

In this section, the above mentioned multivariate frameworks are studied with a wide

range of simulated data sets. For that purpose, numerical results are presented in

detail first. Besides, after observing the properties of different mixture models, two

different real life applications have been investigated and the recent findings of the

study was highlighted by discussing both benefits and limitations of the study.

4.1 Simulation Study

As a simulated data, various mixture models have been considered and the number

of observations has been changed from N = 50 (small sample) to N = 1000 (large

sample) to observe the effect of sample size on the parameter estimation part. The

estimated parameters for each pair of both components are obtained using mean

values of 1000 different replications. Under this data generating process, distinct

mixture models have been compared based on the classical information criteria values.

Besides, the modified GOF tests, explained previously in the last section of Chapter

3, were implemented as a supplementary tool for model comparison.

For the parameter estimation, it is required to incorporate a suitable optimization

routine with meaningful initial values. In that respect, different optimization tools

were considered to estimate the parameters of mixture models. Especially, for such

mixture of vines, derivative free optimization algorithms have certain advantages with

respect to avoided mass calculations on the derivatives of log-likelihood function.

Generally, most of the log-likelihood maximization process for various scenarios
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were considered with fixed initial parameter guesses from the corresponding parameter

space.

With a purpose of understanding the nature of mixture models, various scenarios have

been investigated with different tail properties. In the first subsection, 2 component 3

dimensional C-vine mixtures have been considered with the same and different pair

copula construction scheme. Thereafter, within the same framework, 3 component

3 dimensional C-vine mixtures are studied. In addition to these simulated data sets,

2 component 4 dimensional C-vine mixtures were considered. Furthermore, finite

mixture of C- and D-vine is elaborated with a same copula family for each component.

Finally, as a novel contribution, CD-vine mixture approach has been considered. For

each scenario mentioned briefly above, model comparison results with the estimated

parameter values and certain statistics have been summarized.

4.1.1 Finite Mixture of C-vines

In this part, both 3 and 4 dimensional C-vine mixtures were studied. Here, 2 and

3 component mixtures have been investigated for 3 dimensional case, meanwhile, 2

component mixture case was considered for 4 dimensional multivariate data. The

results of the considered mixture scenarios were summarized in detail.

4.1.2 2 Component 3 dimensional C-vine Mixtures

Under this subsection, two different C-vine mixture models have been studied with

various dependence properties. Firstly, Frank-Frank case was considered with strong

dependence assumption. Thereafter, Clayton and Joe families were selected for the

pair copula construction of the 1st and 2nd components, respectively. Within the

second scenario, different tail properties are discussed based on the compared models.

4.1.2.1 Frank-Frank case

Suppose the density for each of the components of 3 dimensional C-vine mixture

model are relied on Frank and Frank copula families, respectively. Besides, both
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C-vine model is constructed with the higher θ values for each pair copula density,

which expresses Strong/Strong (SS) dependence case. In this mixture model, only

Frank pairs are considered for the densities belonging to 1st and 2nd component, with

parameter values (β1
12 = 8, β1

13 = 7, β1
23|1 = 6) and (β2

12 = 9, β2
13 = 6, β2

23|1 = 5).

For the comparison, the focus of the simulation is a mixture of C-vines with assumed

properties to check whether the proposed model is able to capture different patterns

of dependence structures or not. To illustrate, different mixtures were investigated

to compare with the base model and to see the parameter estimation performance

over various sample size. Here, all parameter estimations are obtained via derivative

free optimization routine, called as hjkb method, with some predefined constraints

(Lower and Upper bounds are set to 1 and 9 for the parameters, respectively). For the

model selection, Table 4.1 was generated based on the model selection criteria values

for various mixtures, where SClay represents for Survival Clayton family for the rest

of the study.

Table 4.1: 2 Component 3 dimensional C-vine mixtures with different pairs, strong
dependence (Base is Frank-Frank)

Mixt. Size Model Selection
C1-C2 N AIC BIC CAIC

Frank-Frank
50 -67.38451 -54.00035 -47.00035

100 -148.1205 -129.8843 -122.8843
250 -383.487 -358.8367 -351.8367
500 -791.2834 -761.7811 -754.7811

1000 -1591.905 -1557.55 -1550.55

Clayton-Clayton
50 -58.77387 -45.38971 -38.38971

100 -117.8449 -99.60869 -92.60869
250 -302.5222 -277.872 -270.872
500 -613.8753 -584.3731 -577.3731

1000 -1235.783 -1201.429 -1194.429

Clayton-SClay
50 -60.33558 -46.95141 -39.95141

100 -126.2253 -107.9891 -100.9891
250 -321.5344 -296.8841 -289.8841
500 -642.4542 -612.952 -605.952

1000 -1274.26 -1239.905 -1232.905
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Based on the comparison given in Table 4.1, Frank-Frank case for the pairs of the

first and second component seems to be the best model as it is expected since the

simulated data is coming from the 2 component C-vine mixture with Frank-Frank

pairs. Besides, there exists an consistency among different information criteria values

when the base model and the fitted one has the same pair copula family. Additionally,

corresponding parameter estimates and their useful statistics are given for each mixture

model.

In Table 4.2 and 4.3, the most plausible parameters are obtained in the mixture model

with Frank-Frank pair copulas. For the whole parameter space, the best approximations

belong to the Frank-Frank case. Furthermore, except the parameters β2
12 and β2

23|1, all

estimations have very small bias values. Both weight and density parameters have

been approximated reasonably for all sample size values. This result briefly exhibits

that, the mixture model has captured the dependence structure hidden in the simulated

data correctly, based on the 2 component 3-dimensional C-vine mixture.
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Table 4.2: Parameter Estimations for 1’st component (Base is Frank-Frank)

Parameters of the Mixture Model
β1

12-β1
13-β1

23|1 (8-7-6) (π1 = 0.5)
Mixt. Size Est. St.dv.

C1 N (Bias)

Frank-Frank
50 7.67-6.11-6.15 1.94-2.51-2.76

0.51 (-0.33)-(-0.89)-(0.15)
100 7.76-6.13-5.93 1.96-2.36-2.69

0.5 (-0.24)-(-0.87)-(-0.07)
250 8-6.42-5.8 1.71-2.06-2.53

0.48 (0)-(-0.58)-(-0.2)
500 7.96-6.68-6.02 1.77-1.81-2.33

0.49 (-0.04)-(-0.32)-(0.02)
1000 8.17-6.39-6.13 1.33-1.79-2.19

0.49 (0.17)-(-0.61)-(0.13)

Clayton-Clayton
50 2.49-2.28-2.24 2.37-2.32-2.54

0.78 (-5.51)-(-4.72)-(-3.76)
100 8.34-7.89-8.05 1.04-1.22-1.78

0.08 (0.34)-(0.89)-(2.05)
250 8.68-8.18-7.7 0.62-0.9-1.85

0.08 (0.68)-(1.18)-(1.7)
500 8.82-8.39-7.57 0.39-0.66-1.66

0.07 (0.82)-(1.39)-(1.57)
1000 8.94-8.47-7.83 0.19-0.54-1.39

0.07 (0.94)-(1.47)-(1.83)

Clayton-SClay
50 3.74-3.45-5.63 2-1.91-3.14

0.32 (-4.26)-(-3.55)-(-0.37)
100 3.12-2.84-4.31 1.22-1.15-2.83

0.36 (-4.88)-(-4.16)-(-1.69)
250 2.89-2.6-3.4 0.7-0.6-2.09

0.38 (-5.11)-(-4.4)-(-2.6)
500 2.82-2.53-2.81 0.45-0.41-1.4

0.4 (-5.18)-(-4.47)-(-3.19)
1000 2.77-2.5-2.46 0.31-0.29-0.79

0.4 (-5.23)-(-4.5)-(-3.54)
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Table 4.3: Parameter Estimations for 2’nd component (Base is Frank-Frank)

Parameters of the Mixture Model
β2

12-β2
13-β2

23|1 (9-6-5) (π2 = 0.5)
Mixt. Size Est. St.dv.

C2 N (Bias)

Frank-Frank
50 7.72-6.26-5.66 2.03-2.42-2.79

0.49 (-1.28)-(0.26)-(0.66)
100 7.78-6.19-5.79 1.98-2.25-2.62

0.5 (-1.22)-(0.19)-(0.79)
250 7.98-6.13-5.8 1.67-1.94-2.45

0.52 (-1.02)-(0.13)-(0.8)
500 7.99-5.89-5.92 1.58-1.85-2.36

0.51 (-1.01)-(-0.11)-(0.92)
1000 7.94-6.18-6 1.67-1.61-2.28

0.51 (-1.06)-(0.18)-(1)

Clayton-Clayton
50 7.06-6.88-7.31 2.62-2.75-2.94

0.22 (-1.94)-(0.88)-(2.31)
100 1.61-1.11-1.05 0.34-0.18-0.13

0.92 (-7.39)-(-4.89)-(-3.95)
250 1.52-1.03-1.01 0.2-0.07-0.04

0.92 (-7.48)-(-4.97)-(-3.99)
500 1.48-1.01-1 0.13-0.03-0.01

0.93 (-7.52)-(-4.99)-(-4)
1000 1.47-1-1 0.09-0.01-0

0.93 (-7.53)-(-5)-(-4)

Clayton-SClay
50 2.86-1.75-1.37 1.37-0.95-0.76

0.68 (-6.14)-(-4.25)-(-3.63)
100 2.76-1.65-1.24 0.9-0.59-0.38

0.64 (-6.24)-(-4.35)-(-3.76)
250 2.69-1.59-1.14 0.58-0.37-0.21

0.62 (-6.31)-(-4.41)-(-3.86)
500 2.68-1.6-1.1 0.4-0.26-0.13

0.6 (-6.32)-(-4.4)-(-3.9)
1000 2.67-1.57-1.06 0.3-0.18-0.09

0.6 (-6.33)-(-4.43)-(-3.94)
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4.1.2.2 Clayton-Joe case

Within the second scenario, tail dependence structure for each component has been

changed. To illustrate, suppose the densities of 1′st and the 2′nd component of 3

dimensional C-vine mixture are modeled by Clayton and Joe pair copula families,

respectively. Assume that both C-vine component is constructed with the higher

θ values (β1
12 = 6, β1

13 = 7, β1
23|1 = 8) and (β2

12 = 5, β2
13 = 6, β2

23|1 = 9) for

each pair copula density at the beginning, which expresses again Strong/Strong (SS)

dependence. In this mixture model, Clayton pairs exhibit strong left tail dependence

and relatively weak right tail dependence. On the other hand, Joe family stands to

express strong right tail dependence and relatively weak left tail dependence.

Table 4.4: 2 Component 3 dimensional C-vine mixtures with different pairs, strong
dependence (Base is Clayton-Joe)

Mixt. Size Model Selection
C1-C2 N AIC BIC CAIC

Clayton-Joe
50 -180.0698 -166.6857 -159.6857

100 -420.7195 -402.4834 -395.4834
250 -1240.829 -1216.179 -1209.179
500 -2694.689 -2665.187 -2658.187

1000 -5704.382 -5670.028 -5663.028

Clayton-Clayton
50 -88.33761 -67.30536 -56.30536

100 -205.0571 -186.8209 -179.8209
250 -495.2029 -470.5527 -463.5527
500 -998.8634 -969.3611 -962.3611

1000 -1993.513 -1959.159 -1952.159

Clayton-Gumbel
50 -201.7108 -188.3266 -181.3266

100 -469.9157 -451.6796 -444.6796
250 -1304.756 -1280.105 -1273.105
500 -2726.712 -2697.21 -2690.21

1000 -5492.561 -5458.206 -5451.206

Clayton-SClay
50 -175.4084 -162.0242 -155.0242

100 -422.963 -404.7268 -397.7268
250 -1251.251 -1226.601 -1219.601
500 -2726.414 -2696.912 -2689.912

1000 -5653.508 -5619.154 -5612.154
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Based on all values AIC, BIC and CAIC, there exists a model identification problem

for the mixture models Clayton-Joe, Clayton-Gumbel and Clayton-SClay. The weight

parameters seem to be unbalanced for each component, even if the starting values are

equal (π1 = π2 = 0.5). When the sample size was increased, the fitted mixture model

Clayton-Joe is the best one as it is expected at the beginning (forN = 1000). Besides,

even if the model identification problem occurs based on model information criteria

values, the parameters of the mixture Clayton-Joe are the most plausible ones, has

been investigated with corresponding statistics in Tables 4.5 and 4.6. To sum up, the

main reason for this model identification problem was similar dependence structure

for Joe, Gumbel and SClay copula families that has been used for the construction of

the 2’nd component. More rigorously, all pair copulas represent right tail dependence

so that such mixtures have similar dependence patterns.

Parameter estimations for each mixture model was presented in Tables 4.5 and 4.6. In

those mixture models, the best parameter estimations belong to the 2’nd component

of the mixture model of Clayton-Joe, but the weight parameters are unbalanced for

all of them. As a result of the instability for the mixing proportions, the parameter

estimations for copulas of the 2’nd component (Joe copula pairs) are more plausible

than the 1’st component. Certainly, the increase on the sample size has a positive

effect on the reduction for difference between the true parameter and estimated values

for the best model.

To visualize the impact of various weights in the mixture model, detailed graphs

are generated to express the dependence structure of the mixture model based on

Clayton-Joe copula pairs for the 1’st and 2’nd component. In Figures A.1-A.5 numerous

fixed weights are considered over the range [0, 1] with step size h = 0.25 for each

component. For the visualization of different mixtures of Clayton-Joe case, varying

weight parameters was investigated with respect to strong dependence scenario for

each pair copula.
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Table 4.5: Parameter Estimations for 1’st component (Base is Clayton-Joe)

Parameters of the Mixture Model
β1

12-β1
13-β1

23|1 (6-7-8) (π1 = 0.5)
Mixt. Size Est. St.dv.

C1 N (Bias)

Clayton-Joe
50 5.77-5.92-8.74 2.54-2.61-1

0.19 (-0.23)-(-1.08)-(0.74)
100 6.33-6.48-8.89 2.45-2.51-0.67

0.13 (0.33)-(-0.52)-(0.89)
250 7.55-7.63-8.98 2.01-2.02-0.28

0.08 (1.55)-(0.63)-(0.98)
500 8.29-8.36-8.99 1.26-1.28-0.1

0.05 2.29-1.36-0.99
1000 8.73-8.65-9 0.53-0.56-0.02

0.03 (2.73)-(1.65)-(1)

Clayton-Clayton
50 8.6-8.88-8.98 0.75-0.46-0.19

0.31 (2.6)-(1.88)-(0.98)
100 8.38-8.74-8.81 1.19-1.04-0.92

0.34 (2.38)-(1.74)-(0.81)
250 8.65-9-9 0.42-0.03-0

0.32 (2.65)-(2)-(1)
500 8.67-9-9 0.35-0-0

0.32 (2.67)-(2)-(1)
1000 8.73-9-9 0.27-0.01-0.01

0.32 (2.73-2-1)

Clayton-Gumbel
50 6.16-6.21-8.93 2.83-2.85-0.51

0.1 (0.16)-(-0.79)-(0.93)
100 6.51-6.58-8.96 2.79-2.82-0.44

0.05 (0.51)-(-0.42)-(0.96)
250 7.33-7.4-8.99 2.56-2.57-0.16

0.02 (1.33)-(0.4)-(0.99)
500 8.45-8.46-9 1.27-1.27-0

0.01 (2.45)-(1.46)-(1)
1000 8.45-8.46-9 1.27-1.27-0

0.01 (2.45)-(1.46)-(1)

Clayton-SClay
50 5.57-5.73-8.77 2.51-2.59-0.92

0.21 (-0.43)-(-1.27)-(0.77)
100 6.23-6.33-8.88 2.53-2.57-0.58

0.13 (0.23)-(-0.67)-(0.88)
250 7.69-7.74-8.98 1.9-1.92-0.25

0.07 (1.69)-(0.74)-(0.98)
500 8.52-8.5-9 1.07-1.08-0.09

0.04 (2.52)-(1.5)-(1)
1000 8.69-8.77-9 0.53-0.51-0

0.04 (2.69)-(1.77)-(1)
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Table 4.6: Parameter Estimations for 2’nd component (Base is Clayton-Joe)

Parameters of the Mixture Model
β2

12-β2
13-β2

23|1 (5-6-9) (π2 = 0.5)
Mixt. Size Est. St.dv.

C2 N (Bias)

Clayton-Joe
50 4.89-5.66-6.45 1.11-1.28-1.48

0.81 (-0.11)-(-0.34)-(-2.55)
100 4.73-5.55-6.93 0.72-0.84-1.09

0.87 (-0.27)-(-0.45)-(-2.07)
250 4.75-5.66-7.7 0.42-0.48-0.66

0.92 (-0.25)-(-0.34)-(-1.3)
500 4.83-5.76-8.09 0.33-0.39-0.5

0.95 (-0.17)-(-0.24)-(-0.91)
1000 4.91-5.89-8.28 0.24-0.29-0.53

0.97 (-0.09)-(-0.11)-(-0.72)

Clayton-Clayton
50 1.45-1.74-3.15 0.54-0.67-1.74

0.69 (-3.55)-(-4.26)-(-5.85)
100 1.6-1.86-3.34 1.61-1.59-1.78

0.66 (-3.4)-(-4.14)-(-5.66)
250 1.12-1.36-3.09 0.18-0.25-0.88

0.68 (-3.88)-(-4.64)-(-5.91)
500 1.05-1.28-3.17 0.1-0.15-0.65

0.68 (-3.95)-(-4.72)-(-5.83)
1000 1.02-1.25-3.12 0.07-0.1-0.45

0.68 (-3.98)-(-4.75)-(-5.88)

Clayton-Gumbel
50 3.42-3.89-4.02 0.57-0.67-0.82

0.9 (-1.58)-(-2.11)-(-4.98)
100 3.43-3.91-4.17 0.36-0.43-0.54

0.95 (-1.57)-(-2.09)-(-4.83)
250 3.5-3.99-4.37 0.23-0.27-0.34

0.98 (-1.5)-(-2.01)-(-4.63)
500 3.52-4.03-4.48 0.16-0.18-0.26

0.99 (-1.48)-(-1.97)-(-4.52)
1000 3.52-4.03-4.48 0.16-0.18-0.26

0.99 (-1.48)-(-1.97)-(-4.52)

Clayton-SClay
50 4.17-4.95-5.72 1.28-1.41-1.66

0.79 (-0.83)-(-1.05)-(-3.28)
100 3.94-4.8-6.19 0.71-0.85-1.05

0.87 (-1.06)-(-1.2)-(-2.81)
250 4.01-4.93-6.93 0.42-0.51-0.68

0.93 (-0.99)-(-1.07)-(-2.07)
500 4.08-5.03-7.31 0.26-0.32-0.53

0.96 (-0.92)-(-0.97)-(-1.69)
1000 4.13-5.11-7.73 0.22-0.26-0.35

0.96 (-0.87)-(-0.89)-(-1.27)
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For the model comparison, instead of only looking at information criteria values,

modified version of Clarke and Vuong GOF tests are applied. The details of ClarkeMixV

and VuongMixV are briefly explained at the end of Chapter 3. In Table 4.7, Clayton-Joe-

(M1), Clayton-Clayton(M2), Clayton-Gumbel(M3) and Clayton-SClay(M4) are com-

pared in terms of ClarkeMixV and VuongMixV GOF tests. In this comparison, M1,

as a base model, is compared with the other mixtures only.

Table 4.7: GOF Matrix for Model Selection of Clayton-Joe(M1) with α = 0.05

Model Comparison Values GOF Matrix
N = 50 E[Cstats] = 25

φ−1(1− α
2
) = 1.96


0 112.3945 46.7813 65.0243

0.0278 0 · · · · · ·
-0.0067 · · · 0 · · ·
0.0111 · · · · · · 0


N = 250 E[Cstats] = 125

φ−1(1− α
2
) = 1.96


0 456.588 199.6862 202.9848

0.0151 0 · · · · · ·
-0.0088 · · · 0 · · ·
-0.0083 · · · · · · 0


N = 1000 E[Cstats] = 500

φ−1(1− α
2
) = 1.96


0 2357.97 1054.076 1023.538

0.0022 0 · · · · · ·
0.0019 · · · 0 · · ·
0.0024 · · · · · · 0



In the presented GOF matrices in Table 4.7, the first row from left to right includes

the Clarke test statistic (CstatsClarkeMixV ) for the comparison of M1/M2, M1/M3

and M1/M4. Based on different sample size, when the obtained test statistic is

different from E[Cstats], the compared models are significantly different from each

other. Meanwhile, the first column of GOF matrix from top to bottom exhibits the

Vuong test statistic (νV uongMixV ) value for the same comparisons, namely M1/M2,

M1/M3 and M1/M4. Here, these statistics are compared with φ−1(1− α
2
) value to

decide which model is more preferable. However, based on the Vuong test statistics,

νM1/M2, νM1/M3 and νM1/M4 compared with φ−1(1 − 0.05
2

) = 1.96, there is no

decision about the selection among the models M1 and others at %95 significance

level. Equivalently, there is no significant result for supporting or disproving the

empirical findings presented in Table 4.4.
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4.1.3 3 Component 3 dimensional C-vine Mixtures

Under this subsection, two different C-vine mixture models have been studied with

various dependence structure. Firstly, SClay-SClay-SClay case was considered with

strong dependence (SS) assumption. Thereafter, Clayton, Frank and SClay families

were selected for the pair copula construction of the 1st, 2nd and 3rd components,

respectively. Within these scenarios, the main differences of both cases have been

highlighted after the model comparison part.

4.1.3.1 SClay-SClay-SClay case

For 3 component C-vine mixture, the first multivariate data is generated based on

Survival-Clayton (SClay) copula pairs with equal weights. Within this synthetic data,

all copula pairs are modeled with strong dependence assumption. Here, totally 9

copula density parameters are selected as (β1
12 = 4, β1

13 = 5, β1
23|1 = 6), (β2

12 =

5, β2
13 = 6, β2

23|1 = 8) and (β3
12 = 4, β3

13 = 6, β3
23|1 = 9) for each component. Model

comparison results for the mixture models with equal weight parameters are presented

below in Table 4.8.

Table 4.8 expresses the best model with respect to model information criteria values.

Apparently, Clay-Clay-Clay is the poorest one, but there is a model confusion between

the base model SClay-SClay-SClay and Clay-SClay-SClay mixture model. In this

comparison, model information criteria values have tendency to select less complex

mixture model in terms of weight parameters. Similar to 2 component mixture case,

the problem comes from the unbalanced weight parameters, tabulated in Table 4.9 in

detail. Besides, since Kendall’s τ values of a copula family and its survival version

is same, there exists a model identification problem based on information criterion

values. In Table 4.9, the worst parameter estimations belong to the Clay-Clay-Clay

mixture and especially estimated parameters for copula pairs are not plausible enough

for the conditional part. However, the increase on the number of components worsens

the parameter estimations for each component, apart from the 1’st one. Besides, the

results for the parameter estimations highlight, SClay-SClay-SClay results in the best

estimations as it is expected.
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Table 4.8: 3 Component 3 dimensional C-vine mixtures with different pairs, strong
dependence (Base is SClay-SClay-SClay)

Mixt. Size Model Selection
C1-C2-C3 N AIC BIC CAIC

SClay-SClay-SClay
50 -87.75049 -66.71824 -55.71824
100 -202.8378 -174.181 -163.181
250 -543.4935 -504.7574 -493.7574
500 -1103.723 -1057.362 -1046.362

1000 -2163.763 -2109.778 -2098.778

Clay-Clay-Clay
50 -74.49535 -53.4631 -42.4631
100 -128.6865 -100.0297 -89.02966
250 -332.4111 -293.675 -282.675
500 -761.267 -714.9063 -703.9063

1000 -1662.728 -1608.743 -1597.743

Clay-SClay-SClay
50 -95.98086 -74.94861 -63.94861
100 -219.144 -190.4871 -179.4871
250 -643.1008 -604.3647 -593.3647
500 -1374.556 -1328.195 -1317.195

1000 -3613.678 -3559.693 -3548.693

Table 4.9: Parameter Estimations based on different C-vine mixtures for (Base is
SClay-SClay-SClay)

Parameters of the Mixture Model
β1

12-β1
13-β1

23|1 (4-5-6) (π1 = 1/3) β2
12-β2

13-β2
23|1 (5-6-8) (π2 = 1/3) β3

12-β3
13-β3

23|1 (4-6-9) (π3 = 1/3)
Mixt. Size Est. St.dv. Est. St.dv. Est. St.dv.

C1-C2-C3 N (Bias) (Bias) (Bias)

SClay-SClay-SClay
50 4.06-5.27-6.36 2.3-2.54-3.08 4.32-5.38-6.75 2.39-2.61-2.91 4.38-5.38-6.54 2.53-2.58-3.02

0.34 (0.06)-(0.27)-(0.36) 0.33 (-0.68)-(-0.62)-(-1.25) 0.32 (0.38)-(-0.62)-(-2.46)
100 3.95-4.97-6.43 2.16-2.35-2.89 3.9-4.72-6.39 2.16-2.27-2.9 3.87-4.91-6.12 2.12-2.38-3.01

0.34 (-0.05)-(-0.03)-(0.43) 0.33 (-1.1)-(-1.28)-(-1.61) 0.33 (-0.13)-(-1.09)-(-2.88)
250 3.42-4.44-6.08 1.69-2.04-2.74 3.72-4.66-6.47 1.86-2.16-2.75 3.83-5-6.24 1.95-2.26-2.73

0.34 (-0.58)-(-0.56)-(0.08) 0.33 (-1.28)-(-1.34)-(-1.53) 0.33 (-0.17)-(-1)-(-2.76)
500 3.33-4.39-5.77 1.62-2.05-2.63 3.45-4.44-6.46 1.54-2.04-2.58 3.67-4.93-6.38 1.7-2.12-2.64

0.32 (-0.67)-(-0.61)-(-0.23) 0.34 (-1.55)-(-1.56)-(-1.54) 0.34 (-0.33)-(-1.07)-(-2.62)
1000 3.17-4.13-5.68 1.46-1.85-2.44 3.45-4.63-6.43 1.56-2.09-2.36 3.82-4.88-6.42 1.84-2.23-2.46

0.34 (-0.83)-(-0.87)-(-0.32) 0.34 (-1.55)-(-1.37)-(-1.57) 0.32 (-0.18)-(-1.12)-(-2.58)

Clay-Clay-Clay
50 6.57-7-7.34 3.19-3.21-2.88 8.42-8.8-8.98 1.03-0.8-0.18 3.12-3.57-4.46 3.21-3.11-3.01

0.31 (2.57)-(2)-(1.34) 0.16 (3.42)-(2.8)-(0.98) 0.53 (-0.88)-(-2.43)-(-4.54)
100 1.17-1.4-2.19 0.26-0.34-0.93 8.58-8.92-8.99 0.59-0.28-0.14 8.59-8.92-8.99 0.59-0.3-0.19

0.71 (-2.83)-(-3.6)-(-3.81) 0.18 (3.58)-(2.92)-(0.99) 0.1 (4.59)-(2.92)-(-0.01)
250 1.06-1.29-2.13 0.11-0.18-0.63 8.64-8.99-9 0.45-0.08-0 8.64-8.99-9 0.45-0.08-0

0.7 (-2.94)-(-3.71)-(-3.87) 0.18 (3.64)-(2.99)-(1) 0.11 (4.64)-(2.99)-(0)
500 1.02-1.26-2.17 0.05-0.12-0.44 8.66-9-9 0.4-0.04-0 8.65-9-9 0.4-0-0

0.71 (-2.98)-(-3.74)-(-3.83) 0.11 (3.66)-(3)-(1) 0.18 (4.65)-(3)-(0)
1000 1-1.25-2.16 0.02-0.08-0.29 8.66-8.99-9 0.34-0.07-0 8.55-8.97-9 0.46-0.23-0

0.72 (-3)-(-3.75)-(-3.84) 0 (3.66)-(2.99)-(1) 0.28 (4.55)-(2.97)-(0)

Clay-SClay-SClay
50 5.37-5.48-8.67 2.42-2.46-1.18 4.13-5.41-6.44 2.01-2.33-2.69 4.28-5.6-6.27 2.19-2.39-2.7

0.19 (1.37)-(0.48)-(2.67) 0.41 (-0.87)-(-0.59)-(-1.56) 0.4 (0.28)-(-0.4)-(-2.73)
100 5.17-5.22-8.69 2.35-2.36-1.16 3.85-5.2-6.32 1.62-2.09-2.43 3.88-5.34-6.39 1.68-2.14-2.45

0.16 (1.17)-(0.22)-(2.69) 0.42 (-1.15)-(-0.8)-(-1.68) 0.41 (-0.12)-(-0.66)-(-2.61)
250 5.37-5.46-8.84 2.14-2.19-0.74 3.68-4.95-6.58 1.43-1.89-2.06 3.7-5.18-6.66 1.35-1.84-1.89

0.13 (1.37)-(0.46)-(2.84) 0.39 (-1.32)-(-1.05)-(-1.42) 0.47 (-0.3)-(-0.82)-(-2.34)
500 5.89-5.97-8.94 2.08-2.11-0.41 3.77-5.12-6.6 1.2-1.73-1.76 3.52-4.86-6.58 1.27-1.74-1.87

0.11 (1.89)-(0.97)-(2.94) 0.45 (-1.23)-(-0.88)-(-1.4) 0.44 (-0.48)-(-1.14)-(-2.42)
1000 6.87-7.02-8.99 1.94-2.02-0.11 3.74-4.81-6.96 1.28-1.54-1.15 3.77-5.21-6.23 1.25-1.88-1.79

0.08 (2.87)-(2.02)-(2.99) 0.6 (-1.26)-(-1.19)-(-1.04) 0.32 (-0.23)-(-0.79)-(-2.77)
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4.1.3.2 Clayton-Frank-SClay case

As a second finite mixture based on 3-dimensional Cvines, the multivariate data is

constructed based on distinct tail dependencies. The 1’st, 2’nd and 3’rd component

are modeled via Clayton, Frank and SClay copula pairs, respectively. For this mixture,

various tail dependencies has been considered with the help of Clayton, Frank and

SClay for each component of the mixture model. Within this scheme, two different

cases were considered for the multivariate dependence structure. In the first one,

strong dependence was assumed (SS case) for each parameter of the whole mixture

model. As a second simulation study, the conditional density takes a smaller value

for the corresponding parameter, ie. each component has both strong and weak

dependence structure (SW case). For both mixtures, the model comparison results

and the parameter estimations are presented below.

For SS case, the selected parameters are (β1
12 = 6, β1

13 = 7, β1
23|1 = 8), (β2

12 =

5, β2
13 = 6, β2

23|1 = 9) and (β2
12 = 4, β2

13 = 5, β2
23|1 = 7) for Clayton, Frank

and SClay copula pairs in the mixture construction. The obtained mixture model

has the following properties, presented in Figure 4.1 in detail. For SW case, the

selected parameters are (β1
12 = 6, β1

13 = 7, β1
23|1 = 2.8), (β2

12 = 5, β2
13 = 6, β2

23|1 =

2.9) and (β2
12 = 4, β2

13 = 5, β2
23|1 = 2.7) for Clayton, Frank and SClay copula

pairs, respectively. In this model, the conditional copula density exhibits weaker

dependence for each component compared to unconditional densities. The simulated

data has been investigated under the equal weight scheme and parameters are estimated

using hjkb optimization algorithm.

In Table 4.10, the mixture model captured the dependence pattern correctly for N =

50. On the other hand, the increase in the sample size resulted in a tendency of

selecting less complex models by information criteria values. Besides, the mixing

proportion for 2’nd component is larger than the weights of other components so that

the included tail dependencies can not be identified, presented in Table 4.13. For this

reason, the best parameter estimates belong to the Frank pairs used in the construction

of 2’nd component of the mixture model. Furthermore, this result addresses a possible

sample size issue for such mixture models.
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Figure 4.1: Dependence Structure for Clay-Frank-SClay mixture model with equal

weights
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Table 4.10: 3 Component 3 dimensional C-vine mixtures with different pairs,
strong-strong (SS) dependence (Base is Clay-Frank-SClay)

Mixt. Size Model Selection
C1-C2-C3 N AIC BIC CAIC

Clay-Frank-SClay
50 -62.51385 -41.48159 -30.48159

100 -129.3742 -100.7173 -89.71729
250 -365.1885 -326.4525 -315.4525
500 -809.7136 -763.3529 -752.3529

1000 -1600.604 -1546.618 -1535.618

SClay-Frank-SClay
50 -61.40312 -40.37086 -29.37086

100 -156.3246 -127.6677 -116.6677
250 -479.842 -441.1059 -430.1059
500 -1033.387 -987.0263 -976.0263

1000 -2202.955 -2148.97 -2137.97

SClay-SClay-SClay
50 -58.50578 -37.47353 -26.47353

100 -135.4923 -106.8354 -95.8354
250 -344.9862 -306.2502 -295.2502
500 -684.5649 -638.2042 -627.2042

1000 -1276.612 -1222.626 -1211.626

Table 4.11: Parameter Estimations based on different C-vine mixtures (Base is
Clay-Frank-SClay (SS))

Parameters of the Mixture Model
β1

12-β1
13-β1

23|1 (6-7-8) (π1 = 1/3) β2
12-β2

13-β2
23|1 (5-6-9) (π2 = 1/3) β3

12-β3
13-β3

23|1 (4-5-7) (π3 = 1/3)
Mixt. Size Est. St.dv. Est. St.dv. Est. St.dv.

C1-C2-C3 N (Bias) (Bias) (Bias)

Clay-Frank-SClay
50 4.47-4.48-8.91 2.68-2.7-0.62 5.56-6.85-7.8 1.87-1.9-1.46 3.87-4.25-6.9 2.59-2.68-2.8

0.15 (-1.53)-(-2.52)-(0.91) 0.61 (0.56)-(0.85)-(-1.2) 0.23 (-0.13)-(-0.75)-(-0.1)
100 3.55-3.56-8.93 2.27-2.28-0.51 5.18-6.5-8.07 1.2-1.29-1.02 3.17-3.84-7 2.47-2.74-2.83

0.14 (-2.45)-(-3.44)-(0.93) 0.74 (0.18)-(0.5)-(-0.93) 0.12 (-0.83)-(-1.16)-(0)
250 2.97-2.97-8.99 1.81-1.79-0.14 5.07-6.34-8.31 0.75-0.84-0.68 2.99-3.59-6.2 2.31-2.69-2.99

0.13 (-3.03)-(-4.03)-(0.99) 0.78 (0.07)-(0.34)-(-0.69) 0.09 (-1.01)-(-1.41)-(-0.8)
500 2.89-2.9-9 1.6-1.64-0.09 4.94-6.18-8.47 0.46-0.49-0.51 5.15-3.01-5.54 3.28-2.36-3.11

0.12 (-3.11)-(-4.1)-(1) 0.83 (-0.06)-(0.18)-(-0.53) 0.05 (1.15)-(-1.99)-(-1.46)
1000 2.36-2.36-9 0.61-0.6-0 4.9-6.12-8.49 0.31-0.37-0.39 4.11-3.27-5.68 2.88-2.52-2.72

0.13 (-3.64)-(-4.64)-(1) 0.82 (-0.1)-(0.12)-(-0.51) 0.04 (0.11)-(-1.73)-(-1.32)

SClay-Frank-SClay
50 3.29-4.43-8.11 2.61-2.89-2.08 5.6-6.6-8.01 1.62-1.64-1.29 3.65-3.96-7.77 2.81-2.8-2.46

0.11 (-2.71)-(-2.57)-(0.11) 0.76 (0.6)-(0.6-(-0.99) 0.12 (-0.35)-(-1.04)-(0.77)
100 3.36-3.57-7.54 2.68-2.56-2.6 5.19-6.27-8.38 1.05-1.09-0.83 3.41-3.75-7.78 2.78-2.7-2.44

0.08 (-2.64)-(-3.43)-(-0.46) 0.85 (0.19)-(0.27)-(-0.62) 0.07 (-0.59)-(-1.25)-(0.78)
250 3.06-4.4-7.47 2.43-2.91-2.62 5.08-6.13-8.68 0.54-0.58-0.46 3.9-3.68-7.3 3-2.59-2.76

0.03 (-2.94)-(-2.6)-(-0.53) 0.92 (0.08)-(0.13)-(-0.32) 0.04 (-0.1)-(-1.32)-(0.3)
500 4.01-4.88-5.72 3.05-2.89-3.06 5.08-6.07-8.79 0.33-0.38-0.32 4.84-3.88-6.37 3.07-2.73-3.01

0.02 (-1.99)-(-2.12)-(-2.28) 0.95 (0.08)-(0.07)-(-0.21) 0.02 (0.84)-(-1.12)-(-0.63)
1000 3.71-3.5-8.3 1.35-1.51-1.97 5.07-6.42-8.85 0.12-0.2-0.09 5.12-8.53-8.61 1.05-1.3-1.16

0.01 (-2.29)-(-3.5)-(0.3) 0.97 (0.07)-(0.42)-(-0.15) 0.01 (1.12)-(3.53)-(1.61)

SClay-SClay-SClay
50 3.5-3.8-5.81 2.62-2.66-3.31 3.37-3.95-5.48 2.6-2.82-3.4 3.09-4.12-5.5 2.31-2.78-3.29

0.32 (-2.5)-(-3.2)-(-2.19) 0.36 (-1.63)-(-2.05)-(-3.52) 0.33 (-0.91)-(-0.88)-(-1.5)
100 3.19-3.63-5.65 2.34-2.5-3.21 2.82-3.56-4.87 2.26-2.66-3.26 2.81-3.57-5.17 2.06-2.59-3.21

0.33 (-2.81)-(-3.37)-(-2.35) 0.34 (-2.18)-(-2.44)-(-4.13) 0.34 (-1.19)-(-1.43)-(-1.83)
250 2.7-3.6-4.6 2.02-2.57-3.06 2.37-2.93-4.57 1.86-2.28-3.11 2.77-3.75-4.91 1.87-2.59-2.97

0.31 (-3.3)-(-3.4)-(-3.4) 0.34 (-2.63)-(-3.07)-(-4.43) 0.35 (-1.23)-(-1.25)-(-2.09)
500 2.85-3.61-4.97 2.04-2.46-2.93 2.25-2.73-3.42 2.03-2.38-2.68 3.02-3.8-5.11 2.12-2.64-2.87

0.33 (-3.15)-(-3.39)-(-3.03) 0.32 (-2.75)-(-3.27)-(-5.58) 0.35 (-0.98)-(-1.2)-(-1.89)
1000 2.85-3.98-4.95 1.77-2.6-2.76 3.33-4.14-5.81 2.18-2.66-2.46 1.41-1.77-2.11 1.12-1.59-1.86

0.33 (-3.15)-(-3.02)-(-3.05) 0.36 (-1.67)-(-1.86)-(-3.19) 0.31 (-2.59)-(-3.23)-(-4.89)
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Table 4.12: 2 Component 3 dimensional C-vine mixtures with different pairs,
strong-weak (SW) dependence (Base is Clay-Frank-SurClay)

Mixt. Size Model Selection
C1-C2-C3 N AIC BIC CAIC

Clay-Frank-SClay
50 -38.00444 -16.97218 -5.972182

100 -90.06918 -61.41231 -50.41231
250 -259.976 -221.24 -210.24
500 -549.7543 -503.3936 -492.3936

1000 -1182.312 -1128.326 -1117.326

Clay-Clay-Clay
50 -48.51457 -27.48232 -16.48232

100 -117.967 -89.31018 -78.31018
250 -337.8324 -299.0963 -288.0963
500 -708.4535 -662.0928 -651.0928

1000 -1469.647 -1415.661 -1404.661

SClay-SClay-SClay
50 -34.45827 -13.42602 -2.426019

100 -83.83367 -55.17679 -44.17679
250 -170.2798 -131.5438 -120.5438
500 -335.8053 -289.4446 -278.4446

1000 -660.6078 -606.6225 -595.6225

Table 4.13: Parameter Estimations based on different C-vine mixtures (Base is
Clay-Frank-SClay (SW))

Parameters of the Mixture Model
β1

12-β1
13-β1

23|1 (6-7-2.8) (π1 = 1/3) β2
12-β2

13-β2
23|1 (5-6-2.9) (π2 = 1/3) β3

12-β3
13-β3

23|1 (4-5-2.7) (π3 = 1/3)
Mixt. Size Est. St.dv. Est. St.dv. Est. St.dv.

C1-C2-C3 N (Bias) (Bias) (Bias)

Clay-Frank-SClay
50 5.27-5.17-8.79 2.76-2.7-0.94 5.5-6.41-2.95 1.75-1.67-1.95 3.38-4.4-6.45 2.62-2.74-3.33

0.07 (-0.73)-(-1.83)-(5.99) 0.76 (0.5)-(0.41)-(0.05) 0.17 (-0.62)-(-0.6)-(3.75)
100 4.29-4.32-8.83 2.53-2.56-0.85 5.21-6.2-2.58 1.21-1.21-1.04 3.5-3.97-6.57 2.76-2.82-3.25

0.06 (-1.71)-(-2.68)-(6.03) 0.84 (0.21)-(0.2)-(-0.32) 0.1 (-0.5)-(-1.03)-(3.87)
250 3.69-3.71-8.91 2.39-2.45-0.59 5.04-6.15-2.58 0.63-0.76-0.47 3.84-3.4-5.99 2.96-2.75-3.42

0.06 (-2.31)-(-3.29)-(6.11) 0.89 (0.04)-(0.15)-(-0.32) 0.06 (-0.16)-(-1.6)-(3.29)
500 4.07-3.67-8.98 2.62-2.02-0.27 4.87-5.96-2.62 0.36-0.55-0.31 5.28-4.28-4.67 3.31-3.06-3.64

0.05 (-1.93)-(-3.33)-(6.18) 0.92 (-0.13)-(-0.04)-(-0.28) 0.03 (1.28)-(-0.72)-(1.97)
1000 2.83-2.88-9 0.99-1.05-0 4.88-5.97-2.69 0.23-0.3-0.18 4.88-5.48-6.15 3.4-2.75-3.1

0.05 (-3.17)-(-4.12)-(6.2) 0.94 (-0.12)-(-0.03)-(-0.21) 0.01 (0.88)-(0.48)-(3.45)

Clay-Clay-Clay
50 8.32-8.6-8.26 1.04-0.82-1.64 8.32-8.6-8.28 1.03-0.81-1.6 1.35-1.62-1.26 0.41-0.55-0.46

0.09 (2.32)-(1.6)-(5.46) 0.13 (3.32)-(2.6)-(5.38) 0.77 (-2.65)-(-3.38)-(-1.44)
100 8.48-8.84-8.54 0.75-0.42-1.21 8.47-8.85-8.43 0.75-0.42-1.42 1.3-1.56-1.18 0.31-0.4-0.3

0.19 (2.48)-(1.84)-(5.74) 0.06 (3.47)-(2.85)-(5.53) 0.75 (-2.7)-(-3.44)-(-1.52)
250 8.63-8.93-8.88 0.51-0.21-0.57 8.62-8.92-8.89 0.52-0.24-0.52 1.24-1.51-1.12 0.21-0.26-0.2

0.25 (2.63)-(1.93)-(6.08) 0.02 (3.62)-(2.92)-(5.99) 0.73 (-2.76)-(-3.49)-(-1.58)
500 8.69-8.97-8.95 0.41-0.12-0.29 8.71-8.96-8.96 0.4-0.16-0.23 1.23-1.51-1.07 0.15-0.19-0.12

0.26 (2.69)-(1.97)-(6.15) 0.01 (3.71)-(2.96)-(6.06) 0.73 (-2.77)-(-3.49)-(-1.63)
1000 8.8-8.99-8.99 0.28-0.08-0.17 8.8-8.99-8.98 0.3-0.07-0.19 1.22-1.51-1.06 0.11-0.13-0.11

0.27 (2.8)-(1.99)-(6.19) 0 (3.8)-(2.99)-(6.08) 0.73 (-2.78)-(-3.49)-(-1.64)

SClay-SClay-SClay
50 3.4-4.45-4.69 2.76 2.99 3.65 3.02-3.37-3.55 2.77-2.92-3.48 4.12-4.62-5.13 2.85-2.93-3.65

0.28 (-2.6)-(-2.55)-(1.89) 0.47 (-1.98)-(-2.63)-(0.65) 0.25 (0.12)-(-0.38)-(2.43)
100 3.49-4.4-4.11 2.74-2.9-3.5 2.71-3.14-2.87 2.5-2.75-3.06 4.14-4.23-4.12 2.92-2.86-3.47

0.26 (-2.51)-(-2.6)-(1.31) 0.49 (-2.29)-(-2.86)-(-0.03) 0.25 (0.14)-(-0.77)-(1.42)
250 2.68-5.66-2.6 2.53-2.8-2.81 1.53-1.78-1.4 1.52-1.99-1.56 5.68-4.56-4.3 2.77-2.61-3.33

0.19 (-3.32)-(-1.34)-(-0.2) 0.65 (-3.47)-(-4.22)-(-1.5) 0.15 (1.68)-(-0.44)-(1.6)
500 1.14-6.24-1.29 0.55-2.54-1.23 1.46-1.66-1.26 1.4-1.88-1.22 6.27-5.18-2.91 2-2.28-2.65

0.19 (-4.86)-(-0.76)-(-1.51) 0.66 (-3.54)-(-4.34)-(-1.64) 0.15 (2.27)-(0.18)-(0.21)
1000 6.56-6.03-2.03 1.84-1.78-1.29 1.17-1.28-1.06 0.84-1.11-0.47 1.05-7.04-1 0.2-2.25-0.03

0.13 (0.56)-(-0.97)-(-0.77) 0.72 (-3.83)-(-4.72)-(-1.84) 0.16 (-2.95)-(2.04)-(-1.7)

91



Similar model identification problem has been identified in the comparison given in

Table 4.12. Model information criteria values have tendency to select less complex

models with same copula pairs. In Table 4.13, the unbalanced weight problem emerges

for the mixture model so that the best parameter estimates belong to the 2’nd component

in the base model. Here, Clay-Frank-SClay mixture with SW dependence pattern

has larger weights for 2’nd component in any sample size, which results in the fact

that plausible parameter estimates exist only for Frank pairs. Certainly, there is a

positive relation between the accuracy of the parameters and the sample size. On the

other hand, other two mixture models, given in Table 4.13, have very poor parameter

estimates.
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4.1.4 2 Component 4 dimensional C-vine Mixtures

Under this framework, the dimension for each vine model has been increased so

that C-vine and D-vine models are differed. For that purpose, 2 Component, 4

dimensional C-Vine mixtures are constructed with same and distinct copula families.

Furthermore, Rmalschains, DEoptim and spg functions were implemented for the

parameter estimations in this part. Similar to hjkb function, all considered optimization

algorithms do not require the gradient information for the obtained log-likelihood

function for each component and allow to search global optimum value. For different

mixture models, above mentioned optimization tools are considered separately. In

general, the computational time cost is higher for all algorithms when the dimension is

increased, because of their nature for searching the best candidate for the parameters.

This common limitation reduces both the sample size and the total number of iterations

for the simulation under this section. As a first mixture model, Joe-Joe case has been

considered for each component under 2 Component 4 dimensional case. Here, the

considered parameters are (β1
12 = 8, β1

13 = 7, β1
14 = 6, β1

23|1 = 9, β1
24|1 = 8, β1

34|12 =

7) and (β2
12 = 9, β2

13 = 6, β2
14 = 5, β2

23|1 = 9, β2
24|1 = 8, β2

34|12 = 7) for the 1’st

and 2’nd component, respectively. For the conditional part, the same parameters are

considered within the construction of mixture models. In the first comparison, the

mixture models are investigated only for small sample size data, i.e. N = 50, 100, 250

with lesser iterations max1 = 100.

Table 4.14: 2 Component 4 dimensional C-vine mixtures, (SS) dependence (Base is
Joe-Joe)

Mixt. Size Model Selection
C1-C2 N AIC BIC CAIC

Joe-Joe
50 -282.0111 -257.1548 -244.1548
100 -649.3973 -615.5301 -602.5301
250 -1905.531 -1859.752 -1846.752

Clayton-Clayton
50 112.3849 137.2412 150.2412
100 -149.0358 -115.1686 -102.1686
250 -390.0704 -344.2914 -331.2914

Gumbel-Gumbel
50 -479.515 -454.6587 -441.6587
100 -1011.443 -977.5762 -964.5762
250 -2478.381 -2432.602 -2419.602
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In Table 4.14, there exists Joe and Gumbel family confusion in the mixture model

because of same dependence structure. At the same time, Clayton-Clayton mixture

is the poorest model when it is compared to others. However, not surprisingly, the

parameter estimates given for Joe-Joe case is more plausible within a limited sample

size. Even if AIC, BIC and CAIC have tendency to select Gumbel-Gumbel mixture

case, the number of components is identified incorrectly.

Table 4.15: 1’st component parameter estimations for C-vine mixtures (Base is
Joe-Joe)

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Comp. Size Est. St.dv.
C1 N (Bias)

Joe-Joe
50 6.61-5.26-5.19-5.4-5.24-5.26 1.55-2.38-2.35-1.71-1.94-2.16

0.49 (-1.39)-(-1.74)-(-0.81)-(-3.6)-(-2.76)-(-1.74)
100 6.89-5.04-4.93-5.45-5.18-4.64 1.38-1.97-1.87-1.75-1.64-1.96

0.52 (-1.11)-(-1.96)-(-1.07)-(-3.55)-(-2.82)-(-2.36)
250 6.78-4.66-4.44-5.84-5.48-3.9 1.42-2.11-1.9-1.48-1.61-1.68

0.53 (-1.22)-(-2.34)-(-1.56)-(-3.16)-(-2.52)-(-3.1)

Clayton-Clayton
50 3.99-3.73-3.51-3.73-3.68-4.07 1.59-0.91-0.75-0.9-1.01-1.38

0.63 (-4.01)-(-3.27)-(-2.49)-(-5.27)-(-4.32)-(-2.93)
100 4.03-3.37-3.1-3.46-3.24-3.44 1.29-0.21-0.12-0.73-0.14-0.33

0.76 (-3.97)-(-3.63)-(-2.9)-(-5.54)-(-4.76)-(-3.56)
250 3.33-3.68-3.21-3.55-3.25-3.48 0.3-0.45-0.26-0.7-0.35-0.81

0.48 (-4.67)-(-3.32)-(-2.79)-(-5.45)-(-4.75)-(-3.52)

Gumbel-Gumbel
50 4.88-4.37-3.91-3.5-3.25-3.05 0.99-0.79-0.74-0.92-0.81-0.82

1 (-3.12)-(-2.63)-(-2.09)-(-5.5)-(-4.75)-(-3.95)
100 4.66-4.09-3.61-4.35-3.82-3.02 0.99-0.85-0.74-0.74-0.62-0.35

0.97 (-3.34)-(-2.91)-(-2.39)-(-4.65)-(-4.18)-(-3.98)
250 4.85-4.37-3.92-4.01-3.71-3.05 0.86-0.76-0.67-1.11-0.91-0.62

0.93 (-3.15)-(-2.63)-(-2.08)-(-4.99)-(-4.29)-(-3.95)

In both Tables 4.15-4.16, the estimated parameters of various models have been

presented for small sample size. Here, the best estimates belong to Joe-Joe case,

but the accuracy is not plausible enough because of the considered optimization

tool. Most probably, low accuracy is related to the nature of Rmalschains algorithm

since it requires large number of objective function evaluations. Furthermore, model

information criteria values have tendency to select 1 component classical vine model

with Gumbel family.

In the second mixture model, Frank copula pairs are considered for each component

with the same parameters. Here, the main difference is the symmetric dependence

behavior in Frank copula, instead of only looking at upper tail dependence pattern
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Table 4.16: 2’nd component parameter estimations for C-vine mixtures (Base is
Joe-Joe)

Parameters of the Mixture Model
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π2 = 0.5)

Comp. Size Est. St.dv.
C2 N (Bias)

Joe-Joe
50 6.62-4.83-4.66-5.56-4.93-4.73 1.47-2.13-2.09-1.78-1.62-2.14

0.51 (-2.38)-(-1.17)-(-0.34)-(-3.44)-(-3.07)-(-2.27)
100 6.73-4.37-4.18-5.73-5.03-4.3 1.39-1.98-1.93-1.9-1.62-2.09

0.48 (-2.27)-(-1.63)-(-0.82)-(-3.27)-(-2.97)-(-2.7)
250 6.74-4.63-4.44-5.63-5.4-4.18 1.56-2-1.97-1.47-1.59-1.92

0.47 (-2.26)-(-1.37)-(-0.56)-(-3.37)-(-2.6)-(-2.82)

Clayton-Clayton
50 6.54-4.42-3.8-4.67-4.04-4.35 1.74-1.36-1.06-1.45-1.43-1.6

0.37 (-2.46)-(-1.58)-(-1.2)-(-4.33)-(-3.96)-(-2.65)
100 6.62-4.6-3.55-4.82-3.89-4.08 1.66-1.21-0.77-1.57-0.97-1.15

0.24 (-2.38)-(-1.4)-(-1.45)-(-4.18)-(-4.11)-(-2.92)
250 6.44-3.2-3.26-3.15-3.29-3.25 0.94-0.14-0.19-0.23-0.28-0.82

0.52 (-2.56)-(-2.8)-(-1.74)-(-5.85)-(-4.71)-(-3.75)

Gumbel-Gumbel
50 4.38-6.52-6.27-5.59-5.99-6.26 2.69-1.91-2.08-2.32-2.22-2.47

0 (-4.62)-(0.52)-(1.27)-(-3.41)-(-2.01)-(-0.74)
100 3.74-7.29-7.16-4.32-4.11-5.15 2.54-1.46-1.64-1.82-2.23-2.37

0.03 (-5.26)-(1.29)-(2.16)-(-4.68)-(-3.89)-(-1.85)
250 4.9-6.79-6.61-4.37-4.32-4.2 3.08-1.59-1.94-2.24-2.18-2.25

0.07 (-4.1)-(0.79)-(1.61)-(-4.63)-(-3.68)-(-2.8)

comes from Joe family. Furthermore, for the comparison of various 2 component 4

dimensional mixtures, the results of spg function is summarized below. Similar to

the above case, the model comparison is studied only for the parameter estimation

belonging to small sample size data, i.e. N = 50, 100 with lesser iterations max1 =

100.

Table 4.17: 2 Component 4 dimensional C-vine mixtures, (SS) dependence (Base is
Frank-Frank)

Mixt. Size Model Selection
C1-C2 N AIC BIC CAIC

Frank-Frank
50 -145.2674 -120.4111 -107.4111

100 -329.6863 -295.819 -282.819

Joe-Joe
50 -139.1808 -114.3245 -101.3245

100 -327.9397 -294.0725 -281.0725

Clayton-Clayton
50 -27.39868 -2.542382 10.45762

100 -52.82008 -18.95287 -5.952865
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In model comparison part, given in Table 4.17, model information criteria values

attains minimum for Frank-Frank mixture model. Besides, the parameter estimates

for the model of Frank-Frank mixture is more promising when it is compared to

Joe-Joe mixture case. For a small sample size data, the base model can be identified

by using classical information criteria values when the considered copula families are

same for each component.

Table 4.18: 1’st component parameter estimations for C-vine mixtures (Base is
Frank-Frank)

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Comp. Size Est. St.dv.
C1 N (Bias)

Frank-Frank
50 7.62-6.58-5.89-7.69-6.91-7.94 2.05-2.13-2.36-2.02-2.39-2.06

0.45 (-0.38)-(-0.42)-(-0.11)-(-1.31)-(-1.09)-(0.94)
100 7.9-6.28-5.57-7.65-7.3-7.26 1.62-2.11-2.22-2.07-1.91-2.02

0.46 (-0.1)-(-0.72)-(-0.43)-(-1.35)-(-0.7)-(0.26)

Joe-Joe
50 5.16-4.22-4.18-4.03-3.78-4.88 2.88-2.93-2.98-2.58-2.55-2.84

0.39 (-2.84)-(-2.78)-(-1.82)-(-4.97)-(-4.22)-(-2.12)
100 3.1-2.97-2.95-3.09-2.85-4.39 0.99-2.24-2.19-2.04-1.88-2.06

0.77 (-4.9)-(-4.03)-(-3.05)-(-5.91)-(-5.15)-(-2.61)

Clayton-Clayton
50 7.02-8.12-7.06-8.99-6.53-2.46 0.46-0.71-0.62-0.05-0.58-1.55

0 (-0.98)-(1.12)-(1.06)-(-0.01)-(-1.47)-(-4.54)
100 2.09-2.02-2-2.01-2-2 0.24-0.08-0-0.04-0-0

1 (-5.91)-(-4.98)-(-4)-(-6.99)-(-6)-(-5)

For the 1’st component, the parameter estimates for Frank-Frank case is very close to

the true values in Table 4.18. Furthermore, weight estimate and each bias value for

the estimated parameters is plausible enough for Frank-Frank case. Interpretation of

the results of Table 4.19 is very similar to the discussed results above.

For the implemented optimization tools, there is no certain consensus about the selection

of best algorithm. For this reason, different functions are considered in different

mixture cases. Having the model identification experience in 3 dimensional mixture

models in the previous subsection, each component is modeled with the same copula

pair. Although, other combinations might be generated for numerous C-vine mixtures.

For studying the estimation accuracy, different comparisons are investigated in terms

of Frank-Frank case with different sample size and iterations. For instance, the result

of spg algorithm for the parameter estimations of Frank-Frank C-vine mixture model

is presented below for different N and max1 values (Tables 4.20 and 4.21).
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Table 4.19: 2’nd component parameter estimations for C-vine mixtures (Base is
Frank-Frank)

Parameters of the Mixture Model
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π2 = 0.5)

Comp. Size Est. St.dv.
C2 N (Bias)

Frank-Frank
50 8.12-6.15-5.21-7.84-7.3-7.01 1.43-1.82-2.03-1.84-2.07-2.33

0.55 (-0.88)-(0.15)-(0.21)-(-1.16)-(-0.7)-(0.01)
100 8.18-5.94-5.15-8.13-7.51-7.24 1.34-1.87-1.84-1.68-1.87-2.22

0.54 (-0.82)-(-0.06)-(0.15)-(-0.87)-(-0.49)-(0.24)

Joe-Joe
50 3.32-3.32-3.46-3.29-3.01-4.72 1.55-2.38-2.59-2.04-2-2.52

0.61 (-5.68)-(-2.68)-(-1.54)-(-5.71)-(-4.99)-(-2.28)
100 2.59-7.11-7.09-4.3-4.56-7.97 0.99-2.65-2.65-2.93-2.99-2.16

0.23 (-6.41)-(1.11)-(2.09)-(-4.7)-(-3.44)-(0.97)

Clayton-Clayton
50 2.42-2.07-2-2.07-2-2 0.6-0.18-0.01-0.25-0-0

1 (-6.58)-(-3.93)-(-3)-(-6.93)-(-6)-(-5)
100 9-7.54-4.56-4.77-3.11-5.83 0-0-0-0-0-0

0 (0)-(1.54)-(-0.44)-(-4.23)-(-4.89)-(-1.17)

In both Tables 4.20-4.21, there is certain positive impact of both sample size and total

number of iterations on the accuracy of parameter estimates. In terms of spg function,

the parameter estimates of Frank-Frank C-vine mixture model are reasonable, but,

some improvements must be required in any way. Another similar comparison is

presented for the results of DEoptim function with a fixed number of iterations,

namely max1 = 100, below in Table 4.22.

Naturally, there is no best derivative free optimization tool for all problems so that

other methods are also applicable for the estimation. Within the subsequent sections,

for finite mixture of C- and D-vines and CD-vine mixture methodology, DEoptim

function has been used. The main reason for this selection is primarily based on the

parameter estimation accuracy presented in Table 4.22 and its algorithm characteristic

in terms of finding global optimum values.
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Table 4.20: 1’st component parameter estimations for C-vine mixtures with
Frank-Frank case

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Comp. Size Est. St.dv.
C1 N (Bias)

Frank250

50 8.12-6.39-5.41-8.06-7.58-7.29 2.24-2.61-2.78-2.47-2.64-3.23
0.45 (0.12)-(-0.61)-(-0.59)-(-0.94)-(-0.42)-(0.29)

100 8.01-6.08-5.09-8.21-7.68-7.42 2.11-2.56-2.54-2.09-2.45-2.77
0.45 (0.01)-(-0.92)-(-0.91)-(-0.79)-(-0.32)-(0.42)

250 8.16-6.69-5.93-8.19-7.52-7.5 1.7-2.21-2.06-2.24-2.05-2.3
0.51 (0.16)-(-0.31)-(-0.07)-(-0.81)-(-0.48)-(0.5)

500 8.63-6.65-5.56-8.32-7.39-7.13 1.63-1.9-1.99-1.85-1.99-2.47
0.49 (0.63)-(-0.35)-(-0.44)-(-0.68)-(-0.61)-(0.13)

1000 8.23-6.4-5.56-8.31-7.48-7.66 1.61-1.73-1.7-1.75-1.87-2.14
0.50 (0.23)-(-0.6)-(-0.44)-(-0.69)-(-0.52)-(0.66)

Frank500

50 8.27-6.55-5.69-8.07-7.38-7.66 1.96-2.43-2.54-2.31-2.63-2.85
0.52 (0.27)-(-0.45)-(-0.31)-(-0.93)-(-0.62)-(0.66)

100 8.1-6.51-5.66-8.17-7.7-7.6 1.94-2.24-2.26-2.26-2.2-2.54
0.52 (0.1)-(-0.49)-(-0.34)-(-0.83)-(-0.3)-(0.6)

250 8.44-6.68-5.7-8.33-7.64-7.16 1.59-1.98-2.05-1.97-2.16-2.46
0.49 (0.44)-(-0.32)-(-0.3)-(-0.67)-(-0.36)-(0.16)

500 8.3-6.59-5.42-8.35-7.39-7.48 1.57-1.83-1.94-1.88-2.02-2.25
0.5 (0.3)-(-0.41)-(-0.58)-(-0.65)-(-0.61)-(0.48)

1000 8.36-6.29-5.31-8.21-7.5-7.55 1.44-1.74-1.63-1.93-1.86-2.17
0.48 (0.36)-(-0.71)-(-0.69)-(-0.79)-(-0.5)-(0.55)

Frank1000

50 7.99-6.3-5.5-8.2-7.46-7.98 2.18-2.53-2.54-2.35-2.54-2.73
0.50 (-0.01)-(-0.7)-(-0.5)-(-0.8)-(-0.54)-(0.98)

100 8.29-6.51-5.67-8.2-7.58-7.64 1.89-2.35-2.34-2.14-2.32-2.66
0.48 (0.29)-(-0.49)-(-0.33)-(-0.8)-(-0.42)-(0.64)

250 8.41-6.61-5.65-8.3-7.51-7.22 1.62-2.08-2.03-1.9-2.13-2.45
0.50 (0.41)-(-0.39)-(-0.35)-(-0.7)-(-0.49)-(0.22)

500 8.37-6.48-5.47-8.32-7.55-7.45 1.56-1.91-1.85-1.92-1.97-2.27
0.48 (0.37)-(-0.52)-(-0.53)-(-0.68)-(-0.45)-(0.45)

1000 8.41-6.44-5.43-8.23-7.46-7.42 1.4-1.69-1.6-1.76-1.79-2.13
0.51 (0.41)-(-0.56)-(-0.57)-(-0.77)-(-0.54)-(0.42)
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Table 4.21: 2’nd component parameter estimations for C-vine mixtures with
Frank-Frank case

Parameters of the Mixture Model
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π2 = 0.5)

Comp. Size Est. St.dv.
C2 N (Bias)

Frank250

50 8.21-6.34-5.53-8.43-7.75-7.72 1.93-2.21-2.45-2.02-2.34-2.85
0.55 (-0.79)-(0.34)-(0.53)-(-0.57)-(-0.25)-(0.72)

100 8.36-6.35-5.47-8.09-7.28-7.87 1.92-2.13-2.13-2.12-2.33-2.34
0.55 (-0.64)-(0.35)-(0.47)-(-0.91)-(-0.72)-(0.87)

250 8.34-6.29-5.26-8.22-7.48-7.52 1.94-2.11-1.99-2-2.19-2.33
0.49 (-0.66)-(0.29)-(0.26)-(-0.78)-(-0.52)-(0.52)

500 8.03-6.14-5.41-8.41-7.61-7.68 1.76-1.84-1.74-1.75-1.89-2.18
0.51 (-0.97)-(0.14)-(0.41)-(-0.59)-(-0.39)-(0.68)

1000 8.72-6.81-5.68-8.18-7.36-6.85 1.43-1.72-1.67-1.95-2.05-2.06
0.50 (-0.28)-(0.81)-(0.68)-(-0.82)-(-0.64)-(-0.15)

Frank500

50 8.04-6.41-5.3-8.15-7.77-7.77 2.19-2.51-2.56-2.43-2.34-2.92
0.48 (-0.96)-(0.41)-(0.3)-(-0.85)-(-0.23)-(0.77)

100 8.29-6.2-5.45-8.08-7.38-7.6 1.97-2.29-2.3-2.28-2.42-2.59
0.48 (-0.71)-(0.2)-(0.45)-(-0.92)-(-0.62)-(0.6)

250 8.25-6.4-5.24-8.34-7.47-7.81 1.87-2-1.95-1.85-2.14-2.14
0.51 (-0.75)-(0.4)-(0.24)-(-0.66)-(-0.53)-(0.81)

500 8.41-6.52-5.53-8.32-7.66-7.41 1.67-1.87-1.87-1.92-1.89-2.21
0.5 (-0.59)-(0.52)-(0.53)-(-0.68)-(-0.34)-(0.41)

1000 8.54-6.73-5.65-8.25-7.38-7.09 1.54-1.65-1.52-1.91-1.85-2.17
0.52 (-0.46)-(0.73)-(0.65)-(-0.75)-(-0.62)-(0.09)

Frank1000

50 8.21-6.56-5.53-8.15-7.82-7.53 2.24-2.45-2.5-2.36-2.37-2.87
0.50 (-0.79)-(0.56)-(0.53)-(-0.85)-(-0.18)-(0.53)

100 8.31-6.4-5.39-8.33-7.47-7.42 1.88-2.19-2.22-2.1-2.24-2.71
0.52 (-0.69)-(0.4)-(0.39)-(-0.67)-(-0.53)-(0.42)

250 8.27-6.33-5.31-8.32-7.5-7.73 1.87-2.03-2.01-1.94-2.14-2.32
0.50 (-0.73)-(0.33)-(0.31)-(-0.68)-(-0.5)-(0.73)

500 8.33-6.53-5.56-8.28-7.45-7.42 1.75-1.84-1.81-1.85-1.91-2.17
0.52 (-0.67)-(0.53)-(0.56)-(-0.72)-(-0.55)-(0.42)

1000 8.5-6.68-5.66-8.25-7.46-7.17 1.57-1.77-1.65-1.86-1.78-2.24
0.49 (-0.5)-(0.68)-(0.66)-(-0.75)-(-0.54)-(0.17)
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Table 4.22: Parameter estimations of the 2 component 4 dimensional Frank-Frank
mixture for max1 = 100

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Comp. Size Est. St.dv.
C1 N (Bias)

Frank
50 8.28-6-5.38-7.63-6.99-7.84 2.12-2.29-2.68-2.62-2.78-2.82

0.5 (0.28)-(-1)-(-0.62)-(-1.37)-(-1.01)-(0.84)
100 8.38-6.9-6.17-7.69-7.25-7.69 1.64-2.27-2.19-2.43-2.5-2.59

0.5 (0.38)-(-0.1)-(0.17)-(-1.31)-(-0.75)-(0.69)
250 8.11-6.42-5.31-8.42-7.69-7.34 1.71-2.19-2.02-1.71-1.85-2.14

0.55 (0.11)-(-0.58)-(-0.69)-(-0.58)-(-0.31)-(0.34)
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π1 = 0.5)

Comp. Size Est. St.dv.
C2 N (Bias)

Frank
50 8.19-6.81-6.15-8.24-7.31-7.66 2.17-2.35-2.61-2.23-2.59-2.92

0.5 (-0.81)-(0.81)-(1.15)-(-0.76)-(-0.69)-(0.66)
100 8.15-6.18-5.32-8.43-7.7-7.31 2.13-2.26-2.3-2.03-2.42-2.85

0.5 (-0.85)-(0.18)-(0.32)-(-0.57)-(-0.3)-(0.31)
250 8.14-6.22-5.27-8.41-7.73-7.77 1.89-2.38-2.16-1.89-1.94-2.38

0.45 (-0.86)-(0.22)-(0.27)-(-0.59)-(-0.27)-(0.77)

4.1.5 Finite Mixture of C- and D-vines

Above described finite mixture models can be easily adjusted to cover both C- and

D-vine structure within different components. Instead of taking weighted sum of two

different C-vine density functions, both C- and D- vine densities can be combined

under the finite mixture framework for the 1’st and 2’nd component, respectively. The

main motivation for such a mixture model is having no certain prior information about

the tree structure for a vine model. Furthermore, D-vine is more flexible than C-vine

because of its ability to select pairs freely and this property adds more power for such

a mixture model to consider complex probability density functions. To illustrate, only

one simulated data was investigated under this subsection, similar to above discussed

simulation results.

For a finite mixture of C- and D-vine models, 2 Component, 4 dimensional case was

considered with different pair copula functions. More rigorously, Clayton and Frank

copula families were implemented for the construction of finite mixture of C- and

D-vine models having the same parameter values. Under this mixture model, when

the weight parameter, i.e. π1 ranges from 0 to 1, the mixture model has been changed
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from 1 component C-vine to 1 component D-vine model with the corresponding

copulas and their parameters. Whenever πi ∈ [0, 1] for i = 1, 2, the multivariate

hidden dependence structure varies from C-vine to D- vine. To illustrate, following

figures (Figure 4.2-4.4) were generated to understand the dependence structure among

the variables of two distinct components.

In this mixture model, the generated complex multivariate data includes both positive

and negative dependence structures with respect to Clayton and Frank copula pairs for

1’st and 2’nd components, respectively. The selected parameters are (β1
12 = 8, β1

13 =

7, β1
14 = 6, β1

23|1 = 1.7, β1
24|1 = 2.5, β1

34|12 = 1.4) and (β2
12 = 9, β2

13 = 6, β2
14 =

5, β2
23|1 = −1.8, β2

24|1 = −1.6, β2
34|12 = −2.3) with various weight parameters.

Figures 4.2-4.4 summarize the change on the dependence among the variables under

numerous C- and D- vine finite mixture models based on different weight parameters.

X1

0.64 0.38 0.10
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u 2

X2

0.55 0.27

u1

u 2
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u 2

X3

0.48

u1

u 2

u1

u 2

u1

u 2

X4

Figure 4.2: Dependence Structure of 2-Component C- and D-vine mixture with π1 =

0.25 and π2 = 0.75 for the 1’st and 2’nd components

In Figure 4.2, the dominant component was the 2’nd one with both strong and weak

dependence parameters. Within the mixture model, the most and least significant
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Figure 4.3: Dependence Structure of 2-Component C- and D-vine mixture with π1 =

0.5 and π2 = 0.5 for the 1’st and 2’nd components
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Figure 4.4: Dependence Structure of 2-Component C- and D-vine mixture with π1 =

0.75 and π2 = 0.25 for the 1’st and 2’nd components
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dependence structure exist between the pairs (X1, X2) and (X1, X4), respectively.

Even if the conditional densities were constructed using negative parameters in 2’nd

component, the mixture model do not exhibit any negative dependence pattern. The

similar dependence structure exist for the case visualized in Figure 4.3 and 4.4, as

the weight of the 1’st component increases, the dependence among the variables

belonging finite mixture of to C- and D-vine has been increased either.

In contrast to above visualized Clayton-Frank SW case, for the comparison of various

mixture models, same copula families (Frank pairs) are considered with parameters

(β1
12 = 8, β1

13 = 7, β1
14 = 6, β1

23|1 = 9, β1
24|1 = 8, β1

34|12 = 7) and (β2
12 = 9, β2

23 =

6, β2
34 = 5, β2

13|2 = 9, β2
24|3 = 8, β2

14|23 = 7). The model comparison part and the

estimated parameters have been presented below in detail.

For model comparison, differently from the model comparison in finite mixture of

C-vines, the performance of the proposed model has been considered under misspeci-

fied data. For instance, in the above mentioned scenario with Frank pairs, the simulated

data has been generated using three different cases, like the 1’st component is generated

based on C-vine structure and 2’nd component is constructed also using C-vine model.

Here, there exists three multivariate data for the base model, for FrankCV-FrankDV

case, where notations CV and DV exhibits C- and D-vine finite mixture model with

Frank pairs. The other two data sets generated from FrankCV-FrankCV and FrankDV–

FrankDV mixture models with equal weights. In this case, data set comes from

CV-DV, CV-CV and DV-DV combination for 2 component mixture model with Frank

pairs.

For the parameter estimation part, DEoptim function has been implemented for this

mixture model. Besides, the number of iterations and the observations has been

reduced as a result of the computational cost of DEoptim function, but the obtained

parameter estimations for such a mixture are very promising indeed. The parameter

estimations are presented separately for different number of iterations for max1 =

100 and max1 = 250.

In above Tables 4.25 and 4.26, parameter estimations of the same model fitted to three

different data set. In the base model, FrankCV-FrankDV case is tested in terms of data

set comes from CV-DV, CV-CV and DV-DV mixtures. Here, model identification
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Table 4.23: 2 component 4-dimensional C- and D-vine mixtures with max1 = 100

(Base is FrankCV-FrankDV)

Mult. Data Size Model Selection
C1-C2 N AIC BIC CAIC

FrankCV-FrankDV
50 -181.4804 -156.6241 -143.6241

100 -443.2836 -409.4164 -396.4164
250 -1248.77 -1202.991 -1189.991

FrankCV-FrankCV
50 -196.2398 -171.3835 -158.3835

100 -457.866 -423.9988 -410.9988
250 -1258.743 -1212.964 -1199.964

FrankDV-FrankDV
50 -192.4237 -167.5674 -154.5674

100 -449.6968 -415.8295 -402.8295
250 -1237.198 -1191.419 -1178.419

Table 4.24: 2 component 4-dimensional C- and D-vine mixtures with max1 = 250

(Base is FrankCV-FrankDV)

Mult. Data Size Model Selection
C1-C2 N AIC BIC CAIC

FrankCV-FrankDV
50 -182.1744 -157.3181 -144.3181

100 -439.8372 -405.97 -392.97
250 -1251.043 -1205.264 -1192.264

FrankCV-FrankCV
50 -202.0385 -177.1822 -164.1822

100 -461.5943 -427.7271 -414.7271
250 -1266.251 -1220.472 -1207.472

FrankDV-FrankDV
50 -198.3203 -173.464 -160.464

100 -448.103 -414.2358 -401.2358
250 -1230.419 -1184.64 -1171.64
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Table 4.25: Parameter Estimations for C- and D-vine mixtures with max1 = 100

(Base is FrankCV-FrankDV)

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Mult. Data Size Est. St.dv.
C1 N (Bias)

FrankCV-DV
50 6.05-8.44-8.05-6.92-7.72-8.02 3.28-2.24-2.6-3.74-3.32-3.38

0.1 (-1.95)-(1.44)-(2.05)-(-2.08)-(-0.28)-(1.02)
100 5.91-7.48-8.23-7.11-7.39-7.4 3.32-3.28-2.58-3.8-3.58-3.9

0.05 (-2.09)-(0.48)-(2.23)-(-1.89)-(-0.61)-(0.4)
250 8.1-7.02-6.04-8.95-7.97-6.94 0.57-0.52-0.5-0.74-0.53-0.82

0.97 (0.1)-(0.02)-(0.04)-(-0.05)-(-0.03)-(-0.06)

FrankCV-CV
50 8.32-6.98-6.1-8.44-7.6-7.71 1.34-1.32-1.18-1.31-1.28-1.6

0.89 (0.32)-(-0.02)-(0.1)-(-0.56)-(-0.4)-(0.71)
100 8.35-7.05-6.05-8.83-7.7-7.3 1.07-0.94-0.96-0.97-1-1.09

0.94 (0.35)-(0.05)-(0.05)-(-0.17)-(-0.3)-(0.3)
250 8.1-6.99-5.98-9.05-7.97-7.15 0.71-0.63-0.61-0.65-0.7-0.63

0.97 (0.1)-(-0.01)-(-0.02)-(0.05)-(-0.03)-(0.15)

FrankDV-DV
50 5.87-7.95-7.42-6.87-7.41-6.73 3.28-2.88-3.23-3.94-3.6-4.17

0.07 (-2.13)-(0.95)-(1.42)-(-2.13)-(-0.59)-(-0.27)
100 5.47-8.1-7.79-5.19-8.59-7.47 3.39-2.82-3.1-3.87-2.9-3.84

0.03 (-2.53)-(1.1)-(1.79)-(-3.81)-(0.59)-(0.47)
250 4.17-7.24-8.27-7.65-8-8.42 3.28-3.1-2.84-3.51-3.2-3.31

0.01 (-3.83)-(0.24)-(2.27)-(-1.35)-(0)-(1.42)
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π2 = 0.5)

Mult. Data Size Est. St.dv.
C2 N (Bias)

FrankCV-DV
50 8.71-5.99-5.13-7.94-7.9-5.44 1.3-1.33-1.43-1.65-1.8-1.82

0.9 (-0.29)-(-0.01)-(0.13)-(-1.06)-(-0.1)-(-1.56)
100 8.98-6.04-4.99-8.46-8.14-5.97 0.89-0.83-0.84-1.27-0.98-1.38

0.95 (-0.02)-(0.04)-(-0.01)-(-0.54)-(0.14)-(-1.03)
250 5.6-7.53-8.61-7.17-6.67-8.86 3.72-2.83-2.46-3.68-3.8-2.9

0.03 (-3.4)-(1.53)-(3.61)-(-1.83)-(-1.33)-(1.86)

FrankCV-CV
50 5.68-8.58-8.3-7.16-6-8.46 3.49-2.21-2.62-3.65-3.92-3.16

0.11 (-3.32)-(2.58)-(3.3)-(-1.84)-(-2)-(1.46)
100 6.01-7.84-8.25-6.69-7.79-8.99 3.53-2.9-2.65-3.63-3.22-2.71

0.06 (-2.99)-(1.84)-(3.25)-(-2.31)-(-0.21)-(1.99)
250 4.98-7.4-8.58-6.12-6.78-8.73 3.5-2.77-2.27-4.04-3.64-3

0.03 (-4.02)-(1.4)-(3.58)-(-2.88)-(-1.22)-(1.73)

FrankDV-DV
50 9.03-5.89-4.87-8.29-8.1-5.83 1-1.02-1.23-1.47-1.36-1.69

0.93 (0.03)-(-0.11)-(-0.13)-(-0.71)-(0.1)-(-1.17)
100 8.9-5.95-4.91-8.63-7.98-6.11 0.8-0.59-0.82-0.95-0.9-1.05

0.97 (-0.1)-(-0.05)-(-0.09)-(-0.37)-(-0.02)-(-0.89)
250 9-6.01-5.02-8.94-8.05-6.56 0.55-0.45-0.45-0.53-0.56-0.63

0.99 (0)-(0.01)-(0.02)-(-0.06)-(0.05)-(-0.44)
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Table 4.26: Parameter Estimations for C- and D-vine mixtures with max1 = 250

(Base is FrankCV-FrankDV)

Parameters of the Mixture Model
β1

12-β1
13-β1

14-β1
23|1-β1

24|1-β1
34|12 (8-7-6-9-8-7) (π1 = 0.5)

Mult. Data Size Est. St.dv.
C1 N (Bias)

FrankCV-DV
50 6.74-8.25-7.73-6.74-7.57-7.55 3.16-2.63-2.58-3.88-3.27-3.66

0.16 (-1.26)-(1.25)-(1.73)-(-2.26)-(-0.43)-(0.55)
100 5.07-7.63-8.03-6.97-7.67-8.27 3.35-3.09-2.76-3.8-3.43-3.41

0.04 (-2.93)-(0.63)-(2.03)-(-2.03)-(-0.33)-(1.27)
250 8.08-7.03-5.98-8.87-7.93-6.99 0.65-0.56-0.51-0.77-0.69-0.76

0.97 (0.08)-(0.03)-(-0.02)-(-0.13)-(-0.07)-(-0.01)

FrankCV-CV
50 8.17-6.94-5.96-8.73-7.83-7.47 1.41-1.34-1.3-1.36-1.45-1.59

0.91 (0.17)-(-0.06)-(-0.04)-(-0.27)-(-0.17)-(0.47)
100 8.03-6.91-5.91-8.92-7.89-7.14 1.02-0.94-0.89-0.96-0.96-1.1

0.95 (0.03)-(-0.09)-(-0.09)-(-0.08)-(-0.11)-(0.14)
250 8.12-7.01-6.02-9.05-8-7.06 0.66-0.58-0.57-0.67-0.66-0.62

0.97 (0.12)-(0.01)-(0.02)-(0.05)-(0)-(0.06)

FrankDV-DV
50 5.54-8.04-7.68-6.56-7.54-7.68 3.22-2.87-3-3.93-3.6-3.8

0.06 (-2.46)-(1.04)-(1.68)-(-2.44)-(-0.46)-(0.68)
100 4.97-7.63-7.93-6.8-7.65-8.39 3.35-3.17-2.78-3.8-3.56-3.32

0.03 (-3.03)-(0.63)-(1.93)-(-2.2)-(-0.35)-(1.39)
250 5.13-7.19-7.89-8.26-7.33-8.14 3.22-3.1-2.9-2.89-3.69-3.38

0.01 (-2.87)-(0.19)-(1.89)-(-0.74)-(-0.67)-(1.14)
β2

12-β2
13-β2

14-β2
23|1-β2

24|1-β2
34|12 (9-6-5-9-8-7) (π2 = 0.5)

Mult. Data Size Est. St.dv.
C2 N (Bias)

FrankCV-DV
50 8.51-6.1-5.16-8.06-7.87-5.78 1.57-1.5-1.68-1.91-1.76-2.11

0.84 (-0.49)-(0.1)-(0.16)-(-0.94)-(-0.13)-(-1.22)
100 8.94-5.91-4.91-8.59-7.95-6.04 0.85-0.73-0.81-1.05-1.07-1.07

0.96 (-0.06)-(-0.09)-(-0.09)-(-0.41)-(-0.05)-(-0.96)
250 5.7-7.22-8.16-6.35-7.43-9.27 3.44-3.08-2.6-3.81-3.55-2.3

0.03 (-3.3)-(1.22)-(3.16)-(-2.65)-(-0.57)-(2.27)

FrankCV-CV
50 5.84-7.74-8.59-6.79-6.8-8.48 3.36-2.94-2.36-3.93-3.75-3.18

0.09 (-3.16)-(1.74)-(3.59)-(-2.21)-(-1.2)-(1.48)
100 6.02-7.18-8.35-6.93-7.01-9.01 3.4-3.06-2.59-3.7-3.69-2.65

0.05 (-2.98)-(1.18)-(3.35)-(-2.07)-(-0.99)-(2.01)
250 4.97-7.39-8.58-6.6-7.07-8.74 3.45-2.79-2.29-3.92-3.61-2.95

0.03 (-4.03)-(1.39)-(3.58)-(-2.4)-(-0.93)-(1.74)

FrankDV-DV
50 8.77-5.82-5.01-8.64-8.06-5.78 1.18-1.03-1.07-1.21-1.37-1.39

0.94 (-0.23)-(-0.18)-(0.01)-(-0.36)-(0.06)-(-1.22)
100 8.94-5.89-4.91-8.81-8.12-6.12 0.84-0.68-0.79-0.97-1.05-1.06

0.97 (-0.06)-(-0.11)-(-0.09)-(-0.19)-(0.12)-(-0.88)
250 8.9-5.95-4.97-8.83-7.99-6.56 0.56-0.41-0.48-0.64-0.57-0.59

0.99 (-0.1)-(-0.05)-(-0.03)-(-0.17)-(-0.01)-(-0.44)
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problem emerges one more time for the finite mixture of C- and D-vine copula with

Frank pairs. In terms of small data set, the best estimates of the parameters belonging

to the DV-part, although this result became reverse whenN = 250. Overall, FrankCV–

FrankDV model fails to identify the simulated data from CV-DV mixture and parameter

estimates are only significant for one of the components based on the weight parameter.

Additionally, when the sample size increased, there is a weight change from D-vine

to C-vine in terms of components.
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4.1.6 CD-vine Mixture Model

As a novel contribution of this study, the mixture of C-vines with D-vine methodology

has been discussed. Here, for the pre-analysis part, various C-vine densities have been

investigated in 4-dimension with distinct pair copula families like Clayton, Frank or

Gumbel for all components whenM = 3. For instance, in 3 component 4 dimensional

CD-vine mixture model, as it is explained in Chapter 3, each component is modeled

via C-vine and then the dependence among the components has been captured with

the help of D-vine. In this methodology, the dependence between the values of

Empirical Multivariate Cumulative Distribution function (EMCDF) belonging to each

component, i.e. F (cv1), F (cv2) and F (cv3) was the crucial and facilitator inter-step

for CD-vine mixture modeling.

As an optimization routine, previously considered DEoptim function was implemented

under two step maximization process for CD-vine mixture model. In this proposed

model, similar to the widely evaluated Inference For Margins (IFM) method, first the

parameters of density for each component was estimated independently. Afterwords,

these obtained parameters are used for the construction of F (cv1), F (cv2) and F (cv3)

values, the EMCDF data having dependence information about each component.

Finally, new 3-dimensional EMCDF data was tied together with the help of D-vine

methodology.

4.1.6.1 Dependence only within components

Suppose each component has Clayton pairs but there is no temporal association between

the variables under each component and dependence among the calculated values of

F (cv1), F (cv2) and F (cv3) for D-vine specification. In this framework, the most

suitable copula family for D-vine modeling part has been detected as the independence

copula. To illustrate, Figures 4.5 and 4.6 can be considered, to show the existing

dependence occurs only within the components under strong dependence scenario.

Before observing independence among the values of F (cv1), F (cv2) and F (cv3)

given in Figure 4.6, the dependence within the the components originated from the

selected C-vine densities based on Clayton pairs is visualized in Figure 4.5.

109



x

D
en

si
ty

u1_1

0.2 0.8

0.92

***

0.89

***

0.2 0.8

0.87

***

−0.076

 

0.0 0.6

−0.12

 

−0.14

 

0.2 0.8

−0.15

 

0.18

 

0.0 0.6

0.14

 

0.17

 

0.0 0.6

0.
2

0.
6

1.
0

0.16

 

0.
2

0.
6

1.
0

x

D
en

si
ty

u2_1

0.99

***

0.99

***

−0.089

 

−0.13

 

−0.14

 

−0.15

 

0.11

 

0.053

 

0.068

 

0.075

 

x

D
en

si
ty

u3_1

0.99

***

−0.05

 

−0.10

 

−0.11

 

−0.12

 

0.098

 

0.036

 

0.045

 

0.
2

0.
6

1.
0

0.056

 

0.
2

0.
6

1.
0

x

D
en

si
ty

u4_1

−0.081

 

−0.13

 

−0.14

 

−0.14

 

0.067

 

0.021

 

0.019

 

0.029

 

x

D
en

si
ty

u1_2

0.95

***

0.91

***

0.90

***

0.13

 

0.21

 

0.19

 

0.
0

0.
4

0.
8

0.20

 

0.
0

0.
4

0.
8

x

D
en

si
ty

u2_2

0.98

***

0.98

***

0.18

 

0.24

.

0.23

 

0.25

.

x

D
en

si
ty

u3_2

0.99

***

0.23

 

0.27

.

0.27

.

0.
2

0.
6

1.
0

0.29

*

0.
2

0.
6

x

D
en

si
ty

u4_2

0.22

 

0.25

.

0.25

.

0.27

.

x

D
en

si
ty

u1_3

0.84

***

0.89

***

0.
0

0.
4

0.
8

0.94

***

0.
0

0.
4

0.
8

x

D
en

si
ty

u2_3

0.95

***

0.94

***

x

D
en

si
ty

u3_3

0.
0

0.
4

0.
8

0.99

***

0.2 0.8

0.
0

0.
4

0.
8

0.2 0.8 0.0 0.4 0.8 0.2 0.8 0.0 0.6 0.0 0.6

x

D
en

si
ty

u4_3

Figure 4.5: Dependence Structure among all variables, each component was

generated by Clayton pairs and there is no association among components
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In Figure 4.6, such a CD-vine construction requires independence copula family for

D-vine part in the second step. For this reason, CD-vine mixture model, which

includes Clayton pairs in C-vine and independence copula pairs in D-vine construction

has been studied. In this modeling setup, the parameters of each component are

selected as (β1
12 = 8, β1

13 = 7, β1
14 = 6, β1

23|1 = 9, β1
24|1 = 8, β1

34|12 = 7), (β2
12 =

9, β2
13 = 6, β2

14 = 5, β2
23|1 = 9, β2

24|1 = 8, β2
34|12 = 7) and (β3

12 = 4, β3
13 = 5, β3

14 =

7, β3
23|1 = 9, β3

24|1 = 8, β3
34|12 = 7). Naturally, the parameter set for the D-vine part

in this model is denoted by (βDV12 , βDV23 , βDV13|2). Simulation results for the case of

Clayton-Independence pairs belonging to C- and D-vine part are summarized. For

different number of iterations (i.e. max1 = 100 and max1 = 250), similar results

(Tables 4.27 and 4.28) are presented below.

Table 4.27: Parameter Estimations for CD-vine mixture with Clayton-Independence
copula pairs for max1 = 100

Parameters of the Mixture Model
β1

12, β
1
13, β

1
14, β

1
23|1, β

1
24|1, β

1
34|12

C-vine part Size (8-7-6-9-8-7) St.dv.
CV1 N Est. (Bias)

Clayton
50 8.17-7.13-6.12-8.91-7.95-7.64 0.79-0.67-0.59-0.94-0.91-1.32

(0.17)-(0.13)-(0.12)-(-0.09)-(-0.05)-(0.64)
100 8.05-7.04-6.03-9.12-8.1-7.03 0.58-0.52-0.46-0.68-0.61-0.78

(0.05)-(0.04)-(0.03)-(0.12)-(0.1)-(0.03)
250 8.06-7.05-6.04-8.96-7.98-7.13 0.34-0.3-0.26-0.54-0.5-0.62

(0.06)-(0.05)-(0.04)-(-0.04)-(-0.02)-(0.13)
β2

12, β
2
13, β

2
14, β

2
23|1, β

2
24|1, β

2
34|12

(9-6-5-9-8-7) St.dv.
CV2 N Est. (Bias)

Clayton
50 9.1-6.06-5.06-9.03-8.02-7.4 0.7-0.51-0.45-0.92-0.78-1.26

(0.1)-(0.06)-(0.06)-(0.03)-(0.02)-(0.4)
100 9.07-6.04-5.04-8.94-7.97-7.2 0.59-0.41-0.36-0.72-0.66-0.84

(0.07)-(0.04)-(0.04)-(-0.06)-(-0.03)-(0.2)
250 9.07-6.05-5.05-8.92-7.92-7.04 0.37-0.26-0.22-0.52-0.46-0.51

(0.07)-(0.05)-(0.05)-(-0.08)-(-0.08)-(0.04)
β3

12, β
3
13, β

3
14, β

3
23|1, β

3
24|1, β

3
34|12

(4-5-7-9-8-7) St.dv.
CV3 N Est. (Bias)

Clayton
50 4.05-5.05-7.06-9.05-8.03-7.35 0.39-0.44-0.58-1.03-0.99-1.18

(0.05)-(0.05)-(0.06)-(0.05)-(0.03)-(0.35)
100 4.01-5-7-9.13-8.14-7.15 0.25-0.29-0.39-0.66-0.65-0.83

(0.01)-(0)-(0)-(0.13)-(0.14)-(0.15)
250 4.03-5.04-7.05-9.11-8.07-7.04 0.17-0.2-0.26-0.49-0.45-0.57

(0.03)-(0.04)-(0.05)-(0.11)-(0.07)-(0.04)
βDV12 , βDV23 , βDV13|2

D-vine part Size (0 / 0 / 0) St.dv.
DV N Est. (Bias)

Indep
50 -1.396413e-07 / -2.385398e-07 / -1.157744e-07 1.133487e-07 / 1.85544e-07 / 1.934761e-07

(-1.396413e-07)-(-2.385398e-07)-(-1.157744e-07)
100 -0.0006554143 / -0.0007067731 / -0.0006302542 0.000579263 / 0.0006077416 / 0.0005635711

(-0.0006554143)-(-0.0007067731)-(-0.0006302542)
250 -0.0007759255 / -0.0006201724 / -0.000564488 0.0007099019 / 0.0005251071 / 0.0005843439

(-0.0007759255)-(-0.0006201724)-(-0.000564488)
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In Table 4.27, obtained parameter estimates are very promising for CD-vine mixture

with Clayton-Independence case. Besides, there is positive impact of the increase

on the sample size over the accuracy, when the standard deviation and bias values

are investigated. In this type CD-vine mixture case, it is known that the D-vine part

requires independence copulas in advance, that makes the above derived values are

reasonable based on the simulated data. Similar parameter estimations are presented

for max1 = 250 below, in Table 4.28.

Table 4.28: Parameter Estimations for CD-vine mixture with Clayton-Independence
copula pairs for max1 = 250

Parameters of the Mixture Model
β1

12, β
1
13, β

1
14, β

1
23|1, β

1
24|1, β

1
34|12

C-vine part Size (8-7-6-9-8-7) St.dv.
CV1 N Est. (Bias)

Clayton
50 8.19-7.19-6.16-8.99-7.98-7.25 0.73-0.64-0.5-0.95-0.86-1.14

(0.19)-(0.19)-(0.16)-(-0.01)-(-0.02)-(0.25)
100 8.09-7.07-6.06-8.94-7.93-7.26 0.61-0.53-0.47-0.81-0.74-0.89

(0.09)-(0.07)-(0.06)-(-0.06)-(-0.07)-(0.26)
250 8.06-7.05-6.04-9.01-8.01-7.01 0.38-0.33-0.29-0.56-0.5-0.55

(0.06)-(0.05)-(0.04)-(0.01)-(0.01)-(0.01)
β2

12, β
2
13, β

2
14, β

2
23|1, β

2
24|1, β

2
34|12

(9-6-5-9-8-7) St.dv.
CV2 N Est. (Bias)

Clayton
50 9.1-6.08-5.07-9.03-8.03-7.26 0.7-0.48-0.42-0.93-0.86-1.21

(0.1)-(0.08)-(0.07)-(0.03)-(0.03)-(0.26)
100 9.06-6.04-5.03-9.03-8.02-7.23 0.59-0.41-0.36-0.72-0.67-0.9

(0.06)-(0.04)-(0.03)-(0.03)-(0.02)-(0.23)
250 9.04-6.03-5.03-9.03-8.02-7.07 0.39-0.27-0.23-0.52-0.47-0.6

(0.04)-(0.03)-(0.03)-(0.03)-(0.02)-(0.07)
β3

12, β
3
13, β

3
14, β

3
23|1, β

3
24|1, β

3
34|12

(4-5-7-9-8-7) St.dv.
CV3 N Est. (Bias)

Clayton
50 4.04-5.05-7.08-9.02-8.02-7.53 0.37-0.43-0.57-0.91-0.87-1.23

(0.04)-(0.05)-(0.08)-(0.02)-(0.02)-(0.53)
100 4.03-5.04-7.05-9.03-8.03-7.26 0.26-0.29-0.39-0.74-0.65-0.89

(0.03)-(0.04)-(0.05)-(0.03)-(0.03)-(0.26)
250 4.02-5.02-7.03-9.02-8.03-7.08 0.16-0.18-0.24-0.52-0.47-0.51

(0.02)-(0.02)-(0.03)-(0.02)-(0.03)-(0.08)
βDV12 , βDV23 , βDV13|2

D-vine part Size (0/0/0) St.dv.
DV N Est. (Bias)

Indep
50 -0.0006874875 / -0.0006659864 / -0.0006871078 0.000694688 / 0.0007766992 / 0.0006787283

(-0.0006874875)-(-0.0006659864)-(-0.0006871078)
100 -0.0006154219 / -0.0006480791 / -0.0006335947 0.0005524461 / 0.0006746858 / 0.0006316712

(-0.0006154219)-(-0.0006480791)-(-0.0006335947)
250 -0.0007068852 / -0.0006224004 / -0.0007062854 0.000673962 / 0.0006086603 / 0.0006704548

(-0.0007068852)-(-0.0006224004)-(-0.0007062854)

In this two-step maximization with the case of Clayton-Independence CD-vine mixture

model, the parameter estimations for both components are promising enough. When

there is no dependence among the components via F (cv1), F (cv2) and F (cv3) values,

D-vine part requires only Independence copula pairs and it is straightforward to
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capture high accuracy for the parameter estimations of such a CD-vine mixture model.

On the other hand, upcoming scenario, presented below, is not so easy to accomplish

the model identification under the proposed CD-vine mixture.

4.1.6.2 Dependence among the components

Within the context of CD-vine mixture, another dependence pattern occurs whenever

EMCDF values of each component were calculated at the same values, which means

realization of P(u1 ≤ a, u2 ≤ b, u3 ≤ c, u4 ≤ d) where a, b, c, d are arbitrary real

values belonging to the domain of multivariate density function. For this scenario,

Frank pairs with strong dependence case were constructed for each component. After-

words, F (cv1), F (cv2) and F (cv3) values are calculated for the same random matrix

including a, b, c, d ∈ [0, 1]. In this scenario, there exist a dependence among the

components via EMCDF values, namely among F (cv1), F (cv2) and F (cv3) so that

independence copula is not an appropriate choice anymore.

For the second simulated data, same 4 dimensional 3 component C-vine models

are generated based on the selected parameters, used previously. For the sake of

simplicity, some archimedean copula pairs are considered for the second step of

CD-vine mixture model. On the other hand, this dependence pattern within the

components via F (cv1), F (cv2) and F (cv3) is not predictable at the beginning. For

this reason, the best D-vine model should be selected after finishing the first step.

However, for the simulation part, pre-selected pairs are forced to fit for the obtained

data set to investigate the performance of the CD-vine model when copula families are

not specified correctly. Parameter estimation results are available for Clayton-Frank

CD-vine mixture model for small sample size whenever the true structure includes

other copula pairs rather than Frank pairs in D-vine part.

In C-vine part, the parameter estimation accuracy is very high for Clayton pairs

for each component. Thereafter, the dependence among the components can be

modeled via D-vine framework. Even if the forced parameters of D-vine part are

βDV12 = 5, βDV23 = 7, βDV13|2 = 9, certainly second part fails in terms of accuracy of the

parameter estimates since the original dependence structure is different. Parameter

estimates for the Frank pairs in D-vine part hits the initially determined upper constraints
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Table 4.29: Parameter Estimations for CD-vine mixture with Clayton-Frank copula
pairs for max1 = 100

Parameters of the Mixture Model
β1

12, β
1
13, β

1
14, β

1
23|1, β

1
24|1, β

1
34|12

C-vine part Size (8-7-6-9-8-7) St.dv.
CV1 N Est. (Bias)

Clayton
50 8.08-7.08-6.08-9.06-8.05-7.3 0.73-0.66-0.59-0.9-0.82-1.12

(0.08)-(0.08)-(0.08)-(0.06)-(0.05)-(0.3)
100 8.07-7.07-6.07-9.19-8.11-7.1 0.55-0.47-0.41-0.76-0.65-0.87

(0.07)-(0.07)-(0.07)-(0.19)-(0.11)-(0.1)
250 8.05-7.04-6.03-9.11-8.11-6.99 0.34-0.31-0.28-0.56-0.51-0.58

(0.05)-(0.04)-(0.03)-(0.11)-(0.11)-(-0.01)
β2

12, β
2
13, β

2
14, β

2
23|1, β

2
24|1, β

2
34|12

(9-6-5-9-8-7) St.dv.
CV2 N Est. (Bias)

Clayton
50 9.15-6.11-5.1-9.03-7.97-7.44 0.68-0.46-0.41-0.88-0.8-1.2

(0.15)-(0.11)-(0.1)-(0.03)-(-0.03)-(0.44)
100 9.02-6.04-5.03-9.06-8.06-6.89 0.57-0.4-0.34-0.71-0.61-0.79

(0.02)-(0.04)-(0.03)-(0.06)-(0.06)-(-0.11)
250 9.03-6.02-5.02-9.01-8-7.08 0.37-0.25-0.22-0.54-0.48-0.59

(0.03)-(0.02)-(0.02)-(0.01)-(0)-(0.08)
β3

12, β
3
13, β

3
14, β

3
23|1, β

3
24|1, β

3
34|12

(4-5-7-9-8-7) St.dv.
CV3 N Est. (Bias)

Clayton
50 4.07-5.1-7.13-9.12-8.07-7.25 0.34-0.42-0.58-0.87-0.84-1.37

(0.07)-(0.1)-(0.13)-(0.12)-(0.07)-(0.25)
100 3.98-4.99-6.99-9.01-8.04-7.21 0.22-0.25-0.33-0.68-0.61-0.82

(-0.02)-(-0.01)-(-0.01)-(0.01)-(0.04)-(0.21)
250 4-5.01-7.01-9.01-8.03-7.09 0.15-0.18-0.24-0.49-0.42-0.52

(0)-(0.01)-(0.01)-(0.01)-(0.03)-(0.09)
βDV12 , βDV23 , βDV13|2

D-vine part Size (5 / 7 / 9) St.dv.
DV N Est. (Bias)

Frank
50 9 / 9 / 9 8.440675e-07 / 8.169323e-07 / 9.463762e-07

(-6.705599e-08)-(6.348697e-07)-(-9.163034e-07)
100 9 / 9 / 9 8.930808e-07 / 9.90206e-07 / 9.533107e-07

(-8.499318e-07)-(9.165051e-07)-(-1.317546e-07)
250 9 / 9 / 9 8.689216e-07 / 8.037634e-07 / 8.283851e-07

(-6.877701e-07)-(1.241574e-06)-(-8.252853e-07)
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in all cases. For this reason, Frank pairs are not suitable for modeling the dependence

between the components. Generally, this problem occurs in any kind of family restriction,

since it is not suitable to identify the pair copula function for D-vine part at the

beginning. Nevertheless, for a real life application, this two step maximization process

can be cultivated by capturing the dependence among the components before evaluating

D-vine model.
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4.2 Real Life Application

In this subsection, the above proposed mixture models were tested using two different

financial data sets. In the first application, finite mixture of C-vines has been tested

with 2 components for log-return time series data. Secondly, the proposed CD-vine

mixture model was executed for a similar log-return data set. The details of the

selected financial data sets and the corresponding numerical results are summarized

within the following subsections.

4.2.1 Finite Mixture of Log-returns

As a first application, Istanbul stock exchange data set is considered with other notable

indices like S&P 500, and DAX. Data set is available from June 5, 2009 to February

22, 2011, including 536 rows in daily base and retrieved from the UC Irvine Machine

Learning Repository [2]. Under the proposed model, the stock exchange data will

be modeled by finite mixture of C-vines and for the model comparison purposes, the

suitable selections are pooled together for M = 1 and M = 2.

Firstly, the considered data set with its brief explanations is presented below in Table

4.30. For the first application, the pre-analysis part has been started with all given

indices. Before time series modeling, the summary statistics for each time series are

given below in Table 4.31 with their plots in Figure 4.7.

Table 4.30: Log-return series definition

Stock Index Definition
ISETL İstanbul stock exchange, TL based BIST100
ISEUSD İstanbul stock exchange, USD based BIST100
SP Standard & Poor 500 Index
DAX Germany Stock market return index
FTSE UK Stock market return index

NIKKEI Japan Stock market return index
BOV ESPA Brazil Stock market return index

EU MSCI European index
EM MSCI emerging markets index

In Table 4.30, well known international major log-return indices are considered with
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ISE stock index. For a brief and more clear definition, EU is designed to represents

the performance of large and mid-cap equities across 15 developed countries in Europe

based on Global Investable Market Index (GIMI) methodology. Meanwhile, EM

relies on the same methodology but it exhibits a similar performance of securities in

24 Emerging Markets including Turkey, this is the reason for the selection of index

EM for the rest of the study. Further information about these stock indices can be

found in [36].

Table 4.31: Summary statistics for Log-return series

Stock Index Min. Max. Mean Variance Skewness Kurtosis
ISETL -0.062208 0.068952 0.001629 0.0002645265 -0.09471169 4.391144
ISEUSD -0.084716 0.100621 0.001552 0.0004461357 -0.07994364 4.795950
SP -0.0542620 0.0683664 0.0006433 0.0001986115 -0.09029299 6.068512
DAX -0.0523312 0.0589505 0.0007208 0.0002119113 -0.10698160 5.104065
FTSE -0.0548160 0.0503227 0.0005103 0.0001601665 -0.16194822 5.254229

NIKKEI -0.0504476 0.0612293 0.0003077 0.0002205262 0.03233025 4.297928
BOV ESPA -0.0538495 0.0637915 0.0009353 0.0002480795 0.02934667 4.853999

EU -0.0488168 0.0670425 0.0004706 0.0001687406 -0.03082931 5.607954
EM -0.0385645 0.0478045 0.0009359 0.0001102742 0.08273992 5.510568

In Table 4.31, the important statistical properties for each time series are summarized.

Based on the obtained values, the measures of dispersion for the log-returns are

very similar, with different means. Furthermore, skewness values exhibit different

symmetric properties. For instance, right tail structure occurs for only the series

NIKKEI , BOV ESPA and EM , the remaining log-returns display negative skew-

ness values, i.e. left tail property. Based on the kurtosis values, the highest and

smallest peakedness exist for the series SP and NIKKEI , respectively. For each

univariate series, large values of kurtosis display a significant departure from normality

and express fatter tails for the series.

As a first insight for the data set, the dependence among each univariate time series

are presented in Figure 4.8 with the corresponding Kendall’s τ values within the

upper diagonal windows and bivariate scatter plots in the lower diagonal graphs.

Furthermore, the most correlated log-return set includes ISEUSD withDAX , FTSE

and EM . These series are considered for further analysis to fit a suitable mixture

model. Besides, the presented Kendall’s τ values exhibit a plausible strong positive

dependence for ISEUSD and it could be considered as a root node for C-vine model
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Figure 4.7: Univariate log-returns between 05-Jan-09 and 22-Febr-11

within a multivariate data set, i.e. (ISEUSD, DAX,FTSE,EM). Here, the original

univariate log-return series with their ACF and PACF plots are presented for ISEUSD,

DAX , FTSE andEM in the following Figures 4.9, 4.10, 4.11 and 4.12, respectively.

To determine the best and plausible time series model for each series, the help of some

available Cran packages like forecast and so on are exploited for the pre-analysis part.

As a well known fact that, to fit a copula model, residuals of each time series must

be derived for further elaborations. The following Table 4.32 summarize the best

plausible models for each time series.

Table 4.32: ARIMA Model summary for each Logreturns

Log-returns Model Fit log-likelihood LB [M-Li]
ISEUSD ARIMA(4,0,3) 1451.894 0.6822 [0∗]

DAX ARIMA(7,0,7) 1539.295 0.9333 [0∗]

FTSE ARIMA(3,0,3) 1514.276 0.658 [0∗]

EM ARIMA(2,0,2) 1465.914 0.4913 [0∗]

In above Table 4.32, naive ARIMA(p, d, q) models are determined for each series

with Ljung-Box (LB) and McLeod-Li (M-Li) test results to derive the model residuals.

119



x

D
en

si
ty

ISE USD

0.0 0.2 0.4 0.6 0.8 1.0

0.38

***

0.58

***

0.0 0.2 0.4 0.6 0.8 1.0

0.62

***

0.35

***

0.0 0.2 0.4 0.6 0.8 1.0

0.38

***

0.
0

0.
4

0.
8

0.70

***

0.
0

0.
4

0.
8

x

D
en

si
ty

SP

0.59

***

0.58

***
0.075

.

0.65

***

0.45

***

x

D
en

si
ty

DAX

0.86

***
0.21

***

0.46

***

0.
0

0.
4

0.
8

0.60

***

0.
0

0.
4

0.
8

x

D
en

si
ty

FTSE

0.23

***

0.47

***

0.64

***

x
D

en
si

ty

NIKKEI

0.11

*

0.
0

0.
4

0.
8

0.50

***

0.
0

0.
4

0.
8

x

D
en

si
ty

BOVESPA

0.57

***

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x

D
en

si
ty

EM

Figure 4.8: Dependence Structure among the log-returns with Kendall’s τ values
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Figure 4.10: Time series of DAX between 05-Jan-09/22-Febr-11 and its Acf-Pacf

Plots
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Figure 4.11: Time series of FTSE between 05-Jan-09/22-Febr-11 and its Acf-Pacf

Plots
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On the other hand, classicalARIMA(p, d, q) models capture only best linear forecast

without considering nonlinearity. For that reason, any possible model volatility must

be detected and included in the model, with the help of GARCH models. This

stepwise methodology results in checking residuals in detail and finding a suitable

GARCH model, tabulated in Table 4.33. The subscripts in the Model fits identify the

considered conditional distribution in GARCH modeling setup.

At this step, various GARCH(1,1) models with desired conditional distributions, such

as normal, student-t and their skewed versions, are investigated. Furthermore, the

Exponential and GJR type GARCH models (eGARCH and gjrGARCH) are also

considered for the comparison with the classical version to determine the best model.

Especially, the suitability of gjrGARCH models was previously mentioned in the

study of [3] because of its power to capture positive and negative shocks on the

conditional variance. The model having the largest likelihood and smaller information

criteria values was decided for each univariate time series. Certainly, other diagnostic

tests are considered to identify any evidence about the serial correlation, stability of

the parameters and so on.

Table 4.33: ARCH/GARCH Model summary for each Log-returns

Log-returns Model Fit log-likelihood LB WN
ISEUSD gjrGARCH(1, 1)sstd 1482.08 0.6822 0.1983
DAX GARCH(1, 1)std 1631.04 0.9333 0.6727
FTSE GARCH(1, 1)sstd 1571.069 0.658 0.8366
EM GARCH(1, 1)std 1512.232 0.4913 0.3680

After the comparison, it has been observed that for each case, considered models work

well enough to continue with the final model residuals. Furthermore, WN abbreviates

the result of white noise test for the obtained residuals and the p-values of WN for

each series are large enough. For a visual diagnostic for GARCH(1, 1) models of

each series are given in Figures 4.13-4.16 below.

After completing time series modeling part, the obtained residuals are stored as inputs

for the corresponding vine models. In this study, classical vine copulas (M = 1 case

for the mixture model) and the mixture of vines (M = 2 case only) are fitted to

the residual data. In this exploration, the existed dependence among the residuals
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Figure 4.13: GARCH Model summary for the series ISEUSD
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Figure 4.14: GARCH Model summary for the series DAX
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Figure 4.15: GARCH Model summary for the series FTSE
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Figure 4.16: GARCH Model summary for the series EM
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of the time series models can be visualized in Figure 4.17 below. Besides, when

the residuals are converted into pseudo-observations (copula data), this association

further illustrated with Figure 4.18 including Kendall’s τ values.

x

D
en

si
ty

ISE USD

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

0.44

***

0.59

***

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−
0.

06
−

0.
02

0.
02

0.
06

0.45

***

−
0.

06
−

0.
02

0.
02

0.
06

x

D
en

si
ty

DAX

0.67

***

0.72

***

x

D
en

si
ty

FTSE

−
0.

04
0.

00
0.

02
0.

04
0.

06

0.59

***

−0.06 −0.04 −0.02 0.00 0.02 0.04 0.06

−
0.

06
−

0.
02

0.
02

0.
06

−0.04 −0.02 0.00 0.02 0.04 0.06

x

D
en

si
ty

EM

Figure 4.17: Dependence between the obtained residuals for each log-return series

For the obtained residuals, different vine models are investigated from M = 1 to

M = 2 with only Frank-Frank scenario for the finite mixture model because of

the symmetric dependence structure, visualized in Figure 4.18. For the general vine

models, Normal and Frank copula families are considered in the model comparison

part. Other one-tailed type copula families like Clayton or Gumbel is not suitable to

model this dependence pattern since they are mainly based on positive correlation.

In this framework, main interest is to identify the dependence structure between four

log-return values with a root node variable, ISEUSD.

In this Table 4.34, Frank-Frank mixture model is compared with the one-component

classical C-vine models. For the mixture ones, the initial guesses for the parameters

are retrieved from the estimated parameter for CVFrank model. More clearly, initial

parameters are (β1
12 = 3, β1

13 = 4, β1
14 = 3, β1

23|1 = 4, β1
24|1 = 5, β1

34|12 = 2) and

126



ISE.USD

0.27 0.39 0.27

u1

u 2

DAX

0.43 0.48

u1

u 2

u1

u 2

FTSE

0.33

u1

u 2

u1

u 2

u1

u 2

EM

Figure 4.18: Dependence between the corresponding pseudo-observations belonging

to the residuals

Table 4.34: Comparison of C-vine models including Frank-Frank mixture scenario

Vine Model Loglikelihood
CVNormal 446.0360
CVFrank 409.4262

Frank − Frank 416.2312
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(β2
12 = 2, β2

13 = 3, β2
14 = 2, β2

23|1 = 3, β2
24|1 = 4, β2

34|12 = 1) for 1’st and 2’nd

component, respectively. Based on the log-likelihood values, the obtained mixture is

superior than CVFrank but it is as not plausible as CVNormal model. In this modeling

setup, as a best model, CVNormal shows that there exists a weaker dependence in the

center and stonger dependence at tails when it is compared to both CVFrank and

Frank-Frank mixture case.

4.2.2 CD-vine mixture of Log-returns

For the second application, Daily Closing Prices of major indices given in Table 4.35

between years 1991-1998 are considered. The data set is retrieved from the repository

of CRAN data sets package and does not include weekends and holidays, similar

to previous data set [30]. For the implementation of 3 component 4-dimensional

CD-vine mixture model, last three years, i.e. 1995-1997 were focused from the

complete data set. The brief definitions for the indices are tabulated in Table 4.35

with their time series plots between 1995-1997 in Figure 4.19.

Table 4.35: Log-return series definition

Stock Index Definition
DAX Germany Stock market return index
FTSE UK Stock market return index
SMI Swiss Market Index
CAC France CAC 40 Stock Market Index

As a first insight, the summary statistics of the whole three years and individually

each separate year was given below in Table 4.36. Furthermore,for each year, the

dependence between the selected log-return values is visualized in Figures 4.20, 4.21

and 4.22, that motivates the background of CD-vine mixture model implementation.

In this CD-vine modeling setup, the dependence structure for each year, equivalently

each component requires different C-vines. The overall procedure for the time series

analysis and CD-vine mixture fitting part was summarized in Appendix part with

Figures B.1 and B.2, respectively. Thereafter, each univariate time series have been

modeled similar to the first application above. After checking stationarity using

available tests, ARIMA(p, d, q) models have been tested with suitable parameters.
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Figure 4.19: Univariate log-returns between 1995-01-02 and 1997-12-31

Table 4.36: Summary statistics for Log-return series, for years 1995-1997 and each
three year separately (CV1 for 1995, CV2 for 1996 and CV3 for 1997)

Stock Index Min. Max. Mean Variance Skewness Kurtosis
DAX -0.060068 0.043207 0.001328 1.204847e-04 -0.2800984 2.44286
SMI -0.046951 0.049680 0.001335 9.530134e-05 -0.2045915 2.6556
CAC -0.0436528 0.0609773 0.0010594 1.229722e-04 -0.04038411 2.013503
FTSE -0.0310272 0.0312507 0.0007407 6.00198e-05 -0.1434858 1.355695
DAXCV 1 -0.0318230 0.0243396 0.0007990 5.347527e-05 -0.2151643 1.684495
SMICV 1 -0.025545 0.049680 0.001062 5.302119e-05 0.8042204 7.620212
CACCV 1 -0.0346849 0.0319273 0.0005016 8.394722e-05 0.03933226 1.221863
FTSECV 1 -0.0144040 0.0217781 0.0004479 3.301096e-05 0.07156261 0.3041095
DAXCV 2 -0.037787 0.032663 0.001528 8.204311e-05 -0.317721 1.670497
SMICV 2 -0.034389 0.031049 0.001596 7.136043e-05 -0.5082251 2.291705
CACCV 2 -0.0399492 0.0295422 0.0012602 1.065269e-04 -0.4598755 1.401845
FTSECV 2 -0.0220118 0.0265099 0.0009132 4.26914e-05 -0.2069626 1.015416
DAXCV 3 -0.060068 0.043207 0.001657 2.264325e-04 -0.2886622 0.792924
SMICV 3 -0.0469512 0.0370533 0.0013475 1.621124e-04 -0.2886056 0.7564879
CACCV 3 -0.0436528 0.0609773 0.0014163 1.789076e-04 0.08112503 1.648378
FTSECV 3 -0.0310272 0.0312507 0.0008611 1.046882e-04 -0.1752442 0.3311307
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Figure 4.20: Dependence Structure among the log-returns with Kendall’s τ values for

year 1995
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Figure 4.21: Dependence Structure among the log-returns with Kendall’s τ values for

year 1996
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Figure 4.22: Dependence Structure among the log-returns with Kendall’s τ values for

year 1997
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Afterwords, if there exist any necessity, variousGARCH(1, 1) models are considered

with different distributions. For the sake of simplicity, only standard GARCH(1, 1)

model has been tested over the residuals of the ARIMA(p, d, q) models, if it is

required. The model summary for each series belonging to each component is summa-

rized in Table 4.37.

Table 4.37: ARIMA Model summary for each Logreturns for each component

Log-returns Model Fit log-likelihood LB [M-Li]
DAXCV 1 ARIMA(1,0,1)→ GARCH(1, 1)std 922.4105 0.485 [0.6581]
SMICV 1 ARIMA(1,0,1)→ GARCH(1, 1)std 937.9006 0.6262 [0.9997]
CACCV 1 ARIMA(1,0,0)→ GARCH(1, 1)sstd 861.8276 0.8368 [0.8005]
FTSECV 1 ARIMA(2,0,2)→ GARCH(1, 1)std 980.7856 0.3024 [0.4483]
DAXCV 2 ARIMA(4,0,0)→ GARCH(1, 1)sstd 875.944 0.6678 [0∗]
SMICV 2 ARIMA(2,1,2)→ GARCH(1, 1)std 890.4312 0.4692 [0.3076]
CACCV 2 ARIMA(2,0,0)→ GARCH(1, 1)sstd 835.8359 0.2972 [0.0107∗]
FTSECV 2 ARIMA(0,0,0)→ GARCH(1, 1)sstd 948.8898 0.5206 [0.9545]
DAXCV 3 ARIMA(9,0,1)→ GARCH(1, 1)snorm 738.8651 0.2092 [0.029∗]
SMICV 3 ARIMA(2,0,0)→ GARCH(1, 1)snorm 779.1635 0.135 [0∗]
CACCV 3 ARIMA(5,0,0)→ GARCH(1, 1)sstd 766.9586 0.5108 [0∗]
FTSECV 3 ARIMA(0,0,1)→ GARCH(1, 1)std 832.1742 0.3364 [0.7369]

In a similar manner, for each univariate series, the classical Box-Jenkins models

have been considered with (LB:Ljung-Box, M-Li:McLeod-Li) test results. In some

cases, there exist an arch effect, indicated by the value of McLeod-Li test result, so

then various GARCH(1, 1) models have been compared to determine any further

accuracy in the model. In Table 4.37, these procedure was given together for a related

log-returns. Generally, the result of GARCH(1, 1) model was quite well for various

series except DAXCV 2, CACCV 2, DAXCV 3, SMICV 3 and CACCV 3. On the other

hand, modeling residuals with a GARCH(1, 1) model is still reasonable when the

p-values of McLeod-Li test for the original ARIMA(p, d, q) and GARCH(1, 1)

models are compared. Finally, residuals, obtained from above two step modeling

part, are captured for the CD-vine mixture model. Now, the dependence among

log-returns in terms of their transformed residuals within each year is identified in

terms of Kendall τ values, graphically visualized in Figures 4.23, 4.24 and 4.25.

For each year, the dependence structure seems to be two-tailed and there is no certain

accumulated points at the lower and upper tails. For this reason, only Frank copula

pairs are considered in the first step of the CD-vine model. For the C-vine construction,
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Figure 4.23: Dependence structure among the transformed residuals in 1995

DAX.1996.

0.49 0.56 0.44

u1

u 2

SMI.1996.

0.42 0.38

u1

u 2

u1

u 2

CAC.1996.

0.44

u1

u 2

u1

u 2

u1

u 2

FTSE.1996.

Figure 4.24: Dependence structure among the transformed residuals in 1996
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Figure 4.25: Dependence structure among the transformed residuals in 1997

based on the above Figures 4.23-4.25,DAX log-return seems to be the best choice for

being a root node in terms of Kendall τ values. For the next step of CD-vine mixture

model, the following flowchart visualizes the upcoming calculations in Figure 4.26.

For the sake of simplicity, same copula function has been considered for all components.

Thereafter, the calculated values of F (cv1), F (cv2) and F (cv3) based on the obtained

Frank models with parameters are incorporated into D-vine model. For D-vine model,

other available copulas are considered to model each pair with a different family.

The details of the fitted model with their loglikelihood (Log-lh) values, dependence

parameters and corresponding Kendall τ values are tabulated below. Furthermore,

tree structure of F (cv1), F (cv2) and F (cv3) based on the selected copula family can

be visualized in Figure 4.27.

Based on the results in Table 4.38, for each year, the considered stock values have

symmetric dependence pattern based on Frank copula family. Especially, for unconditi-

onal densities, the dependence parameter values are very high. For instance, ordered

numbers 7.28 − 8.20 − 6.22 for Model CV 3 express that DAXCV 3 log-return is
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Figure 4.26: CD-vine mixture model Diagram for the residual data

Table 4.38: Comparison of C-vine models for each component

Model for CV 1 Log-lh Parameters [Kendall τ ]
Frank 176.1582 3.76 [0.37]-5.12 [0.46]-3.99 [0.39]-1.02 [0.11]-1.66 [0.18]-1.23 [0.13]

Model for CV 2

Frank 268.9389 5.65 [0.50]-7.07 [0.57]-4.78 [0.44]-1.11 [0.12]-1.50 [0.16]-1.83 [0.20]

Model for CV 3

Frank 386.019 7.28 [0.57]-8.20 [0.61]-6.22 [0.53]-2.65 [0.28]-2.56 [0.27]-1.72 [0.19]

Model for DV
Gumbel-Gumbel-Survival Gumbel 1201.872 13.54 [0.93]-16.88 [0.94]-1.20 [0.17]
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Figure 4.27: D-vine model for F (cv1), F (cv2) and F (cv3)

positively dependent with other stock indices, namely SMICV 3,CACCV 3 andFTSECV 3,

in 1997. This dependence pattern is almost similar for the previous years and conditional

density functions have smaller parameter values compared to the parameters of uncondi-

tional ones.

In D-vine part, the dependence among the years is described with one-tailed copula

families. In Figure 4.27, G and SG stands for Gumbel and Survival Gumbel family

with their empirical Kendall τ values. For instance, the dependence among years

1995 and 1996 with the values of F (cv1), F (cv2) and F (cv3) is modeled by Gumbel

family, which displays the upper tail dependence for these years. On the other hand,

the dependence among years 1995 and 1997, conditioned on 1996 exhibits lower tail

dependence (τ = 0.17) based on Survival Gumbel family.
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CHAPTER 5

CONCLUSION AND OUTLOOK

In this last chapter, the whole study is briefly summarized and discussed in detail

from diverse perspectives. Firstly, the main results are summarized and the limitations

of the study have been highlighted. Thereafter, the rise of open problems from the

proposed mixture models over vine copulas is described. Finally, the schedule for

future studies is explained with possible solutions to the open problems of the study.

5.1 Main Results

In this dissertation, the various mixture of vines are proposed and their performances

are tested by using both simulated and real life data. Within the finite mixture context,

firstly the results of [22] are improved for C-vine model with numerous tail dependence

structures. For that purpose, as a departure point, 2 and 3 component, 3 dimensional

C-vine mixtures are discussed including same and distinct copula pairs. Previously,

it has been proven that whenever the same copula family is selected to model the

pairs belonging to the components, parameter estimate accuracy is plausible enough

based on EM algorithm and the classical optimization tools. However, different pair

copulas require much more attention in terms of model comparison and parameter

estimates. Additionally, the same mixture approach is extended to the 4-dimensional

space under C-vine framework and the parameter estimation part is completed by

using elegant derivative free optimization algorithms. Afterwords, C- and D-vine

models are considered two components and they are combined again using finite

mixture model. In these mixture models, only Frank family is considered with various
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dependence patterns. Finally, CD-vine mixture, another fruitful contribution of the

study is discussed with specific scenarios both using simulated and real life data

set. In this modeling setup, CD-vine mixture model requires two step maximization

process for the parameter estimation part. Eventually, in the application part, the main

focus is the dependence among the several major stock indices within the mixture of

vines. For that purpose, for considering two different applications, two financial data

sets have been investigated.

5.2 Discussions for findings

Apparently, this is the first study in the literature for making contribution on the

selection of different copula pairs for the construction of C-vine models. Furthermore,

within the same methodology, both C- and D-vine models are combined in terms of

finite mixture framework and this idea can be generalized for an arbitrary R-vine

model directly. As a novel contribution, the dependence among the components,

which are modeled by C-vine copula, has been considered in terms of D-vine copula

for the first time two specific scenarios. In this subsection, all the experienced results

are summarized and the recent findings of this thesis are examined step by step.

In the case of 3-dimensional mixture data over 2 or 3 components, numerous conclusi-

ons can be drawn having both advantages and drawbacks. Firstly, whenever the

choice of copula family is different for each component, mixture model setup has

failed in terms of parameter estimation under considered optimization tools. Further-

more, classical information criteria values selected to use in this study, are not sufficient

enough to decide which model is the best one. Furthermore, as a second conclusion

DEoptim function results are very promising for Frank-Frank mixture case in 4-dimen-

sion rather than other considered functions. In another proposed finite mixture, when

the structure of two components are different, C- and D-vine for instance, the model

identification problem has emerged in terms of the multivariate data. In this C- and

D- vine mixture, the fitted model capture the dependence structure of only one of the

components.
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CD-vine approach has been studied under different dependence assumptions belonging

to variables and components. The result of independence case is very satisfactory in

terms of accuracy of the parameter estimates. For this case, Clayton-Independence

CD-vine mixture was tested and the parameter estimations are close enough to the

true parameters decided in the simulation part. On the other hand, whenever the

dependence exists among the components via multivariate distribution functions, it is

not possible to detect which copula pairs are suitable in D-vine part.

Additionally, the proposed ClarkeMixV and VuongMixV GOF tests have been tested

only for model comparison of 2 component 3 dimensional mixture with Clayton-Joe

pairs. In these test results, ClarkeMixV has proved that the compared models are

statistically different from each other successfully. On the other hand, VuongMixV

test statistics can not distinguish two models in terms of which one is more preferable

than the others.

For the first application, finite C-vine mixture model was considered with other copula

pairs in 4-dimensional case. The model comparison part exhibited that the mixture

model is better than the classical 1 component C-vine case with Frank copula pairs.

However, the classical C-vine with Normal pairs seems to be better than Frank based

models because of its tail dependence pattern. This selected model exhibits weaker

dependence in the center and stronger dependence at tails when compared with mixture

of Frank copulas. This modeling setup is very useful to understand the co-movements

of the considered stocks in the market.

In the second application, CD-vine mixture model has been implemented to another

set of log-returns to identify their dependence structure by considering temporal depen-

dence among different years. Firstly, data set is partitioned into 3 subsets with equal

size for years 1995, 1996 and 1997. For each year, Frank copula pairs are considered

for the construction of C-vine part with DAX log-return as a root node as a result

of pre-analysis. Thereafter, obtained FCV1 , FCV2 and FCV3 are modeled with D-vine

including various copula families to identify their correct dependence structure. In

this application, for each year there exists a significant dependence among the selected

log-returns. Furthermore, one tailed copulas in D-vine part have certain clues about

the stock values.
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5.3 Future Research Directions

Certainly, the obtained results for all simulated data set and the application part has

not been completed. There are lots of new research questions, that come from the

above discussed vine mixture models. Especially, such mixtures can be generalized

for various copula families instead of restricting our interest for only some archimedean

copulas. Besides, the parameter estimation part deserves more attention in terms of

the selection of initial guesses during the maximization process, the choice of the

optimization tools including their suitable parameters and the implementation of the

gradient information for the objective function to enhance the derived parameters.

Apart from above mentioned improvements, the likelihood construction for the mixture

models might be required other tools like the variants of EM algorithm at the beginning.

The corresponding open problems about these subtitles are highlighted with the future

research schedules below.

5.3.1 For mixture models

In this study, there are various copula families implemented for the mixture models

with especially strong dependence assumption. Clearly, the number of combinations

and the selection of copula families can be improved to work on numerous mixture

models. Besides, instead of only considering some archimedean families, it is possible

to extend the same mixture model procedure for elliptical families and so on. Further-

more, the parameters of selected copula families might take negative values to exhibit

negative dependence under Frank or rotated versions of other archimedean copulas.

Another further study can be developed in terms of the pair copula families within the

considered vine tree structure. In this study, each component has been modeled by

using same copula families, but, this mixture methodology can be applicable in case

of selecting distinct copula pairs to model the dependence among the variables. For

instance, the dependence for the pairs (u1, u2), (u1, u3) can be modeled via Clayton

and Gumbel family while the conditional density for the pair (u2, u3|u1) can be

constructed with a Frank copula for a C-vine density of the component. Certainly,

this kind of selection increase the flexibility of the proposed mixture models, but the
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parameter estimation part requires more elegant tools to get rid of unexpected failures.

C- and D-vine finite mixture model comparison has been tested only in terms of Frank

copula pairs that there should be further improvements of such mixtures. Besides, this

mixture model can be developed for arbitrary R-vine copula as well, of course with

a high demand for caution on the parameter estimation. In the proposed CD-vine

mixture model, other copula families and the selection of different families for each

bivariate copulas within the vine density is also possible, one of the planned further

research for the authors.

Apart from above mentioned structural improvements, another modeling setup can be

considered in terms of mixing proportions. In all studied scenarios, weight parameters

are considered as a fixed value, not changing with time. On the other hand, these

mixing proportions can be examined on some covariate information and this is another

way of considering time varying copula under finite mixture model. This model

extension idea was presented in empirical findings of the study of [3] in bivariate case,

but not for mixture of vines. This issued problem is another further plan of the authors

to investigate time varying copula methodology for mixture of vines, especially for

C-vines.

5.3.2 About Parameter Estimations

For the maximization process of log-likelihood function, various derivative free optimi-

zation tools have been investigated. However, there are still many alternatives to

increase the accuracy of the estimated parameters for the proposed mixtures with the

help of more distinguished optimization algorithm. This concern emerges in all of

the scenarios especially when the dimension has been increased and the number of

components and the complexity is boosted. Another recently issued open problem for

this study is finding more accurate parameter estimation under vine mixture models.

For the parameter accuracy, the gradient information for the objective functions can be

implemented. Especially, in 3-dimensional mixture models, these analytical derivatives

might have beneficial to increase the accuracy with some extra computational effort.

However, meanwhile, those gradient functions have certain computational drawbacks
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under such available optimization routines. For that reason, both analytical and

numerical gradient information should be elaborated carefully before considering

any optimization tool. For higher dimensions, suitably implemented derivative free

algorithms can still have various advantages.

Within all the applied algorithms, the initial guesses for the parameter estimation part

has been considered as a fixed number. Generally, the sensitivity of the estimation

part is directly related to the choice of initials and number of initial guesses. For that

purpose, above studied optimization algorithms can be developed with random initials

and multiple starting points to enhance the final parameter estimation. Besides, there

are several methods to optimize an objective function in a global sense with the set of

initial values, such as Particle Swarm Optimization (PSO) and Artificial Bee Colony

(ABC). Such approaches will be studied in the near future to increase to accuracy

of the parameter estimates especially when there is no available analytic gradient

function.

Another contribution will be the hybridization of two or more available optimization

methods for the log-likelihood function of mixture models. Similar to the idea of

hybrid forecasting tools, parameter estimates of various implemented methods can

be combined with certain weights. For instance, the combination of the parameter

estimates belonging to two optimization methods, which have various features, can

enhance the estimation accuracy.

Overall, the asymptotic behavior of the parameters is another open problem for this

study. Furthermore, from the statistical point of view, consistency and robustness of

the estimations deserve more attention for further analysis. In that respect, the model

diagnostic part will be considered urgently with all other improvements.

5.3.3 Log-Likelihood Construction

The EM algorithm approach for the likelihood of mixture function is borrowed from

the existing literature. Besides, this framework is one of the best approaches in such

problems whenever the data set is not directly observed. On the other hand, there are

various variants of the EM algorithm, which can be implemented within the problem
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of this thesis study. Another open problem for the mixture model methodology

emerges from the selection of the method for the construction of log-likelihood function

of such mixture densities.

More clearly, other deterministic and stochastic variants of classical EM algorithm

could be considered to speed up the algorithm and gain increase on the rate of conver-

gence. In the literature, there are various kinds of versions for EM algorithm, such as

Classification EM (CEM), Accelerated EM (AEM), Expectation Conditional Maximi-

zation (ECM) and so on to cope with the convergence speed problem of the original

one. Furthermore, stochastic variants are more related to other limitations of EM

approach, like getting trapped in local maximum value [32]. Those stochastic methods

like Stochastic EM (SEM), Data Augmentation algorithm (DA) and Monte Carlo EM

(MCEM) allow us to overcome the problems of untruly finding only local maximum

for the log-likelihood function in this mixture model framework.

5.3.4 Model Selection

In model comparison and selection context, classical information criteria values and

new GOF tests are implemented in this study. However, the success of classical

model information criteria values and the modified GOF tests is not so promising.

Especially, when the copula pairs are differed while modeling the components of

mixture model, based on the values of AIC, BIC and CAIC, there exists a model

identification problem. Furthermore, the modified Vuong test, VuongMix, can not

decide which model is more preferable. Indeed, model information criteria values

have tendency to select less complex model whenever the multivariate data exhibits

complex dependence pattern. The only plausible model selection result is reached

for the mixture of C-vines with Frank-Frank pairs in both 3 and 4-dimensional cases.

Besides, some copula pairs are confused whenever they have similar or same dependen-

ce patterns.

In this sense, the model identification based on a suitable selection tool is required

for mixture of vines. The above-mentioned problem has been stated by [22] in a

similar manner. One of the main drawback of this study is that the lack of suitable

of GOF tests for comparing such mixture of vines. Additionally, even if the classical
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AIC, BIC and CAIC values are enough to identify finite mixture model involved on

same copula families, this study highlighted that they are not enough for mixtures

with different copula pairs. Most probably, the main reason for this identification

problem is the selection of copula families and considered dependence parameters.

As [3] stated in their empirical findings, in some cases EM algorithm can not identify

the correct mixture model as a result of dependence structure of the selected copula

functions.

To sum up, the performance of such measures are not very promising and also no

measure is examined in terms of the distance between the estimated and the correct

models. For this reason, another beneficial measure for the comparison might be

Kullback-Leibler (KL) divergence, previously proposed by [39] and considered again

within the context of mixture of D-vines by [33]. Furthermore, the most plausible

method to compare such mixture models based on the corresponding pair copulas

will be the construction of a suitable GOF test. In this respect, the idea studied by

[34] can be borrowed as a departure point for building a model selection tool for

mixtures. These issued problems are at the top of the list of further plans.

5.3.5 Further Benefits

Mixture of copulas, indeed mixture of vines as a contribution of this study, has

various potentials to capture more realistic data generating processes. Especially,

these mixture models can serve as a new tool for understanding distinct dependence

patterns in terms of both degree and the structure of it. In that respect, such mixture

models have great advantages to examine extreme co-movements in international

markets. Furthermore, as it is suggested by [18], mixture of vines will be very

beneficial for empirical modelings in finance and economics, including problems

about risk management and asset pricing models.

Even if the main focus of the thesis study is the data generating processes and parameter

estimations under various optimization tools, this work has another potential in terms

of model-based clustering. Finite mixture models based on copulas, eventually vines

for higher dimension, have very fruitful opportunities to investigate the number of

clusters depends on distinct dependence structure. For further improvements of the
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study, another fertile research field is clustering and its reflections on financial problems,

as it is clearly pointed out in the empirical findings of the study of [3].

Additionally, apart from financial problems, mixture of vines can be useful to examine

the dependence patterns emerged in environmental science. More clearly, dependence

among the weather stations and its impacts on crop modeling have certain benefits to

derive carefully designed risk management strategies in agriculture. In the application

part of [22], the dependence between weather stations in terms of precipitation has

been discussed with clustering only. This methodology can be extended directly

with the empirical findings of this study to understand and classify droughts, the

connection between dry periods and crop yield in any location. Such a real life

problem should be investigated by using mixture models, as it is strongly suggested

by the authors of this study.
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APPENDIX A

DEPENDENCE PATTERN FOR C-VINE MIXTURE WITH

VARIOUS WEIGHTS

In the presented figures below, Figures A.1-A.5 exhibits directly the 1 component

Clayton-Joe mixture model, whenever π2 = 1 or π1 = 1, respectively. Besides, for all

mixture models, because of selected parameters the strong dependence structure has

been considered with weight parameters π1 and π2 for the 1’st and 2’nd component.

Besides, given pictures include Kendall τ values in all figures.

X1

0.67 0.72

u1

u 2

X2

0.89

u1

u 2

u1

u 2

X3

Figure A.1: Dependence Structure of 2-Component Clayton-Joe mixture with π1 = 0

and π2 = 1.

153



X1

0.68 0.72

u1

u 2

X2

0.89

u1

u 2

u1

u 2

X3

Figure A.2: Dependence Structure of 2-Component Clayton-Joe mixture with π1 =

0.25 and π2 = 0.75.
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Figure A.3: Dependence Structure of 2-Component Clayton-Joe mixture with π1 =

0.5 and π2 = 0.5.

154



X1

0.73 0.77

u1

u 2

X2

0.91

u1

u 2

u1

u 2
X3

Figure A.4: Dependence Structure of 2-Component Clayton-Joe mixture with π1 =

0.75 and π2 = 0.25.
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Figure A.5: Dependence Structure of 2-Component Clayton-Joe mixture with π1 = 1

and π2 = 0.

155



156



APPENDIX B

CD-VINE MIXTURE MODEL FLOW CHART

PreAnalysis for CD-vine 
Mixture 
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models and 
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Diagnostic Tests If the model  is 
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volatility 

Diagnostic Tests for 
the best fitted 
ARCH/GARCH 

model 

If the model is 
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Implement CD-vine 
Mixture Model to the 
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Figure B.1: Flow Chart of pre-analysis for CD-vine mixture
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Figure B.2: Flow Chart of CD-vine mixture model procedure
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APPENDIX C

ALGORITHMS FOR MIXTURE MODELS

Algorithm 5 2 component 4-dimensional Mixture of C-vines
Require: Sample two C-vine models CV 1 and CV 2

for k = 1 to max1 do

gmix ← π1f(x;φCV 1) + π2f(x;φCV 2),

for t = 1 to LargeNumber do

for i = 1 to N do

fCVp[i, 1]← c12p[i, 1]×c13p[i, 1]×c14p[i, 1]×c23_1p[i, 1]×c24_1p[i, 1]×
c34_12p[i, 1], where fCVp is the density function.

Calculate ẑnm

end for

for p = 1, 2. Calculate Log-likelihood logL0CV [t]

if |logL0CV [t]− logL0CV [t− 1]| ≤ ε then

Break

end if

where ε = 10−6

Update weights using ẑnm the parameters of each component via optimization

PhiCV 1new[k, c] = op.par[c] and PhiCV 2new[k, c] = op.par[c] for c =

1, · · · dd, where dd is number of parameters.

end for

Store the updated weights for the next iteration Pilast[k, ] = Pinew

Calculate AIC[k, ], BIC[k, ] and CAIC[k, ] for iteration k

end for

Require:

Get the final estimates by mean(PhiCV 1new, PhiCV 2new).
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Algorithm 6 CD-vine Mixture Model (1’st Step)
Require: Sample CV 1, CV 2 and CV 3

for k = 1 to max1 do

for t = 1 to LargeNumber do

for i = 1 to N do

fCVp[i, 1]← c12p[i, 1]×c13p[i, 1]×c14p[i, 1]×c23_1p[i, 1]×c24_1p[i, 1]×
c34_12p[i, 1]

end for

for p = 1, 2, 3

Calculate logL0CV [t]

if |logL0CV [t]− logL0CV [t− 1]| ≤ ε then

Break

end ifwhere ε = 10−3

PhiCV 1new[k, c] = op.par[c]

PhiCV 2new[k, c] = op.par[c]

PhiCV 3new[k, c] = op.par[c]

end for

for c = 1, · · · dd where dd is number of parameters for the component

Calculate AIC[k, ], BIC[k, ] and CAIC[k, ] for iteration k

end for

Require:

mean(PhiCV 1new, PhiCV 2new, PhiCV 3new)
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Algorithm 7 CD-vine Mixture Model (2’nd Step)
for kk = 1 to max1 do

Calculate F (cv1), F (cv2) and F (cv3) based on estimated parameters

for tt = 1 to LargeNumber do

for j = 1 to N do

Calculate density for D-vine

fDV [j, 1] = c12DV [j, 1]× c23DV [j, 1]× c13_2DV [j, 1]

end for

Calculate Loglikelihood logL0DV [tt]

if |logL0DV [tt]− logL0DV [tt− 1]| ≤ ε then

Break

end ifwhere ε = 10−3

Second Step Maximization via optimization and update

PhiDVnew[kk, c] = op.par[c] for c = 1, · · · 3
end for

Calculate AIC[kk, ], BIC[kk, ] and CAIC[kk, ] for iteration kk

end for

Require:

mean(PhiDVnew)
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