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                                                                  ABSTRACT 

 

ANALYSIS OF METAL FORMING BY USING ISOGEOMETRIC 

ELEMENTS 

 

Özdoğan, Yasin 

 

MSc., Department of Mechanical Engineering 

Supervisor: Prof. Dr. Haluk Darendeliler 

 

 

 

July 2018, 160 pages 

 

In this thesis, a new numerical analysis method named as isogeometric analysis (IGA), 

based on usage of non-uniform rational basis spline (NURBS) basis functions is 

studied in order to examine the behavior of parts in the forming processes. NURBS is 

a mathematical modeling method used for representing any kind of curves, surfaces 

and 3-D shapes and it is widely used in computer aided design (CAD) software 

packages since its favorable and flexible nature makes modelling of complex 

geometries possible. Isogeometric analysis has emerged with the idea of using same 

basis functions for both analysis and design stages and it aims to eliminate time 

consumption during required geometry transformation between these stages. NURBS 

basis functions have been chosen as common basis function because they enable 

higher continuity and exact geometry contrary to polynomial based finite element 

method basis functions. Moreover, due to the recursive nature of NURBS, more 

general and robust algorithms can be developed for computation procedure. In this 

study, Matlab codes have been developed to use IGA technique in several linear 

elasticity problems. Thereafter, isogeometric analysis has been used for plasticity 

problems; uniaxial loading of a sheet, v-die bending and square deep drawing by using 

LS-DYNA analysis software. Same analyses were also run by using classical finite 
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element method with utilizing another commercial analysis software Abaqus. 

According to obtained results, accuracy and computational efficiency of IGA have 

been compared with FEA. At the end, isogeometric analysis was evaluated as a 

suitable technique for analysis of linear elasticity problems and metal forming 

processes because it gives more accurate results in shorter time compared to finite 

element analysis.  

 

Keywords: NURBS, Isogeometric Analysis, Finite Element Analysis, Sheet Metal 

Forming, V-Die Bending, Springback, Square Deep Drawing, Thickness Strain  
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                                                                             ÖZ 

 

METAL ŞEKİLLENDİRME SÜRECİNİN İZOGEOMETRİK ELEMANLAR 

KULLANILARAK ANALİZİ 

 

Özdoğan, Yasin 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Haluk Darendeliler 

 

 

 

Temmuz 2018, 160 sayfa 

 

Bu tezde, parçaların şekillendirme sürecindeki davranışlarını incelemek amacıyla, 

NURBS tabanlı fonksiyonların kullanımına dayanan izogeometrik analiz (IGA) 

yöntemi kullanılmıştır. Düzenli olmayan rasyonel tabanlı eğri, NURBS, her türlü 

eğrileri, yüzeyleri ve 3 boyutlu şekilleri tanımlamak amacıyla kullanılan bir 

matematiksel modeldir ve karmaşık geometrilerin modellenmesini mümkün kılan 

esnek yapısı sayesinde bilgisayar destekli tasarım (CAD) yazılım paketlerinde yaygın 

olarak kullanılmaktadır. İzogeometrik analiz yöntemi, analiz ve tasarım aşamaları için 

aynı temel fonksiyonların kullanılması fikri ile ortaya çıkmıştır ve bu aşamalar 

arasında gerekli olan geometri dönüşümleri sırasında kaybedilen zamanı ortadan 

kaldırmayı hedeflemektedir. NURBS tabanlı fonksiyonlar, polinom tabanlı sonlu 

elemanlar yönteminin fonksiyonlarına göre daha yüksek süreklilik ve tam doğru 

geometri sağlayabildikleri için analiz ve tasarım süreçleri için ortak temel fonksiyon 

olarak belirlenmiştir. Ayrıca, NURBS'ün tekrarlamalı doğası nedeniyle, hesaplama 

prosedürü için daha genel ve sağlam algoritmalar geliştirilebilir. Bu çalışmada 

izogeometrik analiz yöntemi Matlab programı yardımı ile geliştirilen kodlar 

kullanılarak doğrusal elastisite problemlerine uygulanmış ve yöntemin doğruluğu test 

edilmiştir. Yöntem daha sonra LS-DYNA analiz yazılımı kullanılarak tek yönlü sac 
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çekme, v-büküm ve kare şeklindeki sacları derin çekme işlemleri gibi plastisite 

problemlerine uygulanmıştır. Aynı analizler Abaqus analiz yazılımı yardımı ile klasik 

sonlu elemanlar yöntemi kullanılarak da gerçekleştirilmiştir. Elde edilen sonuçlara 

göre izogeometrik analiz yönteminin doğruluk ve hesaplama verimliliği sonlu 

elemanlar yöntemi ile karşılaştırılmıştır. Sonuçta, izogeometrik analiz yöntemi sonlu 

elemanlar analizine göre daha kısa analiz süreleri kullanarak daha doğru sonuçlar 

sağlaması nedeniyle avantajlı görülmüş, doğrusal elastisite ve metal şekillendirme 

işlemlerinin analizi için uygun bir teknik olarak değerlendirilmiştir.  

 

Anahtar Sözcükler: NURBS, İzogeometrik Analiz, Sonlu Elemanlar Analizi, Sac 

Metal Şekillendirme, V-Büküm, Geri Yaylanma, Kare Derin Çekme, Kalınlık 

Gerinimi 
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       CHAPTER 1 

 

1 INTRODUCTION 

 

1.1 Background and Motivation 

 

Human being has been in an incredible development since the tools they have invented 

using materials such as stone, wood and bone for easy hunting in the hunter-gatherer 

era. Engineers are the most important contributors to the todays achieved 

technological developments with new theories and application methods suggested by 

them for solutions of the worldwide problems. They do not just solve existing 

problems, they also think about the development of humanity and new problems to 

make the world a better place to live. However, the increasing number and complexity 

of the problems made it difficult to find the solutions by using hand calculations. At 

this point, engineers make use of computers, the most important factor behind the 

development of mankind over the last fifty years. Computers can perform prescribed 

mathematical and logical operations at high speed and display the results of these 

operations while engineers write algorithms to define solution procedure for them by 

using one of the programming languages. Today, computers are widely used in 

engineering world for modeling, design and analysis with their cost-effectively 

developed abilities. Computers allow the engineers to simulate the working conditions 

of products before the complete system is designed and produced. Therefore, their 

usage provides saving of time, material and capital. Computer software packages used 

by engineers generally named in three main groups as Computer Aided Design (CAD), 

Computer Aided Engineering (CAE) and Computer Aided Manufacturing (CAM). 

CAD is a computer technology as its name implies used for design of structures and 

document the design process. Detailed engineering drawings of the parts that contain 

products on two dimensional diagrams, material information, dimensions and 

tolerances with specific conventions can be created by using CAD programs and such 

drawings are main input for the manufacturing process. On the other hand, CAE is 
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used to conduct engineering analyses such as Structural Analysis, Computational 

Fluid Dynamics (CFD) and Multibody Dynamics (MBD). Engineering designs are 

evaluated in terms of their functions. Structures are analyzed under the working 

conditions with applied forces, pressures or temperatures and so on. Mechanisms are 

simulated with operation interactions and design constraints. At the end of the analyses 

if the design functionally operate, production of the system can be started. At the 

production stage CAM software are utilized to create detailed manufacturing 

instructions which are generally called as G-Codes for computer numerical control 

(CNC) machines. In order to obtain high quality manufactured parts CAM programs 

are widely used in industry.  

Various mathematical models are used in the backgrounds of aforementioned 

computer aided programs. Finite element method is the most known mathematical 

model which is prevalently used in CAE software for analyses since mid-nineties. 

Mathematical modelling of CAD programs that will be explained in detail in the 

following sections also first emerged in the 1970s. As some improvements were made 

in these mathematical methods, the main parts continued to be used unchanged. In 

fact, this long-term use can be shown as a proof that analysis and design mathematical 

models work well throughout years but, these methods only solve the problems that 

they have developed for and do not process for other problems. Therefore, although 

design and analysis are interdependent, different solution methods are being used in 

these two fields and this causes extra time consumption. Models created by using CAD 

software cannot be directly used by FEA technique. One should make the design 

model suitable for analysis by transforming the data set performing well-known 

method called as “meshing”. However, this preparation of a CAD model for analysis 

is the most time consuming part of analysis process. Relative time consumptions 

during analysis steps were studied in Sandia National Laboratories and results are 

given in Figure 1.1 [1]. In this study, analysis-suitable geometry creation needs about 

50% of overall analysis time while mesh generation takes about 20% and only 4% of 

overall time is actually devoted to computation. Before running the analysis, it is 

necessary to make design model as simple as possible by removing fillets, chamfers, 
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drafts, physical threads and other decorative features. After this operation, geometry 

decomposition should be performed. 

 

Figure 1.1 Relative time spent during different analysis stages [1] 

Besides, designers should carefully construct mating conditions of components in an 

assembly without allowing any interference. The different requirements and 

generation methods of the analysis model and the design model also make the 

communication of designers and analysts more difficult and cause frequent conflicts. 

On the other hand, it is expected from analysts and designers to be aware of each 

other’s needs and facilitate the solutions of the problems by collaborating. This 

situation prompted the academy and industry to seek a new solution that could be used 

jointly for the two main disciplines, design and analysis. Isogeometric analysis 

emerged in accordance with these conditions.  IGA is a recently born analysis method 

that combines Finite Element Analysis (FEA) and Computer Aided Design (CAD) by 

providing an appropriate algorithm for computerized solution. The main idea behind 
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the emergence of isogeometric analysis is utilizing the same basis functions in both 

design and analysis [2]. It focuses to use one geometric model that can be utilized for 

analysis directly or can be manipulated for analysis easily and automatically. At this 

point, isogeometric analysis appeared with the aim of using NURBS geometry, which 

is commonly preferred by CAD software programs, directly in finite element analysis. 

In line with these objectives, isogeometric analysis changes classical finite element 

analysis by using CAD representations and eliminate the data conversion process 

between design and analysis. [1]  

1.1.1 Computer Aided Design (CAD) 

 

In the early 1950s, first commercial computers started to be used in engineering 

applications, mainly for defense and automotive industries. Since that date, computer 

technology has been in continuous development and engineers have begun to develop 

programs to solve engineering problems by taking advantage of the computational 

power of computers. The first computerized graphical technique was introduced by 

Ian Edward Sutherland with the name of “Sketchpad” in his thesis [3]. This program 

was working for 2D drafting operations, but especially automotive and aircraft 

industries were expecting the developed programs to be able to design 3D surfaces. 

Under these expectations, companies worked to develop their own design programs. 

Around 1960, Pierre Bézier, a French engineer, developed a method to define 

automobile surfaces by using mathematical description of Bernstein polynomials [4]. 

During construction of these surfaces Bézier used curves mentioned by his name as 

Bézier curves. At the same time, a French mathematician de Casteljau was also 

working on Bernstein polynomials. The advantage of their methods was fast and easy 

definition of part geometries by using linear combinations of control points. By this 

way, shape modifications were directly applied to the geometry control polygon, 

without the need to change the properties of the basis functions [5]. After the 

functionality of the developed method has been proved, a computer algorithm was 

created for surface modelling by using Bézier curves and program is called as 

UNISURF and it eventually became an important component of Dassault Systèmes 
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CAD software CATIA [6]. Although the utilization of Bézier curves made the 

definition of geometries easier, it has a disadvantage in use. Bézier curves were 

defined by using only one polynomial and this polynomial had a global effect on the 

geometry. By this way, it was not possible to obtain local shape changes. In order to 

overcome this problem, Riesenfeld described a new approach called B-Splines in 1973 

[7]. B-Spline is the short form of “basis spline” and it is a superset of Bézier curves 

and involves its properties. However, it enabled the usage of piecewise polynomials 

and compact support while defining geometries. Utilization of compact support at the 

same time provided local geometry changes. After a while, in 1975, Versprille has 

come up with the method in more generalized form of the B-Splines called as NURBS 

stands for Non-Uniform Rational B-Splines [8]. NURBS made the usage of rational 

functions and exact representation of the conic sections possible which is not the case 

for B-Spline. Today, NURBS is in use by most of the commercial CAD software 

packages and data exchange standards due to its superior properties.  

1.1.2 Computer Aided Engineering (CAE) 

 

The behavior of structures under the working conditions can be analyzed by partial 

differential equations (PDEs). The solution of such problems can be found analytically 

for simple geometries and boundary conditions. However, for the complex geometries 

and boundary conditions it is not possible to obtain analytical solutions with our 

current mathematical knowledge. In order to reach a solution, instead of applying 

analytical techniques, some alternative numerical solution techniques such as Finite 

Element Method (FEM), Boundary Element Method (BEM), Discrete Element 

Method (DEM), Finite Volume Method (FVM) and Finite Difference Method (FDM) 

are developed. FEM and BEM are generally used for structural problems, while FVM 

and FDM are used to solve thermal and fluid flow problems. On the other hand, 

Discrete Element Method is used for computing large number of small particles as in 

the case of molecular dynamics. Since this study focuses on structural problems, only 

FEM will be the numerical method of interest here. The origin of the FEM goes back 

to study of Richard Courant (1943) [9] where he proposed discretization of the whole 
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domain into a set of finite triangular subregions in accordance with the philosophy of 

the finite element method. A few years later, in 1960, Dr. Ray Clough has used the 

term “finite elements” for the first time in his study [10]. At the same time, since digital 

computers were invented with capability of making hundreds of operations per second, 

first commercial FEA programs were began to be developed. In 1963, the first FEA 

software for structural analysis was improved by MacNeal-Schwendler Corporation 

(MSC) with the name of SADSAM (Structural Analysis by Digital Simulation of 

Analog Methods). Milestone of the today’s commercial FEA software packages was 

the enhancement of NASTRAN (NASA Structural Analysis) again by MSC upon 

request of National Aeronautics and Space Administration (NASA) [11]. Later on, 

after conducting a lot of structural, acoustic, vibration and thermal analyses, in 1971 

company has released commercial version of Nastran named as MSC/Nastran. After 

that, other commercial software packages such as ANSYS, Marc and Abaqus were 

released and most of these programs are still in use today because of the advantages 

they have. The main benefits of finite element analysis are listed below: 

- FEA programs decrease the requirement of prototype production with their 

ability of simulating real conditions. This provides a faster and less expensive 

design cycle. 

- FEA software enables the engineers to easily check the effects of design 

parameters by successive simulations. Designers can create more effective and 

accurate designs by taking the effects of parameters into consideration. 

- At the end of the design process, engineers can validate their design and its 

functionality. This helps to reduce the design mistakes to minimum level and 

increase the quality and performance. 

Due to mentioned advantages, computer-aided engineering programs ensure that 

design decisions can be taken early in the process without prototype production. This 

provides efficient use of time, money, effort and resources, and creates low-cost 

success opportunities on projects. Another reason behind the widespread usage of 

CAE programs is the development of cost effective high performance computers. 

Early engineering computers were mainframe computers typically came with board-
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size floating point options that sold for several thousand dollars. But today, with the 

advance in personal computers, every engineer can have an individual computer and 

take advantage of its power of computation in analysis. However, despite the 

development of computers, solutions are still taking long time during finite element 

analysis. Mathematicians and engineers continue to work on to enhance existing 

engineering solution techniques and they are constantly making new contributions to 

finite element analysis in order to speed up the process. Isogeometric analysis method, 

the topic of this thesis, is one of these contributions comes from academy to analysis 

world which is trying to reduce the time, effort and money spent during analysis.  

1.2 Research Objective 

 

The main objective of this thesis is to conduct a study about isogeometric analysis 

(IGA) and its applications to the structural mechanics problems. Isogeometric analysis 

offers to use NURBS as a basis function in finite element method instead of Lagrange 

and Hermite polynomials. The main reasons behind the choice of NURBS is listed 

below: 

- NURBS allows exact representation of geometries.  

- It is successful in modeling free-form surfaces, conic sections, circular, 

cylindrical, spherical and ellipsoid shapes with great flexibility and precision.  

- With the help of Cox de Boor formulation, efficient and stable algorithms for 

NURBS can be easily generated or already available algorithms can be found. 

- NURBS enables users to easily apply geometry refinement without 

regeneration of geometry. 

- NURBS has non-interpolatory nature and high continuity. 

In the classical finite element method approach, the geometric approximation inherent 

in mesh can cause accuracy problems. Some of the structures as in the case of thin 

shells are very sensitive to geometric imperfections. Any deficiency in the 

representation of geometry may change the results tremendously. As can be seen in 

Figure 1.2, magnitude of allowable buckling load on the cylindrical shell decrease 
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considerably with the introduced geometrical imperfections. On the other hand, since 

NURBS can define such cylindrical shapes free from imperfections, these problems 

can be analyzed with high accuracy. Moreover, isogeometric analysis enables analysts 

to easily make mesh refinements without communicating and changing the geometry. 

On the other hand, for classical finite element method application, mesh refinement 

necessitates the regeneration of geometry and this means a lot of time consumption 

especially for assemblies with large number of parts.  

 

Figure 1.2 Thin shell structures exhibit significant imperfection sensitivity:             

(a) faceted geometry of typical finite element meshes introduces geometric 

imperfections and (b) buckling of cylindrical shell with random geometric 

imperfections [2] 

After investigating the advantages of using isogeometric analysis, in this study, it is 

aimed to apply IGA on linear elasticity and plasticity problems. Specified advantages 

of NURBS are desired to be utilized on these problems. It is targeted to evaluate the 

effect of isogeometric analysis method by comparing its results with finite element 

analysis results. 



9 
 
 

 

1.3 Scope of the Search 

 

In the present work, the isogeometric analysis is introduced with its theoretical 

background, numerical applications and experimental verifications. Isogeometric 

analysis is first applied on the elasticity problems that have exact analytical solutions. 

Solutions for these problems are obtained in Matlab by developing an algorithm. Same 

problems are also solved by the classical finite element analysis approach and the 

results of IGA and FEA are compared. Secondly, basic plasticity problems such as 

uniaxial loading of a sheet, v-die bending and square deep drawing are considered. 

Finite element analysis of these problems are performed by using commercial FEA 

solver Abaqus. Isogeometric analysis of these problems are conducted by the 

commercial FEA solver LS-DYNA which is adopted for IGA and contains 

isogeometric NURBS based elements. To better understand the benefits and efficiency 

of IGA, experiments of the analyzed problems i.e. uniaxial loading of a sheet, v-die 

bending and square deep drawing are performed. Experimental results are also 

compared with numerical solutions of IGA and FEA. Experimental tests and 

numerical simulations are carried by using AISI 304 stainless steel and AA2024-T3 

aluminum materials. By conducting these experiments, it is also aimed to bring 

extensive experimental data to the use in literature.  

1.4 Outline of the Thesis 

 

This thesis consists of 6 chapters, and references. 

In chapter 1, background and motivation behind the introduction of this work, 

objectives and scope of the study and outline of the thesis are presented. 

In chapter 2, the literature survey that informs about researches and developments in 

the academic world related with this study is given. 

In chapter 3, the theories of mathematical modeling techniques used in geometry 

creation and also in the development of isogeometric analysis are introduced. Since 
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this analysis method is a modification of classical finite element method by using 

introduced basis functions, the theory of FEM is also included. 

In chapter 4, application examples of IGA on elasticity problems are investigated. 

Solutions obtained by using analytical methods and numerical methods are presented. 

Numerical solutions are obtained with the help of developed Matlab code and Abaqus 

classical FEA program. Consistency of numerical methods with analytical solution are 

examined. FEA and IGA techniques are compared by evaluating the results and 

solution procedure. 

In chapter 5, some of the plasticity problems are solved by using isogeometric analysis. 

During solution process, Abaqus FEA and LS-DYNA programs are utilized for finite 

element analysis and isogeometric analysis respectively. In order to verify the 

numerical solutions, experiments are conducted. Finite element analysis and 

isogeometric analysis results are compared with experimental analysis results in order 

to observe accuracies for validation of these methods.  

In chapter 6, results are summarized and evaluated together, while conclusions are 

drawn including the recommendations for future work to enhance the method.  
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CHAPTER 2 

 

2 LITERATURE SURVEY 

 

In this part, some of the scientific researches reviewed from literature and regarded as 

important were briefly mentioned. The fundamental topics focused during survey were 

finite element method, theoretical background of computer aided engineering, 

isoparametric elements, usage of B-Splines and NURBS for geometric descriptions, 

isogeometric analysis theory, usage of IGA in structural mechanics problems and other 

kind of engineering problems and expected future developments in isogeometric 

analysis with some alternative viewpoints. 

Finite element method is beyond argument most widely used numerical method for 

solving common engineering problems. Therefore, many researchers have been 

interested in using finite element method to solve their problems without the need for 

costly and time consuming experimental tests. Although it is difficult to indicate the 

date of invention for the finite element method, the basis of its development can be 

dated back to the 1940s. In 1941, Alexander Hrennikoff has improved “Framework 

Method” for the solution of elasticity problems [12]. The basic idea behind the 

framework method consists in replacing the continuous material of the elastic 

structures by a framework of articulated parts arranged into identical definite pattern. 

The framework was given with boundary conditions and subjected the loads of the 

real part. Under given conditions stresses were analyzed for articulated parts, and by 

using these results stresses were also obtained for overall geometry. When the units 

are infinitesimal in size, the framework of this kind is rigorously equivalent to the 

whole part with regard to the stresses and deformations [13]. R. Courant has published 

his work in 1943 with the idea of replacing difficult problem P with simpler problem 

Pn and its solution Sn. Then by improving the approximation Pn to P, Sn tends to the 

desired solution S of P [14]. Despite these pioneers used different techniques in their 

studies, they both highlighted a common point which is discretization of a continuous 
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domain into a set of sub-domains. These sub-domains have been called as “finite 

elements” for the first time in the work of Clough (1960) [10]. Clough successfully 

showed a mathematical approach to minimized potential energy of an assumed 

potential pattern. In addition to mentioned names; John Argyris, Olgierd C. 

Zienkiewicz, Ivo Babuška, Bruce Irons, Robert L. Taylor and many other research 

scientists have contributed to finite element method to make it well-run method. They 

have centered around numerical perspective of this new technique by enhancing 

solution approximations and geometrical portrayal to diminish error, convergence and 

stability problems. In accordance with this purpose, in order to improve the 

geometrical representation of mechanical analysis models, Ergatoudis et al. [15] have 

proposed the usage of curved, isoparametric, “quadrilateral” elements for finite 

element analysis. For the curved shapes, these elements were able to follow the 

boundaries of the geometry to a good degree of approximation. In this work, 

parametric coordinates and polynomial shape functions were defined for linear, 

quadratic and cubic isoparametric elements in 2D. Moreover, stiffness matrix, strain 

matrix and Jacobian matrix which are necessary for elastic plane stress or plane strain 

solutions were also defined. Usage of isoparametric elements enabled analysts to use 

reduced computational effort in their analysis and to decrease the possibility of result 

errors. Therefore, the popularity of this new approach began to grow in the engineering 

communities and it is still in use today. 

While the finite element method has been improved and its usage became prevalent 

around engineers and mathematicians, in the meantime, CAD technology was born 

with the studies of Bézier (1966, 1967 & 1972). In these works, Bezier introduced the 

use of Bernstein polynomials in creation of curves and surfaces named as “Bézier 

Curves” and “Bézier Surfaces” respectively [4]. In order to increase the flexibility of 

design method by using more control points for the same degree, Riesenfield has 

proposed a new technique in his doctoral thesis with the name of “B-Spline 

Approximation” [7]. In this thesis, he showed how to create new curves and surfaces 

by using B-spline basis functions instead of the more classical Bernstein polynomial 

approximation theory which is a subset of Bézier curves and surfaces. In 1975, 
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Versprille has come up with the idea of Non-Uniform Rational B-Splines (NURBS) 

[8]. In this study, he aimed to define different impact to the control points by giving 

different weights. In this way, NURBS satisfied a great flexibility in geometry creation 

and today it is most widely used mathematical model of computer aided design 

programs. 

In the 1980s, integration of the FEA and CAD technology has started. Due to the 

different origins of CAD and FEA technologies, they have always been treated as a 

completely separate professions handled by distinct engineering departments. 

Nevertheless, due to various benefits of cooperation of CAD and FEA methods, 

researchers have focused on the new combined techniques. Accurate geometry 

description which is vital to avoid approximation errors was the main motivation of 

the studies in 1990s. S. Arabshahi et al. [16] published a conceptual article that 

emphasizes the need for integration of design and analysis techniques and gives an 

overview of a future system which would allow and encourage more automated CAD-

FEA transformation. This study discusses the functional components that can be used 

to achieve fully integrated CAD-FEA system. According to the study, it is indicated 

that; robust, comprehensive Product Description Systems (PDS) to held geometric 

data, semi-automated Data Transformation System (DTS) that transforms data held in 

PDS to analysis suitable finite element model, meshing routines with different 

meshing strategies, mesh quality and refinement, finite element solvers suitable to new 

algorithm and range of engineering problems and post-processing components should 

take a part in the future integrated systems. 

Therefore, this study claimed to constitute an analysis process which is in relation with 

the design requirements. Hence, the study of S. Arabshahi has a special place in 

literature due to the prediction of future developments by analyzing the needs of 

industry by the time when it was prepared. The second precursor study about CAD 

and FEA integration was published by Gontier and Vollmer in 1995 [17]. In this work, 

large displacement analysis of beams was discussed by using Bezier type geometry 

definition. Main aim of the study was to benefit from possibility of generating highly 

flexible beam elements that would accept large distortions from its initial shape. Three 
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numerical examples were performed in this study. Firstly, clamped-free straight beam 

under increasing couple at its free end was analyzed. Secondly, clamped-free parabolic 

beam under increasing load and increasing couple at its free end cases were solved. 

Finally, a circular arc shaped beam under increasing load system was studied. At the 

end, it was shown that complex shapes of deformation could be described with fewer 

elements under favor of utilizing the Bezier representation. On the other hand, main 

drawback of the Bezier representation due to its global effect was emphasized. Instead 

of using Bezier representation, in 1998, a new type analysis element called as B-Spline 

Finite Element (BSFE) has been developed and solution procedure were described and 

investigated in detail by Kagan et al. [18]. Convergence characteristics and 

computational effort of the method was compared with classical methods on a linearly 

elastic Euler-Bernoulli beam model problem. The BSFE solution was found to have 

prevalent exactness on results with no significant difference in convergence rates, 

computational effort and implementation complexity. In 2000, Kagan et al. [19] used 

B-Spline representation to analyze elastic linear plate model by the “Kirchhoff Plate 

Theory” and it was seen that this method shortens the product analysis duration and 

decrease the total cost of product development.  

In 2005, Hughes et al. [2] have come up with the idea of new NURBS-based finite 

element method which uses CAD basis functions NURBS also in finite element 

analysis. They named this method as “Isogeometric Analysis”. The main aim of the 

work was to obtain geometrically exact analysis model independent of discretization. 

Another aim was to remove the requirement of communication with CAD geometry 

during mesh refinement process. In the study, theories of B-Splines, NURBS and 

refinement types were given. Isogeometric analysis was implemented to structural 

analysis and fluid analysis problems. In structural analysis applications, infinite plate 

with circular hole under constant in-plane tension; solid circular cylinder subjected to 

internal pressure loading; solid ‘‘horseshoe’’ subjected to equal and opposite in-plane 

flat edge displacements; thin cylindrical shell with fixed ends subjected to constant 

internal pressure; Scordelis–Lo roof, pinched hemisphere and pinched cylinder shell 
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under gravity and concentrated forces respectively; hemispherical shell with a stiffener 

subjected to gravity loading and external pressure problems were investigated. 

Among these problems IGA results were compared with exact analytical solutions for 

first and second problems. For the remaining problems results were checked with 

academic studies done on the same problems. For all types of the problems, results 

were consistent with the compared solutions. Additionally, this compatibility was 

obtained with coarse discretization and few number of elements. So, the simplicity of 

mesh refinement was also highlighted in these problems. After the introduction of 

isogeometric analysis method, lots of researchers from different disciplines have been 

interested in this new technique. Since then, a number of studies have appeared about 

refinement, continuity, structural vibrations and so on. After this phase, in 2009              

J. Austin Cottrell et al. [1] published the IGA book. This book is the more general 

form of the paper published in 2005 [2]. In addition to theoretical information and 

example implementations take a part in previous paper, this book also includes 

vibrations and wave propagation, time dependent problems, nonlinear problems and 

incompressible solids for structural analysis and turbulence problems for fluid 

analysis. Since then, the theory of isogeometric analysis was settled in academic 

studies and it has been applied to extensive variety of problems to highlight the exact 

geometry and accuracy properties compared with classic FEA. 

Isogeometric analysis has a wide range of application areas from acoustics, structural 

analysis to electromagnetics. The main interest area of this study is structural analysis 

and there are a lot of articles in this area focused on different problems. The most basic 

geometry that has been analyzed with IGA technique was beam model. 3D curved 

beams were investigated in the study of Guodong Zhang et al. [20] by using 

isogeometric analysis approach. The behavior of curved structural members described 

by using the numerical methods based on finite element approximations had still shear 

locking problems. In the study of Zhang, isogeometric finite element method was 

formulated for the 3D curved beams in space and by utilizing this formulation, the 

locking issues were coped with by the help of higher order NURBS interpolations. 

The validity of the method was examined on the circular balcony problem consists 16 
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elements with 4th degree basis functions, logarithmic spiral problem having 194 

elements with 3rd degree NURBS basis, spiral staircase problem consists of 264 

elements with 3rd degree basis functions and S-curved beam analysis carried out using 

26 elements with 4th degree NURBS basis. Each problem had specialized end 

conditions, loads and moments. At the end of the work, it has been concluded that the 

3rd and 4th degree NURBS basis usage has minimized the locking problem. Although 

there were still a few locking problems with cubic NURBS basis, the fourth degree 

basis totally eliminates locking. Another study about curved space beam analysis by 

using IGA was done by Ioannis N. Tsiptsis et al. [21]. In this work, complex behaviors 

of curved beams under the coupled loading conditions of axial load, bending moment 

and torque were investigated. Static analyses of horizontally curved beams of open or 

closed cross sections were performed in the light of isogeometric analysis. Although, 

Thin Tube Theory (TTT) and Generalized Beam Theory (GBT) have been widely used 

in order to deal with flexural and torsional distortion, IGA approach has been 

successfully applied to beam with doubly symmetric cross section and 

monosymmetric cross section. With the use of IGA, distortional effects on curved 

beams have been analyzed with better accuracy and less computational effort since the 

geometry curvature which is an actual parameter that affects the results has been better 

represented. In addition to the aforementioned researches considering the isogeometric 

beam elements, geometrically nonlinear beam elements including torsion was studied 

by A.M.Bauer et al. [22]. In this research, a new element formulation by using IGA 

based on Bernoulli theory was suggested for spatial curved beams under torsion with 

geometric nonlinearity. As in the case of previously introduced studies, some 

examples were presented to verify the new element formulation.  Firstly, analysis of a 

quarter circular, clamped at one end and loaded on the free tip was conducted as a 

membrane-bending interaction problem. Bending-torsion interaction was also 

investigated for the same quarter circular by changing load condition. Two in-plane 

examples which are shallow arch clamped at both ends with a single point force 

applied in the center of the beam and main-spring under pure bending were studied to 

understand the behavior of geometrical nonlinearities. For all of the examples, it was 

benefited from the easy implementation of mesh refinement and higher order basis 
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function usage. Different basis orders and element numbers were examined and the 

accuracy of the method was demonstrated. 

In addition to beam analysis, isogeometric analysis method has been successfully used 

in shell analysis, which is another basic but also common structural analysis subject. 

IGA has been implemented to Reissner-Mindlin shell formulation by D.J. Benson et 

al. [23] in order to analyze linear elastic and nonlinear elasto-plastic structures by 

alleviating shear locking and artificial thinning problems. In his study, one linear 

elastic and four non-linear elasto-plastic material examples were investigated. Firstly, 

in order to realize accuracy and convergence of the developed formulation, pinched 

cylinder linear elastic shell problem was solved. Inward directed point loads were 

applied to the cylinder surface at the opposite locations. Quadratic to quartic basis 

functions were used and suitable meshes with these basis consists of 4 to 64 elements 

were created with the help of h-refinement. Although shear locking problem was still 

seen for quadratic NURBS basis, increasing the order removed it. In order to examine 

the sensitivity and robustness of developed shell analysis formulation in the case of 

distorted elements, nonlinear problems were solved. In the first nonlinear problem, a 

simply supported plate loaded by a uniform pressure with elastic-perfectly plastic 

material was analyzed. Meshes with quadratic, cubic and quartic basis that consists 

4,16 and 64 elements were employed. Results obtained by using isogeometric 

elements were compared with the result of analysis done by 64x64 bi-linear 

Belytschko–Tsay shell elements available for shell analysis in LS-DYNA. The finest 

mesh solutions were close to the solutions of Belytschko–Tsay shell elements 

independent from the polynomial order. Therefore, the effect of element number 

dominates the basis order effect. For the second nonlinear problem, a roof formed from 

120° cylindrical panel under velocity impulse was studied. As in the previous case, 

quadratic, cubic and quartic isogeometric elements were used for calculations. Shear 

locking was experienced for quadratic basis functions with less number of elements 

while the increasing number of elements deals with this problem. Another 

implementation was performed on an isotropic linearly elastic-linearly plastic 

cylindrical tube under buckling loading. Buckling mode of the tube was captured by 
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using 1440 IGA elements. The critical pressure has been found as 3.04 MPa while in 

the experimental study it was found as 2.83 MPa. Final example in this study for 

nonlinear analysis was analysis of square tube buckling into an accordion mode which 

is one of the most sensitive cases for element distortions. An isotropic elastic-plastic 

material with linear plastic hardening was used. Quadratic and quartic polynomial 

orders with 640 elements were used. A geometric imperfection was introduced to 

specified location of the structure in order to initiate buckling deformation. Same 

problem was solved by using surface contact algorithm. At the end, a good agreement 

between the results was attained. Therefore, isogeometric analysis method was seen 

suitable for Reissner-Mindlin shell theory, and well-suited for linear and nonlinear 

applications even for large deformations with element distortions. D.J. Benson et al. 

[24] have also introduced the rotation free isogeometric shell elements to be used in 

several problems. In this work by Benson, large deformations were analyzed by 

utilizing NURBS based isogeometric shell elements which were developed without 

rotational degrees of freedom contrary to conventional finite element formulations. 

Since usage of rotational degrees of freedom increases stiffness matrix size, 

computational effort and probability of encountering convergence problems are higher 

than rotation free formulations. Therefore, shell formulations with only translational 

degrees of freedom is more practical. Two nonlinear elastic-plastic problems have also 

been solved by using the provided formulations. In the first problem, a roof loaded by 

velocity impulse analysis was performed by using 450 isogeometric elements and 

same displacement results were found by using 4656 Belytschko-Tsay elements. CPU 

time required for solution in IGA is the half of time required in reference analysis. For 

the second problem, metal stamping procedure for S-rail was examined on aluminum 

6111-T4 metal sheet. Hill anisotropic yield function was used for definition of material 

behavior in plastic region. Simulations were carried out with 240, 1092, 3840 and 7680 

quadratic isogeometric elements for metal blank. On the other hand, same analysis 

was done by Alcoa with using 11550 elements to create analysis model of blank in 

LS-DYNA.  Although no wrinkles were seen with the analysis done by using 240 

elements, for the other mentioned mesh numbers, wrinkles were captured. On the other 

hand, maximum plastic strain value of the process was found as 0.291 with the 
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reference analysis and this result could only be obtained by using 3840 and 7680 

elements. Thus, usage of isogeometric rotation-free elements decreased the necessary 

element number from 11550 to 3840. Reissner-Mindlin shear deformable theory uses 

C0 continuous basis functions as in the case of most structural elements in finite 

element analysis. However, Kirchhoff-Love shell theory requires C1 continuity of the 

displacement field which is hard to get for free-form geometries and this theory is 

generally used for thin shell structures where shear deformations are neglected. 

Nguyen et al. [25] presented a study that provides extended isogeometric element type 

for analysis of the cracks in thin shell bodies along the thickness. C1 continuity was 

obtained without using additional rotational degrees of freedom. The absence of 

rotational degrees of freedom has diminished the complexity of the enrichment 

strategy and computational cost. By using plate and cylinder examples that carry 

variously settled cracks on them with tensile, shear and inner pressure loadings, the 

agreement and accuracy of the method with analytical and extended finite element 

method (XFEM) solutions was aimed to be shown besides its computational 

performance.   

In addition to the isogeometric analysis studies conducted on beam, shell and plates 

by using general material models, another common area of usage of IGA is composite 

materials. Xuan Wang et al. [26] investigated buckling analysis of laminated 

composite beams. In their work, cross-ply and angle-ply composite beams with 

symmetry and anti-symmetry were examined as a numerical example to compare the 

IGA with other available solutions. It was aimed to consider critical buckling load of 

the beams. Additionally, effects of the slenderness ratio, stacking sequence, modulus 

ratio and fiber angles were evaluated. Clamped-clamped, simply supported and 

clamped-free boundary conditions were applied to problems. The critical buckling 

analyses of cross-ply laminated beams were conducted by using symmetric [0/90/0] 

and anti-symmetric [0/90] cross-ply laminated composite beams for two different 

modulus ratios E1/E2=10; 40 and also for two different slenderness ratios L/h=5; 20. 

Quadratic isogeometric elements with 10, 20, 100 and 200 control points were used. 

Thereafter, the free vibration analyzes of an anti-symmetric composite beam with  
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[45/-45/45/-45] sequence stack for fully clamped and simply supported boundary 

conditions were run to show the impact of including the poisson effect to the results 

in the analysis of angle ply laminated composite beams. Finally, symmetric angle-ply 

beams with stacking sequences [θ/-θ/θ] and [θ/-θ/-θ/θ] and an anti-symmetric two-

layer angle-ply laminated composite beam with lay-up [θ/-θ] were investigated to 

observe the effects of the fiber orientations on the critical buckling loads where the θ 

grows from 0 to 90 by fifteens. At the end of the work it was concluded that, boundary 

conditions have a profound influence on the critical buckling loads, and the beam 

subjected to clamped-clamped boundary condition i.e. more fixed degrees of freedom 

has largest buckling load limit for all lay-up configurations. Although symmetric lay-

up provides the largest critical buckling load in cross ply laminated beams, anti-

symmetric stacking sequences provide the largest critical buckling load for angle-ply 

laminated composite beams with the same modulus ratios and slenderness ratios. The 

critical buckling loads decrease with the increase of the fiber angle for each set of 

boundary conditions. Laminated composite beams with large modulus ratios and low 

slenderness ratios have also higher critical buckling loads for the same ply sequence 

and orientation. Poisson effect included numerical results are in very excellent 

agreement with the analytical solutions while the results with neglected poisson effect 

have significant errors for angle-ply composite beam and therefore, poisson effect 

should be included in the analysis of angle-ply composite beams. 

Besides the examination of buckling analysis of straight beams, bending and buckling 

behaviors of curved beams with varying stack-up and curvature values were also 

studied by Anh-Tuan Luu et al. [27] with the isogeometric approach. A number of 

numerical examples were presented for bending and buckling analyses of laminated 

composite curved beams with arc length 𝐿, span length 𝑙 and rise 𝑓. As a first example 

bending analysis was conducted on cantilever circular curved beam with anti-

symmetric cross-ply [0/90] lamination subjected to uniform normal load was 

considered where slenderness ratio was equal to 20 and the deepness ratio, which is 

ratio of length to radius, was 1. Meshes consist of two elements with quadratic to 

quintic orders were used to model the circular curved beam. By conducting                      
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h-refinement and k-refinement, element numbers have been increased up to 64 in order 

to increase the accuracy. When the results obtained by using h-refinement and                

k-refinement were compared, it was seen that for higher order of basis functions they 

both gave the same value while for lower orders k-refinement results were more 

accurate. For verification purpose, the numerical results of the general differential 

quadrature (GDQ) analysis and finite element analysis were also given. In order to 

investigate more examples for the sake of validity of IGA, maximum deflections of 

cantilever composite beams with circular curved shapes, symmetric [0/90]s and 

antisymmetric cross-ply [0/90] laminations were analyzed for different deepness 

ratios. With the increased deepness ratio, deformations of the beams were decreased. 

Around analyzed beam models symmetric one has experienced the least deformation 

while antisymmetric cross-ply has become most deformed one. Another deformation 

type that was analyzed in Anh-Tuan Luu’s study was buckling of circular curved 

beams and parabolic curved beams under uniform compression. For both of these 

problems [0/90/0], [0/90], [45/-45] and [0/45/-45/90] lay-up sequences were used with 

different deepness ratios under clamped-clamped and hinged-hinged boundary 

conditions. Uttermost critical buckling load value was obtained for [0/90/0] 

configuration where the second highest value was obtained for [0/45/-45/90] and 

lowest value was found for [45/-45] lay-up. Other common conclusion drawn from 

the results was greater critical buckling load for clamped-clamped end condition and 

for higher deepness ratio. In addition to beam problems mentioned above, 

isogeometric analysis was also used for composite plate analyses. Reissner-Mindlin 

theory with isogeometric approach mentioned before for shell analyses, was also used 

to investigate bending behavior of laminated and sandwich composite plates in the 

work of Abha Gupta and Anup Ghosh [28]. The common conclusions drawn in other 

studies about the accurate results with less number of elements, computational 

performance and flexible usage of IGA were also drawn from this study. Additional 

remarks about the decreased shear deformation of the sandwich structures with 

increasing span to thickness ratio has been expressed. As in the works conducted on 

beams with different boundary conditions, the deformation reducing effect of clamped 

boundary condition was re-experienced. Nonlinear geometries of composite plates 
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were analyzed by using NURBS isogeometric elements in the study of Hitesh Kapoor 

and R.K. Kapania [29]. First order shear deformable theory was also utilized with 

isogeometric analysis for analyses of isotropic, orthotropic and laminated composite 

thin plates for various boundary conditions, different length to thickness ratios and 

ply-angles. Center deflection of the plates were evaluated and compared with the 

results of Urthaler and Reddy study [30]. Geometrically nonlinear thin plates prone to 

suffer from shear locking problem due to the high length to thickness ratios of 

elements. K-refined quadratic isogeometric elements can be a remedy for this 

problem. Besides usage of FSDT, higher order shear deformation theory on composite 

plates with IGA was also studied in Loc V.Tran et al. publication [31]. Cubic 

approximation functions were utilized to satisfy the C1 continuity across inter-element 

boundaries without any additional variables. Shear locking problem was eliminated.    

In addition to structural analysis, IGA has another application area which is contact 

problems. In contact formulations, with the usage of conventional finite element 

geometry discretization, representation of faceted surfaces can cause jumps and 

oscillations in traction responses. Since the IGA provides an opportunity to create 

smooth contact surfaces, it makes achievement of physically accurate contact stresses 

possible [32-36]. [32], [33], [34], [35], [36] [37], [38], [39] 

IGA has been preferred to traditional methods in optimization problems due to the 

tight interaction with CAD geometries which makes it an attractive choice for 

industrial applications to represent actual geometry. In the studies [37-39], structural 

shape optimization, its application to vibrating membranes and analytical sensitivities 

of optimization with IGA were discussed respectively. Additionally, sizing and shape 

optimization of beam structures were studied in [40] while stacking sequence 

optimization of laminated composite beams were investigated for maximum strength 

in the work [41]. In isogeometric shape optimization, since the geometric properties 

of design were embedded in NURBS basis functions, the change of design 

parameterization is much easier than that in finite element based method without      

sub-sequent communications with CAD description. [42], [43], [44], [45] 
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Another application area of IGA is structural vibration problems [42-45]. Timoshenko 

beams and complex spatial beams, curvilinear stiffened shells and composite 

laminated Reissner-Mindlin plates were examined under free vibration. Finally, usage 

of higher order mass matrices in isogeometric structural vibration analysis has been 

evaluated. It was shown that the quadratic and cubic higher order mass matrices have 

6th and 8th orders of accuracy, which are two orders higher than those of their 

corresponding in finite element analysis despite the usage of low order mass 

formulations.  

Utilization of NURBS basis functions is a good preference for analysis of fluid 

mechanics and fluid-structure interaction problems due to the smooth geometry 

supply. Navier-Stokes-Korteweg equations were solved and Navier-Stokes flow was 

discretized by conducting isogeometric approach [46-47]. Flow behavior around a 

cylinder, turbulent flow and unsaturated flow problems were also investigated          

[48-50]. Theory and computation of the fluid-structure interaction problems were 

developed in the study [51] while an application of this theory was also performed on 

thoracic aortic blood flow [52]. [46], [47], [48], [49], [50]. [51], [52]. 

Isogeometric analysis concerns with the solutions of thermal analysis and 

thermomechanical coupling problems. In study of Zbigniew Kacprzyk and Katarzyna 

Ostapska-Luczkowska [53], steady state thermal analysis of a simple geometry was 

conducted. By using h-refinement technique different mesh sizes were experienced. 

In the publication [54], an isogeometric shape sensitivity analysis method was 

developed for heat conduction problems using the adjoint variable method. Moreover, 

thermomechanical coupling problems, thermal buckling analysis of functionally 

graded materials [55] and fracture of inhomogeneous cracked solids under thermal 

loading [56] were studied by using isogeometric analysis. 

Thereafter concerning thermal problems, acoustic problems can also be solved by 

IGA. Interior acoustic problems were analyzed by using IGA [57]. Novel isogeometric 

boundary elements were developed in frequency domain by using indirect variational 

BEM which is better for open boundary containing 3D acoustic problems [58]. In 
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order to simulate acoustic fluid-structure interaction problems, a beam coupled to 

rectangular fluid cavity, a Kirchhoff plate coupled to a cuboidal cavity, a circular plate 

coupled to a doubly curved barrel shaped cavity and a car interior cavity in two 

dimension coupled to a beam cases were analyzed by using isogeometric analysis [59]. 

At the end, IGA found 500 non-zero natural frequencies with error less than 5% while 

FEM results were erroneous up to 25% at the higher modes for both weak and strong 

coupling in 2D. 

Together with increasing industrial applications, isogeometric method has been also 

widely used to solve mathematical problems. Since it is easy to construct high order 

continuous basis functions in IGA, it is possible to get great success in solving PDEs 

that include fourth order or higher derivatives of the field variable, such as the Hill-

Cahnard equation [60], explicit gradient damage models [61] and gradient elasticity  

[62]. Moreover, singular integrals were evaluated by using isogeometric boundary 

element method [63].  

For most of the studies and publications mentioned above, in order to benefit from 

calculation ability of the computers, computational implementations were performed. 

However, the usage of IGA is limited mostly within academic community. The 

absence of automated, bug-free commercial programming framework is the main 

reason that prevents spread of IGA usage in entire industry. Up to now, none of the 

written software are industrialized, but some of the implementations are open-source 

to facilitate the research burden of other researchers. To be used in 2D scalar PDEs an 

open source IGA Matlab code was described in [64].  More useful free software tool 

with the name of GeoPDEs which was also developed in Matlab to focus discretization 

and solution of partial differential equations was given in the study of [65]. Another 

program developed by using isogeometric analysis is PetIGA which focuses mainly 

the solutions of nonlinear partial differential equations [66]. Therefore, PetIGA was 

applied to challenging solid and fluid mechanics problems such as hyperelasticity [67]. 

In addition to the open source newly developed software tools, in some researches 

industrial software packages were used with additional subroutines. Abaqus user 

element was defined in [68] to solve higher order strain gradient elasticity problems. 
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In another survey [69], again isogeometric analysis method was implemented into 

Abaqus by taking advantage of user-defined elements to analyze industrial problems 

such as thermal residual stresses and bond line failures. LS-DYNA commercial 

program was managed to consider both elastic and plastic deformations of parts [23]. 

Another software used for IGA was AbqNURBS which was developed in Lyon, 

France [70]. Among the all introduced programs, it was decided that the most stable 

and powerful software is LS-DYNA and so, as a commercial software LS-DYNA was 

used in plasticity part of this study. On the other hand, for elasticity problems of this 

study, developed Matlab codes were used. 

Isogeometric analysis based on NURBS but, it exhibits some shortcomings from both 

computational and analysis point of view. The major disadvantage of NURBS is its 

global refinement nature causes from tensor product structure. For this reason, fine 

meshes were constructed in the areas of geometry which are not desired to be finely 

meshed. This leads to inefficient error estimation and time consumption.     T-Splines 

were accepted from both the computational geometry and analysis communities as a 

solution technique to overcome the limitations of NURBS while retaining the familiar 

structure of NURBS algorithms. T-Splines enable the usage of local refined meshes 

and make it easy to create and edit freeform models. In some researches, IGA 

formulations were developed by using T-Splines and T-splines can be incorporated 

efficiently into existing FE codes [71-73]. Usage of T-Splines can be a good future 

work for this study. [71] and [72] [73] 
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CHAPTER 3 

 

3 ISOGEOMETRIC ANALYSIS USING NURBS 

 

In this chapter, a brief discussion about the theories of B-splines and NURBS which 

are necessary to use isogeometric analysis approach are presented. Some basic 

concepts, commonly used notations and B-spline curves and surfaces are introduced. 

Thereafter, element and space definitions and their implementations are discussed. 

Further, comparison between isogeometric analysis and classical finite element 

analysis is reported.  

3.1 B-Splines  
 

Non-Uniform Rational B-Splines (NURBS) are used as basis functions of 

isogeometric analysis. NURBS are a superset of B-Splines and many features of these 

two are common. B-splines are built from piecewise polynomial functions that are 

defined by knot vectors on non-overlapping connected intervals. Within these 

intervals B-splines are smooth, differentiable and continuous while at the boundaries 

of these intervals they are still continuous but not necessarily differentiable. Although, 

in classical finite element method, the parameter space is local to individual elements, 

the B-spline parameter space is local to the entire patch since internal knots partition 

the patches into elements. In other words, in FEA, each element has its own mapping 

from the reference element while a single B-spline map takes the patch from the 

parameter space to the physical space. Therefore, in IGA the mapping is global to the 

whole patch, rather than to the elements themselves. The term patch is used to specify 

the parametric space partitions or subdomains within which element types and 

material models are assumed to be uniform.  

3.1.1 Knot Vectors 

 

In order to define B-Splines, partition of the parameter domain should be applied by  
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one dimensional vector that comprise of non-decreasing coordinates in parameter 

space. This vector is called as “knot vector” and written as follows 

 = {ξ1, ξ2, . . . , ξ𝑛+𝑝+1} 

where ξi ∈ ℝ is the ith knot, i= 1,2,…, n+p+1, is the knot index, p is the polynomial 

order, and n is the number of basis functions used to constitute B-Spline curve. 

Generally, knot values are normalized in the range between 0 and 1. The knots 

partition the parameter space into elements, usually referred as “knot spans”. Element 

boundaries in the physical space are simply the images of knot lines under the B-spline 

mapping.   

Knot vectors can be classified as uniform or non-uniform and open or periodic knot 

vectors. If knot values in the knot vector are equally spaced in the parameter space 

such as [0 1 2 3 4] or [0 0,1 0,2 0,3 0,4], then knot vector is called as uniform. 

Otherwise it is named as non-uniform knot vector. A knot vector can be defined as 

open if its first and last knot values appear p+1 times. B-Spline basis that are 

constructed from open knot vectors interpolate to the control points at the ends of the 

parameter space interval, [ξ1, ξn+p+1], for one dimension. On the other hand, for 

multiple dimensions, they interpolate at the corners of patches. However, in general 

they are not interpolatory at interior knots. This is a distinctive property between knots 

in isogeometric analysis and nodes in finite element analysis.  

In the parametric space more than one knot can be located at the same coordinate and 

thus, knot values can repeat in knot vector. The number of repetitive knots is called as 

knot multiplicity and this case has essential effects on the properties of basis functions. 

Knot repetition can decrease the continuity of the basis function to 𝐶𝑝−𝑚 where 𝑚 is 

the number of multiplication. When the number of multiplication is equal to 

polynomial degree p, the basis will be C0 continuous at the multiplied knot value [74].  

This makes the basis function non-differentiable at that knot. This property makes it 

possible to create sharp corners in the spline curve by controlling the continuity to the 

associated basis functions. 
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3.1.2 Basis Functions 

 

Definition of B-Spline basis functions has a recursive nature which begins with zero 

polynomial degree (𝑝 = 0) 

 𝑁𝑖,0(𝜉) = {
1         𝑖𝑓  𝜉𝑖 ≤  𝜉 < 𝜉𝑖+1   

   0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                    
    (3.1) 

For the polynomial degrees greater than zero (𝑝 ≥ 1) piecewise definition of the basis 

functions follows the formula given as; 

 
𝑁𝑖,𝑝(𝜉) =

𝜉 − 𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖 

𝑁𝑖,𝑝−1(𝜉) +
𝜉𝑖+𝑝+1 −  𝜉

𝜉𝑖+𝑝+1 − 𝜉𝑖+1 
𝑁𝑖+1,𝑝−1(𝜉) (3.2) 

This piecewise mathematical definition is referred as Cox-de Boor recursion formula 

[75-76]. While working with open knot vectors or repeated knots, it is very crucial to 

take into account that one might encounter with zero denominator. This problem was 

solved by defining the result of such equations equal to zero. [75] & [76] 

During the calculation of basis functions, due to the recursive nature of formulation, 

results of higher order polynomials require the results of lower orders. This 

dependency is shown in Figure 3.1. 

 

Figure 3.1 Dependencies between results of basis functions for computing a cubic 

basis function [74] 
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For constant and linear basis functions with a uniform knot vector  = {0,1,2,3,4,5} 

the results are represented in the Figure 3.2. Looking at the figure shown, it can be 

said dynamic programming code is necessary to improve the efficiency of this 

recursive formula. Otherwise, the same values will be calculated several times. It 

should be noted that for 𝑝 = 0 and 𝑝 = 1, B-Spline basis functions have the same 

values as constant and linear shape functions of classical finite element method. 

However, by increasing the order, B-Spline basis functions differentiate from their 

finite element counterparts. This difference can be observed in Figure 3.3 where the 

graphs of quadratic B-Spline basis functions and quadratic finite element shape 

functions are drawn. Quadratic B-spline basis functions are exactly same but shifted 

relative to each other with varying knot values. As we continue to higher-order basis 

functions this “homogeneous” pattern continues for the B-spline basis functions. On 

the other hand, quadratic finite element shape function differs according to the 

corresponding node position. This is a distinguishing feature between B-Spline basis 

and FEM shape functions that makes IGA superior to FEA.  

 

Figure 3.2 Basis functions for order 0 and 1 for uniform knot vector                             

 = {0,1,2,3,4,5} [1] 
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Figure 3.3 Comparison of quadratic finite element shape functions and B-spline 

basis functions  

In addition to mentioned homogeneity, B-Spline basis functions have several 

important properties as explained below: 

 B-Spline basis functions constitute a partition of unity   ∑ 𝑁𝑖,𝑝(𝜉) = 1𝑛
𝑖=1  

 Each basis function is non-negative over the entire domain 𝑁𝑖,𝑝(𝜉) ≥ 0, ∀ 𝜉 

 B-Spline basis functions are linearly independent  ∑ 𝛼𝑖
𝑛
𝑖=1 𝑁𝑖(𝜉) = 0 only for 

𝛼𝑖 = 0, 𝑖 = 1,2, … , 𝑛 

 The support of a B-Spline basis function of order p is p+1. 𝑁𝑖,𝑝 is non-zero 

over [𝜉𝑖, 𝜉𝑖+𝑝+1] 

 Basis functions of order p have p-mi continuous derivatives across knot ξi 

where mi is the multiplicity of knot ξi.  

 Scaling or translating the knot vector does not alter the basis functions. 
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 B-Spline basis are generally only approximate to control points and not 

interpolate. Therefore, they do not satisfy the Kronecker delta property 

𝑁𝑖,𝑝(𝜉) ≠ 𝛿𝑖𝑗. Only in the case mi = p, then 𝑁𝑖,𝑝(𝜉) = 1. 

Non-uniform knot vectors should be preferred to obtain richer behavior for basis 

functions rather than uniform knot vectors. An example created by using an open non-

uniform knot vector  [0 0 0 0.2 0.4 0.4 0.6 0.8 1 1 1] is shown in Figure 3.4. Basis 

functions are interpolatory at the end points and additionally at the repeated knots 

where multiplicity is equal to polynomial degree p. At this repeated knot, only C0 

continuity is attained. Elsewhere the functions have C1 continuity. When the 

multiplicity is p+1, the basis becomes discontinuous and the patch boundary is 

formed.  

 

Figure 3.4 Quadratic basis functions drawn for non-uniform open knot vector         

 [0 0 0 0.2 0.4 0.4 0.6 0.8 1 1 1] 

 

3.1.2.1 Derivatives of B-Spline Basis Functions 

 

The derivatives of B-Spline basis functions are properly formulated by utilizing lower 

order basis due to their recursive nature. For a given polynomial order p and knot 

vector  , the derivative of the ith basis function is defined as follows 

 𝑑

𝑑𝜉
𝑁𝑖,𝑝(𝜉) =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖  
𝑁𝑖,𝑝−1(𝜉) −

𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1 
𝑁𝑖+1,𝑝−1(𝜉) (3.3) 
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For the higher order derivatives above formula can be generalized by simply taking 

the derivatives of each side to get 

 𝑑𝑘

𝑑𝑘𝜉
𝑁𝑖,𝑝(𝜉) =

𝑝

𝜉𝑖+𝑝 − 𝜉𝑖 
(
𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖,𝑝−1(𝜉))

−
𝑝

𝜉𝑖+𝑝+1 − 𝜉𝑖+1 
(
𝑑𝑘−1

𝑑𝑘−1𝜉
𝑁𝑖+1,𝑝−1(𝜉)) 

(3.4) 

Expanding (3.4) by means of (3.3) results in an expression purely in terms of lower 

order basis functions, 𝑁𝑖,𝑝−𝑘, . . . . . , 𝑁𝑖+𝑘,𝑝−𝑘, are given below; 

 𝑑𝑘

𝑑𝑘𝜉
𝑁𝑖,𝑝(𝜉) =

𝑝!

(𝑝 − 𝑘)! 
 ∑𝛼𝑘,𝑗 𝑁𝑖+𝑗,𝑝−𝑘

𝑘

𝑗=0

(𝜉) (3.5) 

with 

 𝛼0,0 = 1, 

𝛼𝑘,0 = 
𝛼𝑘−1,0

𝜉𝑖+𝑝−𝑘+1 − 𝜉𝑖
 , 

𝛼𝑘,𝑗 = 
𝛼𝑘−1,𝑗 − 𝛼𝑘−1,𝑗−1

𝜉𝑖+𝑝+𝑗−𝑘+1 − 𝜉𝑖+𝑗
  where 𝑗 = 1, . . . . , 𝑘 − 1, 

𝛼𝑘,𝑘 = 
−𝛼𝑘−1,𝑘−1

𝜉𝑖+𝑝+1 − 𝜉𝑖+𝑘
 . 

(3.6) 

Efficient algorithms for these calculations can be found in Piegl and Tiller, 1997 [74]. 

3.1.3 B- Spline Curves 

 

B-Spline curves in ℝ𝑑 are created by taking linear combination of multiplication of 

B-Spline basis functions with coefficients called as “control points”. When the control 

points are linearly interpolated, the resultant polygon is referred as “control polygon”. 

Given n basis functions 𝑁𝑖,𝑝 with specific order p, where  𝑖 = 1,2, . . . , 𝑛, and 

corresponding control points 𝑩𝑖 ∈  ℝ
𝑑 , 𝑖 = 1,2, . . . , 𝑛, then B-Spline curve is defined 

by 
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𝐶(𝜉) =∑𝑁𝑖,𝑝(𝜉)

𝑛

𝑖=1

𝑩𝑖 (3.7) 

The resulting B-Spline curve does not necessarily interpolate the control points. 

Nevertheless, when the interpolation is desired, by using the properties stated in the 

previous part, curve can interpolate to specific control points. 

A B-Spline curve example is shown in Figure 3.5 which is constructed by using 

quadratic basis functions given in Figure 3.4 created from specified knot vector         

 [0 0 0 0.2 0.4 0.4 0.6 0.8 1 1 1]. The control points and control polygon is also 

seen in the figure. Since the curve built from an open knot vector, it interpolates to 

first and last control points. Moreover, curve is also interpolatory at the forth control 

point due to the repetition of knot ξ = 0.4 as much as polynomial order. B-Spline 

curves carry many properties of their basis functions. For instance, in the absence of 

repeated knots or control points, B-Spline curves of degree p have p-1 continuous 

derivatives. In the light of this information, sample curve is 𝐶𝑝−1 = 𝐶1 continuous 

everywhere except at the location of the repeated knot, ξ = 0.4, where it is 𝐶𝑝−2 =

 𝐶0  continuous. 

 

Figure 3.5 A Quadratic B-Spline curve example 

Another property the curves inherit from their basis is “locality”. Due to the compact 

support of the B-spline basis functions, moving a single control point can affect the 

geometry of curve by affecting p + 1 elements of the curve. 
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3.1.4 B-Spline Surfaces 

 

In order to obtain a B-spline surface, it is necessary to take a bidirectional net of control 

points, {𝑩𝑖,𝑗} , 𝑖 = 1, 2, . . . , 𝑛, and  𝑗 = 1, 2, . . .  , 𝑚 and two knot vectors                

Ξ = {𝜉1, 𝜉2, . . . , 𝜉𝑛+𝑝+1}, ℋ = {𝜂1, 𝜂2, . . . , 𝜂𝑚+𝑞+1} where p and q are polynomial 

orders. Calculation is done by the combination of the tensor products of corresponding 

univariate B-spline functions defined as follows:  

 
𝑺(𝜉, 𝜂) =∑∑𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑩𝑖,𝑗

𝑚

𝑗=1

𝑛

𝑖=1

 (3.8) 

An example for the B-Spline surface is considered by using following knot vectors 

Ξ = {0,0,0,0.5,1,1,1} of degree q = 2 and ℋ = {0,0,0,0.25,0.5,0.75,1,1,1} of degree 

p = 2. Basis functions for these knot vectors are given in Figure 3.6 and the created 

surface is shown in Figure 3.7. 

 

Figure 3.6 Basis functions of knot vectors (a) 𝛯 = {0,0,0,0.5,1,1,1} and                                

(b) H = {0,0,0,0.25,0.5,0.75,1,1,1} 

Coordinates of the utilized control net on the surface is given in Table 3.1 [77]. 
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Figure 3.7 An Example B-Spline surface [77] 

 

Table 3.1 Control net Bi,j [77] 

(i,j) 1 2 3 4 5 6 

1 (0,1) (0.5,2) (0,3) (0.4,4) (0,5) (0.2,6) 

2 (1,0) (1.5,1) (1,2) (0.5,3) (1,4) (1,5) 

3 (2,1) (2.5,2) (2,3) (2,4) (2.5,5) (2,6) 

4 (3,0) (3.5,1) (3,2) (3,3) (3.5,4) (3,5) 

 

3.1.5 B-Spline Solids 

 

B-spline solids are produced by using control lattice, {𝑩𝑖,𝑗,𝑘} , 𝑖 = 1,2, . . . , 𝑛;                

𝑗 = 1,2, . . . , 𝑚 and 𝑘 = 1,2, . . . , 𝑙    knot vectors are Ξ = {𝜉1, 𝜉2, . . . , 𝜉𝑛+𝑝+1},             

ℋ = {𝜂1, 𝜂2, . . . , 𝜂𝑚+𝑞+1} and ℒ = {𝜁1, 𝜁2, . . . , 𝜁𝑙+𝑟+1} where p, q and r are polynomial 

orders. Construction formulation for the B-Spline solids is given by 

  

𝑺(𝜉, 𝜂) =∑∑∑𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)

𝑙

𝑘=1

𝑩𝑖,𝑗,𝑘

𝑚

𝑗=1

𝑛

𝑖=1

 (3.9) 

An example of B-Spline solid is represented in Figure 3.8. 
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3.1.6 Refinement Techniques 

 

In classical finite element method approach, in order to get more accurate results,  

basis   enriched  by  using  two  common  refinement  techniques:  h-refinement and 

p-refinement. The former method, h-refinement, increases the number of elements by 

decreasing the element size to get higher resolutions. On the other hand, the latter one, 

p-refinement, increases the polynomial degree of basis functions.  

 

Figure 3.8 An Example B-Spline solid 

These refinement techniques in isogeometric analysis are named as knot insertion 

which is similar to h-refinement and order elevation similar to p-refinement. Contrary 

to the finite element methods, the geometry remains unchanged under each refinement 

and the continuity across each element is more controllable in isogeometric analysis. 

Moreover, IGA has one more refinement technique superior to FEM. It is the 

combination of order elevation and knot insertion respectively and called as                  

“k-refinement” that brings many benefits to analysis world. Details of these refinement 

techniques are given in the succeeding parts. 

3.1.6.1 Knot Insertion (h-refinement) 

 

In isogeometric analysis first technique used to enhance basis is knot insertion which 

is analogous to h-refinement in FEA. During the application of knot insertion, new 

knots are inserted into already existing knot vector without changing the geometry. 
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For a given knot vector  Ξ = {𝜉1, 𝜉2, . . .  , 𝜉𝑛+𝑝+1} , a new knot vector can be obtained 

by inserting additional knots as Ξ̅ = {𝜉1̅, 𝜉2̅, . . .  , 𝜉𝑛̅+𝑚+𝑝+1} such that 𝜉1̅ = 𝜉1 and       

𝜉𝑛̅+𝑚+𝑝+1 = 𝜉𝑛+𝑝+1 and thus, Ξ ⊂  Ξ̅. New n+m basis functions should be calculated 

by using equations 3.1 and 3.2. The novel n+m control points,                                                    

 ℬ̅ = {𝑩̅1, 𝑩̅2, . . . , 𝑩̅𝑛+𝑚}
𝑇, are generated from linear combinations of the original 

control points, ℬ = {𝑩1, 𝑩2, . . . , 𝑩𝑛}
𝑇, as defined by, 

 𝐵̅𝑖 = 𝛼𝑖𝐵𝑖 + (1 − 𝛼𝑖)𝐵𝑖−1 (3.10) 

 where, 

 

𝛼1 =

{
 
 

 
  1            𝑖𝑓          1 ≤ 𝑖 ≤ 𝑘 − 𝑝

 
𝜉̅ −  𝜉𝑖
𝜉𝑖+𝑝 − 𝜉𝑖

     𝑖𝑓          𝑘 − 𝑝 + 1 ≤ 𝑖 ≤ 𝑘

                 0            𝑖𝑓         𝑘 + 1 ≤ 𝑖 ≤ 𝑛 + 𝑝 + 2

 (3.11) 

 

Insertion of the already existing knot value causes a repetition and decreases the 

continuity of the basis functions. In order to preserve the continuity, equations 3.10 

and 3.11 are developed for the choice of proper control points.   

An example of knot insertion procedure for a simple, one-element, quadratic B-spline 

curve is given in the Figure 3.9. A new knot is inserted at 𝜉 ̅ = 0.5 to the existing knot 

vector Ξ = {0, 0, 0, 1, 1, 1}, which is used to create the original curve. The newly 

created curve is geometrically and parametrically identical to the original curve. 

However, control points have been changed, the mesh has partitioned, and the basis 

functions have been enriched. In the new case, the number of control points, elements 

and basis functions, all increased by one. This process may be repeated to enrich the 

solution space by adding more basis functions of the same order until the desired 

sensitivity is reached.   

Knot insertion refinement method is similar to the h-refinement technique of finite 

element method. As can be understood from the above mentioned procedure, knot 

insertion creates new knot spans i.e. new elements in the knot vector. Similarly, in 
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finite element method, h-refinement increases the element number, creates a finer 

mesh of the same type of element to improve the results. However, IGA and FEA 

differ in the number of new basis functions and in the continuity of the basis across 

the novel element boundaries. To perfectly replicate h-refinement, one would need to 

insert each of the new knot values p times so that the functions will be C0 continuity. 

 

Figure 3.9 Knot insertion refinement technique [1] 
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3.1.6.2 Order Elevation (p-refinement) 

 

Another basis improvement method which B-Spline theory enables the users is order 

elevation also called as degree elevation since the degree and order terms are used 

interchangeably in B-Spline theory. In this technique, polynomial order of the basis 

functions is increased. Since the basis functions have p-mi continuous derivatives 

across element boundaries, if the continuity is desired to be preserved, it is obvious 

that when the order p is increased, multiplicity m must also be increased by the same 

amount of degree. Therefore, during order elevation process, the multiplicity of each 

knot value is increased. As in the case of knot insertion, geometry and 

parameterization remains unchanged.   

Order elevation begins by replicating existing knots by the same amount as the 

increase in polynomial order. Thereafter, the order of polynomial is increased. Several 

efficient algorithms for the application of order elevation procedure can be found in 

Piegl and Tiller, 1997 [74] 

An example for the order elevation procedure from quadratic to cubic order is 

represented in Figure 3.10. The original control points, mesh, and quadratic basis 

functions are shown on the left. Each knot value in knot vector has been increased by 

one but no new knot values were added. For this example, number of control points 

and basis functions increased from 8 to 13. The new control points calculation 

procedure is again given in Piegl and Tiller, 1997. Although the locations of the 

control points change, the order elevated curve is geometrically and parametrically 

identical to the original curve. Additionally, multiplicities of the knots have been 

increased but the element number is preserved.  

Order elevation process is analogues to p-refinement technique in finite element 

analysis. Both of the strategies increases the order of basis functions. The most critical 

distinction between these two is that p-refinement always begins with a basis that is 

C0 everywhere, while order elevation is compatible with any combination of 

continuities. 



41 
 
 

 

 

Figure 3.10 Order elevation refinement technique [1] 

3.1.6.3 K-refinement 

 

As mentioned in the previous parts, when a new knot values with multiplicities equal 

to one are inserted, functions across the boundaries will have 𝐶𝑝−1 continuity. It is 

possible to lower the continuity by increasing the multiplicity as well. This shows knot 

insertion is a more flexible process than simple h-refinement. Likewise, order 

elevation technique is also more flexible than p-refinement technique. The stated 
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flexibilities of knot insertion and order elevation techniques force us to develop 

another refinement technique which is unique in the field. 

In a curve of order p, if a unique knot value, 𝜉̅, is inserted between two distinct knots, 

the number of continuous derivatives of the basis functions at 𝜉̅ is p-1. After knot 

insertion, even though the order is elevated, the basis still has p-1 continuous 

derivatives at 𝜉̅. However, if we change the sequence i.e. if the order of the original 

curve elevated to order q first and then a unique knot value is inserted, the basis will 

have q-1 continuous derivatives at 𝜉̅. Thus an alternative order elevation method which 

has significant advantages over standard order elevation emerges. This procedure is 

called k-refinement. There is no analogous refinement technique in finite element 

method similar with k-refinement. The concept of k-refinement is important and 

potentially a superior approach to high-precision analysis than p-refinement. In 

traditional p-refinement there is an inhomogeneous structure to arrays due to the 

different basis functions associated with surface, edge, vertex and interior nodes. In    

k-refinement, there is a homogeneous structure within patches and growth in the 

number of control variables is limited. 

In order to make it more clear, two different sequences of refinement processes are 

compared with an example in Figure 3.11. Initial domain consists of one element and 

p+1 basis functions. On the left side of the figure, firstly, knot is inserted until getting 

n-p elements and n basis functions and then order is elevated. In this process, to 

maintain the continuity at the p-1 level each distinct knot value is replicated and the 

total number of basis functions is increased by 2n-p. After a total of r order elevations 

of this type, we have (r + 1)(n)-(r)(p) basis functions, where p is still the order of our 

original basis functions. On the right side of figure, beginning with the same element 

domain this time order elevation is applied primarily, and then knot insertion is 

proceeded which is suitable to k-refinement procedure. In this case for each order 

elevated r times, total number of basis functions increases by only one for each 

refinement. Then domain can be h-refined until having n-p elements. The final number 

of basis functions is n+r, each having r + p -1 continuity. This amounts to an enormous 
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savings in the number of basis functions as n + r is considerably smaller than                   

(r + 1)(n)-(r)(p). Moreover, this technique enables the arrangement of continuity of 

basis contrast to p-refinement. 

 

Figure 3.11 k-refinement sequence comparison (a) Base case of one linear element. 

(b) Classic p-refinement approach:  knot insertion followed by order elevation results 

in seven piecewise quadratic basis functions that are C0 at internal knots (c) New           

k-refinement approach: order elevation followed by knot insertion results in five 

piecewise quadratic basis functions that are C1 at internal knots. [2] 
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3.2 Non-Uniform Rational B-Splines (NURBS) 

 

Although the B-Splines are convenient for free-form modeling and provide some 

advantages in geometry definition which were mentioned in the previous sections, 

they have still deficiencies in exact representation of some simple shapes such as 

circles and ellipsoids. In order to overcome this lack of ability, NURBS, a superset of 

B-Splines with its rational nature, is preferred. Today, NURBS is accepted as a              

de facto standard in CAD technology. Therefore, this section was devoted to 

discussion of NURBS concept and aims to show how they are constructed, what their 

advantages are and what separates them from B-splines. 

As its name implies, NURBS are piecewise rational polynomials built from B-Splines 

and inherit all the favorable properties of them. The rational term refers to the fact that 

NURBS are a combination of B-splines basis functions multiplied by a weighting 

factor.  If all the weights are equal to one, then NURBS will be equal to B-splines. On 

the other hand, non-uniform term is used to define non-uniform knot vector. Therefore, 

in addition to the polynomial degree, knot vector values and multiplicity parameters, 

one more parameter weight is introduced to obtain more flexible design with desired 

properties.  

NURBS are constructed in ℝ𝑑 by the projective transformation of B-Splines defined 

in ℝ𝑑+1. To illustrate, a circle in ℝ2 constructed by the projective transformation of a 

piecewise quadratic B-spline defined using homogenous coordinates in ℝ3 is shown 

in Figure 3.12.  

In this figure, 𝐶𝑤(𝜉) is a B-spline curve in ℝ3 which is created by {𝐵𝑖
𝑤} set of control 

points. These control points are defined utilizing homogenous coordinates. 

Terminologically, this curve is called as “projective curve” and its associated control 

points are called as “projective control points”, 𝐵𝑖
𝑤, while the terms “curve” and 

“control points” are used to describe NURBS curve 𝐶(𝜉) and its control points 𝐵𝑖 

respectively.  
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Figure 3.12 An Example of projective transformation of (a) Control points             

(b) Curves [2] 

The projected control points for the NURBS curve are obtained by the following 

relations: 

 
                     (𝐵𝑖)𝑗 =

(𝐵𝑖
𝑤)𝑗

𝑤𝑖
        𝑗 = 1, . . . , 𝑑 (3.12) 

 𝑤𝑖 = (𝐵𝑖
𝑤)𝑑+1 (3.13) 

Here, (𝐵𝑖)𝑗 is the jth component of the vector Bi and 𝑤𝑖 is the 𝑖𝑡ℎ weight. In ℝ𝑑+1, the 

weights correspond to the  (𝑑 + 1)𝑡ℎ component of the homogenous coordinates  of 

B-spline curve. For example, in Figure 3.12, weights are taken as z-components of 

projective curves.  Dividing the B-Spline control point by its corresponding weight is 

thus named as a projective transformation. The same transformations need to be 

exploited on every point on the curve by the definition of weighting function: 

 
𝑊(𝜉) =∑𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑛

𝑖=1

 (3.14) 

Now the NURBS curve can be defined as 
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(𝐶(𝜉))
𝑗
=
(𝐶𝑤(𝜉))

𝑗

𝑊(𝜉)
,            𝑗 = 1, . . . , 𝑑 (3.15) 

The curve 𝑪(𝜉) is a piecewise rational function since each element of it is found by 

division of 𝑪𝑤(𝜉) to 𝑊(𝜉) which are both piecewise polynomial functions. Since this 

projective transformation seems intimidating, it is rarely used in practice. The main 

reason behind the explanation of projective transformation is to understand the 

underlying nature of NURBS and recognize that everything that have been discussed 

thus far for B-splines still holds true for NURBS. 

3.2.1 NURBS Basis Functions and Derivatives 

 

In order to define the construction and manipulation of NURBS geometries it is 

necessary to introduce a basis function as in the case of B-Splines. NURBS basis 

function can be defined as follows: 

 
𝑅𝑖
𝑝(𝜉) =

𝑁𝑖,𝑝(𝜉)𝑤𝑖

𝑊(𝜉)
=

𝑁𝑖,𝑝(𝜉)𝑤𝑖
∑ 𝑁𝑖̂,𝑝(𝜉)𝑤𝑖̂
𝑛
𝑖̂=1

 (3.16) 

Thereafter, NURBS curve defined in equation 3.17 by 

 
𝐶(𝜉) =∑ 𝑅𝑖

𝑝(𝜉)𝑩𝑖
𝑛

𝑖=1
 (3.17) 

One should note that, the weighting function in equation 3.14 is developed for the 

projection of B-Spline curve from ℝ𝑑+1 into ℝ𝑑. Since it is embedded into basis 

function definition, we can built geometries and meshes in ℝ𝑑 without regarding the 

projective geometry behind the scenes. For this reason, equation 3.17 is generally 

preferred to Eqn. 3.15 due to the usage of practical basis function although they are 

equivalent. 

Rational basis functions are also defined analogously for the generation of rational 

surfaces and solids in Eqn. 3.18 and 3.19 respectively as follows 
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𝑅𝑖,𝑗
𝑝,𝑞(𝜉, 𝜂) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝑤𝑖,𝑗
∑ ∑ 𝑁𝑖̂,𝑝(𝜉)𝑀𝑗̂,𝑞(𝜂)𝑤𝑖̂,𝑗̂

𝑚
𝑗̂=1

𝑛
𝑖̂=1

 (3.18) 

 
𝑅𝑖,𝑗,𝑘
𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁) =

𝑁𝑖,𝑝(𝜉)𝑀𝑗,𝑞(𝜂)𝐿𝑘,𝑟(𝜁)𝑤𝑖,𝑗,𝑘

∑ ∑ ∑ 𝑁𝑖̂,𝑝(𝜉)𝑀𝑗̂,𝑞(𝜂)𝐿𝑘̂,𝑟(𝜁)𝑤𝑖̂,𝑗,̂𝑘̂
𝑙
𝑘̂=1

𝑚
𝑗̂=1

𝑛
𝑖̂=1

 (3.19) 

Related NURBS surfaces and solids are defined respectively by 

 
𝑆(𝜉, 𝜂) =∑ ∑ 𝑅𝑖,𝑗

𝑝,𝑞(𝜉, 𝜂)
𝑚

𝑗=1
𝑩𝑖,𝑗

𝑛

𝑖=1
 (3.20) 

  
𝑉(𝜉, 𝜂, 𝜁) =∑ ∑ ∑ 𝑅𝑖,𝑗,𝑘

𝑝,𝑞,𝑟(𝜉, 𝜂, 𝜁)
𝑙

𝑘=1
𝑩𝑖,𝑗,𝑘

𝑚

𝑗=1

𝑛

𝑖=1
 (3.21) 

The derivatives of NURBS basis functions get by using quotient rule and their non-

rational similitudes  

 𝑑

𝑑𝜉
𝑅𝑖
𝑝(𝜉) = 𝑤𝑖

𝑊(𝜉)𝑁𝑖,𝑝
′ (𝜉) −𝑊′(𝜉)𝑁𝑖,𝑝(𝜉)

(𝑊(𝜉))2
 (3.22) 

Finally, an example of a NURBS surface represents a torus geometry which is difficult 

to create by using B-Splines is given in Figure 3.13. 

 

Figure 3.13 An Example for NURBS surface (a) Control net for toroidal surface    

(b) Toroidal surface [2] 
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3.3 Isogeometric Analysis (IGA) Formulation 

 

In the previous section, NURBS theory and properties were introduced. The objective 

of this section is explaining the usage of NURBS as an analysis tool. Important 

processes for the formulation such as spaces, mappings and numerical integration will 

be declared.  

3.3.1 Relevant Spaces and Mappings 

 

In this section, the relevant spaces used in isogeometric analysis and relations between 

them are explained to be familiar with the concepts. In order to facilitate the 

understanding of the subject, it is better to begin with well-known finite element 

analysis spaces. In classical FEA, we have mesh, elements and the parent element 

specified in physical and parent spaces respectively. Geometry is represented with 

mesh which is built by the usage of non-overlapping elements. On the other hand, 

elements are constructed by the nodal coordinates, and the degrees of freedom at the 

nodes. The parent element is used to perform Gaussian quadrature integration. All 

elements are mapped to the same parent element, and we can apply the inverse 

mapping to return to the physical element after the integration is done. 

Isogeometric analysis have different spaces from the finite element method. IGA uses 

the control mesh, physical elements and parent element defined in index, parameter, 

physical and parent spaces as shown in Figure 3.14. 

3.3.1.1 Index Space 
 

Index space is formed through the specified knot vectors by giving each knot value a 

distinct coordinate, regardless of whether the knot is repeated or not. As an example, 

consider a NURBS patch defined through bivariate NURBS basis functions with knot 

vectors Ξ = {0,0,0,1,2,3,3,3} and ℋ = {0,0,1,1}. The formed index space is given in 

Figure 3.15 where the presence of repeated knots leads to several regions of zero 

parametric area. During implementations, index space is often used by considering the 

non-zero parametric area. 



49 
 
 

 

 

Figure 3.14 Different spaces of isogeometric analysis and relation between them [1] 

 

Figure 3.15 Index space created by knot vectors Ξ={0,0,0,1,2,3,3,3} and 

H={0,0,1,1} 

3.3.1.2 Parameter Space 

 

Parameter space is constituted by regarding only non-zero knot spans. For the knot 

vectors given in previous section, parameter space is shown in Figure 3.16. In the same 

figure both normalized and un-normalized parameter spaces are given. All parametric 

spaces can be reduced to a unit interval by utilizing normalization. Each element in 

the physical space is an image of the corresponding element in the parameter space 
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[17]. The mapping from the parameter space to the physical space is applied by using 

NURBS basis functions to create physical elements. 

 

Figure 3.16 Parameter space definition for knot vectors Ξ={0,0,0,1,2,3,3,3} and 

H={0,0,1,1} both un-normalized and normalized 

 

3.3.1.3 Parent Space 

 

In order to perform Gaussian quadrature integration, parent space definition is 

required. The parent element is defined on a constant area Ω̃ = [−1,1]𝑑𝑝 where dp is 

the problem dimension. Parent space coordinates are denoted as 𝝃̂ = (𝜉, 𝜂̂, 𝜁)  

corresponding to the specified dimension. We can map 𝜉 and 𝜂̂ in the parent element 

to 𝜉 and 𝜂 in the parameter space. This mapping operation is defined in section 3.3.1.5. 

3.3.1.4 Physical Space 

 

The physical space is where the actual geometry is represented by a linear combination 

of the basis functions and the control points. The physical mesh is a decomposition of 

the geometry and created from physical elements. Figure 3.17 illustrates a NURBS 

mapping for the parametric space defined in Figure 3.16. Control mesh, control points 

and elements are defined in Figure 3.17. 
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Figure 3.17 A 2D NURBS surface defined for knot vectors Ξ={0,0,0,1,2,3,3,3} and 

H={0,0,1,1}. The control mesh is shown in red with control points denoted by black 

circles. Knot lines shown in blue indicate element boundaries. 

 

3.3.1.5 Mappings 

 

While utilizing isogeometric analysis three mapping is required; first mapping from 

index space to parameter space, one between parent space and parameter space and 

the other is from parameter space to physical space. Mapping between index and 

parameter space is easy and done by just considering non-zero knot spans. In other 

respects, the mapping from parent space to parameter space is given in equation 3.23. 

 
𝜉(𝜉) =

(𝜉𝑖+1 − 𝜉𝑖)𝜉 + (𝜉𝑖+1 + 𝜉𝑖)

2
 

𝜂(𝜂̂) =
(𝜂𝑗+1 − 𝜂𝑗)𝜂̂ + (𝜂𝑗+1 + 𝜂𝑗)

2
 

(3.23) 

Associated Jacobian determinant of this transformation which is necessary for 

computations is defined by 

 
|𝐽𝜉̂| =

(𝜉𝑖+1 − 𝜉𝑖)(𝜂𝑗+1 − 𝜂𝑗)

4
 (3.24) 

Similarly, the mapping from parametric domain to the physical domain is given in 

more general form as 

 
𝑥 =∑𝑁(𝝃)𝑩𝑖

𝑛

𝑖=1

 (3.25) 
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where the shape function 𝑁(𝝃) refers to univariate NURBS basis function for curve, 

bivariate NURBS basis function for surface and triple variable NURBS basis for 

solids. 𝑩𝑖 denotes control points and the number of control points is given by n. 

Variable vector 𝝃 is used for definition of parametric coordinates. Therefore, in one 

dimension 𝝃 = (𝜉), for two dimensions 𝝃 = (𝜉, 𝜂) and for three dimensions                

𝝃 = (𝜉, 𝜂, 𝜁). Jacobian of the transformation for this mapping is represented by the 

matrix 

 

𝑱𝝃 =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑥

𝜕𝜂
𝜕𝑦

𝜕𝜉

𝜕𝑦

𝜕𝜂]
 
 
 
 

= [
𝑥,𝜉 𝑥,𝜂
𝑦,𝜉 𝑦,𝜂

] (3.26) 

with the components calculated as 

 𝜕𝑥𝑖
𝜕𝜉𝑗

=
𝜕𝑁𝑖
𝜕𝜉𝑗

𝐵𝑖,𝐼 (3.27) 

where 𝐵𝑖,𝐼 is the ith coordinate of control point I. The Jacobian is defined as the 

determinant of the Jacobian matrix, |𝐽𝜉|. The Jacobian represents the transformation 

from the physical space to the parameter space, and consequently the inverse 

represents the transformation from the parameter space back to the physical space. In 

the light of this information, finally, spatial derivatives of basis functions with respect 

to physical domain coordinate required for element assembly algorithms can be 

written as follows 

 
[𝑁𝑖,𝑥   𝑁𝑖,𝑦] = [𝑁𝑖,𝜉   𝑁𝑖,𝜂] [

𝜉,𝑥 𝜉,𝑦
𝜂,𝑥 𝜂,𝑦

] = [𝑁𝑖,𝜉   𝑁𝑖,𝜂] 𝑱𝝃
−𝟏 (3.28) 

3.3.1.6 Numerical Integration 

 

By completing the mapping operation between three different spaces and introducing 

Jacobians, a numerical integration for the elements is developed. Integrals over the 

entire geometry, or physical domain Ω, are split into element integrals with domain 
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designated by Ωe. These integrals are calculated in parent domain to perform standard 

Gauss-Legendre quadrature. Specially, a (p+1)×(q+1) Gaussian quadrature is adopted 

for two dimensional elements with p and q denoting the orders of the NURBS basis in 

the 𝜉 and 𝜂 directions. An integration of a function with variables x and y is given 

below 

 
∫
Ω
 𝑓(𝑥, 𝑦)𝑑Ω =∑∫

Ω𝑒
 𝑓(𝑥, 𝑦)𝑑Ω𝑒

𝑛

𝑒=1

 

                                             = ∑∫
Ω̂𝑒
 𝑓(𝑥(𝜉), 𝑦(𝜂))|𝐽𝝃|𝑑Ω̂𝑒

𝑛

𝑒=1

 

=∑∫
Ω̃𝑒
 𝑓(𝜉̅, 𝜂̅)|𝐽𝝃|𝑑Ω̃𝑒

𝑛

𝑒=1

 

(3.29) 

where Ω𝑒 , Ω̂𝑒 , Ω̃𝑒 are used to indicate physical, parameter and parent spaces 

respectively. Since in parent space problem domain is changing from -1 to 1, 

integration can be written as such 

 
∑∫

Ω̃𝑒
 𝑓(𝜉̅, 𝜂̅)|𝐽𝝃|𝑑Ω̃𝑒

𝑛

𝑒=1

=∑∫ ∫ 𝑓(𝜉̅, 𝜂̅)|𝐽𝝃|𝑑𝜉̅
1

−1

1

−1

𝑛

𝑒=1

𝑑𝜂̅ (3.30) 

Integral on the right side of equation 3.30 can be replaced by summation of 

multiplication of function value at specified Gauss points and weights of these points. 

This relation is shown below 

 

∫ ∫ 𝑓(𝜉̅, 𝜂̅)
1

−1

1

−1

𝑑𝜉̅𝑑𝜂̅ = ∑∑𝑊𝑖

𝑟

𝑗=1

𝑊𝑗𝑓(𝜉𝑖̅, 𝜂̅𝑗)

𝑝

𝑖=1

 (3.31) 

where 𝜉𝑖̅  and 𝑊𝑖 are Gaussian quadrature points and related weights of these points in 

𝜉 direction while 𝜂̅𝑗  and 𝑊𝑗 are Gaussian quadrature points and related weights of 

these points in 𝜂 direction. 
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3.3.2 Galerkin’s Method 

 

Although there are several numerical methods applicable to isogeometric analysis, 

since Galerkin’s method is the most widely used finite element numerical method, in 

this study it has been chosen as a solution method. In this section, application of 

Galerkin’s method in isogeometric analysis will be explained briefly by using an 

example of Poisson problem stated as follows [78]. 

 𝛁2𝑢(𝑥, 𝑦) + 𝑓(𝑥, 𝑦) = 0 (3.32) 

with boundary conditions; 

  𝑢(𝑥, 𝑦) = 𝑔     𝑜𝑛 Γ𝐷 , 

𝛁𝑢(𝑥, 𝑦) ∙ 𝒏 = ℎ     𝑜𝑛 Γ𝑁, 

βu + 𝛁𝑢(𝑥, 𝑦) ∙ 𝒏 = 𝑟     𝑜𝑛 Γ𝑅 

(3.33) 

The problem is  defined on two  dimensional domain Ω with boundary  conditions 

 Γ𝐷 ∪ Γ𝑁 ∪ Γ𝑅 = Γ = 𝜕Ω and Γ𝐷 ∩ Γ𝑁 ∩ Γ𝑅 = ∅ and n is the unit outward normal 

vector on 𝜕Ω. Γ𝐷 , Γ𝑁 𝑎𝑛𝑑 Γ𝑅 represent the Dirichlet, Neuman and Robin boundary 

conditions respectively and all of them are defined in real value domain. 𝛽 is also 

stated as a real valued constant. Equation 3.32 is a strong form boundary value 

problem which is specifically named as “poisson problem”.   

3.3.2.1 Weak Form of the Problem 

 

In order to solve equation 3.32 under the specified conditions given in equation 3.33, 

given strong form of the equation will be transformed to weak formulation as suitable 

to instruction of Galerkin’s method. For this purpose, both sides of equation 3.32 will 

be multiplied by a test function which is defined as NURBS basis function and 

integrated over the defined domain Ω, 

 ∫
Ω
∇2𝑢𝑁𝑑Ω = −∫

Ω
𝑓𝑁𝑑Ω (3.34) 
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Since the result of the basis function is equal to zero for Drichlet boundary condition, 

the resultant weak form of the equation is obtained as follows 

 ∫
Ω
𝛁𝑢 ∙ 𝛁𝑁𝑑Ω + 𝛽∫

Γ𝑅
𝑢𝑁𝑑Γ = −∫

Ω
𝑓𝑁𝑑Ω + ∫

Γ𝑁
ℎ𝑁𝑑Γ + ∫

Γ𝑅
𝑟𝑁𝑑𝑆  (3.35) 

The solution for this equation is called as weak solution and under appropriate 

assumptions weak solution and strong solution of the equation 3.32 are identical.  

Since in equation 3.35 unknown field variable u is placed on the left hand side of the 

equation while the all known data are contained on the right side of the equation, this 

weak form can be rewritten as 

 𝑎(𝑢, 𝑁) = 𝐿(𝑁) (3.36) 

where 

 𝑎(𝑢, 𝑁) = ∫
Ω
𝛁𝑢 ∙ 𝛁𝑁𝑑Ω + 𝛽∫

Γ𝑅
𝑢𝑁𝑑Γ (3.37) 

and 

 𝐿(𝑁) = −∫
Ω
𝑓𝑁𝑑Ω + ∫

Γ𝑁
ℎ𝑁𝑑Γ + ∫

Γ𝑅
𝑟𝑁𝑑𝑆 (3.38) 

One should note the some important properties of 𝑎 and 𝐿 functions. Function 𝑎 is 

symmetric and bilinear while 𝐿 is linear.  

 𝑎(𝑁, 𝑢) = 𝑎(𝑢,𝑁) (3.39) 

 𝑎(𝐶1𝑢 + 𝐶2𝑣,𝑤) =  𝐶1𝑎(𝑢,𝑤) + 𝐶2𝑎(𝑣, 𝑤), (3.40) 

 𝐿(𝐶1𝑢 + 𝐶2𝑣)  =  𝐶1𝐿(𝑢)  + 𝐶2𝐿(𝑣). (3.41) 

Once the finite-dimensional approximation space in which we are going to search for 

the trial solution u and test function N have been chosen, we can proceed with the 

matrix representation of the weak form. This procedure is quite familiar for people 

acquainted with the FEM. We write the solution on the form 
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𝑢ℎ =∑𝑢ℎ

𝑖 𝑁𝑖

𝑛

𝑖=1

 (3.42) 

when equation 3.42 is inserted into 3.36 it gives  

 
∑𝑎(𝑁𝑖 , 𝑁𝑗)𝑢ℎ

𝑖 = 𝐿(𝑁𝑗)

𝑛

𝑖=1

     ∀𝑁𝑗 ∈ 𝑆𝑛, (3.43) 

We immediately recognize equation 3.43 as a system of linear equations, and thus 

formulate it as 

 𝑲𝒖 = 𝑭 (3.44) 

where elements of the stiffness matrix K are 𝐾𝑖𝑗 = 𝑎(𝑁𝑖, 𝑁𝑗) and the elements of the 

force vector F are 𝑓𝑗 = 𝐿(𝑁𝑗). Moreover, u represents the field variable vector which 

is displacement vector. 

3.3.3 Isogeometric Linear Elasticity Formulation 

 

All the required mathematical definitions necessary for generation of linear elasticity 

formulation with isogeometric method is given in previous sections. Therefore, in this 

section, basic linear elasticity formulation will be derived by using IGA concepts. 

Let the total number of basis functions in a 2D problem domain is denoted by 𝑛𝑛𝑝 and 

the corresponding total number of control points are given with its components as 

𝑩𝑐𝑝 = [𝑩𝑥
𝑐𝑝   𝑩𝑦

𝑐𝑝]. Basis functions are represented by 𝑵. The mapping is given by 

 

𝑥 = [
𝑥
𝑦] =

[
 
 
 
 
 
∑𝑁𝑖(𝜉, 𝜂)𝐵𝑥𝑖

𝑐𝑝

𝑛𝑛𝑝

𝑖=1

∑𝑁𝑖(𝜉, 𝜂)𝐵𝑦𝑖
𝑐𝑝

𝑛𝑛𝑝

𝑖=1 ]
 
 
 
 
 

 (3.45) 
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The trial solution 𝒖(𝑥, 𝑦), the weight functions 𝒘(𝑥, 𝑦), and the body force 𝒃(𝑥, 𝑦) 

are stated as; 

 𝒖(𝑥, 𝑦) = 𝑵(𝜉, 𝜂)𝒖          (𝑥, 𝑦) ∈  Ω, 

𝒘(𝑥, 𝑦) = 𝑵(𝜉, 𝜂)𝒘         (𝑥, 𝑦) ∈  Ω, 

𝒃(𝑥, 𝑦) = 𝑵(𝜉, 𝜂)𝒃          (𝑥, 𝑦) ∈  Ω, 

(3.46) 

and 

 𝒖 = [ 𝑢𝑥1    𝑢𝑦1    𝑢𝑥2    𝑢𝑦2   .  .  .   𝑢𝑛𝑛𝑝    𝑢𝑛𝑛𝑝  ]
𝑇 

𝒘 = [ 𝑤𝑥1    𝑤𝑦1    𝑤𝑥2    𝑤𝑦2    .  .  .   𝑤𝑛𝑛𝑝    𝑤𝑛𝑛𝑝  ]
𝑇 

𝒃 = [ 𝑏𝑥1    𝑏𝑦1   𝑏𝑥2    𝑏𝑦2    .  .  .   𝑏𝑛𝑛𝑝    𝑏𝑛𝑛𝑝  ]
𝑇 

(3.47) 

where u vector contains displacements at the control points and w represents the values 

of the weight functions at the control points while b gives body forces acting on control 

points. Here, two degrees of freedom one for x-direction and the other for y-direction 

are assigned for each control point.  

In the weak form we compute the integral over the domain Ω as a sum of integrals 

computed over each element domain Ω𝑒; 

 
∑{∫

Ω𝑒
 (∇𝒘𝑒)𝑇𝑪𝑒∇𝒖𝑒𝑑Ω − ∫

Γ𝑡𝑒
𝒘𝑒𝑇 𝒕̅𝑑Γ − ∫

Ω𝑒
𝒘𝑒𝑇𝒃𝑑Ω }

𝑛

𝑒=1

= 0 (3.48) 

Now, equations 3.45 and 3.46 will be written in element domain.  

 𝒖𝑒(𝑥, 𝑦) = 𝑵𝑒(𝜉, 𝜂)𝒖 𝒆         (𝑥, 𝑦) ∈  Ω, 

𝒘𝑒(𝑥, 𝑦) = 𝑵𝑒(𝜉, 𝜂)𝒘𝒆         (𝑥, 𝑦) ∈  Ω, 

𝒃𝑒(𝑥, 𝑦) = 𝑵𝑒(𝜉, 𝜂)𝒃𝒆          (𝑥, 𝑦) ∈  Ω, 

(3.49) 
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where 

 𝒖𝑒 = [ 𝑢𝑥1
𝑒    𝑢𝑦1

𝑒    𝑢𝑥2
𝑒    𝑢𝑦2

𝑒    .  .  .   𝑢𝑥𝑛𝑒𝑛
𝑒    𝑢𝑦𝑛𝑒𝑛

𝑒  ]𝑇 

𝒘𝑒 = [ 𝑤𝑥1
𝑒    𝑤𝑦1

𝑒    𝑢𝑥2
𝑒    𝑢𝑦2

𝑒    .  .  .   𝑤𝑥𝑛𝑒𝑛
𝑒    𝑤𝑦𝑛𝑒𝑛

𝑒  ]𝑇 

𝒃𝑒 = [ 𝑏𝑥1
𝑒    𝑏𝑦1

𝑒    𝑏𝑥2
𝑒    𝑢𝑦2

𝑒    .  .  .   𝑏𝑥𝑛𝑒𝑛
𝑒    𝑏𝑦𝑛𝑒𝑛

𝑒  ]𝑇 

(3.50) 

This time 𝑥1 represents the x-component of element local control point while 𝑦1 

represents y-component of it and nen defines the basis function number in the element. 

The basis function of the element is given by 

 
𝑁𝑒 = [

𝑁1
𝑒     0     𝑁2

𝑒      0    . . .    𝑁𝑛𝑒𝑛
𝑒      0 

 0     𝑁1
𝑒     0     𝑁2

𝑒     . . .    0      𝑁𝑛𝑒𝑛
𝑒 ] (3.51) 

Then, the element strain and stress matrices can be expressed as follows 

 

𝜖𝑒 = [

𝜖𝑥𝑥
𝑒

𝜖𝑦𝑦
𝑒

𝛾𝑥𝑦
𝑒
] = ∇𝒖𝑒 = ∇𝑵𝑒𝒖𝑒 = 𝑩𝑒𝒖𝑒 

(3.52) 

 𝜎𝑒 = 𝑪𝑒𝜖𝑒 

where 𝑪𝑒 is constitutive relation and in two dimension it is defined by 3x3 matrix as 

given below 

 

𝑪𝑒 =
𝐸

1 − 𝑣2
[
1 𝑣 0
𝑣 1 0
0 0 (1 − 2𝑣)/2

] (3.53) 

and 𝑩𝑒 in equation 3.52 is calculated in the following way 

 

𝑩𝑒 = ∇𝑵𝑒 =

[
 
 
 
 
 
 
𝜕𝑁1

𝑒

𝜕𝑥
       0          

𝜕𝑁2
𝑒

𝜕𝑥
         0     .  .  .     

𝜕𝑁𝑛𝑒𝑛
𝑒

𝜕𝑥
        0  

0       
𝜕𝑁1

𝑒

𝜕𝑦
         0         

𝜕𝑁2
𝑒

𝜕𝑦
    .  .  .      0         

𝜕𝑁𝑛𝑒𝑛
𝑒

𝜕𝑦

𝜕𝑁1
𝑒

𝜕𝑦
     
𝜕𝑁1

𝑒

𝜕𝑥
     
𝜕𝑁1

𝑒

𝜕𝑦
     
𝜕𝑁1

𝑒

𝜕𝑥
     .  .  .     

𝜕𝑁𝑛𝑒𝑛
𝑒

𝜕𝑦
     
𝜕𝑁𝑛𝑒𝑛

𝑒

𝜕𝑥 ]
 
 
 
 
 
 

 (3.54) 
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Inserting the 3.52 and 3.54 into equation 3.48 

 
∑{∫

Ω𝑒
 𝒘𝑒𝑇𝑩𝑒

𝑇
𝑪𝑒𝑩𝑒𝒖𝑒𝑑Ω − ∫

Γ𝑡𝑒
𝒘𝑒𝑇𝑵𝑒

𝑇
𝒕̅𝑑Γ

𝑛

𝑒=1

− ∫
Ω𝑒
𝒘𝑒𝑇𝑵𝑒

𝑇
𝑵𝑒𝒃𝑒𝑑Ω } = 0 

(3.55) 

 If we take the element stiffness matrix as below 

 
𝑲𝑒 = ∫

Ω𝑒
𝑩𝑒

𝑇
𝑪𝑒𝑩𝑒𝑑Ω = ∫ ∫ 𝑩𝑒

𝑇
𝑪𝑒𝑩𝑒|𝑱𝝃

𝑒|𝑑𝜉𝑑𝜂̃
1

−1

1

−1

 

                  

= ∑∑𝑩𝑒
𝑇
(𝜉(𝜉𝑖), 𝜂(𝜂̃𝑗))𝑪

𝑒𝑩𝑒(𝜉(𝜉𝑖), 𝜂(𝜂̃𝑗))|𝑱𝝃
𝑒(𝜉𝑖, 𝜂̃𝑗)|

𝑛𝑔𝑝

𝑗=1

𝑛𝑔𝑝

𝑖=1

𝑤𝑖𝑤𝑗 

(3.56) 

where 𝑛𝑔𝑝 is the number of gauss points and 𝑤𝑖 𝑎𝑛𝑑 𝑤𝑗 are corresponding weights.  

Then, external force matrix can be obtained 

 𝒇𝑒 = ∫
Γ𝑡𝑒
𝑵𝑒

𝑇
𝒕̅𝑑Γ + ∫

Ω𝑒
𝑵𝑒

𝑇
𝑵𝑒𝒃𝑒𝑑Ω  (3.57) 

Element body force and prescribed traction at the boundary can be calculated 

respectively as follows 

 
𝒇Ω
𝑒 = ∫

Ω𝑒
𝑵𝑒

𝑇
𝑵𝑒𝒃𝑒𝑑Ω = ∫ ∫ 𝑵𝑒

𝑇
𝑵𝑒𝒃𝑒|𝑱𝝃

𝑒|𝑑𝜉𝑑𝜂̃
1

−1

1

−1

 

=∑∑𝑵𝑒
𝑇
(𝜉(𝜉𝑖), 𝜂(𝜂̃𝑗))𝑵

𝑒 (𝜉(𝜉𝑖), 𝜂(𝜂̃𝑗)) 𝒃
𝑒|𝑱𝝃

𝑒(𝜉𝑖, 𝜂̃𝑗)|

𝑛𝑔𝑝

𝑗=1

𝑛𝑔𝑝

𝑖=1

𝑤𝑖𝑤𝑗 

𝒇Γ
𝑒 = ∫

Γ𝑡𝑒
𝑵𝑒

𝑇
𝒕̅𝑑Γ = ∫ 𝑵𝑒

𝑇
(𝜉(𝜉 = 𝑎), 𝜂(𝜂̃)) 𝒕̅|𝑱𝝃

𝑒|𝑑𝜂̃
1

−1

 

=∑𝑵𝑒
𝑇
(𝜉(𝜉 = 𝑎), 𝜂(𝜂̃𝑗)) 𝒕̅|𝑱𝝃

𝑒(𝜉 = 𝑎, 𝜂̃𝑗)|𝑤𝑗

𝑛𝑔𝑝

𝑗=1

 

(3.58) 
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𝒇Γ
𝑒 = ∫

Γ𝑡𝑒
𝑵𝑒

𝑇
𝒕̅𝑑Γ = ∫ 𝑵𝑒

𝑇
(𝜉(𝜉), 𝜂(𝜂̃ = 𝑏)) 𝒕̅|𝑱𝝃

𝑒|𝑑𝜉
1

−1

 

=∑𝑵𝑒
𝑇
(𝜉(𝜉𝑖), 𝜂((𝜂̃ = 𝑏))) 𝒕̅|𝑱𝝃

𝑒(𝜉𝑖, 𝜂̃ = 𝑏)|𝑤𝑖

𝑛𝑔𝑝

𝑗=1

 

where a and b are constant values for  𝜉 and 𝜂̃ respectively.  

Finally, equation 3.55 turns into 

 

∑𝒘𝑒𝑇{𝑲𝑒𝒖𝑒 − 𝒇𝑒}

𝑛𝑒𝑙

𝑒=1

= 0 (3.59) 

By solving the discrete problem 𝑲𝑒𝒖𝑒 − 𝒇𝑒 , displacement values for each element can 

be evaluated. Thereafter, by using the equation 3.52 strain and stress values for these 

elements also can be found. Utilizing the assembly process for these equations, one 

can obtain global stiffness and global force matrices and corresponding strain and 

stress values. 

3.4 Comparison of Isogeometric Analysis and Finite Element Analysis 
 

In this section, isogeometric analysis is compared with classical finite element 

analysis. The differences and similarities between these two methods are explained. 

The most important distinction that brings the IGA one step forward is handling the 

basis functions used to represent exact geometry for solution field at the same time. 

Conversely, in classical FEA, basis functions that are chosen to approximate the 

unknown solution field are also used to approximate the already known geometry. 

This geometric exactness of IGA provides a great advantage in obtaining precise and 

accurate results. Second important difference between IGA and FEA is non-

interpolating nature of isogeometric analysis contrary to finite element analysis. While 

the basis functions interpolate nodes in FEA, in IGA basis functions does not 

necessarily interpolate control points. Therefore, the node concept is different in 

isogeometric analysis. In FEA, the degrees of freedom are located at the nodes, while 
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in IGA they are located at the control points. Another difference that separate NURBS 

basis from the polynomial finite element basis is their non-negative nature. NURBS 

basis functions take only positive values while classical finite element basis functions 

can be positive or negative. All the differences between isogeometric analysis and 

finite element analysis are listed in Table 3.2. 

Isogeometric analysis and FEA share some common properties also as stated in Table 

3.3. Both of the methods employ Galerkin’s method with isoparametric approach and 

solution for the weak form of the problems are obtained by using linear combination 

of coefficients and basis functions that have compact support. NURBS basis and 

polynomial basis both have partition of unity property. Finally, the code architecture 

for finite element analysis and the single patch isogeometric analysis is same.  

Table 3.2 Differences between isogeometric analysis and finite element analysis 

Isogeometric Analysis Finite Element Analysis 

NURBS basis 

Exact Geometry 

Control Points 

Control Variables 

Basis does not interpolate control points 

hpk-refinement space 

Pointwise positive basis 

Convex hull property 

Variation diminishing in the presence of 

discontinues data 

Polynomial basis 

Approximate geometry 

Nodal points 

Nodal variables 

Basis interpolates nodal points 

hp-refinement space 

Basis not necessarily positive 

No convex hull property 

Oscillatory in the presence of 

discontinues data 

Table 3.3 Similarities between isogeometric analysis and finite element analysis 

Isogeometric Analysis and Finite Element Analysis 

Isoparametric concept 

Galerkin’s method 

Code architecture 

Compactly supported basis 

Bandwidth of matrices 

Partition of unity 
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Since both methods are numerical solution techniques, it is necessary to implement 

them on the problems of interest by using the computational programs. Therefore, an 

algorithm for the application should be created by using a code architecture. The code 

architecture of the IGA and FEA is same and given in Figure 3.18. The program starts 

with reading the input data usually composed of boundary values, elements and overall 

geometry data. Thereafter, connectivity is built by allocating the global arrays. Once 

these preprocessing periods are finished, element stiffness matrix and element force 

vector begin to be calculated by a loop turns through the quadrature points in the code. 

At each quadrature point, a routine is called to evaluate all of the basis functions and 

any necessary derivatives. By using these calculations, local stiffness matrix and force 

vector are generated for each element and with the help of connectivity information 

they are imported to the corresponding elements of global stiffness and force matrices. 

Same operations are conducted for each element till local values are calculated for all 

elements and global matrices are completed by assembling the local values. Then the 

solution for whole system is calculated, results can be exported to a file and other post-

processing steps such as visual illustrations can be performed. Although, the code 

architecture is same for IGA and FEA, there are some differences in the content of 

routines. In Figure 3.18, routines are illustrated with blue color differ from their 

counterparts in finite element method. In FEA, input data is given as nodal points and 

mesh structure to construct the geometry. However, in isogeometric analysis control 

points, their corresponding weight values and knot vectors are given as input. The 

connectivity array that links the local basis function numbering to a global basis 

function numbering is also different. In isogeometric analysis, the connectivity array 

is calculated automatically from knot vectors and their polynomial orders. Since the 

main difference between methods is usage of different basis functions, evaluating 

procedure of these basis and their derivatives are also different.  

 



63 
 
 

 

 

Figure 3.18 Code architecture for classical finite element and isogeometric analysis. 

The routines in blue color different for each method 
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CHAPTER 4 

 

4 APPLICATION OF ISOGEOMETRIC ANALYSIS TO LINEAR 

ELASTICITY PROBLEMS 

 

In this part of the thesis, the structures made of isotropic materials which obey Hooke’s 

law will be considered for small deformations.  

4.1 1D Isogeometric Analysis 
 

In this part, isogeometric analysis method is applied to one dimensional problems. 

Bars under axial loading and beams under transverse loadings with different boundary 

conditions were evaluated. IGA results were obtained by using Matlab code. During 

development of algorithms it has been benefited from the study conducted by Nguyen 

at al. [79]. On the other hand, results were also obtained by using finite element 

method approach again by using Matlab code. Finally, IGA results were compared 

with both analytical results and finite element analysis results.  

4.1.1 Axial Force Members: Rods and Bars 

 

Consider the equilibrium equation of an infinitesimal section of the bar shown in 

Figure 4.1 

 

Figure 4.1 Representation of the axially loaded bar with fixed end 
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𝐴𝜎𝑥𝑥 = 𝑞(𝑥)Δ𝑥 + 𝐴(𝜎𝑥𝑥 + Δ𝜎𝑥𝑥) 

𝐴(
(𝜎𝑥𝑥 + Δ𝜎𝑥𝑥) − 𝜎𝑥𝑥

Δ𝑥
) + 𝑞(𝑥) = 0 

(4.1) 

As Δ𝑥 approaches to zero; the following equation is obtained 

 𝐴
𝑑𝜎𝑥𝑥
𝑑𝑥

+ 𝑞(𝑥) = 0 (4.2) 

Using Hooke’s law 

 𝐴𝐸
𝑑𝜖𝑥𝑥
𝑑𝑥

+ 𝑞(𝑥) = 0 (4.3) 

By using the relation between strain components and and taking 𝑞(𝑥) = 𝑎𝑥, equation 

4.3 can be written as 

 𝐴𝐸
𝑑2𝑢𝑥
𝑑𝑥2

+ 𝑎𝑥 = 0 (4.4) 

In this problem, one essential or Dirichlet boundary condition and one natural or 

Neumann boundary condition can be stated. 

 

𝑎𝑡 𝑥 = 0,      𝑢 = 0 

 𝑎𝑡 𝑥 = 𝐿,     𝑓 = 𝑅 

(4.5) 

The analytical solution for this “strong form” of the problem can be easily get by 

integrating the equation 4.6 twice. 

 𝐴𝐸
𝑑2𝑢𝑥
𝑑𝑥2

= −𝑎𝑥 (4.6) 

 Result is given in equation 4.7. 
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 𝑢(𝑥) =
−𝑎𝑥3 + 6𝐶1𝑥 + 6𝐶2

6𝐴𝐸
 (4.7) 

With the application of given boundary conditions given in equation 4.5 the general 

form of the solution set can be obtained as below 

 

𝑢(𝑥) =
−𝑎𝑥3 + (6𝑅 + 3𝑎𝐿2)𝑥

6𝐴𝐸
 

𝜀(𝑥) =
−𝑎𝑥2 + 2𝑅 + 𝑎𝐿2

2𝐴𝐸
         

𝜎(𝑥) =
−𝑎𝑥2 + 2𝑅 + 𝑎𝐿2

2𝐴
       

(4.8) 

In order to develop finite element equations, strong form of the problem that contains 

partial differential equations should be rewritten in integral form which is called as 

“weak form”. Weak form can be sometimes called also as “principle of virtual work”. 

Weak forms of the equation 4.4 and natural boundary condition given in equation 4.5 

are obtained by multiplying these equations with an arbitrary function w(x) and 

integrating the main equation over the domain of interest which is length of the bar in 

this case.  

 ∫ 𝑤(𝑥) [
𝑑

𝑑𝑥
(𝐴𝐸

𝑑𝑢

𝑑𝑥
) + 𝑞(𝑥)]

𝐿

0

𝑑𝑥 = 0 (4.9) 

 𝑤(𝑥) (𝐴𝐸
𝑑𝑢

𝑑𝑥
− 𝑅) = 0       𝑎𝑡 𝑥 = 𝐿 (4.10) 

One should note that, the displacement boundary condition at the fixed wall end of the 

bar is not multiplied by weighting function. It is due to the fact that; it is easy to satisfy 

this displacement boundary condition by trial solutions.  
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Finite element method can be developed by using equations given in 4.9. However, 

since the equation contains second derivative of the u, very smooth trial solutions are 

needed which are generally difficult to obtain. Additionally, since the integral is not 

symmetric in terms of w(x) and u(x), the resultant stiffness matrix also will not be 

symmetric. Therefore, the equation should be transformed into a form that contains 

only first derivatives. This condition will allow the usage of less smooth trial solutions 

and obtaining symmetric stiffness matrix.  

Using integration by parts and putting the boundary values into obtained equations, 

resultant form can be written as 

 ∫
𝑑𝑤

𝑑𝑥
𝐴𝐸

𝑑𝑢

𝑑𝑥
𝑑𝑥

𝐿

0

= (𝑤𝑅)𝑥=𝐿 +∫ 𝑤𝑞(𝑥)
𝐿

0

𝑑𝑥    ∀ 𝑤 with 𝑤(0) = 0 (4.11) 

By using the Galerkin’s method approximate solution for the above equation, it can 

be written as follows 

 𝑢ℎ(𝑥) = 𝑢1𝜙1(𝑥) + 𝑢2𝜙2(𝑥)+ . . . +𝑢𝑛𝜙𝑛(𝑥) =∑𝑢𝑖𝜙𝑖(𝑥)

𝑛

𝑖=1

 (4.12) 

Here 𝜙𝑖 are basis functions. Another important property of Galerkin’s method is usage 

of same functions for both approximate solution and weighting function. However, 

arbitrary coefficients can be used in weighting functions. The expression written to 

specify weighting function is given in equation 4.13. 

 𝑤(𝑥) = 𝑏1𝜙1(𝑥) + 𝑏2𝜙2(𝑥)+ . . . +𝑏𝑛𝜙𝑛(𝑥) =∑𝑏𝑗𝜙𝑗(𝑥)

𝑛

𝑗=1

 (4.13) 

If the obtained approximate solution and weighting functions are put into weak form 

formulation, then below equation is obtained 
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∫ 𝐴𝐸 (∑𝑢𝑖
𝑑𝜙𝑖
𝑑𝑥

𝑛

𝑖=1

)(∑𝑏𝑗
𝑑𝜙𝑗

𝑑𝑥

𝑛

𝑗=1

)𝑑𝑥
𝐿

0

= 𝑅(∑𝑏𝑗𝜙𝑗(𝑥)

𝑛

𝑗=1

)

𝑥=𝐿

+∫ 𝑞(𝑥)(∑𝑏𝑗𝜙𝑗(𝑥)

𝑛

𝑗=1

)
𝐿

0

𝑑𝑥 

(4.14) 

This equation can be rewritten as  

 

∑𝑏𝑗 [∫ 𝐴𝐸 (∑𝑢𝑖
𝑑𝜙𝑖
𝑑𝑥

𝑛

𝑖=1

𝑑𝜙𝑗

𝑑𝑥
)𝑑𝑥

𝐿

0

]

𝑛

𝑗=1

=∑𝑏𝑗 [∫ 𝑞(𝑥)𝜙𝑗𝑑𝑥 + (𝑅𝜙𝑗)𝑥=𝐿

𝐿

0

]

𝑛

𝑗=1

 

(4.15) 

Since the coefficients 𝑏𝑗 are arbitrary they can be cancelled from both sides and 

equation 4.15 can be rewritten as 

 ∑[∫
𝑑𝜙𝑗

𝑑𝑥
𝐴𝐸

𝑑𝜙𝑖
𝑑𝑥

𝑑𝑥
𝐿

0

] 𝑢𝑖 =

𝑛

𝑖=1

∫ 𝑞(𝑥)𝜙𝑗𝑑𝑥 + (𝑅𝜙𝑗)𝑥=𝐿

𝐿

0

    𝑗 = 1, . . . , 𝑛 (4.16) 

Equation 4.16 is a system of n equations that can be solved for the unknown 

coefficients 𝑢𝑖 named as displacements in structural mechanics approach. When these 

unknown coefficients are obtained, approximate solution given in 4.12 can be 

computed. Additionally, equation 4.16 can be written in matrix form which makes the 

writing of computer algorithms easier.  

 𝑲𝒖 = 𝒇 (4.17) 

 𝐾𝑗𝑖𝑢𝑖 = 𝑓𝑗 (4.18) 

where 
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 𝐾𝑗𝑖 = ∫
𝑑𝜙𝑗

𝑑𝑥
𝐴𝐸

𝑑𝜙𝑖
𝑑𝑥

𝑑𝑥
𝐿

0

 (4.19) 

 𝑓𝑗 = ∫ 𝑞(𝑥)𝜙𝑗𝑑𝑥 + (𝑅𝜙𝑗)𝑥=𝐿

𝐿

0

 (4.20) 

The main problem in the formulation steps given above for Galerkin method is 

determining 𝜙𝑖 basis functions for complex cases. However, isogeometric approach 

makes it easy with the already defined basis function calculation procedure given in 

3.2.1. 

As the first step of finite element method is discretization of the domain, bar is divided 

into 3 elements using 4 nodes as shown in Figure 4.2. The relation between 

displacement values of these nodes is given by basis functions. Moreover, for 

isoparametric formulation geometric relation between these nodes is also expressed 

by these basis functions. Although it is defined as 𝜙𝑖 in derivations given above, basis 

functions are generally denoted by 𝑁𝑖 in finite element formulations. Basis functions 

can also be called as shape functions or interpolation functions. For linear elements 

with 2 nodes, shape functions for nodes of an element e can be formulated as such 

 𝑁1
𝑒(𝑥) =

𝑥2 − 𝑥

ℎ𝑒
 ;       𝑁2

𝑒(𝑥) =
𝑥 − 𝑥1
ℎ𝑒

  (4.21) 

where ℎ𝑒 is the length of the element. After writing the shape functions, element 

stiffness matrix components can be easily calculated. 

 

𝐾11
𝑒 = ∫

𝑑𝑁1
𝑒

𝑑𝑥
𝐴𝐸

𝑑𝑁1
𝑒

𝑑𝑥
𝑑𝑥

𝑥2

𝑥1

= ∫ (−
1

ℎ𝑒
)𝐴𝐸 (−

1

ℎ𝑒
) 𝑑𝑥

𝑥2

𝑥1

=
𝐴𝐸

ℎ𝑒
 

𝐾12
𝑒 = ∫

𝑑𝑁1
𝑒

𝑑𝑥
𝐴𝐸

𝑑𝑁2
𝑒

𝑑𝑥
𝑑𝑥

𝑥2

𝑥1

= ∫ (−
1

ℎ𝑒
)𝐴𝐸 (

1

ℎ𝑒
) 𝑑𝑥

𝑥2

𝑥1

= −
𝐴𝐸

ℎ𝑒
 

𝐾22
𝑒 = ∫

𝑑𝑁2
𝑒

𝑑𝑥
𝐴𝐸

𝑑𝑁2
𝑒

𝑑𝑥
𝑑𝑥

𝑥2

𝑥1

= ∫ (
1

ℎ𝑒
)𝐴𝐸 (

1

ℎ𝑒
) 𝑑𝑥

𝑥2

𝑥1

=
𝐴𝐸

ℎ𝑒
 

(4.22) 
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Figure 4.2 Finite element discretization and basis functions for axially loaded bar 

Since the element stiffness matrix is symmetric there is no need to calculate 𝐾21
𝑒 . Then, 

element stiffness matrix is written below 

 𝑲𝑒 =
𝐴𝐸

ℎ𝑒
[
   1 −1
−1    1

] (4.23) 

On the other hand, the global stiffness matrix can be written by considering the 

contributions of each element through assembling  

 𝑲 = 𝐴𝐸



























33

3322

2211

11

/1/100

/1/1/1/10

0/1/1/1/1

00/1/1

hsh

hhhh

hhhh

hh

 (4.24) 

Same calculations can be done for the load vector 𝒇.  

 
𝑓𝑗 = ∫ 𝑁𝑗𝑞(𝑥)𝑑𝑥 +

𝐿

0

(𝑁𝑗𝑅)𝑥=𝐿           

     = ∫
Ω1
𝑁𝑗𝑞(𝑥)𝑑𝑥 + ∫Ω2

𝑁𝑗𝑞(𝑥)𝑑𝑥 + ∫Ω3
𝑁𝑗𝑞(𝑥)𝑑𝑥 + (𝑁𝑗𝑅)𝑥=𝐿                                    

(4.25) 

By considering the basis function values at each element and boundaries, global load 

vector components can be obtained as follows 
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𝑓1 = ∫Ω1
𝑁1𝑞(𝑥)𝑑𝑥 + (𝑁1𝑅)𝑥=𝐿 = 𝑓1

1                                           

𝑓2 = ∫
Ω1
𝑁2𝑞(𝑥)𝑑𝑥 + ∫Ω2

𝑁2𝑞(𝑥)𝑑𝑥 + (𝑁2𝑅)𝑥=𝐿 = 𝑓2
1 + 𝑓1

2 

𝑓3 = ∫
Ω2
𝑁3𝑞(𝑥)𝑑𝑥 + ∫Ω3

𝑁3𝑞(𝑥)𝑑𝑥 + (𝑁3𝑅)𝑥=𝐿 = 𝑓2
2 + 𝑓1

3 

𝑓4 = ∫Ω3
𝑁4𝑞(𝑥)𝑑𝑥 + (𝑁4𝑅)𝑥=𝐿 = 𝑓2

3 + 𝑅                                

(4.26) 

Using the linear basis functions introduced previously and taking 𝑞 = 𝑎𝑥 element load 

vector components can be obtained 

 

𝑓1
𝑒 = ∫ 𝑁1

𝑒𝑎𝑥𝑑𝑥 = ∫ (
𝑥2 − 𝑥

ℎ𝑒
) 𝑎𝑥𝑑𝑥 =

𝑎

ℎ𝑒

𝑥2

𝑥1

𝑥2

𝑥1

(
𝑥2(𝑥2

2 − 𝑥1
2)

2
−
𝑥2
3 − 𝑥1

3

3
) 

𝑓2
𝑒 = ∫ 𝑁2

𝑒𝑎𝑥𝑑𝑥 = ∫ (
𝑥 − 𝑥1
ℎ𝑒

)𝑎𝑥𝑑𝑥 = −
𝑎

ℎ𝑒

𝑥2

𝑥1

𝑥2

𝑥1

(
𝑥1(𝑥2

2 − 𝑥1
2)

2
−
𝑥2
3 − 𝑥1

3

3
) 

(4.27) 

By regarding the values of equation 4.27 for each element, global force vector 

components can be evaluated. 

After all, taking the lengths of all elements are equal and value of h, finite element 

method system of equations is obtained as given below 

 

 
𝐴𝐸

ℎ
[

1 −1     0   0
−1    2 −1   0
0
0

−1
   0

    2
 −1

−1
  1

] [

𝑢1
𝑢2
𝑢3
𝑢4

] 

=
𝑎

ℎ

[
 
 
 
 
 
 
 
 
 

𝑥2(𝑥2
2 − 𝑥1

2)

2
−
𝑥2
3 − 𝑥1

3

3

(
𝑥2
3 − 𝑥1

3

3
−
𝑥1(𝑥2

2 − 𝑥1
2)

2
) + (

𝑥3(𝑥3
2 − 𝑥2

2)

2
−
𝑥3
3 − 𝑥2

3

3
)

(
𝑥3
3 − 𝑥2

3

3
−
𝑥2(𝑥3

2 − 𝑥2
2)

2
) + (

𝑥4(𝑥4
2 − 𝑥3

2)

2
−
𝑥4
3 − 𝑥3

3

3
)

(
𝑥4
3 − 𝑥3

3

3
−
𝑥3(𝑥4

2 − 𝑥3
2)

2
) + 𝑅

ℎ

𝑎 ]
 
 
 
 
 
 
 
 
 

 

(4.28) 
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Then by considering the essential boundary condition 𝑢 = 0 at 𝑥 = 0, this system of 

equations is reduced to following 

 
𝐴𝐸

ℎ
[
2 −1 0
−1   2 −1
0 −1 1

] [

𝑢2
𝑢3
𝑢4
] 

(4.29) 

 

=
𝑎

ℎ

[
 
 
 
 
 
 
 (
𝑥2
3 − 𝑥1

3

3
−
𝑥1(𝑥2

2 − 𝑥1
2)

2
) + (

𝑥3(𝑥3
2 − 𝑥2

2)

2
−
𝑥3
3 − 𝑥2

3

3
)

(
𝑥3
3 − 𝑥2

3

3
−
𝑥2(𝑥3

2 − 𝑥2
2)

2
) + (

𝑥4(𝑥4
2 − 𝑥3

2)

2
−
𝑥4
3 − 𝑥3

3

3
)

(
𝑥4
3 − 𝑥3

3

3
−
𝑥3(𝑥4

2 − 𝑥3
2)

2
) + 𝑅

ℎ

𝑎 ]
 
 
 
 
 
 
 

 

 

Assuming all material property constants, dimensions and applied force values equal 

to one for the sake of simplicity, in other words 𝐴, 𝐸, 𝐿, 𝑎 and 𝑅 are all equal to one 

and ℎ1, ℎ2 and ℎ3 are all equal to 1/3, system of equation in 4.29 can be solved and 

nodal displacement values are obtained. 

 [
2 −1 0
−1 2 −1
0 −1 1

] [

𝑢2
𝑢3
𝑢4
] = [

0.037
0.074
0.383

]       ⟹       [

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0.4938
0.9506
1.3333

] (4.30) 

After getting nodal displacement values, one can easily calculate element strain and 

stress values. 

 

𝒖𝒆 = 𝑢1
𝑒𝑁1

𝑒(𝑥) + 𝑢2
𝑒𝑁2

𝑒(𝑥) 

𝜺𝒆 =
𝜕𝒖𝒆

𝜕𝑥
= 𝑢1

𝑒
𝜕𝑁1

𝑒

𝜕𝑥
+ 𝑢2

𝑒
𝜕𝑁2

𝑒

𝜕𝑥
 

𝜺𝒆 = 𝑩𝒆𝒖𝒆 = [
𝜕𝑁1

𝑒

𝜕𝑥

𝜕𝑁2
𝑒

𝜕𝑥
] [
𝑢1
𝑒

𝑢2
𝑒] = [−

1

ℎ

1

ℎ
] [
𝑢1
𝑒

𝑢2
𝑒] 

𝝈𝒆 = 𝐸𝜺𝒆 

(4.31) 

Putting found nodal displacement values into given relations in equation 4.31, values 

of stresses for three elements were obtained and given below. Units are taken in 
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newtons (N) for forces and millimeters (mm) for dimensions. Therefore, obtained 

stress values are in MPa while strain values are unitless. 

 [

𝜎1
𝜎2
𝜎3
] =  [

1.4815
1.3704
1.1481

] (4.32) 

In equation 4.8 exact analytical solution of the problem was given. Again by using 

unit constants for 𝐴, 𝐸, 𝐿, 𝑎 and 𝑅 values and equally spaced nodes, exact results for 

displacement values at nodes and stress values at midpoints of elements were 

computed. 

 [

𝑢1 𝑎𝑡 𝑥 = 0
𝑢2 𝑎𝑡 𝑥 = 1/3
𝑢3 𝑎𝑡 𝑥 = 2/3
𝑢4 𝑎𝑡 𝑥 = 1

] = [

0
0.4938
0.9506
1.3333

] (4.33) 

 [

𝜎1 𝑎𝑡 𝑥 = 1/6
𝜎2 𝑎𝑡 𝑥 = 1/2
𝜎3 𝑎𝑡 𝑥 = 5/6

] = [
1.4861
1.375
1.1528

] (4.34) 

As seen from the results of equation 4.30, exact displacement values were obtained in 

finite element method by utilizing three elements. When stress values were regarded, 

again quite close results were obtained. Graphs drawn to compare exact and FEM 

results are given in Figure 4.3 and 4.4. 

 

Figure 4.3 Displacement values for exact and FEM solutions 
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Figure 4.4 Stress values for exact and FEM solutions 

It was aimed to solve same axially loaded bar problem by using isogeometric analysis 

method. All the procedures passed during application of finite element method was 

clearly stated above step by step. Isogeometric analysis uses same steps except 

geometry data and basis functions. Only these differences for the isogeometric 

analysis will be declared for the application of IGA onto axially loaded bar and since 

the remaining procedure is same, they will not be repeated.  

In order to simulate the similar case with finite element method, again three equally 

spaced linear elements will be taken in IGA. For this purpose, knot vector is taken 

as Ξ = [0  0 
1

3
 
2

3
 1 1]. Control points and their corresponding weights are given in 

Table 4.1. Representation of the problem is same with Figure 4.2.  

Table 4.1 Control points coordinates and corresponding weights 

 X coordinate Y coordinate Weight 

Point 1 0 0 1 

Point 2 1/3 0 1 

Point 3 2/3 0 1 

Point 4 1 0 1 
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Since the problem is one dimensional, y-components of the control points are all zero. 

Since the bar is straight and all control points are on it, weights are also taken as unity. 

Elements are first order linear elements. Under these conditions main goal is to find 

shape function derivatives for elements and calculate element stiffness matrix and 

force vector. Finally, found values will be assembled to get overall results. Since all 

weights are equal to one, NURBS basis functions and their derivatives are equal to B-

Spline basis functions. Therefore, equations 3.1 to 3.3 can be used for basis function 

calculations. However, firstly the parameter coordinates should be determined since 

all the calculations are done according to this parameter coordinates. Parameter 

coordinates  are  defined   according to equation  3.23 by  using  element  coordinates  

 𝜉 =
(𝜉𝑖+1 − 𝜉𝑖)𝑐𝑖 + (𝜉𝑖+1 + 𝜉𝑖)

2
 (4.35) 

where 𝑖 is the element number, 𝜉𝑖+1and 𝜉𝑖 are corresponding element knot values and 

𝑐𝑖 is the Gauss quadrature point. For the first element with one quadrature point where 

𝑐 = 0 and weight 𝑤 = 2, result of equation 4.35 is found as 𝜉 = 0.1667. Using this 

parametric coordinate, related basis derivative with respect to parametric space is 

calculated below 

 
𝑑

𝑑𝜉
𝑁1,1(0.1667) =

1

𝜉2 − 𝜉1 
𝑁1,0(0.1667) −

1

𝜉3 − 𝜉2 
𝑁2,0(0.1667) (4.36) 

In order to find the result of equation 4.36, values for 𝑁1,0 and 𝑁2,0 are required. These 

values can be found by using equation 3.1 as 𝑁1,0 = 0 and 𝑁2,0 = 1. Put these values 

and stated knot values in above equation 

 
𝑑

𝑑𝜉
𝑁1,1(0.1667) =

1

0 −  0 
0 −

1

1
3
−  0 

1 = −3 (4.37) 

One should note that, in Cox de Boor iteration, 0/0 = 0. 

Similarly, derivative of basis function at second control point is given below 
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𝑑

𝑑𝜉
𝑁2,1(0.1667) =

1

𝜉3 − 𝜉2 
𝑁2,0(0.1667) −

1

𝜉4 − 𝜉3 
𝑁3,0(0.1667) (4.38) 

Now, 𝑁2,0 and 𝑁3,0 values are necessary. Again by using equation 3.1 for 𝜉 = 0.1667, 

𝑁2,0 = 1 and 𝑁3,0 = 0 values are obtained. By putting these values and stated knot 

values in equation 4.38 

 
𝑑

𝑑𝜉
𝑁2,1(0.1667) =

1

1/3 −  0 
1 −

1

2/3 − 1/3
0 = 3 (4.39) 

In order to find the components of element stiffness matrix, equation 4.22 can be used. 

However, in this equation derivatives of basis functions with respect to physical space 

instead of parametric space should be used. This transformation can be obtained by 

using inverse of Jacobian matrices obtained both for parametric and parent space 

transformations. These matrices for one dimension are given below 

 𝐽𝜉 = [
𝜕𝑥

𝜕𝜉
] (4.40) 

 𝐽𝜉̂ = [
𝜕𝜉

𝜕𝜉
] (4.41) 

Here, 𝜉 is used to define parametric space where 𝜉 is used to define parent space. Since 

gauss quadrature integration is performed in parent space, it is required to transform 

results founded in parametric space to parent space. In order to calculate jacobian 

matrix between physical space and parametric space, for element one, x can be written 

in terms of element node coordinates as follows 

 𝑥 =∑𝑁𝑖,1𝑥𝑖 = 𝑁1,1𝑥1

2

𝑖=1

+ 𝑁2,1𝑥2 (4.42) 

And derivative of x in parameter space can be found by using results found in 4.37 

and 4.39 

 𝐽𝜉 = [
𝜕𝑥

𝜕𝜉
] =

𝜕𝑁1,1
𝜕𝜉

𝑥1 +
𝜕𝑁2,1
𝜕𝜉

𝑥2 = (−3)(0) + (3) (
1

3
) = 1 (4.43) 
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Therefore, the value of jacobian between physical space and parametric space is found 

as 1. Inverse of jacobian is also 1. For this reason, jacobian between physical space 

and parametric space and its inverse do not affect the results. However, they will 

continue to be included in the following solution steps for clarity. Jacobian between 

parametric space and parent space is also necessary for calculations. Mapping between 

coordinates of these two spaces is given in equation 3.23. For investigated element, 

element knot values are 0 and 1/3. By using these values equation 3.23 turns into below 

form 

 

𝜉(𝜉) =
(1/3 − 0)𝜉 + (1/3 + 0)

2
 

 

𝐽𝜉̂ = [
𝜕𝜉

𝜕𝜉
] =

1

6
 

(4.44) 

Jacobian between parameter space and parent space is found as 1/6.  

After all necessary calculations are performed, element stiffness components can be 

evaluated by using Gauss quadrature integration. 

 
𝐾11
𝑒 = ∫

𝑑𝑁1,1
𝑑𝑥

𝐴𝐸
𝑑𝑁1,1
𝑑𝑥

𝑑𝑥
𝑥2

𝑥1

= ∫ (
𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂𝑑𝜉

1

−1

 

=∑𝑤(
𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂

1

𝑖=1

 

=2(-3)(1)AE(-3)(1)(1)(
1

6
) = 3AE 

𝐾12
𝑒 = ∫

𝑑𝑁1,1
𝑑𝑥

𝐴𝐸
𝑑𝑁2,1
𝑑𝑥

𝑑𝑥
𝑥2

𝑥1

= ∫ (
𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁2,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂𝑑𝜉

1

−1

 

=∑𝑤(
𝑑𝑁1,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁2,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂

1

𝑖=1

 

= 2(-3)(1)AE(3)(1)(1)(
1

6
) = -3AE 

 

(4.45) 
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𝐾22
𝑒 = ∫

𝑑𝑁2,1
𝑑𝑥

𝐴𝐸
𝑑𝑁2,1
𝑑𝑥

𝑑𝑥
𝑥2

𝑥1

= ∫ (
𝑑𝑁2,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁2,1
𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂𝑑𝜉

1

−1

 

=∑𝑤(
𝑑𝑁2

1

𝑑𝜉

𝑑𝜉

𝑑𝑥
)𝐴𝐸 (

𝑑𝑁2
1

𝑑𝜉

𝑑𝜉

𝑑𝑥
) 𝐽𝜉𝐽𝜉̂

1

𝑖=1

 

=2(-3)(1)AE(-3)(1)(1)(
1

6
) = 3AE 

 

 

 

After putting these values into results of equation 4.51, symmetric element stiffness 

matrix can be written as follows 

 𝑲𝑒 = 𝐴𝐸 [
   3 −3
−3    3

] (4.46) 

Global stiffness matrix can be written by considering the contributions of each 

elements through assembling 

 𝑲 = 𝐴𝐸 [

    3 −3     0     0
−3    6  −3      0

   
0
0

−3
   0

     6
−  3

−3
   3

] (4.47) 

Assume the area A and elastic modulus E values are constant and equal to one as in 

the finite element method application. Load vector for the element one can be 

calculated by using the formulation given in equation 4.27. This time solution will be 

found with the help of gauss quadrature since solution of the integral cannot be 

calculated for complex basis functions. However, firstly, it is necessary to calculate 

the values of 𝑁1,1 and 𝑁2,1 by using equation 3.2. Using equation 3.1 for 𝜉 = 0.1667, 

𝑁1,0 = 0,𝑁2,0 = 1 and 𝑁3,0 = 0 values are obtained and putting these values into 

equation 3.2  

 
𝑁1,1(0.1667) =

0.1667 −  0

0 −  0 
(0) +

1
3−  0.1667

1
3−  0 

(1) = 0.5 

 

(4.48) 
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𝑁2,1(0.1667) =
0.1667 −  0

1
3
−  0 

(1) +

2
3−  0.1667

2
3−

1
3 

(0) = 0.5 

Then, for element one, load vector components can be calculated by using below 

process and taking 𝑎 = 1. 

 

 𝑓1
1 = ∫ 𝑁1,1𝑥𝑑𝑥 = ∫ (𝑁1,1)((𝑁1,1)(𝑥1) + (𝑁2,1)(𝑥2))𝐽𝜉𝐽𝜉̂𝑑𝜉

1

−1

𝑥2

𝑥1

 

(4.49) 

 =∑𝑤(𝑁1,1)((𝑁1,1)(𝑥1) + (𝑁2,1)(𝑥2))𝐽𝜉𝐽𝜉̂

1

𝑖=1

 

 = (2)(0.5)((0.5)(0) + (0.5)(1/3))(1)(1/6) = 0.0278 

 𝑓2
1 = ∫ 𝑁2,1𝑥𝑑𝑥 = ∫ (𝑁2,1)((𝑁1,1)(𝑥1) + (𝑁2,1)(𝑥2))𝐽𝜉̂𝑑𝜉

1

−1

𝑥2

𝑥1

 

 =∑𝑤(𝑁2,1) ((𝑁1,1)(𝑥1) + (𝑁2,1)(𝑥2)) 𝐽𝜉𝐽𝜉̂

1

𝑖=1

 

 = (2)(0.5)((0.5)(0) + (0.5)(1/3))(1)(1/6) = 0.0278 

By considering the other load components coming from element two and element 

three, matrix assembly process should be applied. For the sake of convenience, these 

steps have been skipped and final force vector is directly given below. 

 𝒇 = [

0.0278
0.1111
0.2222
1.1389

] (4.50) 

Finally, system of linear equations can be written in matrix form in equation 4.51. 

 [

    3 −3     0     0
−3    6  −3      0

   
0
0

−3
   0

     6
−  3

−3
   3

] [

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0.0278
0.1111
0.2222
1.1389

] (4.51) 

When the equation 4.51 is solved with the application of boundary conditions, 

resultant displacements are found and given below. 
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 𝒖 = [

𝑢1
𝑢2
𝑢3
𝑢4

] = [

0
0.4907
0.9444
1.3241

] (4.52) 

This result is slightly different than what is found in equation 4.30 for finite element 

application. This difference can be attributed to application of quadrature for the 

evaluation of force vector. Since it is stated in literature as 2n-1 quadrature points 

satisfy enough accuracy for the results where n is the order of function, one quadrature 

point was used during calculations. If number of gauss points is increased to two, IGA 

better converges to exact solution. Research about the effect of quadrature rule on the 

results of isogeometric analysis was conducted in [80] and a new numerical integration 

called as “half-point rule” is suggested to be used in isogeometric analysis to get 

optimal results. However, in this study classical gauss quadrature integration was 

utilized for numerical integration. 

After finding out nodal displacements, element strain and stress values can be found 

with the application of equation 4.31. Stress results are shared in equation 4.53 and 

graphs are given in Figure 4.5 and Figure 4.6. 

 [

𝜎1
𝜎2
𝜎3
] =  [

1.4722
1.3611
1.1389

] (4.53) 

 

Figure 4.5 Displacement values for exact and IGA solutions 
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Figure 4.6 Stress values for exact and IGA solutions 

Since the results of mentioned numerical techniques are close to the exact solution, it 

can be concluded that usage of first order linear elements is enough for bar problems. 

For first order elements, finite element basis functions are same with NURBS basis 

functions and difference between the two methods disappears. This can be drawn from 

the same stiffness matrices. As mentioned previously, difference between results of 

FEA and IGA caused from calculation of force vector. In isogeometric analysis 

application, force vector was calculated by using gauss quadrature method and only 

one quadrature point was used during estimation of force vector components. 

Additionally, solution process in finite element analysis lasted for 0.223 seconds while 

it took 0.194 seconds in isogeometric analysis despite latter analysis code includes 

extra lines for geometry definition and element stiffness calculation.  

4.1.2 Bending of Euler – Bernoulli Beams 

 

In this section Euler-Bernoulli beam problem is analyzed by using isogeometric 

analysis. As in the previous section, finite element solution for the same problem is 

also introduced and a comparison between these two numerical methods is conducted. 

Since all steps beginning from equilibrium equations to obtaining element stiffness 
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matrix has been explained in the previous section they were not mentioned in this 

section. 

The Euler–Bernoulli beam theory assumes that the plane cross-sections, which are 

normal to the undeformed centroidal axis, remain plane after bending and remain 

normal to the deformed axis [81]. A section of a beam with incremental length is given 

in Figure 4.7. 

 

Figure 4.7 Beam section with length dx and forces on it 

Equilibrium equations give the strong form of the beam bending problem as follows  

 
𝑑2

𝑑𝑥2
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
) − 𝑞 = 0,         0 < 𝑥 < 𝐿 (4.54) 

Then, weak form of the solution is given below, 

 

∫ (𝐸𝐼
𝑑2𝑣

𝑑𝑥2
𝑑2𝑢

𝑑𝑥2
− 𝑣𝑞)

𝐿

0

𝑑𝑥 − 𝑣(0)𝑄1
𝑒 − (−

𝑑𝑣

𝑑𝑥
)|
0
𝑄2
𝑒 − 𝑣(𝐿)𝑄3

𝑒

− (−
𝑑𝑣

𝑑𝑥
)|
𝐿
𝑄4
𝑒 = 0 

(4.55) 

where 0 and 𝐿 are nodal coordinates and 𝑣 is test function and 𝑄𝑖
𝑒 are described in 

equation 4.56. 
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𝑄1
𝑒 = [

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)]|

0

= −𝑉(0) 

𝑄2
𝑒 = (𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)|
0

= −𝑀(0) 

𝑄3
𝑒 = −[

𝑑

𝑑𝑥
(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)]|

𝐿

= 𝑉(𝐿) 

𝑄4
𝑒 = −(𝐸𝐼

𝑑2𝑢

𝑑𝑥2
)|
𝐿

= 𝑀(𝐿) 

(4.56) 

In order to apply Galerkin’s finite element approximation, required trial solution and 

weight functions are given below 

 𝑢(𝑥) =∑𝑢𝑖𝑁𝑖(𝑥)

𝑛

𝑖=1

 (4.57) 

and 

 𝑣(𝑥) =∑𝑏𝑗𝑁𝑗(𝑥)

𝑛

𝑗=1

 (4.58) 

In above equations 𝑢𝑖 are used to define unknown nodal transverse displacements and 

𝑏𝑗 are arbitrarily chosen points and n is the number of points. Additionally, N(x) 

represents NURBS basis functions. In accordance with the Galerkin’s method same 

basis functions are used in description of both approximate solution and weighting 

function. When equations 4.57 and 4.58 are put into 4.55, equation 4.55 is reduced to 

classical equation 𝑲𝒖 = 𝒇 in matrix form. Stiffness matrix and force vector of this 

equation can be obtained as follows 

 

𝑲𝒋𝒊 = ∫ 𝐸𝐼
𝑑2𝑁𝑗

𝑑𝑥2

𝐿

0

𝑑2𝑁𝑖
𝑑𝑥2

𝑑𝑥 

𝒇𝒊 = ∫ 𝑞𝑁𝑖𝑑𝑥
𝐿

0

 

(4.59) 
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After deriving the stiffness matrix and force vector, problem case which is a simply 

supported slender beam under uniformly distributed load was introduced. The most 

important advantage to be mentioned here about isogeometric analysis is its rotation 

free formulation for deformation due to high order continuity of NURBS. Therefore, 

in deformation analysis of Euler-Bernoulli beam by IGA, only transverse degrees of 

freedoms are assigned to control points. However, if stress values are desired to be 

obtained, then rotation values should be calculated.  

Consider the slender beam with rectangular cross section shown in Figure 4.8. 

Uniformly distributed load is applied along the beam. Beam is simply supported and 

dimensions and material properties of the beam are given in Table 4.2. 

Table 4.2 Values of parameters for beam bending problem 

Elastic Modulus (E) [GPa] 70 

Height x width x length of the beam (h x w x L) [mm] 10 x 8 x 1000 

Load per unit length (𝑞0) [N/m] 30 

 

 

Figure 4.8 Simply supported beam under uniform distributed load 

Problem begins by taking the knot vector as Ξ = [0 0 0 0 1 1 1 1] and control points 

are stated in Table 4.3 since beams are already defined using cubic basis functions in 

finite element analysis.  
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Table 4.3 Beam control points and corresponding weights 

 X coordinate Y coordinate Weight 

Point 1 0 0 1 

Point 2 0.3 0 1 

Point 3 0.6 0 1 

Point 4 1 0 1 

Cubic NURBS basis functions have been used during solution. Moreover, four 

quadrature points were used for numerical integration. In order to obtain exact results, 

two knot insertion operations (h-refinement) were performed. After these refinements, 

four elements were obtained and resultant knot vector turned into                                                     

Ξ = [0 0 0 0 0.25 0.5 0.75 1 1 1 1] and control points are given in Table 4.4. 

Table 4.4 Beam control points and corresponding weights after refinements 

 X coordinate Y coordinate Weight 

Point 1 0 0 1 

Point 2 0.075 0 1 

Point 3 0.225 0 1 

Point 4 0.4594 0 1 

Point 5 0.7125 0 1 

Point 6 0.9 0 1 

Point 7 1 0 1 

Exact solution of displacement and stress values on a simply supported beam under 

distributed uniform load are given as follows, 

 𝑢(𝑥) =
𝑞𝑥(𝐿3 − 2𝑥2𝐿 + 𝑥3)

24𝐸𝐼
 (4.60) 

 𝜎(𝑥) = −
𝑞𝑥(𝐿 − 𝑥)ℎ

4𝐼
 (4.61) 
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Isogeometric analysis of Euler-Bernoulli beam under defined conditions conducted by 

four cubic elements produces consistent results with exact solution. Same analysis was 

also conducted by using classical finite element method. These results are given in 

Figure 4.9 and Figure 4.10. 

 

Figure 4.9 Displacement curves for exact and IGA results 

 

Figure 4.10 Displacement curves for exact and FEM results 
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In Figure 4.9, for four element IGA solution maximum displacement value was 

obtained as 8.4 mm at the mid-length of the beam. Same value can be obtained from 

analytical solution by using equation 4.60. Moreover, at every point IGA catches a 

good matching with exact results. On the other hand, in Figure 4.10, FEM also 

captures the exact result by using 4 elements with 2 nodes for each. Therefore, since 

both IGA and FEM beam elements have cubic order, both numerical methods 

converge to exact result with same number of elements. However, using the same 

computer conditions and similar code architecture isogeometric analysis performs the 

operation in shorter time. The computation time for finite element analysis has taken 

as 0.623 seconds while, IGA solved the problem in 0.438 seconds. Additionally, if the 

order of IGA solution has been increased to quartic order, then exact solution can be 

obtained with only one element usage in 0.386 seconds. Result of this case is given in 

Figure 4.11. Although the order of IGA is increased, the time required for the solution 

was decreased since required control point number and basis function calculation is 

less for quartic degree one element than cubic degree four elements.  

 

Figure 4.11 Displacement results comparison for single element IGA with fourth 

order and exact solution 
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After obtaining the displacement values with rotation free formulation, in order to get 

stress values through the beam length, rotation and stress values should be calculated 

via taking the derivatives of displacement with respect to x similar to the classical 

finite element analysis. Isogeometric analysis rotation and stress results obtained by 

using either four cubic elements or single quartic element that both give exact 

analytical solution and they are given in the following figures. 

 

Figure 4.12 Rotation results of Isogeometric Analysis in radians 

 

Figure 4.13 Stress results of Isogeometric Analysis in MPas 
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4.2 2D Isogeometric Analysis 

 

In this section, Kirchhoff plate under uniformly distributed force and infinite plate 

with circular hole are investigated by isogeometric analysis. Same problems are also 

solved with finite element method approach by using commercial FEA software 

package Abaqus. At the end, isogeometric analysis results, if exists analytical results 

and FEM results are compared.  

4.2.1 Kirchhoff Plate Bending  

 

For an isotropic Kirchhoff plate under uniformly distributed force, strong form plate 

bending equation can be written as follows 

 
𝜕4𝑤

𝑑𝑥4
+ 2

𝜕4𝑤

𝑑𝑥2𝑑𝑦2
+
𝜕4𝑤

𝑑𝑦4
=
𝑞

𝐷
 (4.62) 

In this formulation, q is used to denote distributed force, w is deflection of the plane 

in transverse direction and D represents bending stiffness; 

 𝐷 =
𝐸ℎ3

12(1 − 𝑣2)
 (4.63) 

where 𝐸, 𝑣 and ℎ are modulus of elasticity, Poisson’s ratio and the plate thickness 

respectively. Strains and stresses of Kirchhoff plate bending problem can be found 

with the following formulas, 

 𝜺 = −𝑧𝑳𝑤 = −𝑧 [

𝜕2/𝜕𝑥2

𝜕2/𝜕𝑦2

2𝜕2/𝜕𝑥𝜕𝑦

]𝑤 (4.64) 

 𝝈 = 𝑪𝜺 (4.65) 

where C matrix forms constitutive relation and constructed by material properties. 
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 𝑪 = 𝐷 [
1 𝑣 0
𝑣 1 0
0 0 (1 − 𝑣)/2

] (4.66) 

After the application of Galerkin’s method, element stiffness matrix can be obtained 

as, 

 𝑲𝒋𝒊 = ∫
Ω
𝑩𝒋
𝑻𝑪𝑩𝒊𝑑Ω (4.67) 

where 

 𝑩𝒊 =

[
 
 
 
 
 
 −

𝜕𝟐𝑁𝑖
𝜕𝑥2

−
𝜕𝟐𝑁𝑖
𝜕𝑦2

−2
𝜕𝟐𝑁𝑖
𝜕𝑥𝜕𝑦]

 
 
 
 
 
 

 (4.68) 

Force vector can be calculated by using following equation 

 𝑭𝒊 = ∫Ω𝑞𝑁𝑖𝑑Ω (4.69) 

An important advantage of isogeometric analysis in bending problems is its rotation 

free formulation for deformation calculation due to high order continuity of NURBS 

as in the case of beam bending problem. Consequently, in this analysis of Kirchhoff 

plate by IGA, only transverse degrees of freedoms are assigned to control points.  

Problem case which is a square plate under the action of uniformly distributed pressure 

of 10 kPa is demonstrated in Figure 4.14. All edges of the plate are fixed. The 

dimensions and material properties of the plate are given in Table 4.5. 

Table 4.5 Parameters of the Kirchhoff plate problem 

Elastic Modulus (E) [GPa] 200 

Poisson’s Ratio (v) 0.3 

Length x width x thickness (a x b x t) [mm] 1000 x 1000 x 10 

Uniform pressure (q) [kPa] 10 
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Figure 4.14 Representation of Kirchhoff plate problem 

In IGA, firstly linear element with knot vectors Ξ = [0 0 1 1] and Θ = [0 0 1 1] has 

been used where Ξ represents element coordinates in parametric space along 𝜉 

direction while Θ gives parametric coordinates of elements in 𝜂 directions that they 

correspond to x and y-directions in physical space respectively. These initial knot 

vectors were refined to increase the number of the elements and finally the geometry 

was modeled by using 18 control points and 16 elements in both x and y directions. 

These points were obtained after conducting one order elevation and four times knot 

insertion. At the end following knot vectors were obtained. 

Ξ = [
0 0 0 0.0625 0.0125 0.1875 0.25 0.3125 0.3750 0.4375 0.5
0.5625 0.6250 0.6875 0.75 0.8125 0.8750 0.9375 1 1 1

] 

 

Θ = [
0 0 0 0.0625 0.0125 0.1875 0.25 0.3125 0.3750 0.4375 0.5
0.5625 0.6250 0.6875 0.75 0.8125 0.8750 0.9375 1 1 1

] 

At the end, control mesh of the geometry can be created as given in Figure 4.15. 
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Figure 4.15 Control mesh of Kirchhoff plate 

In order to give clamped boundary condition to edges of the plate, control points on 

the edges and the control points next to them were fixed since tangency of that region 

depends on two neighbor points as stated in [81]. The mentioned clamped boundary 

condition is shown in Figure 4.16. 

 

Figure 4.16 Clamped boundary condition representation 

Here, green points are control points and control points enclosed with red squares are 

fixed points. Blue grid is given to indicate element boundaries. 
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After creating the geometry and applying boundary conditions, problem was solved to 

obtain transverse displacements. A sensitivity analysis was conducted to observe the 

effect of element number on the results. Solution has started with the usage of 16 

elements. Accurate results were obtained by utilization of 256 elements. 

 

Figure 4.17 Effect of element number on the IGA result 

Deformation and equivalent stress results of the plate are given in Figures 4.18 and 

4.19.  

 

Figure 4.18 IGA displacement results of the Kirchhoff plate problem in meters 
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Figure 4.19 IGA equivalent stress results of the Kirchhoff plate problem in MPa 

Maximum  deflection was obtained  at the  mid-section of the plate with the value of  

-0.6885 mm. Maximum stress values were captured at the clamped edges of the plate 

as 20.54 MPa. For this analysis, 256 elements were used. Analysis lasted for 2.6 

seconds. Same analysis was also conducted by using Abaqus FEA program. A 

sensitivity analysis was also conducted for FEA beginning with the usage of 256 

elements. Accurate results were obtained with 729 elements.  

 

Figure 4.20 Effect of element number on the FEA result 
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Displacement and stress results obtained using finite element analysis are shared in 

Figures 4.21 and 4.22. 

 

Figure 4.21 Abaqus displacement results for the Kirchhoff plate problem 

 

Figure 4.22 Abaqus equivalent stress results for the Kirchhoff plate problem 

As can be seen from the Figure 4.21, maximum deflection is again obtained at the 

mid-region of the plate with the value of -0.6875 mm. Maximum equivalent stresses 

are observed at the clamped edges with the value of  20.66 MPa. Therefore, FEA 
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results are close to results of IGA. However, in finite element analysis 729 elements 

were used to obtain results and analysis continued through 14.3 seconds despite the 

usage of linear elements. The main reason lies behind this time difference is 

computational efficiency of isogeometric analysis and its rotation free nature.  

4.2.2 Infinite Plate with a Circular Hole 

 

In this two dimensional linear elasticity problem, an infinite plate with circular hole 

under constant in-plane tension is introduced. Problem is demonstrated in Figure 4.23 

as a quarter model by taking advantage of symmetry. 𝑇𝑥 (𝑁/𝑚𝑚
2)  is used to denote 

traction applied at the edges of plate. 𝑅 (𝑚𝑚) is the radius of the hole and 𝐿 (𝑚𝑚)  is 

the edge length of the finite quarter plate. Moreover, 𝐸 = 100 𝐺𝑃𝑎 and 𝑣 = 0.3.  

 

Figure 4.23 Infinite plate with a circular hole under constant tension 

This problem has exact analytical solution given below [82].  

 

𝜎𝑟𝑟(𝑟, 𝜃) =
𝑇𝑥
2
(1 −

𝑅2

𝑟2
) +

𝑇𝑥
2
(1 − 4

𝑅2

𝑟2
+ 3

𝑅4

𝑟4
) 𝑐𝑜𝑠2𝜃, 

𝜎𝜃𝜃(𝑟, 𝜃) =
𝑇𝑥
2
(1 +

𝑅2

𝑟2
) −

𝑇𝑥
2
(1 + 3

𝑅4

𝑟4
) 𝑐𝑜𝑠2𝜃, 

𝜎𝑟𝜃(𝑟, 𝜃) = −
𝑇𝑥
2
(1 + 2

𝑅2

𝑟2
− 3

𝑅4

𝑟4
) 𝑠𝑖𝑛2𝜃, 

(4.70) 
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In this problem accurate geometry has been defined by IGA instead of approximated 

geometry defined in the case of FEA due to the hole boundary. In order to represent 

the circular hole, at least quadratic order basis functions should be used. By utilizing 

only two elements, quarter geometry can be exactly created. 

These two element coarsest mesh structure can be constructed by using following knot 

vectors 

Ξ =  {0 0 0 0.5 1 1 1}  &  ℋ =  {0 0 0 1 1 1} 

By using given knot vectors, the obtained control mesh and physical mesh are given 

in Figure 4.24. 

 

Figure 4.24 Two element mesh and exact representation of geometry 

In Figure 4.24, non-interpolatory nature of the IGA element boundaries can be better 

seen. Therefore, control mesh and physical mesh differs from each other. Control 

points and their weights used to construct these two element mesh is shared at Table 

4.6. Although the discretization of the geometry has begun with 2 elements, they are 

not enough to get accurate results. Three knot insertion processes were practiced to 

get finer mesh. After these refinements element number was increased to 128 and 

number of control points has become 180.  
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Table 4.6 Control Points used to construct 2 element mesh 

 X Coordinate Y Coordinate Weights 

Point 1 -1 0 1 

Point 2 -1 0.4142 0.8536 

Point 3 - 0.4142 1 0.8536 

Point 4 0 1 1 

Point 5 -2.5 0 1 

Point 6 -2.5 0.75 1 

Point 7 -0.75 2.5 1 

Point 8 0 2.5 1 

Point 9 -4 0 1 

Point 10 -4 4 1 

Point 11 -4 4 1 

Point 12 0 4 1 

 

Plate under the effect of 10 MPa experiences quite small deformations in x and y 

directions as given in the Figure 4.25. Using analytical solutions, the hoop stress value 

for 𝜃/2 will be 3𝑇𝑥 around the hole, and stress concentration will be exactly three. The 

stress concentration and overall stress results of isogeometric analysis are consistent 

with analytical results as given in Figure 4.26. 

 

Figure 4.25 Displacement of the plate a) along x direction                                        

and  b) along y direction 

When the coordinates of the points of deformed shape were compared with result of 

the exact solution, a good matching between the results was obtained as given in 
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Figure 4.27. Additionally, same analysis was conducted by using Abaqus FEA 

package to observe the finite element method performance on the same problem. 

Normal stress in x and y directions and shear stress results of this analysis is also 

shared in Figure 4.28. 

 

Figure 4.26 IGA stress results a) Normal stress x direction b) Normal stress in y 

direction c) Shear stress 

 

Figure 4.27 Comparison of exact deformed shape and deformed shape obtained by 

IGA  
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Figure 4.28 IGA stress results a) Normal stress x direction b) Normal stress in y 

direction c) Shear stress 

Figures clearly state the consistency between IGA and FEA results. In order to run 

isogeometric analysis in Matlab, only 128 elements were used while in Abaqus 650 

elements have been generated in pre-processing phase. Additionally, Matlab has 

finished its computation in 6.1 seconds. On the other hand, finite element analysis 

conducted using Abaqus lasted for 19.6 seconds.  

 

4.3 3D Isogeometric Analysis 

 

As a 3D example of isogeometric analysis, a pinched cylinder problem has been 

considered.  

In pinched cylinder problem, two concentrated forces which are equal in magnitude 

but acting in opposite directions at the mid-section of the cylinder were used. Fixed 
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boundary conditions are defined at both ends of the cylinder. Due to these constraints 

highly localized deformations are obtained at the points of applied concentrated forces. 

Only one eight of the geometry was modeled by using the symmetry conditions. Under 

defined conditions, cubic NURBS elements were used through all directions for 

discretization in order to eliminate shear locking problem. Problem geometry and 

necessary parameters were shared in Figure 4.29. 

 
Figure 4.29 Pinched cylinder problem description 

Table 4.7 Parameters for pinched cylinder problem 

Elastic Modulus (E) [GPa] 3000 

Dimensions (L x R x thickness) [mm] 600 x 300 x 3 

Poisson’s Ratio (v) 0.3 

Force [N] 1 

Displacement and stress results of isogeometric analysis are given in Figure 4.30 and 

Figure 4.31 respectively. Displacement value at the application point of force was 

found as 1.8276(10-5) mm at the end of IGA. Total displacement result is given as 

1.8248(10-5) mm in the study of Belytschko et al. [83]. Analysis was performed by 
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using Matlab and the results were viewed through “Paraview” software which is 

commonly used for post-processing visualization purpose as a free source. In order to 

obtain these results five knot insertion refinements were applied and at the end 512 

cubic elements were utilized for analysis.  

 

Figure 4.30 Total displacement results for pinched cylinder problem 

 

Figure 4.31 Total stress results for pinched cylinder problem 
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Same problem was solved also by using Abaqus. In order to obtain accurate results 

2242 quadratic S8R, 8-node doubly curved thick shell, reduced integration elements 

were used. Results of this analysis is given in Figure 4.32 and Figure 4.33. 

Computation time for isogeometric analysis was 27.4 seconds while it is 34.6 seconds 

for finite element analysis. 

 

Figure 4.32 Total displacement results for pinched cylinder in Abaqus 

 

 

Figure 4.33 Total stress results for pinched cylinder problem in Abaqus 
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   CHAPTER 5  

 

5 APPLICATION OF ISOGEOMETRIC ANALYSIS TO PLASTICITY 

PROBLEMS 

 

In this chapter, isogeometric analysis is applied to some plasticity problems which are; 

uniaxial loading, v-die bending and deep drawing. Materials are modeled as elastic-

plastic material. Moreover, von Mises yield criterion and isotropic hardening are used.  

For solution process, a commercial finite element program LS-DYNA is used since its 

library has isogeometric shell elements. Finally, IGA results are compared with 

classical finite element analysis results which are conducted by using another software 

Abaqus. 

 

5.1 Uniaxial Loading 

5.1.1 Experiment 

 

In order to determine anisotropic properties of materials, test sheets were produced 

along rolling direction (0°), diagonal direction (45°) and transverse direction (90°) of 

the material. Two different material types which are AISI 304 stainless steel and AA 

2024 T3 aluminum were used in the experiments. For each direction and material type 

five parts were produced and hence totally thirty parts were employed during 

experiments in order to increase the reliability of the results. Dimensions of the parts 

are given in Figure 5.1 and some of the parts are shared in Figure 5.2. The part length, 

thickness and width dimensions were taken as 180 mm, 2mm and 20 mm respectively. 

However, at both ends of the parts additional parts with 30 mm length were spot 

welded to specimen to increase the thickness of the regions where machine jaws will 

grip. All specimens were cut by laser cutting machine and levelling performed on them 

to remove burrs. Directions of the specimen were drawn on them and all samples were 

numerated. 
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Figure 5.1 Tensile test specimen dimensions 

 

Figure 5.2 Representation of test specimens before tests 

Tension of the parts were performed by using Lloyd LR100K test machine that is able 

to apply maximum 100 kN tensile force. 
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Figure 5.3 Lloyd LR100K tension test machine 

During the application of tensile loading, force and extension values were collected. 

Tests were continued until failure of the samples. Demonstrations of the failed 

specimens are shared in Figure 5.4. 

 

Figure 5.4 Representation of AISI 304 failed samples after tests 

Mechanical properties; elastic modulus, Poisson’s ratio, yield strength and ultimate 

tensile strength of materials obtained from the uniaxial loading process are given in 

Table 5.1.  
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Table 5.1 Mechanical properties of AISI 304 stainless steel and AA 2024 T3 

aluminum 

Mechanical Properties 

Material AISI 304 Stainless Steel AA 2024 T3 Aluminum 

Direction 0° 45° 90° 0° 45° 90° 

Yield Strength (MPa) 277 265 272 335 328 330 

Ultimate Tensile Strength 

 (MPa) 
675 630 653 466 441 455 

Elastic Modulus (GPa) 193.8 187.4 191.3 74.3 73.1 73.5 

Poisson’s Ratio 0.29 0.27 0.29 0.33 0.33 0.33 

Anisotropy (Lankford ) 

Coefficient 
0.94 1.39 0.88 0.73 0.96 0.81 

True stress and strain graphs of the materials are given in Figure 5.5 and Figure 5.6 

for AISI 304 stainless steel and AA 2024 T3 aluminum respectively. 

 

Figure 5.5 True stress versus true strain curve for AISI 304 stainless steel 

Stress versus strain curves are close to each other for all directions of the AISI 304 

material. Highest stress values were obtained in rolling direction for the same strain 

state. Transverse direction follows the rolling direction in terms of stress magnitude. 

Lowest stress amount is seen for diagonal direction. 
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Figure 5.6 True stress versus true strain curve for AA 2024 T3 aluminum 

Stress-strain curve for the aluminum 2024 T3 material showed also similar trend. 

Stress values are again greatest for rolling direction. Between the two remaining 

directions, transverse direction has greater stress values than diagonal direction.  

5.1.2 Analyses   

 

5.1.2.1 Finite Element Analysis 

 

In this part, finite element analysis was used to simulate the tension of a sheet plate. 

Part has been modeled by using the dimensions given in Figure 5.1. For meshing of 

the part, 900 linear S4R shell elements were used. Material density, elastic modulus, 

Poisson’s ratio was defined for elastic properties. Stress strain curve values were 

entered to define plastic behavior of materials. Data required to define AISI 304 stress-

strain curve was taken from the study of A. Andrade-Campos et al. [84] and data for 

AA 2024 T3 was obtained from the study [85]. For boundary conditions, one end of 

the part was fixed while the other end of the material was pulled with a 25.4 mm/min 

velocity. The demonstration of necking for rolling direction of AISI 304 and chosen 
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element at middle of necking region to draw stress-strain curve is given in Figure 5.7. 

Stress-strain curve drawn by utilizing finite element analysis for this element is given 

in Figure 5.8. 

 

Figure 5.7 Total stress for FEA tensile test for AISI 304 rolling direction in MPa 

 

Figure 5.8 True stress versus true strain graph drawn for AISI 304 rolling direction 

using FEA results 
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5.1.2.2 Isogeometric Analysis 

 

For the isogeometric analysis stage, part dimensions, material model and forming 

velocity values were taken same as the experiment and finite element analysis 

parameters. Material type of the part was defined as an elastic-plastic material by using 

“Piecewise Linear Plasticity” command of LS-DYNA. Throughout this study, all 

elements were defined using one patch. In order to numerically model the part, 836 

elements have been used. The element type defined as Element_Shell_NURBS_Patch 

with quadratic order. By using this element type, a rectangular grid of control points 

was created and a NURBS surface was generated. This grid consisted of NPR times 

NPS control points where NPR and NPS are the number of control points in local r 

and s directions, correspond to longitudinal and transverse directions respectively. 

Necessary basis functions are defined through two knot vectors: 

1- Knot-Vector in r-direction with length NPR + PR + 1 and 

2- Knot-Vector in s-direction with length NPS + PS + 1  

where PR and PS are the order of elements in r and s directions. Weight of the control 

points can also be specified during IGA meshing, otherwise, program automatically 

assign unity value for all control points which creates a B-Spline surface. Another 

point that should be noted is creation of additional element type called as interpolation 

shell elements for result visualization. Results are given by using these interpolation 

elements instead of shell NURBS patch elements.  

After the analysis, one element was chosen at the mid-section of necking region to get 

stress-strain curve. The demonstration of necking for the rolling direction analysis of 

AISI 304 is given in Figure 5.9. Moreover, stress-strain curve drawn for selected 

element is given in Figure 5.10.  

5.1.3 Comparison of the Results 
 

By observing the results for AISI 304 in the rolling direction it is seen that 

isogeometric analysis and finite  element analysis  results are close to each other  and 
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Figure 5.9 Total Stress for IGA tensile test for AISI 304 rolling direction in MPa 

 

Figure 5.10 True stress versus true strain graph drawn for AISI 304 rolling direction 

using IGA results 

compatible with stress-strain curves obtained from the experiments. Computational 

times of both methods were near to each other for this quasi-static analysis. In addition 

to the rolling direction, analyses were also performed for 45° and 90° directions of 

AISI 304 and for 0°, 45° and 90° directions of AA 2024 T3. For all cases, analyses 

results and experiment results overlapped. Comparison of these results which belongs 

to AISI 304 rolling direction is given in Figure 5.11. 
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Figure 5.11 Comparison of experiment, IGA and FEA results for AISI 304 rolling 

direction

5.2 V-Die Bending 

5.2.1 V-Die Bending Experiment 

 

V-Die bending tests were conducted by using CNC controlled “Baykal APHS 26090” 

hydraulic bending press that can apply 900 kN bending load. Machine is shown in 

Figure 5.12. Two kinds of materials were chosen as specimen materials which are AA 

2024 T3 aluminum and AISI 304 stainless steel. Dimensions of the samples were taken 

as 100 mm length x 40 mm depth. The thickness of the blank was 1 mm for both kinds 

of materials. Specimens were cut by laser cutting process along rolling direction, 45° 

from rolling direction and along transverse directions as given in Figure 5.13. Three 

specimens for each direction of different material types were produced and hence 

totally 18 specimens were used. 
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Figure 5.12 Hydraulic bending press used during experiments 

Before the application begins, grease was applied on blank, die and punch to decrease 

friction between tools and workpiece. During the experiments, the utmost attention 

has been paid to reducing the factors that affect the experiment results such as dirt, 

dust and heat etc. Punch and die representations are given in Figure 5.14 and their 

dimensions are given in Figure 5.15.  

 

Figure 5.13 Test specimens AISI 304 and AA 2024 in three different directions 
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Figure 5.14 Representation of punch and die a) Die b) Punch c) Die and punch 

together 

 

Figure 5.15 Die and punch dimensions 

Experiments were performed for three different bending angles: 90°, 120° and 135° 

as given in Figure 5.16. Punch stroke required to give specified bend angles were 

automatically calculated by CNC hydraulic machine as; 4 mm, 2,58 mm and 1,95 mm. 

Although, AISI 304 steel could be bent in all selected angles, aluminum has cracked 

for 90°. The failed figure of the aluminum is given in Figure 5.17. After bending 

operations have finished, bent angle of each part was measured by using a profile 

projector with 0.01° resolution. Results are given in Table 5.2. 
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Figure 5.16 Specimens after bending operation 

 

Figure 5.17 AA 2024 T3 failure for 90° bent angle 

From the experiments, some conclusions can be drawn as listed below. 

- For the same bending angle AISI 304 has greater spring-back than AA 2024 

T3 material. 

- As bending angle increases, spring-back amount decreases for both kinds of 

materials. 

- Spring-back amount is greater for rolling direction due to the fact that material 

yield strength is greater in this direction. 
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Table 5.2 V-Die bending experiments 

Bending 

Angle 

Material Specimen 

1 

Specimen 

2 

Specimen 

3 

Average 

Degree 

Spring-

back 

90° AISI 304 

(0°) 

93.34° 93.16° 93.45° 93.32° 3.32° 

120° AISI 304 

(0°) 

122.85° 122.54° 122.88° 122.76° 2.76° 

135° AISI 304 

(0°) 

137.07° 137.42° 137.64° 137.38° 2.38° 

90° AISI 304 

(45°) 

92.45° 92.21° 93.06° 92.57° 2.57° 

120° AISI 304 

(45°) 

122.08° 122.13° 122.00° 122.07° 2.07° 

135° AISI 304 

(45°) 

136.59° 136.94° 136.91° 136.81° 1.81° 

90° AISI 304 

(90°) 

93.12° 93.05° 92.96° 93.04° 3.04° 

120° AISI 304 

(90°) 

122.28° 122.39° 122.28° 122.32° 2.32° 

135° AISI 304 

(90°) 

137.82° 137.04° 136.53° 137.13° 2.13° 

120° AA 2024 

(0°) 

121.89° 121.63° 121.82° 121.78° 1.78° 

135° AA 2024 

(0°) 

136.50° 136.84° 136.49° 136.61° 1.61° 

120° AA 2024 

(45°) 

121.61° 121.40° 121.27° 121.43° 1.43° 

135° AA 2024 

(45°) 

136.16° 136.42° 136.30° 136.29° 1.29° 

120° AA 2024 

(90°) 

122.00° 121.38° 121,57° 121.65° 1.65° 

135° AA 2024 

(90°) 

136.12° 136.86° 136.72° 136.57° 1.57° 

 

5.2.2 V-Die Bending Analyses  

 

5.2.2.1 Finite Element Analysis 

 

The first of the v-die bending analyses was finite element method application. The 

models have been created by taking the dimensions given in Figure 5.15. Created 

models and their assembly are given in Figure 5.18. AISI 304 stainless steel and 
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aluminum 2024 temper 3 materials were defined by using their stress versus plastic 

strain values. Additionally, anisotropy coefficients of materials were also introduced 

to software. In order to simulate three different bending angle, three different punch 

displacements were given to program as obtained via experiments. Coefficient of 

friction between steel tools and steel blank was taken as 0.144 while for aluminum 

blank it is taken as 0.162. [86] 

 

Figure 5.18 Assembled model of v-die bending process 

Symmetry boundary conditions have not been used in these analyses to see the whole 

model. Fixed boundary condition was defined for die and only one direction of the 

motion of punch which is towards the piece has been left as free. 

The punch and die were defined as discrete rigid bodies while blank was created as a 

deformable part. In order to numerically model punch and die; 720 and 1860 R3D4 

(4-node 3-D bilinear rigid quadrilateral) discrete rigid elements were used, 

respectively. On the other hand, for meshing of blank part, 1947 linear S4R reduced 

integration, hourglass controlled shell elements were used. This element number for 

blank was attained after applying a sensitivity analysis and beyond these element 

numbers, no difference was observed on the analysis results. Regions of the blank that 

is in contact with punch and die were finely meshed. Coarse mesh was assigned for 

other regions. Meshed parts were represented in Figure 5.19. 
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Figure 5.19 Meshed assembly of the v-die bending process 

Analysis results were evaluated in terms of bending angles of parts. The demonstration 

of bent AISI 304 part for 90° is given in Figure 5.20 and U2 represents upward 

displacement in mm. Moreover, the stress distribution is shown in Figure 5.21. A 

geometric approach has been used to accurately measure bending angle. Total of four 

points were selected, two from each side of the part. The coordinates of these points 

were taken from analysis program and two lines were drawn for each point group. 

Finally, angle between these lines has been measured. Selected points for drawing 

mentioned lines corresponds to nodes 97,110,151 and 164 respectively and 

represented in Figure 5.21. The coordinates of these points are given in Table 5.3. 

 

Figure 5.20 90° bent AISI 304 specimen  
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Figure 5.21 Selected nodes/points and total stress scale in MPa 

Table 5.3 Coordinates of selected points for FEA spring-back measurement 

Point Corresponding Node X Coordinate Y Coordinate 

1 97 3.00349e+001 2.57223e+001 

2 110 1.16545e+001 7.33061e+000 

3 151 -1.16529e+001 7.33249e+000 

4 164 -3.00282e+001 2.57283e+001 

Line 1 passes through points 1 & 2 (nodes 97 & 110) and Line 2 passes through points 

3 & 4 (nodes 151 & 164). Representations of the lines and angle measurement between 

these lines is shown in Figure 5.22.  

 

Figure 5.22 Bending angle measurement 
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Finally, after bending simulation with FEA, 89.95° bend angle was obtained which 

has only 0.05 degree deviation from 90° bending. For the rest of the bending 

operations same procedure was followed for angle calculation and 90,120 and 135 

degrees obtained as results of analyses. Therefore, entered punch stroke values were 

evaluated as correct for desired bending angles.  

Important point for bending analysis is the spring-back consideration. After the 

bending operation, pieces undergo some amount of spring-back and this is generally 

dealt with by manufacturers with trial and error productions. However, this method 

causes consumptions of both time and material. On the other hand, this spring-back 

phenomenon can be analyzed through simulations for arranging punch motion and 

other parameters accordingly to obtain desired shape. At this point, the importance of 

correct analysis of spring-back amount comes into prominence. Therefore, after the 

first stage bending analysis, second stage analysis was conducted as a spring-back 

analysis. Spring-back analysis was carried out by importing deformed shape of the 

previously conducted bending analysis to new analysis as initial model without 

applying any loads. Analysis duration was defined to program and during this time 

elastic deformation was waited to be retrieved. Although explicit dynamic analysis 

was used for bending analysis it cannot be used for spring-back analysis since the 

objective is to obtain a static spring-back solution, free from dynamic oscillations. 

Therefore, static analysis was run for spring-back analysis. Result of the analysis is 

given in Figure 5.23 in terms of displacement along longitudinal direction in mm.  

As can be seen from spring-back analysis results, ends of the part experiences nearly 

1.46 mm displacement along longitudinal direction in opposite directions and due to 

this displacement bent angle increases. Final angle between the two sides of the part 

was calculated again using previously mentioned approach.  After this application, 

final angle was found as 95°. These analyses were conducted for other material types 

for defined bending angles. However, in the name of clarity their results have been 

tabulated at Table 5.4 and not given with figures. 
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Figure 5.23 Spring-back analysis of the deformed part 

Table 5.4 Bending angle and spring-back results obtained by FEA 

Bending 

Angle 
Material 

Bending 

Analysis 

Result 

Spring-back 

Analysis 

Result 

Spring-

back 

Error 

(%) 

90° AISI 304 (0°) 89.95° 94.99° 5.04° 51.81 

120° AISI 304 (0°) 120.06° 123.72° 3.66° 32.61 

135° AISI 304 (0°) 135.14° 138.25° 3.11° 30.67 

90° AISI 304 (45°) 90.27° 94.71° 4.44° 72.76 

120° AISI 304 (45°) 120.12° 123.49° 3.37° 62.80 

135° AISI 304 (45°) 135.50 ° 138.39° 2.89° 59.67 

90° AISI 304 (90°) 90.04° 94.73° 4.68° 53.95 

120° AISI 304 (90°) 119.82° 122.98° 3.16° 36.20 

135° AISI 304 (90°) 135.31 ° 138.06° 2.75° 29.11 

120° AA 2024 (0°) 120.26° 122.51° 2.25° 26.40 

135° AA 2024 (0°) 134.88° 136.84° 1.96° 21.58 

120° AA 2024 (45°) 120.32° 122.23° 1.91° 33.57 

135° AA 2024 (45°) 135.24° 136.91° 1.67° 29.46 

120° AA 2024 (90°) 119.93° 121.96 ° 2.03° 23.03 

135° AA 2024 (90°) 135.16° 137.05° 1.89° 20.38 

 

5.2.2.2 Isogeometric Analysis 

 

Every parameter of the isogeometric analysis; tool dimensions, blank dimensions, 

material models, punch strokes and friction coefficient values were taken same as 

experiment and finite element analysis parameters. As in the FEA, the punch and die 
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were defined as discrete rigid bodies and blank was defined as deformable part. In 

order to eliminate the effect of punch and die element sizes, they were taken as same 

with sizes used for finite element analysis. Therefore, punch and die were modeled by 

using 720 and 1860 elements respectively. Rigid material property (Mat_Rigid) has 

been assigned to these elements. For these parts, element formulation is defined as 

Belytschko-Tsay shell element that based on Reissner-Mindlin theory. On the other 

hand, blank has been modeled by using one NURBS patch which was discretized 

uniformly into 1219 elements by using Element_Shell_NURBS_Patch element type 

which is defined for isogeometric analysis. This element number has been determined 

by applying a sensitivity analysis as given in Figure 5.28. Order of the NURBS 

elements used for blank was chosen to be cubic. 

 

Figure 5.24 Meshed representation of v-die bending assembly at LS-DYNA 

As in the finite element analysis case, analysis results were evaluated according to 

final bending angle. For this purpose, again previously mentioned geometric approach 

was used. Analysis stages were divided into two parts. First one was performed to 

evaluate first bending angle and the second one was carried out to get angle after 

spring-back. The demonstration of bent AISI 304 part for 90° is given in Figure 5.25. 

Selected points on the part to draw lines for angle measurement are also shown in 

Figure 5.26. 
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Figure 5.25 90° bent AISI 304 specimen and displacement scale 

 

Figure 5.26 Selected nodes/points and total stress scale in MPa 

After obtaining the 90° bent shape with first stage analysis, spring-back analysis has 

been conducted as a second stage analysis. Spring-back amounts were determined by 

using the same angle measurement procedure and selected points for this aim are 

represented in Figure 5.27 which also shows displacement amounts experienced by 

part during spring-back. Coordinates of selected points are also shared in Table 5.5. 

Table 5.5 Coordinates of selected points for IGA spring-back measurement 

Point Corresponding Node X Coordinate Y Coordinate 

1 107 -34.8153 28.6508 

2 83 -12.5511 7.60674 

3 1444 13.478 8.4813 

4 1421 34.8236 28.6395 
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Figure 5.27 Total Displacement result of spring-back analysis 

The spring-back amount was found for 90° bending of AISI 304 steel for rolling 

direction as 3.11°. This process has been repeated for all material and bending angle 

combinations. Results are tabulated in the Table 5.6. 

Table 5.6 Bending angle and spring-back results obtained by Isogeometric Analysis 

Bending 

Angle 
Material 

Bending 

Analysis 

Result 

Spring-back 

Analysis 

Result 

Spring-

back 

Error 

(%) 

90° AISI 304 (0°) 90.07 ° 93.18° 3.11° 6.32 

120° AISI 304 (0°) 119.96° 122.62° 2.66° 3.62 

135° AISI 304 (0°) 135.10 ° 137.55° 2.45° 2.94 

90° AISI 304 (45°) 90.12° 92.91° 2.79° 8.56 

120° AISI 304 (45°) 120.05 ° 122.26° 2.21° 6.76 

135° AISI 304 (45°) 135.11 ° 137.03° 1.92° 6.08 

90° AISI 304 (90°) 90.17° 93.39° 3.22° 5.91 

120° AISI 304 (90°) 120.02° 122.43° 2.41° 3.88 

135° AISI 304 (90°) 134.94 ° 137.15° 2.21° 3.76 

120° AA 2024 (0°) 120.14° 122.05° 1.91° 7.30 

135° AA 2024 (0°) 135.27° 136.99° 1.72° 6.83 

120° AA 2024 (45°) 120.06° 121.61° 1.55° 8.39 

135° AA 2024 (45°) 135.22° 136.61° 1.39° 7.72 

120° AA 2024 (90°) 120.15° 121.91 ° 1.76° 6.67 

135° AA 2024 (90°) 134.97° 136.64° 1.67° 6.37 
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5.2.3 Comparison of the V-Die Bending Results 

 

By examining the results of the experiment and analyses it can be said that, 

isogeometric analysis is by far more successful than finite element analysis in 

estimating spring-back amounts. The error values for isogeometric analyses are 

relatively low. As a general trend, analyses methods better evaluate the spring-back 

for higher bending angles and for rolling and transverse directions. In addition to more 

accurate results, isogeometric analysis method also decreases the run time of analyses 

and required element numbers. Sensitivity analyses conducted to obtain minimum 

required element number to get accurate results are given in Figure 5.28. In these 

sensitivity analyses, errors were taken from spring-back error values of AISI 304 along 

90°. 

 
Figure 5.28 Element number sensitivity analysis for AISI 304 along rolling direction 

for 90° bending 

In order to evaluate computation times given in Table 5.7 correctly, it is useful to know 

computer properties. Analyses were performed on a computer with system 

specifications as follows, 8 cores with Intel Core i7-6700HQ 2.6 GHz processor.  
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Table 5.7 Equivalent stress and plastic strain values for both FEA and IGA with computation time 
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AISI 304 (0°) 90° 856.4 0.289 848.6 0.276 79 54 31.6 

AISI 304 (0°) 120° 819.0 0.262 811.7 0.257 48 35 27.1 

AISI 304 (0°) 135° 788.9 0.227 773.0 0.214 41 26 36.6 

AISI 304 (45°) 90° 812.7 0.309 803.1 0.297 83 51 38.6 

AISI 304 (45°) 120° 768.2 0.268 762.4 0.254 46 33 28.3 

AISI 304 (45°) 135° 741.6 0.257 734.6 0.248 40 25 37.5 

AISI 304 (90°) 90° 851.6 0.371 844.9 0.363 78 53 32.1 

AISI 304 (90°) 120° 816.1 0.306 807.4 0.295 48 36 25.0 

AISI 304 (90°) 135° 782.8 0.277 770.2 0.268 40 22 45.0 

AA 2024 (0°) 120° 550.3 0.186 542.8 0.173 35 25 28.6 

AA 2024 (0°) 135° 524.6 0.177 519.4 0.171 26 19 26.9 

AA 2024 (45°) 120° 532.0 0.192 523.3 0.184 37 24 35.1 

AA 2024 (45°) 135° 509.7 0.179 502.0 0.167 28 18 35.7 

AA 2024 (90°) 120° 547.4 0.188 541.9 0.179 35 27 22.9 

AA 2024 (90°) 135° 520.1 0.164 514.6 0.155 23 18 21.7 
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5.3 Deep Drawing 
 

In this part, square deep drawing process is introduced by investigating some of the 

process parameters and results. 

5.3.1 Square Deep Drawing Experiment 

 

The experimental results were taken from the study of Danckert, Joachim [86]. 

Experiment in the Danckert’s study had been performed as a part of an international 

benchmark presented at the NUMISHEET 1993 conference. Properties of the mild 

steel used in this study has been given in Table 5.8. The stress-plastic strain relation 

of the material is given by the Swift law: 

 𝜎 = 565.32(0.007117 + 𝜀𝑝)
0.2589 (5.1) 

For this square deep drawing process, geometries and dimensions of the used die and 

punch set are given in Figure 5.29. Dimensions of the blank was given as 150x150 

mm width and depth while its thickness has been taken as 0.75 mm. In the paper, the 

friction coefficient is defined as 𝜇 = 0.144 for steel to steel contact case where punch, 

die and blank holder materials are also specified as tool-steel AISI A2 material 

hardened to 60 HRc. In the tests; 15 and 40 mm punch travels had been utilized. During 

the process, nearly 19.5 kN blank holder force was used for both 15 mm and 40 mm 

punch travels.  

Table 5.8 Properties of mild steel material 

Direction 
Yield Strength 

(MPa) 

Tensile Strength 

(MPa) 

𝐸 

(GPa) 
𝑣 𝑛 𝑟 

𝜌 

(g/cm3) 

0° 167.0 308.5 

206 0.3 

0.238 1.79 

7.8 45° 176.5 316.0 0.239 1.51 

90° 172.5 305.0 0.222 2.27 
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Figure 5.29 Schematic illustration of the deep-drawing tool for the square deep 

drawing [86] 

The thickness strains are given in the directions named as OA, OB and OC directions 

and shared through Figure 5.31 and Figure 5.33. 

 

Figure 5.30 Strain calculation directions [86] 
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Figure 5.31 Thickness strain distributions along OA direction for 15 mm and 40 mm 

punch strokes constructed during the experiment 

 

Figure 5.32 Thickness strain distributions along OB direction for 15 mm and 40 mm 

punch strokes constructed during the experiment 



131 
 
 

 

  

Figure 5.33 Thickness strain distributions along OC direction for 15 mm and 40 mm 

punch strokes constructed during the experiment 

5.3.2 Square Deep Drawing Analyses 

 

In this part of the study, analyses were performed to simulate same square deep 

drawing process given in previous experiment section with the same dimensions, 

material, punch stroke, blank-holder force and friction coefficients. Classical finite 

element method approach and isogeometric analysis approach were used as two 

different numerical techniques during these analyses.  

5.3.2.1 Finite Element Analysis 

 

While conducting finite element analysis, the material has been modeled as elasto-

plastic material by using properties obtained from Table 5.8 and from formula 5.1. 

Two different punch strokes were investigated as 15 mm and 40 mm. Only quarter of 

the components was modeled. The representation of assembled and exploded models 

are shown in Figure 5.34. 
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Figure 5.34 a) Assembled view and b) Exploded view of model for square deep 

drawing analysis 

As previously used in experiment phase, 19.5 kN blank holder force was applied onto 

blank. Coefficient of friction between parts was taken as 0.144 to represent steel to 

steel lubricated static contact as mentioned in [86]. 

The punch, die and blank holder were defined as discrete rigid bodies. The blank was 

defined as deformable part. In order to numerically model punch, die and blank holder; 

2628, 1116 and 828 R3D4 (4-node 3-D bilinear rigid quadrilateral) discrete rigid 

elements were used, respectively. On the other hand, for meshing of blank, 1156 S4R 

reduced integration, hourglass controlled shell elements were utilized. Meshed parts 

are represented in Figure 5.35. 

After analyses has been carried out, thickness strains were calculated by using 

deformed thickness and initial thickness values. This procedure was applied for 

specified OA, OB and OC directions given in Figure 5.30. Demonstrations of these 

directions on the deformed analysis of 40 mm punch stroke are given in Figure 5.36. 
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Figure 5.35 Meshed assembly of the square deep drawing process components 

 

Figure 5.36 Thickness strain calculation directions for FEA on deformed part a) OA 

direction b) OB direction and c) OC direction 

It has seen that most severe thinning occurred at the bottom corner of the deformed 

sheets. region where part interacts with punch radius. On the other hand, maximum 

thickening is observed at the midpoints of the flanges indicated by red color. Analysis 

results were given in Figure 5.37 and Figure 5.38. 
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Figure 5.37 15mm deep drawn part and deformed sheet thickness values in mm 

 

Figure 5.38 40mm deep drawn part and deformed sheet thickness values in mm 

Thickness strain values were presented in Figures 5.39-41.  
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Figure 5.39 Thickness strain distributions along OA direction for 15 mm and 40 mm 

punch strokes constructed during the FEM 

 

Figure 5.40 Thickness strain distributions along OB direction for 15 mm and 40 mm 

punch strokes constructed during the FEM 



136 
 
 

 

 

 

Figure 5.41 Thickness strain distributions along OC direction for 15 mm and 40 mm 

punch strokes constructed during the FEM 

 

5.3.2.2 Isogeometric Analysis  

 

During modeling of the problem, only quarters of the components were considered. 

The assembled model was given in Figure 5.42. The punch, die and blank holder were 

defined as discrete rigid bodies. In order to numerically model them, same element 

numbers with finite element analysis has been used. Therefore, punch, die and blank 

holder were modeled by using 2628, 1116 and 828 elements respectively. Rigid 

material property (Mat_Rigid) has been assigned to these elements. For these parts, 

element formulation was defined as Belytschko-Tsay shell element that based on 

Reissner-Mindlin theory. On the other hand, blank has been discretized uniformly into 

1024 elements. This element number was considered after carrying out a mesh 

sensitivity analysis. Element type defined as Element_Shell_NURBS_Patch which 
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was chosen for isogeometric analysis. Order of the NURBS blank was taken to be 

cubic.  

 

Figure 5.42 Assembled model of Isogeometric Analysis at LS-DYNA 

After isogeometric analyses has been carried out, sheet thickness of the material was 

calculated along specified directions designated as OA, OB and OC in Figure 5.30. 

Demonstration of these directions on the deformed analysis of 40 mm punch stroke 

model is also shown in Figure 5.43. Examined sheet thickness values were used to 

calculate thickness strain distribution along these directions.  

 

Figure 5.43 Thickness strain calculation directions for IGA on deformed part a) OA 

direction b) OB direction and c) OC direction 

Maximum thinning and thickening were observed at the bottom corner of the cup and 

at midsection of the flange, respectively, as in the FEA results. Sheet thickness 

distribution found by using isogeometric analysis are given in Figure 5.44 and         

Figure 5.45 for 15 and 40 mm punch travel, respectively.  
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Figure 5.44 Sheet thickness values in mm for 15 mm punch stroke for IGA 

 

Figure 5.45 Sheet thickness values in mm for 40 mm punch stroke for IGA 

Thickness strain distributions along specified directions were calculated and drawn on 

graphs and shown in Figures 5.46-48. 
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Figure 5.46 Thickness strain distributions along OA direction for 15 mm and 40 mm 

punch strokes constructed during the IGA 

 

 

Figure 5.47 Thickness strain distributions along OB direction for 15 mm and 40 mm 

punch strokes constructed during the IGA 
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Figure 5.48 Thickness strain distributions along OC direction for 15 mm and 40 mm 

punch strokes constructed during the IGA 

5.3.3 Comparison of the Square Deep Drawing Results 

 

Experiment, finite element analysis and isogeometric analysis results were compared 

along the specified directions OA, OB and OC and given in the Figures 5.49-54. 

 

Figure 5.49 Thickness strain comparison along OA direction for 15mm punch stroke 
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Figure 5.50 Thickness strain comparison along OB direction for 15mm punch stroke 

 

Figure 5.51 Thickness strain comparison along OC direction for 15mm punch stroke 
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Figure 5.52 Thickness strain comparison along OA direction for 40mm punch stroke 

 

Figure 5.53 Thickness strain comparison along OB direction for 40mm punch stroke 
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Figure 5.54 Thickness strain comparison along OC direction for 40mm punch stroke 

Comparison of the figures shows that isogeometric analysis results show good 

agreement with the finite element analysis for all cases. The trends of distance versus 

thickness strain graphs obtained for these two analysis methods are similar. Minimum 

and maximum values of the thickness strains and the locations of them are very close. 

Since the results are closer and deviations are very low between FEA and IGA, it is 

not right to say that one method is better than the other. Moreover, analyses results are 

highly compatible with the experimental results except for a few points. The results of 

the analyses differ slightly from the experiment for 15 mm punch stroke in terms of 

minimum strain amount through OA and OC directions and location of thinnest 

regions. However, these differences are negligible and they disappear in the 

experiment made for 40 mm punch stroke. On the other hand, experiment results for 

15 mm are fluctuating and this may be the reason of mentioned deviations. For the 

sake of clarity, the thickest and thinnest locations and thickness strain values at these 

locations for all cases are tabulated in Table 5.9. Computation times for simulations 

are also given in this table. Computation time and required element number for 

accurate results have been reduced with the usage of IGA. Additionally, used number 

of elements determined by conducting sensitivity analysis is shown in Figure 5.55.
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Table 5.9 Comparison of Results for FEM and IGA 

M
et

h
o
d

 

P
u
n
ch

 S
tr

o
k
e 

(m
m

) 

D
ir

ec
ti

o
n

 

T
h
e 

T
h
in

n
es

t 

L
o
ca

ti
o
n
 f

ro
m

 

th
e 

ce
n
te

r 

(m
m

) 

T
h
ic

k
n
es

s 
S

tr
ai

n
 

V
al

u
e 

at
 t

h
e 

T
h
in

n
es

t 

L
o
ca

ti
o
n

 

T
h
e 

T
h
ic

k
es

t 

L
o
ca

ti
o
n
 f

ro
m

 

th
e 

ce
n
te

r 

(m
m

) 

T
h
ic

k
n
es

s 
S

tr
ai

n
 

V
al

u
e 

at
 t

h
e 

T
h
ic

k
es

t 

L
o
ca

ti
o
n

 

C
o
m

p
u
ta

ti
o
n
 

T
im

e 
(h

o
u
rs

) 

Exp. 

15 

OA 32.9 -0.0792 71.4 0.0466 - 

OB 46.3 -0.1420 67.7 0.0286 - 

OC 34.9 -0.0773 74.9 0.0330 - 

40 

OA 33.8 -0.0881 75 0.1910 - 

OB 51.7 -0.2437 72.7 0.0683 - 

OC 31.28 -0.0727 74.97 0.2141 - 

FEM 

15 

OA 31.78 -0.0520 75.22 0.0635 

4.2 OB 43.63 -0.1562 63.45 0.0567 

OC 32.33 -0.0544 75.1 0.0540 

40 

OA 37.31 -0.0674 74.98 0.2285 

6.9 OB 52.60 -0.2496 70.78 0.1559 

OC 36.78 -0.0683 74.96 0.2451 

IGA 

15 

OA 31.29 -0.0595 75.16 0.0690 

2.6 OB 42.97 -0.1622 59.88 0.0649 

OC 31.35 -0.0480 75.04 0.0560 

40 

OA 34.63 -0.0779 74.82 0.2491 

3.8 OB 51.3 -0.2589 69.61 0.1608 

OC 36.34 -0.0597 75.05 0.2584 

 

 

Figure 5.55 Element number sensitivity analysis for AISI 304 along rolling direction 

for 90° bending 
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CHAPTER 6 

 

6 CONCLUSIONS AND FUTURE WORK 

 

In this thesis, a novel numerical analysis method named as isogeometric analysis 

which is based on usage of NURBS basis functions was introduced. Its theoretical 

background and advantages over standard finite element method have been studied by 

investigating different case studies through code that has been developed for 2D 

analyses. In addition to having many similarities with finite element analysis, 

isogeometric analysis brought many superiorities into analysis as listed below; 

 Using high order NURBS basis functions which may have C1 and higher 

continuity instead of employing C0 continuous classical Lagrange polynomials 

as basis functions enables more accurate results with less element number of 

elements especially for beam, plate and shell like structures that require higher 

continuity. 

 In IGA, exact geometry can be represented by utilizing coarse mesh structure. 

This prevents unnecessary mesh refinements for geometrical representation. 

Thus, refinement techniques only used for the solution accuracy.  

 In isogeometric analysis, mesh refinement is simply handled by reindexing the 

parametric space without interacting with the geometry contrary to refinement 

strategies of finite element method that require interaction with the CAD 

system at each stage.  

 Getting higher order basis functions and refinement of basis is easy due to the 

recursive nature of the NURBS. Moreover, this recursive nature is very 

convenient for code algorithms.  

Further, isogeometric analysis has been verified by structural analysis of linear 

elasticity problems. Conclusions drawn from these applications stated in the following 

items:  
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 IGA application on 1D bar problem showed that, first order basis functions are 

sufficient to accurately solve this problem. However, for first order NURBS 

basis functions are identical to finite element basis functions. Therefore, 

solving such problems with isogeometric analysis method does not provide a 

great advantage but still enables the user to reach correct result. 

 In bending of Euler-Bernoulli beam application, IGA provided a great 

advantage for the solution process which is rotation free formulation. Due to 

the higher order continuity obtained by NURBS basis functions, this beam 

problem was solved for deformation by just using transverse degrees of 

freedom. Additionally, IGA has found the exact result by using single element 

for quartic order. Computation time has also decreased to nearly half with the 

usage of isogeometric analysis. However, for cubic order usage both FEM and 

IGA gave the accurate results with four elements. But for less element number 

in cubic order comparison FEM gives better results. 

  Similarly, Kirchhoff plate bending problem is solved easily with IGA. The 

rotation free formulation was used for the solution. At the end, less elements 

were used and time required for the solution has decreased about 80 percent.  

 For the 2D investigation, a plane stress problem which is a part of the infinite 

plate with circular hole was examined. Whole geometry was modeled by using 

only two elements including the circular hole region. However, with the 

concern for accuracy, mesh was refined to 128 elements. The main focus was 

to see the stress concentration around the hole and this was achieved with the 

mentioned number of elements. On the other hand, to obtain same result with 

FEA, 650 elements were used. 

 Final application of isogeometric analysis on elasticity problems was a pinched 

cylinder problem which is a 3D problem. IGA has showed its efficiency for 

this problem as well with utilizing less number of elements and less time to get 

results. 
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Isogeometric analysis was also applied to metal forming problems which are the most 

significant contribution of this research. Uniaxial tension of a sheet, v-die bending and 

square deep drawing problems were examined as case studies. Two types of materials 

were used as AISI 304 steel and AA2024 T3 aluminum. For v-die bending, different 

bending angles were applied and springback results of the process were evaluated. For 

square deep drawing process, different punch strokes were conducted and thickness strain 

distributions were analyzed. Conclusions are given below: 

 Before the application of forming problems, a simple case which is uniaxial 

tension of a sheet was studied to see the isogeometric analysis performance in 

predicting material beahvior. For this case, IGA has given same stress-strain 

curves as experiment for AISI 304 steel and AA2024 T3 aluminum. Isogeometric 

analysis and finite element analysis worked in a similar manner. 

 Isogeometric analysis is better than FEA in predicting the springback results 

of v-die bending process. Moreover, isogeometric analysis usage contributed 

to the reduction of the analysis time.  

 For square deep drawing case, IGA results have good agreement with both 

FEA and experiment results. It is successful in predicting thinning and 

thickening amounts and their locations on the part. Additionally, using 

isogeometric analysis decreases computation time dramatically. 

As future works; 

 Effects of the basis function order, continuity and refinement techniques can 

be investigated in detail by devoting more time for sensitivity analysis. 

 Isogeometric analysis can be applied to non-linear elasticity problems. 

 Different forming processes on parts with several materials can be examined 

as plasticity applications. More complex geometries with various sheet 

thickness values can be used to find the geometry and thickness effect. 



148 
 
 

 

 Particular yield and hardening laws can be implemented into forming analyses 

to see their consistency with isogeometric analysis. 

 In order to eliminate the main disadvantage of IGA which is global refinement, 

T-Splines and its basis functions should be adapted to isogeometric analysis to 

get local refinement. 

 Multi-patch isogeometric analysis can be constructed especially in order to 

solve fracture mechanics problems. 

 Isogeometric analysis can be compared with finite element analysis that based 

on basis functions with order higher than quadratic and cubic. 
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