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ABSTRACT

CONTROL OF A PLANAR CABLE-ACTUATED PARALLEL
MANIPULATOR WITH REALISTIC CABLES

Diizgbren, Onur
M.Sc., Department of Mechanical Engineering
Supervisor: Prof. Dr. Mustafa Kemal Ozgoren

July 2018, 216 Pages

The cable-actuated parallel manipulators comprise a new class of robotic systems
which utilize length-controlled unilateral force elements like cables or wires to
move and orient an object. They provide several benefits over conventional parallel
robots, such as larger workspace, simpler structure, and higher payload/manipulator
weight ratio. However, the cables can only be pulled but not pushed. Besides, they
may sag due to their own weight. Therefore, the cable-actuated manipulators pose
challenges in modeling and control. In this thesis, a planar cable-actuated
manipulator is studied. It consists of a payload and two cables with nonnegligible
masses. Each cable is divided into a finite number point masses connected by
massless rigid segments. The appropriate number of segments required for a
realistic modeling is one of the issues studied in this thesis. After the modeling
stage, an inverse-dynamics controller is developed in order to make the payload
track a desired trajectory. This controller needs the angles of the cable segments,
which are not feasible to measure. Therefore, two methods are proposed to estimate
them. The first method is based on a lower order model of the cables with a smaller
number of segments. The second method is based on the assumption that the cables

remain in pseudo-static equilibrium. Moreover, the tension in each cable segment is



monitored during the motion and the input forces are readjusted online to prevent
slackness in any of the segments. For this purpose, an optimization algorithm is
developed in order to determine the control forces with a compromise between the
segment tensions and the tracking error. The performance of the controller is
demonstrated and assessed through several simulations carried out by choosing the

reference motions as square wave, deployment, and circular motions.

Keywords: Cable-Actuated Parallel Manipulator, Cable Robot Control, Tension
Monitoring and Control, Lumped-Mass Cable Model, Lower-Order Dynamic

Approximate Modeling
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0z

KABLOLARI GERCEKCi OLAN DUZLEMSEL KABLO EYLETIMLI
BiR PARALEL MANIPULATORUN KONTROLU

Diizgbren, Onur
Yiiksek Lisans, Makine Miihendisligi Boliimii

Tez Yoéneticisi: Prof. Dr. Mustafa Kemal Ozgoren

Temmuz 2018, 216 Sayfa

Kablo eyletimli paralel manipiilatorler, bir cismi hareket ettirmek ve yonlendirmek
icin kablo ya da tel gibi uzunluklar1 kontrol edilebilen tek yonlii kuvvet elemanlarini
kullanan robotik sistemlerin yeni bir siifidir. Geleneksel bir paralel manipiilatore
gore daha genis calisma alani, daha basit yapt ve daha yiiksek faydali
yiik/manipiilatér agirligi oran1 gibi bir¢ok avantaj saglamaktadirlar. Fakat kablolar
sadece c¢ekilebilir ama itilemezler. Bunun yaninda, kendi agirliklart nedeniyle
sarkma yapabilirler. Bu nedenle, kablo eyletimli manipiilatérler modelleme ve
kontrol konularinda yeni zorluklar yaratmaktadir. Bu tezde diizlemsel bir kablo
eyletimli paralel manipiilator iizerinde ¢alisilmistir. Bu manipiilator bir faydali yiik
ve kiitleleri ithmal edilmeyen iki kablodan olugsmaktadir. Her bir kablo, kiitlesiz
pargalarla birbirine bagl belli sayida nokta kiitlelere ayristirilmistir. Gergekei bir
modelleme i¢in gereken parga sayist bu tezde c¢alisilan konulardan biridir.
Modelleme asamasindan sonra, faydali yiike istenen yoriingeyi takip ettirebilmek
icin bir ters-dinamik kontrolciisii gelistirilmistir. Bu kontrolcli, 6l¢iimii
uygulanabilir olmayan kablo parga agilarina ihtiyag duymaktadir. Dolayisiyla, bu
acilar1 kestirmek icin iki yontem ileri siiriilmiistiir. ilk yontem, daha diisiik sayida

parca igeren kablolarin olusturdugu diisilk mertebeli bir modele dayanmaktadir.
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Ikincisi ise kablolarin sanki-statik dengede kaldiklar1 varsayimini temel almistir.
Bunun yani sira her bir kablo parcasinda olusan gerilmeler hareket esnasinda
gozlemlenmekte ve gevseklik durumunda girdi kuvvetleri yeniden ¢evrimigi olarak
diizenlenmektedir. Bu amagcla, kontrol kuvvetlerini takip hatasi ve parca gerilmeleri
arasindaki uzlasma ile belirleyecek bir optimizasyon algoritmasi gelistirilmistir.
Kontrolcii performansi, kare dalga, tedrici yer degistirme hareketi ve dairesel
hareket referans komutlar1 ile yapilan simiilasyonlar yardimiyla gosterilmis ve

degerlendirilmistir.

Anahtar Kelimeler: Kablo Eyletimli Paralel Manipiilatér, Kablolu Robot Kontrolii,
Gerilme Denetimi ve Kontrolii, Toplanmis Kiitleli Kablo Modeli, Diisiik Mertebeli
Yaklasik Dinamik Modelleme
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CHAPTER 1

INTRODUCTION

It is a need for human to move an object from one point to another for decades. In
early days of mankind, this requirement was met with some primitive methods;
however, with rapid industrialization, it becomes inevitable to find out new
mechanical systems which provide convenience in terms of their labor force
independence. Moreover, this transportation demand hasn’t been limited to only
moving an object. Depending on the complexity of process, there may be
requirement for high accuracy, high speed or energy efficiency of rigid body
motion. Because of these demands, new mechanical systems, called robots,
received high importance and many researchers and engineers focused on wide
range of robotic fields. At first stage of robotics, serial manipulators (robots) drew
researchers’ attention. This type of manipulators can be simply defined as
successive group of links which are combined with joints and do not form a closed
kinematic loop, some examples of which are illustrated in Figure 1.1 and Figure
1.2. The tip of this open kinematic chain is called end-effector and it may be easily
equipped with proper devices like gripper, painter, welder, etc. depending on the

defined operation.

Figure 1.1: A Serial Manipulator Developed by ABB™ [1]



Figure 1.2: A SCARA Serial Manipulator Developed by Mitsubishi™ [2]

In today’s industrial world, serial manipulators form the big percentage of use.
However, due to some insufficiencies that can be mainly listed as low load/inertia
ratio, relatively lower positioning accuracy, repeatability and stiffness; they are not
appropriate for every operation. Therefore, parallel manipulators (robots) emerged
as a new mechanical construction to eliminate these lacking features of serial

manipulators.

1.1 Parallel Manipulators (Robots)

Unlike serial manipulators, parallel manipulators (robots) contain closed loop
kinematic chains which are combined at end-effector; therefore, they share the
payload imposed on the end-effector, which is a superior characteristic. Thus one
can automatically conclude that parallel manipulators have higher load/inertia ratio
compared to the serial ones. Furthermore, due to its mechanical structure that is
built by more than one independent closed kinematic loop, they present better
stiffness performance which directly enhances positioning accuracy. Another aspect
that provides better positioning accuracy is less accommodation of joint errors to
end-effector since parallel manipulator has fewer joints in one leg of robot
compared to a serial manipulator. As a simple illustration, serial manipulator can be
imagined as single human arm, while parallel manipulator is two human arms
joined at hands. Intuitively, it is easier to lift or move an object with total force

applied by using two arms with respect to single arm. On the other hand, it becomes



more difficult to reach a far point with combined arms, meaning that limited

workspace is one of the main drawbacks of parallel manipulators.

Advantages of parallel manipulator make them more attractive and people began to
deal with its theory. One of the first parallel manipulators constructions appears in a
patent filed in 1928 by J.E.Gwinnett which is planned to be used in movie theater
(Figure 1.3) [3].

Figure 1.3: Parallel Manipulator Construction Described by J.E. Gwinnet in a US
Patent of 1928 [3]

Some other early famous designs are the Gough Platform (Figure 1.4) proposed by
Gough and Whitehall in 1947 as a test machine of tires and the Stewart Platform
(Figure 1.5) published by D.Stewart in 1965 to be used as flight simulator.

Figure 1.4: Gough Platform [4]



Figure 1.5: Stewart Platform, 1965 [5]

In today’s industry, parallel manipulators are used for various applications requiring
especially highly dynamic movements, high positioning accuracy, and carrying high
loads. Nevertheless, there exist some applications which require motion of end-
effector in large workspaces or simple robot construction for low cost. In these
cases, a rigid link parallel manipulator lacks meeting desired characteristics.
Because of that a new area of robotics emerged as cable-based parallel manipulators
(robots).

1.2 Cable-Actuated Parallel Manipulators (Robots)

Cable-actuated parallel manipulators, which are also named cable-based robots,
cable-driven robots or wire robots in literature, are the new types of robots formed
by a moving platform, i.e. end-effector, a fixed body and cables. These cables are
used to connect end-effector and fixed body instead of placing rigid links for the
same purpose. By changing active lengths of these cables, position and orientation
of end-effector can be arranged. Cables are generally rolled on a pulley which is
rotated by an electric motor so that cable length changes.



Figure 1.6: Rigid Link and Cable-Based Parallel Manipulators [6]

Cable-based parallel manipulators can be classified in two main types as fully
constrained or under constrained systems in terms of degree of freedom of end-
effector and number of cables used to move it. For fully constrained robot, number
of cables contained in system needs to be (n+1) with proper cable arrangement if
end-effector has n degrees of freedom [7]. If there exist more than (n+1) cables,
then the manipulator becomes over constrained. If it is less, then it is defined as
under constrained manipulator meaning that gravity, which is uncontrollable, plays
an auxiliary role to determine the exact pose of end-effector. In fully constrained
parallel manipulators, all parameters that are effective to find out end-effector

position and orientation can be arranged as desired by changing cable lengths.

The terms “under constrained” and “fully constrained” for cable robots are also
explained clearly on a simple planar application in research of Gorman, Jablokow
and Cannon [8]. As they stated, the number of cables used in a robot is based on the
type of application. An under constrained cable robot might have the ability of
manipulating all degrees of freedom of a payload by using gravity. For instance,
cable configuration (a) in Figure 1.7 is sufficient to control position of an object
with the help of gravity. However, in case of additional rotation control of the same
object, these three degrees of freedom are not possible to be controlled
independently using only two cables like in the case of (b) of Figure 1.7. A three-
cable configuration shown in (c) of Figure 1.7, is just enough to control the position

of the object on plane without depending on the existence of gravity. Nevertheless,



it still lacks capability of independent control of position and orientation. That’s
why a 4™ cable is required to control three degrees of freedom as indicated in (d),
Figure 1.7. Similar to the previous one, in this configuration gravity has no

deterministic influence on the pose of the object.

N
Y
4

Figure 1.7: Under Constrained (a), (b) and Fully Constrained (c), (d) Planar Cable
Configurations [8]

1.2.1 Under Constrained Cable-Actuated Parallel Manipulators (Robots)

Although fully constrained cable-based parallel manipulators are deterministic and
provides ease of positioning and orienting the end-effector in a fully controllable
manner, they might be inappropriate for some applications where it is undesirable to
have cables passing through workspace or below end-effector height level. Then in
these applications, using an under constrained cable robot becomes more feasible
since it has no cables connecting end-effector to the base of the fixed body.

There are some good, creative designs to eliminate the cables connected to the base
of fixed body and obtain fully constrained cable robot at the same time, one of
which can be seen in the study of Kawamura S. as Falcon 7 (Figure 1.8). However,
this kind of structure adds complexity to the system compared to simple mechanical

structure of under constrained cable robots. For this reason, it is logical to consider



under constrained cable robots as a first design option if its capabilities are

sufficient to meet system requirements.

s

-
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Figure 1.8: Fully Constrained Cable Based Parallel Manipulator Design of

Kawamura S. [9]

1.3 Advantages of Cable-Actuated Parallel Manipulators (Robots)

Some of the main advantages of the cable-actuated robots, which make them the

point of interest in field of robotics in recent years, are listed as follows:

Larger workspace: Cables are simply defined as the links of the cable robot.
However, they differ from traditional rigid links since their lengths can be
easily changed as long as there exists enough cable wrapped around the
pulleys. This property provides the opportunity of reaching points far from
the pulleys, which means very large workspaces.

High load/inertia ratio and few moving parts: Cables are the only motion
transmitting elements of cable-based parallel manipulators. Since they have
relatively low inertia compared to rigid links and great axial stiffness,
advantage of high load/inertia of the robot emerges. In addition, actuators of
cable robot do not have to be moved unlike traditional robots, which
prevents increase in the inertia. On the other hand, in traditional

manipulators, construction constitutes several links having greater mass than



cable, connected with joints at which actuators are located and all have to
move to accomplish defined task.

e High speed: The advantage of high load/inertia ratio automatically brings
the capability of moving at high speeds.

e Simple mechanical structure: For a cable-based robot, it is sufficient to have
only cables and pulleys to build it up and complete its function with enough
performance.

e Low cost: Property of having simple structure reduces its cost because the
number of components contained within the robot is relatively low and they
are more affordable compared to the functional parts of rigid link parallel
manipulators.

e Ease of disassembly/reassembly: Simple structure also gives the benefit of
easily disassembling and reassembling in case of maintenance, repair or
need of reconstruction caused by a change in the intended use. This is
because the only parts that must be concerned are again cables and pulleys.

e Ease of transportation: Cable robots are easy to be transported to another
workspace due to their advantages of simple structure and ease of
disassembling. Furthermore, this transportation process is easier since cables
are relatively low in both mass and volume.

e Reconfigurability: Depending on the aimed task or workspace, a cable
manipulator can be reconfigured by rearranging the locations of pulleys or
their heights from the base. Ease of disassemble/reassemble helps it out and

reconfiguration is not a big trouble for cable robots.

1.4 Applications of Cable-Actuated Parallel Manipulators (Robots)

Favorable characteristics of cable-actuated manipulators make them attractive to be
used in variety of applications, which are mainly listed as payload handling,
operations in hazardous areas, operations performed in large workspaces with heavy

objects, medical applications, etc.



The first cable robot got into use is the NIST Robocrane [10]. This cable robot is
designed to be utilized in the applications of lifting and maneuvering heavy loads.
In one of the applications of NIST RoboCrane, it is used to carry a platform which
IS equipped with a robot to weld ships as shown in Figure 1.11 [11]. Furthermore, a
small soft material machining prototype of RoboCrane is also built by NIST, an

image of which is presented in Figure 1.12 [12].

Figure 1.10: 6 meter RoboCrane Prototype [14]



RoboCrane
Previous
Ship Cell

Weld Weld Platform

Robot

Next
Ship Cell

Figure 1.12: RoboCrane Prototype for Machining Soft Material [12]

Wire robots are made use of object handling operations especially in large
workspaces. One of the designs developed by Fraunhofer IPA is displayed in Figure
1.13. This fully constrained cable-driven robot is proposed to handle objects with
mass of up to 40 kg.
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Figure 1.13: A Fully Constrained Cable Robot for Object Handling [15]

As already stated, cable robots have vital importance in medical applications, where
they are utilized for rehabilitation. On the Figure 1.14 and Figure 1.15, there can be
observed several applications with this purpose of use.

g' MOTORS
Figure 1.15: Cable Robot with 3 Wires used for Upper Limb Neurorehabilitation,

named NeReBot [17]
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Cable-actuated robots are very suitable for large radio telescope applications since
they serve large workspaces. One of the famous applications of this type is the
FAST project of China, where feed cabin of the telescope is actuated by cables [18].
The LAR (Large Adaptive Reflector) is another concept for giant radio telescopes

which again contains cables, called tethers, for actuation.

Figure 1.16: The Five-Hundred-Meter Aperture Spherical Radio Telescope (FAST)
Project [18]

Helium Aerostat

Tethers Feed Platform

Phased-array feed concept

Figure 1.17: The Large Adaptive Reflector, LAR [19]
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Another famous application of cable robot is the SkyCam™ (stabilized camera
system) that is used in sports arenas. In this system, it is employed an

underconstrained cable manipulator to move the platform carrying a camera.

Figure 1.18: A Skycam™ [20]

Cable-actuated parallel manipulators become point of interest in the field of
hazardous operations in remote areas. For this reason, there exist several designs

proposed in the literature one of which is illustrated on the below Figure 1.19.

‘\
=S\

Figure 1.19: A Rapidly Deployable Cable Robot for Rescue Operations [21]
There are also some applications of cable robots, where they are employed to move

patients in hospital environment, a conceptual design of which is presented in
Figure 1.20 [22].
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Figure 1.20: Application of Cable Robot in Hospital Environment [22]

As a remote environment and outdoor application, a cable robot is used for algae

harvesting operation, details of which are presented in study [23].

Figure 1.21: CAD Model a Cable Robot for Algea Harvesting [23]

There exist also some conceptual designs of cable robot for agricultural applications
some of which are displayed in Figure 1.22 .

Figure 1.22: Agricultural Applications of Cable Robots [24]
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By taking advantage of reconfigurability and large workspace of cable robots, they
can be used in airplane maintenance application like the design proposed in the

study of Nguyen and Gouttefarde [25].

Figure 1.23: A Cable Robot used in Airplane Maintenance Application [25]
A cable robot with 8 cables is employed in a low-speed wind tunnel as suspension

system for an aircraft model, shown in Figure 1.24. Another wind tunnel

implementation of cable robot is presented in the research of Lafourcade, et al. [26].

O
——+—the base
the scale model
Q/%/ o

Figure 1.24: A Cable Robot with 8 Cables used in Low-Speed Wind Tunnel [27]

-

In study of Bosscher, et al. [28], a fully constrained cable manipulator is proposed
to be used in contour crafting system for construction application. In this respect, a
mobile platform that is used for contour crafting is driven by cable robot like

presented in Figure 1.25.
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Figure 1.25: Contour Crafting Platform Driven by a Cable-Actuated Parallel

Manipulator [28]

1.5 Challenges of Cable-Actuated Parallel Manipulators (Robots)

Although cable-actuated robots serve several advantages and they take part in many

application areas of industry, there exist some challenges to be addressed.

Challenges related to modeling and control topics are mainly classified into the

following subtitles.

Modeling of Cable Robots with Realistic Cables: It is critical to include
mass and the sagging effect of the cables in modeling of cable robots to
reflect the real behavior of the manipulator. Therefore, it is one of the
obstacles to develop a comprehensive dynamic model which contains
inertial effects of the cables. In addition, cables have relatively low stiffness
compared to rigid links and that’s why they induce vibration to the system.
Controller Design: A cable-actuated robot is a nonlinear system which
comprises wires with variable lengths and a payload hanged at the
connection of them. Hence it has vital importance to propose an appropriate
controller which has capability of positioning and orienting the payload with
high accuracy and compensation of system nonlinearities.

Tension Constraints of Cables: Due to unilateral constraint imposed by the
cables, there emerges an additional requirement for controller: In order not
to lose control of the cables, controller of the manipulator is designed such

that it never gives rise to negative tension on the cables.
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1.6 Literature Review

Many studies and researches are carried out about the challenges of the cable
manipulators mentioned on Section 1.5 all around the world. In this section, it is
aimed to present main strategies proposed in literature about these problematic

subjects.

In their study [29], Korayem et al. developed a 6-DOF under constrained cable
robot called ICASBOT. In this research, cable is modeled as combination of two
linkages with a prismatic joint. However, its mass and sagging effect is not included
within the model but a symbolic 2 grams of mass assigned for the cables due to the
requirement of used software. A PD controller is designed in order to control pose
of the end-effector, which is visually sensed with the help of two cameras. In
research [30], another 6-DOF cable driven robot with 8 cables is studied by
Lamauru et al., where control strategy is based on optimization of tension
distribution with the help of redundancy. According to the approach presented in
this study, PID controller generates the regarding cable tensions by using the error
in cable lengths and these tensions are rearranged to be able to obtain optimal
tension distribution. Desired cable lengths are derived from inverse kinematics of
corresponding planned path. Elasticity of cables are studied in [31] by modeling
them as axial linear springs on a redundantly driven cable robot by Khosravi and
Taghirad. Controller algorithm is applied in cable length space and PD controller is
designed so that it ensures positive cable tensions. In their article [32], Du et al.
proposed a model by including dynamic behavior of cables with their slowly
changing lengths. In this approach, bending and torsion stiffness of cables are
assumed to be negligible. Cables are divided into nodes so that dynamic model
contains first two or three vibration modes; however, there is not proposed a certain
approach to clarify this issue completely. In addition, they used planar two-cable
robot, which is very similar to the one considered in this thesis, to investigate the
fidelity of their discrete model. To do that, they modeled this planar robot, one end
of which is fixed, in ADAMS software for comparison. It is applied a sinusoidal

movement to the free end of cable robot and a point mass is hanged to represent a
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payload. Corresponding responses showed that proposed modeling technique
matches up with the ADAMS model. In study [33], a dynamic model is developed
by Lambert and Nohan in order to simulate a three-tethered aerostat positioning
system. According to the proposed approach, each cable (tether) is discretized into
viscoelastic elements which are connected at the point-loaded nodes, which
represent the distributed cable mass. For controller strategy, a PID and an optimal
LQG controller are designed with the help of linearized dynamic model. Moreover,
a feedforward controller term is also added to these techniques in order to eliminate
motion disturbances. In research of Lytle et al. [34], two-level controller is utilized
at first level of which cable lengths are controlled by using the measured rotation of
motors as feedback. At second level, trajectory planning stage takes place so that
smooth trajectories between target points are obtained. For this level of controller,
inverse kinematics is used to convert desired positions into cable lengths to be
meaningful for first level controller. Zi et al. modeled 50-m scaled version of cable
robot used in radio telescope with actuator dynamics [35]. Moreover, sagging effect
of cables are contained within the model by formulating them as parabolic curves to
be able to calculate cable lengths more accurately which will directly affect the
positioning accuracy of the cable robot. These parabolic shapes of cables are
obtained by using the force appeared on it at static equilibrium by assuming that
cable robot moves very slowly. However, masses of the cables are ignored in
derivation of equations of motion. In order to reduce effects of disturbances sourced
from wind and improve tracking ability of the manipulator, a fuzzy controller with
Pl control is employed. In another research [36], where dynamics of 50-m scaled
model of radio telescope is studied again but in this study lumped mass model is
utilized for cable modeling by distributing the cable mass into nodes of
discretization. According to study [37], Afshari and Meghdari derived the equations
of motion of RoboCrane using constraint Lagrange method, where a triangular
platform is modeled with 4 point masses and cable masses are assumed to be
negligible. In addition, geometry of the cables is modeled as straight lines. It is
defined a new, time-efficient Jacobian matrix which reduces the computation time
in both determination of workspace and solution of dynamics equations. In study

[38], trajectory control problem of under constrained cable robots is addressed by
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Yamamoto et al. . It is employed an inverse dynamics calculation for feedback
linearization to control the hanged object carried by the manipulator. In dynamics
modeling, cables are assumed to be massless straight lines. In the study [39]
conducted by Oh and Agrawal, a controller which is based on feedback
linearization with reference governor, is developed for under constrained cable
robot without violating the tension constraints imposed by unilateral cables. In this
strategy, the reference governor rearranges the desired final position in case of
possible constraint violation. In other words, it satisfies the tension constraint in
exchange for some loss in desired position of end-effector. In derivation of dynamic
equations of motion, cables are regarded as massless and straight line elements. A
3D cable robot with 5 cables is modeled including the actuator dynamics, based on
the formulation of Lagrange’s principle by Filipovic et al. [40]. Cables are specified
as un-stretchable, rigid elements with zero mass in this model. In study [41] ,
Babaghasabha et al. developed an adaptive robust sliding mode controller for fully
constrained cable manipulator by also ensuring positive cable tensions during
motion. In modeling of cable robot, cables are considered as rigid and massless.
Conversely, in study of [42], dynamics model of fully constrained cable robot is
expressed including the inertial effects of the cables by Wei et al. . Sagging effects
of log-span cables are taken into account considering the catenary model and
corresponding cable lengths are found out with length of a catenoid under the action
of gravity, i.e. its own weight. Resulting cable length is dicretized into N parts with
time varying lengths. Actuator dynamics is also included in the model of cable
robot. It is proposed a modified-PD feedforward controller and stability is analysed
with the help of stability theory of Lyapunov. As a different type of cable robot, in
their research [43], K.Agrawal, et.al. analyzed a two-stage planar cable manipulator,
which is proposed to be used in marine applications. Due to operation environment,
disturbance induced on the stationary frame of the manipulator needs to be
considered. A robust controller is developed to eliminate negative effects of the
disturbance and also provide positive tension values on the cables. The controller
takes advantage of redundant degree of freedom of the system to accomplish this
task. In the dynamic model developed within this study, inertial and sagging effects

of wires are neglected. In study [44], an over-constrained cable-based parallel
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manipulator is point of interest and its dynamic model is built by including the axial
flexibility of the cables (modeled as linear spring) with utilization of the singular
perturbation theory. However, sagging effect of them is neglected. To be able to
control this axially elastic cable system, a composite controller is proposed where
an already developed inverse dynamics controller for rigid body system is
combined with a PD controller to control the fast dynamics. German et al. studied a
3-cable under constrained robot and they developed a sliding mode controller in
order to provide stability of the robot for the case of different masses of moved
objects [8]. In modeling stage, cables are regarded as straight lines with zero
masses. Moreover, the manipulated object is taken as point mass since it is aimed to
control only Cartesian coordinates. In another research of cable robots [45],
Bedoustani et al. derived equations of motion based on Lagrange dynamics by
considering the change in the mass of the cables during motion. Nevertheless,
sagging effect of them is neglected and modeled as rigid elements. In order to
prevent possible slackness of cables, redundancy of the robot is used and tension
distribution is optimized such that all cables maintain their positive tensions. In
study [46], lumped-mass modeling technique is utilized and cable mass is uniformly
distributed to the nodes of the discretized cable by Caverly and Forbes. Axial
flexibility of each segment is included within the model by modeling them as linear
springs. However, sagging effect is neglected and geometry of cables is considered

as straight line.

1.7 Research Focus and Contributions

After completion of literature review, it is noticed that there are some open issues to
be studied about the challenges explained in Section 1.5. For this reason, critical
points related with these challenges are worked out in this thesis, details of which
are described on the following lines. All the developed methods and strategies are
implemented on a planar cable-actuated parallel manipulator with two cables and a

point mass end effector, which is a type of under constrained cable robot.
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Modeling of Cable Robots with Realistic Cables: In this thesis, dynamic
model of cable robot is built up by including both cable mass and its sagging
effect. In this respect, lumped mass modeling approach is utilized by
dividing a continuous cable into N number of segments and cable mass is
uniformly distributed to the nodes formed at segment connections.
Furthermore, these segments are combined with revolute joint so that
sagging effect is reflected in the model. An approximate approach is also
developed to determine the required number of divisions to model a cable in
a realistic manner.

Controller Design: After building a comprehensive dynamic model, an
inverse dynamics controller is proposed in task space to control x and y
coordinates of end-effector accurately. This control scheme helps out to
linearize the nonlinearities in equations of motion and also decouples them.
This characteristic of inverse dynamics controller gives an opportunity of
using linear conventional controllers. A PD controller is used in this thesis
for this purpose. Moreover, two main approaches are presented to estimate
segment angles which are necessary for inverse dynamics controller. The
first one of these approaches is lower-order model approach, which uses a
coarse cable robot model with lower number of segments on the cables.
Second one is the pseudo-static approach with the assumption of cables at
static equilibrium. Effect of measurement of end-effector pose and 1%
segment angles are also analyzed through variety of simulations.

Tension Constraints of Cables: In order to keep all cable segments under
tension, an optimization algorithm is proposed. This algorithm prevents
negative tension at any cable segment by the exchange for some loss in the
desired motion. The significant feature of the optimization operation is that
it minimizes this loss and gives the closest motion to the desired one under

the present conditions.
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1.8 Thesis Organization

The thesis consists of 5 chapters.

Chapter 2: Steps of mathematical modeling are explained in detail with all
assumptions and simplifications. Kinematics, static equilibrium equations
and constraint Lagrange equations of planar cable robot are derived in this
context. Then, analysis of natural frequencies of a single cable and how it is
used for segment number determination are described in depth. Lastly, the
algorithm to build equations of motion for any possible combination of
segment numbers is presented.

Chapter 3: This chapter starts with brief background information about
inverse dynamics controller. Then, details of designed controller are
presented. Angle estimation methods are also served with illustrative block
diagrams in this chapter. In the last part of the chapter, literature survey of
measurement methods that can be employed in a cable robot is provided.
Chapter 4: Controller strategy is tested through several simulation scenarios
and conditions in this chapter. These simulations are repeated to include all
possible combinations of angle estimation methods with inverse dynamics
controller. Effects of measurement of different system variables are
analyzed and evaluated through simulations.

Chapter 5: Summary of completed work up to this chapter is given at the
beginning. Then, results of simulations are evaluated and possible future

works are suggested.
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CHAPTER 2

MATHEMATICAL MODEL

In this study, each cable of two-cable planar parallel robot is discretized into N
parts, which are called cable segments at the rest of the thesis and cable mass is
uniformly distributed on to the nodes of segment intersections as point masses. All
nodes are connected to each other with rigid segment links with the help of a
frictionless revolute joint. Therefore, cable is modeled as axially rigid since
transverse motion is more dominant than axial motion. In other words, axial

deformation is assumed to be negligible.
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Figure 2.1: Discrete Model of Two-Cable Planar Parallel Cable Robot
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In the discrete model, first cable segments which are the closest to actuators and
pulleys have variable lengths that are represented by # = [ry,7;,]7. On the other
hand, all other segment lengths starting from the 2" segment to the last one
connected to end-effector are modeled as constant length links and this length is
symbolized by I. Due to variable lengths of 1% segments (r; and ), there exist
prismatic joints in order to enable translational motion. Moreover, prismatic joints
are connected with frictionless revolute joints on to the ground so that rotations of
1% segments are also allowed with respect to ground. Constant length between these
two revolute joints is indicated with s. In addition, angles of cable segments making
with the horizontal axis are defined by 8 = [0, 0, ..., 85]7. In this technique, it is
important to note that there are no actual revolute or prismatic joints existing in the
real manipulator. They constitute discretized cable model with rigid segment links
appear between them and provides opportunity of including cable dynamics in the

cable robot model.

1% Cable Segment

1% Node Mass

i Node Mass

(i+1)" Cable Segment

Figure 2.2: A Closer Look to Discrete Cable Model
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As Figure 2.2 shows, pulling force vector of 1st cable segments is F = [F;, F,]T and
direction of pulling forces F; and F, are collinear with 1st segment lengths r; and

Ty, respectively.

Kinematics, static equilibrium, and dynamics of two-cable planar parallel cable

robot are analyzed with prescribed system parameters as follows:

2.1 Degree of Freedom of the System

L
m=DimxL = jixng (2-1)
i

where

Dim: motion dimension of the system, which is 3 since cable parallel robot is
planar

L: number of mobile links

Ljixn.;: total number of constrained degrees of freedom by joints

Resulting from the need of discretizing each cable with different number of
segments, cable on the right side is assumed to be divided into N; number of
segments, while the one on the left side has N, segments. Total number of segments

including in whole planar cable parallel robot is represented with N¢y¢q:-

Number of joints, j:
j = (N; + N, + 1 Revolute Joints) + (2 Prismatic Joints)
= (Niotq + 3) 1DOF Joints (2-2)
Number of mobile links, L :
L = (N; + N, Cable Segments) + (2 Prismatic Bodies)
= (Ntotar +2) 23)

Number of loops, n;, :
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n,=j—L= (Ntotal +3) - (Ntotal +2)=1 (2-4)

Degree of freedom, m:

L
mZDim*L—Zji*nc,i:3*(Ntotal+2)_2*(Ntotal+3)
i

(2-5)

= Ntotal

Number of joint variables, n,, :
Njy = 2n, +m = 2 + Nioea (2-6)

Neorar + 2 number of joint variables are formed of two 1% segment variable lengths

(7 = [r,12]7) and Ngpeq; NUmber of segment angles (8 = [64, 05, ..., Ontorarl”) -

2.2 Kinematic Analysis

Cartesian positions of cable nodes are expressed with the help of unit vector

notation illustrated below.

2.2.1 Unit Vectors

Figure 2.3: Unit Vectors
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Tangential unit vector notation: e; = [—cosf; —sinb;]

Normal unit vector notation: n; = [sinh; —cos ;]

1% time derivative of unit vectors:

é,=1[6,sin6; —6,cosf;] =0,[sin6; —cosb;]=0n,

1, = [6,cos6; 6,sin8;] =6,[cosb; sinb;]=—0e;

2" time derivative of unit vectors:
&, =6, sin6, + 6,° cos§;, —b,cos6; + 6,” sin6;]
= 6,[sin6; —cos6;]+6,[6,cos6; 6,sinb;]

= élni + élTil

fi, = [, cos 6, — 6,° sin0; 6,sin8; +6," cos 6;]
= éL[COS 0; sin6;]— 9'1[91 sin 6; —él cos 6;]

= —0,e; — 0,€

2.2.2 Position Equations

(2-7)

(2-8)

(2-9)

(2-10)

(2-11)

(2-12)

Position equations of segment nodes on the right cable are formed with the help of

unit vectors derived on previous section:

1*" right-node:

Pixy = —71 C0s 6a0d Pyyy = —7y 5N Oy

pir =[-T1c0s0; —115inb;] =re

2" right-node:

Doxr = —T1 €080 —lcosB, and p,,, = —r;sinf; — sin ;.
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D2y =[—Ticos6; —lcosO, -—risinb; —lsinb,] =re; +le; (2-14)

N1" right-node:

N1
Pnir =T1€1 + z lej (2-15)

j=2

In a similar way, position vectors of segment nodes on the left cable are generated:

1*" left-node:
Dixg = —S — 12 €08 Oyq141 aNd pyy; = —75 Sin Oy 44!
P11 = [T2€08 On141  —T2SiNOy14] = Taeyiqq (2-16)
2" left-node:
Daxg = —12€08 Oy141 — LcosOy1qp AN Py = =75 SinOyg4q — USIN Oy 42
D21 = [12€08On141 —LcOSOn142  —T2SiNOn141 — LSINOngyz]
(2-17)
=12en141 + len142
N," left-node:
N2
Pzt =[=s 0] +rzeyyqq + Z leny+j (2-18)
j=2
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2.2.3 Velocity Equations

Velocity equations of segment nodes on the right cable are formed with the help of

velocity level unit vectors:

1% right-node:

Ijlx,r = _7’:1 CcoS 61 + Tlgl Sin 61 and ljly,r = _T:]_ Sin 91 - T'le.l COS 01

D1y = [—7; cos 0, + 1,0, s5in6, —7,sinB; —r6; cos 6]

: . (2-19)
= T'181 + T'181
2" right-node:
pz_x,r - —7:1 Ccos 91 + Tlgl sin 91 + 192 sin 02 and pzy’r = —7:1 sin 91 -
1,6 cos 0; — 16, cos 6,:
ﬁz,r = [—T1 c 91 + Tlgl S 91 + 192 S 92 _T:l S 01 - Tlgl C 91 - 192 C 92]
. , . (2-20)
= T181 + T181 + lez
In formulation of p, .., “c” and “s” represent “cos” and “sin” respectively.
N." right-node:
N1
Dnir = Th€1 + 1€ + Z lé, (2-21)
j=2

In a similar way, position vectors of segment nodes on the left cable are generated:

1% left-node:
Dix1 = —712€0S Oyq141 + 120N141 SiNOy14, and
ply,l = =15 SiNOy141 — 120N141COS Oyq4q:
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P11
= [—7”2 COnis1 +720N141SOn141 —T2SOy141 —T20N141 C 91v1+1]

=T2eN141 T 12€EN141

In formulation of p, ;, “c” and “s” represent “cos” and “sin” respectively.

2" |eft-node:
D2xy = —T2€0S On141 + 120y141 SN Oy14q + 1Oy142 SiN Oy, and
D2y = —T2SiNOy141 — 120n141 €OS Oyq4q — lOn142 €OS Oy 42!

D21 = [Pory Poy] = Toly141 + 12€n141 + lén14o

N, left-node:
N2

Pn2i = 12€6N1+41 T T2€N141 T+ z leN1+j
j=2

2.3 Static Equilibrium Analysis

(2-22)

(2-23)

(2-24)

In this section, static equilibrium equations of two-cable planar parallel cable robot

are derived in order to solve system parameters at static equilibrium. For this

purpose, force balance equations are written thanks to the free body diagram of

segment nodes. Static equilibrium solution provides cable segment tensions, which

are represented by T;, and corresponding cable segment angles, ;.
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(Mn1+)g

Figure 2.5: Free Body Diagram for Left-Cable Node Masses

TN1+N2 TNl

Figure 2.6: Free Body Diagram for End-Effector (Payload) Node Mass

Force equilibrium for right cable:

Force equilibrium along x-axis:

Frri=0 > T;cos0; —Tiy1c050;4,1 =0 (2-25)

Force equilibrium along y-axis:

31



Fyri=0 - T;sin6; — Tiyq sinbiyg —myg =0 (2-26)

wherei =1,2,... ,N;

Force equilibrium for left cable:

Force equilibrium along x-axis:

Feii=0 > —T;cos(mr—6;) + Tizq cos(m—6;41) =0 (2-27)

Force equilibrium along y-axis:

Fy.i =0 - T;sin(mr — 0;) — Tyq sin(m — 6;.,) —myg =0 (2-28)

Force equilibrium for end-effector node:

Force equilibrium along x-axis:

Free =0 — Tyny cos Oy1 + Tnyynz €OS(T — Ongynz) = 0 (2-29)

Force equilibrium along y-axis:

Eyee =0 = TyisinOyg — Tyi4nz sin(m — Oy14n2) —My1g =0 (2-30)
There exist total of 2 x (N; + N, — 1) number of algebraic equations. These
equations contain also 2 * (N; + N, —1) number of unknowns, which are
composed of N; + N, — 1 number of cable tensions and N; + N, — 1 number of
cable segment angles. Consequently, this set of equations for static equilibrium can

be solved with unique solution for given 7 = [ry,1,]7 .
2.4 Dynamics
In this section, explicit equations of motion are obtained by utilizing Lagrange

dynamics because it provides ease of system modeling by serving the advantages

listed on the next section.

32



2.4.1 Advantages of Lagrange Dynamics

Lagrangian formulation provides significant advantages in dynamic modeling
studies some of which are listed below.

e |t provides ease of working with scalars like kinetic and potential energy (K

and U) compared to dealing with vectors [47].

e There is no need to draw free body diagram because it is always dealt with

scalars.

e Deriving accelerations is not required.

e It is not required to consider all forces within the system. In other words,

forces that make no work are not taken into account if they are not point of

interest.

e Lagrangian expression (L) can be written by using the any possible

coordinates. Then, there is no obstacle to differ these coordinates with more

appropriate ones to describe the system symmetry in more descriptive way

[47].

e Constrained problems can be more easily formulated with the help of

Lagrange equations [47].

2.4.2 Lagrange Equations without Constraints

It has vital importance to formulate dynamics of a system in order to simulate it and

additionally to design a controller for it [48]. Therefore, it is critical to understand

the basic derivation theory of Lagrange equations to be able to build following

sections of the thesis on a strong base.

Derivation of Lagrange equations requires formulation of Lagrangian, "L" by

subtracting potential energy of the system from its kinetic energy. These equations

can be derived by utilizing virtual displacement approach or Hamilton’s principle of

least action [48].

L = K — U where K: Kinetic Energy and U: Potential Energy
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In order to identify system, generalized coordinates are defined such that number of
them is equal to the degree of freedom of the system in case of unconstrained

problem.

G =1{q1, 92, ..., qm} Where m: Degree of Freedom

g=1[91 492 -- aqm]" :vector of generalized coordinates

Kinetic and potential energy functions are formed based on generalized coordinates

and their derivatives.

Kinetic Energy Function: K = K(g,q) = %Zﬁ\’:l m;V;? + %Z’i\’zl @;.J;.@; where

N:number of moving bodies

Translational velocities: V; = Vi/p(o); VP=V.V, =V, 7,

~

Rotational velocities: &@; = @;/r(); @;.J;- @ =@, J, @,
All velocities must be expressed in terms of g and g.

Potential Energy Function: U = U(q) = Uy + Ugp,

where U, potential energy due to gravity; U, = Y& m;gh; where h;: elevation of
body i from a suitable datum.

Uspr - potential energy stored in elastic members; Usy,, = Zfﬂ%ki(Asi)z +
Zj?zlgkj(AHi)z where L: number of linear elastic members and R: number of

rotational elastic members

Dissipation Energy Function: D = D(q,q) =% Mo (AV)? + %Z’rv’:'lcr(Awr)z:

linear friction rotational friction
Rayleigh’s dissipation function for viscous friction.

AV, and Aw, must be expressed in terms of g and §.
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Generalized force vector are generated by writing the virtual work expression. This
derivations enables to obtain forces that are not included within potential energy (U)

and dissipation functions (D).

Virtual Work: 6W = Y2_, 0Q,.8q, = YN, F.87; + Z?&M;- 57
where E: a force applied at a point P; of the system

&Z;: virtual linear displacement of P; (must be expressed in terms of 8qy, ..., ;)

—

M,: a moment applied at a body B;

8y;: virtual angular displacement of B; (must be expressed in terms of 8qy, ..., 8qy,)

At first step, instead of forming Lagrangian expression "L", more explicit form of
Euler-Lagrange equations is preferred to be able to interpret effect of each scalar
function on the system more easily. Hence generalized momenta are formulized as

follows:

0K

P=—
7 aq

As a result, explicit Lagrange equations without constraint are stated in the below

form:

0K 0D odU d (GK) 0K oD odU

Pp——+—4+—=0 = —|(—=)-—+—+—=
$ " oar Tods Taa % T at\agy) "aqe T og. Tog o

Same formulation can also be presented in a form including Lagrangian expression
"L":

d((’)L) dL  adD 0

dt \dqy 0qi 904y
As indicated before, two-cable planar parallel cable robot has N;,:, degrees of
freedom in general case. Generalized coordinate vector is created by cable segment

angles and variable 1% segment lengths of cable, i.e. § = [§ #]”. Note that system
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has N, NuMber of segment angles and two of 1% segment lengths meaning that
the number of generalized coordinates is Nyy¢q; + 2. This implies that there should
exist two constraint equations in case of 1% segment pulling forces F; and F, are

specified so that complete set of motion equations are generated.
2.4.3 Lagrange Equations with Constraints

m: DOF of the system
n: number of the generalized coordinates (n >m)
Therefore, n generalized coordinates are interrelated with g = n — m independent

constraint equations.

Motivations:
1) In cases of dry friction where normal reaction forces are required. Normal
reactions appear as constraint forces.
2) In cases in which we are interested in some of the reaction forces and moments.
Again, they appear as constraint forces.
3) Number of equations increase but they get simpler.
e Reduction in the chance of making mistakes.
e Physical interpretations become easier.
4) In the cases of “nonholonomic” constraints, it is inevitable to live with them

during the deviation phase.

Constraint Equations:

They are generally expressed in the velocity level:

n
Y Wde =0 forj=12...9
k=1

It is clear that the generalized force of constraint, Q', do not perform any work,

meaning:
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n
SW' = ZQ,g5qk ~0
k=1

As it can be seen, this work expression includes,éqy, i.e. virtual displacements. It is
a need to somehow relate this virtual work, SW', with constraint equations, but
position level constraint equations do not include any &q,. Therefore they must be
expressed in velocity level in order to obtain &g, inside of them, which is indicated

below:

Virtual Variation Form of the Constraint Equations:

n
Zl/)jk&lk=0 forj=1.2,..,9
=1

Introduce "g" number of coefficients: 4;,1,, ..., 44

In order to relate this virtual variation and generalized constraint force, "A"s can be

used as coefficients and virtual variation equation can be rewritten as follows:

) n n )

yields
> [Zw,-k 6qk]=0 =2 Yy | 6qsc = 0
j=1 =1

k=1 k=1

Definition:

Q. = Z}‘Ll Vi A;: Generalized constraint force associated with gy

n
W' = Qibai =0
k=1

Interpretation: As long as the constraints are satisfied, the virtual work done (6W")

by the constraint forces vanishes (§W' = 0).
Lagrange Multipliers: 14, 4,, ..., A4

Lagrange Equations with Constraints:
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0K N oD N au
dqr  0qx 0qy

=Qy+0Q, fork=12,..,n

n
Z'ij%""ubjo:o forj=1.2,..,9
k=1

; d (aL aL 9K AU
Note: Py =—(—,) and — = — —— whereL=K—-U
dt \oqy d9qr  9qx  0qg

Therefore, Lagrange equation can also be written as
d (aL) dL 4 oD
dt\dq,/ 0qx 0qj

Qr fork=12,..,n

Total Number of Equations: n (Lagrange Equations) + g (Constraint Equations)
Total Number of Unknowns: q4, q3, ..., qn ; A1, A2, ..., A4 (n + g unknowns)

During derivation phase, g4, q2, ..., g, Must be treated as if they are all independent
when expressing K, U, D, and W . The constraint equations take the care of
relationships, which are appended to the Lagrange equations. In other words, in
expressing K, U, D, and W it is assumed that all the constraints are removed (i.e.,

mathematical free body diagram drawing).

2.4.4 Construction of Constraint Lagrange Equations for Two-Cable Planar
Parallel Cable Robot

1) Generalized coordinate vector: g7 = [87,7T]. While 8 represents the vector of
cable segment angles, 7 is the vector of variable lengths of 1% segments of each

cable.

2) Form kinetic and potential energy terms (K, U) for Lagrangian expression
(L =K —U):
H H . - = A A = n 1 T X'i
Kinetic Energy: K = K(q,q) = K(B, 0,r, r) = Zi=15mivi v; where v; = [y] ,
4

(%;,;): x and y velocity components of i node mass
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There does not take place any kinetic energy formed by rotational speed of a
component contained in the system since all node masses are assumed to be point

masses and rigid links between them are assumed to be massless.
Potential Energy: U = U(g) = U(0,7) = Y1, m;gy;

Lagrangian:

L=K—U=z mvl Zmlgyl E[va Uy —m;gy;
i=

3) Find out the related components of the ordinary Lagrange equations (meaning
Lagrange equations without constraint) requiring some partial and time

derivatives:

d /0L dL dD
( )— =Qr fork=12..,n

— - + —
dt \dqy, 0qx 0

It is assumed that all joints within the system are frictionless and bodies included

o aD : .
are not exposed to any dissipation effect. Therefore, 34, EXpression vanishes to zero
k

and Lagrange equations take the following simpler form:

d((')_L)_ oL

o 5d. @ = Qg fork=12,..,n

4) Write generalized force vector, Qy:

n N M
> dac= ) Fo7+ ) W67,
k=1 i=1 =1

There is not applied any moment on the system; therefore, Zﬂ‘-”zlﬁ]. 8y; term drops

out and generalized force depends on only forces:
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n N
Z 048Gy = Z F.8%, = F,6r, + F,or,
k=1 i=1

Then, generalized force vector becomes:

g=[0 0 .. 0 F, K’

(Ntotal+2) number of elements

(2-31)

F; and F, are the specified forces applied along r; and r, respectively.

5) Write position level constraint equations, i.e. loop-closure equations, by
equating the x and y components of end-effector position by approaching from
right and left cable sides of the planar robot:

— X A 2} =~ 1 1
p = [y] = f1(0rignt:11) = fi(Oiefe,72) Where p is the x and y coordinate vector of

end-effector.

where G_Tight is the vector of segment angles and ry is the length of 1% cable
segment, both of which belong to the cable on right side. Similarly, éleft is the

vector of segment angles and r, is the length of 1% cable segment, both of which

belong to the cable on left side.
Constraint is holonomic type since it can be expressed in position level. Therefore,
it can be written in the following simplified form:

©(q) = ¢(6,7) where g is the vector of generalized coordinates.

6) Write velocity equations by differentiating the position level equations:

dle@)] _dle(6,7)]
dt dt

= 3@i =000’ 2-32)
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7) Find out the coefficients of the 1% derivative of the generalized coordinates (i.e.

coefficients of gj) from velocity equations. These coefficients will be the 1
of the virtual variation form of the velocity level equations. When these

coefficients (1) are multiplied with Lagrange multipliers (4;), generalized

constraint force associated with g is obtained (Q; = Z}‘Ll Yjk A)).
8) Form generalized constraint force vector: Q; = 3‘-’=1 Dk A

9) Write acceleration equations by differentiating the velocity level equations:

d[3(@)d]

b (g + (g (2-33)

10) Write acceleration level kinematic relation in the following form in order to

obtain 7 in terms of &

=i
Il
=)
D
+
3

(2-34)
11) Form the Lagrange equations with constraints:

d (0L oL

dt(aq’k) g, etk fork=12,..,n

12) The Lagrange equation found on the previous step includes "A". "A" must be

found out in order to solve equation of motion. To do that, write the obtained

Lagrange equation in the form of:

M(@q—-C(q q) =d(@A+ AF (2-35)

i=[M@] Cad+[M@] d@i+|[M@)]  AF
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(2-36)

where D = [1(@)] ' C@G.4) . E = [M(@)] 8@ and ¢ = [M(@)] A

This final form of equation of motion can be decomposed as:

-[5)+[e+ e e

= Cb|

This set of equations are written in the following form in order to eliminate A and 7
0 = Dy + Eg + GoF (2-38)

t=D,+E.A+GF (2-39)
13) Using the acceleration level kinematic relation and the Lagrange equation for 7
find out A:

(2-40)

=i
Il
=)
D)
+
3|
Il
()
S
+
3
&)
+
3
S]]

D, = G,F| (2-41)

14) Express 7 and 7 in terms of 8 and g in order to express equation of motion in

terms of cable segment angles only.
15) Plug A expression found before into the equation of motion:
A a—1[az _ — A = ~A =
E,"|RG +m - D, - G.F| + GyF (2-42)

— D, — G,F] + GoF where [ is identity

matrix.
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6 = g [59 + Eeﬁr_l[m —D, - G, F] + GGF] (2-43)
where

p=[i-Ea8,R]” (2-44)

Note that this is the final form of equation of motion that is utilized to simulate

motion of two-cable planar parallel cable robot.
2.5 Determination of the Number of Segments for Realistic Cable Modeling

Discretization or segmentation of cables for dynamic modeling brings a new issue
to be addressed: How many segments are required for each discrete cable so that
they can reflect adequately realistic behavior of a continuous cable? An appropriate
approach to deal with this problem is essential in order to deduce that developed

lumped-mass dynamic model represents the cable robot accurately.

In study of Collard, Lamaury and Gouttefarde [49], this topic is discussed by
comparison of 12-meter constant lengths of the 6 cables discretized into one to ten
segments. Their static equilibrium with given cable lengths, dynamic response in
case of payload elevation and natural frequencies are analyzed all of which are

based on convergence of acquired results.

In this research, modal analysis of a separately modeled single cable is carried out
by applying the system parameters observed in the cable robot. This method is
considered as a proof of concept for comprehensive dynamic modeling of cable
manipulator by defining discretized single cable as a decision maker for
determination of number of segments. Therefore, workspace for a planar cable
robot is specified first, which is displayed in Figure 2.7 in order to examine the
system parameters that each cable is exposed to. These parameters can be listed as
cable length, cable mass and tensions appeared on the cable, which play a great role

on the values of natural frequencies of cables.
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Figure 2.7: Specified Workspace of the Planar Cable Robot
Dimensions of this workspace are assigned as follows:

Table 1: Specified Workspace Dimensions

Specified Workspace Parameters Value (Unit)
d (Height of the Base) 10 (m)

¢ (Width of the Base) 5 (m)

b (Height Offset) 1.2 (m)

a (Width Offset) 0.5 (m)
Coordinates of Position-1 (x,y) -4.5,-8.8 (m,m)
Coordinates of Position-2 (x,y) -0.5,-1.2 (m,m)
Coordinates of Pulley-1 (x,y) 0,0 (mm)
Coordinates of Pulley-2 (x,y) -5,0 (m,m)
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To be more descriptive for the notation used in Figure 2.7, Cable — i; means i

cable of j™ position.

After the introduction of the workspace of planar cable robot, it is necessary also to
specify its other parameters like payload, diameter of the cable and density of the
cable material used. Cable length and consequently cable mass depend on the

location of payload within the workspace.

Table 2: Assigned System Parameters

Assigned System Parameter Value (Unit)
Mass of the End-Effector/Payload 3 (ko)
Diameter of the Cable 1.59 (mm)
Density of the Cable Material 7.8 (glcm®)

It should be noted that assigned parameters listed in Table 2 are meaningful not
only for a workspace of this kind but also for large scale applications of cable
robots. In researches [29], [23], [50], [51] and [52], where larger workspaces are
also studied, cable mass to payload ratio ranges between 0.01 and 0.09 for the
longest cable obtained within the specified workspace. This ratio is about 0.05 in
this thesis. Therefore, it can be inferred that methods developed within this thesis
might also be used for large scale applications since they have approximately

similar order of cable dynamics dominance.

In order to involve all the extremities in terms of lengths, masses and tensions of
cables, positions of payload located at the corners of the workspace envelope are
taken into consideration. These corner positions are indicated with “Position-1” and
“Position-2” in Figure 2.7. Although, there exist four corner locations of the
workspace, it is sufficient to deal with the two diagonal ones since the other two
constitute just the symmetrical configurations and have the same cable properties.
According to this approach, Position-1 is analyzed firstly which has the longest and
the heaviest cable with minimum tension. It can be intuitively concluded that this
configuration gives the opportunity of observing cable with low natural frequency.
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Position-2, as the diagonal location relative to Position-1, is analyzed secondly. The
shortest cable of this position is the point of interest since there appears the highest
tension on it. Therefore, it has vital importance in terms of strength of the cable and
has a great role to determine cable diameter.

Resulting parameters related with cable can be simply derived as follows to be used

in the natural frequency calculation:

Coordinates of Position-1:

Xposition-1 = —45 M, Yposition-1 = —8.8m

Resulting cable length between Position-1 and Pulley-1:

— — 2 — 2
lCable—l - J(xPosition—l xPulley—l) + (yPosition—l yPulley—l)

lcaple-1 = 9.88m

Resulting cable length between Position-1 and Pulley-2:

— — 2 — 2
lCable—Z - J(xPosition—l xPulley—Z) + (yPosition—l yPulley—Z)

lcaple-2 = 8.81m

It is assumed that cable forms a straight line between payload and pulley. This
assumption is valid only for cable length and cable mass calculation which is
required for modal analysis of a single cable. It is a known fact that cable normally
forms a point loaded catenary curve in this situation. However, it is accurate enough
to assume it a straight line since purpose in this approach is to sense the order of
magnitude of relation between natural frequencies and discretization level of a

cable.

Angles of the cables making with the horizontal axis can be derived using the

geometry of the workspace:
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Yposition-1 — YPulley-1
tanepll - Y

Xposition—1 — XPulley—1

where Xpuliey-1 = 0 and Ypuiley-1 = 0

Yposition—-1

6P11 = atan( ) = 62920

Xposition—1
Similarly, the angle of Cable-2 can also be found out:

Yposition-1 — YPulley-2

tan9p12 =
Xposition—1 — XPulley—2

since Ypulley-2 = 0

9P12 — atan< Yposition—1 ) — 86.75°

Xposition—1 — Xpulley—2

Tensions observed at Position-1 can be calculated using static equilibrium at this

configuration:

Meeg

Figure 2.8: Free Body Diagram for Position-1

Force equilibrium along x-axis:
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Tp11€056p11 = Tp12€050p13
Force equilibrium along y-axis:
Tp115inBp11 + Tp125inbp1; = Meeg

In this notation, Tpj; represents the tension of i" cable at j" position, Bpji is the
angle between i™ cable and the horizontal axis at j"™ position and m,, is the mass of
the end-effector or payload. It is clear that tensions calculated from these
equilibrium equations do not contain effect of the cable masses. However, they are
not ignorable which leads to somehow count them in. For ease of calculation,
tension components of the weights of cables are directly added to the tensions

obtained from above equations.
Tp11 = Tp11 + Mcapie-195inbpyq
Tp12 = Tp1z + Meapie—295in0p1,
Same calculations are repeated for Position-2, which has the coordinates of:
Xposition-2 = —0.5 M, Yposition-2 = —1.2m

Resulting cable length between Position-2 and Pulley-1:

— — 2 — 2
lCable—l - J(xPosition—Z xPulley—l) + (yPosition—Z yPulley—l)

lecable-1 = 1.3m

Resulting cable length between Position-2 and Pulley-2:

— — 2 — 2
lCable—Z - J(xPosition—z xPulley—Z) + (yPosition—Z yPulley—Z)

lcaple-2 = 4.66 m
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Angles of the cables making with the horizontal axis can be derived using the

geometry of the workspace:

Yposition-2 — YPulley—1

tan9p21 =
Xposition—2 — Xpulley—1

where Xpuliey-1 = 0 and Ypuiley-1 = 0

Yposition—-1

6p21 = atan( ) = 86750

Xposition—1
Similarly, the angle of Cable-2 can also be found out:

Yposition-2 — YPulley—2

tanepzz ==
Xposition—2 — XPulley-2
SINCE Ypyitey-2 = 0
Yposition—2 °
91)22 = atan = 1493
Xposition—2 — Xpulley—2

Tensions observed at Position-2 can be calculated using static equilibrium at this

configuration:

Meeg

Figure 2.9: Free Body Diagram for Position-2
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Force equilibrium along x-axis:

Tpy1€050p31 = Tpy2€050py;

Force equilibrium along y-axis:

Tp215inBpyy + Tp2p5inbpy; = Meeg

Tensions including tensioning effect of the cables:

— )
Tpa1 = Tpz1 + Meapre-19Sinbpyq

12 _ .
Tpaz = Tpaz + Meapre—29Sinbpy,

After performing all the calculations based on the method described above,

resulting system parameters are obtained and listed below:

Table 3: Resulting System Parameters

Resulting System Parameter Value (Unit)
. Cable-1 9.88 (m)
@ Position-1
Cable-2 8.81 (m)
Cable Length
. Cable-1 1.3 (m)
@ Position-2
Cable-2 4.66 (m)
. Cable-1 0.1531 (kg)
@ Position-1
Cable-2 0.1365 (kg)
Cable Mass
o Cable-1 0.02 (kg)
@ Position-2
Cable-2 0.072 (kg)
. Cable-1 4.64 (N)
@ Position-1
_ Cable-2 27.86 (N)
Cable Tension
o Cable-1 28.87 (N)
@ Position-2
Cable-2 11.60 (N)
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According to Table 3, the most critical condition in terms of cable strength occurs at
Position-2 for Cable-1 as expected. Referring to the catalog of CarlStahl™ [53]
[54], it is better for optimal life time to select a cable which has the strength of 10
times of the load on it. Diameter of the cable indicated in Table 2, is selected

considering this rule of thumb.

From Table 3, it is clear that natural frequencies of Cable-1 at Position-1 need to be
analyzed since it has the highest length and mass but the lowest tension within this
specified workspace. In this respect, this cable is taken out from the cable robot
with the tension on it by considering the two ends are fixed at that instant and its
transverse vibration is studied. It is aimed to examine the change in the natural
frequencies as the number of segments of this single cable increases. If there is
observed no considerable change of natural frequencies despite the increase of level
of discretization, then it can be concluded that the number of segments where the
last considerable change is presented, is enough to represent the dynamics of the
cable accurately in the cable robot model. However, there is one more open issue of
this approach: How many natural frequencies should be investigated? In order to
answer this question, Fourier expansion of a square wave position reference is taken
into account. Since a square wave command reflects the most aggressive response
expectation from the cable robot and it scans high frequency range, there is no need

to consider any other type of motion.

Fourier expansions of reference commands of 1 m movement from Position-1 in

both x and y directions are obtained and illustrated below:
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Figure 2.10

y-Position Reference (m)
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Figure 2.11: Fourier Expansion of Square Wave Position Reference in y-Direction

As shown in Figure 2.10 and Figure 2.11, accuracy limit of 1% error is defined for

position references and Fourier expansion with first 16 odd terms is derived so that

it stays within this limit range. It is important to note that overshoots and

undershoots resulting from Gibbs phenomenon are ignored since they do not

disappear even if number of terms included in Fourier expansion is increased.

Frequency of the highest term of resulting Fourier expansion is the decision maker

for the upper limit of frequency that should be examined.
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Frequency of the highest term:

ke:
final
whighest = ;tla =3.1Hz

where k¢, is the index of the highest term and T is the period of square wave.

It is sufficient to analyze the natural frequencies up to value of wp;gpes.. In order to
find out natural frequencies of the single cable, regarding eigenvalue problem of it
needs to be built. Thus there is a requirement for derivation of linearized form of

equations of motion.

> S

0

+y | 0,

m;

PV

Figure 2.12: Discretized Single Cable

As shown in Figure 2.12, single cable is divided into N number of segments which
have equal lengths and a tensioning force, P, is applied such that tip point moves
vertically as if it is in a prismatic joint. Total mass of cable is uniformly distributed
to the nodes formed by connection of the segments. Equations of motion for this

segmented cable are obtained using constrained Lagrange dynamics details of
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which are described in Section 2.4.3 of this thesis. At this step, it is not preferred to
write down all the details of derivation for kinematics and dynamics since it
becomes nothing but just repetition of the equations presented for cable robot
before. The only remarkable difference is the constraint equation, which can be

simply stated as:
xTip = 0

The constraint implies that tip point of the cable where tensioning force is applied,

is not allowed to move in x-direction.
The general form of the constrained Lagrange equations is already written as

0K N oD N ou
0q,  0qx 0qx

=Qx+Qr fork=12,..,n
They can also be represented in general matrix form:

M@PG+NGPI+g@ =7 (2-45)

It is clear that Egn. (2-45) is nonlinear and cannot be written in eigenvalue problem
form. Therefore, a linearization step is necessary and it is wise to apply it before
deriving the final form of the equations of motion not to deal with more complex

expressions. Linearization steps at energy level are simply summarized as follows:

Kinetic and Potential Energy, K and U: After obtaining kinetic and potential energy,

firstly substitute sinf ~ 6 and cosf =~ 1 — 92/2. Then, drop out 3™ and higher

. . . . . . 0K ou .
order terms, i.e. quadrate it, because with derivative operations, aand EPm final
k k

forms of them become linear.
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Time Derivative of Generalized Momentum, P: Use quadrated kinetic energy to
find out P and since it appears as it is in the final form of the equations of motion,

drop out 2" and higher order terms to linearize it

Generalized Force, Q: Similar to P, generalized force takes place directly in the

final form of dynamic equations. For this reason, it should be dropped out 2" and

higher order terms after substitution of sinf =~ 6 and cosf = 1 — 92/2.

Generalized Constraint Force, Q: Derivation of generalized constraint force is
directly related with the velocity level constraint equation. Hence constraint

equation is required to be linearized to be used in this step, which implies that 2"

and higher order terms after substitution of sinf ~ 6 and cosf = 1 — 92/2. Then,

its virtual form is utilized to form the virtual work of constraint force that results in

generalized constraint forces including Lagrange multiplier(s).

It is assumed that all joints within the segmented single cable are frictionless and
bodies included are not exposed to any dissipation effect. Therefore, ;TL,) expression
k

vanishes to zero.

After linearization operation, equations of motion are written in linear form and
eigenvalue problem is obtained:

(K — w?M){p} =0

In this thesis, Cable-1 of Position-1 is divided from 2 to 15 segments and for each
case eigenvalue problem is solved by using Matlab’s® eig command to obtain
natural frequencies. Results of this analysis are presented on the following graphs
on which impact of the number of segments on the natural frequencies is also

illustrated.
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Figure 2.13: Natural Frequencies of Single Cable vs Number of Segments used in
the Discrete Model

These graphs indicate that it is accurate enough to consider first 5 natural
frequencies of the single cable since the 5th natural frequency is greater than the
maximum frequency included in Fourier expansion of square wave, i.e. wp;gpest. At
this stage, convergence rate of the first 5 natural frequencies are analyzed
depending on the number of segments. For this purpose, a limit of 3% is specified
for the change in the natural frequencies. In other words, if an increase in the
segment number causes a percentage change smaller than 3% in the natural
frequency, then it is concluded that there is no need to increase the number of
segmentation anymore since it causes ignorable impact. Based on this strategy,
percentage change of natural frequencies with respect to level of discretization is
illustrated on the below figures with the help of its simple formulation:

Wij41 —

w. .
“ %100

Percentage Change =
Wi j+1

where w; ; is the i™ natural frequency of j-segmented single cable.
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Convergence rates displayed in the above figures show that Cable-1 at Position-1 is
represented with 10 segments in realistic manner for the defined workspace because
percentage changes of 4™ and 5™ natural frequencies are below 3% after 8 and 9-
segment discretization respectively. Since this configuration is the most critical one
in terms of required segment number, it is concluded that cables of this planar cable
robot need maximum 10-segment discretization to perform a task within this
workspace. (It should be noted that the approximation presented in this section is

employed just to have meaningful foresight about the system.)

As already stated, cable is modeled with segmentation and resulting discrete cable
includes segments connected with frictionless revolute joints. This feature causes
the discrete cable to be able to bend such that it has sharp corner during motion.
This is actually not the case in a real cable; however, according to the catalogs of
CarlStahl™ [53] and [54], recommended minimum pulley diameter to maximize
cable life is 25 times of cable diameter for 7x19 cable construction. This
information concludes that ~39.75 mm diameter pulley is proper for 1.59 mm
diameter cable. Meaning that, @1.59 mm cable is able to bend around ©¥39.75 mm
pulley. If this pulley diameter is compared to the length of the cable used in the

manipulator, it is relatively very small. For this reason, locating a revolute joint
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between cable segments is a reasonable assumption. Moreover, assuming each

segment as a rigid element is also an acceptable assumption since low-stretch cables

are supplied in the market.

2.6 Modeling and Control Algorithm for a General Case

A set of Matlab® scripts and functions are developed which can be used for any

specified workspace and any combination of segment numbers of cables. These

scripts and functions generate all the required Matlab® functions to be used in the

modeling and control analysis. The diagram given in Figure 2.19 describes how it

works and what it expects from the user. Names of the Matlab® scripts or functions

are put inside the blocks of flowchart and their purpose of use is described below:

Data Set (User Interface): This is the cluster of values determined by the
user within a script that can be considered as user interface. It includes
dimensions of the workspace to find out extreme points, amplitude of square
wave position commands to be used in Fourier Expansion script, desired
period of square wave, error range for acceptable resulting Fourier
expansion, mass of carried object at end-effector, diameter of the cables,
density of cable material, convergence limit of natural frequencies of single
cable, state estimation method, type of command and controller parameters.
Fourier Expansion: In this script, Fourier expansion of the square wave
which is selected as a sample command is completed by satisfying the
accuracy error range specified by user. The frequency of the highest order
term included in Fourier expansion is found out to determine the frequency
limit.

Natural Frequency: This script calculates the natural frequencies of a single
cable through the mass and stiffness matrices gathered from linearized
equations of motions. This analysis is repeated by increasing the number of
segments until maximum natural frequency of the cable reaches the
frequency value coming from Fourier Expansion block. This block finally

determines the required number of segments for discretization by evaluating
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the convergence rate of the highest natural frequency compared to the
number of segments.

Equation Check OK?: It is checked whether equations for modeling and
control analysis are built before or not. If yes, it directly starts the
simulations. In opposite case, it activates Equation Deriver.

Equation Deriver: This block is responsible for symbolic derivation of all
equations to be used in modeling and control analysis of cable robot. They
include kinematic relations, equations of motion derived by constrained
Lagrange dynamics and inverse dynamics controller input. At the end of this
script, it generates all these equations in separate Matlab® functions which
can be used in numerical operations throughout simulations. It is important
to note that Equation Deriver completes its task based on the number of
segments sent by Natural Frequency script.

Simulation: Simulation script is formed by all Matlab® functions generated
by Equation Deriver. It uses them according to the preferred estimators and
commands defined by user (detailed analysis of these simulations is the
topic of Chapter 4).

Information about data transmission lines:

Line-1: From Data Set (User Interface), workspace dimensions, amplitude
and period of square wave and error range for acceptable resulting Fourier
expansion values are transmitted to Fourier Expansion script.

Line-2: From Data Set (User Interface), workspace dimensions, cable
diameter, density of cable material, mass of carried object at end-effector
and convergence limit of natural frequencies of single cable values are
transmitted to Natural Frequency script.

Line-3: The maximum frequency obtained in Fourier Expansion script is
transmitted to Natural Frequency script.

Line-4: Resulting number of segments coming from Natural Frequency is
sent to Equation Check OK? block.
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e Line-5: Details of commands, state estimation methods and controller
parameters preferred by user are transmitted to be utilized in Simulator.

Moreover, masses of cables and payload are also provided with this line.

In the following chapter, all the terms and techniques mentioned here about

controller are explained thoroughly.
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CHAPTER 3

CONTROLLER DESIGN

Control problem of a manipulator is simply stated as determination of actuator
forces or torques that provides manipulator to track the reference commands
including both transient and steady-state periods. This problem might contain
following a commanded motion while having no contact with an object or
performing a reference motion having contact with environment taking place as
constraint. In order to deal with different types of control problems, there are
several control strategies to implement, which have considerable impacts on system

performance [55].

Treating a manipulator as construction of n independent joints and controlling each
axis of these joints as single-input/single-output system is the most straightforward
strategy among all. In this technique, coupling effects of joints are introduced as
disturbance inputs or neglected in relatively small motion of manipulator [55].
However, in order to enhance productivity of manipulators better dynamic
characteristics are needed, which leads designers to develop new control strategies.
These strategies are relatively more complex but provide high quality in terms of

dynamical performance since they include realistic dynamic models [56].

Depending on the demanded motion or construction characteristics of manipulator,
nonlinear coupling terms might have effects on performance of the system. For this
reason, it may not be obtained satisfactory tracking performance from manipulator
since taking these terms as disturbance instead of complete elimination of them may
cause high errors of positioning. Therefore, it becomes inevitable to build up a
controller that utilizes the dynamic model of the system so that it is able to cancel
adverse effects of nonlinear coupling terms [55]. Although there exist several

dynamic model-based control algorithms, inverse dynamics control is one of the
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mostly implemented ones and presents good tracking results in many robotic
applications. In this thesis, motion demands of two-cable parallel cable manipulator
are met by using inverse dynamics control based on its mathematical model

developed.

3.1 Inverse Dynamics Control

Inverse dynamics scheme is a special application of feedback linearization
technique which is based on direct use of dynamic model of manipulator. With the
help of complete model of manipulator, this control strategy eliminates nonlinear
effects of gravity, Coriolis and centrifugal force, friction, and the manipulator
inertia tensor. Since robot dynamics are used within feedback, linearized and
decoupled control problem ends up and regular linear controllers can easily be
adapted to it. Thus it results in better trajectory tracking performance because linear

controllers are applied to exact linearized system dynamics [57] [56] [55].

In this thesis, inverse dynamics controller is implemented in task space; however, it

is preferred to give background information about both joint and task space

application.

3.1.1 Joint Space Inverse Dynamics Control [48]

Dynamic equations of an n-link rigid robot can be stated in matrix form
M@a+N@G@PI+3@ =7 (3-1)

The basic idea of inverse dynamics approach is to find out a nonlinear feedback

control law

il

=f@q.t) (3-2)
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which gives a linear closed-loop system when plugged into equations of motion.
For a manipulator, this type of control law can be easily chosen by inspecting the

dynamic equations.
T=M@i, +N@Q 97+ (@) (3-3)
then, by combining the equations of motion and control law
M@q+N@Dq+ 3@ =M@, +N@Q DG+ 5(@) (3-4)
It reduces to

q =1 (3-5)
where i, represents a new input, explicit form of which is not proposed yet. Inverse
dynamics control formulated in Eq. (3-3) provides a facilitative result, which is

given by Eq. (3-5), named double integrator system.

It is wise to design u, as PD controller since control problem is converted to control

of linear second order system

Uy =4 +K@ -+ K@ - (3-6)
where,
q": Desired Generalized Coordinate Vector
q: Actual Generalized Coordinate Vector
q*: Desired Generalized Velocity Vector
q: Actual Generalized Velocity Vector

*: Desired Generalized Acceleration VVector

Q|

q: Actual Generalized Acceleration Vector
K, Derivative Gain Matrix

K,,: Proportional Gain Matrix
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Combining Eqg. (3-5) and (3-6)

U =4 +K@ - D+ K@ -
=4 > @ -D+K@ -P+K@ -9 =0

Then joint space error dynamics become:

éq +Kqé, +Kye, =0 (3-7)
It can be observed that this second order differential equation helps out to interpret
error dynamics of the closed loop system. Error,e, asymptotically approaches zero

by proper selection of I?p and K, values. K,; and Kg; can be related in critically

damped case of any joint i as:

Kqi® = 4Ky (3-8)

This control algorithm summarized so far is illustrated on the following diagram.
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Figure 3.1: Joint Space Inverse Dynamics Control Architecture
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3.1.2 Task Space Inverse Dynamics Control [48]

In order to track motion references in task space, linear control portion of control
architecture which is indicated in Figure 3.1 needs to be updated while keeping the
linearization/decoupling part the same. This implies that new type of i, is obtained

in task space that is represented by 7iy. Let X € R® represent the end-effector pose.

Since X is a function of the joint variables g, it can be written that
X=J@q (3-9)

D+ /(@7 (3-10)
where J(g) is the Jacobian matrix.

By using joint space relation stated in Eq. (3-5) and acceleration equation
(Eq.(3-10)) uy is written as

Uy = J(@iq + /(@) (3-11)
which results in the double integrator system in task space coordinates as follows

S
Il
I
™

(3-12)

For given desired task space trajectory X*, iy is chosen as (It should be noted that
X* satisfies smoothness and boundedness assumptions similar to the joint space
trajectory q*)

ﬁX=)?*+ﬁd(X*—X)+fp()?*—)?)=)'_(. (3-13)

Error dynamics of task space takes the form of
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éx + I?déX + I?pe_X =0 (3-14)

It can be concluded that by simply modifying the linear control portion of joint
space inverse dynamics control and keeping the linearization/decoupling part
unchanged, control architecture is adapted to task space tracking. This procedure
again ends up with a similar second order differential equation describing error
dynamics of system. With proper selection of 1?,, and K, values, error, &y

asymptotically approaches zero.

3.2 Implementation of Inverse Dynamics Control on Two-Cable Planar

Parallel Cable Manipulator

After brief introduction of inverse dynamics concept for both joint and task spaces,
it is time to implement this scheme on two-cable planar parallel cable manipulator.
In this application, main goal is to control x and y Cartesian coordinates of end-
effector which is assumed to be a point mass. Thus it does not have orientation and
x and y coordinates are enough to constitute its pose in this model.

Controller is expected to generate required forces applied to 1% segments of two

cables that are selected as specified variables of system.

In previous chapter, dynamic model of two-cable planar parallel manipulator is
expressed with the help of Lagrange equations of motion. Final form of these

equations can be stated in the following format:

M@q+N@ g+ 9@ = AF (3-15)
where,
M: Mass/Inertia Matrix
q: Generalized Coordinate Vector
N(g,q)q: Coriolis and Centrifugal Force Vector
g: Gravity Force Vector
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F: Generalized Force Vector

A: Generalized Force Coefficient Matrix

In more compact form:

M(@)q + C(q,9) = AF (3-16)
where,

C: Coriolis and Centrifugal Force + Gravity Force Vector

It is aimed to control the cable robot in a desired manner so that it can accomplish
the defined task like picking up an object and transporting it by following a
proposed path. For this purpose, inverse dynamics control is utilized in order to
cancel out nonlinear effects appear in the equations of motion and gain accurate

trajectory tracking performance.

In order to achieve nonlinear to linear conversion, it is wise to select control input in

this form:

M@u+C@qq =T (3-17)

After selection of T, elimination of nonlinear terms and derivation of linear

equation are completed:
M(@q+C@qq =M@u+C@Gq = G=1u (3-18)

It is obvious that inverse dynamics control is an effective method to be able to not
only linearize equations of motion but also decouple them. This final form is linear
anymore; therefore, linear controllers can be applied easily. However, in two-cable
planar parallel cable manipulator it is aimed to control x and y coordinates of end-

effector. It means that joint space variables, which are cable segment angles, 8, are

71



not point of interest. For this reason, inverse dynamics controller should be

proposed for task space.

U, =p"+K 0" —D)+K, @ —p)=p (3-19)
where,
p*: Desired x and y Coordinates Vector of End-effector (Vector Dimension:2x1)
p: Actual x and y Coordinates Vector of End-effector (Vector Dimension:2x1)
p*: Desired x and y Velocity Vector of End-effector (Vector Dimension:2x1)
p: Actual x and y Velocity Vector of End-effector (Vector Dimension:2x1)
p*: Desired x and y Acceleration Vector of End-effector (Vector Dimension:2x1)
p: Actual x and y Acceleration Vector of End-effector (Vector Dimension:2x1)
K,;: Derivative Gain Matrix (Matrix Dimension:2x2)

I?p: Proportional Gain Matrix (Matrix Dimension:2x2)

Acceleration equation of cable manipulator is obtained, which is similar to Eq.

(3-10), in previous chapter as Eqg. (2-33):

p=J(@0+]@o (3-20)

Combination of Eq. (3-13) and (3-14) gives the following formulation

=+ Ry — D)+ K5 — D) = J (@6 +J(@)8 (3-21)

Moreover, explicit form of the equations of motion is also obtained as Eq. (2-43):

6 = Dy + EoE, [ — D, — G,F] + GoF|
where § = [T — EoE,'R|
which can be rewritten as

A~ —

[DQ + EQ (m DT) EQE 6rF + 69F]



A~

5 = ﬁ [59 + EG (m Dr)] + ﬁ [ E‘r—lér + 69] F (3-22)

Combined closed-loop equations can be obtained by plugging this final form of Eq.
(2-43), which is Eq. (3-16), into Eqg. (3-15). It is important to note that in this
derivation jacobian m