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ABSTRACT

ROUTING FOR POST-DISASTER NEEDS ASSESSMENT TO IMPROVE
INFORMATION ACCURACY AND PRECISION

Pamukçu, Duygu

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Melih Çelik

Co-Supervisor : Assoc. Prof. Dr. Burcu Balçık Koyuncu

July 2018, 115 pages

Obtaining reliable information in post-disaster needs assessment depends on how

much time is spent for sampling to collect information and how many different ben-

eficiary groups are visited. Estimated information on the needs is an input for subse-

quent relief distribution, so accuracy and precision of the estimation directly effects

the efficiency of relief operations. Since the total time to visit affected sites and to

collect information from each site is limited, an efficient routing scheme is important

to perform effective needs assessment. Motivated by this, we define the Post-Disaster

Needs Assessment Routing Problem, where the decisions of which sites to visit, in

what sequence to perform these visits, and how much time to spend to collect in-

formation in each site are made, subject to a total needs assessment time constraint.

We formulate a mixed integer program and propose a tabu search heuristic to obtain

near-optimal solutions. Our solution approaches are tested on randomly generated

instances and a case study based on the 2011 Van Earthquake.
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ÖZ

AFET SONRASI İHTİYAÇ DEĞERLENDİRME İÇİN DOĞRULUK VE
DUYARLIĞI GELİŞTİREN ROTALAMA PROBLEMİ

Pamukçu, Duygu

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Yrd. Doç. Dr. Melih Çelik

Ortak Tez Yöneticisi : Doç. Dr. Burcu Balçık Koyuncu

Temmuz 2018 , 115 sayfa

Afet sonrası ihtiyaç değerlendirme sürecinde elde edilen bilginin güvenilirliği, bilgi

toplamak için örneklemeye ne kadar zaman ayrıldığına ve afetten etkilenen bölgelerin

ne kadarının ziyaret edildiğine bağlıdır. Tahmin edilen ihtiyaç bilgisi değerlendirme-

den hemen sonra gelen yardım dağıtımı süreci için girdi olarak kullanılır. Bu nedenle,

tahmin edilen bilginin doğruluğu ve duyarlığı yardım operasyonlarının etkililiğini

doğrudan etkiler. Afetten etkilenen bölgeleri ziyaret etmek ve bu bölgelerden bilgi

toplamak için harcanacak zaman kısıtlı olduğu için verimli bir rotalama planı oluştur-

mak, etkili bir ihtiyaç değerlendirme için önemlidir. Bu çalışmada, afet sonrası ihtiyaç

değerlendirme için bir rotalama problemi geliştirilmiştir. Problemin içerdiği kararlar

hangi bölgelerin ziyaret edileceği, bu bölgelerin hangi sıra ile ziyaret edileceği ve

bilgi toplamak için her bölgede ne kadar zaman geçirileceğidir. Bu kararlar, ihtiyaç

değerlendirme için ayrılmış toplam zaman kısıtı içerisinde verilir. Öncelikle karışık

tamsayılı programlama ile modellenen Afet Sonrası İhtiyaç Değerlendirme için Ro-

talama Problemi’ne çözüm yöntemi olarak bir tabu arama algoritması sunulmuştur.

Önerilen çözüm yöntemini test etmek için rassal olarak oluşturulmuş örnek problem

vii

tec7
Rectangle

tec7
Typewritten Text
Dr. Öğr. Üyesi Melih Çelik

tec7
Typewritten Text

tec7
Typewritten Text

tec7
Typewritten Text



seti ve vaka çalışması kapsamında 2011 Van Depremi verileri kullanılarak oluşturulan

bir örnek problem seti kullanılmıştır.

Anahtar Kelimeler: İnsani Yardım Lojistiği, İhtiyaç Değerlendirme, Seçici ve Genel-

lenmiş Araç Rotalama Problemi, Doğruluk, Duyarlık, Tabu Arama
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To all victims of disasters who face death due to scarcity...
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neighbor collegues Selin Akifoğlu and Derya Dinler for their help and enthusiasm.

Last but not the least, I would like to present my special thanks to my family for

supporting me spiritually thoughout my life and my besty Sıla Aygün for finding her

right beside all the time when I need.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Literature on Post-Disaster Needs Assessment Operations . . 5

2.2 Literature on the Selective and Generalized versions of the
Traveling Salesperson Problem . . . . . . . . . . . . . . . . 7

2.3 Literature on Tabu Search-Based Heuristics . . . . . . . . . 11

3 SYSTEM DESCRIPTION AND PROBLEM DEFINITION . . . . . 13

3.1 Needs Assessment . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Information Collection for Needs Assessment . . . . . . . . 17

3.2.1 Sampling Techniques . . . . . . . . . . . . . . . . 19

xi



3.2.2 Measuring the Quality of Sampling: Accuracy and
Precision . . . . . . . . . . . . . . . . . . . . . . 21

3.2.3 Clustering of Sites . . . . . . . . . . . . . . . . . 22

3.3 Sampling in Post-Disaster Needs Assessment Practice . . . . 24

3.4 The Post-Disaster Needs Assessment Routing Problem . . . 24

3.4.1 Measuring Accuracy and Precision in the Needs
Assessment Routing Problem . . . . . . . . . . . . 25

3.4.2 Network Characteristics . . . . . . . . . . . . . . 28

3.4.3 Assumptions . . . . . . . . . . . . . . . . . . . . 29

3.4.4 Mathematical Model . . . . . . . . . . . . . . . . 30

3.4.4.1 Notation . . . . . . . . . . . . . . . . 30

3.4.4.2 Formulation . . . . . . . . . . . . . . 31

4 A MULTI-START TABU SEARCH HEURISTIC FOR THE POST-
DISASTER NEEDS ASSESSMENT ROUTING PROBLEM . . . . . 33

4.1 Preprocessing: Reduction Procedure . . . . . . . . . . . . . 33

4.2 Construction of an Initial Solution . . . . . . . . . . . . . . 34

4.3 Improvement by Tabu Search . . . . . . . . . . . . . . . . . 40

4.3.1 Intensification Strategies . . . . . . . . . . . . . . 41

4.3.2 Diversification Strategies . . . . . . . . . . . . . . 43

4.4 Selection of Options in Visited Nodes . . . . . . . . . . . . . 43

4.5 Overview of the Multi-Start Tabu Search Algorithm . . . . . 44

5 COMPUTATIONAL STUDY . . . . . . . . . . . . . . . . . . . . . . 53

5.1 Test Instances . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.1 Random Instance Set Based on Solomon Instances 54

xii



5.1.2 A Case Study Based on the 2011 Van Earthquake . 56

5.2 Algorithm Settings . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Computational Results . . . . . . . . . . . . . . . . . . . . . 61

5.3.1 Results for Random Instances . . . . . . . . . . . 61

5.3.2 Case Study Results . . . . . . . . . . . . . . . . . 71

6 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

APPENDICES

A CALCULATED PARAMETERS IN PREPROCESSING . . . . . . . 87

B SOLUTIONS OF RANDOM TEST INSTANCES . . . . . . . . . . . 97

C SOLUTIONS OF 2011 VAN EARTHQUAKE CASE STUDY IN-
STANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiii



LIST OF TABLES

TABLES

Table 4.1 Terminology of Iterative Construction Heuristic . . . . . . . . . . . 37

Table 4.2 Terminology of Iterative Construction Heuristic . . . . . . . . . . . 46

Table 5.1 Change in variance with increasing number of clusters . . . . . . . . 58

Table 5.2 Case study instances . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Table 5.3 MIP results with CPLEX solver . . . . . . . . . . . . . . . . . . . . 62

Table 5.4 CPLEX solutions of the Van Case Study Instances . . . . . . . . . . 72

Table 5.5 MSTSh solutions of the Van Case Study Instances with different

tabu tenures and diversification parameters . . . . . . . . . . . . . . . . . 73

Table A.1 Sample size (SS) and sampling time (ST) requirements of random

test instances with 30 nodes for each option (unit survey time=0.01) . . . . 87

Table A.2 Sample size (SS) and sampling time (ST) requirements of random

test instances with 50 nodes for each option (unit survey time=0.01) . . . . 88

Table A.3 Sample size (SS) and sampling time (ST) requirements of random

test instances with 75 nodes for each option (unit survey time=0.01) . . . . 89

Table A.4 2011 Van Earthquake Case Study Raw Data . . . . . . . . . . . . . 91

Table A.5 Sample size (SS) and sampling time (ST) requirements of case study

instances for each option (unit survey time=0.01) . . . . . . . . . . . . . . 95

xiv



Table B.1 Route and option assignment in CPLEX solutions of random test

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Table B.2 Objective function values and CPU times (in seconds) of CPLEX

and MSTSh Algorithm for random test instances . . . . . . . . . . . . . 99

Table B.3 MSTSd Algorithm Solutions with different tabu tenures for random

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Table B.4 MSTSh Algorithm Solutions with different tabu tenures for random

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Table B.5 MSTSr Algorithm Solutions with different tabu tenures for random

instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table B.6 MSTSh heuristic solutions with different diversification parameters

for random instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Table C.1 Route and option assignment in case study CPLEX solutions . . . . 113

Table C.2 Objective function values and CPU times (in seconds) of CPLEX

and MSTSh Algorithm for the Van Case Study Instances . . . . . . . . . 114

xv



LIST OF FIGURES

FIGURES

Figure 3.1 Most significant disasters according to mortality rate in between

1980 and 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.2 Most significant disasters according to economic damage in be-

tween 1980 and 2017 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3 Disaster Management Cycle . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.4 Needs Assessment Timeline . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.5 Sampling Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Figure 3.6 Target board that represents accuracy and precision . . . . . . . . . 23

Figure 3.7 Change in sample size with respect to population size (p̂ = 0.5,

α = 0.05, ε = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.8 Change in margin of error with respect to sample size (p̂ = 0.5,

α = 0.05, ε = 0.05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 3.9 Network representation and a feasible PDNARP solution for a ge-

ographically clustered 30-node 10-cluster network . . . . . . . . . . . . . 29

Figure 4.1 A feasible tour on a PDNARP instance with 30 nodes and 10 clus-

ters, where the size of a node is directly proportional to its population . . . 36

Figure 4.2 Change in route after 2-opt move . . . . . . . . . . . . . . . . . . 41

Figure 4.3 Change in route after swap move . . . . . . . . . . . . . . . . . . 42

xvi



Figure 4.4 Change in route after Replace1−1 move . . . . . . . . . . . . . . . 42

Figure 4.5 Change in route after Replace1−2 move . . . . . . . . . . . . . . . 42

Figure 5.1 Network representation of geographic cluster on the instance with

75 nodes and 15 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.2 Network representation of hierarchic cluster on the instance with

75 nodes and 15 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 5.3 Network representation of random cluster on the instance with 75

nodes and 15 clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Figure 5.4 Within and between variance change according to increasing num-

ber of clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Figure 5.5 Representation of the Van Case Study network on map with 16

clusters (map was retrieved from Google Earth) . . . . . . . . . . . . . . 59

Figure 5.6 Change in average gap % of geographical instances according to

alternative MSTS versions . . . . . . . . . . . . . . . . . . . . . . . . . 67

Figure 5.7 Change in average gap % of hierarchical instances according to

alternative MSTS versions . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.8 Change in average gap % of random instances according to alter-

native MSTS versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.9 Change in average gap % of all instances according to alternative

MSTS versions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.10 Change in average gap % according to diversification parameter . . 69

Figure 5.11 Change in average CPU time according to cluster size . . . . . . . 70

Figure 5.12 Routes constructed by CPLEX solver and MTSTh heuristic for

the instance # 4 (30N_10C_tmax5_geo), where black and orange routes

represents results of the CPLEX and MSTS, respectively . . . . . . . . . . 71

xvii



LIST OF ABBREVIATIONS

CARP Capacitated Arc Routing Problem

CI Confidence Interval

CIH Cheapest Insertion Heuristic

CluVRP Clustered Vehicle Routing Problem

DOM Disaster Operations Management

EPI Expended Programme on Immunization

GTSP Generalized Traveling Salesperson Problem

GVRP Generalized Vehicle Routing Problem

IFRC International Federation of Red Cross and Red Crescent Soci-

eties

IP Integer Programming

MSTS Multi-Start Tabu Search Heuristic

NGO Non-Governmental Organization

OP Orienteering Problem

PCTSP Prize Collecting Traveling Salesperson Problem

PDNARP Post-Disaster Needs Assessment Routing Problem

PTP Profitable Tour Problem

SRS Simple Random Sampling

TOP Team Orienteering Problem

TPP Traveling Purchaser Problem

TS Tabu Search

TSP Traveling Salesperson Problem

VRP Vehicle Routing Problem

WHO World Health Organization

xviii



CHAPTER 1

INTRODUCTION

Crises requiring humanitarian relief, such as natural or human-inflicted disasters, may

have profound impact on the communities affected by them. This impact may involve

fatalities, casualties, damages on the infrastructure, effects on economic activities,

and an increase in the need to sustain the quality of basic daily activities. To provide

effective response to a humanitarian crisis, these impacts must be forecasted accu-

rately a priori and and/or they should be efficiently and effectively assessed in the

aftermath.

In the case of disasters, particularly sudden-onset ones, the uniqueness of the event

generally deems accurate forecasting of post-disaster needs (such as the need for food,

water, medical aid, shelters, etc.). In such cases, learnings and analyses on previous

disasters do not help to predict the impacts of and the needs arising from a new one,

since the latter differs by some aspects (such as type, magnitude, scale, population

characteristics, etc.) from the previous ones. For this reason, predictions accord-

ing to past observations may not be close to reality and may lead to fallacies for the

post-disaster management process. As it is not possible to make strong assumptions

by referencing the past observations, reliable information can only be obtained by

making specific surveys in the affected region. Decisions on from where and how

to collect the information are critical, since the management of post-disaster opera-

tions is planned according to the information collected during these needs assessment

activities. Consequently, estimation of the beneficiaries’ needs should not only be

reliable, but also as close enough to reality as possible.

Each disaster has unique dynamics and requires a different needs assessment plan.
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For this reason, agencies and governments should be well-prepared for any potential

emergent situation to be able to start assessment activities immediately. Learnings

from the past events and the shared experience may accelerate the assessment plan-

ning process and improve its quality.

Assessment starts with the evaluation of secondary information (information gathered

from external sources such as population data, risk maps, socio-economic indicators,

etc.) related with the affected region. This can be obtained from a variety of sources

such as government, national statistical organizations, and the media. Generally, col-

lection of secondary information is completed within three days. This data is used for

clarifying the situation and preparing the assessment plan.

In the disaster management cycle, needs assessment phase is composed of three stages

which differ by the way of information collection techniques according to availability

of secondary information. Rapid assessment is performed in the immediate aftermath

of the crisis to estimate its scale and scope quickly. Then, the detailed assessment

process takes place to verify estimations made in rapid assessment phase with in-

creased volume of information and to catch up changing situations. Finally, during

continual assessment, information is continually collected and updated during the re-

sponse phase. In this study, we focus on a rapid assessment setting, in which agencies

evaluate people’s needs quickly. In this stage, reliable primary information collection

activities are performed by making visits in the affected region. These visits start after

secondary information becomes available, and they need to be completed in at most

two weeks [4]. The primary data is collected directly from the potential sources such

as key informants, community groups or individuals, and is mainly aimed at estimat-

ing key information such as the proportion of people who need food, water, medical

aid, shelter, etc.

After the collection of primary data in the field, these findings are compiled, validated

and conclusions are reported. Compilation and validation process is also a challeng-

ing part where cross-check of all secondary and primary data obtained from different

sources of information are made. Hence, even in the same disaster, it is possible to

make conflicting conclusions regarding the findings. In order to reduce these con-

flicts, agencies should coordinate and share their resources and experience.
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During the rapid assessment phase, there is limited time for assessment activities, so

that response operations can start as quickly as possible. This requirement for quick

assessment of the situation makes it impossible to survey the whole affected region

in order to collect information. Consequently, sampling methods are used to esti-

mate beneficiaries’ needs such as the proportion of people who need shelter, number

of people who do not have access to water, proportion of females with infants who

need human breast milk, etc. In practice, there are some basic systematic techniques,

which do not necessarily rely on analytical methods, applied for the sampling in emer-

gent assessment situations such as the Expanded Programme on Immunization (EPI)

method developed by the World Food Organization [6]. Additionally, organizations

that take part in needs assessment publish some reports and guidelines about their

methodology, where practitioners can find process details and tools, especially for

rapid assessment activities [2, 4, 6, 8, 7, 9, 20, 50]. These reports are useful guides

for the steps needed to apply for future assessment activities.

Since needs assessment involves a sampling process, its effectiveness can be evalu-

ated by two main criteria: (1) how well the sampled data reflects the actual situation

(accuracy) and (2) how certain the obtained information is (precision). In the context

of needs assessment, the former can be achieved by visiting as many sites as possible,

whereas the latter mainly depends on how much time is spent to collect information

in each site. When multiple sites are to be visited for needs assessment, there exists

an inherent trade-off between the time spent to travel between sites and the time to

survey the beneficiaries in each visited site. In other words, if the assessment team

spends more time to survey more beneficiaries in each site (thereby improving preci-

sion), fewer sites may need to be visited (thereby sacrificing from accuracy), and vice

versa. Hence, the trade-off between travel time and sampling time lead to a trade-off

between accuracy and precision of the sampling process. This points to the need to

develop quantitative models and solution approaches that will result in efficient rout-

ing and sampling schemes to balance this trade-off. To the best of our knowledge,

despite the abundance of reports and guidelines on the sampling methodologies by

the organizations, there exists no study that combines sampling decisions with the

routing of the needs assessment teams.

In this study, we define the Post-Disaster Needs Assessment Routing Problem (PDNARP),

3



which is a variation on the selective version of the Generalized Traveling Salesman

Problem (GTSP) for the post-disaster needs assessment operations. The main deci-

sions in this problem involve (1) which communities to visit, (2) in which sequence to

visit these communities, and (3) how much time to spend to survey each community.

The objective function makes use of probability sampling to quantify the accuracy

and precision of the estimations. In our problem, time, which is a scarce resource,

is consumed by logistics and sampling processes. We also use a clustered network

structure, where clusters are determined according to prior knowledge or secondary

information about emergency zone. We assume that each cluster involves a set of

homogeneous community groups. In the objective function, accuracy is represented

by how many clusters are visited, whereas precision depends on how many beneficia-

ries are surveyed in each cluster. All assessment activities are expected to be finished

within a pre-determined time limit. Selective characteristic of the problem prevents

the assessment team from visiting all beneficiary groups, as is the case in real as-

sessment operations. Consequently, our aim is to obtain reliable information from as

many diverse groups as possible.

We present a mixed integer programming formulation of the PDNARP. Furthermore,

for large-scale networks, which mimic real-life cases, we develop a tabu search meta-

heuristic which is able to solve large scale instances very quickly and which provides

near-optimal solutions in most instances. In the computational study, results and the

performance analysis for some variants of the proposed algorithm is provided. Fi-

nally, we illustrate our metaheuristic on a realistic case study based on the 2011 Van

Earthquake.

The remainder of this thesis is structured as follows. In Chapter 2, relevant litera-

ture on problem structure and solution methods is reviewed. Problem definition and

mathematical model formulation are presented in Chapter 3. Our solution approach is

described in Chapter 4. Computational analysis on experimental data set and results

on a case study are provided in Chapter 5. Finally, in Chapter 6, we conclude this

thesis and discuss future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a literature review of the related studies is presented. This chapter is

divided into three subsections where previous studies on post-disaster needs assess-

ment operations, the selective and generalized versions of the Traveling Salesperson

Problem, and tabu-search-based meta-heuristics are reviewed in detail.

2.1 Literature on Post-Disaster Needs Assessment Operations

Although there are many guidelines and technical reports on needs assessment pub-

lished by various organizations, in the IE/OR literature, this area is not studied as

widely as other phases of the disaster management cycle.

Reviews on disaster operations management (DOM) point out that there is an increas-

ing interest on this topic in the last decades. Together with the accelerated increase

in the world population and damage on nature, frequency and the consequences of

disasters have also risen. Galindo and Batta [33] provide an extensive literature re-

view on the developments in OR/MS research on DOM between 2005 and 2010. This

review shows the rising trend for research in humanitarian operations. It is claimed

that the successive large-scale catastrophes within a short span of time, namely the

World Trade Center attacks (2001), tsunami in the Indian Ocean (2004), Hurricane

Katrina (2005) and the Haiti earthquake (2010) have highly increased the interest of

researchers in this area. Noticing the potential diminishing impact of disaster man-

agement operations in consequences of disasters, studies have sped up for each part

of the disaster management cycle.
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When IE/OR literature on the response phase is further analyzed, it can be seen that

most of the studies are centered upon the relief distribution problems [1, 15, 55, 83].

However, it should be recognized that for successful relief distribution, resource al-

location should be made in an efficient way. This is only possible with the reliable

information that comes from the needs assessment phase. Despite this fact, for this

critical part of the response phase, there are only a few studies in the IE/OR literature.

The study of Malilay et al. [56] proposes a cluster-sampling method for rapid assess-

ment, which is the modification of the Expanded Programme on Immunization (EPI)

method proposed by World Health Organization (WHO) [6]. This study differs from

the previous methods with the inclusion of the estimation on many parameters such as

remaining population, scope of damage, people in specific requirements, estimation

of destructed/remaining house units, instead of considering only a single estimation.

However, the survey design in this study does not consider the sequencing of the

vulnerable beneficiary groups.

To the best of our knowledge, Balcik [14] is the only study on the rapid needs as-

sessment problem that includes both site selection and routing decisions. Here the

objective is to maximize the coverage of the community groups’ distinct attributes

(such as distance to epicenter, elevation, disabled population, female population with

children, etc.). This study focuses on purposive sampling in order to satisfy a pre-

determined level of coverage for each attribute. In the context of this study, coverage

is the collected proportion of each attribute. Attributes are observed in more than one

site, and each site also has multiple attributes. The coverage of an attribute increases

by one in the case that visited site includes this attribute. There exists a necessity

of collecting information from each distinct attribute, i.e., it does not involve charac-

teristic selection. Moreover, Balcik [14] assumes that once a site is visited, required

information about all attributes of the corresponding site is collected immediately.

Thus, this study does not consider the effect of sampling times in each visited site.

However, it provides a basis for this thesis with the idea of covering different benefi-

ciary groups in a limited time to make reliable estimations on disaster impacts.

Although there are only a few studies about needs assessment in the IE/OR literature,

many booklets and guidelines of the organizations are available [2, 3, 4, 5, 6, 7, 9, 51].

6



However, these do not make use of mathematical solution approaches to determine the

optimal assessment strategies. To the best of our knowledge, there is no such study

among these that is statistically supported and that includes routing and selection

decisions to assess the trade-off between information accuracy and precision.

2.2 Literature on the Selective and Generalized versions of the Traveling Sales-

person Problem

Since the total time for travel between sites and survey of the population is limited

in the rapid assessment phase, it may not be possible to visit all sites for assessment.

This aspect of the PDNARP makes it similar to the Selective Traveling Salesperson

Problem, where only a subset of the cites/nodes can be visited. Furthermore, when the

disaster-affected area can be clustered into multiple regions (based on the similarity

of sites in terms of their geographical, demographic or economic properties), it may

be possible to assess the needs of a cluster by visiting a single site that belongs to it.

In this sense, the PDNARP resembles the Generalized Traveling Salesperson Prob-

lem. In this section we review the IE/OR literature on the Selective and Generalized

versions of the TSP.

Under the general TSP setting, when it is not possible to visit all nodes, visiting each

node brings a certain amount of "profit". This version is generally called as Selective

TSP/VRP in the IE/OR literature. Laporte and Martello [52] describe the Selective

TSP as constructing a route with maximum profit whose length does not exceed a

predetermined limit. Therefore, only a subset of all nodes could be visited within

predetermined limit. In the study of [52], for the exact solution of this problem, an

integer linear program (IP) is proposed. In another study that proposes an alternative

IP approach for Selective TSP, an upper bounding scheme is used in order to decrease

the size of the problem [57].

The Selective TSP is also referred to as the Orienteering Problem (OP) in the IE/OR

literature. Its name comes from the outdoor sport "orienteering". In this game, start

and end points are determined, and the aim is to collect the maximum score within

fixed amount of time by visiting certain points of interest. The OP arises in vari-
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ety of applications such as home heating oil delivery [40], athlete recruiting from

high schools [25], and routing technicians to service customers [78]. There are many

studies which propose optimal solution approaches for the OP. As an exact solution

method, Ramesh et al. [69] use Lagrangean relaxation within a branch-and-bound

framework, Fischetti and Toth [32] describe a branch-and-bound algorithm, and [23]

propose a branch-and-price algorithm. On the other hand, there are also many stud-

ies where heuristic/metaheuristic approaches are proposed. For example, Chao et al.

[26] propose an effective heuristic, Wang et al. [82] use artificial neural networks,

Gendreau et al. [36] present tabu search and [79] use a genetic algorithm as a solu-

tion approach. Moreover, time windows [48] and team orienteering problem (TOP)

[49, 78] are the most common variations of this problem.

The Prize Collecting Traveling Salesperson Problem (PCTSP) is also a widely-studied

version of the Selective TSP in the IE/OR literature. In PCTSP, each node has a prize

and penalty, and the objective is finding the shortest tour length while maximizing

the difference between the total profit of the visited nodes and total penalty due to

unvisited nodes. This problem has a threshold for the total prize, so the solution is

feasible only if total prize reaches this threshold. The PCVRP is the variant of this

problem with multiple tours. Both problems are NP-hard, and due to the complexity

of the PCTSP there are only a few studies where exact solution methods are proposed

[12, 32]. On the other hand, heuristic methods are widely used to solve the PCTSP

such as a Christofides’ algorithm based heuristic [21], a hybrid Lagrangian genetic

algorithm [42], and a Lagrangian heuristic [30]. In the literature, directed versions of

PCTSP also arise in scheduling problems. For example, Balas [13] presents PCTSP

for scheduling the daily operations of a steel rolling mill.

The Profitable Tour Problem (PTP) is the simplified version of the PCTSP which has

an objective of minimizing the length of tour plus the sum of penalties of unvisited

nodes. The PTP is initially proposed by [31]. Studies on symmetric [21], asymmetric

[31, 61] and capacitated [11] versions of the PTP are available in the literature .

The OP, PCTSP and PTP are the variations of the Selective TSP, where the main dif-

ference in between is the objective function selection. The PDNARP resembles these

problems, if the information collected from visited sites is considered as "profit".
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However, in these problems, the profit collected from a node is fixed and time spent

in visited nodes is not taken into account. On the other hand, in the PDNARP, "profit"

obtained in visited nodes increases if more time is spent in these nodes. Thus, our

problem differs from these Selective TSP variants due to the increasing "profit" (in-

formation precision) by spending more time for sampling (see Figure 3.8 in Section

3.4.1).

For the PDNARP, if it is possible to assess a cluster by visiting one of its sites (i.e.,

when clusters are "homogeneous"), the problem is analogous to the Generalized Ve-

hicle Routing/Traveling Salesperson Problem (GVRP/GTSP), which are extensions

of their classical counterparts (VRP and TSP), where the aim is to find the short-

est route that visits exactly one node (or at least one node) from each cluster. The

GVRP/GTSP is a useful framework for a variety of applications such as the TSP with

profits, VRP extensions and arc routing problems in the literature [16]. However, this

problem is NP-hard. For this reason, heuristic methods are widely studied besides

exact methods.

The study of [37] provides an efficient transformation of the GVRP into a Capac-

itated Arc Routing Problem (CARP), which is also NP-hard, and summarizes the

solution approaches available in the literature. Pop et al. [64], Pop and Pop-Sitar [66]

and Quttineh [68] propose mixed integer programming models for the GVRP exten-

sions in their studies. Bektaş et al. [19] introduce four different integer program-

ming formulations and propose a branch-and-cut algorithm. Furthermore, a simple

metaheuristic called Large Neighborhood Search and a preprocessing algorithm are

also presented in this study. Other heuristic methods studied in the literature can be

listed as incremental tabu search [59], parallel universes’ algorithm and tabu search

[60], hybrid ant-based heuristic [62], genetic algorithm [67], nearest neighbor [63], a

Clarke-Wright based and local-global heuristic [63] and an iterated-tour partitioning

heuristic [74]. The GTSP is analogous to the PDNARP with its clustered structure and

the need for selecting one node from each cluster. However, the latter is a selective

version of the GTSP due to the time limitation.

Another related problem from the literature is the Clustered VRP (CluVRP) where

the aim is to maximize profits from visiting a subset of the predetermined clusters. If
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a cluster is to be included in the tour of a vehicle, all of its nodes must be visited by the

same vehicle [17]. The idea of dividing customers into zones and making routes using

that zones in order to decrease complexity is initially presented in the study of [75].

Battara et al. [18] present two exact algorithms for the CluVRP, which are branch-

and-cut and branch-and-cut-and-prize. Barthelemy et al. [17] suggest a three-step

metaheuristic approach which combines the Clark and Wright heuristic with a Simu-

lated Annealing procedure. Pop and Chira [65] present a hybrid metaheuristic based

on a genetic algorithm. Additionally, Vidal et al. [81] describe alternative hybrid

metaheuristics that are combinations of iterated local search and genetic algorithm.

The CluVRP differs from the PDNARP in terms of its node selection policy.

In all of the Selective TSP, GVRP and CluVRP, time spent in the visited nodes is

not considered. In other words, total "prize" of a node is obtained directly when that

node is visited. Different from these, the Traveling Purchaser Problem (TPP) aims to

collect a predetermined quantity of "items" from a subset of nodes (in each of which

the "items" are "priced" differently), and the objective is to minimize total travel and

purchasing costs. Laporte et al. [53] describe a branch-and-cut algorithm for the

undirected version of the TPP. Riera-Ledesma and Salazar-Gonzales [73] adapt the

TPP into a school bus routing problem where a column generation approach is used

as the solution method. Ravi and Salman [70] study approximation algorithms for

the TPP variants. Angelelli et al. [10] present a greedy heuristic approach for the

dynamic variant of the TPP.

Besides the similarities with the problems mentioned above, (i) using time as a re-

source for both information collection and routing decisions and (ii) usage of the

accuracy and precision concepts to evaluate the performance of needs assessment in

the PDNARP bring about new perspectives and, to the best of our knowledge, no

similar study has been reported in the literature considering both of these aspects.

In the light of these, we can define the PDNARP as a selective version of the GTSP

with shared resource used by both information collection and routing decisions. Our

problem takes total travel and needs assessment time as a constraint and tries to col-

lect valuable information within the allowable time limit. The PDNARP has two

dependent decisions; how much information to collect from the visited areas and in
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what sequence to visit them. The proposed model for this problem aims to provide

both accurate and precise information about the effected region. According to find-

ings from the previous needs assessment reports, our primary objective is to visit as

many clusters as possible. Then, secondarily, the model tries to maximize the overall

precision level of the information from each visited cluster. This purpose directs us

to a lexicographic approach for these two objectives.

2.3 Literature on Tabu Search-Based Heuristics

Tabu Search (TS) is one of the most popular metaheuristics studied in the IE/OR

literature. In order to solve the large sized instances, TS was adapted to the Post-

Disaster Needs Assessment Routing Problem. TS was initially proposed by [38] and

later improved by [41]. This metaheuristic includes basic local search moves and uses

these moves in a systematic manner. TS has the purpose of performing an efficient

search in the solution space by using adaptive memory and avoiding cycling, which

causes being stuck into local optimal solutions.

Glover [39] states the main reason of the popularity of TS as the impressive practi-

cal success of this method in applications. Scheduling, telecommunication, design,

production, inventory management, routing and graph optimization are some of these

application areas. In the study of [44], TS is used to solve the graph coloring prob-

lem. This method is also adapted to the economic dispatching optimization problem

by [54]. Additionally, there are studies in the literature where TS is used for solving

the capacitor placement problem in a radial distribution system [46] and where it is

used for the political districting problem [24].

Even though TS has a wide range of application areas, routing is where it is most

highly used. There are many studies of TSP/VRP variants where TS is adapted such

as the TSP/VRP with capacity restrictions [34], soft time windows [77], periodic and

multi-depot versions [28], stochastic demands and customers [35]. Moccia et al. [59]

and Navidadham et al. [60] apply TS for the Generalized Vehicle Routing Problem

(GVRP) and point out the effectiveness of the method in their studies.

The original version of the TS method is deterministic, i.e, it does not contain ran-

11



domness. This is the main feature which makes this metaheuristic different from

simulated annealing and genetic algorithm, which are other well-known metaheuris-

tics used in optimization problems. Even though many traditional versions are fully

deterministic, there are some other studies where randomness may be included in pro-

cedure, such as random restart [29], random tabu tenure selection [24], and random

moves [45].

An important characteristic of TS method is the systematic use of memory. The

role of this memory is to restrict the choice within the neighborhood of the current

solution. Neighborhood is the candidate list of solutions that are reachable in one

move. Neighborhood in TS is dynamic and changes according to defined rules. Two

types of memory is recorded in TS. Recency-based (short term) memory keeps the

recently visited solutions as inactive to avoid cycling, whereas frequency-based (long

term) memory records the number of iterations that a solution attribute used during

the search process.

In the tabu search framework, solution attributes are the elements that change in mov-

ing from current solution to another solution. If a solution attribute belongs in re-

cently selected solution, it becomes tabu-active. Solutions that includes tabu-active

attributes in the neighborhood of a solution are called as tabu, and they are removed

from neighborhood. Tabu-active solution attributes are kept in a tabu list until a pre-

determined number of iterations, called tabu tenure. Tabu status indicates whether

an attribute is active or inactive. When it turns into tabu-inactive, this attribute is

excluded from tabu list and included in the neighborhood of the solution again. As-

piration criteria are used to override the tabu status of a tabu solution in the case of

becoming the new incumbent solution.

Use of both intensification and diversification techniques in this framework increases

the possibility of finding the global optimum. Intensification is a form of exploita-

tion which involves searching an attractive region in depth to find a good solution.

By changing rules directing solution to better moves is desired. On the other hand,

diversification is a form of exploration which involves moving into farther regions of

the search space better to possibly attain new promising solutions.
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CHAPTER 3

SYSTEM DESCRIPTION AND PROBLEM DEFINITION

In this chapter, the Post-Disaster Needs Assessment Routing Problem is formally

defined and a mathematical model for the problem is presented, along with a prepro-

cessing method.

3.1 Needs Assessment

A disaster is an immediate catastrophic event that causes fatalities, vulnerabilities,

economic and material losses where society is not able to cope with the impacts of

that event. The International Federation of Red Cross and Red Crescent Societies

(IFRC) defines a disaster as the combination of a hazard with vulnerability and the

inability to decrease or decelerate the destructive effects of it [4]. Statistics point

out the devastating effects of disasters clearly. According to statistics provided by

Munich Reinsurance Company, the deadliest disaster in between 1980 and 2017 is

recorded as tsunami struck in Thailand in 2004 where approximately 220,000 people

died [72]. The largest economic damage in between 1980 and 2017 was recorded as

210 billion dollars [71], which was incurred after the Japan Earthquake and Tsunami

in 2011 (see Figure 3.1 and Figure 3.2).

The world has suffered through irrepressible catastrophic disasters since its formation,

and the increase in human population and improper use of natural resources increase

the frequency of these events. Classification of these disasters can be made according

to various aspects: according to their cause (natural or man-made/technological), ac-

cording to disaster timing (sudden-onset or slow-onset), or according to predictability
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Figure 3.1: Most significant disasters according to mortality rate in between 1980 and

2017

Figure 3.2: Most significant disasters according to economic damage in between 1980

and 2017
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Figure 3.3: Disaster Management Cycle

due to their locations and timing.

Disaster management is considered as a cyclic timeline composed of four main phases,

which are mitigation, preparedness, response and recovery (see Figure 3.3).

Mitigation activities aim to reduce the effects of disasters by eliminating or dimin-

ishing the catastrophic outcomes. Effectiveness of mitigation processes depends on

integrating proper measures in planning. Preparedness activities are performed in or-

der to achieve the desired level of readiness to respond to sudden crises successfully.

In this phase, the aim is to prepare the resources and to improve capacities for an

efficient response rather than to prevent the occurrence of the emergency. Response

activities begin in the immediate aftermath of a disaster. Humanitarian organizations

actively take place in this phase in order to assess needs, distribute relief, maintain

life, and improve the health conditions and morale of beneficiaries. Primary focus of

response activities is to supply the basic needs of victims and to quickly stabilize the

emergency situation. Success of the mitigation and preparedness phases improves the

effectiveness of response. Recovery is the longest phase of this cycle, which aims at

the restoration of the society and environment. This phase starts when the crisis is
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brought under control and continues until the affected region returns to (at least some

form of) the pre-disaster state.

In the disaster management cycle, needs assessment activities take place immedi-

ately after a crisis hits a region and before response activities begin. Many primary

characteristics of the humanitarian emergencies are identified via assessment such as

magnitude, influenced areas and needs of beneficiaries. Common needs required after

a disaster may include food, shelter, medical care, essential items (blankets, heaters,

water containers etc.), safe drink water, sanitation and waste disposal, income, protec-

tion, and psychological support. Needs assessment is performed in order to provide

an efficient relief distribution by identifying the requirement of these needs. It is an

inevitable process due to unpredictable nature of the disasters.

Most of the time, experience from previous disasters may not be used to predict the

impact of a new event, since each disaster is unique in terms of certain attributes such

as location, magnitude, population characteristics, etc. For this reason, estimations

made based on the previous disasters may misdirect the subsequent relief distribution

operations. Thus, organizations should apply separate assessment plans in the after-

math of each disaster in order to investigate the needs of beneficiaries in the affected

area. For an efficient relief distribution, collected information should represent reality

as much as possible.

In practice, there are three types of needs assessment, which are rapid, detailed and

continual [4]. For all of these, the main principle of the assessment is identification

of vulnerabilities and capacities. However, they differ in terms of how and when

information is collected. Needs assessment timeline is provided in Figure 3.4.

In the immediate aftermath of a disaster, rapid needs assessment is performed in order

to gather quick information from the emergency zone. This phase takes place before

preparation of the response plan. Effective rapid assessment is essential to determine

the scale and scope of the response and prioritize resources properly before relief dis-

tribution. This phase takes approximately one or two weeks. There is limited access

to the area, thus, it may not be possible to visit all sites and individuals in the region.

Hence, within this short time period, there is limited access to information resources.

Data from the government, NGOs, health services, as well as information collected
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Figure 3.4: Needs Assessment Timeline

from a limited sample of beneficiaries may be used. In this stage, assumptions made

according to past events are very important and making use of experienced teams

improves the quality of the operation. Non-probability sampling methods are more

appropriate due to insufficient data availability.

Detailed needs assessment phase takes place after rapid needs assessment is com-

pleted. Information volume increases and inferences are closer to reality as opposed

to the previous phase. A detailed assessment reveals if more information is required

to take action and/or if there is a possibility of change in the situation. An approx-

imate time frame for detailed assessment is one month; however, this time interval

may be shorter or longer according to complexity of the event and resource availabil-

ity. In this phase it may be possible to visit all sites in the affected area and survey the

required number of beneficiaries to apply probability sampling methods.

After completion of detailed assessment phase, response teams start distribution op-

erations in the emergency zone. At this point, continual assessment is performed

simultaneously and during the whole operational period, assessment teams provide

updates in information through regular collection of data. In this stage, there is a full

access to beneficiaries and other sources of information.

3.2 Information Collection for Needs Assessment

Needs assessment is conducted in chaotic emergency situations where there are re-

source restrictions, accessibility and security problems. Against all odds, collected
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information in assessment phase should reflect reality.

In the Assessment Toolkit presented by [50], key points of data collection are sum-

marized. Accordingly collected data should be useful for decision making, feasible

to collect, reliable, complete, worth the cost, timely, and triangulated.

During the assessment, both qualitative and quantitative data can be gathered. The

questions prepared for the assessment process and the method of information collec-

tion may change as the assessment unfolds. Using quantitative data allows for more

accurate and precise estimations on the impact of the catastrophic event and require-

ments of beneficiaries. Scientific measurement is stated as a key aspect of quantitative

research since it provides more reliable findings from accurate and precise analyses

[7].

Before starting the assessment, secondary information is collected from sources such

as the government, national statistical organizations, media and so on. Risk maps,

population statistics, socio-economic indicators are used as secondary information

used to clarify the situation before planning the assessment. In general, secondary

information collection is completed in three days. Then the assessor agencies pre-

pare an assessment plan according to their capacities and resources. After these, the

agencies become ready to collect primary data in the emergency zone.

Building an assessment plan for each disaster requires some setup time, which curtails

the time for survey in the zone. For this reason, agencies and governments should be

well-prepared for any potential emergency situation to be able to start assessment

activities immediately.

Experiences and learnings from the past events may accelerate the assessment process

and improve the quality of the plan. After collection of primary data in the field, these

findings are compiled and validated in order to cross-check all secondary and primary

data obtained from different sources, which also requires remarkable effort.

In a report by [6], it is mentioned that after the 2007 earthquake and tsunami in the

Solomon Islands, a variety of organizations performed their own assessment plans and

the evaluation of these points out the high inconsistency among information collected

by these organizations. This example points out the possibility of making conflict-
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Figure 3.5: Sampling Methods

ing conclusions regarding the findings. In order to reduce these conflicts, agencies

can coordinate and share their resources and experiences. Additionally, practitioners

can find the details of assessment methodology in the reports and guidelines of the

organizations [2, 6, 9, 20].

3.2.1 Sampling Techniques

Rapid needs assessment activities are required to be completed within a limited time

interval. At this critical phase, since visiting the whole region is not possible, applying

a proper sampling method for data collection is an inevitable result.

In the technical reports of humanitarian aid organizations, suitable sampling methods

are defined for each phase of needs assessment. These are summarized in Figure 3.5.

The main distinction between these methods is whether statistical methods are used

for sampling (probability sampling) or not (non-probability sampling).

In the case where information and accessibility are not adequate to perform sam-

pling according to statistical methods, non-probability sampling methods are applied.

These methods are mainly based on the strategies of experienced professionals ac-
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cording to available information, which is very limited and uncertain. These methods

can provide useful results under the right conditions. However, representativeness

of estimates is not guaranteed as it is in probability sampling. Some of the well-

known non-probability sampling types are convenience, judgement, quota and purpo-

sive sampling.

In convenience sampling, easily reachable individuals are selected directly. Unfor-

tunately, this selection results in a biased estimation most of the time and it is not

recommended for assessment operations if other methods are available.

Judgement sampling is also a biased method where professionals decide on the indi-

vidual selection based on their knowledge and professional judgment. This method

provides good estimates only if an expert is the only person who can decide on the

most representative sample.

Quota sampling method requires the fulfillment of a predetermined quota level for

mutually exclusive subgroups obtained according to population characteristics such

as gender, education level, income level and so on. Sample selection is not random,

and hence the sample may not be representative, which may result in sampling bias.

Purposive sampling is the most preferred non-probability sampling method used in

rapid needs assessment [6]. Sample selection is performed according to any acces-

sible data which can be proximity to epicenter, accessibility of sites or population

characteristics such as size, gender or income level.

Probability sampling methods ensure a statistical level of confidence if the same

method is applied repeatedly to the same population. This provides more reliable

estimate of needs compared to non-probability sampling. Simple random sampling,

systematic random sampling, cluster sampling and stratified sampling are well-known

types of probability sampling used in needs assessment.

Simple random sampling (SRS) is the most basic probability sampling method. This

is an easy method since samples are directly selected from total population randomly

without dividing it into smaller groups. Besides its practicality and simplicity, it has

the advantage of being easy to evaluate in terms of the accuracy and precision of

estimations from the sample. However, the common drawback in SRS applications
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the representativeness of data for whole population (possibility of sampling bias).

Systematic random sampling is an alternative strategy where sample selection is per-

formed according to a predetermined method after first random selection. An example

method could be listing all individuals in the population and selecting the ones whose

index numbers are divisible by five. This method gives better estimations than SRS

only if individuals in the population are listed properly considering the population and

region characteristics. However, in this method, sample selection is not fully random,

so accuracy and precision of estimates can not be calculated as in SRS.

In stratified sampling, the population is divided into strata according to determined

characteristics (such as population size, proximity to epicenter, gender, age, education

level, etc.). Then, random sampling is applied in each stratum separately. For the final

selection in a stratum, SRS or systematic sampling can be used. This method provides

better use of scarce assessment resources.

Cluster sampling is the most commonly used probability sampling method in practice.

It is composed of two stages. In the first stage, the region is divided into smaller units.

In each unit, random clusters are formed according to a predetermined size of each

unit. As an example, if the small units represent villages, clusters are the districts of

each village. In the second stage, individuals are selected randomly in each cluster.

SRS or systematic random sampling may be applied in this final stage.

Applying a probability sampling method can be conveniently applied to make esti-

mations on the impact level of disaster in the affected region. Although in technical

reports it is stated that non-probability sampling methods are more applicable in the

rapid assessment phase, assessment organizations should make an effort on the col-

lection of secondary information as quickly as possible in order to apply probability

sampling techniques in assessment operations.

3.2.2 Measuring the Quality of Sampling: Accuracy and Precision

In the context of needs assessment, we define "prevalence" as the proportion of a

particular population affected by the disaster or the proportion of beneficiaries in

requirement of the common types of needs described in §3.1. Throughout this thesis,
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needs estimation aims to end up with estimates of the prevalence in different sites of

the disaster region.

The quality of statistical sample is generally determined by its accuracy and preci-

sion. Here, accuracy refers to how close an estimated prevalence is to the true value,

measured by the difference of the sample average and the actual mean of the popula-

tion. Precision is the level of certainty of the estimations, generally measured by the

width of the confidence interval for the estimated parameter.

A target board example can be used in order to clarify the terms accuracy and preci-

sion. One example figure can be seen in Figure 3.6. The desired outcome is repre-

sented in board (a) where the observations are close to center and also each other.

From the perspective of post-disaster needs assessment, accurate information can be

obtained by visiting as many affected sites with distinct characteristics as possible.

However, an accurate estimation is not enough for a reliable estimation. In each site,

as many beneficiaries should be surveyed as possible to reach the desired level of

precision. In practice, making the prevalence estimation quickly is critical for the

quick start for the relief distribution operations, since time is also a limited resource

for the relief distribution phase. Due to this time limitation, relief assessment may not

be able to reach desired levels of accuracy and precision at the same time. Hence, the

decisions of which sites to visit (for accuracy) and how many beneficiaries to survey

in each site (for precision) are the important decisions in needs assessment.

3.2.3 Clustering of Sites

The most popular and effective probability sampling method for needs assessment

is cluster sampling. Furthermore, [6] suggests stratifying the affected region into

clusters according to socio-economic or demographical characteristics and visiting

diverse sites in order to capture the dissimilarities on the impact of the disaster. Clus-

tering is done based on the concept of homogeneity, which can be defined as the level

of similarity among a group of sites according to prevalence levels. In contrast, the

term heterogeneity (non-homogeneity) is the distinctness of the sites.

There may be two extreme cases about homogeneity. If all sites are homogeneous,
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Figure 3.6: Target board that represents accuracy and precision

it is enough to visit only one site to collect information. On the other hand, if all

nodes are heterogeneous, all sites should be visited to collect information under the

assumption that time is enough to visit all sites. In the real case it is not possible to

divide whole region into exactly homogeneous or heterogeneous beneficiary groups.

The importance of the pre-knowledge on homogeneity takes place at this point since

this information can be used to prevent visiting unnecessary/similar sites.

Without loss of generality, clusters are considered as mutually exclusive and col-

lectively exhaustive. In this setting, each homogeneous subset of nodes constitutes

a cluster and clusters are heterogeneous beneficiary groups between themselves; in

other words, a cluster includes similar beneficiary groups in terms of predicted preva-

lence rates.
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3.3 Sampling in Post-Disaster Needs Assessment Practice

Technical reports of organizations point out the use of non-probability sampling ap-

proaches in the practice of rapid needs assessment. In these guidelines, certain basic

rules are proposed for sampling. As an example, Binkin et al. [22] suggests a de-

sign of 30x30 (which means 30 clusters to visit and 30 households to survey in each

cluster). It is stated that this amount provides a reliable estimate on the prevalence

of malnutrition. On the other hand, another study on sampling design points out that

by increasing the number of clusters and decreasing the number of observations in

each, it is possible to reach the same precision level [5]. In addition to these stud-

ies, WHO makes use of a tool named the "Expanded Programme on Immunization"

(EPI), which is one of the best-known rapid assessment survey tools developed for

immunization surveys [43]. In this method, 30 clusters are determined with a prob-

ability proportional to their population sizes and seven households are visited from

each. Household selection is performed randomly by selecting a random direction

and visiting the nearest seven households in that direction [8].

Sampling approaches in needs assessment practice have some drawbacks. Firstly,

they do not consider the locations and population sizes of the clusters and sites. Fur-

thermore, the time restriction in the rapid assessment phase may not allow making the

decided amount of observations. Visiting a fixed and equal number of beneficiaries

in each cluster does not provide same level of precision for all. Moreover, the ques-

tion of which cluster can be ignored if there is not enough time should be evaluated

according to the locations of the clusters. Such drawbacks indicate the need for quan-

titative decision making mechanisms to tackle these operational issues during needs

assessment, which provides the main motivation for defining the Post-Disaster Needs

Assessment Routing Problem.

3.4 The Post-Disaster Needs Assessment Routing Problem

The need for quantitative decision making tools for probability sampling during the

rapid assessment process is underlined in the reports of relevant organizations because

of two valuable properties of statistical methods:
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1. It is possible to obtain reliable information from a representative sample of the

target beneficiary group,

2. It is possible to calculate the sampling error and assess reliability of the survey

estimates.

Rapid needs assessment activities need to be performed efficiently within a limited

period of time. Due to time required for traveling among sites, less time is available

for sampling. Hence, these activities compete for the same scarce resource. Further-

more, designing an inefficient route not only prevents the visiting of more sites (thus

decreasing accuracy), it also leads to less time to survey the beneficiaries (thereby re-

ducing the precision). Motivated by the importance of the relationship between rout-

ing and sampling, the Post-Disaster Needs Assessment Routing Problem (PDNARP)

aims to find a balance between these decisions to maximize the effectiveness of sam-

pling.

In the PDNARP, the goal is to provide a statistically supported assessment strategy

which includes both sampling and routing in order to meet the requirements of a

reliable sampling strategy. There are a number of questions that need to be answered

in order to establish systematic strategies in emergency cases. Such critical questions

are as follows;

• From which clusters and sites should information be collected?

• How many beneficiaries should be visited in each site?

• In what sequence should the sites be visited?

• Which factors affect the selection of which sites to visit?

3.4.1 Measuring Accuracy and Precision in the Needs Assessment Routing Prob-

lem

In order to gather a high-quality sample, the collected data must lead to an accurate

and precise sample. Since assessment teams are not able to collect data from all

individuals in the emergency zone, they need to allocate time effectively.

In the PDNARP, accuracy refers to the closeness of the estimate to true value of preva-
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lence. Clustered structure of the network ensures similarity of beneficiary groups

within the cluster in terms of needs. Therefore, diverse beneficiary groups can be

discovered by visiting as many clusters as possible. Hence, we define the accuracy

measure as the number of clusters visited. In other words, as the number of clus-

ters visited increases, the accuracy of the estimate also increases. However, accurate

information requires spending more time in traveling in order to visit more places.

As a consequence of the need to visit as many sites as possible, remaining time for

sampling in each site decreases.

Sample size is the required number of individuals that ensures a desired precision

level for the corresponding population. For the calculation of sample size, it is as-

sumed that assessment will be performed in a finite population (without replacement).

In PDNARP, sites are regions (such as districts, counties, villages etc.) whose pop-

ulation size is more than 100 in general. Thus, we assumed that population size of

each site is at least 100. Therefore, due to the Central Limit Theorem, normality as-

sumption holds for prevalence estimates. A sample with size n will be selected from

each region with population size N . p̂ is the initial estimate on prevalence. α level

is used in the sample size calculations for the desired confidence level of (1 − α).

Furthermore, ε represents the margin of error which is the desired precision level (the

smaller margin of error is, the better the precision level). Sample size calculation can

be made from [27]:

n =
z2α/2

p̂(1−p̂)
ε2

N−1
N

+ z2α/2
p̂(1−p̂)
Nε2

(3.1)

where z2α/2
p̂(1−p̂)
ε2

is sample size required for infinite population and n is the sample

size for estimating population proportion of a finite population.

If assessment teams are not able to give an initial estimate on prevalence, taking

p̂ as estimated prevalence value of 0.5 is the most risk-averse approach, since this

estimation gives the upper bound for the sample size p̂(1 − p̂) is maximum when

p̂ = 0.5). According to the relation between population and sample size in Figure

3.7, it can be concluded that after some point population size does not affect the

required sample size, population can be considered as infinite.

In Figure 3.8, the relation between sample size and margin of error can be seen. This

calculation is made by taking constant population size of 1,000 and 95% confidence
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Figure 3.7: Change in sample size with respect to population size (p̂ = 0.5, α = 0.05,

ε = 0.05)

Figure 3.8: Change in margin of error with respect to sample size (p̂ = 0.5, α = 0.05,

ε = 0.05)
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interval (CI). There is an inverse relationship between the margin of error and pre-

cision. Therefore, it can be interpreted that information precision increases by the

sample size, and the relation between the precision of information and number of

individuals visited is concave (that is, diminishing returns exist).

Sample size selection is critical for estimating the prevalence value because a survey

performed without calculating the required sample size may lead to biased results or

waste of resources due to insufficient information.

Depending on the influence area of the disaster, available time may not be enough to

survey the calculated number of individuals. At this point, a tradeoff occurs between

number of beneficiaries to be surveyed and number of sites to be visited. This can

be interpreted as a tradeoff between more precise or more accurate estimation. In

order to survey a lot of individuals in one site, assessment teams may prefer to visit

a far-away site with any individuals to survey or more than one site with only few

individuals to survey. So, knowing the sufficient number of individuals provides a

better decision how much time to spend for survey.

3.4.2 Network Characteristics

When a disaster hits some region, besides attributes of the devastating event such as

magnitude, scope and duration, site characteristics also have a significant impact on

outcomes. These characteristics can be listed as follows;

• Proximity to epicenter

• Demographical features

• Geographical features

• Education level

• Income level

These features are obtained by the secondary information which can be collected in a

short time period easily from the sources of information such as government, national

statistical centers, NGOs and so on. If this collected data can be combined with the

preliminary information (type, predicted magnitude, duration, etc.) about the disaster,
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Figure 3.9: Network representation and a feasible PDNARP solution for a geograph-

ically clustered 30-node 10-cluster network

proximity of impact levels for the subsets of whole region can be estimated. Making

good use of this information provides a good start for the assessment process.

A feasible representative solution of the Post-Disaster Needs Assessment Problem

for the network with 30 nodes and 10 clusters is provided in Figure 3.9. Nodes and

edges are the members of the indicated network. Nodes represent the sites in the

affected region. Population size of each site is demonstrated by the size of that node,

and colors of nodes reflect the clusters where the members of the same cluster are

indicated with same color. Nodes are connected by edges. Routing starts from the

depot and finishes at the depot, which is indicated by a black square in the network.

3.4.3 Assumptions

In order to simplify the problem settings, reduce the complexity and specify the

boundaries, the following assumptions are made about the problem:

• Clusters are mutually exclusive and collectively exhaustive.
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• Nodes in the same cluster are identical in terms of needs (homogeneous clus-

ters). Variability within clusters is assumed to be insignificant.

• Each site in a cluster is homogeneous within itself.

• Estimated prevalence value is taken as 0.5 since we consider no pre-information.

• After site selection and sample size decisions, we do not consider how sam-

pling within sites is performed. It is assumed that simple or systematic random

sampling techniques may be applied.

• For precision, a discrete set of how many beneficiaries to survey is used, leading

to a discrete set of possible confidence interval widths. The members of this set

are called options.

• Each option is admissible for the decision maker.

3.4.4 Mathematical Model

3.4.4.1 Notation

Sets

N : set of nodes (1,..., n)

N0 : set of nodes including the depot (0, 1,..., n)

K : set of discrete precision options (1, 2,..., k)

C : set of clusters (C0, C1,..., Cm)

α(i) : index of the cluster that node i ∈ N belongs to

Parameters

tij: travel time from node i ∈ N0 to node j ∈ N0 where α(i) 6= α(j)

hik: precision level (margin of error) for node i with finite population if option k ∈ K
is selected

nik: sample size requirement of node i ∈ N0 for option k ∈ K
β: unit sampling (information collection) time

Tmax : maximum time to complete assessment activities

w : weight of the precision objective (Z2)

Decision variables

xik : 1, if option k ∈ K is selected for node i ∈ N0; 0, otherwise

yij : 1, if assessment team goes from node i ∈ N0 to node j ∈ N0; 0, otherwise
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pi: precision option selected for node i ∈ N0

γCα(i): precision level associated with cluster Cα(i) ∈ C where i ∈ N0

Z1: accuracy objective which denotes the proportion of selected clusters

Z2: precision objective which denotes the average half width of all clusters ∈ C
Auxiliary variables

ui: auxiliary variable for i ∈ N0 to define subtour elimination constraint

3.4.4.2 Formulation

Maximize Z = Z1 − wZ2 (3.2)

s.t.

Z1 = (
∑
i∈N0

∑
k∈K

xik)/|C|, (3.3)

Z2 = (
∑
Cα(i)∈C

γCα(i))/|C|, (3.4)

pi =
∑
k∈K

(1− xik)0.5 +
∑
k∈K

hikxik ∀i ∈ N0, (3.5)

γCα(i) =
∑
i∈Cα(i)

pi ∀Cα(i) ∈ C, (3.6)

∑
k∈K

xik ≤ 1 ∀i ∈ N0, (3.7)

∑
k∈K

xik =
∑

j∈N0, α(i) 6=α(j)

yij ∀i ∈ N0, (3.8)

∑
k∈K

xik =
∑

j∈N0, α(i) 6=α(j)

yji ∀i ∈ N0, (3.9)

∑
i∈N0

y0i = 1, (3.10)

∑
i∈N0

yi0 = 1, (3.11)

∑
i∈N0

∑
k∈K

βnikxik +
∑
i∈N0

∑
j∈N0

yijtij ≤ Tmax, (3.12)

ui − uj + |N + 1|yij ≤ |N | ∀i ∈ N0, j ∈ N0, α(i) 6= α(j), (3.13)

2 ≤ ui ≤ |N + 1| ∀i ∈ N0, (3.14)∑
j∈Cα(i)

∑
k∈K

xjk ≤ 1 ∀i ∈ N0, Cα(i) ∈ C, (3.15)
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ui, pi ≥ 0 ∀i ∈ N , (3.16)

γCα(i) ≥ 0 ∀i ∈ N0, Cα(i) ∈ C, (3.17)

xik ∈ {0, 1} ∀i ∈ N0, k ∈ K, (3.18)

yij ∈ {0, 1} ∀i ∈ N0, j ∈ N0, (3.19)

(3.2)-(3.19) is a mixed integer program with the weighted combination of precision

and accuracy objectives. We give priority to the accuracy objective. If accuracy is

the single objective of our problem, model selects maximum number of nodes within

allowable time. However, in this case, the model would not try to maximize average

precision level. On the other hand, if precision is the single objective, although nodes

are selected with the highest precision levels, number of selected nodes is smaller

than the maximum possible selection. This is also an undesirable solution, since it

may be possible to visit one more node by decreasing the precision levels on each

selected node. All precision options are already acceptable for the agencies and se-

lecting more nodes is more desirable solution for the PDNARP. Thus, maximizing

the number of selected nodes becomes the primary objective of this problem, since

this selection already ensures the acceptable worst precision level for each selected

node. Secondary objective (precision), is added to the objective function with a small

coefficient (w) in order to allocate remaining time to the selected nodes efficiently

(i.e., minimizing the average half width value to ensure best precision level).

Constraint set (3.5) calculates the half width value for the confidence interval of each

node. Constraint set (3.6) assigns the half width value of selected node to the corre-

sponding cluster. Constraint set (3.7) prevents assigning one node to multiple sample

size options. Constraint sets (3.8), (3.9) are the flow constraints which ensure that an

arc enters and leaves each selected node. Constraints (3.10) and (3.11) limit the num-

ber of routes as one. Time restriction is provided in constraint (3.12). Constraint sets

(3.13) and (3.14) are the subtour elimination constraints proposed in [58]. Selecting

only one node per cluster is imposed by (3.15). Constraints (3.16), (3.17), (3.18) and

(3.19) are the sign constraints.
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CHAPTER 4

A MULTI-START TABU SEARCH HEURISTIC FOR THE

POST-DISASTER NEEDS ASSESSMENT ROUTING

PROBLEM

The PDNARP is NP-hard, as it includes the orienteering problem as a special case

(when there is a single option in each node, and when all clusters have a single node).

Hence, realistic instances of this problem are not solvable within a reasonable time

interval. In order to solve larger instances, we propose a heuristic method based on

tabu search, which is an effective and popular metaheuristic, particularly for routing

applications in the IE/OR literature.

The approach developed to solve the PDNARP is a Multi-Start Tabu Search Heuristic

(MSTS). It is composed of preprocessing, construction and improvement phases, and

is able to find near-optimal solutions for real size instances very quickly. Initially,

in the preprocessing part, reduction procedure of [19] is adapted in order to decrease

the complexity of the problem. In the construction part of the heuristic, a promising

initial solution is found by taking problem characteristics into consideration. Then,

local search moves are adapted in a tabu search framework in order to improve the

initial solution.

4.1 Preprocessing: Reduction Procedure

A reduction procedure is proposed in order to narrow down the solution space and to

decrease the complexity of the problem. This is an adaptation of the preprocessing

method presented for the GVRP in the study of [19] to our problem structure. In the
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procedure for each cluster dominated nodes are found and removed from the solution

space. Proof of reduction procedure is adapted from [19].

Node i is dominated if

(1) ∃ a node j ∈ Cα(i), j 6= i such that tpi+tiq ≥ tpj+tjq for any p, q ∈ V/Cα(i), α(p) 6=
α(q) and,

(2) ∃ a node j ∈ Cα(i), j 6= i such that t0i ≤ tj0 and,

(3) ∃ a node j ∈ Cα(i), j 6= i such that sjk ≤ sik for any k ∈ K, where sik = βnik is

sampling (information collection) time of node i ∈ N0 for option k ∈ K.

Proposition 1. The optimal solution to a Post-Disaster Needs Assessment Routing

Problem instance does not change if a dominated node is removed.

Proof. Let i ∈ V/0 be a dominated node. If node i is not visited in the optimal

solution, then removing node i from the instance obviously does not change the value

of the optimal solution. Assume now that node i is visited in the optimal solution. If

node i is visited by a route visiting exactly one site, then it is possible to exchange

i with another node from Cα(i) without worsening the objective function value. This

follows from (2) in the definition of dominated nodes. If node i is visited on a longer

route, then it is surrounded by nodes p ∈ V and q ∈ V where α(p) 6= α(q) and

either p 6= 0 or q 6= 0. Then, p and q satisfy the requirement of condition (1) in the

definition. If the dominated node i is visited in the optimal solution with precision

option k, where sik is the sampling time requirement for option k, condition (3) holds

and it is possible to exchange i with another node from Cα(i) without worsening the

objective function value.

4.2 Construction of an Initial Solution

In the first part of MSTS, our aim is to find a promising initial feasible solution be-

fore starting systematic local search moves. The notation used in the construction

algorithm is provided in Table 4.1 and the pseudocode is provided in Algorithm 1.

In the first step of the algorithm, we adapt the Cheapest Insertion Heuristic (CIH),
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which is a basic route construction method. Our motivation for using the CIH arises

from the selective nature of the PDNARP. Starting from the most attractive nodes and

leaving the further away (or less attractive) ones to the end, we aim to arrive at a

promising initial feasible solution in the classical CIH methodology. However, in this

approach, in order to lead the direction of the route to the most promising nodes in

terms of both route duration and sampling time requirement, we assign a desirability

score to each node.

In the PDNARP, besides routing considerations, node selection also depends on the

sampling time requirements of nodes (i.e., population sizes of the nodes affects sam-

pling times, and consequently node selection). For this reason, a promising node may

not necessarily be the one with smaller travel times on the edges incident to it, but

rather the one whose sampling and travel times is smaller. To take this into account,

we assign a desirability score (denoted by Scorei1) which quantifies the attractiveness

of a node as a starting point. In order to select most promising node, we define the

impact region for each node as a node with its two closest nodes, which together rep-

resent the potential neighbors of the corresponding node in the route (i.e., previous

and following nodes in the route). Impact region of a node is demonstrated in Figure

4.1, where the impact region of node 30 consists of nodes 1 and 10.

The desirability score includes travel times between the node and its closest nodes,

sampling times of its closest nodes, and the travel time from it to the depot. Reciprocal

of this total time is proposed as Scorei1, where the node with highest score is the most

promising one:

Scorei1 =
1

ti0 + tij + til + sik + sjk + slk
(4.1)

where node j /∈ N and l /∈ N are the two closest nodes to node i ∈ N in terms of

travel time.

This score is used for selecting the first node in CIH. In the classical CIH procedure,

after the initial node selection, the closest nodes (in terms of travel time) are added to

the sequence one by one. This procedure continues until the terminating condition is

satisfied.

However, we modify this sequence, since it may be desirable to select the node set

which may increase the precision level within smaller sampling time. In other words,
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nodes with small population size may be more attractive and we may direct our route

not only to the closest nodes in terms of travel time, but also to the nodes with smaller

populations (which may be farther away), to decrease time spent in selected node.

For this purpose, Step 2 of the algorithm involves a mathematical model for node

selection.

Figure 4.1: A feasible tour on a PDNARP instance with 30 nodes and 10 clusters,

where the size of a node is directly proportional to its population
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Table 4.1: Terminology of Iterative Construction Heuristic

Term Definition

S(N ) Set of all nodes

α(i) Set of all nodes that belong to cluster of node i

S(CIH)current Current set of nodes selected by CIH

S(CIH)last Last set of nodes selected by CIH

S(NS) Set of nodes selected by Node Selection Model

F Set of fixed nodes

S(A) Set of candidate nodes to be selected nodes in clusters other then those of S(CIH)current

Scorei1 Desirability score for node i ∈ N

Scorei2 Total distance of node i to nodes in F

troute Travel time of the current sequence

ttotal Travel and sampling (worst option case) times of the current sequence

temptotal Temporary travel and sampling (worst option case) times of the current sequence

dist(i, j) Distance between node i and node j

samp(i) Sampling time of node i

fixingDist Allowable distance between nodes to fix corresponding node

termination Terminating condition

same Counts unchanged solutions for termination

tmax Maximum allowable time for the completion of the assessment

i′ predecessor of node i in current route

i′′ successor of node i in current route

j′ predecessor of node j in current route

j′′ successor of node j in current route
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Algorithm 1 Iterative Construction Heuristic
1: Initialization:
2: S(CIH)last = ∅, S(CIH)current = ∅, S(NS) = ∅, F = ∅
3: S(A) = S(N )
4: troute= 0, ttotal= 0, temptotal= 0
5: same= 0
6: Step 1: Cheapest Insertion
7: if F = ∅ then
8: Select the starting node i ∈ S(N ) with highest Scorei1
9: S(CIH)current ← S(CIH)current ∪ {i}

10: S(A)← S(A)/α(i)
11: troute ← troute + dist(i′, i) + dist(i, i′′)− dist(i′, i′′)
12: ttotal ← ttotal + samp(i) + dist(i′, i) + dist(i, i′′)− dist(i′, i′′)
13: else
14: for ∀j ∈ F do
15: Find node j ∈ S(A) with minimum increase in travel time to add to
S(CIH)current

16: temptotal ← temptotal + samp(j) + dist(j′, j) + dist(j, j′′)− dist(j′, j′′)
17: if temptotal ≤ tmax then
18: S(CIH)current ← S(CIH)current ∪ {j}
19: S(A)← S(A)/α(j)
20: troute ← troute + dist(j′, j) + dist(j, j′′)− dist(j′, j′′)
21: ttotal ← temptotal
22: end if
23: end for
24: end if
25: if ttotal ≤ tmax then
26: Find node i ∈ S(A) with minimum increase in travel time to add to
S(CIH)current

27: temptotal ← temptotal + samp(j) + dist(j′, j) + dist(j, j′′)− dist(j′, j′′)
28: if temptotal ≤ tmax then
29: S(CIH)current ← S(CIH)current ∪ {i}
30: S(A)← S(A)/α(i)
31: troute ← troute + dist(i′, i) + dist(i, i′′)− dist(i′, i′′)
32: ttotal ← temptotal
33: else
34: Go to Step 2.
35: end if
36: end if
37: if S(CIH)current = S(CIH)last then
38: same← same+ 1
39: end if
40: if same ≥ termination then
41: break and terminate Algorithm 1.
42: else
43: S(CIH)last = S(CIH)current
44: end if
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Algorithm 1 Iterative Construction Heuristic (cont’d)
45: Step 2: Node Selection
46: Initialize S(NS) = ∅
47: Apply node selection IP model
48: Update S(NS)
49: Step 3:Node Fixing Procedure
50: Compare the nodes ∈ sets S(CIH) and S(NS)
51: for ∀i ∈ S(NS) do
52: for ∀j ∈ S(CIH) do
53: if dist(i, j) ≤ fixingDist and j has min Scorej2 then
54: Update F = F ∪ {i}
55: Go to Step 1.
56: end if
57: end for
58: end for
59: Go to Step 1.

The node selection model has the objective of maximizing the total precision level

where the number of nodes is restricted with the number of the nodes found with the

CIH heuristic in Step 1. The mathematical model of this selection problem is pro-

vided below. For the explanation of the previously defined variables and parameters,

see Section 3.4.4.

Additional Parameters

L: # of nodes on the route found with the CIH heuristic in Step 1.

t: Travel time of the route found with CIH in Step 1.

Decision variables

gik = 1, if option k ∈ K is selected for node i ∈ N0; 0, otherwise

MIP Formulation

Minimize
∑
i∈N0

∑
k∈K

gikhik (4.2)

s.t.∑
k∈K

gik ≤ 1 ∀i ∈ N0 (4.3)

∑
j∈Cα(i)

∑
k∈K

gjk ≤ 1 ∀i ∈ N0, Cα(i) ∈ C (4.4)
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∑
k∈K

∑
i∈N0

gik ≤ L (4.5)

∑
k∈K

∑
i∈N0

βnikgik ≤ (Tmax − t) (4.6)

gik ∈ {0, 1} ∀i ∈ N0, k ∈ K (4.7)

Objective function of this node selection model (4.2) minimizes the total half width

of the confidence interval on the prevalence of the selected nodes. Selecting only one

node per cluster is imposed by (4.3). Selecting only one option per node is imposed by

(4.4). Upper limit on number of nodes to select is provided by (4.5). Time restriction

is given in constraint (4.6) and (4.7) are the sign constraints.

In Step 3 of MSTS, the nodes i ∈ N found in Steps 1 and 2 are candidate for fixing

if they satisfy at least one of the following conditions:

• (1) If there exists a node i ∈ N which is common in solutions of Step 1 and

Step 2.

• (2) If there exists a node j ∈ N from Step 1 and node i ∈ N from Step 2

whose travel time (tij) is smaller than a pre-determined threshold (represented

as fixingDist)

After finding the candidate nodes for fixing, node i ∈ F with minimum Scorei2 is

fixed. This score provides selection of the node which is closer to all nodes in F in

terms of travel time. Scorei2 is given by:

Scorei2 =
∑

j∈F ,j 6=i

tij (4.8)

Algorithm 1 is an iterative process where in each iteration one node is fixed and

the procedure continues with Step 1. The construction phase terminates when the

solution of the CIH heuristic does not change in a pre-specified number of iterations

(represented as termination).

4.3 Improvement by Tabu Search

In the improvement step of developed method, basic local search moves are combined

using a tabu search framework. Keeping in mind that the primary objective is accu-
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Figure 4.2: Change in route after 2-opt move

racy within acceptable precision levels for each selected site, finding a shorter route

is the primary consideration in this step, since a shorter route may allow visiting more

sites, thereby increasing accuracy. In other words, in the improvement part, the aim is

to find the best tour with the maximum number of sites selected. Both intensification

and diversification strategies are applied for this purpose.

4.3.1 Intensification Strategies

For the intensification strategy, the purpose is to obtain the shortest route with the

maximum possible number of selected nodes. In order to exploit the solution space in

depth for shortening the route duration, we apply a number of simple TSP/VRP local

search moves in the tabu search framework. 2-opt, swap,Replace1−1 andReplace1−2

are the moves included in this algorithm.

The 2-opt move basically reorders the current route by making a crossover. We apply

a complete 2-opt local search where all possible feasible combinations are attempted.

A 2-opt move is illustrated in Figure 4.2 (see Algorithm 3 for the pseudocode).

The swap move checks all possible exchanges among each cluster pairs separately. In

this move, position of the exchanged node is not changed. According to the locations

and population sizes of sites in a cluster, all possible exchanges are examined. Swap

move is illustrated in Figure 4.3 (see Algorithm 4 for the pseudocode).

Replace1−1 is a move represents the exchange of one node with another. All selected

nodes are candidates to remove and all possible candidates among unselected nodes

are considered for insertion to any position in the route. A Replace1−1 move is illus-
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Figure 4.3: Change in route after swap move

Figure 4.4: Change in route after Replace1−1 move

trated in Figure 4.4 (see Algorithm 5 for the pseudocode)

Replace1−2 is a move that represents the exchange of one node in the route with two

nodes not included in it. This move is added in order to increase the number of nodes

selected. This move examines all possible exchanges where a selected node is re-

moved from the route and two feasible unselected nodes are inserted to any positions

of the route at the same time. A Replace1−2 move is illustrated in Figure 4.5 (see

Algorithm 6 for the pseudocode)

The first two moves (2-opt and swap) are used to shorten the route with the current

node set. Replace1−1 move tries to replace one of the current node with a new node

Figure 4.5: Change in route after Replace1−2 move
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from out of the current set. Finally, Replace1−2 is used to increase number of se-

lected nodes thanks to the shortened path after the implication of 2-opt, swap and

Replace1−1 moves.

4.3.2 Diversification Strategies

In addition to the application of intensification strategies, we use two different diver-

sification strategies, Div1 and Div2, in order to explore the solution space better and

to avoid being stuck into local optima. For this end, the tabu search method involves

multiple starts. Each restart point is obtained by the implementation of one of these

two diversification strategies.

Div1 is a restarting procedure where a predetermined proportion of selected nodes are

removed from the current solution randomly. This random start procedure provides

moving to a different portion of the solution space. For the implementation of Div1,

it is enforced to start from a different solution at each restart.

Div2 is a restarting procedure where the nodes which stay longer in the current so-

lution are removed. In this strategy we benefit from the frequency based (long term)

memory of the tabu search metaheuristic. By counting the number of iterations that

a node stays in the current solution, we determine the set of nodes which can be

removed from the current set in order to move away from the current solution

4.4 Selection of Options in Visited Nodes

In order to allocate the remaining time from travel between nodes to selected nodes

for sampling, a 0-1 knapsack model is used in the algorithm. Since the number of

nodes and options are not too large even in real-sized problems, implementation of

this model does not increase the solution time significantly. This model is applied in

the final step of each restart.

For the explanation of the previously defined variables and parameters in this model,

please see Section 3.4.4.
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Additional Parameters

R: Number of nodes on final route found in the improvement part

t: Travel time found with the CIH heuristic in Step 1.

Decision variables

rik = 1, if option k ∈ K is selected for node i ∈ R; 0, otherwise

0-1 Knapsack Model

Maximize
∑
k∈K

∑
i∈N

rik(0.5− hik) (4.9)

s.t.∑
k∈K

rik ≤ 1 ∀i ∈ R (4.10)

∑
k∈K

∑
i∈R

riksik ≤ (Tmax − t) (4.11)

rik ∈ {0, 1} ∀i ∈ N0, k ∈ K (4.12)

Objective function of this 0-1 knapsack model (4.9) maximizes the total precision

level (by minimizing total half width of the confidence interval for prevalence of the

nodes in the route). Selecting only one node per cluster is imposed by (4.10). Time

restriction is given in constraint (4.11). (4.12) are the sign constraints.

4.5 Overview of the Multi-Start Tabu Search Algorithm

The multi-start tabu search algorithm starts with the initialization of parameters in

Step 0. At first, 2-opt and swap moves are applied in Step 1.1, then Replace1−1

and Replace1−2 moves are applied in Step 1.2. This procedure is performed until

reaching a predetermined number of iterations (represented by maxMainIter). At the

end of the local search moves, in Step 2, selection of options is determined using the

0-1 knapsack model. This procedure is applied for a predetermined number of times

(represented by maxStart) in order to find the set of final solutions. At each start,

one of the diversification strategies (Div1 or Div2) is applied in order to create a new

initial solution. Then, the improvement moves are repeated. Finally, best solution

among the set of final solutions is selected.
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In MSTS algorithm, solution attributes are 2-opt, swap, Replace1−1 and Replace1−2

local search moves of all nodes inN . When one of these solution attributes occurs in

moving from current solution to another solution, its tabu status turns into tabu-active.

A tabu-active solution attribute is kept in tabu list during predetermined number of

iterations, called as tabu tenure. If the solution attribute is tabu-active, this move

cannot be applied in the following iteration. For example, if in the current iteration

a swap move is applied where node i is removed from and node j is inserted to the

route, the same swap move (removing node i and inserting node j) cannot be applied

during tabu tenure (denoted by tabuTenureswap). Number of iterations that a solution

attribute is tabu-active is counted in order to change tabu status of that solution.
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Table 4.2: Terminology of Iterative Construction Heuristic

Term Definition

tabuTenure2opt Predetermined tabu tenure for 2-opt move

tabuTenureswap Predetermined tabu tenure for swap move

tabuTenureremove Predetermined tabu tenure for remove move

tabuTenureinsert Predetermined tabu tenure for insert move

tabuIter2opt(i) Counts number of iterations that solution attribute i is tabu-active during 2-opt moves

tabuIterswap(i) Counts number of iterations that solution attribute i is tabu-active during swap moves

tabuIterremove(i) Counts number of iterations that solution attribute i is tabu-active

during Replace1−1 andReplace1−2 moves

tabuIterinsert(i) Counts number of iterations that solution attribute i is tabu-active

during Replace1−1 and Replace1−2 moves

maxStart Number of starts to improvement algorithm

maxMainIter Number of iterations where move set is repeated

maxIter1 Number of iterations where 2-opt and swap moves are repeated in each main iteration

maxIter2 Number of iterations where Replace1−1 andReplace1−2 moves are repeated in each main iteration

start Counts number of starts

mainIter Counts number of main iterations in each start

iter1 Counts number of iterations for 2-opt and swap moves in each main iteration

iter2 Counts number of iterations for Replace1−1 and Replace1−2 moves in each main iteration

routeconst Route constructed by ICH

routecurrent Current route

routenext Next (candidate) route

routebest Best route found

rdconst Route duration of route constructed by ICH

rdcurrent Current route duration

rdnext Next route duration

rdbest Best route duration

totalconst Total time of route constructed by ICH

(route duration and sampling time for worst precision option for all selected nodes)

totalcurrent Current total time

totalnext Next total time

totalbest Best total time

lengthconst Length of route constructed by ICH

lenghtcurrent Length of current route

lenghtnext Length of next route

lenghtbest Length of best route

zcurrent Objective value of current solution

zbest Objective value of best solution

countInRoutei Counts number of iterations that node i ∈ N0 stays in current solution

Fiter Set of iterations where Diversification1 should be applied
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Algorithm 2 Improvement- Tabu Search
1: Step 0:Initialization
2: Set tabuTenure2opt, tabuTenureswap, tabuTenureremove, tabuTenureinsert
3: Set maxStart, maxMainIter, maxIter1, maxIter2
4: tabuIter2opt = 0, tabuIterswap = 0, tabuIterremove = 0, tabuIterinsert = 0
5: start = 0, mainIter = 0, iter1 = 0, iter2 = 0
6: routebest = 0, rdbest = 0, totalbest = 0, lengthbest = 0
7: routecurrent = routeconst, rdcurrent = rdconst, totalcurrent = totalconst,
lengthcurrent = lengthconst

8: zbest = 0, zcurrent = 0
9: countInRoutei = 0 ∀i

10: Step 1
11: while start ≤ maxStart do
12: Step 1.1
13: while mainIter ≤ maxMainIter do
14: iter1 = 0, iter2 = 0
15: while iter1 ≤ maxIter1 do
16: Apply 2− opt local search procedure
17: Apply swap local search procedure
18: end while
19: Step 1.2
20: while iter2 ≤ maxIter2 do
21: Apply Replace1−1 local search procedure
22: Apply Replace1−2 local search procedure
23: end while
24: Step 2
25: Apply 0-1 knapsack model to assign options to selected nodes
26: Update zbest
27: if iter ≥ 1 then
28: Update routebest = routecurrent, rdbest = rdcurrent, totalbest =

totalcurrent, lengthbest = lengthcurrent
29: end if
30: end while
31: Step 3
32: if start ∈ Fiter then
33: Apply Div1
34: else
35: Apply Div2
36: end if
37: end while
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Algorithm 3 Local Search - 2opt

1: i′ is the successor node of i in routecurrent
2: j′ is the successor node of j in routecurrent
3: for ∀ i in routecurrent do
4: for ∀ j in routecurrent do
5: if (tabuIter2opt(i) ≤ tabuTenure2opt) and (tabuIter2opt(j) ≤
tabuTenure2opt) then

6: Exchange arcs (i, i′) and (j, j′)
7: Update rdnext ← rdcurrent+dist(i, j

′)+dist(j, i′)−dist(i, i′)−dist(j, j′)
8: Update totalnext ← totalcurrent + dist(i, j′) + dist(j, i′) − dist(i, i′) −
dist(j, j′)

9: if totalnext ≤ Tmax then
10: Update totalcurrent = totalnext, rdcurrent = rdnext, routecurrent =

routenext, lengthcurrent = lengthnext
11: end if
12: if rdcurrent ≤ rdbest then
13: Update routebest = routecurrent, rdbest = rdcurrent, totalbest =

totalcurrent, lenghtbest = lengthcurrent
14: for ∀k ∈ routecurrent do
15: Update countInRoutek=countInRoutek+1
16: end for
17: end if
18: end if
19: end for
20: end for
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Algorithm 4 Local Search - Swap

1: i′ is the predecessor and i′′ is the successor nodes of i in routecurrent
2: Csi is set of nodes in cluster of node i
3: for ∀ i in routecurrent do
4: for ∀ j in N do
5: if j ∈ Csi then
6: if (tabuIterswap(i) ≤ tabuTenureswap) and (tabuIterswap(j) ≤
tabuTenureswap) then

7: Remove node i from routenext
8: Insert node j to same location of routenext
9: Update rdnext ← rdcurrent + dist(i′, j) + dist(j, i′′) − dist(i′, i) −
dist(i, i′′)

10: Update totalnext ← totalcurrent + samp(j) − samp(i) + dist(i′, j) +
dist(j, i′′)− dist(i′, i)− dist(i, i′′)

11: if totalnext ≤ Tmax then
12: Update totalcurrent = totalnext, rdcurrent = rdnext, routecurrent =

routenext, lengthcurrent = lengthnext
13: end if
14: if rdcurrent ≤ rdbest then
15: Update routebest = routecurrent, rdbest = rdcurrent, totalbest =

totalcurrent, lenghtbest = lengthcurrent
16: for ∀k ∈ routecurrent do
17: Update countInRoutek=countInRoutek+1
18: end for
19: end if
20: end if
21: end if
22: end for
23: end for
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Algorithm 5 Local Search - Replace1−1
1: i′ is the predecessor and i′′ is the successor nodes of i in routecurrent
2: j′ is the predecessor and j′′ is the successor nodes of j in routenext
3: for ∀ i in routecurrent do
4: for ∀ j in N do
5: if (tabuIterremove(i) ≤ tabuTenureremove) and (tabuIterinsert(j) ≤
tabuTenureinsert) then

6: Remove node i from routenext
7: Insert node j to best location of routenext
8: Update rdnext ← rdcurrent + dist(j′, j) + dist(j, j′′) − dist(i′, i) −
dist(i, i′′)

9: Update totalnext ← totalcurrent + samp(j) − samp(i) + dist(j′, j) +
dist(j, j′′)− dist(i′, i)− dist(i, i′′)

10: if totalnext ≤ Tmax then
11: Update totalcurrent = totalnext, rdcurrent = rdnext, routecurrent =

routenext, lengthcurrent = lengthnext
12: end if
13: if rdcurrent ≤ rdbest then
14: Update routebest = routecurrent, rdbest = rdcurrent, totalbest =

totalcurrent, lenghtbest = lengthcurrent
15: for ∀k ∈ routecurrent do
16: Update countInRoutek=countInRoutek+1
17: end for
18: end if
19: end if
20: end for
21: end for
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Algorithm 6 Local Search - Replace1−2
1: i′ is the predecessor and i′′ is the successor nodes of i in routecurrent
2: j′ is the predecessor and j′′ is the successor nodes of j in routenext
3: k′ is the predecessor and k′′ is the successor nodes of k in routenext
4: for ∀ i in routecurrent do
5: for ∀ j in N do
6: for ∀ k in N do
7: if (tabuIterremove(i) ≤ tabuTenureremove) and (tabuIterinsert(j) ≤
tabuTenureinsert) and (tabuIterinsert(k) ≤ tabuTenureinsert) then

8: Remove node i from routenext
9: Insert node j to best location of routenext

10: Insert node k to best location of routenext
11: Update rdnext ← rdcurrent + dist(j′, j) + dist(j, j′′) + dist(k′, k) +

dist(k, k′′)− dist(i′, i)− dist(i, i′′)
12: Update totalnext ← totalcurrent + samp(j) + samp(k) − samp(i) +

dist(j′, j) + dist(j, j′′) + dist(k′, k) + dist(k, k′′)− dist(i′, i)− dist(i, i′′)
13: if totalnext ≤ Tmax then
14: Update totalcurrent = totalnext, rdcurrent = rdnext, routecurrent =

routenext, lengthcurrent = lengthnext
15: end if
16: if rdcurrent ≤ rdbest then
17: Update routebest = routecurrent, rdbest = rdcurrent, totalbest =

totalcurrent, lenghtbest = lengthcurrent
18: for ∀m ∈ routecurrent do
19: Update countInRoutem=countInRoutem+1
20: end for
21: end if
22: end if
23: end for
24: end for
25: end for
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CHAPTER 5

COMPUTATIONAL STUDY

In this chapter, we conduct computational studies on (i) randomly generated instances

and (ii) a case study based on a historical earthquake scenario to evaluate the perfor-

mance of the proposed solution approach. Generation of test instances are described

in detail in §5.1, whereas algorithm settings are given in §5.2. In §5.3, we present the

results of the computational study.

5.1 Test Instances

The multi-start tabu search approach for the PDNARP is tested on two sets of in-

stances. The first one consists of a randomly generated instance set where the co-

ordinates of different sized networks are modified from the well-known Solomon

instances [76]. The second instance set is based on a case study on the 2011 Van

Earthquake for the analysis of the performance on a real-sized problem.

For both instance sets, precision level options are determined according to preferences

of the assessor agencies. Then, in order to quantify precision level options, sample

size requirements are calculated according to decided parameters.

Initial estimate on prevalence for each node (p̂) is taken as 0.5, which is the most risk

averse value in case of no initial information. Confidence level (1− α) is selected as

95%, which can be increased or decreased according to preferences of the agencies

or availability of resources. Corresponding z score (zα
2
) under the two tailed normal

distribution assumption is equal to 1.96, where α is 0.05 for 95% CI. Precision levels

are discretized starting from 0.05, with increments of 0.025 up to 0.20. Based on these
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parameters and the population of the node, sample size requirement of each precision

option is calculated. Then, multiplying the sample size with a constant unit survey

time, total sampling times are obtained for precision level options of each node. At

the end, sampling times of options and corresponding precision levels are used as

parameters in the solution methods. Calculated sample size and sampling time values

are provided in Tables A.1, A.2 and A.3 in Appendix A for the test instances used.

5.1.1 Random Instance Set Based on Solomon Instances

Random instances are generated by modifying Solomon’s 100-node random instances

[76]. Travel times between node pairs are calculated using the coordinates taken from

these instances. Euclidean distance metric is used for the travel time calculations.

Population size of each node is randomly generated between 100 and 20,000.

Since computational requirements for solution increase number of clusters, we use

different size of clusters for each instance set. Moreover, three different clustering

strategies are used. In geographical clustering, nodes are partitioned according to

their geographical closeness. In hierarchically clustered instances, clusters are de-

termined according to their distances to the epicenter of the disaster. In our setting,

node 0 represents the epicenter of the disaster and assessment starts from that point.

The nodes whose distances to the epicenter are similar belong to same cluster. In

this setting, it is assumed that impact of the disaster is similar in nodes with similar

distances to the epicenter. Finally, we generate a random clustered data set for each

node and cluster size to represent a network structure where multiple attributes may

lead to clustering nodes in various parts of the network in the same cluster.

A set of 78 instances with different sizes of nodes (30, 50, 75), clusters (10, 15,

20, 25), cluster types (geographic, hierarchical and random) and time limits (3, 5, 7,

and 10 hours) are generated. Information about node size, cluster size, cluster type

and time limit is involved in the names of the random test instances. For example,

30N_10C_tmax5_geo represents a geographically clustered network with 30 node

and 10 clusters and a time limitation of 5 hours. Representative networks for each

type of clustering mechanism are provided for one of the random test instance (with

75 nodes and 15 clusters) in Figures 5.1, 5.2 and 5.3. In these figures, node size
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(radius of the circle) represents the population size of the corresponding node. The

nodes with same color belong to the same cluster, and the depot (epicenter of the

disaster) is represented by a black square in the middle of the network.

Figure 5.1: Network representation of geographic cluster on the instance with 75

nodes and 15 clusters

Figure 5.2: Network representation of hierarchic cluster on the instance with 75 nodes

and 15 clusters
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Figure 5.3: Network representation of random cluster on the instance with 75 nodes

and 15 clusters

5.1.2 A Case Study Based on the 2011 Van Earthquake

In this study, our aim is to present a quick and efficient solution method that can

be used in practice. In order to evaluate the performance of our algorithm in a real

life disaster, the proposed solution method is applied to one of the most catastrophic

disasters in Turkey, the Van Earthquake of 2011. In this disaster, more than 600

people died, 4,000 people injured and thousands of structures were destroyed. Due

to damage in buildings around 60,000 beneficiaries were left homeless. Rescue and

relief efforts are directed by Turkey’s Ministry of Health and Turkish Red Crescent

with the help of many other national and international humanitarian organizations. In

the immediate aftermath, while rescue operations were performed, relief distribution

operations also started. Some of the values on needs supplied within first week of

the response phase are recorded as the following: 4,440 search and rescue personnel,

1,710 medical personnel, 146 ambulances, 42,711 tents, 54 collective shelter tent, 69

general purpose tents, 65 prefabricated houses, 160360 blankets, 37 mobile kitchens,

3,051 kitchen sets, 6,899 catalytic stoves, 5,792 sleeping bags and so on [80]. In

such a crisis, efficient use of resources will provide true matches of beneficiaries with
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needs. This can only be possible with an efficient and effective assessment.

The real-world data from the 2011 Van Earthquake is used in the case study data,

which was obtained from the study of [14]. Coordinates of the affected areas (dis-

tricts, villages etc.), elevation of these places, and population characteristics (number

of people younger than 14, older than 65, number of people disabled and females

with children) are the available information before the assessment process (called as

secondary information). Raw data used in the case study is available in Table A.4 in

Appendix A

Secondary information is also used for the clustering of the sites affected in the Van

Earthquake. In order to form clusters there are many different ways in the literature,

including k-means clustering, density-based spatial clustering, mean shift clustering

and agglomerative hierarchical clustering are some of these techniques. According

to the characteristics of the secondary information, such as number of attributes and

types of the data (continuous, binary, ordinary, etc.) any of these clustering methods

can be applied.

In this case study, k-means clustering algorithm, which is a simple and well-known

algorithm in the clustering literature, is implemented to our problem [47]. We use

XLSTAT add-in of Excel software for the calculations of the k-means algorithm. In

order to create an instance set, we use three different cluster sizes, determined ac-

cording to the ratio of within variance to the between variance of clusters. In Table

5.1, within and between variance values are provided for the increasing number of

clusters. Variance change is also presented in Figure 5.4, which also shows the break-

points we decide to select as cluster sizes. We select three of these alternative clusters

among the ones with smaller within/between variance ratio. For the Van Earthquake

data set of 93 nodes, networks with 19, 23 and 29 clusters are selected. Generated

instance set is given in Table 5.2. Names of the instances include number of nodes,

number of clusters and time limit information. Network representation on a map is

provided in Figure 5.5, where each color and each number represents a cluster.
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Figure 5.4: Within and between variance change according to increasing number of

clusters

Table 5.1: Change in variance with increasing number of clusters

Variance\Classes 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Within-class 0.06 0.05 0.05 0.06 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.01 0.02 0.01 0.04 0.04 0.04 0.01 0.01

Between-classes 0.12 0.12 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.16 0.16 0.16 0.13 0.13 0.13 0.16 0.16

Within/Between 0.48 0.44 0.40 0.48 0.37 0.17 0.12 0.13 0.14 0.11 0.11 0.11 0.12 0.09 0.10 0.09 0.34 0.33 0.34 0.06 0.07

5.2 Algorithm Settings

In this section, analyses on the selection of heuristic parameters are summarized.

Threshold distance to fix nodes (fixingDist)

After applying Step 1 and Step 2 in construction part, Algorithm 1 decides on whether

node should be fixed or not. If there is no common node selected in both steps of con-

struction, node fixing is applied only if there exist two nodes (one node from CI and

other node from Node Selection Model) which are close enough to each other. After

preliminary trials on different alternatives, we fix this parameter as 0.20, since the

minimum pairwise distance between nodes is 0.10 and maximum pairwise distance is
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Table 5.2: Case study instances

# Name Nodes Clusters Tmax

1 93N_16C_tmax10 93 16 10

2 93N_16C_tmax15 93 16 15

3 93N_16C_tmax20 93 16 20

4 93N_23C_tmax10 93 23 10

5 93N_23C_tmax15 93 23 15

6 93N_23C_tmax20 93 23 20

7 93N_23C_tmax25 93 23 25

8 93N_29C_tmax10 93 29 10

9 93N_29C_tmax15 93 29 15

10 93N_29C_tmax20 93 29 20

11 93N_29C_tmax25 93 29 25

Figure 5.5: Representation of the Van Case Study network on map with 16 clusters

(map was retrieved from Google Earth)
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3.06 in the Solomon instances. If the distance between nodes is smaller than or equal

to 0.20, we fix the node selected in the Node Selection Model (in order to change the

solution).

Tabu tenures for local search moves

In the improvement part of the MSTS, we use 2-opt, swap,Replace1−1 andReplace1−2

moves in order to shorten the route and increasing the number of nodes selected. Dur-

ing the algorithm iterations, solution attributes that belong to recently selected nodes

are kept in the tabu list until a predetermined number of iterations. The main moti-

vation on the implementation of tabu tenures is to prevent cycling by restricting the

neighborhood of the solution.

tabuTenure2opt, tabuTenureswap, tabuTenureremove and tabuTenureinsert are the

implemented tabu tenure values for the local search moves. We analyze the effect

of tabu tenure on solution by trying various alternatives (between 3 and 10) in our

computational experiments.

Proportion of nodes to remove in diversification

Preliminary results of the heuristic approach show that there are many common nodes

in the heuristic solution and the best solution found by CPLEX. At least half of the

selected nodes are common in both solutions in general. To avoid being stuck at a

local optimum, we remove a proportion of selected nodes to find new starting solution

for the improvement part of the algorithm. In the computational analysis, we try

alternative removal proportion values (varying in increments of 0.05 between 0.3 and

0.5)

Number of restarts

Since the computation time of each iteration is small (0.3 seconds on average), having

a large number of restarts does not increase computational time of the MSTS heuristic

excessively. Additionally, increasing the number of restarts increases the chance of

finding the global optimum. In some of the instances where the optimality gap of

heuristic results is high, the objective function value is able to improved only in the

further (i.e., after the 100th restart) iterations. Thus, increasing the number of restarts
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improves the solution. In the computational study, number of restarts is selected as

200 where either div1 or div2 is applied as a restarting strategy.

Number of sub-iterations for local search moves

To decide on number of sub-iterations for local search moves, we observe the change

in the objective function in one restart in the test instances. Accordingly, we apply 500

sub-iterations for the 2-opt and swap moves and 1,000 sub-iterations for Replace1−1

and Replace1−2 moves in each restart.

Aspiration criterion

The best solution found is selected as an aspiration criterion in this approach where

tabu status of a solution attribute is overridden if a tabu-active move improves the

incumbent solution.

5.3 Computational Results

In our computational experiments, all problem instances were solved by using the

solver CPLEX version 12.8.0, which is implemented in IBM ILOG Optimization

Studio. Heuristic algorithms were coded in Java programming language using the

NetBeans IDE 8.1. All of the computational studies are conducted on an Intel(R)

Core(TM) i7-477OS CPU @3.10GHz, 16GB RAM Windows 10 computer.

5.3.1 Results for Random Instances

We first present the results obtained within the 2-hour by the CPLEX solver as bench-

marks. Since the problem is not solvable for large instances, some of the solutions

have positive optimality gaps. The solutions of the MSTS heuristic are then compared

with those found by CPLEX in order to measure the quality of our approach, in terms

of the solution time and objective value.

In the Table 5.3, best CPLEX solution (z*), percent gap from the best lower bound,

solution time (CPU time in seconds), travel time and assessment time (in hours) and

the number of nodes visited are presented. In addition to these values, sequence of
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the nodes and the sample size values assigned to each selected node is provided in

Table B.1 in Appendix. B

Table 5.3: MIP results with CPLEX solver

Instance

# Name z* Gap % CPU # visited Travel Time Assessment Time

1 30N_10C_tmax3_geo 0.396 0.00 1.9 4 1.69 1.28

2 30N_10C_tmax3_hier 0.396 0.00 8.3 4 1.69 1.28

3 30N_10C_tmax3_rand 0.396 0.00 12.5 4 1.54 1.46

4 30N_10C_tmax5_geo 0.697 0.00 2.3 7 3.34 1.66

5 30N_10C_tmax5_hier 0.697 0.00 446.2 7 2.91 2.08

6 30N_10C_tmax5_rand 0.798 0.00 2.0 8 2.75 2.22

7 30N_10C_tmax7_geo 0.898 0.00 78.5 9 4.53 2.40

8 30N_10C_tmax7_hier 0.998 0.00 78.4 10 4.60 2.38

9 30N_10C_tmax7_rand 0.998 0.00 3.8 10 3.79 3.16

10 30N_15C_tmax3_geo 0.263 0.00 5.9 4 1.71 1.24

11 30N_15C_tmax3_hier 0.263 0.00 9.8 4 1.65 1.33

12 30N_15C_tmax3_rand 0.263 0.00 11.2 4 1.65 1.33

13 30N_15C_tmax5_geo 0.463 0.00 23.0 7 2.99 2.00

14 30N_15C_tmax5_hier 0.530 0.00 8.1 8 2.99 2.00

15 30N_15C_tmax5_rand 0.530 0.00 6.0 8 2.83 2.14

16 30N_15C_tmax7_geo 0.664 0.00 64.0 10 4.48 2.52

17 30N_15C_tmax7_hier 0.731 0.00 128.0 11 4.13 2.86

18 30N_15C_tmax7_rand 0.731 0.00 183.2 11 4.05 2.94

19 50N_10C_tmax3_geo 0.396 0.00 19.3 4 1.87 1.12

20 50N_10C_tmax3_hier 0.396 0.00 232.9 4 1.65 1.34

21 50N_10C_tmax3_rand 0.396 0.00 265.1 4 1.65 1.34

22 50N_10C_tmax5_geo 0.697 0.00 39.5 7 3.24 1.76

23 50N_10C_tmax5_hier 0.797 0.00 2631.9 8 2.94 2.03

24 50N_10C_tmax5_rand 0.797 0.00 410.5 8 3.05 1.95

25 50N_10C_tmax7_geo 0.898 0.00 2645.1 9 4.84 2.16

26 50N_10C_tmax7_hier 0.998 0.02 7202.6 10 4.11 2.88

27 50N_10C_tmax7_rand 0.998 0.01 7203.7 10 3.99 2.96

28 50N_10C_tmax10_geo 0.999 0.01 7206.8 10 5.44 4.56

29 50N_10C_tmax10_hier 0.999 0.00 2714.8 10 3.84 6.16

30 50N_10C_tmax10_rand 0.999 0.00 7201.7 10 4.13 5.84

31 50N_15C_tmax3_geo 0.263 0.00 52.5 4 1.87 1.12

32 50N_15C_tmax3_hier 0.263 0.00 459.0 4 1.66 1.33

33 50N_15C_tmax3_rand 0.263 0.00 530.0 4 1.66 1.33

34 50N_15C_tmax5_geo 0.463 3.35 7200.2 7 2.84 2.16

35 50N_15C_tmax5_hier 0.530 2.02 7200.2 8 2.90 2.08

36 50N_15C_tmax5_rand 0.530 0.00 5491.8 8 2.88 2.08

37 50N_15C_tmax7_geo 0.664 6.86 7200.2 10 4.07 2.91

38 50N_15C_tmax7_hier 0.797 0.00 167.0 12 4.11 2.88

39 50N_15C_tmax7_rand 0.731 7.79 7201.9 11 3.96 3.04

40 50N_15C_tmax10_geo 0.931 6.21 7201.4 14 5.76 4.24
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Table 5.3 MIP results with CPLEX solver – continued

Instance

# Name z* Gap % CPU # visited Travel Time Assessment Time

41 50N_15C_tmax10_hier 0.998 0.01 7200.3 15 5.36 4.64

42 50N_15C_tmax10_rand 0.998 0.01 7203.5 15 5.74 4.26

43 50N_20C_tmax5_geo 0.346 7.87 7200.4 7 2.79 2.16

44 50N_20C_tmax5_hier 0.446 0.00 42.2 9 2.83 2.13

45 50N_20C_tmax5_rand 0.396 4.08 7200.2 8 2.75 2.25

46 50N_20C_tmax7_geo 0.547 0.00 1741.1 11 4.17 2.83

47 50N_20C_tmax7_hier 0.597 0.88 7200.4 12 3.80 3.20

48 50N_20C_tmax7_rand 0.547 12.36 7200.8 11 3.79 3.20

49 50N_20C_tmax10_geo 0.747 5.23 7200.4 15 5.86 4.11

50 50N_20C_tmax10_hier 0.848 1.54 7203.3 17 5.54 4.40

51 50N_20C_tmax10_rand 0.848 1.82 7202.0 17 5.69 4.31

52 50N_25C_tmax5_geo 0.316 0.00 1704.0 8 2.84 2.16

53 50N_25C_tmax5_hier 0.356 0.00 81.5 9 2.83 2.13

54 50N_25C_tmax5_rand 0.356 0.00 65.7 9 2.79 2.19

55 50N_25C_tmax7_geo 0.476 0.00 45.3 12 4.08 2.88

56 50N_25C_tmax7_hier 0.476 5.47 7200.4 12 3.73 3.23

57 50N_25C_tmax7_rand 0.476 4.99 7200.4 12 3.77 3.23

58 50N_25C_tmax10_geo 0.637 3.06 7202.1 16 5.64 4.35

59 50N_25C_tmax10_hier 0.717 1.29 7200.4 18 5.57 4.43

60 50N_25C_tmax10_rand 0.717 0.00 6135.2 18 5.54 4.46

61 75N_15C_tmax5_geo 0.530 0.00 5046.5 8 3.08 1.91

62 75N_15C_tmax5_hier 0.597 8.09 7200.3 9 2.43 2.56

63 75N_15C_tmax5_rand 0.664 0.00 289.7 10 2.57 2.40

64 75N_15C_tmax7_geo 0.664 16.60 7204.0 10 3.89 3.10

65 75N_15C_tmax7_hier 0.798 12.79 7201.4 12 3.46 3.53

66 75N_15C_tmax7_rand 0.798 14.28 7202.7 12 3.46 3.52

67 75N_15C_tmax10_geo 0.931 7.19 7203.3 14 5.76 4.23

68 75N_15C_tmax10_hier 0.931 7.20 7207.9 14 5.25 4.75

69 75N_15C_tmax10_rand 0.998 0.01 7202.7 15 4.32 5.66

70 75N_25C_tmax5_geo 0.316 9.56 7201.6 8 2.68 2.31

71 75N_25C_tmax5_hier 0.436 0.00 3071.6 11 2.35 2.64

72 75N_25C_tmax5_rand 0.396 4.08 7200.3 10 2.34 2.64

73 75N_25C_tmax7_geo 0.476 6.49 7201.8 12 3.86 3.11

74 75N_25C_tmax7_hier 0.597 0.00 1989.4 15 3.08 3.87

75 75N_25C_tmax7_rand 0.557 4.76 7200.3 14 3.31 3.68

76 75N_25C_tmax10_geo 0.717 1.38 7201.5 18 5.68 4.31

77 75N_25C_tmax10_hier 0.797 2.58 7201.0 20 5.19 4.96

78 75N_25C_tmax10_rand 0.797 3.21 7200.9 20 5.03 4.96

Averages

Geo 0.592 2.84 3765.1 9.4 3.81 2.64

Hier 0.653 1.61 3511.1 10.5 3.48 2.97

Rand 0.653 2.21 4116.5 10.4 3.42 3.02

Overall 0.633 2.22 3797.5 10.1 3.57 2.87
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Table 5.3 reports the solutions within two hours time limitation. We restrict the so-

lution time as two hours, since MIP model is not able to find optimal solution for

many instances with CPLEX solver within reasonable time interval. When the in-

stances that cannot be solved optimally in two hours are solved without time limit,

MIP model can not provide an optimal solution even within 72 hours.

According to presented solutions, objective function value is primarily affected by

the cluster size and time limitation, which determines the proportion of nodes visited.

Additionally, cluster type has an effect the objective function value. For the same

cluster size and time limitation, number of nodes visited depends on the clustering

structure of the network. Impact of the cluster type on objective value can be seen in

Table 5.3 where the average objective value is smaller in geographical instances than

the average objective value of the hierarchical and random instances. Geographi-

cal instances have the highest average percent gap value of 2.84% where the overall

average percent gap is 2.22%. In overall, 36 out of 78 instances are not able to be

solved optimally within two hours time limitation. These are commonly larger-sized

instances. Only 4 out of 18 instances with 75 nodes were solved optimally. These

instances have smaller time limitations (Tmax values). When average travel times in

CPLEX solutions are considered, we can conclude that constructed routes are longer

in geographical instances. This observation provides a reason for why geographical

instances have worse objective value and average percent gap than the others. As

a result of having longer travel times, time spent in selected nodes for assessment

is smaller in geographically clustered instances. Additionally, experiments point out

that computational complexity of the network increases with its size. However, the

number of clusters has larger impact on computational time than the number of nodes.

For example, 8 out of 12 instances with 50-node and 10-cluster are solved optimally

within 20 minutes on average, whereas the number of instances that are solved opti-

mally is 5 out of 12 instances with 50-node 15-cluster within 22 minutes on average.

Benchmark solutions point out that the PDNARP is solvable in reasonable solution

times for only small-sized networks. On the other hand, for the more complex net-

works (larger number of nodes and larger cluster sizes), MIP model may not be able
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to solve this problem within reasonable time. Especially in the immediate response

phase, assessment should be completed quickly. Therefore, this solution method can

not guarantee the optimal solution for real-sized instances.

Three versions of the MSTS heuristic are tried in order to compare performances and

to obtain the most promising set of parameters. These versions differ in terms of the

restart strategies.

The first version of MSTS is deterministic, where only div2 procedure is used during

the algorithm (denoted by MSTSd). The second version is hybrid, where both div1

and div2 procedures are used in the algorithm (denoted by MSTSh). The third ver-

sion is random, where only div1 procedure is used during the algorithm (denoted by

MSTSr). For each heuristic, we can calculate the percent gap of the solution as:

z∗(i)− zheur(i)
z∗(i)

(5.1)

where z∗(i) denotes the best CPLEX solution and zheur(i) denotes the heuristic solu-

tion of instance i.

In Tables B.3, B.4 and B.5 in Appendix B, the percent gap values of the heuristic

solutions from the best solutions found by CPLEX solver are summarized for the dif-

ferent tabu tenure alternatives varying from 3 to 10 for each local search move. In the

tables, first two columns define the instances where instance name includes number

of nodes (N), number of clusters (C), total travel and assessment time limit (tmax)

and cluster types (geo, hier and rand), and remaining columns includes % gap val-

ues for the corresponding tabu tenure (as an example, the setting tabuTenure2opt=3,

tabuTenureswap=3, tabuTenureremove=3 and tabuTenureinsert=3 is denoted by t3).

In Tables B.3, B.4 and B.5, diversification parameter is taken as 0.45.

Table B.3 shows the solutions of theMSTSd, where at least 63 out of 78 instances are

able to find best CPLEX solutions for all tabu tenure alternatives. Bold values shows

the best percent gaps found with different tabu tenures for each instance. In Figures

5.6, 5.7, 5.8 and 5.9, average percent gap values for three MSTS alternatives are sum-

marized for eight tabu tenure alternatives. Average gap value is smaller than or equal

to 0.662% for all tabu tenure alternatives where the maximum gap is 14.37%. There

exists four instances where optimality gap is larger than 0.02% for any tabu tenure
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alternatives (see instances 4, 53, 71 and 76 in Table B.3 in Appendix B). Since we are

measuring the accuracy (our primary objetive) as a proportion of selected nodes and

our network design does not include very large number of clusters (at most 25), se-

lecting only one missing node increases percent gap a lot. The effect of missing one

node in the solution increases in the small-sized instances. For example, the high-

est percent gap (14.36%) belongs to a small-sized instance (30N_10C_tmax5_geo).

Additionally, computational results shows that, MSTSd is able to find better solu-

tions than best cplex solutions where the CPLEX solver is not able to find optimal

solution within two hours time limitation (see instances 26, 48, 66 and 68 in Table

B.3 in Appendix B). For the geographical instances, many tabu tenure alternatives

provide same solutions, and the best solutions belong to tabu tenures t6, t7, t8 and t9.

On the other hand, solutions of the hierarchical instances point out the effectiveness

of small tabu tenures in hierarchical cluster types. Solutions of the random instances

are better than the solutions of geographical and hierarchical ones in all tabu tenure

alternatives. This observation, shows the strength of MSTSd heuristic on randomly

clustered networks. Moreover, among the tabu tenure alternatives, larger ones pro-

vides better percent gap values for randomly clustered instances.

In order to improve solution quality of the MSTS algorithm, we also implement a

version where random initial starts are also involved in the procedure. We implement

a random restart starting from 10th restart with increments of 10 up to 200. Table B.4

shows the solutions of this hybrid method. According to Table B.4, at least 67 out

of 78 instances are able to find best CPLEX solutions for all tabu tenure alternatives

which highlights the improvement gathered by the implementation of random diver-

sification strategy. In this case, average gap value is smaller than or equal to 0.59%

for all tabu tenure alternatives where the maximum gap is 14.37%. Although, results

of the MSTSh does not improve the worst solution found in MSTSd, average gap

% decreases with the addition of random restarts. There exist only three instances

where optimality gap is not able to decreased under 0.01% for any tabu tenure al-

ternatives (see instances 4, 71 and 76) . Additionally, as in MSTSd, there are five

instances where MSTSh is able to find better solutions than best CPLEX solutions

(see instances 26, 48, 65, 66 and 68). For the geographical instances, the best aver-

age gap values belong to tabu tenures 2, 3 and 10 (see Table 5.6). When solutions
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Figure 5.6: Change in average gap % of geographical instances according to alterna-

tive MSTS versions

are compared with the average percent gap obtained by MSTSd, we may conclude

that randomness does not improve heuristic solutions of the geographical instances,

whereas a significant improvement was observed in the MSTSh solutions of the hi-

erarchical instances where average percent gap decreases from 0.515 to -0.048. That

means MSTSh provides at least best CPLEX solution for all of the hierarchical in-

stances (see Table 5.7). This improvement is obtained in large tabu tenure alternatives

(t9 and t10). According to Table 5.8, MSTSh does not have a significant improve-

ment on the random instances as in geographical instances, only the best tabu tenure

alternative, which is t3, is different in MSTSh.

After realizing the impact of the diversification based on randomization, we also try

the pure random restart strategy. Table B.5 shows the solutions of the pure random

start version. Applying pure random restart strategy does not improve either solutions

of MSTSd or MSTSh further, where the average gap is at most 0.58%, and the

maximum gap is 14.36%.

After the analyses made on the diversification strategy effects and tabu tenure al-

ternatives, we also analyze the results of using different diversification parameters,

which determine the proportion of nodes that will remain in the following restart.

The change in the average percent gap value according to changing diversification

parameter is given in Figure 5.10 From the preliminary observations, there are many

common nodes selected by both the MSTS heuristic and CPLEX solver. For this

reason, we keep at least 50% of the currently selected nodes in the following restart.
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Figure 5.7: Change in average gap % of hierarchical instances according to alternative

MSTS versions

Figure 5.8: Change in average gap % of random instances according to alternative

MSTS versions

Figure 5.9: Change in average gap % of all instances according to alternative MSTS

versions
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Figure 5.10: Change in average gap % according to diversification parameter

Our trials include seven diversification parameter alternatives (same parameter is used

for both div1 and div2), and the percent gap values of the MSTSh solutions start

from the third column of Table B.6. By changing the diversification parameter, in

most of the instances, common solutions are obtained. The worst average percent

gap belongs to diversification parameter of 0.3 (represented by p0.30) where average

gap values vary in between 0.32 and 0.53. There is not any outstanding parameter

value which is better than the others in all of the instances. p0.25 provides better

average percent gap value for geographical instances, p0.35 provides better value for

hierarchical and random instances. In overall, smallest percent gap value is obtained

by the diversification parameter of p0.40.

All three versions of the MSTS are solvable within seconds. There is no significant

difference among the MSTS versions in terms of computational time. While small-

sized instances are able to be solved within 10 seconds, the large-sized instances are

solved in a minute. Recorded minimum CPU time is 4.8 seconds, and maximum CPU

time is 63.7 seconds where the average is equal to 21.0 seconds. Objective function

values and CPU times for tabu tenure trials (with p0.45 ) are available in Table B.2 in

Appendix B. Additionally, computational time increases with the number of clusters.

An example figure that shows the impact of cluster size on computational time is

provided for the random instances with 50 nodes in Figure 5.11.

There exists three instances (4, 71 and 76) where optimality gap cannot be decreased

under 0.01% for any tabu tenure and diversification parameter alternatives. Best per-
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Figure 5.11: Change in average CPU time according to cluster size

cent gap values are 14.365%, 11.258% and 5.590%, respectively. For these instances,

all versions and parameter alternatives of MTST heuristic find a solution with one

missing node according respect to the best CPLEX solution. The percent gap values

are high due to the primary objective (maximizing the proportion of selected nodes)

of the PDNARP. These instances are not common in terms of node size, cluster size,

time limitation or cluster type. So, the underlying reason for lack of finding one more

solution may be restricted solution space due to the tight time limitation for the corre-

sponding instances. In Figure 5.12, routes constructed by CPLEX solver andMTSTh

heuristic are provided for the instance (30N_10C_tmax5_geo) where the difference

among node selections are seen. CPLEX solution is denoted by black and MTSTh

heuristic solution is denoted by orange. Travel time in CPLEX solution is 3.34 hours

and assessment time is 1.42 hours. Therefore, the total time spent is equal to 4.76

hours. On the other hand, in MTSTh heuristic solution travel time is 2.68 hours and

sampling time is 1.92 hours. Hence the total time spent is equal to 4.60 hours. In the

heuristic solution, it is not possible to add one more node to route without exceeding

tmax. MSTS heuristic is stuck in a local optimum, so it cannot find a path with same

number of nodes. Similar observations are made for instances 71 and 76 as well.

Computational experiments on the test instances show that adding a random start to

70



Figure 5.12: Routes constructed by CPLEX solver and MTSTh heuristic for the in-

stance # 4 (30N_10C_tmax5_geo), where black and orange routes represents results

of the CPLEX and MSTS, respectively

the algorithm improves the final solution. MTSTh heuristic is an efficient solution

approach for the PDNARP, which provides near-optimal solutions within a minute. It

is able to find best solution in at least 80% of the instances for each parameter setting.

5.3.2 Case Study Results

In Table 5.4 the best CPLEX solutions (within two hours) for the case study instances

are presented. These solutions show that, PDNARP is not solvable for the real-sized

instances. According to solutions presented in Table 5.4, the minimum optimality gap

is 4.6 % and the average optimality gap is 25.07 % for the case study instances.

Since MSTSh provides the best solutions among the compared versions of the pre-

sented heuristic, we implemented the MSTSh in the case study. Percent gap values
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according to changing parameter settings are summarized in Table 5.5. Additionally,

objective function values and CPU times of both CPLEX and MSTSh algorithm are

provided in Table C.2 in Appendix C.MSTSh is able to find the best CPLEX solution

for the real-sized instances within 90 seconds.

Table 5.4: CPLEX solutions of the Van Case Study Instances

# Name z* Gap % CPU # visited Travel Time Sampling Time

1 93N_16C_tmax10 0.434 45.62 7200.5 7 7.83 2.17

2 93N_16C_tmax15 0.747 31.34 7200.4 12 11.52 3.47

3 93N_16C_tmax20 0.936 6.73 7202.4 15 13.90 6.10

4 93N_23C_tmax10 0.388 28.02 7200.5 9 7.26 2.73

5 93N_23C_tmax15 0.606 29.43 7211.5 14 11.42 3.57

6 93N_23C_tmax20 0.693 39.56 7203.3 16 14.80 5.19

7 93N_23C_tmax25 0.955 4.60 7205.8 22 18.53 6.47

8 93N_29C_tmax10 0.306 23.98 7200.5 9 7.49 2.50

9 93N_29C_tmax15 0.445 36.79 7204.8 13 11.28 3.71

10 93N_29C_tmax20 0.687 16.25 7226.7 20 14.99 5.01

11 93N_29C_tmax25 0.825 13.46 7204.5 24 18.38 6.62

Average 0.638 25.07 7205.5 15 12.49 4.32

In the analyses made on the test instances, diversification parameter selection does

not direct us select to one of the tried diversification parameters. For this reason,

we try different parameter alternatives on the case study instances. Furthermore, the

tabu tenure alternatives are also analyzed. In Table 5.5, diversification parameter is

denoted by pdiv. For each instance parameter alternatives of p0.40, p0.45 and p0.50 are

tried for each tabu tenure alternatives. According to the solutions pdiv = 0.40 provides

the best solutions for all case study instances where MSTSh solutions are 4.198%

better than the best CPLEX results on average. There is not any instance where

MSTSh is worse than CPLEX solver. Best improvement is obtained in instance 6,

where MSTSh algorithm solution is 18.861% better than the best CPLEX solution.

Case study results show that, presented MSTSh is able to find best CPLEX solutions

found within two hour time limitation in real-sized problems within a minute.
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Table 5.5: MSTSh solutions of the Van Case Study Instances with different tabu

tenures and diversification parameters

Instance % Gap

# Name pdiv t3 t4 t5 t6 t7 t8 t9 t10

1 93N_16C_tmax10

p0.4 0.003 0.003 0.007 0.003 0.000 0.000 0.003 0.003

p0.45 8.670 8.670 8.670 8.670 8.670 8.670 8.670 8.670

p0.5 8.670 8.670 8.670 8.670 8.670 8.670 8.670 8.670

2 93N_16C_tmax15

p0.4 -8.367 -8.375 -8.367 -8.367 0.008 -8.375 -8.367 -0.005

p0.45 -8.371 -8.371 -8.371 -8.375 -8.375 -8.375 -8.371 -8.375

p0.5 -0.005 -8.375 -8.371 -8.371 -8.371 -8.375 -0.005 -8.367

3 93N_16C_tmax20

p0.4 -6.653 -6.656 -6.664 -6.663 -6.664 -6.655 -6.653 -6.664

p0.45 -6.653 -6.653 -6.669 -6.656 -6.656 -6.671 -6.653 -6.665

p0.5 -6.671 -6.657 -6.661 -6.671 -6.653 -6.661 -6.671 -6.659

4 93N_23C_tmax10

p0.4 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

p0.45 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

p0.5 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

5 93N_23C_tmax15

p0.4 7.182 0.006 7.182 7.184 0.000 7.184 7.182 0.000

p0.45 0.005 0.000 0.004 7.184 7.184 7.182 0.005 7.182

p0.5 7.189 7.182 7.184 7.180 7.185 7.184 7.189 7.184

6 93N_23C_tmax20

p0.4 -18.861 -18.850 -12.563 -12.571 -12.560 -18.852 -18.861 -12.562

p0.45 -12.561 -18.852 -12.568 -18.855 -18.854 -12.572 -12.561 -12.563

p0.5 -18.850 -18.850 -12.571 -18.852 -18.850 -12.568 -18.850 -12.565

7 93N_23C_tmax25

p0.4 0.014 0.004 0.024 0.019 0.007 0.005 0.014 0.014

p0.45 0.013 0.007 0.007 0.020 0.019 0.013 0.013 0.008

p0.5 0.019 0.008 0.019 0.018 0.019 0.023 0.019 0.014

8 93N_29C_tmax10

p0.4 0.003 0.000 0.001 0.001 0.003 0.000 0.003 0.000

p0.45 0.001 0.001 0.001 0.000 0.000 0.001 0.001 0.001

p0.5 0.003 0.000 0.000 0.001 0.003 0.003 0.003 0.003

9 93N_29C_tmax15

p0.4 0.000 -15.541 -15.544 -15.544 -7.760 -7.765 0.000 -7.761

p0.45 -7.761 -15.544 -15.544 -7.765 -7.761 -15.544 -7.761 -7.767

p0.5 -7.763 -7.763 -7.761 -7.761 -7.761 -7.761 -7.763 -7.767

10 93N_29C_tmax20

p0.4 -0.002 -0.006 -5.033 -5.032 -0.007 -0.003 -0.002 -5.033

p0.45 -0.009 -5.033 -0.006 -0.009 -0.001 -5.033 -0.009 -0.009

p0.5 -5.033 -5.031 -0.009 -5.033 -0.009 -5.033 -5.033 -0.009

11 93N_29C_tmax25

p0.4 -4.178 -4.176 -4.176 -4.178 -4.176 0.002 -4.178 -4.178

p0.45 -4.177 -4.179 0.002 -4.178 -4.178 -4.176 -4.177 -4.178

p0.5 -4.179 -4.176 -4.179 -4.176 -4.179 -4.179 -4.179 -4.178

Averages

p0.4 -2.806 -4.872 -4.103 -4.105 -2.832 -3.133 -2.806 -3.290

p0.45 -2.804 -4.542 -3.134 -2.724 -2.723 -3.319 -2.804 -2.154

p0.5 -2.420 -3.181 -2.153 -3.182 -2.723 -2.609 -2.420 -2.152

Overall -2.677 -4.198 -3.130 -3.337 -2.759 -3.020 -2.677 -2.532
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CHAPTER 6

CONCLUSION

World is a target of many natural and human-inflicted disasters some of which have

catastrophic impacts on the affected countries and the on lives of millions of people.

In the immediate aftermath of a disaster, needs assessment operations are performed

first to understand the effect of the disaster so that effective response can be provided.

An effective needs assessment process provides reliable estimations on the beneficia-

ries’ needs.

Each disaster may require different needs assessment plan due to its unique dynam-

ics (such as type, magnitude, population characteristics in the impact region, etc.).

To start response operations as soon as possible, rapid needs assessment activities

should be completed within limited time. Thus, conducting surveys in the whole af-

fected region to collect information is not possible. Sampling techniques are used to

estimate beneficiaries’ needs within limited time. Reliable estimates depend on (1)

how well the sampled data reflects the actual situation (accuracy) and (2) how cer-

tain the obtained information is (precision). An accurate estimation can be obtained

by conducting surveys in as many sites as possible. On the other hand, spending

more time at each visited site provides more precise estimations. Time limitation in

rapid needs assessment process causes an inherent trade-off between allocated time

for traveling among sites and colloecting information in each visited site.

In this thesis, we define the Post-Disaster Needs Assessment Routing Problem and

present a mathematical model which involves the trade-off between accuracy and

precision of the sampling process. Our motivation in this study is providing a quick

and efficient assessment plan for the needs assessment, to support relief agencies to
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develop effective sampling plans to obtain reliable estimates on collected information.

To the best of our knowledge, there exist no study in IE/OR literature, which presents

a mathematical model that addresses routing decisions of efficient routing scheme

of assessment teams together with the time spent in visited sites in order to collect

reliable information.

Throughout this thesis, a mixed integer programming formulation is presented for the

PDNARP. Moreover, to find near-optimal solutions for large-scale networks quickly,

we develop an effective tabu search metaheuristic. Multi-Start Tabu Search Heuristic

is developed as a solution approach and its three versions (MSTSd, MSTSh and

MSTSr) are presented. During computational experiments, two instance sets are

used: (i) random instance set modified from well-known Solomon’s instances and (ii)

case study instance set based on real-world data from the 2011 Van Earthquake.

In the computational study, solution performance of the MSTS versions and mixed in-

teger program are compared. Moreover, effects of network characteristics (number of

nodes and clusters in network, cluster types and total time limitation) and parameter

settings (tabu tenures, diversification parameter) used in the proposed MSTS algo-

rithm are analyzed. In these experiments, we show that mixed integer programming

model is not able to find optimal solution for the realistic problem instances within

reasonable time limit (72 hours). Moreover, experiments point out that computational

complexity of the network increases with its size and the number of clusters has also

a significant effect on computational time. The proposed MSTS algorithm is able

to find high-quality solutions for realistic problem instances efficiently. The MSTS

heuristic is solvable within 90 seconds for realistic problem instances. MSTS versions

are able to find better solutions than the best CPLEX for the solutions with optimality

gap. Diversification strategies improves objective value of the MSTS heuristic. Ef-

fectiveness of the heuristic parameters may change with respect to cluster type of the

network. Computational experiments show that the best diversification parameter for

hierarchical and random networks provides the worst average percent gap value for

the geographical networks. Additionally, setting large tabu tenure value provides best

heuristic solution for geographical and random networks, however, same tabu tanure

value does not give the best heuristic solution for hierarchical networks with respect

to other tabu tenure alternatives. Finally, we found that the MSTS version with hybrid
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restart strategy performs better than the deterministic and random versions of MSTS.

Since in the IE/OR literature, there are only a few studies on the post-disaster needs

assessment operations, there can be many future research directions. Firstly, our study

assumes that there is a single assessment team. Multiple-team version of this study

is the first possible research direction which is also easy to adapt to our solution

approach. Additionally, in this study we focus on a deterministic needs assessment

routing problem, whereas immediate aftermath of a disaster may involve in various

uncertain parameters. These uncertainties can be included in the assessment plan

within a dynamic framework where the decisions on where to visit and when to stop

information collection at visited site can be made during the assessment process. In

the dynamic problem setting, the estimated prevalence value is updated by assessment

teams after each visit and survey made. Updates on the estimates will change the

sample size requirement for the remaining visits. However, in this dynamic approach,

assessment teams need to change their plan at each step which may require well-

trained personnel or volunteers in assessment teams. Another future direction may be

adapting alternative performance metrics to our solution approach in order to measure

the reliability (accuracy and precision) of the estimations. Furthermore, a bi-criteria

approach can be studied which includes accuracy and precision objectives.

In this study, since we focus on the rapid assessment phase, it is assumed that re-

lief distribution starts after the completion of the needs assessment. However, this

problem setting is also applicable in detailed or continual assessment phases where

time limitation is wider than the rapid assessment phase, and assessment operations

performed together with relief distribution operations. Hence, needs assessment prob-

lem can be combined with relief distribution decisions where both operations starts

together and total time limitation affects both needs assessment and relief distribution

operations. Moreover, for the detailed or continual phase of the assessment where as-

sessments are performed in wider time periods, this problem can be modeled with ob-

jective of minimizing total time spent for traveling and information collection which

ensures predetermined level of accuracy and precision.
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APPENDIX A

CALCULATED PARAMETERS IN PREPROCESSING

Table A.1: Sample size (SS) and sampling time (ST) requirements of random test

instances with 30 nodes for each option (unit survey time=0.01)

PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

1 11088 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

2 15961 376 3.76 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

3 10098 371 3.71 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

4 8275 368 3.68 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

5 18603 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

6 15901 376 3.76 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

7 10614 371 3.71 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

8 13806 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

9 17562 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

10 3440 346 3.46 163 1.63 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

11 1229 293 2.93 151 1.51 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

12 12195 373 3.73 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

13 240 148 1.48 101 1.01 69 0.69 50 0.50 37 0.37 28 0.28 22 0.22

14 9828 370 3.70 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

15 506 219 2.19 128 1.28 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

16 4185 352 3.52 165 1.65 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

17 3256 344 3.44 163 1.63 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

18 8289 368 3.68 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

19 15773 376 3.76 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

20 13194 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

21 9723 370 3.70 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

22 17589 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

23 8091 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

24 3210 344 3.44 163 1.63 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

25 11201 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

26 11004 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

27 5481 360 3.60 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

28 17177 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

29 1703 314 3.14 156 1.56 91 0.91 60 0.60 42 0.42 31 0.31 24 0.24

30 4867 357 3.57 165 1.65 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24
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Table A.2: Sample size (SS) and sampling time (ST) requirements of random test

instances with 50 nodes for each option (unit survey time=0.01)

PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

1 7615 366.00 3.66 168.00 1.68 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

2 12798 373.00 3.73 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

3 19525 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

4 10916 372.00 3.72 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

5 18374 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

6 6352 363.00 3.63 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

7 3050 342.00 3.42 162.00 1.62 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

8 1351 300.00 3.00 152.00 1.52 90.00 0.90 59.00 0.59 42.00 0.42 31.00 0.31 24.00 0.24

9 13573 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

10 13212 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

11 10381 371.00 3.71 168.00 1.68 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

12 160 114.00 1.14 83.00 0.83 61.00 0.61 45.00 0.45 34.00 0.34 27.00 0.27 21.00 0.21

13 11790 373.00 3.73 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

14 8460 368.00 3.68 168.00 1.68 95.00 0.95 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

15 2315 330.00 3.30 160.00 1.60 93.00 0.93 60.00 0.60 42.00 0.42 31.00 0.31 24.00 0.24

16 19058 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

17 17339 376.00 3.76 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

18 12951 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

19 4147 352.00 3.52 165.00 1.65 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

20 10454 371.00 3.71 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

21 1190 291.00 2.91 150.00 1.50 89.00 0.89 59.00 0.59 42.00 0.42 31.00 0.31 24.00 0.24

22 1429 303.00 3.03 153.00 1.53 91.00 0.91 59.00 0.59 42.00 0.42 31.00 0.31 24.00 0.24

23 15495 375.00 3.75 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

24 15030 375.00 3.75 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

25 3165 343.00 3.43 163.00 1.63 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

26 7466 366.00 3.66 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

27 7771 367.00 3.67 168.00 1.68 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

28 13383 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

29 3268 344.00 3.44 163.00 1.63 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

30 18129 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

31 13663 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

32 6643 364.00 3.64 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

33 10274 371.00 3.71 168.00 1.68 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

34 7616 366.00 3.66 168.00 1.68 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

35 19692 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

36 9411 370.00 3.70 168.00 1.68 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

37 7359 366.00 3.66 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

38 5318 359.00 3.59 166.00 1.66 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

39 4048 351.00 3.51 164.00 1.64 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

40 12758 373.00 3.73 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

41 6309 363.00 3.63 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

42 3014 341.00 3.41 162.00 1.62 94.00 0.94 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

43 10928 372.00 3.72 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

44 18882 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

45 19508 377.00 3.77 170.00 1.70 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

46 14830 375.00 3.75 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

47 12791 373.00 3.73 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24

48 7837 367.00 3.67 168.00 1.68 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

49 6017 362.00 3.62 167.00 1.67 95.00 0.95 61.00 0.61 43.00 0.43 32.00 0.32 24.00 0.24

50 13195 374.00 3.74 169.00 1.69 96.00 0.96 62.00 0.62 43.00 0.43 32.00 0.32 24.00 0.24
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Table A.3: Sample size (SS) and sampling time (ST) requirements of random test

instances with 75 nodes for each option (unit survey time=0.01)

PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

1 17119 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

2 656 243 2.43 136 1.36 84 0.84 57 0.57 41 0.41 30 0.30 24 0.24

3 6310 363 3.63 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

4 9689 370 3.70 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

5 11420 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

6 17014 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

7 7938 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

8 2261 329 3.29 159 1.59 93 0.93 60 0.60 42 0.42 31 0.31 24 0.24

9 3295 345 3.45 163 1.63 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

10 13144 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

11 8192 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

12 5057 358 3.58 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

13 16958 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

14 13463 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

15 5656 360 3.60 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

16 15296 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

17 14392 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

18 403 197 1.97 121 1.21 78 0.78 54 0.54 39 0.39 30 0.30 23 0.23

19 17137 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

20 7293 365 3.65 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

21 2945 340 3.40 162 1.62 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

22 1266 295 2.95 151 1.51 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

23 7945 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

24 8982 369 3.69 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

25 19842 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

26 15372 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

27 19737 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

28 3765 349 3.49 164 1.64 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

29 7449 366 3.66 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

30 8536 368 3.68 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

31 7115 365 3.65 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

32 12261 373 3.73 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

33 4112 352 3.52 164 1.64 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

34 10622 371 3.71 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

35 5158 358 3.58 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

36 15660 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

37 14380 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

38 4813 356 3.56 165 1.65 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

39 152 110 1.10 81 0.81 60 0.60 44 0.44 34 0.34 27 0.27 21 0.21

40 19103 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

41 6142 362 3.62 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

42 13485 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

43 11104 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

44 13066 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24
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Table A.3 Sample size (SS) and sampling time (ST) requirements of random test

instances with 75 nodes for each option (unit survey time=0.01) – continued

PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

45 8043 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

46 19118 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

47 8098 367 3.67 168 1.68 95 0.95 62 0.62 43 0.43 32 0.32 24 0.24

48 15893 376 3.76 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

49 12284 373 3.73 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

50 6752 364 3.64 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

51 6299 363 3.63 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

52 13770 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

53 14658 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

54 19236 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

55 6709 364 3.64 167 1.67 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

56 1916 321 3.21 157 1.57 92 0.92 60 0.60 42 0.42 31 0.31 24 0.24

57 19167 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

58 5821 361 3.61 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

59 19611 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

60 13671 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

61 17597 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

62 10167 371 3.71 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

63 15321 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

64 12891 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

65 8962 369 3.69 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

66 2885 340 3.40 162 1.62 93 0.93 61 0.61 43 0.43 32 0.32 24 0.24

67 14713 375 3.75 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

68 13844 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

69 11828 373 3.73 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

70 18496 377 3.77 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

71 11021 372 3.72 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

72 12821 374 3.74 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

73 9590 370 3.70 168 1.68 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

74 17132 376 3.76 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

75 16375 376 3.76 169 1.69 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24
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Şa

hg
el

di
38

.7
73

02
3

43
.3

44
99

8
18

49
39

4
20

4.
92

8.
45

12
.6

8
37

.2
6

81
Ta

ba
nl

ı
38

.7
51

23
9

43
.3

63
50

2
17

79
20

3
10

7.
30

2.
90

2.
90

19
.5

1

82
Ta

şk
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Table A.5: Sample size (SS) and sampling time (ST) requirements of case study

instances for each option (unit survey time=0.01)

PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

1 21461 378 3.78 170 1.70 96 0.96 62 0.62 43 0.43 32 0.32 24 0.24

2 3769 349 3.49 164 1.64 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

3 838 264 2.64 142 1.42 87 0.87 58 0.58 41 0.41 31 0.31 24 0.24

4 155 111 1.11 82 0.82 60 0.60 45 0.45 34 0.34 27 0.27 21 0.21

5 1234 294 2.94 151 1.51 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

6 502 218 2.18 128 1.28 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

7 156 112 1.12 82 0.82 60 0.60 45 0.45 34 0.34 27 0.27 21 0.21

8 206 135 1.35 94 0.94 66 0.66 48 0.48 36 0.36 28 0.28 22 0.22

9 779 258 2.58 141 1.41 86 0.86 58 0.58 41 0.41 31 0.31 24 0.24

10 900 270 2.70 144 1.44 87 0.87 58 0.58 41 0.41 31 0.31 24 0.24

11 886 269 2.69 144 1.44 87 0.87 58 0.58 41 0.41 31 0.31 24 0.24

12 401 197 1.97 120 1.20 78 0.78 54 0.54 39 0.39 30 0.30 23 0.23

13 1119 287 2.87 149 1.49 89 0.89 59 0.59 42 0.42 31 0.31 24 0.24

14 341 181 1.81 114 1.14 76 0.76 53 0.53 39 0.39 29 0.29 23 0.23

15 302 170 1.70 110 1.10 74 0.74 52 0.52 38 0.38 29 0.29 23 0.23

16 365 188 1.88 117 1.17 77 0.77 53 0.53 39 0.39 29 0.29 23 0.23

17 555 228 2.28 131 1.31 82 0.82 56 0.56 40 0.40 30 0.30 24 0.24

18 301 170 1.70 110 1.10 73 0.73 52 0.52 38 0.38 29 0.29 23 0.23

19 418 201 2.01 122 1.22 79 0.79 54 0.54 39 0.39 30 0.30 23 0.23

20 1243 294 2.94 151 1.51 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

21 5073 358 3.58 166 1.66 95 0.95 61 0.61 43 0.43 32 0.32 24 0.24

22 527 223 2.23 130 1.30 82 0.82 56 0.56 40 0.40 30 0.30 24 0.24

23 482 215 2.15 127 1.27 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

24 1240 294 2.94 151 1.51 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

25 760 256 2.56 140 1.40 86 0.86 57 0.57 41 0.41 31 0.31 24 0.24

26 312 173 1.73 111 1.11 74 0.74 52 0.52 38 0.38 29 0.29 23 0.23

27 250 152 1.52 102 1.02 70 0.70 50 0.50 37 0.37 28 0.28 22 0.22

28 222 141 1.41 97 0.97 68 0.68 49 0.49 36 0.36 28 0.28 22 0.22

29 376 191 1.91 118 1.18 77 0.77 53 0.53 39 0.39 30 0.30 23 0.23

30 430 204 2.04 123 1.23 79 0.79 54 0.54 39 0.39 30 0.30 23 0.23

31 1465 305 3.05 154 1.54 91 0.91 60 0.60 42 0.42 31 0.31 24 0.24

32 253 153 1.53 103 1.03 70 0.70 50 0.50 37 0.37 28 0.28 23 0.23

33 587 233 2.33 133 1.33 83 0.83 56 0.56 40 0.40 30 0.30 24 0.24

34 340 181 1.81 114 1.14 76 0.76 53 0.53 39 0.39 29 0.29 23 0.23

35 278 162 1.62 107 1.07 72 0.72 51 0.51 38 0.38 29 0.29 23 0.23

36 482 215 2.15 127 1.27 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

37 872 267 2.67 143 1.43 87 0.87 58 0.58 41 0.41 31 0.31 24 0.24

38 1778 317 3.17 156 1.56 92 0.92 60 0.60 42 0.42 31 0.31 24 0.24

39 347 183 1.83 115 1.15 76 0.76 53 0.53 39 0.39 29 0.29 23 0.23

40 371 189 1.89 118 1.18 77 0.77 53 0.53 39 0.39 29 0.29 23 0.23

41 1201 292 2.92 150 1.50 89 0.89 59 0.59 42 0.42 31 0.31 24 0.24

42 328 178 1.78 113 1.13 75 0.75 52 0.52 38 0.38 29 0.29 23 0.23

43 386 193 1.93 119 1.19 78 0.78 54 0.54 39 0.39 30 0.30 23 0.23

44 1142 288 2.88 149 1.49 89 0.89 59 0.59 42 0.42 31 0.31 24 0.24

45 244 150 1.50 101 1.01 70 0.70 50 0.50 37 0.37 28 0.28 22 0.22

46 1408 302 3.02 153 1.53 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

47 737 253 2.53 139 1.39 86 0.86 57 0.57 41 0.41 31 0.31 24 0.24

48 618 238 2.38 134 1.34 84 0.84 56 0.56 40 0.40 30 0.30 24 0.24
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Table A.5 Sample size (SS) and sampling time (ST) requirements of case study

instances for each option (unit survey time=0.01) – continued
PL=0.05 PL=0.075 PL=0.1 PL=0.125 PL=0.150 PL=0.175 PL=0.2

# Population Size SS1 ST1 SS2 ST2 SS3 ST3 SS4 ST4 SS5 ST5 SS6 ST6 SS7 ST7

49 1193 291 2.91 150 1.50 89 0.89 59 0.59 42 0.42 31 0.31 24 0.24

50 497 217 2.17 128 1.28 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

51 3101 342 3.42 162 1.62 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

52 368 189 1.89 117 1.17 77 0.77 53 0.53 39 0.39 29 0.29 23 0.23

53 1009 279 2.79 147 1.47 88 0.88 58 0.58 41 0.41 31 0.31 24 0.24

54 1218 293 2.93 150 1.50 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

55 3049 342 3.42 162 1.62 94 0.94 61 0.61 43 0.43 32 0.32 24 0.24

56 517 221 2.21 129 1.29 82 0.82 56 0.56 40 0.40 30 0.30 23 0.23

57 1563 309 3.09 155 1.55 91 0.91 60 0.60 42 0.42 31 0.31 24 0.24

58 162 115 1.15 84 0.84 61 0.61 45 0.45 34 0.34 27 0.27 22 0.22

59 717 251 2.51 139 1.39 85 0.85 57 0.57 41 0.41 31 0.31 24 0.24

60 112 87 0.87 68 0.68 52 0.52 40 0.40 32 0.32 25 0.25 20 0.20

61 2611 335 3.35 161 1.61 93 0.93 61 0.61 43 0.43 31 0.31 24 0.24

62 992 278 2.78 146 1.46 88 0.88 58 0.58 41 0.41 31 0.31 24 0.24

63 300 169 1.69 110 1.10 73 0.73 52 0.52 38 0.38 29 0.29 23 0.23

64 182 124 1.24 89 0.89 64 0.64 47 0.47 35 0.35 27 0.27 22 0.22

65 170 119 1.19 86 0.86 62 0.62 46 0.46 35 0.35 27 0.27 22 0.22

66 744 254 2.54 140 1.40 86 0.86 57 0.57 41 0.41 31 0.31 24 0.24

67 553 227 2.27 131 1.31 82 0.82 56 0.56 40 0.40 30 0.30 24 0.24

68 2029 324 3.24 158 1.58 92 0.92 60 0.60 42 0.42 31 0.31 24 0.24

69 144 105 1.05 79 0.79 58 0.58 44 0.44 34 0.34 26 0.26 21 0.21

70 147 107 1.07 80 0.80 59 0.59 44 0.44 34 0.34 26 0.26 21 0.21

71 581 232 2.32 133 1.33 83 0.83 56 0.56 40 0.40 30 0.30 24 0.24

72 2112 326 3.26 159 1.59 92 0.92 60 0.60 42 0.42 31 0.31 24 0.24

73 193 129 1.29 91 0.91 65 0.65 47 0.47 36 0.36 28 0.28 22 0.22

74 397 196 1.96 120 1.20 78 0.78 54 0.54 39 0.39 30 0.30 23 0.23

75 139 103 1.03 77 0.77 58 0.58 43 0.43 33 0.33 26 0.26 21 0.21

76 754 255 2.55 140 1.40 86 0.86 57 0.57 41 0.41 31 0.31 24 0.24

77 241 149 1.49 101 1.01 69 0.69 50 0.50 37 0.37 28 0.28 22 0.22

78 371 189 1.89 118 1.18 77 0.77 53 0.53 39 0.39 29 0.29 23 0.23

79 146 106 1.06 79 0.79 59 0.59 44 0.44 34 0.34 26 0.26 21 0.21

80 394 195 1.95 120 1.20 78 0.78 54 0.54 39 0.39 30 0.30 23 0.23

81 203 134 1.34 93 0.93 66 0.66 48 0.48 36 0.36 28 0.28 22 0.22

82 375 191 1.91 118 1.18 77 0.77 53 0.53 39 0.39 30 0.30 23 0.23

83 223 142 1.42 97 0.97 68 0.68 49 0.49 36 0.36 28 0.28 22 0.22

84 571 230 2.30 132 1.32 83 0.83 56 0.56 40 0.40 30 0.30 24 0.24

85 414 200 2.00 122 1.22 79 0.79 54 0.54 39 0.39 30 0.30 23 0.23

86 1204 292 2.92 150 1.50 90 0.90 59 0.59 42 0.42 31 0.31 24 0.24

87 650 242 2.42 136 1.36 84 0.84 57 0.57 41 0.41 30 0.30 24 0.24

88 476 213 2.13 126 1.26 81 0.81 55 0.55 40 0.40 30 0.30 23 0.23

89 413 200 2.00 122 1.22 79 0.79 54 0.54 39 0.39 30 0.30 23 0.23

90 672 245 2.45 137 1.37 85 0.85 57 0.57 41 0.41 31 0.31 24 0.24

91 808 261 2.61 142 1.42 86 0.86 58 0.58 41 0.41 31 0.31 24 0.24

92 199 132 1.32 93 0.93 65 0.65 48 0.48 36 0.36 28 0.28 22 0.22

93 432 204 2.04 123 1.23 79 0.79 54 0.54 39 0.39 30 0.30 23 0.23
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APPENDIX B

SOLUTIONS OF RANDOM TEST INSTANCES

Table B.1: Route and option assignment in CPLEX solutions of random test instances

Instance

# Name Route option

1 30N_10C_tmax3_geo 0-28-12-26-21-0 6-6-6-6

2 30N_10C_tmax3_hier 0-28-12-26-21-0 6-6-6-6

3 30N_10C_tmax3_rand 0-6-13-28-27-0 6-4-6-6

4 30N_10C_tmax5_geo 0-28-12-4-21-13-5-18-0 7-7-7-7-7-7-7

5 30N_10C_tmax5_hier 0-27-10-11-19-7-18-6-0 6-6-7-6-6-6-7

6 30N_10C_tmax5_rand 0-6-13-2-22-21-26-12-28-0 6-7-7-7-6-6-6-7

7 30N_10C_tmax7_geo 0-21-4-12-1-30-10-18-5-6-0 7-7-7-7-6-6-6-7-7

8 30N_10C_tmax7_hier 0-13-14-16-17-5-18-7-19-11-27-0 7-7-7-7-7-7-7-7-7-7

9 30N_10C_tmax7_rand 0-7-18-6-13-2-22-21-26-12-28-0 6-6-6-6-6-6-6-6-6-6

10 30N_15C_tmax3_geo 0-28-26-21-13-0 6-6-6-6

11 30N_15C_tmax3_hier 0-13-6-18-27-0 5-6-6-6

12 30N_15C_tmax3_rand 0-13-6-18-27-0 5-6-6-6

13 30N_15C_tmax5_geo 0-6-18-7-11-10-1-27-0 7-6-7-7-6-6-6

14 30N_15C_tmax5_hier 0-27-1-30-20-9-3-12-26-0 7-7-6-7-7-7-7-7

15 30N_15C_tmax5_rand 0-6-13-2-21-4-26-12-28-0 7-7-7-6-6-6-7-7

16 30N_15C_tmax7_geo 0-26-4-22-2-13-18-7-10-1-27-0 7-7-7-7-6-7-7-6-7-7

17 30N_15C_tmax7_hier 0-6-13-2-22-21-4-25-24-29-3-28-0 7-7-7-7-6-6-7-6-7-7-7

18 30N_15C_tmax7_rand 0-27-1-30-10-11-19-7-18-6-13-26-0 6-7-6-6-7-7-7-6-7-7-7

19 50N_10C_tmax3_geo 0-27-31-18-6-0 6-7-7-6

20 50N_10C_tmax3_hier 0-27-50-12-26-0 6-6-6-5

21 50N_10C_tmax3_rand 0-12-50-1-27-0 6-6-6-5

22 50N_10C_tmax5_geo 0-13-42-37-18-31-1-27-0 7-6-7-7-7-7-7

23 50N_10C_tmax5_hier 0-26-12-3-33-9-20-1-27-0 6-6-7-7-7-7-7-7

24 50N_10C_tmax5_rand 0-18-7-31-1-50-12-26-40-0 7-7-7-7-7-6-7-7

25 50N_10C_tmax7_geo 0-26-4-21-42-37-8-48-31-1-0 7-7-7-7-7-7-7-7-7

26 50N_10C_tmax7_hier 0-6-37-16-8-46-47-19-10-31-27-0 6-6-6-7-7-6-6-7-7-6

27 50N_10C_tmax7_rand 0-40-21-41-2-13-18-48-7-31-27-0 6-7-6-6-7-6-6-6-7-6

28 50N_10C_tmax10_geo 0-13-42-37-48-7-31-33-34-29-12-0 6-5-5-5-5-5-4-5-5-3

29 50N_10C_tmax10_hier 0-26-12-3-29-34-9-20-33-50-28-0 4-3-4-4-4-4-4-4-4-4

30 50N_10C_tmax10_rand 0-40-21-26-12-50-1-31-7-45-18-0 4-4-4-3-4-6-4-4-4-4

31 50N_15C_tmax3_geo 0-27-31-18-6-0 6-7-7-6

32 50N_15C_tmax3_hier 0-28-12-21-40-0 6-6-5-6

33 50N_15C_tmax3_rand 0-28-12-21-40-0 6-6-5-6

34 50N_15C_tmax5_geo 0-6-8-48-7-31-1-27-0 6-7-6-6-6-6-6

35 50N_15C_tmax5_hier 0-7-48-47-19-11-10-31-27-0 6-7-7-6-7-7-7-7
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Table B.1 Route and option assignment in CPLEX solutions of random test

instances – continued

Instance

# Name Route option

36 50N_15C_tmax5_rand 0-26-40-21-2-42-37-6-13-0 7-7-7-7-6-7-6-7

37 50N_15C_tmax7_geo 0-6-18-8-47-19-10-30-1-12-28-0 6-6-7-7-6-6-6-6-7

38 50N_15C_tmax7_hier 0-6-5-8-46-47-19-11-10-31-1-50-28-0 7-7-7-7-7-7-7-7-7-7-7-7

39 50N_15C_tmax7_rand 0-27-1-31-7-48-8-45-17-37-13-40-0 6-6-7-6-6-7-7-7-6-7-7

40 50N_15C_tmax10_geo 0-28-3-33-9-30-10-19-47-8-5-16-37-42-2-0 6-6-6-6-6-7-6-6-7-7-6-6-6-6

41 50N_15C_tmax10_hier 0-6-5-8-46-36-47-19-11-10-31-1-9-33-50-27-0 6-7-7-6-6-6-6-6-6-6-6-6-6-6-6

42 50N_15C_tmax10_rand 0-40-21-22-15-42-37-5-45-8-31-1-50-33-12-28-0 6-6-7-7-6-6-6-7-7-7-7-6-6-6

43 50N_20C_tmax5_geo 0-13-6-8-48-7-31-27-0 6-6-7-6-6-6-6

44 50N_20C_tmax5_hier 0-13-2-41-22-21-26-12-28-27-0 7-7-7-7-7-7-7-7-7

45 50N_20C_tmax5_rand 0-40-21-12-3-33-50-1-27-0 7-6-5-7-6-7-6-7

46 50N_20C_tmax7_geo 0-28-12-50-30-10-19-48-8-18-6-13-0 7-6-7-7-7-6-7-7-7-6-7

47 50N_20C_tmax7_hier 0-27-28-12-26-21-4-39-23-22-41-2-13-0 7-7-5-7-6-7-6-7-6-7-7-7

48 50N_20C_tmax7_rand 0-18-7-10-30-20-9-33-3-50-1-27-0 7-6-6-6-7-7-6-7-6-6-6

49 50N_20C_tmax10_geo 0-13-42-37-16-5-18-8-48-19-10-30-9-33-12-28-0 7-6-6-7-7-6-7-6-6-7-7-7-6-6-7

50 50N_20C_tmax10_hier 0-27-28-50-1-31-10-19-47-48-7-18-5-17-16-37-13-6-0 7-7-7-7-7-7-6-7-6-6-7-7-7-7-6-7-7

51 50N_20C_tmax10_rand 0-27-1-30-10-31-7-19-36-47-48-8-45-17-16-37-13-40-0 7-7-7-7-7-6-6-7-7-7-6-7-7-7-7-7-7

52 50N_25C_tmax5_geo 0-27-31-7-18-6-13-40-26-0 7-7-6-7-6-7-7-6

53 50N_25C_tmax5_hier 0-40-21-26-12-3-33-50-28-27-0 7-7-7-7-7-7-7-7-7

54 50N_25C_tmax5_rand 0-40-21-26-12-3-33-50-1-27-0 7-7-7-6-7-7-7-7-7

55 50N_25C_tmax7_geo 0-26-40-13-6-18-7-48-47-19-31-1-27-0 7-7-7-7-7-7-7-7-7-7-7-7

56 50N_25C_tmax7_hier 0-13-37-42-43-15-41-22-21-26-12-28-27-0 7-6-6-7-7-6-7-7-6-6-7-7

57 50N_25C_tmax7_rand 0-27-31-1-50-33-3-12-26-21-40-13-6-0 6-7-6-7-7-7-6-6-7-7-7-6

58 50N_25C_tmax10_geo 0-40-13-6-18-7-48-47-36-19-10-32-30-33-50-12-28-0 7-7-6-7-6-6-7-6-6-7-6-7-7-7-6-7

59 50N_25C_tmax10_hier 0-28-12-26-40-2-42-37-16-17-45-8-46-47-19-11-10-31-27-0 7-6-7-7-7-6-7-7-7-7-7-7-7-7-7-7-7-7

60 50N_25C_tmax10_rand 0-26-40-21-2-42-14-44-16-5-17-45-8-48-19-11-10-31-27-0 7-7-6-7-7-7-7-7-7-7-7-6-7-7-7-7-7-7

61 75N_15C_tmax5_geo 0-53-26-21-2-42-59-18-52-0 7-7-7-7-7-7-7-7

62 75N_15C_tmax5_hier 0-53-21-72-74-22-41-2-13-6-0 7-6-6-7-7-6-7-6-6

63 75N_15C_tmax5_rand 0-27-69-1-50-12-21-73-40-58-53-0 7-7-7-7-7-7-7-7-7-7

64 75N_15C_tmax7_geo 0-18-48-19-62-10-1-26-21-40-53-0 6-6-6-6-7-6-6-6-6-6

65 75N_15C_tmax7_hier 0-53-21-72-74-56-39-25-55-54-12-1-69-0 7-6-7-7-6-5-6-6-7-6-6-6

66 75N_15C_tmax7_rand 0-27-6-61-16-44-14-2-73-21-40-58-53-0 6-6-7-6-6-6-7-6-6-7-6-7

67 75N_15C_tmax10_geo 0-59-18-48-19-62-30-51-9-29-55-4-21-40-53-0 6-7-6-6-6-6-6-6-6-6-6-6-7-7

68 75N_15C_tmax10_hier 0-26-54-55-25-67-39-56-74-73-58-5-45-18-52-0 6-6-6-6-6-6-5-6-6-6-6-6-4-6

69 75N_15C_tmax10_rand 0-53-58-40-21-73-41-2-13-6-18-48-62-31-69-27-0 6-5-6-5-6-5-5-6-6-4-6-5-5-6-6

70 75N_25C_tmax5_geo 0-53-13-59-61-5-18-69-27-0 6-7-7-6-6-7-6-6

71 75N_25C_tmax5_hier 0-13-2-41-22-74-72-73-21-40-58-53-0 7-7-7-7-7-7-7-7-7-7-7

72 75N_25C_tmax5_rand 0-28-26-21-72-74-22-41-2-58-53-0 6-7-6-7-7-7-6-7-7-7

73 75N_25C_tmax7_geo 0-53-13-59-60-18-8-47-19-11-10-31-27-0 7-6-7-7-7-7-6-7-7-7-6-7

74 75N_25C_tmax7_hier 0-53-40-21-73-72-74-22-75-56-39-25-55-54-12-28-0 7-7-6-7-7-7-7-7-6-7-7-7-6-6

75 75N_25C_tmax7_rand 0-53-58-40-21-72-22-75-56-4-12-50-1-69-27-0 7-6-7-6-7-7-7-7-7-6-6-7-7-7

76 75N_25C_tmax10_geo 0-53-13-59-61-5-18-8-47-19-11-10-70-51-9-33-68-12-28-0 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7

77 75N_25C_tmax10_hier 0-69-1-70-30-20-71-35-34-29-24-4-56-75-74-72-73-21-40-58-53-0 7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-6-7-6-7

78 75N_25C_tmax10_rand 0-53-6-59-37-61-16-44-14-42-57-22-74-72-21-26-12-68-3-50-28-0 7-7-7-7-7-7-7-7-7-7-7-7-7-6-7-7-7-7-7-6
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Table B.3: MSTSd Algorithm Solutions with different tabu tenures for random in-

stances

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

1 30N_10C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 30N_10C_tmax3_hier 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

3 30N_10C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

4 30N_10C_tmax5_geo 14.365 14.365 14.365 14.365 14.365 14.365 14.365 14.365

5 30N_10C_tmax5_hier 0.000 0.004 0.004 0.004 0.004 0.004 0.004 0.004

6 30N_10C_tmax5_rand 0.010 0.013 0.013 0.010 0.013 0.010 0.013 0.013

7 30N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 30N_10C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 30N_10C_tmax7_rand 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.003

10 30N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 30N_15C_tmax3_hier 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

12 30N_15C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

13 30N_15C_tmax5_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 30N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 30N_15C_tmax5_rand 12.603 0.007 0.007 0.007 0.007 0.007 0.007 0.007

16 30N_15C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

17 30N_15C_tmax7_hier 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 30N_15C_tmax7_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 50N_10C_tmax3_geo 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

20 50N_10C_tmax3_hier 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

21 50N_10C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 50N_10C_tmax5_geo 0.004 14.362 0.004 0.004 0.004 0.004 0.004 14.361

23 50N_10C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

24 50N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 50N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 50N_10C_tmax7_hier -0.005 -0.003 -0.008 -0.003 -0.008 -0.003 0.000 0.000

27 50N_10C_tmax7_rand 0.003 0.000 0.000 0.001 0.003 0.003 0.003 0.000

28 50N_10C_tmax10_geo 0.007 0.003 0.005 0.007 0.000 0.007 0.007 0.000

29 50N_10C_tmax10_hier 0.005 0.007 0.007 0.000 0.000 0.000 0.003 0.003

30 50N_10C_tmax10_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

31 50N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 50N_15C_tmax3_hier 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020

33 50N_15C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

34 50N_15C_tmax5_geo 0.000 0.000 0.008 0.012 0.004 0.000 0.000 0.016

35 50N_15C_tmax5_hier 0.003 0.003 0.000 0.000 0.000 0.003 0.000 0.000

36 50N_15C_tmax5_rand 0.007 0.004 0.000 0.000 0.000 0.000 0.000 0.000

37 50N_15C_tmax7_geo 0.003 0.003 0.013 0.003 0.003 0.011 0.003 0.005

38 50N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

39 50N_15C_tmax7_rand -0.003 -0.003 -0.003 -0.003 -0.003 0.002 -0.003 -0.003

40 50N_15C_tmax10_geo 0.002 0.000 0.002 0.002 0.002 0.000 0.000 0.000

41 50N_15C_tmax10_hier 0.000 0.000 0.000 0.000 0.000 0.004 0.004 0.005
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Table B.3 MSTSd Algorithm Solutions with different tabu tenures for random

instances – continued

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

42 50N_15C_tmax10_rand 0.000 0.003 0.001 0.000 0.000 0.000 0.002 0.003

43 50N_20C_tmax5_geo 0.012 0.000 0.012 0.008 0.008 0.000 0.000 0.012

44 50N_20C_tmax5_hier 0.000 0.000 11.224 11.224 11.224 11.227 11.224 11.224

45 50N_20C_tmax5_rand 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000

46 50N_20C_tmax7_geo 0.002 0.005 0.007 0.007 0.002 0.007 0.002 0.002

47 50N_20C_tmax7_hier 0.008 0.008 0.006 0.008 0.006 0.008 0.008 0.008

48 50N_20C_tmax7_rand -9.155 -9.155 -9.158 -9.155 -9.155 -9.155 -9.155 -9.155

49 50N_20C_tmax10_geo 0.007 0.002 0.000 0.002 0.004 0.002 0.002 0.007

50 50N_20C_tmax10_hier 0.003 0.003 0.003 0.003 0.002 0.003 0.006 0.003

51 50N_20C_tmax10_rand 0.003 0.001 0.003 0.001 0.001 0.003 0.001 0.003

52 50N_25C_tmax5_geo 0.000 0.000 0.003 0.003 0.003 0.000 0.003 0.003

53 50N_25C_tmax5_hier 11.258 11.258 11.258 11.258 11.258 11.258 11.258 11.258

54 50N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

55 50N_25C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

56 50N_25C_tmax7_hier 0.005 0.007 0.005 0.003 0.003 0.003 0.003 0.003

57 50N_25C_tmax7_rand 0.002 0.002 0.004 0.002 0.002 0.005 0.005 0.002

58 50N_25C_tmax10_geo 0.007 0.005 0.007 0.007 0.005 0.007 0.006 0.007

59 50N_25C_tmax10_hier 0.002 0.000 0.001 0.002 0.001 0.003 0.001 0.002

60 50N_25C_tmax10_rand 0.000 0.001 0.003 0.001 0.003 0.003 0.001 0.003

61 75N_15C_tmax5_geo 12.595 0.000 0.000 0.000 0.000 0.000 0.000 0.000

62 75N_15C_tmax5_hier 0.009 0.009 0.000 0.007 0.009 0.012 0.015 0.000

63 75N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

64 75N_15C_tmax7_geo 0.005 0.003 0.000 0.003 0.005 0.005 0.013 0.011

65 75N_15C_tmax7_hier -0.001 -0.001 0.000 -0.001 0.006 0.006 -0.001 -0.002

66 75N_15C_tmax7_rand -8.370 -8.373 -8.373 -8.369 -8.370 -8.371 -8.371 -8.371

67 75N_15C_tmax10_geo 0.008 0.006 0.011 0.006 0.008 0.007 0.006 0.008

68 75N_15C_tmax10_hier -7.153 -7.162 -7.151 -7.162 -7.159 -7.155 -7.164 -7.151

69 75N_15C_tmax10_rand 0.005 0.000 0.006 0.003 0.000 0.003 0.002 0.005

70 75N_25C_tmax5_geo 0.007 0.000 0.000 0.000 0.000 0.000 0.000 0.003

71 75N_25C_tmax5_hier 9.183 9.190 9.188 9.188 9.190 9.190 9.190 9.188

72 75N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

73 75N_25C_tmax7_geo 0.002 0.004 0.002 0.002 0.002 0.002 0.004 0.002

74 75N_25C_tmax7_hier 0.007 0.007 0.004 0.007 0.004 0.006 6.728 0.007

75 75N_25C_tmax7_rand 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004

76 75N_25C_tmax10_geo 5.591 5.591 5.591 5.590 5.590 5.592 5.591 5.591

77 75N_25C_tmax10_hier 0.001 0.003 0.003 5.030 5.031 0.003 0.003 5.030

78 75N_25C_tmax10_rand 0.001 5.031 5.026 0.003 5.030 0.002 0.002 5.031

Averages

Geo 1.255 1.321 0.771 0.770 0.770 0.770 0.770 1.323

Hier 0.515 0.515 0.946 1.140 1.140 0.947 1.205 1.140

Rand -0.187 -0.479 -0.479 -0.672 -0.479 -0.672 -0.672 -0.479

Overall 0.527 0.453 0.413 0.412 0.477 0.349 0.434 0.662
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Table B.4: MSTSh Algorithm Solutions with different tabu tenures for random in-

stances

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

1 30N_10C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 30N_10C_tmax3_hier 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

3 30N_10C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

4 30N_10C_tmax5_geo 14.365 14.365 14.365 14.365 14.365 14.365 14.365 14.365

5 30N_10C_tmax5_hier 0.000 0.004 0.004 0.004 0.004 0.004 0.004 0.004

6 30N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 30N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 30N_10C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 30N_10C_tmax7_rand 0.011 0.013 0.016 0.003 0.008 0.008 0.003 0.013

10 30N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 30N_15C_tmax3_hier 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

12 30N_15C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

13 30N_15C_tmax5_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 30N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 30N_15C_tmax5_rand 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 30N_15C_tmax7_geo 0.000 0.000 0.000 0.000 0.003 0.000 0.003 0.000

17 30N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 30N_15C_tmax7_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 50N_10C_tmax3_geo 0.007 0.007 0.007 0.007 0.014 0.007 0.007 0.007

20 50N_10C_tmax3_hier 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

21 50N_10C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 50N_10C_tmax5_geo 0.004 0.000 0.004 14.358 0.004 0.004 14.361 0.004

23 50N_10C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

24 50N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 50N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 50N_10C_tmax7_hier -0.013 0.000 0.000 -0.008 0.000 -0.013 0.000 -0.008

27 50N_10C_tmax7_rand 0.000 0.003 0.003 0.003 0.003 0.003 0.003 0.000

28 50N_10C_tmax10_geo 0.000 0.005 0.003 0.007 0.008 0.003 0.003 0.000

29 50N_10C_tmax10_hier 0.007 0.010 0.005 0.007 0.007 0.008 0.010 0.007

30 50N_10C_tmax10_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

31 50N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 50N_15C_tmax3_hier 0.013 0.013 0.020 0.013 0.013 0.013 0.013 0.020

33 50N_15C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

34 50N_15C_tmax5_geo 0.004 0.000 0.004 0.000 0.000 0.004 0.000 0.000

35 50N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

36 50N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

37 50N_15C_tmax7_geo 0.003 0.003 0.003 0.003 0.000 0.003 0.003 0.003

38 50N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

39 50N_15C_tmax7_rand -0.003 -0.003 -0.003 -0.003 -0.003 0.000 -0.003 -0.003

40 50N_15C_tmax10_geo 0.002 0.000 0.000 0.000 0.002 0.000 0.006 0.002
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Table B.4 MSTSh Algorithm Solutions with different tabu tenures for random

instances – continued

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

41 50N_15C_tmax10_hier 0.000 0.000 0.004 0.000 0.004 0.000 0.000 0.000

42 50N_15C_tmax10_rand 0.001 0.000 0.000 0.003 0.000 0.002 0.003 0.000

43 50N_20C_tmax5_geo 0.004 0.000 0.000 0.000 0.004 0.004 0.012 0.004

44 50N_20C_tmax5_hier 0.000 11.224 0.000 0.000 0.000 0.000 0.000 0.000

45 50N_20C_tmax5_rand 0.000 0.006 0.000 0.000 0.006 0.006 0.006 0.000

46 50N_20C_tmax7_geo 0.005 0.003 0.007 0.005 0.005 0.002 0.005 0.002

47 50N_20C_tmax7_hier 0.008 0.006 0.006 0.006 0.000 0.000 0.008 0.006

48 50N_20C_tmax7_rand -9.158 -9.155 -9.158 -9.155 -9.158 -9.155 -9.155 -9.155

49 50N_20C_tmax10_geo 0.007 0.002 0.002 0.002 0.007 0.002 0.002 0.000

50 50N_20C_tmax10_hier 0.003 0.005 0.003 0.003 0.003 0.003 0.003 0.002

51 50N_20C_tmax10_rand 0.001 0.001 0.001 0.001 0.001 0.003 0.001 0.001

52 50N_25C_tmax5_geo 0.000 0.000 0.003 0.000 0.003 0.000 0.003 0.000

53 50N_25C_tmax5_hier 11.252 11.252 11.252 0.000 11.252 11.252 0.000 0.000

54 50N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

55 50N_25C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

56 50N_25C_tmax7_hier 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

57 50N_25C_tmax7_rand 0.000 0.002 0.002 0.002 0.002 0.005 0.002 0.002

58 50N_25C_tmax10_geo 0.000 0.000 0.003 0.007 0.005 0.007 0.003 0.007

59 50N_25C_tmax10_hier 0.001 0.001 0.002 0.001 0.001 0.002 0.001 0.001

60 50N_25C_tmax10_rand 0.003 0.000 0.001 0.003 5.588 5.591 0.000 5.588

61 75N_15C_tmax5_geo 0.000 0.000 0.000 0.000 12.595 12.595 0.000 0.000

62 75N_15C_tmax5_hier 0.009 0.009 0.009 0.010 0.007 0.009 0.000 0.009

63 75N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

64 75N_15C_tmax7_geo 0.008 0.005 0.003 0.000 0.003 0.003 0.003 0.010

65 75N_15C_tmax7_hier 0.001 0.006 0.006 -0.001 0.006 -8.364 -8.364 -8.364

66 75N_15C_tmax7_rand -8.370 -8.371 -8.373 -8.370 -8.369 -8.371 -8.371 -8.371

67 75N_15C_tmax10_geo 0.000 0.010 0.010 0.009 0.007 0.006 0.009 0.010

68 75N_15C_tmax10_hier -7.153 -7.166 -7.164 -7.168 -7.166 -7.166 -7.160 -7.168

69 75N_15C_tmax10_rand 0.000 0.000 0.000 0.005 0.002 0.002 0.003 0.003

70 75N_25C_tmax5_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

71 75N_25C_tmax5_hier 9.188 9.188 9.185 9.190 9.188 9.190 9.183 9.188

72 75N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

73 75N_25C_tmax7_geo 0.000 0.002 0.002 0.004 0.004 0.002 0.004 0.002

74 75N_25C_tmax7_hier 0.000 6.726 0.004 0.006 6.726 0.006 0.000 0.006

75 75N_25C_tmax7_rand 0.004 0.004 0.004 0.004 0.004 0.002 0.002 0.004

76 75N_25C_tmax10_geo 5.591 5.591 5.593 5.587 5.590 5.590 5.590 5.590

77 75N_25C_tmax10_hier 0.000 0.000 5.030 5.027 0.001 0.003 5.029 5.028

78 75N_25C_tmax10_rand 0.002 5.030 5.026 5.027 5.030 5.030 5.030 5.030

Averages

Geo 0.769 0.769 0.770 1.321 1.255 1.254 1.322 0.769

Hier 0.513 1.204 0.707 0.274 0.772 0.191 -0.048 -0.048

Rand -0.673 -0.479 -0.480 -0.479 -0.264 -0.264 -0.479 -0.264

Overall 0.203 0.498 0.332 0.372 0.587 0.394 0.265 0.152
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Table B.5: MSTSr Algorithm Solutions with different tabu tenures for random in-

stances

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

1 30N_10C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 30N_10C_tmax3_hier 0.007 0.007 0.007 0.007 0.007 0.007 0.007 0.007

3 30N_10C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

4 30N_10C_tmax5_geo 14.365 14.365 14.365 14.365 14.365 14.365 14.365 14.365

5 30N_10C_tmax5_hier 0.000 0.004 0.004 0.004 0.004 0.004 0.004 0.004

6 30N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 30N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 30N_10C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 30N_10C_tmax7_rand 0.013 0.008 0.003 0.000 0.008 0.000 0.016 0.003

10 30N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 30N_15C_tmax3_hier 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013

12 30N_15C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

13 30N_15C_tmax5_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

14 30N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 30N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

16 30N_15C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.003 0.003 0.003

17 30N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 30N_15C_tmax7_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 50N_10C_tmax3_geo 0.007 0.007 0.007 0.007 0.014 0.014 0.014 0.007

20 50N_10C_tmax3_hier 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

21 50N_10C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 50N_10C_tmax5_geo 0.004 0.004 0.000 0.000 0.000 0.004 0.004 0.000

23 50N_10C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

24 50N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 50N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 50N_10C_tmax7_hier 0.000 -0.008 -0.013 0.000 -0.013 -0.013 0.000 -0.008

27 50N_10C_tmax7_rand 0.000 0.000 0.003 0.003 0.003 0.003 0.003 0.000

28 50N_10C_tmax10_geo 0.000 0.003 0.000 0.000 0.003 0.005 0.003 0.005

29 50N_10C_tmax10_hier 0.005 0.010 0.005 0.007 0.003 0.008 0.000 0.005

30 50N_10C_tmax10_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

31 50N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 50N_15C_tmax3_hier 0.013 0.020 0.013 0.013 0.013 0.020 0.013 0.013

33 50N_15C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

34 50N_15C_tmax5_geo 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.000

35 50N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

36 50N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

37 50N_15C_tmax7_geo 0.003 0.003 0.000 0.003 0.003 0.003 0.003 0.003

38 50N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

39 50N_15C_tmax7_rand -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003 -0.003

40 50N_15C_tmax10_geo 0.002 0.000 0.002 0.000 0.000 0.002 0.000 0.000
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Table B.5 MSTSr Algorithm Solutions with different tabu tenures for random

instances – continued

Instance % Gap with tabu tenure

# Name t3 t4 t5 t6 t7 t8 t9 t10

41 50N_15C_tmax10_hier 0.000 0.007 0.000 0.002 0.002 0.000 0.009 0.002

42 50N_15C_tmax10_rand 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

43 50N_20C_tmax5_geo 0.000 0.012 0.000 0.000 0.000 0.000 0.008 0.012

44 50N_20C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000 11.224

45 50N_20C_tmax5_rand 0.000 0.003 0.003 0.000 0.000 0.000 0.000 0.000

46 50N_20C_tmax7_geo 0.005 0.005 0.007 0.005 0.005 0.005 0.002 0.005

47 50N_20C_tmax7_hier 0.000 0.000 0.006 0.008 0.006 0.006 0.008 0.006

48 50N_20C_tmax7_rand -9.158 -9.155 -9.155 -9.155 -9.155 -9.155 -9.158 -9.155

49 50N_20C_tmax10_geo 0.005 0.005 0.002 0.002 0.002 0.000 0.002 0.002

50 50N_20C_tmax10_hier 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

51 50N_20C_tmax10_rand 0.001 0.001 0.001 0.001 0.003 0.001 0.003 0.002

52 50N_25C_tmax5_geo 0.000 0.000 0.003 0.000 0.000 0.000 0.000 0.000

53 50N_25C_tmax5_hier 11.252 11.252 11.252 11.252 11.252 11.252 11.252 0.000

54 50N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

55 50N_25C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

56 50N_25C_tmax7_hier 0.003 0.005 0.003 0.003 0.003 0.007 0.003 0.003

57 50N_25C_tmax7_rand 0.002 0.002 0.002 0.002 0.005 0.002 0.002 0.002

58 50N_25C_tmax10_geo 0.007 0.007 0.007 0.000 0.007 0.007 0.007 0.007

59 50N_25C_tmax10_hier 0.001 0.001 0.001 0.003 0.003 0.001 0.002 0.001

60 50N_25C_tmax10_rand 0.000 0.000 0.001 0.003 0.000 0.003 0.001 0.003

61 75N_15C_tmax5_geo 12.595 0.000 12.595 12.595 12.595 0.000 0.000 0.000

62 75N_15C_tmax5_hier 0.006 0.004 0.009 0.009 0.012 0.000 0.009 0.012

63 75N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

64 75N_15C_tmax7_geo 0.003 0.000 0.000 0.005 -10.049 0.000 0.003 0.006

65 75N_15C_tmax7_hier 0.004 -0.002 0.006 -8.364 0.006 0.013 0.006 -0.001

66 75N_15C_tmax7_rand -8.371 -8.372 -8.370 -8.371 -8.371 -8.370 -8.370 -8.371

67 75N_15C_tmax10_geo 0.007 0.008 0.006 0.006 0.006 0.015 0.006 0.013

68 75N_15C_tmax10_hier -7.160 -7.156 -7.166 -7.156 -7.155 -7.160 -7.162 -7.158

69 75N_15C_tmax10_rand 0.010 0.000 0.005 0.003 0.006 0.002 0.006 0.003

70 75N_25C_tmax5_geo 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.000

71 75N_25C_tmax5_hier 9.190 9.185 9.190 9.185 9.188 9.188 9.188 9.190

72 75N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

73 75N_25C_tmax7_geo 0.002 0.000 0.002 0.002 0.000 0.000 0.004 0.004

74 75N_25C_tmax7_hier 6.725 0.007 0.004 6.726 0.004 0.000 0.005 0.005

75 75N_25C_tmax7_rand 0.002 0.004 0.004 0.004 0.004 0.002 0.002 0.004

76 75N_25C_tmax10_geo 5.590 5.590 5.591 5.591 5.590 5.591 5.591 5.593

77 75N_25C_tmax10_hier 5.030 0.001 0.003 5.030 5.028 0.003 5.027 5.030

78 75N_25C_tmax10_rand 5.030 5.030 0.002 5.026 5.030 0.002 5.026 0.002

Averages

Geo 1.254 0.770 1.253 1.253 0.867 0.770 0.770 0.770

Hier 0.965 0.514 0.513 0.644 0.707 0.514 0.707 0.706

Rand -0.479 -0.480 -0.673 -0.480 -0.479 -0.673 -0.479 -0.673

Overall 0.580 0.268 0.365 0.473 0.365 0.204 0.333 0.268
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Table B.6: MSTSh heuristic solutions with different diversification parameters for

random instances

Instance % Gap with diversification parameter

# Name p0.20 p0.25 p0.30 p0.35 p0.40 p0.45 p0.50

1 30N_10C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 30N_10C_tmax3_hier 0.007 0.007 0.007 0.007 0.007 0.007 0.007

3 30N_10C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006

4 30N_10C_tmax5_geo 14.365 14.365 14.365 14.365 14.365 14.365 14.365

5 30N_10C_tmax5_hier 0.000 0.004 0.000 0.008 0.004 0.004 0.004

6 30N_10C_tmax5_rand 0.010 0.000 0.000 0.000 0.000 0.000 0.000

7 30N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

8 30N_10C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000

9 30N_10C_tmax7_rand 0.000 0.013 0.011 0.000 0.016 0.008 0.000

10 30N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

11 30N_15C_tmax3_hier 0.013 0.013 0.013 0.013 0.013 0.013 0.020

12 30N_15C_tmax3_rand 0.006 0.006 0.006 0.006 0.006 0.006 0.006

13 30N_15C_tmax5_geo 0.001 0.000 0.000 0.000 0.000 0.000 0.000

14 30N_15C_tmax5_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000

15 30N_15C_tmax5_rand 0.007 0.000 0.003 0.004 0.000 0.000 0.000

16 30N_15C_tmax7_geo 0.003 0.000 0.000 0.000 0.000 0.000 0.000

17 30N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000

18 30N_15C_tmax7_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

19 50N_10C_tmax3_geo 0.000 0.000 0.000 0.007 0.007 0.007 0.014

20 50N_10C_tmax3_hier 0.006 0.006 0.000 0.006 0.006 0.006 0.020

21 50N_10C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

22 50N_10C_tmax5_geo 0.000 0.000 0.004 14.358 0.000 0.004 14.380

23 50N_10C_tmax5_hier 0.007 0.000 0.000 0.000 0.000 0.000 0.000

24 50N_10C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25 50N_10C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

26 50N_10C_tmax7_hier 0.000 -0.005 0.000 0.000 -0.011 -0.013 -0.013

27 50N_10C_tmax7_rand 0.000 0.003 0.001 0.000 0.003 0.003 0.003

28 50N_10C_tmax10_geo 0.003 0.003 0.000 0.003 0.007 0.003 0.005

29 50N_10C_tmax10_hier 0.005 0.000 0.003 0.003 0.000 0.008 0.008

30 50N_10C_tmax10_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

31 50N_15C_tmax3_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

32 50N_15C_tmax3_hier 0.006 0.006 0.000 0.020 0.013 0.013 0.020

33 50N_15C_tmax3_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

34 50N_15C_tmax5_geo 0.012 0.000 0.000 0.000 0.004 0.004 0.000

35 50N_15C_tmax5_hier 0.000 0.000 0.000 0.003 0.000 0.000 0.000

36 50N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

37 50N_15C_tmax7_geo 0.003 0.003 0.003 0.000 0.011 0.003 0.003

38 50N_15C_tmax7_hier 0.000 0.000 0.000 0.000 0.000 0.000 0.000

39 50N_15C_tmax7_rand 0.005 -0.003 -0.003 -0.003 -0.003 0.000 -0.003

40 50N_15C_tmax10_geo 0.002 0.000 0.000 0.000 0.000 0.000 0.000
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Table B.6 MSTSr Algorithm Solutions with different diversification

parameters for random instances – continued

Instance % Gap with diversification parameter

# Name p0.20 p0.25 p0.30 p0.35 p0.40 p0.45 p0.50

41 50N_15C_tmax10_hier 0.000 0.007 0.005 0.000 0.007 0.000 0.000

42 50N_15C_tmax10_rand 0.000 0.002 0.000 0.007 0.000 0.002 0.003

43 50N_20C_tmax5_geo 0.000 0.000 0.000 0.000 0.012 0.004 0.000

44 50N_20C_tmax5_hier 0.000 11.224 11.221 0.000 11.221 0.000 0.000

45 50N_20C_tmax5_rand 0.003 0.006 0.000 0.006 0.000 0.006 0.006

46 50N_20C_tmax7_geo 0.005 0.005 0.005 0.002 0.005 0.002 0.005

47 50N_20C_tmax7_hier 0.006 0.006 0.006 0.006 0.006 0.000 0.006

48 50N_20C_tmax7_rand -9.155 -9.155 -9.155 -9.155 -9.155 -9.155 -9.155

49 50N_20C_tmax10_geo 0.002 0.002 0.002 0.000 0.002 0.002 0.002

50 50N_20C_tmax10_hier 0.003 0.003 0.003 0.003 0.003 0.003 0.003

51 50N_20C_tmax10_rand 0.001 0.003 0.001 0.001 0.003 0.003 0.003

52 50N_25C_tmax5_geo 0.003 0.003 0.003 0.003 0.000 0.000 0.000

53 50N_25C_tmax5_hier 11.258 11.255 0.000 0.000 0.000 11.252 11.252

54 50N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

55 50N_25C_tmax7_geo 0.000 0.000 0.000 0.000 0.000 0.000 0.000

56 50N_25C_tmax7_hier 0.003 0.005 0.003 0.003 0.003 0.003 0.003

57 50N_25C_tmax7_rand 0.002 0.000 0.002 0.002 0.004 0.005 0.004

58 50N_25C_tmax10_geo 0.005 0.003 0.003 0.007 0.008 0.007 0.005

59 50N_25C_tmax10_hier 0.001 0.000 0.001 0.000 0.001 0.002 0.002

60 50N_25C_tmax10_rand 0.003 0.000 0.001 0.003 0.001 5.591 0.000

61 75N_15C_tmax5_geo 12.595 0.000 12.595 12.595 12.595 12.595 12.595

62 75N_15C_tmax5_hier 0.012 0.012 0.009 0.012 0.009 0.009 0.010

63 75N_15C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

64 75N_15C_tmax7_geo 0.003 0.000 0.005 0.000 0.005 0.003 0.003

65 75N_15C_tmax7_hier -0.002 -0.002 0.004 -0.001 -8.364 -8.364 -8.364

66 75N_15C_tmax7_rand -8.371 -8.371 -8.370 -8.370 -8.371 -8.371 -8.371

67 75N_15C_tmax10_geo 0.008 0.004 0.011 0.007 0.012 0.006 0.009

68 75N_15C_tmax10_hier -7.172 -7.160 -7.162 -7.168 -7.157 -7.166 -7.162

69 75N_15C_tmax10_rand 0.002 0.002 0.003 0.003 0.000 0.002 0.003

70 75N_25C_tmax5_geo 0.000 0.010 0.000 0.007 0.000 0.000 0.000

71 75N_25C_tmax5_hier 9.190 18.383 9.188 9.190 9.188 9.190 9.185

72 75N_25C_tmax5_rand 0.000 0.000 0.000 0.000 0.000 0.000 0.000

73 75N_25C_tmax7_geo 0.002 0.002 0.004 0.000 0.002 0.002 0.004

74 75N_25C_tmax7_hier 0.002 0.006 6.724 0.004 0.006 0.006 0.006

75 75N_25C_tmax7_rand 0.004 0.004 0.004 0.004 0.004 0.002 0.004

76 75N_25C_tmax10_geo 5.591 5.590 5.590 5.591 5.591 5.590 5.593

77 75N_25C_tmax10_hier 5.030 0.001 5.031 0.001 0.001 0.003 0.001

78 75N_25C_tmax10_rand 5.026 5.026 5.028 0.003 5.030 5.030 5.030

Averages

Geo 1.254 0.769 1.253 1.806 1.255 1.254 1.807

Hier 0.707 1.299 0.964 0.081 0.191 0.191 0.193

Rand -0.479 -0.479 -0.479 -0.672 -0.479 -0.264 -0.479

Overall 0.494 0.530 0.579 0.405 0.322 0.394 0.507
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APPENDIX C

SOLUTIONS OF 2011 VAN EARTHQUAKE CASE STUDY

INSTANCES

Table C.1: Route and option assignment in case study CPLEX solutions

Instance

# Name Route option #

1 93N_16C_tmax10 0-1-55-78-50-9-59-2-0 6-6-6-6-6-6-6

2 93N_16C_tmax15 0-1-55-78-2-53-49-91-15-63-79-37-56-0 7-7-6-7-6-6-6-6-6-5-6-6

3 93N_16C_tmax20 0-1-55-78-9-2-53-49-15-91-63-79-3-73-81-42-0 5-5-5-5-5-6-5-4-5-5-4-6-5-4-5

4 93N_23C_tmax10 0-50-9-2-19-85-78-57-55-1-0 6-7-6-6-6-5-7-6-6

5 93N_23C_tmax15 0-50-53-2-59-30-24-54-13-72-66-78-57-55-1-0 7-7-6-7-7-7-7-7-7-7-7-7-6-6

6 93N_23C_tmax20 0-61-1-55-57-78-31-50-9-24-36-5-30-59-2-53-58-0 5-6-6-6-5-6-6-6-6-6-6-6-6-6-6-5

7 93N_23C_tmax25 0-58-79-37-73-45-81-80-76-52-38-18-7-53-2-9-19-85-78-57-55-1-61-0 6-5-5-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-7-7

8 93N_29C_tmax10 0-1-55-78-66-85-19-9-59-2-0 7-6-7-6-6-6-7-7-6

9 93N_29C_tmax15 0-58-1-55-78-66-85-19-9-59-54-30-2-53-0 7-6-7-7-6-6-6-6-6-7-6-6-6

10 93N_29C_tmax20 0-1-55-78-66-19-2-53-49-91-15-63-79-37-73-81-39-47-90-46-93-0 7-6-7-7-7-7-6-6-6-7-7-6-7-7-7-7-7-7-7-7

11 93N_29C_tmax25 0-58-21-84-12-70-75-46-76-41-52-38-18-7-92-53-2-59-9-19-85-66-78-55-1-0 7-6-7-6-5-7-7-6-7-7-7-7-6-6-6-6-6-6-6-6-6-7-6-7
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