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ABSTRACT 

PRODUCT-LINE PLANNING UNDER UNCERTAINTY   

 

  

 

Karakaya, Şakir 

Ph.D., Department of Industrial Engineering 

Supervisor: Prof. Dr. Gülser Köksal 

 

July 2018, 355 pages 

 

 

This study addresses the problem of multi-period mix of product-lines under a 

product- family, which incorporates launching decisions of new products, capacity 

expansion decisions and product interdependencies. The problem is modelled as a 

two-stage stochastic program with recourse in which price, demand, production 

cost and cannibalisation effect of new products are treated as uncertain parameters. 

The solution approach employs the Sample Average Approximation based on 

Monte Carlo bounding technique and multi-cut version of L-shaped method to solve 

approximate problems efficiently, which is tested on different cases considering 

VSS and EVPI performance measures. The data collected through two experimental 

studies is analysed using ANOVA and Random Forest methodology in order to 

understand which problem parameters are significant on the performance measures 

and to generate some rule-based inferences reflecting the relationship between 

significant parameters and the performance of the proposed stochastic model. 

 

Keywords: Product-mix, Product-line, Capacity Planning, New Product 

Introduction, Product Interdependencies, Two-stage Stochastic Program, Sampling 

Average Approximation, L-shaped 
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ÖZ 

BELİRSİZLİK ORTAMINDA ÜRÜN-GRUBU PLANLAMASI 

 

 

 

Karakaya, Şakir 

Doktora, Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Gülser Köksal 

  

Temmuz 2018, 355 sayfa 

 

 

Bu çalışmada, yeni ürünlerin pazara sunulma zamanlarını, kapasite artırım 

kararlarını ve ürünler arası etkileşimleri içeren, bir ürün-ailesi altında yer alan ürün-

grubu karması problemi ele alınmıştır. Ürün taleplerinin, satış fiyatlarının, birim 

üretim maliyetlerinin ve yeni ürünlerin mevcut ürünlerin satış hacmini azaltmaya 

yönelik etkisinin rassal parametreler olarak tanımlandığı bu problem, iki seviyeli 

stokastik programlama modeli olarak ele alınmıştır. Modelin çözümü için Monte 

Carlo sınırlama tekniğine dayalı ve stokastik modellerin etkin çözümü için L-

shaped (Benders ayrışım) algoritmasını kullanan bir Örneklem Ortalaması 

Yakınsaması yaklaşımı geliştirilmiştir ve bu yaklaşımın performansı geliştirilen 

çeşitli problemler üzerinde test edilmiştir. Bu amaçla geliştirilen iki deneysel 

tasarımdan elde edilen veriler, problem parametrelerinin çözüm performansı 

üzerinde etkisini anlayabilmek ve önerilen stokastik yaklaşımın performansı ve 

anlamlı problem parametreleri arasındaki ilişkileri gösteren kurallar üretebilmek 

amacıyla ANOVA ve Random Forest metodolojileri kullanılarak analiz edilmiştir.  

 

Anahtar Kelimeler: Ürün-karması, Ürün-grubu, Kapasite Planlama, Yeni Ürün 

Sunma, Ürün Etkileşimleri, İki-seviyeli Stokastik Programlama, Örneklem 

Ortalaması Yakınsaması, L-shaped. 
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CHAPTER 1 

 

INTRODUCTION 

 

This study handles a product-mix problem that is described at strategic level and in 

the scope of product planning. This problem is formulated based on the 

observations obtained from industry and the related literature, and deals with the 

decisions used as an input to medium- and long-term production plans. Since it is 

identified under the product planning domain, in this chapter firstly, a general 

framework for product planning is drawn and then the motivation behind this study 

and the research questions of this study are presented. 

Product planning is defined as a function including market analysis, competitive 

product analysis, pricing analysis, manufacturing analysis and decision-making 

process on whether a new product is introduced to identified markets (Ricci, 2012).  

Market analysis aims at getting information about potential customers, market size 

and trends in the market for existing products as well as new product requirements, 

which provide information for product portfolio of the firm (Ibid). Competitive 

product analysis focuses more on new products in defined markets and includes 

differentiation, market positioning and competition strategies for each product in 

the portfolio. Selling a leading product in new markets, establishing new marketing 

channels, improvement of existing/old products and developing new products for 

new and existing customers are some examples of those types of strategies 

(Thomson, 2014). Each of those strategies has a different impact on product plans, 

which are the main outputs of product planning activity. Pricing analysis aims at 

developing pricing strategies for new products, considering the information 

provided by market and competitive analysis; and manufacturing analysis focuses 

on determining product costs, expected profits and sales targets (Ricci, 2012). At 

the end of this process, the firm also develops its investment and resource allocation 
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plans, product roadmaps considering the whole portfolio (existing and 

improved/new products) and execution plans. Prioritisation and timing of new 

product development projects, and technology selection are also some other 

decisions made within the context of product planning (Chen et al., 2006). Thomson 

(2014) proposes a well-structured and detailed product planning process integrated 

with the firm’s corporate strategies, shown in Figure 1. 
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Product Management, R&D, and 

Sales & Marketing Functions 

- Market trends and opportunities 

- Key customer needs 

- Technology trends/opportunities 

- Competitor moves and positions 

- New ideas from R&D function 

Market 

Review 

Financial Management Function 

 

- Financial performance (e.g. 

revenue, profitability) for the 

overall company, for its sales 

channels and for its products 

Financial 

Review 

Executive Committee 

- Corporate strategies in terms of its vision, financial 

goals (e.g. growth goals for the next years) and its plan 

for achieving those goals (i.e. future strategic direction 

of the firm) 

Corporate 

Strategy Building 

Product Management  

- Product strategies  for  new 

and existing products, which 

also indicates the financial 

plan for each product area  

Product Strategy 

Building 

Product Management  

 
Product roadmaps and release 

schedules 

Figure 1.The flow of product planning process, adapted from Thomson (2014) 
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As shown in Figure 1, the product planning process consists of five steps: (1) 

Market review, (2) Financial review, (3) Corporate strategy building, (4) Product 

strategy building and (5) Product roadmaps and release schedules development. 

In the first step, product management, and sales and marketing functions of the firm 

provide data about market trends and opportunities, key customer needs, 

technology trends and competitor moves and positions to the executive committee 

for supporting its corporate strategy building process. Meanwhile, research and 

development (R&D) function provides new ideas and new product/technology 

concepts. In the second step the financial department (function) presents the results 

of financial performance for overall company, for its sales channels and for its 

products, also for supporting the executive committee’s strategy-building process. 

Then, the executive committee develops the corporate strategies specifying what 

changes to the products are required and indicating the financial plan for each 

product area (e.g. generating 50% of the next period revenue from new products, 

increasing the local market share by 10%, or increasing the overall profit by 30% 

etc.). In the fourth step, the product management department develops product 

strategies based on the corporate strategies as well as considering market dynamics, 

customer needs and the financial plan. In the last step, product roadmaps (or product 

plans) and also release schedules over a planning horizon are developed by the 

product management department as consistent with the corporate and product 

strategies built in the previous steps. It should be noted that although the product 

planning process displayed in Figure 1 may have some differences in the companies 

operating in different types of sectors, the main flow of this process remains the 

same. For instance, we have observed the same process in one of the leading 

Turkish companies operating in consumer durables goods sector, when we have 

interviewed the product manager of the company. Furthermore, the product 

planning process continues with activities such as product 

development/improvement, introducing products to target markets and post-launch 

product management activities, which include the implementation of product plans. 

At this point, it should be noted that the entire product plans of companies should 
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be evaluated based on possible trade-offs between the decisions regarding those 

activities, before going to the implementation phases. 

As mentioned above, the main outputs of a product planning process are product 

plans (a.k.a product roadmaps in companies having a well-structured and formal 

product management function) and release schedules specified in a timeline.  

A product roadmap is a visualisation tool that shows the main decisions about a 

company’s future product portfolio. Those decisions may roughly be on which 

existing products will be kept, which of them will be improved, when new products 

will be developed and introduced to target markets, which products will be 

manufactured in-house or outsourced (Albright and Nelson, 2004).  As an example, 

Albright and Nelson (2004) present a product roadmap for a passenger car, 

developed based on product-platform in Figure 2. 

 2004 2006 2008 2010 2012 VISION 

Internal 

Combustion 

Platform 

 
       

        

        
             

         

    

 

    

         

Hybrid 

Platform 
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Electric 

Platform 

        

        

        

             

Figure 2. A product roadmap for a passenger car 
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The roadmap displayed in Figure 2 shows the plans of an automobile manufacturer 

over the time for its specific product. For instance, the firm plans to start up a 

concept development project for fuel cell electric platform in 2006 and to introduce 

a new product using that platform in 2010. Similarly, it plans to modify/renew the 

existing product, model C sedan family segment, using internal combustion 

platform and introduce that modified/renewed product to the market in 2006, and 

then that product will be deleted from the market in 2010. Furthermore, Model E is 

seen to be the basis of a continuing product line with two variations, and to 

consolidate the line, model C will be phased out in 2010 and the product using the 

hybrid platform, Model H, will be deleted from the market in 2012. This product 

roadmap also includes a vision at the end of planning horizon, which describes the 

ultimate goal for the product line. 

Considering this roadmap, it should be noted that product roadmaps which currently 

display the plan of a firm’s product lines need to be revised periodically according 

to changes in the dynamic market. For instance, market conditions might require 

the launching time of some products to be postponed or scheduled to an earlier date, 

or to extend the planned life of a product or delete this product in an earlier time. 

Another example might be related with adding a new market to the roadmap. 

Additionally, it should be noted that the product roadmap shown in Figure 2 is 

organized according to a key product driver which impacts the roadmap the most, 

e.g. powertrain platform in the given example. However, as stated by Albright and 

Nelson (2004), a product roadmap might also be organized according to any critical 

dimension of product performance or market segments. An example for a product 

roadmap developed based on a single platform and market segments is shown in 

Figure 3. 
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Figure 3. A product roadmap developed based on a single platform and market segments  

(Albright, 2002) 

As seen from the example given in Figure 3, the platform roadmap begins with a 

single model designed for the North American market, while the needs of the Asian 

market are fulfilled with a model sourced from a supplier. Furthermore, the firm 

plans to introduce to the European market next year and to be in that market for 

nearly three years. 

A product roadmap/plan is used as a nested source of the following information, 

each of which is considered for each period of a planning horizon and is linked to 

corporate strategies of the company:  

 Target markets where the products would be sold, 

 Which products to be developed and when to introduce to the target markets, 

 Which products will be sold in which periods, 

 Which product development projects are planned and when to be launched, 
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 The planned (or maximum) lives of products. 

It should be noted that those kinds of information provided by roadmaps are used 

as inputs for the optimisation problem handled in this study.   

Searching out the evolution of products, product selection, project evaluation and 

prioritization and visualizing all those decisions over a planning horizon are the 

main activities in a roadmapping process, which is the core of product planning 

framework, given in Figure 1. Market search analysis, quality function deployment, 

checklists, scoring models such as analytic hierarchy process and analytic network 

process, benefit measurement models based on subjective assessment, economic 

models particularly used in portfolio investment analysis, some specific models 

developed by consultancy firms, for instance, Boston Consulting Group Matrix, 

directional policy matrix and GE Nine Cell Matrix, strategic buckets and 

mathematical-based models such as linear, integer and dynamic programming are 

some examples of tools and methods used in the roadmapping process. Since the 

optimisation problem in this study deals with the outputs of the roadmapping 

process, i.e. roadmaps and release schedules, rather than how to generate roadmaps, 

the details of the roadmapping process as well as tools and techniques used for will 

not be discussed further in this study. 

Product roadmaps are key sources for product portfolio management1 and provide 

information that might be used for assessing trade-offs in a product portfolio 

(Albright and Nelson, 2004) and also for measuring the value created by a roadmap. 

Additionally, difficulties associated with allocating firm’s scarce budget over 

multiple periods and multi-products, usually interdependent products competing for 

the financial (budget) and physical (e.g. production capacity) resources and 

                                                 

 

 
1 “Product portfolio” and “product mix” are interchangeably used in the literature for describing set of all 

products of the company. However, there exists a main difference between them. While product portfolio 

describes all the products which a company offers to market, product-mix also describes the entire products but 

“in a specific period” (e.g. in the next three years) and also including the information about “product volumes” 

(i.e. how many of each product are to be sold). 
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uncertain nature of problem environment (e.g. uncertainties in future market 

demand and selling price) make the product portfolio management a challenging 

issue in practice. However, to the best of our knowledge, there is no study dealing 

with those difficulties in an integrated manner. Therefore, a decision support tool is 

needed to provide an opportunity for decision makers and also product managers to 

assess the trade-offs regarding product plans and to fine-tune/balance those plans 

by the way of determining best product portfolio/mix as well as balancing all 

outflows (e.g. investments for capacity and product development) and inflows (i.e. 

revenues) over a planning horizon. Furthermore, as Chen et al. (2014) stated, the 

decisions on the allocation of resources should be considered jointly with capacity 

expansion decisions in order to have the most profitable product-mix. A decision 

maker might also measure the created value (i.e. contribution to the firm’s strategic 

goals regarding with market share, profit etc.) of prepared product roadmaps using 

this decision support tool which is developed in this study.  

The goals of this tool are defined as follows: 

1. Maximise the value (e.g., benefit, profit, strategic goals of firm) of product 

portfolio defined on roadmaps by assessing the trade-offs among capacity 

required, new product introducing plans, product deletion plans, new capital 

investment plans etc., 

2. Achieve a balance among the decisions regarding with existing and 

new/planned products, e.g. when to launch a new product, based on firm’s 

future objectives, 

3. Allocate financial and physical resources among the products in mix, i.e. 

adopting production capacity according to changing market conditions as 

well as firm future objectives, 

4. Measure the created value of prepared product roadmaps. 

Within the context of those goals, the research problem handled in this study deals 

with optimising the product mix of a firm at strategic-level, considering all existing 

and new/planned products, price or demand interdependencies among those 
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products, target markets, all periods over a predetermined planning horizon (multi-

period) and capacity expansion decisions, in order to have a balanced product 

roadmap, in other words strategic product plans of the firm. Thus, the decision 

support tool is designed to provide answers to the following questions: 

1. Which products and how many of them will be made available in which 

(target) market in the next periods (e.g. 5 years)? 

2. When will the planned (new) products be launched (i.e. release plans/time-

to-market decisions)? 

3. When and how much capacity will be added in each period within the 

planning horizon? 

4. How will the capacity be allocated for each product in each period? 

Those decisions are strongly interrelated, but the studies in literature have solved 

those problems separately. Except one study (Yilmaz et al., 2013), most of those 

handle capacity planning and product mix decisions together, but they ignore new 

product launching decisions. Regarding all those studies, an extensive literature 

review is presented in the next chapter. 

The decision support tool is actually based on a mathematical model and a solution 

approach developed for this model in order to answer the questions above. In order 

to develop this tool, the following studies are performed in this thesis work: 

 A detailed literature survey that is presented in Chapter 2 and a couple of 

interviews with product managers of four different manufacturers in Turkey 

(two of them operates in consumer durables sector, one operates in 

consumer goods including personal and household care products, one 

produces and sells batteries for vehicles) are done in order to understand the 

problem context well enough and formulating the problem properly. Then, 

considering product hierarchy and planning-level within the scope of 

management, main decisions within the problem context, i.e. product-mix 

and new product launching decisions and capacity expansion decisions, 
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product interdependencies and parameter uncertainties in the problem 

environment, the problem is defined as presented in Chapter 3.  

 Based on the problem definition, modelling environment and relevant 

assumptions, a mathematical model in which all parameters are 

deterministic is developed and then extended to a two-stage stochastic 

program with recourse in order to handle the uncertain parameters, i.e. 

demand, price, variable production cost and cannibalisation rate. In order to 

solve this stochastic problem with a manageable number of scenarios, multi-

cut version of L-shaped method based on Benders’ decomposition is 

employed. Both the deterministic and stochastic models, and L-shaped 

method are given in Chapter 3. 

 Because of problem size and assumptions on random parameters, a tractable 

solution approach based on sample average approximation, bounding 

technique and random sampling method, as seen Chapter 4, is developed.  

 Both the capability of the solution approach developed in Chapter 4 and the 

quality of solution obtained through the stochastic programming are tested 

via a computational study including nine illustrative cases. All problems 

generated for this study are coded in GAMS 22.2 and solved using CPLEX 

10.0 solver. The results are presented in Chapter 5.  

 The problem handled, the modelling and solution approach, and the results 

obtained through the computational study are discussed and accordingly 

future research directions are given in Chapter 6.  

A summary including how the problem is handled from definition to solution is 

displayed in Figure 4. 

  



 

 
12 

  

Problem Environment 

 Multi-market, multi-period, multi-product 

 Product Level: Line 

 Product type: Long/medium life cycle 

 Sector: Consumer durables 

 Planning Level: Medium-term tactical 

 Production type: Make-to-stock, in-house 

Problem Domain 

 Product planning 

 Balancing or measuring the value 

of product roadmaps 

Main Inputs 

 Product roadmaps and planned 

release schedules 

 Rough capacity decisions 

Objective 

Maximise total expected profit over a planning horizon 

(Contribution to a balanced roadmap) 

Tool: Stochastic Product-Line Planning Model 

 

Product 

interactions 

Cannibalisation 

uncertainty 

Demand 

uncertainty 

Price 

uncertainty 
Cost 

uncertainty 

Capacity 

expansion 

 A MIP model with binary 

and continuous decision 

variables 

 NP-hard 

 A two-stage stochastic 

programming model with 

recourse (TSP) 

 Known probability dist.s 

Solution Approach: Sample Average Approximation 

 Monte Carlo sampling, M independent sample sets of scenarios, each of which has a size of N 

 Solving each approximate problem, M, and estimate an Upper Bound for the optimal solution 

o Batch-means approach 

o Multi-cut L-shaped method 

 Estimating a Lower Bound for the optimal solution using evaluation samples larger than N 

 Estimating and evaluate the optimality gap 

 Stopping conditions and re-iterations 

Outputs / Decisions Made 

 Which products and how many will be made available in which market in the next periods? 

 When will the planned (new) products be launched (i.e. release plans/time-to-market 

decisions)? 

 When and how much capacity will be added in each period within the planning horizon? 

 How the capacity will be allocated for each product in each period? 

Figure 4. A summary of problem definition, modelling and solution approach, and main outputs 
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CHAPTER 2 

 

BACKGROUND AND LITERATURE REVIEW  

 

Considering the general problem context presented in the previous chapter, the 

problem handled can be described as an extension of multi-period “product-mix” 

problem, which is commonly studied in production management framework as a 

tactical or an operational problem, including new product launching and capacity 

expansion decisions (timing and sizing) issues.  

“Product-mix” is defined as the set of all products offered by a company for sale in 

a certain period. Traditionally, a product-mix problem (a kind of resource allocation 

problem) includes the decisions on which product should be selected and how many 

of each should be produced in order to maximise the financial performance of a 

firm under demand and resource constraints (Sobreiro et al., 2014; Lea, 2007). In 

the Operational Research literature, the basic/traditional version of this problem, in 

which all parameters are deterministic and no capacity planning or product 

launching decisions are considered, is formulated using a mathematical model as 

follows: 

Sets: 

𝐼  ∶ set of products that can potentially be produced, 𝑖 = 1,2, … , 𝑘 

Parameters: 

𝑝𝑖     ∶ unit selling price of product 𝑖 ∈ 𝐼   

𝑐𝑖     ∶ unit production cost of product 𝑖 ∈ 𝐼 

𝑐𝑎𝑝𝑖 : unit capacity usage of product 𝑖 ∈ 𝐼   

𝑇𝐶  ∶ total production capacity of product 𝑖 ∈ 𝐼  

𝑑𝑖    ∶ total demand for product 𝑖 ∈ 𝐼  
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Decision Variables: 

𝑦𝑖: number of units for product 𝑖 ∈ 𝐼 

Objective Function: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑ (𝑝𝑖 − 𝑐𝑖) × 𝑦𝑖𝑖∈𝐼   

Subject to: 

Capacity constraints: ∑ 𝑐𝑎𝑝𝑖 ×𝑖∈𝐼  𝑦𝑖 ≤  𝑇𝐶 

Demand constraints: 𝑦𝑖 ≤  𝑑𝑖,    𝑖 ∈ 𝐼  and 𝑦𝑖 ≥ 0 and integer   

There are different types of this basic model, for instance, instead of maximising 

the profit a decision-maker may want to minimise the cost or to maximise the total 

revenue for the objective function of the model. The model can also be extended 

for multiple periods and multiple markets, including capacity acquisition decisions, 

uncertainties regarding some parameters such as demand and price, environmental 

considerations etc. (e.g. Tai et al., 2015; Hasuike and Ishii, 2009a; Hasuike and 

Ishii, 2009b; Wang et al., 2007; Alonso-Ayuso et al., 2005; Letmathe and 

Balakrishnan, 2005; Küttner, 2004). 

Although the product-mix problem is studied since the end of 1950’s (Küttner, 

2004), to the best of our knowledge, there is no prior work that addresses multi-

period and multi-market product-mix problem including the timing decisions of 

planned products of a firm and capacity expansion decisions, and taking product 

interdependencies and uncertainties associated to problem parameters into account. 

In accordance with this problem framework, there are a few related studies in the 

literature as summarised below. 

Yilmaz et al. (2013) propose a multi-period model for a long-term capacity planning 

problem which considers short-life cycle products and their renewals. This study is 

a notable exception to the existing product-mix problems and the most related to 

the research problem handled in this study. Decisions for which products and how 

many of them will be produced by which technology in each planning period, 

whether to launch a new product in a planned period, and how much and when to 
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expand the warehouses’ capacities are considered in the model. However, this study 

does not explain the linkage between the problem considered, and product 

roadmaps. All parameters are considered as deterministic and the objective of the 

model is to maximise the cash balance at the end of the planning horizon, taking 

into account sales revenues, residuals of production technologies, warehouse assets 

in the final period, value of final stock and costs. In that study, they assume that the 

products are selected from a predetermined candidate list (including all existing and 

future products) and the production technologies are selected from a predetermined 

set (including all existing and new technologies). They also take cannibalization 

effects among the candidate products into account. Though this study is the most 

relevant one to the problem handled in this study, it assumes that all parameters are 

deterministic rather than considering a stochastic environment where market 

demand, price as well as costs are uncertain as in most of the real-life problems. 

Besides, there are significant differences between that study and ours in terms of 

objectives, constraints and assumptions in the model. Compared to traditional 

product-mix problems and their extensions including capacity planning decisions 

in the literature, this study is the unique one which incorporates new product plans 

over multiple periods into the problem framework. Furthermore, most of the 

product-mix determination and capacity planning studies given in this chapter 

assume that there exists a product set (can be considered as candidate set) which is 

determined at the beginning of planning horizon and does not change over periods. 

In our study, similar to that model, products that will be produced/sold for the next 

periods are selected from a set of candidate products. The product set displayed on 

the product roadmaps (also including alternative products) for each period can be 

considered as the candidate product set for our problem.  

Mishra et al. (2017) study a problem optimising pricing and capacity planning 

decisions jointly. They consider a two-product and two-period model in which 

demand is considered as a stochastic parameter. A product is handled within a 

product-line (see Section 2.1 for product-line definition), and optimal pricing and 

capacity expansion decisions are made for a product-line setting through 



 

 
16 

introducing a new product and deleting an existing product over time. This study 

actually contributes to the pricing and capacity management regarding product-line 

design literature. 

Hasuike and Ishii (2009a) consider a multi-period and multi-criteria product-mix 

problem whose objective is to minimise total cost, to maximise total profit and to 

minimise inventory levels in an uncertain environment. Incorporating both 

randomness and fuzziness into the model is the focus of that study.  

 

Hasuike and Ishii (2009b) present a single-period product-mix problem under 

uncertainty, including both fuzziness and randomness. They propose two models 

for this problem: (1) an optimisation model that maximises the total profit as much 

as possible while satisfying the probability of that the total profit is greater than or 

equal to a target value and the possibility that total cost is less than or equal to a 

target value, using chance constraints and (2) a model whose objective is to 

maximise the satisfaction level of decision maker who controls the total risk.  

The last two studies given above (Hasuike and Ishii, 2009a and 2009b) are the 

unique studies dealing with product-mix models in which the uncertainty is 

modelled using both stochastic and fuzzy approaches in an integrated way.  

Lin et al. (2007) develop a mixed integer programming (MIP) model for capacity 

and product mix planning problem, which can be solved iteratively under the 

objective of  maximising the total contribution margin (=revenue - variable 

production cost - inventory costs - depreciation loss costs). In that model in which 

all parameters are deterministic, product mix and production quantity as well as the 

amount of additional capacity for each product group in a specific plant in each 

period are determined.  

Letmathe and Balakrishnan (2005) take into account some environmental issues 

while making decisions on optimal product-mix. In this study, they take into 

account the threshold values for emissions specified by the regulations, the 

penalties and taxes that may occur because of exceeding those thresholds, emission 
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allowances that can be exchanged between companies and product recycling 

policies while making product-mix decisions. The main objective of their study is 

to decide on the optimal product-mix which maximises the profit of a company, 

which equal to total revenue gained by selling products plus net revenue generated 

by exchanging emission allowances minus resource acquisition costs minus 

penalties occurred because of exceeding emission thresholds.It should be noted that 

this study is one the most important studies which incorporates the environmental 

issues (factors) into the product-mix decisions.  

Alonso-Ayuso et al. (2003) present a model for supply chain planning problem at 

strategic level, which consider the decisions regarding the size/capacity of plants, 

mix of products in each plant, supplier selection for raw materials and production, 

stocking and transhipment volumes, under uncertainty in a multi-period 

environment. In this study, demand and selling price of the products, supplying cost 

of raw materials and production cost are handled as uncertain parameters.  

Morgan and Daniels (2001) develop a mixed integer model that handles product-

mix and new technology adoption decisions (i.e. deciding on the mix of incumbent 

and advanced tehnologies) jointly. In that model, they consider the interrelationship 

between the mix of products of a company and the decisions regarding the selection 

of technology that is required to manufacture products in the mix. The objective of 

the model is to maximise the profit over a relevant time horizon. 

Stuart et al. (1999) develop a multi-period MIP model for selecting product and 

process alternatives in a deterministic environment, which take environmental 

considerations (including environmental costs, variables and constraints) into 

account. That study is a first attempt to consider environmental issues in product-

mix decisions. The objective of the model is to maximise total net revenue gained 

from the sales of products in the mix and recyclable waste minus total net cost 

including overhead, variable, inventory (assembly and take-back inventory costs) 

and waste disposal costs.  
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Monroe et. al. (1976) develops a model for product-mix problem in marketing 

context to maximise the net cash flows. They take revenue interactions resulting 

from the coexistence of two products in a market into account and permit the 

addition and deletion of products over a multi-period planning horizon. All 

parameters are handled as deterministic and constraints regarding with product 

introduction, withdrawal and interaction effects are considered. However, budget, 

technology and capacity constraints are not considered. 

Among those studies given above, the most related ones with our study can be 

summarised in Table 1. 

Table 1. A summary of the most related product-mix studies in the literature 

Paper 
Capacity 

Planning 
Uncertainties 

New 

Product 

Launching 

Product 

Interactions 
Other 

Yilmaz et al. 

(2013) 
   

 

(cannibalisation 

effect between 

successive 

generations) 

 Short-life-cycle 

products 

 Warehouse 

capacity planning 

 Technology 

selection 

Mishra et al. 

(2017) 
    

 Pricing decisions 

 2-products,  

2-periods 

 Uncertain: 

Demand 

Hasuike and 

Ishii (2009a) 
       

 Randomness and 

fuzziness 

Lin et al. 

(2007) 
       

 All parameters 

are deterministic 

Alonso-

Ayuso et al. 

(2003) 

      

 Size/capacity of 

plants 

 Supplier selection 

 Uncertain: 

demand, price 

and cost 

Monroe et. 

al. (1976) 
      

 Marketing 

context 

 No capacity 

constraints 

Our study     

 Multi-market, 

Multi-period 

 Uncertain: 

demand, price, 

cost, cannb.rate 
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Based on the related studies given in Table 1, it is noteworthy to say that the model 

developed in this dissertation, which addresses a multi-period and multi-market 

product-mix problem including the timing decisions of planned products of a firm 

and capacity expansion decisions, and taking product interdependencies and 

uncertainties associated to problem parameters into account, is handled for the first 

time in this study. Additionally, this study is the first attempt to make a link between 

the product roadmaps (PRM) of a firm and described problem, which aims at 

balancing the PRM.  

The characteristics of the problem handled in this study, which are given in Chapter 

3, can be presented based on the following sub-titles underpinning the problem 

definition: 

1- Product hierarchy and planning-level within the scope of management 

2- Capacity expansion decisions 

3- Product interdependencies 

4- Parameter uncertainties in the problem environment 

Therefore, in addition to the background, the related literature is also reviewed in 

accordance with those sub-titles and reported in Section 2.1-2.4.  

2.1. Product Hierarchy and Planning-Level within the Scope of 

Management 

A product-mix is generally defined as all the products offered by a company for 

sale within the context of this study. For better understanding the problem context 

and formulating the problem properly, we had a couple of interviews with product 

managers of four different manufacturers in Turkey; two of them operates in 

consumer durables sector, one operates in consumer goods including personal and 

household care products, one produces and sells batteries for vehicles. The first 

significant experience acquired from those interviews is to understand the need for 

clarifying the meaning of “product” while referring to any product-mix problem. A 

product might imply a family, a line, a model or a variant and the problem context 
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differs according to this description; thereby the first issue at the beginning of this 

study was to decide on the product description. In the related literature as well as in 

real-life, those kinds of descriptions, such as product family, product line, model 

etc., are organised within a “product hierarchy” based on a grouping or aggregation 

strategy and the problem context and accordingly definition of product-mix is 

determined in accordance with the product level selected from this hierarchy. A 

product hierarchy lists out different levels to identify products based on consumer 

needs and items offered to consumers to fulfill their needs (Kotler and Keller, 

2012). Grouping products in a business area generally starts with family level and 

ends up with item/variant/SKU from marketing and product management point of 

view. Those levels organised under a product hierarchy (Figure 5) are presented as 

follows (Ibid.):  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Product hierarchy developed by Kotler and Keller (2012) 

Need Family is defined as the core need being fulfilled by any production or sales 

activity of a firm operating in any business area. 

Product Family is defined as the set of product categories/classes satisfying a need 

family and the first product grouping level in the hierarchy. 

Product Category (Class) is described as “a group of products within the product 

family recognized as having a certain functional coherence” (Kotler and Keller, 

Need family

Product family

Product category/class

Product line

Product type

Model/Item/SKU/Variant
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2012, p.336). A category includes all those objects that are close substitutes for the 

same needs despite differences in size, shape and technical characteristics 

(Govindarajan, 2007).  

Product Line is defined as the set of products within a product category that are 

closely related, because of similar functionality, selling to same customer group or 

through the same channels or falling within certain price ranges (Kotler and Keller, 

2012, p.336). 

Product Type refers to “a group of items within a product line that share one of 

several possible forms of the product” (Kotler and Keller, 2012, p.336). If there is 

no such form, this level can be ignored and the models are defined under a product 

line directly. 

Item/SKU/Variant/Model is a distinct unit under a product line that is seperable 

by some product attributes such as size, colour, price etc. 

A real-life example of product hierarchy: 

As an example, a real firm in Turkey, which operates in three different business 

areas of consumer durables sector, is considered: (1) white goods, (2) consumer 

electronics and (3) small household appliances, and different needs of customers 

are satisfied by the products grouped under each area. For instance, under the white 

goods area, food protecting by cooling, washing clothes, washing dishes and 

cooking needs of a house are met by the products of “cold family”, “wet family” 

and “hot family”, respectively. That relationship is shown in Figure 6.  
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Need Family: Protecting foods from deteriorating, defined as a need family by a 

firm operating in consumer durables sector, whose main business area is “producing 

white goods” for people. 

Product Family: Cooling and freezing devices (i.e. Cold Family) 

Product Category (Class):  

     Category 1: Refrigerators (designed for cooling and chilling) 

Category 2: Freezers (designed for freezing) 

 

Product Line: 

Family: Cold 

Category1: Refrigerators 

Product Line 1: Single-door  

Product Line 2: Double Door  

Product Line 3: No-frost 

Product Line 4: Side-by-Side 

Product Line 5: Table Top  

Here, the product lines are formed based on two criteria: (1) configuration (door 

type and size) and/or (2) cooling system (static vs. no-frost technology). For 

Product-mix

White Goods

Cold 

Refrigerators

No-frost

(17 models)

Double-door

(2 model)

Model 1 Model 2

Side-by-side

(3 models)

Table-top

(1 model)

Single-door 

(1 model)

Freezers

Chest

(8 models)

Upright

(5 models)

Model 1 Model 2

Hot Wet

Consumer 
Electronics

Small Household 
Appliances

LINES 

MODELS 

MAIN BUSINESS 

AREAS 

FAMILIES 

CATEGORIES 

Figure 6. A real-life example for product hierarchy 
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instance, the products having a static cooling system and two doors are grouped as 

“double-door” line; on the other hand the product having no-frost cooling system 

and two doors are grouped as “no-frost” line. The other lines are basically formed 

according to their configuration, e.g. the fridges having one door, regardless of its 

cooling system, are grouped as “single-door” line and the fridges like wardrobes 

and having a no-frost cooling system are grouped as “side-by-side” line.  

 Category 2: Freezers (Lines are formed based on customer groups) 

Product Line 1: Chest (for workplaces such as butcher, bakery and 

fisher) 

Product Line 2: Upright (for houses) 

Product Type:  

Cold Family 

Category 1: Refrigerators 

Product Line 2: No-frost 

Product Type 1: with top-mounted freezer 

Product Type 2: with bottom-mounted freezer 

Item/SKU/Variant/Model: 

Cold Family 

Category 1: Refrigerators 

Product Line 2: No-frosts  

       Product Type: with top-mounted freezer 

          Item 1: a white colour, 650 l cabinet volume, A++ energy 

class no-   frost with top-mounted freezer  

         Item 2: a white colour, 475 l cabinet volume, A++ energy 

class no-frost with top-mounted freezer 

Another example from tyre manufacturing industry is given in Appendix A.  

The firm in this example has a large set of products, some of them are long/medium 

life cycle (LMLC) products, i.e. white goods and small household appliances, and 

others are short life cycle (SLC) products, i.e. such as mobile phones, TVs, 

computers etc.  Technological changes are not so frequent and the rate of 
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technological advance is not so rapid, e.g. airplanes, communication infrastructure, 

refrigerators, dishwashers, small households etc. for LMLC products. Those remain 

in use relatively longer periods compared to SLC products. Besides, since LMLC 

has relatively stable demand, it is possible to forecast demand based on products’ 

sales history. However, technology for SLC products rapidly changes and because 

of high obsolescence, they are replaced with more technological new products 

within a few years after their introduction to markets (Prabhaker and Sandborn, 

2013). Besides, forecasting demand is more difficult because of high uncertainty in 

the markets, and managing the performance of successive generations of SLC 

products and short-term marketing activities becomes vital for those products (Lee 

et al, 2006). 

The product level considered in any product-mix problem might affect the main 

properties of the problem as well as mathematical model used for problem 

formulation. For instance, interactions among products in terms of demand and 

price are more frequent at line or item level than class or family level. Therefore, it 

needs to give more attention to include the product interactions into mathematical 

model at line or item level; on the other hand those effects might be ignored if the 

mix of classes or families are considered. In another example, modelling issues for 

capacity planning may also be changed. If one deals with determining the product-

mix of models within a line (a.k.a product-line design on which there are too many 

studies in the literature, see e.g. Mohit et al., 2017; Liu et al., 2017; Bertsimas and 

Mišić, 2017; Müller and Haase, 2016; Anderson and Celik, 2015; Luo, 2011; 

Schön, 2010; Belloni et al., 2008; Tucker and Kim, 2008; Fruchter et al., 2006; Jiao 

and Zhang, 2005;  Li and Azarm, 2002; Morgan et al., 2001; Chen and Haussman, 

2000; Kohli and Sukumar, 1990), the investment decisions for new production 

technologies or large-scale capacity decisions such as opening a new plant would 

be out of concern. On the other hand, determining the mix of lines within a class, 

then medium-scale capacity decisions such as expanding warehouse capacity need 

to be represented in the model.  
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Another important issue that should be taken into account is if the products 

considered under a mix are financially evaluated together. For instance, on the 

condition that a firm does not monitor and evaluate the financial performance of its 

product classes or families under the same policy, it does not need to manage the 

mix of classes with together. However, since the product-lines under a class might 

use the same kind of capacity and their performance are monitored as a whole, a 

problem for optimizing the mix of product-lines becomes reasonable. 

In addition to the factors given above, which should be taken into consideration 

while formulating any product-mix problem, another important issue is to define 

the relationships between the product level, planning context, decision levels also 

organised within in a hierarchical structure and planning horizon under 

consideration. Based on the related literature (e.g. Benton, 2014; Collier and Evans, 

2009; Huh and Roundy, 2005; Miller, 2002; Chase et al., 1998; Buffa and Sarin, 

1987; Ahrens, 1983) and the information obtained from interviews with industrial 

experts working in industrial organisations, three main hierarchical planning 

problems are described in order to define those kinds of relationships within the 

context of our problem: 

1. Long-term Strategic Planning Problem 

2. Medium-term Tactical Planning Problem 

3. Short-term Tactical Planning Problem 

Long-term Strategic Planning Problem (LSPP): 

This problem handled at strategic decision level and in a long-term basis covers 

strategic decisions regarding with construction of a new plant, resource acquisition, 

supply chain design for a new product, determining which products will be 

manufactured and where  etc. (Chou et. al., 2007; Huh and Roundy, 2005; Chen et 

al., 2002; Stuart et.al., 1999;). Those kinds of decisions are made at the highest level 

of the hierarchy of decision-making activities and are expected to affect long-term 

plans of the firm. LSPP concerns about long-term organisational objectives and 
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decisions necessary to make those objectives real by providing proper resources 

(Miller, 2002).  

Product aggregation/grouping level: Families and classes, e.g. refrigerators and 

freezers under cold family. For instance, assume that the firm in the example above 

does currently not sell freezers. The decision for introducing freezer category to any 

market is made at this level as a strategic decision. 

Inputs used for decision-making process: profitability of families or classes, 

capacities of existing plants, main target markets, plant locations/relocations, 

growth and investment plans for families as well as categories, business dynamics 

in the sector, large-scale capacity expansion plans (acquisition, outsourcing, etc.), 

opportunity costs, financing alternatives, externally provided data such as 

competitors' capacity levels and total forecasted demand for whole industry (Miller, 

2002) etc.  

Decisions made (inputs for the medium-term tactical planning problem): when 

new capacity will be available (both expanded capacity of existing facilities and 

new capacity acquired from new plants), the planned capacity levels (existing and 

new plants) for each period, profit (or revenue) goals for a family and each class 

under this family, allocation of planned capacity to plants and to classes under the 

family, new markets to be entered and  existing markets to be pulled out and their 

timing plans, decisions on launching a new class and on deleting an existing class 

under the family, technology migration from an old technology to the new 

technology decisions (Chien and Zheng, 2012), end-product outsourcing decisions 

at class level, opening new facilities (and their locations) for supporting new 

products, what plants should produce what and how (make-to-stock, make-to-order 

or assemble-to-order) etc.  

Medium-term Tactical Planning Problem (MTPP): 

This problem handled at tactical decision level and in a medium-term basis covers 

decisions regarding with allocations of production capacity, which is determined 
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for a class in LSPP, to product-lines under this class, which product-lines to be 

introduced into target markets and their volumes in order to achieve the profit 

(revenue) goal determined at strategic level. 

Product aggregation/grouping level:  Product lines under a class. 

Inputs used for decision-making process (provided by LSPP): total available 

(allocated) capacity for each class at each period, the goals defined in LSPP, 

expected profit determined for each class, expected number of products under each 

class to be sold for each period, new classes to be introduced, medium-scale 

capacity adjustment requirements etc.   

Decisions made (inputs for the Short-term Tactical Planning Problem): 

allocation of production capacity to product lines, launching decisions for new 

lines, deleting decisions for existing lines, outsourcing decisions, medium-scale 

capacity adjustment decisions such as tool/machine purchasing, decommission 

(Chou et al., 2007) etc.  

Compared to the capital investment decisions made at strategic level (i.e. LSPP), it 

should be noted that the capital-type decisions made at this tactical level are 

commonly smaller-scale (Miller, 2002). For instance, while setting a new plant up 

is related to the LSPP, decisions on buying a warehouse, adding a new production 

line to the factory, tool/machine purchasing etc. are considered at this tactical level 

as medium-scale capacity adjustments. 

Short-term Tactical Planning Problem (STPP) 

This problem also handled at tactical decision level as MTPP but in a short-term 

basis (typically one year) covers decisions regarding with determination of which 

models, aggregated under each product line, are sold in which markets, which new 

models are added to the mix, their volumes  etc. in order to achieve the profit 

(revenue) goal determined at medium-term tactical level. 
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Product aggregation/grouping level: Models under the lines / Product Line 

Design problems in the related literature dealing with decisions such as optimal 

pricing, order quantities, differentiation, mix of product attributes, product-line 

extension, market positioning etc. and considering models such as conjoint, 

consumer preference etc. (see, e.g. Mohit et al., 2017; Liu et al., 2017; Bertsimas 

and Mišić, 2017; Müller and Haase, 2016; Anderson and Celik, 2015; Luo, 2011; 

Schön, 2010; Belloni et al., 2008; Tucker and Kim, 2008; Fruchter et al., 2006; Jiao 

and Zhang, 2005;  Li and Azarm, 2002; Morgan et al., 2001; Chen and Haussman, 

2000; Kohli and Sukumar, 1990). 

Inputs used for decision-making process (provided by MTPP): total allocated 

capacity for each line at each period, goals for profit or revenue for each line 

determined in MTPP, expected number of products under each line to be sold for 

each period, new lines to be introduced into the mix etc. 

Decisions made (inputs for the Aggregate Production Planning Problem): new 

model launching and existing model deleting decisions as a result of ensuring 

product variety in order to match customer needs, outsourcing decisions, smaller-

scale capacity adjustment decisions typically at machine and process level while 

overall capacity is mostly fixed (Chou et al., 2007),  differentiation, pricing, 

positioning and other marketing decisions etc. 

It should be noted that decisions made at this level would be main input for 

aggregate production planning (including production volumes in each period, e.g. 

typically a month, item/model production schedules, work force levels, minor 

equipment planning, inventory levels, subcontracting etc.) and marketing. 

2.2. Capacity Expansion Decisions 

Capacity planning has recognised as a main stream in literature and becomes a 

challenging problem for organisational performance in practice (Benton, 2014; 

Collier and Evans, 2009; Zhang and Wang, 2009; Geng et al., 2009; Chou et. al., 
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2007; Miller, 2002; Chase et al., 1998). Decisions regarding timing particularly in 

the case of long lead-time required for new capacity installation as well as decisions 

for amounts of capacity increments make capacity planning tasks important but also 

difficult for the industries particularly including technologically complicated and 

capital intensive fabrication processes because of volatility of market demand due 

to uncertainties, rapid changes of technology, and long lead time and high cost for 

capacity increments (Vespucci et al., 2016; Alaniazar, 2013; Chien and Zheng, 

2012 and Geng et al., 2009). Those factors may cause the capacity expansion 

decisions, which are costly and difficult to change later, to be under the risk of 

capacity shortage and surpluses along with time (Bish and Wang, 2004; Alaniazar, 

2013). Furthermore, Ahmed et al. (2003) and Huang and Ahmed (2009) state that 

the economies of scale in capacity costs and the uncertainties in the costs make 

capacity expansion problems more complex. Therefore, in order to deal with those 

complexities quantitative approaches for capacity planning has been an intensive 

research area since the 1960s (Ahmed et al., 2003).  Among those, mathematical 

programming-based approaches using linear, stochastic programming, simulation 

models etc. become more handy in the last decades (Chien and Zheng, 2012) in 

order to handle capacity planning problems mainly including capacity expansion 

and product-mix decisions together. Since capacity and product-mix planning 

decisions should be considered integratedly in the scope of our problem (Chou et 

al., 2007) in order to adjust/expand capacity to meet market demand of products in 

the mix, the studies in the related literature handling capacity and product mix 

planning together are presented elaborately in this section. 

In the related literature, it can be seen that the studies dealing with both product mix 

and capacity planning decisions are highly focused on semiconductor industry and 

since those decisions are made over a long planning horizon, they are mostly 

handled in an uncertain environment. Because of the fact that uncertainties in 

markets regarding parameters such as demand and price are also taken into 

consideration in the scope of our problem, the studies that handle those kinds of 

uncertainties is the focal point of this section. 
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The first study that should be mentioned is conducted by Eppen et al. (1988) who 

consider a multi-product and multi-facility capacity planning problem with multiple 

periods under risk. They develop a stochastic mixed integer programming model 

with recourse, using scenarios for characterising demand-price combinations. The 

model, which maximises the expected value of the discounted cash flows, 

determines the production quantities for each product at each plant in each period, 

the configuration type of each site in each period (i.e. which site will produce which 

products in each period) as well as the time of the site reconfiguration, and the level 

of production capacity of each site.  

Li and Tirupati (1994) develop a model and a solution algorithm for a multi-product 

dynamic investment model including technology (dedicated versus flexible) 

choices, and timing and sizing of capacity additions to minimise the total 

investment cost to satisfy the product demands over the planning horizon. One of 

the main points of that study is to consider a technology mix (i.e. deciding on the 

amount of both flexible and dedicated technologies) while determining a least-cost 

schedule of capacity additions for each type of technology.  

Stafford (1997) proposes a capacity planning model for semiconductor industry, in 

order to find an optimal capacity expansion plan using a linear two-stage stochastic 

programming approach where demand is a stochastic parameter. The model 

minimises the weighted sum of unmet demand for each product and they make an 

analysis for comparing the unsatisfied demand for the “expected value” model with 

average unsatisfied demand for the stochastic demand model at varying budget 

levels.  

Chen et al. (2002) develop a stochastic programming approach for capacity 

planning considering the product mix flexibility that is defined as the ability of a 

production plant to produce different types of products. In their model, they 

determine optimal capacity investments in each type of technology, i.e. the mix of 

dedicated and flexible technologies, over a planning horizon with multiple periods. 

Additionally, they present an extension of that model with a new product 
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introduction, in which they deal with two questions: (1) Should the company launch 

the new product?  (2) Which strategy for the capacity should be followed, if the 

new product is launched?  

Karabuk and Wu (2003) present a scenario-based multi-stage stochastic 

programming model with a cost-minimisation objective under demand and capacity 

uncertainties. The main output of this model is to generate a capacity configuration 

in order to cope with the scenarios in which demand is extreme and capacity 

fluctuations is high. In that study, they also consider the outsourcing option when 

all demand is not satisfied from in-house resources (i.e. in the case of capacity 

shortfall).   

Ahmet et al. (2003) propose a capacity expansion model in an uncertain 

environment with a single product, multiple resources and multiple periods. The 

model determines the time and level of capacity expansion or the type of technology 

in order to satisfy market demand by minimising total cost over the planning 

horizon.  

Zhang et al. (2004) develop a capacity expansion model with multiple products and 

finite number of periods, which aims for determining optimal plans for tool 

purchase under stochastic demand, for semiconductor industry. In fact that study is 

not a product-mix problem; it aims at finding an optimal capacity expansion plan 

(i.e. deciding on timing and the number of purchasing tools) in order to satisfy the 

forecasted demand on the condition that the total lost sales and tool purchase costs 

are minimised. 

Huang and Ahmed (2009) also address the multi-resource and multi-item capacity 

planning problem, which is defined as tool purchase planning problem for 

semiconductor industry. They propose a multi-stage stochastic programming model 

for the problem, in which demand, cost and resource utilization coefficients are 

handled as uncertain parameters.  
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Ren-qian (2007) describes the capacity planning decision as “to determine an 

optimal schedule to replace older machines, equipments or activity centres by 

newer ones”. Based on that description, they develop a stochastic capacity 

expansion model, including the uncertainty involved in demand and unit capacity 

usage by a product. In that model, they decide on “the number of activity centres 

purchased/constructed in each period” as well as “the sales amount of products in 

each period” to satisfy demand for products. 

Geng et al. (2009) presents a two-stage stochastic programming model for a 

capacity planning problem in a semiconductor firm, in which demand and capacity 

are considered as uncertain parameters. The model, which maximises the expected 

profit (total revenue minus tool procurement, production, underutilized capacity, 

inventory holding and stock-out costs), determines the number of new tools of each 

type that should be procured and production volumes of each product in each 

period.  

Claro and Sousa (2012) present a multi-stage stochastic programming model for a 

capacity investment problem with multiple resources to determine the amount of 

capacity increments for each resource and optimal allocation of capacity to 

products. Their model, which handles demand and cost as uncertain parameters, 

consists of two objective functions: first is to minimise the total capacity investment 

cost and second is to minimise the Conditional-Value-at-Risk, which is one of the 

most commonly used risk measure in the literature.  

Chien and Zheng (2012) deal with a capacity planning problem in semiconductor 

manufacturing wherein demand is characterised as an uncertain parameter. Based 

on a “mini-max regret strategy”, they present a model that aims at generating a 

capacity expansion plan that is robust to all possible demand scenarios while 

minimising the maximum regret of capacity surplus and shortage.  

Lin et al. (2014) focus on capacity planning problem with multiple sites in thin film 

transistor liquid crystal display (TFT-LCD) industry where demand is considered 

as a stochastic parameter and represented by a finite number of scenarios. They 
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develop a stochastic dynamic programming model for that problem in order to find 

an optimal capacity expansion policy that provides a profitable product mix at a 

given site in a certain period.  

In the capacity planning literature, one of the interesting studies that consider a 

capacity planning problem for short life-cycle products is conducted by Alaniazar 

(2013). He focuses on the capacity (in that study defined as capital equipment 

capacity) planning decisions in semiconductor industry which has high capital 

investments, high rate of obsolescence, irreversible capacity investments, high 

volatile demand and long procurement lead time of new capacity. The objective of 

the model developed is to maximise the expected profit by balancing over- and 

under-expansion of capacity over the product life cycle. The main decision in that 

model is when and how much capacity to expand in an uncertain environment.  

One of the streams in capacity investment planning literature is the studies 

considering multi-resource investment planning (Eppen, 1988; Ahmed et al., 2003; 

Huang and Ahmed, 2005), which has received little attention. On the contrary to 

the main stream studies that consider investments for single resources (capital or 

labour) mostly considered as irreversible, Harrison and Mieghem (1999) handle a 

multi-resource investment  problem wherein both reversible and irreversible 

investments are taken into consideration,  and demand, price and cost are described 

as uncertain parameters. The main objective of the model (defined as a product mix 

model), is defined as follows: “in each period, having chosen a resource vector and 

observed a demand vector, the firm chooses its production vector so as to maximise 

the profit (the expected value of operating profits minus resource adjustment costs” 

over the planning horizon). One can refer to that study for detailed discussion on 

the multi-resource investment problems and their related models. 

Based on the studies given above, some remarks about the modelling and solution 

approaches can be given as follows: 
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 In the related literature, mixed-integer programming and stochastic 

programming approaches using scenarios to model uncertainties are the 

most common models used for multi-period capacity planning problems.   

 Two-stage stochastic programming model is extensively used for capacity 

planning problems, in which the first-stage decision aims at determining a 

capacity expansion schedule over a planning horizon, while second-stage 

decisions consists of the allocation of capacity that is determined in the first-

stage. Ahmed et al. (2003), Huang and Ahmed (2005), Eppen et al. (1988), 

Thomas and Bollapragada (2010), Ren-qian (2007) and Geng et al. (2009) 

are some of those studies using two-stage stochastic programming 

approach. 

 On the other hand, multi-stage stochastic models in which decisions made 

at a certain period depend on events and decisions up to that period and the 

decisions are revised when more information about the uncertainties is 

revealed at each period are also used in the related literature. Lin et al. 

(2014), Alaniazar (2013), Claro and Sousa (2012) Huang and Ahmed 

(2005), Karabuk and Wu (2003), Ahmed et al. (2003) and Chen et al. (2002) 

are some of the studies which use the multi-stage stochastic programming 

approach. 

 Most of the given studies focus on determining a good capacity planning 

schedule including time phasing and size of capacity additions for satisfying 

the future demand (deterministic or stochastic) of products. However, they 

could not be considered as typical product mix problems, since they do not 

consider a product selection decision.  

 It should be noted that the study of Ren-qian (2007) is different from the 

existing capacity planning studies in terms of dealing with unit capacity 

usage of a product as an uncertain parameter. The models dealing with 

capacity uncertainties can also be seen in the studies of Karabuk and Wu 

(2003) and Geng et al. (2009). 
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 All of the studies given above consider single resource capacity planning 

except Eppen (1989), Ahmed (2003), Huang and Ahmed (2005) and 

Harrison and Mieghem (1999) who consider multi-resource planning in 

their problems. 

Above all, it should be noted that since the product-mix of a firm might be changed 

over the planning horizon because of unstable market demand and requirement for 

new product introductions to markets, capacity expansion as well as capacity 

allocation decisions must be adjusted/adopted dynamically in order to optimise firm 

objectives (mostly profit maximisation). Therefore, capacity expansion decisions 

are taken into consideration when formulating the problem handled in this study. 

2.3. Product Interdependencies 

One of the main characteristics of the product-mix problems in real life applications 

is to have interdependent products competing for financial (budget) and physical 

(e.g. production capacity) resources, and affecting the demand and production cost 

of each other. Therefore, in this section, the main properties of product 

interdependencies (interactions) are presented based on the studies in literature and 

the how this concept is handled in our study are presented. 

In the related literature, one of the pioneering studies in which product interactions 

are taken into consideration in a product-line decision model is performed by Urban 

(1969), who states that the products in a line are not usually independent since the 

marketing mix established for one product may affect the sales of another product. 

He takes two basic kinds of interdependencies into account, i.e. complementarity 

and substitutability which are measured using cross-price elasticities.  

Monroe et al. (1976) handle a product-mix problem that considers revenue 

interactions among products, which are assumed to be occurred due to coexistence 

of two products (all existing and new products) in the market. In this study, the 

interactions are subjectively estimated by the management. For instance, 
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considering two specific products, the management may include the following 

interaction effect: the presence of product A on the market would decrease (or 

increase) the expected revenues of product B by 10 %. That interaction is also 

defined as first order interaction, i.e. interaction between each pair of products and 

they state that in product mix problems cost interactions and higher order 

interactions should be considered. Furthermore, it should be noted that the revenue 

interactions presented by Monroe et al. (1976) is similar to the concepts of global 

substitutability2 and global complementary3  defined by Devinney and Stewart 

(1988). 

Two types of interdependencies among products in a multi-product investment 

(portfolio) problem can be considered: demand interdependency and supply 

interdependency. There are three types of demand interdependencies: demand 

substitutes, demand compliments and demand neuters. 

Demand substitutes: The demands for two products are negatively related, i.e. if the 

demand for one of the products increases the demand for the other will decrease. 

This is also called as cannibalism (Kerin et al., 1988). 

Demand complements: The demands for two products are positively related, i.e. if 

the demand for one of the products increases, the demand for the other will increase 

as well. In other words, coexistence of two products in a market affects the total 

demand of those products positively. 

Demand neuters: The demands for two products are independent, i.e. changes in 

the demand for one product will not affect the demand for the other. 

                                                 

 

 
2 There is a negative correlation between the expected return (profit) of one product and the investment in 

another, e.g. if the expected return of product A decreases with investment in product B, products A and B are 

defined as global substitutes. 
3 There is a positive correlation between the expected return (profit) of one product and the investment in 

another, e.g. if the expected return of product A increases with investment in product B, products A and B are 

defined as complements. 
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There are also three types of supply interdependency: supply substitutes, supply 

compliments and supply neuters (Devinney and Stewart, 1988): 

Supply substitutes: The production cost of producing two (or more) products jointly 

is greater than the sum of the costs of producing those products individually. 

Supply complements: This implies that the production cost of producing two (or 

more) products jointly is smaller than the sum of the costs of producing those 

products individually. 

Supply neuters: production costs of different products are independent. 

Regarding product interdependencies, Kerin et al. (1978) present the concept of 

cannibalism, i.e. product substitution, in which a new product obtains a proportion 

of its sales from an old product’s sales. They state that new products acquire their 

sales revenue from three sources: (1) new customers not previously buyer of the 

product, (2) consumers of other companies and (3) consumers of an existing product 

who switch to the new product. The last of those sources refers to cannibalism and 

it becomes a problem when it provides no financial or competition benefit to the 

firm. Besides, as Lomax et al. (1997) highlighted, cannibalization effect of new 

products or brands on existing products or brands should be considered in decisions 

for product-line extensions. Roberts and McEvily (2005) describe this effect as 

“new toy effect” and state that the full effects of new product introductions, i.e. their 

effects on the products sold both in the same market and in other markets, should 

be taken into consideration while deciding on the product-mix of a firm. Shah and 

Avittathur (2007) also consider demand cannibalization effect in their multi-item 

(standard product and its customized extension) problem, which is described as 

“customer-led demand substitution” wherein the substitute product is purchased by 

the consumers when the primary product is out-of-stock.  

Laruccia et al. (2012) presents different models of cannibalism occurred between 

products, which are adapted from Traylor (1986), as shown in Figure 7. 
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Figure 7. Models for cannibalism (Laruccia et al., 2012) 

 

In Model 1, new product cannibalises the sales of old product currently sold in 

market and has no impact on firm’s total sales provided by the old product. The 

firm may plan to introduce the new product on the condition that its contribution 

margin is greater than the old one. Model 2 shows another case in which new 

product cannibalises a proportion of the sales of old product currently sold in 

market, but provides firm’s total sales to increase (market expansion). In Model 3, 

the new product cannibalises not only the sales of firm’s old product but also the 

sales of competitor’s product and increases the market size. Besides, the new 

product cannibalises the sales of firm’s old product as well as competitor’s product, 

however the market size does not change in Model 4. All these models may come 

to exist depending on market conditions, sectoral structure, and product features 

etc.  

In addition to the studies given above, Yilmaz et al. (2013) also handle the 

cannibalisation effect of the new generation products on the sales of parent (old 

generations) products in their capacity planning model for short-life cycle products 

and their renewals are considered. That type of cannibalisation may occur between 
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more than two products, i.e. higher-order interaction, and may be two-way in which 

new generation products and parent products may cannibalize each other.  

Eppen et al. (1988) also consider the interaction effect when demand of a product 

exceeds capacity, i.e. in the case of having unsatisfied demand. In this situation, it 

is assumed that a proportion of unsatisfied demand for a product might be 

transmitted to another product. Morgan and Daniels (2001) study another case in 

parallel with this in their product mix and technology adoption model. They include 

two-way substitution between products, i.e. if a product is not chosed for the mix, a 

certain proportion of the demand for that product is met by similar products. 

Blau et al. (2004) deal with different types of product dependencies in their portfolio 

management problem such as resource and production cost dependency that can be 

considered in the scope of substitutability, and technical success dependency that 

occurs between two candidate products under development when success or failure 

probability of one product is affected the success or failure of another product. 

Besides, Yayla-Küllü (2011) deal with a special case in which product with a high 

quality can substitute another product with a lower quality.  

Based on the literature given above, some remarks about the product 

interdependencies that may be required to consider in a product-mix problem as 

follows: 

 Demand-based substitution-type interactions are studied more than supply-

based and complementary interactions.  

 Demand-based substitution-type interaction, which is also described as 

cannibalism, is generally handled in product-mix problems, particularly in 

the case of new product introductions.  

 First order interaction (i.e. interactions between two products) dominates 

the literature when compared to higher-order interactions occurring among 

more than two products. 
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2.4. Parameter Uncertainties in the Problem Environment 

The conditions due to market dynamics, regulations, resource availability, 

fluctuations in stock markets, competitors’ future strategies, new technologies etc. 

inherently affect future market demand, selling prices, costs, interest rates, machine 

capacities etc. and thereby force those parameters to be considered as uncertain in 

many problems such as capacity planning, portfolio selection, scheduling, location, 

routing, product design and resource allocation. Those uncertainties arise when the 

problem in question requires making decisions without having full or reliable 

information about the effects of problem parameters when the decision must be 

made or due to subjectivity of decision makers that naturally appear in a decision-

making process (Rockfellar, 2001; Alonso-Ayuso et al., 2003; Hausike and Ishii, 

2009a). Therefore, the uncertainties within a problem should be taken into 

consideration by the way of modelling their future effects on the decision-making 

process properly. In the case of ignoring uncertainties, a sub-optimal or mistaken 

solution might be obtained, which results in financial loss for the company.  

In the related literature that can be entitled as “optimisation under uncertainty”, a 

large number of approaches are developed in order to model the uncertainty in some 

parameters such as demand, selling price, cost etc. and to capture the dynamic 

characteristics of real-life accurately. There are typically four approaches 

developed for optimisation under uncertainty in the literature: (1) stochastic 

programming including two- and multi-stage models with recourse and 

probabilistic (chance-constrained) programming, (2) fuzzy programming, (3) 

simulation optimisation and (4) robust optimisation. In this section, first a brief 

description of those approaches and then which kind of uncertainties are considered 

in the scope of the product-mix problem handled in this study will be presented. 

2.4.1. Stochastic Programming 

 

Stochastic programming is one of the optimisation tools commonly used in 

decision-making problems under uncertainty, whose aim is to identify a feasible 



 

 
41 

solution that minimises or maximises the expected value of an objective function 

over all scenarios, i.e. possible occurences of uncertain parameters (Solak, 2007). 

Those parameters are typically modelled using random variables and it is assumed 

that those have probability distributions estimated from historical data or subjective 

probabilities defined by decision makers for different scenarios that can be 

described as the possible future realizations of those parameters. For instance, 

assume that there are three different scenarios for a product’s future demand, e.g. 

low demand (less than 1000 units), medium demand (units between 1000 and 2000) 

and high demand (more than 2000 units). The probability of each scenario might 

also be determined based on a subjective evaluation or statistical data, e.g. the 

demand may be low, medium or high with a probability of 2/9, 4/9 or 3/9, 

respectively. In this example, scenarios, which are particular representations of how 

the future might seem to be, are used in order to represent the uncertainty of the 

problem in a typical stochastic programming model. Besides, since the power of a 

stochastic programming model relies upon the ability of sufficiently modelling 

uncertainty through scenarios, firstly it is needed to generate descriptive and 

realistic scenarios for the problem in hand for the success of stochastic 

programming approach (Mitra, 2006). Therefore, a large number of scenario-

generation methods are developed in the literature. The main objective of those 

methods is to generate all possible realisations of uncertain parameters in a problem, 

which is typically called as scenario or event tree and the probability of those 

realizations (Kaut and Wallace, 2007; Zhang and Wang, 2009; Tønnesen and 

Øveraas, 2012). A typical scenario tree can be seen in Figure 8. 
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Figure 8. A scenario tree considered for a two-period problem 

 

As seen from Figure 8, the initial state, two possible realisations at the time of t=1 

and four possible realisations are represented by the root node at t=0, two nodes at 

t=1 and four nodes at t=2, respectively. Thus, a path from the initial state to any 

state at t=2 is called as a scenario each of which has a probability of occurrence. 

Though it is easy to deal with such a problem having less number of scenarios, the 

computational effort of stochastic programming for handling a large number 

scenario becomes extremely high, especially in multi-period problems wherein 

number of scenarios exponentially scales up and/or there are many uncertain 

parameters in the problem context; thereby, the usage of stochastic programming in 

real life is restricted. Yet, it’s become a popular approach both in literature and 

practice (Chien and Zheng, 2012) in the last decades. 

The scenario-generation methods commonly used in the related literature can be 

classified under four groups (Mitra, 2006):  

1. Statistical methods that include statistical moment or property matching, 

principal component analysis and regression.  

2. Sampling methods such as Monte Carlo/random sampling, importance 

sampling, bootstrap sampling, internal sampling, conditional sampling, 

stratified sampling, Monte Carlo based on Markov chain sampling. 
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3. Simulation-based methods such as stochastic process simulation, error 

correction model and vector auto-regressive model. 

4. Other scenario generation methods such as artificial neural networks, 

clustering, scenario reduction and hybrid methods. 

One can refer to Mitra (2006), and to Kaut and Wallace (2007), Linderoth et al. 

(2002) and Infanger (1992) for the details of those methods. 

Stochastic programming approaches are mainly grouped under two categories: (1) 

recourse-based stochastic programming and (2) probabilistic (chance-constraint) 

programming. 

Recourse-based Stochastic Programming 

It can be said that the idea of incorporating uncertainty into a mathematical model 

starts with Dantzig (1955)’s work that was the first attempt to propose a recourse 

model that enables the solution to be adapted according to the consequence of a 

random event (Solak, 2007; Birge and Louveaux, 2011). Since then, recourse-based 

stochastic programming models’ popularity has increased thanks to high-power 

solvers and sophisticated solution algorithms in the last decade (Karabuk and Wu, 

2003). In stochastic programming approach, it is assumed that all possible scenarios 

and their attached probabilities for the subsequent stages are known (or at least 

estimated), but which of the scenarios will occur in reality is not known, and at this 

point recourse-based approach allows for making decisions “now” over all 

scenarios, which optimise the expected  results (e.g. maximising the expected profit 

in a product-mix problem) and ensure adaptability of each scenario (Tønnesen and 

Øveraas, 2012). In another words, recourse-based stochastic models enables 

recourse actions or some decisions to be made after the uncertainty is revealed 

(Birge and Louveaux, 2011). 

Due to the different characteristics of decision-making processes involved in real-

life problems, the recourse-based stochastic problems are formulated as two-stage 

or multi-stage models with recourse (Chou et al., 2007). 
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Two-stage Recourse Models: 

In a two-stage recourse model, a stage refers to a time point where new information 

regarding random variables is revealed and the decisions associated to stages are 

grouped under two sets:  

1. Some of the decisions are taken before the actual realization of uncertain 

parameters, which are called as first-stage decisions. 

2. Some of the decision are taken after the realization of uncertain (random) 

parameters is known, which are called as second-stage decisions. At this 

stage, further actions are employed by choosing, the values of second-stage 

or recourse variables interpreted as corrective measures against any 

infeasibilities arising due to a particular realization of uncertainty, i.e. in the 

second-stage, the first-stage actions are fine-tuned. 

For instance, in a typical facility location problem, the facility locations as well as 

its capacity are determined in the first stage, and then the decision on how best to 

operate it is made in the second-stage after the realization of random events (e.g. 

different scenario generated for unit processing time). In another example of the 

capacity planning problem in semiconductor industry, the capacity expansion 

schedule (including the number of tools that will be purchased as the amount of 

capacity expanded and timing of procurement) over the planning horizon including 

multiple periods is decided in the first-stage and then the decisions associated to 

production planning, i.e. selected products and their quantities, as second-stage 

decisions, are made at the beginning of each period according to realised demand 

and available tool capacity determined in the first stage (Stafford, 1997; Ahmed, 

2002). The main objective of two-stage stochastic programming with recourse is to 

make the first-stage decisions considering the evolution of random parameters 

throughout the planning horizon by minimising the sum of first-stage costs and the 

expected value of second-stage costs (Sahinidas, 2004). Besides, in two-stage 
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recourse models decisions at all periods (e.g. t =1 and t =2 in Figure 8) are made at 

the beginning of time horizon (t=0, now) and it is assumed that the scenarios 

regarding each period are unrelated. 

A typical formulation of a two-stage linear stochastic programme with recourse can 

be given as follows (Birge and Louveaux, 2011, p.10): 

min 𝑐𝑇𝑥 + 𝐸𝜉  𝑄 (𝑥, 𝜉) 

                                                                 subject to 

𝐴𝑥 = 𝑏 and 𝑥 ≥ 0 

where 𝑄 (𝑥, 𝜉) = min{𝑞𝑇𝑦 | 𝑊𝑦 = ℎ − 𝑇𝑥, 𝑦 ≥ 0} which is the value of the 

second-stage for a certain realisation of random vector 𝜉 which is framed by 𝑞𝑇, 

ℎ𝑇, and T, and 𝐸𝜉  denote expectation with respect to 𝜉. Here, 𝐸𝜉 𝑄 (𝑥, 𝜉) is called 

as recourse or value function and recourse matrix W can be considered as fixed 

(fixed recourse) or not (relatively complete recourse, complete or simple recourse). 

On can refer to Birge and Louveaux (2011) for a detailed analysis of this 

formulation as well the basic concepts.  

Two-stage stochastic problems are tractable on the condition that there is a small 

number of scenarios or randomness is identified by discrete distributions. In those 

cases, the problem can be represented by equivalent deterministic linear program 

that can be solved using linear programming solution procedures. If the recourse 

function is convex, that type of problem, even large-scale ones (but finite number 

scenarios), can be efficiently solved using decomposition-based strategies such as 

Langrangian and Benders schemes (Ren-qian, 2007; Bertsimas et al., 2011; Birge 

and Louveaux, 2011). 

For continuous distributions of the random parameters or the cases in which the 

number of discrete scenarios is too large, sampling-based, e.g. random sampling 

and importance sampling, approaches, decomposition and approximation methods, 

and  gradient-based algorithms are developed to obtain a tractable and efficient 

solution (Sahinidas, 2004). 
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Furthermore, in some of the stochastic models it is assumed that scenarios and their 

associated probabilities are independent of the decisions that are taken. In the 

related literature, there are also some stochastic models that do not consider that 

assumption, i.e. decisions might influence the probability distributions (Linderoth, 

2009). 

Multi-stage Recourse Models:  

A multi-stage recourse problem involves a series of decisions made over time based 

on the new information revealed at certain time points. This series typically has a 

sequential pattern such as “decide-observe-decide-observe-decide-…” (Tønnesen 

and Øveraas, 2012). The uncertainty in a multi-stage stochastic program is 

represented by a multi-tiered scenario tree (see Figure 8 as an example) and the 

optimisation strategy is to make decisions hedging against this scenario tree that 

shows the evolution of the future outcomes (Ahmed et al., 2003). 

In two-stage recourse models decisions at all periods (e.g. t =1 and t =2 in Figure 

7) are made at the beginning of planning horizon (t = 0) before the uncertainty is 

realised and subsequently a limited number of recourse actions are taken. However, 

in a multi-stage model the decisions made at a certain period depend on events and 

decisions up to that period and the decisions are revised when more information 

about the uncertainties is revealed at each period. The multi-stage models handle 

the problem in dynamic planning process better and provide more flexibility than 

the two-stage models (Huang, 2005; Huang and Ahmet, 2005). However, it is more 

difficult to solve these models than the two-stage models because of their 

complexity arising from a high number of stages and random parameters (Huang, 

2005; Solak, 2007). Therefore, many solution strategies are proposed for multi-

stage problems in the literature (see e.g. Ahmed et al., 2003; Karabuk and Wu, 

2003; Sahinidas, 2004; Huang, 2005; Huang and Ahmed, 2005; Solak, 2007; 

Ahmed, 2002; Claro and Sousa, 2012; Alaniazar, 2013; Lin et al., 2014; Fattahi et 

al., 2017; Bertazzi and Maggioni, 2018).  
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Probabilistic (Chance-Constrained) Programming 

While two-stage or multi-stage stochastic model with recourse given in the previous 

section requires the decision-maker to assign a certain penalty for the infeasibilities 

in the second stage, chance-constrained programming or programming with 

probabilistic constraints focuses on minimising the expected recourse costs. This 

type of program is suggested to use when the decision maker’s main objective is to 

have an optimised solution with sufficiently higher probability of achieving a goal 

(Linderoth, 2009). 

A typical deterministic linear programming model (including no uncertainties) 

given as (1) can be converted into a probabilistic programming model, (2), as 

follows: 

(1) : {max ctx    s.t.        Ax ≥ b,            x ≥ 0} 

(2) : {max ctx    s.t.     P(Ax ≥ b) ≥ p,     x ≥ 0} 

In model (2), it is assumed that there is uncertainty associated to the constraint 

matrix, A, and the vector b, and the corresponding constraints must be ensured with 

a probability p. It is suggested to refer to Prekopa (1995), Birge and Louveaux 

(2011) and Wang et al. (2017) for a detailed description of chance-constrained 

programming, its modeling and solution methodologies and applications in 

different management areas. 

2.4.2. Fuzzy Programming 

 

As explained in the previous section, stochastic programming is one of the 

approaches for dealing with uncertainties in a decision-making process through 

modelling uncertain parameters as random variables. Another approach that is 

commonly used for optimisation under uncertainty is fuzzy programming in which 

fuzzy numbers and fuzzy sets are preferred to model uncertainty. 

The basic characteristic of a fuzzy programming model can be explained by the 

following example (Sahinidas, 2004): 
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Consider a constraint 𝑎𝑦 ≤ 𝐴 with a decision vector 𝑦 and random right-hand-side 

A which may take values within the range of [𝑚, 𝑚 + ∆], where ∆ ≥ 0 . Then the 

membership function, 𝑓(𝑦), which characterizes the fuzziness/uncertainty 

associated to this constraint (because of not knowing the exact value of A) can be 

defined as follows: 

𝑓(𝑦) =  {

1, 𝑖𝑓 𝑎𝑦 ≤ 𝑚

1 −
𝑎𝑦−𝑚

∆
,          𝑖𝑓 𝑚 < 𝑎𝑦 ≤ 𝑚 + ∆,

0, 𝑖𝑓 𝑚 + ∆ < 𝑎𝑦.

   

 

This kind of membership function may be in different forms according to decision 

maker’s preferences and problem framework. After modelling the uncertainties 

using membership functions and setting up the fuzzy optimisation model that may 

be in the form of linear, nonlinear, dynamic and multi-objective programming etc., 

this model is converted to a crisp optimisation programme (Tang et al., 2004).  

In the related literature, there are two main types of fuzzy programming approaches: 

flexible programming involving right-hand-side uncertainties and possibilistic 

programming handling the uncertainties both in the coefficients of objective 

function and of constraints (Sahinidas, 2004). It is suggested to refer to Luhandjula 

(2015), Lodwick and Kacprzyk (2010) and Tang et al. (2004) for a detailed 

description of fuzzy programming, its modelling approaches and solution 

methodologies. 

While two approaches, stochastic and fuzzy programming, can be used in order to 

handle uncertainties in an optimisation problem, one can ask the question of which 

approach should be used in which conditions. Bastin (2004) states that if historical 

data is available and well-defined probabilistic distributions associated with 

uncertain parameters are obtained, stochastic programming can be used since this 

approach is less sensitive to the modeller and provides a strong analytical point of 

view to the problem solution. On the other hand, if there is no historical data, 

modelling the uncertainties with probability distributions may not be possible. In 

this case, fuzzy programming is preferable on the condition that the modeller can 
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identify fuzzy numbers and sets based on his/her knowledge and understanding 

about the problem (Ibid.).   

 2.4.3. Simulation Optimisation 

 

Simulation optimisation is an approach including many techniques used for 

optimizing stochastic simulation model whose aim is to find optimal settings, which 

optimises the output, of the inputs, i.e. a target objective (Amaran et al., 2016). A 

generalised simulation optimisation model is given in Figure 9.  

 

 

 

 

  

 

 

Figure 9. A simulation optimisation model (Carson and Maria, 1997) 

 

As shown in Figure 9, the output of a simulation model is evaluated by an 

optimisation strategy and a feedback based on this evaluation is provided as a 

further input for the process of searching the optimal solution to the simulation 

model (Carson and Maria, 1997). 

A general formulation of simulation optimisation problem is presented by Amaran 

et al. (2016) as follows:  

min    𝐸𝜉[𝑓(𝑥, 𝜉)] 

                         𝑠. 𝑡.    𝐸𝜉[𝑔(𝑥, 𝜉)] ≤ 0 

                                ℎ(𝑥)  ≤ 0 

                   𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 

                                 𝑥 ∈  ℝ𝑛 

In this model, the output represented by function 𝑓 is evaluated for an instance of 

inputs 𝑥 and a certain realisation of the random variables 𝜉 through simulation runs 

within the feasible region provided by the constraints described by function 𝑔 

Inputs 

Feedback  

Simulation 

Model 

Optimisation 

Strategy 

Output 
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including the random variables, function ℎ without the random variables (if there 

exists) and bounding constraints defined for the decision variables. Azadivar (1999) 

presents a classification for the approaches used in simulation optimisation, where 

each class can be handled as a special case of the general formulation above. 

Gradient based search methods (such as finite difference estimation, infinitesimal 

perturbation analysis, frequency domain analysis, Likelihood Ratio Estimators 

etc.), sample-path optimisation, response surface, heuristic search and statistical 

methods are some of the examples of simulation optimisation methods developed 

in the related literature (Chang, 2016; Olafsson and Kim, 2002; Azadivar, 1999; 

Carson and Maria, 1997).  

It is suggested to refer to Amaran et al. (2016), Azadivar (1999), and Carson and 

Maria (1997) for the details of simulation optimisation concept, its modelling 

approaches, techniques and solution methodologies. 

2.4.4. Robust Optimisation 

 

Robust optimisation is another approach developed for solving problems under 

uncertainty, in which a decision-maker seeks for a robust solution that performs 

well considering any future realization of uncertainty (scenarios) defined in a set. 

In a general framework, the main objective of robust optimisation is to find a 

solution feasible for all scenarios in the set while minimising the deviation of the 

solution obtained for overall problem from the optimal solution obtained for each 

scenario (Better et al., 2008).  

Robust optimisation is suggested to use when uncertainty regarding parameters can 

not be modelled as stochastic or distributional information is not available; and also 

the computationally tractable feature of this approach make this approach 

preferable compared to stochastic optimisation. However, in contrast to the robust 

optimisation, stochastic optimisation can provide an opportunity for decision 

makers to adjust the decision and take recourse actions in the next periods when the 

uncertain environment is changed. 
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It is suggested to refer to Gorissen et al. (2015), Gabrel et al. (2014), Bertsimas 

(2011), Linderoth (2009) and Better et al. (2008), for the details of robust 

optimisation, its modelling approaches, techniques and solution methodologies. 

Considering the approaches given in this section and the studies dealing with 

capacity planning and product-mix determination summarised in this chapter it can 

be seen that recourse-based stochastic programming is one of the commonly used 

approaches for solving the multi-period problems under uncertainty. It also has 

some advantages such as the ability of handling a large number of scenarios, 

existing bounding techniques that provide to solve the stochastic problem with a 

higher efficiency, the opportunity for decision makers to adjust the decision and 

take recourse actions in the next periods when the uncertain environment is 

changed. 
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CHAPTER 3  

 

PROBLEM DEFINITION AND A PROPOSED TWO-STAGE 

STOCHASTIC PROGRAMMING MODEL 

 

 

In this chapter, firstly the problem definition and a summary for modelling 

environment with relevant assumptions are presented in Section 3.1; and then a 

deterministic mathematical model, a two-stage stochastic program which is 

developed based on the deterministic mathematical model and a solution approach 

for the two-stage stochastic program are given in Section 3.2, Section 3.3 and 

Section 3.4, respectively.  

3.1. Problem Definition and Main Contributions to the Related 

Literature 

The problem handled in this thesis work is described as a medium-term tactical 

planning problem (MTPP) considering multiple periods (set of equal periods) and 

the mix of product-lines, which are formed by grouping different models, under a 

class sold in multi-markets, and uncertainty regarding some problem parameters. 

The details of this problem as well the environment considered, which are described 

in accordance with the sub-titles given in Chapter 2, can be presented as follows:  

Long/medium life cycle products of a firm operating in consumer durables 

sector: 

According to problem context handled in this study, long/medium life cycle 

products, which remain in use significantly longer and have relatively stable 

demand are dealth with rather than short life cycle products. Since it is not feasible 

to develop a long-term plan for short life cycle products because of the fact that 
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technological changes are very rapid and long-term demand is so volatile, short life 

cycle products managed based on short-term marketing strategies are out of concern 

in this study. Besides, a firm operating in consumer durables sector and having a 

make-to-stock (MTS) production environment in which demand is predictable over 

the course of the product life cycle from the market is considered.  

Product- and Planning-level within the scope of management: 

Considering the problem domain in this study, the problem is described as a 

medium-term tactical planning problem (MTPP) considering the mix of 

product-lines defined under the concept of product hierarchy and medium-scale 

capacity expansion decisions such as the amount and timing of capacity increments 

(see Section 2.2.1). 

Product-mix and new product launching decisions: 

In the problem handled in this study, two main product-mix decisions, (1) for all of 

the existing and new products that will be in the mix and (2) merely for new 

products, are taken into consideration. 

The decisions regarding first set can be described as follows: 

1. Which products to be in the mix in each period of planning horizon, i.e. 

product list. 

2. How many of them to be sold in which (target) market in each period of 

planning horizon, i.e. product quantities. 

Considering Figure 6 (Section 2.2.1), for an example, there are two lines under 

freezer class and the firm may want to determine the product volumes (as sales 

targets) within the context of questions given above, based on its current product 

list (there is no new line that is planned to be launched in any markets or no new 

markets that the firm plans to introduce with its current line list). However, the firm 

plans to introduce new product lines in the next periods (e.g. a new-generation 
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refrigerator which can generate the energy required for cooling using the heat inside 

foods rather than using electricity) according to its product roadmaps. The firm 

considers that this new refrigerator line can substitute the currently sold 

refrigerators sold in markets. Therefore, the firm wants to analyse if it is profitable 

to introduce this new line into markets. Furthermore, they need to allocate a budget 

for capacity investment for the new-generation refrigerator that is planned to 

introduce to the market two years later at the earliest but not after the third year.  

For that purpose, a feasible range for possible launching time of this new line is 

determined. The firm might also plan to introduce an existing line to a new market.  

At this point, another decision that will be made raises within the problem context: 

3. When the planned (new) products to be launched, i.e. release plans/time-to-

market decisions. In other words, if a new planned product is selected to the 

mix, when to launch that product within the range of their minimum and 

maximum launching time that are determined based on different strategies 

of the firm reflected in product roadmaps, and considering competition in 

markets. 

Thus, a product list that will be sold in each market, sales targets for product 

quantities and launching times for new products and for existing products sold in 

new markets are the main decisions we are interested in. Some of the data required 

for the process of making those decisions, which are provided by product roadmaps 

and possible launching times, can be summarised as follows:  

 Currently sold products, their maximum lifetimes and target markets in 

which those are planned to be sold, 

 New planned products their maximum lifetimes and target markets in which 

those are planned to be sold, 

 Release plans for the new products; i.e. expected maximum and minimum 

launching times. 

It should be noted that a minimum and maximum launching time, which are 

identified based on the different strategies of a firm reflected in product roadmaps 
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and considering competition in markets, are defined for the new products seen as 

candidate product-lines for a specific product-class.  

Furthermore, since product quantities are determined as sales targets at strategic 

level in this study, and it is assumed that outsourcing decisions are made when 

product roadmaps are developed (i.e. only the products to be produced in-house are 

considered), inventory-holding and make/buy decisions are out of concern in the 

scope of our problem context.  

Capacity expansion decisions and capacity-related assumptions: 

Since the product-mix of a firm might be changed over the planning horizon 

because of unstable market demand and requirement for new product introductions 

to markets, capacity expansion as well as capacity allocation decisions must be 

adjusted/adopted dynamically in order to optimise firm objectives (mostly profit 

maximisation), as in most of the studies given in Section 2.2. Therefore, capacity 

expansion decisions are taken into consideration in accordance with our problem 

context.  

It is assumed that main capacity decisions such as buildings, locations, new facility 

opening, closing existing plant decisions are pre-made; i.e. the design capacity of 

plants for each period is an input for the model (see Section 2.2.1), and medium-

scale capacity adjustment decisions such as tool/machine purchasing and 

decommission (Chou et al., 2007), renting or buying a warehouse, adding a new 

production line to the factory etc. are considered in the scope of the problem 

handled in this thesis work.    

The firm considered in the problem domain faces “soft capacity constraints”, i.e. 

capacity constraints specified in a model can be relaxed at a penalty cost if capacity 

expansion generates additional profitable production. However, this relaxation will 

be limited by the design capacity of plants. In other words, the firm can install an 

additional capacity (or resource) on an as-needed basis at a cost of  𝛽𝑡 per unit of 

capacity (i.e. unit penalty cost for augmenting initial/committed capacity). This cost 
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including capital investments in the existing facilities such as supplying new 

equipment/production line, line modification or modernization (in this study those 

investments are considered as irreversible, i.e. capacity reduction decisions such as 

selling or renting the installed capacity in terms of machines, tools, etc. to other 

companies are out of concern) is determined considering different capacity addition 

options and their related costs. At this point, it is assumed that based on the data of 

previous years the probabilities related to the realization of different capital 

investment alternative and its average cost, which are used for calculating the 

“expected value” of  𝛽𝑡, can be estimated.  

Furthermore, it is assumed that all products are in-house produced and 

interchangeable with respect to plant capacity (i.e. mix of lines does not cause 

significant changes in capacity requirements) and therefore all product-lines use the 

same plant capacity that is determined for the regarding class in the previous 

decision level which incorporates decisions related to the family as well as classes 

under this family. 

Product interdependencies: 

Considering the problem context and Secton 2.3, the following interactions between 

product-lines are taken into account in this study: 

 Demand for two different product-lines are negatively interdependent; i.e. 

if the demand for one of the products decreases due to the price increment, 

the demand for the other will increase, and vice versa. This kind of 

interaction is modelled using cross-price elasticities and the modelling 

details are given in Section 3.2. For instance, consider the firm whose 

product hierarchy given in Figure 6 in Section 2.1. Although two different 

lines, e.g. single-door and double-door refrigerators, are designed based on 

configuration criteria (door type and cabinet volume), they have similarities 

in terms of their technical characteristics and may be marketed for the same 

consumer segment. On the condition that the price of single-door 

refrigerators increases (assume that the price of double-door remains 
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constant), some of the potential consumers for single-door refrigerators may 

choose double-door refrigerators. Because, those consumers will make a 

comparison between two types of refrigerators based on price vs. 

performance (in terms of cabinet volume and functionality) and decide to 

buy the double-door instead of buying a single door with a higher price. 

 Because of the definition of the selected product hierarchy, i.e. product line, 

the complementary-type interaction seems meaningless, therefore, only 

demand-based substitution-type interaction is considered. 

 Two-way, i.e. interaction occurred due to coexistence of two products in a 

market, and first order interactions, i.e. interactions between each pair of 

products, are considered.  

 Moreover, only interaction effects between two products sold in the same 

market are taken into account, but it is assumed that there is no interaction 

between two products sold in different markets.       

 Because of interactions, the demand (sales) of an existing product will be 

affected by newly introduced products (cannibalisation effect) in addition to 

other existing products. However, it is assumed that the demand of a new 

product will be affected only by its own prices, i.e. it is independent of the 

existing products and other new products. In essence, this assumption seems 

meaningful, because the firm producing long/medium life cycle products 

will not prefer introducing more than one new product lines that will 

cannibalise each other within the same planning horizon and introducing a 

new product that will be cannibalised by an existing product. 

 Regarding with cannibalisation effect of new products on the existing 

products, it is assumed that a new product cannibalises a percentage (or 

proportion) of old product’s sales, but at the same time it expands the market 

share of the company. This assumption is Model 2 proposed by Laruccia et 

al. (2012) in Figure 7 (see Section 2.3). This percentage is usually defined 

as cannibalisation rate in the related literature. It can be expressed as, for 
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instance consider the cannibalisation rate of no-frost refrigerators (new 

product line) on double-door refrigerators (one of the existing product lines) 

is 20 %, the total potential demand of the double-door will be reduced by 20 

% providing that no-frost refrigerator is introduced to the same market. 

Thus, the cannibalisation effect of new products on the existing ones is is 

represented by rates and demand-price dependencies (see Section 3.2). 

Parameter uncertainties in the problem environment: 

Considering the problem environment in this study, although some parameters are 

intrinsically handled as deterministic or the variability of those parameters do not 

have any significant impact on the solution, price, cost and demand should be dealt 

as uncertain parameters in such kind of problems including strategic decisions 

(Alonso-Ayuso et al., 2003). In addition to those parameters, the cannibalisation 

effect of new products on currently sold products in certain markets is also 

examined as an uncertain parameter within the context of this study. 

Since those decisions highly depend on the future realizations of some main 

parameters, which are not known precisely with the present information, the 

uncertainty related to those parameters needs to be coped with. Actually, there are 

two sources of uncertainty in the problem. First, the conditions due to the 

dynamically changing market conditions may cause uncertainty regarding the value 

of some parameters, e.g. selling- price of a product. Second source of uncertainty 

stems from product aggregation. In this case, for instance, selling-price of a product 

line is obtained as the average of selling-price of each item under this product-line 

since a product-line is represented as a group of items. Because of this averaging 

process, the deviation from the average is also considered as a kind of uncertainty. 

In this study, selling-price, demand and variable production cost of products, and 

the cannibalisation rates are handled as uncertain parameters. Besides, it is 

assumed that probability distributions for those parameters are known, and the 

regarding uncertainty are structured in a set of scenarios. 
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The uncertainty regarding some parameters mentioned above is handled in a two-

stage stochastic programming model whose details are presented in Section 3.3. 

Above all, to the best of our knowledge, there is no prior work that addresses a 

multi-period product-mix problem including the timing decisions of new (planned) 

products of a firm and capacity expansion decisions, and taking product 

interdependencies and uncertainties associated to problem parameters into account. 

Additionally, this study is the first attempt to make a link between the product 

roadmaps (PRM) of a firm and described problem, which aims at balancing the 

PRM. 

As a solution approach to the problem described above, firstly a mathematical 

model in which all parameters are deterministic is developed (Section 3.2), and then 

this model is extended to a two-stage stochastic programming model with recourse 

for incorporating uncertainties using a scenario-based approach (Section 3.3). 

Secondly, this model is solved for different cases using a bounding technique based 

on random sampling (Chapter 4). 

3.2. Deterministic Mathematical Model  

The problem whose characteristics are identified in Section 3.1 is represented by a 

model, called as “Product-Line Planning Model”, whose input-output scheme is 

displayed in Figure 10.  



 

 
61 

 

 

 

 

6
1

 

Objective 
2. Maximising total 

profit over a planning 

horizon 

Physical Resources 

(Capacity) 

11. Maximum capacity 

expanded for each period 
10. Initial capacity 9. Cost of unit capacity 

expansion  

Which products? 

(Product Selection) 

What quantities? 

(Sales Volumes) 

When to launch new  

products?  

(Time-to-market) 

How much capacity will  

be expanded and when? 

 

 

Product-Line 

Planning Model 

3. Unit selling price for each product         

(in each market) 

4. Forecasted demand for each 

product     (in each market) 

5. Unit production cost for each 

product      

6. Unit capacity usage for each 

product          

7. Forecasted launching time                 

(range: min-max) for each 

product          
8. Cannibalisation rates 

Product Roadmaps  

(Long-term product plans) 

1. Product Set and 

Release Plans 

 

 
Figure 10. Input-output scheme of product-line planning model 

 



 

 
62 

Based on the input-output scheme presented in Figure 10, a deterministic 

mathematical formulation is developed for the problem and given in this section. 

Before presenting the mathematical formulation, in addition to the main 

characteristics of the problem and assumptions given in Section 3.1, some 

modelling issues and other assumptions required are summarised as follows: 

 Decisions are made at the beginning of a period.  

 Launching cost for new products such as cost of creating a new distribution 

channel, promotion and advertisement costs etc. introduced into the markets 

is negligible. 

 The target markets in which a product is sold are determined for the 

planning horizon; i.e. set of target markets in which a product is sold cannot 

change on period-basis. 

 There are two types of resources as regards to variable and fixed costs: 

o The first type, such as direct material, direct labour and variable overhead 

(e.g. indirect material that cannot be allocated to a certain product 

directly) costs, is required as an as-needed basis (Direct Costing 

System4). 

o For the second-type of resource, the firm operates at a level of capacity 

𝐶𝑡 in the beginning of the planning horizon, that will be available in 

period t at a cost 𝑏𝑡 per unit of capacity. Thus, there will be “fixed 

overhead costs (𝐹𝐶𝑡)” at each period (such as insurance, rent, etc.); i.e. 

𝐹𝐶𝑡 = 𝑏𝑡 ∗ 𝐶𝑡. Those costs are dependent on the committed capacity 

level and is not influenced by actual production level. Since those costs 

are fixed and considered as “constant values” in the objective function of 

                                                 

 

 
4 Direct Costing System is similar to traditional full costing system, only the variable 

overhead costs are allocated to products, and fixed overhead costs are not considered in the 

cost of each unit of the product (Malik and Sullivan, 1995). 
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our problem, they are not taken into consideration in our optimisation 

problem. 

Mathematical formulation of the product-line planning model 

The sets, parameters and their related functions, decision variables, constraints and 

objective function of the (deterministic) mathematical model are given as follows: 

Sets:  

 𝐼 = {𝑖|𝑖 = 1,2, … , 𝑛1 + 𝑛2}: set of product lines (existing and new product 

lines considering all periods over the planning horizon) 

o 𝐸𝑃 = {𝑖|𝑖 = 1,2, … , 𝑛1}: set of existing product lines 

o 𝑁𝑃 = {𝑖|𝑖 = 𝑛1 + 1, 𝑛1 + 2, … , 𝑛1 + 𝑛2}: set of new product lines 

planned to be introduced over the planning horizon. 

 𝑇 = {𝑡|𝑡 = 1,2, … , |𝑇|}: planning horizon (usually three to five years; 

divided into equal periods) and 𝑡 represents periods/years 

 𝐽 = {𝑗|𝑗 = 1,2, … , |𝐽|}: set of target markets 

 𝑀𝑖 =  {𝑗|𝑗 ∈ 𝐽: set of markets in which product 𝑖 ∈ 𝐼 is to be sold}   

 𝑅𝑖𝑗: set of products that interact with product 𝑖 ∈ 𝐼 sold in market 𝑗 ∈ 𝑀𝑖  

Parameters: 

 

𝑐𝑖 : unit capacity usage of product  𝑖 ∈ 𝐼 (defined as the “average 

processing hours” required for producing one unit of a product) 

𝑚𝑖𝑛𝐿𝑖𝑗 : earliest (planned) introducing time of product 𝑖 ∈ 𝑁𝑃 to market  

𝑗 ∈ 𝑀𝑖 (input from Product Road Maps) 

𝐸𝑃𝐷𝑖𝑗𝑡 : potential demand for product  𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈  𝑀𝑖 in period 

t,  defined as a function of its own prices and the prices of other 

existing products (product interactions) 

𝑁𝐷𝑖𝑗𝑡 : demand for product  𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 in period t, defined 

as a function of its own prices 
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Decision variables: 

 

𝑃𝑖𝑗𝑡 : selling price of product  𝑖 ∈ 𝐼 in market 𝑗 ∈ 𝑀𝑖 in period t 

𝑉𝑖𝑡 : variable unit production cost of product i ∈ 𝐼 in period t, comprised 

of direct material, direct labour and variable overhead costs 

It is assumed that variable cost of a product in a period does not 

depend on the launching time of the product. 

𝛽𝑡 : cost of one unit of additional capacity 

If additional capacity in period 𝑡 is greater than zero (∆𝑡 > 0), an 

additional cost of  𝛽𝑡 for each additional unit of the capacity is 

incurred. 

𝐶0 : Initial (existing) capacity at  𝑡 = 0  

𝑀𝐴𝑋𝐶𝑡 : Maximum amount of capacity for each period 𝑡, i.e. the total 

capacity after a possible expansion cannot exceed 𝑀𝐴𝑋𝐶𝑡 which 

represents the design capacity of the plants or the capacity  allocated 

for the product class in period 𝑡 

𝑒𝑖𝑗𝑙𝑡 : Cannibalization rate of product l ∈ 𝑁𝑃 on product 𝑖 ∈ 𝐸𝑃 (negative 

impact of product l on product i's demand, expressed as a percentage 

of potential demand of i) at time t; 0 < 𝑒𝑖𝑗𝑙𝑡 < 1 

𝑋𝑖𝑗𝑡 : Number of units of product  𝑖 ∈ 𝐼 to be available (sold) in market  𝑗 ∈

𝑀𝑖 in period t 

𝑌𝑖𝑗𝑑 : A binary variable taking 1 if product line 𝑖 ∈ 𝑁𝑃  is introduced to 

market  𝑗 ∈ 𝑀𝑖 in period d and  0 otherwise 

∆𝑡 : Additional capacity in period t (it is for adjusting the medium-term) 

𝐶𝑡 : Total production capacity available in period t, allocated for the 

regarding product class, which includes the lines defined in set I (it is 

a real variable in the mathematical model) 
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Functions for demand-price relationship: 

For the sake of simplicity, a price dependent linear function involving the product 

interdependencies is used for modelling the demand in this mathematical 

formulation of the problem. The details of other types of demand functions in the 

literature and a proposed procedure for selecting a function representing demand-

price relationship in any problem is given in Appendix B. 

The price dependent linear function is one of the most widely used functions in the 

literature and it is handled in an environment of single-firm without price 

competition. In real life, there are three types of this function: 

 In single product case: Demand, d(p), which is a linear function of price, p, 

can be formulised as follows: 𝑑(𝑝) = 𝑚 − 𝑛𝑝, where 𝑚, 𝑛 > 0 and 0 ≤

p ≤ m/n 

 In multi-product case: 𝑑𝑖(𝑝) = 𝑚𝑖 − 𝑛𝑖𝑖𝑝𝑖 + ∑ 𝑛𝑖𝑗𝑝𝑗𝑗≠𝑖  where 𝑛𝑖𝑖 (> 0): 

effect of product’s own price on its demand; 𝑛𝑖𝑗: the effect of other 

products’ prices on its demand (if exists; > 0 if j is substitutable; < 0 if j is 

complement to product i) 

 Piecewise linear demand function: In this function, price elasticity of 

demand takes different values in different price ranges. 

In this study, the function in multi-product case and in single product case is used 

to represent the price dependent demand for existing products and for new 

(planned) products, respectively.  

For existing products, 𝑖 ∈ 𝐸𝑃 (𝑗 ∈ 𝑀𝑖, 𝑡 ∈ 𝑇), without any newly introduced 

products: 

𝐸𝑃𝐷𝑖𝑗𝑡 = 𝑓(𝑃𝑖𝑗𝑡;  𝑃𝑘𝑗𝑡, 𝑘 ∈ 𝑅𝑖𝑗 ∩ 𝐸𝑃) = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡 + ∑ 𝑛𝑖𝑘𝑗 × 𝑃𝑘𝑗𝑡𝑘∈𝑅𝑖𝑗∩ 𝐸𝑃  

where 0 ≤ 𝑃𝑖𝑗𝑡 ≤ 𝑚𝑖𝑗𝑡/𝑛𝑖𝑗;  𝑚𝑖𝑗𝑡 > 0;  𝑛𝑖𝑗 > 0 denotes own-product elasticity for 

product i at market j in period t and 𝑛𝑖𝑘𝑗 > 0 (since product i and k are substitutes) 

indicates the cross-price elasticity with respect to product k’s price at market j in 
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period t. In this model, the price elasticities 𝑛𝑖𝑗 and 𝑛𝑖𝑘𝑗 are price-independent 

constants. 

For existing products, 𝑖 ∈ 𝐸𝑃, with new products to be launched within the planning 

horizon: 

The demand function given above is revised by incorporating the cannibalisation 

effect of newly introduced products on existing products.  

𝐸𝐷𝑖𝑗𝑡   : demand for product 𝑖 ∈ 𝐸𝑃 at market  𝑗 ∈  𝑀𝑖 in period t (a parameter) 

𝐸𝐷𝑖𝑗𝑡 = 𝐸𝑃𝐷𝑖𝑗𝑡 − ∑ 𝑌𝑙𝑗𝑡 ×
 𝑙∈ 𝑆𝑆𝑖𝑗𝑡

𝑒𝑖𝑗𝑙𝑡 × 𝐸𝑃𝐷𝑖𝑗𝑡 =  𝐸𝑃𝐷𝑖𝑗𝑡 (1 − ∑ 𝑌𝑙𝑗𝑡 ×
 𝑙∈ 𝑆𝑆𝑖𝑗𝑡

𝑒𝑖𝑗𝑙𝑡)          

            = (𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡  + ∑ 𝑛𝑖𝑘𝑗𝑃𝑘𝑗𝑡

𝑘∈𝑅𝑖𝑗∩ 𝐸𝑃

) (1 − ∑ ∑ 𝑌𝑙𝑗𝑑 × 𝑒𝑖𝑗𝑙𝑡 

𝑡

𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 𝑙∈ 𝑆𝑆𝑖𝑗𝑡

) 

  

𝑆𝑆𝑖𝑗𝑡 =  {𝑙 ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃 |  𝑚𝑖𝑛𝐿𝑙𝑗  ≤ 𝑡 ≤ |𝑇|},   𝑖 ∈ 𝐸𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡 ∈ 𝑇 

Here, it is assumed that cannibalisation rate, 𝑒𝑖𝑗𝑙𝑡 , is dependent on the price of 

product  𝑙 ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃, i.e. 𝑃𝑙𝑗𝑡 and there exists a linear relationship between 

𝑒𝑖𝑗𝑙𝑡 and  𝑃𝑙𝑗𝑡. Thus it can be expressed as follows: 

𝑒𝑖𝑗𝑙𝑡 =  𝛼𝑖𝑗𝑙 − 𝛽𝑖𝑗𝑙 ×  𝑃𝑙𝑗𝑡    

where 𝛼𝑖𝑗𝑙 and 𝛽𝑖𝑗𝑙 are constant and price dependent coefficient respectively. 

For new products, 𝑖 ∈ 𝑁𝑃: 

𝑃𝑖𝑗𝑡     ∶ selling price of product 𝑖 at period t    

𝑁𝐷𝑖𝑗𝑡 ∶ (potential) demand of product i in market j at period t 

𝑁𝐷𝑖𝑗𝑡 = 𝑓(𝑃𝑖𝑗𝑡) = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡 

for   ∀ 𝑖 ∈ 𝑁𝑃, 𝑗 ∈  𝑀𝑖 , ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗 , 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| 
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where 0 ≤ 𝑃𝑖𝑗𝑡 ≤ 𝑚𝑖𝑗𝑡/𝑛𝑖𝑗;  𝑚𝑖𝑗𝑡 > 0;  𝑛𝑖𝑗 > 0 denotes own-product elasticity 

(which is a price-independent constant and can be estimated by analysing similar 

products or expert opinions) for product i at market j in period t. 

Constraints: 

1. New Product Launching Constraints: Those constraints ensure that a new 

product can be launched at a market in only one period that is selected from the 

range of   [minLij , |T|]. 

∑ 𝒀𝒊𝒋𝒅  ≤ 𝟏

|𝑻|

𝒅=𝒎𝒊𝒏𝑳𝒊𝒋 

,              ∀𝑖 ∈ 𝑁𝑃 ;  ∀ 𝑗 ∈ 𝑀𝑖  

2. Demand Constraints: Those constraints ensure that total production volume for 

each product in each period cannot exceed the demand forecasted in that period. 

(2.1) for existing products: 

𝑿𝒊𝒋𝒕 ≤  𝑬𝑷𝑫𝒊𝒋𝒕 ∗ (𝟏 − ∑ ∑ 𝒀𝒍𝒋𝒅 × 𝒆𝒊𝒋𝒍𝒕

𝒕

𝒅=𝒎𝒊𝒏𝑳𝒍𝒋 (𝒍,𝒋)∈ 𝑺𝑺𝒊𝒋𝒕

) , ∀𝑖 ∈ 𝐸𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡

∈ 𝑇 

 

where    

 𝑆𝑆𝑖𝑗𝑡  =  {(𝑙, 𝑗) ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃 |  𝑚𝑖𝑛𝐿𝑙𝑗  ≤ 𝑡 ≤ |𝑇|}, ∀ 𝑖 ∈ 𝐸𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡 ∈ 𝑇 

 𝐸𝑃𝐷𝑖𝑗𝑡 = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡  + ∑ 𝑛𝑖𝑘𝑗 × 𝑃𝑘𝑗𝑡𝑘∈𝑅𝑖𝑗∩ 𝐸𝑃 , ∀ 𝑖 ∈ 𝐸𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡 ∈

𝑇 

                    𝑒𝑖𝑗𝑙𝑡 =  𝛽0 − 𝛽1 ×   𝑃𝑙𝑗𝑡 ,   ∀ 𝑖 ∈ 𝐸𝑃;   𝑗 ∈ 𝑀𝑖;  𝑙 ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃 

 

Regarding this constraint set, it should be noted that the potential demand for an 

existing product is not expected to be completely cannibalised by the new products. 

Since the problem considers the medium/long-term products and the product-line 

level, the cannibalisation at this level is not expected to be as severe as at 

model/variant level and the firm would not prefer to launch too many new product-

lines in the same planning horizon (at most two new lines seem realistic). Therefore, 
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the second term of 𝐸𝐷𝑖𝑗𝑡 (i.e. the term in the second parenthesis) is not exceeed 1 

and an infeasibility problem because of the negativity of the right-hand-side of the 

constraint is not expected to occur.  

(2.2) for new products: 

𝑿𝒊𝒋𝒕 ≤ 𝑵𝑫𝒊𝒋𝒕 × ∑ 𝒀𝒊𝒋𝒅

𝒕

 𝒅=𝒎𝒊𝒏𝑳𝒊𝒋

,   ∀𝑖 ∈ 𝑁𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗 , 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| 

where    𝑁𝐷𝑖𝑗𝑡 = 𝑓(𝑃𝑖𝑗𝑡) = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡 

 

3. Capacity Constraints: There are three capacity constraints, defined as follows. 

(3.1) Total resource consumption cannot exceed the capacity available in regarding 

period: 

∑ 𝒄𝒊 × 𝑿𝒊𝒋𝒕

(𝒊 ,   𝒋) ∈ 𝑺𝒕

≤  𝑪𝒕               ∀𝑡 =  1, 2, … , |𝑇| 

where 

 𝑆𝑡 =  {(𝑖 ∈ 𝑁𝑃;  𝑗 ∈ 𝑀𝑖) |  𝑚𝑖𝑛𝐿𝑖𝑗  ≤ 𝑡 ≤ |𝑇|} ∪ {𝑖 ∈ 𝐸𝑃; 𝑗 ∈ 𝑀𝑖},   ∀𝑡 =  1, 2, … , |𝑇|  

 

(3.2) Total production capacity available in each period after adding the amount of 

expansion:  

𝑪𝒕 =  𝑪𝒕−𝟏 +  ∆𝒕                        ∀𝑡 =  1, 2, … , |𝑇| 

(3.3) Total capacity in a period cannot exceed the maximum capacity, 𝑀𝐴𝑋𝐶𝑡: 

𝑪𝒕  ≤  𝑴𝑨𝑿𝑪𝒕                            ∀𝑡 =  1, 2, … , |𝑇| 
 

4. Nonnegativity Constraints: 

𝑌𝑖𝑗𝑑   ∈ {0,1},  ∀ 𝑖 ∈ 𝑁𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , 𝑑 =  𝑚𝑖𝑛𝐿𝑖𝑗𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇|   
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𝑋𝑖𝑗𝑡  ≥ 0  and integer5            ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝑀𝑖 , ∀ 𝑡 ∈ 𝑇 for 𝑖 ∈ 𝐸𝑃  and  

                                     ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗, 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| for 𝑖 ∈ 𝑁𝑃 

∆𝑡  ≥ 0                                     ∀𝑡 =  1, 2, … , |𝑇| 

 

Objective Function:  

Maximise the profit = Quantity sold ×Contribution Margin (= Price - variable costs) 

–      Total Capacity expansion costs  

𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝑶𝑭 =  ∑ ∑ 𝑿𝒊𝒋𝒕 × (𝑷𝒊𝒋𝒕 − 𝑽𝒊𝒕)

    (𝒊 ,   𝒋) ∈ 𝑺𝒕

|𝑻|

𝒕=𝟏

− ∑ 𝜷𝒕 × ∆𝒕 

|𝑻|

𝒕=𝟏

 

The deterministic model given above is NP-hard, since it contains an integer 

bounded knapsack problem as a special case. To see this let  

| J | = 1 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑚𝑎𝑟𝑘𝑒𝑡), | T | = 1 (𝑠𝑖𝑛𝑔𝑙𝑒 𝑝𝑒𝑟𝑖𝑜𝑑) with 𝑚𝑖𝑛𝐿𝑖 = 1  for all i 

(which leads the binary variable, 𝑌𝑖𝑗𝑑 , to become redundant) and make that sales of 

all products are independent of each other. If any capacity addition is not allowed 

(by defining the soft capacity constraints as hard constraints), the resulting problem 

reduces to an integer bounded knapsack problem that is known as NP-hard (Kellerer 

et al., 2004).  

It should be noted that although it is stated an infeasibility problem in the case of 

that the second term of 𝐸𝐷𝑖𝑗𝑡 (i.e. the term in the second parenthesis) exceeds one 

and thereby the right-hand-side of the constraint set #2.1 becomes negative is not 

expected to occur in the context of this thesis work, in real life those kinds of 

situations may also arise. Therefore, in order to avoid from any infeasibilities in the 

                                                 

 

 
5 The integrality restriction of this parameter may be relaxed in order to get easier solutions for the 

model. A noninteger solution can be obtained by relaxation, which may be rounded to its closest 

integer value. As a result, an infeasibility may occur; however, since the integer variables take very 

large values in this problem, the rounding up or rounding down operation would not significantly 

affect the optimal value of objective function. Besides, this relaxation also provides to solve the 

stochastic model more efficiently. 
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mathematical model it should be ensured that the right-hand-sides of those 

constraints take nonnegative values. For this purpose, the following revision should 

be made in the constraint set #2.1: 

𝑿𝒊𝒋𝒕 ≤ max {𝟎,   𝑬𝑷𝑫𝒊𝒋𝒕 × (𝟏 − ∑ ∑ 𝒀𝒍𝒋𝒅 × 𝒆𝒊𝒋𝒍𝒕

𝒕

𝒅=𝒎𝒊𝒏𝑳𝒍𝒋 (𝒍,𝒋)∈ 𝑺𝑺𝒊𝒋𝒕

)},  

∀𝑖 ∈ 𝐸𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡 ∈ 𝑇 

In order to preserve the linearity of the model, these constraints are linearised as 

given below and then added to the mathematical model instead of the constraint set 

#2.1. In addition to that, a new term is added to the objective function of the model. 

 Define two nonnegative variables as 𝜏𝑖𝑗𝑡 and 𝛾𝑖𝑗𝑡. 

 For ∀𝑖 ∈ 𝐸𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , ∀ 𝑡 ∈ 𝑇: 

o 𝑋𝑖𝑗𝑡 ≤ 𝜏𝑖𝑗𝑡 + 𝛾𝑖𝑗𝑡     

o 𝑋𝑖𝑗𝑡 ≤  𝐸𝑃𝐷𝑖𝑗𝑡 × (1 − ∑ ∑ 𝑌𝑙𝑗𝑑 × 𝑒𝑖𝑗𝑙𝑡
𝑡
𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 (𝑙,𝑗)∈ 𝑆𝑆𝑖𝑗𝑡

) + 𝜏𝑖𝑗𝑡 +

𝛾𝑖𝑗𝑡 

o 𝜏𝑖𝑗𝑡 ≥ 𝐸𝑃𝐷𝑖𝑗𝑡 × (1 − ∑ ∑ 𝑌𝑙𝑗𝑑 × 𝑒𝑖𝑗𝑙𝑡
𝑡
𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 (𝑙,𝑗)∈ 𝑆𝑆𝑖𝑗𝑡

) 

o 𝛾𝑖𝑗𝑡 ≥ − 𝐸𝑃𝐷𝑖𝑗𝑡 × (1 − ∑ ∑ 𝑌𝑙𝑗𝑑 × 𝑒𝑖𝑗𝑙𝑡
𝑡
𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 (𝑙,𝑗)∈ 𝑆𝑆𝑖𝑗𝑡

) 

o 𝜏𝑖𝑗𝑡 ≥ 0 and 𝛾𝑖𝑗𝑡 ≥ 0 

 Revise the objective function of the model as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑂𝐹 

=  ∑ ∑ (𝑋𝑖𝑗𝑡 × (𝑃𝑖𝑗𝑡 − 𝑉𝑖𝑡) − (𝜏𝑖𝑗𝑡 + 𝛾𝑖𝑗𝑡))

    (𝑖 ,   𝑗) ∈ 𝑆𝑡

|𝑇|

𝑡=1

− ∑ 𝛽𝑡 × ∆𝑡  

|𝑇|

𝑡=1

 

 

Furthermore, as implied above, product-line planning problem involves both 

launching and capacity expansion decisions, and annual production amounts (in 

other words, sales targets). The decision process in this problem can be partitioned 

into two stages. Product launching and capacity expansion decisions are taken at 
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the beginning of the planning horizon based on a limited information regarding 

selling price, demand, production cost and cannibalisation rate due to the long lead 

time for capacity installation and making new products ready for the target markets. 

On the other hand decisions for production amounts (sales targets) are postponed 

until the information about the uncertain parameters are revealed at the beginning 

of each period, i.e. a specific scenario is realised. Thus, product-line planning 

problem fits in with two-stage stochastic programming approach under the 

condition that the decision maker deals with uncertainities within the problem 

environment. Therefore, the deterministic model given above is extended to a two-

stage stochastic optimisation model, in which the optimisation is done over all 

considered future realisations of uncertain parameters, i.e. scenarios, and it is 

assumed that uncertainty of  selling price, demand, production cost and 

cannibalisation rate are represented by known probability distributions that are 

estimated using historical data. This stochastic model is given in the following 

section. 

3.3. Two-Stage Stochastic Programming Model with Recourse 

In this section, a two-stage stochastic programming (TSP) model with recourse in 

order to handle the uncertain parameters, i.e. demand, price, variable production 

cost and cannibalisation rate, is developed by revising the deterministic model 

presented in Section 3.2. 

As mentioned in Section 2.4.1, the multi-period product-mix problem under 

uncertainty handled in this study can be formulated as a two-stage or multi-stage 

stochastic programming model. In the two-stage stochastic programming models, 

the decisions in the problem context are partitioned into two sets: (1) first-stage 

decisions and (2) second-stage decisions. The first-stage decisions, which include 

capacity expansion and new product launching decisions considered for the entire 

planning horizon, are made at the beginning of the planning horizon before the 

uncertainty is revealed, and are not changed over the periods. Then, the second-

stage decisions, which include sales volumes, are made in each period based on the 
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first-stage decisions and the certain realisations of the uncertain parameters. Though 

the two-stage stochastic programming models are commonly used in the literature, 

its main drawback is not to have any flexibility in the capacity expansion and new 

product launching plans in accordance with the realisations of parameters that are 

considered as uncertain at the beginning of the planning horizon (Huang and 

Ahmet, 2009). On the other hand, the multi-stage stochastic programming models 

allow the decision makers to revise the capacity expansion and new product 

launching plans when more information about the uncertainties is revealed at each 

time stage. Thus, as also mentioned in Section 2.4.1, the multi-stage stochastic 

programming models provide a dynamic decision making process over the entire 

planning horizon and more flexibility than the two-stage stochastic programming 

models (Huang, 2005; Huang and Ahmet, 2005; Huang and Ahmet, 2009). 

Therefore, the multi-period product-mix problem handled in this study should be 

formulated as a multi-stage stochastic programming model in order to represent the 

dynamism of the real life better. However, it is more difficult to solve multi-stage 

stochastic programming those models because of their computational complexity 

due to the number of stages and the number of variables than the two-stage models 

(Huang, 2005; Solak, 2007). In our problem context, many uncertain parameters 

involving demand, selling price, production cost and cannibalisation rate, product 

interactions as well as two main decisions, i.e. capacity expansion and new product 

launching decisions, are handled and it should be noted that there is already a 

complexity due to this problem framework. In addition to this complexity, if the 

problem is formulated as a multi-stage stochastic programming model, there will 

be another complexity, and thereby additional computational burden due to the 

structure of the multi-stage stochastic programming model. However, our main 

motivation in this study is to propose a comprehensive model and to be able to do 

analyses for detecting which problem parameters (both deterministic and uncertain 

parameters) are significant on the solutions. Therefore, in order to avoid from the 

additional computational burden that may cause difficulties while performing the 

analyses, we formulate the problem that is handled for the first time in this context 

as a two-stage stochastic model for all practical purposes.   
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The main assumptions of the proposed two-stochastic programming model are as 

follows: 

1- The future realisations of uncertain parameters in a period (scenarios) does 

not affect the realisations of uncertain parameters in the previous stages, and 

scenarios and their associated probabilities are independent of the decisions 

taken. 

2- The events, e.g. the evolution of selling prices or the demand-price 

relationships, for each demand market are independent. 

3- Price, demand, variable production cost and cannibalisation rate are 

uncertain parameters whose probability distributions are known and the 

uncertainties are expressed by a set of scenarios.  

4- All other parameters such as unit capacity usage, maximum capacity in each 

period and capacity addition cost are considered as deterministic, i.e. the 

expected value of those parameters are used. 

5- In TSP model, two sets of decisions to be made are considered: the first-

stage decisions are made before the actual realization of uncertain 

parameters and then the second stage decisions are made as recourse 

actions at a later stage, based on the information obtained from the first-

stage decisions after the uncertainties are disclosed (Morales, 2007).  

The sequence of events can be represented as follows: 

 

 

 

 

 

In the beginning of the planning horizon, new products that will be produced (made 

available) over the planning horizon and their launching times, and the amount of 

additional capacity are determined as first-stage decisions, i.e. 𝑌𝑖𝑗  𝑎𝑛𝑑 ∆𝑡  . Those 

are implemented without waiting for the realization of random events (certain 

demand, price and cost values in a period). Since making any product-line available 

All possible 

realisations of 

uncertain parameters 
𝑌𝑖𝑗  𝑎𝑛𝑑 ∆𝑡   

A specific 

scenario (s) is 

realised  
𝑋𝑖𝑗𝑡

𝑠
 

Stage 1 Stage 2 

Time 
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to be produced at the time it will be introduced to a market needs a preparation time 

(e.g. one or two years), waiting until the random variables becomes certain may 

cause not offering a new product to any market in a timely manner or not having 

enough capacity for satisfying the demand that will contribute to the profit. 

Therefore, the aim of TSP model is to make the first-stage decisions considering 

the evolution of random parameters throughout the planning horizon by means of 

minimising the sum of the first-stage and the expected second-stage costs (Morales, 

2007; Sahinidas, 2004). Then, after a possible scenario, 𝑠, is realised, i.e. demand, 

price, cost and cannibalisation rate parameters becomes more certain, the volume 

of the products that will be sold in the second stage are determined by also 

considering the capacity and product launching decisions made in the first stage. 

Actually, the second-stage costs can be considered as precautions to be taken in 

order to hinder any possible infeasibilities resulting from a certain realisation of 

uncertain parameters (Morales, 2007).   

In accordance with two sets of decisions to be taken, two sets of constraints are also 

defined: (1) first stage-constraints regarding first stage decisions (new product 

launching and capacity expansion decisions) and (2) second-stage constraints 

regarding the scenario-based decisions (volume of products at each market and in 

each period under a set of scenarios). Thus, the mathematical representation of TSP 

model can be defined. 

In order to build the two-stage stochastic programming model, firstly a discrete set 

of scenarios that are represented by s is defined as follows: 

Ω = {s│s = 1,2, … , |S| } 

Here, the scenario set, Ω, denotes the set of all possible outcomes of random 

parameters and is assumed to be finite and discrete while constructing the stochastic 

model. For the continuous case, it is also possible to use this model by creating a 

finite   via discretisation or direct sampling from the probability density functions.  

Secondly, the probability of occurrence for each scenario 𝑠 ∈ Ω is defined as , 𝑝𝑠.  
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The representations for uncertain parameters considered in this study can be given 

as follows: 

𝐸𝑃𝐷𝑖𝑗𝑡
𝑠

 : (potential) demand of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t, under   

scenario  𝑠 ∈ Ω 

𝑁𝐷𝑖𝑗𝑡
𝑠

 : demand of product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t, under scenario  𝑠 ∈

Ω 

𝑃𝑖𝑗𝑡
𝑠

     : selling price of product i in market 𝑗 ∈ 𝑀𝑖 at period t, under scenario 𝑠 ∈ Ω 

𝑉𝑖𝑡
𝑠
  : variable unit production cost of product i at period t, under scenario 𝑠 ∈ Ω 

𝑒𝑖𝑗𝑙𝑡
𝑠

 : cannibalization rate of product l ∈ 𝑁𝑃 on product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at 

period t, under scenario 𝑠 ∈ Ω, 0 < 𝑒𝑖𝑗𝑙𝑡
𝑠 < 1 

First-stage decision variables:  fixed in the second stage of TSP model and their 

input data are free of uncertainty.  

𝑌𝑖𝑗𝑑 ∶  1, if product line 𝑖 ∈ 𝑁𝑃  is introduced to market  𝑗 ∈ 𝑀𝑖 in period d and 

          0, otherwise. 

: Additional capacity in period t (for adjusting the medium-term capacity if 

required) 

:   Total production capacity available at time t, allocated for the regarding 

product class, which includes the lines defined in set I. 

Second-stage decision variables: depends upon both the first stage decisions and 

on the realization of the stochastic parameters. 

𝑋𝑖𝑗𝑡
𝑠  : Number of units of product i to be available (sold) in market j at period t, 

under scenario 𝑠 ∈ Ω 
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Objective Function:  

maximise the expected profit over all scenarios, interpreted as the expected profit 

(i.e., long-run average profit) if the product plan given by the variables Y and 

production plan given by the variables  are implemented. 

max 𝑧 = ∑      ∑ ∑ 𝑝𝑠 × 𝑋𝑖𝑗𝑡
𝑠 × (𝑃𝑖𝑗𝑡

𝑠 − 𝑉𝑖𝑡
𝑠)

    (𝑖 ,𝑗) ∈ 𝑆𝑡

|𝑇|

𝑡=1𝑠∈Ω

− ∑ 𝛽𝑡 × ∆𝑡 

|𝑇|

𝑡=1

 

 

First-stage Constraints: 

1. New Product Launching Constraints:  

∑ 𝑌𝑖𝑗𝑑  ≤ 1

|𝑇|

𝑑=𝑚𝑖𝑛𝐿𝑖𝑗 

,              ∀𝑖 ∈ 𝑁𝑃 ;  ∀ 𝑗 ∈ 𝑀𝑖   

2. Capacity Constraints:  

𝐶𝑡 =  𝐶𝑡−1 +  ∆𝑡                             ∀𝑡 =  1, 2, … , |𝑇| 

𝐶𝑡  ≤  𝑀𝐴𝑋𝐶𝐴𝑃𝑡                            ∀𝑡 =  1, 2, … , |𝑇| 
 

3. Nonnegativity Constraints: 

  𝑌𝑖𝑗𝑑   ∈ {0,1}           ∀ 𝑖 ∈ 𝑁𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , 𝑑 =  𝑚𝑖𝑛𝐿𝑖𝑗𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| 

  ∆𝑡  ≥ 0                    ∀ 𝑡 =  1, 2, … , |𝑇| 
 

Second-stage Constraints: 

1. Demand Constraints: 

For existing products: 

𝑋𝑖𝑗𝑡
𝑠 ≤  𝐸𝑃𝐷𝑖𝑗𝑡

𝑠 × (1 − ∑ ∑ 𝑌𝑙𝑗𝑑 × 𝑒𝑖𝑗𝑙𝑡
𝑠

𝑡

𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 (𝑙,𝑗)∈ 𝑆𝑆𝑖𝑗𝑡

) 
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∀ 𝑖 ∈ 𝐸𝑃, ∀ 𝑗 ∈ 𝑀𝑖, ∀ 𝑡 ∈ 𝑇, ∀ 𝑠 ∈ 𝛺  

where 

𝑆𝑆𝑖𝑗𝑡  =  {(𝑙, 𝑗) ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃 |  𝑚𝑖𝑛𝐿𝑙𝑗  ≤ 𝑡 ≤ |𝑇|} for 𝑖 ∈ 𝐸𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , ∀ 𝑡 ∈ 𝑇 

𝐸𝑃𝐷𝑖𝑗𝑡
𝑠 = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡

𝑠  + ∑ 𝑛𝑖𝑘𝑗 × 𝑃𝑘𝑗𝑡
𝑠

𝑘∈𝑅𝑖𝑗∩ 𝐸𝑃

 

  ∀ 𝑖 ∈ 𝐸𝑃, ∀ 𝑗 ∈ 𝑀𝑖, ∀ 𝑡 ∈ 𝑇, ∀ 𝑠 ∈ 𝛺  

𝑒𝑖𝑗𝑙𝑡
𝑠 =  𝛼𝑖𝑗𝑙 − 𝛽𝑖𝑗𝑙 ×  𝑃𝑙𝑗𝑡

𝑠  ,    ∀ 𝑖 ∈ 𝐸𝑃, 𝑗 ∈ 𝑀𝑖 , 𝑙 ∈ 𝑅𝑖𝑗 ∩  𝑁𝑃 

As implied for the deterministic mathematical model, in order to avoid from any 

infeasibilities in the stochastic model, which may be occurred due to the possibility 

of that the right-hand-sides of those demand constraints take negative values, the 

same operation as in the deterministic model should be made for those constraints 

by revising 𝜏𝑖𝑗𝑡 and  𝛾𝑖𝑗𝑡 variables as 𝜏𝑖𝑗𝑡
𝑠  and 𝛾𝑖𝑗𝑡 

𝑠 . 

For new products: 

𝑋𝑖𝑗𝑡
𝑠  ≤ 𝑁𝐷𝑖𝑗𝑡

𝑠 × ∑ 𝑌𝑖𝑗𝑑

𝑡

 𝑑=𝑚𝑖𝑛𝐿𝑖𝑗

 

∀ 𝑖 ∈ 𝑁𝑃; ∀ 𝑗 ∈ 𝑀𝑖;  ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗 , 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇|; ∀ 𝑠 ∈ 𝛺  

where 

𝑁𝐷𝑖𝑗𝑡
𝑠 = 𝑓(𝑃𝑖𝑗𝑡

𝑠 ) = 𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × 𝑃𝑖𝑗𝑡
𝑠 . 

2. Capacity Constraints:  

∑ 𝑐𝑖 × 𝑋𝑖𝑗𝑡
𝑠

(𝑖 ,   𝑗) ∈ 𝑆𝑡

≤  𝐶𝑡               ∀ 𝑡 =  1, 2, … , |𝑇|, ∀ 𝑠 ∈ 𝛺   

𝑆𝑡 =  {(𝑖 ∈ 𝑁𝑃;  𝑗 ∈ 𝑀𝑖) |  𝑚𝑖𝑛𝐿𝑖𝑗  ≤ 𝑡 ≤ |𝑇|} ∪ {𝑖 ∈ 𝐸𝑃; 𝑗 ∈ 𝑀𝑖}  for ∀𝑡 =  1, 2, … , |𝑇| 

3. Nonnegativity Constraints: 

𝑋𝑖𝑗𝑡
𝑠  ≥ 0       ∀ 𝑖 ∈ 𝐼; ∀ 𝑗 ∈ 𝑀𝑖;   ∀ 𝑠 ∈ 𝛺   

                       ∀ 𝑡 ∈ 𝑇 for 𝑖 ∈ 𝐸𝑃  and ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗, 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| for 𝑖 ∈ 𝑁𝑃 
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The model presented above, which considers a discrete set of scenarios, is 

equivalently formulated as a large-scale linear program (i.e. its extensive form) and 

can be solved using standard MIP solution procedures. In fact, a stochastic 

programming problem cannot be solved directly in its extensive form, because this 

will increase the complexity of the model and cause a long computation time if the 

scenario set is large-scale. Therefore, the stochastic programming model, under the 

condition that recourse function is convex, can be efficiently solved using 

decomposition-based strategies such as Langrangian and Benders schemes.   

If there are a large but finite number of scenarios, TSP model is tractable by using 

large-scale linear programming techniques such as Benders’ decomposition 

(Bertsimas, 2011). Because of this reason, for obtaining an efficient solution, 

Benders’ decomposition method (also known as L-shaped method that converges 

to optimal solution) is used for solving the two-stage stochastic program that cannot 

be solved directly in its extensive form, given above.  

In order to check whether the developed stochastic model above with a certain 

number of scenarios is solved in a reasonable time, three problem instances (one is 

small-sized, the other is medium-sized and the last one is large-sized) are tested 

with an increasing number of scenarios (those instances are also used for 

computational study given in Section 5.2 and one can refer to this section for the 

details of them). The results are given in Table 26. 

 

 

 

                                                 

 

 
6 Those problem instances are solved by GAMS 22.2/CPLEX 10.0 on a computer with 2.2 GHz 

speed and 16 GB of RAM. 
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Table 2. Computational results for some problem instances in extensive form 

Problem 

# of 

scenarios 

# of first stage 

decision 

variables 

# of second 

stage 

decision 

variables 

Solution 

time 

(seconds) No. 

# of 

existing 

lines 

# of 

new 

lines 

# of 

markets 

# of 

periods 

1 4 1 10 3 

500 36 75000 3 

1000 36 150000 9.2 

5000 36 750000 267 

10000 36 1500000 990 

2 6 2 20 5 

500 210 400000 193 

1000 210 800000 543 

1500 210 1200000 
Out of 

memory 

3 8 4 20 5 

500 1210 600000 480 

1000 1210 1200000 
Out of 

memory 

 

Based on the results given in Table 2, the extensive form of Problem 1 can be solved 

in a very short time even if there are very large number of scenarios, i.e. 10000. 

However, when it is attempted to solve the extensive form of Problem 2 with 1500 

scenarios and of Problem 3 with 1000 scenarios, CPLEX optimiser resulted in an 

out-of-memory error. Besides, the solution approach given in Section 4.1 may 

require more than 1000 number of scenarios for some cases in order to obtain an 

acceptable solution; therefore, L-shaped method converging to the optimal solution 

shoud be used at least for some medium and large-sized problem, e.g. the Problem 

2 and Problem 3 given above. By applying L-shaped method, the extensive form of 

Problem 2 with 1500 scenarios and Problem 3 with 1000 scenarios could be solved 

optimally in 3900 seconds and 2188 seconds, respectively. Therefore, L-shaped 

method is adapted for TSP in order to get efficient solutions when it could not be 

possible to solve the entensive form of TSP. 

In the next section, firstly, the generalised L-shaped method, secondly its special 

form developed for our TSP model will be presented. Then, an overall solution 

approach for solving TSP will be given. 
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3.4. L-shaped Method for Solving TSP with a Finite Number of 

Scenarios  

L-shaped method is developed for solving the extensive form of stochastic 

programs (EFSP), which involves all possible outcomes (scenarios) 𝑠 ∈ Ω. Solving 

EFSP may not be easy because of having too many realizations of 𝑠 ∈ Ω, therefore, 

the most frequently used method, L-shaped method (stochastic version of Benders 

decomposition) is employed, which is based on “building an outer linearization of 

the recourse cost function and a solution of the first stage problem plus this 

linearization” (Birge and Louveaux, 2011, p.181).  This method separates EFSP 

into a master problem and a set of independent sub-problems setting up for each 

scenario and which are used to generate cuts (Infanger, 1997). The master problem, 

sub-problems, cuts and the algorithm of this method is summarised as follows: 

The Original Model (EFSP) with discrete set of scenarios: 

                                  minimise
𝑦

   𝑐𝑇𝑦 + ∑ 𝑝𝑠𝑠∈Ω  𝑑𝑠
𝑇𝑥𝑠 

                                  s.t. 

𝐴𝑦 = 𝑏  

                                                    - 𝑇𝑠𝑦 +  𝑊𝑠𝑥 = ℎ𝑠  

         𝑦 ≥ 0,  𝑥𝑠  ≥ 0 

where 𝑠 denotes a scenario or possible outcome, 𝑠 ∈ 𝛺; 𝑝𝑠 denotes the occurrence 

probability of the scenarios, 𝑠 ∈ 𝛺; 𝑦 represents the first stage variables; 𝑥𝑠 

represents the second stage variables; and 𝐴𝑦 = 𝑏, 𝑦 ≥ 0 represents the first stage 

constraints and −𝑇𝑠𝑦 +  𝑊𝑠𝑥 = ℎ𝑠,  𝑥𝑠  ≥ 0 second-stage constraints. 

L-shaped Method / Benders’ Algorithm (A Generalised Form): 

The algorithmic steps of this method, for solving the deterministic equivalent linear 

model, given above, can be summarised as follows (Kalvelagen, 2003): 
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Step 1: Initialization 

𝑘    ∶=    1 {iteration number} 

𝑈𝐵 ∶=   ∞ {Upper bound} 

𝐿𝐵 ∶= −∞ {Lower bound} 

Solve the initial master problem: 

minimise
𝑦

   𝑐𝑇𝑦  

𝐴𝑦 = 𝑏 

𝑦 ≥ 0 

�̅�𝑘 ∶=  𝑦∗ {optimal values} 

Step 2: Sub problems (a series of problems dealing with the second-stage 

variables)  

do 

    Solve the sub problem, 𝑠 ∈ 𝛺: 

𝑚𝑖𝑛   𝑑𝑠
𝑇𝑥𝑠 

𝑊𝑠𝑥 = ℎ𝑠 + 𝑇𝑠�̅�𝑘  

𝑥𝑠  ≥ 0 

   �̅�𝑠
𝑘 ∶=  𝑥𝑠

∗{optimal values} 

   �̅�𝑠
𝑘 ∶=  𝜋𝑠

∗{optimal simplex multipliers}  

end for 

𝑈𝐵 ∶=   min{𝑈𝐵,   𝑐𝑇�̅�𝑘  +   ∑ 𝑝𝑠𝑠∈Ω  𝑑𝑠
𝑇�̅�𝑠

𝑘  }    

Step 3: Convergence test 

if   |𝑈𝐵 − 𝐿𝐵|/ |𝐿𝐵|  ≤  𝐴 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒  

 then   Stop: convergence is achieved 

       Return  �̅�𝑘 

end if 

else 



 

 
82 

Step 4: Master problem (focus on the first stage variables) 

do 𝑘 = 𝑘 + 1. 

Solve the master problem: 

                𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑐𝑇𝑦 +  𝜃  

                                    𝐴𝑦 = 𝑏 

                         𝜃 ≥  ∑ 𝑝𝑠𝑠∈Ω  [ �̅�𝑠
𝑙  ( ℎ𝑠 + 𝑇𝑠𝑦)]   𝑙 = 1, 2, … , 𝑘 − 1      

                                      𝑦 ≥ 0 

�̅�𝑘  ∶=  𝑦∗ {optimal values of first stage variables} 

�̅�𝑘  ∶=  𝜃∗  

𝐿𝐵 ∶=  𝑐𝑇�̅�𝑘 +   �̅�𝑘  

go to Step 2. 

The constraint involving 𝜃 is the Benders’ optimality cut generated by aggregating 

the simplex multipliers (single-cut). If any sub-problem becomes infeasible for 

some of the feasible values of first-stage variables, slightly different formulated 

cuts, called as feasibility cuts, need to be included to the model (for details see Birge 

and Louveaux, 2011, p.13). Besides, instead of adding feasibility cuts, it is also 

possible to derive some constraints (called as induced constraints) that must be 

satisfied in order to guarantee second-stage feasibility (Birge and Louveaux, 2011).  

In other version of L-shaped method, the multi-cut version, is also proposed in the 

stochastic programming literature, in which one cut per scenario 𝑠 ∈ Ω in the 

second stage is placed instead of one aggregated cut in single-cut version. By 

placing multiple cuts, it is possible to send more information to the master problem 

(Birge and Louveaux, 2011). Thus, the master problem at iteration 𝒌 is revised as 

follows: 

Step 4: Master problem at iteration 𝒌 (focus on the first stage variables) 

do 𝑘 = 𝑘 + 1. 
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Solve the master problem: 

                       𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   𝑐𝑇𝑦 + ∑ 𝜃𝑠 𝑠∈Ω    

                                           𝐴𝑦 = 𝑏 

                                      𝜃𝑠   ≥  𝑝𝑠[ �̅�𝑠
𝑟 ( ℎ𝑠 +  𝑇𝑠𝑦)]      𝑟 = 1, 2, … , 𝑘 − 1;   𝑠 ∈ 𝛺    

                                              𝑦 ≥ 0 

�̅�𝑘  ∶=  𝑦∗ {optimal values of first stage variables} 

𝜃�̅�
𝑘

 ∶=  𝜃𝑠
∗ 

𝐿𝐵 ∶=  𝑐𝑇�̅�𝑘 +  ∑ 𝜃�̅�
𝑘

  

𝑠∈Ω

  

go to Step 2. 

Considering our problem, TSP, given in Section 3.3., the L-shaped method with 

multiple cuts can be employed to TSP with a set of finite number of scenarios, say 

𝛺, (e.g. a scenario set obtained by random sampling from continuous probability 

distributions of uncertain parameters or subjectively determined scenarios) by 

following the steps below. 

L-Shaped Method Adapted to TSP: 

Assume that the problem involves 𝑛 number of scenarios represented by a scenario 

set 𝛺 = {𝑠|𝑠 = 1,2,3, … . 𝑛} with 𝑝𝑠 denoting the occurrence probability of the 

scenario 𝑠 ∈ 𝛺. 

Step 1: Initialization 

𝑘    ∶= 1 {iteration number} 

𝑈𝐵 ∶=    ∞ {Upper bound} 

𝐿𝐵 ∶= −∞ {Lower bound} 

do 

Solve initial master problem without any cut: 

        min ∑ 𝛽𝑡 × ∆𝑡 

|𝑇|

𝑡=1
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 s.t. 

              ∑ 𝑌𝑖𝑗𝑑  ≤ 1
|𝑇|
𝑑=𝑚𝑖𝑛𝐿𝑖𝑗 ,        ∀𝑖 ∈ 𝑁𝑃 ;  ∀ 𝑗 ∈ 𝑀𝑖   

       𝐶𝑡 =  𝐶𝑡−1 +  ∆𝑡               ∀𝑡 =  1, 2, … , |𝑇| 

       𝐶𝑡  ≤  𝑀𝐴𝑋𝐶𝐴𝑃𝑡               ∀𝑡 =  1, 2, … , |𝑇| 

                𝑌𝑖𝑗𝑑  ∈ {0,1} ,    ∀ 𝑖 ∈ 𝑁𝑃; ∀ 𝑗 ∈ 𝑀𝑖;   𝑑 =  𝑚𝑖𝑛𝐿𝑖𝑗𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| 

                 ∆𝑡  ≥ 0 ,               ∀𝑡 =  1, 2, … , |𝑇| 

�̅�𝑘 ∶=  𝑌∗  {optimal values} 

∆̅𝑘  ∶=  ∆∗  {optimal values} 

Step 2: Sub-problems (a series of problems dealing with the second stage 

variables):  

For each 𝑠 ∈ 𝛺;  

Solve the sub problem, given �̅�𝑘 and  ∆̅𝑘 as the optimal solution to the master 

problem 

             𝑧𝑠(�̅�𝑘, ∆̅𝑘) = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  − ∑ ∑ 𝑋𝑖𝑗𝑡
𝑠 × (𝑃𝑖𝑗𝑡

𝑠 − 𝑉𝑖𝑡
𝑠)    (𝑖 ,𝑗) ∈ 𝑆𝑡

|𝑇|
𝑡=1  

Subject to: 

𝜋𝑖𝑗𝑡
𝑘,𝑠

 : 𝑋𝑖𝑗𝑡
𝑠 ≤  𝐸𝑃𝐷𝑖𝑗𝑡

𝑠 × (1 − ∑ ∑ �̅�𝑙𝑗𝑑
𝑘 × 𝑒𝑖𝑗𝑙𝑡

𝑠𝑡
𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 (𝑙,𝑗)∈ 𝑆𝑆𝑖𝑗𝑡

) , 𝑖 ∈ 𝐸𝑃, ∀ 𝑗 ∈ 𝑀𝑖, ∀ 𝑡 ∈

𝑇  

𝛿𝑖𝑗𝑡
𝑘,𝑠

 :  𝑋𝑖𝑗𝑡
𝑠  ≤ 𝑁𝐷𝑖𝑗𝑡

𝑠 × ∑ �̅�𝑖𝑗𝑑
𝑘𝑡

 𝑑=𝑚𝑖𝑛𝐿𝑖𝑗
 ,    

            ∀𝑖 ∈ 𝑁𝑃, ∀ 𝑗 ∈ 𝑀𝑖 , ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗, 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇|  

𝜇𝑡
𝑘,𝑠:       ∑ 𝑐𝑖 × 𝑋𝑖𝑗𝑡

𝑠
(𝑖 ,   𝑗) ∈ 𝑆𝑡

≤ 𝐶�̅�
𝑘 ,     ∀𝑡 =  1, 2, … , |𝑇|  

        𝑋𝑖𝑗𝑡
𝑠  ≥ 0 ,   ∀ 𝑖 ∈ 𝐼, ∀ 𝑗 ∈ 𝑀𝑖,   

                            ∀ 𝑡 ∈ 𝑇 for 𝑖 ∈ 𝐸𝑃  and ∀ 𝑡 =  𝑚𝑖𝑛𝐿𝑖𝑗, 𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| for 𝑖 ∈ 𝑁𝑃 

�̅�𝑠
𝑘 ∶=  𝑋𝑠

∗{𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒𝑠} 

𝜋𝑖𝑗𝑡
𝑘,𝑠

,  𝛿𝑖𝑗𝑡
𝑘,𝑠

,  𝜇𝑡
𝑘,𝑠

 : optimal simplex multipliers of sub-problem s, given Y̅k, C̅k,the 

first  stage decisions passed on iteration k to the subproblems 
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end for 

𝑈𝐵 𝑘 =   min{𝑈𝐵𝑘−1, ∑ 𝛽𝑡 ∗ ∆̅ 𝑘|𝑇|
𝑡=1  +  ∑ 𝑝𝑠𝑠∈Ω 𝑧𝑠(�̅�𝑘, ∆̅𝑘)  }    

Step 3: Convergence test 

if  |𝑈𝐵 𝑘 − 𝐿𝐵𝑘|/ |𝐿𝐵𝑘|  ≤  𝐴 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒, then 

     Stop: convergence is achieved. 

     Return �̅�𝑘 and  ∆̅𝑘 as the optimal solution to the original problem. 

else 𝑘 = 𝑘 + 1 

Step 4: Master problem (focus on the first stage variables) 

Solve the master problem:                                          

                               𝑣𝑘 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒   ∑ 𝛽𝑡 × ∆𝑡 
|𝑇|
𝑡=1 +  ∑ 𝜃𝑠 𝑠∈Ω                                                                           

Subject   to. 

           ∑ 𝑌𝑖𝑗𝑑  ≤ 1
|𝑇|
𝑑=𝑚𝑖𝑛𝐿𝑖𝑗 ,                    ∀𝑖 ∈ 𝑁𝑃 , ∀ 𝑗 ∈ 𝑀𝑖   

            𝐶𝑡 =  𝐶𝑡−1 +  ∆𝑡                             ∀𝑡 =  1, 2, … , |𝑇| 

           𝐶𝑡  ≤  𝑀𝐴𝑋𝐶𝐴𝑃𝑡                             ∀𝑡 =  1, 2, … , |𝑇| 

Optimality Cut:   

𝜃𝑠 ≥ ∑ 𝑝𝑠 [ ∑ ∑ ∑    𝜋𝑖𝑗𝑡
𝑟,𝑠 × 𝐸𝑃𝐷𝑖𝑗𝑡

𝑠

𝑡∈ 𝑇𝑗∈𝑀𝑖𝑖 ∈ 𝐸𝑃 

 

𝑠∈S

+  ∑ ∑ ∑ 𝛿𝑖𝑗𝑡
𝑟,𝑠 × 𝑁𝐷𝑖𝑗𝑡

𝑠 × ∑ 𝑌𝑖𝑗𝑑

𝑡

𝑑=𝑚𝑖𝑛𝐿𝑖𝑗

 

 

|𝑇|

𝑡=𝑚𝑖𝑛𝐿𝑖𝑗𝑗∈𝑀𝑖𝑖 ∈ 𝑁𝑃 

−  ∑ ∑   ∑  𝜋𝑖𝑗𝑡
𝑟,𝑠 × 𝐸𝑃𝐷𝑖𝑗𝑡

𝑠

|𝑇|

𝑡=𝑚𝑖𝑛{𝑚𝑖𝑛𝐿𝑓𝑗 ,𝑓 ∈ 𝑅𝑖𝑗}𝑗∈𝑀𝑖𝑖 ∈ 𝐸𝑃 

× ∑ 𝑒𝑖𝑗𝑙𝑡
𝑠 ∑ 𝑌𝑙𝑗𝑑

𝑡

𝑑=𝑚𝑖𝑛𝐿𝑙𝑗 𝑙∈ 𝑆𝑆𝑖𝑡

 +  ∑  𝜇𝑡
𝑟,𝑠 × 𝐶𝑡

𝑡∈ 𝑇

 ]  
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𝑟 =  1, 2, … , 𝑘 − 1 7 ; ∀ 𝑠 ∈ 𝛺 

𝑌𝑖𝑗𝑑   ∈ {0,1}              ∀ 𝑖 ∈ 𝑁𝑃; ∀ 𝑗 ∈ 𝑀𝑖;   𝑑 =  𝑚𝑖𝑛𝐿𝑖𝑗𝑚𝑖𝑛𝐿𝑖𝑗 + 1, … , |𝑇| 

∆𝑡  ≥ 0                       ∀𝑡 =  1, 2, … , |𝑇| 

𝜃  ≥ 0 

�̅�𝑘  ∶=   𝑌∗ {optimal values of first stage variables} 

∆̅𝑘  ∶ =   ∆∗ {optimal values of first stage variables} 

�̅�𝑠
𝑘  ∶ =  𝜃𝑠

∗ 

𝐿𝐵𝑘 ∶=   ∑ 𝛽𝑡 ∗ ∆̅ 𝑘 +  ∑ �̅�𝑠
𝑘

𝑠∈Ω

|𝑇|

𝑡=1

 

go to Step 2. 

 

As seen above, the algorithm starts with finding a solution set, �̅�1 𝑎𝑛𝑑 ∆̅1, obtained 

from the relaxed master problem (step 1)8. The master problem at iteration k is 

solved by adding optimality cuts to obtain a trial solution, �̅�𝑘, ∆̅𝑘 𝑎𝑛𝑑 �̅�𝑘. Given 

this solution, each sub-problem defined for each scenario 𝑠 ∈ S is optimally solved 

in order to calculate the expected second-stage costs, z (�̅�1, ∆̅1), and the coefficients 

and the right hand side of the optimality cut that will be add to the master problem 

in the next iteration. At each iteration of L-shaped method, a first-stage solution 

(�̅�𝑘, ∆̅𝑘 𝑎𝑛𝑑 �̅�𝑘), an upper bound (𝑈𝐵𝑘) and a lower bound (𝐿𝐵𝑘) for the stochastic 

problem is solved. The algorithm continues until the stopping criterion, 

                                                 

 

 
7 In this constraint, the first part, ∑ 𝑝𝑠[∑ ∑ ∑    𝜋𝑖𝑗𝑡

𝑟,𝑠 ∗ 𝐸𝑃𝐷𝑖𝑗𝑡
𝑠

𝑡∈ 𝑇𝑗∈𝑀𝑖𝑖 ∈ 𝐸𝑃   ]𝑠∈𝛺  denotes the constant 

of the optimality cut, and the remaining parts are the coefficients of the cut, which are calculated 

in each iteration. 
8 Since the potential demand for an existing product will not be completely cannibalised by the new 

products ( such a scenario will not be realistic), an infeasibility problem because of the negativity of 

the right-hand-side of the demand constraints defined for existing products in the second stage will 

not occur. Furthermore, this problem will also not be possible for the capacity constraints. Therefore, 

any feasibility cuts are added to the master problem. 
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 |𝑈𝐵 𝑘 − 𝐿𝐵𝑘|/ |𝐿𝐵𝑘|  ≤  𝐴 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 𝑣𝑎𝑙𝑢𝑒, is met. Then, the optimal 

solution for the original problem is reported as the best solution obtained: 

{�̅�∗,  ∆̅∗}  ∈ arg min {∑ 𝛽𝑡 × ∆̅ 𝑘|𝑇|
𝑡=1  +   ∑ 𝑝𝑠𝑠∈Ω 𝑧𝑠(�̅�𝑘, ∆̅𝑘), 𝑘 = 1,2, … }. 

L-shaped method whose main steps are presented above provides an exact solution 

for the original problem (TSP) on the condition that there are finite and discrete set 

of scenarios. However, for the problems wherein there are large number of 

scenarios, which make L-shaped method be not manageable/tractable for even 

discrete cases or there are infinite number of scenarios that are obtained through 

continuous probability distributions, it requires to reduce the scenario set to a 

tractable/manageable size. One of the most commonly used strategy for solving 

those kind of problems is to use Monte Carlo (random) sampling procedure to 

generate a certain number of scenarios instead of considering all realisations of 

random parameters and to find a solution for the original problem through solving 

a series of approximated problems (Mak et al.,1999; Shapiro and Homem-de-Mello, 

1998, Kleywegt et al., 2001; Bayraksan and Morton, 2011; Kim et al., 2015; 

Bidhandi and Patrick, 2017; Linderoth et al., 2002; Infanger, 1997; Infanger, 1992). 

This solution approach is known as Sample-Average Approximation (SAA) in the 

related literature. The next chapter presents a solution methodology based on a 

bounding technique consisting of SAA approach based on Monte Carlo random 

sampling. 
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CHAPTER 4 

 

THE SAMPLE AVERAGE APPROXIMATION APPROACH FOR THE 

TWO-STAGE STOCHASTIC PROGRAMMING MODEL 

 

 

The problem handled in this study deals with a two-stage stochastic programming 

model developed for the product-mix problem under uncertainty (TSP), in which 

there are too many random parameters characterised by continuous probability 

distributions. Since the scenarios representing the possible realisations of random 

parameters are generated from those distributions and thereby there are infinite 

number of scenarios, it is not possible to solve the deterministic equivalent model 

using the L-shaped method. Therefore, a solution approach based on 

approximation, bounding technique and random sampling method is developed. 

Firstly, the theoretical background of this approach and a flow diagram for the 

solution approach of TSP is presented in Section 4.1 and then performance 

measures for computational study that will be given in Chapter 5 is presented in 

Section 4.2. 

4.1. Solution Approach for TSP 

Instead of solving a large-scale stochastic program with a nonmanageable set of 

scenarios exactly, it requires approximately solving the original problem (OP) 

using a certain number of scenarios generated by a sampling procedure.  
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The original problem (Mak et al., 1999) : 

 

OP:    𝑧∗ =  𝑚𝑎𝑥
𝑥∈𝑋

𝐸𝑓(𝑥, 𝜔)                           𝑥∗ = argmax 
𝑥∈𝑋

𝐸𝑓(𝑥, 𝜔) 

    where 𝑓(𝑥, 𝜔)9 = 𝑐𝑥 + min
𝑦≥0

𝑏𝑦 

        𝑠. 𝑡.          𝐷𝑦 = 𝐴𝑥 + 𝑒 

𝑓: real-valued function 

𝑥: a vector of decision variables with  feasible set X  

𝜔: a vector of random variables  

In order to solve OP in a tractable and efficient way, at the beginning of the solution 

procedure, an independent sample 𝑆 with a size of |𝑆| = 𝑁 is drawn from the 

underlying distribution of possible outcomes (external sampling) and then the 

approximate problem (AP) is solved based on this sample. 

 

Approximate Problem: 

𝑂𝑃𝑁:    𝑧𝑁
∗ =  max

𝑥∈𝑋

1

𝑁
∑ 𝐸𝑓(𝑥, 𝜔𝑖)𝑁

𝑖=1  ,          𝑥𝑁
∗ = argmax

𝑥∈𝑋

1

𝑁
∑ 𝐸𝑓(𝑥, 𝜔𝑖)𝑁

𝑖=1   

𝜔𝑖: 𝑖 = 1, … , 𝑁, are independent and identically distributed from the distribution of 𝜔 

 

By virtue of sampling, 𝑂𝑃𝑁 with 𝑁 number of scenarios can be solved using L-

shaped method (all iterations proceed with the same sample drawn at the beginning 

of the solution approach)  in order to estimate the expected value of second-stage 

costs, and optimality and feasibility cuts at each iteration (Linderoth et al., 2006; 

Kim et al., 2011;  Bayraksan and Norton, 2009;  Kaut and Wallace, 2003; Kleywegt 

et al., 2001; Infanger, 1997; Infanger, 1992; Mak et al.,1999; Shapiro and Homem-

de-Mello, 1998). The procedure follows the same steps as the original L-shaped 

method, except from that the true expected second-stage costs, and optimality and 

feasibility cuts are approximated over a random sample S of size N instead of 𝛺 

(Dantzig and Infanger, 2005). Actually, the scenario set 𝛺 and occurrence 

                                                 

 

 
9 It is assumed that the first and second moments of 𝑓(𝑥, 𝜔) exist for all 𝑥 ∈ 𝑋 (Mak et al., 1999). 
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probability of scenario 𝑠 (i.e. 𝑝𝑠) interchange with the sample S of size N and 
1

𝑁
, 

respectively in the second and fourth steps of L-shaped method given in Section 

3.4.  

Approximate problems of the form 𝑂𝑃𝑁 with different samples S of size N 

generated randomly (a.k.a. Monte Carlo sampling) are used to determine a 

candidate solution �̂� for OP and to evaluate the quality of this solution by the way 

of bounding the optimality gap expressed as 𝐸𝑓(�̂�, 𝜔) − 𝑧∗ (the difference between 

the objective value of candidate solution and optimal solution of the original 

problem). Now, we give the details of the process of finding a candidate solution 

and of bounding the optimality gap that is defined as the difference between an 

upper bound and a lower bound, known as Monte Carlo bounds (Mak et al., 1999). 

Step 1: Monte Carlo sampling 

M independent sample sets of scenarios, each of which has a size of N, i.e. 

𝜔𝑗
1, 𝜔𝑗

2, … , 𝜔𝑗
𝑁  (i.i.d. from the distribution of 𝜔 in a general case or the scenario set 

𝛺 in discrete case) for 𝑗 = 1, 2, … , 𝑀 (𝑀 number of batches) are randomly 

generated. 

Step 2: Solving each approximate problem in the form of 𝑶𝑷𝑵 and estimating 

an upper bound (UB) for the optimal solution 𝒛∗ 

 

𝑖) For each 𝑗, an optimal solution is found using multi-cut version of L-shaped 

method, given in Section 3.4: 

𝑧𝑁
𝑗

=  max
𝑥∈𝑋

1

𝑁
∑ 𝐸𝑓(𝑥, 𝜔𝑗

𝑖)

𝑁

𝑖=1

 

Optimal first-stage solutions for 𝑗 = 1, 2, … , 𝑀:  �̂�𝑁
1 , �̂�𝑁

2 , … , �̂�𝑁
𝑀. 
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𝑖𝑖) The expected value of 𝑧𝑁, i.e. 𝐸𝑧𝑁
∗ , greater than or equal to the optimal value 

𝑧∗,is calculated as follows10: 

𝑧�̅�,𝑀 =  
1

𝑀
∑ 𝑧𝑁

𝑗

𝑀

𝑗=1

 

From the central limit theorem:  

√𝑀 [𝑧�̅�,𝑀 −  𝐸𝑧𝑁
∗ ]  

11

⇒  𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑢
2) 𝑎𝑠 𝑀 → ∞ where  𝜎𝑢

2 = 𝑣𝑎𝑟𝑧𝑁
∗ . 

 

This theorem, with 𝑠𝑢
2(𝑀), the standard sample variance estimator of 𝜎𝑢

2, pave the 

way for building a confidence interval for 𝐸𝑧𝑁
∗ . 

𝑠𝑢
2(𝑀) =

1

𝑀(𝑀 − 1)
∑(𝑧𝑁

𝑗
−  𝑧�̅�,𝑀)

2
𝑀

𝑗=1

 

𝑧�̅�,𝑀 is an unbiased estimator of the expected value of 𝑧𝑁, therefore, 𝑧�̅�,𝑀 provides 

an upper bound (UB) for the optimal solution, since it is an unbiased estimator of 

𝑧𝑁. 

 

Let  𝑠�̅�𝑁,𝑀

2 (𝑀) denote the standard sample variance estimator of 𝜎𝑢
2  and define: 

𝜀�̃� =
𝑡𝑀−1,𝛼 𝑠𝑢(𝑀)

√𝑀
  

This step, also known as batch-means approach (since the mean value of 𝑀 number 

of batches are used to calculate the UB), provides an upper bound on the optimal 

                                                 

 

 
10 Proof (Mak et al, 1999, p.49): 

𝜔𝑖: 𝑖 = 1, … , 𝑁, are i. i. d from the distribution of 𝜔: 

 

𝑧∗ =  max
𝑥∈𝑋

 𝐸𝑓(𝑥, 𝜔) =  max
𝑥∈𝑋

 𝐸
1

𝑁
∑ 𝐸𝑓(𝑥, 𝜔𝑖)𝑁

𝑖=1  ≤ 𝐸max
𝑥∈𝑋

 
1

𝑁
∑ 𝐸𝑓(𝑥, 𝜔𝑖)𝑁

𝑖=1 =  𝐸𝑧𝑁
∗ ; thus, 𝑧∗ ≤

 𝐸𝑧𝑁
∗ . 

This leads to confidence intervals on a upper bound for 𝑧∗. 

11 It stands for “convergence in distribution”. 
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objective function value for the original stochastic (TSP) model, i.e. 𝒛∗ and to build 

a confidence interval used for the solution quality. 

 Step 3: Estimating a Lower Bound for the optimal solution 𝒛∗ 

The following procedure is applied to find an estimator for the lower bound on the 

optimal solution 𝑧∗: 

𝑖) Find a candidate solution, �̂� ∈ 𝑋, using the solutions obtained from M number of 

approximate problems in Step 2: 

 A larger sample size 𝑁′ (evaluation sample, much larger than and 

independent of 𝑁) is generated to obtain an accurate estimate 𝑧
𝑁′
𝑗

 of the 

objective value 𝑧𝑁
𝑗
 of an optimal solution �̂�𝑁

𝑗
 of the approximate problem 

(Kleywegt et al., 2001). 

This strategy of using a larger sample size for finding the best solution 

among 𝑀 number of approximate solutions (batches) to determine the 

candidate solution, �̂�, is the result of the monotonicity property and the fact 

that given the specific values of decision variables found by solving the 

approximate problem using 𝑁 number of scenarios (Step 2), calculating 

the objective value of the approximate problem with a larger sample size 

𝑁′ requires less computational effort . 

The monotonicity property can be explained by the following theorem 

(Mak et al., 1999): 

𝜔𝑖: 𝑖 = 1, … , 𝑁, 𝑁 + 1 , are i.i.d from the distribution of 𝜔, and 𝑧𝑁
∗  and 

𝑧𝑁+1
∗  is the objective function value of the approximate problem with 𝑁 

and 𝑁 + 1, respectively. Then, 

𝐸𝑧𝑁+1
∗ =  𝐸max

𝑥∈𝑋
 [

1

𝑁 + 1
∑ 𝐸𝑓(𝑥, 𝜔𝑖)

𝑁+1

𝑖=1

] = 𝐸max
𝑥∈𝑋

 [
1

𝑁 + 1
∑

1

𝑁

𝑁+1

𝑖=1

∑ 𝑓(𝑥, 𝜔𝑖)

𝑁+1

𝑗=1,𝑗≠𝑖

] 
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                                           ≤  
1

𝑁 + 1
∑ 𝐸max

𝑥∈𝑋
 
1

𝑁

𝑁+1

𝑖=1

 ∑ 𝑓(𝑥, 𝜔𝑖)

𝑁+1

𝑗=1,𝑗≠𝑖

 

          =  𝐸𝑧𝑁                                  
∗  

 This result shows that a better UB and thereby a narrower confidence 

interval can be obtained by the way of increasing the sample size. 

 For each 𝑗, calculate  

𝑧
𝑁′
𝑗

(�̂�𝑁
𝑗

) =  
1

𝑁′
∑ 𝐸𝑓(�̂�𝑁

𝑗
, 𝜔𝑗

𝑖)

𝑁′

𝑖=1

 

 Choose �̂�𝑁
𝑗

, which gives the best solution, i.e. the highest 𝑧
𝑁′
𝑗

 value, as the 

candidate solution, �̂�. 

𝑖𝑖) Since choosing any feasible solution of the first-stage problem will provide a 

lower bound for the optimal value, 𝑧∗, 

 a much larger sample size 𝑁′′ (final evaluation sample, larger than and 

independent of  𝑁′ ) is generated  and a lower bound (LB) is calculated for 

the optimal solution 𝑧∗: 

𝑧�̅�′′(�̂�) =  
1

𝑁′′ 
∑ 𝐸𝑓(�̂�, 𝜔𝑖)

𝑁′′ 

𝑖=1

 

𝐸𝑓(�̂�, 𝜔) is the expected profit at the solution 𝑥 = �̂� and it can be 

estimated using the standard sample mean estimator that is an unbiased 

estimator of the objective function value of the original problem at the 

solution 𝑥 = �̂�, i.e.,                        𝐸𝑧�̅� =  𝐸𝑓(�̂�, 𝜔)  ≤  𝑧∗, and satisfies 

the central limit theorem (Mak et al., 1999). 

From the central limit theorem:  

√𝑁′′ [𝑧�̅�′′ − 𝐸𝑓(𝑥, 𝜔)]  ⇒  𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝑙
2) 𝑎𝑠 𝑛 → ∞ where  𝜎𝑙

2 = 𝑣𝑎𝑟𝑓(𝑥, 𝜔).  
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This theorem, with 𝑠𝑙
2(𝑁′′), the standard sample variance estimator of 𝜎𝑙

2, 

pave the way for building a confidence interval for the objective function 

value at 𝑥 = �̂�. 

𝑠𝑙
2(𝑁′′) =

1

𝑁′′(𝑁′′ − 1)
∑(𝐸𝑓(�̂�, 𝜔𝑖) − 𝑧�̅�′′)

2
𝑁′′

𝑖=1

 

Let 𝑠𝑙
2(𝑁′′) denote the standard sample variance estimator of 𝜎𝑙

2 and 

define: 

𝜀�̃� =
𝑡𝑁′′−1,𝛼 𝑠𝑙(𝑁′′)

√𝑁′′
  

Step 4: Estimating the Optimality Gap 

The optimality gap is constructed based on the following inequality (Mak et al., 

1999):  

𝑃{𝑧�̅�′′ − 𝜀�̃�  ≤  𝐸𝑓(�̂�, 𝜔) ≤  𝑧∗ ≤ 𝐸𝑧𝑁
∗ ≤  𝑧�̅�,𝑀 + 𝜀�̃�}  

≥ 1 − 𝑃{𝑧�̅�′′ − 𝜀�̃�  ≤  𝐸𝑧𝑁
∗ } 

                                                                                        − 𝑃{𝑧�̅�,𝑀 +  𝜀�̃�  ≤  𝐸𝑓(�̂�, 𝜔)} 

                                                ≈ 1 − 2𝛼. 

 

Thus, [0,  𝑧�̅�,𝑀 − 𝑧�̅�′′(�̂�) +  𝜀�̃� + 𝜀�̃� ] is an approximate 100(1-2𝛼)% confidence 

interval for the optimality gap at �̂�. Because of sampling error, it is possible to 

come across  𝑧�̅�,𝑀 < 𝑧�̅�′′. Therefore, the following more conservative confidence 

interval is recommended by Mak et al. (1999): 

[0, max{ 𝑧�̅�,𝑀 − 𝑧�̅�′′(�̂�), 0} + 𝜀�̃� + 𝜀�̃� ]. 

This optimality gap estimator can be separated into its components as follows 

(Kleywegt, 2001): 

 

 

 

 𝑧�̅�,𝑀 − 𝑧�̅�′′(�̂�) +  𝜀�̃� + 𝜀�̃� =   ( 𝑧�̅�,𝑀 − 𝑧∗) + (𝑧∗ − 𝑧(𝑥)) + (𝑧(𝑥) − 𝑧�̅�′′(�̂�)) +  𝜀�̃� + 𝜀�̃� 

1 2

1 

3 4
1 
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Expression # 1: bias term that has positive expected value decreasing in the sample 

𝑁. It is the difference between the unbiased estimator of the expected value of 𝑧𝑁 

(𝑧�̅�,𝑀 ) and the optimal objective function value of the original problem (𝑧∗). 

Expression # 2: true optimality gap that is the difference between the optimal 

objective function value of the original problem (𝑧∗) and the optimal objective 

function value given by the candidate solution, �̂�. 

Expression # 3: the term that is the difference between the optimal objective 

function value given by the candidate solution, �̂� and the unbiased estimator of it, 

and its expected value is zero. 

Expression # 4: accuracy term that decreases in M number of replications and the 

sample size 𝑁′′. 

The gap estimator may be large on the condition that the number of batches (𝑀), 

the size of the sample used for solving the approximate problem (𝑁) or the size of 

final evaluation sample (𝑁′′) is small, even if �̂�  is an optimal solution, i.e.    𝑧∗ −

𝑧(�̂�) = 0 (Ibid.). Because of that reason, if the confidence interval is not satisfied 

sufficiently for any setting of 𝑀, 𝑁 and 𝑁′′, the recommended strategy is to increase 

𝑀, 𝑁 and 𝑁′′. 

Step 5: Evaluating the optimality gap estimator 

𝑖)    If the width of the confidence interval (WCI) as a percentage of lower bound 

estimate, 𝑧�̅�′′(�̂�), the solution found by Step 1-2, is less than or equal to 2 %, 

STOP. 
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𝑖𝑖)   Else increase the number of batches 𝑀 from the initial value to a new value 

(e.g. from 30 to 40)12. Go to Step 1. 

𝑖𝑖𝑖)  If 𝑊𝐶𝐼 ≤ 2 % 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, STOP. 

𝑖𝑣)  Else increase 𝑁 and 𝑁′ (e.g. increase N from 500 to 1000 and 𝑁′from 1000 to 

2000). Go to Step 1. 

𝑣)    If 𝑊𝐶𝐼 ≤ 2 % 𝑜𝑓 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒, STOP. 

𝑣𝑖)  Else apply Step 4 (𝑖𝑖)- (𝑣) till total solution time or 𝑀 reaches to a maximum 

level (e.g. 12 hours or 𝑀 = 60).  

In the next chapter, different cases are developed to test the effect of some 

deterministic and random parameters on certain performance measures given in 

Section 4.2. The solution procedure presented in this section is implemented to 

solve all those cases based on the following settings:    

 The initial value of 𝑀 = 30 is increased firstly to 40, then to 50 and to 60 

finally. 

 The initial value of 𝑁=500 and 𝑁′=1000 is increased to 1000 and 2000, 

respectively. After this increment is performed for the first time within the 

solution process, if an acceptable solution can not be obtained and it is 

required to increase 𝑀 in the following stage, 𝑁 and 𝑁′ are increased to 

1500 and 3000, respectively, and then for all following iterations wherein 

𝑀 is increased to any value, those new values are used. 

 The size of sample generated for final evaluation is determined as 

      𝑁′′ = 5000. 

                                                 

 

 
12 M approximate problems are solved on 5 parallel processors, if the WCI is not satisfied and 

requires more than 30 replications.  Thus, 
𝑀

5
  number of problems are solved on each processor 

simultaneously and thereby the solution time decreases dramatically. 
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 Stopping condition for the width of the confidence interval and time limit 

is determined as  
𝑊𝐶𝐼

�̅�𝑁′′
× 100 ≤ 2 and 12 hours, respectively.  

 An entire new set of scenarios is generated for each Monte Carlo 

replication as well as for evaluation sampling process to avoid “the risk of 

persisting with a bad set of samples” (Bayraksan and Morton, 2011, 

p.898). 

A summarised flow diagram for the solution approach is displayed in Figure 11. 
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Figure 11. A summary of the sample-average approximation approach 
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4.2. Performance Measures for Stochastic Solution 

In this section, two main measures are defined in order to test both the capability of 

the solution approach given in the previous section and the quality of solution 

obtained through the stochastic programming: (1) The value of stochastic solution 

and (2) The expected Value of perfect information. 

The value of stochastic solution (VSS): 

It is a measure used to compare the solution obtained by the stochastic model and 

the expected objective function value calculated based on a deterministic model in 

which the values of all random parameters are fixed to their mean values. VSS 

indicates the gain obtained if stochastic programming is used, in other words the 

cost of ignoring uncertainty of parameters while choosing a decision (Birge and 

Louveaux, 2011). The larger VSS means that the better results are obtained through 

stochastic solution, and thereby motivates the decision maker to use the stochastic 

programming model. 

VSS is calculated as follows (Ibid.): 

 Consider the stochastic problem in the form of OP: 𝑚𝑎𝑥
𝑥∈𝑋

𝐸𝑓(𝑥, 𝜔) (see 

Section 4.1.) and let the objective function value of the solution obtained 

through this model or sample average approximation approach be 𝑆𝑃. 

 Replace all random variables by their mean values and solve the expected 

value problem, 𝐸𝑉: 

𝐸𝑉 =  𝑚𝑎𝑥
𝑥∈𝑋

𝑓(𝑥, �̅�), where �̅� = 𝐸(𝜔). 

 Let the expected value solution be �̅�(�̅�), as the optimal solution to 𝐸𝑉. 

 Calculate the expected result of using the optimal solution to 𝐸𝑉, i.e. 𝐸𝐸𝑉, 

by considering the uncertainties, i.e. 

𝐸𝐸𝑉 = 𝐸𝜔(𝑓(�̅�(�̅�), 𝜔)) 

 The value of stochastic solution, VSS, 
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𝑉𝑆𝑆 = 𝑆𝑃 − 𝐸𝐸𝑉. 

While assessing 𝑉𝑆𝑆 in the computational study, 𝑉𝑆𝑆% is used, which is expressed 

as a percentage of 𝑆𝑃, i.e. 𝑉𝑆𝑆% = (𝑉𝑆𝑆/𝑆𝑃) × 100. 

The expected value of perfect information (EVPI): 

It is a measure that denotes the difference between the expected value of the 

stochastic solution obtained by solving the stochastic model for each scenario and 

the solution obtained by optimizing the stochastic model over all scenarios. 

EVPI indicates how much the decision maker would be ready to pay to obtain 

perfect information about uncertain parameters (Birge and Louveaux, 2011), in 

other words how much it is worth to invest in better forecasting technology. If EVPI 

is smaller, it can be said that digging more (perfect) information about the future 

does not contribute to the expected net profit in our problem context. Moreover, if 

EVPI is zero, it can be stated that first stage decisions are independent of the 

realization random parameters. 

EVPI is calculated as follows (Birge and Louveaux, 2011): 

 Consider the stochastic problem in the form of OP: 𝑚𝑎𝑥
𝑥∈𝑋

𝐸𝑓(𝑥, 𝜔) (see 

Section 4.1) and let the objective function value of the solution obtained 

through this model or sample average approximation approach be 𝑆𝑃. 

 Solve the stochastic problem for each realisation of random parameters (in 

our solution approach, 𝑁′′ = 5000 scenarios) and let �̅�(𝜔) be optimal 

solutions to those problems. 

 Calculate the mean of all objective function values obtained for each 

stochastic problem, a.k.a. wait-and-see-solution, i.e. 

𝑊𝑆 = 𝐸𝜔 [𝑚𝑎𝑥
𝑥∈𝑋

𝑓(𝑥, 𝜔)] = 𝐸𝜔(𝑓(�̅�(𝜔), 𝜔)). 

 The expected value of perfect information, EVPI, 
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𝐸𝑉𝑃𝐼 = 𝑊𝑆 − 𝑆𝑃. 

While assessing 𝐸𝑉𝑃𝐼 in the computational study, 𝐸𝑉𝑃𝐼% is used, which is 

expressed as a percentage of 𝑆𝑃, i.e. 𝐸𝑉𝑃𝐼% = (𝐸𝑉𝑃𝐼/𝑆𝑃) × 100. The 

relationship among VSS, EVPI, EEV, SP and WS can be displayed as follows: 

 

 

 

 

 

 

Furthermore, the solution capacity of the model and the solution approach 

developed is also tested in terms of solution time and the results are given in the 

next chapter. 

EEV SP WS 

VSS EVPI 
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CHAPTER 5 

COMPUTATIONAL ANALYSIS 

 

 

In this chapter, the results of a computational study based on nine illustrative cases 

are presented. The main objectives of this study can be summarised as follows: 

- to analyse the effect of deterministic parameters (capacity expansion cost, 

variable unit production cost as a percentage of price, unit capacity usage 

and maximum amount of capacity available in each period) on stochastic 

solution performance in terms of the Value of Stochastic Solution (VSS) 

and the Expected Value of Perfect Information (EVPI), 

- to analyse how and to what extent the random parameters (demand, cost, 

price and cannibalisation rate) affect the solution performance, and 

- to see the solution capacity of the model and the solution approach 

developed in terms of solution time. 

Six cases (Set 1) in which some of the data are collected through firms’ web sites 

and asking to the firms to which we have interviewed, and the rest is estimated 

based on the collected data and three cases (Set 2) in which the value of parameters 

are assigned mostly randomly but in accordance with real life in order to test the 

solution time are developed for the computational analysis.  

This chapter proceeds in two main sections each of which is organised based on the 

experiments regarding Set 1 and Set 2. Each section including a separate subsection 

for each case starts with the definition of cases, continues with the related 

computational analysis and general remarks based on experimental studies, and 

ends up with a summary of the results obtained for all cases (see Table 25-28 and 

Table 31) 
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and some general inferences based on this summary. The analysis of the cases in 

Set 1 and Set 2 is presented in Section 5.1 and 5.2, respectively. 

5.1. Illustrative Cases – Set 1 

In this section six cases are presented in sequence; first the data related to each case 

and then the results based on two experimental design studies are given: one is 

based on deterministic parameters (factors in Experiment 1) and the other on 

uncertain parameters (factors in Experiment 2).  

The cases and factors handled in this section are developed considering a crossed 

array design (Montgomery, 2009, p.488). In each experiment, seven factors are 

studied to determine their effect on VSS and EVPI. Number of new lines, number 

of markets and number of periods are the common factors studied in both 

experiments. In addition to those, deterministic parameters, i.e. capacity expansion 

cost, variable unit production cost, unit capacity usage and maximum amount of 

capacity available in each period, are handled in the first experiment, and variability 

of price, cost, demand and cannibalisation rate are considered in the second 

experiment. The settings for each factor are defined as follows: 

Factors and Their Levels Used in the Experiments 

Factor 1 (A): Number of new lines 

Two levels of this factor are considered: Level-1: one new line and Level-2: two 

new lines. 

Factor 2 (B): Number of markets 

Two aggregated markets, (1) national market in which the firm is located and (2) 

global market, and two levels for this factor, Level-1: single market and Level-2: 

two markets, are considered in the experiment. 

Factor 3 (C): Number of periods (the length of planning horizon) 

This factor is handled in two levels: (1) three-periods and (2) five-periods. 
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It should be noted that only two existing lines are taken into account, which is 

considered as a fixed factor for the sake of simplicity while generating the cases.  

All other factors such as entry price of a new line which is planned to introduce to 

a market, expected cannibalisation effect of a new line on the demand of existing 

lines, price elasticity of demand for all products, the characteristics of new lines, 

market share of existing products, the effect of a new line on market expansion, the 

relative price and demand of products compared to other products etc. are 

determined in line with real-like environment considered for each case.    

The design for those common factors is a 23−1 fractional factorial design with 

generator  𝐶 = −𝐴𝐵 (this can be called as the inner array design), which is shown 

in Table 3. 

Table 3. The inner array design, 𝟐𝟑−𝟏 

Cases 

Factors 

A (Number of new lines) 

- : 1 line, + : 2 lines 

B (Number of markets) 

- : 1 market, + : 2 

markets 

C (Number of 

periods) 

- : 3, + : 5 periods 

Case 1 - - - 

Case 2 - + + 

Case 3 + - + 

Case 4 + + - 

 

Four deterministic parameters for Experiment 1 are considered, as presented below. 

Factor 4 (D): Capacity expansion cost 

Three levels for this factor are determined. For each case in Table 1, in order to get 

a general idea about the reasonable value of capacity expansion cost and to ensure 

a possible trade-off between capacity expansion cost and unit contribution margin 

in accordance with the proposed optimisation model, firstly the expected 

contribution margin including all products and all periods is calculated based on 50 

000 scenarios generated randomly. As a result, a value is obtained, say ECM, and 

this value is assumed as Level-1 (Mid) in the experimental design. A high value 
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and a low value of the capacity expansion cost, given below, are studied in order to 

see the effect of this parameter on performance measures.  

Level-1 (Mid) : ECM 

Level-2 (High) : ECM×2 

Level-3 (Low) : ECM/2 

Factor 5 (E): Variable unit production cost as a percentage of price 

(profitability) 

This factor can also be evaluated as the profitability of product, which is specified 

using the unit production cost as a percentage of price. The levels of this factor are 

determined as follows: 

Level-1 : New product line(s) is(are) LESS PROFITABLE than the 

existing lines 

Level-2 : New product line(s) is(are) MORE PROFITABLE than the 

existing lines 

Level-3 : All existing and new lines have the SAME PROFITABILITY. 

Factor 6 (F): Unit capacity usage 

Five levels for the experimental study are used: 

Level-1 : Same for all products 

Level-2 : New line consumes less resource 

Level-3 : New line consumes much less resource 

Level-4 : New line consumes more resource 

Level-5 : New line consumes much more resource 

Factor 7 (G): Maximum amount of capacity available in each period 

Four levels are considered for this factor. For each case shown in Table 1, in order 

to get a general idea about the reasonable value of maximum amount of capacity 

available for each period, firstly the total expected demand of all products over all 
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periods under 50 000 scenarios is calculated. Then four different levels are 

determined for this parameter, as a percentage of total expected demand calculated: 

Level-1 : 5 % of total expected demand calculated (very limited capacity) 

Level-2 : 25 % of total expected demand calculated (limited capacity) 

Level-3 : 50 % of total expected demand calculated (abundant capacity) 

Level-4 : 
100 % of total expected demand calculated (overabundant 

capacity) 

The design for the factors D-G can be called as the outer array design in which total 

number of runs performed is 18013. Each run in the outer design is performed for 

all cases in the inner array, by this way the crossed array structure for Experiment 

1 is generated (see Table 4).   

Table 4. The crossed array design for Experiment 1 with seven factors 

Cases 

Factors 

A B C D E F G 

Case 1 - - - 180 runs obtained by combining all levels of those factors 

Case 2 - + + 180 runs obtained by combining all levels of those factors 

Case 3 + - + 180 runs obtained by combining all levels of those factors 

Case 4 + + - 180 runs obtained by combining all levels of those factors 

 

In order to explore which and to what extent the uncertain parameters are significant 

on the solution performance in terms of VSS and EVPI, the levels given below are 

defined for Experiment 2. Here, the variability regarding with random parameters 

is expressed by the coefficient of variation (CV), the ratio of the standard deviation 

to the mean value. For this experimental design study, the levels of CV for each 

parameter are defined as 0 (this means there is no variability regarding all 

parameters considered as uncertain), 0.15 (this means the standard deviation is 15 

% of the mean) and 0.30. Since the variability of demand and price for new products 

                                                 

 

 
13 𝑇𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝑟𝑢𝑛𝑠 = (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐷) × (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐸) × (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐹) ×
                                           (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟 𝐺) 

                                      = 3 × 3 × 5 × 4 = 180 
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and new markets is higher than for the old products and the old markets, it is 

assumed that these levels are higher for the new products and new markets. The 

random factors and base levels are given as follows: 

Factor 8 (H): Coefficient of variation of price (CV_Price)  

Level-1 (Low) : 0 

Level-1 (Mid) : 0.15 

Level-2 (High) : 0.30 

Factor 9 (I): Coefficient of variation of demand (CV_Demand)  

Level-1 (Low) : 0 

Level-1 (Mid) : 0.15 

Level-2 (High) : 0.30 

Factor 10 (J): Unit Production Cost (CV_Cost) 

Level-1 (Low) : 0 

Level-1 (Mid) : 0.15 

Level-2 (High) : 0.30 

Factor 11 (K): Cannibalisation Rate (CV_CanR) 

Level-1 (Low) : 0 

Level-1 (Mid) : 0.15 

Level-2 (High) : 0.30 

It should be noted that for this experiment the levels of deterministic parameters 

(i.e. unit capacity usage, capacity expansion cost, profitability and capacity) are 

fixed to one of the values where VSS takes higher values in Experiment 1. 

The experiment for the factors H-K can be called as the outer array design in which 

total number of runs performed is 8114. Each run in the outer design is performed 

                                                 

 

 
14 

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑟𝑢𝑛𝑠 = (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐾) × (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐼) × (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝐽) × (# 𝑜𝑓 𝑙𝑒𝑣𝑒𝑙𝑠 𝑜𝑓 𝑓𝑎𝑐𝑡𝑜𝑟 𝐾)  

                                = 34 = 81 
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for all cases in the inner array, by this way the crossed array structure for 

Experiment 2, given in Table 5, is generated: 

Table 5. The crossed array design for Experiment 2 with seven factors 

Cases 

Factors 

A B C H I J K 

Case 1 - - - 81 runs obtained by combining all levels of those factors 

Case 2 - + + 81 runs obtained by combining all levels of those factors 

Case 3 + - + 81 runs obtained by combining all levels of those factors 

Case 4 + + - 81 runs obtained by combining all levels of those factors 

 

Since total number of runs is high which increases the workload, it is decided to use 

a D-optimal design with less number of runs for each case requiring 34 = 81 runs in 

total. The main factors and some interactions that are expected as significant on 

performance measures, i.e. the interaction between the variability of demand and 

price, the variability of price and cost, and the variability of demand and 

cannibalisation rate, are considered for that optimal design. As a result, the D-

optimal design with 30 runs is generated using MINITAB (see Table 6). 
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Table 6. The D-optimal design for Experiment 2 with four factors 

Run 

Factors 

CV_Demand CV_Price CV_Cost CV_CanR 

1 0.15 0.15 0.15 0.15 

2 0.15 0.15 0.15 0.30 

3 0.15 0.15 0.30 0.15 

4 0.15 0.15 0.30 0.30 

5 0.15 0.30 0.15 0.15 

6 0.15 0.30 0.15 0.30 

7 0.15 0.30 0.30 0.15 

8 0.15 0.30 0.30 0.30 

9 0.30 0.15 0.15 0.15 

10 0.30 0.15 0.15 0.30 

11 0.30 0.15 0.30 0.15 

12 0.30 0.15 0.30 0.30 

13 0.30 0.30 0.15 0.15 

14 0.30 0.30 0.15 0.30 

15 0.30 0.30 0.30 0.15 

16 0.30 0.30 0.30 0.30 

17 0 0.30 0 0.30 

18 0 0 0.30 0.30 

19 0 0 0 0 

20 0 0.15 0 0.15 

21 0.15 0 0.30 0 

22 0.30 0.30 0 0 

23 0 0 0.15 0.15 

24 0.15 0 0 0.15 

25 0.30 0.15 0 0 

26 0 0.15 0.15 0.30 

27 0 0.30 0.15 0.15 

28 0 0 0 0.15 

29 0.15 0.15 0 0 

30 0.30 0 0.15 0.15 

 

As seen from Table 4-6, four cases are developed based on fractional factorial 

design and in total 720 problems (runs) for Experiment 1 and 120 problems (runs) 

for Experiment 2 are solved. In addition to Case 1-4, two more cases as an extension 

of Case 1 and Case 2 with different settings are also studied (overall 1270 runs are 

studied). Since we have found that a problem which is larger than the problems in 
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Set 1 can be solved in a reasonable time with a very large number of scenarios, i.e. 

10000, those problems are solved by their extensive forms using GAMS 

22.2/CPLEX 10.0 on a computer with 16 GB of RAM and 2.0 GHz speed. On the 

other hand, the larger-sized problems in Set 2 are solved using L-shaped method in 

order to guarantee the optimal solution for the approximated problems by GAMS 

22.2/CPLEX 10.0 on a computer with 4 processors each of which has 14 processing 

units (those problems are solved using parallel processors), 2.2. GHz speed and 16 

GB of RAM based on the solution methodology mentioned in Section 4.1.  

The Analysis of Data Collected Through the Experiments 

The analysis of data collected through those experimental studies are performed 

using two methodologies: (1) Analysis of Variance (ANOVA) to reveal which 

factors and their interactions are significant (Montgomery, 2009) and (2) 

Association Analysis to extract rules (frequent variable interactions) based on the 

predictions made from Random Forest (RF) method (Tan et al., 2006). 

The RF is an ensemble learning method developed for decision tree classifiers 

(Ibid.), in which each successive tree is generated independently using bootstrap 

sampling from the data set and then a majority voting procedure is applied in order 

to make predictions (Mashayekhi and Gras, 2015). For the problem handled in this 

study, firstly the package randomForest15 developed in R, which implements 

Breiman's random forest algorithm for classification, is used to generate a tree 

ensemble (i.e. forest). Then, the package inTrees16 developed in R is used to extract 

and summarise classification rules from the generated tree ensemble. Here, a rule 

refers to an expression of the form 𝐴 → 𝐵, 𝐴 ∩ 𝐵 = ∅ and indicates the co-

occurrence of 𝐴 and 𝐵, not a causal relationship between them.  

                                                 

 

 
15 https://cran.r-project.org/web/packages/randomForest/randomForest.pdf  

16 https://cran.r-project.org/web/packages/inTrees/inTrees.pdf  
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The strength of a rule is generally specified by its support17 which determines the 

frequency of a rule in a given data set and confidence18 which determines how 

frequently item in 𝐵 appears to transactions containing 𝐴 (Tan et al., 2006, p.329 -

330). Since a rule having high confidence may occur by chance, this kind of 

misleading rule is detected by determining whether the left-hand-side and right-

hand-side of the rule are statistically independent, i.e. by calculating lift19 value 

(Azevedo and Jorge, 2007). If the lift takes a value around 1, it can be said that the 

rule is not interesting. Actually, those kinds of measures are called as 

interestingness measures in data mining literature and support, confidence and lift 

are commonly used ones in order to extract interesting rules in a data. Within the 

context of this study, an exemplar of a rule can be given as follows: 

𝐴: {𝑒xpansion cost is high and capacity available is abundant} → 𝐵: 𝑉𝑆𝑆 ≥ 20 %  

That means that if the capacity expansion cost is high and the capacity available at 

each period is abundant compared to the total expected demand, the VSS takes a 

value greater than 20 %. At this point, the strength of this rule in terms of support, 

confidence and lift should be considered and the resultant rule should be accepted 

if the support and confidence exceed predetermined thresholds, i.e. minsup and 

minconf, and the lift is far from 1. 

The procedure for extracting rules for each problem instance can be given as 

follows: 

Step 1: The performance measures, VSS and EVPI, are transformed into three 

different categories as shown below: 

 

                                                 

 

 
17 Support is defined as the fraction of transactions involving both 𝐴 and 𝐵, i.e.  

    𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 → 𝐵) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠 (𝐴 + 𝐵)/𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛𝑠  

18 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 (𝐴 → 𝐵) =  𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴 → 𝐵)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐴) 

19 𝑙𝑖𝑓𝑡 (𝐴 → 𝐵) =  𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 → 𝐵)/𝑠𝑢𝑝𝑝𝑜𝑟𝑡(𝐵) 
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VSS / EVPI (%)  Category 

[0 ; 10) Low (L) 

[10 ; 20) Medium (M) 

≥ 20 High (H) 

 

It should be noted that those categories, their limits and meanings may be changed 

according to the problem context as well as the sector in which the firm operates 

and market conditions. For instance, while a VSS smaller than 10 % may be 

considered as low for a firm, a VSS greater than 10 % may be considered as high 

instead of medium. Furthermore, it is also possible to define more than or less than 

three categories. However, since the number and the limits of the categories do not 

affect the procedure applied, in this thesis work, those categories are arbitrarily 

defined in order to be able to apply the rule-extraction procedure. 

Step 2: Decide on the settings for the algorithm. For this study 𝑚𝑖𝑛𝑠𝑢𝑝 = 0.0520 

and 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = 0.7521, 𝑚𝑡𝑟𝑦 = log2[𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠] + 1 22 and 

𝑛𝑡𝑟𝑒𝑒 = 100023 are applied (see Appendix C). Though higher values for the 

measures cared, i.e. support, confidence and lift, indicate better rules, the 𝑚𝑖𝑛𝑠𝑢𝑝 

is considered low in order to get the rules of low support but high confidence, which 

may be considered as exception rules. A rule that has a high predictive power (i.e. 

high confidence) and strong relationship between the condition and consequent (i.e. 

high lift) but occurs rarely (i.e. low support) is called as exception rule deriving 

noteworthy information about patterns in the data (Wang, 2018). Since the 

problems handled include small number of data, it is expected to have the rules that 

may not occur very frequently, however, the strength of the relationship, which 

refers to have a high confidence and lift, is more cared in this study. Besides, after 

                                                 

 

 
20 A user-specified threshold value for support. It means that a rule is interesting if its support is 

greater than or equal to 5 %. 
21 A user-specified threshold value for confidence. It means that a rule is interesting if its 

confidence is greater than or equal to 75 %. 
22 Number of variables randomly sampled used in each tree. 
23 Number of trees used in the forest. 
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an exception rule is generated through the Random Forest algorithm, it is evaluated 

based on the common sense about the relationship between the condition and the 

result, which is gained from ANOVA and then the rule is accepted. 

Furthermore, for the association analysis in this study, a rule is extracted from the 

data if its support and confidence are greater than the threshold values, i.e. minsup 

and minconf. However, how to specify the minsup or minconf values to obtain 

interesting rules becomes a problem at this point. If the threshold values chosen are 

increased, the number of rules extracted will be lower; but the more distinctive 

patterns will be obtained. In this study, we have some generalised information about 

the patterns in the data through ANOVA results before applying the association 

analysis. Considering this information, and the number of the extracted rules and 

their meaningfulness at different threshold values, i.e. via a kind of trial-and-error 

process, we have defined the minsup and minconf as defined above.  

Step 3: Apply the Random Forest algorithm (package randomForest in R) to 

generate the forest, check out-of-bag (OOB) error which shows the accuracy of the 

model and the variable importance across the whole forest, considering Mean 

Decrease Accuracy and Mean Decrease Gini (see Appendix C). 

Step 4: Obtain the rules extracted from the forest generated using the package 

inTrees in R. 

The source code for this procedure in R is given in Appendix C. 

Scenario Generation 

For all cases, it is possible to determine a discrete set of unstructured scenarios that 

can be defined based on the historical data regarding the uncertain parameters or 

subjective evaluations of decision-makers or a data preparation team involving 

people from marketing, finance and production departments. If there is enough data, 

it is also possible to estimate the probability distributions (discrete or continuous) 

of uncertain parameters. In the computational study, it is assumed that all uncertain 

parameters are normally distributed. It should be noted that different types of 
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probability distributions can also be used, but the normal distribution is chosen in 

this study because of its commonality. Since there are infinite number of scenarios 

in the case of having a continuous probability distribution such as normal 

distribution, a sample set of scenarios is generated for each step of Sample Average 

Approximation. The following procedure is defined to generate those sample sets: 

Step 1: The mean value of the selling price for each product in each market at each 

period is defined and the standard deviation is calculated as a percentage of the 

mean value. Then, a specific value for the selling price for each product in each 

market at each period is randomly generated from the normal distributions with 

those parameters and regarding probability of occurrences are calculated. 

𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐼 at period 𝑡 ;  𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

Assume that a value for the selling price of each product in each market at each 

period, say �̃�𝑖𝑗𝑡, is generated. 

Step 2: Using the values for the selling prices, which are randomly generated from 

the regarding normal distributions, and the functions representing the demand-price 

relationships, the mean value of the demand for each product in each market at each 

period is defined and the standard deviation is calculated as a percentage of the 

mean value.  

𝐸𝑃𝐷𝑖𝑗𝑡 ∶  potential demand of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t; 

𝐸𝑃𝐷𝑖𝑗𝑡  ∼ N (𝜇𝐸𝑃𝐷𝑖𝑗𝑡
,  𝜎𝜀𝑖𝑗𝑡

2 )  

where  𝜇𝐸𝑃𝐷𝑖𝑗𝑡
=  𝑚𝑖𝑗𝑡 − 𝑛𝑖𝑗 × �̃�𝑖𝑗𝑡  + ∑ 𝑛𝑖𝑘𝑗 × �̃�𝑘𝑗𝑡𝑘∈𝑅𝑖𝑗∩ 𝐸𝑃  

𝐸𝑃𝐷𝑖𝑗𝑡 =  𝜇
𝐸𝑃𝐷𝑖𝑗𝑡

+ 𝜀𝑖𝑗𝑡 ,    𝜀𝑖𝑗𝑡  ∼ N (0,  𝜎𝜀𝑖𝑗𝑡

2 )  

Then, a specific value for the demand for each product in each market at each period 

is randomly generated from the normal distributions, given above, with those 

parameters and regarding probability of occurrences are calculated. 
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Step 3: Using the values for the selling prices, which are randomly generated from 

the regarding normal distributions, and the functions representing the 

cannibalisation rate-price relationships, the mean value of the cannibalisation rates 

is defined and the standard deviation is calculated as a percentage of the mean value.  

𝑒𝑖𝑗𝑙𝑡   ∶   Cannibalization rate (as a percentage) of product  

                𝑙 ∈ 𝑁𝑃 on product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡 

𝑒𝑖𝑗𝑙𝑡  ∼ N (𝜇𝑒𝑖𝑗𝑙𝑡
,  𝜎𝛿𝑖𝑗𝑙𝑡

2 ) where  𝜇𝑒𝑖𝑗𝑙𝑡
= 𝛼𝑖𝑗𝑙 − 𝛽𝑖𝑗𝑙 ×  �̃�𝑙𝑗𝑡 

𝑒𝑖𝑗𝑙𝑡 = 𝜇𝑒𝑖𝑗𝑙𝑡
+ 𝛿𝑖𝑗𝑙𝑡 ,    𝛿𝑖𝑗𝑙𝑡  ∼ N (0,  𝜎𝛿𝑖𝑗𝑙𝑡

2 )  

Then, a specific value for each cannibalisation rate is randomly generated from the 

normal distribution, given above, with those parameters and regarding probability 

of occurrences are calculated. 

Step 4: The mean value of the variable production cost for each product at each 

period is defined and the standard deviation is calculated as a percentage of the 

mean value.  

𝑉𝑖𝑡: variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡; 𝑉𝑖𝑡  ∼

N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 

Then, a specific value for the variable production cost for each product at each 

period is randomly generated from the normal distributions with those parameters 

and regarding probability of occurrences are calculated. 

Step 5: The values for each parameters determined in Step 1-4 are specified as a 

scenario and the regarding probability of occurrence for this scenario is calculated 

by multiplying the probability of occurences found in Step 1-4. All those steps are 

repeated 𝑁 times, and thus, a discrete set of scenarios with a size of 𝑁 is obtained 

and used in the Sample-Average-Approximation procedure. 

It should be noted that one random number is generated for each demand parameter 

mentioned in Step 2 and for each cannibalisation rate parameter mentioned in Step 
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3 at a specific selling price level that is generated randomly from the regarding 

distributions. As another scenario generation strategy, in order to have well-

representative samples it is also possible to generate more than one random number 

for each demand and cannibalisation rate at the same selling price level, since both 

the demand and the cannibalisation rate parameters have some randomness at any 

selling price level. However, this increases the number of scenarios (the sample 

size) dramatically. For instance, assume that 500 scenarios are obtained by 

generating one parameter level for each scenario. If, for instance, at least two levels 

for the demand and cannibalisation rate parameters are determined by randomly 

sampling at a specific price level, the number of scenarios is increased to 200024 

from 500. Therefore, in order to have tractable solutions for the computational study 

by making the number of scenarios as less as possible, in this study it is not 

prefeerred generating more than one random number for each demand and 

cannibalisation rate parameter at a specific selling price level.  

ANOVA and Association Analysis (AA) are applied for each case as well as for the 

crossed array design (considering Case 1-4 in a single-design) for both Experiment 

1 and Experiment 2 performed based on the scenario generation procedure given 

above. In Section 5.1.1, 5.1.2, 5.1.3 and 5.1.4, the results of ANOVA and AA 

analysis for Case 1, 2, 3 and 4, respectively, are presented. Then the results 

regarding the crossed array design and general conclusions considering all four 

cases are given in Section 5.1.5 and Section 5.1.6. Furthermore, Case 5 and Case 6 

are also presented in Section 5.1.7 and Section 5.1.8. 

  

                                                 

 

 
24 Total number of scenarios =  500 replications × 1 value for price × 2 values for demand ×
                                                              2 values for cannibalization rate × 1 value for cost 
                                                  = 2000 
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5.1.1. Case 1: Mix of Two Existing Lines with a New Higher-Priced Line and 

a Single Market 

 

In this case a firm producing major household appliances (white goods) is 

considered. This firm has two product lines under “freezer” category (defined under 

“cold family”) according to the product hierarchy, given in Figure 6. 

 

 

 

 

5.1.1.1. Basic Data 

 

a) Products: 

 

 

 

 

 

b) Markets:  

The products are sold in a single market which is aggregated as the “national 

market” where the manufacturing facility of the firm is also located. 

c) Product Prices:  

𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐼 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡   

𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

 

 

 

- 2 existing (old) lines 

- 1 new line 

- 3 periods (years) 

- 1 market (national) 

Chest Freezer Upright Freezer Drawer Freezer 

Existing Line 1 : Chest Freezer 

Existing Line 2 : Upright Freezer 

        New Line :  Drawer Freezer  
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Mean Price(TL25) 

𝑗 = 1, t = 1  

Mean Price (TL)  

𝑗 = 1, t = 2  

Mean Price (TL) 

𝑗 = 1, t = 3  
Existing line-1 

(𝑖 = 1) 
𝜇𝑃111

= 176526 𝜇𝑃112
= 1765 𝜇𝑃113

= 1765 

Existing line-2 

(𝑖 = 2) 
𝜇𝑃211

= 1530 𝜇𝑃212
= 1530 𝜇𝑃213

= 1530 

New Line         

(𝑖 = 3) 
𝜇𝑃311

= 2200 𝜇𝑃312
= 2200 × 0.9 = 1980 𝜇𝑃313

= 1980 × 0.9 = 1782 

The existing lines are considered as mature products, and thereby it is assumed that 

the mean price is stable and doesn’t change over the planning horizon (i.e. next 

three years). However, the new product is launched with a higher price which 

diminishes in the next three periods by a rate of 10 %. At the end of the planning 

horizon the price of this new product is expected to be nearly the same as of the 

existing product with higher price, i.e. chest freezer.   

The standard deviation of price for existing lines: 𝜎𝑃𝑖𝑗𝑡
= 0.30 × 𝜇𝑃𝑖𝑗𝑡

 

It is also assumed that the uncertainty regarding the price of new line is higher than 

of the existing lines, and thereby, the standard deviation of the price of the new line 

is considered as 20 % higher than of the existing lines, i.e. 

The standard deviation of price for new line:  𝜎𝑃𝑖𝑗𝑡
= 0.36 × 𝜇𝑃𝑖𝑗𝑡

 

d) Demand: 

 

𝐸𝑃𝐷𝑖𝑗𝑡 ∶  potential demand of existing product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝐸𝑃𝐷𝑖𝑗𝑡  ∼ N (𝜇𝐸𝑃𝐷𝑖𝑗𝑡
,  𝜎𝐸𝑃𝐷𝑖𝑗𝑡

2 ) 

𝑁𝐷𝑖𝑗𝑡 ∶  demand of new product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝑁𝐷𝑖𝑗𝑡  ∼ N (𝜇𝑁𝐷𝑖𝑗𝑡
,  𝜎𝑁𝐷𝑖𝑗𝑡

2 ) 

                                                 

 

 
25 TL : Turkish Lira 
26 This value is calculated as the average price of different models under the chest freezer line of a 

firm operating in Turkey, Arçelik A.Ş. Retrieved on 5 July, 2017, from  

https://www.arcelik.com.tr/derin-dondurucu/.  
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 Demand  (unit) 

Existing line-1 (𝑖 = 1, 𝑗 = 1, 𝑡) 𝜇𝐸𝑃𝐷11𝑡
= 150000 − 36.5 × 𝑃11𝑡 + 10 × 𝑃21𝑡 

Existing line-2 (𝑖 = 2, 𝑗 = 1, 𝑡) 𝜇𝐸𝑃𝐷21𝑡
=    90000 − 37.5 × 𝑃21𝑡 + 10 × 𝑃11𝑡 

New Line         (𝑖 = 3, 𝑗 = 1, 𝑡) 𝜇𝑁𝐷31𝑡
  = 160000 − 22.5 × 𝑃31𝑡 

 

The standard deviation of demand for existing lines:  𝜎𝐸𝑃𝐷𝑖𝑗𝑡
= 0.30 × 𝜇𝐸𝑃𝐷𝑖𝑗𝑡

 

It is also assumed that the uncertainty regarding the demand of new line is higher 

than of the existing lines, and thereby, the standard deviation of the demand of the 

new line is considered as 20 % higher than of the existing lines, i.e. 

The standard deviation of demand for new line: 𝜎𝑁𝑃𝑖𝑗𝑡
= 0.36 × 𝜇𝑁𝐷𝑖𝑗𝑡

 

In the current situation in which the new product is not introduced the sales volume 

of the chest and upright freezer is 2/3 and 1/3 of total sales, respectively. By 

introducing the new line, it is expected that the market size (total expected demand) 

would increase by a rate of 1/3.  

Own-price elasticities of demand and cross elasticities don’t change over the 

planning horizon. Also, own-price elasticities of demand are higher for existing 

(old) products, i.e. more sensitive to price changes.  

e) Cannibalisation Rate: 

𝑒𝑖𝑗𝑙𝑡   ∶ Cannibalisation rate (as a percentage) of product  𝑙 ∈ 𝑁𝑃   

              on product 𝑖 in market 𝑗 at period 𝑡 

𝑒𝑖𝑗𝑙𝑡  ∼ N (𝜇𝑒𝑖𝑗𝑙𝑡
,  𝜎𝑒𝑖𝑗𝑙𝑡

2 ) 

 Cannibalisation rate of new line on existing lines  

Existing line-1 (𝑖 = 1, 𝑗 = 1, 𝑙 = 3,

t) 
𝜇𝑒113𝑡

= 0.5 − 0.000045 × 𝑃31𝑡 

Existing line-2 (𝑖 = 2, 𝑗 = 1, 𝑙 = 3,

t) 
𝜇𝑒213𝑡

= 0.5 − 0.000045 × 𝑃31𝑡 

 

The variance of cannibalisation rate: 𝜎𝑒𝑖𝑗𝑙𝑡

2 = 0.30 × 𝜇𝑒𝑖𝑗𝑙𝑡
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If the new line is introduced to the market, it is expected that potential demand for 

both of the existing lines would be cannibalised by the same rate. Considering 

demand, price and cannibalisation rate are at their mean values, the following 

figures can be obtained: 

 Chest Upright 

Drawer  

(New 

Line) 

Total 

Expected demand before the 

introduction of the new line 
100 000 50 000 - 150 000 

Expected demand cannibalised by 40 % 40 000 20 000 - 60 000 

Expected demand if the new line is 

introduced 
60 000 30 000 110 000 200 000 

 

f) Variable unit production cost: 

The mean value of cost is expressed as a percentage of the mean price. Different 

percentages are considered for the experimental study given in the next section. 

𝑉𝑖𝑡   ∶ variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡;  

          𝑉𝑖𝑡  ∼ N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 

The variance of cost:  𝜎𝑉𝑖𝑡

2 = 0.30 × 𝜇𝑉𝑖𝑡
 

g) Minimum launching time of the new line: 

𝑚𝑖𝑛𝐿31 = 1. 

5.1.1.2. Other Case Data and Experiment 1 for Deterministic Parameters  

5.1.1.2.1. Experiment 1: Settings 

 

Four deterministic parameters are studied as factors for the outer array of the 

experiment given in Table 4. Those are 

1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 
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4. Maximum amount of capacity available for each period with four-levels 

Factor D: Capacity expansion cost 

In order to get an idea about the reasonable value of capacity expansion cost and to 

provide a possible trade-off between capacity expansion cost and unit contribution 

margin in accordance with the proposed optimisation model, firstly the total 

expected demand of all products over all periods under 50 000 scenarios is 

calculated. As a result, the value of TL 683 is obtained and set as Level-1 (Mid) in 

the study. A high value and a low value of the capacity expansion cost, given below, 

are also experimented in order to see the effect of this parameter on performance 

measures.  

Level-1 (Mid) : 683 

Level-2 (High) : 683×2 = 1366 

Level-3 (Low) : 683/2  = 342 

Factor E: Variable unit production cost as a percentage of price (profitability) 

This factor can also be evaluated as the profitability of products which is specified 

using the unit production cost as a percentage of price. The levels used in this 

experiment are determined as follows: 

 

Level-1 : New product line is LESS PROFITABLE than the existing lines 

Level-2 : New product line is MORE PROFITABLE than the existing lines 

Level-3 : All existing and new lines have the SAME PROFITABILITY. 

 

𝑉𝑖𝑡   ∶ variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡 

𝑉𝑖𝑡  ∼ N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 
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 Chest Upright 
Drawer  

(New Line) 

Level-1  𝜇𝑉1𝑡
= 0.6 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 

Level-2 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.6 × 𝑃31𝑡 

Level-3 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.8 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 

 

Factor F: Unit capacity usage 

Five different levels for the experiment are studied: 

Level-1 : Same for all products 

Level-2 : New line consumes less resource 

Level-3 : New line consumes much less resource 

Level-4 : New line consumes more resource 

Level-5 : New line consumes much more resource 

 

Levels 

Unit Capacity Usage 

Chest Upright 
Drawer  

(New Line) 

Level-1  1 unit 1 unit 1 unit 

Level-2 1.5 unit 1.5 unit 1 unit 

Level-3 2 unit 2 unit 1 unit 

Level-4 1 unit 1 unit 1.5 unit 

Level-5 1 unit 1 unit 2 unit 

 

Factor G: Maximum amount of capacity in each period 

In order to get an idea about the reasonable value of maximum amount of capacity 

available for each period, firstly the total expected demand of all products over all 

periods under 50 000 scenarios are calculated. Then, four different levels for this 

parameter are determined as a percentage of total expected demand calculated: 

Level-1 : 5 % of total expected demand calculated (very tight capacity) 

Level-2 : 25 % of total expected demand calculated (tight capacity) 

Level-3 : 50 % of total expected demand calculated (loose/abundant capacity) 

Level-4 : 100 % of total expected demand calculated (very loose/overabundant capacity) 
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For each level, the related percent of total expected demand is used for the 

maximum capacity at t = 2, and for ICAP, t =1 and t =3, 70 %, 85 % and 115 % of 

that value calculated for t=2 are used, respectively. All the capacity data is shown 

in the following table: 

 ICAP t = 1 t = 2 t = 3 

Level 1  9 300 11 250 13 250 15 250 

Level 2 46 500 56 250 66 250 76 250 

Level 3 93 000 112 500 132 500 152 500 

Level 4 186 000 225 000 265 000 305 000 

 

Total number of runs performed for the experimental study = 3×3×5×4 = 180. 

5.1.1.2.2. Experiment 1: Results 

Response 1: Value of Stochastic Solution (VSS) 

After solving 180 runs, the related data is firstly analysed using MINITAB 17 

software to see which factors including interactions among them are significant. 

This analysis provides to understand the general behaviour of the factors and 

contributes to evaluation of the interestingness of rules generated by Association 

Analysis. The results are shown in Appendix C.1.1.1. 

Remarks: 

 Main effects 

o Considering ANOVA Table and related figures given in Appendix 

C.1.1.1, it can be seen that the factors profitability, unit capacity 

usage and maximum capacity available at each period are significant 

whilst capacity expansion cost is insignificant.  

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.1.1.1) 

o Profitability & Unit Capacity Usage 

 When the new line is less profitable than the existing lines 

and unit capacity usage is the same for all products, VSS has 
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its maximum value. However, when the profitability of the 

new line increases relatively compared to the existing lines, 

VSS decreases. This relationship between the profitability 

and unit capacity usage is also similar to the case of that the 

new consumes fewer resources compared to the old lines. 

 When the new is more profitable, VSS has its maximum 

(minimum) value in the case of that the new uses more (less 

than or equal) capacity compared to the existing lines.  

 When the unit capacity usage and profitability of the new 

line is less than or equal to of the old lines, VSS takes its 

higher values compared to the case of that the new is more 

profitable. 

o Profitability & Capacity 

 When the new is more profitable, at all levels of capacity 

VSS tends to take its lowest value.  

 When the profitability of all products is the same, VSS tends 

to take its highest values at all levels of capacity. 

 It should be noted that VSS is not considerably different 

depending on the maximum capacity when the new is less 

profitable or has the same profitability with the old lines.  

o Unit Capacity Usage & Capacity 

 In general, VSS is higher at 5 % capacity level than at other 

capacity levels.  

 At all levels of capacity (i.e. 5 %, 25 %, 50 % and 100 %), 

VSS tends to take its highest values when the unit capacity 

usage of the new product is the same as or more than of the 

old products. However, if the new product consumes much 

more resources compared to the old products, VSS 

decreases.  

 VSS tends to take lower values when the new consumes less 

production resources than the old products.  
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o Capacity expansion cost & Capacity 

 When capacity is limited, i.e. 5 % and 25 %, VSS takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, i.e. 50 % and 100 %, VSS takes 

its lowest value if capacity expansion cost is very high; and 

increases as capacity expansion cost decreases. 

 

 VSS over 180 runs 

o Average VSS (%)  =  3.7 

o Min VSS (%)         =  0 

o Max VSS (%)        =  36.5 

 Association Analysis: Rules extracted from the Random Forest 

application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.1.1.1 indicates that unit capacity usage, maximum capacity and 

profitability are the significant parameters on VSS, as obtained by ANOVA. 

Considering the rules extracted given in Appendix C.1.1.1, many of them 

are eliminated because of having a lift value close to 1. If the rules with 

minimum-support = 0.10 and a confidence level greater than 0.75 are 

considered, only one rule is accepted. Other three rules have a high 

confidence and lift even it has a low support. Those types of rules are called 

as exception rules (Wang, 2008) which have a high predictive power (i.e. 

high confidence) but occur rarely (i.e. low support), and give noteworthy 

information about patterns in the data (Ibid.). Therefore, the rules no. 2-4 

are also taken into account.  
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Table 7. Rules extracted for Case 1 (Deterministic parameters: VSS) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit  

Cap. U.  
Capacity 

1 2 0,103 0,819 4,791 1 1 … M 

2 2 0,047 0,865 6,606 1 2 … H 

3 3 0,045 1 7,637 1 2 3 or 4 H 

4 3 0,043 1 7,637 3 1 3 or 4 H 

 

According to Table 7: 

 When the new product competes for the same amount of production 

resources with the existing products, but less profitable than the 

existing ones, the VSS is predicted to take a value between 10-20 % 

(i.e. “Medium” value, as ANOVA also indicates) and thus it can be 

said that in this case the decision makers can use stochastic 

programming approach in order to get higher expected profit 

compared to the deterministic approach. 

 Considering the exception rules, when the new product is less 

profitable and also consumes less amount of resources, VSS is 

predicted to take a value greater than 20 %.  In addition to this 

condition, if the capacity is loose/abundant, the confidence as well 

as lift increases and thus rule no.3 becomes stronger than the rule 

no.2 are obtained. Besides, when the new product competes for the 

same amount of production resources, has the same profitability as 

existing ones and the capacity is loose/abundant, VSS is predicted 

to take a value greater than 20 %. Those conditions do not contradict 

with ANOVA results in which VSS becomes maximum. Therefore, 

under these conditions, the decision makers should use stochastic 

programming approach in order to get higher expected profit 

compared to the deterministic approach. 

 Besides, lift value for each rule is greater than 1 and this indicates a 

strong relationship between the left-hand-side and right-hand-side of 
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the rule and thus it can be said that the chance that the rule occurs 

by coincidence is lower.  

 

Response 2: Expected Value of Perfect Information (EVPI) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.1.1.2. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.1.1.2, it can be seen that profitability, unit capacity usage, 

maximum capacity available at each period and capacity expansion 

cost are significant factors. 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.1.1.2) 

o Capacity expansion cost & Unit Capacity Usage 

 If the new product consumes the same as or more production 

resources than the existing products, EVPI is insensitive to 

capacity expansion cost. 

 When the unit capacity usage of the new product is less than 

of the existing products, EVPI increases as the capacity 

expansion cost increases (i.e. less capacity usage and 

expensive capacity expansion results in higher EVPI). 

o Profitability & Unit Capacity Usage 

 When the new product is more profitable and consumes the 

same as or less production resources than the existing 

products, EVPI has its minimum value. However, when the 

profitability of the new relatively decreases compared to the 

existing lines, EVPI increases.  
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 When the new consumes more production resources, if it is 

equally or more (less) profitable than the existing products, 

EVPI takes its maximum (minimum) value. 

o Capacity expansion cost & Capacity 

 When capacity is limited, i.e. 5 % and 25 %, EVPI takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, i.e. 50 % and 100 %, the 

interaction becomes less significant. 

o Profitability & Capacity 

 At all levels of capacity EVPI tends to take its lowest value 

when the new is more profitable; but it increases when the 

new is less profitable than the old products.    

 When the profitability of all products is the same, EVPI tends 

to take its highest values at all levels of capacity. 

o Unit Capacity Usage & Capacity 

 At 5 % capacity level, EVPI increases as unit capacity usage 

of the new increases relatively to the unit capacity usage of 

the old products. 

 At all other levels, EVPI takes its highest values when the 

unit capacity usages of old and new products are the same or 

the new product’s capacity usage is more than (not too much) 

the olds’. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 EVPI over 180 runs 

o Average EVPI (%)  =  6.5 

o Min EVPI (%)         =  0.25 

o Max EVPI (%)        =  21 
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 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.1.1.1 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI. Considering the rules extracted given in 

Appendix C.1.1.1, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.6 are not considered 

as strong rules). Thus, only one rule with a high support and a lift but low 

support is obtained as an exception rule (Table 8). 

Table 8. Rules extracted for Case 1 (Deterministic parameters: EVPI) 

Rule Length Support Confidence Lift 

Condition 

Prediction 

(EVPI) 

Profitability 

Unit 

Capacity 

Usage 

Capacity 

1 2 0,054 0,974 2,681 1 1 … M 

 

From Table 8: 

 When the new product competes for the same amount of production 

resources with the existing products, but less profitable than the 

existing ones, the EVPI is predicted to take a value between 10-20 

% (i.e. “Medium” value) and thus it can be said that based on the 

context and firm’s goals the need to invest on better forecasting 

technologies may be taken into account. 

 

5.1.1.3. Experiment 2 for Uncertain Parameters 

5.1.1.3.1. Experiment 2: Settings 

The levels regarding the uncertain parameters considered as factors for the related 

experiment are specified as follows: 
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1. Factor H: Coefficient of variation of price (CV_Price)  

Level 1: 𝐿𝐸 = 0 , 𝐿𝑁 = 0 

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 2: 𝑀𝐸 = 0.15, 𝑀𝑁 = 0.18 

𝑀𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝑀𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 3: 𝐻𝐸 = 0.30, 𝐻𝑁 = 0.36 

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

2. Factor I: Coefficient of variation of demand (CV_Demand)  

Level 1: 𝐿𝐸 = 0 , 𝐿𝑁 = 0 

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 2: 𝑀𝐸 = 0.15, 𝑀𝑁 = 0.18 

𝑀𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝑀𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 3: 𝐻𝐸 = 0.30, 𝐻𝑁 = 0.36 

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

3. Factor J: Unit Production Cost (CV_Cost) 

Level 1: 𝐿 =  0,      (𝐿 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

4. Factor K: Cannibalisation Rate (CV_CanR)    

Level 1: 𝐿 =  0,      (𝐿 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

It should be noted that for this experiment the levels of deterministic parameters 

(such as unit capacity usage, capacity expansion cost etc. considered as factors in 

Section 5.1.1.2.1) are fixed to the one of the values where VSS takes the maximum 

values mentioned in Section 5.1.1.2.2. 
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The D-optimal design with 30 runs/problems (Table 6) is generated based on the 

levels given above and the results are presented in the following section. 

5.1.1.3.2. Experiment 2: Results 

 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model which ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  21.3 

o Min VSS (%)         =  0 

o Max VSS (%)        =  36.7 (when the variability of both of price and 

cost is higher)          

 

 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.1.2.1 indicates that coefficient of variation of price and cost (CV_Price, 

CV_Cost), are the significant parameters on VSS. The rules with high 

support, high confidence and high lift, which are shown in Table 9, are 

obtained. 
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Table 9. Rules extracted for Case 1 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition Prediction 

(VSS) CV_Price CV_Cost 

1 1 0.204 1 2.446 0.30 … H 

2 2 0.180 1 2.600 0.15 0 or 0.15 M 

3 2 0.170 1 2.446 0.15 0.30 H 

4 2 0.170 1 2.600 0 0.30 M 

5 2 0.162 1 4.843 0 0 or 0.15 L 

 

According to Table 9: 

 When the variability of price is 0.30 (high variability), with a high 

support and confidence VSS is predicted to take a value greater than 

20 % (i.e. “High” value), therefore in those cases the decision 

makers should use stochastic programming approach in order to get 

higher expected profit compared to the deterministic approach. 

Considering rule 3, with relatively lower support but high 

confidence, VSS is also expected to become greater than 20 % 

providing that the variability of price is 0.15 and variability of cost 

is 0.30 (High variability). 

 When the coefficient of variation of price and cost is 0.15 (medium 

variability) and 0.0 (no variability) or 0.15, respectively, OR the 

coefficient of variation of price is 0.0 and of cost is 0.30, VSS is 

predicted to take a value between 10 % and 20 % (i.e. “Medium” 

value) and it can be said that based on the satisfaction level of the 

decision maker, stochastic programming approach can be used. 

 When there is no variability regarding price and the variability of 

cost is 0.00 (no variability) or 0.15 (low variability), VSS is 

predicted to take a value less than 10 % (i.e. “Low” category) and it 

can be said that stochastic programming approach can be used. In 

this case, the stochastic programming approach would not gain a 

noteworthy contribution and therefore it would be better to use a 
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deterministic approach considering the mean values of uncertain 

parameters. 

 Besides, lift value for each rule is greater than 1 and this indicates a 

strong relationship between the left-hand-side and right-hand-side of 

the rule and thus it can be said that the chance that the rule occurs 

by coincidence is lower.  

 

Response 2: Expected Value of Perfect Information (EVPI) 

Remarks 

 EVPI over 30 runs 

o Average EVPI (%)  = 10.8 

o Min EVPI (%)         = 0.0 

o Max EVPI (%)        = 13.3 

 

 When there is no variability regarding price and cost, EVPI takes a value 

close to zero. In all of the other cases, EVPI falls into “Medium” category.  
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5.1.2. Case 2: Mix of Two Existing Lines Sold in Two Markets with a New 

Higher-Priced Line Sold in both of the Markets 

In this case, the same firm in Case 1, which produces major household appliances 

(white goods), is considered. This firm has two product lines under “refrigerator” 

category (defined under “cold family”) according to the product hierarchy, given in 

Figure 6. 

 

 

 

 

5.1.2.1. Basic Data 

 

a) Products: 

  

 

 

 

 

 

b) Market:  

There are two markets, national and global, in which the products are sold. The 

national market is considered more stable (low variability), and so in this market 

demand and price parameters have low coefficient of variation. However, the global 

market is more volatile (higher variability) and so in this market demand and price 

parameters have high coefficient of variation. Besides, it is assumed that (1) the 

global market is more profitable than the national market,  (2) both the existing lines 

and new line are sold in both of the markets and (3) they can be introduced to those 

markets at the same time.  

 

- 2 existing (old) lines  

- 1 new line  

- 2 markets  

- 5 periods (years) 

 

Single-door No-frost Double-door 

Existing Line 1 : Single-door 

Existing Line 2 : Double-door 

         New Line : No-frost (higher-technology)  
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c) Product Prices:  

𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡   

𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

 National Market (𝑗 = 1, 𝑡) Global Market (𝑗 = 2, 𝑡) 

Existing line-1 (𝑖 =
1) 

𝜇𝑃𝑖𝑗𝑡
= 145027 𝜇𝑃𝑖𝑗𝑡

= 1750 

Existing line-2 (𝑖 =
2) 

𝜇𝑃𝑖𝑗𝑡
= 255028 𝜇𝑃𝑖𝑗𝑡

= 3000 

New Line        (𝑖 =
3) 

𝜇𝑃311
= 𝜇𝑃312

= 𝜇𝑃313
= 3000 

          = 𝜇𝑃314
= 𝜇𝑃315

= 250029 

𝜇𝑃321
=  𝜇𝑃322

= 𝜇𝑃323
= 3600 

𝜇𝑃324
= 3600 × 0.83 = 3000 

 𝜇𝑃325
= 3000 

 

The existing products are considered as mature, thereby it is assumed that the mean 

price is stable and doesn’t change over the planning horizon (next five years). 

However, the new product is launched with a higher price which diminishes after 

three periods with a rate of 20 %. At the end of the planning horizon the price of 

this new product is expected to be nearly the same as of the existing product with 

higher price, i.e. double-door fridge.   

The standard deviation of price for existing lines in the national market: 

 
𝜎𝑃𝑖1𝑡

= 0.30 × 𝜇𝑃𝑖1𝑡
 

 

                                                 

 

 
27 This value is calculated as the average price of different models under the single-door fridge line 

of a firm operating in Turkey, Arçelik A.Ş.. Retrieved 5 July, 2017, from 

https://www.arcelik.com.tr/tek-kapili-buzdolabi/. 
28 This value is calculated as the average price of different models under the double-door fridge line 

of a firm operating in Turkey, Arçelik A.Ş.. Retrieved 5 July, 2017, from 

https://www.arcelik.com.tr/cift-kapili-buzdolabi/. 
29 This value is calculated as the average price of different models under the no-frost line of a firm 

operating in Turkey, Arçelik A.Ş.. Retrieved 5 July, 2017, from https://www.arcelik.com.tr/no-frost-

buzdolabi/.  



 

 
137 

Since the global market is more volatile (higher variability), in this market the price 

parameter has high coefficient of variation, as follows: 

The standard deviation of price for existing lines in the global market: 

 𝜎𝑃𝑖2𝑡
= 0.33 × 𝜇𝑃𝑖2𝑡

 

It is also assumed that the uncertainty regarding the price of new line is higher than 

to the existing lines, and thereby, the standard deviation of the price of the new line 

is considered as 10 % higher than of the existing lines, i.e.,  

the standard deviation of price for new line sold in the national market: 

  𝜎𝑃31𝑡
= 0.33 × 𝜇𝑃31𝑡

 , 

the standard deviation of price for new line sold in the global market: 

  𝜎𝑃32𝑡
= 0.36 × 𝜇𝑃32𝑡

 . 

d) Demand: 

𝐸𝑃𝐷𝑖𝑗𝑡 ∶  potential demand of existing product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝐸𝑃𝐷𝑖𝑗𝑡  ∼ N (𝜇𝐸𝑃𝐷𝑖𝑗𝑡
,  𝜎𝐸𝑃𝐷𝑖𝑗𝑡

2 ) 

𝑁𝐷𝑖𝑗𝑡 ∶  demand of new product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝑁𝐷𝑖𝑗𝑡  ∼ N (𝜇𝑁𝐷𝑖𝑗𝑡
,  𝜎𝑁𝐷𝑖𝑗𝑡

2 ) 
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 National Market (𝑗 = 1, 𝑡) 
Global Market (𝑗 = 2, 𝑡) 

Existing line-1 

(𝑖 = 1) 

𝜇𝐸𝑃𝐷11𝑡
= 110000 − 24 × 𝑃11𝑡 

                                +10 × 𝑃21𝑡 

𝜇𝐸𝑃𝐷12𝑡
= 135000 − 35 × 𝑃12𝑡 

                    + 10 × 𝑃22𝑡 

Existing line-2 

(𝑖 = 2) 

𝜇𝐸𝑃𝐷21𝑡
= 240000 − 27.5 × 𝑃21𝑡

+ 23 × 𝑃11𝑡 

𝜇𝐸𝑃𝐷22𝑡
=  290000 − 46 × 𝑃22𝑡

+ 27 × 𝑃12𝑡 

New Line 

(𝑖 = 3) 

𝜇𝑁𝐷311
  = 320000 − 40 × 𝑃311 

𝜇𝑁𝐷312
  = 340000 − 40 × 𝑃312 

𝜇𝑁𝐷313
  = 380000 − 45 × 𝑃313 

𝜇𝑁𝐷324
  = 375000 − 45 × 𝑃324 

𝜇𝑁𝐷325
  = 375000 − 45 × 𝑃325 

𝜇𝑁𝐷321
  = 353000 − 30 × 𝑃321 

𝜇𝑁𝐷322
  = 413000 − 30 × 𝑃322 

𝜇𝑁𝐷323
  = 480000 − 33 × 𝑃323 

𝜇𝑁𝐷324
  = 460000 − 33 × 𝑃324 

𝜇𝑁𝐷325
  = 470000 − 33 × 𝑃325 

 

The existing products are considered as mature, thereby it is assumed that the mean 

demand is stable and doesn’t change over the planning horizon (next five years). 

For the new product (no-frost fridge), the average demand is expected to be 

relatively low in the introduction phase which is assumed for the first two years 

after the launching; then increases by the third year and becomes stable over the 

rest of the planning horizon. On the other hand, the price elasticity of demand of 

this new product is less than of the existing products that are more sensitive to price 

changes because of their maturity, but increases over the planning horizon after the 

introduction phase, i.e. becomes recognised in the markets30.   

In the current situation in which the new product is not introduced, the sales volume 

of single and double-door fridge in each market is 1/3 and 2/3, respectively. By 

introducing the new line to the markets, it is expected that the market size (total 

expected demand) would increase by 20 % after the period t=3.  

Own-price elasticities of demand and cross elasticities don’t change over the 

planning horizon for the existing products. Since the global market is more volatile, 

the own-price elasticities in this market is relatively higher than the national market, 

i.e. the demand in the global market is more sensitive to price changes. Besides, the 

                                                 

 

 
30 This case is created on the condition that the new product will be successful. However, it is also 

possible to consider another case in which the new product will fail in the introduction phase.  
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demand of the existing line “double-door fridge” is more sensitive to price changes 

than of the “single-door fridge”.   

The standard deviation of demand for existing lines in the national market: 

 𝜎𝑃𝑖1𝑡
= 0.30 × 𝜇𝑃𝑖1𝑡

 

Since the global market is more volatile (higher variability) and so in this market 

demand parameter has high coefficient of variation, as follows: 

The standard deviation of demand for existing lines in the global market: 

 𝜎𝑃𝑖2𝑡
= 0.33 × 𝜇𝑃𝑖2𝑡

 

It is also assumed that the uncertainty regarding the demand of new line is higher 

than the existing lines, and thereby, the standard deviation of the demand of the new 

line is considered as 10 % higher than of the existing lines, i.e. 

The standard deviation of demand for new line sold in national market: 

  𝜎𝑃31𝑡
= 0.33 × 𝜇𝑃31𝑡

 

The standard deviation of demand for new line sold in the global market: 

  𝜎𝑃32𝑡
= 0.36 × 𝜇𝑃32𝑡

 

e) Cannibalisation Rate: 

𝑒𝑖𝑗𝑙𝑡   ∶ Cannibalisation rate (as a percentage) of product  𝑙 ∈ 𝑁𝑃   

              on product 𝑖 in market 𝑗 at period 𝑡 

𝑒𝑖𝑗𝑙𝑡  ∼ N (𝜇𝑒𝑖𝑗𝑙𝑡
,  𝜎𝑒𝑖𝑗𝑙𝑡

2 ) 
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Cannibalisation rate of new line 

on existing lines in the national 

market 

Cannibalisation rate of new 

line on existing lines in the 

global market 

Existing line-1  

(𝑖 = 1, 𝑙 = 3, t) 
𝜇𝑒113𝑡

= 0.1 − 0.00017 × 𝑃31𝑡 𝜇𝑒123𝑡
= 0.1 − 0.00020 × 𝑃32𝑡 

Existing line-2  

(𝑖 = 2, 𝑙 = 3, t) 
𝜇𝑒213𝑡

= 0.1 − 0.00017 × 𝑃31𝑡 𝜇𝑒223𝑡
= 0.1 − 0.00008 × 𝑃32𝑡 

 

The variance of cannibalisation rate: 𝜎𝑒𝑖𝑗𝑡

2 = 0.30 × 𝜇𝑒𝑖𝑗3𝑡
 

If the new line is introduced to the global market, it is expected that potential 

demand for both of the existing lines would be cannibalised by different rates, i.e. 

the “double-door fridge” will be cannibalised much more than the “single-door 

fridge” since the double-door is more similar to the no-frost fridge in term of 

functionality. Considering demand, price and cannibalisation rate are at their mean 

values, the following figures can be obtained (when the related parameters are at 

their mean values): 

 𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 𝑡 = 5 

Expected price of the new line that can 

be introduced to the global market 
3500 3500 3500 3000 3000 

Expected cannibalised demand from 

the existing line “single-door fridge”  

 (by 30 %) in the global market 

30000 36000 45000 54000 60000 

Expected cannibalised demand from 

the existing line “double-door fridge”  

 (by 70 %) in the global market 

70000 84000 105000 126000 140000 

Market expansion by introduction of 

the new line in the global market 
150000 180000 200000 180000 160000 

Expected demand after the introduction 

of the new line in the global market 
250000 300000 360000 360000 360000 

Expected price of the new line that can 

be introduced to the national market  
3000 3000 3000 2500 2500 

Expected cannibalised demand from 

the existing line “single-door fridge”  

 (by 50 %) 

25000 50000 50000 75000 75000 

Expected cannibalised demand from 

the existing line “double-door fridge”  

 (by 50 %) 

25000 50000 50000 75000 75000 

Market expansion by introduction of 

the new line in the national market 
150000 120000 160000 110000 110000 

Expected demand after the introduction 

of the new line in the national market 
200000 220000 260000 260000 260000 
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As it can come out from the table above, it is assumed that a new product 

cannibalises a percentage (or proportion) of old product’s sales, but it expands the 

market share of the company as well (Laruccia et al., 2012). 

f) Variable unit production cost: 

The mean value of cost is determined as a percentage of the mean price and different 

percentages are considered for the experimental study. 

𝑉𝑖𝑡   ∶ variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡 

           𝑉𝑖𝑡  ∼ N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 

The variance of cost:  𝜎𝑉𝑖𝑡

2 = 0.30 × 𝜇𝑉𝑖𝑡
 

g) Minimum launching time of the new line in the markets: 

𝑚𝑖𝑛𝐿31 = 𝑚𝑖𝑛𝐿32 = 1. 

5.1.2.2. Other Case Data and Experiment 1 for Deterministic Parameters  

 

5.1.2.2.1. Experiment 1: Settings 

As in Case 1, four deterministic parameters considered as factors for the outer array 

of the experiment given in Table 4, which are 

1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 

4. Maximum amount of capacity available for each period with four-levels 

Factor D: Capacity expansion cost 

In order to get an idea about the reasonable value of capacity expansion cost and to 

provide a possible trade-off between capacity expansion cost and unit contribution 

margin in accordance with our optimisation model, firstly we calculate the expected 

contribution margin including all products and all periods, calculated using 50 000 
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scenarios. As a result, the value of TL 1200 is obtained and set this as Level-1 (Mid) 

in the study. Besides, a high value and a low value of the capacity expansion cost 

are experimented in order to see the effect of this parameter on performance 

measures:  

Level-1 (Mid) : 1200 

Level-2 (High) : 1200×2 = 2400 

Level-3 (Low) : 1200/2  = 600 

Factor E: Variable unit production cost as a percentage of price (profitability) 

This factor can also be evaluated as the profitability of products which is specified 

using the unit production cost as a percentage of price. The levels used in this 

experiment are determined as follows: 

Level-1 : New product line is LESS PROFITABLE than the existing lines 

Level-2 : New product line is MORE PROFITABLE than the existing lines 

Level-3 : All existing and new lines have the SAME PROFITABILITY. 

   

𝑉𝑖𝑡   ∶ variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡 

𝑉𝑖𝑡  ∼ N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 

 Single-door fridge Double-door fridge 
No-frost fridge 

(New Line) 

Level 1  𝜇𝑉1𝑡
= 0.6 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 

Level 2 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.6 × 𝑃31𝑡 

Level 3 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.8 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 

 

Factor F: Unit capacity usage 

Five different levels for the experiment are considered as in Case 1, as follows: 
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Level-1 : Same for all products 

Level-2 : New line consumes less resource 

Level-3 : New line consumes much less resource 

Level-4 : New line consumes more resource 

Level-5 : New line consumes much more resource 

 

Levels 

Unit Capacity Usage 

Chest Upright 
Drawer  

(New Line) 

Level-1  1 unit 1 unit 1 unit 

Level-2 1.5 unit 1.5 unit 1 unit 

Level-3 2 unit 2 unit 1 unit 

Level-4 1 unit 1 unit 1.5 unit 

Level-5 1 unit 1 unit 2 unit 

 

Factor G: Maximum amount of capacity in each period 

In order to get an idea about the reasonable value of maximum amount of capacity 

available for each period, firstly we calculate the total expected demand of all 

products over all periods under 50 000 scenarios. Then, four different levels for this 

parameter are determined as a percentage of total expected demand calculated as 

follows: 

Level-1 : 5 % of total expected demand calculated (very limited capacity) 

Level-2 : 25 % of total expected demand calculated (limited capacity) 

Level-3 : 50 % of total expected demand calculated (abundant capacity) 

Level-4 : 
100 % of total expected demand calculated (overabundant 

capacity) 

For each level, the related percent of total expected demand is used for the 

maximum capacity available at t = 3, and 70 %, 80 %, 90 %, 110 % and 120 % of 

that value calculated for t=3 are used for ICAP, t =1, t =3, t=4 and t=5, respectively. 

All the capacity data is shown in the following table: 
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 ICAP t = 1 t = 2 t = 3 t = 4 t = 5 

Level 1    42 000   48 000    54 000     60 000    66 000     72 000 

Level 2 210 000 240 000  270 000   300 000  330 000   360 000 

Level 3 420 000 480 000  540 000   600 000  660 000   720 000 

Level 4 840 000 960 000 1 080 000 1 200 000 1 320 000 1 440 000 

 

Total number of runs performed for the experimental study = 3×3×5×4 = 180. 

5.1.2.2.2. Experiment 1: Results 

 

Response 1: Value of Stochastic Solution (VSS) 

 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.2.1.1. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.2.1.1, it can be seen that the factors profitability, unit capacity 

usage, capacity expansion cost and maximum capacity are 

significant.  

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.2.1.1) 

o Capacity expansion cost & Unit Capacity Usage 

 When the unit capacity usage of the old and new products is 

the same or the unit capacity usage of the new product is less 

than of the old products, VSS increases as the capacity 

expansion cost reduces. 

 At all other levels of the unit capacity usage, VSS increases 

as the capacity expansion cost increases. 
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o Profitability & Unit Capacity Usage 

 When the new line is less profitable than the existing lines 

and unit capacity usage is the same for all products, VSS has 

its maximum value. However, when the profitability of the 

new relatively increases compared to the existing lines, VSS 

decreases. This relationship between the profitability and 

unit capacity usage is also similar to the case of that the new 

consumes fewer resources compared to the old lines. 

 When the new is more profitable, VSS has its maximum 

(minimum) value in the case of that the new uses more (less 

than or equal) capacity compared to the existing lines.  

 When the profitability of the new and old products is the 

same, the unit capacity usage becomes insignificant and VSS 

doesn’t change. 

o Profitability & Capacity 

 When the capacity is at the levels of 25, 50 and 100 %, VSS 

tends to take its lowest value when the new is more 

profitable. But VSS takes higher values when the 

profitability of all products is the same or the new is less 

profitable than the old products. 

 When the capacity is at the levels of 5 %, the profitability 

factor becomes insignificant and VSS doesn’t change. 

 Furthermore, VSS takes its lowest value when the capacity 

is at 25 % level and the new is more profitable than the old 

products. 

o Unit Capacity Usage & Capacity 

 When the maximum allowable capacity is at 5 % and 25 % 

levels (the capacity is limited), VSS takes its highest value 

when the unit capacity usage is the same for all products and 

tends to decrease when the unit capacity usage of the new is 

less or more than of the old products.  
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 When the maximum allowable capacity is at 50 % level, VSS 

takes higher values when the unit capacity usage is the same 

for all products or when the unit capacity usage of the new 

product is more than of the old products; in all other levels 

of unit capacity usage, VSS tends to decrease. 

 When the maximum allowable capacity is at 100 % level (the 

capacity is abundant), VSS takes its lowest value when the 

unit capacity usage is the same for all products and tends to 

increase when the unit capacity usage of the new is less or 

more than of the old products.  

 

 VSS over 180 runs 

o Average VSS (%)  =  2.8 

o Min VSS (%)         =  0 

o Max VSS (%)        =  22.8 

 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.2.1.1 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on VSS. Considering the rules extracted given in 

Appendix C.2.1.1, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.3 are considered as 

weak rules). Thus, eight rules with high confidence and lift but  low support 

are considered as exception rules (Table 10). Amongst them, rule no.1 

outpeforms rule no.2, rule no.5 outperforms rule no.3, 4 and 6, and rule no.7 

outperforms rule no.8. 
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Table 10. Rules extracted for Case 2 (Deterministic parameters: VSS) 

Rule Length Support Confidence Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit 

Cap. U.  
Capacity 

1 3 0,087 1 6,23 1 2 3 M 

2 2 0,087 0,978 6,10  2 3 M 

3 2 0,079 0,959 8,39 1  1 or 2 H 

4 1 0,079 0,908 7,94   1 or 2 H 

5 3 0,078 1 8,74 1 2 1 or 2 H 

6 2 0,078 0,972 8,50  2 1 or 2 H 

7 3 0,073 1 6,23 3 1 1 M 

8 2 0,073 0,789 4,92 3 1  M 

 

According to Table 10: 

 When the new product is less profitable, uses less production 

resources than the old products and capacity is loose (i.e. the level 

of 50 %) OR the profitability and unit capacity usage of both the new 

line and existing lines are the same and the capacity is tight/scarce, 

VSS is predicted to take a value between 10 % and 20 % (i.e. 

“Medium” value) and it can be said that based on the satisfaction 

level of the decision maker, stochastic programming approach can 

be used. 

 When the new product is less profitable, consumes less amount of 

production resources than the old ones and capacity is tight (the level 

of 5% and 25 %), VSS is predicted to take a value over 20 % (this 

fact can be seen as compatible with the results obtained based on the 

interaction of factors given by ANOVA results) and thus it can be 

that in this case the decision makers should use stochastic 

programming approach in order to get higher expected profit 

compared to the deterministic approach. 
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Response 2: Expected Value of Perfect Information (EVPI) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.2.1.2. 

Remarks 

 Main effects 

o Considering ANOVA table and related figures in Appendix C.2.1.2, 

it can be seen that profitability, unit capacity usage, maximum 

capacity available at each period and capacity expansion cost are 

significant factors. 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.2.1.1) 

o Profitability & Unit Capacity Usage 

 When the new product is more profitable and consumes less 

production resources than the existing products, EVPI has its 

minimum value. However, when the profitability of the new 

relatively decreases compared to the existing lines, EVPI 

increases.  

 When the new consumes more production resources, if it is 

equally or more (less) profitable than the existing products, 

EVPI takes its maximum (minimum) value. 

o Capacity expansion cost & Capacity 

 When capacity is limited, 5 % and 25 %, EVPI takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, 50 % and 100 %, the interaction 

becomes less significant. 
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o Profitability & Capacity 

 At all levels of capacity, EVPI tends to take its lowest value 

when the new is more profitable; but it increases when the 

new is less profitable than the old products or the 

profitability of all products is the same. 

 At all levels of profitability, EVPI increases as maximum 

level to which the total capacity could be expanded and 

takes its highest value when the capacity is abundant. 

o Unit Capacity Usage & Capacity 

 At all capacity levels, EVPI takes its highest values when the 

unit capacity usage of old and new products is the same or 

the new product’s capacity usage is more than (not too much) 

the olds’. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 EVPI over 180 runs 

o Average EVPI (%)  = 6.20 

o Min EVPI (%)         = 0.20 

o Max EVPI (%)        = 18.4 

 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.2.1.2 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI.  Considering the rules extracted given in 

Appendix C.2.1.2, six rules with high confidence and lift but  low support 

are considered as exception rules (Table 11). 
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Table 11. Rules extracted for Case 2 (Deterministic parameters: EVPI) 

Rule Length Support Confidence Lift 

Condition 

Prediction 

(EVPI) 

Profitability 

Unit 

Capacity 

U.  

Capacity 

1 1 0,081 0,986 1,906 … … 3 or 4 M 

2 1 0,077 1 2,071 … … 1 or 2 L 

3 1 0,071 1 2,071 … 2 or 3 … L 

4 2 0,070 1 1,933 … 5 3 or 4 M 

5 2 0,063 1 2,071 2 1 … L 

6 2 0,055 1 2,071 … 4 or 5 1 L 

 

According to Table 11: 

 Considering rule no.1 which also outperforms rule no.4, when the 

capacity is loose (i.e. the level of 50 and 100 %), EVPI tends to become 

between 10% and 20 % and for these cases it can be said that based on 

the context and firm’s goals the need to invest on better forecasting 

technologies may be taken into account. This rule is also compatible 

with ANOVA output. 

 When the capacity is tight (i.e. the level of 5 and 25 %) OR the new 

product consumes less resources than the old ones OR the new product 

is more profitable but uses the same amount of unit production 

resources OR unit capacity usage of the new is more than of the old 

ones and capacity is very tight, EVPI is expected to be less than 10 %, 

thereby it can be said that having a better forecast about the uncertain 

parameters would not gain a noteworthy contribution for those cases. 

 

5.1.2.3. Experiment 2 for Uncertain Parameters 

 

5.1.2.3.1. Experiment 2: Settings 

In this case, the levels of coefficient of variation for each parameter are also 

considered as 0, 0.15 and 0.30. Since it is assumed that the uncertainty regarding 

the price and the demand of new line is higher than the existing lines in both 
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markets, the standard deviation of the price of the new line is considered as 10 % 

higher than of the existing lines. Plus, since the global market is more volatile than 

the national market, the variability in the global market is 10 % higher than the 

variability in the national market. The levels for the uncertain parameters are 

specified as follows: 

1. Factor H: Coefficient of variation of price (CV_Price)  

Level 1: 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0, 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0,  

              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,   𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0,    𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0 

Level 2: 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.15, 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.17,  

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,   𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.18, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.20 

Level 3: 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.30, 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.33,  

              𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.33, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.36 

2. Factor I: Coefficient of variation of demand (CV_Demand)  

Level 1: 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0, 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0,  

              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,   𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0,    𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0 

Level 2: 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.15, 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.17,  

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,   𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.18, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.20 

Level 3: 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.30, 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.33,  

              𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.33, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.36 

3. Factor J: Unit Production Cost (CV_Cost) 

Level 1: 𝐿 =  0,      (𝐿 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

4. Factor K: Cannibalisation Rate (CV_CanR) 

Level 1: 𝐿 =  0,      (𝐿 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 
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It should be noted that for this experiment the levels of deterministic parameters 

(such as unit capacity usage, capacity expansion cost etc. considered as factors in 

Section 5.1.2.2.1) are fixed to the one of the values where VSS takes high values 

mentioned in Section 5.1.2.2.2. 

The D-optimal design with 30 runs/problems (Table 6) is generated based on the 

levels given above and the results are presented in the following section. 

5.1.2.3.2. Experiment 2: Results 

 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model that ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  19.6 

o Min VSS (%)         =  0 

o Max VSS (%)        =  35.2 (when the variability of both of price and 

cost is higher)           

 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.2.2.1 indicates that coefficient of variation of price and cost (CV_Price, 

CV_Cost), are the significant parameters on VSS. The rules with high 

support, high confidence and high lift, which are shown in Table 12, are 

obtained (those rules are the same as the rules regarding Case 1). 
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Table 12. Rules extracted for Case 2 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition  Prediction 

(VSS) CV_Price CV_Cost 

1 1 0,203 1 2,487 0.30 … H 

2 2 0,179 1 2,623 0.15 0 or 0.15 M 

3 2 0,170 1 2,623 0 0.30 M 

4 2 0,168 1 2,487 0.15 0.30 H 

5 2 0,164 1 4,614 0 0 or 0.15 L 

 

According to Table 12: 

 When the variability of price is 0.30 (high variability), with a high 

support, confidence and a lift greater than 1 VSS is predicted to take 

a value greater than 20 % (i.e. “High” value), therefore in those cases 

the decision makers should use stochastic programming approach in 

order to get higher expected profit compared to the deterministic 

approach. Considering rule 4, with relatively lower support but high 

confidence and a lift greater than 1, VSS is also expected to become 

greater than 20 % providing that the variability of price is 0.15 and 

variability of cost is 0.30 (High variability). 

 When the coefficient of variation of price and cost is 0.15 (medium 

variability) and 0 (no variability) or 0.15, respectively, OR the 

coefficient of variation of price is 0 and of cost is 0.30, VSS is 

predicted to take a value between 10 % and 20 % (i.e. “Medium” 

value) and it can be said that based on the satisfaction level of the 

decision maker, stochastic programming approach can be used. 

 When there is no variability regarding price and the variability of 

cost is 0 (no variability) or 0.15 (low variability), VSS is predicted 

to take a value less than 10 % (i.e. “Low” category) and it can be 

said that stochastic programming approach can be used. In this case, 

the stochastic programming approach would not gain a noteworthy 
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contribution and therefore it would be better to use a deterministic 

approach considering the mean values of uncertain parameters. 

 

Response 2: Expected Value of Perfect Information (EVPI) 

The minimum, average and maximum values of EVPI, which are 0 %, 1.1 % and 

1.8 %, respectively, are very small, and all responses fall into “Low” category. 

Since it needs to have at least two classes (categories) to do classification in 

Random Forest, any rules regarding EVPI for this Case could not be obtained. 
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5.1.3.  Case 3: Mix of Two Existing Lines Sold in a Single Market with Two 

New  Lines and Five-Periods 

 

In this case a tyre manufacturing company is considered. This firm has four product 

lines under “passenger cars” category/class according to the product hierarchy 

given in Appendix A. The details of the case are as follows: 

 

 

 

 

 

5.1.3.1. Basic Data 

 

a) Products: 

 

 

 

 

 

 

b) Market:  

The products are sold only in the national market. 

c) Product Prices:  

𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡   

𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

 

 

 

- 2 existing (old) lines 

- 2 new lines 

- 5 periods (years) 

- 1 market (national) 

Winter Summer 4-seasons 

Existing Line 1 : Winter tyres 

Existing Line 2 : Summer tyres 

New Line 1       : 4-seasons tyres  

New Line 2       : Ultra high performance  

                              

Ultra high  

performance 
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Mean Price 

𝑗 = 1, t  (TL) 

Existing line-1 (𝑖 = 1): 𝜇𝑃11𝑡
= 170 ; not changed over all periods 

Existing line-2  (𝑖 = 2): 𝜇𝑃21𝑡
= 160 ; not changed over all periods 

New line-1        (𝑖 = 3): 𝜇𝑃311
= 210, 𝜇𝑃312

= 210, 𝜇𝑃313
= 210 × 0.95 = 200, 

𝜇𝑃314
= 200 × 0.95 = 190, 𝜇𝑃315

= 190 ; it is introduced 

with a higher price which reduces after the introduction phase 

New line-2        (𝑖 = 4): 𝜇𝑃411
= 280, 𝜇𝑃412

= 280, 𝜇𝑃413
= 280 × 0.95 = 266, 

𝜇𝑃414
= 266 × 0.95 = 253, 𝜇𝑃415

= 253 ; it is introduced 

with a higher price which reduces after the introduction phase 

Since the existing products are considered as mature, it is assumed that the mean 

price is stable and does not change over the planning horizon (next five years). 

However, the new products are launched with a higher price diminishing in the next 

three periods with a rate of 5 %.  

The standard deviation of price for existing lines: 𝜎𝑃𝑖𝑗𝑡
= 0.30 × 𝜇𝑃𝑖𝑗𝑡

 

It is also assumed that the uncertainty regarding the price of new lines is higher than 

to the existing line, and thereby, the standard deviation of the price of new line-1 

(4-season) and new line-2 (ultra high performance) is considered as 15 % and 5 %, 

respectively, higher than of the existing lines. 

The standard deviation of price for new line -1:  𝜎𝑃31𝑡
= 0.35 × 𝜇𝑃31𝑡

 

The standard deviation of price for new line -2:  𝜎𝑃41𝑡
= 0.32 × 𝜇𝑃41𝑡

 

d) Demand: 

𝐸𝑃𝐷𝑖𝑗𝑡 ∶  potential demand of existing product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝐸𝑃𝐷𝑖𝑗𝑡  ∼ N (𝜇𝐸𝑃𝐷𝑖𝑗𝑡
,  𝜎𝐸𝑃𝐷𝑖𝑗𝑡

2 ) 

𝑁𝐷𝑖𝑗𝑡 ∶  demand of new product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝑁𝐷𝑖𝑗𝑡  ∼ N (𝜇𝑁𝐷𝑖𝑗𝑡
,  𝜎𝑁𝐷𝑖𝑗𝑡

2 ) 

 Demand  (unit) 

Existing line-1   (𝑖 = 1, 𝑗 = 1, 𝑡) 𝜇𝐸𝑃𝐷11𝑡
= 250000 − 150 × 𝑃11𝑡 
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Existing line-2   (𝑖 = 2, 𝑗 = 1, 𝑡) 𝜇𝐸𝑃𝐷21𝑡
= 250000 − 170 × 𝑃21𝑡 

New line-1         (𝑖 = 3, 𝑗 = 1, 𝑡) 𝜇𝑁𝐷31𝑡
  = 200000 − 100 × 𝑃31𝑡 

New line-2         (𝑖 = 4, 𝑗 = 1, 𝑡) 𝜇𝑁𝐷41𝑡
  = 125000 −   50 × 𝑃41𝑡 

 

The standard deviation of demand for existing lines:  𝜎𝐸𝑃𝐷𝑖𝑗𝑡
= 0.30 × 𝜇𝐸𝑃𝐷𝑖𝑗𝑡

 

The first assumption for the demand functions is that there are no interactions 

between the existing line-1 and -2. Secondly, the uncertainty regarding the demand 

of new lines is assumed to be higher than to the existing lines, and thereby, the 

standard deviation of the demand of new line-1 (4-season tyre) and new line-2 (ultra 

high performance tyre) is considered as 15 % and 5 %, respectively, higher than of 

the existing lines. 

The standard deviation of demand for new line -1:  𝜎𝑁𝐷31𝑡
= 0.35 × 𝜇𝑁𝐷31𝑡

 

The standard deviation of demand for new line -2:  𝜎𝑁𝐷41𝑡
= 0.32 × 𝜇𝑁𝐷41𝑡

 

Price elasticities of demand and cross elasticities do not change over the planning 

horizon. Also, price elasticities of demand are higher for existing (old) products, 

i.e. more sensitive to price changes.  

e) Cannibalisation Rate: 

𝑒𝑖𝑗𝑙𝑡   ∶ Cannibalisation rate (as a percentage) of product  𝑙 ∈ 𝑁𝑃   

              on product 𝑖 in market 𝑗 at period 𝑡 

𝑒𝑖𝑗𝑙𝑡  ∼ N (𝜇𝑒𝑖𝑗𝑙𝑡
,  𝜎𝑒𝑖𝑗𝑙𝑡

2 ) 

Cannibalisation rate of new lines on existing lines  

Existing line-1 (𝑖 = 1, 𝑗 = 1, 𝑙 = 3, t): 𝜇𝑒113𝑡
= 0.80 − 0.0020 × 𝑃31𝑡 

Existing line-2 (𝑖 = 2, 𝑗 = 1, 𝑙 = 3, t) 𝜇𝑒213𝑡
= 0.08 − 0.0020 × 𝑃31𝑡 

Existing line-1 (𝑖 = 1, 𝑗 = 1, 𝑙 = 4, t) 𝜇𝑒114𝑡
= 0.35 − 0.0008 × 𝑃41𝑡 

Existing line-2 (𝑖 = 2, 𝑗 = 1, 𝑙 = 4, t) 𝜇𝑒214𝑡
= 0.35 − 0.0008 × 𝑃41𝑡 

 

The variance of cannibalisation rate: 𝜎𝑒𝑖𝑗𝑙𝑡

2 = 0.30 × 𝜇𝑒𝑖𝑗𝑙𝑡
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In this case, both of the old lines are assumed to be cannibalised by both of the new 

lines; however, the new line-1 (4 season) may cannibalise the existing lines more 

than the new line-2 (ultra high performance/UHP tyre).  

If the new line is introduced to the market, it is expected that potential demand for 

both of the existing lines would be cannibalised by the same rate. Considering 

demand, price and cannibalisation rate are at their mean values, the following 

figures can be obtained: 

 Winter Summer 4-season UHP Total 

Expected demand before the 

introduction of the new line-

1 & new line-2 

240 000 240 000 0 0 480 000 

Expected demand 

cannibalised by the new line-

1 with a rate  38 % 

90 000 90 000 0 0 180 000 

Expected demand 

cannibalised by the new line-

2 with a rate  13 % 

30 000 30 000 0 0 60 000 

Expected demand after the 

introduction of the new line 
120 000 120 000 180 000 110 000 530 000 

 

f) Variable unit production cost: 

The mean value of cost is determined as a percentage of the mean price and different 

percentages are considered for the experimental study, given in the next section. 

𝑉𝑖𝑡   ∶ variable unit production cost of product 𝑖 ∈ 𝐼 at period 𝑡 

𝑉𝑖𝑡  ∼ N (𝜇𝑉𝑖𝑡
,  𝜎𝑉𝑖𝑡

2 ) 

The variance of cost:  𝜎𝑉𝑖𝑡

2 = 0.30 ∗ 𝜇𝑉𝑖𝑡
 

 

g) Minimum launching time of the new line: 

𝑚𝑖𝑛𝐿31 = 𝑚𝑖𝑛𝐿41 = 1. 
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5.1.3.2. Other Case Data and Design of Experiments for Deterministic 

Parameters  

5.1.3.2.1. Experiment 1: Settings 

Four deterministic parameters are considered as factors for the outer array of the 

experiment given in Table 4: 

1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 

4. Maximum amount of capacity available for each period with four-levels 

Factor D: Capacity expansion cost 

In order to get an idea about the reasonable value of capacity expansion cost and to 

provide a possible trade-off between capacity expansion cost and unit contribution 

margin in accordance with the optimisation model, firstly the expected contribution 

margin including all products and all periods under 50 000 scenarios is calculated, 

then the value of 65 is obtained and set as Level-1 (Mid) in the experimental study. 

Besides, a high value and a low value of the capacity expansion cost, given below, 

are experimented in order to see the effect of this parameter on performance 

measures.  

Level-1 (Mid) : 65 

Level-2 (High) : 65×2 = 130 

Level-3 (Low) : 65/2  = 33 

Factor E: Variable unit production cost as a percentage of price (Profitability) 

This factor can also be evaluated as the profitability of products that is specified 

using the unit production cost as a percentage of price. The levels used in this 

experiment are determined as follows: 
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Level-1 : The new product line is LESS PROFITABLE than the existing 

lines 

Level-2 : The new product line is MORE PROFITABLE than the 

existing lines 

Level-3 : All existing and new lines have the SAME PROFITABILITY. 

 

 Winter Summer 
4-season 

(New Line-1) 

U.High Perf. 

(New Line-2) 

Level 1  𝜇𝑉1𝑡
= 0.6 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 𝜇𝑉4𝑡

= 0.8 × 𝑃31𝑡 

Level 2 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.6 × 𝑃31𝑡 𝜇𝑉4𝑡

= 0.6 × 𝑃31𝑡 

Level 3 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.8 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡    𝜇𝑉4𝑡

= 0.8 × 𝑃31𝑡 

 

Factor F: Unit capacity usage 

We use five different levels for the experimental study, as follows: 

Level-1 : Same for all products 

Level-2 : New lines consume less resource 

Level-3 : New lines consume much less resource 

Level-4 : New lines consume more resource 

Level-5 : New lines consume much more resource 

 

 

Unit Capacity Usage 

Winter Summer 
4-season 

(New Line-1) 

U.High Perf. 

(New Line-2) 

Level 1 1 unit 1 unit 1 unit 1 unit 

Level 2 1.5 unit 1.5 unit 1 unit 1 unit 

Level 3 2 unit 2 unit 1 unit 1 unit 

Level 4 1 unit 1 unit 1.5 unit 1.5 unit 

Level 5 1 unit 1 unit 2 unit 2 unit 

 

Factor G: Maximum amount of capacity available for each period 

In order to get an idea about the reasonable value of maximum amount of capacity 

available for each period, firstly the total expected demand of all products over all 
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periods under 50 000 scenarios is calculated. Then, four different levels for this 

parameter are determined as a percentage of total expected demand calculated as 

follows: 

Level-1 : 5 % of total expected demand calculated (very limited capacity) 

Level-2 : 25 % of total expected demand calculated (limited capacity) 

Level-3 : 50 % of total expected demand calculated (abundant capacity) 

Level-4 : 100 % of total expected demand calculated (overabundant 

capacity) 

For each level, the related percent of total expected demand is used for the 

maximum capacity available at t = 3, and 70 %, 80 %, 90 %, 110 % and 120 % of 

that value calculated for t=3 are used for ICAP, t =1, t =3, t=4 and t=5, respectively. 

All the capacity data is shown as follows: 

 ICAP t = 1 t = 2 
t = 3 t = 4 t = 5 

Level 1  28 000 32 000 36 000 
40 000 44 000 48 000 

Level 2 140 000 160 000 180 000 
200 000 220 000 240 000 

Level 3 280 000 320 000 360 000 
400 000 440 000 480 000 

Level 4 560 000 640 000 720 000 
800 000 880 000 960 000 

 

Total number of runs performed for DOE study = 3×3×5×4 = 180. 

 

5.1.3.2.2. Experiment 1: Results 

 

Response 1: Value of Stochastic Solution (VSS) 

 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.3.1.1. 
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Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.3.1.1, it can be seen that the factors profitability, unit capacity 

usage, capacity expansion cost and maximum capacity available at 

each period are significant.  

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.3.1.1) 

 

o Capacity expansion cost & Unit Capacity Usage 

 At all levels of unit capacity usage, VSS tends to increase as 

the capacity expansion cost increases.  

 VSS is higher when the unit capacity usage of new products 

is more than of the old products regardless of the levels of 

capacity expansion cost. 

o Profitability & Unit Capacity Usage 

 When the new products are more profitable than the existing 

products and the unit capacity usage is the same for all 

products or it is low for the new products, VSS has its 

minimum value. However, when the profitability of the new 

relatively increases compared to the existing products, VSS 

increases.  

 When the new products consume more resources compared 

to the old products but they are less profitable, VSS takes its 

maximum value. 

o Capacity expansion cost & Capacity 

 When the capacity at the level of 5 %, the capacity expansion 

cost is insignificant, but at this capacity level, VSS takes its 

highest value. 
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 When the capacity is at the levels of 25 % and 50 %, VSS 

increases as the capacity expansion cost increases. 

 When the capacity is at the level 100 %, VSS decreases as 

the capacity expansion cost increases. 

o Profitability & Capacity 

 When the capacity at the level of 5 %, the profitability is 

insignificant, but at this capacity level, VSS takes its highest 

value. 

 At all other capacity levels, VSS takes lower values, when 

the profitability of the new products is more than of the old 

products. If the profitability of the new products decreases 

compared to the old products, VSS takes higher values.    

o Unit Capacity Usage & Capacity 

 When the maximum allowable capacity is at 5 % and 25 % 

levels (the capacity is limited), VSS takes higher values 

when the unit capacity usage of new products is less than of 

old products and tends to decrease when the unit capacity 

usage of the new is more than of the old products. Besides, 

the level of 5 % gives higher VSS values than the level of 25 

%. 

 When the maximum allowable capacity is at 50 % level, VSS 

takes higher values when the unit capacity usage is the same 

for all products or when the unit capacity usage of the new 

product is more than of the old products; in all other levels 

of unit capacity usage, VSS tends to decrease. 

 When the maximum allowable capacity is at 100 % level (the 

capacity is abundant), VSS takes its lowest value when the 

unit capacity usage is the same for all products and tends to 

increase when the unit capacity usage of the new is less or 

more than of the old products.  
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 VSS over 180 runs 

o Average VSS (%)  =  5.7 

o Min VSS (%)         =  0 

o Max VSS (%)        =  26.4 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.3.1.1 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on VSS. Considering the rules extracted given in 

Appendix C.3.1.1, many of them are eliminated because of having a lift 

value not far enough from 1 (the rules having a lift value around 1.7 are 

considered as weak rules). Thus, two rules with high confidence and lift but  

low support are considered as exception rules (Table 13). 

Table 13. Rules extracted for Case 3 (Deterministic parameters: VSS) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit 

Capacity U.  
Capacity 

1 2 0,084 0,943 3,250 2 … 1 M 

2 2 0,059 0,891 3,071 1 … 3 M 

 

According to Table 13: 

 When the new products are less profitable and capacity is loose (the 

level of 50 %) OR the new one are more profitable but the capacity 

is tight (the level of 5 %), VSS is predicted to take a value between 

10 % and 20 % (i.e. “Medium” value) and it can be said that based 

on the satisfaction level of the decision maker, stochastic 

programming approach can be used. 

 No rules whose predicted category is “High” or “Low” with a strong 

support and high confidence are obtained. 
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Response 2: Expected Value of Perfect Information (EVPI) 

 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.3.1.2. 

Remarks 

 Main effects 

 

o Considering ANOVA table and related figures in Appendix C.3.1.2, 

it can be seen that profitability, unit capacity usage, maximum 

capacity and capacity expansion cost are significant factors. 

 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.3.1.1) 

 

o Profitability & Unit Capacity Usage 

 At all levels of the unit capacity usage, when the new product 

is more profitable, EVPI has its minimum value. However, 

when the profitability of the new relatively decreases 

compared to the existing lines, EVPI increases.  

 When the new consumes more production resources, almost 

at all levels of profitability, EVPI takes higher value. 

o Capacity expansion cost & Capacity 

 When capacity is limited, 5 % and 25 %, EVPI takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, 50 % and 100 %, the interaction 

becomes less significant. 
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o Profitability & Capacity 

 At all levels of capacity, EVPI tends to take its lowest value 

when the new is more profitable; but it increases when the 

new is less profitable than the old products or the 

profitability of all products is the same. 

 At levels of profitability, EVPI increases as maximum level 

to which the total capacity could be expanded and takes its 

highest value when the capacity is abundant. 

o Unit Capacity Usage & Capacity 

 At 5 % capacity level, EVPI increases as unit capacity usage 

of the new increases relatively to the unit capacity usage of 

the old products. 

 At all other levels, EVPI takes its highest values when the 

unit capacity usage of old and new products are the same or 

the new product’s capacity usage is more than the old 

products. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 

 EVPI over 180 runs 

o Average EVPI (%)  = 3.4 

o Min EVPI (%)         = 0 

o Max EVPI (%)        = 13 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.3.1.2 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI.  Considering the rules extracted given in 

Appendix C.3.1.2, many of them are eliminated because of having a lift 

value not far enough from 1 (the rules having a lift value around 1.4 are 
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considered as weak rules). Thus, only two rules with a high support and a 

lift as well as a high confidence are obtained (Table 14). 

Table 14. Rules extracted for Case 3 (Deterministic parameters: EVPI) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(EVPI) 
Profitability 

Unit 

Capacity U.  
Capacity 

1 2 0,116 0,949 3,338 3 4 … M 

2 2 0,100 0,935 3,289 1 1 … M 

 

From Table 14: 

 When all products have the same profitability and the new products 

use more production resources than the old products OR the new 

products are less profitable and the unit capacity usage are the same 

for all products, EVPI is predicted to take a value between 10 % and 

20 % (i.e. “Medium” value) and it can be said that based on the 

context and firm’s goals the need to invest on better forecasting 

technologies may be taken into account. 

 

5.1.3.3. Experiment 2 for Uncertain Parameters 

 

5.1.3.3.1. Experiment 2: Settings 

 

In this case, the levels of coefficient of variation for each parameter are also 

considered as 0, 0.15 and 0.30. Since the variability of demand and price for new 

products is higher than for the old products, these levels are taken 15 % and 5 % 

higher for the new line-1 and new line-2. The levels for the uncertain parameters 

are specified as follows: 

Factor H: Coefficient of variation of price (CV_Price)  

Level 1 𝐿𝐸 = 0, 𝐿𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0, 𝐿𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0 

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 
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Level 2: 𝑀𝐸 = 0.15, 𝑀𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0.18, 𝑀𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0.16 

𝑀𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝑀𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 3: 𝐻𝐸 = 0.30, 𝐻𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0.35, 𝐻𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0.32 

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Factor I: Coefficient of variation of demand (CV_Demand)  

Level 1 𝐿𝐸 = 0, 𝐿𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0, 𝐿𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0 

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 2: 𝑀𝐸 = 0.15, 𝑀𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0.18, 𝑀𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0.16 

𝑀𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝑀𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Level 3: 𝐻𝐸 = 0.30, 𝐻𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_1 = 0.35, 𝐻𝑁𝑒𝑤_𝐿𝑖𝑛𝑒_2 = 0.32 

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 

Factor J: Unit Production Cost (CV_Cost) 

Level 1: 𝐿 = 0, (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝐿: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Factor K: Cannibalisation Rate (CV_CanR) 

Level 1: 𝐿 = 0, (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝐿: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 3: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 3 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

 

It should be noted that for this experiment the levels of deterministic parameters 

(such as unit capacity usage, capacity expansion cost etc. considered as factors in 
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Section 5.1.3.2.1) are fixed to the one of the values where VSS takes high values 

mentioned in Section 5.1.3.2.2. 

The D-optimal design with 30 runs/problems (Table 6) is generated based on the 

levels given above and the results are presented in the following section. 

5.1.3.3.2. Design of Experiments (DOE): Results 

 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model that ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  21.3 

o Min VSS (%)         =  0 

o Max VSS (%)        =  34.7 (when the variability of both of price 

and cost is higher)           

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.3.2.1 indicates that coefficient of variation of price and cost (CV_Price, 

CV_Cost), are the significant parameters on VSS. The rules with high 

support, high confidence and high lift, which are shown in Table 15, are 

obtained.  
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Table 15. Rules extracted for Case 3 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition  Prediction 

(VSS) CV_Price CV_Cost 

1 1 0,306 0,851 2,730 0 … L 

2 1 0,236 1 2,130 0.15 0.30 H 

3 1 0,207 1 2,130 0.30 … H 

4 1 0,206 0,767 3,505 0.15 … M 

5 2 0,174 1 4,569 0.15 0 or 0.15 M 

6 1 0,142 0,808 2,592 … 0 L 

7 2 0,137 1 3,208 0 0 L 

8 2 0,113 1 3,208 0 0.15 L 

9 1 0,113 0,772 2,477 … 0.15 L 

 

According to Table 15: 

 When the coefficient of variation of price or cost is 0.30 (high 

variability), with a high support and confidence and a lift greater 

than 1, VSS is predicted to take a value greater than 20 % (i.e. 

“High” value), therefore in those cases the decision makers should 

use stochastic programming approach in order to get higher expected 

profit compared to the deterministic approach.  

 When the coefficient of variation of price is 0.15 (medium 

variability) OR the coefficient of variation of price is 0.15 (medium 

variability) and the coefficient of variation of cost is 0 or 0.15 (low 

and medium variability) VSS is predicted to take a value between 

10 % and 20 % (i.e. “Medium” value) and it can be said that based 

on the satisfaction level of the decision maker, stochastic 

programming approach can be used. 

 When there is no variability regarding the price and/or cost OR  the 

coefficient of variation of cost is 0.15 (medium variability) while the 

variability regarding the price is at its low levels, VSS is predicted 

to take a value less than 10 % (i.e. “Low” category) and it can be 

said that stochastic programming approach can be used. In this case, 
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the stochastic programming approach would not gain a noteworthy 

contribution and therefore it would be better to use a deterministic 

approach considering the mean values of uncertain parameters. 

 

Response 2: Expected Value of Perfect Information (EVPI) 

 

All responses are in “Low” category; and since it needs to have at least two classes 

(categories) to do classification in Random Forest, any rules regarding EVPI for 

this case could not be found. 
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5.1.4. Case 4: Mix of Two Existing Lines with Two New Lines, Two Markets  

and Three Periods 

In this case the same problem described in Section 5.1.3 is considered, but there is 

one additional market, i.e. global market and the planning horizon is comprised of 

three time-periods instead of five periods. 

 

 

 

 

 

5.1.4.1. Basic Data 

 

In this section, the data only different from Case 3 is presented. 

a) Product Prices:  

The mean prices of products in the global market (𝑗 = 2) are considered as 30 % 

higher than the prices in the national market. The firm plans to introduce the new 

line-1 (4-season tyres) to the global market with a lower price which increases by a 

rate of10 % in the first two years because of firm’s market positioning strategy. It 

follows the same strategy for the new line-2, which is described in Case 5. 

𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡   

𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

 Mean Price; 𝑗 = 2, t  (TL) 

Existing line-1 (𝑖 = 1) 𝜇𝑃12𝑡
= 220 ; not changed over all periods 

Existing line-2  (𝑖 = 2) 𝜇𝑃22𝑡
= 208 ; not changed over all periods 

New line-1        (𝑖 = 3) 𝜇𝑃321
= 270, 𝜇𝑃322

= 270 × 1.10 = 300, 𝜇𝑃323
= 300 

New line-2        (𝑖 = 4) 𝜇𝑃421
= 365, 𝜇𝑃422

= 365, 𝜇𝑃423
= 365 × 0.95 = 345 

 

- 2 existing (old) lines 

- 2 new lines 

- 3 periods (years) 

- 2 markets (national and global) 
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The standard deviation of price for existing lines in the market-1: 𝜎𝑃𝑖1𝑡
= 0.30 × 𝜇𝑃𝑖1𝑡

 

Since the global market is more volatile than the national market, the variability in 

the global market is 10 % higher than the variability in the national market. 

The standard deviation of price for existing lines in the market-2: 𝜎𝑃𝑖2𝑡
= 0.33 × 𝜇𝑃𝑖2𝑡

 

The uncertainty regarding the price of new lines is assumed to be higher than to the 

existing lines in the national market, and thereby, the standard deviation of the price 

of new line-1 (4-season) and new line-2 (ultra high performance) is considered as 

15 % and 5 %, respectively, higher than of the existing lines.  

The standard deviation of price for new line -1 in the market-1:  𝜎𝑃31𝑡
= 0.35 × 𝜇𝑃31𝑡

 

The standard deviation of price for new line -2 in the market-1:  𝜎𝑃41𝑡
= 0.32 × 𝜇𝑃41𝑡

 

The standard deviation of price for new line -1 in the market-2:  𝜎𝑃32𝑡
= 0.38 × 𝜇𝑃32𝑡

 

The standard deviation of price for new line -2 in the market-2:  𝜎𝑃42𝑡
= 0.35 × 𝜇𝑃42𝑡

 

b) Demand: 

𝐸𝑃𝐷𝑖𝑗𝑡 ∶  potential demand of existing product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝐸𝑃𝐷𝑖𝑗𝑡  ∼ N (𝜇𝐸𝑃𝐷𝑖𝑗𝑡
,  𝜎𝐸𝑃𝐷𝑖𝑗𝑡

2 ) 

𝑁𝐷𝑖𝑗𝑡 ∶  demand of new product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

𝑁𝐷𝑖𝑗𝑡  ∼ N (𝜇𝑁𝐷𝑖𝑗𝑡
,  𝜎𝑁𝐷𝑖𝑗𝑡

2 ) 

It is also assumed that the market size of the firm in the global market is 50 % of 

the national market’s size of the firm. Based on this assumption, the following 

demand functions are obtained. 

 Demand  (unit) in market-2 

Existing line-1   (𝑖 = 1, 𝑗 = 2, 𝑡) 𝜇𝐸𝑃𝐷12𝑡
= 170000 − 180 × 𝑃12𝑡 

Existing line-2   (𝑖 = 2, 𝑗 = 2, 𝑡) 𝜇𝐸𝑃𝐷22𝑡
= 170000 − 210 × 𝑃22𝑡 

New line-1         (𝑖 = 3, 𝑗 = 2, 𝑡) 𝜇𝑁𝐷32𝑡
  = 120000 − 100 × 𝑃32𝑡 

New line-2         (𝑖 = 4, 𝑗 = 2, 𝑡) 𝜇𝑁𝐷42𝑡
  = 100000 − 120 × 𝑃21𝑡 
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The variability of the demand is assumed to be the same as the variability of the 

price for all products. Thus, the following figures are obtained: 

The standard deviation of demand for existing lines in the market-1: 

 𝜎𝐸𝑃𝐷𝑖1𝑡
= 0.30 × 𝜇𝐸𝑃𝐷𝑖1𝑡

 

The standard deviation of demand for existing lines in the market-2: 

 𝜎𝐸𝑃𝐷𝑖2𝑡
= 0.33 × 𝜇𝐸𝑃𝐷𝑖2𝑡

 

The standard deviation of demand for new line -1 in the market-1: 

  𝜎𝑁𝐷31𝑡
= 0.35 × 𝜇𝑁𝐷31𝑡

 

The standard deviation of demand for new line -2 in the market-1: 

  𝜎𝑁𝐷41𝑡
= 0.32 × 𝜇𝑁𝐷41𝑡

 

The standard deviation of demand for new line -1 in the market-2: 

  𝜎𝑁𝐷32𝑡
= 0.38 × 𝜇𝑁𝐷32𝑡

 

The standard deviation of demand for new line -2 in the market-2: 

  𝜎𝑁𝐷42𝑡
= 0.35 × 𝜇𝑁𝐷42𝑡

 

c) Minimum launching time of the new line: 

𝑚𝑖𝑛𝐿32 = 𝑚𝑖𝑛𝐿42 = 1. 

5.1.4.2.  Other Case Data and Design of Experiments for Deterministic 

Parameters  

5.1.4.2.1. Experiments 1: Settings 

As all previous cases, four factors are considered for the experimental study: 
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1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 

4. Maximum amount of capacity available for each period with four-levels 

Factor D: Capacity expansion cost 

In order to get an idea about the reasonable value of capacity expansion cost, firstly 

the expected contribution margin including all products and all periods, and under 

50000 scenarios is calculated and as a result of this calculation, the value of 160 is 

obtained and set as Level-1 (Mid) in the experimental study. Besides, a high value 

and a low value of the capacity expansion cost, given below, are considered in order 

to see the effect of this parameter on performance measures.  

Level 1:                  160 (Mid) 

Level 2: 160×2 =    320 (High) 

Level 3: 160/2  =      80 (Low) 

Factor E: Variable unit production cost as a percentage of price (Profitability) 

This factor can also be seen as the profitability of products that is specified using 

the unit production cost as a percentage of price. The levels used in this DOE study 

are as follows: 

Level 1: the new lines are LESS PROFITABLE than the existing lines 

Level 2: the new lines are MORE PROFITABLE than the existing lines 

Level 3: SAME PROFITABILITY for all existing and new lines 

 Winter Summer 
4-season 

(New Line-1) 

U.High Perf. 

(New Line-2) 

Level 1  𝜇𝑉1𝑡
= 0.6 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 𝜇𝑉4𝑡

= 0.8 × 𝑃31𝑡 

Level 2 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.7 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.6 × 𝑃31𝑡 𝜇𝑉4𝑡

= 0.6 × 𝑃31𝑡 

Level 3 𝜇𝑉1𝑡
= 0.8 × 𝑃11𝑡 𝜇𝑉2𝑡

= 0.8 × 𝑃21𝑡 𝜇𝑉3𝑡
= 0.8 × 𝑃31𝑡 𝜇𝑉4𝑡

= 0.8 × 𝑃31𝑡 
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Factor F: Unit capacity usage 

We use five different levels for the DOE study, as follows: 

Level 1: Same for all products 

Level 2: New lines consumes less resource 

Level 3: New lines consumes much less resource 

Level 4: New lines consumes more resource 

Level 5: New lines consumes much more resource 

 

 

Unit Capacity Usage 

Winter Summer 
4-season 

(New Line-1) 

U.High Perf. 

(New Line-2) 

Level 1 1 unit 1 unit 1 unit 1 unit 

Level 2 1.5 unit 1.5 unit 1 unit 1 unit 

Level 3 2 unit 2 unit 1 unit 1 unit 

Level 4 1 unit 1 unit 1.5 unit 1.5 unit 

Level 5 1 unit 1 unit 2 unit 2 unit 

 

Factor G: Maximum amount of capacity available for each period 

In order to get an idea about the reasonable value of maximum amount of capacity 

available for each period, firstly, the total expected demand of all products over all 

periods under 50 000 scenarios is calculated. Then, based on this value four 

different levels for this parameter as a percentage of total expected demand 

calculated are obtained: 

Level 1:   5 % of total expected demand calculated (very limited capacity) 

Level 2:  25 % of total expected demand calculated (limited capacity) 

Level 3:  50 % of total expected demand calculated (abundant capacity) 

Level 4: 100 % of total expected demand calculated (overabundant capacity) 

For each level, the related percent of total expected demand is used for the 

maximum capacity at t = 2, and 70 %, 85 % and 115 % of that value calculated for 

t=2 are used for ICAP, t =1 and t =3, respectively. All the capacity data is shown in 

the following table: 
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 ICAP t = 1 t = 2 t = 3 

Level 1    38 500   46 750     55 000     63 250 

Level 2 192 500 233 750    275 000    316 250 

Level 3 385 000 467 500    550 000    632 500 

Level 4 770 000 935 000 1 100 000 1 265 000 

 

Total number of runs performed for DOE study = 3×3×5×4 = 180. 

5.1.4.2.2 Experiments 1: Results 

Response 1: Value of Stochastic Solution (VSS) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.4.1.1. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.4.1.1, it is seen that the factors profitability, unit capacity usage 

and maximum capacity available at each period are significant 

whilst capacity expansion cost is insignificant.  

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.4.1.1) 

o Profitability & Unit Capacity Usage 

 When the unit capacity usage of new products is less than or 

the same as the unit capacity usage of old products, VSS 

decreases as the relative profitability of new products 

compared to the existing products increases.  

 When the new lines are less profitable than the existing lines 

and consume more resources, VSS has its minimum values. 

However, as the profitability of the new relatively increases 
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compared to the existing lines and the new ones consume 

more resources, VSS takes its highest values.  

o Profitability & Capacity 

 At all levels of profitability, VSS takes its highest value 

when the capacity is limited (i.e. at levels of 5 % and 25 %) 

and is not affected significantly by the levels of profitability.   

 When the capacity is abundant (i.e. at level of 50 %), VSS 

takes its lowest value when the new lines have the same 

profitability as the old ones and highest value when the new 

lines are less profitable.   

 When the capacity is overabundant (i.e. at level of 100 %), 

VSS takes its highest value when the new lines have the same 

profitability as the old ones and lowest value when the new 

lines are less profitable.   

o Unit Capacity Usage & Capacity 

 When the capacity is limited (i.e. at levels of 5 % and 25 %) 

VSS tends decrease as the unit capacity usage of the new 

products increases relatively compared to the old products.  

 When the capacity is abundant (i.e. at levels of 50 % and 100 

%) VSS tends decrease as the unit capacity usage of the new 

products increases relatively compared to the old products. 

o Capacity expansion cost & Capacity 

 At all levels of capacity expansion cost, VSS takes its highest 

value when the capacity is limited (i.e. at levels of 5 % and 

25 %). 

 If capacity expansion cost is very high and the capacity is 

limited (i.e. at level of 5 %), VSS takes higher values.  

 When capacity is abundant (i.e. at level of 50 %), VSS takes 

its lowest value if capacity expansion cost is very high; and 

increases as capacity expansion cost decreases. 

 VSS over 180 runs 
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o Average VSS (%)   =  4.7 

o Minimum VSS(%)  =  0  

o Maximum VSS (%)  = 59 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.4.1.1 indicates that unit capacity usage and maximum capacity available 

at each period are the significant parameters on VSS.  Considering the rules 

extracted given in Appendix C.4.1.1, many of them are eliminated because 

of having a lift value close 1. Thus, only one rule with a high support, 

confidence and lift (Table 16). 

Table 16. Rules extracted for Case 4 (Deterministic parameters: VSS) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit 

Capacity U.  
Capacity 

1 2 0,105 1 10,94 … 1 1 or 2 M 

 

According to Table 16: 

 When both the new products and the old products consume the same 

amount of production resources and maximum capacity available at 

each period is at 5 or 25 % level (tight capacity), VSS is predicted 

to take a value between 10-20 % (i.e. “Medium” value) and thus at 

in those cases the decision makers can use stochastic programming 

approach in order to get higher expected profit compared to the 

deterministic approach. 

Response 2: Expected Value of Perfect Information (EVPI) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.4.1.2. 
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Remarks 

 Main effects 

o Considering ANOVA table and related figures in Appendix C.4.1.2, 

we can see that profitability, unit capacity usage, maximum capacity 

available at each period and capacity expansion cost are significant 

factors. 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.4.1.2) 

o Profitability & Unit Capacity Usage 

 When the new products are more profitable and consume the 

same as or less production resources than the existing 

products, EVPI has its minimum value. However, when the 

profitability of the new relatively decreases compared to the 

existing lines, EVPI increases.  

 When the new products consume more production resources, 

if they are equally or more (less) profitable than the existing 

products, EVPI takes its maximum (minimum) value. 

o Profitability & Capacity 

 At all levels of capacity EVPI tends to take its lowest value 

when the new is more profitable; but it increases when the 

new is less profitable than the old products.    

 When the profitability of all products is the same or the new 

ones are less profitable than the old ones, EVPI tends to take 

its highest values at all levels of capacity. 

o Unit Capacity Usage & Capacity 

 At 5 % capacity level, EVPI increases as unit capacity usage 

of the new increases relatively to the unit capacity usage of 

the old products. 
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 At all other levels, EVPI takes its highest values when the 

unit capacity usages of old and new products are the same or 

the new product’s capacity usage is more than (not too much) 

the olds’. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 EVPI over 180 runs 

o Average EVPI (%)  = 7.40 

o Min EVPI (%)         = 0.03 

o Max EVPI (%)        = 21.4 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.4.1.2 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI. Appendix C.4.1.2 shows that only two rules 

with a high support, confidence and a lift greater than 1 are obtained (Table 

17). 

Table 17. Rules extracted for Case 4 (Deterministic parameters: EVPI) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit 

Capacity U.  
Capacity 

1 1 0,109 1 2,077 … … 1 or 2 L 

2 2 0,100 1 2,077 2 1 … L 

 

According to Table 17: 

 When the capacity is tight (i.e. the level of 5 and 25 %) OR the new 

products are more profitable and consume the same amount of unit 

production resources, EVPI is expected to be less than 10 %, thereby 

it can be said that having a better forecast about the uncertain 
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parameters would not gain a noteworthy contribution for those 

cases. 

5.1.4.3. Experiment 2 for Uncertain Parameters 

 

5.1.4.3.1. Experiment 2: Settings 

 

In this case, the levels of CV for each parameter are also considered as 0, 0.15 and 

0.30. Since the uncertainty regarding the price and demand of new lines is assumed 

to be higher than to the existing lines in the national market, the standard deviation 

of the price of new line-1 (4-season) and new line-2 (ultra high performance) is 

considered as 15 % and 5 %, respectively, higher than of the existing lines. In 

addition, since the global market is more volatile than the national market, the 

variability in the global market is 10 % higher than the variability in the national 

market.  

Factor H: Coefficient of variation of price (CV_Price)  

Level 1: 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0, 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0,  

              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0, 𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0 

              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0, 𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0 

Level 2: 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.15, 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.17,  

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.18, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.16 

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0.20, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.18 

Level 3: 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.30, 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.33,  

              𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.35, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.32 

              𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0.38, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.35 

Factor I: Coefficient of variation of demand (CV_Demand)  

Level 1: 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0, 𝐿𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0,  

              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0, 𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0 
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              𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0, 𝐿𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0 

Level 2: 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.15, 𝑀𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.17,  

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.18, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.16 

              𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0.20, 𝑀𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.18 

Level 3: 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.30, 𝐻𝐸𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑖𝑛𝑒𝑠,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.33,  

              𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 1  = 0.35, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 1 = 0.32 

                         𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 1 ,𝑚𝑎𝑟𝑘𝑒𝑡 2  = 0.38, 𝐻𝑁𝑒𝑤 𝑙𝑖𝑛𝑒 2 ,𝑚𝑎𝑟𝑘𝑒𝑡 2 = 0.35 

 

Factor J: Unit Production Cost (CV_Cost) 

Level 1: 𝐿 = 0 , (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Factor K: Cannibalisation Rate (CV_CanR) 

Level 1: 𝐿 = 0 , (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝑀 = 0.15, (𝑀: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

 

It should be noted that for this experiment the levels of deterministic parameters 

(such as unit capacity usage, capacity expansion cost etc. considered as factors in 

Section 5.1.4.2.1) are fixed to the one of the values where VSS takes high values 

mentioned in Section 5.1.4.2.2. 

The D-optimal design with 30 runs/problems (Table 6) is generated based on the 

levels given above and the results are presented in the following section. 

5.1.4.3.2. Experiment 2: Results 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 
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find a good parametric regression model which ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  11.9 

o Min VSS (%)         =  0 

o Max VSS (%)        =  23.9 (when the variability of both of price 

and cost is higher)  

           

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.4.2.1 indicates that coefficient of variation of price and cost (CV_Price, 

CV_Cost), are the significant parameters on VSS. The rules with high 

support, high confidence and high lift, which are shown in Table 18, are 

obtained. 

           
Table 18. Rules extracted for Case 4 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition  Prediction 

(VSS) CV_Price CV_Cost 

1 1 0,205 1 2,478 0.30 … H 

2 1 0,178 1 2,623  0.15 0 or 0.15 M 

3 1 0,167 1 2,623 0 0.30 M 

4 1 0,164 1 4,648 0 0 or 0.15 L 

5 2 0,164 1 2,478 0.15 0.30 H 

 

According to Table 18: 

 When the coefficient of variation of price is 0.30 (high variability), 

and price and cost factors are at their medium and high levels 

respectively, VSS is predicted to take a value greater than 20 % (i.e. 
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“High” value), therefore in those cases the decision makers should 

use stochastic programming approach in order to get higher expected 

profit compared to the deterministic approach.  

 When the coefficient of variation of price is 0.15 (medium 

variability) and the coefficient of variation of cost is 0 or 0.15 OR 

the coefficient of variation of cost is 0.30 (high variability), VSS is 

predicted to take a value between 10 % and 20 % (i.e. “Medium” 

value) and it can be said that based on the satisfaction level of the 

decision maker, stochastic programming approach can be used. 

 When there is no variability regarding the price OR  the coefficient 

of variation of cost is 0 or 0.15 (low and medium variability), VSS 

is predicted to take a value less than 10 % (i.e. “Low” category). In 

this case, the stochastic programming approach would not gain a 

noteworthy contribution and therefore it would be better to use a 

deterministic approach considering the mean values of uncertain 

parameters. 

 Based on all of the rules conditions and their consequences, it can 

be seen that the variability of price is more significant on the VSS 

than the variability of cost. 

Response 2: Expected Value of Perfect Information (EVPI) 

Remarks 

 EVPI over 30 runs 

o Average EVPI (%)  =  9 

o Min EVPI (%)         =  0 

o Max EVPI (%)        =  13.3 (when the variability of both of price 

and cost is higher)  
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 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.4.2.2 indicates that coefficient of variation of price and cost (CV_Price, 

CV_Cost), are the significant parameters on EVPI. The rules with high 

support, high confidence and high lift, which shown in Table 19, are 

obtained.           

Table 19. Rules extracted for Case 4 (Uncertain parameters: EVPI) 

Rule Length Support Confidence Lift 

Condition Prediction 

(EVPI) CV_Price CV_Cost 

1 1 0,259 1 1,944 0.30 … M 

2 1 0,248 0,926 1,907 ... 0 or 0.15 L 

3 1 0,239 0,909 1,872 0 or 0.15 … L 

4 2 0,235 1 2,059 0 or 0.15 0 or 0.15 L 

5 1 0,225 1 2,059 0 … L 

6 2 0,205 1 2,059 0 0.30 L 

 

According to Table 19: 

 When the coefficient of variation of price is 0.30 (high variability), 

EVPI is predicted to take a value between 10 % and 20 % (i.e. 

“Medium” value) and it can be said that based on the context and 

firm’s goals the need to invest on better forecasting technologies 

may be taken into account. 

 When there is no variability or medium variability regarding the 

price and/or cost OR  the coefficient of variation of cost is 0.30 (high 

variability) while there is no variability regarding the price, EVPI is 

predicted to take a value less than 10 % (i.e. “Low” category) and it 

should be noted that having a better forecast about the uncertain 

parameters would not gain a noteworthy contribution for those 

cases. 
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5.1.5.  The Crossed Array Design for Experiment 1 with All Deterministic 

Parameters (Full Design) 

In this section, the full design including all deterministic parameters (capacity 

expansion cost, profitability, unit capacity usage and capacity) plus common design 

factors (number of new lines, number of markets and number of periods) is 

considered. Thus a crossed arrayed design, shown in Table 4, is generated with 720 

runs. The analysis is merely based on Random Forest method, which enables to 

extract some rules including different levels of the parameters, since it is not 

possible to find a good parametric regression model which ensures a detailed 

analysis for revealing the significance of the parameters. 

Rules extracted from the Random Forest application 

Response: VSS 

The Random Forest output obtained from RStudio given in Appendix C.5.1 

indicates that number of new lines, number of markets, number of periods, 

profitability, unit capacity usage and maximum capacity available at each period 

are the significant parameters on VSS. All the rules with minimum-support = 0.05 

(though very low support is selected) and a confidence level greater than 0.75 are 

generated, however no rules satisfying all three criteria, particularly lift regarding 

each rule is around 1, are obtained from this crossed array design (see Appendix 

C.5.1).  

Response: EVPI 

The Random Forest output obtained from RStudio given in Appendix C.5.2 

indicates that number of new lines, number of markets, number of periods, 

profitability, unit capacity usage and capacity are the significant parameters on 

EVPI. All the rules with minimum-support = 0.05 (though very low support is 

selected) and a confidence level greater than 0.75 are generated, however no rules 

satisfying all three criteria, particularly lift regarding each rule is around 1, are 

obtained from this crossed array design (see Appendix C.5.2).  
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5.1.6. The Crossed Array Design for Experiment 2 with Uncertain 

Parameters (Full  Design) 

In this section, the full design including all uncertain parameters (coefficient of 

variation of demand, price, cost and cannibalisation rate) plus common design 

factors (number of new lines, number of markets and number of periods) is 

considered. Thus, another crossed arrayed design of which the outer array is 

constructed based on the design given in Table 5 is generated with 120 runs in total. 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model that ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Rules extracted from the Random Forest application 

Response: VSS 

The Random Forest output obtained from RStudio given in Appendix C.6.1 

indicates that number of new lines, number of markets, number of periods, 

CV_Price and CV_Cost are the significant parameters on VSS. Considering the 

rules extracted given in Appendix C.6.1, six rules with high confidence and lift but 

relatively low support are obtained as exception rules in addition to one rule (rule 

no.1) satisfying all three measures (Table 20). 

Table 20. Rules extracted for the Crossed Array Design with uncertain parameters: VSS 

 

Rule Length Support Conf. Lift 

Condition 

Prediction 

Number 

of 

markets 

Number 

of 

periods CV_Price 

 

CV_Cost 

1 1 0,181 0,754 1,952 ... ... 0.30 … H 

2 2 0,095 0,754 2,155 ... ... 0.15 0.15 M 

3 2 0,073 0,786 2,176 1 ... ... 0.30 H 

4 2 0,071 0,779 2,157 ... 2 … 0.30 H 

5 2 0,066 1 3,461 ... … 0 0 or 0.15 L 

6 2 0,055 0,754 2,578 ... 1 0 … L 
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According to Table 20: 

 The significant parameters, which generate a rule amongst the common 

factors on VSS, are the number of periods and markets and furthermore the 

variability of price and cost, as it’s also detected for each individual case, 

is significant on VSS considering the rules given in this table. When the 

variability of price is 0.30 (high variability), with a high support and 

confidence and a lift value greater than 1, VSS is predicted to take a value 

greater than 20 % (i.e. “High” value). Therefore, for the companies 

operating in the markets where the price is highly uncertain, the decision 

makers should use stochastic programming approach in order to get higher 

expected profit compared to the deterministic approach. Considering rules 

# 3 and # 4, with relatively lower support but higher confidence, VSS is 

also expected to become greater than 20 % in the case of high variability 

regarding cost, and longer planning horizon or lower number of markets.  

 When both of the coefficient of variation of price and cost are 0.15 (medium 

variability), VSS is predicted to take a value between 10 % and 20 % (i.e. 

“Medium” value) and it can be said that based on the satisfaction level of 

the decision maker, stochastic programming approach can be used in those 

kinds of scenarios. 

 When price is not handled as an uncertain parameter plus cost variability is 

lower OR price is not handled as an uncertain parameter plus the problem 

is considered in an environment with shorter planning horizon, VSS is 

predicted to take a value less than 10 % (i.e. “Low” value). In this case, the 

stochastic programming approach would not gain a noteworthy 

contribution and therefore it would be better to use a deterministic approach 

considering the mean values of uncertain parameters. 

Response: EVPI 

 

The Random Forest output obtained from RStudio given in Appendix C.6.2 

indicates that number of new lines, number of markets, number of periods, 
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coefficient of variation of price and cost are the significant parameters on EVPI. 

The rules with minimum-support = 0.05 (i.e. a condition is frequent if it comes 

forward more than 72 times over all observations) and a confidence level greater 

than 0.75 are considered. Based on those conditions, the following rules are 

obtained for this case (see Table 21). 

Table 21. Rules extracted for the Crossed Array Design with uncertain parameters: EVPI 

 

Rule Length Support Confidence Lift 

 Condition  Prediction 

Number of 

periods CV_Price 

 

 
CV_Cost 

1 1 0,229 1,0 1,775 ... 0 … L 

2 1 0,164 1,0 1,775 2   L 

3 2 0,140 0,762 1,745 1 ... 0.30 M 

4 1 0,130 0,812 1,860 … 0.30 0 M 

5 2 0,117 1,0 2,290 1 0.15 or 0.30 … M 

6 2 0,103 0,751 1,333 1  0 or 0.15 L 

7 2 0,061 1,0 1,775  0 0 or 0.15 L 

 

According to Table 21: 

 When the variability of price is high (CV = 0.30) and the planning horizon 

shorter OR the variability of price is high (CV = 0.30) and there is no 

variability regarding cost OR the planning horizon is shorter plus if the price 

is considered as an uncertain parameter, EVPI is predicted to take a value 

between 10 % and 20 % (i.e. “Medium” value). Thus it can be said that 

based on the context and firm’s goals the need to invest on better forecasting 

technologies may be taken into account in those kinds of scenarios 

 When there is no variability regarding price OR the planning horizon is 

longer OR the coefficient of variation of price is 0 and the variability of cost 

is 0 or 0.15 (no/low variability) EVPI is predicted to take a value less than 

10 % (i.e. “Low” value). Thus, it can be said that having a better forecast 

about the uncertain parameters would not gain a noteworthy contribution 

for those scenarios. 
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 In addition to those rules, the rule number 6 is not considered as an 

interesting rule since the related lift value is near zero, i.e. the condition has 

almost no effect on the occurrence of related prediction. 
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5.1.7. Case 5: Mix of Two Existing Lines with a New Lower-Priced Line, a 

Single Market and Three-Periods (A Revised Version of Case 1) 

5.1.7.1. Basic Data 

 

In Case 1 the new line is launched with a higher price compared to the existing 

products. This case is the same as Case 1 in Section 5.1.1, however the new line is 

launched with a lower price in this case. The objective of studying this case is to 

see if the relative price of the new line is influential on stochastic solution 

performance. The main differences of this case can be summarised as follows: 

- The new product line is for lower-income families with lower price, i.e. its 

price is less than the price of old products. The mean price is: 

- 𝑃𝑖𝑗𝑡  ∶  selling price of product 𝑖 ∈ 𝐸𝑃 in market 𝑗 ∈ 𝑀𝑖 at period 𝑡   

𝑃𝑖𝑗𝑡  ∼ N (𝜇𝑃𝑖𝑗𝑡
,  𝜎𝑃𝑖𝑗𝑡

2 ) 

 𝜇𝑃31𝑡
= 1200 TL,  

The standard deviation of price for new line:  𝜎𝑃𝑖𝑗𝑡
= 0.36 × 𝜇𝑃31𝑡

 

- The expected demand of the new line: 

             𝑁𝐷𝑖𝑗𝑡 ∶  demand of new product 𝑖 ∈ 𝑁𝑃 in market 𝑗 ∈ 𝑀𝑖 at period t 

             𝑁𝐷𝑖𝑗𝑡  ∼ N (𝜇𝑁𝐷𝑖𝑗𝑡
,  𝜎𝑁𝐷𝑖𝑗𝑡

2 ) 

  𝜇𝑁𝐷31𝑡
  = 180000 − 58 × 𝑃31𝑡 

The standard deviation of demand for new line: 𝜎𝑁𝑃𝑖𝑗𝑡
= 0.36 × 𝜇𝑁𝐷𝑖𝑗𝑡

 

- The price elasticity of demand for the new line is higher than in Case 1, 

since it is more price-sensitive product, which targets lower-income 

families. 
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5.1.7.2.  Other Case Data and Experiment 1 for Deterministic  Parameters 

  

5.1.7.2.1. Experiment 1: Settings 

All four deterministic parameters are considered as design factors for the other 

individual cases given in Section 5.1.1- 5.1.4. 

1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 

4. Maximum amount of capacity available for each period with four-levels 

Since all the levels and their values are the same as Case 1, the details would not be 

repeated. 

5.1.7.2.2. Experiment 1: Results 

 

Response 1: Value of Stochastic Solution (VSS) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.7.1.1. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.7.1.1, it can be seen that the factors profitability, unit capacity 

usage and maximum capacity available at each period are significant 

whilst capacity expansion cost is insignificant.  
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 The most important interactions (based on ANOVA table and related 

figures in Appendix C.7.1.1) 

o Profitability & Unit Capacity Usage 

 When the new line is less (more) profitable than the existing 

lines, VSS has its maximum value if the unit capacity usage 

of new product is less (more) than of the existing products.  

 When the profitability of the new and existing lines is the 

same, VSS takes its maximum value if the unit capacity 

usage of the new and existing products is the same. Besides, 

when the profitability of the new relatively increases 

compared to the existing lines, VSS tends to decrease. 

o Profitability & Capacity 

 When the new is more profitable and capacity is limited (5 

% and 25 %), VSS tends to take its lowest values.  

 When the profitability of all products is the same or the new 

is less profitable and capacity is limited (5 % and 25 %), VSS 

tends to takes its highest values. 

 When the new is more profitable and capacity is abundant 

(100 %), VSS tends to take its highest value.  

o Unit Capacity Usage & Capacity 

 In general, VSS is higher at 5 % capacity level than at other 

capacity levels.  

 At all levels of capacity (i.e. 5 %, 25 %, 50 % and 100 %), 

VSS tends to take its highest values when the unit capacity 

usage of the new product is the same as or less than of the 

old products. However, if the new product consumes much 

more or much less resources compared to the old products, 

VSS decreases.  
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 VSS over 180 runs 

o Average VSS (%)  =  3.0 

o Min VSS (%)         =  0 

o Max VSS (%)        =  35 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.7.1.1 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on VSS.  Considering the rules extracted given in 

Appendix C.7.1.1, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.3 are considered as 

weak rules). Thus, seven rules with high confidence and lift but  low support 

are considered as exception rules (Table 22). Amongst them, rule no.1 

outpeforms rule no.2 and rule no.6 outperforms rule no.7. 

Table 22. Rules extracted for Case 5 (Deterministic parameters: VSS) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit 

Capacity U.  
Capacity 

1 3 0,073 1 7,598 1 2 4 M 

2 2 0,073 0,971 7,378 … 2 4 M 

3 2 0,066 0,963 9,717 1 … 1 or 2 H 

5 2 0,066 0,975 9,838 … 2 1 or 2 H 

6 3 0,057 1 7,598 3 1 1 M 

7 2 0,057 0,787 5,980 3 1 … M 

 

According to Table 22: 

 When the new product is less profitable and the capacity is tight (5% 

or 25%) OR the new product consumes less unit production 

resources and the capacity is tight, VSS is predicted to take a value 

over 20 % and thus in those cases the decision makers should use 
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stochastic programming approach in order to get higher expected 

profit compared to the deterministic approach. 

 When the new product is less profitable and consumes less unit 

capacity than the old ones, and the capacity is loose (level of 100%) 

OR both the new and old products have the same profitability, 

consume the same amount of unit capacity and the capacity is tight, 

VSS is expected to be between 10 % and 20 %. 

 Comparing this case with Case 1 (the only difference between Case 

1 in which the new product introduces to the market with a relatively 

higher price compared to the old products and Case 5 in which the 

new product introduces to the market with a relatively lower price 

compared to the old products is the entry price of the new product), 

it can be observed that the main effect of the difference between two 

cases is based on the capacity available in each period. The highest 

VSS is obtained when capacity is loose in Case 1 and when capacity 

is tight in Case 5. Therefore it can be said in the case of that the price 

of new product is planned to be higher than of old ones and there is 

no capacity-scarcity problem, the stochastic approach provides a 

higher expected profit.   

Response 2: Expected Value of Perfect Information (EVPI) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.7.1.2. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.7.1.2, it can be seen that profitability, unit capacity usage, 

maximum capacity available at each period are significant factors. 
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 The most important interactions (based on ANOVA table and related 

figures in Appendix C.7.1.2) 

 

o Profitability & Unit Capacity Usage 

 When the new product is more profitable and consumes the 

same as or less production resources than the existing 

products, EVPI has its minimum value. However, when the 

profitability of the new relatively decreases compared to the 

existing lines, EVPI increases.  

 When the new consumes more production resources, if it is 

equally or more (less) profitable than the existing products, 

EVPI takes its maximum (minimum) value. 

o Capacity expansion cost & Capacity 

 When capacity is limited, i.e. 5 % and 25 %, EVPI takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, i.e. 50 % and 100 %, the 

interaction becomes less significant. 

o Unit Capacity Usage & Capacity 

 At 5 % capacity level, EVPI increases as unit capacity usage 

of the new increases relatively to the unit capacity usage of 

the old products. 

 At all other levels, EVPI takes its highest values when the 

unit capacity usages of old and new products are the same or 

the new product’s capacity usage is more than (not too much) 

the olds’. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 

 EVPI over 180 runs 

o Average VSS (%)  =  6.5 
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o Min VSS (%)         =  0 

o Max VSS (%)        = 21.0 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.7.1.2 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI. Considering the rules extracted given in 

Appendix C.7.1.2, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.6 are considered as 

weak rules). Thus, one rule with high confidence and lift but low support is 

obtained as exception rules (Table 23). 

 

Table 23. Rules extracted for Case 5 (Deterministic parameters: EVPI) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(EVPI) 
Profitability 

Unit 

Cap. U.  
Capacity 

1 2 0,062 0,968 2,65 2 4 or 5 … M 

 

From Table 23: 

 When the new product is more profitable and consumes more 

production resources than the existing products, EVPI is predicted 

to take a value between 10-20 % and thus it can be said that based 

on the context and firm’s goals the need to invest on better 

forecasting technologies may be taken into account. 

5.1.7.3. Experiment 2 for Uncertain Parameters 

5.1.7.3.1. Experiment 2: Settings 

 

For this case, the settings given in Section 5.1.1.3 for Case 1 are also used. But, the 

only difference is that for this experimental study the levels of deterministic 

parameters (such as unit capacity usage, capacity expansion cost etc. considered as 
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factors in Section 5.1.1.2.1) to the one of the values where VSS takes maximum 

values mentioned in Section 5.1.7.2.2. 

5.1.7.3.2. Experiment 2: Results 

 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model which ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  14.0 

o Min VSS (%)         =  0 

o Max VSS (%)        =  23.4 (when the variability of both of price 

and cost is higher)  

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.7.2.1 indicates that coefficient of variation of price, cost and 

cannibalisation rate (CV_Price, CV_Cost, CV_Cannb.Rate), are the 

significant parameters on VSS. The rules with high support, high confidence 

and high lift, which are shown in Table 24, are obtained. 
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Table 24. Rules extracted for Case 5 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition  Prediction 

(VSS) CV_Price CV_Cost 

1 1 0,218 1 4,580 0.30 … H 

2 1 0,190 0,991 2,507  0 L 

3 1 0,171 0,832 2,104 0.15  M 

4 2 0,159 1 2,589 0 or 0.15 0 L 

5 2 0,130 1 2,529 0.15 0.15 or 0.30 M 

 

According to Table 24: 

 When the coefficient of variation of price is 0.30 (high variability), 

with a high support, confidence and lift VSS is predicted to take a 

value greater than 20 % (i.e. “High” value), therefore in those cases 

the decision makers should use stochastic programming approach in 

order to get higher expected profit compared to the deterministic 

approach.  

 When the coefficient of variation of price is 0.15 (low variability) 

and, VSS is predicted to take a value between 10 % and 20 % (i.e. 

“Medium” value) and it can be said that based on the satisfaction 

level of the decision maker, stochastic programming approach can 

be used. 

 When there is no variability regarding cost, VSS is predicted to take 

a value less than 10 % (i.e. “Low” category). In this case, the 

stochastic programming approach would not gain a noteworthy 

contribution and therefore it would be better to use a deterministic 

approach considering the mean values of uncertain parameters. 

Response 2: Expected Value of Perfect Information (EVPI) 

Since the minimum, average and maximum values of EVPI, which are 0.00 %, 0.19 

% and 0.035 %, respectively, are close to zero and all responses fall into “Low” 

category, and it needs to have at least two classes (categories) to do classification 

in Random Forest, any rules regarding EVPI for this case could not be obtained. 
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Compared to Case 1 (the only difference is the new line is introduced to market 

with a lower price in Case 5), it can be said that VSS values decreases by 34 % in 

Case 5 compared to Case 1. Though price and cost are significant uncertain 

parameters in both cases, the variability of cannibalisation rate becomes significant 

when the new line is introduced to market with a lower price (i.e. Case 5). 

Therefore, under the condition that it is intended to introduce the new product with 

a higher price compared to the existing products, i.e. the new product is very 

competitive within the mix, it is highly recommended to use stochastic 

programming approach in order to get higher expected profit compared to the 

deterministic approach. Besides, if the new product is introduced to the market with 

a lower price compared to the existing products, it is beneficial to take the 

variability of cannibalisation rate into account. 

However, though EVPI is between 9-13 % in Case 1 (except from the cases in which 

there is no variability regarding price and cost) , it is very close to zero in Case 5. 

Therefore, under the condition that it is intended to introduce the new product with 

a higher price compared to the existing products, digging more (perfect) 

information about the future will moderately contribute to the expected net profit. 
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5.1.8. Case 6: Mix of Two Existing Lines Sold in Two Markets with a New 

Higher-Priced Line Sold in one of the Markets (An Extension of 

Case 2) 

5.1.8.1. Basic Data 

 

In Case 2, the new line with a higher price is sold in both of the markets. This case 

is almost the same as the Case 2 in Section 5.1.2, however the new line can be sold 

in one of the markets (i.e. global market) in this Case.  

5.1.8.2. Other Case Data and Experiment 1 for Deterministic Parameters  

5.1.8.2.1. Experiment 1: Settings 

All four deterministic parameters are considered as design factors for the other 

individual cases given in Section 5.1.1- 5.1.4.  

1. Capacity expansion cost with three-levels 

2. Variable unit production cost as a percentage of price with three-levels 

3. Unit capacity usage with five-levels 

4. Maximum amount of capacity available for each period with four-levels  

Factor D: Capacity expansion cost 

Level-1 (Mid) : 900 

Level-2 (High) : 900×2 = 1800 

Level-3 (Low) : 900/2  = 450 

Factor E: Variable unit production cost as a percentage of price (Profitability) 

Level-1 : New product line is LESS PROFITABLE than the existing lines 

Level-2 : New product line is MORE PROFITABLE than the existing lines 

Level-3 : All existing and new lines have the SAME PROFITABILITY. 

Factor F: Unit capacity usage 

We use five different levels for the DOE study, as follows: 
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Level-1 : Same for all products 

Level-2 : New line consumes less resource 

Level-3 : New line consumes much less resource 

Level-4 : New line consumes more resource 

Level-5 : New line consumes much more resource 

Factor G: Maximum amount of capacity available for each period 

Level-1 : 5 % of total expected demand calculated (very limited capacity) 

Level-2 : 25 % of total expected demand calculated (limited capacity) 

Level-3 : 50 % of total expected demand calculated (abundant capacity) 

Level-4 : 
100 % of total expected demand calculated (overabundant 

capacity) 

 

 ICAP t = 1 t = 2 t = 3 t = 4 t = 5 

Level 1   31 500   36 000   40 500   45 000   49 500    54 000 

Level 2 157 500 180 000 202 500 225 000 247 500  270 000 

Level 3 315 000 360 000 405 000 450 000 495 000  540 000 

Level 4 630 000 720 000 810 000 900 000 990 000 1 080 000 

 

Total number of runs performed for DOE study = 3×3×5×4 = 180. 

5.1.8.2.2. Experiment 1: Results 

 

Response 1: Value of Stochastic Solution (VSS) 

After solving 180 runs, the related data is analysed using MINITAB 17 software to 

see which factors including interactions among them are significant. The results are 

shown in Appendix C.8.1.1. 

Remarks 

 Main effects 

o Considering ANOVA Table and related figures in Appendix 

C.8.1.1, it can be seen that profitability, unit capacity usage, 
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maximum capacity available at each period and capacity expansion 

cost are significant factors.  

 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.8.1.1) 

 

o Profitability & Unit Capacity Usage 

 When the new is more profitable than the olds, VSS tends to 

take its lowest values regardless of the levels of the unit 

capacity usage. 

 When the new and the old products have the same 

profitability level and the same capacity usage (it can be said 

that the competition between the new and old products for 

the capacity sharing is higher in this case), VSS is extremely 

high compared to other combinations of those factors. 

Besides, in the case of that the new is less profitable, if the 

unit capacity usage of the new is less than or equal to the unit 

capacity usage of the old products, VSS increases.  

o Profitability & Capacity 

 In general, VSS is higher at 50 % and 100 % capacity levels 

(i.e. capacity is abundant) than the other levels at which 

maximum allowable capacity is limited.  

 At all levels of capacity (i.e. 5 %, 25 %, 50 % and 100 %), 

VSS tends to take its lowest values when the new is more 

profitable than the old products. But it increases as the 

profitability of the new decreases compared to the 

profitability of the old products.   

o Unit Capacity Usage & Capacity 

 In general, at all levels of unit capacity usage, VSS tends to 

take higher values when maximum allowable capacity is 

abundant (i.e. levels of 50% and 100 %).  
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 At all levels of capacity (i.e. 5 %, 25 %, 50 % and 100 %), 

VSS tends to take its highest value when the unit capacity 

usage of the new product is the same as of the old products. 

However, if the new product consumes much more or much 

less resources compared to the old products, VSS takes its 

lowest values.   

 

 VSS over 180 runs 

o Average VSS (%)  =  2.8 

o Min VSS (%)         =  0 

o Max VSS (%)        =  26.1 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.8.1.1 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on VSS.  Considering the rules extracted given in 

Appendix C.8.1.1, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.5 are considered as 

weak rules). Thus, in addition one rule having high support, confidence and 

lift, two rules seen in Table 25 with high confidence and lift but low support 

are also considered as exception rules. Amongst the exception rules, it can 

also be seen that rule no.2 outperforms rule no.3. 

Table 25. Rules extracted for Case 6 (Deterministic parameters: VSS) 

Rule Length Support Conf. Lift 

Condition 

Prediction 

(VSS) 
Profitability 

Unit  

Cap. U.  
Capacity 

1 2 0,142 0,793 2,786 1 2  H 

2 3 0,076 1 11,341 3 1 1 or 2 M 

3 2 0,076 0,892 10,116 … 1 1 or 2 M 
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According to Table 25: 

 When the new line is less profitable and the unit capacity usage of 

new line is less than the unit capacity usage of the existing lines, 

VSS is predicted to take a value greater than 20 % (i.e. “High” value) 

and therefore decision makers should use the stochastic 

programming approach in order to get higher expected profit 

compared to the deterministic approach. 

 When both the new products and the old products have the same 

profitability, consume the same amount of production resources and 

maximum capacity available at each period is at 5 or 25 % level 

(tight capacity), VSS is predicted to take a value between 10-20 % 

(i.e. “Medium” value) and thus at in those cases the decision makers 

can use stochastic programming approach in order to get higher 

expected profit compared to the deterministic approach. 

Response 2: Expected Value of Perfect Information (EVPI) 

After solving 180 runs, analyse the related data using MINITAB 17 software to see 

which factors including interactions among them are significant. The results are 

shown in Appendix C.8.1.2. 

Remarks 

 Main effects 

o Considering ANOVA table and related figures in Appendix C.8.1.2, 

it can be seen that profitability, unit capacity usage, maximum 

capacity and capacity expansion cost are significant factors. 

 

 The most important interactions (based on ANOVA table and related 

figures in Appendix C.8.1.2) 

 

o Capacity expansion cost & Unit Capacity Usage 



 

 
207 

 If the unit capacity usage of the new product is the same as 

or more than of the existing products, EVPI is insensitive to 

capacity expansion cost. 

 However, when capacity expansion cost is at its minimum 

value, EVPI decreases and its highest value is given by the 

case of that the unit capacity usage of all products is the 

same.   

o Profitability & Unit Capacity Usage 

 When the new product is more profitable and consumes less 

production resources than the existing products, EVPI has its 

minimum value. However, when the profitability of the new 

relatively decreases compared to the existing lines, EVPI 

increases.  

 When the new consumes more production resources, if it is 

equally or more (less) profitable than the existing products, 

EVPI takes its maximum (minimum) value. 

o Capacity expansion cost & Capacity 

 When capacity is limited, i.e. 5 % and 25 %, EVPI takes its 

highest value if capacity expansion cost is very high; and 

decreases as capacity expansion cost decreases. 

 When capacity is abundant, i.e. 50 % and 100 %, the 

interaction becomes less significant. 

o Profitability & Capacity 

 At all levels of capacity, EVPI tends to take its lowest value 

when the new is more profitable; but it increases when the 

new is less profitable than the old products or the 

profitability of all products is the same. 

 At levels of profitability, EVPI increases as maximum level 

to which the total capacity could be expanded and takes its 

highest value when the capacity is abundant. 
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o Unit Capacity Usage & Capacity 

 At all capacity levels, EVPI takes its highest values when the 

unit capacity usages of old and new products are the same or 

the new product’s capacity usage is more than (not too much) 

the olds’. However, if the difference between the unit 

capacity usage of old and new products increases, EVPI 

tends to decrease. 

 

 EVPI over 180 runs 

o Average EVPI (%)  = 4.9 

o Min EVPI (%)         = 0.3 

o Max EVPI (%)        = 14 

 Rules extracted from the Random Forest application 

The Random Forest output obtained from RStudio given in Appendix 

C.8.1.2 indicates that unit capacity usage, capacity and profitability are the 

significant parameters on EVPI.  Considering the rules extracted given in 

Appendix C.8.1.2, many of them are eliminated because of having a lift 

value close to 1 (the rules having a lift value around 1.6 are considered as 

weak rules). Thus, in addition to one rule having high support, confidence 

and lift, two rules seen in Table 26 with high confidence and lift but low 

support are also considered as exception rules. Amongst the exception rules, 

it can also be seen that rule no.2 outperforms rule no.3. 

Table 26. Rules extracted for Case 6 (Deterministic parameters: EVPI) 

Rule Length Support Confidence Lift 

Condition 

Prediction 

(EVPI) 
Profitability 

Unit 

Cap. U.  
Capacity 

1 2 0,105 0,902 2,34 1 1 … M 

2 2 0,074 0,846 2,20 2 or 3 4 or 5 … M 

3 2 0,067 0,767 1,99  4 or 5 3 or 4 M 
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According to Table 26: 

 When the new line is less profitable and the unit capacity usage of 

both the new and products are the same OR the profitability of new 

product is greater than or equal to the profitability of old producs 

and the new one consumes more unit production resources than the 

old ones OR the new one consumes more unit production resources 

than the old ones and capacity is loose (50 or 100 % levels), EVPI 

is predicted to take a value between 10-20 % (i.e. “Medium” value). 

Thus, in those cases it can be said that based on the context and 

firm’s goals the need to invest on better forecasting technologies 

may be taken into account. 

 

5.1.8.3. Experiment 2 for Uncertain Parameters 

 

5.1.8.3.1. Experiment 2: Settings  

 

For this case, the settings given in Section 5.1.2.3 for Case 2 are also used. But, the 

only difference is that for this experimental study the levels of deterministic 

parameters (such as unit capacity usage, capacity expansion cost etc.) to the one of 

the values where VSS takes maximum values mentioned in Section 5.1.8.2.2. 

5.1.8.3.2. Experiment 2: Results 

 

The analysis is merely based on Random Forest method, which enables to extract 

some rules including different levels of the parameters, since it is not possible to 

find a good parametric regression model which ensures a detailed analysis for 

revealing the significance of the parameters. The results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 VSS over 30 runs 

o Average VSS (%)  =  28.3 
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o Min VSS (%)         =  0.0 

o Max VSS (%)        =  50.7 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix 

C.8.2.1 indicates that the coefficient of variation of demand and price 

(CV_Demand, CV_Price) are significant parameters on VSS.  The rules with 

high support, high confidence and high lift, which are shown in Table 27, 

are obtained. 

Table 27. Rules extracted for Case 6 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition 

Prediction CV_Demand CV_Price 

1 1 0,227 1 2,536 … 0.30 H 

2 2 0,163 1 2,917 0 0.15 M 

3 1 0,162 1 2,536 0.15 0.15 H 

4 2 0,151 1 3,803 0 0 L 

 

According to Table 27: 

 When the coefficient of variation of price is 0.30 (high variability) 

OR both the coefficient of variation of demand and price is 0.15, 

with a high support and confidence and a lift greater than 1, VSS is 

predicted to take a value greater than 20 % (i.e. “High” value), 

therefore in those cases the decision makers should use stochastic 

programming approach in order to get higher expected profit 

compared to the deterministic approach.  

 When the coefficient of variation of price is 0.15 (low variability) 

but there is no variability regarding demand, VSS is predicted to take 

a value between 10 % and 20 % (i.e. “Medium” value) and it can be 

said that based on the satisfaction level of the decision maker, 

stochastic programming approach can be used. 
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 When there is no variability regarding both demand and price, VSS 

is predicted to take a value less than 10 % (i.e. “Low” category). In 

this case, the stochastic programming approach would not gain a 

noteworthy contribution and therefore it would be better to use a 

deterministic approach considering the mean values of uncertain 

parameters. 

Response 2: Expected Value of Perfect Information (EVPI) 

Since the minimum, average and maximum values of EVPI, which are 0.00 %, 0.2 

% and 0.03 %, respectively, are close to zero and all responses fall into “Low” 

category, and it needs to have at least two classes (categories) to do classification 

in Random Forest, any rules regarding EVPI for this Case could not be obtained. 

Compared to Case 2 (the only difference is the new line is introduced to only one 

of the markets in Case 6), it can be said that VSS increases by 43 % on the average 

in Case 6 compared to Case 2. Though price is a significant uncertain parameter in 

both cases, the variability of demand and cost is significant in Case 2 and Case 6, 

respectively. Based on this result, it can be said that introducing a product to only 

one or to more than one markets  can affect VSS as well as significant factors on 

VSS. 

The summary of all cases and the most important results are given in Table 28-31. 
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Table 28. Summary of Case 1- 6: VSS performance and rules extracted (Deterministic parameters) (*) 
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 Rules 

Significant 

Factors 

VSS:  

Less than 

10% 

(Low) 

VSS: 

Between 10% 

and 20% 

(Medium) 

VSS: Greater 

than 20 % 

(High) 

1 

Mix of two existing 

lines with a new 

higher-priced line, a 

single-market and 

three-periods 

2 1 1 3 

 launched with a higher price 

which reduces over the 

planning horizon 

 an improved version of the old 

products 

 cannibalises both of the old 
products 

3.7 

% 

36.5 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 
 PROF: Less  

UCU: Same  

 PROF: Less      

UCU: Less  

CAP: Loose 

 PROF:Same      

UCU: Same  

CAP: Loose 

2 

Mix of two existing 

lines sold in two 

markets with a new 

higher-priced line 

sold in both of the 

markets and five-

periods 

2 1 2 5 

 more technological and 

innovative product 

 higher price than old products 

 sold in both of the markets 

 higher price in one of the 

markets 

2.8 

% 

22.8 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 

 

 PROF: Less      

UCU: Less  

CAP: Loose 

 PROF: 

Same       

CAP: Tight 

 PROF: Less 

UCU: Less 

CAP: Tight 

3 

Mix of two existing 

lines with two new 

lines with a single-

market and five-

periods 

2 2 1 5 

 more functional and preferable 

by a certain customer segment 

 one is more technological 

 demand of more functional 

product is higher than the 

demand of more technological 
product 

 price is higher for the more 

technological products 

 more functional one 

cannibalises the old products 

much more than the other 

5.7 

% 

26.4 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 

 

 PROF: Less       

CAP: Loose 

 

 PROF: 

More 

CAP: Tight 

… 

(*)  PROF: Variable unit production cost as a percentage of price expressed as the profitability of new line(s) compared to the existing lines 
        UCU : Unit capacity usage of the new line(s), expressed as the relative resources used compared to the existing products 

         CAP  : Maximum amount of capacity available in each period 

 

2
1
2
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Table  28. Summary of Case 1- 6: VSS performance and rules extracted (Deterministic parameters) (cont’d) 
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 Rules 

Significant 

Factors 

VSS:  

Less than 

10% 

(Low) 

VSS: 

Between 10% 

and 20% 

(Medium) 

VSS: 

Greater 

than 20 % 

(High) 

4 

Mix of two existing 

lines with two new 

lines, two markets 

and three-periods 

2 2 2 3  the same as Case 3 
4.7 

% 

59.0

% 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 
 UCU: Same 

CAP: Tight 
…. 

5 

Mix of two existing 

lines with a new 

lower-priced line, a 

single market and 

three-periods 

(revised version of 

Case 1) 

2 1 1 3 

 sold for lower-income 

families with lower price, 

i.e. its price is less than the 

price of old products. 

 in other respects, the same 

as Case 1 

3.0 

% 

35.0 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 

 PROF: Less 

UCU: Less 

CAP: Loose 

 

 PROF: Same 

UCU: Same 

CAP: Tight 

 

 PROF: 

Less   

UCU: 

Tight 

 

 UCU: 

Less   

CAP: 

Tight 

6 

Mix of two existing 

lines sold in two 

markets with a new 

higher-priced line 

sold only in one of 

the markets and  

five-periods (revised 

version of Case 2) 

2 1 2 5 

 more technological and 

innovative product 

 higher price than old 

products 

 sold in one of the markets 

2.8 

% 

26.1 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 
 PROF: Same 

UCU: Same 

CAP: Tight 

 

 PROF: 

Less 

UCU: 

Less 

2
1
3
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Table 29. Summary of Case 1- 6: EVPI performance and rules extracted (Deterministic parameters) (*) 
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F
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Rules 

EVPI :  

Less than 

10% 

(Low) 

EVPI : 

Between 10% 

and 20% 

(Medium) 

EVPI : 

Greater 

than 20 % 

(High) 

1 

Mix of two existing 

lines with a new 

higher-priced line, a 

single-market and 

three-periods 

2 1 1 3 

 launched with a higher price 

which reduces over the 

planning horizon 

 an improved version of the old 

products 

 cannibalises both of the old 

products 

6.5 

% 

21.0 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 
 PROF: Less 

UCU: Same 
… 

2 

Mix of two existing 

lines sold in two 

markets with a new 

higher-priced line 

sold in both of the 

markets and five-

periods 

2 1 2 5 

 more technological and 

innovative product 

 higher price than old products 

 sold in both of the markets 

 higher price in one of the 

markets 

6.2 

% 

18.4 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

 CAP: tight 

 PROF: 

More  

UCU: Same 

 UCU: Less 

 UCU: More 

CAP: Tight 

 CAP: Loose … 

3 

Mix of two existing 

lines with two new 

lines with a single-

market and five-

periods 

2 2 1 5 

 more functional and preferable 

by a certain customer segment 

 one is more technological 

 demand of more functional 

product is higher than the 

demand of more technological 
product 

 price is higher for the more 

technological products 

 more functional one 

cannibalises the old products 
much more than the other 

3.4 

% 

13.0 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 

 PROF: 

Same  

UCU: More 

 

 PROF: Less  

UCU: Same 

 

… 

  

(*)  PROF: Variable unit production cost as a percentage of price expressed as the profitability of new line(s) compared to the existing lines 

        UCU : Unit capacity usage of the new line(s), expressed as the relative resources used compared to the existing products 
         CAP  : Maximum amount of capacity available in each period 

 

2
1
4
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Table  29. Summary of Case 1- 6: EVPI performance and rules extracted (Deterministic parameters) (cont’d) 
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Rules 

EVPI :  

Less than 

10% 

(Low) 

EVPI : 

Between 10% 

and 20% 

(Medium) 

EVPI : 

Greater 

than 20 % 

(High) 

4 

Mix of two existing 

lines with two new 

lines, two markets and 

three-periods 

2 2 2 3  the same as Case 3 
7.3 

% 

21.4 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

 CAP: tight 

 

 PROF: 

More  

UCU: Same 

… … 

5 

Mix of two existing 

lines with a new 

lower-priced line, a 

single market and 

three-periods (revised 

version of Case 1) 

2 1 1 3 

 sold for lower-income 

families with lower price, 

i.e. its price is less than 

the price of old products. 

 in other respects, the 

same as Case 1 

6.5 

% 

21.0 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 
 PROF: 

More  

UCU: More 

… 

6 

Mix of two existing 

lines sold in two 

markets with a new 

higher-priced line 

sold only in one of the 

markets and  five-

periods (revised 

version of Case 2) 

2 1 2 5 

 more technological and 

innovative product 

 higher price than old 

products 

 sold in one of the markets 

4.9 

% 

14 

% 

 profitability 

 unit capacity 

usage 

 max. capacity 

available in 

each period 

… 

 PROF: Less 

UCU: Same 

 PROF: 

Same and 

More  

UCU: More 

CAP: Loose 

… 

 

2
1
5
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Table 30. Summary of Case 1- 6: The significant uncertain parameters (factors) on VSS and EVPI (*) 

           

 

No 
Case 

VSS   EVPI 

Average 

and 

Highest 

values (%) 

Significan

t main 

effects 

Significant 

interactions 

Average 

and 

Highest 

values (%) 

Significant 

main effects 

Significant 

interactions 

1 
Mix of two existing lines with a new higher-priced 

line, a single-market and three-periods 
21.3 

36.7 

 Price 

 Cost 

 Price & 

Cost 

10.8 

13.3 

 Price 

 Cost 
 Price & Cost 

2 

Mix of two existing lines sold in two markets with a 

new higher-priced line sold in both of the markets 

and five-periods 

19.6 

35.2 

 Price 

 Cost 

 Price & 

Cost 
Close to zero ---- (**) ---- (**) 

3 
Mix of two existing lines with two new lines with a 

single-market and five-periods 
21.3 

34.7 

 Price 

 Cost 

 Price & 

Cost 
Close to zero ---- (**) ---- (**) 

4 
Mix of two existing lines with two new lines, two 

markets and three-periods 
11.9 

23.9 

 Price 

 Cost 

 Price & 

Cost 

9.0 

13.3 

 Price 

 Cost 
 Price & Cost 

5 
Mix of two existing lines with a new lower-priced 

line, a single market and three-periods (revised 

version of Case 1) 

14.0 

23.4 
 Price 

Cost 
 Price & 

Cost 
Close to zero ---- (**) ---- (**) 

6 

Mix of two existing lines sold in two markets with a 

new higher-priced line sold only in one of the 

markets and  five-periods (revised version of Case 2) 

28.3 

50.7 

 Price 

 Demand 

 Price & 

Demand 
Close to zero ---- (**) ---- (**) 

  (*): This table is designed based on the results of parametric regression analysis. An additional analysis based on random forest method is also given for those 

individual cases (see Table 31). 
 (**): Since EVPI values are very small and near zero, the analysis is not done for these cases. 

 

2
1
6
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Table 31. Summary Case 1-6: Rules extracted (Uncertain parameters: VSS) 

 

Rule 
Condition 

Prediction (*) Case 
Variability of Demand Variability of Price Variability of Cost 

1 … High … 

VSS ≥ 20 % 

1, 2, 3, 4, 5, 6 

2 … Medium High 1, 2, 3, 4 

3 Medium Medium … 6 

4 … Medium Low or Medium 

10 % ≤ VSS < 20% 

1, 2, 3, 4, 5 

5 Low Medium … 6 

6 ... Low High 1, 2, 4 

7 … Medium High 5 

8 … Low Low 

VSS < 10 % 

1, 2, 3, 4, 5 

9 … Low Medium 1, 2, 3, 4 

10 … Medium Low 5 

11 Low Low … 6 

2
1
7
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5.1.9. General Conclusions for Case 1-6 

 

Based on Table 28-31 and Section 5.1.1-5.1.6, the following generalised inferences 

can be detected: 

- Considering the significant main deterministic factors (parameters) 

and their interactions on VSS:  

o As it can be seen from Table 28, VSS performance of all different 

types of problems depends on relative unit capacity usage of the new 

and old products and  maximum allowable capacity in each period 

for all six cases; besides relative profitability of the new and old 

products is a significant factor for all cases except from one case. 

o The interactions, profitability&unit capacity usage, 

profitability&capacity and unit capacity usage&capacity are 

significant for all cases. However, their levels which give the 

maximum or minimum VSS values and their effect are different for 

cases. 

o Considering the rules extracted for each case, it can be seen that it is 

hard to find any common conditions and to make some 

generalisations covering all cases. However, It should be noted that 

(on the average) VSS tends to be high when the new products are 

less profitable or have the same profitability as the old products and 

the unit capacity usage of the new products are the same as or less 

than the old products.  

o VSS is expected to be 23 % - 59 % at maximum considering all six 

cases. Based on this result, it can be said that the competition 

between the new and old products for sharing the limited capacity 

and for making contribution to the expected net profit increases, 

VSS also tends to increase.  
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o Since the only difference between Case 1 and Case 5 is the entry 

price of the new product, it is noteworthy to see if there would be 

any interesting result about the effects of factors on VSS because of 

this difference. It can be observed that the main effect of this 

difference reveals based on the capacity available in each period. 

The highest VSS is obtained when capacity is loose in Case 1 and 

when capacity is tight in Case 5. Therefore it can be said in the case 

of that the price of new product is planned to be higher than of old 

ones and there is no capacity-scarcity problem, the stochastic 

approach provides a higher expected profit.   

o For Case 2 and Case 6 (which is the revised version of Case 2), VSS 

tends to become higher (at least 10 %, which can be seen from the 

rules) when new and old (existing) products consume the same or 

less amount of resources. Also VSS tends to become lower when the 

new product is more profitable. Thus, in general it can be said that 

when the new products are less profitable or as same profitable as 

the old products, unit capacity usage of new products are less than 

or equal to the unit capacity usage of new products, VSS becomes 

higher. Therefore, it should be noted that there is no remarkable 

difference between those cases in terms of VSS values (average, 

minimum and maximum values) and the factors affecting the VSS. 

o For Case 3, VSS tends to increase when the unit capacity usage of 

the new products increases compared to the unit capacity usage of 

old products and the new products are less profitable and decrease 

as the capacity becomes tight..  

o For Case 4, similar to Case 2 and Case 6, VSS decreases as the 

difference between the unit capacity usage of new and old products 

increases and it takes higher values in all other levels of unit capacity 

usage. In contrast to all other cases, VSS becomes highest when the 
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new products are more profitable and decreases almost linearly as 

maximum allowable capacity becomes more loose in Case 4. 

 

- Considering main deterministic factors (parameters) and interactions 

significant for EVPI   

o As it can be seen from Table 29, EVPI performance of all different 

types of problems depends on relative profitability of new products 

compared to existing products, unit capacity usage of them and 

maximum allowable capacity in each period. Besides, capacity 

expansion cost is not a significant factor on EVPI performance in all 

of the cases. 

o The interactions, profitability&unit capacity usage and unit capacity 

usage&capacity, are significant for all cases, and their effects on 

EVPI are almost the same for all cases. Besides, the interactions, 

profitability&capacity and capacity expansion cost&capacity, are 

also significant for most of the cases. 

o The highest EVPI is expected to be between 13 % and 21 % and 

considering the rules extracted for each case, it can be seen that it is 

hard to find any common conditions and to make some 

generalisations covering all cases. 

- Considering the rules extracted from the crossed array design with 

deterministic parameters;  

o Based on the results obtained from the Random Forest application, 

number of new lines, number of markets, number of periods, 

profitability, unit capacity usage and maximum capacity available at 

each period are the significant parameters on both VSS and EVPI; 

however, any rules satisfying all three criteria are obtained from this 

crossed array design. 
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- Considering main uncertain parameters, their interactions significant 

for VSS and EVPI, and rules extracted;  

o As seen from Table 30: 

 The uncertain parameters, price and cost, and their 

interaction are the most significant factors on VSS for all of 

the cases except from Case 6 in which demand is significant 

rather than cost in addition to price. As the variability of price 

and cost parameters for Case 1-5 and the variability of price 

and demand for Case 6 increase, VSS also increases and it 

takes its highest values (23.4 % at minimum and 36.7 % at 

maximum) when the variability of both of these parameters 

is at their highest values (i.e. coefficient of variation = 0.30). 

This result motivates decision makers to use stochastic 

programming for the cases in which unit contribution margin 

(= price - cost) of products is highly uncertain.  

 The variability of price and cost are also significant on EVPI 

just for Case 1 and 4, and EVPI is expected to become around 

10 % on the condition that price has higher variability. 

However if the variability of price and/or cost is not high (i.e. 

0 or 0.5), EVPI is expected to be close to zero.  

 

o According to Table 31 which shows the rules extracted from 

association analysis based on Random Forest model: 

 The coefficient of variation of price for all the cases and cost 

for most of the cases, and demand for only one case are the 

significant factors which determine the VSS.  

 VSS becomes more than 20 % on the condition that the 

variability of price is high, i.e. coefficient of variation is 0.30, 

for all of the cases. Besides, when the variability of price is 
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medium and of cost is high, VSS is expected to be more than 

20 % for cases 1-4 and at least 10 % for all of the cases where 

price and cost are significant factors on VSS. Thereby, the 

stochastic programming approach is recommended for the 

price-volatile markets as well as cost-volatile markets  in 

order to have a high expected profit. 

 When the variability of price is medium but the variability of 

cost is low or medium, VSS is expected to be at least 10 % 

for cases 1-5 in which price and cost are significant factors 

on VSS. 

 When the variability of price is low, there is no variability 

regarding price, and the variability of cost is zero or less than 

0.15, VSS is expected to be less than 10 %. Thereby, it can 

be said that for the cases in which price is handled as a 

deterministic parameter and the variability regarding cost is 

not too high the stochastic programming approach would not 

gain a noteworthy contribution, and therefore it would be 

better to use a deterministic approach considering the mean 

values of uncertain parameters. 

 

o According to Table 20 and Table 21: 

 Considering the crossed array design based on Case 1-4, the 

significant deterministic and uncertain parameters on VSS 

are “the number of markets”, “the number of periods”, 

“variability of price” and “variability of cost”. 

 When price has a high variability, VSS is expected to be 

more than 20 %. Besides, if the variability of cost is high and 

there are fewer markets or longer planning horizon, VSS is 

also expected to be more than 20 %. 
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 VSS is expected to be at least 10 % providing that both the 

variability regarding price and cost is not too high. 

 If there is no variability regarding price and cost or price is 

handled as a deterministic parameter but the planning 

horizon is shorter, i.e. 3 periods, VSS is expected to become 

less than 10 %. 

 As a generalised inference, it can be said that stochastic 

programming approach is highly recommended in order to 

handle high uncertainty regarding price and cost. 

 Considering EVPI, it can be said that the need to invest on 

better forecasting technologies may be taken into account in 

cases with a shorter planning horizon with a high cost 

variability OR in cases in which the variability of price is 

high. Plus it should be noted that in cases where both the 

variability of price and cost is low, having a better forecast 

about the uncertain parameters would not gain a noteworthy 

contribution to the expected profit. 
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5.2. Illustrative Cases – Set 2 

In this section, three larger-sized cases are developed to make inferences about the 

solution capacity of the model and the solution approach developed in terms of 

solution time. 

5.2.1. Data for Cases 

 

The problem sizes that are compatible with the context, i.e. product-mix problem at 

product-line level, are given as follows: 

 

Case # of  

existing lines 

# of  

new lines 

# of  

markets 

# of  

periods 
Problem size 

7 4 1 10 3 Small 

8 6 2 20 5 Medium 

9 8 4 20 5 Large 

  

While generating the problem data for each case, the following settings are taken 

into account: 

 In order to get a general idea about the reasonable value of maximum 

amount of capacity available for each period, firstly the total expected 

demand of all products over all periods under 50 000 scenarios are 

calculated. Then the value of this parameter is determined as 25 % of total 

expected demand calculated. 

 In order to get an idea about the reasonable value of capacity expansion cost 

and to provide a possible trade-off between capacity expansion cost and unit 

contribution margin in accordance with the optimisation model, firstly the 

expected contribution margin including all products and all periods under 

50 000 scenarios is calculated. Then, this roughly calculated value is used 

for the capacity expansion cost for each problem. 
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 A product can be sold in every market but with different prices (variability 

is not too much) and different amounts of demand.  

 An old product to be sold in a new market is also handled as a new product. 

 Half of the new products are introduced with high (low) prices which goes 

down (up) over the periods with a rate of 10 % and the prices over the 

periods of old (mature) products are relatively stable (i.e. does not change 

over the periods). 

 The constant term of demand function is the same for each period for all 

products and selected randomly from a discrete distribution. 

 The demand of some of the new products will grow at a certain rate (e.g. 3 

%) per year after introducing to a market. In addition, for other new 

products, the demand is high when they are launched, but decreases over the 

planning horizon at a certain rate per year thereafter.  

 Price elasticities of demand are higher for old products (more sensitive to 

price changes) than for new products, increase over the planning horizon 

with a rate of 10 % for new products and, on the other hand, stable for the 

old products.  

 The mean prices, constant term of demand functions and price elasticities 

(including cross-elasticities) are randomly chosen from a continuous 

distribution (normal distribution) whose parameters are exogenously 

assigned. 

 For unit production costs, firstly 50 000 scenarios are generated for each 

market price parameter of each product, and then the expected values are 

calculated over 50 000 scenarios. Finally, the minimum of these expected 

market prices for each product is used for unit production costs. Thus, some 

markets would be more profitable than the others, as in real business 

environment would. 
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 Cannibalisation rate depends on the price of the new product (s) and for it a 

linear function is determined considering minimum and maximum values of 

cannibalisation rate. Some new product(s) cannibalise the potential demand 

of the old products more than the other(s). If a new line(s) is (are) introduced 

to any market, some of the old products, not all them, will be cannibalised 

by this (these) new line (s).   

 Minimum launching time for each product sold in each market is assigned 

randomly from a discrete distribution.  

𝐼𝑓 𝑡 = 3, 𝑚𝑖𝑛𝐿𝑖𝑗 = {1, 2} 𝑎𝑛𝑑 𝑖𝑓 𝑡 = 5, 𝑚𝑖𝑛𝐿𝑖𝑗 = {1, 2,3}. 

 The uncertainty regarding the price and demand of new lines is higher than 

of existing lines, and thereby, the standard deviation of the price of new 

line(s) is considered as 20 % higher than of the existing lines. 

 All random parameters are uniformly distributed in those cases. 

 By introducing new line(s) to the market, it is expected that the market size 

(total expected demand) would increase. 

5.2.2. Experimental Design: Settings 

The main objective of this experiment31 is to explore if the stochastic solution 

approach is sensitive to problem size and the variability regarding the uncertain 

parameters. Since the stochastic environment of the problem is considered, one of 

the levels, i.e. the coefficient of variation is zero, handled in the experiments given 

in Section 5.1 is not taken into account in this experiment. Furthermore, the medium 

level determined for the experiments in Section 5.1., i.e. the coefficient of variation 

(CV) for each parameter = 0.15, is changed to CV = 0.05 in order to have at least 

some stochasticity for the problem handled. Thereby, in order to test the solution 

                                                 

 

 
31 The experiment designed for exploring the effect of the deterministic parameters on stochastic 

solution quality could not be performed because of requiring very long solution time which makes 

it impossible to perform all required runs (i.e. 180 runs). 
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time as a performance measure two levels for the variability of uncertain parameters 

are determined: (1) the coefficient of variation (CV) for each parameter = 0.05 and 

(2) CV = 0.30. Since the variability of demand and price for new products is higher 

than for the old products, these levels are taken as 20 % higher for the new products, 

i.e. 0.06 and 0.36. Thus, the levels can be stated as follows: 

Factor H: Coefficient of variation of price (CV_Price)  

Level 1: 𝐿𝐸 = 0.05, 𝐿𝑁 = 0.06 

(

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻𝐸 = 0.30, 𝐻𝑁 = 0.36 

(

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Factor I: Coefficient of variation of demand (CV_Demand)  

Level 1: 𝐿𝐸 = 0.05, 𝐿𝑁 = 0.06 

(

𝐿𝐸: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐿𝑁: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻𝐸 = 0.30, 𝐻𝑁 = 0.36 

(

𝐻𝐸: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑎𝑛𝑑 𝐻𝑁: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑛𝑒𝑤 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Factor J: Unit Production Cost (CV_Cost) 

Level 1: 𝐿 = 0.05, (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Factor K: Cannibalisation Rate (CV_CanR) 

Level 1: 𝐿 = 0.05, (𝐿: 𝑙𝑒𝑣𝑒𝑙 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 

Level 2: 𝐻 = 0.30 (𝐻: 𝑙𝑒𝑣𝑒𝑙 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠) 
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The experiment is well-known full-factorial design with 24 = 16 runs. For each 

case, 16 problems are generated by different combinations of the uncertain 

parameters having two levels and the results are shown in the following section. It 

should be noted that in addition to data collected regarding the solution time as a 

performance measure, VSS and EVPI are also recorded for each run in order to 

perform an additional analysis for testing the effect of the uncertain parameters on 

those measures.  

5.2.3. Experimental Design: Results 

 

5.2.3.1. Case 7: 4 existing lines, 1 new line, 10 markets, 3 periods 
 

After solving 16 runs, the related data is analysed using MINITAB software to see 

which uncertain parameters and their interactions are significant on the solution 

time and solution performance in terms of VSS and EVPI, and using Random Forest 

method to extract rules including different levels of the uncertain parameters. The 

results are shown below. 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 Main effects and the most important interactions 

Considering ANOVA table and related figures in Appendix C.9, it can be 

seen that: 

o the variability of price, cost and interaction between them are the 

most significant factors on VSS, 

o VSS increases when the variability of the price and the cost 

increases, and it takes its maximum value (around 15 %) when the 

variability of both factors, i.e. price and cost, is higher, 

o the variability of demand and the interaction of demand and 

cannibalisation rate are very slightly significant on VSS, and  

o the variability of the cannibalisation rate is insignificant. 
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 VSS over 16 runs 

o Average VSS (%)  = 10.6 

o Min VSS (%)         =   5.0 

o Max VSS (%)        = 15.4        

 

 Solution time 

o Nearly 3600 seconds for each run 

 Stochastic solution quality: optimality gap of solution approach 

o Min=0.8 %, Average =1.2 %, Max = 1.85 %.  

o All runs are solved with 30 replications (scenario batches). 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix C.9 

indicates that CV_Price (variability of price) is the significant parameter on 

VSS.  The rules with high support, high confidence and high lift, which are 

shown in Table 32, are obtained. 

Table 32. Rules extracted for Case 7 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition Prediction 

(VSS) CV_Price 

1 1 0.50 1 2.00 0.05 L 

2 1 0.50 1 2.00 0.30 M 

 

According to Table 32: 

 When the coefficient of variation of price is 0.30 (high variability), 

with a high support, confidence and a lift, VSS is predicted to take a 

value between 10 % and 20 % (i.e. “Medium” value). 

 When the coefficient of variation of price is 0.05 (low variability), 

with a high support, confidence and lift, VSS is predicted to take a 

value less than 10 % (i.e. “Low” value). 
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 At first sight, there may seem a contradiction between the results of 

ANOVA and association analysis done through Random Forest 

about the significance of the CV_Cost parameter; i.e. the coefficient 

of variation of cost is significant factor in ANOVA whilst it is 

insignificant in Random Forest. Since the VSS  for each experiment 

is categorised and thus in both cases the response (VSS) falls into 

the same category and becomes indifferent, the Random Forest 

concludes that only CV_Price is significant and CV_Cost is 

insignificant. However, in ANOVA the small difference between 

two cases becomes indicative, and thereby both the CV_Price and 

CV_Cost are labelled as significant.  

 

Response 2: Expected Value of Perfect Information (EVPI) 

Since the minimum, average and maximum values of EVPI, which are 1.4 %, 1.5 

% and 1.6 %, respectively, are very small, an ANOVA is not performed. However, 

it can be said that digging more (perfect) information about the future does not 

contribute to the expected net profit in this case. 

Besides, all of sixteen experiments have an EVPI very close to one percent, and so 

all responses fall into “Low” category. Since it needs to have at least two classes 

(categories) to do classification in Random Forest, any rules regarding EVPI could 

not be obtained for this Case. 

5.2.3.2. Case 8: 6 existing lines, 2 new lines, 20 markets, 5 periods 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 Main effects and the most important interactions 

Considering ANOVA table and related figures in Appendix C.10, it can be 

seen that,  
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o the variability of price is the most significant factor on VSS; 

following the price, cost, and the interaction between price and cost 

are the other significant factors. VSS increases when the variability 

of the price and the cost increases, and it takes its maximum value 

(around 9.5 %) when the variability of both factors, i.e. price and 

cost, is higher, 

o the variability of demand and cannibalisation rate, and the 

interaction of demand and price, and demand and cost are very 

slightly significant on VSS. 

 VSS over 16 runs 

o Average VSS (%)  =  6.0 

o Min VSS (%)         =  2.2 

o Max VSS (%)        =  9.5 (when the variability of both of price and 

cost is higher)  

           

 Solution time 

o Nearly 12600 seconds (around 3.5 hours) for each run 

 

 Stochastic solution quality: optimality gap of solution approach 

o Min=0.18 %, Average =0.32 %, Max = 0.53 %.  

o All runs are solved with 30 replications. 

 

 Rules extracted from the Random Forest application 

 

All of sixteen experiments have a VSS less than 9 %, and so all responses 

fall into “Low” category. Since it needs to have at least two classes 

(categories) to do classification in Random Forest, any rules regarding VSS 

could not be obtained for this Case. 
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Response 2: Expected Value of Perfect Information (EVPI) 

Since the minimum, average and maximum values of EVPI, which are 0.07 %, 0.4 

% and 0.8 %, respectively, are very small and near zero, the ANOVA is not 

performed. However, it can be said that digging more (perfect) information about 

the future does not contribute to the expected net profit in this case. 

Besides, all of sixteen experiments have an EVPI very close to zero, and so all 

responses are in “Low” category. Since it needs to have at least two classes 

(categories) to do classification in Random Forest, any rules could not be found 

regarding EVPI for this Case. 

5.2.3.3. Case 9: 8 existing lines, 4 new lines, 20 markets, 5 periods 
 

Response 1: Value of Stochastic Solution (VSS) 

Remarks 

 Main effects and the most important interactions 

Considering ANOVA table and related figures in Appendix C.11, it can be 

seen that: 

o the variability of price is the most significant factor on VSS, 

following this, cost, and the interaction between price and cost are 

the other more significant factors. VSS increases when the 

variability of the price and the cost increases, and it takes its 

maximum value (around 11 %) when the variability of both factors, 

i.e. price and cost, is higher, 

o the interaction between price and the cannibalisation rate is also very 

slightly significant on VSS. 

 

 VSS over 16 runs 

o Average VSS (%)  =  8.3 

o Min VSS (%)         =  5.3 



 

 
233 

o Max VSS (%)        =  11 (when the variability of both of price and 

cost is higher)  

           

 Solution time 

o Nearly 33000 seconds (nearly 9.17 hours) for each run. 

 Stochastic solution quality: optimality gap of solution approach 

o Min=0.19 %, Average =0.39 %, Max = 0.96 %.  

o The solution is obtained with 40 replications and 𝑁 = 1000 

scenarios. 

 

 Rules extracted from the Random Forest application 

 

The Random Forest output obtained from RStudio given in Appendix C.11 

indicates that the coefficient of variation of price (CV_Price) and cost 

(CV_Cost) are significant parameters on VSS.  Considering the rules 

extracted given in Appendix C.11, many of them are eliminated because of 

having a lift value not far enough from 1 (the rules having a lift value around 

1.5 are considered as weak rules). Thus, only one rule with high confidence, 

support and lift are obtained (Table 33). 

Table 33. Rules extracted for Case 9 (Uncertain parameters: VSS) 

Rule Length Support Confidence Lift 

Condition 
Prediction 

CV_Price CV_Cost 

1 2 0,329 1 3,041 0.30 … M 

 

According to Table 33: 

 When the coefficient of variation of price is 0.30 (high variability), 

VSS is predicted to take a value between 10 % and 20 % (i.e. 

“Medium” value) and it can be said that based on the satisfaction 

level of the decision maker, stochastic programming approach can 

be used. 
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Response 2: Expected Value of Perfect Information (EVPI) 

Since the minimum, average and maximum values of EVPI, which are 0.02 %, 0.3 

% and 0.97 %, respectively, are very small and near zero, the ANOVA is not 

performed. However, it can be said that digging more (perfect) information about 

the future does not contribute to the expected net profit in this case. 

Besides, all of sixteen experiments have an EVPI very close to zero, and so all 

responses are in “Low” category. Since it needs to have at least two classes 

(categories) to do classification in Random Forest, any rules could not be found 

regarding EVPI for this Case.  

The summary of the cases and the most important results are given in Table 34. 

Table 34. The significant random factors on VSS for Case 7-9 

Problem 

Solution 

Time 

(sec’s) 

VSS (%) The most 

significant 

factors on VSS 

Rules 

Min Avg Max 

4-1-10-3 ≅ 3600 5 10.6 15.4 

 Price 

 Cost 

 Interaction of 

price & cost 

𝐶𝑉𝑃𝑟𝑖𝑐𝑒 = 0.05 ⇒ 𝑉𝑆𝑆: [0 ; 10%) 

 

 𝐶𝑉𝑃𝑟𝑖𝑐𝑒 = 0.30 ⇒ 𝑉𝑆𝑆: [10; 20%) 

6-4-20-5 ≅ 12600 2.2 6.2 9.5 

 Price 

 Cost 

 Interaction of 

price & cost 

… 

8-4-20-5 ≅ 33000 5.3 8.3 11.1 

 Price 

 Cost 

 Interaction of 

price & cost 

𝐶𝑉𝑃𝑟𝑖𝑐𝑒 = 0.30 ⇒ 𝑉𝑆𝑆: [10; 20%) 

 

5.2.4. General Conclusions 

 

Based on Table 34, the following general inferences can be made for these large-

sized problems: 

- For all of the cases, the variability of price and cost, and their interaction are 

the most significant factors on VSS, as in most of the cases in Section 5.1.  
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- VSS increases when the variability of the price and the cost increases, and 

it takes its maximum value when the variability of both factors, i.e. price 

and cost, is higher, as in most of the cases (5 of 6) in Section 5.1. Therefore, 

it can be said that the possible gain obtained from stochastic programming 

approach increases when the uncertainty of the price and cost parameters 

increases in general. Besides, in most of the problems, the variability of 

demand and cannibalisation rate is very slightly significant on VSS. 

- On the average, while VSS takes values between 6.2 % and 10.6 %, EVPI 

is very near to zero. This result tells if a decision maker benefits from a 

stochastic approach, the expected profit may increase by a rate of between 

6.2 % – 10.6 % depending upon the problem. However, perfect knowledge 

of the future will not improve the expected profit, thereby more information 

should not be dug in these cases, as in most of the cases in Section 5.1.  

- The maximum solution time which is for the largest problem (8-4-20-5) 

considered in the problem context is nearly 33000 seconds (9.17 hours). 

This can be seen as reasonable for these kinds of strategic problems. 

Furthermore, the magnitude of the variability of uncertain parameters 

doesn’t make any difference on the solution time, i.e. the problems are 

insensitive to the magnitude of the variability in terms of solution time. 

- Based on the rules extracted by association analysis through Random Forest 

application, it can be seen that the variability of price has the huge impact 

on the stochastic solution performance. If it has high variability, VSS takes 

a value between 10 % - 20% and if it has low variability, VSS takes a value 

less than 10 %. 
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 

 
 

In this study, a multi-period and multi-market product-mix problem, which involves 

timing decisions of new planned products of a firm and capacity expansion 

decisions, and takes product interdependencies and uncertainties associated to 

problem parameters into account, is handled. To the best of our knowledge, there is 

no prior work that deals with such a problem in the related literature. Besides, this 

study is the first attempt to optimise (balance) product roadmaps (strategic product 

plans) of a firm using operational research tools in a holistic way.  

This problem is formulated as a two-stage stochastic programming model with 

recourse, in which the first-stage decisions, i.e. new product launching and capacity 

expansion decisions, are taken before the actual realization of uncertain parameters, 

i.e. demand, price, cost and cannibalisation rate. Then the second stage decisions, 

i.e. production volumes (sales targets) and capacity allocated for each product-line, 

are taken in later stages (periods) based on the information obtained from the first-

stage decisions after the uncertainties are revealed. In order to solve this two-stage 

stochastic programming model efficiently, first, L-shaped method with multi-cuts 

are employed. Then, a sample average approximation approach based on Monte 

Carlo bounding technique is developed to solve the model under the assumption of 

having a large unmanageable set of scenarios or that the random parameters have 

continuous probability distributions (infinite number of scenarios).  

The developed model as well as the solution approach is tested on different cases 

through two experimental studies in order to understand which problem parameters 

are significant on the solution obtained, make inferences about the solution capacity 

of the model and the solution approach developed in terms of solution time, explore 
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if using stochastic programming approach provides an advantage based on the value 

of stochastic solution (VSS) and deduce  the potential worth of more accurate 

forecasts based on the expected value of perfect information (EVPI). 

Some of the following most important results are obtained through two 

experimental studies:  

 All problems are solved using 30 number of batches for the sample average 

approximation approach with higher number of sample size (scenarios), 

except from Case 9 wherein the solution is obtained with 40 batches and a 

sample set of 1000 scenarios. Actually, the solution time highly depends on 

this number of batches and the size of sample taken for approximate 

problems. The solution time is very small, between 1800 and 3600 seconds, 

for the small-sized problems in Set 1 without using any parallel processor. 

However, when the problem increases as the cases in Set 2, the solution time 

dramatically increases. However, since the batch-means approach allows 

solving the problems in each batch separately, parallel processors are used 

to solve a certain number of batches simultaneously. Thus, the largest 

problem consisting of 8 existing lines, 4 new (candidate) lines, 20 markets 

and 5 periods, could be solved in 9.17 hours. This solution time is acceptable 

for such a strategic and complex problem. Even though this problem may 

be rarely seen in real-life because of the product aggregation level, i.e. 

product-line, considered in this study, the solution time would be around 

45.83 hours without using parallel processors to find a satisfactory 

approximate solution, which is also acceptable for a large problem. 

However, one can concern about strategies for accelerating the solution in 

order to reduce total solution time. For that purpose, L-shaped method could 

be accelerated (e.g. Bidhandi and Patrick, 2017) or an optimal sample size, 

which may be less than the size given in this study (i.e. 500, 1000, 5000 

scenarios), could be calculated at the beginning of the Monte Carlo sampling 

step. 
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 Considering deterministic parameters in Experiment 1, unit capacity usage, 

maximum allowable capacity (MAC) in each period, relative profitability 

of the new and old products, the interaction of profitability and unit capacity 

usage, of profitability and MAC, and of unit capacity usage and MAC are 

significant on VSS.  

 VSS tends to be high providing that new products are profitable the same as 

or less than existing products and unit capacity usage of new products are 

the same as or less than of existing products. Therefore, it can be stated that 

competition between the new and old products for sharing the limited 

capacity and for contributing to the expected net profit increases, VSS also 

tends to increase. In those cases, decision makers should use stochastic 

programming approach in order to get higher expected profit compared to 

the deterministic approach. 

 Relative profitability of new products compared to existing products, unit 

capacity usage of them and maximum allowable capacity in each period, 

and the interaction of profitability and unit capacity usage, and of unit 

capacity usage and MAC are significant factors on EVPI.  

 Considering uncertain parameters in Experiment 2, the variability of price, 

cost and the interaction of those factors are the most significant factors on 

VSS. If price has a high variability or cost has a high variability but price 

variability is at medium levels, VSS is expected to be more than 20 %. 

Therefore, stochastic programming is recommended for the price-volatile 

markets as well as cost-sensitive production environment in order to have a 

high expected profit. 

 During this thesis work, both the research on literature and interviews show 

that the product level as well as planning level considered in any product-

mix problem affect the main properties of the problem as well as the 

mathematical model used for problem formulation. Therefore, clarifying the 

meaning of “product” in the scope of “product hierarchy” while referring to 

any product-mix problem and the fact that planning level at which the 
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problem is formulated should be specified at the beginning of the problem 

definition step becomes crucial in such kind of studies. 

 The solution generated by our model, i.e. expected profit obtained by the 

optimised product-line mix, can be used as a constraint on expected profit 

gained from the mix of model/SKU/variant under a product-line. In other 

words, the profit obtained through the optimal mix of two lines, e.g. one is 

refrigerators and the other is freezers (see Figure 7), can be separated for 

each line. Then for the problem of finding optimal mix of models/variants 

under each of the product lines, the expected profit obtained for each 

product-line can be added to the model as a constraint, as follows: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒    𝑧 =  Total profit of the optimal mix of variants/models  

                   𝑠. 𝑡: 
                            𝑧 ≥ Total profit of the mix of product − line obtained   

 

Based on those results given above, stochastic programming provides an advantage 

to handle parameter uncertainties, particularly uncertainty for selling price of 

products and for variable unit production cost, and to have more expected profit 

than mean-value solution approach. Thus, our modelling and solution approach can 

be useful tool for decisions makers to handle their strategic product-mix problems 

under uncertainty. However, there are some possible enhancements for our model 

based on experiences gained during this thesis and some extensions of the model 

and solution approach developed, as explained below. 

Multi-stage and/or decision-dependent stochastic programming approach: 

The product-mix problem in this study is handled as a two-stage stochastic 

programming model wherein it is assumed that the scenarios regarding each period 

are unrelated, i.e. a future realisation of uncertain parameters in a period (scenarios) 

does not affect the realisations of uncertain parameters in the previous stages, and 

scenarios and their associated probabilities are independent of the decisions taken. 

The first assumption might be relaxed in order to handle the problem in a dynamic 
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planning environment and provide more flexibility than the two-stage stochastic 

models (Huang and Ahmet, 2005). Thus, the problem might be modelled as a multi-

stage stochastic program in which decisions made at a certain period depend on 

events and decisions up to that period and the decisions are revised when more 

information about the uncertainties is revealed at each period. However, it is more 

difficult to solve these models because of their complexity due to the number of 

stages and the number of random parameters than the two-stage models (Huang, 

2005; Solak, 2007). Therefore, many solution strategies are proposed for multi-

stage problems in the literature (see e.g. Ahmed et al., 2003; Karabuk and Wu, 

2003; Sahinidas, 2004; Huang, 2005; Huang and Ahmed, 2005; Solak, 2007; 

Ahmed, 2002; Claro and Sousa, 2012; Alaniazar, 2013; Lin et.al., 2014; Fattahi et 

al., 2017; Bertazzi and Maggioni, 2018).  

The second assumption might also be relaxed for the cases in which optimisation 

decisions taken at any stages can influence the underlying stochastic process. Thus, 

the stochastic programming model can be extended to a decision-dependent 

stochastic programming approach (see, for instance, Zhan and Zheng, 2018 and 

Tarhan et al., 2009). 

Incorporating fuzziness for some of the uncertain parameters 

In the problem handled in this study, it is assumed that uncertain parameters such 

as demand, price and cost, associated with existing products are adequately 

represented by random variables due to having historical data about the 

performance of those products. Therefore, they can be modelled as random 

variables. However, when the uncertain parameters cannot be modelled by random 

variables because of lack of data, particularly for the new products, fuzzy numbers 

can be incorporated in order to model uncertain parameters. Thus, an alternative 

modelling and solution approach that considers fuzziness for new products and 

randomness for existing (old) products can be developed, as proposed by Hasuike 

and Ishii (2009a and 2009b). However, this approach may complicate the stochastic 

model further. 
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Different probability distributions to model randomness 

All experimental results in this study are obtained under the assumption of that all 

random parameters are normally distributed, but different probability distributions 

might also be considered and the effect of them on the solution performance might 

be studied although Linderoth (2009) highlights that “ …  solutions obtained from 

stochastic programs are often quite stable with respect to changes in the input 

probability distribution”. 

Different demand-price models 

In this study, for the sake simplicity and to avoid from any nonlinearities in demand 

constraints, which causes the problem difficult to solve, a linear function to model 

demand-price relationship is used. However, if this model does not comply with the 

problem, different kinds of models might be used. For instance, if demand is a 

function of price in an iso-elastic or exponential form, the demand constraints 

becomes nonlinear and this makes the problem harder to solve than the linear 

stochastic models.  

Besides, it is also assumed that the demand for a new product is independent of 

existing products and other new products, since a firm under consideration 

producing long/medium life cycle products will not prefer introducing more than 

one new product-lines that will cannibalise each other within the same planning 

horizon and introducing a new product that will be cannibalised by an existing 

product. However, in real life there may be some cases in which the demand of a 

new product might be cannibalised by other new products if both of them are sold 

in market at the same time. If such a case occurs, the demand constraints 2.2 in the 

deterministic mathematical model should be revised by multiplying at least two 

binary variables (e.g. two new lines which influence the demand of each other may 

be planned to launch) representing new product launching decisions in order to 

incorporate the interaction between those products.  Thereby, the related demand 

constraints becomes nonlinear and this also makes the problem harder to solve than 

the linear stochastic models. 
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In order to handle this problem, nonlinear stochastic programming approaches and 

solution strategies are proposed in the related literature (see, for instance, Kulkarni 

and Shanbhag, 2012; Beraldi et al., 2009; Shastri and Diwekar, 2009). 

Uncertainties regarding capacity-related parameters 

In this study demand, price, cost and cannibalisation rate are handled as uncertain 

parameters; on the other hand, unit capacity usage and cost of one unit of additional 

capacity are considered as deterministic. There may be uncertainty regarding unit 

capacity usage because of production disruptions and unit capacity expansion cost 

whose mean value is used considering different capacity addition options, and their 

related costs and probability of occurrence. Therefore, these parameters can also be 

modelled as random parameters in the model, as studied in a few studies in the 

literature (Ren-qian, 2007; Karabuk and Wu, 2003; Hasuike and Ishii, 2009a; 

Hasuike and Ishii, 2009a; and Geng et al., 2009). 

Incorporating risk measures into the stochastic model 

If there exists uncertainty regarding any problem, there is also a decision risk that 

negatively influence the goal that is desired to achieve. In that context, one of the 

objectives in any problem under uncertainty is to determine some actions to reduce 

the risk to an acceptable level (Better et al., 2008). On the other hand, since our 

problem’s objective is to maximise the expected profit, it can be stated that the 

decision-maker is neutral against risk. However, as Zhang and Wang (2009), and 

Eppen et al.(1998) highlighted, the decision-maker might also be concerned about 

the risk involved in a decision problem and therefore our model can also be revised 

in order to incorporate risk measures. In the related literature, for instance, Alonso-

Ayuso et al. (2003) consider value-at-risk and reaching probability as commonly 

used risk measures and the objective function of their model is to maximise the 

expected benefit and probability of achieving a benefit target or maximise Value-

at-Risk (VaR) for a given probability. Eppen et al. (1988) also take one of the risk 

measures, i.e. down-side risk, into account, which is calculated as the failure to meet 

the target profit specified by the decision-maker. Claro and Sousa (2012) consider 
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another commonly used risk measure, i.e. the conditional-value-at-risk (CVaR), 

which is calculated as the expected value of the losses of improbably scenarios 

beyond the specified confidence level over a time horizon in their capacity 

expansion model under uncertainty. It is recommended to refer to Rockafellar 

(2007) for the details of the risk measures. 

Considering our problem, some targets on the objective function value may be set, 

e.g. increasing the overall profit by 30 % for the next five years. Those goals can 

be incorporated into the model, which can be organized in order to maximise the 

probability (or minimise the risk) of reaching those targets. 

Additional constraints:  

In our model, only the physical constraints for maximum capacity available at each 

period is considered. Besides, financial constraints such as available budget for total 

capacity expansion over the planning horizon or a budget in each period, managerial 

constraints such as target values for profit and decision risk, and production 

constraints such as minimum production amounts (because of pre-taken orders or 

economies of scale) can be added to the model. 

Make/Buy Decisions: 

In this study, it is assumed that outsourcing decisions are made when the candidate 

set (existing and new product-lines) is developed, and thereby this set includes only 

the products to be produced in-house. However, the outsourcing option for some 

products can be considered and a decision on outsourcing when the expected 

demand is not satisfied using in-house resources or this option is more 

advantageous for some products compared to the cost of expanding the amount of 

in-house resources (i.e. capacity expansion) can also be incorporated into the 

model.  
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Capacity-related revisions: 

The model developed in this study assumes that the capacity might be expanded to 

a maximum level continuously. However, in many real-world problems, it may not 

be feasible to decide on any amount of increments on capacity; instead it is preferred 

to increase capacity from a certain level to another (higher) feasible level. For 

instance, a production plant may be operated in three feasible capacity levels, e.g. 

Level-0 (currently, 100 000 unit/year), Level 1 (150 000 unit/year) and Level-2 

(maximum: 220 000 unit/year). Therefore, the capacity of this plant could be 

expanded to Level 1 or Level 2 in a period. At this point, it is also possible to open 

a new plant if the existing one reaches its maximum level (Level-2) in a period. 

Since building a new plant is out of concern at the product and planning level 

considered in this study, the maximum capacity that will be available at a period 

might still be constrained by Level-2. 

On the other hand, capacity expansion cost may also be in a piecewise form, i.e. the 

cost of expanding capacity might be constant until the next capacity level and it 

jumps to a new level after the plants is operated at a new capacity level.  

Another assumption of our model is that capital investments are irreversible, i.e. the 

decisions for reducing capacity by renting or selling are not considered. However, 

it is also possible to incorporate those kind of decisions into the model when the 

current capacity is abundant for satisfying the demand in a period.  
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APPENDIX A 

 

 

THE PRODUCT HIERARCHY FOR A RUBBER TYRE 

MANUFACTURER 

 

 

A firm operating in rubber tyre manufacturing sector, which produces very high 

volumes of fully standardised products, is considered. It produces and sales rubber 

tyres for different type of vehicles. According to the product hierarchy developed 

by Kotler and Keller (2012), the firm has one product family and nine product 

classes, which are formed according to area of use. Under each type of product 

class, there are different lines and under each line there are specific models 

(variants). 

The product hierarchy of this firm is displayed as follows: 

Table A1. The product hierarchy for a rubber tyre manufacturer 

Family Class Line Model 

Rubber tyre 

1. Passenger Car 

1.1. Winter  

1.2. Summer 

1.3. Four Seasons  

Models with different 

sizes and patterns 

2. SUV / 4X4 

2.1. Four Seasons  

2.2. Winter 

2.3. Summer 

Models with different 

sizes and patterns 

3. Agricultural 

3.1. Floatation  

3.2. Forestry  

3.3. Tractor-front  

3.4. Tractor Rear  

3.5. Tractor Radial  

Models with different 

sizes and patterns 

4. Industrial  Tires 

4.1. Grader 

4.2. Loader&Earthmover 

4.3. Compactor 

4.4. Implement 

4.5. Excavator 

Models with different 

sizes and patterns 

5. Light Truck 

5.1. Four Seasons 

5.2. Winter 

5.3. Summer 

Models with different 

sizes and patterns 

6. Truck/Bus 
5.1. Radial 

5.2. Bias 

Models with different 

sizes and patterns 

7. Military Aircraft 
7.1. Main 

7.2. Nose 

Models with different 

sizes and patterns 
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APPENDIX B 

 

DEMAND MODELS 

 

 

In marketing and operations management literature, a variety of mathematical 

functions is developed in order to model demand. Based on the problem 

environment and the variables (independent) significant on demand (dependent 

variable), different kinds of models can be defined. For instance, it can be 

considered that the sales of a firm may depend on its and competitors’ advertising 

expenditures, its and competitors’ prices, its product quality, consumer utilities etc., 

and thereby those factors should be incorporated into any model which is used to 

forecast the future demand for this firm’s products. As another example, a firm’s 

sales may be independent of competitors’ decisions on advertising, pricing or other 

marketing efforts, but it can be modeled in terms of product’s life cycle that shapes 

in the market, and this shape should be followed in order to forecast the future sales. 

Considering those examples, two main groups regarding demand models can be 

specified: 

 Group A: Models used to describe demand which is defined in a market 

where customers are sensitive to firms’ operational and marketing 

activities, thereby decisions on price, rebate, lead-time, shelf-space, 

product quality and advertising, or the integration of more than one of 

those activities (e.g., both price and advertising expenditures) 

 Group B: Models that are independent of a firm’s decision, e.g. a model 

in which demand is formulated in accordance with product’s life cycle. 
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Models in Group A: 

In this group, there are different models which characterize the relation between the 

independent variables and market response variable. Those models may be in 

deterministic form in which there is no probabilistic elements because of having the 

full knowledge about demand process or stochastic form in which the parameters 

in the model are handled as uncertain (Lilien et al., 1992; Alonso-Ayuso et al., 2003; 

Huang et al., 2013).  

They may be in static form or dynamic form in which intertemporal effects, e.g. 

demand (expected sales) in a period may be influenced by the sales of previous 

period as in diffusion models (Bass, 1969), or dynamic behavior of elasticities over 

the product life-cycle, e.g. the price elasticity of demand declines over time in 

automobile industry and increases over time in white goods industry (Dale and 

Fujita, 2008) and  price is not so sensitive during early phases of life cycle and 

becomes very sensitive during maturity or decline phase (Parker, 1997), are 

incorporated. 

Considering the mathematical form of the models in this group, there may be 

defined three main subgroups: 

 Single-firm single-variable models without competition (the most common: 

price-dependent models) 

 Multi-firm single-variable models under competition (the most common: 

price-dependent models) 

 Multi-variable demand models 

 

Single-firm single-variable demand models (the most common: price-dependent 

models) 

This group covers different types of mathematical functions considering one 

independent variable, such as price, advertising expenditure, rebate, lead-time, 
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space, quality and so on. Those functions has also different characteristics 

according to whether there is a competition in the market, e.g. price-competition 

among the rivals.  For both of the case the following mathematical forms are widely 

used to model demand and the factors on which demand is dependent, e.g. price: 

 Simple Linear Model in which the shape of the function is linear and the 

nonlinear effects arising in the market are not taken into consideration. 

 Power Series Model in which the shape of the function is various such as 

cubic, quadratic etc., e.g.  a price-dependent model may include the 

curvature effect of price on demand through adding a term of the square of 

price. 

 Iso-elastic Models, as a special case of a fractional root model, in which 

price elasticity of demand is constant everywhere in a price-dependent 

model (Oum, 1989). 

 Semilog Model in which the shape is concave and handle situations, for 

instance, that consider a threshold value for the marketing effort; i.e. total 

marketing expenditure (as a factor on which the sales is dependent) need to 

be exceeded a threshold value before it affects the sales.  

 Exponential Model in which the shape is convex and handle situations 

where there an increasing return to scale, e.g. in a price-dependent model 

there may be increasing returns to price decrements (Lilien et al., 1992). 

 Logistic Model which has an S-shape, e.g. the sales of a firm may have an 

inflection point where the S-curve transforms from convex to concave when 

the independent variable price changes, and is widely used to represent the 

relationship between time phases and sales over a product-life cycle. 

In addition to those functional forms, there are some other forms in the literature, 

e.g. Gompertz model, Adbudg model, log-reciprocal, modified exponential etc. For 

instance, one can refer to Huang et al. (2013) for other types of mathematical forms 

of price-dependent demand models. 



 

 
266 

Multi-firm single-variable demand models (the most common: price-dependent 

models): 

In those models, since there is a competition among the firms in market, if the 

marketing effort of a firm changes, the demand of other firm(s) is affected by this 

change. For instance, in the price-dependent models that are the most widely used, 

there is a price competition in the market where a price increase by one firm reduces 

the demand for its products, but increases the demand for competitors’ products. 

There are two different cases in those models:  

(1) Demand models for homogenous products (perfectly competitive market) in 

which all products sold by different companies are identical and thereby 

substitutable, and each firm is price-taker (the mathematical functions developed 

for single-firm single-variable case can be used for this kind of models). 

(2) Demand models for differentiated products in which the products sold by 

different firms are not identical and thereby not totally substitutable. Those models 

are used in the cases where there is price competition among the firms in the market, 

e.g. when a firm increases its price, this decreases its demand; but it would cause 

the demand of the other firms in the market to increase. In the related literature, 

linear models and attraction models (market share model) are commonly used in 

order to represent the demand-price relationship under competition. Among the 

attraction models, multinomial logit (MNL) and multiplicative competitive 

interaction (MCI) models are most-commonly used. Besides, linear model, 

Hotelling model, Cobb-Douglas (constant elasticity log-linear) model and constant 

expenditure model are also used to characterize the price-dependent in the case of 

two or more competing firms (for details; see Huang et al., 2013; Lilien et al., 1992). 

Multi-variable demand models: 

In addition to price which is an independent variable in a demand model, customer 

purchasing decisions may be influenced by the promotions offered by the firms, 

lead-time for delivery, advertisements, quality of the products and so on. Therefore, 
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in addition to price-dependent models in which the price is the only independent 

variable in a demand model, some other models considering the promotion level, 

advertisement expenditures, lead-time, quality perception, which can be 

characterized by consumers utility functions etc. are developed in the related 

literature (for a detailed survey on those types of models, refer to Huang et al., 

2013). 

Models in Group B: 

This group covers the models which are independent of a firm’s decision, e.g. 

pricing decision, instead demand is formulated in accordance with product’s life 

cycle (Chen et al., 2007; Goyal and Giri, 2001; Yilmaz et al, 2013). Some 

assumptions regarding those models can be given as follows: 

 After launching a product to a market, total amount of product expected to 

be adopted by consumers throughout its life cycle can be estimated. 

 The expected sales (demand) is formulated as a function of time-stages over 

the life cycle and parameters by which adoption rate is influenced. 

 The pattern (e.g. S-shape: product sales increases exponentially or linearly 

in the introduction and growth phase on a product life cycle and then after 

an inflection point the sales starts to decrease in the maturity phase)  which 

a firm follows over its own product’s life cycle is the same as or similar to 

the pattern occurred in the market. 

Considering those assumptions, it is noted that those models can be considered for 

the markets where there is only one seller (monopolistic case) or there are many 

sellers each of which knows its market share and the products for all sellers follow 

the same life cycle pattern. In literature, for instance, Chen et al. (2007) and Yilmaz 

et al. (2013) use a demand function which follows the product life cycle S-shape, 

which is derived from a Beta distribution represented by parameters such as total 

life of product, cumulative quantity of demand in the planning horizon and constant 

parameters. 
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A summary of the demand models in the related literature, given above, can be 

displayed as flow diagram in the following figure: 
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Figure B1. A summary of the demand models in the related literature (cont’d) 
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Figure B1. A summary of the demand models in the related literature (cont’d) 
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Figure B1. A summary of the demand models in the related literature (cont’d) 
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APPENDIX C  

COMPUTATIONAL RESULTS 

CASE 1 

 
C.1.1. Experiment 1 

 

C.1.1.1. Response: VSS 

 

ANOVA Table for General Factorial Regression (Asin_VSS32 versus factors) 

Factor Information 

Factor                      Levels     Values 

Cap_Exp_Cost           3           1; 2; 3 

Profitability                3           1; 2; 3 

Unit_Cap_Usage        5           1; 2; 3; 4; 5 

Capacity                     4           1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                                                   DF     Adj SS    Adj MS    F-Value  P-Value 

Model                                                           107    3,82416   0,035740     32,87    0,000 

   Linear                                           11    0,67651   0,061501     56,56    0,000 

     Cap_Exp_Cost                                  2    0,00268   0,001340       1,23    0,298 

     Profitability                                        2    0,11521   0,057607     52,98    0,000 

     Unit_Cap_Usage                               4    0,44222   0,110556   101,67    0,000 

     Capacity                                     3    0,11639   0,038797     35,68    0,000 

   2-Way Interactions                          44    1,48846   0,033829     31,11    0,000 

     Cap_Exp_Cost*Profitability                    4    0,01621   0,004053       3,73    0,008 

     Cap_Exp_Cost*Unit_Cap_Usage                  8    0,00876   0,001095       1,01    0,439 

     Cap_Exp_Cost* Capacity                      6    0,11216   0,018693     17,19    0,000 

     Profitability*Unit_Cap_Usage                     8    0,74988   0,093735     86,20    0,000 

     Profitability* Capacity                       6    0,15874   0,026456     24,33    0,000 

     Unit_Cap_Usage* Capacity                12    0,44273   0,036894     33,93    0,000 

   3-Way Interactions                                52   1,65919   0,031907     29,34    0,000 

     Cap_Exp_Cost*Profitability*Unit_Cap_Usage 16   0,03575   0,002234       2,05    0,020 

     Cap_Exp_Cost*Profitability* Capacity          12   0,04896   0,004080       3,75    0,000 

     Profitability*Unit_Cap_Usage* Capacity        24   1,57448   0,065603     60,33    0,000 

Error                                                                        72   0,07829   0,001087 

Total                                                                      179   3,90245 

 

                                                 

 

 
32 In data analysis we benefit from special transformations in order to satisfy the assumptions of the 

regression model. Since the response r =VSS/EEV is a proportion, we replace “r” by “the angular 

transformation of r, i.e. 𝑎𝑟𝑐𝑠𝑖𝑛√𝑟. The transformed response is seen as Asin_VSS in ANOVA table 

and related figures. 
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Model Summary 

        S                   R-sq           R-sq(adj)       R-sq(pred) 

0,0329751          97,99 %         95,01%           87,46% 

Residual Plots: 

 

 

Figure C1. Residual plots for Case 1 (Deterministic Parameters: VSS) 

 

 

Figure C2. Main effects plot for Case 1 (Deterministic Parameters: VSS) 
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Figure C3. Interaction plot for Case 1 (Deterministic Parameters: VSS) 

 

According to Figure C1, the assumptions of the regression model whose R-sqr 

(adjusted) is 95 % are satisfied. 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacity

.f, data = veri   temiz, mtry = 3,importance = TRUE, ntree = 1000,                     

na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

         

OOB33 estimate of  error rate: 12.22% 

 

Confusion matrix34: 
 H L M class.error 

H 2 5 0 0.71428571 

L 0 154 3 0.01910828 

M 0 14 2 0.87550000 

                                                 

 

 
33 OOB stands for Out-of-Bag eroor and accuracy of the model = 1-OOB. 
34 Confusion matrix shows how many cases were guessed properly by the model fitted by Random Forest. 
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Importance of variables: 

 H L M MeanDecreaseAccuracy35 MeanDecreaseGini36 

Cap_Exp_Cost.f -10.17 -26.23 -14.69 -31.16 4.81 

Profitability.f 21.94 16.37 21.68 27.03 11.18 

Unit_Cap_Usage.f 26.50 18.81 30.81 33.47 13.59 

Capacity.f 27.37 7.76 2.36 14.27 9.62 

 

Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

 
Call: 

randomForest(formula = VSS.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, data = cleandata

, mtry = 3,   importance = TRUE, ntree = 1000, na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 

OOB estimate of  error rate: 7.78% 

 

Confusion matrix: 
 H L M class.error 

H 7 0 0 0.00000000 

L 0 153 4 0.02547771 

M 2 8 6 0.62500000 

     

Importance of variables: 
 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 37.09 50.71 43.04 73.62 12.19 

Unit_Cap_Usage.f 41.42 50.84 55.62 77.26 14.23 

Capacity.f 41.51 38.25 22.60 54.78 8.70 

 

                                                 

 

 
35 Mean Decrease Accuracy shows how much the model fitted by Random Forest decreases when a variable is 

dropped. 
36 Mean Decrease Gini shows the explanatory power of the related variable in the model fitted. 
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Rules extracted: 

Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,112 1 1,432 X[,1] %in% c('2','3') L 

2 2 0,103 0,819 4,791 X[,1] %in% c('1') & X[,2] %in% c('1') M 

3 1 0,072 1 1,432 X[,2] %in% c('1','4') L 

4 2 0,072 1 1,432 X[,1] %in% c('3') & X[,3] %in% c('1') L 

5 2 0,067 1 1,432 X[,1] %in% c('1') & X[,2] %in% c('4') L 

6 1 0,063 1 1,432 X[,2] %in% c('2','3','5') L 

7 1 0,058 1 1,432 X[,2] %in% c('5') L 

8 2 0,054 1 1,432 X[,1] %in% c('2') & X[,2] %in% c('1') L 

9 1 0,051 1 1,432 X[,2] %in% c('3','5') L 

10 2 0,047 0,865 6,606 X[,1] %in% c('1') & X[,2] %in% c('2') H 

11 
3 0,045 1 7,637 

X[,1] %in% c('1') & X[,2] %in% c('2') & 
X[,3] %in% c('3', '4') H 

12 2 0,044 1 1,432 X[,1] %in% c('1') & X[,3] %in% c('3') L 

13 1 0,043 0,989 1,417 X[,1] %in% c('1','2') L 

14 
3 0,043 1 7,637 

X[,1] %in% c('3') & X[,2] %in% c('1') & 

X[,3] %in% c('3', '4') H 

15 1 0,042 0,999 1,431 X[,3] %in% c('1','2','3') L 

16 2 0,04 1 1,432 X[,1] %in% c('2','3') & X[,3] %in% c('4') L 

 

C.1.1.2. Response: EVPI 

 

ANOVA Table for General Factorial Regression (Logit_EVPI37 versus 

factors) 

 
Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Max_Capacity          4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                DF       Adj SS     Adj MS     F-Value    P-Value 

Model                                 51     151,618        2,9729        49,65        0,000 

  Linear                                11     116,889      10,6263      177,46        0,000 

    Cap_Exp_Cost                   2         3,242        1,6212        27,07        0,000 

    Profitability                       2         7,017        3,5083        58,59        0,000 

                                                 

 

 
37 In data analysis we benefit from special transformations in order to satisfy the assumptions of the 

regression model. Since the response r =EVPI/RP is a proportion, we replace “r” by “the logit 

transformation of r”, i.e. 𝑙𝑜𝑔𝑖𝑡 𝑟 = 𝑙𝑜𝑔 (
𝑟

1−𝑟
). The transformed response is seen as Logit_EVPI in 

ANOVA table and related figures. 
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    Unit_Cap_Usage                4       42,821      10,7052      178,78        0,000 

    Capacity                              3       63,810      21,2699      355,21        0,000 

  2-Way Interactions            40       34,729        0,8682        14,50        0,000 

    Cap_Exp_Cost*Unit_Cap_Usage         8         1,820        0,2276          3,80        0,000 

    Cap_Exp_Cost*Capacity                      6          9,221       1,5369        25,67        0,000 

    Profitability*Unit_Cap_Usage              8       13,198        1,6497        27,55        0,000 

    Profitability*Capacity                           6          3,211       0,5352          8,94        0,000 

    Unit_Cap_Usage*Capacity                 12          7,278       0,6065        10,13        0,000 

Error                                                      128          7,665       0,0599 

Total                                                      179      159,283 

 

Model Summary 

        S           R-sq      R-sq(adj)    R-sq(pred) 

0,244704    95,19%     93,27%       90,48% 

 

 

Residual Plots 

 

 
 

Figure C4. Residual plots for Case 1 (Deterministic Parameters: EVPI) 
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Figure C5. Main effects plot for Case 1 (Deterministic Parameters: EVPI) 

 

 
 

Figure C6. Interaction plot for Case 1 (Deterministic Parameters: EVPI) 

According to Figure C4, the assumptions of the regression model whose R-sqr 

(adjusted) is 93 % are satisfied. 
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Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

 randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f +  Unit_Cap_Usage.f +  

                                         Capacity.f, data =cleandata, mtry = 3, importance = TRUE, ntree = 1000,  

                                         na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 
        OOB estimate of  error rate: 10.56 % 

 

Confusion matrix: 
 H L M class.error 

H 0 0 3 1.00000000 

L 0 128 8 0.05882353 

M 1 7 33 0.19512195 

 
Importance of variables: 

 
H L M MeanDecreaseAccuracy MeanDecreaseGini 

Cap_Exp_Cost.f -6.69 -24.19 -25.54 -33.45 5.86 

Profitability.f 9.06 28.12 22.85 32.92 12.56 

Unit_Cap_Usage.f 8.68 53.93 54.69 67.40 26.99 

Capacity.f 8.13 35.45 33.80 44.24 19.93 

 

Since the mean decrease accuracy of capacity expansion cost is negative, we exclu

de this parameter and re-run the model with the remaining parameters. 

 

R output for the revised model including three deterministic parameters: 
 

Call: 

 randomForest(formula = EVPI.f ~ Profitability.f + Unit_Cap_Usage.f  +  Capacity.f, data = clean

data, mtry = 3, importance = TRUE,      ntree = 1000, na.action 

= na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 9.44% 

 

Confusion matrix: 
 H L M class.error 

H 0 0 3 1.00000000 

L 0 132 4 0. 02941176 

M 3 7 31 0.2390244 



 

 
281 

Importance of variables: 
 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 16.35 60.72 56.19 82.72 12.75 

Unit_Cap_Usage.f 19.03 81.31 92.09 113.38 26.54 

Capacity.f 17.57 60.30 61.98 82.23 20.62 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,084 1 1,644 X[,2] %in% c('2','3') L 

2 1 0,063 1 1,644 X[,3] %in% c('1') L 

3 2 0,054 0,974 2,681 X[,1] %in% c('1') & X[,2] %in% c('1') M 

4 2 0,045 1 1,644 X[,1] %in% c('2') & X[,2] %in% c('1') L 

5 1 0,044 0,945 1,554 X[,2] %in% c('1','4','5') L 

6 2 0,043 1 1,644 X[,2] %in% c('5') & X[,3] %in% c('2') L 

7 2 0,041 1 1,644 X[,2] %in% c('1','4','5') & X[,3] %in% c('1') L 

8 2 0,041 1 1,644 X[,1] %in% c('1') & X[,2] %in% c('5') L 
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C.1.2. Experiment 2 

 

C.1.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 

 
Call: 

randomForest(formula = VSS.f ~ CV_Demand.f + CV_Price.f + CV_Cost.f + CV_Canb.Rate.f, da

ta = cleandata, mtry = 3, importance = TRUE,      ntree = 1000, na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 6.67% 

 

Confusion matrix: 
 H L M class.error 

H 15 0 0 0.0 

L 0 4 1 0.2 

M 0 1 9 0.1 

 

Importance of variables: 

 H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f -2.56 -4.92 -9.82 -9.20 0.94 

CV_Price.f 47.05 35.09 38.54 59.01 10.97 

CV_Cost.f 22.80 14.11 21.28 31.23 4.28 

CV_Canb.Rate.f -4.43 4.36 -4.82 -1.98 1.47 

Since the mean decrease accuracy of CV_Demand and CV_Cannibalisation Rate 

are negative, we exclude these parameters and re-run the model with the remaining 

parameters. 

 

R output for the revised model including two uncertain parameters: 

 
Call: 

randomForest(formula = VSS.f ~ CV_Price.f + CV_Cost.f, data = cleandata, mtry = 3, importance 

= TRUE, ntree = 1000,  na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 0% 
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Confusion matrix: 
 H L M class.error 

H 15 0 0 0.0 

L 0 5 0 0.0 

M 0 0 106 0.0 

 

Importance of variables: 

 H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_ Price.f 62.15 50.65 58.80 91.37 11.87 

CV_Cost.f 33.94 19.69 36.43 49.98 5.82 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,204 1 2,446 X[,1] %in% c('0,30') H 

2 2 0,180 1 2,600 X[,1] %in% c('0,15') & X[,2] %in% c('0','0,15') M 

3 2 0,170 1 2,446 X[,1] %in% c('0,15') & X[,2] %in% c('0,30') H 

4 2 0,170 1 2,600 X[,1] %in% c('0') & X[,2] %in% c('0,30') M 

5 2 0,162 1 4,843 X[,1] %in% c('0') & X[,2] %in% c('0','0,15') L 
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CASE 2 

 
C.2.1. Experiment 1 

 

C.2.1.1. Response: VSS 

 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 

 

ANOVA Table for General Factorial Regression: Logit_VSS versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Capacity                   4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

Analysis of Variance 

Source                                        DF        Adj SS       Adj MS    F-Value    P-Value 

Model                                                                     91         951,07        10,451        8,49        0,000 

  Linear                                                    11         183,64        16,694       13,55        0,000 

    Cap_Exp_Cost                                 2             8,50          4,248         3,45        0,036 

    Profitability                                2           45,46        22,730       18,45        0,000 

    Unit_Cap_Usage                               4           45,77        11,443         9,29        0,000 

    Capacity                                     3           83,91        27,970       22,71        0,000 

  2-Way Interactions                          44         579,63        13,173       10,70        0,000 

    Cap_Exp_Cost*Profitability                  4             7,28          1,821         1,48        0,216 

    Cap_Exp_Cost*Unit_Cap_Usage                 8           22,49          2,812         2,28        0,029 

    Cap_Exp_Cost*Capacity                       6           15,83          2,638         2,14        0,056 

    Profitability*Unit_Cap_Usage                8         130,25        16,281       13,22        0,000 

    Profitability*Capacity                      6           61,17        10,194         8,28        0,000 

    Unit_Cap_Usage*Capacity                  12         342,61        28,551       23,18        0,000 

  3-Way Interactions                          36         187,80          5,217         4,24        0,000 

    Cap_Exp_Cost*Profitability*Capacity     12           31,43          2,619         2,13        0,023 

    Profitability*Unit_Cap_Usage*Capacity    24         156,37          6,516         5,29        0,000 

Error                                         88         108,39          1,232 

Total                                                     179       1059,46 

 

Model Summary 

      S            R-sq       R-sq(adj)    R-sq(pred) 

1,10983     89,77%     79,19%        57,20% 

 

 

 



 

 
285 

 
 

Figure C7. Residual plots for Case 2 (Deterministic Parameters: VSS) 

 

 
 

Figure C8. Main effects plot for Case 2 (Deterministic Parameters: VSS) 
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Figure C9. Interaction plot for Case 2 (Deterministic Parameters: VSS) 

 

According to Figure C7, the assumptions of the regression model are satisfied and 

R-sqr (adjusted), 79.2 % can be accepted. 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 

Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacit

y.f, data = cleandata, mtry = 3,      importance = TRUE, ntree = 1000, na.action = na.

omit)  

               Type of random forest: classification 

                          Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of error rate: 2.22% 

 

Confusion matrix: 
 H L M class.error 

H 6 0 1 0.1428571 

L 0 167 0 0.0000000 

M 0 3 3 0.5000000 

 

Importance of variables: 
 H  L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f -11.18  -12.49 -8.26 -18.43 1.75 

Profitability.f 34.23  34.40 23.75 49.53 8.23 

Unit_Cap_Usage.f 39.29  33.79 18.60 45.52 6.71 

Capacity.f 21.69  16.34 24.59 30.57 7.06 
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Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

 
Call:randomForest (formula = VSS.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, 

 data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omit)  

               Type of random forest: classification 

                     Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of error rate: 2.22% 

 

Confusion matrix: 
 H L M class.error 

H 6 0 1 0.1428571 

L 0 167 0 0.0000000 

M 0 3 3 0.5000000 

 
Importance of variables: 

 
H L M MeanDecreaseAccuracy 

 

eanDecreaseGini 

Profitability.f 35.39 39.02 24.26 51.96 6.70 

Unit_Cap_Usage.f 41.43 40.73 22.19 56.09 6.96 

Capacity.f 22.33 17.46 25.44 31.93 5.51 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,148 1 1,379 X[,1] %in% c('2','3') L 

2 1 0,12 1 1,379 X[,2] %in% c('5') L 

3 3 0,087 1 6,237 X[,1] %in% c('1') & X[,2] %in% c('2') & X[,3] %in% c('3') M 

4 2 0,087 0,978 6,100 X[,2] %in% c('2') & X[,3] %in% c('3') M 

5 1 0,082 1 1,379 X[,3] %in% c('4') L 

6 2 0,081 1 1,379 X[,1] %in% c('1') & X[,3] %in% c('4') L 

7 2 0,08 1 1,379 X[,1] %in% c('2','3') & X[,2] %in% c('2') L 

8 2 0,079 0,959 8,390 X[,1] %in% c('1') & X[,3] %in% c('1','2') H 

9 1 0,079 0,908 7,944 X[,3] %in% c('1','2') H 

10 
3 0,078 1 8,749 

X[,1] %in% c('1') & X[,2] %in% c('2') & X[,3] %in% 
c('1','2') H 

11 2 0,078 0,972 8,504 X[,2] %in% c('2') & X[,3] %in% c('1','2') H 

12 2 0,077 1 1,379 X[,2] %in% c('2') & X[,3] %in% c('4') L 

13 3 0,076 1 1,379 X[,1] %in% c('1') & X[,2] %in% c('2') & X[,3] %in% c('4') L 

14 1 0,075 0,997 1,374 X[,3] %in% c('2','3','4') L 

15 3 0,073 1 6,237 X[,1] %in% c('3') & X[,2] %in% c('1') & X[,3] %in% c('1') M 
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C.2.1.2. Response: EVPI 

 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 

 

ANOVA Table for General Factorial Regression: Logit_EVPI versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Max_Capacity          4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                            DF        Adj SS       Adj MS      F-Value      P-Value 

Model                                             43        164,981       3,8368        91,36     0,000 

  Linear                                           11        129,593     11,7812      280,54     0,000 

    Cap_Exp_Cost                             2            0,322       0,1610          3,83     0,024 

    Profitability                                  2          10,579       5,2896      125,96     0,000 

    Unit_Cap_Usage                          4          62,832     15,7081      374,05    0,000 

    Capacity                                       3          55,859     18,6197      443,38    0,000 

  2-Way Interactions                       32          35,388       1,1059       26,33     0,000 

    Cap_Exp_Cost*Capacity             6            1,360       0,2267         5,40      0,000 

    Profitability*Unit_Cap_Usage     8          14,485      1,8106        43,11    0,000 

    Profitability*Capacity                  6            2,899      0,4832        11,51     0,000 

    Unit_Cap_Usage*Capacity        12          16,644      1,3870        33,03    0,000 

Error                                             136            5,711      0,0420 

Total                                             179        170,692 

Model Summary 

       S                R-sq         R-sq(adj)         R-sq(pred) 

0,204927        96,65%        95,60%             94,14% 
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Figure C10. Residual plots for Case 2 (Deterministic Parameters: EVPI) 

 

 
 

Figure C11. Main effects plot for Case 2 (Deterministic Parameters: EVPI) 
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Figure C12. Interaction plot for Case 2 (Deterministic Parameters: EVPI) 

 

According to Figure C10, the assumptions of the regression model whose R-sqr 

(adjusted) is 95.6 % are satisfied. 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 

Call: 

randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capaci

ty.f, data = cleandata, mtry = 3,  importance = TRUE, ntree = 1000, na.action = na.o

mit)  

                      Type of random forest: classification 

                      Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 9.44% 

 

Confusion matrix: 
 L M class.error 

L 122 11 0.08270677 

M 6 41 0.12765957 

 

Importance of variables: 
 L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f -26.18 -24.00 -32.27 3.94 

Profitability.f 25.18 21.11 30.65 10.31 

Unit_Cap_Usage.f 74.25 79.77 96.16 30.13 

Capacity.f 49.65 54.19 66.08 23.61 
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Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

 

R output for a model including three deterministic parameters: 
 
Call: 

randomForest(formula = EVPI.f ~ Profitability.f + Unit_Cap_Usage.f +  Capacity.f, data = cleanda

ta, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omit)  

                   Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 5.56% 

 

Confusion matrix: 
 L M class.error 

L 129 4 0.03007519 

M 6 41 0.12765957 

 
Importance of variables: 
 L M MeanDecreaseAccuracy  MeanDecreaseGini 

Profitability.f 40.41 40.00 54.67 9.03 

Unit_Cap_Usage.f 82.49 96.99 112.45 30.21 

Capacity.f 66.97 72.80 91.40 21.53 

 

 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,081 0,986 1,906 X[,3] %in% c('3','4') M 

2 1 0,077 1 2,071 X[,3] %in% c('1','2') L 

3 1 0,071 1 2,071 X[,2] %in% c('2','3') L 

4 2 0,070 1 1,933 X[,2] %in% c('5') & X[,3] %in% c('3','4') M 

5 2 0,063 1 2,071 X[,1] %in% c('2') & X[,2] %in% c('1') L 

7 2 0,055 1 2,071 X[,2] %in% c(''4','5') & X[,3] %in% c('1') L 
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C.2.2. Experiment 2 

 

C.2.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 

Call: 

RandomForest (formula = VSS.f ~ CV_Demand.f + CV_Price.f + CV_Cost.f +CV_Canb.Rate.f,   

                                           data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000,  

                    na.action = na.omit)  

                 Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of error rate: 10% 

 

Confusion matrix: 
 H L M class.error 

H 15 0 0 0.00 

L 0 4 1  0.20 

M 0 2 8 0.20 

 

 

Importance of variables: 

                               H L M MeanDecreaseAccuracy MeanDecreaseGini 
CV_Demand.f     -3.90 -4.51 -8.57 -9.43 0.87 
CV_Price.f         48.11 36.32 37.72 61.45 11.03 
CV_Cost.f          24.03 13.27 20.96 30.29 4.39 
CV_Canb.Rate.f  -5.62 1.90 -4.96 -4.75 1.43 
  
Since the mean decrease accuracy of CV_Demand and CV_Cannibalisation Rate 

are negative, we exclude these parameters and re-run the model with the remaining 

parameters. 

 

R output for the revised model including three uncertain parameters: 

 
Call: 

randomForest(formula = VSS.f ~ CV_Price.f + CV_Cost.f,  data = cleandata, mtry = 2,  

       importance = TRUE,  ntree = 1000,  na.action = na.omit)  

                   Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

        OOB estimate of  error rate: 0% 
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Confusion matrix: 

          H  L     M    class.error 

H      15     0       0           0 

L        0      5       0           0 

M       0      0     10           0 

  

Importance of variables: 

                         H         L      M       MeanDecreaseAccuracy  MeanDecreaseGini 

CV_Price.f      59.24    52.46       57.68                90.66                               11.90 

CV_Cost.f       32.78    21.49       33.86                50.58                                 5.83 

   

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,203 1 2,487 X[,1] %in% c('0,30') H 

2 2 0,179 1 2,623 X[,1] %in% c('0,15') & X[,2] %in% c('0','0,15') M 

3 2 0,170 1 2,623 X[,1] %in% c('0') & X[,2] %in% c('0,30') M 

4 2 0,168 1 2,487 X[,1] %in% c('0,15') & X[,2] %in% c('0,30') H 

5 2 0,164 1 4,614 X[,1] %in% c('0') & X[,2] %in% c('0','0,15') L 
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CASE 3 

 
C.3.1. Experiment 1 

 

C.3.1.1. Response: VSS 

 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 

 

ANOVA Table for General Factorial Regression: Logit_VSS versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Capacity                   4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,2 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 131 1358,370 10,369 23,050 0,000 

   Linear 11 666,630 60,603 134,690 0,000 

      Cap_Exp_Cost 2 13,410 6,703 14,900 0,000 

      Profitability 2 24,090 12,045 26,770 0,000 

      Unit_Cap_Usage 4 228,580 57,145 127,000 0,000 

      Capacity 3 400,550 133,518 296,740 0,000 

   2-Way Interactions 44 458,030 10,410 23,140 0,000 

      Cap_Exp_Cost*Profitability 4 2,700 0,675 1,500 0,217 

      Cap_Exp_Cost*Unit_Cap_Usage 8 9,030 1,129 2,510 0,023 

      Cap_Exp_Cost*Capacity 6 26,280 4,380 9,730 0,000 

      Profitability*Unit_Cap_Usage 8 28,900 3,612 8,030 0,000 

      Profitability*Capacity 6 20,600 3,433 7,630 0,000 

      Unit_Cap_Usage*Capacity 12 370,530 30,877 68,620 0,000 

   3-Way Interactions 76 233,710 3,075 6,830 0,000 

      Cap_Exp_Cost*Profitability*Unit_Cap_Usage 16 9,930 0,621 1,380 0,192 

      Cap_Exp_Cost*Profitability*Capacity 12 17,010 1,417 3,150 0,002 

      Cap_Exp_Cost*Unit_Cap_Usage*Capacity 24 58,600 2,442 5,430 0,000 

      Profitability*Unit_Cap_Usage*Capacity 24 148,170 6,174 13,720 0,000 

Error 48 21,600 0,450   
Total 179 1379,970    

 

Model Summary 

       S                R-sq            R-sq(adj)           R-sq(pred) 

0,670782         98,43%           94,16%              77,99% 
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Figure C13. Residual plots for Case 3 (Deterministic Parameters: VSS) 

 

 
 

Figure C14. Main effects plot for Case 3 (Deterministic Parameters: VSS) 
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Figure C15. Interaction plot for Case 3 (Deterministic Parameters: VSS) 

 

According to Figure C13, the assumptions of the regression model are satisfied and 

R-sqr (adjusted), 94.6 % is accepted. 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacit

y.f,  

  data = cleandata, mtry = 3, importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 10.56% 

 
Confusion matrix: 

 H L M class.error 

H 6 2 2 0.40000000 

L 0 129 5 0.03731343 

M 2 8 26 0.27777778 

 
Importance of variables: 

 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f -12.57 -21.08 -22.73 -31.80 6.16 

Profitability.f 20.37 16.40 30.70 34.93 15.16 

Unit_Cap_Usage.f 36.34 33.69 33.53 52.18 22.11 

Capacity.f 43.52 70.60 57.67 87.92 26.25 
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Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for a model including all three deterministic parameters: 
 
Call: 

 randomForest(formula = VSS.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, data = cleandat

a,   mtry = 3,   importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 7.78% 

 

Confusion matrix: 
 H L M class.error 

H 6 0 4 0.40000000 

L 0 131 3 0. 02238806 

M 2 5 29 0. 19444444 

 
Importance of variables: 

 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Profitability.f 21.97 28.68 41.63 49.61 12.31 

Unit_Cap_Usage.f 39.72 47.79 50.71 71.87 19.48 

Capacity.f 47.51 84.60 71.64 107.67 25.65 

 

Rules Extracted: 
 

Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,193 0,916 1,582 X[,2] %in% c('4') L 

2 1 0,123 1 1,727 X[,3] %in% c('4') L 

3 2 0,084 0,943 3,250 X[,1] %in% c('2') & X[,3] %in% c('1') M 

4 2 0,078 1 1,727 X[,2] %in% c('4') & X[,3] %in% c('1') L 

5 1 0,077 0,912 1,575 X[,3] %in% c('2','4') L 

6 2 0,059 0,891 3,071 X[,1] %in% c('1') & X[,3] %in% c('3') M 

7 1 0,057 1 1,727 X[,3] %in% c('2','3','4') L 

8 
2 0,05 1 1,727 

X[,1] %in% c('2','3') & X[,2] %in% 

c('4') L 

9 2 0,043 1 1,727 X[,2] %in% c('5') & X[,3] %in% c('4') L 

10 2 0,041 1 1,727 X[,1] %in% c('2') & X[,3] %in% c('3') L 

 

C.3.1.2. Response: EVPI 

 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 
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ANOVA Table for General Factorial Regression: ASIN_EVPI versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Capacity                   4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source DF Adj SS Adj MS F-Value P-Value 

Model 43 1,494 0,035 143,810 0,000 

Linear 11 1,323 0,120 497,890 0,000 

Cap_Exp_Cost 2 0,001 0,001 2,350 0,099 

Profitability 2 0,125 0,062 258,560 0,000 

Unit_Cap_Usage 4 0,550 0,138 569,230 0,000 

Capacity 3 0,647 0,216 892,680 0,000 

2-Way Interactions 32 0,171 0,005 22,090 0,000 

Cap_Exp_Cost*Capacity 6 0,013 0,002 8,930 0,000 

Profitability*Unit_Cap_Usage 8 0,056 0,007 29,030 0,000 

Profitability*Capacity 6 0,042 0,007 28,680 0,000 

Unit_Cap_Usage*Capacity 12 0,060 0,005 20,750 0,000 

Error 136 0,033 0,000   
Total 179 1,527    

 

Model Summary 

 

        S                R-sq            R-sq(adj)        R-sq(pred) 

0,0155439       97,85%           97,17%             96,23% 

 

 
 

Figure C16. Residual plots for Case 3 (Deterministic Parameters: EVPI) 
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Figure C17. Main effects plot for Case 3 (Deterministic Parameters: EVPI) 

 

 
 

Figure C18. Interaction plot for Case 3 (Deterministic Parameters: EVPI) 

According to Figure C16, the assumptions of the regression model whose R-sqr 

(adjusted) is 97.2 % are satisfied. 
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Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 

 
Call: 

randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capaci

ty.f,  

   data = cleandata, mtry = 3, importance = TRUE, ntree = 1000, 

                          na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 7.78% 

 

Confusion matrix: 
 L M class.error 

L 161 4 0. 02424242 

M 10 5 0. 66666667 

 

Importance of variables: 
 L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f -11.72 -8.72 -14.41 3.34 

Profitability.f 21.26 30.44 33.67 8.33 

Unit_Cap_Usage.f 21.27 30.74 33.16 8.91 

Capacity.f 20.48 27.70 30.10 5.83 

Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

 

R output for the revised model including three deterministic parameters: 
 
Call: 

 randomForest(formula = EVPI.f ~ Profitability.f + Unit_Cap_Usage.f  +  Capacity.f, data = clean

data, mtry = 3, importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 4.44% 

 

Confusion matrix: 
 L M class.error 

L 163 2 0. 01212121 

M 6 9 0. 40000000 

 

Importance of variables: 
 L M MeanDecreaseAccuracy  MeanDecreaseGini 

Profitability.f 29.76 39.40 45.00 7.55 

Unit_Cap_Usage.f 30.99 44.07 48.22 8.14 

Capacity.f 25.63 35.35 39.53 5.27 
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Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 2 0,116 0,949 3,338 X[,1] %in% c('3') & X[,2] %in% c('4') M 

2 1 0,108 1 1,397 X[,1] %in% c('2') L 

3 2 0,100 0,935 3,289 X[,1] %in% c('1') & X[,2] %in% c('1') M 

4 2 0,096 1 1,397 X[,1] %in% c('1') & X[,2] %in% c('4') L 

5 1 0,091 1 1,397 X[,3] %in% c('1','2') L 

6 1 0,078 1 1,397 X[,2] %in% c('2','3') L 

7 2 0,072 1 1,397 X[,1] %in% c('3') & X[,2] %in% c('1') L 

8 1 0,064 0,923 1,290 X[,2] %in% c('1','4') L 

9 2 0,059 1 1,397 X[,1] %in% c('2') & X[,3] %in% c('3','4') L 

10 2 0,051 1 1,397 X[,1] %in% c('1') & X[,2] %in% c('5') L 

 

C.3.2. Experiment 2 

 

C.3.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 

Call: 

randomForest(formula = VSS.f ~ CV_Demand.f + CV_Price.f + CV_Cost.f + CV_Canb.Rate.f,dat

a = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 10% 

 

Confusion matrix: 

           H        L       M       class.error 

H        17       0         0       0.0000000 

L          0        2        2        0.5000000 

M         0        1        8        0.1111111 

 

Importance of variables: 

                              H     L     M                     MeanDecreaseAccuracy     MeanDecreaseGini 

CV_Demand.f       -6.37      5.26      -5.57                  -2.65                                  1.41 

CV_Price.f            35.45     24.52    32.48                  50.49                                 8.67 

CV_Cost.f             33.59       9.88    26.39                  39.18                                 5.79 

CV_Canb.Rate.f    -4.47      -3.43     -2.72                  -7.27                                 0.69 

 

Since the mean decrease accuracy of CV_Demand.f and CV_Canb.Rate.f are 

negative, we exclude those parameters and re-run the model with the remaining 

parameters. 
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R output for a model including two uncertain parameters: 
 
Call: randomForest(formula = VSS.f ~ CV_Price.f + CV_Cost.f, data = cleandata, mtry = 2,                                

importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 6.67% 

 
Confusion matrix: 
 H L M class.error 

H 17 0 0 0.0000000 

L 0 3 1 0.2500000 

M 0 1 8 0.1111111 
 

Importance of variables: 

                         H         L         M              MeanDecreaseAccuracy       MeanDecreaseGini 

CV_Price.f    41.35   35.05   42.12                                62.71                           9.40 

CV_Cost.f     43.49   20.83   32.11                                53.18                           6.66 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,306 0,851 2,730 X[,1] %in% c('0') L 

2 
1 0,236 1 2,130 

X[,1] %in% c('0,15') & X[,2] 
%in% c('0,30') H 

3 1 0,207 1 2,130 X[,1] %in% c('0,30') H 

4 1 0,206 0,767 3,505 X[,1] %in% c('0,15') M 

5 
2 0,174 1 4,569 

X[,1] %in% c('0,15') & X[,2] 

%in% c('0','0,15') M 

6 1 0,142 0,808 2,592 X[,2] %in% c('0') L 

7 
2 0,137 1 3,208 

X[,1] %in% c('0') & X[,2] 

%in% c('0') L 

8 
2 0,113 1 3,208 

X[,1] %in% c('0') & X[,2] 
%in% c('0,15') L 

9 1 0,113 0,772 2,477 X[,2] %in% c('0,15') L 
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CASE 4 

C.4.1. Experiment 1 

C.4.1.1. Response: VSS 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 

ANOVA Table for General Factorial Regression: Logit_VSS versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Capacity                   4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                                   DF          Adj SS       Adj MS    F-Value    P-Value 

Model                                43          1278,26       29,727       23,10       0,000 

  Linear                             11    743,57       67,598       52,52       0,000 

    Cap_Exp_Cost                     2          0,16         0,081         0,06       0,939 

    Profitability                     2       11,81         5,903         4,59       0,012 

    Unit_Cap_Usage                   4       42,88       10,720         8,33       0,000 

    Capacity                          3    688,73   229,575     178,38       0,000 

  2-Way Interactions                32    534,69      16,709       12,98       0,000 

    Cap_Exp_Cost*Capacity           6       15,13         2,521         1,96       0,076 

    Profitability*Unit_Cap_Usage     8    168,85      21,106        16,40       0,000 

    Profitability*Capacity           6       63,71      10,619          8,25       0,000 

    Unit_Cap_Usage*Capacity         12    286,99      23,916        18,58       0,000 

Error                               136          175,03        1,287 

Total                               179        1453,29 

 

Model Summary 

      S             R-sq        R-sq(adj)      R-sq(pred) 

1,13447       87,96%      84,15%          78,90% 
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Figure C19. Residual plots for Case 4 (Deterministic Parameters: VSS) 

 

 
 

Figure C20. Main effects plot for Case 4 (Deterministic Parameters: VSS) 
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Figure C21. Interaction plot for Case 4 (Deterministic Parameters: VSS) 

 

According to Figure C19, the assumptions of the regression model are satisfied and 

R-sqr (adjusted), 84.1 % is accepted. 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 

 
Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacit

y.f,  

    data = cleandata, mtry = 3,  importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 12.78% 

 
Confusion matrix: 

 H L M class.error 

H 0 3 1 1.0000000 

L 0 154 4 0.02531646 

M 0 15 3 0.83333333 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f 11.55 -1.80 -10.10 -4.37 6.74 

Profitability.f 9.55 -6.16 -2.40 -4.13 7.66 

Unit_Cap_Usage.f -6.55 14.99 19.21 19.90 12.13 

Capacity.f 10.75 19.94 30.53 32.53 11.12 
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Since the mean decrease accuracy of capacity expansion cost and profitability are 

negative, we exclude this parameter and re-run the model with the remaining 

parameters. 

R output for the revised model including two deterministic parameters: 
 
Call: 

 randomForest(formula = VSS.f ~ Unit_Cap_Usage.f  +  Capacity.f, data = cleandata, mtry = 2,                            

importance = TRUE,      ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of error rate: 8.89 % 

 

Confusion matrix: 
 H L M class.error 

H 0 3 1 1.000000000 

L 0 157 1 0. 006329114 

M 0 11 7 0. 611111111 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Unit_Cap_Usage.f -2.65 33.05 45.89 50.29 9.14 

Capacity.f -1.00 31.73 46.09 51.86 8.14 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,319 1 1,101 X[,1] %in% c('2') L 

2 1 0,3 1 1,101 X[,2] %in% c('2') L 

3 1 0,193 1 1,101 X[,1] %in% c('3') L 

4 1 0,105 1 1,101 X[,2] %in% c('3') L 

5 2 0,105 1 10,948 X[,1] %in% c('1') & X[,2] %in% c('1', '2') M 

6 2 0,09 1 1,101 X[,1] %in% c('2') & X[,2] %in% c('2') L 

7 1 0,089 1 1,101 X[,2] %in% c('3','4') L 

8 2 0,088 1 1,101 X[,1] %in% c('3') & X[,2] %in% c('2') L 

9 2 0,085 1 1,101 X[,1] %in% c('3') & X[,2] %in% c('1') L 

10 2 0,083 1 1,101 X[,1] %in% c('2') & X[,2] %in% c('1') L 

C.4.1.2. Response: EVPI 

 

After solving 180 runs, we analyse the related data using MINITAB software to see 

which factors including interactions among them are significant. The results are 

shown below. 
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ANOVA Table for General Factorial Regression: ASIN_EVPI versus factors 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Max_Capacity          4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                              DF           Adj SS          Adj MS     F-Value    P-Value 

Model                                        115   2,79507        0,024305      627,40      0,000 

  Linear                                      11   2,38973        0,217248    5607,92      0,000 

    Cap_Exp_Cost                               2   0,00695        0,003473        89,64      0,000 

    Profitability                              2   0,10677        0,053387    1378,10      0,000 

    Unit_Cap_Usage                             4   1,02823        0,257058    6635,55      0,000 

    Capacity                                   3   1,24777        0,415925  10736,46      0,000 

  2-Way Interactions                          44   0,36451        0,008284      213,85      0,000 

    Cap_Exp_Cost*Profitability                4   0,00024        0,000061          1,57      0,194 

    Cap_Exp_Cost*Unit_Cap_Usage               8   0,00377        0,000471        12,16      0,000 

    Cap_Exp_Cost*Capacity                     6   0,03565        0,005942      153,38      0,000 

    Profitability*Unit_Cap_Usage              8   0,18340        0,022925      591,76      0,000 

    Profitability*Capacity                     6   0,04775        0,007959      205,44      0,000 

    Unit_Cap_Usage*Capacity                  12   0,09370        0,007808      201,55      0,000 

  3-Way Interactions                          60   0,04084        0,000681        17,57      0,000 

    Cap_Exp_Cost*Profitability*Capacity      12   0,00485        0,000404        10,43      0,000 

    Cap_Exp_Cost*Unit_Cap_Usage*Capacity     24   0,00322        0,000134          3,46      0,000 

    Profitability*Unit_Cap_Usage*Capacity    24   0,03277        0,001365        35,24      0,000 

Error                                         64            0,00248       0,000039 

Total                                         179          2,79755 

 

Model Summary 

        S                R-sq        R-sq(adj)      R-sq(pred) 

0,0062241       99,91%        99,75%         99,30% 
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Figure C22. Residual plots for Case 4 (Deterministic Parameters: EVPI) 

 

 
 

Figure C23. Main effects plot for Case 4 (Deterministic Parameters: EVPI) 
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Figure C24. Interaction plot for Case 4 (Deterministic Parameters: EVPI) 

According to Figure C22, the assumptions of the regression model whose R-sqr 

(adjusted) is 99.8 % are satisfied. 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 

 
Call: 

randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f  + Unit_Cap_Usage.f + Capac

ity,data = cleandata, mtry = 3, importance = TRUE, ntree = 1000, na.action = na.omi

t)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 7.22 % 

 

Confusion matrix: 
 H L M class.error 

H 4 0 4 0.50000000 

L 0 118 3 0. 02479339 

M 2 4 45 0. 11764706 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Cap_Exp_Cost.f -14.45 -25.45 -25.40 -36.08 4.08 

Profitability.f 28.05 37.22 33.36 51.45 16.30 

Unit_Cap_Usage.f 27.63 77.64 75.72 98.82 32.63 

Capacity.f 24.61 78.92 69.84 93.38 29.18 
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Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

 
Call: 

randomForest(formula = EVPI.f ~ Profitability.f  + Unit_Cap_Usage.f + Capacity.f, data = cleanda

ta, mtry = 2,   importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 2.78 % 

 

Confusion matrix: 
 H L M class.error 

H 6 0 2 0.25000000 

L 0 120 1 0.00826446 

M 0 2 49 0.03921569 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Profitability.f 33.62 45.98 42.37 65.03 14.04 

Unit_Cap_Usage.f 34.14 85.44 86.14 110.61 31.37 

Capacity.f 33.28 94.15 87.73 119.06 28.38 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,109 1 2,077 X[,3] %in% c('1','2') L 

2 2 0,100 1 2,077 X[,1] %in% c('2') & X[,2] %in% c('1') L 

 

C.4.2. Experiment 2 

 

C.4.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 

Call: 

randomForest(formula = VSS.f ~ CV_Demand.f + CV_Price.f + CV_Cost.f + CV_Canb.Rate.f,dat

a = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

     OOB estimate of  error rate: 10% 
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Confusion matrix: 

              H       L     M       class.error 

H          15       0       0            0.0 

L            0       4       1            0.2 

M           0       2       8            0.2 

 

Importance of variables: 

                                   H             L            M        MeanDecreaseAccuracy        MeanDecreaseGini 

CV_Demand.f          -1.76       -5.37      -8.89                     -8.31                               0.96 

CV_Price.f               47.10       36.81     37.91                    60.77                             10.79 

CV_Cost.f                24.65       12.25     21.42                    31.97                               4.45 

CV_Canb.Rate.f       -4.36         3.57      -4.75                     -3.05                               1.45 
 

Since the mean decrease accuracy of CV_Demand.f and CV_Canb.Rate.f are 

negative, those parameters are excluded and the model is re-runned with the 

remaining parameters. 

 

R output for a model including two uncertain parameters: 
 
Call: randomForest(formula = VSS.f ~ CV_Price.f + CV_Cost.f, data = cleandata, mtry = 2,  

                                                  importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

         

 

OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 H M class.error 

H 8 0 0.000000 

M 0 8 0.000000 

 

Importance of variables: 

                            H            L        M           MeanDecreaseAccuracy      MeanDecreaseGini 

CV_Price.f       60.89     51.78   60.78                      91.11                               11.96 

CV_Cost.f        33.29     21.35   37.37                      53.54                                 5.79 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,205 1 2,478 X[,1] %in% c('0,30') H 

2 
2 0,178 1 2,623 

X[,1] %in% c('0,15') & 

X[,2] %in% c('0','0,15') M 

3 
2 0,167 1 2,623 

X[,1] %in% c('0') & X[,2] 

%in% c('0,30') M 

4 
2 0,164 1 4,648 

X[,1] %in% c('0') & X[,2] 
%in% c('0','0,15') L 

5 
2 0,164 1 2,478 

X[,1] %in% c('0,15') & 

X[,2] %in% c('0,30') H 

 



 

 
312 

C.4.2.2. Response: EVPI 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 

Call: 

randomForest(formula = EVPI.f ~ CV_Demand.f + CV_Price.f + CV_Cost.f + CV_Canb.Rate.f,  

         data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omi

t)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

  OOB estimate of  error rate: 6.67% 

 
Confusion matrix: 

 L M class.error 

L 13 2 0.1333333 

M 0 15 0.0000000 

 

Importance of variables: 
 

L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f -5.70 -0.78 -4.28 0.80 

CV_Price.f 43.88 46.26 54.61 9.42 

CV_Cost.f 19.11 24.98 29.51 3.56 

CV_Canb.Rate.f -2.98 -2.71 -4.03 0.68 

Since the mean decrease accuracy of CV_Demand.f and CV_Canb.Rate.f are 

negative, those parameters are excluded and the model is re-runned with the 

remaining parameters. 

R output for a model including two uncertain parameters: 
 
Call: randomForest(formula = EVPI.f ~ CV_Price.f + CV_Cost.f, data = cleandata, mtry = 2,  

          importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 0% 

 
Confusion matrix: 

 L M class.error 

L 15 0 0.000 

M 0 15 0.000 
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Importance of variables: 
 

L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Price.f 56.05 60.10 72.25 10.86 

CV_Cost.f 30.35 35.06 42.40 3.65 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,259 1 1,944 X[,1] %in% c('0,30') M 

2 1 0,248 0,926 1,907 X[,2] %in% c('0','0,15') L 

3 1 0,239 0,909 1,872 X[,1] %in% c('0','0,15') L 

4 2 0,235 1 2,059 X[,1] %in% c('0','0,15') & X[,2] %in% c('0','0,15') L 

5 1 0,225 1 2,059 X[,1] %in% c('0') L 

6 1 0,206 0,750 1,458 X[,1] %in% c('0,15') M 

7 2 0,205 1 2,059 X[,1] %in% c('0') & X[,2] %in% c('0,30') L 
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THE CROSSED ARRAY DESIGN FOR EXPERIMENT 1 WITH ALL 

FACTORS (FULL DESIGN) 
 

C.5.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all seven deterministic parameters: 
 

Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Newline.f + Market.f + Period.f + Profitabilit

y.f +Unit_Cap_Usage.f + Capacity.f,      data = cleandata, mtry = 4, impor

tance = TRUE,      ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of error rate: 11.53% 

 

Confusion matrix: 
 H L M class.error 

H 6 14 3 0. 73913043 

L 0 605 8 0. 01305057 

M 0 58 26 0. 69047619 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Newline.f 28.12 34.61 38.25 47.00 14.65 

Market.f 21.96 19.22 26.59 29.84 11.56 

Period.f 23.20 20.01 26.70 30.24 12.17 

Cap_Exp_Cost.f -21.19 -33.22 -34.63 -48.93 16.59 

Profitability.f 24.64 13.02 32.23 29.53 29.78 

Unit_Cap_Usage.f 30.70 28.28 45.60 48.72 46.65 

Capacity.f 41.34 40.58 50.44 63.28 31.74 

 

Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for a model including six deterministic parameters: 
 

Call: 

randomForest(formula = VSS.f ~ Newline.f + Market.f + Period.f + Profitability.f +  

                                         Unit_Cap_Usage.f  +    Capacity.f,  data = cleandata, mtry = 4, 

                                         importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of error rate: 7.92 % 
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Confusion matrix: 
 H L M class.error 

H 16 3 4 0. 30434783 

L 0 602 11 0. 01794454 

M 3 36 45 0. 46428571 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Newline.f 36.11 53.84 59.75 71.35 14.59 

Market.f 32.13 40.80 42.55 53.86 11.51 

Period.f 30.79 39.25 43.49 52.40 11.24 

Profitability.f 44.84 45.43 63.13 77.19 26.18 

Unit_Cap_Usage.f 53.27 64.81 83.77 103.03 43.29 

Capacity.f 56.75 74.66 82.99 113.86 28.74 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,245 0,844 1,028 X[,1] %in% c('1') L 

2 1 0,217 0,854 1,040 X[,2] %in% c('2') L 

3 1 0,206 0,757 0,922 X[,4] %in% c('1') L 

4 1 0,205 0,865 1,054 X[,3] %in% c('1') L 

5 1 0,154 0,887 1,081 X[,4] %in% c('2','3') L 

6 2 0,105 0,833 1,015 X[,1] %in% c('1') & X[,6] %in% c('1') L 

7 1 0,100 0,923 1,124 X[,5] %in% c('4') L 

8 1 0,097 0,846 1,031 X[,4] %in% c('3') L 

9 1 0,094 0,923 1,124 X[,6] %in% c('2') L 

10 1 0,093 0,99 1,206 X[,6] %in% c('2','3','4') L 

11 1 0,09 0,856 1,043 X[,6] %in% c('3') L 

12 2 0,081 0,751 0,915 X[,2] %in% c('2') & X[,6] %in% c('1') L 

13 1 0,077 0,827 1,007 X[,4] %in% c('1','3') L 

14 1 0,068 0,977 1,190 X[,5] %in% c('4','5') L 

15 1 0,065 0,977 1,190 X[,6] %in% c('3','4') L 

16 2 0,065 0,82 0,999 X[,1] %in% c('2') & X[,4] %in% c('1') L 

17 1 0,064 0,96 1,169 X[,6] %in% c('2','4') L 

18 1 0,063 0,912 1,111 X[,6] %in% c('4') L 

19 1 0,062 0,863 1,051 X[,5] %in% c('5') L 

20 1 0,061 0,764 0,931 X[,5] %in% c('3') L 

21 2 0,057 0,797 0,971 X[,1] %in% c('2') & X[,2] %in% c('2') L 

22 
2 0,056 1 

1,218 

X[,1] %in% c('1') & X[,4] %in% 

c('2','3') L 

23 2 0,055 0,849 1,034 X[,1] %in% c('1') & X[,2] %in% c('1') L 

24 2 0,050 0,755 0,920 X[,2] %in% c('1') & X[,4] %in% c('1') L 

25 2 0,050 0,799 0,973 X[,1] %in% c('2') & X[,3] %in% c('1') L 
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C.5.2. Response: EVPI 

Rules extracted from the Random Forest Application 

 

R output for a model including all seven deterministic parameters: 
 

Call: 

randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Newline.f + Market.f + Period.f + Profitabili

ty.f + Unit_Cap_Usage.f  +  Capacity.f,     data = cleandata, mtry = 4,  

         importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of error rate: 7.22% 

 

Confusion matrix: 
 H L M class.error 

H 1 0 10 0. 90909091 

L 0 536 21 0. 03770197 

M 0 21 131 0. 13815789 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Newline.f 12.32 19.32 19.07 26.30 10.52 

Market.f 12.90 25.46 24.84 34.47 12.80 

Period.f 17.11 21.89 24.65 31.04 11.49 

Cap_Exp_Cost.f -13.18 -41.34 -43.50 -58.95 14.39 

Profitability.f 24.80 53.24 48.35 67.22 38.45 

Unit_Cap_Usage.f 23.12 109.15 127.87 147.47 85.57 

Capacity.f 23.19 92.12 93.60 118.79 64.81 

 

Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for a model including six deterministic parameters: 
 

Call: randomForest(formula = EVPI.f ~ Newline.f + Market.f + Period.f + Profitability.f  

                                                       + Unit_Cap_Usage.f + Capacity.f,  data = cleandata, mtry = 4,  

                                                       importance = TRUE, ntree = 1000,   na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of error rate: 4.31 % 

 

Confusion matrix: 
 H L M class.error 

H 6 0 5 0. 45454545 

L 0 545 12 0. 02154399 

M 1 13 138 0. 09210526 
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Importance of variables: 
 H L M MeanDecreaseAccuracy  MeanDecreaseGini 

Newline.f 18.23 33.30 35.38 44.22 10.96 

Market.f 22.35 44.68 43.95 56.98 13.46 

Period.f 22.43 38.14 37.89 48.48 11.74 

Profitability.f 34.89 87.88 82.57 116.92 40.05 

Unit_Cap_Usage.f 35.85 146.54 165.21 198.92 82.81 

Capacity.f 34.84 125.79 129.86 168.81 63.10 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,219 0,77 1,187 X[,2] %in% c('1') L 

2 1 0,14 0,762 1,175 X[,6] %in% c('2') L 

3 1 0,126 0,752 1,160 X[,4] %in% c('2') L 

4 1 0,084 1 1,542 X[,5] %in% c('2','3') L 

5 2 0,067 0,835 1,288 X[,2] %in% c('1') & X[,5] %in% c('1','4','5') L 

6 2 0,061 0,959 1,479 X[,2] %in% c('1') & X[,3] %in% c('2') L 

7 1 0,056 1 1,542 X[,6] %in% c('1') L 

8 1 0,055 0,755 1,164 X[,4] %in% c('1','2') L 

9 2 0,049 0,968 1,493 X[,1] %in% c('2') & X[,2] %in% c('1') L 

10 2 0,042 0,796 1,227 X[,3] %in% c('2') & X[,5] %in% c('1','4','5') L 

11 2 0,042 0,82 1,264 X[,2] %in% c('1') & X[,6] %in% c('4') L 
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THE CROSSED ARRAY DESIGN FOR EXPERIMENT 2 WITH ALL 

FACTORS (FULL DESIGN) 

 

C.6.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all seven parameters and factors: 
Call: 

 randomForest(formula = VSS.f ~ Newline.f + Market.f + Period.f + CV_Price.f + CV_Cost.f + 

CV_Demand.f + CV_Canb.Rate.f, data = cleandata, mtry = 4,  

importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of  error rate: 10 % 

 
Confusion matrix: 

 H L M class.error 

H 49 0 1 0. 05769231 

L 0 27 2 0. 06896552 

M 6 1 32 0. 17948718 

 

Importance of variables: 
 

H L M MeanDecreaseAccuracy MeanDecreaseGini 

Newline.f 21.29 20.82 31.90 36.92 7.54 

Market.f 20.16 21.97 29.99 35.52 7.08 

Period.f 20.32 20.72 28.99 35.08 7.21 

CV_Price.f 78.35 80.70 72.33 109.87 32.36 

CV_Cost.f 54.89 34.47 52.94 73.92 13.93 

CV_Canb.Rate.f -2.10 22494 -8.36 -1.28 3.75 

CV_Demand.f 1.20 1.81 -8.29 -3.37 4.12 

 

Since the mean decrease accuracy of the coefficient of variation of demand and 

cannibalisation rate are negative, these parameters are excluded and the model is 

re-runned with the remaining parameters. 

R output for a model including five parameters and factors: 
 

Call: 

randomForest(formula = VSS.f ~ Newline.f + Market.f + Period.f + CV_Price.f + CV_Cost.f, data 

= cleandata,  mtry = 3, importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 2.5 % 
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Confusion matrix: 
 

H L M class.error 

H 51 0 1 0.01923077 

L 0 28 1 0.03448276 

M 0 1 38 0.02564103 

 

Importance of variables: 
 

H L M MeanDecreaseAccuracy MeanDecreaseGini 

Newline.f 25.96 24.15 38.50 43.81 6.94 

Market.f 28.23 23.92 35.54 44.61 7.07 

Period.f 26.80 25.93 33.86 42.19 7.03 

CV_Price.f 98.27 90.75 99.07 148.76 34.40 

CV_Cost.f 66.25 45.51 66.07 94.16 15.08 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,181 0,754 1,952 X[,4] %in% c('0,30') H 

2 2 0,095 0,754 2,155 X[,4] %in% c('0,15') & X[,5] %in% c(''0,15') M 

3 2 0,073 0,786 2,176 X[,2] %in% c('1') & X[,5] %in% c('0,30') H 

4 2 0,071 0,779 2,157 X[,3] %in% c('2') & X[,5] %in% c('0,30') H 

5 2 0,066 1 3,461 X[,4] %in% c('0') & X[,5] %in% c('0','0,15') L 

6 2 0,055 0,754 2,578 X[,3] %in% c('1') & X[,4] %in% c('0') L 

 

C.6.2. Response: EVPI 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all seven parameters and factors: 

 
Call: 

 randomForest(formula = EVPI.f ~ Newline.f + Market.f + Period.f + CV_Price.f + CV_Cost.f +  

CV_Demand.f+ CV_Canb.Rate.f, data = cleandata, mtry = 4,  

importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 4 

 

        OOB estimate of  error rate: 2.5% 

 
Confusion matrix: 

 L M class.error 

L 79 1 0.0125  
M 2 38 0.0500  
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Importance of variables: 
 

L M MeanDecreaseAccuracy MeanDecreaseGini 

Newline.f 18.58 18.77 20.30 3.67 

Market.f 19.19 17.82 20.21 3.46 

Period.f 77.19 77.19 86.78 25.88 

CV_Price.f 51.11 40.51 58.00 12.16 

CV_Cost.f 16.56 17.85 22.71 4.49 

CV_Canb.Rate.f 3.39 -5.88 -1.35 1.55 

CV_Demand.f -9.63 -5.85 -11.15 1.31 

 

Since the mean decrease accuracy of the coefficient of variation of demand and 

cannibalisation rate are negative, we exclude these parameters and re-run the model 

with the remaining parameters. 

R output for a model including five parameters and factors: 
 

Call: 

randomForest(formula = EVPI.f ~ Newline.f + Market.f + Period.f + CV_Price.f + CV_Cost.f, dat

a = cleandata,  mtry = 4, importance = TRUE, ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate:  0 % 

 
Confusion matrix: 

 L M class.error 

L 80 0 0  
M 0 40 0  

 

Importance of variables: 
 

L M MeanDecreaseAccuracy MeanDecreaseGini 

Newline.f 18.58 18.77 20.30 3.67 

Market.f 19.19 17.82 20.21 3.46 

Period.f 77.19 77.19 86.78 25.88 

CV_Price.f 51.11 40.51 58.00 12.16 

CV_Cost.f 16.56 17.85 22.71 4.49 

CV_Canb.Rate.f 3.39 -5.88 -1.35 1.55 

CV_Demand.f -9.63 -5.85 -11.15 1.31 
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Rules extracted: 

 

 

 

 

 

 

Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,229 1,0 1,775 X[,4] %in% c('0') L 

2 1 0,164 1,0 1,775 X[,3] %in% c('2') L 

3 2 0,140 0,762 1,745 X[,3] %in% c('1') & X[,5] %in% c('0,30') M 

4 1 0,130 0,812 1,860 X[,4] %in% c('0,30') M 

5 2 0,117 1,0 2,290 X[,3] %in% c('1') & X[,4] %in% c('0,15', '0,30') M 

6 2 0,103 0,751 1,333 X[,3] %in% c('1') & X[,5] %in% c('0','0,15') L 

7 2 0,061 1,0 1,775 X[,4] %in% c('0') & X[,5] %in% c('0','0,15') L 
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CASE 5 

 
C.7.1. Experiment 1 

 

C.7.1.1. Response: VSS 

 

ANOVA Table for General Factorial Regression (Asin_VSS versus factors) 

Factor Information 

Factor                      Levels     Values 

Cap_Exp_Cost           3           1; 2; 3 

Profitability                3           1; 2; 3 

Unit_Cap_Usage        5           1; 2; 3; 4; 5 

Capacity                     4           1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of VarianceSource                                    DF   Adj SS    Adj MS  F-Value  P-Value 

Model                                            119  2,93651  0,024677    15,42    0,000 

  Linear                                             11  0,72718  0,066107    41,31    0,000 

    Cap_Exp_Cost                                        2  0,00609  0,003043      1,90    0,158 

    Profitability                                       2  0,16608  0,083040    51,90    0,000 

    Unit_Cap_Usage                                      4  0,41116  0,102789    64,24    0,000 

    Capacity                                            3  0,14385  0,047951    29,97    0,000 

  2-Way Interactions                                 44  1,69088  0,038429    24,02    0,000 

    Cap_Exp_Cost*Profitability                        4  0,01708  0,004269      2,67    0,041 

    Cap_Exp_Cost*Unit_Cap_Usage                       8  0,03247  0,004059      2,54    0,019 

    Cap_Exp_Cost*Capacity                              6  0,02747  0,004578      2,86    0,016 

    Profitability*Unit_Cap_Usage                       8  1,16832  0,146040    91,27    0,000 

    Profitability*Capacity                              6  0,23009  0,038349    23,97    0,000 

    Unit_Cap_Usage*Capacity                         12  0,21545  0,017954    11,22    0,000 

  3-Way Interactions                                  64  0,51846  0,008101      5,06    0,000 

    Cap_Exp_Cost*Profitability*Unit_Cap_Usage   16  0,04897  0,003061      1,91    0,037 

    Cap_Exp_Cost*Unit_Cap_Usage*Capacity        24  0,10405  0,004335      2,71    0,001 

    Profitability*Unit_Cap_Usage*Capacity             24  0,36544  0,015227      9,52    0,000 

Error                                                                          60  0,09600  0,001600 

Total                                                                        179  3,03252 

 

Model Summary 

        S             R-sq      R-sq(adj)    R-sq(pred) 

0,0400010    96,83%     90,56%       71,51% 
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Residual Plots 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C25. Residual plots for Case 5 (Deterministic Parameters: VSS) 

 

 
 

Figure C26. Main effects plot for Case 5 (Deterministic Parameters: VSS) 
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Figure C27. Interaction plot for Case 5 (Deterministic Parameters: VSS) 

 

According to Figure C25, the assumptions of the regression model whose R-sqr 

(adjusted) is 90.6 % are satisfied. 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacity

.f,                  data = cleandata, mtry = 3,importance = TRUE, ntree = 1000, na.action 

= na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

         

OOB estimate of  error rate: 2.78% 

 

Confusion matrix: 
 H L M class.error 

H 6 1 0 0. 1428571 

L 0 166 0 0. 0000000 

M 0 4 3 0. 5714286 

 
Importance of variables: 

 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Cap_Exp_Cost.f -10.07 -14.44 -11.42 -19.74 1.98 

Profitability.f 34.15 30.61 21.82 44.15 8.55 

Unit_Cap_Usage.f 39.85 29.14 17.84 41.42 7.20 

Capacity.f 22.48 11.79 23.7 25.95 7.81 
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Since the mean decrease accuracy of capacity expansion cost is negative, we 

exclude this parameter and re-run the model with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

Call: randomForest(formula = VSS.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f,  

                                                     data = cleandata, mtry = 3, importance = TRUE, ntree = 1000,  

                                                     na.action = na.omit)  

                 Type of random forest: classification 

                           Number of trees: 1000 

No. of variables tried at each split: 3 

 

OOB estimate of  error rate: 2.78% 

 

Confusion matrix: 
 H L M class.error 

H 6 0 1 0.1428571 

L 0 166 0 0.0000000 

M 2 2 3 0.5714286 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 42.44 40.77 31.14 60.22 9.43 

Unit_Cap_Usage.f 52.09 44.77 30.20 65.99 5.77 

Capacity.f 30.77 26.15 34.10 48.92 8.48 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,158 1 1,300 X[,3] %in% c('4') L 

2 1 0,133 1 1,300 X[,1] %in% c('2','3') L 

3 1 0,096 1 1,300 X[,1] %in% c('2') L 

4 1 0,085 1 1,300 X[,2] %in% c('4') L 

5 1 0,077 0,996 1,295 X[,1] %in% c('1','2') L 

6 1 0,074 1 1,300 X[,2] %in% c('5') L 

7 
3 0,073 1 7,598 

X[,1] %in% c('1') & X[,2] %in% c('2') & 

X[,3] %in% c('4') M 

8 2 0,073 0,971 7,378 X[,2] %in% c('2') & X[,3] %in% c('4') M 

9 2 0,072 1 1,300 X[,1] %in% c('1') & X[,3] %in% c('4') L 

10 2 0,068 1 1,300 X[,1] %in% c('2','3') & X[,2] %in% c('2') L 

11 2 0,066 0,963 9,717 X[,1] %in% c('1') & X[,3] %in% c('1','2') H 

14 2 0,065 1 1,300 X[,2] %in% c('2') & X[,3] %in% c('4') L 

15 1 0,06 1 1,300 X[,2] %in% c('3','4','5') L 

16 
3 0,057 1 7,598 

X[,1] %in% c('3') & X[,2] %in% c('1') & 

X[,3] %in% c('1') M 

17 2 0,057 0,787 5,980 X[,1] %in% c('3') & X[,2] %in% c('1') M 

18 1 0,056 0,997 1,296 X[,3] %in% c('2','3','4') L 
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C.7.1.2. Response: EVPI 

 

ANOVA Table for General Factorial Regression (Asin_EVPI versus factors) 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Max_Capacity          4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                           DF      Adj SS       Adj MS    F-Value   P-Value 

Model                                      37    1,48167     0,040045      57,08      0,000 

  Linear                                          11     1,06154     0,096504    137,57      0,000 

    Cap_Exp_Cost                            2     0,00188     0,000942        1,34      0,265 

    Profitability                                 2     0,10714     0,053572      76,37      0,000 

    Unit_Cap_Usage                         4     0,34602     0,086506    123,31      0,000 

    Capacity                                 3       0,60649     0,202164    288,18      0,000 

  2-Way Interactions                      26      0,42013     0,016159       23,03     0,000 

    Cap_Exp_Cost*Capacity            6      0,06876      0,011460      16,34      0,000 

    Profitability*Unit_Cap_Usage    8      0,22592     0,028239      40,26      0,000 

    Unit_Cap_Usage*Capacity       12      0,12545     0,010454      14,90      0,000 

Error                                            142      0,09961      0,000702 

Total                                            179      1,58129 

 

Model Summary 

        S             R-sq      R-sq(adj)    R-sq(pred) 

0,0264861    93,70%     92,06%        89,88% 

 

Residual Plots 
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Figure C28. Residual plots for Case 5 (Deterministic Parameters: EVPI) 

 

 
 

Figure C29. Main effects plot for Case 5 (Deterministic Parameters: EVPI) 

 

 
 

Figure C30. Interaction plot for Case 5 (Deterministic Parameters: EVPI) 

According to Figure C28, the assumptions of the regression model whose R-sqr 

(adjusted) is 92 % are satisfied. 
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Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call:  randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f +  

                                                                  Capacity.f,   data =cleandata, mtry = 3,  importance = TR

UE,  

                                                                  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 
        OOB estimate of  error rate: 13.9 % 

 

Confusion matrix: 
 H L M class.error 

H 0 0 2 1.00000000 

L 0 123 12 0. 08888889 

M 0 11 32 0. 25581395 

 
Importance of variables: 

 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Cap_Exp_Cost.f -5.68 -22.32 -21.70 -30.25 6.54 

Profitability.f 9.58 18.44 21.59 26.65 12.83 

Unit_Cap_Usage.f 10.77 49.95 50.36 63.83 24.80 

Capacity.f 10.95 44.12 45.57 57.29 22.06 

 

Since the mean decrease accuracy of capacity expansion cost is negative, this para

meter is excluded and the model is re-runned with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

 
Call: 

 randomForest(formula = EVPI.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, data = cleanda

ta, mtry = 3,   importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 8.33% 

 

Confusion matrix: 
 H L M class.error 

H 0 0 2 1.000000000 

L 0 132 3 0. 02222222 

M 1 9 33 0. 23255814 

 

Importance of variables: 
 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 13.60 33.17 37.06 47.98 11.05 

Unit_Cap_Usage.f 14.61 64.30 70.45 83.78 23.06 

Capacity.f 14.26 56.80 62.78 78.15 20.78 
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Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 1 0,196 0,763 1,267 X[,1] %in% c('1') L 

2 1 0,075 1 1,660 X[,2] %in% c('3') L 

3 2 0,071 1 1,660 X[,2] %in% c('3') & X[,3] %in% c('4') L 

4 2 0,062 0,968 2,648 X[,1] %in% c('2') & X[,2] %in% c('4', '5') M 

5 1 0,061 1 1,660 X[,3] %in% c('1') L 

6 2 0,06 0,776 1,288 X[,1] %in% c('2') & X[,2] %in% c('1') L 

7 2 0,051 1 1,660 X[,1] %in% c('1') & X[,2] %in% c('4') L 

8 2 0,049 0,82 1,361 X[,1] %in% c('1') & X[,3] %in% c('3') L 

9 1 0,047 1 1,660 X[,3] %in% c('1','2') L 

10 1 0,047 1 1,660 X[,2] %in% c('2','3','5') L 

 

C.7.2. Experiment 2 

 

C.7.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 
Call: 

randomForest(formula = VSS.f ~  CV_Demand.f  +  CV_Price.f  +  CV_Cost.f  +  CV_Canb.Rate.

f,                   data = cleandata, mtry = 3, importance = TRUE,      ntree = 1000, na.ac

tion = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 6.67 % 

 

Confusion matrix: 
 

H L M class.error 

H 11 0 0 0.00000000 

L 0 7 1 0.12500000 

M 0 1 10 0.09090909 

 

Importance of variables: 
 

H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f -3.15 -5.48 -2.46 -6.06 0.71 

CV_Price.f 76.39 29.51 39.89 74.91 11.88 

CV_Cost.f -3.68 30.50 25.96 34.15 4.95 

CV_Canb.Rate.f -3.44 21520 43438 11.15 1.57 
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Since the mean decrease accuracy of CV_Demand is negative, we exclude this 

parameter and re-run the model with the remaining parameters. 

 

R output for the revised model including three uncertain parameters: 

 
Call: 

randomForest(formula = VSS.f ~ + CV_Price.f + CV_Cost.f + CV_Cannb.Rate.f, data = cleandata

, mtry = 3, importance = TRUE,   ntree = 1000,  na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 

H L M class.error 

H 11 0 0 0.00000000 

L 0 7 1 0.12500000 

 

Importance of variables: 
 

H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Price.f 80.21 36.24 46.11 83.12 11.95 

CV_Cost.f -0.43 35.47 29.55 40.74 5.99 

CV_Canb.Rate.f -1.00 12.63 1.13 10.67 1.20 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,218 1 4,580 X[,1] %in% c('0,30') 
H 

2 1 0,19 0,991 2,507 X[,2] %in% c('0') L 

3 1 0,171 0,832 2,104 X[,1] %in% c('0,15') M 

4 2 0,159 1 2,589 
X[,1] %in% c('0','0,15') & X[,2] 

%in% c('0') L 

5 2 0,13 1 2,529 
X[,1] %in% c('0,15') & X[,2] 

%in% c('0,15','0,30') M 
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CASE 6 

 
C.8.1. Experiment 1 

 

C.8.1.1. Response: VSS 

 

ANOVA Table for General Factorial Regression (Asin_VSS versus factors) 

Factor Information 

Factor                      Levels     Values 

Cap_Exp_Cost           3           1; 2; 3 

Profitability                3           1; 2; 3 

Unit_Cap_Usage        5           1; 2; 3; 4; 5 

Capacity                     4           1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                                    DF       Adj SS       Adj MS    F-Value      P-Value 

Model                                       61      2,83436      0,046465     27,16        0,000 

  Linear                                      11      1,26589      0,115081     67,28        0,000 

    Cap_Exp_Cost                                2      0,01724      0,008618       5,04        0,008 

    Profitability                                2      0,33485      0,167423     97,88        0,000 

    Unit_Cap_Usage                              4      0,72802      0,182005   106,40        0,000 

    Capacity                                     3      0,18579      0,061931      36,21       0,000 

  2-Way Interactions                         26      1,11222      0,042778      25,01       0,000 

    Profitability*Unit_Cap_Usage              8      0,87174      0,108968      63,70       0,000 

    Profitability*Capacity                      6      0,05155      0,008592        5,02       0,000 

    Unit_Cap_Usage*Capacity                12      0,18892      0,015744        9,20       0,000 

  3-Way Interactions                          24      0,45625      0,019010      11,11       0,000 

    Profitability*Unit_Cap_Usage*Capacity    24      0,45625      0,019010      11,11       0,000 

Error                                                     118      0,20185      0,001711 

Total                                                                    179      3,03621 

 

Model Summary 

        S              R-sq         R-sq(adj)     R-sq(pred) 

0,0413588     93,35%        89,92%         84,53% 
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Residual Plots 

 

 
 

Figure C31. Residual plots for Case 6 (Deterministic Parameters: VSS) 

 

 
 

Figure C32. Main effects plot for Case 6 (Deterministic Parameters: VSS) 
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Figure C33. Interaction plot for Case 6 (Deterministic Parameters: VSS) 

 

According to Figure C31, the assumptions of the regression model whose R-sqr 

(adjusted) is 89.9 % are satisfied. 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

randomForest(formula = VSS.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f + Capacity

.f,                  data = cleandata, mtry = 3,importance = TRUE, ntree = 1000, na.action 

= na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

         

OOB estimate of  error rate: 2.22 % 

 

Confusion matrix: 
 H L M class.error 

H 9 0 1 0. 1000000 

L 0 161 0 0. 0000000 

M 2 1 6 0. 3333333 

 
Importance of variables: 

 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Cap_Exp_Cost.f -13.39 -15.55 -9.32 -21.56 2.55 

Profitability.f 35.74 47.36 36.45 63.12 12.24 

Unit_Cap_Usage.f 42.71 50.01 42.03 69.92 12.33 

Capacity.f 22.20 4.32 14.07 20.68 7.12 

 



 

 
334 

Since the mean decrease accuracy of capacity expansion cost is negative, this 

parameter is excluded and the model is re-runned with the remaining parameters. 

 

R output for the revised model including three deterministic parameters: 

 
Call: 

randomForest(formula = VSS.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, data = cleandata

,  

mtry = 3, importance = TRUE, ntree = 1000, na.action = na.omit)  

                 Type of random forest: classification 

                           Number of trees: 1000 

No. of variables tried at each split: 3 

 

OOB estimate of  error rate:  2.22 % 

 

Confusion matrix: 
 H L M class.error 

H 9 0 1 0. 1000000 

L 0 161 0 0. 0000000 

M 2 1 6 0. 3333333 

     

Importance of variables: 
 H L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 38.39 56.26 40.19 74.20 11.30 

Unit_Cap_Usage.f 46.14 59.64 49.20 79.35 11.94 

Capacity.f 26.51 14.46 17.68 32.65 5.46 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 
2 0,142 0,793 2,786 

X[,1] %in% c('1') & X[,2] %in% 

c('2') H 

2 1 0,123 0,997 1,590 X[,1] %in% c('1','2') L 

3 1 0,101 1 1,594 X[,2] %in% c('3','4','5') L 

4 1 0,093 1 1,594 X[,2] %in% c('4') L 

5 
2 0,079 1 1,594 

X[,2] %in% c('4') & X[,3] %in% 

c('4') L 

6 
3 0,076 1 11,341 

X[,1] %in% c('3') & X[,2] %in% 

c('1') & X[,3] %in% c('1','2') M 

7 
2 0,076 0,892 10,116 

X[,2] %in% c('1') & X[,3] %in% 

c('1','2') M 

8 
2 0,068 1 1,594 

X[,1] %in% c('3') & X[,2] %in% 

c('2') L 

9 
2 0,065 1 1,594 

X[,2] %in% c('2') & X[,3] %in% 
c('1','2') L 

10 1 0,063 0,908 1,448 X[,3] %in% c('1','2','3') L 
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C.8.1.2. Response: EVPI 

 

ANOVA Table for General Factorial Regression (Logit_EVPI versus factors) 

Factor Information 

Factor                      Levels  Values 

Cap_Exp_Cost         3  1; 2; 3 

Profitability              3  1; 2; 3 

Unit_Cap_Usage      5  1; 2; 3; 4; 5 

Max_Capacity          4  1; 2; 3; 4 

 

Backward Elimination of Terms, α to remove = 0,1 

 

Analysis of Variance 

Source                                                       DF         Adj SS     Adj MS     F-Value     P-Value 

Model                                 51   143,128    2,8064       230,46        0,000 

  Linear                               11   105,858    9,6234       790,27        0,000 

    Cap_Exp_Cost                    2        0,933    0,4665         38,31        0,000 

    Profitability                       2        5,794    2,8968       237,89        0,000 

    Unit_Cap_Usage                       4      45,600  11,4001       936,17        0,000 

    Capacity                               3     53,531  17,8435     1465,30        0,000 

  2-Way Interactions                    40      37,271     0,9318         76,52        0,000 

    Cap_Exp_Cost*Unit_Cap_Usage           8         0,637     0,0796           6,54        0,000 

    Cap_Exp_Cost*Capacity                        6         1,975     0,3291         27,03        0,000 

    Profitability*Unit_Cap_Usage                8      19,089     2,3862       195,95        0,000 

    Profitability*Capacity                             6        0,615      0,1026           8,42        0,000 

    Unit_Cap_Usage*Capacity                   12    14,954      1,2462       102,34        0,000 

Error                                                        128        1,559      0,0122 

Total                                                        179        144,687 

 

Model Summary 

       S              R-sq       R-sq(adj)       R-sq(pred) 

0,110351      98,92%      98,49%           97,87% 
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Residual Plots 

 

 
 

Figure C34. Residual plots for Case 6 (Deterministic Parameters: EVPI) 

 

 
 

Figure C35. Main effects plot for Case 6 (Deterministic Parameters: EVPI) 
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Figure C36. Interaction plot for Case 6 (Deterministic Parameters: EVPI) 

According to Figure C34, the assumptions of the regression model whose R-sqr 

(adjusted) is 98.5 % are satisfied. 

Rules extracted from the Random Forest Application 

 

R output for a model including all four deterministic parameters: 
 
Call: 

 randomForest(formula = EVPI.f ~ Cap_Exp_Cost.f + Profitability.f + Unit_Cap_Usage.f +   

         Capacity.f, data =cleandata, mtry = 3,  importance = TRUE, ntree = 10

00, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 
        OOB estimate of  error rate: 8.9 % 

 

Confusion matrix: 
 L M class.error 

L 148 6 0. 03896104 

M 10 16 0. 38461538 

 
Importance of variables: 

 L M MeanDecreaseAccuracy MeanDecreaseGini 

Cap_Exp_Cost.f -17.12 -16.82 -22.28 4.69 

Profitability.f 20.11 22.51 27.21 10.83 

Unit_Cap_Usage.f 41.75 57.12 60.04 16.00 

Capacity.f 18.24 25.51 27.37 10.86 
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Since the mean decrease accuracy of capacity expansion cost is negative, this 

parameter is excluded and the model is re-runned with the remaining parameters. 

R output for the revised model including three deterministic parameters: 

Call: 

 randomForest(formula = EVPI.f ~ Profitability.f + Unit_Cap_Usage.f + Capacity.f, data = cleanda

ta, mtry = 2,   importance = TRUE,  ntree = 1000, na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 8.89 % 

 

Confusion matrix: 
 L M class.error 

L 148 6 0. 03896104 

M 10 16 0. 38461538 

 

Importance of variables: 
 L M MeanDecreaseAccuracy MeanDecreaseGini 

Profitability.f 33.20 35.46 45.57 8.86 

Unit_Cap_Usage.f 52.35 73.60 76.69 16.11 

Capacity.f 31.25 37.48 43.72 9.77 

 

Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 2 0,105 0,902 2,348 X[,1] %in% c('1') & X[,2] %in% c('1') M 

2 2 0,08 1 1,624 X[,1] %in% c('2') & X[,2] %in% c('1') L 

3 2 0,077 1 1,624 X[,1] %in% c('1') & X[,2] %in% c('4') L 

4 2 0,074 0,846 2,202 X[,1] %in% c('2','3') & X[,2] %in% c('4','5') M 

5 2 0,067 0,767 1,997 X[,2] %in% c('4','5') & X[,3] %in% c('3,'4') M 

6 1 0,063 1 1,624 X[,3] %in% c('1') L 

7 1 0,062 1 1,624 X[,2] %in% c('2','3','5') L 

8 2 0,059 0,97 2,525 X[,1] %in% c('3') & X[,3] %in% c('3') M 

 

C.8.2. Experiment 2 

 

C.8.2.1. Response: VSS 

 

Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 
Call: 

randomForest(formula = VSS.f ~  CV_Demand.f  + CV_Price.f  +  CV_Cost.f  +  CV_Canb.Rate.,  

data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.action = na.omit)  
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 Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 20% 

 

Confusion matrix: 

 
 

H L M class.error 

H 20 0 1 0.04761905 

L 0 4 1 0.20000000 

M 2 2 0 100000000 

 

Importance of variables: 
 

H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f 20.95 12.93 8.69 24.25 3.60 

CV_Price.f 46.39 33.16 15.05 51.99 8.06 

CV_Cost.f 1.68 -2.70 -6.28 -3.04 1.12 

CV_Canb.Rate.f 1.00 -7.78 -7.34 -6.90 0.73 

 

Since the mean decrease accuracy of CV_Cost and CV_Cannibalisation Rate are 

negative, we exclude these parametesr and re-run the model with the remaining 

parameters. 

R output for the revised model including two uncertain parameters: 

 
Call: 

randomForest(formula = VSS.f ~ + CV_Demand.f + CV_Price.f, data = cleandata, mtry = 2,  

      importance = TRUE,   ntree = 1000,  na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 10% 

 

Confusion matrix: 
 

H L M class.error 

H 21 0 0 0.00 

L 0 4 1 0.20 

M 0 2 2 0.50 

 
Importance of variables: 

 
H L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f 26.11 22.05 16.55 34.77 3.82 

CV_Price.f 51.84 44.44 21.72 62.13 9.07 
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Rules extracted: 

 
Rule 

No. 
Length Support Confidence Lift Condition Prediction 

1 
1 0,227 1 2,536 X[,2] %in% c('0.30') 

H 

2 
2 0,163 1 2,917 

X[,1] %in% c('0') & X[,2] %in% 

c('0.15') M 

3 

1 0,162 1 2,536 
X[,1] %in% c('0.15') & X[,2] 

%in% c('0.15') 
H 

4 
2 0,151 1 3,803 

X[,1] %in% c('0') & X[,2] %in% 

c('0') 
L 
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CASE 7 

Response: VSS 

 

ANOVA Table for General Factorial Regression (Logit_VSS versus factors) 
 

Backward Elimination of Terms 

α to remove = 0,15 

 

Analysis of Variance 

Source                                             DF    Adj SS   Adj MS   F-Value   P-Value 

Model                                                12   3,85021  0,32085   8328,21     0,000 

  Linear                                 4   3,71549  0,92887  24110,42    0,000 

    CV_Demand                           1   0,00106  0,00106     27,50       0,013 

    CV_Price                             1   3,41041  3,41041  88522,85    0,000 

    CV_Cost                             1   0,30401  0,30401   7891,02     0,000 

    CV_Canb.Rate                        1   0,00001  0,00001      0,29        0,630 

  2-Way Interactions                    6   0,13420  0,02237    580,57      0,000 

    CV_Demand*CV_Price                  1   0,00006  0,00006      1,48        0,311 

    CV_Demand*CV_Cost                   1   0,00010  0,00010      2,67        0,201 

    CV_Demand*CV_Canb.Rate             1   0,00033  0,00033      8,55        0,061 

    CV_Price*CV_Cost                    1   0,13262  0,13262   3442,43     0,000 

    CV_Price*CV_Canb.Rate               1   0,00091  0,00091     23,61       0,017 

    CV_Cost*CV_Canb.Rate               1   0,00018  0,00018      4,67        0,119 

  3-Way Interactions                    2   0,00052  0,00026      6,70        0,078 

    CV_Demand*CV_Price*CV_Canb.Rate    1   0,00016  0,00016      4,13        0,135 

    CV_Demand*CV_Cost*CV_Canb.Rate     1   0,00036  0,00036      9,28        0,056 

Error                                   3   0,00012  0,00004 

Total                                               15   3,85033 

 

Model Summary 

        S               R-sq       R-sq(adj)     R-sq(pred) 

0,0062069     100,00%     99,98%         99,91% 

 

Coded Coefficients 

Term                                                              Effect      Coef        SE Coef    T-Value    P-Value  VIF 

Constant                                                                     -2,22781    0,00155  -1435,70      0,000 

CV_Demand                               0,01628    0,00814    0,00155          5,24      0,013    1,00 

CV_Price                                0,92337    0,46168    0,00155      297,53      0,000    1,00 

CV_Cost                                  0,27568    0,13784    0,00155        88,83      0,000    1,00 

CV_Canb.Rate                            -0,00166   -0,00083   0,00155         -0,53      0,630    1,00 

CV_Demand*CV_Price                      0,00377    0,00189    0,00155          1,22      0,311    1,00 

CV_Demand*CV_Cost                        0,00507    0,00254    0,00155          1,63      0,201    1,00 

CV_Demand*CV_Canb.Rate                   0,00907    0,00454    0,00155          2,92      0,061    1,00 

CV_Price*CV_Cost                       -0,18209   -0,09104   0,00155       -58,67      0,000    1,00 

CV_Price*CV_Canb.Rate                   0,01508    0,00754    0,00155          4,86      0,017    1,00 

CV_Cost*CV_Canb.Rate                 -0,00671   -0,00335   0,00155         -2,16      0,119    1,00 

CV_Demand*CV_Price*CV_Canb.Rate  - 0,00631   -0,00315   0,00155         -2,03      0,135    1,00 

CV_Demand*CV_Cost*CV_Canb.Rate    -0,00945   -0,00473   0,00155         -3,05      0,056    1,00 

 

Regression Equation in Uncoded Units 

Logit_VSS = -2,22781 + 0,00814 CV_Demand + 0,46168 CV_Price + 0,13784 CV_Cost 

            - 0,00083 CV_Canb.Rate + 0,00189 CV_Demand*CV_Price + 0,00254 CV_Demand*CV_Cost 

            + 0,00454 CV_Demand*CV_Canb.Rate - 0,09104 CV_Price*CV_Cost 

            + 0,00754 CV_Price*CV_Canb.Rate - 0,00335 CV_Cost*CV_Canb.Rate 

            - 0,00315 CV_Demand*CV_Price*CV_Canb.Rate 

            - 0,00473 CV_Demand*CV_Cost*CV_Canb.Rate 
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Figure C37. Residual plots for Case 7 (Uncertain parameters: VSS) 

 

 
 

Figure C38. Main effects plot for Case 7 (Uncertain parameters: VSS) 
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Figure C39. Interaction plot for Case 7 (Uncertain parameters: VSS) 

 

 

Figure C40. Pareto chart of the standardised effects for Case 7 (Uncertain parameters: VSS) 

 

According to Figure C37, the assumptions of the regression model whose R-sqr 

(adjusted) is 99.9 % are satisfied. 
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Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 
Call: 

randomForest(formula = VSS.f ~  CV_Demand.f  +  CV_Price.f  +  CV_Cost.f  +  CV_Canb.Rate.

f,                   data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.actio

n = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 L M class.error 

L 8 0 0.0000000 

M 0 8 0. 0000000 

 

Importance of variables: 

 L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f -3.76 -2.52 -4.24 0.10 

CV_Price.f 46.77 47.79 55.01 7.19 

CV_Cost.f -3.58 -1.86 -3.99 0.10 

CV_Canb.Rate.f -4.19 -3.48 -5.32 0.10 

 

Since the mean decrease accuracy of CV_Demand, CV_Cost and 

CV_Cannibalisation Rate are negative, we exclude these parameters and re-run the 

model with the remaining parameters. 

 

R output for the revised model including one uncertain parameter: 

Call: 

randomForest(formula = VSS.f ~ + CV_Price.f, data = cleandata, mtry = 2, importance = TRUE,    

        ntree = 1000,  na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 1 

 

        OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 L M class.error 

L 8 0 0.0000000 

M 0 8 0. 0000000 
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Importance of variables: 

 L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_ Price.f 51.63 51.27 60.28 7.52 

Rules extracted: 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,5 1 2,00 X[,1] %in% c('0.30')  M 

2 1 0,5 1 2,00 X[,1] %in% c('0.05') L 
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CASE 8 

Response: VSS 

 

ANOVA Table for General Factorial Regression (Logit_VSS versus factors) 

 
Backward Elimination of Terms 

α to remove = 0,15 

 

Analysis of Variance 
 

Source                                     DF    Adj SS      Adj MS        F-Value      P-Value 

Model                        7    7,65716     1,09388       64515,38       0,000 

  Linear                      4    7,61292     1,90323     112249,61       0,000 

    CV_Demand                         1    0,00008     0,00008               4,59       0,065 

    CV_Price               1    7,51895     7,51895     443456,41       0,000 

    CV_Cost                 1    0,09363     0,09363         5521,93       0,000 

    CV_Canb.Rate          1    0,00026     0,00026             15,53       0,004 

  2-Way Interactions        3    0,04424     0,01475           869,73       0,000 

    CV_Demand*CV_Price       1    0,00021     0,00021             12,34       0,008 

    CV_Demand*CV_Cost       1    0,00007     0,00007               4,14       0,076 

    CV_Price*CV_Cost         1    0,04396     0,04396         2592,71       0,000 

Error                         8    0,00014     0,00002 

Total                     15    7,65730 

 

Model Summary 

        S                R-sq         R-sq(adj)     R-sq(pred) 

0,0041177      100,00%      100,00%        99,99% 

 

Coded Coefficients 

Term                                         Effect      Coef  SE       Coef        T-Value      P-Value   VIF 

Constant                                      -2,96783     0,00103     -2883,01      0,000 

CV_Demand             0,00441     0,00220      0,00103            2,14      0,065      1,00 

CV_Price               1,37104     0,68552      0,00103        665,93      0,000      1,00 

CV_Cost                0,15299     0,07650      0,00103          74,31      0,000      1,00 

CV_Canb.Rate           0,00811     0,00406      0,00103            3,94      0,004      1,00 

CV_Demand*CV_Price  -0,00723    -0,00362     0,00103           -3,51      0,008      1,00 

CV_Demand*CV_Cost      0,00419     0,00210      0,00103            2,04      0,076      1,00 

CV_Price*CV_Cost     -0,10483    -0,05242     0,00103         -50,92      0,000      1,00 

 

Regression Equation in Uncoded Units 

Logit_VSS = -2,96783 + 0,00220 CV_Demand + 0,68552 CV_Price + 0,07650 CV_Cost 

                      + 0,00406 CV_Canb.Rate - 0,00362 CV_Demand*CV_Price + 0,00210 CV_Demand*CV_Cost 

                      - 0,05242 CV_Price*CV_Cost 
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Residual Plots: 

 

Figure C41. Residual plots for Case 8 (Uncertain parameters: VSS) 

 

 
 

Figure C42. Main effects plot for Case 8 (Uncertain parameters: VSS) 
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Figure C43. Interaction plot for Case 8 (Uncertain parameters: VSS) 

 

 

Figure C44. Pareto chart of the standardised effects for Case 8 (Uncertain parameters: VSS) 

 

According to Figure C41, the assumptions of the regression model whose R-sqr 

(adjusted) is 100 % are satisfied. 
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CASE 9 

Response: VSS 

 

ANOVA Table for General Factorial Regression (Logit_VSS versus factors) 
 

Backward Elimination of Terms 

α to remove = 0,15 

 

Analysis of Variance 

Source                                                   DF     Adj SS      Adj MS        F-Value     P-Value 

Model                         5      1,36580     0,27316       8419,31      0,000 

  Linear                      3      1,31749     0,43916     13535,90      0,000 

    CV_Price                  1      1,09479     1,09479     33743,57      0,000 

    CV_Cost                   1      0,22217     0,22217       6847,63      0,000 

    CV_Canb.Rate              1      0,00054     0,00054           16,50      0,002 

  2-Way Interactions          2      0,04831     0,02415         744,43      0,000 

    CV_Price*CV_Cost          1      0,04730     0,04730       1457,79      0,000 

    CV_Price*CV_Canb.Rate    1      0,00101     0,00101           31,08      0,000 

Error                      10  0,00032  0,00003 

Total                      15  1,36612 

 

Model Summary 

        S             R-sq       R-sq(adj)     R-sq(pred) 

0,0056960     99,98%      99,96%         99,94% 

 

Coded Coefficients 

Term                                           Effect           Coef       SE Coef      T-Value    P-Value   VIF 

Constant                                             -2,43644      0,00142     -1710,98      0,000 

CV_Price                  0,52316       0,26158      0,00142         183,69      0,000     1,00 

CV_Cost                   0,23567       0,11784      0,00142           82,75      0,000     1,00 

CV_Canb.Rate            -0,01157     -0,00579      0,00142            -4,06      0,002     1,00 

CV_Price*CV_Cost        -0,10874     -0,05437      0,00142          -38,18      0,000     1,00 

CV_Price*CV_Canb.Rate   -0,01588     -0,00794      0,00142            -5,58      0,000     1,00 

 

Regression Equation in Uncoded Units 

Logit_VSS = -2,43644 + 0,26158 CV_Price + 0,11784 CV_Cost - 0,00579 CV_Canb.Rate 

                      - 0,05437 CV_Price*CV_Cost - 0,00794 CV_Price*CV_Canb.Rate 

 

Fits and Diagnostics for Unusual Observations 

Obs  Logit_VSS       Fit     Resid  Std Resid 

 11   -2,87739  -2,86807  -0,00932      -2,07  R 
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Figure C45. Residual plots for Case 9 (Uncertain parameters: VSS) 

 

 
 

Figure C46. Main effects plot for Case 9 (Uncertain parameters: VSS) 
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Figure C47. Interaction plot for Case 9 (Uncertain parameters: VSS) 

 

 
 

Figure C48. Pareto chart of the standardised effects for Case 9 (Uncertain parameters: VSS) 

 

According to Figure C45, the assumptions of the regression model whose R-sqr 

(adjusted) is 99.9 % are satisfied. 
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Rules extracted from the Random Forest Application 

 

R output for a model including all four uncertain parameters: 
 
Call: 

randomForest(formula = VSS.f ~  CV_Demand.f  +  CV_Price.f  +  CV_Cost.f  +  CV_Canb.Rate.

f,                   data = cleandata, mtry = 3, importance = TRUE,  ntree = 1000, na.actio

n = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 3 

 

        OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 L M class.error 

L 12 0 0.0000000 

M 0 4 0. 0000000 

 

Importance of variables: 

 H M MeanDecreaseAccuracy MeanDecreaseGini 

CV_Demand.f -5.47 -5.80 -7.28 0.13 

CV_Price.f 24.56 25.74 31.51 2.67 

CV_Cost.f 24.22 26.08 31.69 2.68 

CV_Canb.Rate.f -6.13 -6.73 -8.11 0.14 

 

Since the mean decrease accuracy of CV_Demand and CV_Cannibalisation Rate 

are negative, we exclude these parametesr and re-run the model with the remaining 

parameters. 

 

R output for the revised model including two uncertain parameters: 

Call: 

randomForest(formula = VSS.f ~ + CV_Price.f + CV_Cost.f, data = cleandata, mtry = 2, importan

ce = TRUE,   ntree = 1000,  na.action = na.omit)  

                  Type of random forest: classification 

                            Number of trees: 1000 

No. of variables tried at each split: 2 

 

        OOB estimate of  error rate: 0% 

 

Confusion matrix: 
 L M class.error 

L 12 0 0.0000000 

M 0 4 0. 0000000 
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Importance of variables: 

 L M MeanDecreaseAccuracy MeanDecreaseGini 

CV_ Price.f 29.80 28.83 37.55 2.90 

CV_Cost.f 28.48 29.66 37.40 2.85 

 

Rules extracted: 

 

Rule No. Length Support Confidence Lift Condition Prediction 

1 1 0,332 1 1,490 X[,1] %in% c('0,15') L 

2 1 0,332 1 1,490 X[,2] %in% c('0,15') L 

3 
2 0,329 1 3,041 

X[,1] %in% c('0,3') & 

X[,2] %in% c('0,3') M 

4 
2 0,177 1 1,490 

X[,1] %in% c('0,3') & 

X[,2] %in% c('0,15') L 

5 
2 0,152 1 1,490 

X[,1] %in% c('0,15') & 
X[,2] %in% c('0,3') L 
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R CODE FOR RULE EXTRACTION THROUGH RANDOM FOREST 

 

  library (readxl) 

library (randomForest) 

library (inTrees) 

data             <- read_excel("D://DetCase1VSS.xlsx") 

data                              <- as.data.frame(data) 

data$Cap_Exp_Cost.f  <- factor(data $Cap_Exp_Cost) 

data$Profitability.f      <- factor(data$Profitability) 

data$Unit_Cap_Usage.f    <- factor(data$Unit_Cap_Usage) 

data$Capacity.f   <- factor(data$Capacity) 

data$VSS.f  <- factor(data$VSS) 

cleandata   <- data[,6:10] 

pmix.rf1   <- randomForest (VSS.f ~ Cap_Exp_Cost.f + Profitability.f + 

Unit_Cap_Usage.f + Capacity.f, data=cleandata, mtry=3, 

importance=TRUE, na.action=na.omit, ntree=1000) 

round(importance(pmix.rf1), 2) 

target    <- cleandata[,"VSS.f"] 

pmix.rf3   <- randomForest(target ~ Cap_Exp_Cost.f + Profitability.f + 

Unit_Cap_Usage.f + Capacity.f, data=cleandata, mtry=3, 

importance=TRUE, na.action=na.omit, ntree=1000) 

treeList    <- RF2List(pmix.rf3) 

exec    <- extractRules(treeList, pmix.rf1, ntree=1000) 

ruleMetric   <- getRuleMetric(exec,pmix.rf1,target) 

readableRules   <- presentRules(ruleMetric, colnames(pmix.rf1)) 

readableRules  

view(readableRules) 

freqPattern   <- getFreqPattern(ruleMetric,minsup = 0.05, minconf = 0.75,  

     minlen = 1, maxlen = 5) 
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