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ABSTRACT

LINEARIZATION INSTABILITY IN GRAVITY THEORIES

ALTAS KiRACI, EMEL
Ph.D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

July 2018, [101] pages

In a nonlinear theory, such as gravity, physically relevant solutions are usually hard
to find. Therefore, starting from a background exact solution with symmetries, one
uses the perturbation theory, which albeit approximately, provides a lot of information
regarding a physical solution. But even this approximate information comes with a
price: the basic premise of a perturbative solution is that it should be improvable.
Namely, by going to higher order perturbation theory, one should be able to improve
and better approximate the physical problem or the solution. While this is often
the case in many theories and many background solutions, there are important cases
where the linear perturbation theory simply fails for various reasons. This issue is
well known in the context of general relativity through the works that started in the

early 1970s, but it has only been recently studied in modified gravity theories. This



thesis is devoted to the study of linearization instability in generic gravity theories
where there are spurious solutions to the linearized equations which do not come from
the linearization of possible exact solutions. For this purpose we discuss the Taub
charges, the ADT charges and the quadratic constraints on the linearized solutions.
We give the three dimensional chiral gravity and the D dimensional critical gravity
as explicit examples and give a detailed ADM analysis of the topologically massive

gravity with a cosmological constant.

Keywords: Linearization instability, Second order perturbation theory, Constraint
equation analysis, Taub charges, ADT charges, Chiral gravity, Critical gravity, Topo-

logically massive gravity.
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0z

KUTLE CEKIiM KURAMLARINDA DOGRUSALLASTIRMA
KARARSIZLIGI

ALTAS KIiRACI, EMEL
Doktora, Fizik Bolimii

Tez Yoneticisi : Prof. Dr. Bayram Tekin

Temmuz 2018 , [I01]sayfa

Kiitle cekim kurami gibi dogrusal olmayan kuramlarda fiziksel olarak uygun olan ¢6-
ziimil bulmak zordur. Bu yiizden, simetrileri olan bir arkaplan gercek coziimiinden
baglayarak, pertiirbasyon kuraminin kullanilmasi, yaklasik da olsa fiziksel ¢oziime
ait bir ¢cok bilgi saglar. Fakat bu yaklasik bilgi de bir bedel ile elde edilir: yaklasik
¢Oziimiin temel Ozelligi gelistirilebilir olmasidir. S6yle ki, bir iist mertebe pertiirbas-
yon kuramina gidildiginde, fiziksel problem ya da ¢oziim gelistirilebilmeli ve daha
yaklagik olmalidir. Bu bircok kuramda ve bir¢ok arkaplan ¢oziimiinde boyle olsa
da, dogrusal pertiirbasyon kuraminin bazi sebeplerden gecersiz oldugu 6nemli du-
rumlar vardir. Bu sorun genel gorelilik baglaminda 1970’lerin baslarinda baglayan

calismalar araciligiyla saglam bir zemine oturdu, fakat modifiye edilmis kiitle ce-
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kim teorilerinde sadece son zamanlarda ¢alisilmaktadir. Bu tez, genel kiitle cekim
kuramlarinda dogrusallastirilmis denklemlerin bazi ¢éziimlerinin miimkiin bir gercek
¢Oziimiin dogrusallagtirllmasindan elde edilemedigi genel kiitle ¢cekim kuramlari ile
ilgilidir. Bu amagla Taub yiiklerini, ADT yiiklerini ve dogrusallagtirilmis denklemler
lizerindeki ikinci derece kisitlayic1 denklemleri tartisacagiz. Ug boyutlu kiral kiitle ce-
kim kuramini ve D boyutlu kritik kiitle gekim kuramin acik 6rnekler olarak verecegiz

ve kozmolojik sabitli topolojik kiitle kuraminin detaylt ADM analizini verecegiz.

Anahtar Kelimeler: Dogrusallastirma kararsizlig1, Ikinci derece pertiirbasyon kuramu,
Kisitlayic1 denklem analizi, Taub yiikleri, ADT yiikleri, Kiral kiitle cekim kuramui,

Kritik kiitle ¢cekim kurami, Topolojik kiitle ¢cekim kurama.
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CHAPTER 1

INTRODUCTION

In nonlinear theories such as Einstein’s general relativity or its modifications, exten-
sions with higher powers of curvature, physically interesting solutions with few or no
symmetries are usually analytically unavailable. Therefore one relies on the pertur-
bation theory of some sort which often involves an exact background solution (with
symmetries) and perturbations or deviations from this background solution. Gener-
ally, perturbation theory works fine in the sense that it can be improved order by order
in some small parameter. But there are some important cases where perturbation the-
ory fails as a method. This thesis is devoted to a detailed study of a phenomenon
called “linearization instability” which refers to the failure of the first order pertur-
bation theory in the following sense: not every solution of the linearized equations
can be improved to get exact solutions, even in principle. In the following section we
give a brief review of linearization instability. Throughout the thesis, we work both

with the index free and local coordinate forms of the relevant tensors.

1.1 Linearization instability in brief

A nonlinear equation F'(z) = 0 is said to be linearization stable at a solution z if
every solution dx to the linearized equation F”'(zy) - = = 0 is tangent to a curve
of solutions to the original nonlinear equation. In some nonlinear theories, not all
solutions to the linearized field equations represent linearized versions of exact (non-

linear) solutions. As a common algebraic example, let us consider the following:

Example : Let us consider a function F' from R x R — IR such that F(z,y) =

z(2? + 3?). In the domain of definition, the solution set to F'(x,y) = 0 is given as



(0,y) which is the y axis.

Linearization of this exact solution set is then tangent to the y axis and can be shown

as (0, a%) or span{a%}, which is one dimensional.

Now let us consider the particular solution (0, 0) and linearize the equation around it.
The linearized equation is simply (3z* + y?) dx + 2zydy = 0. For (0, 0) there is no
constraint on the linearized solutions, then the solution set is (6, 6y) where dx and
0y are arbitrary. Although dz can be arbitrary with this approach, we know that it
cannot be from the linearization of the exact solution. Only (0, a%) is allowed to be
integrable to an exact solution. Consequently, the exact solution (0, 0) is lineariza-
tion unstable and the perturbation theory fails about it. F(x,y) = z(2* + y?) = 0,
where x, y are real, exact solution space is one dimensional given as (0, y), and the
linearized solution space is also one dimensional (0, dy) as long as y # 0. But at
exactly the solution (0, 0), the linearized solution space is two dimensional (dz, dy)
and so there are clearly linearized solutions with dx # 0, which do not come from the
linearization of any exact solution. The existence of such spurious solutions depends
on the particular theory at hand and the background solution (with its symmetries and
topology) about which linearization is carried out. If such so called "non-integrable"
solutions exist, perturbation theory in some directions of solution space fails and we
say that the theory is not linearization stable at a nonlinear exact solution. See Figure

1.1 for a depiction of the function and the solution set.

What we have just described is not an exotic phenomenon: a priori no nonlinear the-
ory is immune to linearization instability: one must study the problem case by case.
For example, pure general relativity is linearization stable in Minkowski spacetime
(with a non-compact Cauchy surface) [1], hence perturbation theory makes sense, but
it is not linearization stable on a background with compact Cauchy surfaces that pos-
sesses at least one Killing symmetry [2] which is the case when the Cauchy surface
is a flat 3-torus [3]: on 7% x IR, at second order of the perturbation theory, one must

go back and readjust the first order perturbative solution.

As gravity is our main interest here, let us consider some nonlinear gravity field equa-
tions in a coordinate chart as &, = 0, which admits g,, as an exact solution, if

every solution h,, of the linearized field equations &V)(g) - h = 0 is tangent to an



005

A 05

Figure 1.1: The blue surface represents the (x, y) plane and the orange surface shows

the /' function, also the intersection of the surfaces is the y axis which is the exact
solution. As we mentioned above, linearization of the exact solution is tangent to the
y axis. Conversely, solution of the linearized equation around the particular solution

(0,0) is (dz, 0y). It is obvious that this solution is out of the linearized solution space.



exact solution g, (A) such that ¢, (0) =: g,, and dg’/‘\” |x=0o =: hy,, then, according

to our definition above, the theory is linearization stable. Otherwise it is linearization
unstable. In general, we do not have a theorem stating the necessary and sufficient
conditions for the linearization stability of a generic gravity theory about a given ex-
act solution. We shall give a detailed discussion on generic gravity models in the next

section based on our recent work [4]]. For a brief note, let us consider the following:

d2gw,

defining the second order perturbation as —5

|xzo =: k., if the following second
order equation

(&) (g) - [h.h] + (£)D(g) - k=0, (1.1)

has a solution for k,,,, without a constraint on the linear solution A, then the theory

v
is linearization stable. Of course, at this stage it is not clear that there will arise no
further constraints on the linear theory beyond the second order perturbation theory.
In fact, besides Einstein’s theory, this problem has not been worked out, to the best
of our knowledge. But in Einstein’s gravity, as the constraint equations are related
to the zeros of the moment map, one knows that there will be no further constraint
for the linear theory coming from higher order perturbation theory beyond the second

order [5]]. In Einstein’s gravity for compact Cauchy surfaces without a boundary, the

necessary and sufficient conditions are known for linearization stability [2,6-8]].

In practice, it is very hard to show that (1.1]) is satisfied for all linearized solutions,
therefore, one resorts to a weaker condition by contracting that equation with a Killing
vector field and integrates over a hypersurface to obtain Qrau [£] + Qapr [(] = 0

where the Taub charge [9] is defined as

Qraw [€] = /Z BXJyn” ()P - [h, b, (1.2)

and the Abbott-Deser-Tekin (ADT) charge [10,|11] is defined as

Qapr [€] ::Ld?’z\/myg“ (&) - k. (1.3)

As it appears in the second order perturbation theory, the Taub charge is not a widely
known quantity in physics, therefore a more detailed account of it will be given in
the next chapter following the relevant discussion of [4]. The ADT charge can be
expressed as a boundary integral. For the case of compact Cauchy surfaces without

a boundary, @ pr = 0, and hence one must have ()7,,, = 0 which leads to the

4



aforementioned quadratic integral constraint on the linearized perturbation £, as the
integral in (2.13)) should be zero. This is the case for Einstein’s gravity, for example,
on a flat 3-torus: ()74, does not vanish automatically and so the first order perturba-
tive result / is constrained. On the other hand, for extended gravity theories (such as
the ones we are interested in this thesis), () 4pr vanishes for a different reason, even
for non-compact surfaces, as in the case of AdS. The reason is that for some tuned
values of the parameters in the theory, the contribution to the conserved charges from
various tensors cancel each other exact, yielding non-vacuum solutions that carry the

(vanishing) charges of the vacuum. This is the source of the linearization instability.

Chapter 1II of this thesis is devoted to a detailed study of linearization instability in
generic gravity theories. We give D-dimensional critical and three dimensional chiral
gravity theories (which both received interest in the recent literature) as two interest-
ing examples of theories that exhibit the kind of linearization instability we mentioned

above.

In Chapter III, we give a discussion of the initial value formulation and the ADM
decomposition of topologically massive gravity, study its constraints on a spacelike
surface and give a second proof of linearization instability at the chiral limit of the
theory. This second proof is not based on the charge construction but is based directly

on the field equations (especially the constraints of the theory).

We relegate some of the computations to the appendices: In Appendix A, we give
details of second order perturbation theory in the context of Riemannian geometry
and compute the relevant expanded tensors up to second order and discuss the gauge
invariance issues of the second order Einstein’s tensor. Note that, in contrast to the
first order Einstein’s tensor, the second order one is not gauge invariant, therefore one
must be very careful about any result (such as the Taub charge construction) based
on the second order perturbation theory. So we discuss the gauge transformation
properties of the relevant tensors under small gauge transformations (infinitesimal

diffeomorphisms).

In Appendix B, we compute explicitly the form of the K, tensor for the case of
Einstein’s theory in AdS and Minkowski spaces. This is relevant for the proof of the

linearization stability of the Minkowski space.



Appendix C is devoted to a detailed construction of the ADM formulation of the
topologically massive gravity directly from the field equations and the action. In
most of that appendix we work with nonzero lapse and shift functions, but at the end
we restrict to the Gaussian normal coordinates for the particular goal of studying the

linearization instability issue on the spacelike initial value surface for AdS.



CHAPTER 2

LINEARIZATION INSTABILITY FOR GENERIC GRAVITY IN AdS

There is an E] interesting conundrum in nonlinear theories, such as Einstein’s gravity
or its modifications with higher curvature terms: exact solutions without symme-
tries (which are physically interesting) are hard to find, hence one resorts to symmet-
ric "background" solutions and develops a perturbative expansion about them. But
it turns out that exactly at the symmetric solutions, namely about solutions having
Killing vector fields, naive first order perturbation theory fails under certain condi-
tions. The set of solutions to Einstein’s equations forms a smooth manifold except
at the solutions with infinitesimal symmetries and spacetimes with compact Cauchy
surfaces where there arise conical singularities in the solution space. Namely, per-
turbation theory in non-linear theories can yield results which are simply wrong in
the sense that some perturbative solutions cannot be obtained from the linearization
of exact solutions. Roughly speaking, the process of first linearizing the field equa-
tions and then finding the solutions to those linearized equations; and the process
of linearization of exact solutions to the non-linear equations can yield different re-
sults if certain necessary criteria are not met with regard to the background solution
about which perturbation theory is carried out. Actually, the situation is more seri-
ous: linearized field equations can have spurious solutions which do not come from
exact solutions. This could happen for various reasons and the failure of the first or-
der perturbation theory can be precisely defined, as we shall do below. Figure 2.1

summarizes the results.

Let us give a couple of early observations in this issue in the context of general rel-
ativity (GR) before we start the discussion in generic gravity. One clear way to see

the failure of the perturbation theory is through the initial value formulation of the

1 This chapter was published as Phys. Rev. D 97, 024028 on 24 January 2018.
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exact solution
Euy =0

- Guw
(é?’m))(l) h=0 linear solution h,,_w
(£0)D - [h, B + (Eu)D k=0 -

Figure 2.1: The vertical straight arrows show first order linearization while the curved
ones show second order linearization. For a linearization stable theory, the diagram
makes sense and the solution to the linearized equation h is not further restricted at
the second order which means that there is a symmetric tensor k that satisfies the
second order equation in the bottom left. The details of the symbols are explained in

the next section.

theory for globally hyperbolic, oriented, time-orientable spacetimes with the topol-
ogy M =~ Y x R, where X is a spacelike Cauchy surface on which the induced
Riemannian metric v and the extrinsic curvature K (as well as matter content of the
theory) are defined. [It is also common to formulate the constraint equations in terms
of v and a tensor density of weight 1 defined as 7 := /dety(K — ~tr, K') which is the
conjugate momentum of the induced metric v.] We shall consider the matter-free case
through-out this chapter. Since GR is nonlinear, the initial data cannot be arbitrarily
prescribed: they must satisfy the so called Hamiltonian and momentum constraints
®;(y,K) = 0 with i € {1,2,3,4} in four dimensions. If a given initial data (¥, K)
solving the constraints is not isolated, meaning the linearized constraint equations
6@;(y, K) - [07,0K] = 0 allow viable linearized solutions (§, dK), then the theory
is said to be linearization stable about the initial Cauchy data. Deser and Brill [3]]
showed that in GR with a compact Cauchy surface having the topology of a 3-torus,
there are strong constraints on the perturbations of the initial data. Any such pertur-
bation leads to contradictions in the sense that bulk integrals of conserved mass and

angular momenta do not vanish, while since there is no boundary, they must vanish

in this compact space: hence the background is an isolated solution. Put in another



way, the linearized field equations about the background have solutions which do not
come from the linearization of exact solutions. This happens because, as we shall
see below, the linearized equations of the theory are not sufficient to constrain the
linearized solutions: quadratic constraints on the linearized solutions, in the form of
an integral (so called Taub conserved quantity first introduced in [9] for each Killing

vector field), arise.

Most of the work regarding the linearization stability or instability in gravity has been
in the context of GR with or without matter and with compact or with non-compact
Cauchy surfaces. A nice detailed account of all these in the context of GR is given
in the book [[12]]. See also [13]] where a chapter is devoted to this issue and the Taub
conserved quantity construction which is not widely known in the physics community.
Our goal here is to extend the discussion to generic gravity theories: we show that if
the field equations of the theory are defined by the Einstein tensor plus a covariantly
conserved two tensor, then a new source of linearization instability that does not exist
in GR arises, especially in de Sitter or Anti-de Sitter backgrounds, with non-compact
Cauchy surfaces. This happens because in these backgrounds there are special critical
points in the space of parameters of the theory which conspire to cancel the conserved
charge (mass, angular momentum, etc.) of non-perturbative objects (black holes) or
the energies of the perturbative excitations. One needs to understand the origin of
this rather interesting phenomenon that non-vacuum objects have the same charges
as the vacuum. To give an example of this phenomenon let us note that this is exactly
what happens in chiral gravity [[14-17] in 2+1 dimensions where the Einstein tensor
is augmented with the Cotton tensor and the cosmological constant times the metric
(namely a special limit of the cosmological topologically massive gravity [18]]). In
AdS, at the chiral point, the contribution of the Cotton tensor and the Einstein tensor in
AdS cancel each other at the level of the conserved charges. Exactly at that point, new
ghost-like solutions, the so called log modes arise [[19] and if the boundary conditions
are not those of Brown-Henneaux type [20], then these modes are present in the theory
with negative energies. This would mean that the theory has no vacuum. But it
was argued in [[15}17] that chiral gravity in AdS has a linearization instability which
would remedy this problem. A similar phenomenon occurs in critical gravity in all

dimensions [21,22]. Here we give a systematic discussion of the linearization stability



and instability in generic gravity theories and study these two theories as examples.
We will not follow the route of defining the theory in the 3+1 setting and considering
the instability problem on the Cauchy data. The reason for this is the following: in
GR for asymptotically flat spacetimes, splitting the problem into the constraints on
the Cauchy data and the evolution of the 3-metric and the extrinsic curvature turns
the stability problem to a problem in elliptic operator theory which is well-developed
and sufficient to rigorously prove the desired results. In the initial value formulation
setting, the problem becomes a problem of determining the surjectivity of a linear
operator, namely the linearized constraint operator. But this method is not convenient
for our purposes since the source of the linearization instability in the extended gravity
models that we shall discuss is quite different and so the full spacetime formulation
is much better-suited for our problem. In GR as noted in the abstract, what saves
the Minkowski space from the linearization instability is its non-compact Cauchy
surfaces as was shown by Choquet-Bruhat and Deser [[1]. This result is certainly
consistent with the non-zero conserved charges (ADM mass or angular momentum)

that can be assigned to an asymptotically-flat 3 dimensional Cauchy surface.

The layout of the chapter is as follows: In section II, we discuss the linearization
stability in generic gravity theory and derive the second order constraints on the so-
lutions of the linearized field equations. Of course these constraints are all related
to the diffeomorphism invariance and the Bianchi identities of the theory. Hence
we give a careful discussion of the linearized forms of the field equations and their
gauge invariance properties. As the second order perturbation theory about a generic
background is quite cumbersome in the local coordinates, we carry out the index-free
computations in the bulk of the chapter and relegate some parts of the component-
wise computations to the appendices. In section II, we establish the relation between
the Taub conserved quantities coming from the second order perturbation theory and
the Abbott-Deser-Tekin (ADT) charges coming from the first order perturbation the-
ory. We study the linearization stability and instability of the Minkowski space, chiral
gravity and critical gravity as examples. In the forth-coming chapter, we shall give a
more detailed analysis of the chiral gravity discussion in the initial value formulation

context.
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2.1 Linearization Stability in Generic Gravity

Let us consider the matter-free equation of a generic gravity theory in a D-dimensional
spacetime, whose dynamical field is the metric tensor g only. In the index-free nota-

tion the covariant two-tensor equation reads
&(g) =0, 2.1

together with the covariant divergence condition which comes from the diffeomor-
phism invariance of the theory

5,6(9) = 0, 2.2)

where J, denotes the divergence operator with respect to the metric g. (As usual,
one uses the musical isomorphism to extend the divergence from the contravariant
tensors to the covariant ones.) Here we generalize the discussion in [6,7] given for
Einstein’s theory to generic gravity. Let us assume that there is a one-parameter
family of solutions to denoted as g(\) which is at least twice differentiable with
respect to \ parameterizing the solution set. Then we can explore the consequences

of this assumption with the help of the following identifications :

d d>

g=9N| o b= g = k= 590\ - (2.3)

At this stage there is of course no immediate relation between the two covariant tensor
fields h (the first derivative of the metric) and k (the second derivative of the metric)
but, as we shall see later, consistency of the theory, i.e. the first order linearized and
second order linearized forms of the field equations will relate them. We would first

like to find that relation.

We assume that g exactly solves the vacuum equations &'(g) = 0 and we compute the

first derivative of the field equations with respect to A and evaluate it at A = 0 as

d B dg(\) | _
6 9) e DE(9(N) - == L 0, (24)

where D denotes the Fréchet derivative and the center-dot denotes "along the direc-
tion of the tensor that comes next" and we have used the chain rule. In local coor-
dinates, this equation is just the first order "linearization" of the field equations (2.1)

which we shall denote as (& W)(l) -h = 0. It is important to understand that solutions

11



of (2.4) yield all possible A tensors (up to diffeomorphisms), which are tangent to the
exact solution g(\) at A = 0 in the space of solutions. To understand if there are any
further constraints on the linearized solutions A, let us consider the second derivative

of the field equation with respect to A and evaluate it at A = 0 to arrive at

dd—;@” (g(k)> -

- (D%a(gu» ] D) dzg(”)

=0, (2.5)

A=0

d\ 7 d\ d\?

where we have used the common notation for the second Fréchet derivative in the
first term and employed the chain rule when needed. We can write (2.5)) in local

coordinates as

(&)@ - b h]) + (€)Y -k =0, (2.6)

where again (&,,)?-[h, h] denotes the second order linearization of the field equation
about the background g. Even though this equation is rather simple, it is important to
understand its meaning to appreciate the rest of the discussion. This is the equation
given in the bottom-left corner of Figure 2.1. Given a solution h of (& W)(l) -h =0,
equation determines the tensor field k&, which is the second order derivative of
the metric g(\) at A = 0. If such a k can be found then there is no further constraint on
the linearized solution h. In that case, the field equations are said to be linearization
stable at the exact solution g. This says that the infinitesimal deformation 4 is tangent
to a full (exact) solution and hence it is integrable to a full solution. Of course, what
is tacitly assumed here is that in solving for k in (2.6), one cannot change the first

order solution h, it must be kept intact for the perturbation theory to make any sense.

We can understand these results form a more geometric vantage point as follows. For
the spacetime manifold M, let S denote the set of solutions of the field equations
&(g) = 0. The obvious question is (in a suitable Sobolev topology), when does this
set of solutions form a smooth manifold whose tangent space at some "point" g is
the space of solutions (h) to the linearized equations? The folklore in the physics
literature is not to worry about this question and just assume that the perturbation
theory makes sense and the linearized solution can be improved to get better solutions,
or the linearized solution is assumed to be integrable to a full solution. But as we

have given examples above, there are cases when the perturbation theory fails and the
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set S has a conical singularity instead of being a smooth manifold. One should not
confuse this situation with the case of dynamical instability as the latter really allows
a "motion" or perturbation about a given solution. Here linearization instability refers
to a literal break-down of the first order perturbation theory. It is somewhat a non
trivial matter to show that there are no further constraints beyond the second order
perturbation theory: In Einstein’s gravity, this is related to the fact that constraint
equations are related to zeros of the moment maps [S]]. For generic gravity, this issue

deserves to be further studied.

2.1.1 Taub conserved quantities and ADT charges

So far, in our discussion we have not assumed anything about whether the spacetime
has a compact Cauchy surface or not. First, let us now assume that the spacetime has
a compact spacelike Cauchy surface and has at least one Killing vector field. Then
we can get an integral constraint on h, without referring to the k tensor as follows.

Let £ be a Killing vector field of the metric g, then the following vector ﬁeld
T:=¢ D*(g)- [h.h], 2.7

is divergence free, since 6;D?&(g). [h, h] = 0 due to the linearized Bianchi identity .
Then we can integrate 7' over a compact hypersurface ). and observe that the integral

(for the sake of definiteness, here we consider the 3+1 dimensional case)

/ X \JyT - fy (2.8)
X

is independent of hypersurface 2’ where + is the pull-back metric on the hypersurface
and n y is the unit future pointing normal vector. Let us restate the result in a form that
we shall use below: given two compact disjoint hypersurfaces 2'; and 25 (as shown in
Figure 2.2) in the spacetime M, we have the statement of the "charge conservation"

as the equality of the integration over the two hypersurfaces

/ &5 S T s, = / & Sy S T - s, (2.9)
P b3

2 For the lack of a better notation, note that £ is contracted with the covariant background tensor with a

center dot which we shall employ in what follows and it should not be confused with the center dot in the Fréchet
derivative.
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We can now go to (2.6) and after contracting it with the Killing tensor &, and integrat-

ing over X/, we obtain the identity

/ B3y EN(E)P - [h ] = — / Py () k. (2.10)
X b))

Let us study the right-hand side more carefully. In a generic theory, this conserved
Killing charge is called the Abbott-Deser-Tekin (ADT) charge ( for further details on
the ADT charges, please see the recent review [23]] and the relevant references therein
)when the symmetric two-tensor £ is the just the linearized two tensor / [[1011]. Once
the field equations of the theory are given, it is possible, albeit after some lengthy
computation, to show that one can write the integral on the right-hand side as a total
derivative.

& (&) h=V, (F*,.8"), 2.11)

with an anti-symmetric tensor .%# in « and v. Hence if the Cauchy surface is compact

without a boundary, the ADT charge vanishes identically, namely

Qupr €] = /Zd?’Zﬁﬁ”E“ (&)Y h =0, (2.12)

which via (2.10) says that one has the vanishing of the integral on the left hand-side

which is called the Taub conserved quantity:

Qraw [£] = /E P5 Ayl & (&) P - [h,h] =0, (2.13)

which must be automatically satisfied for the case when h is an integrable defor-
mation. Otherwise this equation is a second order constraint on the linearized so-
lutions. Even though the ADT potential . was explicitly found for a large family
of gravity theories, such as Einstein’s gravity [10], quadratic gravity [11], f(Riem)
theories [24]], and some examples will be given below, we can still refine the above
argument of the vanishing of both the ADT and Taub conserved quantities without
referring to the ADT potential (or more explicitly without referring to (2.11))). The
following argument was given for Einstein’s gravity in [7] which immediately gen-
eralizes to the most general gravity as follows: consider the ADT charge (2.12) and
assume that in the spacetime one has two disjoint compact hypersurfaces J/; and X

as above. Then the statement of conservation of the charge is simply

Qapr (€, 21) = Qapr (&, 22) - (2.14)
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Figure 2.2: Disjoint hypersurfaces )} and Y5 are shown along with their timelike

unit normals. The figure is taken from [23]].

Now let k be a two tensor which is k; and non-zero on X' and ks and zero near 25,
then Qapr (5 , 22) = 050 Qapr (E , El) = 0 which in turn yields the vanishing of
the Taub conserved quantities via (2.10)).

To summarize the results obtained so far, let us note that assuming an integrable
infinitesimal deformation %, which is by definition a solution to the linearized field
equations about a background g solution, we arrived at (2.6). And the discussion
after that equation showed that Taub conserved quantities constructed with a Killing
vector field, from the second order linearization, (&, )® -[h, ], and the ADT charges
constructed from the first order linearization, (&£ ,,)") - h, vanish identically for the
case of compact Cauchy hypersurfaces without a boundary. If these integrals do
not vanish, then there is a contradiction and the the linearized solution h is further
constraint. Hence it is not an integrable deformation, namely, 7 is not in the tangent
space about the point g in the space of solutions. For Einstein’s theory with compact
Cauchy surfaces, it was shown that the necessary condition for linearization stability
is the absence of Killing vector fields [2,8]. As noted above, the interesting issue
is that further study reveals that besides the quadratic constraint, there are no other

constraints on the solutions to the linearized equations [5].
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2.1.2 Gauge invariance of the charges

Of course there is one major issue that we still must address that is the gauge-
invariance (or coordinate independence) of the above construction which we show
now. Following [[7], first let us consider a (not necessarily small) diffeomorphism ¢
of the spacetime as ¢ : M — M. Then we demand that having obtained our rank
two tensor &'(g) from a diffeomorphism invariant action (or from a diffeomorphism
invariant action up to a boundary term as in the case of topologically massive gravity)

we have a global statement of diffeomorphism invariance as

& (9 g) = p*E(9), (2.15)

which states that & evaluated for the pull-back metric is equivalent to the pull-back of
& evaluated for g. Let us now consider a one-parameter family of diffeomorphisms
as ¢,, generated by a vector field X well-defined on some region of spacetime. Let
o be the identity diffeomorphism denoted as ¢y = . Then we can differentiate
with respect to A once to get

d d
— 19) = ¥ 2.1
d)\g(@xg) d)\CPAg (9), (2.16)
which, after making use of the chain rule, yields
* d * *
D& (v39) - INPA = @) <§fx<f (9) ) (2.17)

where . x is the Lie derivative with respect to the vector field X . Taking the deriva-

tive of the last equation with respect to g yields

D?*&(g) - (h,xxg) +D&(g) - Lxh=Lx (D£ (9) - h). (2.18)
In components, and after setting A = 0, equation reads, respectively
5x (&)Y - h = LxEuw(7), (2.19)
and equation (2.18) reads
0x ()P [ h]) + (€)Y - Lxh = Lx (€)Y - h, (2.20)

where dx (& W)(l) -h denotes the variation of the background tensor (& W)(l) -h under
the flow of X or under the infinitesimal diffeomorphisms. Since &, (g) = 0, (2.19)
says that (é“‘u,,)(l) - h is gauge invariant: Jy (g,w)(l) - h = 0. Similarly 1} yields

5x (&) - [h b + (€)Y - Lxh =0, (2.21)
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since (& W)(l) -h = 0 by assumption, the right hand side of vanishes. It is worth
stressing that since generically (& W,)(l) -.Z xh is not zero, the second order expansion
(& #,,)(2) - [h, h] is not gauge invariant but transforms according to (2.21). Gauge
invariance of the Taub conserved quantity and the ADT charge follows immediately
from . Contracting that equation with the Killing vector field ¢ and integrating

over the Cauchy surface, one finds
/ PPX \yn” [g”ax (&w)? - [ h] + & (&)Y - Lxh| =0. (2.22)
=

Since we have already shown that the second term can be written as a divergence we
can drop it out, the remaining part is the Taub conserved quantity which is shown
to be is gauge invariant, by this construction. The above discussion has been for a
generic gravity theory based on the metric tensor as the only dynamical field, let us

consider Einstein’s gravity as an explicit example.

2.1.3 Linearization stability in Einstein’s gravity

Let Ein denote the (0, 2) Einstein tensor, and ~ denote a symmetric two tensor field as
described above and X be a vector field, then the effect of infinitesimal one-parameter

diffeomorphisms generated by X follows as
DFEin(g) - Xxg = ZxFEin(g), (2.23)
which in local coordinates reads
ox (Gu)W -h = ZxC, (2.24)

where G, := Ein(e,, e,) and Fin := Ric — 1 Rg. We have already given the proof
of the above equation for a generic theory in the previous part, but it pays to do it

more explicitly in Einstein’s theory: so it follows as

1 1=
0x(Gw) M - h = 6x(Ry)V - h — §§W5X(R)(1) +h = 5 Roxhy, (2.25)
which just comes from the definition of the linearized Einstein tensor. Then one can

rewrite the above expression as desired:

_ 1
ox(G)V -h=Zx (RW - §g,wR) = ZxG. (2.26)
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At the second order of linearization, one has
D?Ein(g) - (h, Lxg) + DEin(g) - Lxh = Lx (DEin(g) : h), (2.27)
whose local version reads
5x(Gu)® - [h, )+ (Gu)V - Lxh = Lx(G)V - h. (2.28)

The explicit proof of this expression is rather long, hence we relegate it to Appendix
A.

Now let us study the linearization stability of a particular solution to Einstein’s gravity
with a cosmological constant. Let g solve the cosmological Einstein’s field equations
then the equation relevant to the study of linearization stability of this solution is (2.6)
which now reads

(Ga)® - (A B+ (G)V - k=0, (2.29)

where (G W)(l) - k is a simple object but the the second order object (G,.,) - [h, h]
is quite cumbersome. It is very hard to use this equation to show that for a generic
background g,,,,, a k,,, can be found or cannot be found that satisfy . Therefore
one actually resorts to a weaker (sufficiency) condition that the Taub charges vanish
which, as we have seen, results from integrating this equation after contracting with
a Killing vector field £. To set the stage for generic gravity theories about their AdS
backgrounds, let us study in AdS and flat spaces. In that case one can plug an

explicit ansatz as follows: assume that such a k exists in the form
K = ahyughl) +bhhy, + Gu(chls + dh?), (2.30)

where k := k,,g" and a, b, ¢, d are constants to be determined and all the raising
and lowering is done with the background AdS metric g. Here we shall work in D
spacetime dimensions. Inserting k,, as given in li in (G W)(l) - k, and choosing

a=1land b= —%, one arrives at
(Gu) [y h] + (G)V - k=1 K, 2.31)

where K, is a tensor which must vanish if the background is linearization stable. Its
explicit form is worked out in Appendix B. Let us consider the transverse traceless

gauge, and make use of the field equations and the linearized field equations: Namely
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let us use Ry, = 24-g,, and (G,,)"") - h = 0, which in this gauge reads (h,, =

#?D—z)hlw to arrive at
— A 1\ . le | ape
Km, =V.,H v m C(D — 2) + 5 gwhaﬁ - Zv,,h Vuhag
AD

— hushl, (232
D= 1)(D —2) el (232

where the divergence piece is given as

«@ 1 — 010 1 Q1,08

H® = —Zgw,haﬁv h*+ (c(2—D) — 5 0y hN hep (2.33)

5 _
+ (c(D —-2)+ g) GuhosVORP

+= (h*Vghy, + ha V0 + hg, NV b — hgVohE — h,sVPhS) .

1
2
In the transverse-traceless gauge, the coefficient d is not fixed and can be set to zero.
K,,, has a single parameter c, that one can choose to fix the stability of the flat space-
time (which was proven by [1] using the linearization of the constraints on a non-
compact Cauchy surface in Minkowski space). Before looking at the flat space case,
let us note that one has ?MK # = 0 as expected. Let us consider the flat space
with A = 0 and use the Cartesian coordinates so that V,, — d,. The corresponding

linearized field equations become
d%h,,, =0, (2.34)

together with the gauge choices 0,h*” = 0 = h. The general solution of can
be exactly constructed as a superposition of plane-wave solutions, hence it suffices
to study the linearized stability of flat space against the plane-wave modes which we
take to be the real part of

By = €™, (2.35)

together with k*¢,,, = 0, £}, = 0 and k* = 0, which follow from the gauge condition
and (2.34). In a compact space without a boundary, £ = 0 mode should also be
considered, in that case one has the solution h,, = ¢, (c1t + ¢2) which gives rise to

linearization instability [25]] for the case of the torus. Evaluating K, for the solution

one arrives at

K, = kkueape™e™™ (2c(D —2)+ —> : (2.36)
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which vanishes for the choice
c= ————. (2.37)

So (2.29)) is satisfied for

5

v = h b g I/h2
kﬂ Mﬁhl/ 8(D _ 2)gﬂ af

(2.38)

and therefore there is no further constraint on the linearized solutions (2.33) and the

Minkowski space is linearization stable. Next we move on to quadratic gravity theory.

2.1.4 Linearization instability beyond Einstein’s theory

One of the reasons that lead us to study the linearization instability in generic gravity
theories is an observation made in [11] where conserved charges of generic grav-
ity theories for asymptotically AdS backgrounds were constructedﬂl“ he observation
was that in AdS backgrounds, the conserved energy and angular momenta vanish in
generic gravity theories for all asymptotically AdS solutions at some particular values
of the parameters defining the theory (in fact a whole section in that chapter was de-
voted for the zero energy issue). This apparent infinite degeneracy of the vacuum for
AdS spaces, is in sharp contrast to the flat space case where the unique zero energy is
attained only by the Minkowski space, namely the classical ground state. Let us ex-
pound upon this a little more: for all purely metric based theories, the energy (mass)
of the space-time that asymptotically approaches the flat space at spatial infinity is

given by the ADM formula [27]

Maipy = — yé dsS; (0;h7 — 0K ;). (2.39)
ox

K

It is well-known that M4 py; > 0, which is known as the positive energy theorem
[28.,[29]]. An important part of this theorem is that the vacuum, namely the flat space-
time with M opy; = 0, is unique (up to diffeomorphisms of course) [[30,31]]. It should
be also noted that, the ADM mass is defined in flat Cartesian coordinates but it was
shown to be coordinate invariant. Here one must be very careful, if proper decaying

conditions are not realized for h;;, any (positive, negative, finite or divergent) value

3 For an earlier zero energy result in the context of asymptotically flat backgrounds for purely quadratic gravity
in four dimensions, see [26].
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of mass can be assigned to the flat space. It is exactly these properties of the ADM
formula that made it a useful tool in geometry: without even referring to Einstein’s
equations, one can take (2.39) to be a geometric invariant of an asymptotically flat
manifold, modulo some decaying conditions on the first and the second fundamental

forms of the spacelike surface.

Once one deviates from asymptotic flatness, then as we have noted, for higher deriva-
tive theories there are critical points which seem to make the vacuum infinitely de-
generate, namely, the corresponding mass formula assigns any solution of the theory
the same zero charge. Naively, one can try to understand the meaning of vanishing
charges for non-vacuum solutions (namely, non-maximally symmetric solutions) as

follows:

e There is a confinement of the relevant perturbations (in the weak coupling),
just-like in QCD in the strong coupling of color charge; and so a non-vacuum
solution such as the proton has zero total color charge, same as the vacuum.
In the case of QCD, perturbation theory might yield spurious states that cannot
freely exist, such as quarks, as also noted in [[15]]. In gravity confinement would
mean, confinement of mass-energy or some other properties under considera-
tion such as chirality. But this would be highly unphysical because if there are
no other conserved charges to suppress the creation of confined mass, then the
vacuum state of gravity would be infinitely degenerate and creating confined

mass would cost nothing.

e The second possibility is that perturbation theory about a given background
solution, be it the maximally symmetric vacuum or not, may simply fail to
exist just because the background solution is an isolated solution in the solution

space. Namely, the solution space may fail to be a smooth manifold.

In fact, as discussed above, linearization of non-linear equations such as Einstein’s
gravity and Yang-Mill’s theory showed that naive first order perturbation theory fails
generically when the background has a Killing symmetry. To be more specific we
consider two recent examples: the chiral gravity in 2+1 dimensions which is a special
case of topologically massive gravity with a cosmological constant and the critical

gravity which is a specific example of quadratic gravity in AdS. These examples can
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be easily extended, as the phenomenon we discuss is quite generic and take place
whenever Einstein’s theory with a cosmological constant is modified with some cur-

vature terms.

To see how perturbation theory can fail let us go back to the necessary condition (2.6)

and contract it with the Killing vector & to obtain

& (&w)? - b+ (Eu) k=0 (2.40)

In some modified gravity theories one finds that the second term can be written as

& (&) k= c(ai, Vo FE, + Vo Fs o, (2.41)
where c(a;, R) is a constant determined by the parameters «; of the theory as well as
the curvature invariants (symbolically denoted above as R) of the background metric.
F are antisymmetric background tensors. It turns out that for asymptotically AdS
spacetimes J3 vanishes identically at the boundary as it involves higher derivative
terms of the perturbation, while 7 need not if there are not so fast decaying fields
such as for example the Kerr-AdS black holes. On the other hand for the particular

choice of the parameters c¢(a;, R) = 0, one arrives at the constraint that again the

Taub charges must vanish identically

Qrawlf] = 512 AP 5\ € (E )P - [h,h] = 0. (2.42)

But this time we have the additional non-trivial equation

yﬁ AP A E (&)Y b £ 0. (2.43)
b))

In general it is very hard to satisfy these two conditions simultaneously for all so-
lutions. Therefore some solutions to the linearized equations h turn out to be not
integrable to a full solution, hence the linearization instability of the AdS background
in these critical theories. Let us stress that we have not assumed that the Cauchy sur-
faces are compact: this type of linearization instability arises even in the non-compact

case.
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2.1.5 Linearization instability in quadratic gravity

The message we would like to convey is a rather universal one in all generic higher
derivative gravity theories, but for the sake of being concrete and yet sufficiently gen-
eral, we shall consider the quadratic gravity theory with the action (in D dimensions)

1
= /dD x\/_—g(E(R —24¢) + aR? + BR%, + (R, — AR, + R2)>, (2.44)

uvpo

where the last term is organized into the Gauss-Bonnet form, which vanishes identi-
cally for D = 3 and becomes a surface term for D = 4. But for D > 5, it contributes
to the field equations with at most second order derivatives in the metric, just like the
Einstein-Hilbert part. Conserved gravitational charges of this theory in its asymptoti-
cally AdS backgrounds were constructed in [11]] following the background space-time
techniques developed in [[10] which is an extension of the ADM approach [27]. For
any theory with a Lagrangian density £ = 1(R—2/4,) + f (REY), for a generic differ-
entiable function f of the Riemann tensor and its contractions, the conserved charges
follow from those of (2.44), as shown in [24] since any such theory can be written as
a quadratic theory with effective coupling constants as far as its energy properties and
particle content are concerned [32]. In what follows, we quote some of the computa-
tions done in [11] here to make the ensuing discussion complete. The field equations

that follow from (2.44)) are

1 1 1
SW[Q] = E(RMV - EQWR) +2aR (RW - ZQW R)
+(2a + B) (g0 — V. V)R + 27{RRW — 2Ry, R
o pT a 1
+RHC’PTRVP - 2RH0RV - ZgMV(RE)\pU - 4Rc2rp + R2)}
1

1
+B0(R, — 59,“,]%) + 28(Rpuovp — ng,Rap)R"p =0. (2.45)

As we shall study the stability/instability of the non-flat maximally symmetric solu-

tion (or solutions), let g represent such a solution with the curvature tensors normal-

ized as
_ 24
vo — _1/_0'__0'_1/7 2.46
R, (D—l)(D—2)<g“ 9po — Gu gp) ( )
_ 2/
RMV = mguuy (247)
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2DA

R = ) 24
R ) (2.48)
The field equations reduce to a single quadratic equation :
A — Ay (D —4) (D—-3)(D—4)
+kA? =0, k= (Do + + . (249
2k ( 5)(1)—2)2 "D-1)(D—2) (249

For generic values of the parameters of the theory, of course, there may not be real
solution and so the theory may not posses a maximally symmetric vacuum, but here
we assume that there is a real solution to this algebraic equation (so 8/Apkx + 1 > 0)
and study the linearization stability of this solution, which we call the (classical)
vacuum or the background. One can then linearize the field equations (2.45) about

the vacuum and get at the linear order

- - = 2/
1 (G) + (204 9) (90 - 9,90+ 2 a ) ()
Sg o 24 s
+4(0(G,w) D 1gW(R) =0, (2.50)
where the constant in front of the first term is
1 4AD 41 4N (D —3) (D —4)
= - 2.51
“a= T P T T m=2 2.51)
and the linearized (background) tensors read
1 2/
(gwj)(l) - (R,uz/)(l) - éguu(R)(l) - mhum (252)

which is just the linearized cosmological Einstein’s tensor given in terms of the lin-

earized Ricci tensor and the linearized scalar curvature :
17— _ _ _ _ _ o _
(Ru)® = 5 (V"Vuhw + VI hyy — Oy, — vuvyh>,

- _ 2A
1 — _ Avil _
(R)"Y =-0h+V°V Ny, D 2h. (2.53)

Given a background Killing vector &, (there are D(D+1)/2 number of Killing vectors
for this space and the arguments work for any one of these) if we had not truncated
the expansion of the field equations at O(h) but collected all the non-linear terms on

the right-hand side, we would have gotten

& (&)Y hi=EMT,, [h2 R, h" ). (2.54)
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where T),,[h?, h®, ...h"...] represents all the higher order terms (and if there is a matter
source with compact support of energy-momentum tensor, it also includes that). The
next step is the crucial step: as was shown in [[I 1], one can write (2.54) as a divergence

of two pieces as described by (2.41)

E(EwN Y b= cVaFY, + VaFs ., (2.55)

where the constant ¢; given in (2.51)) is shifted due to the S term as

4A
(D—-1)(D—-2)

3. (2.56)

cC=cC +
The explicit forms of the F}* tensors are found to be
Fie = 96, VIpelv 4 90ewgPlp 4 opInPle, + 260 MY 4 hVREP,  (2.57)
and

FUo = (20 + f3) (25[uvp](R>(1) + (R)(l)@u EP)

+20 (gcrv[p(gu} U)(l) + (g[m)(l)vu]go> _ (2.58)

For asymptotically AdS spacetimes, F4” vanishes at spatial infinity due to the van-
ishing of both of (R)) and (G,.,)"). As discussed in the previous section, vanishing
of the constant c leads to two strong constraints and on the linearized
solution h which is a statement of the instability of the background solution. Note
that, for this higher order theory, we have not assumed that the spatial hypersurface is
compact. (In fact, to be more accurate, AdS is not globally hyperbolic and does not

have a Cauchy surface but one can work in the double cover which does).

The point at which ¢ = 0 is the point when the mass of the spin-2 massive mode
also vanishes and further, assuming 4c((D — 1) + D3 = 0, one can also decouple the
massive spin-0 mode in this theory and arrive at the so called critical gravity defined
in D = 4 [21] for generic D in [22]. All these conditions are compatible with the ex-
istence of a maximally symmetric vacuum. For critical gravity, the apparent mass and
angular momenta of all black holes and perturbative excitations with asymptotically

AdS conditions Vanishf_f] But as we have seen here, perturbation theory used for both

4 The energy of the perturbative bulk excitations can be constructed using the Ostrogradsky Hamiltonian [22]).
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the excitations and construction of conserved quantities does not work exactly at the
critical point: namely, the theory for the AdS background is not linearization stable.
At the chiral point, there arise exact log-modes in chiral gravity [33,34] which are of

the wave type but they do not correspond to the linearized log-modes of [[19].

Just for the sake of completeness, let us note that if ¢ # 0, then the perturbation
theory makes sense and the conserved charges of the theory for any asymptotically
AdS solutions (such as the Kerr-AdS black holes) are simply given in terms of the

conserved charges of the same solution in Einstein’s gravity as

Quua(§) Bm2, (2.59)

QEinstein (5)

where m, is the mass of the spin-2 graviton given as

1 4A(Da+B)  4A(D—3)(D - 4)
=t 5 to-DnD_2 " (2.60)

In 1j QEinstein(f ) refers to (With Knewton = 1) the conserved charge (mass, angular

momenta) in the cosmological Einstein’s theory.

2.1.6 Linearization instability in chiral gravity

A model of quantum gravity even in the simpler 2 4 1 dimensional setting has been
rather elusive. One of the latest promising proposals was the so called chiral grav-
ity [14]] which is a specific limit of topologically massive gravity (TMG) [18]] with the
asymptotically AdS boundary conditions. TMG, as opposed to Einstein’s gravity has
non-trivial local dynamics hence in this respect, it might be more relevant to the four
dimensional gravity both at the classical and quantum level. The crux of the argu-
ments of the quantum version chiral gravity is that the bulk theory is dual to a unitary
and chiral conformal field theory (CFT) on the two dimensional boundary, whose
symmetry is known to be one of the two copies of the Virasoro algebra [20]. Finding
the correct conformal field theory would amount to defining the quantum gravity via
the AdS/CFT duality [35]]. But immediately after the proposal of chiral gravity, it was
realized that the theory has arbitrarily negative energy log modes that appear exactly
at the chiral point and not only the dual CFT is not unitary (but a logarithmic one), but

apparently chiral gravity does not have even a classical vacuum [[19]. If true, this of
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course would be disastrous for chiral gravity. But later it was argued in [15}|17]] that
chiral gravity has linearization instability against these log modes in AdS: namely,
these perturbative negative energy solutions do not actually come from the lineariza-
tion of any exact solution. If that is the case, then linearization instability saves chiral
gravity certainly at the classical level and perhaps at the quantum level. Here we give

further arguments of the existence of linearization instability in chiral gravity.
The field equations of topologically massive gravity [|18]] with a negative cosmologi-

cal constant (A := —Z%) is

1 1 1
R,ul/ - §guuR - é_Zg/“’ + ;O/u/ = 07 (261)

where the Cotton tensor in terms of the anti-symmetric tensor and the covariant

derivative of the Schouten tensor reads

1
Ch = 1,°°VaSs, Sy = Ry — TR (2.62)

The boundary theory has two copies of the Virasoro algebra [20] for asymptotically

AdS boundary conditions given as

3l 1
=—|1£— 2.63

and the bulk theory has a single helicity 2 mode with a mass-square

1
m2 =y’ — ik (2.64)

It was shown in [36] that the contraction of the Killing vector (£) with the linearized

equations coming from (2.61)) yields

g“ ((guu)(l) + %(C;w)(l)> — vafla 1/[:;] + vaf? V[EL (265)

where F1"” was given in (2.57)) whereas one finds 4" to be
]_-éw[a — nupﬁ (gyﬁ)(l) &+ nl/pﬁ (G* B)(l) & + anB (gp5>(1) £, (2.66)
where a new (twisted) Killing vector (=) appears:
= e 1 afv T &
=Y ="+ Vg, (2.67)
2p

27



The conserved charges of TMG for asymptotically AdS backgrounds read as an inte-

gral over the circle at infinity as

- 1 ir = i .
AWM= § s (FE+ o 7). 268

Once again for the asymptotically AdS cases F3',[¢] vanishes identically on the
boundary as it involves the linearized Einstein tensor at infinity. For generic values of
p and /, the first term, that is 7, [=] gives the conserved charges for the correspond-
ing Killing vector. But, for ;?¢?> = 1, as was shown in [37] the angular momentum
and the energy of the rotating black hole solutions with the rotation parameter (j) and
the mass (m) related as (j = m/) (the extremal BTZ black hole) vanishes identically.
This particular point was further studied in [[14] where it was argued and conjectured
that the theory, so called chiral gravity, as one of the central charges noted above

(2.63)) becomes zero, makes sense both classically and quantum mechanically.

Classically the theory should have a stable vacuum and quantum mechanically, it
should have a dual healthy boundary conformal field theory. In [14] it was shown
that all the bulk excitations have vanishing energy exactly at the chiral point. Later
new log modes that were not accounted for were found in [19] which violated the
existence of a ground state (namely, these modes have arbitrarily large negative en-
ergy compared to the zero energy of the vacuum). For further work on chiral gravity,
see [38,39]. In [[15] and [[17]] it was argued that the AdS has linearization instability in
chiral gravity against these log modes. Here, our construction lends support to these

arguments.

For the sake of concreteness, let us consider the background metric as
2 d 2
G=—(14+Yarr + Lz + r?dg?, (2.69)
e 1+ %
then for ¢ = (—1,0,0) referring to the time-like energy Killing vector, one finds the

twisted Killing vector to be

1

Z=(-1,0,———).
( ) EQM)

(2.70)

For this = to be a time-like Killing vector for all r including the boundary at » — oo,

one can see that (excluding the trivial 1 — oo case) one must set ;2¢? = 1, which is
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the chiral gravity limit. To further see this chiral gravity limit, let us recast F;”[=]

using the the superpotential X**¥# is defined by [10]

- - - - - 1
e = (g OR g R — g — g R, R = = Sgh, (2.71)

N —

which yields
FIP[E] = 5,V KPP — Krovey , 2, (2.72)

For all asymptotically AdS solutions with the Brown-Henneaux boundary conditions,

one can show that

_ 1
Fo1E = (1 s ) P e
which vanishes at the chiral point. So exactly at this point, there exists second order
integral constraints on the linearized solutions as discussed in the previous section.

The log-modes of [19] do not satisfy these integral constraints and so fail to be inte-

grable to full solutionsE]

Let us compute the value of the Taub conserved quantity for the log solution which

was given in the background with the global coordinates for which the metric reads
ds® = Ez( — cosh? pdr? + sinh? p d¢?* + dpz). (2.74)

For the coordinates u = 7 + ¢, v = T — ¢, at exactly in the chiral point, one has the

following additional solution

11 0
hu = —tanh’ (sin(2u)7 4 cos(2u) Incoshp) | 1 1 0
0 0 —4sinh™22p
v
- 001
M (cos (2u) T —sin (2u) Incoshp) | 0 0 1 (2.75)
cosh” p
1 10

puv

Considering the Killing vector ¢ = (—1,0,0) one finds the result of the integral in
(2.13) to be non-vanishing

@Muazi@#—ﬁﬁ, 2.76)

5 See [40] a nice compilation of possible applications of logarithmic field theories in the context of holography
and gravity.
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which shows that this log mode is not in the tangent space of the solution space of

chiral gravity around the AdS3 metric.

In this chapter, we have shown that at certain critical parameter values of extended
gravity theories in constant curvature backgrounds, perturbation theory fails. Our
arguments provide support to the discussion given by [15,/17] regarding the lineariza-
tion instability in three dimensional chiral gravity and extend the discussion to generic
gravity theories in a somewhat former form. The crucial point is that even in space-
times with non-compact Cauchy surfaces, linearization instability can exist for back-
ground metrics with at least one Killing vector field. Our computation also sheds light
on the earlier observations [|11]] that at certain critical values of the parameters defin-
ing the theory, conserved charges of all solutions, such as black holes, excitations
vanish identicallyE] For example, Kerr-AdS black hole metrics have the same mass
and angular momentum as the AdS background. This leads to a rather non-physical
infinite degeneracy of the vacuum: for example, creating back holes costs nothing
which is unacceptable. With our discussion above, it is now clear that, perturbation
theory which is used to define boundary integrals of the conserved Killing charges
does not make sense exactly at the critical values of the parameters. Therefore one
really needs a new method to find/define conserved charges in these theories at their
critical points. One such method was proposed in for quadratic theories [42] and

in [43]] for TMG.

We must note that, for asymptotically flat spacetimes, the ADM mass is the correct
definition of mass-energy for any metric-based theory of gravity. Therefore, the sta-
bility of the Minkowski space as was shown for Einstein’s theory by Choquet-Bruhat
and Deser [1] is valid for all higher derivative models as long as one considers the
non-compact Cauchy surfaces and asymptotically flat boundary conditions. But once
a cosmological constant is introduced, the problem changes dramatically as we have
shown: the ADM mass-energy (or angular momentum) expressions are modified and
conserved charges get contributions from each covariant tensors added to the field
equations. Once such a construction is understood, it is clear that some theories will
have identically vanishing charges for all solutions with some fixed boundary condi-

tions, which is a signal of linearization instability.

5 For a recent review of conserved charges in generic gravity theories see the book [41].
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It is also important to realize that, linearization instability of certain background solu-
tions in some theories is not bad as it sounds: for example chiral gravity is a candidate
both as a non-trivial classical and quantum gravity theory in AdSs with a two dimen-
sional chiral conformal field theory induced on the boundary. But it has log-mode
solutions which appear as ghosts in the classical theory and negative norm states in
the quantum theory. It just turns out that chiral gravity in AdS5 has linearization in-
stability along these log-modes: namely, they do not have vanishing Taub conserved
quantities which is a constraint for all integrable solutions. Therefore, they cannot
come from linearization of exact solutions. A similar phenomenon takes place for
the minimal massive gravity [44] which was proposed as a possible solution to the
bulk-boundary unitarity clash in three dimensional gravity theories and as a viable
model that has a healthy dual conformal field theory on the boundary of Ad.Ss. It was
shown recently in [45] that this theory only makes sense at the chiral point [46,47]]
and hence linearization instability arises at that point which can save the theory from
its log-modes. Let us note that we have also computed the second order constraint in
the minimal massive gravity, namely the Taub conserved quantity and found that it is

non-vanishing.

In the discussion of linearization stability and instability of a given exact solution
in the context of general relativity, we noted that to make use of the powerful tech-
niques of elliptic operator theory, on rewrites the four dimensional Einstein’s theory
as a dynamical system with constraints on a spacelike Cauchy surface and the evo-
lution equations. As the constraints are intact, initial Cauchy data uniquely defines
a spacetime (modulo some technical assumptions). Therefore, to study the lineariza-
tion stability one can simply study the linearization stability of the constraints on the
surface where the metric tensor field is positive-definite. All these arguments boil
down to showing that the initial background metric is not a singular point and that the
space of solutions around the initial metric is an open subset (in fact a submanifold)
of all solutions. This can be shown by proving the surjectivity of the operators that
appear in the linearized constraints. A similar construction, dynamical formulation of
the higher derivative models studied here in AdS and the surjectivity of the relevant
linear maps would be highly valuable. For the case of the cosmological Einstein’s

theory, such a construction was carried out in [48]] where it was observed that certain
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strong decays lead to linearization instability even for non-compact Cauchy surfaces

with hyperbolic asymptotics.
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CHAPTER 3

LINEARIZATION INSTABILITY IN CHIRAL GRAVITY

Quantum gravity E] is elusive not mainly because we lack computational tools, but be-
cause we do not know what to compute and so how to define the theory for a generic
spacetime. One possible exception and a promising path is the case of asymptotically
anti-de Sitter (AdS) spacetimes for which a dual quantum conformal field theory that
lives on the boundary of a bulk spacetime with gravity would amount to a definition
of quantum gravity. But, even for this setting, we do not have a realistic four dimen-
sional example. In three dimensions, the situation is slightly better: the cosmological
Einstein’s theory (with A < 0) has a black hole solution [49] and possesses the right
boundary symmetries (a double copy of the centrally extended Virasoro algebra [20])
for a unitary two dimensional conformal field theory. But as the theory has no local
dynamics (namely gravitons), it is not clear exactly how much one can learn from
this model as far as quantum gravity is concerned. Having said that, even for this
ostensibly simple model, we still do not yet have a quantum gravity theory. Recast-
ing Einstein’s gravity in terms of a solvable Chern-Simons gauge theory is a possible
avenue [50]], but this only works for non-invertible dreibein which cannot be coupled

to generic matter.

A more realistic gravity in three dimensions is the topologically massive gravity
(TMG) [18]] which has black hole solutions as well as a dynamical massive gravi-
ton. But the apparent problem with TMG is that the bulk graviton and the black hole
cannot be made to have positive energy generally. This obstruction to a viable classi-
cal and perhaps quantum theory was observed to disappear in an important work [14],
where it was realized that at a "chiral point" defined by a tuned topological mass in

terms of the AdS radius, one of the Virasoro algebras has a vanishing central charge

1 This chapter appeared as Phys. Rev. D 97, 124068 on 27 June 2018.
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(and so admits a trivial unitary representation) and the other has a positive nonzero
central charge with unitary nontrivial representations, the theory has a positive energy
black hole and zero energy bulk gravitons. This tuned version of TMG, called "chiral
gravity", seems to be a viable candidate for a well-behaved classical and quantum

gravity.

One of the main objections raised against the chiral gravity is that it possesses a neg-
ative energy perturbative log-mode about the AdS vacuum which ruins the unitarity
of the putative boundary CFT [19]. Of course if this is the case, chiral gravity is
not even viable at the classical level, since it does not have a vacuum. It was argued
in [[1517]] that chiral gravity could survive if the theory is linearization unstable about
its AdS solution. This means that there would be perturbative modes which cannot
be obtained from any exact solution of the theory. In fact, these arguments were sup-
ported with the computations given in [4] where it was shown that the Taub charges
which are functionals quadratic in the perturbative modes that must vanish identi-
cally due to background diffeomorphism invariance, do not vanish for the log-mode
that ruins the chiral gravity. This means that the log-mode found from the linearized
field equations is an artifact of the linearized equations and does not satisfy the global

constraints coming from the Bianchi identities.

In this part, we give a direct proof of the linearization instability of chiral gravity in
AdS using the constraint analysis of the full TMG equations defined on a spacelike
hypersurface. The crux of the argument that we shall lay out below is the following:
the linearized constraint equations of TMG show that there are inconsistencies exactly
at the chiral point. Namely perturbed matter fields do not determine the perturbations
of the metric components on the spacelike hypersurface and there are unphysical

constraints on matter perturbations besides the usual covariant conservation.

To support our local analysis on the hypersurface, we compute the symplectic struc-
ture (that carries all the information about the phase space of the theory) for all pertur-
bative solutions of the linearized field equations and find that the symplectic 2-form
is degenerate and so non-invertible hence these modes do not approximate (i.e. they
are not tangent to) actual nonlinear solutions. The symplectic 2-form evaluated for

the log-mode is time-dependent (hence not coordinate-invariant) and vanishes at the

34



initial value surface and grows unbounded in the future.

To carry out the constraint analysis and their linearizations (which will yield possi-
ble nearby solutions to exact solution), we shall use the field equations instead of
the TMG action as the latter is not diffeomorphism invariant which complicates the
discussion via the introduction of tensor densities (momenta) instead of tensors. We
shall also work in the metric formulation instead of the first order one as there can
be significant differences between the two formulations. Before we indulge into the
analysis, let us note that the linearization instability that arises in the perturbative
treatment of nonlinear theories and can be confused with dynamical or structural in-
stability, as both are determined with the same linearization techniques.The difference
is important: the latter refers to a real instability of a system such as the instability
of the vacuum in a theory with ghosts such as the R + 5wa theory with 3 # 0, this
is simply not physically acceptable. On the other hand linearization instability refers
to the failure of perturbation theory for a given background solution and one should
resort to another method to proceed. From the point of view of the full solution space
of the theory, this means that this (possibly infinite dimensional) space is not a smooth
manifold but it has conical singularities around certain solutions. Let us expound on

this a little bit.

3.1 ADM decomposition of TMG

Before restricting to the chiral gravity limit, we first study the full TMG field equa-
tions coupled with matter fields as an initial value problem, hence we take
1
éa/u/ = Gp,l/ + Ag/u/ + ;C/LV = RTuv- (31)
The ADM [27]] decomposition of the metric reads
ds® = —(n® — nn")dt* + 2ndtda’ + yyda'da?, (3.2)
where (n, n;) are lapse and shift functions and -;; is the 2D spatial metric. From now
on, the Greek indices will run over the full spacetime, while the Latin indices will
run over the hypersurface X, as ¢, j... = 1,2. The spatial indices will be raised and

lowered by the 2D metric. The extrinsic curvature (k;;) of the surface is given as
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where D is the covariant derivative compatible with «y;; and 7;; := Jy;; and the round
brackets denote symmetrization with a factor of 1/2. With the convention R,, =

oIt — 0,1 + ', Iy — ', I, one finds the hypersurface components of the

wv po oV up

three dimensional Ricci tensor as

Ri; = PRy + kkyj — 2kyk} (3.4)

1
+—(l€,]~ —nFD.k i — Diojn — Qkk(iDj)nk),

3

where (P R;; is the Ricci tensor of the hypersurface and k = 7% k;;. Similarly one find

the twice projection to the normal of the surface as

nind

ROO :T(km - nka’kU — Dzajn — Qkk]Dmk)
n?k}; +n'n! (P Ry + kkij — 2kigk}) (3.5)
n(Dpd*n — k — n* Dk + 2n* D, k).

On the other hand, projecting once to the surface and once normal to the surface
yields

n]

Ro; = — (kij — n*Dykij — Diojn — 2k Djyn*) (3.6
n
+ 1/ (P Ry + kkyj — 2kack]) + n(Dik + Dnky").

We also need the 3D scalar curvature in terms of the hypersurface quantities which

can be found as
9 . . .
R=®R+k — K+ =(k+nk}, — D;D'n — n'Dik). 3.7)
n
Given the Schouten tensor S, := R, — }leW, the Cotton tensor is defined as

1
Cw/ = §€paﬁ(gupvo¢‘sﬁu + gl/pvasﬁu)v (38)

where €”*” is the totally antisymmetric tensor which splits as "™ = Lemn = %7*55’””

n

where " is the antisymmetric symbol. Just as we have done the ADM decomposi-

tion of the Ricci tensor, a rather lengthy computation yields the following expressions,
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for the projections of the Cotton tensor
2nCi; =€""ni( Dy Spj — kmj(Drk] — 0nk))
+ ™ Z{Sm] — nkamk — Smijnk
— (Ojn +n"ky;)(Dsk,;,, — Onk)
— Dy (n" Sy + n(D,k; — Djk))

+ ki (Dr0"n — k + n* Dk} + n(—R — k:fs))}

4
+ 1 > 7,
and
Cio = njCij - %(nAmm — i Bimn — Yin(Cr + nEy,))
and

COO = ninjC’ij
— €™ (nn' Appi — (nin' — n?) By — 1 (Cry +nE,y)),
where we have defined the following tensors

Amni = Dmsm - kmz (Drk; - ank> )

1
Ep = 2k Dink™ = 20m R + kR (D.ki — Okk),

Cn = 0D, k" — S* (Opn + n"kyi) — Dy DrO%n

R
—D,, (n*Dk}) + kb Seen” + Opn(k2, — Z).

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Using the above decomposition, we can recast the ADM form of the full TMG equa-

tions as
1 1
(g;j = KTij = Sij — Z%jR + A’}/ij + ;C,]
and

(g)Oi —=RTy; = njéaz‘j + n(DT‘kzr - alk)

1
. €™ (nAmni — 1 Bmn — Yin(Con + nEy))
U
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and

4 o 1
Eyo = KToo = 2n'&y; — n'n? & — An? — =™ n®B,,,
00 00 0 ]

W
+ n(Dpd*n — k +n* Dk + n(§ —k2)). (3.18)
From &p,;, we get the momentum constraint as
®; = k(1o; — n'7;) = n(D,k — Oik) (3.19)
+iem”(ni3mn — nApni + YinCm + 0Yin Em)

and from &,y we get the Hamiltonian constraint as

K
@:—2
n

Too — 2n'7o; + n'n? T
J

1
+§((2)R + K — Kk - 24)

—%emn (DD, kl, — ki Skn) (3.20)

where in the last equation we made use of the explicit form of R given in (3.7) which

for TMG is R = 6/ — 2k7. From now on, for our purposes, it will suffice to work in

the Gaussian normal coordinates with n = 1 and n; = 0 for which k;; = %q'/ij and the

constraints reduce to

Emn

——Fim 7 (D Rin — ApFsn ¥’ = Hkn) — 2D D n )

4p
Lo b i i @R
= ¥ (Jar*” +37) = koo + A4 = —= (3.21)
and
@ (’Ykp(QDkﬁypm - Dmﬁykp) + 2Dk7km - mek’Ylep’ypl)
el . . s .
- 8_ (%W me’yin - 27k Dm(’Ykn’Ysz)
10
+ 2D, Him — %»ka) (3.22)
1 1
+ 5 (Dk/ykz - Vasz‘%b) = KTy + Q_Eman(Q)Rm"
1

Furthermore, taking a conformally flat 2 metric on X, we have 7,; = €¥,;, where
¢ = ¢(t,x;), kij = 3¢7i; and the 2D Ricci tensor becomes

1
(2)Rij = —Z%je_¢ (2Dy0kp + OkpOkp) » (3.23)
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whereas the 3D Ricci tensor reads

1 ) L1
R;; = imj(—D’“aw + QP+ G — §8kg08k<p) (3.24)

and the 3D scalar curvature is

3 1
R = —D"onp + §¢2 +2¢ — iakgoﬁkgo. (3.25)

With all these results in hand, one can obtain from the constraint equations the fol-

lowing relation

1
0ip = —Ji + —€" i pOnp, (3.26)
2

where we have introduced the "source current" which, on the hypersurface, reads
K
:],L' = 2/17'01' + —em Z'amTOQ. (327)
1
Contracting (3.26) with the epsilon-tensor, one arrives at
2 . 52 2 . .
Bemig, (1 + ‘%) = _emig, I (3.28)
® 4p v
In the case of vacuum, 7, = 0, and so J; = 0, the unique solution to (3.28)) is of the
form o = ct, where c is a constant which can be found from the trace equation that
reads R = 64. Soc=2VA = 2, which is the de Sitter (dS) solution and ¢ > 0 is its
radius. Turning on a compactly supported matter perturbation with 47, # 0, one has
0J; # 0 and perturbing the constraint equations about ¢ as ¢ = ¢y + dp, we find a
linearized constraint equation
L yem Om0¢
H+ )" iOnd¢ (3.29)

1
:(82 + ﬁEm i8m>li57'00 + 2#(61 m +

_5m Z’)Ii(;Tom,

wl

from which, for the dS case, one can solve the perturbation (d¢) and hence the per-
turbed metric by integration in terms of the perturbed matter fields on the hypersur-
face. Hence dS is linearization stable in TMG for any finite value of pf. The other
linearized constraints are compatible with this solution. Our computation has been
analytic in /, hence, we can do the following "Wick" rotation to study the AdS case:
o' — ia', t — it, { — il yielding A = —7 with the Gaussian normal form of the
(signature changed) metric ds? = dt? — e~2/* (dx? + d2?) . Then for AdS,
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becomes

1 .
il = 25" Ond (3.30)

1

ﬁﬁm iam)H(STOQ — 2”(61 m + —o™ Z’)K,(STom

wl

and once again the perturbation theory is valid for generic values of pf in AdS as in
the case of dS. But at the chiral point, ¢ = 1, the left-hand side vanishes identically
and there is an unphysical constraint on the matter perturbations 07y, and 07y in
addition to their background covariant conservation. Moreover, the metric perturba-
tion is not determined by the matter perturbation. What this says is that in the chiral
gravity limit of TMG, for AdS, the exact AdS solution is linearization unstable. The
above computation has been a local one, and does not depend on the fact that AdS
does not have a Cauchy surface on which one can define the initial value problem.
AdS requires initial and boundary values together, but what we have computed is a
necessary condition for such a formulation (not a sufficient one) and AdS in chiral
gravity does not satisfy the necessary conditions for the initial-boundary value prob-

lem.

3.2 Symplectic structure of TMG

Let us give another argument for the linearization instability of AdS making use of
the symplectic structure of TMG which was found in [51] following [52] as w :=
) 5 dX, \/m J“, where X is the hypersurface. w is a closed (0w = 0) non-degenerate
(except for gauge directions) 2-form for full TMG including chiral gravity. Here the

on-shell covariantly conserved symplectic current reads
(0% « v 1 12
J* =00, N(0g" + 59“ d1lng)
v (0% 1 Q
— oI, A (0g™ + 59 “5Ing)
1 1
avo B
+ ;e (057 NGy, + §5F’;5 NI ,). (3.31)
What is important to understand is that w is a gauge invariant object on the solution

space, say Z, and also on the (more relevant) quotient Z/Di f f which is the phase

space and D f f is the group of diffeomorphisms. Therefore, even without knowing
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the full space of solutions, by studying the symplectic structure, one gains a lot of
information for both classical and quantum versions of the theory. Perturbative so-
lutions live in the tangent space of the phase space and hence they are crucial in the

discussion. We refer the reader to [51]] for a full discussion of this.

Let us show that for the linearized solutions of chiral gravity given in [14] the sym-
plectic 2-form is degenerate and hence not invertible. In the global coordinates, the

background metric reads
ds® = 62( — cosh? pdr? + sinh? pd¢? + dpz), (3.32)

defining u = 7 + ¢, v = T — ¢, making use of the SL(2, R) x SL(2, R), [14] found

all the primary states (but one) and their descendants. The primary solutions are
huw = R{e 2 5°F,,(p)}, (3.33)

where the real part is taken and the background tensor reads

S 24
1 2 sinh 2p
S iS
Fulp)=fp)| 3 L T (3.34)
23 S 4
sinh 2p  sinh 2p sinh? 2p

and f(p) = (cosh p)~?sinh® p, where A = h + h and S = h — h. Components of

the symplectic current for these modes (for generic p./) can be found as

(4 — S2)(S + 2u6) A

T = in (2A 2
J Sl (cosh p)Z0+) sin (2A7 +2S5¢),
2 coth?
J¢ = —mg i (3.35)
(SA+4pul)cothp + (A —2)ulsinh 2p
Jr=— J
A(S +2p0)

which yield a vanishing w at the chiral limit since for left, right and massive modes we
have S? = 4 and the relevant symplectic current 7" vanishes identically, hence the
solution is not viable. Moreover, one can show that its Taub charge diverges, while

its ADT charge is for the background Killing vector (—1,0,0) is

sin(mS) cos(2mS + At)

Qapr = — lim Y ARA+ S —2)er@4), (3.36)

which vanishes for the massive mode A = S = 2. In addition to the above solutions,
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there is an additional the log-mode given in [19] which reads

0 01 11 0
h'uu = fl (7_7 P) 0 0 1 +f2<7_7 ;0) 11 0 s (337)
4
1 10 » 00 ~am’I, »
where the two functions are given as
inh
fi(r,p) = o 3'0 (7 cos 2u — sin 2u In cosh p), (3.38)
cosh” p
fo(7, p) = — tanh®p (7 sin 2u + cos 2u In cosh p). (3.39)
The components of the symplectic current for this mode read
1
J = 7T((l — pb) cosh 2p + 1)sech'%p,
L
2
J? = ——7(1 — pl)sech®p, (3.40)

pl?

1
JP = 7 tanh p sech®p(4(log? cosh p 4 7°) + log sech p),

which yield a linearly growing w in 7 and vanishes on the initial value surface. What
all these say is that first order perturbation theory simply fails in chiral gravity limit
of TMG. If the theory makes any sense at the classical and/or quantum level one
must resort to a new method to carry out computations. This significantly affects
its interpretation in the context of AdS/CFT as the perturbed metric couples to the
energy-momentum tensor of the boundary CFT. This of course does not say anything
about the solutions of the theory which are not globally AdS and one might simply

have to define the theory in a different background.

In this chapter we have studied a frequently recurring problem [53]], for example it
also appears in critical gravity [54,55]. Linearized solutions by definition satisfy
the linearized equations but this is not sufficient; they should also satisfy a quadratic
constraint to actually represent linearized versions of exact solutions. This deep re-
sult comes from the Bianchi identities and their linearizations and it is connected to
the conserved quantities. With the observation of gravity waves, research in gen-
eral relativity and its modifications, extensions has entered an exciting era in which
many theories might be possibly tested. One major tool of computation in nonlin-
ear theories, such as gravity, is perturbation theory from which one obtains a lot of

information and the gravitational wave physics is no exception as one uses the tools
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of perturbation theory to obtain the wave profile far away from the sources. There-
fore, the issue of linearization instability arises in any use of perturbation theory as
the examples provided here and before [4] show even for the ostensibly safe case of

spacetimes with noncompact Cauchy surfaces.
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CHAPTER 4

CONCLUSIONS

In Einstein’s general relativity, perturbation theory about a background exact solution
fails if the background spacetime has a Killing symmetry and a compact (without a
boundary) spacelike Cauchy surface. This failure, dubbed as linearization instabil-
ity, shows itself as a nonintegrability of the perturbative infinitesimal deformation to
a finite deformation of the background. Namely, the linearized field equations have
spurious solutions which cannot be obtained from the linearization of some exact so-
lutions. In absence of the knowledge of exact solutions, in practice, one can show the
failure of the linear perturbation theory by showing that a certain quadratic (integral)
constraint, that is the vanishing of the so-called Taub charge, on the linearized solu-
tions is not satisfied. This is the case for compact Cauchy surfaces ( or in the absence
of Cauchy surfaces as in the case of AdS, for spacelike surfaces which constitute part

of the initial-boundary value problem).

For noncompact Cauchy surfaces, the situation is different and for example, Minkowski
space, having a noncompact Cauchy surface, is linearization stable. If this were not
the case, one could not trust perturbation theory in a Minkowski background, includ-
ing all the computations related to the gravitational waves. In this thesis, we have
studied the linearization instability in generic metric theories of gravity where Ein-
stein’s theory is modified with additional curvature terms. Of course the problem
of validity of perturbation theory becomes much more complicated as one usually
lacks the tools of the elliptic operator theory on a spacelike hypersurface. Our main
finding is that, unlike the case of general relativity, for modified theories even in the
noncompact Cauchy surface cases (or spacelike surfaces), there are some theories
which show linearization instability about their anti-de Sitter backgrounds. Recent D

dimensional critical and three dimensional chiral gravity theories are two such exam-
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ples. We have discussed them, especially the chiral gravity case, in great detail. This
observation sheds light on the paradoxical behavior of vanishing conserved charges
(mass, angular momenta) for nonvacuum solutions, such as black holes, in these ex-
tended theories. This vanishing of conserved charges for nonvacuum solutions for
certain theories in asymptotically AdS spacetimes was discussed at length in [11]. At
the time this zero-energy problem was not properly understood. Let us explain why
in some extended theories the conserved charges vanish identically. This vanishing
happens as the charge is a global quantity constructed with the help of the Stokes’
theorem and asymptotic Killing symmetries where the perturbation theory is suffi-
cient. In perturbation theory, about a constant curvature background (such as the AdS
spacetime) all higher order curvature terms in the field equations contribute to the
conserved charges in an additive manner which always vanishes for some particular
combination of parameters of the theory. Here we have shown that, exactly at that
point, the perturbation theory fails and therefore one needs other methods to define

conserved quantities.

As a second, perhaps more direct proof of the linearization instability in chiral grav-
ity, we have carried out a detailed analysis of the constraints and their linearizations
on a spacelike hypersurface, we have shown that the topologically massive gravity
(which is a dynamical theory of gravity in three dimensions) has a linearization insta-
bility at the chiral gravity limit about its AdS3 vacuum. We have also calculated the
symplectic structure (that is built from the perturbative tensors and that carries all the
information about the classical theory as well as its linearizations) for all the known
perturbative modes, including the log-mode, for the linearized field equations and find
it to be degenerate (non-invertible). Hence these modes do not approximate any pos-
sible exact solutions and so do not belong to the linearized phase space of the theory.
Naive perturbation theory fails: the linearized field equations are necessary but not
sufficient in finding viable linearized solutions. This proof supports the construction
given in [15] where it was shown that the linearization of all exact solutions of chiral
gravity around AdS3 has positive energy. This has important consequences for both

classical and possible quantum versions of the theory which need further scrutiny.

In the linearization stability problem of general relativity, one can show that the first

order perturbation theory can receive constraints at most from the second order per-
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turbation theory. Namely, there will be no more constraints from the higher order
perturbation theory. This issue is an outstanding problem in generic modified gravity
theories which needs to be studied further. For example, we do not know what are the
necessary and sufficient conditions for linearization stability of a third order theory

such as topologically massive gravity.
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APPENDIX A

SECOND ORDER PERTURBATION THEORY AND GAUGE INVARIANCE
ISSUES

A.1 Second order perturbation theory

Let us summarize some results about the second order perturbation theory (see also

[56]). By definition one has
Ju ‘= giw + Th/u/a (Al)

where 7 is introduced to keep the order of the expansions. The inverse of the metric

tensor up to and including the second order is
9" = g" + Th" + TR + O(77). (A2)
Let " be a generic tensor or a geometrical object, then it can be expanded as
T =T+7TY +7T® + O(r%). (A.3)
For the Christoffel connection we have
L =T +7(Lu W + 731,72, (A.4)
where the first order term is
(MW = %(vum + Voh] = V), (A.5)
and the second order one is
(L ")® = =B (L) (A6)

As is clear from (A.S) the linearized Christoffel connection is a background tensor
(so is the second order one), we can raise and lower the indices with the background

metric and its inverse

(pré)(l) - gvé(rﬂv 7)(1)' (A.7)
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Please note that the up index is lowered to the third position, there is a symmetry only

in the first two indices. The first order linearized Riemann tensor is
(R? WV)(l) — ?U(Fw p)(l) _ ﬁu(p(m p)(l)’ (A.8)
and the second order linearized Riemann tensor is
(R ) = Vo L) = VL") + (L") O (L0 )
(L)LY (A9)
The first order linearized Ricci tensor is
(Ryu)V) =V, (1, 7)Y =V, (I, 7)Y, (A.10)
and the second order linearized Ricci tensor is
(Ru)® = VoL ) = VoL ) + (L ) (Lo )Y
—(Fe )WL )W, (A.11)
We shall need the explicit form of it in terms of the h,, field, which reads
(Ru)® = —%% (h*°(Vihus + Vihus = Vghy,)) + %?v (7P uhop)
—i (Vihps) Vb + % (VPh) (Vuhus + Vihys = Vghy,)
+%(%hm)?5hg — %(%hmwahﬁ. (A.12)
The first order linearized scalar curvature is
(R)YV = V,V3h*® —Oh — R, ", (A.13)
and the second order linearized scalar curvature is
(R)® = R, hih™ — (Ru) VR + g (Ry) . (A.14)
Explicitly we have a rather cumbersome result for the last expression which reads
(R) = % (Vohys) V7 — 2 (Vo) V17

+%vg (RPV g hpg) + i (VPh) (2V,hG — Vsh) — =V, (h*°(2V,h} — V3h))

N | —

1 _ _ _ _
—§hP5 (2V,V,hG — Ohys — V,Vh) + R,sh”hl. (A.15)

Here without going into too much detail, let us summarize some of the relevant for-
mulas that we use in the bulk of the second chapter to show various expressions,
such as the gauge transformation of the linearized tensors, second order forms of the

tensors efc.
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A.2 Some useful identities that involve Lie and covariant derivatives

Lie and covariant derivatives do not commute so we shall need the following expres-
sions. Let X be a vector field on our spacetime manifold with a metric g and let 7" be
a (0, 2) background tensor field. Then in components one has the Lie derivative of T

with respect to the vector field X as
LxTpe = XIN{Tpo + (V, X Tho + (Vo XT) Ty (A.16)
Taking the covariant derivative of the last expression gives
Vil xThy = (VX ) ViT)e + XIV, VT + (V,V,XT) Ty,
+ (VX V, Tio + (V Vo X)) T, + (Vo XT) VT, (A.17)
Now let us change the order of the differentiations, we have
LxV,Te = XIV,V,T v, X)) V,T, v, X"V, T
X Vutpo fVulpo + B flpo + p pt fo
+ (V. X))V, T, (A.18)
Subtracting the last two expressions gives
VZxThy — LxV, Ty = XV, VT, — XIVV, T, + (V,V,XT) T},
+ (VW Vo X)) Ty, (A.19)

where

(Vs Vil Tho = Rupp *Tro + Ryugo “Top. (A.20)

Then we obtain

Vil xTpo — LxV, Tpe = (VuV, X + X Rz, ) Ty
+ (V. Vo X! + X Ryn0 ) T, (A.21)

Let dx denote the gauge transformation generated by the vector field X, such that
Sxhu =V, X, + V, X, (A.22)
From the definition of the first order linearized Christoffel connection, we have

Sx (L )V = = (V,V, X7 + V, VX, + V,V,X7 + V, VX,

N | —

-V'V,. X, -V'V,X,), (A23)
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which can be expressed as

b5 ([0 V)% 4+ [V 9] X0+ [0, 9] %) (A29)
By using the following identity
V., V,.] X" =R, X,, (A.25)
and the first Bianchi identity
Ragys + Rpyas + Ryaps = 0, (A.26)

the gauge transformation of the first order linearized Christoffel connection reads,
ox (LY =V, V, X7+ R ,,,X°. (A.27)

The symmetry in x4 and v is not explicit on the right hand side, but it is in fact sym-

metric. Making use of this in (A.21)) one finds
Vi xThy = LxV \Tpo + Too0x (T )Y + Tpadx (Lo *) L. (A.28)
Similarly, the Lie derivative of a tensor with one upper and one lower indices is
LxT,” = XIV T, + (V, X)) Ty7 — (VX)) T,”, (A.29)
and the covariant differentiation of the result gives
V. ZLxT," = (VX)) VT, + X'V, V;T,7 + (V,V,X) T}
+(V, XNV, 17— (V. Vi X)T,] — (VX)) V,T,7. (A.30)
Reversing the order of the derivatives, we have

ZLxV, 1,7 =XV, T,° + (VX)) VsT,°
+ (VX V,.T;7 — (VX)) V,T,7, (A.31)

and subtracting the last two expressions we obtain

V. ZLxT,” — LxV,T,° = X[V, V] T,7
+ (V. VX)) Ty 7 — (V,VX) T,/ (A.32)
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By using
[?ua ?f} 1,° = Rufp AT)\ 7+ Ruf Y /\v (A.33)

and the expression for the gauge transformation of the first order linearized Christoffel

connection (A.27)), we can rewrite the result as
V. ZxT," = LxV,T,° +To0x(L,*) Y — T, x (T ”)W. (A.34)

Applying the same procedure for the case of any three lower index tensor, we arrive

at the relations

?M"%XTPU’Y = gX?MTpm + Tcwv(sX(Fup a)(l) + TP@’Y(SX(FMU a)(l)
AT poadx (D ), (A35)

and

?,,ZXT,W o _ ZXvMTm o Taw 05X(Fup a)(l) + Tpa UéX(F/ﬂ a)(l)
~T,, “6x (e ")V, (A.36)

In fact in the most general case of a (m, n) tensor 7" we have

Vi X Ty pypn 727 = L XN W T pyp 7750 (A.37)
+Tap2..‘pn, 0102..‘07,,,6)( (F,LLpl a)(l) + Tpla..‘pn 0102...am,5X (prg a)(l)
oot Dprpna 7777 0x (Lup, a)(l) — Tpipapn “77 7 0x (L par 01)(1)

_TPIPQ---Pn Ulamam‘SX(FMa 02)(1) e T Tp1p2---pn UIJQN(X&X(FMUWL p)(l)'

A.3 Gauge transformation issues

Using the formulas we discussed above, let us find how the first order linearized
Einstein tensor changes under the gauge transformations generated by the flow of the

vector field X. In the index free notation one has
DFEin(g) - (ZLxg) = ZLxFEin(g), (A.38)
and in a local coordinate chart it can be expressed as
5x (Gu)V - h = 2xGC. (A.39)
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The center dot notation means that the operator on the left is evaluated at h. This
notation seems a little bit redundant at the first order, but it becomes useful in the
second order. Let us compute the left hand side of the last equation explicitly, we can
write

1 1.
0x(Gu) W - h = 6x(Ru)V - h — §QW5X(R)(1) +h = S Roxhy. (A.40)

In order to find the change of the first order linearized Ricci tensor under the gauge
transformation, let us compute the transformation of the linear order perturbation of

the Riemann tensor under the gauge transformation. Using the previous equations

(A8l [A.27), we have
5X<Rp MUV)(l) h = ?a(?yﬁuXp‘i‘Rp uoqua) _?u(?a?uXp—FRp uaaXa)> (A41)
which can be reexpressed as

Ox (R uo)V - h = [V, V] VX + R 4y Vo X — R 40V, X

+X*(VoR? yoy — VR o). (A.42)
By using the identity
[vaa v1/] v,uXp = Roy,u, a?aXp + RO’V r avuXaa (A43)

and the second Bianchi identity

VuRypap + ValRupsu + VaRypua =0, (A.44)

we can write

5X (Rp ,ual/>(1) ~h = XavaRp pov + (v,uXa)Rp aov + (vUXOé)Rp pov
+(Vo XR? ypo — (Vo XP)R® o, (A.45)

where the right hand side of the equation is the Lie derivative of the Riemann tensor
with respect to vector field X. So we can express the gauge transformation of the first

order linearized Riemann tensor as
Ox (R’ o)V - h = L xR 1. (A.46)

Contracting and renaming the indices we obtain the change of the Ricci tensor under

the gauge transformation as
(RHV)(I) ~h= D%XR;LV- (A47)
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Using the previous results, for the first order linearized scalar curvature we have
Ox(R)V - h = g" L xRy + R Z xg", (A.48)
which becomes
ox(R)W - h=_2xR. (A.49)

Inserting these results in equation (A.40)), the gauge transformation of the first order

linearized Einstein tensor can be expressed as

_ 1 I
0x(Gu)V - h=2LxR,, — §§WZXR — §R$ng. (A.50)

By combining the Lie derivative terms, it also can be written as
_ 1 -
ox(Gu)V - h =2y (R,w —~ 5@@) : (A.51)

where the right hand side of the last expression shows the Lie derivative of the Ein-
stein tensor which is evaluated at the background metric. Then this construction
proves equation . Let us note that for G w = 0, that is for solutions of Ein-
stein’s theory, & X(GW)(D - h, that is the first order linearized Einstein’s tensor is

gauge invariant.

Using the above results, let us find how the second order linearized form of the Ein-
stein tensor transforms under the gauge transformations generated by the flow of the

vector field X. In the index-free notation one has
D?Ein(g) - (h, £xg) + DEin(g) - £ xh
= %x (DFin(g) - h), (A.52)
which reads in local coordinates as
Sx(Gu)® - [h,h) + (Gu)V - Lxh = Lx(Gu)V - h. (A.53)

Let us prove this. By definition we have
(G 11, 1) = 3 (Ru)® - [, 1] = 55000 (R)® - [, )
—%(R)“) R xhy, — %hwéx(R)(l) - h. (A.54)
Let us calculate the right hand side of the equation term by term. The first term reads
x (Byu)® - [, ) = = (8:x1) (Vy( L) = Vo L))
—hP6x (Vo(Lus)™ = Vi (Lpus)™)

~0x (L )L 7 )W = (Lo )L 7)) (A.55)
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Since one has

Sxh”’ = — L g, (A.56)
the first two terms on the right hand side of the (A.55)) can be written as

- (5thﬂ) (vp(ruuﬂ)(l) - vV(Fpuﬂ)(l))
= Lx(Ruw)Vh — g Lx (Vo(Lps)Y = Viu(Lpus)M) . (AST)

By using the definition of the linearized Riemann tensor, the terms on the second line
of the (A.53)) yield
= = (1
h? 55X (vp(rw B)(l) - VV(FP# ﬂ)(l)) = h” 65X (RB u/w) -h
=h s LxR . (A.58)
Collecting these expressions we have
Ox (Ryu)® - [h, h) = Zx ()Y - b = g7 L x (Vo(Lup) Y = Vi (Lpus) V)
—Jy ((F;w a)(l)(pg o a)(l) — (T oc)(l)(pu o a)( ))

—1 56 (R? ) - . (A.59)

Using the identity given in the equation (A.35]) we can write the following equalities

ngP(FWﬁ) =V » L x( Vuﬁ)( ) — ( auﬁ) 5X< )(1)
— (Do) Mx (L )Y = (Do) Mox (1 ), (A.60)

LxV (L)Y =V, L x(Fpp)V = (Fy5)Mox (1, 7)Y
—(Lpog)Mox (1 )Y = (L) 5x(FV5”)<”. (A.61)

Inserting the results we have

Ox (Ru)® - [h,h] = £ x(Ry)V - h (A.62)
—7"7 (VoZ x(Lp)) = Vol x(Dpup)) + (L0 ) Vx (1, 7)™
(L) Vox (1, 27) D = (L0 )V x (1, )W = (o) Mox (I, 7))

1 « o o g
1 585 (R )"l = 6x (T ) (1,7 )W = (L )DL, 7 ) D)

Decomposing the first order linearized Christoffel connection as

(I)e?)Y =V, b, — (I,,° )V, (A.63)



and

([ )V =V, h? — (I, )V, (A.64)
we obtain
Ox(Ru)® - [hh] = Lx(Ru)V - h (A.65)
—3" (Vo l x (L)Y = Vil x (L))
—(1,° ) Mox (L )Y + (Viho ?) 0x (L )Y + (L) Ve (1,77)Y
— (Voho?) x (L )N 4+ (1% 0)Vox (1, 7)Y = (L) Vox (1, 77) D)
1 i (R )+ b= 8 (L )DL 7 ) = (Lo )OI, 7))
Since we have
—(I,*° J)(l)(;X(ppM 0)(1) + (FVW)(U(;X(FP pa)(l) + (pp p U)(l)(SX(Fuu 0)(1)
(Do) Wox (1, 27) Y = 6x (1,7 )V (L )Y = (L) (5, 77) W), (A66)

we can write

ox(Ru)® - [hh] = Lx(Ru)Y - h (A.67)
_gpﬁ (ﬁng(Fvuﬁ)(l) - ?VXX(FMMB)(D)

+ (?Vha p) 5X(Fpu U>(1) - (vpha p) 5X(Fvu U)(l) —h” 55X (Rﬁ up'/)(l)

- h.

Expressing the terms which involve the Lie derivative of the Christoffel connection

in terms of the linear order perturbation of the metric tensor, we can write

5X(RMV)(2) ’ [h, h] - G%X(RW)(U h+ (?vha p) 5X(Fpu U)(l)
- (vpha p) ox (Lo J)(l) — I’ gox (Rﬁ upV>(1) h
1

_§§pﬁ (vﬂgX (vvhuﬁ + ?uhz/b’ - v,6’h/W) - vng@uhpB) , (A.68)

and using the identity given in the equation (A.28) we have

5X(Rw/)(2) ’ [h, h] - $X<RW)(1) ~h+ ha P (ﬁp(SX(Fvu U)(l) - ?V(SX(FPM 0)(1))
3 (VYL s + V0L s — 0, V5L sy — V9,2 )

—1 56 (R? ) - 1, (A.69)
where the second line is the first order linearization of the Ricci tensor, with a minus

sign, which is evaluated at .2 y h. Also, from the definition of the first order linearized

Riemann tensor we get

ho? (V,0x (D )Y = V,0x(F,, YY) = hy P55 (R )Y - i, (A.70)
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and finally one can express the following equation
Ox(Ryu)® - [h, b = Lx(Rp) Y - b — (Ru) - Lxh. (A.71)
By using the expression for the second order linearized scalar curvature, we can write
Ox (R)? - [h,h] = Roeh™0xhy? + Rochs P6xh™ — 5xh(Ryq) M) - h
—ho5x (Rpo)V - h+ g7 x (Ryo)@ - [h,B].  (AT2)

Using the result for the gauge transformation of the second order linearized Ricci

tensor we have

x (R)? - [h, h] = Rygh®b6xhy? + Roehy ?6xh™ + L x5 (Rpe)V - h
WP LRy + G (.,%X(Rpo)“) — (R .,%Xh) (AT3)

This expression can be recast as

5x (R)? - [y h] = Rpeh™6xhs? + Ryoh ?6xh + %L (57 (Rop)" - 1)
_*UﬂgX(RpJ)(l) h—%Lx (hUPRpJ> + (thJP) Rpa _{_gakgx(RpU)(l) h
—§7 (Ry)" - Lxch. (A74)

Combining the Lie derivative terms we obtain

5x (R)® - [h, k] = Ryoh®™0xhy? + R,ohy 6xh (A.75)
+ L5 (77 (Rpo) V) - B — h?R,p) + (LX) Rpy — §7 (Ryo)" - Lxh,

where

77 (Ryo)V - h— bR, = (R)" - . (A.76)
After a straightforward calculation, for the remaining terms we can write
Rych6xhy? 4 Ropohy P6xh™ + (L xh") Ry = R L xhep, (A.77)
and then we obtain
5x (R)® - [hh] = Lx (R)V - h — (gffp (Ryo) M - Zxh — szxh(,p> . (A78)

where the terms in the parenthesis forms the linearized scalar curvature evaluated
at £ xh. As a result the gauge transformation of the second order linearized scalar

curvature becomes
5x (R)® - [h,h] = Zx (R - h— (R)W. Lxh. (A.79)
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Using our results in the equation we have

1
5X (GMV)(Q) ’ [h» h] = XX (RMV)(I) ~h— (R/w)(l) ) "%Xh - Ehw(sX(R)(l) “h

1 1
— 59 (.,%X (R - h— (R)MV ..,zﬂxh) — §(s)m,,(llz)(l) - h, (A.80)

and it can be expressed as

1 1
0x(G)® - [, 1] = Lx (<RW><” = 50 () = §hwR)
- ((RW)“) - Lxh— %gw, (R . Lxh— %szhw,) . (A.81)

Here the total Lie derivative terms express the Lie derivative of the first order lin-
earized Einstein tensor and the second line is the first order linearized Einstein tensor

evaluated at .Z y h. We can express the final result as
5x(Cu)® - [hh] = Lx(Gu)V - h— (Gu)W - ZLxh, (A.82)

which is the desired formula that was used in the text to study the gauge-invariance
properties of the Taub charges. Observe that if A, solve the linearized equations,
the first term on the right hand side vanishes, but the second one does not vanish.
Therefore, unlike the first order linearized Einstein tensor, the second order linearized

Einstein tensor is not gauge invariant.
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APPENDIX B

EXPLICIT FORM OF THE K-TENSOR IN ADS

Here let us depict some of the intermediate steps leading to (2.32)). Assuming a gen-

eral form for the second order perturbation of the metric tensor, &, as
K = ahyughl) +bhhy, + Gu(chls + dh?). (B.1)
The trace of the k,,, tensor is
k=g"ku = (a+cD)h’; + (b+dD)h?, (B.2)

where the constants a, b, c,d are to be determined. The first order Ricci operator

evaluated at the k,,, tensor is
1 _ _
(R)W -k = 5(vc,{vuk:a + VoV, kS — Ok, — V,V, k), (B.3)
whose explicit form follows as

(Ru)® -k = g(vammﬂhw +VaVoh®hg, — Ohlhg, — V,V,h2,)

b o o o
—l—é(VaV#hhfj +V.,V, hha thuv VMV,,h2)
5 (Vs + Vbl = G Ohls — DY,V h2)
d . o _ o
+§(vyv#h2 + V,V,h?* - g, 0Oh* — DV, V,h?). (B.4)
We should seta = 1 and b = —1 / 2 to get the second order linearized Ricci tensor
given in (A.T2)

1 _ _ _
(B = 20, (17 (Vs + 9uh)

%v (07 by RO — 9 (hh,)

<] [

o (BT uhas) — h (V5 + Vo = V) + 59, (h7,0)
Val(hoV b+ BN b — by V*h) — i?ﬁh (Vuhus + Vihus — Vah)

d _ _
+=((2— D)V, V,.h* — g,Oh*). (B.5)

* 2

(( - D)?V?uhiﬁ - guuihiﬁ)

o »hl»—*
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Using the expression for (R,,)® - [h, k], finally the Ricci tensor evaluated at the k,,,

tensor becomes

3 _ 1 _
(Ryu)V -k = =(Ru)® - [h, h] - Zvuh‘”ﬁ Vihag + §vahu6vah'§
1_ _ _ _ _
+5Va (hso Vi + hg, NV, b + b N gh,,, — V' (R hg,))
h I v l = ao a wil]
—i(RW)(l) h+ 5V, (hV,h) — 1 Va4 N h = 1w VD)
1

a7 O c VARV = =
——h*PV,V has + (2 D)V, V,uh%s — GuwOhl )

— N

o 1_ _ d o _
—ZhV,,VMh - 5vahuﬁvﬁhg + 5((2 — D)V, V,h* —g,0r*).  (B.6)

For the first order linearized scalar curvature which is evaluated at the k,,, tensor we

have
(R)W -k = g (Ruw)® - k — Rk, (B.7)
which is explicitly
(R k=~ (Bu)® - [, ] = S 00T s + 5 VsV
5 Vahs VIR & T (WET B RO s — T (1)
—%haﬂﬁhaﬁ — ggﬂ”(Rw)(” “h— ihljh + %v# (hV,h)

_ _ _ 1
+c(1 — D)OhZ; +d(1 — D)Oh? — R, (hghﬁ” — hh" + g (chls+ dh2))

— Va(2h T~ hTh). (B.8)
By using
(R)® - [h, ] = Ruhh® — B (R, )V + g™ (Ry,)® - [, 1, (B.9)
we obtain

(R

~—

Wk =—(R)P . [hh] — (RN -h— ZV“hQﬁvuhQB

5Vl g VN £ L (39,9, — VoV — Y,V 5h)
%an%h — h*Ohgps — g(R)(l) -h+ %hDh + zﬁ“hﬁﬂh
+c(1 — D)OhZ,; + d(1 — D)OR® — R(chlz + dh?), (B.10)
where
%W (2Vo Vb — Ohys — V,Vh) = b (R,5)" - h. (B.11)

66



Finally the Ricci tensor evaluated at the %, tensor becomes:

_ _ 1_ _
(R)Y k= —(R)® - [h,h] — Zv#haﬂvuhaﬁ + 5 Vahyus Vo0

1 s < _ h 1 - o
+§haﬂvavﬁh — h*Ohgg — E(R)(l) +h+ ShOh + iv“hv#h

+c(1 = D)OhZ; +d(1 — D)Oh* — R(chls +dh?).  (B.12)

We can express the first order linearized cosmological Einstein tensor evaluated at the

K, tensor as

1 21
GV k= (Ru)™ & — 59w (R)M .k — mkw (B.13)

where we made use of the fact that the background is an AdS spacetime with the

normalization R, = £2453,,. Inserting our results in the last expression we have

~(R, S0 (R 1, 1]

,)®
LPeNe Lo h o waps
: —59 v(R) 'h—mhw + 5 VahusVohy
E

\_/

- [h, h] +

VL (heV 4 h;jv,,h — h,, VOR) + 5(2 - D)vﬁuhzﬁ
1

_ 5
(2= D)V, V,h* — =G ( VIV yheg +

* 2

d _ _
3 v hgﬁvﬂhm)
L
9 In

( hoPV oV gh — h*®Ohes + 2hDh+ ST h)

1 _ _ _
— =G (¢(2 = D)ORZ g + d(2 — D)Oh?) — R(chl; + dh?))

2

1vh vVPhe 24 h,sh? + G, (ch? . + dh? B.14
_5 allyp V_M(/Jﬂ V+gHV(CaB+ ))7 ( )
where

S () (0] = = (G) 1] = S () - (B.15)

- (RW)(Q) ) [h7 h] + 2

Then the linearized Einstein tensor evaluated at the k,,,, tensor can be found as
1 h
(guu)(l) k=— (gul/)@) “[h,h] = §hul’ (R)(l) h— §(gw)(l)
3= — 1- — 1- _
——vyhaﬂv#haﬂ + §vahu5vah{j — 5vafwvﬂhfj

+=Vo (hg, Vb + hg, V0 + h*PV gh,,, — V* (hDhg,))

NJI»—l
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1 - _ _
phap = 7DV Yl + 5 v (hV,h) + = (2 = D)V, V,,h?

>

>
<
<

<] I

ol(h

N Q

V,.h+ ho‘?yh — hWVO‘h) +

5
—Zvahaﬁv hap + = v hgﬁvﬁhm)

=N = N R R RN

Q|

Qi

=

X
/\/\

1
» 5hwﬁv Vh — h*0has + hDh+ V”hV h)

—5 0w (c(2 — D)ORZ s + d(2 — D)OR?) — R(chl g + dh?))

2/
" D_9 (huﬂhg + gul/(Ch?xﬁ + th)) . (B.16)

We can express the last equation in a more compact form as
(Guu)™ k= = (Gu) ™ [, D] + Ky, (B.17)
where the final form of the K, tensor is
Ky =~ (B = 2(G) 0 b= 30,09F by 4 09
—%vah#ﬁvﬁhg + %va (hau Vb + hg, NV hP + h*PN gh,, — V* (WD hg,))

1o = 1o, = 1o _ _
— Vb4 SV, (W k) = SVa(BS Y+ BV, — Vo)

C

_ _ 24 _
+5(2=D)V,V, hls +52- D)V, V,h? — 55 (huphl) + G (chls + dR®))
1aﬁ_ = ]'— 5_0' afe 1 — 51,0
=50V NVuhag = 50 | =3V BV ohas + 5 VahesVEh
1 1 aBT O af= L, = 3 =01
—§gwj +§h VQV5h —h Dhag + §hDh + ZV hV ,h
1. _ _ _
=5 (c(2— D)ORZ, + d(2 — D)D) — R(chlz + dh?)). (B.18)

Using (G W)(l) - h = 0 and choosing the transverse traceless gauge for the sake of

4A h

simplicity, which YICIdS Dhm, = m

> the K tensor becomes
K;w = Eh VaVﬁhz/u - §vahu5v hl/ - §thﬂﬁv hl/

1_ _ 1_ _ 1 _
+§vah5yv#haﬁ + 5vah[,mhaﬁ + (0(2 - D) - 5) hON VY yhags

A
(D —2)(D-2) (

+

¢D? 4+ ¢D — 6¢ + 2)) Guwh?s

241

i (D—1)(D-2)

hosht. (B.19)

5 — — 1 = _
+ <c(D —2)+ §> Gu VRV yhag — L—ngvahc,ﬂvﬁh‘m
(c(2 — D) — —) V, b yhap —
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Using the following identities

hPN oV ghyy = Va (R*PV 5h,,) | (B.20)

4 5

VahusVoR) = Vo (husVohl) — CESE) housht, (B.21)
_ _ a _ 2AD
VahusVPhe = Vo (hsVPRS) — CEGE Q)h,whf, (B.22)
_ _ _ _ 2AD
Vaha Vb =V (hg,V,h7) — CENE) hushe (B.23)
and
_ _ _ _ 2AD
Vahg Vb =V (hg,V,h*") — CER GRS hushl, (B.24)

1 _ - 3\ _
<c(2 — D) — 5) hPN NV hag + (c(2 - D) — Z) V,hV hag
1\ = _ 1 _
- (C(Q — D) — 5) Vo (h*PV hag) — ZVyfﬂﬂvuhw, (B.25)
4/

GV RV shog = Vo (GuhasVRY?) —

.
(D —1)(D — 2)gNVho¢ﬁa (B.26)

— _ = — 2AD
GV ohos VPR =V o (Guhes VP RT®) — Guh? B.27
we can express the K tensor in a more compact form as
S A . ., lo  ase
KMV = VaH v + m C(D - 2) + 5 g'uyhaﬁ — Zvyh Vuh'aﬁ
AD
_ h ohP B.28
(D= 1)(D—2)"" (B-28)

where

1 _ _ _ _ _
H® ,, = 3 (RN ghyy, + b,V b + hg, NV b — by, gV R — s VRS

1 = 1 _
~3Omhes VIR + (C@ -D) - 5) 031"V uhos

5 _
+ (C(D —2) + g) GuhosVORP. (B.29)
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In this gauge the coefficient d is not fixed but can be set to zero. K, has a single
parameter which one can choose to fix the stability of the flat spacetime. In the
Chapter 2, we use this expression to study the linearization stability of the Minkowski

space by choosing A = 0.
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APPENDIX C

ADM FORMALISM OF TOPOLOGICALLY MASSIVE GRAVITY

The topologically massive gravity is a higher order gravity theory that involves the
third order derivative Cotton tensor, hence the ADM construction is somewhat cum-
bersome. In this appendix, we give a full account of this. What is also important
is that as the action of the theory is only diffeomorphism invariant up to a bound-
ary term, canonical ADM analysis should better be carried out at the field equation
level. For the purpose of completeness we give the computation at the level of the
action also. For this purpose we need to find the ADM decomposition of Christoffel
symbol, the Ricci tensor, the scalar curvature and Cotton tensor. Let us compute the

corresponding quantities step by step.

C.1 ADM split of the Christoffel symbol

We denote the full 2 + 1 dimensional metric with g, and the ADM decomposition of
the metric is

ds* = (nin' — n?)dt* + 2n;dtda’ + ~;jda’ da?, (C.1)
where n is lapse function and n; is shift vector both of which are functions of all
coordinates. The spatial indices can be raised and lowered with the 2 dimensional
spatial metric -;;. We will denote the spacetime coordinates with the Greek indices
and the space coordinates with the Latin indices as i, v, p, ... = 0,1,2and ¢, j, k, ... =
1,2 respectively. The components of the three dimensional metric tensor are then
goo = —(n* —n;n’), go; = n; and g;; = ;. Similarly, components of the inverse
metric are g% = —% | ¢% = nfand g = 47 — S;n'n?. We define the extrinsic
curvature tensor, k;;, of the surface

L.
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where D; is the covariant derivative which is compatible with v, namely Dy = 0 and
an over dot denotes the time derivative. I’ denotes Christoffel symbol of the three

dimensional space with the well known definition

1
F#p = §gua (al/gpa + apgua - aagup) (C.3)

and ~y denotes the Christoffel symbol of the two dimensional surface, which is com-
patible with the spatial metric y as

1
ij - §7kp (Oivip + Ojvip — Op Vi) - (C4)

Now we can find the relations between the Christoffel symbol components of the
three and two dimensional spaces. We can express the three dimensional Christoffel

connection which consist of only time components as

1
Fé)o = 5900 (200950 — Ox900) 5 (C.5)

where o can be a space or time component as we expressed above. Considering the

possible cases we obtain

1

1
Fc?o = 590030900 + 59% (2009k0 — OkGoo) , (C.6)

and inserting the components of the metric and the inverse metric tensor we have

1 . nk
Y= —(2nn — n;nA9) + —
00 (2nn — ningy )+2n2

52 (Qnakn — 20,mnt — ninjﬁkvij) ) (C.7
n

Expressing the partial derivatives in terms of covariant derivatives and by using 4% =

—tkNli = —2nkY — DinJ — Din' we obtain the final result as
1,. .
o =~ (n+ n* (Oen + n'ky)) - (C.8)

Now let us compute the Christoffel symbol with only one lower space component. It

can be expressed as

1 1
Iy = 5900&‘900 + 59% (Oogki + 0igro — OkGio) » (C.9)

and substituting the corresponding metric tensor components in the last equation we
have

Iy = % (Oin + 1"k . (C.10)
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The Christoffel symbol which has only one lower time component can be expressed

as
. 1 .. 1 .
Iy = 5901@900 + §9m (Qogr; + 93gr0 — Okgjo) (C.11)
and in terms of covariant derivative it becomes

. 1 . . )
Iy, = —=n' (0n + kgn®) + nk; " + Din'. (C.12)
n
With upper time and lower space components the Christoffel connection is

1 1
FZ% = 59% (05950 + 0Gi0 — Oogij) + 59% (0igkj + O0j9ri — Okgis) (C.13)

and it can be compactly expressed as

Iy = %kj (C.14)
We can express the Christoffel symbol which consists of only space components as
follows
Il =+ %gko (95905 + 9590i — Oogij) » (C.15)
or equivalently, this can be expresses as
I =nj — %kkj (C.16)

The last component that we need to compute is the Christoffel symbol with upper

space and lower time components, explicitly it is
i L o L ik
Iy = 29 dogoo + 59 (20090k — Orgoo) ; (C.17)

and substituting the metric tensor components it can also be expressed as
Ity = 3 (—nh + ngn® — nngn, kM — nknernT)

+ <fy’k — —nznk> (ny + ndkn — Dgn,n”) . (C.18)

n?
After a lengthy calculation we obtain
Iy = —% (n'n + n'ngn k" + n'n*On) + 4" (i + ndyn — n"Dyn,),  (C.19)
and by using v*n;, = n' — n,¥** we can express the last equation as

Iy = —% (7 + 0" (Okn + n'ky)) +n (9'n + 20Fk, ") + 7' + nFDyn’. (C.20)

To compute the decomposition of the field equations, we need to compute additional
tensor quantities such that Ricci tensor components, the scalar curvature and the Cot-

ton tensor.
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C.2 ADM split of the Ricci tensor and the scalar curvature

The three dimensional Ricci tensor which is compatible with the metric g can be
expressed as

Ryy = 8,10 — Q,I + ThI% — T I (C.21)

v po ovT pp*

We can express the hypersurface projection of the three dimensional Ricci tensor as

Rij = 0ol + OuIys — 0,10, — O + (oo + If) Loy + (Lok + 10y) I
—I’&.F& — Jgokrgj. — F@Fﬁc — Ik m (C.22)

jm* ik

and by inserting the expressions for the three dimensional Christoffel connection we

obtain

1 /.
n
where (Q)Rij denotes the Ricci tensor of the hypersurface, which is explicitly
(2)Rij = 3ij - aﬂ];:j + 71?1%% - Vfﬂii' (C.24)

The three dimensional Ricci tensor component which is orthogonal to the hypersur-

face is
Roo = akp(;fo - aOF(;ﬁk + Flfop(?o - le’éfé“m + (FnTk - Fl?o) Féco (C.25)
and it can be written as
1 . .7/.
ROO = —n'n’ (klj - TLkakZ] - D,8]n - Qkk]Dznk> - TLQkJZQ]
n
! (D R+ iy — 2kah) +n (Dydn — k — n*Dyk + 20Dk ) . (€.26)
By using equation (C.23) we can express the result in a compact form as

Roo = n'n’ Ry — n’k; + nn* (D k! — Dyk)
+n <Dk6kn kit nkDmk,gn) . (C.27)

The Ricci tensor with once time and once space projection is
Roi = O, — 00T + TroToi + T T = Do — T Do (C.28)
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and in terms of 2 4+ 1 dimensional decomposition it can be written as

1 ./.
ROz’ = —’I”LJ (k’zj — nkale-j — Dﬁjn — kijZ-nk — kkzD]nk>

n

which can be similarly expressed in terms of 12;; by using the equation (C.23)) as

Since we know the decomposition of the three dimensional Ricci tensor components,
we can compute the decomposition of the three dimensional scalar curvature 2. Con-

tracting the Ricci tensor with the inverse metric tensor yields the scalar curvature as

R =R, ¢" = Roog™ + 2Roig” + Rijgijv (C.3D)

and by using our results we have
2 /. , .
R=®R+ k¥ +k+= (k — D,Din — nzDik> , (C.32)
n

where PR is scalar curvature of the hypersurface which is compatible with spatial

metric .

C.3 ADM split of the TMG action

The ADM decomposition of the TMG action is known in the literature [57]]. Here,
as a complementary exercise to our decomposition of the field equations, we will
construct the decomposition of the action in the metric formulation. From the actual
physical point of view, one should not have a physical difference between the two
formulations. But because of the possible boundary terms, and due to the fact that the
TMG action is only diffeomorphism invariant up to a boundary term, the canonical
variables and the form of the actions look quite different. We have chosen to work
withe field equations, since the action formulation involves tensor densities. But the
following computation is still valuable and can be used for the Hamiltonian formula-

tion of the theory.
For simplicity let us analyse the TMG action in two parts.
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C.3.1 The Einstein-Hilbert action

The Einstein-Hilbert Lagrangian is
Len =+v—g(R—2A), (C.33)

where \/—g = n,/7 and substituting the three dimensional curvature scalar, which

was given in (C.32) in the action, we arrive at
2 /. A .
Lon =y <<2>R + k24 kG + = (k= DiD'n — ' Dik ) — 2/1) . (C34)

We can express the term which has explicit time dependence as

where
1 . .
and then we obtain
lex/7 = 0o (k7)) — /7 (nk?* + kDyn') . (C.37)

Inserting the last expression in the action we have

Lrn =ny7 (PR =K+, + A) + 0o (2y/7k) (C.38)
—D; (2¢/7 (D'n + kn")),

where the last three terms are boundary terms. So up to boundary terms ADM for-

malism of the Einstein-Hilbert action becomes

Lon=V=g(R+A) =ny/T(PR- K+ =24). (€39

C.3.2 The Chern-Simons action

The Chern-Simons Lagrangian is
1 pUL o Yy 2 o 7Y 776
Log = ﬂ\/—ge ry o, + gFmFmSF;w . (C.40)
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2 + 1 dimensional decomposition of the three index e tensor gives

Los = 3,79 <6"0m (L7001 e + 300, 105 ) (C.41)

0y* mdé— n 3t my*t néd

e (18,0 L, + 215 1018 ) + €™ (105, 0,10, + 2175, 1) Fgg)) :

Here the terms with the coefficient % are identical, by expressing these terms together

we have

1
PLog = ol (2,00 + 16, 0m I, + T00nl gy + 200 TsI7,) . (C42)

Let us compute the ADM decomposition of the Chern-Simons action term by term.

The first term can be decomposed as
€™ 70017, =™ (IOl g + TwOol g + DngOo Lo + IOl y) - (C.43)

In terms of the ADM decomposition the terms in the right hand side of the last equa-
tion can be recast as follows
™" 00 g (C.44)

mn

and
e I0.0 %, =™ (% (m%knamn> (C.45)
1 . 1 .
- (k:,m(‘)o (n*Opn) + nkk;mnlklm> + EknkaoDmnk + Kk k)
and

1 /.
ek Oy I0, =™ <—ﬁ (kkmnk (Omn + n'kin) + hkkmDnnk)

n3

1 1. .
+— <hnkkkm8nn) + ke Dan® + Eikn, ’“) . (C.46)
n

We also have the last piece as

1
e IR I, =™ ((ﬁ (knmkao (n'kpr) + T'kamnl%’jl)
1 . .
- <73§130 (n'kpi) + vfnkknmk> + vimf{z> . (C.47)
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Combining these we obtain the following identity
eI AL, =" (% <8nn6mh + 20,00 Ky — hk:kmc?nnk) (C.48)
+% (k;nkDmn’“ + kO — yﬁmlkmk) + emikn ® 4 Kk © + 7,’jﬁfn,€> :
Similarly the second term can be decomposed as
€™ I Oy = €™ (To00m Iy + T0eOmIng + TooOmI i + Ti0mIny) . (C.49)

where the right hand side of the equation can be expressed term by term as

n3

1
€M IO [0y = ™" (—— (hnrkmamn + "k Onn® (8kn + nlklk))

n2

+i (nam (0" kyn) + 0" (Okn + n'kir) O (n%m)>) (C.50)
and

1
M O [y = €™ (- (n%mamnnk (Okn + nlk:lk)) (C.51)

n3

—I—% ((@m + nlkm) (8mDnnk + Ok, k) + Opkn ¥ (&m + nlklk))

_% (nk (akn + nlklk) 8m (nrkrn) + amnk: (akn + nlklk) (&m + k’lnnl)>)

and

n3

1
€m”Fé€03mF£k =gmn (— <nTkkn8mnnk (@n + nlkl,,) + h@mnnkkkn)

1
3 (nknramk;m (&n + nlklr) + Opnkin (nk + nlDlnk) + hnkamk;m>

—f-% (amk?]m (nk + TLlDﬂ’Lk) - Gmnkn k ((’“)kn + 2nlk;lk))

+0mkin * (Om + 2nlklk)> (C.52)
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also and

1
emnl}flﬁmﬂik =M (—3 (—nlkknﬁmnnk (Om + n”kh«))
n

n2

1
+— (nkam (knn') (Oim + n"ky,) + 8mnnlkkank>

1
—= (8m (k') Din® — Opnk, *nlky, + n* 0,7, (Oin + k:mf))
n

+0m e, (nky* + Din®) — k%0, (k,mnl)> : (C.53)
Collecting the pieces one has the identity,

eI O, = ™" <8mkn ROun 4 Opknk0™n + Opky "0tk

+0mknin'k ¥ + Din* oAk, — ki FkakOmn' + nk *0,,9L 4

1
+— (vﬁlamn’akn + 8 O nl ke + 1O ki — Dlnkknk&nnl)
n

1
+— (hkknamnk — 0,,n*0nd,n — 0,,n*d,nn'ky — hlamnkln>> . (C59)
n

The third term can be decomposed as
€™ OnIy, =™ (DgOnl st + o 0nl oo + DoOnlp + DnyOnIty) . (C.55)
where

1
6m"F7?108nF(?0 = gmn <—$ (nlkmlnkﬁnn (8kn + nlklk) + nlk:ml@nnh)
1
+— (nlkmlﬁnh + 0pn0piu + (On + nlkp) 0, (n* (8m + nlklk))>) (C.56)
n
and

1
6m”F£Lk5’nFé“0 =gmn (E <nkk:km8nn (n +nt (O + nrkrl)))

1
— 3 (kkman (nnk) + kimOn (nknl (On + n’“k,ﬁ))

1
+— (k:kmannk + k:kmannlek + k:kmann (8'“71 + 2nlkl k))
n

+hpmn” Oy Dy + KOs (akn + 2n'k, k)) (C.57)

79



and
1
ek O, =™ <$ <nk8nnkrmn’“ (Oen + nlkkl)>

1 <(nk8mn + 1" kymn”) 0, (Ogn + n'kiy) + 0pnDyn® (O + nlkkl))

n2

+% (Dmnk (&m + nlk‘kl) — /{Zm ’“&m (&m + nlkkl)>

+ky "0, (Okm + nlk:kl)> ) (C.58)

and
n3

1
5m"F£l3nFék =gmn (—— (nkﬁnnklmnl (8k.n + nlk‘kl)>

1
+ﬁ (nlﬁnn%l;l (8kn + nlkkl) + n* k0, (nl (8kn +n! k;kl))

1

n

(%’;l(‘?n (nl (8kn + nlk:kl)) + 0Pk, 0, Dint + n*ky,,0,mky, l))
+7,’§;l8n (Dknl + nk;, l) — nk’@nkk lklm) . (C.59)

Then the third term becomes,

amnrgwanrga =™ (km o,k + ’yfnkaank + ’yin,ﬁn (nkl k)

—kmknlankl k + k?m k(‘)n@kn + kmkﬁnﬁkn + 2kmknl8nk’l k + Skmkﬁnnlkl K
1
+E (amnlén (8;71 + k:lknk) - %’fwann” (8kn + nlklk) + Dlnkkmkﬁnnl + 8nnkkmk)

% <—7’1k‘km8nnk + 20,n*0kndmn + 20,n 0nntky + Gmn@nh>> . (C.60)
The last term also can be decomposed as
gmnpgyr&rgw =" <F7go (ngorf?o + F(?kpﬁo) + ng (Fﬁofé“o + Foklpéw)
ol (Rt ) + T (T2 + %)) cob

where the decomposition of the right hand side of the equation can be expressed term
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by term as

1
gmnrgo (FT%OF(?O + ngrflo) =" (

n2

(Dmn’lc (9un + Kiun') (Okn + n"krk))
+% (k;m " (0an + k') (Okn + nkk)>> (C.62)

and

Emnpr?k (F%OF(% + F(;clpfno)

1
= gmn (-—3 <8mnklnnlh) + kpyr (K *Dyn” + ki " Dyyn®)
n

1
+ﬁ (nkknk (8mn + klmnl) — Dypn*nlky (Opn + nrkrk))

1
+— (k:n " (Omn + 2kpnn') (Oxn + n"kpy,) + Dmnkan’"km)> (C.63)

n

and

mn mn 1 .
ety i) = (k)

1/, )
—|—¥ (nkmannk — o (8 + kipn') (Okn + krk))
1
+ﬁ (’y,lflpDnnp (8kn + n’"krk)> + %]j@pkk P (&m + Tlﬁfm)) (C64)
and

g™ (FT(BLZF(;% + Féiﬂ%z)

= ™M (’yﬁlkpm (0'n +n"k, ') — A kenPhy "+ by (Okn! + nky ")

1
T (_m&npkkm — 0 k0 K+ Yy ki (O + nrkrk))

1

(kn " Ky (Orn + 0" k) + fy,’fwfyﬁlnl (Okm + n"kyg)
n

—h P Kk + Y knlenl)> : (C.65)

Finally collecting all the pieces together 2 4- 1 dimensional decomposition of the last
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term is
1
amnrgvrgér,ia =™mn (E <’y,’fu8nnl (Orn + n"kyi) + Din"kpp0pn’ + ’y;kkmmk>

1
+— <hkkm8nnk + 0,1 0pndyn + 0pn*o,nn'ky + 8mnhkknk>
n
‘HCm ’“k:nlenl + /{Ek lk:nl@mn'“ + ’wa’)/:;l (Dknl + nk:k l) + ’)/f;w/{?n r (kkml + 8kn)

ke (O'n + Pk, l)) : (C.66)

Using these terms we obtain the ADM decomposition of the Chern-Simons action as

follows

1 1
Log = @gm" <ﬁ (annhkk:mk — 0,,n*0nd,n — 8,,n*d,nn'ky + hk:lnamnl)

1 .
+E (&nn’“@n (Gkn + kkml) + n’“@mk:nk + l{:km@nnk)

ik ® A ko ® + EAL L + 2Dk (00 + 'l *)
+2k, Dy (0" + 0’k *) + 0yl (Din® + k') (C.67)

+29% m (Den' + nky ') + 0,00 (Dkn” + nky ") + 2k, kkkanl> .

Here the terms in the first two lines can be written as surface terms and therefore we
will not take them into account in the canonical analysis but they are needed for the
purposes of conserved charge computation. The first two terms in the third line are

identical which is obvious from
T G Y o o e T (C.68)

where the total time derivative term vanishes due to the antisymmetry. Now let us
focus on the non tensorial terms and try to express them in a tensorial form. The

terms with the two dimensional Christoffel symbol can be written as
em” (75175% + O Yok (Dlnk + nky l) + 298, (Dknl + nk; k)
+%]§w@n (Dknr + nkk T))
__ -mn k <l k k l l r
= (%zvmk + 2 (D 4+ nki ) (O + %m’ynk.)). (C.69)
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By using the definition of the two dimensional Riemann tensor, which is explicitly

@R (8% Ykn — O yim) PR, (C.70)

l\')l»—t

we can write
e (D + nky ®) (Omh + Vi) = %emn (Din* +nk ") Ry (€71
and it reduces to
g™ (Din* + nki®) (0w + Vo Voi) = %am”Dmnn@)R. (C.72)

The remaining term that we need to compute is the term which involves a time deriva-

tive of the two dimensional Christoffel symbol and it can be expressed as
gmn k 1 lr k. p : k lr
TV = 58" | 23 Vot Yor = Vi Om (7"
ik (10" + 3100, (") ) ©73)
Ignoring the surface terms and using the metric compatibility condition we have

pr 1

mn 1 mn T 2 T 2
iV = € (W YVl Yok Yor = Vr Y O Vot + VeV Vo Vo

_;Ymr’}/lrak’}/:jl + ;erfypr’}/;iﬂnl + ;Ymr’}/plq/;k’yrlil

pr 1

kY Op Y — kY VoV — %nwp’“v,’,mnr) (C.74)

Again by using the expression of the two dimensional Riemann tensor which was

given in equation (C.70) we have

| T : T 1 mn :
e (=" OVt + VeV Vg Yt) = 5 AP R = 0 (C.75)

and we can express some of the remaining terms as
€™ (k¥ Oyt + Frma VP Vi Yot = kY Ve nt) = €™ AV Oy (C.T6)
Finally we obtain

WSNmk =" (QVlTWI;sznk%r

2 mn
ik (O vl — Vo i) — ey (vl — %’iﬂiﬂ) (C.77)
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and we can write the term that involves a time derivative of the connection in a sym-

metric form as,
™" Yoot =1 A Vb, (C.78)

where we have defined a new two index non-tensor quantity which can be expressed

as
a 1 mn a an i
A = 1(‘25 Pt +e (v” (035 = Yyt V)
—" Bk, — %’iﬂi@))) taerd €7

Consequently all two dimensional Christoffel symbol terms together can be written

as
1 , .
ﬂemn (fy,’fbfyfnk + O (Din® + nky ') + 295 vr (Dgn + nky *)
1
ok On (Den” + nky, 7")) =% (A4 + €™ Dyyn,, P R) . (C.80)

Substituting the result in the ADM decomposition of the Chern-Simons action, which

is given in (C.68) we obtain
Les = iemn <2kmkkn *+ 2D knr (00 + 0k *) + 2k Dy, (0Fn + 0y ¥)
+Dypnn PR + 2k, kknlenl) + %Aab%b (C.81)
and by using Y., = 2nky, + Dony + Dyn, we have
Los = %57"" <Dk (Dyknin) + Dy (kmpd*n) — D* (nDy k)

+Dy (ki (0" %)) + Dy (i “kin’) + Din (%nn@)R) - %nnam@)R

_Dk (km kknl) nl + kmk’kn g + Dmknknlkl F

— D, kyyn'k ¥ —nDED,, ko + nDankmk>

1
+E (A“b’y;bnr — 9,A%n, + A%nk, + 0, (Aabnb)> . (C.82)

Finally up to boundary terms the ADM decomposition of the Chern-Simons La-
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grangian is
1 .
gC’S = /_,L <€mnk’mkkn k +n (Aabkab + 25mnDankmk)) (C83)

_i_/%na (%eanan(Q)R _ 2€mnan,mkkak _ gmnDk (km kk,n a) _ (abAba o Acb,)/gb)>.

C.3.3 The TMG action

Combining all the above results the Lagrangian of the topologically massive gravity

up to a boundary term in the ADM formulation reads

Lruc =ny7 (—24+FR =k + k) + 0™ (ap — 2nkap — 2Dyny)
1 .

+_ﬁ <€mnkmkkn ¥ +n <7_%Aabkab + 26mnDan’£mk>)
1

1 1
+—/Nq (ée‘man@)R — 26" D, kyik®™ — €™ Dy, (km k. a)
1
—7_% (8bAb“ — Ad’%lb)), (C.84)

where we have introduced the Lagrange multiplier v**. As usual we can define the

conjugate momenta of the two dimensional metric tensor as

b — 0L MG _ ab (C.85)
5’7ab

and the conjugate momenta of the extrinsic curvature tensor as

0% 1
= #A:G = ;ﬁe‘mknb. (C.86)

C.3.4 The Hamiltonian of TMG

It is obvious from equation that k£ and I/ are not independent, therefore the
system is constrained. Or to stress this: we cannot solve the velocities kab in terms of
their momenta I7%°, so we have to include this dependency as a constraint equation
by introducing Lagrange multipliers in the Hamiltonian. Therefore the Hamiltonian

of TMG is
} 1
Hrrvc = Ta + %y, — Ly + fa (Hab - ;ﬁeankn b) 7 (C.87)
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here just like A%’ | 7% is not a tensor. Inserting the TMG action, which was expressed

in equation (C.84), Hamiltonian of the TMG becomes

1
%TMG — aa (,ﬂ_abnb) + fab (Hab o ;ﬁéank’n b)

2 ) 1
+nﬁ(2/l ~ DR 4k — k2 — ;em”Dank:mk +y2 (wb — ;A“b) kab>
1
v Ma (—2—6“"8 'R+ —em" (2Dnkmik™ + Dy, (K "k )
o
-1 1 ba ab ,l 1 be cb a
47720, [ —A% — 21 2 [ —Ab —2mb ) e ) (C.88)
I I

We can introduce the following tensor
1
P = ~2 (wb - —A“b) (C.89)
i
to recast the Hamiltonian as

2
%TMG = nﬁ (2/1 _ (Q)R_'_ ]{72 . kzb . —EmnDankmk + PGbkab)
1

2

1 1
+\/_na <__€ana _Emnanmkkak + _emnDk (km kkn a) 4 DbPab)
2u 1 ft

+ fab (H ab _ ;ﬁe““kn b) : (C.90)

where f,;, is a Lagrange multiplier.

C.3.5 The Constraint equations of TMG

We can now obtain the constraint equations of TMG from the above Hamiltonian.

Variations of n,, n and f,;, yields three constraint equations.

The Hamiltonian constraint equation can be obtained from the variation with respect
to n as

2 2
(@) = 5%;%6? =~ = PR = k= S D Db+ P, (COD

and the momentum constraint equations can be obtained from the variation with re-

spect to n, as

0 2 1
(@2)a _ 5TMG _ —Emnanmkkak‘l‘—EmnDk (kmkkna)
Ng M o
1
—2—6a”8n(2)R — D, P (C.92)
1
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and also we have an additional constraint equation which comes from the variation of

the Hamiltonian with respect to Lagrange multiplier f,;, as

0 MG
(15 ab _ IO TMG
@)™ = =57,

1
" — 7oV (€ b€k, ). (C.93)
I
In contrast to the constraint equations directly obtained from the field equations, it
seems there arise three constraint equations from the Hamiltonian formalism of TMG.
But actually the last constraint equation does not say anything new about the theory,
it only repeats the relation between the extrinsic curvature tensor and its conjugate

momenta, where the relation is obvious in equation (C.86).

C.4 ADM split of the Cotton tensor

To carry out the full ADM analysis, we need to split the Cotton tensor on the hy-
persurface and normal to the hypersurface. In local coordinates the Cotton tensor is

defined as

Ch = %ewﬁ (910 V aSpv + 9upVaSsu) , (C.94)
here € is the antisymmetric tensor in interchanging of any two indices and it can be
expressed in terms of the two dimensional antisymmetric tensor, €™, where 7" =

1 . . .
e = emn0 — Lemnand € = 472e™". Also S, is the Schouten tensor which is

defined in three dimensions as

1
S = R — ZgWR. (C.95)

Let us find the 2 4+ 1 dimensional decomposition of the Cotton tensor step by step.
Since there are summations over Greek indices we can decompose them as summa-

tions over time and space components. Decomposing p gives

1 1
C/w = 5600{,8 (guovas’ﬁu + guovasﬁu) + §€ka6 (gukvasﬁy + gykvaSBM> (C96)

and decomposing « and 3 indices gives

1
Ol = 5607”" 90V mSnw + 90V mSnp) (C.97)

1 1
+§6k0m (g,ukVOSmu + gl/kVOSmu> + §Ekm0 (gukvms()l/ + gl/kvaOu) .
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Using the expression for three index € tensor and renaming the indices we can write

1
C/u/ = %emn (guovmsmf + gl/Ovan,u + gunvﬂsmu
+glanOSmu - guanSOV - gl/nvaOM> (C98)

and in terms of the partial derivatives it is

1
C,w/ = %Emn (guo (amSnV - F’r?u/STlO - Frlfzysnk) (C99)

+g1/0 (amSn,u - I;?»LMSTLO - Fylygwsnk)
+g,u,n (8051’)’”/ - F(g]ySmO - Féﬂysmk - amSOz/ + Fr?quOO + FT]ZVSOk)

+9un (00Smu — LoySmo — 10:,Smk — OmSop + InySoo + F;g#so,g)) .

By using the general expression above we can obtain the Cotton tensor components.
Hypersurface projection of the Cotton tensor is

1
Cij = %Jnn <9i0 (amSnj - F,%jsno - Frﬁjsnk’) (C.100)

+Gin (00Sms — T0Smo — TSk — OmSoj + T2, o0 + F;jSOk)) Yie
and projection once to the normal and once to the surface yields

1

+gi0 (amSnO - Fy%()sno - quosnk)
+9on (a(]smi — 13m0 = T4:Smk — OmSoi + Ly Soo + qunSOk)

+Gin (0Smo — L5pSmo — LogSmk — OmSoo + L Soo + FQOS%)) .

Projecting twice to the surface yields

1
Cop= —e™ (900 (0mSuo — TSm0 — TgSur) (C.102)

+9on (805m0 — T50Smo — LooSmik — OmSoo + TngSoo + ijw‘&)k)) .

Before finding the explicit expressions for the components of the Cotton tensor we

need to express the components of the Schouten tensor. From the definition of the

Schouten tensor, one has
1
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and by using the equations (C.30} [C.32)) projection once to the surface and once to

normal yields

Sio = anij + n (D ki" — D;k) (C.104)
and from equations [C.32)) projection twice normal to the surface gives

SOO = nianZ-j - anfj + nnk (Dml{?? - Dkk)

. 1
+n (D;ﬁkn . nkDmkkm> + 'R (C.105)

Before finding the Cotton tensor components, let us compute some frequently appear-

ing expressions. These are

OmSnj — L iSno — L iSuk = DinSnj — kmj (Drkj, — Dyk) (C.106)

OmSno — TSm0 — IF 1Snk = 1" (D Sy — K (Dsks — Dyk))
+n (DD, k), — k) Sin) . (C.107)

805mj — F(%Smo — F&Smk = Smj — nkamk — SmkD]nk
— (90 + n"kyj) (DgkS, — Dyk) (C.108)

and

—OmSoj + Lo iSoo + I iSor = Dy (=0 Sy — n (D, k§ — Djk))
- 1
+ K <Dkakn —k+n* Dk +n (ZR — kQ)) ,  (C.109)
00Smo — TSm0 — TSk = 1 <8ODrk;L — Ol — St (G + 07 m)>

0 (Sur = WRESuk = S Dy = (D + ki) (Dykl, = D) ) (C.110)
and

_amSOO + Fy?ﬂLOSOO + F::LOSOIC = nrDm (_nsSrs —n (Dski - ark))

. 1 1
+n" Ky <Dk8kn —k+n"Dk; +n (ZLR — k;fs)) + noy,n <kfs — ZR>

, 1
0k, (DokS — Dyk) — ndy, (Dk(?kn " nszk;) — R
4202k s Dy k™ + nkE Spon” +n?kE (Doki — Dpk) . (C.111)
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Making use of these identities, we can finally obtain the components of the Cotton

tensor as follows: full hypersurface projection of the Cotton tensor becomes

1
Cij =3¢ (”Z (DimSnj = kmj (Drk, — 0,k))

+%inSmj — 1kE S — S DinF — (9n + 1" kyj) (Dks, — Ok)
+Dm (—TLTSTJ‘ —n (DT]{; — D]k'))
+kimj (Dkakn — k4 n"D,k; + gR - nk2>> +ie ] (C.112)

and projection once to the surface once normal to the surface becomes
Cio = n'Cy+ %emn (—n (DySi — ki (D KT — 0,k)) (C.113)
+1; (D Dy Ky, = ke Sin) + YinOo Dk, — Sy (Okn + 0 ki)
— Dy, Dy0"n — Dy, (n*Dsk) + kb Spon”™ + Oom (k:fs — ER)
+n (%,,Spmw — iamR + k¥ (D Ky — 8kk))> :
Projecting twice to the normal of the surface yields
Coo = n'n?Cy +e™ (—nn’“ (DySpy — ki (Dsk? — Dyk)) (C.114)

+ (nin’ — n?) (DD, K}, — ki, Skn) + 100Dk, — Sk (Okn + 0k,
— D, Dy0*n — Dy, (n*Dkiy) + ki, Spyn”

1 1
#0u (12, 1R ) 41 (20,00 = L0, R+ s (Db - mk))) .

For notational simplicity, let us define the following tensors

Apni := D Sni — ki (DoK" — 0,k) (C.115)
B := DD, k" — k¥ Spn, (C.116)
1
Ep i= 2kys Dpk"™ — 200 R + kF (D, K}, — Okk), (C.117)

Cy = 0Dy km — SY, (Oxn + n"kyi) — Dy Dy0*n — Dy, (n*Dyk)

1
k" Spen” 4+ Ot (kfs - ZR) (C.118)
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and reexpress Cj and Cyy in terms of C;; and the above tensors as follows
, 1
and

Cor = nini ) (C.120)
+em" (_nnTAmnr + (nrnr - n2) an + Ny (Om + nEm)) ’

Obtaining the last two equations has been our main goal in this part, let us now move

on to the field equations.

C.5 ADM split of the TMG field equations

Matter-coupled cosmological TMG field equations are
1
Ew =G+ Agu + ;C’W = KT, (C.121)
where G, is the three dimensional Einstein tensor with the definition

1
G,uu = Ruu - §g,ul/R- (C122)

By using the Cotton and Ricci tensor components and the scalar curvature, we obtain
the ADM decomposition of the TMG field equation components. Full hypersurface

projection of the field equation is
1 1
g}ij = Sij — Z—l"}/”R + /1’)/1] + ;CU = KZTZ']', (C123)
while projection once to the surface and once normal to the surface gives

50i = le(%j +n (DT]{Z: — @k)

1
+2—6m" (n; B — nAmni + Yin (Con + nEy,)) = k10 (C.124)
1

and projection twice to the normal yields
, o . 1
(9(000 = 2711(5002' - nlnjéi’j +n (Dkakn —k + nkak +n (§R - k?s))

1
—An? — Ze™n?B,.,, = k1. (C.125)
il
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The field equation components can be used to find the constraint equations by setting
&i; to kTy; and &; to KTp;. Then we obtain the momentum constraint equation of

TMG as

1

= (10; — n’7;5) (C.126)
and the Hamiltonian constraint equation as

. 1 1
& := D0"n — k+n*Dik +n <§R — k;fs> —An — =B,
1

=K (Tgo — 2n'ro; + nianij) . (C.127)

Substituting the corresponding tensors, the explicit form of the momentum constraint

equation is
1
1
1
+n; (DmDrk:z - kf;@Skn) + Yin {n (2]</’715Dmk5rS - ZamR + krk;z (Drk;; - akk))
+ 00D, K, — Sk (Opn + n"kyi,) — Dy D0*n — Dy, (n"Diky) + ki, Spen”

1 .
+0mn <ka - ZR) }) =k (10; — n'7y;) (C.128)
and the explicit form of the Hamiltonian constraint equation is

: 1 1
® = Dp0"n — k+n"Dyk +n (5}'{ — kfs) — —""n (DD, k], — K, Sia)
i

—An =k (Too — 2n'7y; + ninjnj) ) (C.129)

By using the ADM formulation of the scalar curvature, R = 2 (34 — k) for the

TMG case, the Hamiltonian constraint equation reduces to

?= % (PR + 1 = k) = A= ie’"” (DD, K, — KL Sy
- % (700 — 2n'7T0; + n'n’7;) . (C.130)
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C.6 Constraint equations and field equations in Gaussian normal coordinates

Up to this point we have worked with generic lapse and shift functions. Dues to
the complicated expressions in this generic form, let us restrict the discussion to the
Gaussian normal coordinates. Of course this is always possible in a small neighbor-
hood of the spacetime manifold. Coordinate singularities might develop which would
make these coordinates unsuitable, but this does not change the relevant discussion

here. In the Gaussian normal coordinates, one has
ds® = —dt® + yda'da’, (C.131)

where we took n = 1, n; = 0 and with this setting the Hamiltonian constraint equa-

tion which is given with equation (C.130) reduces to

(PR+ kK — k) —A— %emn (D D,k — kb Syn) = k100 (C.132)

b =

N |

and the momentum constraint equations given in equation (C.128)) reduce to

1

1
_i_,.yln (2krstk,rs _ ZamR -+ kfn (Drkz — 8k.k) -+ (90D7J€:n>> = KRTp;-

The extrinsic curvature tensor of the surface in these coordinates simply becomes
kij = 3%i; and from equation (C.23), three dimensional Ricci tensor can be expressed

as

Ri; = Ryj + kkij — 2kk! + ;. (C.134)
From equation (C.32)) scalar curvature reduces to
R =Y R+ i +k} + 2k (C.135)

We can compute the Schouten tensor by using these expressions and find the expres-
sions of the constraints in the Gaussian normal coordinates. As a final result for the

Hamiltonian constraint equation we obtain the following expression

1 1
——e Dka n__.sm ks (Q)Rn_ ) .sn PE— 4 n
QME ( Vi 27 Y ( k VipYVsnY ’Yk)
Lo abij sl 1
3 (Faby ™7 +47) = 700 + A = 5(2)3 (C.136)
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and for the momentum constraint equations we have

—_—mn

8,u (%Wame%n - Z’Vkst (’Ykn’)/sz) + 2Dm7m - szDk’Ykn)

1 . . ks - . . :
TEu (29" Diipm — 4** DanAks + 2D 3m — Ay DPp)

1
+= (D" — v Difiap) = Toi + —€"" Dy P Ry (C.137)

24

N | —

Furthermore if we take a conformally flat 2D metric on X', which is always possible,
we have v;; = e¥0;;, where ¢ = (¢, ;) and the metric of the Gausian normal

coordinates becomes

ds* = —dt* + e?5;;dx'da’. (C.138)
The Ricci tensor of the two dimensional surface is then
@) pp—
Rl‘j = —5’%’]‘6 Vv @, (C139)

where V? = 02 4 07 = 0x0j, here. The scalar curvature of the hypersurface X' can be

expressed as
1
AR = —e 99,00 = —5e* (2D + OrpOre) . (C.140)

The Hamiltonian and the momentum constraints can be expressed as the following

equations respectively

1 1
1952 = KToo + A — §(Q>R, (C.141)
-3 i = KTo;i + EE D Ry (C.142)

The relation between the Ricci tensor and the scalar curvature of the hypersurface is
R, = 27, @R C.143
ij = 5 (C.143)

and by using this relation we can express the momentum constraint equations as fol-

lows

1
0y = —2K70; — Q—e’”iDm(Q)R. (C.144)
1

By using the equation (C.141)) we can write

1
@R =2 (kmgo + A) — §¢2 (C.145)
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and substituting the last expression in equation (C.144) we obtain

1 1
@go = —2/17'01' — —e™ iKToo + —e™ ZQOamQD (C146)
Iz 21
For simplicity let us define the current tensor J as
1
JZ' = 2/17'02' + —e™ +KToo (C147)
I
and reexpress the constraint equation as
1
24
Contracting the last equation with €** gives
2 2
Op = ;™ T + e GO, (C.149)
4 ¥
which has the same left hand side with the equation (C.146). This yields the equality
1 2 2
—Ji+ —€" i pOnp = e T + —.MQ‘meam@- (C.150)
24 @ P

Let us reexpress our result by using the definition of the J tensor which was given in
equation (C.147)) as

2 H2 2 /
_.u€miam9b <1 + cp_) = — <(9i + £€miam> KToo
2 12 2

412 241
) .
428 (eim n ﬁami) KTom. (C.151)
Yo 24

Note that in the vacuum case, the right hand side of the last equation becomes zero

and the only solution is ¢y = ct with a constant ¢ which is the de Sitter solution and

2

the constant can be obtained from the trace equation as ¢ = 7.

C.6.1 Perturbations around the de Sitter space

We can compute the perturbed constraint equations around the background solution
given by ¢g. The perturbation is defined as ¢ = ¢y + dp. Since ¢y = ct any
arbitrary spatial derivative of the ¢, will be zero (09;¢y = 0). Nonvanishing terms of

the perturbation of the final result which is given in equation (C.151]) is then

2 : 302 2 i
fuemiﬁmégp <1 + S0—0) = — <3Z~ + iemiﬁm) KOToo
¥

©o 442 211
) .
42K (eim i ﬁami) K0 Tom, (C.152)
Yo 24
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where we can express the result in terms of the solution constant ¢ as

2 . 2 2
—Mem 187”5@ 1 + C— = — 8, + iGm iﬁm /43(57'00
c 42 c 24

4
2 (eim 4 iémi) KO Torm. (C.153)
c 20

C.6.2 From de Sitter to anti de Sitter

Wick rotating the parameters as x; — ix; , t — it, ¢ — ic, one obtains the AdS space

and the Gaussian normal coordinates metric (C.138)) becomes
ds® = dt* — e (dz” + dz?) . (C.154)

At the chiral point p2l*> = 1, we have ¢ = — and left hand side of the perturbed
equation is zero but since the right hand side of the equation is not zero, there

exists a linearization instability at this point.

C.6.3 TMG field equations in Gaussian normal coordinates

We can also analyse the ADM decomposition of the TMG field equations in Gaussian

normal coordinates. The ADM decomposition of the Cotton tensor, which is given in

equation (C.I12), reduces to

1 .
Cij= 5™ (% <Smj — K} Sk — Di (D, — Djk) (C.155)

-1
Ko (k — 1R+k38)>> +i4r g
and in terms of the metric components it can be expressed as
1 mn . .
Cij = 76" (Vi Dm0jf + Yjn Dnip) (C.156)

Now we can express the TMG field equations as follows

1, . o .
&y = =7 (7 +28) + Ay + 1 (" Dndsp +€" Dudig)  (CIST)
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and writing the covariant derivatives as partial derivatives we have

1 ) .. 1 ) )
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