
LINEARIZATION INSTABILITY IN GRAVITY THEORIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EMEL ALTAŞ KİRACI
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Astronautical Engineering Dept., UTAA

Assoc. Prof. Dr. Çetin Şentürk
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ABSTRACT

LINEARIZATION INSTABILITY IN GRAVITY THEORIES

ALTAŞ KİRACI, EMEL

Ph.D., Department of Physics

Supervisor : Prof. Dr. Bayram Tekin

July 2018, 101 pages

In a nonlinear theory, such as gravity, physically relevant solutions are usually hard

to find. Therefore, starting from a background exact solution with symmetries, one

uses the perturbation theory, which albeit approximately, provides a lot of information

regarding a physical solution. But even this approximate information comes with a

price: the basic premise of a perturbative solution is that it should be improvable.

Namely, by going to higher order perturbation theory, one should be able to improve

and better approximate the physical problem or the solution. While this is often

the case in many theories and many background solutions, there are important cases

where the linear perturbation theory simply fails for various reasons. This issue is

well known in the context of general relativity through the works that started in the

early 1970s, but it has only been recently studied in modified gravity theories. This
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thesis is devoted to the study of linearization instability in generic gravity theories

where there are spurious solutions to the linearized equations which do not come from

the linearization of possible exact solutions. For this purpose we discuss the Taub

charges, the ADT charges and the quadratic constraints on the linearized solutions.

We give the three dimensional chiral gravity and the D dimensional critical gravity

as explicit examples and give a detailed ADM analysis of the topologically massive

gravity with a cosmological constant.

Keywords: Linearization instability, Second order perturbation theory, Constraint

equation analysis, Taub charges, ADT charges, Chiral gravity, Critical gravity, Topo-

logically massive gravity.

vi



ÖZ

KÜTLE ÇEKİM KURAMLARINDA DOĞRUSALLAŞTIRMA
KARARSIZLIĞI

ALTAŞ KİRACI, EMEL

Doktora, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bayram Tekin

Temmuz 2018 , 101 sayfa

Kütle çekim kuramı gibi doğrusal olmayan kuramlarda fiziksel olarak uygun olan çö-

zümü bulmak zordur. Bu yüzden, simetrileri olan bir arkaplan gerçek çözümünden

başlayarak, pertürbasyon kuramının kullanılması, yaklaşık da olsa fiziksel çözüme

ait bir çok bilgi sağlar. Fakat bu yaklaşık bilgi de bir bedel ile elde edilir: yaklaşık

çözümün temel özelliği geliştirilebilir olmasıdır. Şöyle ki, bir üst mertebe pertürbas-

yon kuramına gidildiğinde, fiziksel problem ya da çözüm geliştirilebilmeli ve daha

yaklaşık olmalıdır. Bu birçok kuramda ve birçok arkaplan çözümünde böyle olsa

da, doğrusal pertürbasyon kuramının bazı sebeplerden geçersiz olduğu önemli du-

rumlar vardır. Bu sorun genel görelilik bağlamında 1970’lerin başlarında başlayan

çalışmalar aracılığıyla sağlam bir zemine oturdu, fakat modifiye edilmiş kütle çe-
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kim teorilerinde sadece son zamanlarda çalışılmaktadır. Bu tez, genel kütle çekim

kuramlarında doğrusallaştırılmış denklemlerin bazı çözümlerinin mümkün bir gerçek

çözümün doğrusallaştırılmasından elde edilemediği genel kütle çekim kuramları ile

ilgilidir. Bu amaçla Taub yüklerini, ADT yüklerini ve doğrusallaştırılmış denklemler

üzerindeki ikinci derece kısıtlayıcı denklemleri tartışacağız. Üç boyutlu kiral kütle çe-

kim kuramını ve D boyutlu kritik kütle çekim kuramını açık örnekler olarak vereceğiz

ve kozmolojik sabitli topolojik kütle kuramının detaylı ADM analizini vereceğiz.

Anahtar Kelimeler: Doğrusallaştırma kararsızlığı, İkinci derece pertürbasyon kuramı,

Kısıtlayıcı denklem analizi, Taub yükleri, ADT yükleri, Kiral kütle çekim kuramı,

Kritik kütle çekim kuramı, Topolojik kütle çekim kuramı.
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CHAPTER 1

INTRODUCTION

In nonlinear theories such as Einstein’s general relativity or its modifications, exten-

sions with higher powers of curvature, physically interesting solutions with few or no

symmetries are usually analytically unavailable. Therefore one relies on the pertur-

bation theory of some sort which often involves an exact background solution (with

symmetries) and perturbations or deviations from this background solution. Gener-

ally, perturbation theory works fine in the sense that it can be improved order by order

in some small parameter. But there are some important cases where perturbation the-

ory fails as a method. This thesis is devoted to a detailed study of a phenomenon

called “linearization instability” which refers to the failure of the first order pertur-

bation theory in the following sense: not every solution of the linearized equations

can be improved to get exact solutions, even in principle. In the following section we

give a brief review of linearization instability. Throughout the thesis, we work both

with the index free and local coordinate forms of the relevant tensors.

1.1 Linearization instability in brief

A nonlinear equation F (x) = 0 is said to be linearization stable at a solution x0 if

every solution δx to the linearized equation F ′(x0) · δx = 0 is tangent to a curve

of solutions to the original nonlinear equation. In some nonlinear theories, not all

solutions to the linearized field equations represent linearized versions of exact (non-

linear) solutions. As a common algebraic example, let us consider the following:

Example : Let us consider a function F from IR × IR → IR such that F (x, y) =

x(x2 + y2). In the domain of definition, the solution set to F (x, y) = 0 is given as
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(0, y) which is the y axis.

Linearization of this exact solution set is then tangent to the y axis and can be shown

as (0, ∂
∂y
) or span{ ∂

∂y
}, which is one dimensional.

Now let us consider the particular solution (0, 0) and linearize the equation around it.

The linearized equation is simply (3x2 + y2) δx + 2xyδy = 0. For (0, 0) there is no

constraint on the linearized solutions, then the solution set is (δx, δy) where δx and

δy are arbitrary. Although δx can be arbitrary with this approach, we know that it

cannot be from the linearization of the exact solution. Only (0, ∂
∂y
) is allowed to be

integrable to an exact solution. Consequently, the exact solution (0, 0) is lineariza-

tion unstable and the perturbation theory fails about it. F (x, y) = x(x2 + y2) = 0,

where x, y are real, exact solution space is one dimensional given as (0, y), and the

linearized solution space is also one dimensional (0, δy) as long as y 6= 0. But at

exactly the solution (0, 0), the linearized solution space is two dimensional (δx, δy)

and so there are clearly linearized solutions with δx 6= 0, which do not come from the

linearization of any exact solution. The existence of such spurious solutions depends

on the particular theory at hand and the background solution (with its symmetries and

topology) about which linearization is carried out. If such so called "non-integrable"

solutions exist, perturbation theory in some directions of solution space fails and we

say that the theory is not linearization stable at a nonlinear exact solution. See Figure

1.1 for a depiction of the function and the solution set.

What we have just described is not an exotic phenomenon: a priori no nonlinear the-

ory is immune to linearization instability: one must study the problem case by case.

For example, pure general relativity is linearization stable in Minkowski spacetime

(with a non-compact Cauchy surface) [1], hence perturbation theory makes sense, but

it is not linearization stable on a background with compact Cauchy surfaces that pos-

sesses at least one Killing symmetry [2] which is the case when the Cauchy surface

is a flat 3-torus [3]: on T 3 × IR, at second order of the perturbation theory, one must

go back and readjust the first order perturbative solution.

As gravity is our main interest here, let us consider some nonlinear gravity field equa-

tions in a coordinate chart as Eµν = 0, which admits ḡµν as an exact solution, if

every solution hµν of the linearized field equations E (1)(ḡ) · h = 0 is tangent to an

2



Figure 1.1: The blue surface represents the (x, y) plane and the orange surface shows

the F function, also the intersection of the surfaces is the y axis which is the exact

solution. As we mentioned above, linearization of the exact solution is tangent to the

y axis. Conversely, solution of the linearized equation around the particular solution

(0, 0) is (δx, δy). It is obvious that this solution is out of the linearized solution space.
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exact solution gµν(λ) such that gµν(0) =: ḡµν and dgµν
dλ

|λ=0 =: hµν then, according

to our definition above, the theory is linearization stable. Otherwise it is linearization

unstable. In general, we do not have a theorem stating the necessary and sufficient

conditions for the linearization stability of a generic gravity theory about a given ex-

act solution. We shall give a detailed discussion on generic gravity models in the next

section based on our recent work [4]. For a brief note, let us consider the following:

defining the second order perturbation as d2gµν
dλ2 |λ=0 =: kµν , if the following second

order equation

(E )(2)(ḡ) · [h, h] + (E )(1)(ḡ) · k = 0, (1.1)

has a solution for kµν without a constraint on the linear solution hµν , then the theory

is linearization stable. Of course, at this stage it is not clear that there will arise no

further constraints on the linear theory beyond the second order perturbation theory.

In fact, besides Einstein’s theory, this problem has not been worked out, to the best

of our knowledge. But in Einstein’s gravity, as the constraint equations are related

to the zeros of the moment map, one knows that there will be no further constraint

for the linear theory coming from higher order perturbation theory beyond the second

order [5]. In Einstein’s gravity for compact Cauchy surfaces without a boundary, the

necessary and sufficient conditions are known for linearization stability [2, 6–8].

In practice, it is very hard to show that (1.1) is satisfied for all linearized solutions,

therefore, one resorts to a weaker condition by contracting that equation with a Killing

vector field and integrates over a hypersurface to obtain QTaub

[
ξ̄
]
+ QADT

[
ξ̄
]
= 0

where the Taub charge [9] is defined as

QTaub

[
ξ̄
]
:=

ˆ
Σ

d3Σ
√
γ n̂ν ξ̄

µ
(E µν)

(2) · [h, h], (1.2)

and the Abbott-Deser-Tekin (ADT) charge [10, 11] is defined as

QADT

[
ξ̄
]
:=

ˆ
Σ

d3Σ
√
γ n̂ν ξ̄

µ
(E µν)

(1) · k. (1.3)

As it appears in the second order perturbation theory, the Taub charge is not a widely

known quantity in physics, therefore a more detailed account of it will be given in

the next chapter following the relevant discussion of [4]. The ADT charge can be

expressed as a boundary integral. For the case of compact Cauchy surfaces without

a boundary, QADT = 0, and hence one must have QTaub = 0 which leads to the

4



aforementioned quadratic integral constraint on the linearized perturbation hµν as the

integral in (2.13) should be zero. This is the case for Einstein’s gravity, for example,

on a flat 3-torus: QTaub does not vanish automatically and so the first order perturba-

tive result h is constrained. On the other hand, for extended gravity theories (such as

the ones we are interested in this thesis), QADT vanishes for a different reason, even

for non-compact surfaces, as in the case of AdS. The reason is that for some tuned

values of the parameters in the theory, the contribution to the conserved charges from

various tensors cancel each other exact, yielding non-vacuum solutions that carry the

(vanishing) charges of the vacuum. This is the source of the linearization instability.

Chapter II of this thesis is devoted to a detailed study of linearization instability in

generic gravity theories. We give D-dimensional critical and three dimensional chiral

gravity theories (which both received interest in the recent literature) as two interest-

ing examples of theories that exhibit the kind of linearization instability we mentioned

above.

In Chapter III, we give a discussion of the initial value formulation and the ADM

decomposition of topologically massive gravity, study its constraints on a spacelike

surface and give a second proof of linearization instability at the chiral limit of the

theory. This second proof is not based on the charge construction but is based directly

on the field equations (especially the constraints of the theory).

We relegate some of the computations to the appendices: In Appendix A, we give

details of second order perturbation theory in the context of Riemannian geometry

and compute the relevant expanded tensors up to second order and discuss the gauge

invariance issues of the second order Einstein’s tensor. Note that, in contrast to the

first order Einstein’s tensor, the second order one is not gauge invariant, therefore one

must be very careful about any result (such as the Taub charge construction) based

on the second order perturbation theory. So we discuss the gauge transformation

properties of the relevant tensors under small gauge transformations (infinitesimal

diffeomorphisms).

In Appendix B, we compute explicitly the form of the Kµν tensor for the case of

Einstein’s theory in AdS and Minkowski spaces. This is relevant for the proof of the

linearization stability of the Minkowski space.
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Appendix C is devoted to a detailed construction of the ADM formulation of the

topologically massive gravity directly from the field equations and the action. In

most of that appendix we work with nonzero lapse and shift functions, but at the end

we restrict to the Gaussian normal coordinates for the particular goal of studying the

linearization instability issue on the spacelike initial value surface for AdS.
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CHAPTER 2

LINEARIZATION INSTABILITY FOR GENERIC GRAVITY IN AdS

There is an 1 interesting conundrum in nonlinear theories, such as Einstein’s gravity

or its modifications with higher curvature terms: exact solutions without symme-

tries (which are physically interesting) are hard to find, hence one resorts to symmet-

ric "background" solutions and develops a perturbative expansion about them. But

it turns out that exactly at the symmetric solutions, namely about solutions having

Killing vector fields, naive first order perturbation theory fails under certain condi-

tions. The set of solutions to Einstein’s equations forms a smooth manifold except

at the solutions with infinitesimal symmetries and spacetimes with compact Cauchy

surfaces where there arise conical singularities in the solution space. Namely, per-

turbation theory in non-linear theories can yield results which are simply wrong in

the sense that some perturbative solutions cannot be obtained from the linearization

of exact solutions. Roughly speaking, the process of first linearizing the field equa-

tions and then finding the solutions to those linearized equations; and the process

of linearization of exact solutions to the non-linear equations can yield different re-

sults if certain necessary criteria are not met with regard to the background solution

about which perturbation theory is carried out. Actually, the situation is more seri-

ous: linearized field equations can have spurious solutions which do not come from

exact solutions. This could happen for various reasons and the failure of the first or-

der perturbation theory can be precisely defined, as we shall do below. Figure 2.1

summarizes the results.

Let us give a couple of early observations in this issue in the context of general rel-

ativity (GR) before we start the discussion in generic gravity. One clear way to see

the failure of the perturbation theory is through the initial value formulation of the

1 This chapter was published as Phys. Rev. D 97, 024028 on 24 January 2018.
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Figure 2.1: The vertical straight arrows show first order linearization while the curved

ones show second order linearization. For a linearization stable theory, the diagram

makes sense and the solution to the linearized equation h is not further restricted at

the second order which means that there is a symmetric tensor k that satisfies the

second order equation in the bottom left. The details of the symbols are explained in

the next section.

theory for globally hyperbolic, oriented, time-orientable spacetimes with the topol-

ogy M ≈ Σ × R, where Σ is a spacelike Cauchy surface on which the induced

Riemannian metric γ and the extrinsic curvature K (as well as matter content of the

theory) are defined. [It is also common to formulate the constraint equations in terms

of γ and a tensor density of weight 1 defined as π :=
√

detγ(K−γtrγK) which is the

conjugate momentum of the induced metric γ.] We shall consider the matter-free case

through-out this chapter. Since GR is nonlinear, the initial data cannot be arbitrarily

prescribed: they must satisfy the so called Hamiltonian and momentum constraints

Φi(γ,K) = 0 with i ∈ {1, 2, 3, 4} in four dimensions. If a given initial data (γ̄, K̄)

solving the constraints is not isolated, meaning the linearized constraint equations

δΦi(γ̄, K̄) · [δγ, δK] = 0 allow viable linearized solutions (δγ, δK), then the theory

is said to be linearization stable about the initial Cauchy data. Deser and Brill [3]

showed that in GR with a compact Cauchy surface having the topology of a 3-torus,

there are strong constraints on the perturbations of the initial data. Any such pertur-

bation leads to contradictions in the sense that bulk integrals of conserved mass and

angular momenta do not vanish, while since there is no boundary, they must vanish

in this compact space: hence the background is an isolated solution. Put in another

8



way, the linearized field equations about the background have solutions which do not

come from the linearization of exact solutions. This happens because, as we shall

see below, the linearized equations of the theory are not sufficient to constrain the

linearized solutions: quadratic constraints on the linearized solutions, in the form of

an integral (so called Taub conserved quantity first introduced in [9] for each Killing

vector field), arise.

Most of the work regarding the linearization stability or instability in gravity has been

in the context of GR with or without matter and with compact or with non-compact

Cauchy surfaces. A nice detailed account of all these in the context of GR is given

in the book [12]. See also [13] where a chapter is devoted to this issue and the Taub

conserved quantity construction which is not widely known in the physics community.

Our goal here is to extend the discussion to generic gravity theories: we show that if

the field equations of the theory are defined by the Einstein tensor plus a covariantly

conserved two tensor, then a new source of linearization instability that does not exist

in GR arises, especially in de Sitter or Anti-de Sitter backgrounds, with non-compact

Cauchy surfaces. This happens because in these backgrounds there are special critical

points in the space of parameters of the theory which conspire to cancel the conserved

charge (mass, angular momentum, etc.) of non-perturbative objects (black holes) or

the energies of the perturbative excitations. One needs to understand the origin of

this rather interesting phenomenon that non-vacuum objects have the same charges

as the vacuum. To give an example of this phenomenon let us note that this is exactly

what happens in chiral gravity [14–17] in 2+1 dimensions where the Einstein tensor

is augmented with the Cotton tensor and the cosmological constant times the metric

(namely a special limit of the cosmological topologically massive gravity [18]). In

AdS, at the chiral point, the contribution of the Cotton tensor and the Einstein tensor in

AdS cancel each other at the level of the conserved charges. Exactly at that point, new

ghost-like solutions, the so called log modes arise [19] and if the boundary conditions

are not those of Brown-Henneaux type [20], then these modes are present in the theory

with negative energies. This would mean that the theory has no vacuum. But it

was argued in [15, 17] that chiral gravity in AdS has a linearization instability which

would remedy this problem. A similar phenomenon occurs in critical gravity in all

dimensions [21,22]. Here we give a systematic discussion of the linearization stability
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and instability in generic gravity theories and study these two theories as examples.

We will not follow the route of defining the theory in the 3+1 setting and considering

the instability problem on the Cauchy data. The reason for this is the following: in

GR for asymptotically flat spacetimes, splitting the problem into the constraints on

the Cauchy data and the evolution of the 3-metric and the extrinsic curvature turns

the stability problem to a problem in elliptic operator theory which is well-developed

and sufficient to rigorously prove the desired results. In the initial value formulation

setting, the problem becomes a problem of determining the surjectivity of a linear

operator, namely the linearized constraint operator. But this method is not convenient

for our purposes since the source of the linearization instability in the extended gravity

models that we shall discuss is quite different and so the full spacetime formulation

is much better-suited for our problem. In GR as noted in the abstract, what saves

the Minkowski space from the linearization instability is its non-compact Cauchy

surfaces as was shown by Choquet-Bruhat and Deser [1]. This result is certainly

consistent with the non-zero conserved charges (ADM mass or angular momentum)

that can be assigned to an asymptotically-flat 3 dimensional Cauchy surface.

The layout of the chapter is as follows: In section II, we discuss the linearization

stability in generic gravity theory and derive the second order constraints on the so-

lutions of the linearized field equations. Of course these constraints are all related

to the diffeomorphism invariance and the Bianchi identities of the theory. Hence

we give a careful discussion of the linearized forms of the field equations and their

gauge invariance properties. As the second order perturbation theory about a generic

background is quite cumbersome in the local coordinates, we carry out the index-free

computations in the bulk of the chapter and relegate some parts of the component-

wise computations to the appendices. In section II, we establish the relation between

the Taub conserved quantities coming from the second order perturbation theory and

the Abbott-Deser-Tekin (ADT) charges coming from the first order perturbation the-

ory. We study the linearization stability and instability of the Minkowski space, chiral

gravity and critical gravity as examples. In the forth-coming chapter, we shall give a

more detailed analysis of the chiral gravity discussion in the initial value formulation

context.

10



2.1 Linearization Stability in Generic Gravity

Let us consider the matter-free equation of a generic gravity theory in a D-dimensional

spacetime, whose dynamical field is the metric tensor g only. In the index-free nota-

tion the covariant two-tensor equation reads

E (g) = 0, (2.1)

together with the covariant divergence condition which comes from the diffeomor-

phism invariance of the theory

δgE (g) = 0, (2.2)

where δg denotes the divergence operator with respect to the metric g. (As usual,

one uses the musical isomorphism to extend the divergence from the contravariant

tensors to the covariant ones.) Here we generalize the discussion in [6, 7] given for

Einstein’s theory to generic gravity. Let us assume that there is a one-parameter

family of solutions to (2.1) denoted as g(λ) which is at least twice differentiable with

respect to λ parameterizing the solution set. Then we can explore the consequences

of this assumption with the help of the following identifications :

ḡ := g(λ)

∣∣∣∣
λ=0

, h :=
d

dλ
g(λ)

∣∣∣∣
λ=0

, k :=
d2

dλ2
g(λ)

∣∣∣∣
λ=0

. (2.3)

At this stage there is of course no immediate relation between the two covariant tensor

fields h (the first derivative of the metric) and k (the second derivative of the metric)

but, as we shall see later, consistency of the theory, i.e. the first order linearized and

second order linearized forms of the field equations will relate them. We would first

like to find that relation.

We assume that ḡ exactly solves the vacuum equations E (ḡ) = 0 and we compute the

first derivative of the field equations with respect to λ and evaluate it at λ = 0 as

d

dλ
E (g(λ))

∣∣∣∣
λ=0

= DE (g(λ)) · dg(λ)
dλ

∣∣∣∣
λ=0

= 0, (2.4)

where D denotes the Fréchet derivative and the center-dot denotes "along the direc-

tion of the tensor that comes next" and we have used the chain rule. In local coor-

dinates, this equation is just the first order "linearization" of the field equations (2.1)

which we shall denote as (E µν)
(1) · h = 0. It is important to understand that solutions
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of (2.4) yield all possible h tensors (up to diffeomorphisms), which are tangent to the

exact solution g(λ) at λ = 0 in the space of solutions. To understand if there are any

further constraints on the linearized solutions h, let us consider the second derivative

of the field equation with respect to λ and evaluate it at λ = 0 to arrive at

d2

dλ2
E

(
g(λ)

)∣∣∣∣
λ=0

=

(
D2E (g(λ)) ·

[
dg(λ)

dλ
,
dg(λ)

dλ

]
+DE (g(λ)) · d

2g(λ)

dλ2

)∣∣∣∣
λ=0

= 0, (2.5)

where we have used the common notation for the second Fréchet derivative in the

first term and employed the chain rule when needed. We can write (2.5) in local

coordinates as

(E µν)
(2) · [h, h] + (E µν)

(1) · k = 0, (2.6)

where again (E µν)
(2)·[h, h] denotes the second order linearization of the field equation

about the background ḡ. Even though this equation is rather simple, it is important to

understand its meaning to appreciate the rest of the discussion. This is the equation

given in the bottom-left corner of Figure 2.1. Given a solution h of (E µν)
(1) · h = 0,

equation (2.6) determines the tensor field k, which is the second order derivative of

the metric g(λ) at λ = 0. If such a k can be found then there is no further constraint on

the linearized solution h. In that case, the field equations are said to be linearization

stable at the exact solution ḡ. This says that the infinitesimal deformation h is tangent

to a full (exact) solution and hence it is integrable to a full solution. Of course, what

is tacitly assumed here is that in solving for k in (2.6), one cannot change the first

order solution h, it must be kept intact for the perturbation theory to make any sense.

We can understand these results form a more geometric vantage point as follows. For

the spacetime manifold M, let S denote the set of solutions of the field equations

E (g) = 0. The obvious question is (in a suitable Sobolev topology), when does this

set of solutions form a smooth manifold whose tangent space at some "point" ḡ is

the space of solutions (h) to the linearized equations? The folklore in the physics

literature is not to worry about this question and just assume that the perturbation

theory makes sense and the linearized solution can be improved to get better solutions,

or the linearized solution is assumed to be integrable to a full solution. But as we

have given examples above, there are cases when the perturbation theory fails and the
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set S has a conical singularity instead of being a smooth manifold. One should not

confuse this situation with the case of dynamical instability as the latter really allows

a "motion" or perturbation about a given solution. Here linearization instability refers

to a literal break-down of the first order perturbation theory. It is somewhat a non

trivial matter to show that there are no further constraints beyond the second order

perturbation theory: In Einstein’s gravity, this is related to the fact that constraint

equations are related to zeros of the moment maps [5]. For generic gravity, this issue

deserves to be further studied.

2.1.1 Taub conserved quantities and ADT charges

So far, in our discussion we have not assumed anything about whether the spacetime

has a compact Cauchy surface or not. First, let us now assume that the spacetime has

a compact spacelike Cauchy surface and has at least one Killing vector field. Then

we can get an integral constraint on h, without referring to the k tensor as follows.

Let ξ̄ be a Killing vector field of the metric ḡ, then the following vector field 2

T := ξ̄ ·D2E (ḡ) · [h, h] , (2.7)

is divergence free, since δḡD
2E (ḡ). [h, h] = 0 due to the linearized Bianchi identity .

Then we can integrate T over a compact hypersurface Σ and observe that the integral

(for the sake of definiteness, here we consider the 3+1 dimensional case)
ˆ
Σ

d3Σ
√
γ T · n̂Σ (2.8)

is independent of hypersurface Σ where γ is the pull-back metric on the hypersurface

and n̂Σ is the unit future pointing normal vector. Let us restate the result in a form that

we shall use below: given two compact disjoint hypersurfaces Σ1 and Σ2 (as shown in

Figure 2.2) in the spacetime M, we have the statement of the "charge conservation"

as the equality of the integration over the two hypersurfaces
ˆ
Σ1

d3Σ1
√
γΣ1 T · n̂Σ1 =

ˆ
Σ2

d3Σ2
√
γΣ2 T · n̂Σ2 . (2.9)

2 For the lack of a better notation, note that ξ̄ is contracted with the covariant background tensor with a
center dot which we shall employ in what follows and it should not be confused with the center dot in the Fréchet
derivative.
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We can now go to (2.6) and after contracting it with the Killing tensor ξ̄, and integrat-

ing over Σ, we obtain the identity
ˆ
Σ

d3Σ
√
γ ξ̄

µ
n̂ν(E µν)

(2) · [h, h] = −
ˆ
Σ

d3Σ
√
γ ξ̄

µ
n̂ν (E µν)

(1) · k . (2.10)

Let us study the right-hand side more carefully. In a generic theory, this conserved

Killing charge is called the Abbott-Deser-Tekin (ADT) charge ( for further details on

the ADT charges, please see the recent review [23] and the relevant references therein

)when the symmetric two-tensor k is the just the linearized two tensor h [10,11]. Once

the field equations of the theory are given, it is possible, albeit after some lengthy

computation, to show that one can write the integral on the right-hand side as a total

derivative.

ξ̄
µ
(E µν)

(1) · h = ∇̄α

(
Fα

νµξ̄
µ)

, (2.11)

with an anti-symmetric tensor F in α and ν. Hence if the Cauchy surface is compact

without a boundary, the ADT charge vanishes identically, namely

QADT

[
ξ̄
]
:=

ˆ
Σ

d3Σ
√
γ n̂ν ξ̄

µ
(E µν)

(1) · h = 0, (2.12)

which via (2.10) says that one has the vanishing of the integral on the left hand-side

which is called the Taub conserved quantity:

QTaub

[
ξ̄
]
:=

ˆ
Σ

d3Σ
√
γ n̂ν ξ̄

µ
(E µν)

(2) · [h, h] = 0, (2.13)

which must be automatically satisfied for the case when h is an integrable defor-

mation. Otherwise this equation is a second order constraint on the linearized so-

lutions. Even though the ADT potential F was explicitly found for a large family

of gravity theories, such as Einstein’s gravity [10], quadratic gravity [11], f(Riem)

theories [24], and some examples will be given below, we can still refine the above

argument of the vanishing of both the ADT and Taub conserved quantities without

referring to the ADT potential (or more explicitly without referring to (2.11)). The

following argument was given for Einstein’s gravity in [7] which immediately gen-

eralizes to the most general gravity as follows: consider the ADT charge (2.12) and

assume that in the spacetime one has two disjoint compact hypersurfaces Σ1 and Σ2

as above. Then the statement of conservation of the charge is simply

QADT

(
ξ̄, Σ1

)
= QADT

(
ξ̄, Σ2

)
. (2.14)
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Figure 2.2: Disjoint hypersurfaces Σ1 and Σ2 are shown along with their timelike

unit normals. The figure is taken from [23].

Now let k be a two tensor which is k1 and non-zero on Σ1 and k2 and zero near Σ2,

then QADT

(
ξ̄, Σ2

)
= 0 so QADT

(
ξ̄, Σ1

)
= 0 which in turn yields the vanishing of

the Taub conserved quantities via (2.10).

To summarize the results obtained so far, let us note that assuming an integrable

infinitesimal deformation h, which is by definition a solution to the linearized field

equations about a background ḡ solution, we arrived at (2.6). And the discussion

after that equation showed that Taub conserved quantities constructed with a Killing

vector field, from the second order linearization, (E µν)
(2) ·[h, h], and the ADT charges

constructed from the first order linearization, (E µν)
(1) · h, vanish identically for the

case of compact Cauchy hypersurfaces without a boundary. If these integrals do

not vanish, then there is a contradiction and the the linearized solution h is further

constraint. Hence it is not an integrable deformation, namely, h is not in the tangent

space about the point ḡ in the space of solutions. For Einstein’s theory with compact

Cauchy surfaces, it was shown that the necessary condition for linearization stability

is the absence of Killing vector fields [2, 8]. As noted above, the interesting issue

is that further study reveals that besides the quadratic constraint, there are no other

constraints on the solutions to the linearized equations [5].
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2.1.2 Gauge invariance of the charges

Of course there is one major issue that we still must address that is the gauge-

invariance (or coordinate independence) of the above construction which we show

now. Following [7], first let us consider a (not necessarily small) diffeomorphism ϕ

of the spacetime as ϕ : M → M. Then we demand that having obtained our rank

two tensor E (g) from a diffeomorphism invariant action (or from a diffeomorphism

invariant action up to a boundary term as in the case of topologically massive gravity)

we have a global statement of diffeomorphism invariance as

E (ϕ∗g) = ϕ∗E (g) , (2.15)

which states that E evaluated for the pull-back metric is equivalent to the pull-back of

E evaluated for g. Let us now consider a one-parameter family of diffeomorphisms

as ϕλ, generated by a vector field X well-defined on some region of spacetime. Let

ϕ0 be the identity diffeomorphism denoted as ϕ0 = IM. Then we can differentiate

(2.15) with respect to λ once to get

d

dλ
E (ϕ∗

λg) =
d

dλ
ϕ∗
λE (g) , (2.16)

which, after making use of the chain rule, yields

DE (ϕ∗
λg) ·

d

dλ
ϕ∗
λg = ϕ∗

λ

(
L XE (g)

)
, (2.17)

where L X is the Lie derivative with respect to the vector field X . Taking the deriva-

tive of the last equation with respect to g yields

D2E (g) ·
(
h,L Xg

)
+DE (g) · L Xh = L X

(
DE (g) · h

)
. (2.18)

In components, and after setting λ = 0, equation (2.17) reads, respectively

δX (E µν)
(1) · h = L XE µν(ḡ), (2.19)

and equation (2.18) reads

δX (E µν)
(2) · [h, h] + (E µν)

(1) · L Xh = L X (E µν)
(1) · h, (2.20)

where δX (E µν)
(1) ·h denotes the variation of the background tensor (E µν)

(1) ·h under

the flow of X or under the infinitesimal diffeomorphisms. Since E µν(ḡ) = 0, (2.19)

says that (E µν)
(1) · h is gauge invariant: δX (E µν)

(1) · h = 0. Similarly (2.20) yields

δX (E µν)
(2) · [h, h] + (E µν)

(1) · L Xh = 0, (2.21)
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since (E µν)
(1) ·h = 0 by assumption, the right hand side of (2.20) vanishes. It is worth

stressing that since generically (E µν)
(1) ·L Xh is not zero, the second order expansion

(E µν)
(2) · [h, h] is not gauge invariant but transforms according to (2.21). Gauge

invariance of the Taub conserved quantity and the ADT charge follows immediately

from (2.21). Contracting that equation with the Killing vector field ξ̄ and integrating

over the Cauchy surface, one finds
ˆ
Σ

d3Σ
√
γ nν

[
ξ̄
µ
δX (E µν)

(2) · [h, h] + ξ̄
µ
(E µν)

(1) · L Xh
]
= 0. (2.22)

Since we have already shown that the second term can be written as a divergence we

can drop it out, the remaining part is the Taub conserved quantity which is shown

to be is gauge invariant, by this construction. The above discussion has been for a

generic gravity theory based on the metric tensor as the only dynamical field, let us

consider Einstein’s gravity as an explicit example.

2.1.3 Linearization stability in Einstein’s gravity

Let Ein denote the (0, 2) Einstein tensor, and h denote a symmetric two tensor field as

described above and X be a vector field, then the effect of infinitesimal one-parameter

diffeomorphisms generated by X follows as

DEin(g) · L Xg = L XEin(g), (2.23)

which in local coordinates reads

δX (Gµν)
(1) · h = L XḠµν , (2.24)

where Gµν := Ein(eµ, eν) and Ein := Ric− 1
2
Rg. We have already given the proof

of the above equation for a generic theory in the previous part, but it pays to do it

more explicitly in Einstein’s theory: so it follows as

δX(Gµν)
(1) · h = δX(Rµν)

(1) · h− 1

2
ḡµνδX(R)(1) · h− 1

2
R̄δXhµν , (2.25)

which just comes from the definition of the linearized Einstein tensor. Then one can

rewrite the above expression as desired:

δX(Gµν)
(1) · h = L X

(
R̄µν −

1

2
ḡµνR̄

)
= L XḠµν . (2.26)
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At the second order of linearization, one has

D2Ein(g) · (h,L Xg) +DEin(g) · L Xh = L X

(
DEin(g) · h

)
, (2.27)

whose local version reads

δX(Gµν)
(2) · [h, h] + (Gµν)

(1) · L Xh = L X(Gµν)
(1) · h. (2.28)

The explicit proof of this expression is rather long, hence we relegate it to Appendix

A.

Now let us study the linearization stability of a particular solution to Einstein’s gravity

with a cosmological constant. Let ḡ solve the cosmological Einstein’s field equations

then the equation relevant to the study of linearization stability of this solution is (2.6)

which now reads

(Gµν)
(2) · [h, h] + (Gµν)

(1) · k = 0, (2.29)

where (Gµν)
(1) · k is a simple object but the the second order object (Gµν)

(2) · [h, h]
is quite cumbersome. It is very hard to use this equation to show that for a generic

background ḡµν , a kµν can be found or cannot be found that satisfy (2.29). Therefore

one actually resorts to a weaker (sufficiency) condition that the Taub charges vanish

which, as we have seen, results from integrating this equation after contracting with

a Killing vector field ξ̄
µ
. To set the stage for generic gravity theories about their AdS

backgrounds, let us study (2.29) in AdS and flat spaces. In that case one can plug an

explicit ansatz as follows: assume that such a k exists in the form

kµν = a hµβh
β
ν + b hhµν + ḡµν(c h

2
αβ + d h2), (2.30)

where k := kµν ḡ
µν and a, b, c, d are constants to be determined and all the raising

and lowering is done with the background AdS metric ḡ. Here we shall work in D

spacetime dimensions. Inserting kµν as given in (2.30) in (Gµν)
(1) · k, and choosing

a = 1 and b = −1
2
, one arrives at

(Gµν)
(2) · [h, h] + (Gµν)

(1) · k =: Kµν , (2.31)

where Kµν is a tensor which must vanish if the background is linearization stable. Its

explicit form is worked out in Appendix B. Let us consider the transverse traceless

gauge, and make use of the field equations and the linearized field equations: Namely
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let us use R̄µν = 2Λ
D−2

ḡµν and (Gµν)
(1) · h = 0, which in this gauge reads �̄hµν =

4Λ
(D−1)(D−2)

hµν to arrive at

Kµν = ∇̄αH
α
µν +

Λ

D − 2

(
c(D − 2) +

1

2

)
ḡµνh

2
αβ −

1

4
∇̄νh

αβ∇̄µhαβ

− ΛD

(D − 1)(D − 2)
hµβh

β
ν , (2.32)

where the divergence piece is given as

Hα
µν := −1

4
ḡµνhσβ∇̄βhσα +

(
c(2−D)− 1

2

)
δαν h

σβ∇̄µhσβ (2.33)

+

(
c(D − 2) +

5

8

)
ḡµνhσβ∇̄αhσβ

+
1

2

(
hαβ∇̄βhνµ + hβν∇̄µh

αβ + hβµ∇̄νh
αβ − hµβ∇̄αhβ

ν − hµβ∇̄βhα
ν

)
.

In the transverse-traceless gauge, the coefficient d is not fixed and can be set to zero.

Kµν has a single parameter c, that one can choose to fix the stability of the flat space-

time (which was proven by [1] using the linearization of the constraints on a non-

compact Cauchy surface in Minkowski space). Before looking at the flat space case,

let us note that one has ∇̄µK
µν = 0 as expected. Let us consider the flat space

with Λ = 0 and use the Cartesian coordinates so that ∇̄α → ∂α. The corresponding

linearized field equations become

∂2hµν = 0, (2.34)

together with the gauge choices ∂µhµν = 0 = h. The general solution of (2.34) can

be exactly constructed as a superposition of plane-wave solutions, hence it suffices

to study the linearized stability of flat space against the plane-wave modes which we

take to be the real part of

hµν = εµνe
ik·x, (2.35)

together with kµεµν = 0, εµµ = 0 and k2 = 0, which follow from the gauge condition

and (2.34). In a compact space without a boundary, k = 0 mode should also be

considered, in that case one has the solution hµν = εµν(c1t + c2) which gives rise to

linearization instability [25] for the case of the torus. Evaluating Kµν for the solution

2.35, one arrives at

Kµν = kνkµεαβε
αβeik·x

(
2c(D − 2) +

5

4

)
, (2.36)
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which vanishes for the choice

c = − 5

8(D − 2)
. (2.37)

So (2.29) is satisfied for

kµν = hµβh
β
ν −

5

8(D − 2)
ḡµνh

2
αβ (2.38)

and therefore there is no further constraint on the linearized solutions (2.35) and the

Minkowski space is linearization stable. Next we move on to quadratic gravity theory.

2.1.4 Linearization instability beyond Einstein’s theory

One of the reasons that lead us to study the linearization instability in generic gravity

theories is an observation made in [11] where conserved charges of generic grav-

ity theories for asymptotically AdS backgrounds were constructed.3The observation

was that in AdS backgrounds, the conserved energy and angular momenta vanish in

generic gravity theories for all asymptotically AdS solutions at some particular values

of the parameters defining the theory (in fact a whole section in that chapter was de-

voted for the zero energy issue). This apparent infinite degeneracy of the vacuum for

AdS spaces, is in sharp contrast to the flat space case where the unique zero energy is

attained only by the Minkowski space, namely the classical ground state. Let us ex-

pound upon this a little more: for all purely metric based theories, the energy (mass)

of the space-time that asymptotically approaches the flat space at spatial infinity is

given by the ADM formula [27]

MADM =
1

κ

˛
∂Σ

dSi (∂jh
ij − ∂ihj

j) . (2.39)

It is well-known that MADM ≥ 0, which is known as the positive energy theorem

[28, 29]. An important part of this theorem is that the vacuum, namely the flat space-

time with MADM = 0, is unique (up to diffeomorphisms of course) [30,31]. It should

be also noted that, the ADM mass is defined in flat Cartesian coordinates but it was

shown to be coordinate invariant. Here one must be very careful, if proper decaying

conditions are not realized for hij , any (positive, negative, finite or divergent) value
3 For an earlier zero energy result in the context of asymptotically flat backgrounds for purely quadratic gravity

in four dimensions, see [26].
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of mass can be assigned to the flat space. It is exactly these properties of the ADM

formula that made it a useful tool in geometry: without even referring to Einstein’s

equations, one can take (2.39) to be a geometric invariant of an asymptotically flat

manifold, modulo some decaying conditions on the first and the second fundamental

forms of the spacelike surface.

Once one deviates from asymptotic flatness, then as we have noted, for higher deriva-

tive theories there are critical points which seem to make the vacuum infinitely de-

generate, namely, the corresponding mass formula assigns any solution of the theory

the same zero charge. Naively, one can try to understand the meaning of vanishing

charges for non-vacuum solutions (namely, non-maximally symmetric solutions) as

follows:

• There is a confinement of the relevant perturbations (in the weak coupling),

just-like in QCD in the strong coupling of color charge; and so a non-vacuum

solution such as the proton has zero total color charge, same as the vacuum.

In the case of QCD, perturbation theory might yield spurious states that cannot

freely exist, such as quarks, as also noted in [15]. In gravity confinement would

mean, confinement of mass-energy or some other properties under considera-

tion such as chirality. But this would be highly unphysical because if there are

no other conserved charges to suppress the creation of confined mass, then the

vacuum state of gravity would be infinitely degenerate and creating confined

mass would cost nothing.

• The second possibility is that perturbation theory about a given background

solution, be it the maximally symmetric vacuum or not, may simply fail to

exist just because the background solution is an isolated solution in the solution

space. Namely, the solution space may fail to be a smooth manifold.

In fact, as discussed above, linearization of non-linear equations such as Einstein’s

gravity and Yang-Mill’s theory showed that naive first order perturbation theory fails

generically when the background has a Killing symmetry. To be more specific we

consider two recent examples: the chiral gravity in 2+1 dimensions which is a special

case of topologically massive gravity with a cosmological constant and the critical

gravity which is a specific example of quadratic gravity in AdS. These examples can
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be easily extended, as the phenomenon we discuss is quite generic and take place

whenever Einstein’s theory with a cosmological constant is modified with some cur-

vature terms.

To see how perturbation theory can fail let us go back to the necessary condition (2.6)

and contract it with the Killing vector ξ̄µ to obtain

ξ̄
µ
(E µν)

(2) · [h, h] + ξ̄
µ
(E µν)

(1) · k = 0. (2.40)

In some modified gravity theories one finds that the second term can be written as

ξ̄
µ
(E µν)

(1) · k = c(αi, R̄)∇̄αFα
1 ν + ∇̄αFα

2 ν , (2.41)

where c(αi, R̄) is a constant determined by the parameters αi of the theory as well as

the curvature invariants (symbolically denoted above as R̄) of the background metric.

Fαν
i are antisymmetric background tensors. It turns out that for asymptotically AdS

spacetimes Fαν
2 vanishes identically at the boundary as it involves higher derivative

terms of the perturbation, while Fαν
1 need not if there are not so fast decaying fields

such as for example the Kerr-AdS black holes. On the other hand for the particular

choice of the parameters c(αi, R̄) = 0, one arrives at the constraint that again the

Taub charges must vanish identically

QTaub[ξ̄] =

˛
Σ

dD−1Σ
√
γ ξ̄

µ
(E µν)

(2) · [h, h] = 0. (2.42)

But this time we have the additional non-trivial equation

˛
Σ

dD−1Σ
√
γ ξ̄

µ
(E µν)

(1) · h 6= 0. (2.43)

In general it is very hard to satisfy these two conditions simultaneously for all so-

lutions. Therefore some solutions to the linearized equations h turn out to be not

integrable to a full solution, hence the linearization instability of the AdS background

in these critical theories. Let us stress that we have not assumed that the Cauchy sur-

faces are compact: this type of linearization instability arises even in the non-compact

case.
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2.1.5 Linearization instability in quadratic gravity

The message we would like to convey is a rather universal one in all generic higher

derivative gravity theories, but for the sake of being concrete and yet sufficiently gen-

eral, we shall consider the quadratic gravity theory with the action (in D dimensions)

I =

ˆ
dD x

√
−g
(1
κ
(R− 2Λ0) + αR2 + βR2

µν + γ(R2
µνρσ − 4R2

µν +R2)
)
, (2.44)

where the last term is organized into the Gauss-Bonnet form, which vanishes identi-

cally for D = 3 and becomes a surface term for D = 4. But for D ≥ 5, it contributes

to the field equations with at most second order derivatives in the metric, just like the

Einstein-Hilbert part. Conserved gravitational charges of this theory in its asymptoti-

cally AdS backgrounds were constructed in [11] following the background space-time

techniques developed in [10] which is an extension of the ADM approach [27]. For

any theory with a Lagrangian density L = 1
κ
(R−2Λ0)+f(Rµν

σρ), for a generic differ-

entiable function f of the Riemann tensor and its contractions, the conserved charges

follow from those of (2.44), as shown in [24] since any such theory can be written as

a quadratic theory with effective coupling constants as far as its energy properties and

particle content are concerned [32]. In what follows, we quote some of the computa-

tions done in [11] here to make the ensuing discussion complete. The field equations

that follow from (2.44) are

Eµν [g] =
1

κ
(Rµν −

1

2
gµνR) + 2αR (Rµν −

1

4
gµν R)

+(2α + β)(gµν�−∇µ∇ν)R + 2γ
{
RRµν − 2RµσνρR

σρ

+RµσρτR
σρτ
ν − 2RµσR

σ
ν −

1

4
gµν(R

2
τλρσ − 4R2

σρ +R2)
}

+β�(Rµν −
1

2
gµνR) + 2β(Rµσνρ −

1

4
gµνRσρ)R

σρ = 0. (2.45)

As we shall study the stability/instability of the non-flat maximally symmetric solu-

tion (or solutions), let ḡ represent such a solution with the curvature tensors normal-

ized as

R̄µρνσ =
2Λ

(D − 1)(D − 2)

(
ḡµν ḡρσ − ḡµσḡρν

)
, (2.46)

R̄µν =
2Λ

D − 2
ḡµν , (2.47)
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R̄ =
2DΛ

D − 2
. (2.48)

The field equations reduce to a single quadratic equation :

Λ− Λ0

2κ
+ kΛ2 = 0, k ≡ (Dα + β)

(D − 4)

(D − 2)2
+ γ

(D − 3) (D − 4)

(D − 1) (D − 2)
. (2.49)

For generic values of the parameters of the theory, of course, there may not be real

solution and so the theory may not posses a maximally symmetric vacuum, but here

we assume that there is a real solution to this algebraic equation (so 8Λ0kκ+ 1 ≥ 0)

and study the linearization stability of this solution, which we call the (classical)

vacuum or the background. One can then linearize the field equations (2.45) about

the vacuum and get at the linear order

c1 (Gµν)
(1) + (2α + β)

(
ḡµν�̄− ∇̄µ∇̄ν +

2Λ

D − 2
ḡµν

)
(R)(1)

+β

(
�̄(Gµν)

(1) − 2Λ

D − 1
ḡµν(R)(1)

)
= 0, (2.50)

where the constant in front of the first term is

c1 ≡
1

κ
+

4ΛD

D − 2
α +

4Λ

D − 1
β +

4Λ (D − 3) (D − 4)

(D − 1) (D − 2)
γ, (2.51)

and the linearized (background) tensors read

(Gµν)
(1) = (Rµν)

(1) − 1

2
ḡµν(R)(1) − 2Λ

D − 2
hµν , (2.52)

which is just the linearized cosmological Einstein’s tensor given in terms of the lin-

earized Ricci tensor and the linearized scalar curvature :

(Rµν)
(1) =

1

2

(
∇̄σ∇̄µhνσ + ∇̄σ∇̄νhµσ − �̄hµν − ∇̄µ∇̄νh

)
,

(R)(1) = −�̄h+ ∇̄σ∇̄µhσµ −
2Λ

D − 2
h. (2.53)

Given a background Killing vector ξ̄, (there are D(D+1)/2 number of Killing vectors

for this space and the arguments work for any one of these) if we had not truncated

the expansion of the field equations at O(h) but collected all the non-linear terms on

the right-hand side, we would have gotten

ξ̄
µ
(E µν)

(1) · h := ξ̄µTµν [h
2, h3, ...hn...]. (2.54)
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where Tµν [h
2, h3, ...hn...] represents all the higher order terms (and if there is a matter

source with compact support of energy-momentum tensor, it also includes that). The

next step is the crucial step: as was shown in [11], one can write (2.54) as a divergence

of two pieces as described by (2.41)

ξ̄
µ
(E µν)

(1) · h = c ∇̄αFα
1 ν + ∇̄αFα

2 ν , (2.55)

where the constant c1 given in (2.51) is shifted due to the β term as

c ≡ c1 +
4Λ

(D − 1)(D − 2)
β. (2.56)

The explicit forms of the Fµρ
i tensors are found to be

Fµρ
1 = 2ξ̄ν∇̄[µhρ] ν + 2ξ̄[µ∇̄ρ]h+ 2hν[µ∇̄ρ]ξ̄ν + 2ξ̄[ρ∇̄νh

µ] ν + h∇̄µξ̄ρ, (2.57)

and

Fµρ
2 = (2α + β)

(
2ξ̄[µ∇̄ρ](R)(1) + (R)(1)∇̄µ ξ̄ρ

)

+2β

(
ξ̄σ∇̄[ρ(Gµ]

σ)
(1) + (G [ρσ)(1)∇̄µ]ξ̄σ

)
. (2.58)

For asymptotically AdS spacetimes, Fµρ
2 vanishes at spatial infinity due to the van-

ishing of both of (R)(1) and (Gµσ)
(1). As discussed in the previous section, vanishing

of the constant c leads to two strong constraints (2.42) and (2.43) on the linearized

solution h which is a statement of the instability of the background solution. Note

that, for this higher order theory, we have not assumed that the spatial hypersurface is

compact. (In fact, to be more accurate, AdS is not globally hyperbolic and does not

have a Cauchy surface but one can work in the double cover which does).

The point at which c = 0 is the point when the mass of the spin-2 massive mode

also vanishes and further, assuming 4α(D− 1) +Dβ = 0, one can also decouple the

massive spin-0 mode in this theory and arrive at the so called critical gravity defined

in D = 4 [21] for generic D in [22]. All these conditions are compatible with the ex-

istence of a maximally symmetric vacuum. For critical gravity, the apparent mass and

angular momenta of all black holes and perturbative excitations with asymptotically

AdS conditions vanish.4 But as we have seen here, perturbation theory used for both
4 The energy of the perturbative bulk excitations can be constructed using the Ostrogradsky Hamiltonian [22].
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the excitations and construction of conserved quantities does not work exactly at the

critical point: namely, the theory for the AdS background is not linearization stable.

At the chiral point, there arise exact log-modes in chiral gravity [33, 34] which are of

the wave type but they do not correspond to the linearized log-modes of [19].

Just for the sake of completeness, let us note that if c 6= 0, then the perturbation

theory makes sense and the conserved charges of the theory for any asymptotically

AdS solutions (such as the Kerr-AdS black holes) are simply given in terms of the

conserved charges of the same solution in Einstein’s gravity as

Qquad(ξ̄)

QEinstein(ξ̄)
= −βm2

g, (2.59)

where mg is the mass of the spin-2 graviton given as

−βm2
g =

1

κ
+

4Λ(Dα + β)

D − 2
+

4Λ (D − 3) (D − 4)

(D − 1) (D − 2)
γ. (2.60)

In (2.59), QEinstein(ξ̄) refers to (with κNewton = 1) the conserved charge (mass, angular

momenta) in the cosmological Einstein’s theory.

2.1.6 Linearization instability in chiral gravity

A model of quantum gravity even in the simpler 2 + 1 dimensional setting has been

rather elusive. One of the latest promising proposals was the so called chiral grav-

ity [14] which is a specific limit of topologically massive gravity (TMG) [18] with the

asymptotically AdS boundary conditions. TMG, as opposed to Einstein’s gravity has

non-trivial local dynamics hence in this respect, it might be more relevant to the four

dimensional gravity both at the classical and quantum level. The crux of the argu-

ments of the quantum version chiral gravity is that the bulk theory is dual to a unitary

and chiral conformal field theory (CFT) on the two dimensional boundary, whose

symmetry is known to be one of the two copies of the Virasoro algebra [20]. Finding

the correct conformal field theory would amount to defining the quantum gravity via

the AdS/CFT duality [35]. But immediately after the proposal of chiral gravity, it was

realized that the theory has arbitrarily negative energy log modes that appear exactly

at the chiral point and not only the dual CFT is not unitary (but a logarithmic one), but

apparently chiral gravity does not have even a classical vacuum [19]. If true, this of
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course would be disastrous for chiral gravity. But later it was argued in [15, 17] that

chiral gravity has linearization instability against these log modes in AdS: namely,

these perturbative negative energy solutions do not actually come from the lineariza-

tion of any exact solution. If that is the case, then linearization instability saves chiral

gravity certainly at the classical level and perhaps at the quantum level. Here we give

further arguments of the existence of linearization instability in chiral gravity.

The field equations of topologically massive gravity [18] with a negative cosmologi-

cal constant (Λ := − 1
`2

) is

Rµν −
1

2
gµνR− 1

`2
gµν +

1

µ
Cµν = 0, (2.61)

where the Cotton tensor in terms of the anti-symmetric tensor and the covariant

derivative of the Schouten tensor reads

Cµν = ηµ
αβ∇αSβν , Sµν = Rµν −

1

4
gµνR. (2.62)

The boundary theory has two copies of the Virasoro algebra [20] for asymptotically

AdS boundary conditions given as

cR/L =
3l

2G3

(
1± 1

µl

)
, (2.63)

and the bulk theory has a single helicity 2 mode with a mass-square

m2
g = µ2 − 1

l2
. (2.64)

It was shown in [36] that the contraction of the Killing vector (ξ̄) with the linearized

equations coming from (2.61) yields

ξ̄µ

(
(Gµν)

(1) +
1

µ
(Cµν)

(1)

)
= ∇̄αFα

1 ν [Ξ̄] + ∇̄αFα
3 ν [ξ̄], (2.65)

where Fµρ
1 was given in (2.57) whereas one finds Fµρ

3 to be

Fµρ
3 [ξ̄] = ηµρβ (Gνβ)

(1) ξ̄ν + ηνρβ (Gµ
β)

(1) ξ̄ν + ηµνβ (Gρ
β)

(1) ξ̄ν , (2.66)

where a new (twisted) Killing vector (Ξ̄) appears:

Ξ̄α := ξ̄α +
1

2µ
ηαβν ∇̄β ξ̄ν . (2.67)
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The conserved charges of TMG for asymptotically AdS backgrounds read as an inte-

gral over the circle at infinity as

Q[ξ̄] =
1

8πG3

˛
∂M

dSi

(
F0i

1 [Ξ̄] +
1

2µ
F0i

3 [ξ̄]

)
. (2.68)

Once again for the asymptotically AdS cases Fα
3 ν [ξ̄] vanishes identically on the

boundary as it involves the linearized Einstein tensor at infinity. For generic values of

µ and `, the first term, that is Fα
1 ν [Ξ̄] gives the conserved charges for the correspond-

ing Killing vector. But, for µ2`2 = 1, as was shown in [37] the angular momentum

and the energy of the rotating black hole solutions with the rotation parameter (j) and

the mass (m) related as (j = m`) (the extremal BTZ black hole) vanishes identically.

This particular point was further studied in [14] where it was argued and conjectured

that the theory, so called chiral gravity, as one of the central charges noted above

(2.63) becomes zero, makes sense both classically and quantum mechanically.

Classically the theory should have a stable vacuum and quantum mechanically, it

should have a dual healthy boundary conformal field theory. In [14] it was shown

that all the bulk excitations have vanishing energy exactly at the chiral point. Later

new log modes that were not accounted for were found in [19] which violated the

existence of a ground state (namely, these modes have arbitrarily large negative en-

ergy compared to the zero energy of the vacuum). For further work on chiral gravity,

see [38,39]. In [15] and [17] it was argued that the AdS has linearization instability in

chiral gravity against these log modes. Here, our construction lends support to these

arguments.

For the sake of concreteness, let us consider the background metric as

ḡ = −
(
1 +

r2

`2

)
dt2 +

dr2

1 + r2

`2

+ r2dφ2, (2.69)

then for ξ̄ = (−1, 0, 0) referring to the time-like energy Killing vector, one finds the

twisted Killing vector to be

Ξ = (−1, 0,− 1

`2µ
). (2.70)

For this Ξ to be a time-like Killing vector for all r including the boundary at r → ∞,

one can see that (excluding the trivial µ → ∞ case) one must set µ2`2 = 1, which is
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the chiral gravity limit. To further see this chiral gravity limit, let us recast Fµρ
1 [Ξ]

using the the superpotential Kµανβ is defined by [10]

Kµναβ :=
1

2

(
ḡµβh̃να + ḡναh̃µβ − ḡµν h̃αβ − ḡαβh̃µν

)
, h̃µν := hµν − 1

2
ḡµνh, (2.71)

which yields

Fµρ
1 [Ξ] = Ξν∇̄βKµρνβ −Kµσνρ∇̄σΞ̄ν . (2.72)

For all asymptotically AdS solutions with the Brown-Henneaux boundary conditions,

one can show that

Fµρ
1 [Ξ] =

(
1− 1

`2µ2

)
Fµρ

1 [ξ̄], (2.73)

which vanishes at the chiral point. So exactly at this point, there exists second order

integral constraints on the linearized solutions as discussed in the previous section.

The log-modes of [19] do not satisfy these integral constraints and so fail to be inte-

grable to full solutions.5

Let us compute the value of the Taub conserved quantity for the log solution which

was given in the background with the global coordinates for which the metric reads

ds2 = `2
(
− cosh2 ρ dτ 2 + sinh2 ρ dφ2 + dρ2

)
. (2.74)

For the coordinates u = τ + φ, v = τ − φ, at exactly in the chiral point, one has the

following additional solution

hµν = − tanh2ρ
(
sin (2u) τ + cos (2u) ln cosh ρ

)
1 1 0

1 1 0

0 0 −4 sinh−2 2ρ


µν

+
sinh ρ

cosh3 ρ

(
cos (2u) τ − sin (2u) ln cosh ρ

)
0 0 1

0 0 1

1 1 0


µν

(2.75)

Considering the Killing vector ξ̄ = (−1, 0, 0) one finds the result of the integral in

(2.13) to be non-vanishing

QTaub

[
ξ̄
]
=

π

2`

(
3τ 2 − 161

72

)
, (2.76)

5 See [40] a nice compilation of possible applications of logarithmic field theories in the context of holography
and gravity.
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which shows that this log mode is not in the tangent space of the solution space of

chiral gravity around the AdS3 metric.

In this chapter, we have shown that at certain critical parameter values of extended

gravity theories in constant curvature backgrounds, perturbation theory fails. Our

arguments provide support to the discussion given by [15,17] regarding the lineariza-

tion instability in three dimensional chiral gravity and extend the discussion to generic

gravity theories in a somewhat former form. The crucial point is that even in space-

times with non-compact Cauchy surfaces, linearization instability can exist for back-

ground metrics with at least one Killing vector field. Our computation also sheds light

on the earlier observations [11] that at certain critical values of the parameters defin-

ing the theory, conserved charges of all solutions, such as black holes, excitations

vanish identically.6 For example, Kerr-AdS black hole metrics have the same mass

and angular momentum as the AdS background. This leads to a rather non-physical

infinite degeneracy of the vacuum: for example, creating back holes costs nothing

which is unacceptable. With our discussion above, it is now clear that, perturbation

theory which is used to define boundary integrals of the conserved Killing charges

does not make sense exactly at the critical values of the parameters. Therefore one

really needs a new method to find/define conserved charges in these theories at their

critical points. One such method was proposed in for quadratic theories [42] and

in [43] for TMG.

We must note that, for asymptotically flat spacetimes, the ADM mass is the correct

definition of mass-energy for any metric-based theory of gravity. Therefore, the sta-

bility of the Minkowski space as was shown for Einstein’s theory by Choquet-Bruhat

and Deser [1] is valid for all higher derivative models as long as one considers the

non-compact Cauchy surfaces and asymptotically flat boundary conditions. But once

a cosmological constant is introduced, the problem changes dramatically as we have

shown: the ADM mass-energy (or angular momentum) expressions are modified and

conserved charges get contributions from each covariant tensors added to the field

equations. Once such a construction is understood, it is clear that some theories will

have identically vanishing charges for all solutions with some fixed boundary condi-

tions, which is a signal of linearization instability.

6 For a recent review of conserved charges in generic gravity theories see the book [41].
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It is also important to realize that, linearization instability of certain background solu-

tions in some theories is not bad as it sounds: for example chiral gravity is a candidate

both as a non-trivial classical and quantum gravity theory in AdS3 with a two dimen-

sional chiral conformal field theory induced on the boundary. But it has log-mode

solutions which appear as ghosts in the classical theory and negative norm states in

the quantum theory. It just turns out that chiral gravity in AdS3 has linearization in-

stability along these log-modes: namely, they do not have vanishing Taub conserved

quantities which is a constraint for all integrable solutions. Therefore, they cannot

come from linearization of exact solutions. A similar phenomenon takes place for

the minimal massive gravity [44] which was proposed as a possible solution to the

bulk-boundary unitarity clash in three dimensional gravity theories and as a viable

model that has a healthy dual conformal field theory on the boundary of AdS3. It was

shown recently in [45] that this theory only makes sense at the chiral point [46, 47]

and hence linearization instability arises at that point which can save the theory from

its log-modes. Let us note that we have also computed the second order constraint in

the minimal massive gravity, namely the Taub conserved quantity and found that it is

non-vanishing.

In the discussion of linearization stability and instability of a given exact solution

in the context of general relativity, we noted that to make use of the powerful tech-

niques of elliptic operator theory, on rewrites the four dimensional Einstein’s theory

as a dynamical system with constraints on a spacelike Cauchy surface and the evo-

lution equations. As the constraints are intact, initial Cauchy data uniquely defines

a spacetime (modulo some technical assumptions). Therefore, to study the lineariza-

tion stability one can simply study the linearization stability of the constraints on the

surface where the metric tensor field is positive-definite. All these arguments boil

down to showing that the initial background metric is not a singular point and that the

space of solutions around the initial metric is an open subset (in fact a submanifold)

of all solutions. This can be shown by proving the surjectivity of the operators that

appear in the linearized constraints. A similar construction, dynamical formulation of

the higher derivative models studied here in AdS and the surjectivity of the relevant

linear maps would be highly valuable. For the case of the cosmological Einstein’s

theory, such a construction was carried out in [48] where it was observed that certain
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strong decays lead to linearization instability even for non-compact Cauchy surfaces

with hyperbolic asymptotics.
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CHAPTER 3

LINEARIZATION INSTABILITY IN CHIRAL GRAVITY

Quantum gravity 1 is elusive not mainly because we lack computational tools, but be-

cause we do not know what to compute and so how to define the theory for a generic

spacetime. One possible exception and a promising path is the case of asymptotically

anti-de Sitter (AdS) spacetimes for which a dual quantum conformal field theory that

lives on the boundary of a bulk spacetime with gravity would amount to a definition

of quantum gravity. But, even for this setting, we do not have a realistic four dimen-

sional example. In three dimensions, the situation is slightly better: the cosmological

Einstein’s theory (with Λ < 0) has a black hole solution [49] and possesses the right

boundary symmetries (a double copy of the centrally extended Virasoro algebra [20])

for a unitary two dimensional conformal field theory. But as the theory has no local

dynamics (namely gravitons), it is not clear exactly how much one can learn from

this model as far as quantum gravity is concerned. Having said that, even for this

ostensibly simple model, we still do not yet have a quantum gravity theory. Recast-

ing Einstein’s gravity in terms of a solvable Chern-Simons gauge theory is a possible

avenue [50], but this only works for non-invertible dreibein which cannot be coupled

to generic matter.

A more realistic gravity in three dimensions is the topologically massive gravity

(TMG) [18] which has black hole solutions as well as a dynamical massive gravi-

ton. But the apparent problem with TMG is that the bulk graviton and the black hole

cannot be made to have positive energy generally. This obstruction to a viable classi-

cal and perhaps quantum theory was observed to disappear in an important work [14],

where it was realized that at a "chiral point" defined by a tuned topological mass in

terms of the AdS radius, one of the Virasoro algebras has a vanishing central charge

1 This chapter appeared as Phys. Rev. D 97, 124068 on 27 June 2018.
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(and so admits a trivial unitary representation) and the other has a positive nonzero

central charge with unitary nontrivial representations, the theory has a positive energy

black hole and zero energy bulk gravitons. This tuned version of TMG, called "chiral

gravity", seems to be a viable candidate for a well-behaved classical and quantum

gravity.

One of the main objections raised against the chiral gravity is that it possesses a neg-

ative energy perturbative log-mode about the AdS vacuum which ruins the unitarity

of the putative boundary CFT [19]. Of course if this is the case, chiral gravity is

not even viable at the classical level, since it does not have a vacuum. It was argued

in [15,17] that chiral gravity could survive if the theory is linearization unstable about

its AdS solution. This means that there would be perturbative modes which cannot

be obtained from any exact solution of the theory. In fact, these arguments were sup-

ported with the computations given in [4] where it was shown that the Taub charges

which are functionals quadratic in the perturbative modes that must vanish identi-

cally due to background diffeomorphism invariance, do not vanish for the log-mode

that ruins the chiral gravity. This means that the log-mode found from the linearized

field equations is an artifact of the linearized equations and does not satisfy the global

constraints coming from the Bianchi identities.

In this part, we give a direct proof of the linearization instability of chiral gravity in

AdS using the constraint analysis of the full TMG equations defined on a spacelike

hypersurface. The crux of the argument that we shall lay out below is the following:

the linearized constraint equations of TMG show that there are inconsistencies exactly

at the chiral point. Namely perturbed matter fields do not determine the perturbations

of the metric components on the spacelike hypersurface and there are unphysical

constraints on matter perturbations besides the usual covariant conservation.

To support our local analysis on the hypersurface, we compute the symplectic struc-

ture (that carries all the information about the phase space of the theory) for all pertur-

bative solutions of the linearized field equations and find that the symplectic 2-form

is degenerate and so non-invertible hence these modes do not approximate (i.e. they

are not tangent to) actual nonlinear solutions. The symplectic 2-form evaluated for

the log-mode is time-dependent (hence not coordinate-invariant) and vanishes at the
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initial value surface and grows unbounded in the future.

To carry out the constraint analysis and their linearizations (which will yield possi-

ble nearby solutions to exact solution), we shall use the field equations instead of

the TMG action as the latter is not diffeomorphism invariant which complicates the

discussion via the introduction of tensor densities (momenta) instead of tensors. We

shall also work in the metric formulation instead of the first order one as there can

be significant differences between the two formulations. Before we indulge into the

analysis, let us note that the linearization instability that arises in the perturbative

treatment of nonlinear theories and can be confused with dynamical or structural in-

stability, as both are determined with the same linearization techniques.The difference

is important: the latter refers to a real instability of a system such as the instability

of the vacuum in a theory with ghosts such as the R + βR2
µν theory with β 6= 0, this

is simply not physically acceptable. On the other hand linearization instability refers

to the failure of perturbation theory for a given background solution and one should

resort to another method to proceed. From the point of view of the full solution space

of the theory, this means that this (possibly infinite dimensional) space is not a smooth

manifold but it has conical singularities around certain solutions. Let us expound on

this a little bit.

3.1 ADM decomposition of TMG

Before restricting to the chiral gravity limit, we first study the full TMG field equa-

tions coupled with matter fields as an initial value problem, hence we take

Eµν = Gµν + Λgµν +
1

µ
Cµν = κτµν . (3.1)

The ADM [27] decomposition of the metric reads

ds2 = −(n2 − nin
i)dt2 + 2nidtdx

i + γijdx
idxj, (3.2)

where (n, ni) are lapse and shift functions and γij is the 2D spatial metric. From now

on, the Greek indices will run over the full spacetime, while the Latin indices will

run over the hypersurface Σ, as i, j... = 1, 2. The spatial indices will be raised and

lowered by the 2D metric. The extrinsic curvature (kij) of the surface is given as

2nkij = γ̇ij − 2D(inj), (3.3)
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where D is the covariant derivative compatible with γij and γ̇ij := ∂0γij and the round

brackets denote symmetrization with a factor of 1/2. With the convention Rρσ =

∂µΓ
µ
ρσ − ∂ρΓ

µ
µσ + Γ µ

µνΓ
ν
ρσ − Γ µ

σνΓ
ν
µρ, one finds the hypersurface components of the

three dimensional Ricci tensor as

Rij =
(2)Rij + kkij − 2kikk

k
j (3.4)

+
1

n
(k̇ij − nkDkkij −Di∂jn− 2kk(iDj)n

k),

where (2)Rij is the Ricci tensor of the hypersurface and k ≡ γijkij . Similarly one find

the twice projection to the normal of the surface as

R00 =
ninj

n
(k̇ij − nkDkkij −Di∂jn− 2kkjDin

k)

− n2k2
ij + ninj((2)Rij + kkij − 2kikk

k
j ) (3.5)

+ n(Dk∂
kn− k̇ − nkDkk + 2nkDmk

m
k ).

On the other hand, projecting once to the surface and once normal to the surface

yields

R0i =
nj

n
(k̇ij − nkDkkij −Di∂jn− 2kk(iDj)n

k) (3.6)

+ nj((2)Rij + kkij − 2kikk
k
j ) + n(Dik +Dmk

m
i ).

We also need the 3D scalar curvature in terms of the hypersurface quantities which

can be found as

R = (2)R + k2 − k2
ij +

2

n
(k̇ + nk2

ij −DiD
in− niDik). (3.7)

Given the Schouten tensor Sµν := Rµν − 1
4
Rgµν , the Cotton tensor is defined as

Cµν :=
1

2
εραβ(gµρ∇αSβν + gνρ∇αSβµ), (3.8)

where εραβ is the totally antisymmetric tensor which splits as ε0mn = 1
n
εmn = 1

n
γ− 1

2 εmn

where εmn is the antisymmetric symbol. Just as we have done the ADM decomposi-

tion of the Ricci tensor, a rather lengthy computation yields the following expressions,
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for the projections of the Cotton tensor

2nCij =εmnni(DmSnj − kmj(Drk
r
n − ∂nk))

+ εm i

{
Ṡmj − nkk

jSmk − SmkDjn
k

− (∂jn+ nrkrj)(Dsk
s
m − ∂mk)

−Dm(n
rSrj + n(Drk

r
j −Djk))

+ kmj(Dk∂
kn− k̇ + nkDsk

s
k + n(

R

4
− k2

rs))

}
+ i ↔ j, (3.9)

and

Ci0 = njCij −
εmn

2
(nAmni − niBmn − γin(Cm + nEm)) (3.10)

and

C00 = ninjCij (3.11)

− εmn(nniAmni − (nin
i − n2)Bmn − nn(Cm + nEm)),

where we have defined the following tensors

Amni ≡ DmSni − kmi (Drk
r
n − ∂nk) , (3.12)

Bmn ≡ DmDrk
r
n − kk

mSkn, (3.13)

Em ≡ 2krsDmk
rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk) , (3.14)

Cm ≡ ∂0Drk
r
m − Sk

m (∂kn+ nrkrk)−DmDk∂
kn

−Dm

(
nkDsk

s
k

)
+ kk

mSkrn
r + ∂mn(k

2
rs −

R

4
). (3.15)

Using the above decomposition, we can recast the ADM form of the full TMG equa-

tions as

Eij = κτij = Sij −
1

4
γijR + Λγij +

1

µ
Cij (3.16)

and

E0i =κτ0i = njEij + n(Drk
r
i − ∂ik) (3.17)

− 1

2µ
εmn(nAmni − niBmn − γin(Cm + nEm))
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and

E00 = κτ00 = 2niE0i − ninjEij − Λn2 − 1

µ
εmnn2Bmn

+ n(Dk∂
kn− k̇ + nkDkk + n(

R

2
− k2

rs)). (3.18)

From E0i, we get the momentum constraint as

Φi = κ(τ0i − njτij) = n(Drk
r
i − ∂ik) (3.19)

+
1

2µ
εmn(niBmn − nAmni + γinCm + nγinEm)

and from E00 we get the Hamiltonian constraint as

Φ =
κ

n2
(τ00 − 2niτ0i + ninjτij)

+
1

2
((2)R + k2 − k2

ij − 2Λ)

− 1

µ
εmn

(
DmDrk

r
n − kk

mSkn

)
, (3.20)

where in the last equation we made use of the explicit form of R given in (3.7) which

for TMG is R = 6Λ− 2κτ . From now on, for our purposes, it will suffice to work in

the Gaussian normal coordinates with n = 1 and ni = 0 for which kij =
1
2
γ̇ij and the

constraints reduce to

εmn

4µ
(γ̇imγ

ik((2)Rkn − γ̇kpγ̇snγ
ps − γ̈kn)− 2DmD

kγ̇kn)

− 1

8
γ̇ij
(
γ̇abγ

abγij + γ̇ij
)
= κτ00 + Λ−

(2)R

2
(3.21)

and

εm i

8µ

(
γ̇kp(2Dkγ̇pm −Dmγ̇kp) + 2Dkγ̈km − γ̇mkγ

klDpγ̇pl
)

− εmn

8µ

(
γ̇abγ

abDmγ̇in − 2γksDm(γ̇knγ̇si)

+ 2Dmγ̈in − γ̇miD
kγ̇kn

)
(3.22)

+
1

2

(
Dkγ̇ki − γabDiγ̇ab

)
= κτ0i +

1

2µ
εmnDm

(2)Rni.

Furthermore, taking a conformally flat 2D metric on Σ, we have γij = eϕδij , where

ϕ = ϕ(t, xi), kij = 1
2
ϕ̇γij and the 2D Ricci tensor becomes

(2)Rij = −1

4
γije

−ϕ (2Dk∂kϕ+ ∂kϕ∂kϕ) , (3.23)
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whereas the 3D Ricci tensor reads

Rij =
1

2
γij(−Dk∂kϕ+ ϕ̇2 + ϕ̈− 1

2
∂kϕ∂kϕ) (3.24)

and the 3D scalar curvature is

R = −Dk∂kϕ+
3

2
ϕ̇2 + 2ϕ̈− 1

2
∂kϕ∂kϕ. (3.25)

With all these results in hand, one can obtain from the constraint equations the fol-

lowing relation

∂iϕ̇ = −Ji +
1

2µ
εm iϕ̇∂mϕ̇, (3.26)

where we have introduced the "source current" which, on the hypersurface, reads

Ji := 2κτ0i +
κ

µ
εm i∂mτ00. (3.27)

Contracting (3.26) with the epsilon-tensor, one arrives at

2µ

ϕ̇
εmi∂mϕ̇

(
1 +

ϕ̇2

4µ2

)
= −2µ

ϕ̇
εmiJm + J i. (3.28)

In the case of vacuum, τµν = 0, and so Ji = 0, the unique solution to (3.28) is of the

form ϕ0 = ct, where c is a constant which can be found from the trace equation that

reads R = 6Λ. So c = 2
√
Λ ≡ 2

`
, which is the de Sitter (dS) solution and ` > 0 is its

radius. Turning on a compactly supported matter perturbation with δτµν 6= 0, one has

δJi 6= 0 and perturbing the constraint equations about ϕ0 as ϕ = ϕ0 + δϕ, we find a

linearized constraint equation

µ(1 +
1

µ2`2
)εm i∂mδϕ̇ (3.29)

=(∂i +
1

µ`
εm i∂m)κδτ00 + 2µ(εi

m +
1

µ`
δm i)κδτ0m,

from which, for the dS case, one can solve the perturbation (δϕ) and hence the per-

turbed metric by integration in terms of the perturbed matter fields on the hypersur-

face. Hence dS is linearization stable in TMG for any finite value of µ`. The other

linearized constraints are compatible with this solution. Our computation has been

analytic in `, hence, we can do the following "Wick" rotation to study the AdS case:

xi → ixi, t → it, ` → i` yielding Λ = − 1
`2

with the Gaussian normal form of the

(signature changed) metric ds2 = dt2 − e−2t/` (dx2 + dx2) . Then for AdS, (3.29)
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becomes

µ(1− 1

µ2`2
)εm i∂mδϕ̇ (3.30)

=− (∂i −
1

µ`
εm i∂m)κδτ00 − 2µ(εi

m +
1

µ`
δm i)κδτ0m

and once again the perturbation theory is valid for generic values of µ` in AdS as in

the case of dS. But at the chiral point, µ` = 1, the left-hand side vanishes identically

and there is an unphysical constraint on the matter perturbations δτ0m and δτ00 in

addition to their background covariant conservation. Moreover, the metric perturba-

tion is not determined by the matter perturbation. What this says is that in the chiral

gravity limit of TMG, for AdS, the exact AdS solution is linearization unstable. The

above computation has been a local one, and does not depend on the fact that AdS

does not have a Cauchy surface on which one can define the initial value problem.

AdS requires initial and boundary values together, but what we have computed is a

necessary condition for such a formulation (not a sufficient one) and AdS in chiral

gravity does not satisfy the necessary conditions for the initial-boundary value prob-

lem.

3.2 Symplectic structure of TMG

Let us give another argument for the linearization instability of AdS making use of

the symplectic structure of TMG which was found in [51] following [52] as ω :=´
Σ
dΣα

√
|g|J α, where Σ is the hypersurface. ω is a closed (δw = 0) non-degenerate

(except for gauge directions) 2-form for full TMG including chiral gravity. Here the

on-shell covariantly conserved symplectic current reads

J α = δΓα
µν ∧ (δgµν +

1

2
gµνδ ln g)

− δΓ ν
µν ∧ (δgαµ +

1

2
gαµδ ln g)

+
1

µ
εανσ(δSρ

σ ∧ δgνρ +
1

2
δΓ ρ

νβ ∧ δΓ β
σρ). (3.31)

What is important to understand is that ω is a gauge invariant object on the solution

space, say Z , and also on the (more relevant) quotient Z/Diff which is the phase

space and Diff is the group of diffeomorphisms. Therefore, even without knowing
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the full space of solutions, by studying the symplectic structure, one gains a lot of

information for both classical and quantum versions of the theory. Perturbative so-

lutions live in the tangent space of the phase space and hence they are crucial in the

discussion. We refer the reader to [51] for a full discussion of this.

Let us show that for the linearized solutions of chiral gravity given in [14] the sym-

plectic 2-form is degenerate and hence not invertible. In the global coordinates, the

background metric reads

ds2 = `2
(
− cosh2 ρ dτ 2 + sinh2 ρ dφ2 + dρ2

)
, (3.32)

defining u = τ + φ, v = τ − φ, making use of the SL(2, R)× SL(2, R), [14] found

all the primary states (but one) and their descendants. The primary solutions are

hµν = <
{
e−i∆τ−iSφFµν(ρ)

}
, (3.33)

where the real part is taken and the background tensor reads

Fµν(ρ) = f(ρ)


1 S

2
2i

sinh 2ρ

S
2

1 iS
sinh 2ρ

2i
sinh 2ρ

iS
sinh 2ρ

− 4
sinh2 2ρ

 (3.34)

and f(ρ) = (cosh ρ)−∆ sinh2 ρ, where ∆ ≡ h + h̄ and S ≡ h − h̄. Components of

the symplectic current for these modes (for generic µ`) can be found as

J τ =
(4− S2)(S + 2µ`)∆

8µ`7(cosh ρ)2(1+∆)
sin (2∆τ + 2Sφ) ,

J φ = −2 coth2 ρ

S + 2µ`
J τ , (3.35)

J ρ = −(S∆+ 4µ`) coth ρ+ (∆− 2)µ` sinh 2ρ

∆(S + 2µ`)
J τ ,

which yield a vanishing ω at the chiral limit since for left, right and massive modes we

have S2 = 4 and the relevant symplectic current J τ vanishes identically, hence the

solution is not viable. Moreover, one can show that its Taub charge diverges, while

its ADT charge is for the background Killing vector (−1, 0, 0) is

QADT = − lim
r→∞

sin(πS) cos(2πS +∆t)

4πS22−∆`
∆(2∆+ S − 2)er(2−∆), (3.36)

which vanishes for the massive mode ∆ = S = 2. In addition to the above solutions,
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there is an additional the log-mode given in [19] which reads

hµν = f1(τ, ρ)


0 0 1

0 0 1

1 1 0


µν

+f2(τ, ρ)


1 1 0

1 1 0

0 0 − 4
sinh2 2ρ


µν

, (3.37)

where the two functions are given as

f1(τ, ρ) =
sinh ρ

cosh3 ρ
(τ cos 2u− sin 2u ln cosh ρ), (3.38)

f2(τ, ρ) = − tanh2ρ (τ sin 2u+ cos 2u ln cosh ρ). (3.39)

The components of the symplectic current for this mode read

J τ =
1

µ`7
τ((1− µ`) cosh 2ρ+ 1)sech10ρ,

J φ = − 2

µ`7
τ(1− µ`)sech8ρ, (3.40)

J ρ =
1

`6
tanh ρ sech8ρ(4(log2 cosh ρ+ τ 2) + log sech ρ),

which yield a linearly growing ω in τ and vanishes on the initial value surface. What

all these say is that first order perturbation theory simply fails in chiral gravity limit

of TMG. If the theory makes any sense at the classical and/or quantum level one

must resort to a new method to carry out computations. This significantly affects

its interpretation in the context of AdS/CFT as the perturbed metric couples to the

energy-momentum tensor of the boundary CFT. This of course does not say anything

about the solutions of the theory which are not globally AdS and one might simply

have to define the theory in a different background.

In this chapter we have studied a frequently recurring problem [53], for example it

also appears in critical gravity [54, 55]. Linearized solutions by definition satisfy

the linearized equations but this is not sufficient; they should also satisfy a quadratic

constraint to actually represent linearized versions of exact solutions. This deep re-

sult comes from the Bianchi identities and their linearizations and it is connected to

the conserved quantities. With the observation of gravity waves, research in gen-

eral relativity and its modifications, extensions has entered an exciting era in which

many theories might be possibly tested. One major tool of computation in nonlin-

ear theories, such as gravity, is perturbation theory from which one obtains a lot of

information and the gravitational wave physics is no exception as one uses the tools
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of perturbation theory to obtain the wave profile far away from the sources. There-

fore, the issue of linearization instability arises in any use of perturbation theory as

the examples provided here and before [4] show even for the ostensibly safe case of

spacetimes with noncompact Cauchy surfaces.
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CHAPTER 4

CONCLUSIONS

In Einstein’s general relativity, perturbation theory about a background exact solution

fails if the background spacetime has a Killing symmetry and a compact (without a

boundary) spacelike Cauchy surface. This failure, dubbed as linearization instabil-

ity, shows itself as a nonintegrability of the perturbative infinitesimal deformation to

a finite deformation of the background. Namely, the linearized field equations have

spurious solutions which cannot be obtained from the linearization of some exact so-

lutions. In absence of the knowledge of exact solutions, in practice, one can show the

failure of the linear perturbation theory by showing that a certain quadratic (integral)

constraint, that is the vanishing of the so-called Taub charge, on the linearized solu-

tions is not satisfied. This is the case for compact Cauchy surfaces ( or in the absence

of Cauchy surfaces as in the case of AdS, for spacelike surfaces which constitute part

of the initial-boundary value problem).

For noncompact Cauchy surfaces, the situation is different and for example, Minkowski

space, having a noncompact Cauchy surface, is linearization stable. If this were not

the case, one could not trust perturbation theory in a Minkowski background, includ-

ing all the computations related to the gravitational waves. In this thesis, we have

studied the linearization instability in generic metric theories of gravity where Ein-

stein’s theory is modified with additional curvature terms. Of course the problem

of validity of perturbation theory becomes much more complicated as one usually

lacks the tools of the elliptic operator theory on a spacelike hypersurface. Our main

finding is that, unlike the case of general relativity, for modified theories even in the

noncompact Cauchy surface cases (or spacelike surfaces), there are some theories

which show linearization instability about their anti-de Sitter backgrounds. Recent D

dimensional critical and three dimensional chiral gravity theories are two such exam-
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ples. We have discussed them, especially the chiral gravity case, in great detail. This

observation sheds light on the paradoxical behavior of vanishing conserved charges

(mass, angular momenta) for nonvacuum solutions, such as black holes, in these ex-

tended theories. This vanishing of conserved charges for nonvacuum solutions for

certain theories in asymptotically AdS spacetimes was discussed at length in [11]. At

the time this zero-energy problem was not properly understood. Let us explain why

in some extended theories the conserved charges vanish identically. This vanishing

happens as the charge is a global quantity constructed with the help of the Stokes’

theorem and asymptotic Killing symmetries where the perturbation theory is suffi-

cient. In perturbation theory, about a constant curvature background (such as the AdS

spacetime) all higher order curvature terms in the field equations contribute to the

conserved charges in an additive manner which always vanishes for some particular

combination of parameters of the theory. Here we have shown that, exactly at that

point, the perturbation theory fails and therefore one needs other methods to define

conserved quantities.

As a second, perhaps more direct proof of the linearization instability in chiral grav-

ity, we have carried out a detailed analysis of the constraints and their linearizations

on a spacelike hypersurface, we have shown that the topologically massive gravity

(which is a dynamical theory of gravity in three dimensions) has a linearization insta-

bility at the chiral gravity limit about its AdS3 vacuum. We have also calculated the

symplectic structure (that is built from the perturbative tensors and that carries all the

information about the classical theory as well as its linearizations) for all the known

perturbative modes, including the log-mode, for the linearized field equations and find

it to be degenerate (non-invertible). Hence these modes do not approximate any pos-

sible exact solutions and so do not belong to the linearized phase space of the theory.

Naive perturbation theory fails: the linearized field equations are necessary but not

sufficient in finding viable linearized solutions. This proof supports the construction

given in [15] where it was shown that the linearization of all exact solutions of chiral

gravity around AdS3 has positive energy. This has important consequences for both

classical and possible quantum versions of the theory which need further scrutiny.

In the linearization stability problem of general relativity, one can show that the first

order perturbation theory can receive constraints at most from the second order per-
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turbation theory. Namely, there will be no more constraints from the higher order

perturbation theory. This issue is an outstanding problem in generic modified gravity

theories which needs to be studied further. For example, we do not know what are the

necessary and sufficient conditions for linearization stability of a third order theory

such as topologically massive gravity.
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APPENDIX A

SECOND ORDER PERTURBATION THEORY AND GAUGE INVARIANCE

ISSUES

A.1 Second order perturbation theory

Let us summarize some results about the second order perturbation theory (see also

[56]). By definition one has

gµν := ḡµν + τhµν , (A.1)

where τ is introduced to keep the order of the expansions. The inverse of the metric

tensor up to and including the second order is

gµν = ḡµν + τhµν + τ 2hµ
αh

αν +O(τ 3). (A.2)

Let T be a generic tensor or a geometrical object, then it can be expanded as

T = T̄ + τT (1) + τ 2T (2) +O(τ 3). (A.3)

For the Christoffel connection we have

Γµν
γ = Γ̄µν

γ + τ(Γµν
γ)(1) + τ 2(Γµν

γ)(2), (A.4)

where the first order term is

(Γµν
γ)(1) =

1

2

(
∇̄µh

γ
ν + ∇̄νh

γ
µ − ∇̄γhµν), (A.5)

and the second order one is

(Γµν
γ)(2) = −hγδ(Γµνδ)

(1). (A.6)

As is clear from (A.5) the linearized Christoffel connection is a background tensor

(so is the second order one), we can raise and lower the indices with the background

metric and its inverse

(Γµνδ)
(1) = ḡγδ(Γµν

γ)(1). (A.7)
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Please note that the up index is lowered to the third position, there is a symmetry only

in the first two indices. The first order linearized Riemann tensor is

(Rρ
µσν)

(1) = ∇̄σ(Γνµ
ρ)(1) − ∇̄ν(Γσµ

ρ)(1), (A.8)

and the second order linearized Riemann tensor is

(Rρ
µσν)

(2) = ∇̄σ(Γνµ
ρ)(2) − ∇̄ν(Γσµ

ρ)(2) + (Γµν
α)(1)(Γσα

ρ)(1)

−(Γµσ
α)(1)(Γνα

ρ)(1). (A.9)

The first order linearized Ricci tensor is

(Rµν)
(1) = ∇̄σ(Γµν

σ)(1) − ∇̄ν(Γσµ
σ)(1), (A.10)

and the second order linearized Ricci tensor is

(Rµν)
(2) = ∇̄σ(Γνµ

σ)(2) − ∇̄ν(Γσµ
σ)(2) + (Γµν

α)(1)(Γσα
σ)(1)

−(Γµσ
α)(1)(Γνα

σ)(1). (A.11)

We shall need the explicit form of it in terms of the hµν field, which reads

(Rµν)
(2) = −1

2
∇̄ρ

(
hρβ(∇̄µhνβ + ∇̄νhµβ − ∇̄βhνµ)

)
+

1

2
∇̄ν

(
hρβ∇̄µhρβ

)
−1

4

(
∇̄µhρβ

)
∇̄νh

ρβ +
1

4

(
∇̄βh

)
(∇̄µhνβ + ∇̄νhµβ − ∇̄βhνµ)

+
1

2
(∇̄βhνα)∇̄βhα

µ − 1

2
(∇̄βhνα)∇̄αhβ

µ. (A.12)

The first order linearized scalar curvature is

(R)(1) = ∇̄α∇̄βh
αβ − �̄h− R̄µνh

µν , (A.13)

and the second order linearized scalar curvature is

(R)(2) = R̄µνh
µ
αh

αν − (Rµν)
(1)hµν + ḡµν(Rµν)

(2). (A.14)

Explicitly we have a rather cumbersome result for the last expression which reads

(R)(2) =
1

4

(
∇̄σhρβ

)
∇̄σhρβ − 1

2

(
∇̄σhρβ

)
∇̄ρhσβ

+
1

2
∇̄σ
(
hρβ∇̄σhρβ

)
+

1

4

(
∇̄βh

)
(2∇̄σh

σ
β − ∇̄βh)−

1

2
∇̄ρ

(
hρβ(2∇̄σh

σ
β − ∇̄βh)

)
−1

2
hρβ
(
2∇̄σ∇̄ρh

σ
β − �̄hρβ − ∇̄ρ∇̄βh

)
+ R̄ρβh

ραhβ
α. (A.15)

Here without going into too much detail, let us summarize some of the relevant for-

mulas that we use in the bulk of the second chapter to show various expressions,

such as the gauge transformation of the linearized tensors, second order forms of the

tensors etc.
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A.2 Some useful identities that involve Lie and covariant derivatives

Lie and covariant derivatives do not commute so we shall need the following expres-

sions. Let X be a vector field on our spacetime manifold with a metric ḡ and let T be

a (0, 2) background tensor field. Then in components one has the Lie derivative of T

with respect to the vector field X as

L XTρσ = Xf∇̄fTρσ +
(
∇̄ρX

f
)
Tfσ +

(
∇̄σX

f
)
Tρf . (A.16)

Taking the covariant derivative of the last expression gives

∇̄µL XTρσ =
(
∇̄µX

f
)
∇̄fTρσ +Xf∇̄µ∇̄fTρσ +

(
∇̄µ∇̄ρX

f
)
Tfσ

+
(
∇̄ρX

f
)
∇̄µTfσ +

(
∇̄µ∇̄σX

f
)
Tρf +

(
∇̄σX

f
)
∇̄µTρf . (A.17)

Now let us change the order of the differentiations, we have

L X∇̄µTρσ = Xf∇̄f∇̄µTρσ +
(
∇̄µX

f
)
∇̄fTρσ +

(
∇̄ρX

f
)
∇̄µTfσ

+
(
∇̄σX

f
)
∇̄µTρf . (A.18)

Subtracting the last two expressions gives

∇̄µL XTρσ − L X∇̄µTρσ = Xf∇̄µ∇̄fTρσ −Xf∇̄f∇̄µTρσ +
(
∇̄µ∇̄ρX

f
)
Tfσ

+
(
∇̄µ∇̄σX

f
)
Tρf , (A.19)

where [
∇̄µ, ∇̄f

]
Tρσ = R̄µfρ

λTλσ + R̄µfσ
λTλρ. (A.20)

Then we obtain

∇̄µL XTρσ − L X∇̄µTρσ =
(
∇̄µ∇̄ρX

f +XλR̄µλρ
f
)
Tfσ

+
(
∇̄µ∇̄σX

f +XλR̄µλσ
f
)
Tfρ. (A.21)

Let δX denote the gauge transformation generated by the vector field X , such that

δXhµν = ∇̄µXν + ∇̄νXµ. (A.22)

From the definition of the first order linearized Christoffel connection, we have

δX(Γµν
γ)(1) =

1

2

(
∇̄µ∇̄νX

γ + ∇̄µ∇̄γXν + ∇̄ν∇̄µX
γ + ∇̄ν∇̄γXµ

−∇̄γ∇̄µXν − ∇̄γ∇̄νXµ

)
, (A.23)
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which can be expressed as

δX(Γµν
γ)(1) = ∇̄µ∇̄νX

γ

+
1

2

([
∇̄µ, ∇̄γ

]
Xν +

[
∇̄ν , ∇̄µ

]
Xγ +

[
∇̄ν , ∇̄γ

]
Xµ

)
. (A.24)

By using the following identity[
∇̄ν , ∇̄µ

]
Xγ = R̄νµ

γσXσ, (A.25)

and the first Bianchi identity

R̄αβγδ + R̄βγαδ + R̄γαβδ = 0, (A.26)

the gauge transformation of the first order linearized Christoffel connection reads,

δX(Γµν
γ)(1) = ∇̄µ∇̄νX

γ + R̄γ
νσµX

σ. (A.27)

The symmetry in µ and ν is not explicit on the right hand side, but it is in fact sym-

metric. Making use of this in (A.21) one finds

∇̄µL XTρσ = L X∇̄µTρσ + TασδX(Γµρ
α)(1) + TραδX(Γµσ

α)(1). (A.28)

Similarly, the Lie derivative of a tensor with one upper and one lower indices is

L XTρ
σ = Xf∇̄fTρ

σ +
(
∇̄ρX

f
)
Tf

σ −
(
∇̄fX

σ
)
Tρ

f , (A.29)

and the covariant differentiation of the result gives

∇̄µL XTρ
σ =

(
∇̄µX

f
)
∇̄fTρ

σ +Xf∇̄µ∇̄fTρ
σ +

(
∇̄µ∇̄ρX

f
)
Tf

σ

+
(
∇̄ρX

f
)
∇̄µTf

σ −
(
∇̄µ∇̄fX

σ
)
Tρ

f −
(
∇̄fX

σ
)
∇̄µTρ

f . (A.30)

Reversing the order of the derivatives, we have

L X∇̄µTρ
σ = Xf∇̄f∇̄µTρ

σ +
(
∇̄µX

f
)
∇̄fTρ

σ

+
(
∇̄ρX

f
)
∇̄µTf

σ −
(
∇̄fX

σ
)
∇̄µTρ

f , (A.31)

and subtracting the last two expressions we obtain

∇̄µL XTρ
σ − L X∇̄µTρ

σ = Xf
[
∇̄µ, ∇̄f

]
Tρ

σ

+
(
∇̄µ∇̄ρX

f
)
Tf

σ −
(
∇̄µ∇̄fX

σ
)
Tρ

f . (A.32)
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By using [
∇̄µ, ∇̄f

]
Tρ

σ = R̄µfρ
λTλ

σ + R̄µf
σ
λTρ

λ, (A.33)

and the expression for the gauge transformation of the first order linearized Christoffel

connection (A.27), we can rewrite the result as

∇̄µL XTρ
σ = L X∇̄µTρ

σ + Tα
σδX(Γµρ

α)(1) − Tρ
αδX(Γµα

ρ)(1). (A.34)

Applying the same procedure for the case of any three lower index tensor, we arrive

at the relations

∇̄µL XTρσγ = L X∇̄µTρσγ + TασγδX(Γµρ
α)(1) + TραγδX(Γµσ

α)(1)

+TρσαδX(Γµγ
α)(1), (A.35)

and

∇̄µL XTργ
σ = L X∇̄µTργ

σ + Tαγ
σδX(Γµρ

α)(1) + Tρα
σδX(Γµγ

α)(1)

−Tργ
αδX(Γµα

ρ)(1). (A.36)

In fact in the most general case of a (m,n) tensor T we have

∇̄µL XTρ1ρ2...ρn
σ1σ2...σm = L X∇̄µTρ1ρ2...ρn

σ1σ2...σm (A.37)

+Tαρ2...ρn
σ1σ2...σmδX(Γµρ1

α)(1) + Tρ1α...ρn
σ1σ2...σmδX(Γµρ2

α)(1)

+...+ Tρ1ρ2...α
σ1σ2...σmδX(Γµρn

α)(1) − Tρ1ρ2...ρn
ασ2...σmδX(Γµα

σ1)(1)

−Tρ1ρ2...ρn
σ1α...σmδX(Γµα

σ2)(1) − ...− Tρ1ρ2...ρn
σ1σ2...αδX(Γµσm

ρ)(1).

A.3 Gauge transformation issues

Using the formulas we discussed above, let us find how the first order linearized

Einstein tensor changes under the gauge transformations generated by the flow of the

vector field X . In the index free notation one has

DEin(g) · (L Xg) = L XEin(g), (A.38)

and in a local coordinate chart it can be expressed as

δX (Gµν)
(1) · h = L XḠµν . (A.39)
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The center dot notation means that the operator on the left is evaluated at h. This

notation seems a little bit redundant at the first order, but it becomes useful in the

second order. Let us compute the left hand side of the last equation explicitly, we can

write

δX(Gµν)
(1) · h = δX(Rµν)

(1) · h− 1

2
ḡµνδX(R)(1) · h− 1

2
R̄δXhµν . (A.40)

In order to find the change of the first order linearized Ricci tensor under the gauge

transformation, let us compute the transformation of the linear order perturbation of

the Riemann tensor under the gauge transformation. Using the previous equations

(A.8, A.27), we have

δX(R
ρ
µσν)

(1)·h = ∇̄σ(∇̄ν∇̄µX
ρ+R̄ρ

µανX
α)−∇̄ν(∇̄σ∇̄µX

ρ+R̄ρ
µασX

α), (A.41)

which can be reexpressed as

δX(R
ρ
µσν)

(1) · h =
[
∇̄σ, ∇̄ν

]
∇̄µX

ρ + R̄ρ
µαν∇̄σX

α − R̄ρ
µασ∇̄νX

α

+Xα(∇̄σR̄
ρ
µαν − ∇̄νR̄

ρ
µασ). (A.42)

By using the identity[
∇̄σ, ∇̄ν

]
∇̄µX

ρ = R̄σνµ
α∇̄αX

ρ + R̄σν
ρ
α∇̄µX

α, (A.43)

and the second Bianchi identity

∇̄µR̄νραβ + ∇̄αR̄νρβµ + ∇̄βR̄νρµα = 0, (A.44)

we can write

δX(R
ρ
µσν)

(1) · h = Xα∇̄αR̄
ρ
µσν + (∇̄µX

α)R̄ρ
ασν + (∇̄σX

α)R̄ρ
µαν

+(∇̄νX
α)R̄ρ

µσα − (∇̄αX
ρ)R̄α

µσν , (A.45)

where the right hand side of the equation is the Lie derivative of the Riemann tensor

with respect to vector field X . So we can express the gauge transformation of the first

order linearized Riemann tensor as

δX(R
ρ
µσν)

(1) · h = L XR̄
ρ
µσν . (A.46)

Contracting and renaming the indices we obtain the change of the Ricci tensor under

the gauge transformation as

(Rµν)
(1) · h = L XR̄µν . (A.47)
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Using the previous results, for the first order linearized scalar curvature we have

δX(R)(1) · h = ḡµνL XR̄µν + R̄µνL X ḡ
µν , (A.48)

which becomes

δX(R)(1) · h = L XR̄. (A.49)

Inserting these results in equation (A.40), the gauge transformation of the first order

linearized Einstein tensor can be expressed as

δX(Gµν)
(1) · h = L XR̄µν −

1

2
ḡµνL XR̄− 1

2
R̄L X ḡµν . (A.50)

By combining the Lie derivative terms, it also can be written as

δX(Gµν)
(1) · h = L X

(
R̄µν −

1

2
ḡµνR̄

)
, (A.51)

where the right hand side of the last expression shows the Lie derivative of the Ein-

stein tensor which is evaluated at the background metric. Then this construction

proves equation (A.39). Let us note that for Ḡµν = 0, that is for solutions of Ein-

stein’s theory, δX(Gµν)
(1) · h, that is the first order linearized Einstein’s tensor is

gauge invariant.

Using the above results, let us find how the second order linearized form of the Ein-

stein tensor transforms under the gauge transformations generated by the flow of the

vector field X . In the index-free notation one has

D2Ein(g) · (h,L Xg) +DEin(g) · L Xh

= L X (DEin(g) · h) , (A.52)

which reads in local coordinates as

δX(Gµν)
(2) · [h, h] + (Gµν)

(1) · L Xh = L X(Gµν)
(1) · h. (A.53)

Let us prove this. By definition we have

δX(Gµν)
(2) · [h, h] = δX(Rµν)

(2) · [h, h]− 1

2
ḡµνδX(R)(2) · [h, h]

−1

2
(R)(1) · h δXhµν −

1

2
hµνδX(R)(1) · h. (A.54)

Let us calculate the right hand side of the equation term by term. The first term reads

δX(Rµν)
(2) · [h, h] = −

(
δXh

ρβ
) (

∇̄ρ(Γνµβ)
(1) − ∇̄ν(Γρµβ)

(1)
)

−hρβδX
(
∇̄ρ(Γνµβ)

(1) − ∇̄ν(Γρµβ)
(1)
)

−δX
(
(Γµν

α)(1)(Γσ
σ
α)

(1) − (Γµσ
α)(1)(Γν

σ
α)

(1)
)
. (A.55)
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Since one has

δXh
ρβ = −L X ḡ

ρβ, (A.56)

the first two terms on the right hand side of the (A.55) can be written as

−
(
δXh

ρβ
) (

∇̄ρ(Γνµβ)
(1) − ∇̄ν(Γρµβ)

(1)
)

= L X(Rµν)
(1).h− ḡρβL X

(
∇̄ρ(Γνµβ)

(1) − ∇̄ν(Γρµβ)
(1)
)
. (A.57)

By using the definition of the linearized Riemann tensor, the terms on the second line

of the (A.55) yield

hρ
βδX

(
∇̄ρ(Γνµ

β)(1) − ∇̄ν(Γρµ
β)(1)

)
= hρ

βδX
(
Rβ

µρν

)(1) · h
= hρ

βL XR̄
β
µρν . (A.58)

Collecting these expressions we have

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h− ḡρβL X

(
∇̄ρ(Γνµβ)

(1) − ∇̄ν(Γρµβ)
(1)
)

−δX
(
(Γµν

α)(1)(Γσ
σ
α)

(1) − (Γµσ
α)(1)(Γν

σ
α)

(1)
)

−hρ
βδX

(
Rβ

µρν

)(1) · h. (A.59)

Using the identity given in the equation (A.35) we can write the following equalities

L X∇̄ρ(Γνµβ)
(1) = ∇̄ρL X(Γνµβ)

(1) − (Γσµβ)
(1)δX(Γρν

σ)(1)

−(Γνσβ)
(1)δX(Γρµ

σ)(1) − (Γνµσ)
(1)δX(Γρβ

σ)(1), (A.60)

L X∇̄ν(Γρµβ)
(1) = ∇̄νL X(Γρµβ)

(1) − (Γσµβ)
(1)δX(Γνρ

σ)(1)

−(Γρσβ)
(1)δX(Γνµ

σ)(1) − (Γρµσ)
(1)δX(Γνβ

σ)(1). (A.61)

Inserting the results we have

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h (A.62)

−ḡρβ
(
∇̄ρL X(Γνµβ)

(1) − ∇̄νL X(Γρµβ)
(1)
)
+ (Γνσ

ρ)(1)δX(Γρµ
σ)(1)

+(Γνµσ)
(1)δX(Γρ

ρσ)(1) − (Γρσ
ρ)(1)δX(Γνµ

σ)(1) − (Γρµσ)
(1)δX(Γν

ρσ)(1)

−hρ
βδX

(
Rβ

µρν

)(1)
.h− δX

(
(Γµν

α)(1)(Γσ
σ
α)

(1) − (Γµσ
α)(1)(Γν

σ
α)

(1)
)
.

Decomposing the first order linearized Christoffel connection as

(Γνσ
ρ)(1) = ∇̄νhσ

ρ − (Γν
ρ
σ)

(1), (A.63)
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and

(Γρσ
ρ)(1) = ∇̄ρhσ

ρ − (Γρ
ρ
σ)

(1), (A.64)

we obtain

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h (A.65)

−ḡρβ
(
∇̄ρL X(Γνµβ)

(1) − ∇̄νL X(Γρµβ)
(1)
)

−(Γν
ρ
σ)

(1)δX(Γρµ
σ)(1) +

(
∇̄νhσ

ρ
)
δX(Γρµ

σ)(1) + (Γνµσ)
(1)δX(Γρ

ρσ)(1)

−
(
∇̄ρhσ

ρ
)
δX(Γνµ

σ)(1) + (Γρ
ρ
σ)

(1)δX(Γνµ
σ)(1) − (Γρµσ)

(1)δX(Γν
ρσ)(1)

−hρ
βδX

(
Rβ

µρν

)(1) · h− δX
(
(Γµν

α)(1)(Γσ
σ
α)

(1) − (Γµσ
α)(1)(Γν

σ
α)

(1)
)
.

Since we have

−(Γν
ρ
σ)

(1)δX(Γρµ
σ)(1) + (Γνµσ)

(1)δX(Γρ
ρσ)(1) + (Γρ

ρ
σ)

(1)δX(Γνµ
σ)(1)

−(Γρµσ)
(1)δX(Γν

ρσ)(1) = δX
(
(Γρ

ρ
σ)

(1)(Γνµ
σ)(1) − (Γρµσ)

(1)(Γν
ρσ)(1)

)
, (A.66)

we can write

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h (A.67)

−ḡρβ
(
∇̄ρL X(Γνµβ)

(1) − ∇̄νL X(Γρµβ)
(1)
)

+
(
∇̄νhσ

ρ
)
δX(Γρµ

σ)(1) −
(
∇̄ρhσ

ρ
)
δX(Γνµ

σ)(1) − hρ
βδX

(
Rβ

µρν

)(1) · h.
Expressing the terms which involve the Lie derivative of the Christoffel connection

in terms of the linear order perturbation of the metric tensor, we can write

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h+
(
∇̄νhσ

ρ
)
δX(Γρµ

σ)(1)

−
(
∇̄ρhσ

ρ
)
δX(Γνµ

σ)(1) − hρ
βδX

(
Rβ

µρν

)(1) · h
−1

2
ḡρβ
(
∇̄ρL X

(
∇̄νhµβ + ∇̄µhνβ − ∇̄βhµν

)
− ∇̄νL X∇̄µhρβ

)
, (A.68)

and using the identity given in the equation (A.28) we have

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h+ hσ
ρ
(
∇̄ρδX(Γνµ

σ)(1) − ∇̄νδX(Γρµ
σ)(1)

)
−1

2
ḡρβ
(
∇̄ρ∇̄νL Xhµβ + ∇̄ρ∇̄µL Xhνβ − ∇̄ρ∇̄βL Xhµν − ∇̄ν∇̄µL Xhρβ

)
−hρ

βδX
(
Rβ

µρν

)(1) · h, (A.69)

where the second line is the first order linearization of the Ricci tensor, with a minus

sign, which is evaluated at L Xh. Also, from the definition of the first order linearized

Riemann tensor we get

hσ
ρ
(
∇̄ρδX(Γνµ

σ)(1) − ∇̄νδX(Γρµ
σ)(1)

)
= hσ

ρδX (Rσ
µρν)

(1) · h, (A.70)
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and finally one can express the following equation

δX(Rµν)
(2) · [h, h] = L X(Rµν)

(1) · h− (Rµν)
(1) · L Xh. (A.71)

By using the expression for the second order linearized scalar curvature, we can write

δX (R)(2) · [h, h] = R̄ρσh
σλδXhλ

ρ + R̄ρσhλ
ρδXh

σλ − δXh
σρ(Rρσ)

(1) · h

−hσρδX(Rρσ)
(1) · h+ ḡσλδX(Rρσ)

(2) · [h, h]. (A.72)

Using the result for the gauge transformation of the second order linearized Ricci

tensor we have

δX (R)(2) · [h, h] = R̄ρσh
σλδXhλ

ρ + R̄ρσhλ
ρδXh

σλ + L X ḡ
σρ(Rρσ)

(1) · h

−hσρL XR̄ρσ + ḡσλ
(
L X(Rρσ)

(1) − (Rρσ)
(1) · L Xh

)
. (A.73)

This expression can be recast as

δX (R)(2) · [h, h] = R̄ρσh
σλδXhλ

ρ + R̄ρσhλ
ρδXh

σλ + L X

(
ḡσρ(Rρσ)

(1) · h
)

−ḡσρL X(Rρσ)
(1) · h− L X

(
hσρR̄ρσ

)
+ (L Xh

σρ) R̄ρσ + ḡσλL X(Rρσ)
(1) · h

−ḡσρ (Rρσ)
(1) · L Xh. (A.74)

Combining the Lie derivative terms we obtain

δX (R)(2) · [h, h] = R̄ρσh
σλδXhλ

ρ + R̄ρσhλ
ρδXh

σλ (A.75)

+L X

(
ḡσρ(Rρσ)

(1) · h− hσρR̄ρσ

)
+ (L Xh

σρ) R̄ρσ − ḡσρ (Rρσ)
(1) · L Xh,

where

ḡσρ(Rρσ)
(1) · h− hσρR̄ρσ = (R)(1) · h. (A.76)

After a straightforward calculation, for the remaining terms we can write

R̄ρσh
σλδXhλ

ρ + R̄ρσhλ
ρδXh

σλ + (L Xh
σρ) R̄ρσ = R̄ρσL Xhσρ, (A.77)

and then we obtain

δX (R)(2) · [h, h] = L X (R)(1) · h−
(
ḡσρ (Rρσ)

(1) · L Xh− R̄ρσL Xhσρ

)
, (A.78)

where the terms in the parenthesis forms the linearized scalar curvature evaluated

at L Xh. As a result the gauge transformation of the second order linearized scalar

curvature becomes

δX (R)(2) · [h, h] = L X (R)(1) · h− (R)(1) · L Xh. (A.79)
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Using our results in the equation (A.54) we have

δX(Gµν)
(2) · [h, h] = L X(Rµν)

(1) · h− (Rµν)
(1) · L Xh− 1

2
hµνδX(R)(1) · h

−1

2
ḡµν

(
L X (R)(1) · h− (R)(1) · L Xh

)
− 1

2
δXhµν(R)(1) · h, (A.80)

and it can be expressed as

δX(Gµν)
(2) · [h, h] = L X

(
(Rµν)

(1) · h− 1

2
ḡµν (R)(1) · h− 1

2
hµνR̄

)
−
(
(Rµν)

(1) · L Xh− 1

2
ḡµν (R)(1) · L Xh− 1

2
R̄L Xhµν

)
. (A.81)

Here the total Lie derivative terms express the Lie derivative of the first order lin-

earized Einstein tensor and the second line is the first order linearized Einstein tensor

evaluated at L Xh. We can express the final result as

δX(Gµν)
(2) · [h, h] = L X(Gµν)

(1) · h− (Gµν)
(1) · L Xh, (A.82)

which is the desired formula that was used in the text to study the gauge-invariance

properties of the Taub charges. Observe that if hµν solve the linearized equations,

the first term on the right hand side vanishes, but the second one does not vanish.

Therefore, unlike the first order linearized Einstein tensor, the second order linearized

Einstein tensor is not gauge invariant.

63



64



APPENDIX B

EXPLICIT FORM OF THE K-TENSOR IN ADS

Here let us depict some of the intermediate steps leading to (2.32). Assuming a gen-

eral form for the second order perturbation of the metric tensor, kµν , as

kµν = a hµβh
β
ν + b hhµν + ḡµν(c h

2
αβ + d h2). (B.1)

The trace of the kµν tensor is

k = ḡµνkµν = (a+ cD)h2
αβ + (b+ dD)h2, (B.2)

where the constants a, b, c, d are to be determined. The first order Ricci operator

evaluated at the kµν tensor is

(Rµν)
(1) · k =

1

2
(∇̄α∇̄µk

α
ν + ∇̄α∇̄νk

α
µ − �̄kµν − ∇̄µ∇̄νk), (B.3)

whose explicit form follows as

(Rµν)
(1) · k =

a

2
(∇̄α∇̄µh

αβhβν + ∇̄α∇̄νh
αβhβµ − �̄hβ

νhβµ − ∇̄µ∇̄νh
2
αβ)

+
b

2
(∇̄α∇̄µhh

α
ν + ∇̄α∇̄νhh

α
µ − �̄hhµν − ∇̄µ∇̄νh

2)

+
c

2
(∇̄ν∇̄µh

2
αβ + ∇̄µ∇̄νh

2
αβ − ḡµν�̄h2

αβ −D∇̄µ∇̄νh
2
αβ)

+
d

2
(∇̄ν∇̄µh

2 + ∇̄µ∇̄νh
2 − ḡµν�̄h2 −D∇̄µ∇̄νh

2). (B.4)

We should set a = 1 and b = −1/2 to get the second order linearized Ricci tensor

given in (A.12)

(Rµν)
(1) · k =

1

2
∇̄α

(
hαβ

(
∇̄µhνβ + ∇̄νhµβ

))
+
1

2
∇̄α

(
hβν∇̄µh

αβ + hβµ∇̄νh
αβ + hαβ∇̄βhνµ − ∇̄α

(
hβ
νhβµ

))
−∇̄ν

(
hαβ∇̄µhαβ

)
− 1

4
h∇̄α

(
∇̄µh

α
ν + ∇̄νh

α
µ − ∇̄αhµν

)
+

1

2
∇̄ν

(
h∇̄µh

)
−1

4
∇̄α(h

α
ν ∇̄µh+ hα

µ∇̄νh− hµν∇̄αh)− 1

4
∇̄βh

(
∇̄µhνβ + ∇̄νhµβ − ∇̄βhµν

)
+
c

2
((2−D)∇̄ν∇̄µh

2
αβ − ḡµν�̄h2

αβ) +
d

2
((2−D)∇̄ν∇̄µh

2 − ḡµν�̄h2). (B.5)
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Using the expression for (Rµν)
(2) · [h, h], finally the Ricci tensor evaluated at the kµν

tensor becomes

(Rµν)
(1) · k = −(Rµν)

(2) · [h, h]− 3

4
∇̄νh

αβ∇̄µhαβ +
1

2
∇̄αhµβ∇̄αhβ

ν

+
1

2
∇̄α

(
hβν∇̄µh

αβ + hβµ∇̄νh
αβ + hαβ∇̄βhνµ − ∇̄α

(
hβ
νhβµ

))
−h

2
(Rµν)

(1) · h+
1

2
∇̄ν

(
h∇̄µh

)
− 1

4
∇̄α(h

α
ν ∇̄µh+ hα

µ∇̄νh− hµν∇̄αh)

−1

2
hαβ∇̄ν∇̄µhαβ +

c

2
((2−D)∇̄ν∇̄µh

2
αβ − ḡµν�̄h2

αβ)

−1

4
h∇̄ν∇̄µh− 1

2
∇̄αhµβ∇̄βhα

ν +
d

2
((2−D)∇̄ν∇̄µh

2 − ḡµν�̄h2). (B.6)

For the first order linearized scalar curvature which is evaluated at the kµν tensor we

have

(R)(1) · k = ḡµν(Rµν)
(1) · k − R̄µνk

µν , (B.7)

which is explicitly

(R)(1) · k = −ḡµν(Rµν)
(2) · [h, h]− 3

4
∇̄µhαβ∇̄µhαβ +

1

2
∇̄αhµβ∇̄αhβµ

−1

2
∇̄αhµβ∇̄βhµα +

1

2
∇̄α

(
2hµ

β∇̄µh
αβ + hαβ∇̄βh− ∇̄α

(
h2
βµ

))
−1

2
hαβ�̄hαβ −

h

2
ḡµν(Rµν)

(1) · h− 1

4
h�̄h+

1

2
∇̄µ
(
h∇̄µh

)
+c(1−D)�̄h2

αβ + d(1−D)�̄h2 − R̄µν

(
hµ
βh

βν − 1

2
hhµν + ḡµν

(
ch2

αβ + dh2
))

−1

4
∇̄α(2h

αµ∇̄µh− h∇̄αh). (B.8)

By using

(R)(2) · [h, h] = R̄µνh
µ
αh

αν − hµν(Rµν)
(1) + ḡµν(Rµν)

(2) · [h, h], (B.9)

we obtain

(R)(1) · k = −(R)(2) · [h, h]− hµν(Rµν)
(1) · h− 5

4
∇̄µhαβ∇̄µhαβ

+
1

2
∇̄αhµβ∇̄βhµα +

1

2
hµβ

(
2∇̄α∇̄µh

α
β − ∇̄α∇̄αhµβ − ∇̄µ∇̄βh

)
+
1

2
hαβ∇̄α∇̄βh− hαβ�̄hαβ −

h

2
(R)(1) · h+

1

2
h�̄h+

3

4
∇̄µh∇̄µh

+c(1−D)�̄h2
αβ + d(1−D)�̄h2 − R̄(ch2

αβ + dh2), (B.10)

where
1

2
hµβ

(
2∇̄α∇̄µh

α
β − �̄hµβ − ∇̄µ∇̄βh

)
= hµβ(Rµβ)

(1) · h. (B.11)
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Finally the Ricci tensor evaluated at the kµν tensor becomes:

(R)(1) · k = −(R)(2) · [h, h]− 5

4
∇̄µhαβ∇̄µhαβ +

1

2
∇̄αhµβ∇̄βhµα

+
1

2
hαβ∇̄α∇̄βh− hαβ�̄hαβ −

h

2
(R)(1) · h+

1

2
h�̄h+

3

4
∇̄µh∇̄µh

+c(1−D)�̄h2
αβ + d(1−D)�̄h2 − R̄(ch2

αβ + dh2). (B.12)

We can express the first order linearized cosmological Einstein tensor evaluated at the

kµν tensor as

(Gµν)
(1) · k = (Rµν)

(1) · k − 1

2
ḡµν (R)(1) · k − 2Λ

(D − 2)
kµν , (B.13)

where we made use of the fact that the background is an AdS spacetime with the

normalization R̄µν = 2Λ
D−2

ḡµν . Inserting our results in the last expression we have

(Gµν)
(1) · k = −(Rµν)

(2) · [h, h] + 1

2
ḡµν(R)(2) · [h, h]

−h

2

(
(Rµν)

(1) · h− 1

2
ḡµν(R)(1) · h− 2Λ

(D − 2)
hµν

)
+

1

2
∇̄αhµβ∇̄αhβ

ν

+
1

2
∇̄α

(
hβν∇̄µh

αβ + hβµ∇̄νh
αβ + hαβ∇̄βhνµ − ∇̄α

(
hβ
νhβµ

))
−3

4
∇̄νh

αβ∇̄µhαβ −
1

2
hαβ∇̄ν∇̄µhαβ −

1

4
h∇̄ν∇̄µh+

1

2
∇̄ν

(
h∇̄µh

)
−1

4
∇̄α(h

α
ν ∇̄µh+ hα

µ∇̄νh− hµν∇̄αh) +
c

2
(2−D)∇̄ν∇̄µh

2
αβ

+
d

2
(2−D)∇̄ν∇̄µh

2 − 1

2
ḡµν

(
−5

4
∇̄σhαβ∇̄σhαβ +

1

2
∇̄αhσβ∇̄βhσα

)
−1

2
ḡµν

(
1

2
hαβ∇̄α∇̄βh− hαβ�̄hαβ +

1

2
h�̄h+

3

4
∇̄σh∇̄σh

)
−1

2
ḡµν
(
c(2−D)�̄h2

αβ + d(2−D)�̄h2)− R̄(ch2
αβ + dh2)

)
−1

2
∇̄αhµβ∇̄βhα

ν − 2Λ

(D − 2)

(
hµβh

β
ν + ḡµν(ch

2
αβ + dh2)

)
, (B.14)

where

− (Rµν)
(2) · [h, h]+ 1

2
ḡµν (R)(2) · [h, h] = − (Gµν)

(2) · [h, h]− 1

2
hµν (R)(1) ·h. (B.15)

Then the linearized Einstein tensor evaluated at the kµν tensor can be found as

(Gµν)
(1) · k = − (Gµν)

(2) · [h, h]− 1

2
hµν (R)(1) · h− h

2
(Gµν)

(1) · h

−3

4
∇̄νh

αβ∇̄µhαβ +
1

2
∇̄αhµβ∇̄αhβ

ν −
1

2
∇̄αhµβ∇̄βhα

ν

+
1

2
∇̄α

(
hβν∇̄µh

αβ + hβµ∇̄νh
αβ + hαβ∇̄βhνµ − ∇̄α

(
hβ
νhβµ

))
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−1

2
hαβ∇̄ν∇̄µhαβ −

1

4
h∇̄ν∇̄µh+

1

2
∇̄ν

(
h∇̄µh

)
+

d

2
(2−D)∇̄ν∇̄µh

2

−1

4
∇̄α(h

α
ν ∇̄µh+ hα

µ∇̄νh− hµν∇̄αh) +
c

2
(2−D)∇̄ν∇̄µh

2
αβ

−1

2
ḡµν

(
−5

4
∇̄σhαβ∇̄σhαβ +

1

2
∇̄αhσβ∇̄βhσα

)
−1

2
ḡµν

(
1

2
hαβ∇̄α∇̄βh− hαβ�̄hαβ +

1

2
h�̄h+

3

4
∇̄σh∇̄σh

)
−1

2
ḡµν
(
c(2−D)�̄h2

αβ + d(2−D)�̄h2)− R̄(ch2
αβ + dh2)

)
− 2Λ

D − 2

(
hµβh

β
ν + ḡµν(ch

2
αβ + dh2)

)
. (B.16)

We can express the last equation in a more compact form as

(Gµν)
(1) · k = − (Gµν)

(2) · [h, h] +Kµν , (B.17)

where the final form of the Kµν tensor is

Kµν = −1

2
hµν (R)(1) · h− h

2
(Gµν)

(1) · h− 3

4
∇̄νh

αβ∇̄µhαβ +
1

2
∇̄αhµβ∇̄αhβ

ν

−1

2
∇̄αhµβ∇̄βhα

ν +
1

2
∇̄α

(
hβν∇̄µh

αβ + hβµ∇̄νh
αβ + hαβ∇̄βhνµ − ∇̄α

(
hβ
νhβµ

))
−1

4
h∇̄ν∇̄µh+

1

2
∇̄ν

(
h∇̄µh

)
− 1

4
∇̄α(h

α
ν ∇̄µh+ hα

µ∇̄νh− hµν∇̄αh)

+
c

2
(2−D)∇̄ν∇̄µh

2
αβ +

d

2
(2−D)∇̄ν∇̄µh

2 − 2Λ

D − 2

(
hµβh

β
ν + ḡµν(ch

2
αβ + dh2)

)
−1

2
hαβ∇̄ν∇̄µhαβ −

1

2
ḡµν

(
−5

4
∇̄σhαβ∇̄σhαβ +

1

2
∇̄αhσβ∇̄βhσα

)
−1

2
ḡµν

(
+
1

2
hαβ∇̄α∇̄βh− hαβ�̄hαβ +

1

2
h�̄h+

3

4
∇̄σh∇̄σh

)
−1

2
ḡµν
(
c(2−D)�̄h2

αβ + d(2−D)�̄h2)− R̄(ch2
αβ + dh2)

)
. (B.18)

Using (Gµν)
(1) · h = 0 and choosing the transverse traceless gauge for the sake of

simplicity, which yields �̄hµν = 4Λ
(D−1)(D−2)

hµν , the K tensor becomes

Kµν =
1

2
hαβ∇̄α∇̄βhνµ −

1

2
∇̄αhµβ∇̄αhβ

ν −
1

2
∇̄αhµβ∇̄βhα

ν

+
1

2
∇̄αhβν∇̄µh

αβ +
1

2
∇̄αhβµ∇̄νh

αβ +

(
c(2−D)− 1

2

)
hαβ∇̄ν∇̄µhαβ

+

(
Λ

(D − 2)(D − 2)

(
cD2 + cD − 6c+ 2

))
ḡµνh

2
αβ

+

(
c(D − 2) +

5

8

)
ḡµν∇̄σhαβ∇̄σhαβ −

1

4
ḡµν∇̄αhσβ∇̄βhσα

+

(
c(2−D)− 3

4

)
∇̄νh

αβ∇̄µhαβ −
2Λ

(D − 1)(D − 2)
hµβh

β
ν . (B.19)
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Using the following identities

hαβ∇̄α∇̄βhνµ = ∇̄α

(
hαβ∇̄βhνµ

)
, (B.20)

∇̄αhµβ∇̄αhβ
ν = ∇̄α

(
hµβ∇̄αhβ

ν

)
− 4Λ

(D − 1)(D − 2)
hµβh

β
ν , (B.21)

∇̄αhµβ∇̄βhα
ν = ∇̄α

(
hµβ∇̄βhα

ν

)
− 2ΛD

(D − 1)(D − 2)
hµβh

β
ν , (B.22)

∇̄αhβν∇̄µh
αβ = ∇̄α

(
hβν∇̄µh

αβ
)
− 2ΛD

(D − 1)(D − 2)
hµβh

β
ν (B.23)

and

∇̄αhβµ∇̄νh
αβ = ∇̄α

(
hβµ∇̄νh

αβ
)
− 2ΛD

(D − 1)(D − 2)
hµβh

β
ν , (B.24)

(
c(2−D)− 1

2

)
hαβ∇̄ν∇̄µhαβ +

(
c(2−D)− 3

4

)
∇̄νh

αβ∇̄µhαβ

=

(
c(2−D)− 1

2

)
∇̄ν

(
hαβ∇̄µhαβ

)
− 1

4
∇̄νh

αβ∇̄µhαβ, (B.25)

ḡµν∇̄σhαβ∇̄σhαβ = ∇̄σ

(
ḡµνhαβ∇̄σhαβ

)
− 4Λ

(D − 1)(D − 2)
ḡµνh

2
αβ, (B.26)

ḡµν∇̄αhσβ∇̄βhσα = ∇̄α

(
ḡµνhσβ∇̄βhσα

)
− 2ΛD

(D − 1)(D − 2)
ḡµνh

2
αβ, (B.27)

we can express the K tensor in a more compact form as

Kµν = ∇̄αH
α
µν +

Λ

(D − 2)

(
c(D − 2) +

1

2

)
ḡµνh

2
αβ −

1

4
∇̄νh

αβ∇̄µhαβ

− ΛD

(D − 1)(D − 2)
hµβh

β
ν , (B.28)

where

Hα
µν =

1

2

(
hαβ∇̄βhνµ + hβν∇̄µh

αβ + hβµ∇̄νh
αβ − hµβ∇̄αhβ

ν − hµβ∇̄βhα
ν

)
−1

4
ḡµνhσβ∇̄βhσα +

(
c(2−D)− 1

2

)
δαν h

σβ∇̄µhσβ

+

(
c(D − 2) +

5

8

)
ḡµνhσβ∇̄αhσβ. (B.29)
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In this gauge the coefficient d is not fixed but can be set to zero. Kµν has a single

parameter which one can choose to fix the stability of the flat spacetime. In the

Chapter 2, we use this expression to study the linearization stability of the Minkowski

space by choosing Λ = 0.
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APPENDIX C

ADM FORMALISM OF TOPOLOGICALLY MASSIVE GRAVITY

The topologically massive gravity is a higher order gravity theory that involves the

third order derivative Cotton tensor, hence the ADM construction is somewhat cum-

bersome. In this appendix, we give a full account of this. What is also important

is that as the action of the theory is only diffeomorphism invariant up to a bound-

ary term, canonical ADM analysis should better be carried out at the field equation

level. For the purpose of completeness we give the computation at the level of the

action also. For this purpose we need to find the ADM decomposition of Christoffel

symbol, the Ricci tensor, the scalar curvature and Cotton tensor. Let us compute the

corresponding quantities step by step.

C.1 ADM split of the Christoffel symbol

We denote the full 2+1 dimensional metric with gµν and the ADM decomposition of

the metric is

ds2 = (nin
i − n2)dt2 + 2nidtdx

i + γijdx
idxj, (C.1)

where n is lapse function and ni is shift vector both of which are functions of all

coordinates. The spatial indices can be raised and lowered with the 2 dimensional

spatial metric γij . We will denote the spacetime coordinates with the Greek indices

and the space coordinates with the Latin indices as µ, ν, ρ, ... = 0, 1, 2 and i, j, k, ... =

1, 2 respectively. The components of the three dimensional metric tensor are then

g00 = −(n2 − nin
i), g0i = ni and gij = γij . Similarly, components of the inverse

metric are g00 = − 1
n2 , g0i = 1

n2n
i and gij = γij − 1

n2n
inj . We define the extrinsic

curvature tensor, kij , of the surface

kij :=
1

2n
(γ̇ij −Dinj −Djni) , (C.2)

71



where Di is the covariant derivative which is compatible with γ, namely Dγ = 0 and

an over dot denotes the time derivative. Γ denotes Christoffel symbol of the three

dimensional space with the well known definition

Γ µ
νρ =

1

2
gµσ (∂νgρσ + ∂ρgνσ − ∂σgνρ) (C.3)

and γ denotes the Christoffel symbol of the two dimensional surface, which is com-

patible with the spatial metric γ as

γk
ij =

1

2
γkp (∂iγjp + ∂jγip − ∂pγij) . (C.4)

Now we can find the relations between the Christoffel symbol components of the

three and two dimensional spaces. We can express the three dimensional Christoffel

connection which consist of only time components as

Γ 0
00 =

1

2
g0σ (2∂0gσ0 − ∂σg00) , (C.5)

where σ can be a space or time component as we expressed above. Considering the

possible cases we obtain

Γ 0
00 =

1

2
g00∂0g00 +

1

2
g0k (2∂0gk0 − ∂kg00) , (C.6)

and inserting the components of the metric and the inverse metric tensor we have

Γ 0
00 =

1

2n2
(2nṅ− ninj γ̇

ij) +
nk

2n2

(
2n∂kn− 2∂knin

i − ninj∂kγ
ij
)
. (C.7)

Expressing the partial derivatives in terms of covariant derivatives and by using γ̇ij =

−γikγlj γ̇kl = −2nkij −Dinj −Djni we obtain the final result as

Γ 0
00 =

1

n

(
ṅ+ nk

(
∂kn+ nikik

))
. (C.8)

Now let us compute the Christoffel symbol with only one lower space component. It

can be expressed as

Γ 0
0i =

1

2
g00∂ig00 +

1

2
g0k (∂0gki + ∂igk0 − ∂kgi0) , (C.9)

and substituting the corresponding metric tensor components in the last equation we

have

Γ 0
0i =

1

n

(
∂in+ nkkik

)
. (C.10)
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The Christoffel symbol which has only one lower time component can be expressed

as

Γ i
0j =

1

2
g0i∂jg00 +

1

2
gik (∂0gkj + ∂jgk0 − ∂kgj0) , (C.11)

and in terms of covariant derivative it becomes

Γ i
0j = − 1

n
ni
(
∂jn+ kkjn

k
)
+ nkj

i +Djn
i. (C.12)

With upper time and lower space components the Christoffel connection is

Γ 0
ij =

1

2
g0k (∂igj0 + ∂jgi0 − ∂0gij) +

1

2
g0k (∂igkj + ∂jgki − ∂kgij) (C.13)

and it can be compactly expressed as

Γ 0
ij =

1

n
kij. (C.14)

We can express the Christoffel symbol which consists of only space components as

follows

Γ k
ij = γk

ij +
1

2
gk0 (∂ig0j + ∂jg0i − ∂0gij) , (C.15)

or equivalently, this can be expresses as

Γ k
ij = γk

ij −
nk

n
kij. (C.16)

The last component that we need to compute is the Christoffel symbol with upper

space and lower time components, explicitly it is

Γ i
00 =

1

2
g0i∂0g00 +

1

2
gik (2∂0g0k − ∂kg00) , (C.17)

and substituting the metric tensor components it can also be expressed as

Γ i
00 =

ni

n2

(
−nṅ+ ṅkn

k − nnknrk
kr − nknrD

knr
)

+

(
γik − 1

n2
nink

)
(ṅk + n∂kn−Dknrn

r) . (C.18)

After a lengthy calculation we obtain

Γ i
00 = − 1

n

(
niṅ+ ninknrk

kr + nink∂kn
)
+ γik (ṅk + n∂kn− nrDknr) , (C.19)

and by using γikṅk = ṅi − nkγ̇
ik we can express the last equation as

Γ i
00 = −ni

n

(
ṅ+ nk

(
∂kn+ nlkkl

))
+ n

(
∂in+ 2nkkk

i
)
+ ṅi + nkDkn

i. (C.20)

To compute the decomposition of the field equations, we need to compute additional

tensor quantities such that Ricci tensor components, the scalar curvature and the Cot-

ton tensor.
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C.2 ADM split of the Ricci tensor and the scalar curvature

The three dimensional Ricci tensor which is compatible with the metric g can be

expressed as

Rρσ = ∂µΓ
µ
ρσ − ∂ρΓ

µ
µσ + Γ µ

µνΓ
ν
ρσ − Γ µ

σνΓ
ν
µρ. (C.21)

We can express the hypersurface projection of the three dimensional Ricci tensor as

Rij = ∂0Γ
0
ij + ∂kΓ

k
ij − ∂iΓ

0
0j − ∂iΓ

k
kj +

(
Γ 0
00 + Γ k

k0

)
Γ 0
ij +

(
Γ 0
0k + Γ l

lk

)
Γ k
ij

−Γ 0
0iΓ

0
0j − Γ 0

jkΓ
k
0i − Γ k

0jΓ
0
ik − Γ k

jmΓ
m
ik , (C.22)

and by inserting the expressions for the three dimensional Christoffel connection we

obtain

Rij =
(2)Rij + kkij − 2kikk

k
j

+
1

n

(
k̇ij − nkDkkij −Di∂jn− kkjDin

k − kkiDjn
k
)
, (C.23)

where (2)Rij denotes the Ricci tensor of the hypersurface, which is explicitly

(2)Rij = ∂kγ
k
ij − ∂iγ

k
kj + γk

klγ
l
ij − γk

jlγ
l
ki. (C.24)

The three dimensional Ricci tensor component which is orthogonal to the hypersur-

face is

R00 = ∂kΓ
k
00 − ∂0Γ

k
0k + Γ k

k0Γ
0
00 − Γm

k0Γ
k
0m +

(
Γm
mk − Γ 0

k0

)
Γ k
00 (C.25)

and it can be written as

R00 =
1

n
ninj

(
k̇ij − nkDkkij −Di∂jn− 2kkjDin

k
)
− n2k2

ij

+ninj
(
(2)Rij + kkij − 2kikk

k
j

)
+ n

(
Dk∂

kn− k̇ − nkDkk + 2nkDmk
m
k

)
. (C.26)

By using equation (C.23) we can express the result in a compact form as

R00 = ninjRij − n2k2
ij + nnk (Dmk

m
k −Dkk)

+n
(
Dk∂

kn− k̇ + nkDmk
m
k

)
. (C.27)

The Ricci tensor with once time and once space projection is

R0i = ∂kΓ
k
0i − ∂0Γ

k
ki + Γ k

k0Γ
0
0i + Γm

kmΓ
k
0i − Γ 0

ikΓ
k
00 − Γm

ik Γ
k
m0 (C.28)
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and in terms of 2 + 1 dimensional decomposition it can be written as

R0i =
1

n
nj
(
k̇ij − nkDkkij −Di∂jn− kkjDin

k − kkiDjn
k
)

+nj
(
(2)Rij + kkij − 2kikk

k
j

)
+ n (Dik +Dmk

m
i ) , (C.29)

which can be similarly expressed in terms of Rij by using the equation (C.23) as

R0i = njRij + n (Dmk
m
i −Dik) . (C.30)

Since we know the decomposition of the three dimensional Ricci tensor components,

we can compute the decomposition of the three dimensional scalar curvature R. Con-

tracting the Ricci tensor with the inverse metric tensor yields the scalar curvature as

R = Rµνg
µν = R00g

00 + 2R0ig
0i +Rijg

ij, (C.31)

and by using our results we have

R = (2)R + k2 + k2
ij +

2

n

(
k̇ −DiD

in− niDik
)
, (C.32)

where (2)R is scalar curvature of the hypersurface which is compatible with spatial

metric γ.

C.3 ADM split of the TMG action

The ADM decomposition of the TMG action is known in the literature [57]. Here,

as a complementary exercise to our decomposition of the field equations, we will

construct the decomposition of the action in the metric formulation. From the actual

physical point of view, one should not have a physical difference between the two

formulations. But because of the possible boundary terms, and due to the fact that the

TMG action is only diffeomorphism invariant up to a boundary term, the canonical

variables and the form of the actions look quite different. We have chosen to work

withe field equations, since the action formulation involves tensor densities. But the

following computation is still valuable and can be used for the Hamiltonian formula-

tion of the theory.

For simplicity let us analyse the TMG action in two parts.
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C.3.1 The Einstein-Hilbert action

The Einstein-Hilbert Lagrangian is

L EH =
√
−g (R− 2Λ) , (C.33)

where
√
−g = n

√
γ and substituting the three dimensional curvature scalar, which

was given in (C.32) in the action, we arrive at

L EH = n
√
γ

(
(2)R + k2 + k2

ij +
2

n

(
k̇ −DiD

in− niDik
)
− 2Λ

)
. (C.34)

We can express the term which has explicit time dependence as

k̇
√
γ = ∂0 (k

√
γ)− k∂0

√
γ, (C.35)

where

∂0
√
γ =

1

2

√
γγij∂0γij =

√
γ
(
nk +Din

i
)

(C.36)

and then we obtain

k̇
√
γ = ∂0 (k

√
γ)−√

γ
(
nk2 + kDin

i
)
. (C.37)

Inserting the last expression in the action we have

L EH = n
√
γ
(
(2)R− k2 + k2

ij + Λ
)
+ ∂0 (2

√
γk) (C.38)

−Di

(
2
√
γ
(
Din+ kni

))
,

where the last three terms are boundary terms. So up to boundary terms ADM for-

malism of the Einstein-Hilbert action becomes

L EH =
√
−g (R + Λ) = n

√
γ
(
(2)R− k2 + k2

ij − 2Λ
)
. (C.39)

C.3.2 The Chern-Simons action

The Chern-Simons Lagrangian is

L CS =
1

2µ

√
−gερνµ

(
Γ σ
ργ∂νΓ

γ
µσ +

2

3
Γ σ
ργΓ

γ
νδΓ

δ
µσ

)
. (C.40)
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2 + 1 dimensional decomposition of the three index ε tensor gives

L CS = 1
2µ

√
−g

(
εn0m

(
Γ σ
nγ∂0Γ

γ
mσ +

2
3
Γ σ
nγΓ

γ
0δΓ

δ
mσ

)
(C.41)

+ε0mn
(
Γ σ
0γ∂mΓ

γ
nσ +

2
3
Γ σ
0γΓ

γ
mδΓ

δ
nσ

)
+ εmn0

(
Γ σ
mγ∂nΓ

γ
0σ +

2
3
Γ σ
mγΓ

γ
nδΓ

δ
0σ

))
.

Here the terms with the coefficient 2
3

are identical, by expressing these terms together

we have

L CS =
1

2µ
εmn

(
Γ σ
nγ∂0Γ

γ
mσ + Γ σ

0γ∂mΓ
γ
nσ + Γ σ

mγ∂nΓ
γ
0σ + 2Γ σ

nγΓ
γ
0δΓ

δ
mσ

)
. (C.42)

Let us compute the ADM decomposition of the Chern-Simons action term by term.

The first term can be decomposed as

εmnΓ σ
nγ∂0Γ

γ
mσ = εmn

(
Γ 0
n0∂0Γ

0
m0 + Γ 0

nk∂0Γ
k
m0 + Γ k

n0∂0Γ
0
mk + Γ k

nl∂0Γ
l
mk

)
. (C.43)

In terms of the ADM decomposition the terms in the right hand side of the last equa-

tion can be recast as follows

εmnΓ 0
n0∂0Γ

0
m0 (C.44)

=
εmn

n2

((
∂nn+ nkkkn

)
∂mṅ+ ∂nn∂0

(
nlkml

)
+ nkkkn∂0

(
nlkml

))
and

εmnΓ 0
nk∂0Γ

k
m0 = εmn

(
1

n3

(
ṅnkkkn∂mn

)
(C.45)

− 1

n2

(
kkn∂0

(
nk∂mn

)
+ nkkknn

lk̇lm

)
+

1

n
knk∂0Dmn

k + knkk̇m
k

)
and

εmnΓ k
n0∂0Γ

0
mk = εmn

(
− 1

n2

(
k̇kmn

k
(
∂mn+ nlkln

)
+ ṅkkmDnn

k

)

+
1

n3

(
ṅnkkkm∂nn

)
+

1

n
k̇mkDnn

k + k̇mkkn
k

)
. (C.46)

We also have the last piece as

εmnΓ k
nl∂0Γ

l
mk = εmn

((
1

n2

(
knln

k∂0
(
nlkmk

)
+ ṅkkmn

lγk
nl

)

− 1

n

(
γk
nl∂0

(
nlkmk

)
+ γ̇l

mkknln
k

)
+ γ̇l

mkγ
k
nl

)
. (C.47)
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Combining these we obtain the following identity

εmnΓ σ
nγ∂0Γ

γ
mσ = εmn

(
1

n2

(
∂nn∂mṅ+ 2∂nnṅ

kkkm − ṅkkm∂nn
k

)
(C.48)

+
1

n

(
knkDmṅ

k + k̇mk∂nn
k − γk

nlṅ
lkmk

)
+ k̇mkkn

k + knkk̇m
k + γk

nlγ̇
l
mk

)
.

Similarly the second term can be decomposed as

εmnΓ σ
0γ∂mΓ

γ
nσ = εmn

(
Γ 0
00∂mΓ

0
n0 + Γ 0

0k∂mΓ
k
n0 + Γ k

00∂mΓ
0
nk + Γ k

0l∂mΓ
l
nk

)
, (C.49)

where the right hand side of the equation can be expressed term by term as

εmnΓ 0
00∂mΓ

0
n0 = εmn

(
− 1

n3

(
ṅnrkrn∂mn+ nrkrn∂mnn

k
(
∂kn+ nlklk

))

+
1

n2

(
ṅ∂m (nrkrn) + nk

(
∂kn+ nlklk

)
∂m (nrkrn)

))
(C.50)

and

εmnΓ 0
0k∂mΓ

k
n0 = εmn

(
1

n3

(
nrkrn∂mnn

k
(
∂kn+ nlklk

))
(C.51)

+
1

n

((
∂kn+ nlklk

) (
∂mDnn

k + ∂mnkn
k
)
+ ∂mkn

k
(
∂kn+ nlklk

))
− 1

n2

(
nk
(
∂kn+ nlklk

)
∂m (nrkrn) + ∂mn

k
(
∂kn+ nlklk

) (
∂nn+ klnn

l
)))

and

εmnΓ k
00∂mΓ

0
nk = εmn

(
1

n3

(
nrkkn∂mnn

k
(
∂rn+ nlklr

)
+ ṅ∂mnn

kkkn

)
− 1

n2

(
nknr∂mkkn

(
∂rn+ nlklr

)
+ ∂mnkkn

(
ṅk + nlDln

k
)
+ ṅnk∂mkkn

)
+
1

n

(
∂mkkn

(
ṅk + nlDln

k
)
− ∂mnkn

k
(
∂kn+ 2nlklk

))
+∂mkn

k
(
∂kn+ 2nlklk

))
(C.52)
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also and

εmnΓ k
0l∂mΓ

l
nk = εmn

(
1

n3

(
−nlkkn∂mnn

k (∂ln+ nrklr)

)
+

1

n2

(
nk∂m

(
kknn

l
)
(∂ln+ nrklr) + ∂mnn

lkknDln
k

)
− 1

n

(
∂m
(
kknn

l
)
Dln

k − ∂mnkn
knlklk + nk∂mγ

l
nk (∂ln+ krln

r)

)
+∂mγ

l
nk

(
nkl

k +Dln
k
)
− kl

k∂m
(
kknn

l
))

. (C.53)

Collecting the pieces one has the identity,

εmnΓ σ
0γ∂mΓ

γ
nσ = εmn

(
∂mkn

k∂kn+ ∂mknk∂
kn+ ∂mkn

knlkkl

+∂mknkn
lkl

k +Dln
k∂mγ

l
nk − kl

kknk∂mn
l + nkl

k∂mγ
l
nσk

+
1

n

(
γk
nl∂mn

l∂kn+ γk
nr∂mn

rnlklk + ṅk∂mknk −Dln
kknk∂mn

l

)
+

1

n2

(
ṅkkn∂mn

k − ∂mn
k∂kn∂nn− ∂mn

k∂nnn
lkkl − ṅl∂mnkln

))
. (C.54)

The third term can be decomposed as

εmnΓ σ
mγ∂nΓ

γ
0σ = εmn

(
Γ 0
m0∂nΓ

0
00 + Γ 0

mk∂nΓ
k
00 + Γ k

m0∂nΓ
0
0k + Γ k

ml∂nΓ
l
0k

)
, (C.55)

where

εmnΓ 0
m0∂nΓ

0
00 = εmn

(
− 1

n3

(
nlkmln

k∂nn
(
∂kn+ nlklk

)
+ nlkml∂nnṅ

)

+
1

n2

(
nlkml∂nṅ+ ∂mn∂nṅ+

(
∂mn+ nlkml

)
∂n
(
nk
(
∂kn+ nlklk

))))
(C.56)

and

εmnΓ 0
mk∂nΓ

k
00 = εmn

(
1

n3

(
nkkkm∂nn

(
ṅ+ nl (∂ln+ nrkrl)

))
− 1

n2

(
kkm∂n

(
ṅnk

)
+ kkm∂n

(
nknl (∂ln+ nrkrl)

))
+
1

n

(
kkm∂nṅ

k + kkm∂nn
lDln

k + kkm∂nn
(
∂kn+ 2nlkl

k
))

+kkmn
r∂nDrn

k + kkm∂n
(
∂kn+ 2nlkl

k
))

(C.57)
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and

εmnΓ k
m0∂nΓ

0
0k = εmn

(
1

n3

(
nk∂nnkrmn

r
(
∂kn+ nlkkl

))
− 1

n2

((
nk∂mn+ nkkrmn

r
)
∂n
(
∂kn+ nlkkl

)
+ ∂nnDmn

k
(
∂kn+ nlkkl

))
+
1

n

(
Dmn

k
(
∂kn+ nlkkl

)
− km

k∂nn
(
∂kn+ nlkkl

))
+km

k∂n
(
∂kn+ nlkkl

)))
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and
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Then the third term becomes,
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The last term also can be decomposed as
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where the decomposition of the right hand side of the equation can be expressed term
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by term as
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and
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and
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and
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. (C.65)

Finally collecting all the pieces together 2 + 1 dimensional decomposition of the last
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term is
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Using these terms we obtain the ADM decomposition of the Chern-Simons action as

follows

L CS =
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+2γk
mrγ

r
nl
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l + nkk
l
)
+ γk

mr∂n (Dkn
r + nkk

r) + 2km
kknlDkn

l

)
.

Here the terms in the first two lines can be written as surface terms and therefore we

will not take them into account in the canonical analysis but they are needed for the

purposes of conserved charge computation. The first two terms in the third line are

identical which is obvious from

εmnknkk̇m
k = ∂0

(
εmnknkkm

k
)
− εmnk̇nkkm

k = εmnk̇mkkn
k, (C.68)

where the total time derivative term vanishes due to the antisymmetry. Now let us

focus on the non tensorial terms and try to express them in a tensorial form. The

terms with the two dimensional Christoffel symbol can be written as
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l
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By using the definition of the two dimensional Riemann tensor, which is explicitly

(2)Rl
kmn =
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(2)R, (C.70)

we can write
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and it reduces to
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The remaining term that we need to compute is the term which involves a time deriva-

tive of the two dimensional Christoffel symbol and it can be expressed as

εmnγk
nlγ̇

l
mk =

1

2
εmn

(
γk
nl2γ̇

lrγk
nlγ

p
mkγpr − γ̇kr∂m

(
γk
nlγ

lr
)

−γ̇mr∂k
(
γk
nlγ

lr
)
+ γ̇km∂r

(
γk
nlγ

lr
))

. (C.73)

Ignoring the surface terms and using the metric compatibility condition we have
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Again by using the expression of the two dimensional Riemann tensor which was

given in equation (C.70) we have
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and we can express some of the remaining terms as
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Finally we obtain
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and we can write the term that involves a time derivative of the connection in a sym-

metric form as,

εmnγk
nlγ̇

l
mk =: Aabγ̇ab, (C.78)

where we have defined a new two index non-tensor quantity which can be expressed

as
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Consequently all two dimensional Christoffel symbol terms together can be written

as
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Substituting the result in the ADM decomposition of the Chern-Simons action, which

is given in (C.68) we obtain
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and by using γ̇ab = 2nkab +Danb +Dbna we have

L CS =
1

µ
εmn

(
Dk (Dmknkn) +Dn

(
kmk∂

kn
)
−Dk (nDnkmk)

+Dn

(
kmk

(
nlkl

k
))

+Dk

(
km

kknln
l
)
+Dm

(
1

2
nn

(2)R

)
− 1

2
nn∂m

(2)R

−Dk

(
km

kknl
)
nl + k̇mkkn

k +Dmknkn
lkl

k

−Dnkmkn
lkl

k − nDkDmknk + nDkDnkmk

)

+
1

µ

(
Aabγr

abnr − ∂aA
abnb + Aabnkab + ∂a

(
Aabnb

))
. (C.82)

Finally up to boundary terms the ADM decomposition of the Chern-Simons La-
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grangian is
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+
1

µ
na

(
1

2
εan∂n

(2)R− 2εmnDnkmkk
ak − εmnDk

(
km

kkn
a
)
−
(
∂bA

ba − Acbγa
cb

))
.

C.3.3 The TMG action

Combining all the above results the Lagrangian of the topologically massive gravity

up to a boundary term in the ADM formulation reads

L TMG = n
√
γ
(
−2Λ+ (2)R− k2 + k2

ab

)
+ vab (γ̇ab − 2nkab − 2Danb)

+
1

µ

√
γ
(
εmnk̇mkkn

k + n
(
γ− 1

2Aabkab + 2εmnDkDnkmk

))
+
1

µ

√
γna

(
1

2
εan∂n

(2)R− 2εmnDnkmkk
ak − εmnDk

(
km

kkn
a
)

−γ− 1
2

(
∂bA

ba − Acbγa
cb

))
, (C.84)

where we have introduced the Lagrange multiplier vab. As usual we can define the

conjugate momenta of the two dimensional metric tensor as

πab =
δL TMG

δγ̇ab
= vab (C.85)

and the conjugate momenta of the extrinsic curvature tensor as

Πab =
δL TMG

δk̇ab
=

1

µ

√
γεankn

b. (C.86)

C.3.4 The Hamiltonian of TMG

It is obvious from equation (C.86) that k and Π are not independent, therefore the

system is constrained. Or to stress this: we cannot solve the velocities k̇ab in terms of

their momenta Πab, so we have to include this dependency as a constraint equation

by introducing Lagrange multipliers in the Hamiltonian. Therefore the Hamiltonian

of TMG is

H TMG = πabγ̇ab +Πabk̇ab − L TMG + fab

(
Πab − 1

µ

√
γεankn

b

)
, (C.87)
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here just like Aab , πab is not a tensor. Inserting the TMG action, which was expressed

in equation (C.84), Hamiltonian of the TMG becomes
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)
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We can introduce the following tensor

P ab = γ− 1
2

(
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)
(C.89)

to recast the Hamiltonian as
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where fab is a Lagrange multiplier.

C.3.5 The Constraint equations of TMG

We can now obtain the constraint equations of TMG from the above Hamiltonian.

Variations of na, n and fab yields three constraint equations.

The Hamiltonian constraint equation can be obtained from the variation with respect

to n as

(Φ1) =
δH TMG

δn
= − 2

l2
− (2)R + k2 − k2

ab −
2

µ
εmnDkDnkmk + P abkab, (C.91)

and the momentum constraint equations can be obtained from the variation with re-

spect to na as

(Φ2)
a =

δH TMG

δna

=
2

µ
εmnDnkmkk

ak +
1

µ
εmnDk

(
km

kkn
a
)

− 1

2µ
εan∂n

(2)R−DbP
ba (C.92)

86



and also we have an additional constraint equation which comes from the variation of

the Hamiltonian with respect to Lagrange multiplier fab as

(Φ3)
ab =

δH TMG

δfab
= Πab − 1

2µ

√
γ
(
εankn

b + εbnkn
a
)
. (C.93)

In contrast to the constraint equations directly obtained from the field equations, it

seems there arise three constraint equations from the Hamiltonian formalism of TMG.

But actually the last constraint equation does not say anything new about the theory,

it only repeats the relation between the extrinsic curvature tensor and its conjugate

momenta, where the relation is obvious in equation (C.86).

C.4 ADM split of the Cotton tensor

To carry out the full ADM analysis, we need to split the Cotton tensor on the hy-

persurface and normal to the hypersurface. In local coordinates the Cotton tensor is

defined as

Cµν =
1

2
εραβ (gµρ∇αSβν + gνρ∇αSβµ) , (C.94)

here εραβ is the antisymmetric tensor in interchanging of any two indices and it can be

expressed in terms of the two dimensional antisymmetric tensor, εmn, where ε0mn =

εn0m = εmn0 = 1
n
εmn and εmn = γ− 1

2 εmn. Also Sµν is the Schouten tensor which is

defined in three dimensions as

Sµν = Rµν −
1

4
gµνR. (C.95)

Let us find the 2 + 1 dimensional decomposition of the Cotton tensor step by step.

Since there are summations over Greek indices we can decompose them as summa-

tions over time and space components. Decomposing ρ gives

Cµν =
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2
ε0αβ (gµ0∇αSβν + gν0∇αSβµ) +
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and decomposing α and β indices gives
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Using the expression for three index ε tensor and renaming the indices we can write

Cµν =
1
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and in terms of the partial derivatives it is
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By using the general expression above we can obtain the Cotton tensor components.

Hypersurface projection of the Cotton tensor is
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Projecting twice to the surface yields
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Before finding the explicit expressions for the components of the Cotton tensor we

need to express the components of the Schouten tensor. From the definition of the

Schouten tensor, one has

Sij = Rij −
1

4
γijR (C.103)
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and by using the equations (C.30, C.32) projection once to the surface and once to

normal yields

Si0 = njSij + n (Dmk
m
i −Dik) (C.104)

and from equations (C.27, C.32) projection twice normal to the surface gives
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Before finding the Cotton tensor components, let us compute some frequently appear-

ing expressions. These are
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m0S0k = nrDm (−nsSrs − n (Dsk
s
r − ∂rk))

+nrkmr

(
Dk∂

kn− k̇ + nkDsk
s
k + n

(
1

4
R− k2

rs

))
+ n∂mn

(
k2
rs −

1

4
R

)
−nk∂mn (Dsk

s
k −Dkk)− n∂m

(
Dk∂

kn− k̇ + nkDsk
s
k

)
− 1

4
n2∂mR

+2n2krsDmk
rs + nkk

mSkrn
r + n2kk

m (Dsk
s
k −Dkk) . (C.111)
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Making use of these identities, we can finally obtain the components of the Cotton

tensor as follows: full hypersurface projection of the Cotton tensor becomes

Cij =
1

2n
εmn

(
ni (DmSnj − kmj (Drk

r
n − ∂nk))

+γinṠmj − nkk
jSmk − SmkDjn

k − (∂jn+ nrkrj) (Dsk
s
m − ∂mk)

+Dm

(
−nrSrj − n

(
Drk

r
j −Djk

))
+kmj

(
Dk∂

kn− k̇ + nkDsk
s
k +

n

4
R− nk2

rs

))
+ i ↔ j (C.112)

and projection once to the surface once normal to the surface becomes

Ci0 = njCij +
1

2
εmn

(
−n (DmSni − kmi (Drk

r
n − ∂nk)) (C.113)

+ni

(
DmDrk

r
n − kk

mSkn

)
+ γin∂0Drk

r
m − Sk

m (∂kn+ nrkrk)

−DmDk∂
kn−Dm

(
nkDsk

s
k

)
+ kk

mSkrn
r + ∂mn

(
k2
rs −

1

4
R

)
+n

(
2krsDmk

rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk)

))
.

Projecting twice to the normal of the surface yields

C00 = ninjCij + εmn

(
−nnr (DmSnr − kmr (Dsk

s
n −Dnk)) (C.114)

+
(
nin

i − n2
) (

DmDrk
r
n − kk

mSkn

)
+ nn∂0Drk

r
m − Sk

m (∂kn+ nrkrk)

−DmDk∂
kn−Dm

(
nkDsk

s
k

)
+ kk

mSkrn
r

+∂mn

(
k2
rs −

1

4
R

)
+ n

(
2krsDmk

rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk)

))
.

For notational simplicity, let us define the following tensors

Amni := DmSni − kmi (Drk
r
n − ∂nk) , (C.115)

Bmn := DmDrk
r
n − kk

mSkn, (C.116)

Em := 2krsDmk
rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk) , (C.117)

Cm := ∂0Drkm− Sk
m (∂kn+ nrkrk)−DmDk∂

kn−Dm

(
nkDsk

s
k

)
+kk

mSkrn
r + ∂mn

(
k2
rs −

1

4
R

)
(C.118)
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and reexpress Ci0 and C00 in terms of Cij and the above tensors as follows

Ci0 = njCij +
1

2
εmn (−nAmni + niBmn + γin (Cm + nEm)) (C.119)

and

C00 = ninjCij (C.120)

+εmn
(
−nnrAmnr +

(
nrn

r − n2
)
Bmn + nn (Cm + nEm)

)
.

Obtaining the last two equations has been our main goal in this part, let us now move

on to the field equations.

C.5 ADM split of the TMG field equations

Matter-coupled cosmological TMG field equations are

Eµν = Gµν + Λgµν +
1

µ
Cµν = κτµν , (C.121)

where Gµν is the three dimensional Einstein tensor with the definition

Gµν = Rµν −
1

2
gµνR. (C.122)

By using the Cotton and Ricci tensor components and the scalar curvature, we obtain

the ADM decomposition of the TMG field equation components. Full hypersurface

projection of the field equation is

E ij = Sij −
1

4
γijR + Λγij +

1

µ
Cij = κτij, (C.123)

while projection once to the surface and once normal to the surface gives

E0i = njEij + n (Drk
r
i − ∂ik)

+
1

2µ
εmn (niBmn − nAmni + γin (Cm + nEm)) = κτ0i (C.124)

and projection twice to the normal yields

E00 = 2niE0i − ninjEij + n

(
Dk∂

kn− k̇ + nkDkk + n

(
1

2
R− k2

rs

))
−Λn2 − 1

µ
εmnn2Bmn = κτ00. (C.125)
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The field equation components can be used to find the constraint equations by setting

E ij to κτij and E 0i to κτ0i. Then we obtain the momentum constraint equation of

TMG as

Φi := n (Drk
r
i − ∂ik) +

1

2µ
εmn (−nAmni + niBmn + γin (Cm + nEm))

= κ
(
τ0i − njτij

)
(C.126)

and the Hamiltonian constraint equation as

Φ := Dk∂
kn− k̇ + nkDkk + n

(
1

2
R− k2

rs

)
− Λn− 1

µ
εmnnBmn

= κ
(
τ00 − 2niτ0i + ninjτij

)
. (C.127)

Substituting the corresponding tensors, the explicit form of the momentum constraint

equation is

Φi = n (Drk
r
i − ∂ik) +

1

2µ
εmn

(
−n (DmSni − kmi (Drk

r
n − ∂nk))

+ ni

(
DmDrk

r
n − kk

mSkn

)
+ γin

{
n

(
2krsDmk

rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk)

)
+ ∂0Drk

r
m − Sk

m (∂kn+ nrkrk)−DmDk∂
kn−Dm

(
nkDsk

s
k

)
+ kk

mSkrn
r

+∂mn

(
k2
rs −

1

4
R

)})
= κ

(
τ0i − njτij

)
(C.128)

and the explicit form of the Hamiltonian constraint equation is

Φ = Dk∂
kn− k̇ + nkDkk + n

(
1

2
R− k2

rs

)
− 1

µ
εmnn

(
DmDrk

r
n − kk

mSkn

)
−Λn = κ

(
τ00 − 2niτ0i + ninjτij

)
. (C.129)

By using the ADM formulation of the scalar curvature, R = 2 (3Λ− κτ) for the

TMG case, the Hamiltonian constraint equation reduces to

Φ =
1

2

(
(2)R + k2 − k2

ij

)
− Λ− 1

µ
εmn

(
DmDrk

r
n − kk

mSkn

)
=

κ

n2

(
τ00 − 2niτ0i + ninjτij

)
. (C.130)
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C.6 Constraint equations and field equations in Gaussian normal coordinates

Up to this point we have worked with generic lapse and shift functions. Dues to

the complicated expressions in this generic form, let us restrict the discussion to the

Gaussian normal coordinates. Of course this is always possible in a small neighbor-

hood of the spacetime manifold. Coordinate singularities might develop which would

make these coordinates unsuitable, but this does not change the relevant discussion

here. In the Gaussian normal coordinates, one has

ds2 = −dt2 + γijdx
idxj, (C.131)

where we took n = 1, ni = 0 and with this setting the Hamiltonian constraint equa-

tion which is given with equation (C.130) reduces to

Φ =
1

2

(
(2)R + k2 − k2

ij

)
− Λ− 1

µ
εmn

(
DmDrk

r
n − kk

mSkn

)
= κτ00 (C.132)

and the momentum constraint equations given in equation (C.128) reduce to

Φi = Drk
r
i − ∂ik +

1

2µ
εmn

(
−DmSni + kmi (Drk

r
n − ∂nk) (C.133)

+γin

(
2krsDmk

rs − 1

4
∂mR + kk

m (Drk
r
k − ∂kk) + ∂0Drk

r
m

))
= κτ0i.

The extrinsic curvature tensor of the surface in these coordinates simply becomes

kij =
1
2
γ̇ij and from equation (C.23), three dimensional Ricci tensor can be expressed

as

Rij =
(2) Rij + kkij − 2kikk

k
j + k̇ij. (C.134)

From equation (C.32) scalar curvature reduces to

R =(2) R + k2 + k2
ij + 2k̇. (C.135)

We can compute the Schouten tensor by using these expressions and find the expres-

sions of the constraints in the Gaussian normal coordinates. As a final result for the

Hamiltonian constraint equation we obtain the following expression

− 1

2µ
εmn

(
DmD

kγ̇kn −
1

2
γ̇smγ

ks
(
(2)Rkn − γ̇kpγ̇snγ

ps − γ̈kn
))

+
1

8
γ̇ij
(
γ̇abγ

abγij + γ̇ij
)
= τ00 + Λ− 1

2
(2)R (C.136)
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and for the momentum constraint equations we have

− 1

8µ
εmn

(
γ̇abγ

abDmγ̇in − 2γksDm (γ̇knγ̇si) + 2Dmγ̈in − γ̇miD
kγ̇kn

)
+

1

8µ
εm i

(
2γ̇kpDkγ̇pm − γ̇ksDmγ̇ks + 2Dkγ̈km − γ̇mkγ

klDpγ̇pl
)

+
1

2

(
Dkγ̇ki − γabDiγ̇ab

)
= τ0i +

1

2µ
εmnDm

(2)Rni. (C.137)

Furthermore if we take a conformally flat 2D metric on Σ, which is always possible,

we have γij = eϕδij , where ϕ = ϕ(t, xi) and the metric of the Gausian normal

coordinates becomes

ds2 = −dt2 + eϕδijdx
idxj. (C.138)

The Ricci tensor of the two dimensional surface is then

(2)Rij = −1

2
γije

−ϕ∇2ϕ, (C.139)

where ∇2 = ∂2
x + ∂2

y = ∂k∂k here. The scalar curvature of the hypersurface Σ can be

expressed as

(2)R = −e−ϕ∂k∂kϕ = −1

2
e−ϕ (2Dk∂kϕ+ ∂kϕ∂kϕ) . (C.140)

The Hamiltonian and the momentum constraints can be expressed as the following

equations respectively
1

4
ϕ̇2 = κτ00 + Λ− 1

2
(2)R, (C.141)

−1

2
∂iϕ̇ = κτ0i +

1

2µ
εmnDm

(2)Rni. (C.142)

The relation between the Ricci tensor and the scalar curvature of the hypersurface is

(2)Rij =
1

2
γij

(2)R (C.143)

and by using this relation we can express the momentum constraint equations as fol-

lows

∂iϕ̇ = −2κτ0i −
1

2µ
εm iDm

(2)R. (C.144)

By using the equation (C.141) we can write

(2)R = 2 (κτ00 + Λ)− 1

2
ϕ̇2 (C.145)
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and substituting the last expression in equation (C.144) we obtain

∂iϕ̇ = −2κτ0i −
1

µ
εm iκτ00 +

1

2µ
εm iϕ̇∂mϕ̇. (C.146)

For simplicity let us define the current tensor J as

Ji := 2κτ0i +
1

µ
εm iκτ00 (C.147)

and reexpress the constraint equation as

∂iϕ̇ = −Ji +
1

2µ
εm iϕ̇∂mϕ̇. (C.148)

Contracting the last equation with εki gives

∂iϕ̇ =
2µ

ϕ̇
εi

mJm +
2µ

ϕ̇
εi

mϕ̇∂mϕ̇, (C.149)

which has the same left hand side with the equation (C.146). This yields the equality

−Ji +
1

2µ
εm iϕ̇∂mϕ̇ =

2µ

ϕ̇
εi

mJm +
2µ

ϕ̇
εi

mϕ̇∂mϕ̇. (C.150)

Let us reexpress our result by using the definition of the J tensor which was given in

equation (C.147) as

2µ

ϕ̇
εm i∂mϕ̇

(
1 +

ϕ̇2

4µ2

)
=

2

ϕ̇

(
∂i +

ϕ̇

2µ
εm i∂m

)
κτ00

+
4µ

ϕ̇

(
εi

m +
ϕ̇

2µ
δm i

)
κτ0m. (C.151)

Note that in the vacuum case, the right hand side of the last equation becomes zero

and the only solution is ϕ0 = c t with a constant c which is the de Sitter solution and

the constant can be obtained from the trace equation as c = 2
l
.

C.6.1 Perturbations around the de Sitter space

We can compute the perturbed constraint equations around the background solution

given by ϕ0. The perturbation is defined as ϕ = ϕ0 + δϕ. Since ϕ0 = c t any

arbitrary spatial derivative of the ϕ0 will be zero (∂iϕ̇0 = 0). Nonvanishing terms of

the perturbation of the final result which is given in equation (C.151) is then

2µ

ϕ̇0

εm i∂m ˙δϕ

(
1 +

ϕ̇0
2

4µ2

)
=

2

ϕ̇

(
∂i +

ϕ̇

2µ
εm i∂m

)
κδτ00

+
4µ

ϕ̇

(
εi

m +
ϕ̇

2µ
δm i

)
κδτ0m, (C.152)
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where we can express the result in terms of the solution constant c as

2µ

c
εm i∂m ˙δϕ

(
1 +

c2

4µ2

)
=

2

c

(
∂i +

c

2µ
εm i∂m

)
κδτ00

+
4µ

c

(
εi

m +
c

2µ
δm i

)
κδτ0m. (C.153)

C.6.2 From de Sitter to anti de Sitter

Wick rotating the parameters as xi → ixi , t → it, c → ic, one obtains the AdS space

and the Gaussian normal coordinates metric (C.138) becomes

ds2 = dt2 − e−ct
(
dx2 + dx2

)
. (C.154)

At the chiral point µ2l2 = 1, we have c2 = − 4
l2

and left hand side of the perturbed

equation (C.153) is zero but since the right hand side of the equation is not zero, there

exists a linearization instability at this point.

C.6.3 TMG field equations in Gaussian normal coordinates

We can also analyse the ADM decomposition of the TMG field equations in Gaussian

normal coordinates. The ADM decomposition of the Cotton tensor, which is given in

equation (C.112), reduces to

Cij =
1

2
εmn

(
γin

(
Ṡmj − kk

jSmk −Dm

(
Drk

r
j −Djk

)
(C.155)

−kmj

(
k̇ − 1

4
R + k2

rs

)))
+ i ↔ j

and in terms of the metric components it can be expressed as

Cij =
1

4
εmn (γinDm∂jϕ̇+ γjnDm∂iϕ̇) . (C.156)

Now we can express the TMG field equations as follows

Eij = −1

4
γij
(
ϕ̇2 + 2ϕ̈

)
+ Λγij +

1

4µ
(εm iDm∂jϕ̇+ εm jDm∂iϕ̇) (C.157)
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and writing the covariant derivatives as partial derivatives we have

Eij = −1

4
γij
(
ϕ̇2 + 2ϕ̈

)
+ Λγij +

1

8µ

(
2εm i∂m∂jϕ̇+ 2εm j∂m∂iϕ̇

−εm i (∂mϕ∂jϕ̇+ ∂jϕ∂mϕ̇)− εm j (∂mϕ∂iϕ̇+ ∂iϕ∂mϕ̇)

)
. (C.158)
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