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ABSTRACT 

A STUDY ON THE SET CHOICE OF MULTIPLE FACTOR GRAPH 

BELIEF PROPAGATION DECODERS FOR POLAR CODES 

 

 

 

Akdoğan, Şükrü Can 

 

MSc., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

 

July 2018, 93 pages 

 

 

Polar codes are linear block codes with low encoding and decoding complexity that 

are proven to achieve the channel capacity for any given binary-input discrete 

memoryless channel as the codeword length 𝑁 goes to infinity. The main idea of 

polar codes is about channel polarization. Special factor graphs are used to represent 

the encoding and decoding structure of polar codes. These factor graphs consist of 𝑛 

stages for (𝑁, 𝐾) codes, where 𝑛 = 𝑙𝑜𝑔2𝑁. Each stage contains 𝑁/2 many Z-shaped 

connections between specific input-output pairs. Defining the height of a Z 

connection as the node distance between its input (or output) nodes; Stage-𝑖 that 

occurs only once in a factor graph for each 𝑖 = 1, … , 𝑛, contains Z-shapes of height 

2(𝑖−1). Encoding is done with a specific factor graph, whose Z connections are 

ordered from the largest to the smallest, that we refer to as the “reference factor 

graph, 𝑛…321”. However, belief propagation decoding can be implemented with one 

of the 𝑛! different factor graphs, by permuting the stages of the reference factor 

graph.   
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In this thesis, we study on belief propagation decoding of rate ½ polar codes over a 

binary erasure channel, using single or multiple factor graphs within the decoder. In 

order to classify the factor graphs, we propose the “stage order number”, in addition 

to the “number of frozen variables” and “capacity sum” parameters considered by 

[Doğan, 2015] and [Peker, 2018]. For 𝑛 = 6, single factor graph decoding 

performances of 𝑛! factor graphs are demonstrated and related to the mentioned three 

parameters. Construction of compatible factor graph sets, in order to get better 

performance in multiple-factor graph decoding is studied and their performance is 

found for 𝑛 = 6, 7, … , 11 by simulations. Since the sets, consisting of factor graphs 

with parameters varying in wide ranges seem to have better performance, we propose 

the “Set Choice” algorithm to compose factor graph sets with ensured variety. 

Multiple decoders using sets of ⌈𝑛/2⌉ factor graphs obtained by this algorithm can 

achieve similar performance to that of the cyclic set of 𝑛 factor graphs. 
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ÖZ 

KUTUPSAL KODLAR İÇİN ÇOK FAKTÖR DİYAGRAMLI İNANÇ 

YAYILIMI ÇÖZÜCÜLERİNDE KÜME SEÇİMİ ÜZERİNE BİR ÇALIŞMA 

 

 

 

Akdoğan, Şükrü Can 

 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Melek Diker Yücel 

 

 

Temmuz 2018, 93 sayfa  

 

 

Kutupsal kodlar, kod sözcüğü uzunluğu 𝑁 sonsuza giderken verilen herhangi ikili-

girişli ayrık hafızasız kanal için kanal kapasitesine ulaştığı kanıtlanan, düşük 

kodlama ve kod çözme karmaşıklıklı doğrusal blok kodlardır. Kutupsal kodların ana 

fikri kanal kutuplaşmasıdır. Kutupsal kodların kodlama ve kod çözme yapılarını 

göstermek için özel faktör diyagramlar kullanılır. Bu faktör diyagramlar, (𝑁, 𝐾) 

kodlar için 𝑛 = 𝑙𝑜𝑔2𝑁 kademeden oluşur. Her bir kademe, belirli giriş-çıkış ikil 

çiftleri arasındaki Z-şekilli bağlantılardan 𝑁/2 tane içerir. Bir Z bağlantısının 

yüksekliği, iki giriş (ya da çıkış) noktasının arasındaki nokta uzaklığı olarak 

tanımlanır. Bir faktör diyagramda her bir 𝑖 = 1, … , 𝑛 için yalnızca bir tane olan 

Kademe-i, yüksekliği 2(𝑖−1) olan Z-şekilleri içerir. Kodlama işlemi, “referans faktör 

diyagram, 𝑛…321” olarak tanımladığımız ve Z bağlantıları en büyükten en küçüğe 

doğru sıralanmış özel faktör diyagram ile yapılır. Ancak, inanç yayılımlı kod çözme 

işlemi, referans faktör diyagram kademelerinin sırasını değiştirerek elde edilen 𝑛! 

farklı faktör diyagramdan biriyle yapılabilir.   
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Bu tezde, ikili silinti kanalında, kod oranı ½ olan kutupsal kodların inanç yayılımlı, 

tek veya çok faktör diyagramlı kod çözücüleri üzerinde çalışılmış; faktör 

diyagramlarının sınıflandırılması için, [Doğan, 2015] ve [Peker, 2018] tarafından 

düşünülen “donuk değişken sayıları” ve “kapasite toplamı” parametrelerine ek olarak 

“kademe sıra numarası” önerilmiştir. 𝑛! faktör diyagramdan her birinin tek faktör 

diyagramlı kod çözücü başarımları, 𝑛 = 6 için sergilenmiş ve sözü edilen üç 

parametre ile ilişkilendirilmiştir. Çok faktör diyagramlı kod çözücülerde daha iyi 

başarım elde etmek için uyumlu faktör diyagram kümeleri oluşturulmuş, ve bu 

kümelerin başarımları 𝑛 = 6, 7, … ,11 için benzetimle elde edilmiştir. Parametreleri 

geniş aralıkta değişen faktör diyagram kümelerinin daha iyi başarım göstermesi 

nedeniyle, çeşitlilik sağlayan bir küme seçim algoritması sunulmuştur. Bu algoritma 

ile elde edilen ⌈𝑛/2⌉ faktör diyagramlı kümelerin kullanıldığı kod çözücüler, 𝑛 faktör 

diyagramlı döngüsel kümelerinki ile benzer başarımlara erişmektedir. 

 

 

Anahtar Kelimeler: Kutupsal Kodlar, İnanç Yayılımı, Çok Faktör Diyagramlı Kod 

Çözücü  
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CHAPTER 1 

 

 INTRODUCTION 

 

1.1 Channel Coding 

 

In the transmission of information, reliable data delivery from source to destination is 

one of the most fundamental aims. In accordance with this purpose, it is essential to 

down the channel noise occurs in the unreliable communication channels. Error 

detection techniques can determine the errors caused by the noise and error 

correction techniques can reconstruct these errors in data. The developments of error 

detection and correction are inspired from the seminal work of Claude Shannon's A 

Mathematical Theory of Communication [Shannon, 1948]. 

In 1948, Shannon stated the relationship between channel capacity as 𝐶 and 

transmission rate as 𝑅, in his two principal theorem; source coding and noisy channel 

coding. Source coding, can also be stated as data compression, explains the wrapping 

of source data in order to remove uncontrolled redundancy. On the other hand, 

channel coding uses these redundant bits properly during the transmission, and at the 

receiver, decompress the data with checking these redundant bits. According to his 

theorems, if the transmission rate 𝑅 is below the capacity 𝐶; i.e., 𝑅 <  𝐶, it is 

possible that the receiver has arbitrarily small error rate with appropriate coding. 

Besides, if the opposite occurs, reliable transmission may not be achievable since the 

probability of error is greater than a certain minimal level.  

Since then, by using Shannon’s work, finding the linear codes with good algebraic 

qualifications was an imperative research area for coding theory. Algebraic codes 

such as Hamming [Hamming, 1950], Golay [Golay, 1949], Reed-Muller [Muller, 
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1954], [Reed, 1954], Reed-Solomon [Reed & Solomon, 1960] and BCH codes [Bose 

& Ray-Chaudhuri, 1960] have been studied and expressed in algebraic terms. On the 

other hand, there are probabilistic codes including convolutional codes [Elias, 1955], 

LDPC codes [Gallager, 1963] and Turbo codes [Berrou, Glavieux, & Thitimajshima, 

1993]. With these studies, more reliable data transmission has become possible. But 

none of these codes have performance as close to the Shannon’s capacity as that of 

the LDPC and Turbo codes.  

Low-Density Parity-Check (LDPC) codes were invented by Gallager in 1962 

[Gallager, 1962]. However, due to technological inadequacies like the lack of a 

practical decoding algorithm, practical implementations could not be possible until 

1996. In 1996, MacKay and Neal presented a special form of Gallager’s LDPC codes 

with a low complexity iterative decoder [MacKay & Neal, 1996]. A few years 

earlier, in 1993, “Near Shannon Limit Error-correcting Coding and Decoding: 

Turbo-codes" were presented [Berrou, Glavieux, & Thitimajshima, 1993]. 

Developments in computer technology have also supported Berrou’s study about 

bipartite graph-based decoding algorithms. Turbo codes have been revolutionary 

since their transmission rate is quite close to the capacity limit given by Shannon’s 

theory. Other Turbo code schemes, which need half power for decoding, were also 

proposed [Berrou & Glavieux, 1996]. 

In 2009, Arıkan introduced polar codes [Arıkan, 2009] as the first “provably capacity 

achieving” linear block codes. In the area of source coding and secrecy coding, polar 

codes have almost optimal performance [Hassani, Korada, & Urbanke, 2009] 

[Mahdavifar & Vardy, 2011]. Another thing that makes this theory so unique is that 

the encoding and decoding complexities of polar codes are low, 𝑂(𝑁 log 𝑁), where 

𝑁 is the blocklength of the codes. 

Polar codes are constructed by channel polarization, which consists of channel 

combining and channel splitting steps. Channel combining step generates a vector  

channel from 𝑁 copies of binary-input discrete memoryless channel (B-DMCs). 

Channel splitting step obtains 𝑁 polarized new channels, whose capacities vary in 

the range [0, 1], from a vector channel produced with the channel combining step 
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[Arıkan, 2009]. While the blocklength is getting larger, capacities of polarized new 

channels converge to 0 or 1 with the channel transformation operations. The main 

idea in constructing an (𝑁, 𝐾) polar code for blocklength 𝑁 = 2𝑛 is choosing 𝐾 

channels with higher capacities to send data, and freezing the remaining 𝑁 − 𝐾 

channels. Then, inputs are mapped to codewords by using a 𝐾 × 𝑁 generator matrix, 

which is composed of some rows of 𝐹⊗𝑛, the nth-Kronecker product of the base 

matrix 𝐹 = [
1 0
1 1

]. Arıkan also presented a formula for recursive computation of 

Bhattacharyya parameters over binary erasure channels [Arıkan, 2009]. Zhao, Shi 

and Wang worked on the computation of Bhattacharyya parameters  [Zhao, Shi, & 

Wang, 2011], presenting the recursive formula with initial values for four 

conventional channels to provide polar codes with converging capacities.  

 

1.2 Belief Propagation Decoder  

 

Polar codes are usually decoded by successive cancellation (SC) and belief 

propagation (BP) decoding algorithms. Arıkan has introduced the SC decoding 

algorithm for polar codes [Arıkan, 2009]. However; due to the serial decoding 

scheme of the SC algorithm, it may suffer from high decoding latency. Forney has 

shown that Reed-Muller (RM) codes can be regarded as codes on graphs [Forney, 

2001]. (N, K) polar codes where 𝑁 = 2𝑛 are subcodes of the full RM(n, n) codes, so 

they can also be seen as codes on graphs. Hence, they can be decoded by iterative BP 

decoders, which may be implemented with lower decoding latency than SC decoders 

because of their parallelizability. Arıkan uses the BP decoding algorithm to show the 

performance advantages of polar codes over Reed-Muller codes [Arıkan, 2008]. 

Hussami, Korada and Urbanke report that polar codes perform better with the BP 

algorithm than the SC algorithm [Hussami, Korada, & Urbanke, 2009]. Korada also 

observes that using the BP decoder with a multiple trellis, which is obtained by 

𝑛 = log2 𝑁 cyclic stage permutations of the encoding factor graph, provides 

significant improvement on the performance of polar codes [Korada, 2009]. 
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Today’s popular decoding algorithm is list decoding; proposed by Dumer and 

Shabunov for the Reed-Muller codes [Dumer & Shabunov, 2006]. Tal and Vardy 

have properly applied successive cancellation list decoding to polar codes [Tal & 

Vardy, 2011]. They describe it as the generalization of the classic SC decoder of 

Arıkan. Also; Chen, Niu and Lin worked with list decoding [Chen, Niu, & Lin, 

2012]. They compare five different decoding algorithms for polar codes with 𝑁 =

1024 and different code rates over a binary erasure channel. They use successive 

cancelation (SC), belief propagation (BP), linear programming (LP), maximum 

likelihood (ML) and successive cancellation list (SCL) decoding. SCL is performed 

with 𝐿 = 20 and 𝑇 = 0.1. As seen in Figure 1.1, performance of the SCL (or 

equivalently LSC; i.e., “list SC”) is almost as good as the maximum-likelihood (ML) 

decoding performance. 

 

Figure 1.1 Block error rate (BLER) performance of (1024, K) polar codes under a binary 

erasure channel with erasure rate 0.5 (reproduced from [Chen, Niu, & Lin, 2012]). 

 

Eslami and Pishro-Nik have performed simulations that indicate polar codes, as 

compared to LDPC codes, have inferior bit error rate but superior error floor 
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performance. They have suggested a guessing algorithm to improve the performance 

of BP decoding by 0.2 dB at BER= 10−5 over the Gaussian channel with polar code 

length 213 [Eslami & Pishro-Nik, 2010]. In 2013, the same authors have proposed a 

concatenated polar-LDPC code of length around 215, which uses a soft BP decoder 

with 9 bit quantization, that closes the gap to Shannon’s capacity while avoiding the 

error floor and maintaining low complexity [Eslami & Pishro-Nik, 2013]. 

Pamuk has stated that calculations for message-passing algorithm can be 

approximated to a min-sum (MS) method at the cost of some degradation at the 

performance [Pamuk, 2011]. Yuan and Parhi have examined the min-sum 

approximation and proposed scaled min-sum (SMS) BP decoding algorithm to 

eliminate the loss at performance of polar codes due to min-sum (MS) approximation 

[Yuan & Parhi, 2013]. Furthermore; Xu, Che and Choi have proposed a novel round-

trip message passing scheduling method by simplifying the scaled min-sum 

approximation at BP decoding to reduce the computational complexity [Xu, Che, & 

Choi, 2015]. They have suggested that instead of updating nodes with left and right 

messages in each stage, firstly pass all left-directed messages and then all right-

directed messages to update nodes. Their algorithm provides the same performance 

as the scaled min-sum (SMS) BP decoding algorithm with lower complexity and less 

number of iterations. Doğan has studied on the required iteration numbers for belief 

propagation [Doğan, 2015] and suggested maximum iteration numbers for different 

blocklengths to optimize the complexity and performance. Şimşek and Türk have 

recommended early stopping methods for BP decoders to reduce the computational 

complexity of successful decoding and the number of operations during the decoding 

process [Şimşek & Türk, 2016]. A soft-output decoder for polar codes, called SCAN, 

has been offered by Fayyaz and Barry, to improve the performance with lower 

complexity and memory requirements [Fayyaz & Barry, 2014]. Lin, Xiong and Yan 

have presented their reduced complexity soft cancellation decoding algorithm, called 

the RCSC. Their decoder architecture consumes less energy on updating log-

likelihood-ratio (LLRs) [Lin, Xiong, & Yan, 2015]. However; both SCAN and RCSC 

decoding algorithms have limited throughput due to their serial decoding schemes. 

For higher throughput, Lin, Sha, Li, Xiong, Yan and Wang have suggested an 

improved decoding algorithm [Lin, et al., 2016]. In another study, the memory 
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efficient BP decoder algorithm for polar codes has been proposed, by combining two 

adjacent stages into one stage and offering new belief message updating rules, in 

order to get lower latency and memory requirements [Sha, Liu, Wang, & Zeng, 

2015]. Other researchers have offered a modified BP decoding algorithm for polar 

codes [Zhang, Liu, Pan, Ye, & Gong, 2014]. They have used extra check nodes to 

multiply the messages, and shown that the reliability of propagated messages are 

enhanced while the performance is improved.  

As in [Korada, 2009], Doğan and Peker also study on the subject of permuted factor 

graphs (FG’s) under BP decoding, and attempt to find suitable FG sets [Doğan, 

2015] [Peker, 2018]. In [Elkelesh, Ebada, Cammerer, & Brink, 2018-1], the BP 

decoder randomly permutes the FG stages (to arrive as many as 1000 different FG’s) 

of the (2048, 1024) polar codes. Using a perfect knowledge-based stopping criterion, 

the proposed multiple trellis decoder slightly outperforms the SCL decoder with list 

size 32, but it cannot catch the performance of the SCL-CRC decoder with cyclic 

redundancy check (CRC) aided stopping criterion. In another paper, the same 

researchers investigate the BP decoding performance of L (=32 or 64) permuted 

FG’s, which decode independently in a parallel decoding system [Elkelesh, Ebada, 

Cammerer, & Brink, 2018-2]. With a stopping criterion based on the generator 

matrix G, parallel BP list decoder (i.e., BPL decoder) reaches almost the same 

performance as the SCL decoder with a lower latency; but again, it cannot catch the 

performance of the SCL+CRC-16 that uses the cyclic redundancy check.  

It is also interesting that the (2048, 1024) hybrid RM-polar code (with minimum 

distance 32) suggested in [Li, Shen, & Tse, 2014] outperforms the (2048, 1024) polar 

code (with minimum distance 16). BPL performances of both codes are below their 

SCL performances [Elkelesh, Ebada, Cammerer, & Brink, 2018-2].  

Choice of factor graphs for the decoding set among all possible permutations are 

substantial, especially if one prefers to deal with small number of permuted FG’s. In 

[Doan, Hashemi, Mondelli, & Gross, 2018], an empirical method is suggested to 

compose a small sized set of FG’s among k! different factor graphs, which are 

produced by permuting the last k stages of the reference factor graph. Also, by using 

the relation between stage permutations and bit permutations of the binary row 
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representations, they claim that a single decoding scheduling can be applied to 

different FG’s without making changes in the hardware implementations. Permuted 

factor graph decoding is also investigated by [Hashemi, Doan, Mondelli, & Gross, 

2018]. They discuss that successive factor graph permutations improve the decoding 

performance of Reed-Muller (RM) and polar codes under SC and list decoding if 

suitable FG permutations are chosen. 

There are additional methods to improve the performance of polar codes such as 

concatenating polar codes with other codes, for example with chosen optimal linear 

block codes in [Trifonov, 2012] and outer LDPC codes in [Guo, Qin, Fabregas, & 

Siegel, 2014]. A scattered EXIT chart-based design method is presented to develop 

the performance of the concatenated polar and LDPC codes in [Elkelesh, Ebada, 

Cammerer, & Brink, 2016]. Concatenating the belief propagation decoding algorithm 

with other algorithms to generate a hybrid decoder, is another way to improve the 

performance of polar codes as explained in [Yuan & Parhi, 2014] and [Cammerer, 

Leible, Stahl, Hoydis, & Brink, 2017]. By pruning some check and variable nodes of 

the decoder, size of the parity check matrix is reduced in order to interpret a polar 

code as an LDPC code with an underlying sparse decoding graph in [Cammerer, 

Ebada, Elkelesh, & Brink, 2018]. This method provides reduced memory 

requirements and complexity with negligible performance loss, thus it is suitable for 

hardware implementations. 

 

1.3 Aim and Organization of the Thesis 

 

In this thesis, single factor graph and multiple factor graph performances of (N, K) 

polar codes under the belief propagation decoding algorithm are examined. The 

effects of permuting the stages of the decoder factor graph over the capacity sum 

(sum of capacities of the information bit channels), the number of frozen variables 

and over the performance of polar codes are studied. Among (log2 𝑁)! = 𝑛! possible 

stage permutations of the factor graphs, suitable sets of stage-permuted factor graphs 
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are sought experimentally, to improve the performance of multiple trellis BP 

decoding by keeping the set size as small as ⌈𝑛/2⌉. All simulations are carried on a 

binary erasure channel BEC(𝜀), with a given erasure rate 𝜀; and a perfect knowledge-

based stopping criterion is used in all decoders. 

In Chapter 2; a summary of polar codes is given. Main ideas of polar codes, channel 

polarization, channel combining and splitting, are reviewed. Procedure for capacity 

calculation over a given binary erasure channel is shown. Relation between bit 

capacities and Bhattacharyya parameters is examined. To differentiate the factor 

graphs, Z-shaped stages of 𝑛! diagrams are named as 1 to 𝑛 = 𝑙𝑜𝑔2𝑁, where 𝑁 is the 

block length. At the end of the chapter, belief propagation decoding algorithm is 

explained.   

In the first part of Chapter 3; calculation of the “capacity sum - CS” and the “number 

of frozen variables - FV” parameters for polar codes and Reed-Muller codes are 

explained. The difference of polar and Reed-Muller codes in terms of these 

parameters, and the change of these parameters for both codes under stage 

permutations, are examined. Moreover; variation of CS and FV parameters versus 

the stage order numbers (SON) is explored for 𝑛! factor graphs. Performances of 

single factor graph polar code BP decoders are obtained depending on their CS, FV 

and SON values. In the second part of Chapter 3; multiple factor graph (𝑀-FG, or 

multi-trellis) decoding methods are examined. Difference between dependent and 

independent 𝑀-FG decoding methods is discussed. Selection of FG sets for a better-

performing 𝑀-FG decoder is explored, where the SON values of the factor graphs 

are also considered, in search for a systematic rule. Moreover, the answer for the 

question of getting similar performance with less number of factor graphs is sought. 

An algorithm that generates an FG set with 𝑀 = ⌈𝑛/2⌉ elements is presented; and the 

performance comparison of ⌈𝑛/2⌉ FG’s generated by this algorithm, with Korada’s 𝑛 

cyclically shifted FG’s is given for polar codes of different lengths. Dependence of 

the construction and performance of polar codes upon the channel erasure rate is 

investigated. 

In Chapter 4, main contributions of this thesis are discussed and summarized. 
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CHAPTER 2 

 

 REVIEW OF POLAR CODES 

 

In this chapter, we give a review of polar code construction for the binary-input 

discrete memoryless channel (B-DMCs) based on the work of Arıkan [Arıkan, 2009]. 

Firstly, we present some preliminary information. Recursive channel transformation 

to get 𝑁 distinct channels from 𝑁 copies of a given binary-input discrete memoryless 

channel (B-DMC) is explained after basic channel combining and splitting 

operations are summarized in Section 2.2. In Section 2.3, channel polarization is 

described. Method of calculation for capacities of each polarized channel by using 

the channel erasure rate is clarified in Section 2.4. In Section 2.5, the process of 

determining the information channels that send data, and constructing the generator 

matrix depending on the information transmission channels is described in detail. 

Also; we provide the simple factor graph representation that is used both in encoding 

and decoding operations. Finally, in Section 2.6, Belief Propagation (BP) decoding 

with a modification that we employ, is described briefly.  

 

2.1 Preliminaries 

 

Representation of 𝑊: 𝑋 → 𝑌 is used for a B-DMC, where 𝑋 is input alphabet, 𝑌 is 

output alphabet and 𝑊(𝑦|𝑥) is channel transition probability for 𝑥 ∈  𝑋, 𝑦 ∈ 𝑌. We 

assume the input alphabet set 𝑋 to be {0, 1}. 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 with transition 

probability 𝑊𝑁(𝑦1
𝑁|𝑥1

𝑁) = ∏ 𝑊(𝑦𝑖|𝑥𝑖)
𝑁
𝑖=1  represents the channel, which is 𝑁 times 

employments of 𝑊. A row vector (𝑢𝑖, 𝑢𝑖+1, … , 𝑢𝑗) is described as 𝑢𝑖
𝑗
 for 1 ≤ 𝑖 ≤ 𝑗 ≤

𝑁. Also; all calculations are over 𝐺𝐹(2).  
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The symmetric mutual information of a B-DMC 𝑊: 𝑋 → 𝑌 is  

 𝐼(𝑊) = ∑ ∑
1

2
𝑥∈𝑋𝑦∈𝑌

𝑊(𝑦|𝑥) log
𝑊(𝑦|𝑥)

1
2 (𝑊(𝑦|0)𝑊(𝑦|1))

 

 

2.1 

 

The Bhattacharya parameter is used for measurement of the reliability of the channel 

and defined as [Arıkan, 2009] 

 𝑍(𝑊) = ∑ √𝑊(𝑦|0)𝑊(𝑦|1)

𝑦∈𝑌

 

 

2.2 

 

The Kronecker product of an 𝑚 × 𝑛 matrix 𝐴 = [𝐴𝑖𝑗] and a 𝑘 × 𝑙 matrix 𝐵 = [𝐵𝑖𝑗] is 

defined as 

 
𝐴 ⊗ 𝐵 = [

𝐴11𝐵 ⋯ 𝐴1𝑛𝐵
⋮ ⋱ ⋮

𝐴𝑚1𝐵 ⋯ 𝐴𝑚𝑛𝐵
] 

 

2.3 

 

𝐴⊗𝑛 is used to denote Kronecker product of the matrix 𝐴 by itself 𝑛 times. 

As known in the literature, there are many different channels but, we will use only 

the binary erasure channel (BEC) in this work. BEC is one of the simplest channel to 

the analysis. This channel is binary input channel that means only one (0 or 1) input 

symbol can be transmitted. Since the channel is not perfect channel, there may be 

erased bits through the transmission. As shown in Figure 2.1, the bits can be either 

erased with the probability 𝜖 or correctly transmitted with probability 1 − 𝜖. 

Abbreviation of the channel is BEC(𝜖) and capacity of it is 1 − 𝜖. 
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Figure 2.1 Binary erasure channel BEC(ϵ). 

 

2.2 Channel Transformation 

 

Polar codes are constructed by a channel transformation method. This method has 

two parts, which are channel combining and channel splitting. 𝑁 copies of a given 

binary-input discrete memoryless channel (B-DMC) 𝑊 are transformed into 𝑁 

binary input channels (𝑊𝑁
(𝑖)

: 1 ≤ 𝑖 ≤ 𝑁). 𝑊𝑁
(𝑖)

 is defined for the 𝑖𝑡ℎ bit-channel. 

Parts of channel transformation will be studied in detail in the following subsections.  

 

2.2.1 Basic Channel Combining 

 

Channel combining has recursive steps in order to produce a vector channel called 

𝑊𝑁, where 𝑁 is the blocklength. In the first step, two independent B-DMCs 𝑊are 

combined to obtain 𝑊2: 𝑋2 → 𝑌2 by applying the base matrix 𝐹 = [
1 0
1 1

]. This is 

the basic channel combining in the transformation. A row vector 𝑋 = (𝑥1, 𝑥2) is 

input and 𝑌 = (𝑦1, 𝑦2) is output for two independent B-DMCs 𝑊. It can be defined 

as 𝑥1
2 = 𝑢1

2𝐹⊗1. This first step is shown in Figure 2.2. 
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Figure 2.2 Basic Channel Combining. 

 

The transition probability of the vector channel 𝑊2 is 

 
𝑊2(𝑦1

2|𝑥1
2) = ∏ 𝑊(𝑦𝑖|𝑥𝑖) = 𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2)

2

𝑖=1
 

 

2.4 

 
Since linear transform between 𝑢1

2 and 𝑥1
2 has one-to-one mapping property, when 𝑢𝑖 

is identically independent distributed, 𝑥𝑖 is also identically independent distributed. 

Thus; there is no loss in total channel capacity as described in Equation 2.5. 

 𝐼(𝑊2) = 𝐼(𝑈1, 𝑈2; 𝑌1, 𝑌2) = 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2) = 𝐼(𝑋1; 𝑌1) + 𝐼(𝑋2; 𝑌2)

= 2𝐼(𝑊) 

 

2.5 

 

2.2.2 Basic Channel Splitting 

 

Channel splitting has also recursive steps in order to get polarized channels from a 

vector channel called 𝑊𝑁, where 𝑁 is the blocklength. Basic channel splitting 

method is explained for B-DMCs 𝑊2, which has two independent B-DMCs 𝑊. As 

mentioned in Equation 2.5, the mutual information between the input and the output 

of the 𝑊2 channel is 𝐼(𝑊2) = 𝐼(𝑈1, 𝑈2; 𝑌1, 𝑌2). This mutual information can be split 

as 
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 𝐼(𝑈1, 𝑈2; 𝑌1, 𝑌2) = 𝐼(𝑈1; 𝑌1, 𝑌2) + 𝐼(𝑈2; 𝑌1, 𝑌2, 𝑈1) 

 

2.6 

 A new channel can be defined by assuming 𝑢1 as input, 𝑦1, 𝑦2 as outputs and 𝑢2 as 

noise. This can be shown as 𝑊2
(1)

: 𝑋 → 𝑌2 whose mutual information is 𝐼(𝑈1; 𝑌1, 𝑌2). 

The transition probability of the vector channel 𝑊2
(1)

 is indicated in Equation 2.7 and 

the channel is demonstrated in Figure 2.3.  

 𝑊2
(1)(𝑦1, 𝑦2|𝑢1) = ∑

1

2
𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2)

𝑢2

 

 

2.7 

 

 

 

Figure 2.3 𝑊2
(1)

 channel after basic channel splitting. 

 

Another new channel can also be defined by using 𝑢1, 𝑦1, 𝑦2 as outputs and 𝑢2 as 

input. This can be indicated with 𝑊2
(2)

: 𝑋 → 𝑋 × 𝑌2 whose mutual information is 

𝐼(𝑈2; 𝑌1, 𝑌2, 𝑈1). The transition probability of the vector channel 𝑊2
(2)

 is indicated in 

Equation 2.8 and the channel is shown in Figure 2.4. 

 
𝑊2

(2)(𝑦1, 𝑦2, 𝑢1|𝑢2) =
1

2
𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2) 

 

2.8 

 
 



14 

 

 

Figure 2.4 𝑊2
(2)

 channel after basic channel splitting. 

 

The mutual information of the new channels  𝑊2
(1)

 and 𝑊2
(2)

 satisfy Equation 2.9 and 

equality is achieved if and only if mutual information of 𝑊is 0 or 1. Mutual 

information of these new channels converges to 0 or 1, while total capacity is 

conserved. That is; while blocklength is getting larger, polarization becomes more.  

 𝐼(𝑊2
(1)

) ≤ 𝐼(𝑊) ≤ 𝐼(𝑊2
(2)

) 

 

2.9 

 
2.2.3 Recursive Channel Combining and Splitting 

 

So far, we have mentioned about basic channel combining and splitting methods over 

the B-DMCs 𝑊2. In this section, for larger 𝑁 values where 𝑁 = 2𝑛, necessary steps 

to obtain the distinct bit channels 𝑊𝑁
(𝑖)

will be discussed by using channel combining 

and splitting methods recursively. 

In the second step of the recursion, for 𝑁 = 4, a 𝑊4: 𝑋4 → 𝑌4 channel with four 

inputs and four outputs is produced by combining two independent copies of B-

DMCs 𝑊2. The 𝑊4 channel is indicated in Figure 2.5, and its transition probability is 

shown in Equation 2.10. 
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𝑊4(𝑦1
4|𝑢1

4) = ∏ 𝑊(𝑦𝑖|𝑥𝑖)
4

𝑖=1

= 𝑊2(𝑦1, 𝑦2|𝑢1 ⊕ 𝑢3, 𝑢2 ⊕ 𝑢4)𝑊2(𝑦3, 𝑦4|𝑢3, 𝑢4)

= 𝑊(𝑦1|𝑢1 ⊕ 𝑢2

⊕ 𝑢3 ⊕ 𝑢4)𝑊(𝑦2|𝑢2 ⊕ 𝑢4)𝑊(𝑦3|𝑢3 ⊕ 𝑢4)𝑊(𝑦4|𝑢4) 

 

2.10 

 

 

 

Figure 2.5 𝑊4 channel by combining two independent copies of 𝑊2. 

 

Two independent B-DMCs 𝑊2 are combined to obtain 𝑊4: 𝑋4 → 𝑌4 by applying the 

2nd-Kronecker product (𝐹⊗2) of the base matrix 𝐹 = [
1 0
1 1

], where 𝑁 = 4 = 2𝑛 =

22. This is the second step of the channel combining process in the transformation. 

The mapping over 𝑊4 channel can be represented as 𝑥1
4 = 𝑢1

4𝐹⊗2 where 𝐹⊗2 =

[

1 0 0 0
1 1 0 0
1 0 1 0
1 1 1 1

]. 
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For larger 𝑁 = 2𝑛 values, two independent copies of B-DMCs 𝑊𝑁

2

 are recursively 

combined to produce 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 with 𝑁 inputs and 𝑁 outputs. The combined 

general 𝑊𝑁 channel is indicated in Figure 2.6 and its general transition probability is 

shown in Equation 2.11. 

 

𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁) = 𝑊𝑁
2

(𝑦1

𝑁
2 |𝑢1

𝑁
2 ⊕ 𝑢𝑁

2
+1

𝑁 ) 𝑊𝑁
2

(𝑦𝑁
2

+1

𝑁 |𝑢𝑁
2

+1

𝑁 ) 

𝑤ℎ𝑒𝑟𝑒 𝑢1

𝑁
2 = {𝑢1, 𝑢2, … , 𝑢𝑁

2
} , 𝑢𝑁

2
+1

𝑁 = {𝑢𝑁
2

+1
, 𝑢𝑁

2
+2

, … , 𝑢𝑁} 

2.11 

 

The overall mapping, which is between inputs 𝑢1
𝑁 of 𝑊𝑁 channel and inputs 𝑥1

𝑁 of 𝑊 

channel, can be defined as 𝑥1
𝑁 = 𝑢1

𝑁𝐹⊗𝑛 where 𝐹⊗𝑛 is the nth-Kronecker product of 

the base matrix 𝐹 = [
1 0
1 1

] and 𝑛 = log2 𝑁. 
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Figure 2.6 𝑊𝑁 channel by combining two independent copies of 𝑊𝑁

2

. 

 

After producing the vector channel 𝑊𝑁, the next step is channel splitting in recursive 

manner. This means that the synthesized channel 𝑊𝑁 is split into 𝑁 distinct bit-

channels 𝑊𝑁
(𝑖)

: 𝑋 → 𝑋𝑖−1 × 𝑌𝑁, 1 ≤ 𝑖 ≤ 𝑁 as seen in Figure 2.7. Each split channel 

is defined as 𝑊𝑁
(𝑖)

: 𝑢𝑖 → (𝑦1
𝑁, 𝑢1

𝑖−1). The transition probability of the channel 𝑊𝑁
(𝑖)

 is 

indicated in Equation 2.12. 
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𝑊𝑁

(𝑖)
(𝑦1

𝑁, 𝑢1
𝑖−1|𝑢𝑖) = ∑

1

2𝑁−1
𝑊𝑁(𝑦1

𝑁|𝑢1
𝑁)

𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖

 
2.12 

 

where 𝑢𝑖 is the input and (𝑦1
𝑁, 𝑢1

𝑖−1) is the outputs of the channel 𝑊𝑁
(𝑖)

. 

 

Figure 2.7 The synthesized channel 𝑊𝑁 is split into 𝑁 distinct bit-channels 𝑊𝑁
(𝑖)

. 

 

2.3 Channel Polarization 

 

In this section, we will study on the fact of channel polarization, which shows us that 

polar codes have the symmetric mutual information on the binary-input discrete 

memoryless channel. Also; overall symmetric mutual information is conserved 

through the channel transformation process. According to the chain rule for the 
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mutual information, the mutual information of the synthesized channel 𝑊𝑁 can be 

written as 

 𝐼(𝑌1
𝑁; 𝑋1

𝑁 , 𝑈1
𝑁) = 𝐼(𝑌1

𝑁; 𝑋1
𝑁) + 𝐼(𝑌1

𝑁; 𝑈1
𝑁|𝑋1

𝑁)

= 𝐼(𝑌1
𝑁; 𝑈1

𝑁) + 𝐼(𝑌1
𝑁; 𝑋1

𝑁|𝑈1
𝑁) 

2.13 

 

Since 𝐼(𝑌1
𝑁; 𝑈1

𝑁|𝑋1
𝑁) = 𝐼(𝑌1

𝑁; 𝑋1
𝑁|𝑈1

𝑁) = 0 

 

2.14 

 Then 𝐼(𝑌1
𝑁; 𝑋1

𝑁) = 𝐼(𝑌1
𝑁; 𝑈1

𝑁) 

 

2.15 

 Therefore 𝐼(𝑊𝑁) =  𝐼(𝑌1
𝑁; 𝑋1

𝑁) = 𝐼(𝑌1
𝑁; 𝑈1

𝑁) = 𝑁𝐼(𝑊) 

 

2.16 

 Equation 2.16 shows that while combining 𝑁 copies of the original binary-input 

discrete memoryless channel 𝑊, 𝑁𝐼(𝑊) is conserved. 

According to the chain rule for the mutual information, the mutual information of the 

channel 𝑊𝑁 can be split as 

 
𝑁𝐼(𝑊) = 𝐼(𝑈1

𝑁; 𝑌1
𝑁) = ∑ 𝐼(𝑈𝑖; 𝑌1

𝑁 , 𝑈1
𝑖−1)

𝑁

𝑖=1
 

 

2.17 

 

After channel combining and splitting process are operated in recursive manner, 𝑁 

copies of the original binary-input discrete memoryless channel 𝑊 transform into 𝑁 

distinct channels 𝑊𝑁
(𝑖)

, 𝑖 ∈ {1, … , 𝑁}. However; the symmetric mutual information of 

each distinct channel 𝑊𝑁
(𝑖)

 is different than that of the original channel 𝑊. Theorem 

2.1, presented by Arıkan in his influential paper published in 2009, shows that while 

𝑁 goes to infinity, 𝑊𝑁
(𝑖)

 converges to either 0 or 1. This phenomenon is called 

“channel polarization”. 

 

 

 



20 

 

Theorem 2.1 [Arıkan, 2009]: For any B-DMC 𝑊, the channels {𝑊𝑁
(𝑖)

} polarize in 

the sense that, for any fixed 𝛿 ∈ (0,1), as 𝑁 goes to infinity through powers of two, 

the fraction of indices 𝑖 ∈ {1, … , 𝑁} for which 𝐼(𝑊𝑁
(𝑖)

) ∈ (1 − 𝛿, 1] goes to 𝐼(𝑊) 

and the fraction for which 𝐼(𝑊𝑁
(𝑖)

)  ∈ [0, 𝛿) goes to 1 − 𝐼(𝑊). That is, 

 
lim

𝑁→∞

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝐼(𝑊𝑁
(𝑖)

) ∈ (1 − 𝛿, 1] 

𝑁
= 𝐼(𝑊) 

2.18 

 
lim

𝑁→∞

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝐼(𝑊𝑁
(𝑖)

) ∈ [0, 𝛿) 

𝑁
= 1 − 𝐼(𝑊) 

 

2.19 

 

 

2.4 Capacities of Transformed N Distinct Channels 𝑾𝑵
(𝒊)

 over a BEC 

 

After the channel transformation operation, 𝑁 distinct channels 𝑊𝑁
(𝑖)

, 𝑖 ∈ {1, … , 𝑁} 

are produced. In this section, capacity of each of these channels will be computed for 

a given binary erasure channel 𝑊 with erasure probability 𝜖, abbreviated as BEC(𝜖).  

For 𝑁 = 2, split channels have been indicated as 𝑊2
(1)

 and 𝑊2
(2)

 in Section 2.2.2. To 

be clear throughout operations, first and second split channels for 𝑁 = 2 will be 

shown as 𝑊2
(1)

= 𝑊− and 𝑊2
(2)

= 𝑊+. For 𝑁 = 4, when ancestry channel 𝑊2
(1)

=

𝑊− splits into two channels, they will be 𝑊4
(1)

= 𝑊−− and 𝑊4
(3)

= 𝑊−+. Similarly; 

 𝑊2
(2)

= 𝑊+ splits into 𝑊4
(2)

= 𝑊+− and 𝑊4
(4)

= 𝑊++. Synthesized channel 𝑊4 

from 4 copies of the original B-DMCs 𝑊 is demonstrated in Figure 2.8 and split 

channels 𝑊4
(𝑖)

 are shown in Figure 2.9. 
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Figure 2.8 The synthesized channel 𝑊4. 

 

 

Figure 2.9 The synthesized channel 𝑊4 is split into 4 bit-channels 𝑊4
(𝑖)

. 

 

Channel capacity of a binary erasure channel with erasure probability 𝜖 equals to 

𝐼(𝑊) = 1 − 𝜖. Since each split channel is also a binary erasure channel, it has its 

own erasure probability. For 𝑁 = 2,  𝑊− channel is shown in Figure 2.3 on page 13 

and 𝑢1 = 𝑥1 + 𝑥2. Since 𝑥1 and 𝑥2 are necessary to estimate 𝑢1, erasure probability 

of 𝑊− equals to 𝜖− = 1 − (1 − 𝜖)2. Also; 𝑊+ channel is shown in Figure 2.4 on 
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page 14 and 𝑢2 = 𝑥2 ,  𝑢2 = 𝑥1 + 𝑢1. One of these equations is enough to estimate 

𝑢2, and 𝑢1 is also assumed as known from 𝑊−; so, the erasure probability of 𝑊+ 

equals to 𝜖+ = 𝜖2.  

For 𝑁 = 4, erasure probabilities of each split channel 𝑊4
(𝑖)

 can be computed by using 

𝜖− and 𝜖+. Thus; the erasure probabilities of the channels: 

                   𝑊−− is 𝜖−− = 1 − (1 − 𝜖−)2,  

                   𝑊−+ is 𝜖−+ = (𝜖−)2,  

                   𝑊+− is 𝜖+− = 1 − (1 − 𝜖+)2 and  

                   𝑊++ is 𝜖++ = (𝜖+)2.  

This process can be followed to calculate erasure probabilities of each split channel 

𝑊𝑁
(𝑖)

 and their capacities (1 − erasure probability) over BEC(𝜖) for larger 𝑁 values. 

 

2.5 Polar Code Encoding 

 

In the previous parts, 𝑁 distinct channels 𝑊𝑁
(𝑖)

, 𝑖 ∈ {1, … , 𝑁} have been obtained by 

channel transformation method. The symmetric capacities of each of them are 

polarizing and each one converges to 0 or 1, while 𝑁 becomes larger. The main idea 

at constructing a (𝑁, 𝐾) polar code for blocklength 𝑁 = 2𝑛, 𝑛 ≥ 0 is choosing 𝐾 of 

channels 𝑊𝑁
(𝑖)

, 𝑖 ∈ {1, … , 𝑁} with higher capacities to send data and freezing 𝑁 − 𝐾 

of channels with lower ones. Since frozen bits do not have the capability to transmit 

data bits reliably, they are not chosen to send data. Thus; frozen bits have 

predetermined values known by the encoder and the decoder. Then, inputs are 

mapped to codewords through the linear encoder,  𝑥1
𝑁 = 𝑢1

𝑁𝐹⊗𝑛 where 𝐹⊗𝑛 is the 

nth-Kronecker product of the base matrix 𝐹 = [
1 0
1 1

]. 
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After obtaining 𝑁 distinct channels 𝑊𝑁
(𝑖)

, 𝑖 ∈ {1, … , 𝑁}, we will use 𝐴 to denote the 

set of frozen bit channels, which have converging symmetric capacities to 0. Size of 

this set is 𝑁 − 𝐾, where blocklength 𝑁 = 2𝑛. Their corresponding input bits will be 

frozen and indicated as 𝑢𝐴. Frozen bits will be predetermined as 0 for simplicity in 

this thesis. Also; information bits are denoted as complement of frozen bits, 𝑢𝐴𝑐. The 

set of 𝐾 information bit channels will be shown as 𝐴𝑐 and they are chosen according 

to higher symmetric capacity values.  

The Bhattacharyya parameters are used by Arıkan, while choosing the information 

bits [Arıkan, 2009]. The Bhattacharyya parameters 𝑍(𝑊) are defined as in Equation 

2.20 by Arıkan. After Bhattacharyya parameters of 𝑁 distinct channels 𝑊𝑁
(𝑖)

, 𝑖 ∈

{1, … , 𝑁} are computed, the set of 𝑁 − 𝐾 channels with largest 𝑍(𝑊𝑁
(𝑖)

) is called 

frozen set as explained in Equation 2.21.  

 𝑍(𝑊) = ∑ √𝑊(𝑦|0)𝑊(𝑦|1)
𝑦

 

 

2.20 

 
 𝑍(𝑊𝑁

(𝑖)
) ≥ 𝑍 (𝑊𝑁

(𝑗)
) , ∀𝑖 ∈ 𝐹, ∀𝑗 ∈ 𝐹𝑐 

 

2.21 

 
Each row of 𝐹⊗𝑛 matrix is indexed as 𝑖 ∈ {1, … , 𝑁}. Then, Bhattacharya parameters 

of  𝑁 distinct channels 𝑊𝑁
(𝑖)

 are calculated for BEC(𝜖) according to Equation 2.22. 

 

𝑍(𝑊𝑁
(2𝑖−1)

) = 2𝑍(𝑊𝑁
2

(𝑖)
) − 𝑍(𝑊𝑁

2

(𝑖)
)2 

𝑍(𝑊𝑁
(2𝑖)

) = 𝑍(𝑊𝑁
2

(𝑖)
)2 

2.22 

 

When initial condition 𝑍(𝑊1
(1)

) is chosen as the erasure probability 𝜖 of the channel, 

the corresponding code is called an adaptive polar code [Arıkan, 2009]. After 

computation of all Bhattacharya parameters, indices of the 𝐾 lowest of them are used 

to create the generator matrix. The 𝐾 × 𝑁 generator matrix, 𝐺𝑃, is constructed from 
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rows of 𝐹⊗𝑛 matrix, whose indices are corresponding to the indices of the 𝐾 lowest 

Bhattacharya parameters. 

Moreover; indices of the 𝐾 lowest Bhattacharya parameters equal to indices of the 𝐾 

highest capacities of channels for the reference factor graph (𝑛 − ⋯ − 1) for BEC(𝜖) 

[Arıkan, 2009]. However; as also mentioned by Peker, others than the reference 

factor graph do not satisfy this equality [Peker, 2018]. Capacity of each channel 𝑊𝑁
(𝑖)

 

of the reference factor graph (RFG) equals to 𝐼(𝑊𝑁
(𝑖)

 ) = 1 − 𝑍(𝑊𝑁
(𝑖)

), where 𝑖 ∈

{1, … , 𝑁}.  

For example; the process of choosing the information bits for an (8, 4) polar code 

over BEC(0.35), and encoding of the word [1,1,1,0] are shown in Figure 2.10. There 

are 4 information and 4 frozen bits. The first left column shows channel capacities of 

the RFG from each input. Second column indicates Bhattacharya parameter values of 

each indices. As it can be seen that for each indices, each summation of channel 

capacities and Bhattacharya parameters equals to 1. According to the 4 highest 

channel capacities or the 4 lowest Bhattacharya parameters, indices of information 

bits, green ones, are 𝐴𝑐 = {4,6,7,8} whereas frozen bits, red ones, 𝐴 = {1,2,3,5}. 

Frozen bit values are predetermined to 0. Word to send is [1,1,1,0] and each bit will 

convey over inputs 𝑢𝐴𝑐 = {𝑢4, 𝑢6, 𝑢7, 𝑢8}. Moreover; since the 4 highest channel 

capacities are at {4,6,7,8}, the generator matrix 𝐺𝑃 of (8, 4) Polar code consists of 4th, 

6th, 7th and 8th rows of 𝐹⊗3 matrix as seen in Equation 2.23. When we calculate the 

codeword at encoder output by using formula 𝑥1
8 = 𝑢1

8𝐺𝑃, we can say that the 

codeword 𝑥1
8 equals to the result of the operation in Figure 2.10.  

 𝐺𝑃 = [

1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

]  𝑓𝑜𝑟 (8, 4) 𝑃𝑜𝑙𝑎𝑟 𝑐𝑜𝑑𝑒 

 

2.23 
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Figure 2.10 Choosing the information bits for an (8, 4) polar code over BEC(0.35), and 

encoding of the word [1,1,1,0]. 

 

As an example given in Figure 2.10, encoding and decoding process of polar codes 

can be represented by factor graphs (FG’s). Connections in these factor graph 

representations can be simplified as Z-shape connections as presented by Korada 

[Korada, 2009]. Figure 2.11 shows the redrawn version of Figure 2.10 with Z-shape 

connections. Each Z-shape connection connects two inputs and two outputs. Also; 

these Z connections’ heights can differ and it depends on difference between indices 

of two inputs. For example, if height of a Z-shape is 1, difference between indices of 

two inputs is 1 and this is the smallest Z-shape. Height of a Z-shape can be 2(𝑛−1) at 

maximum. These height values also represent the stage numbers [Doğan, 2015]. 

Order of these stage numbers will be used to name factor graphs in the next chapters. 

Moreover; each stage consists of  
𝑁

2
 number of Z-shape connections with same 

height. Each factor graph has 𝑛 stages and these stages can be permuted with each 

other in 𝑛! different ways. So; there are 𝑛! different factor graphs for a code. This 

will be studied on next chapter in detail. 
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Figure 2.11 Redrawn reference factor graph representations of Figure 2.10 with Z-shape 

connections. 

 

2.6 Belief Propagation Decoding Algorithm 

 

Since polar codes are close relatives with Reed Muller (RM) codes, as Forney 

applied for RM codes [Forney, 2001], Belief Propagation (BP) decoding algorithm 

can be used for polar codes as well. According to [Korada, 2009], performance of BP 

decoding algorithm is worse than MAP, but better than successive cancellation (SC) 

decoding algorithm. Arıkan used SC decoding algorithm in [Arıkan, 2009]. 

However; SC decoding algorithm has high decoding latency and low throughput due 

to its serial processing scheme [Zhang, Liu, Pan, Ye, & Gong, 2014]. Therefore; after 

this point, we will use Belief Propagation (BP) decoding algorithm in our 

simulations. 

Belief Propagation (BP) decoding algorithm is a kind of message passing algorithm 

(MPA). This kind of algorithms are applied on codes with graphical representations 

to decode. As mentioned in Section 2.5, codes can be represented with factor graphs. 

Each FG consists of 𝑛 stages and each stage has 
𝑁

2
 number of Z-shape connections. 

Also; each stage contains 𝑁 inputs and 𝑁 outputs nodes. Input nodes of first stage are 

input bits and output nodes of last stage are output bits. Inputs of each stage are 
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outputs of previous stage. Thus; there are (𝑛 + 1)𝑁 variable nodes in a factor graph 

and except nodes of input bits, there are 𝑛𝑁 nodes, which are called check nodes. For 

example; in Figure 2.12, for 𝑁 = 8, reference factor graph (321) is indicated with 24 

check nodes as square and 32 variable nodes as circle.  

 

 

Figure 2.12 Reference factor graph with check nodes (square) and variable nodes (circle) for 

𝑁 = 8. 

 

As it can be seen in Figure 2.12, there are 4 Z-shape connections in each stage. 

Processing details of each one is demonstrated in Figure 2.13. There are two inputs 

and two outputs at each Z-shape connection. Input and output nodes are shown with 

𝑣𝐼 and 𝑣𝑂, respectively. Stage numbers are indicated with 𝑖, where 𝑖 = 1 … 𝑛. The 

𝑖 = 1 means that nodes of first stage are in process. The 𝑗 and 𝑘 indicators are used 

for rows of the diagram, where 𝑗 = 𝑘 − 2𝑖−1 = 1 … (𝑁 − 1). Iteration numbers are 

represented by 𝑡. Messages with 𝑡 − 1 as exponential indicator carry previous 

iterations’ information. Messages, whose directions are towards to left, are indicated 

with 𝐿, whereas 𝑅 for messages with right directions. That is; in Figure 2.13, 𝐿𝑣𝐼(𝑖,𝑗)
𝑡  

and 𝐿𝑣𝐼(𝑖,𝑘)
𝑡  have the probability messages, which are going to 𝑣𝐼(𝑖, 𝑗) and 𝑣𝐼(𝑖, 𝑘) 

input nodes at the 𝑡𝑡ℎ iteration. Also; 𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1  and 𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1  the probability messages, 

which come out of 𝑣𝑂(𝑖, 𝑗) and 𝑣𝑂(𝑖, 𝑘) output nodes at the previous (𝑡 − 1)𝑡ℎ 

iteration. These can also be said similarly for messages with right direction. 
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Figure 2.13 Decoding process details of a Z-shape connections. 

 

The Belief Propagation (BP) decoding algorithm that we have used in this thesis is 

different than the common version. This altered version has also been used in [Xu, 

Che, & Choi, 2015] and [Doğan, 2015]. In our version, iteration starts from the right 

most nodes, which are the outputs of the last stage and received bits at the same time. 

Then, nodes are updated only by messages directed to the left until reaching the 

leftmost nodes, which are inputs of the first stage. After updating the leftmost nodes, 

messages merely with right direction are used till the rightmost nodes. This process 

is corresponding to one iteration. 

Decoding process should firstly start with defining which nodes are the frozen 

variables. As it will be explained in Chapter 3, frozen bits at the input of the diagram 

may cause frozen variable nodes at inner nodes of the diagram.  

After assigning all frozen variables, one should fill the output variable nodes of the 

diagram, 𝑣𝑂(𝑛, 𝑗) & 𝑣𝑂(𝑛, 𝑘), by using 0’s and 1’s of the received word and 0.5 for 

erased bits for the BEC in order to start the decoding process from the rightmost 

nodes of the diagram. Then; operations in Equation 2.24 are employed to shift the 

probability messages from the rightmost nodes to the leftmost nodes of the diagram.  
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𝐿𝑣𝐼(𝑖,𝑗)

𝑡 = 𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ⊗ [𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1 ⊙ 𝑅𝑣𝐼(𝑖,𝑘)
𝑡−1 ] 

𝐿𝑣𝐼(𝑖,𝑘)
𝑡 = [𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1 ⊗ 𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ] ⊙ 𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1  

 

 

2.24 

 

Also; shifting the probability messages from the left most nodes to the right most 

nodes can be done with operations in Equation 2.25 [Zhang, Zhang, Pan, Ye, & 

Gong, 2014]. That is; these two equations are used in sequence to complete one 

iteration.  

 
𝑅𝑣𝑂(𝑖,𝑗)

𝑡 = 𝑅𝑣𝐼(𝑖,𝑗)
𝑡−1 ⊗ [𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1 ⊙ 𝑅𝑣𝐼(𝑖,𝑘)
𝑡−1 ] 

𝑅𝑣𝑂(𝑖,𝑘)
𝑡 = [𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1 ⊗ 𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ] ⊙ 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1  

 

 

2.25 

 

Two operations ⊗ and ⊙ are defined in Equation 2.26. The probability that x equals 

0 or 1 is indicated as 𝑝𝑥(0) or 𝑝𝑥(1), respectively. For messages with left direction, 

𝑝𝑥(0) refers to 𝐿𝑣(0), whereas 𝑝𝑥(1) refers to 𝐿𝑣(1). It can also be written for 

messages with right direction as 𝑝𝑥(0) for 𝑅𝑣(0) and 𝑝𝑥(1) for 𝑅𝑣(1).  

 

(𝑝𝑥 ⊗ 𝑝𝑦)(0) = 𝑝𝑥(0)𝑝𝑦(0) + 𝑝𝑥(1)𝑝𝑦(1) 

(𝑝𝑥 ⊗ 𝑝𝑦)(1) = 𝑝𝑥(0)𝑝𝑦(1) + 𝑝𝑥(1)𝑝𝑦(0) 

(𝑝𝑥 ⊙ 𝑝𝑦)(0) = 𝑝𝑥(0)𝑝𝑦(0) 

(𝑝𝑥 ⊙ 𝑝𝑦)(1) = 𝑝𝑥(1)𝑝𝑦(1) 

 

 

2.26 

 

To start updating the nodes in the first iteration by using messages, which come from 

the rightmost nodes, initial probabilities can be taken as written in Equation 2.27.  

 𝐿𝑣𝑂(,𝑗)
0 = {

0       𝑖𝑓 𝑟𝑤(𝑖) = 0

1       𝑖𝑓 𝑟𝑤(𝑖) = 1

0.5   𝑖𝑓 𝑟𝑤(𝑖) = 𝑒

 

 

2.27 
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After completing each iteration, all output nodes of the diagram, 𝑣𝑂(𝑛, 𝑗) & 𝑣𝑂(𝑛, 𝑘), 

are checked. If there is no erasure and all nodes are filled with 0’s and 1’s, the 

algorithm stops; but if there is still an erased bit, the next iteration of the decoding 

process starts. The maximum number of iterations to stop the decoding algorithm is 

predetermined. The optimum number iterations are suggested by Doğan in his thesis 

[Doğan, 2015], which depend on the blocklength of the code and the erasure rate of 

the binary erasure channel. In this thesis, we set the maximum number of iterations 

to 20 for all codes and erasure rates. 
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CHAPTER 3 

 

 SIMULATION RESULTS 

 

In this chapter, we discuss some practical results about the single-FG and multiple-

FG (𝑀-FG) belief propagation (BP) decoding performance of polar codes. Single-FG 

decoder employs a single factor graph, whereas 𝑀-FG decoder works with 𝑀 > 1 

arbitrarily selected factor graphs, which decode sequentially one after the other. 

Keeping 𝑀 around ⌈𝑛/2⌉, that is the smallest integer greater than equal to half of the 

number of stages 𝑛 = 𝑙𝑜𝑔2𝑁, we try to find matching sets of 𝑀 factor graphs that 

improve the decoding performance.  

For the classification of 𝑛! FG’s, two parameters are used in [Doğan, 2015] and 

[Peker, 2018]: the number of frozen variables (FV), and the capacity-sum (CS). We 

propose a third and more simply evaluated parameter that helps the classification of 

FG’s, and call it the “stage order number (SON)”. In Section 3.1, relations between 

FV, CS and SON values are explored, and the effects of these parameters on the 

single-FG BP decoding performance of polar codes are studied.   

Section 3.2 is devoted to multiple-FG BP decoding, and it starts by comparing the 

performance of independent and dependent 𝑀-FG BP decoders in Section 3.2.1. 

Because of its better performance, we prefer to continue with dependent decoding in 

the remaining part of this work. Section 3.2.2 deals with the effect of changing the 

order of FG’s in dependent 𝑀-FG decoding. Section 3.2.3 is about the decoding 

performances of a twice repeated set of 𝑀 different FG’s, versus that of 2𝑀 different 

FG’s. In Section 3.2.4, the selection of FG sets for a better-performing 𝑀-FG 

decoder is explored, where the SON values of the factor graphs are also considered 

in search for a systematic rule. Question of finding similarly performing FG sets with 

smaller size is asked in Section 3.2.5, SON’s of compatible sets are explored in 

Section 3.2.6 and an algorithm that generates an FG set with 𝑀 = ⌈𝑛/2⌉ elements is 
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given in Section 3.2.7. The performance comparison of ⌈𝑛/2⌉ FG’s generated by this 

algorithm, with Korada’s 𝑛 cyclically shifted FG’s is given for polar codes of 

different lengths in Section 3.2.8. Finally, dependence of polar code construction on 

the erasure rate and related performance results are examined in Section 3.2.9. 

 

3.1 Number of Frozen Variables (FV), Capacity Sum (CS) and Stage Order 

Number (SON) Parameters of the Single-FG BP Decoder 

 

Special factor graphs (FG’s) are used to represent the encoding and decoding 

structure of polar codes. These factor graphs consist of 𝑛 stages for (𝑁, 𝐾) codes, 

where 𝑁 = 2𝑛. Each stage contains 𝑁/2 many Z-shaped connections between two 

specific ‘stage input and corresponding stage output’ points. If the positions of the Z-

connected stage inputs are such that there is no other input node between them, 

vertical positions of the corresponding stage outputs are also adjacent; so, the height 

of the corresponding Z-shaped connection is 1, and it is named as ‘Stage-1’ in 

[Doğan, 2015]. The smallest height of a Z-shaped connection is 1, it can only be a 

power of 2, such as 20,  21, 22, … and at maximum 2(𝑛−1); the corresponding stages 

are called 1, 2, 3, … , 𝑛 respectively [Doğan, 2015]; i.e., Stage-𝑖 contains 𝑁/2 many 

Z-shapes of height 2(𝑖−1), and it occurs only once in a factor graph for each 𝑖 =

1, … , 𝑛. Since there are 𝑛 different stages, they can be ordered in 𝑛! different ways, 

so there are 𝑛! different factor graphs.  

As mentioned in Section 2.4, the capacity of each channel (from an input bit of the 

FG to all outputs of the FG) can be calculated by using the erasure rate of the BEC. 

Information bit indices of the polar code computed according to the ascending order 

of Bhattacharya parameters are in harmony with the descending order of channel 

capacities [Arıkan, 2009] of the reference factor graph (RFG), whose stage order is 

from the largest to the smallest, 𝑛-…-2-1. In other words, highest 𝐾 channel 

capacities of the RFG determine the information bit indices, and they are the same 

indices determined by the Bhattacharya parameters over a BEC. The factor graph 
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used for encoding is the RFG structure; however, decoding can be done using other 

FG’s as well, provided that the positions of the information bit indices are kept fixed; 

i.e., the same as those of the RFG.  

As discussed in [Doğan, 2015] and [Peker, 2018], the capacity sum (CS) of the K 

information channels and the number of frozen variables (FV) of a factor graph may 

vary from one FG to the other, since always the same information bit indices are 

used regardless of the factor graph. The reference FG, whose stage order is 𝑛-…-2-1, 

has the highest CS and FV values among 𝑛! factor graphs, which may be shared by 

other FG’s as well.  

In this work, we suggest another classification parameter for these 𝑛! factor graphs, 

in addition to their CS and FV values, that we call the “stage order number-SON”. 

The SON is defined as the “𝑛-digit integer obtained by writing the stage names of the 

FG from left to right”, like 123…𝑛, 321…𝑛, or 𝑛…231. Since the SON is unique for 

each FG, there are 𝑛! different SON values for 𝑛! different FG’s. The SON of the 

reference FG is the highest of all; i.e., 𝑛(𝑛 − 1) …321. Effects of the CS, FV and 

SON parameters over single-FG belief propagation decoding performance will be 

investigated in Section 3.1.5. 

 

3.1.1 Capacity Sum (CS) Calculation of Factor Graphs 

 

While the stage order of factor graphs are permuting, channel capacity on each 

information bit index may also permute. In other words, although the set of 𝑁 

channel capacities remains the same, their capacity order may change. This capacity 

permutation depends on changes in connection paths between each input and output 

bit. Since information is transmitted using always the same 𝐾 input bits, capacities of 

these 𝐾 channels may differ resulting in different CS values from one factor graph to 

another one. 
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For example, channel capacities of the (8, 𝐾) adaptive polar codes over BEC (0.35) 

for the reference factor graph with SON=321 [Peker, 2018] are computed as in 

Figure 3.1. Also; channel capacities of all 3 = 𝑙𝑜𝑔28 different factor graphs are 

shown in Figure 3.2 for 𝑁 = 8; where the arrows connecting equi-capacities are 

added only to indicate the change of the capacity order. 

 

 

Figure 3.1 Channel capacities of the reference factor graph (3-2-1) for the (8, 𝐾) adaptive 

polar code over BEC (0.35). 
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Figure 3.2 Input bit capacities and CS of all factor graphs for the (8, 3) and (8, 4) adaptive 

polar code over BEC (0.35). 

 

As expected, the reference factor graph 3-2-1 has the maximum CS value for both 

codes, (8, 3) and (8, 4). “CS of (8, 3)” row in Figure 3.2, shows that different factor 

graphs may have different CS values because of the permuting channel capacities. 

One can observe that for the (8, 4) codes, CS values of all factor graphs are the same. 

Because, while stage orders of factor graphs permute, bit capacities of the highest-

capacity 4 channels permute among the same 4 information bit indices: 011, 101 and 

110. So, the capacity sum of these 4 information channels remain the same for all 

FG’s. Invariation of CS versus FG occurs when the polar code is also a Reed-Muller 

(RM) code. 

The capacity sum of a factor graph is shown to be related to the 1-FG BP decoding 

performance of the related decoder [Doğan, 2015], [Peker, 2018]. CS grouping of 

FG’s is done and each group of factor graphs with the same CS value is called an 

“equi-CS set” [Doğan, 2015]. In Figure 3.2, one may observe 3 different equi-CS 

sets of size 2 for the (8, 3) code. Corresponding CS values are 2.91, 2.85 and 2.83. 



36 

 

3.1.2 Number of Frozen Variables (FV) Calculation of Factor Graphs 

 

There are 𝐾 “information bits”, which are used to convey information and have fixed 

indices regardless of the stage order; the remaining input bits of the FG are called 

“frozen bits”. There are 𝑁 − 𝐾 frozen bits in an (𝑁, 𝐾) code. During encoding or 

decoding, other nodes within the inner stages can be employed for information 

conduction or they may be frozen. If a node is used for information transmission, it is 

called an “information variable” otherwise, it is called a “frozen variable”. 

Except the first stage in the FG, each stage uses 𝑁 outputs of the previous stage as its 

inputs. Input pairs of each stage are processed in its own Z-shapes and results are 

shown as outputs of that stage. To determine whether a node is an information 

variable or a frozen variable (Figure 3.3), one needs to consider the following 4 

cases:  

 

Figure 3.3 Z-shape process. 

 

 If 𝑈1 and 𝑈2 are both frozen variables, then 𝑋1 and 𝑋2 are also frozen 

variables and no node is an information variable. 

 If 𝑈1 is an information variable and 𝑈2 is a frozen variable, then 𝑋1 is an 

information variable and 𝑋2 is a frozen variable. 

 If 𝑈1 is a frozen variable and 𝑈2 is an information variable, then 𝑋1 and 

𝑋2 are both information variables. 

 If 𝑈1 and 𝑈2 are both information variables, then 𝑋1 and 𝑋2 are also 

information variables and no node is a frozen variable. 
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After determining all frozen nodes of the diagram, corresponding ‘number of frozen 

variables’ is called FV [Doğan, 2015]. In an (𝑁, 𝐾) code, the number of frozen 

variables, FV, is lower bounded by the number of frozen input bits 𝑁 − 𝐾 and it may 

change by differing the stage order.  

As investigated similarly in [Peker, 2018]; when we calculate the number of frozen 

variables of the (8, 4) and (8, 3) adaptive polar codes over BEC (0.35) for all factor 

graphs, we can draw a frozen variable diagram of each factor graph. Frozen variable 

diagrams of (8, 4) and (8, 3) adaptive polar codes are demonstrated in Figure 3.4 and 

Figure 3.5, respectively. 

 

 

Figure 3.4 Information and frozen variables of all factor graphs for the (8, 4) adaptive polar 

code over BEC (0.35). 
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Figure 3.5 Information and frozen variables of all factor graphs for the (8, 3) adaptive polar 

code over BEC (0.35). 

 

Nodes, which are filled with red and marked with “F”, represent frozen variables. 

Nodes, which are filled with green and marked with “I”, represent information 

variables. One can calculate the number of frozen variables by counting the red 

nodes. In Figure 3.4 drawn for the (8, 4) polar (or RM) code, FV is 6 and it remains 

constant for all factor graphs. As mentioned previously, if the (𝑁, 𝐾) polar code is the 

same as the (𝑁, 𝐾) Reed-Muller code, FV and CS values are independent of the stage 

order of the factor graph. 

In Figure 3.5, given for the (8, 3) adaptive polar code, one can observe that the FV 

value may change according to the stage order of factor graph. The minimum FV 

value is 7 and it belongs to the FG with the least stage order number (123). The 

maximum FV value is 13 and it belongs to the reference factor graph, which has the 

biggest stage order number (321). According to our observations, the factor graph 

with minimum stage order number (SON =12…𝑛), has always the minimum FV and 

CS values, whereas the reference factor graph, whose stage order number is the 

maximum (SON = 𝑛…21), has the maximum FV and CS values. As expected, since 

the number of frozen bits at the input increases when the code rate decreases, FV’s of 

the factor graphs also increase.  
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To observe the FV values of (𝑁, 𝐾) codes with larger blocklengths, one can calculate 

a “frozen variable matrix”, which consists of 0’s and 1’s [Doğan, 2015]; where 

frozen and information variables are shown with “0” and “1”, respectively. Each 

node in the diagram is matched to one location in the matrix. For instance, elements 

of the first column of the matrix show the input bit states, while ones at the last 

column indicate the output bit states. Since there are 𝑁 input bits and 𝑛 stages, the 

matrix size is 𝑁 × (𝑛 + 1).  

For example; for the (32, 16) code, there are 5!  =  120 different factor graphs. In 

Table 3.1, we show the frozen variable matrices of the FG’s with SON’s 54321 and 

12345 by indicating the frozen and information variables in different colors. Number 

of zeros; i.e, FV of RFG is 44 and that of the FG with minimum SON =12345 is 24. 

Since the (32, 16) adaptive polar code is different from the (32, 16) Reed-Muller 

code, one may get different FV values for different factor graphs. FV’s of all other 

factor graphs differ between 24 and 44. 
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Table 3.1 Frozen variable matrices of RFG and FG with least stage order number for the 

(32, 16) adaptive polar code over BEC (0.35). 

 

 

FV values can be used as a sorting feature for factor graphs. Factor graphs with the 

same FV values are called “equi-FV sets” [Doğan, 2015]. Peker studies on equi-FV 

and equi-CS groups of (32, 16), (64, 32) and (128, 64) in detail and their 

performances over BEC(0.35) [Peker, 2018]. According to Table 3.2 reproduced 

from [Peker, 2018]; for the (32, 16) adaptive polar code over BEC (0.35), 5 different 

equi-FV sets and 10 different equi-CS sets are created from 120 different factor 

graphs. Each equi-CS set consists of 12 factor graphs. The factor graphs with the 

least FV and CS values are in the same group. Similarly, highest FV and CS-valued 

sets are the same. The number of equi-FV sets is less than the number of equi-CS 

sets; that is, equi-CS sets are the subsets of equi-FV sets. In the following sections, 

we will discuss that FG’s in equi-FV or equi-CS sets have similar codeword error 

ratio (CER) performances in single-FG BP decoding. 

0 0 0 0 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 0 1 1 1 1

0 1 1 1 1 1 0 0 1 1 1 1

0 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 0 1 1 1 1

0 1 1 1 1 1 0 0 1 1 1 1

0 1 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 0 1 1 1 1

0 0 1 1 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 1 1 0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

PC N=32 K=16 (12345)PC N=32 K=16 (54321)

FV = 24FV = 44
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Table 3.2 Distribution of equi-CS and equi-FV sets for the (32, 16) polar code over 

BEC(0.35). (Reproduced from [Peker, 2018]) 

Equi-FV set 

no. 
FV CS 

Number of 

FG’s in 

the equi-

CS set 

Number of 

equi-CS sets 

in the equi-

FV set 

1 44 15.67 12 1 

2 
36 15.48 12 

2 
36 15.23 12 

3 

32 15.32 12 

3 32 15.07 12 

32 14.88 12 

4 

28 15.18 12 

3 28 14.94 12 

28 14.78 12 

5 24 14.7 12 1 

5 Equi-FV 

sets 
Total 120 FG's 

10 Equi-CS 

sets 

 

 

3.1.3 Number of Frozen Variable and Capacity Sum Calculation for Reed 

Muller Codes 

 

As mentioned in Section 2.1, 𝑛-Kronecker power matrix 𝐹⊗𝑛 is calculated by taking 

the self Kronecker product of 𝐹 =  [
1 0
1 1

], 𝑛 times. The size of 𝐹⊗𝑛 is 2𝑛 × 2𝑛. 

Polar codes are close relatives of Reed-Muller (RM) codes, and generator matrices of 

both codes are chosen from the same 𝑛-Kronecker power matrix. So, the blocklength 

is 𝑁 =  2𝑛 for both codes; but the information word length for polar codes can be 

any integer 𝐾 ≤  𝑁, whereas for an rth order Reed-Muller code, RM (𝑟, 𝑛), 𝐾 = 

∑ (𝑛
𝑖
)𝑟

𝑖=0 . In Chapter 2.5, it is stated how the highest-capacity K input bits are used to 

select 𝐾 rows of 𝐹⊗𝑛 in order to arrange the generator matrix 𝐺𝑃  of the polar code. 
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On the other hand; the generator matrix 𝐺𝑅𝑀 of a Reed-Muller code is produced with 

rows of 𝐹⊗𝑛 whose Hamming weights are greater than or equal to 2𝑛−𝑟.  

The generator matrix of an (𝑁, 𝐾) Reed-Muller code can be exactly the same as that 

of an (𝑁, 𝐾) polar code for some 𝑁 and 𝐾 values. For example, the generator 

matrices of (8, 4) polar and RM codes, whose rows are selected from 𝐹⊗3 depending 

on bit capacities for the polar, and row Hamming weights for the RM, are the same 

(see Table 3.3). Generator matrices of both codes are formed by the rows of 𝐹⊗3, 

whose indices are 4, 6, 7 and 8. 

Table 3.3 Information bit indices and rows of generator matrices for the (8, 4) polar and 

Reed-Muller codes over BEC (0.35). 

Bit Capacities 3-Kronecker Power Matrix Hamming Weights of Rows 

0.0318 1 0 0 0 0 0 0 0 1 

0.5929 1 1 0 0 0 0 0 0 2 

0.4442 1 0 1 0 0 0 0 0 2 

0.9702 1 1 1 1 0 0 0 0 4 

0.3251 1 0 0 0 1 0 0 0 2 

0.9471 1 1 0 0 1 1 0 0 4 

0.8887 1 0 1 0 1 0 1 0 4 

0.9997 1 1 1 1 1 1 1 1 8 

 

 

Although (8, 4) polar and RM codes are the same, generator matrices of (𝑁,  𝑁/2) 

codes start to differ for 𝑁 = 32; hence (32, 16) polar and RM codes differ by one 

row. As the code length increases, the number of different rows in the generator 

matrices 𝐺𝑃  and 𝐺𝑅𝑀 also increases. For 𝑁 =  32 and 𝐾 =  16, RM (2, 5) code 

chooses all rows of the 5-Kronecker power matrix whose Hamming weights are 32, 

16 and 8 in order to arrange a 16 by 32 generator matrix 𝐺𝑅𝑀. However; (32, 16) 

polar code selects rows of the 5-Kronecker power matrix depending on the highest 

16 channel capacities in the  reference FG; and picks up a weight-4 row for 𝐺𝑃, 

instead of a weight-8 row, which is included in 𝐺𝑅𝑀. As can be seen in Table 3.4, the 

channel capacity of the green colored weight-4 row is greater than that of the pink 
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colored weight-8 row. These two rows are the only differing rows of the generator 

matrices 𝐺𝑃  and 𝐺𝑅𝑀 of the (32, 16) polar and RM codes. 

 

Table 3.4 Information bit capacities of RFG and Hamming weights of rows for the (32, 16) 

polar and Reed-Muller codes over BEC (0.35). 

Information Bit 

Capacities of (32,16) 

PC (54321) 

Information Bit 

Hamming Weights 

of (32,16) PC 

Information Bit 

Capacities of (32,16) 

RM (54321) 

Information Bit 

Hamming Weights 

of (32,16) RM 

0.8860695 4 0.9990995 8 

0.9990995 8 0.9982262 8 

0.9982262 8 0.9944116 8 

0.9944116 8 0.9754104 8 

0.9754104 8 0.9999998 16 

0.9999998 16 0.9965557 8 

0.9965557 8 0.9893917 8 

0.9893917 8 0.9558657 8 

0.9558657 8 0.9999997 16 

0.9999997 16 0.9725360 8 

0.9725360 8 0.9045819 8 

0.9045819 8 0.9999992 16 

0.9999992 16 0.7925878 8 

0.9999921 16 0.9999921 16 

0.9998469 16 0.9998469 16 

0.9999999 32 0.9999999 32 

 

 

For the (𝑁, 𝐾) Reed-Muller codes, although bit capacities are permuted and frozen 

variable matrices may be different for each factor graph, CS and FV values remain 

always the same as indicated in Table 3.5.  
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Table 3.5 Bit capacities and frozen variable matrices of factor graphs with stage order 

number 54321 and 12345 for the (32, 16) Reed-Muller codes over BEC (0.35). 

Bit Capacities 

(54321) 

Frozen Variable Matrix 

(54321) 

Bit 

Capacities 

(12345) 

Frozen Variable Matrix 

(12345) 

0.0000010 0 0 0 1 1 1 0.0000010 0 0 0 1 1 1 

0.1235816 0 0 1 1 1 1 0.0020296 0 0 0 1 1 1 

0.0389375 0 0 1 1 1 1 0.0039329 0 0 0 1 1 1 

0.8860695 0 1 1 1 1 1 0.1214942 0 0 0 1 1 1 

0.0111769 0 0 1 1 1 1 0.0111769 0 0 1 1 1 1 

0.8046159 0 1 1 1 1 1 0.2002654 0 0 1 1 1 1 

0.6239712 0 1 1 1 1 1 0.2965617 0 1 1 1 1 1 

0.9990995 1 1 1 1 1 1 0.7925878 1 1 1 1 1 1 

0.0039329 0 0 0 1 1 1 0.0389375 0 0 1 1 1 1 

0.6960188 0 1 1 1 1 1 0.3557144 0 0 1 1 1 1 

0.4776217 0 1 1 1 1 1 0.4776217 0 1 1 1 1 1 

0.9982262 1 1 1 1 1 1 0.9045819 1 1 1 1 1 1 

0.2965617 0 1 1 1 1 1 0.6239712 0 1 1 1 1 1 

0.9944116 1 1 1 1 1 1 0.9558657 1 1 1 1 1 1 

0.9754104 1 1 1 1 1 1 0.9754104 1 1 1 1 1 1 

0.9999998 1 1 1 1 1 1 0.9998469 1 1 1 1 1 1 

0.0020296 0 0 0 1 1 1 0.1235816 0 0 1 1 1 1 

0.5795019 0 0 1 1 1 1 0.5795019 0 0 1 1 1 1 

0.3557144 0 0 1 1 1 1 0.6960188 0 1 1 1 1 1 

0.9965557 1 1 1 1 1 1 0.9725360 1 1 1 1 1 1 

0.2002654 0 0 1 1 1 1 0.8046159 0 1 1 1 1 1 

0.9893917 1 1 1 1 1 1 0.9893917 1 1 1 1 1 1 

0.9558657 1 1 1 1 1 1 0.9944116 1 1 1 1 1 1 

0.9999997 1 1 1 1 1 1 0.9999921 1 1 1 1 1 1 

0.1214942 0 0 0 1 1 1 0.8860695 0 1 1 1 1 1 

0.9725360 1 1 1 1 1 1 0.9965557 1 1 1 1 1 1 

0.9045819 1 1 1 1 1 1 0.9982262 1 1 1 1 1 1 

0.9999992 1 1 1 1 1 1 0.9999992 1 1 1 1 1 1 

0.7925878 1 1 1 1 1 1 0.9990995 1 1 1 1 1 1 

0.9999921 1 1 1 1 1 1 0.9999997 1 1 1 1 1 1 

0.9998469 1 1 1 1 1 1 0.9999998 1 1 1 1 1 1 

0.9999999 1 1 1 1 1 1 0.9999999 1 1 1 1 1 1 

CS = 

15.5785050 
FV = 30 

CS = 

15.5785050 
FV = 30 
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3.1.4 Interrelation between the Number of Frozen Variables, Capacity Sum and 

Stage Order Numbers 

 

As studied in previous sections, each factor graph with different stage order has a 

“capacity sum-CS”, and a “number of frozen variables-FV”. CS and FV values of an 

arbitrary factor graph can be seen as parameters that predict the BP decoding 

performance of that factor graph, single-FG BP decoding is more successful with 

FG’s with high CS and FV values. In Figure 3.6, we sketch CS values of 6!  =  720 

different FG’s versus their FV values for the (64, 32) adaptive polar code over BEC 

(0.35). One can say that although equi-FV groups have a somewhat wide range of CS 

values, FV and CS parameters have a positive correlation in general. 

 

Figure 3.6 Relation between FV and CS values of factor graphs for the (64, 32) adaptive 

polar code over BEC (0.35). 

 

It was mentioned that the “stage order number-SON” of a factor graph is a number 

with n digits. For example; if the stage order is 1-2-3-…-7, then the corresponding 

SON = 1234567. SON values of FG’s are unique, so they can be used as another 

parameter to classify FG’s. 
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In Figure 3.7, the relation between FV and SON values is studied for the (64, 32) 

adaptive polar codes over BEC (0.35). Factor graphs, which are sorted by ascending 

order of their SON values, are placed in the x-axis and their corresponding FV values 

are indicated in the y-axis. As shown in Figure 3.7, FV values range between 52 and 

88 and one observes that although FV is not linearly related to SON, these 

parameters have parallel increment-decrement trends. Moreover; when we repeat a 

similar experiment to compare CS with SON values of factor graphs in Figure 3.8, 

CS values are in the interval of [28.3858, 31.6595] and they have a rising tendency 

while SON values of factor graphs are increasing. As expected, since the greatest 

SON value (654321) belongs to the RFG, it has the maximum FV and CS values. 

Other FG’s with maximum FV and CS values are 654231, 645321 and 645231. Also; 

in both figures, there are grouped data points, which are shown in different colors 

and each of them belongs to factor graphs, which start with the same stage number. 

For instance, the orange colored group of the smallest SON-valued factor graphs, all 

start with the stage number ‘1’. 

 

Figure 3.7 FV versus SON values of all factor graphs for the (64, 32) adaptive polar code 

over BEC (0.35). 
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Figure 3.8 CS versus SON values of all factor graphs for the (64, 32) adaptive polar code 

over BEC (0.35). 

 

As expected, both Figure 3.7 and Figure 3.8 reach their maximum values on the y-

axis (maximum FV and CS values respectively) for the largest SON on the x-axis, 

which corresponds to the reference FG. 

In order to observe the relations between these parameters for larger blocklengths; in 

Table 3.6 we tabulate the correlation coefficients 𝑟FV,CS, 𝑟FV,SON and 𝑟CS,SON 

calculated by 

 
 𝑟𝑥𝑦 =

∑ (𝑥𝑖 − (�̅�))(𝑦𝑖 − (�̅�))𝑛!
𝑖=1

√∑ [𝑥𝑖 − (�̅�)]2𝑛!
𝑖=1 ∑ [𝑦𝑗 − (�̅�)]2𝑛!

𝑗=1

2

 

 

3.1 

 

where (�̅�) = ∑ 𝑥𝑖/𝑛!𝑛!
𝑖=1    and   (�̅�) = ∑ 𝑦𝑖/𝑛!𝑛!

𝑖=1    denote the average values. During 

the computation of correlation coefficients 𝑟𝑥𝑦 related to SON, corresponding indices 

in the SON-sorted list are used instead of SON’s. One can say from Table 3.6 that all 

correlation coefficients between FV-CS, FV-SON and CS-SON are positive for 

different polar codes; but they tend to decrease while the blocklength gets larger.    

 



48 

 

Table 3.6 Correlation coefficients 𝑟𝑥𝑦 between the FV-CS, FV-SON and CS-SON 

parameters of different polar codes over BEC(0.35). 

𝑥 - 𝑦 

(16,8) 

Polar 

Code 

(32,16) 

Polar 

Code 

(64,32) 

Polar 

Code 

(128,64) 

Polar 

Code 

(256,128) 

Polar 

Code 

(512,256) 

Polar 

Code 

FV - CS 0.91 0.86 0.82 0.81 0.79 0.77 

FV - SON 0.74 0.74 0.85 0.77 0.75 0.72 

CS - SON 0.66 0.64 0.63 0.53 0.49 0.44 

 

3.1.5 Single-FG Performance Dependence on the Number of Frozen Variables, 

Capacity Sum and Stage Order Number 

 

Our aim is to observe the effects of the number of frozen variables (FV), capacity 

sum (CS) and stage order number (SON) values on the single-FG performance. For 

the (64, 32) adaptive polar code, there are 6!  =  720 different factor graphs and 

arbitrarily chosen factor graphs can be used in this experiment. BP decoding 

performance of the (64, 32) adaptive polar code over BEC (0.35) is examined by 

using a perfect knowledge-based stopping criterion and setting the maximum number 

of iterations to 20. Codeword error ratio (CER) is measured, after 1000 codewords 

with erased bits are decoded. 

To observe the effect of the number of frozen variables for all possible factor graphs 

on the single-FG performances, single-FG performance of all FG’s are calculated 

and put in ascending order of FV values in Figure 3.9. Although there are some 

jump off points, one observes that single-FG performance is getting more successful 

while factor graphs with higher FV values, are employed. Factor graph with the 

highest FV value is approximately 30% superior to the one with the lowest FV value. 

The best single-FG performance belongs to the factor graph with maximum FV 

value. 
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Figure 3.9 Codeword Error Ratio (CER) performance versus the Number of Frozen 

Variables for Single-FG BP decoder of the (64, 32) adaptive polar code over BEC(0.35). 

 

To observe the effect of the capacity sum for all possible factor graphs on the single-

FG performances, single-FG performance of all FG’s are calculated and put in 

ascending order of CS values in Figure 3.10. It can be said that while CS values are 

increasing, even there is no exact linearity, single-FG performances have an average 

trend of improving. Single FG performances change between CER values of 0.486 

and 0.183 depending on the factor graph used in decoding. Also; the factor graph 

with the maximum CS value has the most successful performance. 

 

Figure 3.10 Codeword Error Ratio (CER) performance versus Capacity Sum at Single-FG 

BP decoder for the (64, 32) adaptive polar code over BEC(0.35). 
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In Table 3.7, we show the elements of two equi-CS sets, which are the highest and 

lowest ones. These eight factor graphs of the highest and lowest equi-CS sets also 

belong to the highest and lowest equi-FV sets, respectively.  

Table 3.7 Codeword error ratio (CER) performance comparison of minimum and maximum 

equi-CS sets at single-FG BP decoder for the (64, 32) adaptive polar codes over BEC(0.35). 

  FV CS SON CER 

MinFV&MinCS 

52 28.3858 123456 0.486 

52 28.3858 123546 0.486 

52 28.3858 132456 0.469 

52 28.3858 132546 0.471 

MaxFV&MaxCS 

88 31.6594 645231 0.183 

88 31.6594 645321 0.192 

88 31.6594 654231 0.183 

88 31.6594 654321 0.192 

 

In Table 3.7, 654321 and 645321 FG’s from highest equi-CS sets have similar 

performances (CER=0.192) with each other. Also; 654231 and 645231 FG’s have 

parallel performances (CER=0.183) with each other. In fact, some of them have 

slightly better CER performance than the reference factor graph. Moreover; 

performance of 132546-132456 FG’s and CER performance of 123546-123456 FG’s 

are parallel as pairs and approximately equal to 0.47 and 0.48, respectively. Though, 

these are lower than ones of FG’s from highest equi-CS set. That is; the factor graphs 

with higher FV and CS values seem to have more successful single-FG performance. 

Finally, we observe the single-FG performances of all possible factor graphs, which 

are sorted according to their stage order numbers in Figure 3.11. It can be seen that 

although there are some jump off points, while SON values are increasing, single-FG 

performances of factor graphs are improving in general. They achieve CER values 

between 0.486 and 0.183. Moreover; there are grouped data points, which are shown 

in different colors and each group belongs to factor graphs which start with same 

stage number. This shows that the first stage number of FG’s is quite important to 

determine those factor graphs’ performance.   
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Figure 3.11 Codeword Error Ratio (CER) performance versus Stage Order Number (SON) 

at single-FG BP decoder for the (64, 32) adaptive polar code over BEC(0.35). 

 

We also attempt to compute the correlation coefficients between codeword error ratio 

(CER) performances and three parameters (CS, FV and SON) of factor graphs. As it 

has been done in Section 3.1.4, we use Equation 3.1, while calculating the correlation 

coefficients 𝑟𝑥𝑦. For a (64, 32) polar code over BEC(0.35), correlation coefficients 

between “CER and the number of frozen variables FV”, “CER and the capacity sum 

CS”, and “CER and the stage order number SON” are found as −0.8767, −0.8732 

and −0.7269, respectively. As expected, all correlations are highly negative; and one 

observes that among the three parameters CS, FV and SON, the CER performance 

seems to be more correlated with the FV and CS values.  

Since the codeword error ratio performance simulation for each one of the 𝑛! factor 

graphs is quite burdensome for larger blocklengths, we conduct this experiment only 

for the (64, 32) polar code. 
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3.2 Multiple-FG Belief Propagation Decoding 

 

A multiple 𝑀-FG decoder is composed of 𝑀 > 1 cascaded factor graphs (FG’s). 

Each FG attempts to decode the 𝑁-bit words, which can not be decoded by the 

previous FG’s decoding process. So, the first FG of the 𝑀-FG decoder attempts to 

decode all received words; whereas the second factor graph only decodes the words 

remaining from the first FG. Since we study the performance over binary erasure 

channels, “successful decoding” means that all erased bits of the received 𝑁-bit word 

are correctly filled. However, “unsuccessful decoding” can also fill some of the 

erased bits, correctly or incorrectly. There arises the question of how to submit the 

first FG’s output to the second one. Should it be in its original received form or 

should the estimated bits by the first FG be included in the second FG’s input?  

In order to make a clear distinction between these two cases, we propose using the 

words “independent” and “dependent”. In “independent 𝑀-FG decoding”, each FG 

decoder passes its undecoded words to the successive FG in their original received 

forms; whereas, in “dependent 𝑀-FG decoding”, undecoded words are passed to next 

factor graph with its (correctly or incorrectly) estimated bits from the previous FG.  

In this section, BP decoding performance of the (128, 64) adaptive polar code over a 

BEC(0.35) is examined except for Section 3.2.8, where other block lengths 𝑁 =

26, 27, … , 210, 211 are considered; and Section 3.2.9, where the erasure rates are 

changed as 𝜀 = 0.5, 0.45, … , 0.15. Codeword error ratio-CER (or sometimes the bit 

error ratio- BER) for 𝜀 ≥ 0.35 is measured over 1000 codewords, but for smaller 𝜀’s 

of Section 3.2.9, either 10,000 or 100,000 codewords are used. In all decoding 

simulations, “perfect knowledge-based stopping condition” is employed to stop the 

iterations, whose number can at most be equal to the preset value of 20 iterations. 

Independent 𝑀-FG decoding is used only in Section 3.2.1 for comparison with 

dependent 𝑀-FG decoding; all other simulations are made using dependent 𝑀-FG 

decoding. 
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3.2.1 Dependent versus Independent M-FG BP Decoding 

 

For the (128, 64) adaptive polar code, there are 7!  =  5040 different factor graphs. 

To observe the performance difference between dependent/independent 𝑀-FG 

decoders, arbitrarily chosen 𝑀 factor graphs can be used. In Figure 3.12, we choose 

seven FG’s as cyclically left-shifted forms of the reference factor graph, RFG, and 

indicate the codeword error ratio (CER) performances of the independent and 

dependent 𝑀-FG BP decoders, for 1 <  𝑀 <  7.  

 

Figure 3.12 Codeword error ratio (CER) comparison of the independent and dependent 7-

FG belief propagation decoders for the (128, 64) adaptive polar code over BEC(0.35). 

 

As can be seen in Figure 3.12, CER performance of the first FG is the same for both 

the independent and dependent 7-FG BP decoders, because they start with the same 

FG (that is the RFG). The second, third and further FG’s of the dependent 𝑀-FG BP 

decoder have better CER performances than those of the independent one. At the 

output of the 7th FG, performance advantage of the dependent 7-FG BP decoder over 

the independent 7-FG BP decoder is approximately 2%. Although this is not a 

remarkable gain, dependent 𝑀-FG decoders are observed to keep this advantage over 

the independent case with different sets of FG’s and erasure patterns, as well.  
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To observe the effect of the erasure pattern on both dependent and independent 

decoder performances, we select four factor graphs (7654321, 5432176, 3217654, 

and 1765432 from the set of cyclically shifted forms of the reference factor graph. 4-

FG BP decoding of the (128, 64) adaptive polar code is repeated 10 times with 10 

different erasure patterns, each containing 1000 codewords, over BEC(0.35). 

Resulting performances for 10 trials are given in Figure 3.13. Dependent decoders 

are shown with dashed lines and independent ones with solid lines, both in the same 

color for each trial.  

 

Figure 3.13 Codeword error ratio (CER) comparison of the independent and dependent 4-

FG belief propagation decoders in 10 trials for the (128, 64) adaptive polar code over 

BEC(0.35). 

 

As observed in Figure 3.13, first factor graph’s performances are the same for both 

the independent and dependent 𝑀-FG BP decoders over same erasure pattern, since 

they both start with the RFG. However; because of the variability of the erasure 

pattern, difference between the CER performances of the first FG’s is 2.8%; whereas 

the performance of the most successful dependent 4-FG decoder also changes by 

approximately 3.5% among all erasure patterns. As observed previously in Figure 

3.12, CER performance gain of the independent and dependent decoding gets larger 

as M increases. Differences of 4-FG independent/dependent decoder performances 

are at least 1.2% and maximum 2.2% in Figure 3.13. That is; the difference between 

two decoders can change according to the employed the erasure pattern. However, 
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the dependent 𝑀-FG BP decoder seems consistently performing slightly better than 

the independent one in all experiments. This observation also implies that partially 

filled erasures of the undecoded word by the dependent decoder are mostly correct.  

Additionally, in dependent decoding, since the undecoded words in estimated forms 

are passed with less number of erasures, the next factor graph attempts to decode less 

number of bits. Hence, the time spent for dependent 𝑀-FG BP decoding is less than 

that of the independent one. For instance; in Figure 3.12, dependent 𝑀-FG BP 

decoding processing time (181 sec) is approximately 3 times shorter than that of the 

independent one (578 sec) on an Intel, Core i5-5200U, with CPU @2.20GHz and 6 

GB RAM.  Therefore, we continue with dependent M-FG BP decoding in the rest of 

this work. 

 

3.2.2 Changing the Order of Factor Graphs in Dependent M-FG BP Decoding   

 

As we see in the previous section, in dependent 𝑀-FG BP decoding, previous factor 

graphs’ estimations positively affect the performance of the next FG. We now ask 

the question of how one should arrange positions of the 𝑀 given factor graphs of the 

dependent decoder with respect to each other for better performance.    

For the (128, 64) adaptive polar code, there are 7!  =  5040 different factor graphs. 

To observe the effect of the difference in orders of factor graphs, an arbitrarily 

chosen set of 7 FG’s in two different orders can be used in dependent 7-FG BP 

decoding. We choose the set as the RFG and its cyclically shifted forms, and its 

different orderings are produced by cyclically left or cyclically right shifting. 

Codeword error ratio (CER) performances of dependent 𝑀-FG BP decoders with two 

differently ordered FG sets are indicated for 1 <  𝑀 <  7, in Figure 3.14. 
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Figure 3.14 Codeword error ratio (CER) comparison of the dependent 7-FG BP decoders 

with cyclically right and left-shifted RFG sets for the (128, 64) adaptive polar code over 

BEC(0.35). 

 

As can be seen in Figure 3.14; CER of both sets start with the 16.6% performance of 

the reference factor graph, which is the first FG for both sets; and then starts to differ 

in the 2nd FG, where the FG with SON=6543217 outperforms the one with 

SON=1765432. For this simulation, the cyclically left-shifted set has slightly better 

performance (approximately 0.2% at the 7th FG) than the cyclically right-shifted set.  

When we repeat this experiment 24 times for a 4-FG set (with SON’s 7654321, 

5764321, 3765421 and 1765432) ordered in 4! =  24 different ways, we get the CER 

performances of the 24 dependent 4-FG BP decoders, depicted in Figure 3.15. 
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Figure 3.15 Codeword error ratio (CER) comparison of the dependent 4-FG BP decoders 

with a fixed set of 4 FG’s in 24 different orders for the (128, 64) adaptive polar code over 

BEC(0.35). 

 

In 24 permutations of 4 factor graphs, there are 4 different starting points (RFG being 

the best) and 3! = 6 different sets in each group. One observes that there is no 

noticeable difference in CER performances, hence the order of the FG’s in the set 

does not seem having a considerable effect. It is also observed that 4-FG 

performances given in Figure 3.15 are better than the 7-FG performances of Figure 

3.14. This can only be the result of the difference in respective erasure patterns. So, it 

is also motivating to compare their performance under the same erasure pattern, as 

we have attempted in Section 3.2.6. Although, there is no significant effect of the 

order of FG’s on the performance,  we will sort factor graphs by descending order of 

their stage order numbers in 𝑀-FG BP decoders.  

 

3.2.3 Twice Repeated M-FG BP Decoding versus 2M-FG Decoding 

 

We now compare the dependent decoding performance of a twice repeated set of 𝑀 

different factor graphs cascaded as FG1FG2…FGMFG1FG2…FGM, with the 

performance of 2𝑀 different FG’s connected as FG1FG2…FGMFGM+1…FG2M ; 
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where the repeated 𝑀-FG employs the same 𝑀 factor graphs twice and but the 2𝑀-

FG decoder has its last 𝑀 FG’s different from the first 𝑀 FG’s.  

To observe the effect of twice repeated 𝑀-FG BP decoding, arbitrarily chosen 𝑀 

factor graphs can be used. We choose 𝑀 = 3 and in the first set, use the RFG, 

7654321, and its two cyclically left-shifted forms 6543217 and 5432176 for the 

repeated 3-FG BP decoding. For comparison with the 6-FG decoder, 3 more FG’s 

from the cyclically left-shifted forms of RFG; i.e., 4321765, 3217654, 2176543, are 

added to the first set.  

In Figure 3.16, codeword error ratio (CER) performances of two sets of factor 

graphs are indicated for 𝑀 = 3. One observes that CER performance of 6-FG BP 

decoding is better than twice repeated 3-FG BP decoding. 

 

Figure 3.16 Codeword error ratio (CER) comparison of 6-FG and twice repeated 3-FG 

dependent BP decoders for the (128, 64) adaptive polar code over BEC(0.35). 

 

At the beginning, CER performances are the same because the first 3 FG’s of both 

sets are the same. Repeated 3-FG shows a little progress when the RFG is used as the 

fourth decoder, but the 5th and the 6th FG’s do not make any contribution to CER 

performance. However; 6-FG decoder has a gradual performance improvement on 

each FG decoder. Performance advantage of 6-FG BP decoding over repeated 3-FG 
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BP decoding is approximately 1.5% for this specific set of FG’s and erasure pattern. 

This value may vary with different sets of factor graphs. 

 

(a) 

                                                    

(b) 

Figure 3.17 (a) Number of frozen variables (FV) and (b) capacity sum (CS) comparison of 

6-FG’s and twice repeated 3-FG’s for the (128, 64) adaptive polar code over BEC(0.35); 

lower curves corresponding to 6-FG’s. 

 

Figure 3.17 demonstrates the number of frozen variables (FV) and capacity sums 

(CS) of each FG. One can observe that after the third FG, FV and CS values of the 

repeated 3-FG and 6-FG decoders start to differ. FV values of the repeated 3-FG 

decoder vary in [174, 210]; whereas those of the 6-FG decoder occupy a larger 

interval, [106, 210]. Similarly, CS values of the repeated 3-FG decoder differ 

between 58.3 and 63.7; and those of the 6-FG decoder vary in a larger range, 
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between 57.2 and 63.7. We observe that the set of 6 factor graphs with larger range 

of FV and CS values is more successful for dependent 𝑀-FG BP decoding.  

When we repeat this experiment with different sets for 𝑀 = 4, we pick the RFG, 

7654321, and 3 more FG’s (6543217, 5432176 and 4321765) for the first set. We 

arbitrarily select 4 more FG’s (3217654, 2176543, 1765432 and 1234567) for the 

second set. In Figure 3.18, CER performances of these two sets of FG’s are 

indicated. One observes that CER of 8-FG BP decoding is better than twice repeated 

4-FG BP decoding.  

 

Figure 3.18 Codeword error ratio (CER) comparison of 8-FG and twice repeated 4-FG 

dependent BP decoders for the (128, 64) adaptive polar code over BEC(0.35). 

 

In Figure 3.18, two sets naturally have the same CER’s in their first 4 identical FG’s. 

Difference starts at the 5th FG of the 8-FG decoder, which makes larger contribution 

to the decoding process than that of the twice repeated 4-FG decoder. Similarly with 

previous experiments, FG’s of second set have more different FV and CS values than 

ones of the first set. Thus; performance of 8-FG BP decoding is approximately 1.2% 

better than twice repeated 4-FG BP decoding (for this specific set of FG’s and 

erasure pattern).  

Above experiments imply that using different FG’s with different FV and CS values 

may lead to better performance.  
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3.2.4 M Factor Graphs with Similar/Different FV and CS Values 

 

Choosing a well-performing set of factor graphs is important in 𝑀-FG BP decoding. 

Because, an 𝑀-FG BP decoder consists of 𝑀 cascaded FG’s, where each FG’s input 

is the output of the previous one. Since each FG sequentially tries to decode the 

remaining undecoded words from the previous one, and each FG has a different 

amount of contribution to the total decoding process depending on the specific 

erasure pattern; the choice of a compatible set of FG’s is significant in 𝑀-FG BP 

decoding.  

As it is mentioned in previous sections, while choosing a factor graph set for an 𝑀-

FG BP decoder, FV and CS values of these FG’s are noteworthy parameters. As we 

know from previous sections, single-FG decoders with high FV and CS values have 

better performance than those with low FV and CS values. However; when a set of 

𝑀 factor graphs is selected for 𝑀-FG BP decoding, the best ones may not perform 

well together. Since the factor graphs should work as a team, choosing factor graphs 

that complement each other may contribute more to the decoding process. 

To observe the effect of different sets of factor graphs on the codeword error ratio of 

the 7-FG decoder, we choose 3 different sets of factor graphs: 

i) The first set consists of 7 factor graphs, which are the first 7 elements of 

the stage order number-sorted (SON-sorted) FG list. As we have seen in 

previous sections, SON and single-FG performance have positive 

correlation. For the (128, 64) adaptive polar code, there are 7 stages. 

Thus; 7!  =  5040 different SON’s can be sorted by descending order, to 

have a SON-sorted FG list. The first element of this list corresponds to 

7654321, which is the reference factor graph (RFG) used for encoding. 

ii) The second set consists of 7 factor graphs, which are the ones with the 

highest CS values in 7 different highest equi-FV groups. For the (128, 64) 

adaptive polar code over BEC(0.35), we get 28 different equi-FV groups 

and each of them contains different number of factor graphs. 
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iii) The third set consists of factor graphs which are all cyclically left-shifted 

forms of the RFG, which may be called the “cyclic set”. 

SON values corresponding to these three sets are given in Table 3.8 

Table 3.8 Stage order numbers (SON’s) of the three sets used in this section. 

Set (i) 7654321 7654312 7654231 7654213 7654132 7654123 7653421 

Set (ii) 7654321 6475321 4675321 6547321 4657321 4567321 3674521 

Set (iii) 

Cyclic Set 

 

7654321 6543217 5432176 4321765 3217654 2176543 1765432 

 

In Figure 3.19, codeword error ratio (CER) performances of these three sets of factor 

graphs are indicated, for 1 <  𝑀 <  7. Also; in Figure 3.20, the number of frozen 

variables (FV) and capacity sum (CS) values of each factor graph are demonstrated. 

 

Figure 3.19 Codeword error ratio (CER) performance for the (128, 64) adaptive polar code 

over BEC(0.35) of three 7-FG decoder sets, i) green curve: 7 top FG’s of the SON-sorted 

list, ii) red curve: the highest CS-valued FG of 7 highest equi-FV groups, and iii) blue curve: 

7 FG’s generated by cyclic shifts; i.e., the cyclic set. 

 

Figure 3.19 shows that 7-FG CER performances of the first and second sets are 

similar, but the third one is more successful than others. Also; one can observe that 
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their starting CER performances are the same (almost 16.5%); because, the first 

element of all sets is the reference factor graph, RFG. CER performances of the first, 

second and third sets are approximately 14.6%, 14.4% and 13.4% respectively, at the 

output of the 7th FG. The performance of the third set seems to be more than 1% 

superior to the first and second sets. 

 

(a)                                                           

 

                           (b) 

Figure 3.20 (a) Number of frozen variables (FV) and (b) Capacity sum (CS) comparison of 

the three sets in Figure 3.19 for the (128, 64) adaptive polar code over BEC(0.35); i) green 

curve: 7 top FG’s of the SON-sorted list, ii) red curve: the highest CS-valued FG of 7 highest 

equi-FV groups, and iii) blue curve: 7 FG’s generated by cyclic shifts; i.e., the cyclic set. 

 

Figure 3.20 indicates that factor graphs of the first and second sets at each step have 

similar FV and CS values; whereas those of the third set are quite different. As 

explained in Section 3.1, FV and CS values of factor graphs are important parameters 

that determine their single-FG BP decoding performances. High FV and high CS 
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valued single-FG decoders are superior in performance to those with low FV and CS 

values. On the other hand, Figure 3.19 and Figure 3.20 show that the CER 

performance of the 7-FG decoder is better within the third set that has distributed FV 

and CS values; i.e, small CS & FV valued FG’s as well, in addition to the high (FV 

& CS) valued FG’s. It seems that in team work, the factor graphs of the third set with 

distinct FV and CS values are more compatible with each other. So, while choosing 

the sets of 𝑀 >  1 factor graphs for 𝑀-FG decoders, the experiments of this part 

suggest FG sets with wide intervals of FV and CS values. However, we conjecture 

that in the attempt of forming sets of M FG’s with better performance, it may be 

more practical to employ the SON values of the FG’s rather than computing the 

related CS and FV parameters. We present a set-choice algorithm depending on SON 

values for 𝑀 = ⌈𝑛/2⌉; i.e., the smallest integer greater than 𝑛/2 in Section 3.2.7. 

 

3.2.5 Getting Similar Performance with Less Number of Factor Graphs 

 

As we have mentioned in Section 3.2.4, choosing a compatible set of factor graphs 

increases the performance of 𝑀-FG BP decoding. Cyclical shifting of the RFG 

stages, as used in [Korada, 2009], seems to be one of the successful methods to 

generate a compatible 𝑀-FG set, with 𝑀 = 𝑛. We call the corresponding set of 𝑛 

FG’s, the “cyclic set”. We have observed in previous sections that compatible sets 

like the cyclic set have wide range of CS and FV values. 

At this point, we ask the question of “Can we get similar performance with less 

number of compatible factor graphs?” Thus; in this section, we study on getting 

similar performance with the cyclic set by using less number of FG’s. 

For the (128,64) polar code, we generate a set of 4 FG’s, as the subset of the cyclic 

set, by picking up only the FG’s starting with odd-numbered stages; i.e., {7654321, 

5432176, 3217654, 1765432}. Corresponding range of CS and FV values is still 

wide in this 4-FG subset. In Figure 3.21, codeword error ratio performance of the 
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cyclic set, for 1 <  𝑀 <  7, and that of the 4-FG subset, for 1 <  𝑀 <  4, are 

indicated.  

 

Figure 3.21 Codeword error ratio (CER) performance for the (128, 64) adaptive polar code 

over BEC(0.35) of two decoder sets, i) red curve: cyclic set with 7 FG’s, ii) purple curve: 4 

FG’s starting with odd-numbered stages, chosen from the cyclic set. 

 

In Figure 3.21, since the first elements of both sets are the RFG, two sets of decoders 

start with the same CER of approximately 16.2%. The third and fifth FG’s of the 

cyclic set are the same as the second and third FG’s of the 4-FG subset, but their 

CER performances differ by 0.2% & 0.3%, respectively, in favor of the cyclic set 

because of its intermediate FG’s starting with even-numbered stages. Although two 

sets have different number of factor graphs, CER performances are so close at the 

last FG decoders of both sets. Their performance difference is approximately 0.3% at 

the last FG.  

However; if we have arranged the second set by choosing the first four factor graphs 

of the first set instead of the above selection, as can be seen in Figure 3.21, its 

performance at the output of the 4’th FG would be approximately 1.3% worse than 

the output of the 7-FG cyclic set, which could be reduced four times (to 0.3%) with 

the 4-FG subset of the above selection. So, keeping the range of CS and FV values 

wide enough, it seems possible to decrease the size of the M-FG decoder from 𝑛 to 

⌈𝑛/2⌉ without any significant loss in performance.  
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In Table 3.9, we also tabulate the SON’s of the first 4 FG’s of the cyclic set, together 

with those of the 4-FG subset having the performance shown in Figure 3.21; for 

further reference.   

Table 3.9 Stage order numbers (SON’s) of the 4-FG sets used in this section (4-FG subset in 

the second row has 1% better CER). 

First 4 FG’s of the 

Cyclic Set 

 

7654321 6543217 5432176 4321765 

4-FG Subset Starting with 

Odd-Numbered Stages 

7654321 5432176 3217654 1765432 

 

It is observed in Table 3.9 that stage order numbers of the subset in the second row 

are varying in a wider range than those in the first row (SON range in the second 

row = 7654321−1765432 > 765431− 4321765 = SON range in the first row). One 

may also conjecture that, in case of sets with the same SON range, variety at 

individual stage positions may provide more successful 𝑀-FG decoder performance 

as will be discussed in Section 3.2.6. 

 

3.2.6 Relation between the Performance and Stage Order Numbers of the 

Factor Graph Set  

 

In order to form a compatible FG set for M-FG decoding, we have seen that FG 

variety is needed rather than similar FG’s. Previously, we have related the required 

variety with the FV and CS values of factor graphs within the M-FG set. If the 

compatible set selection can also be related to the stage order numbers of the FG’s as 

we have mentioned at the end of Section 3.2.5, a more practical method can be 

derived.  
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For another evaluation, we compare the performance of the 4-FG cyclic subset 

considered in Section 3.2.5, with a trial 4-FG set having almost fixed output stages. 

Input stages of the trial set are also 7, 5, 3, 1 as those of the 4-FG cyclic subset, but 

output stages are fixed in three elements of the trial set, as emphasized in Table 3.10 

by bold letters. One may observe that the first and last elements of the two 4-FG sets 

are the same, and the difference is only in the second and third FG’s. 

 

Table 3.10 Stage order numbers (SON’s) of the 4-FG sets used in this section (4-FG subset 

in the second row has 1% better CER). 

 

Trial 4-FG Set 

 

7654321 5764321 3765421 1765432 

4-FG Cyclic Subset Starting 

with Odd-Numbered Stages 

7654321 5432176 3217654 1765432 

 

In Figure 3.22, codeword error ratio performances of the two sets of factor graphs 

are indicated, for 1 <  𝑀 <  4. One observes that the new 4-FG set performs 

approximately 1.3% worse than the 4-FG cyclic subset. So, we understand that while 

arranging a compatible set for the 𝑀-FG decoder, variety only in the first stage 

positions is not enough. When all stage positions are occupied by a variety of stages, 

corresponding set can be inferred to have more successful CER performance.   
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Figure 3.22 Codeword error ratio (CER) performance for the (128, 64) adaptive polar code 

over BEC(0.35) of two decoder sets, i) green curve: trial set with 4 FG’s “7654321-5764321-

3765421-1765432”, ii) purple curve: 4-FG cyclic subset starting with odd-numbered stages, 

chosen from the cyclic set 

 

Until this point, the 4-FG cyclic subset with factor graphs {7654321, 5432176, 

3217654, 1765432} seems to be the most successful 4-FG decoder for the (128, 64) 

polar codes over BEC(0.35). Corresponding CS, FV, SON values as well as the 

distribution of stages to individual positions have a wide ranged variety. For another 

comparison, we propose a set choice algorithm to derive a new set, producing factor 

graphs with wide range of required properties.  

 

3.2.7 Set Choice Algorithm for 𝑴 = ⌈𝒏/𝟐⌉ Factor Graphs  

 

To ensure the variance of the stage numbers at each stage, and the variety between 

stage passages as well, we offer a simple algorithm to generate a compatible FG set 

with 𝑀 = ⌈𝑛/2⌉. We then compare the performance of this compatible set with that 

of the 4-FG cyclic subset having the factor graphs {7654321, 5432176, 3217654, 

1765432}.  
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“Set Choice” algorithm explained below uses the reference factor graph as the first 

element of the set. Other factor graphs are produced by shifting the odd indexed 

stages of the RFG left-cyclically and its even indexed stages right-cyclically. In this 

way, factor graphs have been sorted by descending order of their stage order 

numbers (SON’s) as generalized in Section 3.2.2. Set Choice algorithm provides a 

variety of stages at each stage position. Moreover; it delivers diversity for stage 

passages between successive state positions, which is missing in the cyclic set of 

Korada [Korada, 2009] that conserves the successive stage numbers. Due to the 

nature of the BP decoding algorithm, each stage is an individual decoder, so variety 

at successive stage transitions can improve the decoding performance of the 𝑀-FG 

decoder.        

____________________________________________________________________ 

Set Choice Algorithm (for 𝑀 = ⌈𝑛/2⌉ FGs) = leftRightCyclicSetFGs()  

____________________________________________________________________ 

Input: 

N : Blocklength 

Output: 

FGs : Factor graphs of the M-FG Decoder 

__________________________________________________________________________________ 

 

Set n to log base 2 of N 

Set M to round to upper integer of n/2 

Set RFG to row vector with size n 

 

for loopcounter = n to 1 

 RFG[n+1-loopcounter] = loopcounter 

endfor 

 

Set i to 1 

Set i'th row of FGs to RFG 

 

for loopcounter = 1 to M-1 

 Set odd index stages of tempFG = odd index stages of RFG i times left cyclic shifted  

 Set even index stages of tempFG = even index stages of RFG i times right cyclic shifted  

 Set i to i+1 

 Set i'th row of FGs to tempFG 

endfor 

 

__________________________________________________________________________________ 
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By using the Set Choice algorithm, we generate the factor graph set, {7654321, 

5236147, 3412765, 1674523}. As can be seen in Table 3.11 stage numbers at 

specific positions of the factor graphs within the generated set are dissimilar. In 

Figure 3.23, codeword error ratio (CER) performances of two sets of factor graphs 

are indicated, for 1 <  𝑀 <  4. 

Table 3.11 Stage order numbers (SON’s) of the 4-FG sets used in this section. 

 

4-FG Set Produced by the Set 

Choice Algorithm 

 

7654321 5236147 3412765 1674523 

4-FG Cyclic Subset Starting 

with Odd-Numbered Stages 

7654321 5432176 3217654 1765432 

 

Figure 3.23 Codeword error ratio (CER) performance for the (128, 64) adaptive polar code 

over BEC(0.35) of two decoder sets, i) pink curve (upper one): 4-FG cyclic subset, ii) blue 

curve (lower one): 4-FG set produced by the Set Choice algorithm. 

 

In Figure 3.23, since RFG is the first FG in both sets; CER’s start with the same 

value (approximately 16.2%). At the output of 4-FG decoders, performance of the set 

produced by the Set Choice algorithm is approximately 0.2% superior to first one. 

As a second trial, we compare the performance of a compatible set produced by the 

Set Choice algorithm for the (64, 32) polar code over BEC(0.35), with that of the 

genie-chosen set in [Doğan, 2015], which consists of factor graphs {643521, 645213, 
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465312, 624351}. Set Choice algorithm generates the 3-FG set {654321, 412563, 

236145} and we add one more FG with SON=165432 (by cyclically right-shifting 

the RFG) for a fair 4-FG comparison. Doğan states that his 4 factor graphs are 

chosen according to empirical evidence, and his 4-FG set gives very similar CER 

performance to the cyclic 6-FG set. In Figure 3.24, CER performances of the two 

sets are shown for 1 <  𝑀 <  4. Unlike the previous ones using 1000 erased 

codewords, in this experiment, codeword error ratio is measured by decoding 10000 

codewords with erased bits; in order to get more accurate results regardless of the 

erasure patterns. 

 

Figure 3.24 Codeword error ratio (CER) performance for the (64, 32) adaptive polar code 

over BEC(0.35) of two decoder sets, i) blue curve (lower one): 4-FG set produced by our Set 

Choice algorithm, ii) red curve (upper one): Genie-chosen set of [Doğan, 2015] 

 

In Figure 3.24, since two sets start with different factor graphs, their beginning CER 

performances are different. Our set, whose first factor graph is RFG, has 

approximately 18.4% CER performance on the first FG decoder. As expected, CER 

performance of the first FG decoder of Doğan’s genie-chosen set is a little bit worse 

than ours and approximately equals to 18.9%. However, on the second and third FG 

decoders, CER performances of both sets are similar. Also; 4-FG decoding 

performances of both sets are almost identical and approximately equal to 13%. 

Therefore; it can be said that our set, which is chosen with a systematically approach, 
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is as successful as Doğan’s genie-chosen set, which is generated by assessing the 

empirical results. 

 

3.2.8 Performance Comparison of M-FG Belief Propagation Decoders with 𝑴 =

⌈𝒏/𝟐⌉ and 𝑴 = 𝒏  

 

In this section, we compare the performances of M-FG BP decoders, for 𝑀 = 6, …, 

11; with 𝑀 = 𝑛-FG’s cyclically shifted as in [Korada, 2009] and 𝑀 = ⌈𝑛/2⌉-FG’s 

generated by the Set Choice algorithm. As we have stated in Section 3.2.7, using the 

Set Choice algorithm to generate a compatible set of 𝑀 = ⌈𝑛/2⌉ FG’s provides 

successful performance results for dependent 𝑀-FG BP decoding for the (128, 64) 

and (64, 32) polar codes. In this section, unlike the previous sections, we also work 

on different blocklengths, 𝑁 = 64, 128, 256, …, 2048. We select a binary erasure 

channel with 0.4 erasure rate for all blocklengths, in order to observe the CER 

performance at larger blocklengths more accurately. Our aim is comparing the sets of 

size ⌈𝑛/2⌉ generated by the Set Choice algorithm with the 𝑛-FG cyclic decoders in 

[Korada, 2009]. In each comparison curve, we also include the reduced versions of 

the 𝑛-FG cyclic sets to approximately half size ⌈𝑛/2⌉. That is; the first set of each 

figure consists of 𝑛 = log2 𝑁 different FG’s as cyclically left-shifted forms of RFG 

and corresponding CER performance is shown by a red curve. The second set of each 

figure is the reduced version of the first set and shown by a pink curve. The third set 

is generated by using the Set Choice algorithm and shown by a blue curve. 

 

Codeword error ratio is measured, after 1000 codewords with erased bits are decoded 

by dependent 𝑛-FG and ⌈𝑛/2⌉-FG decoders; and depicted in Figure 3.25, Figure 

3.26, Figure 3.27, Figure 3.28, Figure 3.29 and Figure 3.30 for 𝑛 = 6, 7, 8, 9, 10 and 

11 respectively.  
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Figure 3.25 Codeword error ratio performance for the (64, 32) adaptive polar code over 

BEC(0.4) of three 𝑀-FG decoder sets, i) red curve: 6 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 3 FG’s sampled from the first set, iii) blue curve: 3 FG’s by the 

Set Choice algorithm. 

 

Figure 3.26 Codeword error ratio performance for the (128, 64) adaptive polar code over 

BEC(0.4) of three 𝑀-FG decoder sets, i) red curve: 7 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 4 FG’s sampled from the first set, iii) blue curve: 4 FG’s by the 

Set Choice algorithm. 
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Figure 3.27 Codeword error ratio performance for the (256, 128) adaptive polar code over 

BEC(0.4) of three 𝑀-FG decoder sets, i) red curve: 8 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 4 FG’s sampled from the first set, iii) blue curve: 4 FG’s by the 

Set Choice algorithm. 

 

Figure 3.28 Codeword error ratio performance for the (512, 256) adaptive polar code over 

BEC(0.4) of three 𝑀-FG decoder sets, i) red curve: 9 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 5 FG’s sampled from the first set, iii) blue curve: 5 FG’s by the 

Set Choice algorithm. 
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Figure 3.29 Codeword error ratio performance for the (1024, 512) adaptive polar code over 

BEC(0.4) of three 𝑀-FG decoder sets, i) red curve: 10 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 5 FG’s sampled from the first set, iii) blue curve: 5 FG’s by the 

Set Choice algorithm. 

 

Figure 3.30 Codeword error ratio performance for the (2048, 1024) adaptive polar code over 

BEC(0.4) of three M-FG decoder sets, i) red curve: 11 FG’s by cyclically left-shifting stages 

of the RFG, ii) pink curve: 6 FG’s sampled from the first set, iii) blue curve: 6 FG’s by the 

Set Choice algorithm. 

 

First FG and 𝑛-FG decoding performances of the cyclic sets as well as the ⌈𝑛/2⌉-FG 

performances of the other two sets are stated in Table 3.11, as extracted from the 

above six figures (3.25 to 3.30).  
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Table 3.12 Stage order numbers (SON’s) of the ⌈𝑛/2⌉-FG sets used in Section 3.2.8. 
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As mentioned in Section 2.3, while 𝑁 is getting larger, channel capacities 𝐼(𝑊𝑁
(𝑖)

) 

are polarizing to pure-noisy or noiseless channels and the fraction of noiseless ones is 

becoming closer to the capacity 𝐼(𝑊). Thus, CER’s of the decoders in Table 3.12 

decrease as the codeword lengths increase. 𝑀-FG decoding performances (for 𝑀 = 𝑛 

or ⌈𝑛/2⌉) of polar codes become more successful for larger blocklengths. Although 

the 𝑛-FG decoding performance of the cyclic set is better than ⌈𝑛/2⌉-FG 

performances of the other two sets for all considered blocklengths (difference 

varying between 0.2% and 1.2%), corresponding performance advantage is not 

worthwhile, when we consider the doubled number of FG’s in the decoder.  

Furthermore; the ⌈𝑛/2⌉-FG set, which is generated by using the Set Choice 

algorithm, consistently has better CER’s than CER’s at the ⌈𝑛/2⌉’th FG outputs of 

both sets, for all considered blocklengths. Therefore; using the Set Choice algorithm 

to generate a compatible set for lower complexity ⌈𝑛/2⌉-FG belief propagation 

decoding appears to be reasonable. 

 

3.2.9 Polar Code Construction and Related Performance for Different Erasure 

Rates 

 

Bhattacharyya parameters used in adaptive polar code (APC) construction  [Arıkan, 

2008] depend upon the erasure probability 𝜀 of the given binary erasure channel 

BEC(𝜀) as explained in Section 2.5, which makes the adaptive polar code design 

“channel specific”. In this section, we demonstrate the dependence of polar code 

construction on erasure probabilities 𝜀, by designing the (128, 64) adaptive polar 

code for 11 different values of 𝜀 in the interval [0.01 to 0.5] and comparing the 

corresponding 11 generator matrices to that of the (128, 64) Reed-Muller code. 

In Table 3.13, the leftmost column shows the row indices (1, 2 , … , 128) of the 

128×128 transformation matrix 𝐹⊗7; the 7th Kronecker power of the base matrix 

𝐹 = [
1 0
1 1

].  
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Table 3.13 Basis code vectors (and corresponding Hamming weights) of the (128, 64) RM 

and adaptive polar codes for various 𝜀, the first column indicating the row number in 𝐹⊗7. 

 APC RM 

Row Index ɛ=0.5 ɛ=0.45 ɛ=0.4 ɛ=0.35 ɛ=0.3 ɛ=0.25 ɛ=0.2 ɛ=0.15 ɛ=0.1 ɛ=0.05 ɛ=0.01   

8 8 8 8 8 8 8 8 8 8 8     

12 8 8 8 8 8 8 8 8 8       

14 8 8 8 8 8 8 8 8         

16 16 16 16 16 16 16 16 16 16 16 16 16 

20 8 8 8 8 8 8 8 8         

22 8 8 8 8 8 8             

24 16 16 16 16 16 16 16 16 16 16 16 16 

28 16 16 16 16 16 16 16 16 16 16 16 16 

30 16 16 16 16 16 16 16 16 16 16 16 16 

31 16 16 16 16 16 16 16 16 16 16 16 16 

32 32 32 32 32 32 32 32 32 32 32 32 32 

36 8 8 8 8 8 8 8           

40 16 16 16 16 16 16 16 16 16 16 16 16 

44 16 16 16 16 16 16 16 16 16 16 16 16 

46 16 16 16 16 16 16 16 16 16 16 16 16 

47 16 16 16 16 16 16 16 16 16 16 16 16 

48 32 32 32 32 32 32 32 32 32 32 32 32 

52 16 16 16 16 16 16 16 16 16 16 16 16 

54 16 16 16 16 16 16 16 16 16 16 16 16 

55 16 16 16 16 16 16 16 16 16 16 16 16 

56 32 32 32 32 32 32 32 32 32 32 32 32 

58 16 16 16 16 16 16 16 16 16 16 16 16 

59 16 16 16 16 16 16 16 16 16 16 16 16 

60 32 32 32 32 32 32 32 32 32 32 32 32 

61             16 16 16 16 16 16 

62 32 32 32 32 32 32 32 32 32 32 32 32 

63 32 32 32 32 32 32 32 32 32 32 32 32 

64 64 64 64 64 64 64 64 64 64 64 64 64 

68 8 8 8 8 8               

72 16 16 16 16 16 16 16 16 16 16 16 16 

76 16 16 16 16 16 16 16 16 16 16 16 16 

78 16 16 16 16 16 16 16 16 16 16 16 16 

79 16 16 16 16 16 16 16 16 16 16 16 16 

80 32 32 32 32 32 32 32 32 32 32 32 32 

84 16 16 16 16 16 16 16 16 16 16 16 16 

86 16 16 16 16 16 16 16 16 16 16 16 16 

87 16 16 16 16 16 16 16 16 16 16 16 16 

88 32 32 32 32 32 32 32 32 32 32 32 32 

90 16 16 16 16 16 16 16 16 16 16 16 16 

91 16 16 16 16 16 16 16 16 16 16 16 16 

92 32 32 32 32 32 32 32 32 32 32 32 32 

93               16 16 16 16 16 

94 32 32 32 32 32 32 32 32 32 32 32 32 

95 32 32 32 32 32 32 32 32 32 32 32 32 

96 64 64 64 64 64 64 64 64 64 64 64 64 

100 16 16 16 16 16 16 16 16 16 16 16 16 

102 16 16 16 16 16 16 16 16 16 16 16 16 

103 16 16 16 16 16 16 16 16 16 16 16 16 

104 32 32 32 32 32 32 32 32 32 32 32 32 

106 16 16 16 16 16 16 16 16 16 16 16 16 

107           16 16 16 16 16 16 16 

108 32 32 32 32 32 32 32 32 32 32 32 32 

109                 16 16 16 16 

110 32 32 32 32 32 32 32 32 32 32 32 32 

111 32 32 32 32 32 32 32 32 32 32 32 32 

112 64 64 64 64 64 64 64 64 64 64 64 64 

114 16 16 16 16 16 16 16 16 16 16 16 16 

115                 16 16 16 16 

116 32 32 32 32 32 32 32 32 32 32 32 32 

117                   16 16 16 

118 32 32 32 32 32 32 32 32 32 32 32 32 

119 32 32 32 32 32 32 32 32 32 32 32 32 

120 64 64 64 64 64 64 64 64 64 64 64 64 

121                     16 16 

122 32 32 32 32 32 32 32 32 32 32 32 32 

123 32 32 32 32 32 32 32 32 32 32 32 32 

124 64 64 64 64 64 64 64 64 64 64 64 64 

125 32 32 32 32 32 32 32 32 32 32 32 32 

126 64 64 64 64 64 64 64 64 64 64 64 64 

127 64 64 64 64 64 64 64 64 64 64 64 64 

128 128 128 128 128 128 128 128 128 128 128 128 128 
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The remaining columns of Table 3.13 show the Hamming weights of the basis 

vectors of the (128, 64) adaptive polar code for each value of 𝜀. Pink-colored 

elements of each column are the rows of 𝐹⊗7 that do not belong to the code designed 

for this specific 𝜀, but they exist in at least one other column corresponding to a 

different 𝜀. Reed-Muller code construction is not dependent on the erasure rate, and 

its codewords are demonstrated at the rightmost column.  

As seen in Table 3.13, the Reed-Muller code selects all weight-16 rows of 𝐹⊗7, in 

addition to the weight-64 and weight-32 rows of 𝐹⊗7; but the adaptive polar codes 

may prefer some weight-8 rows to weight-16 rows, since the corresponding channel 

capacities are higher. Notice that the adaptive polar codes designed for erasure rates 

0.3 ≤ 𝜀 ≤0.5 are all the same, and they contain 7 weight-8 code vectors (with indices 

8, 12, 14, 20, 22, 36, 68) instead of the 7 weight-16 vectors (with indices 61, 93, 107, 

109, …) of the RM code. For 𝜀 = 0.25, the number of weight-8 rows decreases to 6, 

by excluding the 68th weight-8 row and including the 107th weight-16 row. While 𝜀 

reduces, it is observed that the similarity to RM codes increases, and the adaptive 

polar code designed for 𝜀 = 0.01 becomes exactly the same as the RM code. So, one 

obtains totally seven different polar codes as 𝜀 varies between 0.5 and 0.01. 

We evaluate the BP decoding performances of the (128, 64) adaptive polar codes 

over BEC’s with different erasure rates (varying from 0.5 to 0.15 in steps of 0.05) by 

simulations. Codeword error ratio (CER) is measured over 1000 codewords for 𝜀 =

 0.5, 0.45, 0.4, 0.35, over 10000 codewords for 𝜀 = 0.3, 0.25, and over 100000 

codewords for 𝜀 = 0.2, 0.15; using single-FG and 4-FG decoders. Also, the average 

number of iterations for each decoding process to stop is counted, where the preset 

value of the maximum number of iterations for each single factor graph is 20, but the 

decoder stops much earlier especially for small erasure rates. 

We compare the performances of the following four decoders; i) the least SON 

valued single-FG decoder 1234567, ii) the reference single-FG decoder 7654321, iii) 

the 4-FG cyclic subset {7654321, 5432176, 3217654, 1765432}, iv) the 4-FG set 

{7654321, 5236147, 3412765, 1674523} generated by Set Choice Algorithm.  
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In Figure 3.31, codeword error ratio (CER) performances of the mentioned four 

decoders are sketched versus channel erasure rate for the (128, 64) adaptive polar 

codes (having the basis vectors shown in Table 3.13). Also, in Figure 3.32, 

corresponding bit error ratio (BER) values are demonstrated; which are much smaller 

than CER values as expected (since even a single bit error may result in an 

undecoded  codeword of length 128 bits). 

 

Figure 3.31 Codeword error ratio performance for the (128, 64) adaptive polar code over 

different BEC(𝜀) of four decoders, i) orange curve: single-FG with SON=1234567, ii) green 

curve: the RFG (7654321), iii) pink curve: 4-FG cyclic subset, iv) blue curve: 4-FG set 

produced by the Set Choice algorithm. 

 

Figure 3.32 Bit error ratio performance for the (128, 64) adaptive polar code over different 

BEC(𝜀) of four decoders, i) orange curve: single-FG with SON=1234567, ii) green curve: 

the RFG (7654321), iii) pink curve: 4-FG cyclic subset, iv) blue curve: 4-FG set produced by 

the Set Choice algorithm. 
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As can be seen in Figure 3.31 and Figure 3.32, performance of the least SON valued 

single-FG decoder is the worst; for 𝜀 = 0.15 its CER is 143 times worse than the 

others, and its BER is approximately 430 times poorer. Other three decoders perform 

quite similarly; although the performances of the 4-FG decoders seem slightly better 

than the single RFG at high erasure rates, they become very close at high erasure 

rates. So, at low erasure probabilities, it seems to be redundant to use the remaining 

three factor graphs of the 4-FG decoder following its first RFG, with the perfect 

knowledge-based stopping criterion used throughout this work.  

On the other hand, Elkelesh, Ebada, Cammerer and Brink have recently shown that 

as M gets as large as 1000, the performance of M-FG decoders over a BSC (with 

perfect knowledge-based stopping criterion) can slightly outperform that of the state-

of-the-art SCL decoder (without an outer CRC code) [Elkelesh, Ebada, Cammerer, & 

Brink, 2018-1]. However, the addition of CRC improves the SCL performance by 

more than 100 times at 𝐸𝑏/𝑁0 values larger than 2.4 dB, whereas it doesn’t 

appreciably contribute to the M-FG BP decoder performance, even for 𝑀 =1000 

[Elkelesh, Ebada, Cammerer, & Brink, 2018-1]. The BP list decoder that uses L = 32 

independent FG’s mentioned in another paper of the same authors [Elkelesh, Ebada, 

Cammerer, & Brink, 2018-2] achieves similar performance with a G-matrix based 

stopping criterion. Again, it cannot reach the performance of the CRC aided SCL.   

Finally, in Figure 3.33, the average number of iterations with “perfect knowledge-

based stopping criterion” for single and 4-FG decoders, are indicated for different 

channel erasure rates. Since performances are measured over trials with different 

number of codewords, we normalize the number of average iterations per 1000 

codewords for each decoder. At 𝜀 = 0.5, single-FG decoders complete all of the 

preset 20 iterations with no success, resulting in 20,000 iterations per 1000 

codewords, and 4-FG decoders complete almost 4 times more iterations. As 

expected, average iteration numbers decrease while the channel erasure rate 

decreases; and those of the RFG and two 4-FG decoders converge approximately to 

the same value at 𝜀 =0.15, since successful decoding is mostly performed by the first 

FG of the 4-FG decoders without any need for the remaining 3 FG’s.  
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Figure 3.33 Average number of BP decoding iterations over 1000 codewords with perfect 

knowledge-based stopping condition for the (128, 64) adaptive polar code over different 

BEC(ε) of four decoders, i) orange curve: single-FG with SON=1234567, ii) green curve: the 

RFG (7654321), iii) pink curve: 4-FG cyclic subset, iv) blue curve: 4-FG set produced by the 

Set Choice algorithm. 
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CHAPTER 4 

 

 CONCLUSION 

 

In this thesis, some practical results about the single-FG and multiple-FG (𝑀-FG) 

belief propagation (BP) decoding performance of polar codes are discussed. There 

are possible 𝑛! different factor graphs (FG’s), which can be generated by permuting 

the stages with respect to each other for polar codes with blocklength 𝑁 = 2𝑛. For 

the classification of these 𝑛! FG’s, two parameters are used in [Doğan, 2015] and 

[Peker, 2018]. One of them is the capacity sum (CS), which is defined as the sum of 

capacities of the 𝐾 information channels [Doğan, 2015] and the second one is the 

number of frozen variables (FV), which depends on the locations of frozen input bits 

and their connections on the diagram. As a third classification parameter, we suggest  

the “stage order number-SON”, defined as the “𝑛-digit integer obtained by writing 

the stage names of the FG from left to right”, like 123…𝑛, 321…𝑛, or 𝑛…231. Since 

the SON is unique for each FG, there are 𝑛! different SON values for 𝑛! different 

FG’s. Relations between “FV versus SON” and “CS versus SON” are not linear but 

have parallel increment-decrement trends. 

The best single-FG decoding performance generally belongs to the factor graph with 

maximum FV, CS [Doğan, 2015], [Peker, 2018], and the SON value (𝑛…321), 

corresponding to the reference factor graph (RFG). We observe that single-FG 

decoding performances of the factor graphs with high FV, CS and SON values are 

usually more successful; and the performance remains approximately the same, as 

long as the order of the last stages is preserved. For example, single-FG decoding 

performance of the FG’s with SON’s 645321, 564321 and 465321 are very similar 

for the (64, 12) polar code.  

We then study 𝑀-FG decoding, where 𝑀 > 1 and the transfer of an undecoded word 

from one FG to the subsequent FG can be done in two ways; either keeping all the 
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erasure positions of the undecoded word, or letting some of its erasures be filled by 

the previous FG decoder. We name the first case as “independent” and the second 

case as “dependent” 𝑀-FG decoding. We observe that dependent 𝑀-FG BP decoder 

is more successful than the independent one for different erasure patterns and sets of 

FG’s. In addition, the time spent for dependent 𝑀-FG BP decoding is less than that 

of the independent one.  

Since each FG sequentially tries to decode the remaining undecoded words from the 

previous one, and it has a different amount of contribution to the total decoding 

process; the choice of a compatible set of FG’s is significant in 𝑀-FG BP decoding. 

According to the results in Section 3.2.3 and 3.2.4, the factor graphs with distinct FV 

and CS values are more compatible with each other in team work. Thus, it can be 

said that using different FG’s with different FV and CS values may lead to better 

performance for 𝑀-FG decoders.  

During the search for compatible sets of factor graphs to improve the multiple factor 

graph BP decoding of polar codes, it seems reasonable to choose the first element of 

the set as the FG with the best single-FG decoding performance; hence, all our 

compatible sets start with the reference FG. 

We think that cyclic 𝑛-FG sets by [Korada, 2009] are compatible, because they 

achieve better performance than that of the single-RFG; however, at the cost of 

increased complexity. Our simulations show that similar performance can be 

obtained by eliminating some FG’s of the cyclic set while keeping the range of CS 

and FV values wide enough. The size of the 𝑀-FG decoder can be reduced from 𝑛 to 

⌈𝑛/2⌉ without any significant loss in performance.  

In addition to ensuring variety in the FV and CS values of FG’s within the 

compatible FG set, using distinct stage numbers at each stage of factor graphs seems 

to provide better 𝑀-FG decoding performance. To ensure the variance of stage 

numbers at each stage, and the variety between stage passages as well, we offer the 

Set Choice algorithm to generate a compatible FG set with 𝑀 = ⌈𝑛/2⌉. Since RFG 

has the best single-FG performance, algorithm starts by picking the RFG as the first 

element of the set. Other factor graphs are produced by shifting the odd-indexed 
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stages of the RFG left-cyclically and its even-indexed stages right-cyclically. Set 

Choice algorithm provides a variety of stages at each stage position. Moreover, it 

delivers diversity for stage passages between successive state positions, which is 

missing in the cyclic set [Korada, 2009] that conserves the successive stage numbers. 

Due to the nature of the BP decoding algorithm, each stage is an individual decoder, 

so variety at successive stage transitions improves the performance of the 𝑀-FG 

decoder. For example, the compatible set generated by the Set-Choice algorithm for 

𝑛 = 6, performs as well as Doğan’s genie-chosen set generated by assessing the 

empirical results [Doğan, 2009]. 

We also compare the performances of 𝑛-FG cyclic BP decoders [Korada, 2009], for 

𝑛 = 6, …,11, with the performances of their ⌈𝑛/2⌉-FG subsets and ⌈𝑛/2⌉-FG’s 

generated by the Set Choice algorithm. We observe that although 𝑛-FG decoder 

performance is slightly better than ⌈𝑛/2⌉-FG decoders, the sets produced by the Set 

Choice algorithm have consistently the smallest CER at the output of the ⌈𝑛/2⌉’th 

FG, for all considered block lengths for rate ½ adaptive polar codes designed for a 

binary erasure channel with erasure rate 0.35. Therefore, using the Set Choice 

algorithm to generate a compatible set for a low-complexity dependent 𝑀-FG BP 

decoding appears to be reasonable. 

Adaptive polar code construction is dependent on the erasure probability of the given 

binary erasure channel. Repeating our simulations for different (128, 64) adaptive 

polar codes over binary erasure channels with different erasure rates, we observe that 

the CER/BER advantage of the 4-FG decoders over the single reference FG decoder 

disappears at low erasure rates. The average number of iterations required for 4-FG 

decoder approaches to that of the reference FG decoder as the channel erasure rate 

decreases; where there usually remains no need for the FG’s that follow the first FG.   

Recent work on the subject of permuted factor graphs (FG’s) under BP decoding is 

quite promising. Rather than concentrating on small sets of FG’s, a recently 

announced BP decoder uses as many as 1000 different FG’s by randomly permuting 

the FG stages of the (2048, 1024) polar codes in [Elkelesh, Ebada, Cammerer, & 

Brink, 2018-1]. Utilizing the perfect knowledge-based stopping criterion, the 
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proposed multiple trellis decoder slightly outperforms the SCL decoder with list size 

32, but it cannot catch the performance of the SCL-CRC decoder with cyclic 

redundancy check (CRC) aided stopping criterion. The same researchers also 

investigate the BP list (BPL) decoding performance of L (=32 or 64) permuted FG’s, 

which decode independently in a parallel decoding system [Elkelesh, Ebada, 

Cammerer, & Brink, 2018-2]. Rather than the random permutations used previously 

[Elkelesh, Ebada, Cammerer, & Brink, 2018-1], all cyclically shifted versions (i.e., 

11 cyclic FG’s for N = 2048) of the original reference FG (plus 21 or 53 more FG’s) 

are included among these L factor graphs. With a stopping criterion based on the 

generator matrix G, parallel BP list decoder (i.e., the BPL decoder) reaches almost 

the same performance as the SCL decoder with a lower latency; but again, it cannot 

catch the performance of the SCL+CRC-16 that uses the cyclic redundancy check.  

It is also interesting that at the CER value of 10−4, the (2048, 1024) hybrid RM-polar 

code (with minimum distance 32) first suggested in [Li, Shen, & Tse, 2014] 

outperforms the (2048, 1024) polar code by 1.2 dB (Fig. 2 of [Li, Shen, & Tse, 

2014]) or by 0.9 dB (Fig.4 of [Elkelesh, Ebada, Cammerer, & Brink, 2018-2]) with 

SCL decoding. On the other hand, the BPL performance of the mentioned RM-polar 

code is 0.45 dB below its SCL performance, whereas that of the polar code is only 

0.05 dB below its SCL performance at the same CER (Fig.4 of [Elkelesh, Ebada, 

Cammerer, & Brink, 2018-2]).  

Considering these recent works, which show that the performance of M-FG belief 

propagation list (BPL) decoding may approach to that of the state-of-the-art SCL 

decoding (without an outer CRC code); we believe that M-FG belief propagation 

decoding will gain a significant place in today’s world, where the implementation 

speed matters a lot.  

It is the subject of future studies to investigate the effect of stage orders on decoding 

performance and compose the sets with compatible factor graphs theoretically. 

Additionally, construction of hybrid RM-polar codes, concatenation of polar codes 

with other linear codes for better performance, and the design of parallelizable 

decoding algorithms with the smallest latency are extremely interesting and fruitful 

research areas. 
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