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ABSTRACT

CONTEXTUALIZED SCENE MODELING USING BOLTZMANN
MACHINES

Bozcan, İlker
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. Sinan Kalkan

July 2018, 72 pages

Scene modeling is very crucial for robots that need to perceive, reason about and

manipulate the objects in their environments. In this thesis, we propose a variant

of Boltzmann Machines (BMs) for contextualized scene modeling. Although many

computational models have been proposed for the problem, ours is the first to bring

together objects, relations, and affordances in a highly-capable generative model. For

this end, we introduce a hybrid version of BMs where relations and affordances are

introduced with shared, tri-way connections. We evaluate our method in comparison

with several baselines on missing or out-of-context object detection, relation estima-

tion, and affordance estimation tasks. Moreover, we also illustrate scene generation

capabilities of the model.

Keywords: Scene Modeling, Context, Knowledge Bases, Boltzmann Machines, Deep

Learning
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ÖZ

BOLTZMANN MAKİNELERİ KULLANARAK BAĞLAMSALLAŞMIŞ
SAHNE MODELLEMESİ

Bozcan, İlker
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. Sinan Kalkan

Temmuz 2018, 72 sayfa

Sahne modellemesi, çevredeki nesneleri algılayan, işleten ve nesneler hakkında çı-

karsama yapan robotlar için son derece önemlidir. Bu tezde, bağlamsallaşmış sahne

modellemesi için farklı bir Boltzmann Makinesi (BM) öneriyoruz. Bu konuda birçok

çalışma olmasına rağmen, bizimkisi nesneleri, ilişkileri ve sağlarlıkları bir araya geti-

ren, son derece yetenekli üretken bir modeldir. Bu amaçla, ilişkilerin ve sağlarlıkların

paylaşıldığı, üçlü bağlantılar içeren melez bir BM sunduk. Üstelik, ilişki hesaplama

ve modelleme çalışmaları için bir veri kümesi sunduk. Yöntemimizi, nesne bulmada,

bağlam dışı nesne tespitinde, ilişki ve sağlarlık hesaplamada ölçü alınan birkaç mo-

delle kıyasladık. Dahası, modelimizin üretkenliğini gösteren örnekler sunduk.

Anahtar Kelimeler: Sahne Modellemesi, Bağlam, Bilgi Tabanları, Boltzmann Maki-
neleri, Derin Öğrenme
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CHAPTER 1

INTRODUCTION

Having a model, i.e., a representation, of the environment is crucial for artificial and

biological cognitive agents. A scene model is a representation that allows a robot to

reason about the scene and what it contains in an efficient manner. For example, as

shown in Figure 1.1(a), using a scene model, a robot can check (i) whether there is

a certain object in the scene and if yes, where it is; (ii) whether an object is in the

right-place in the scene; or (iii) whether there is something not expected or redundant

in the scene.

A contextualized scene model, on the other hand, integrates the context of the scene

in representing the environment and making inferences about what it contains. This is

critical since it has been noted that context plays critical role in perception, reasoning,

communication and action [4, 62]. Context helps these processes in resolving ambi-

guities, rectifying mispredictions, filtering irrelevant details, and adapting planning.

These processes and problems are closely linked to a scene model, and therefore,

scene models should contextualize what they represent.

1.1 Problem Definition

In this thesis, we address the following problems:

‚ How can we model the environment in contextual manner? Even though the en-

vironment is modeled in different ways in the literature (by using graph chains,

first order logic, Markov random fields etc.), our model is the first to use (and

1
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Figure 1.1: (a) Example problems for which scene models help robots (given some

incomplete or wrong observations from the environment). With our model, we can

answer questions marked in gray. (b) An overview of COSMO, our hybrid tri-way

Boltzmann Machine, where the tri-way edges are shown in red, as a contextualized

scene model. [Best viewed in color]
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adapt) Boltzmann Machines for scene modeling, which not only represents ob-

jects or relations between objects in the scene but also affordances of objects.

Moreover, being generative, it is able to complete any missing information in

the scene and make predictions given any information that may be available.

‚ What kind of problems in robotics can be solved by using a contextualized

scene model? Robots should be aware of the context that they are in in order to

operate autonomously. They can fill missing or irrelevant parts in the scene by

using contextual information. Relations among objects can be varied according

to the context and objects can afford different usabilities for different types of

contexts.

‚ Can we use the contextual scene model to increase performance of object de-

tectors? Object detectors can fail due to enlightenment conditions, object oc-

clusion etc. Contextual scene models can correct misclassification of objects in

the scene by using contextual information in it.

1.2 Contributions

The main contributions of the thesis are as follows:

‚ Investigation of different types of knowledge bases for robotic tasks: Ex-

tending robot knowledge by using external knowledge sources (bases) is an

important issue in robotics. There are several knowledge bases. All of these

methods rely on two main paradigms: logic-based or graph-based. Before de-

veloping a model that represent robotic knowledge, we review several robotic

knowledge bases openly available in the literature.

This part of the thesis has been published as a technical report [8].

‚ Deep Boltzmann Machines for Scene Modeling: To the best of our knowl-

edge, ours is the first to use Deep Boltzmann Machines (DBM) [46] for scene

modeling. With DBM, we introduce a generative scene model which incorpo-

rates objects, spatial relations and affordances. In order to be able to model

3



concepts like relations and affordances that require tri-way connections, we

adapt and extend DBM by (i) combining together General BM [1] with higher-

order BM [50], and (ii) introducing weight-sharing in order to have the same

concepts of relations and affordances between different sets of variables.

This part of the thesis has been published as a paper [9].

The contributions presented in this thesis are disseminated in the following studies:

‚ İlker Bozcan and Sinan Kalkan. COSMO: Contextualized Scene Modeling

with Boltzmann Machines. Robotics and Autonomous Systems (RAS) special

issue on Semantic Policy and Action Representations for Autonomous Robots

(SPAR), 2018. (Submitted)

‚ İlker Bozcan, Yağmur Oymak, İdil Zeynep Alemdar, and Sinan Kalkan. What

is (missing or wrong) in the scene? A Hybrid Deep Boltzmann Machine For

Contextualized Scene Modeling. International Conference on Robotics and

Automation (ICRA), 2018.

‚ İlker Bozcan, Yağmur Oymak, İdil Zeynep Alemdar, and Sinan Kalkan. Sahnedeki

(eksik ya da fazla) ne? Bağlamsallaşmış Sahne Modellemesi için Melez, Derin

bir Boltzmann Makinesi. Türkiye Robot Bilim Konferansı (ToRK), 2018.

‚ İlker Bozcan and Sinan Kalkan. Combining Different Knowledge-bases into

a Single Partially-grounded Robotic Knowledge-base. Technical Report No:

METU-CENG-TR-2017-02, Department of Computer Engineering, Middle East

Technical University, 2017.

The author has contributed to the following, which however are not presented in this

thesis:

‚ Fethiye Irmak Doğan∗, İlker Bozcan∗, Mehmet Çelik and Sinan Kalkan. CINet:

A Learning Based Approach to Incremental Context Modeling in Robots. In-
∗ Equal contribution

4



ternational Conference on Intelligent Robots and Systems (IROS), 2018. (Ac-

cepted)

1.3 Organization

In Section 2, the work related to our study is examined by focusing on different types

of scene modeling, relation and affordance estimation studies. Moreover, we give

background about Boltzmann Machines and variants.

In Section 3, we investigate and compare different types of robotic knowledge bases

that are openly available in the literature. This part of thesis is used for determining

necessities of proposed scene model. The content of this chapter has been published

in [8].

In Section 4, our proposed contextual scene model based on Boltzmann Machines

(COSMO) is presented. The structure of the model and the learning algorithm is

described. The context of this chapter has been published in [9].

In Section 5, the experimental results of COSMO performing on several tasks includ-

ing missing object estimation, out-of-context object detection, relation estimation and

affordance estimation tasks are presented. We compare COSMO with baseline meth-

ods. We conduct experiments on real robot data and the NYU dataset.

In Section 6, the thesis is concluded by summarizing the proposed model. Moreover,

the limitations of the models and future work are discussed.
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CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we review related work on scene modeling, relation estimation and

affordance prediction. In addition, we give background about Boltzmann Machines

and their variants.

The content of this chapter has been published in [9] and [10].

2.1 Scene Modeling

Table 2.1: Comparison with existing studies on Scene Modeling.

Study Main Method Generative? Relations? Affordances? Explicit Context?

[25] DB processes Y N N N
[2] MRF Y Y N N
[6] scene graphs N N Y N
[12] MRF Y N Y N
[35] PL N Y Y N
[11] MRF Y Y Y N
[44] chain-graphs N Y N Y
[22] PL N Y N Y
[30] BN N Y N Y

[43, 60] LDA v. Y Y N Y
[31] MRF Y Y N Y
[14] LDA Y N Y Y
[56] ontology N Y Y Y
[49] ontology N Y Y Y

COSMO BM Y Y Y Y

Scene modeling is an important problem in Computer Vision and Robotics. During

the last decade, especially probabilistic methods or probabilistic graphical models
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Figure 2.1: (Top) Point cloud of the scene. (Bottom) The segmentation of the point

cloud. Black dots represents segments and spatially related segments are linked with

black edges. (Figure source: [2])

such as Markov Random Fields (MRF) or Conditional Random Fields (CRF) [2, 12,

14, 31], Bayesian Networks (BN) [30, 51], Latent Dirichlet Allocation variants (LDA

v.) [43, 60], Dirichlet and Beta (DB) processes [25], chain-graphs [44], predicate

logic (PL) [22, 35], Scene Graphs [6], and ontologies [22, 49, 56] have been proposed

for solving the problem.

In the study of Anand et al. [2], they segment the 3D point-cloud scenes, and predict

the labels of segments. Each segment can have multiple classes that indicate attributes

of segments such as object type, shape etc. MRF is used for scene modeling and each

segment corresponds to node of the MRF graph (See Figure 2.1).

In the study of Celikkanat et al. [12], MRF is used for scene modeling. Each node

in the MRF graph corresponds to one of three types of concepts including objects,
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Figure 2.2: A schematic representation of the context assessment model proposed in

[35] (Figure source: [35])

verbs and adjectives. Concept nodes can be connected to other nodes with weighted

links. Weights indicate association between two nodes. In [14], context nodes are

introduced. Concept nodes can be connected to context nodes with weighted edges.

(See Figure 3.5)

In the study of Mastrogiovanni et al. [35], the Situation Definition Language (SDL) is

introduced to representing and reasoning robotic knowledge in contextual hierarchy.

Moreover, they introduce a predicate logic-based formalism to represent the predi-

cates, contexts and situations. Hierarchical structure and proper level of abstraction

allow to ease in reasoning (See Figure 2.2).

In the study of Bluementhal and Bruyninckx [6], a domain specific language (DSL)

is proposed for scene graph based environment models. Proposed DSL is used for

representing semantic knowledge about the scenes. The scene graph based world

model consists of objects and relations among them. Relations are represented as

actually directed acyclic graphs.

Lin et al. [31] represented as a scene in terms of objects and relations among them.

9



Figure 2.3: A demonstration of how CRF model can build on object cuboids in [31]

(Figure source: [31])

Firstly, they rotate the point cloud of the indoor scene to canonical orientation in order

to estimate the floor and wall planes. Then, they generate cuboids that encapsulate

objects in the scene. By using Conditional Random Fields (CRF) for reasoning about

the objects, their geometric properties and spatial relations (See Figure 2.3).

In the study of Li et al. [30], a context-aware framework based on Multi-Entity

Bayesian Network (MEBN) is proposed. According to the authors, they prefer MEBN

since it can provide reasoning under uncertainties. MEBN can represent repeated

structures in BN. The proposed framework includes six logic based components: (a)

Data processor that preprocesses sensor input data, (b) Semantic Mapper that parses

the data coming from different data sources and fits them into proper format in or-

der to keep in the ontology, (c) Ontology Model that keeps semantics of the data,

(d) Rules Creator that enables operators to define knowledge processing rules for the

ontology, (e) Context Reasoner that is able to deduce new knowledge according to

information stored in the ontology and (f) Semantic Query that enables operators to

query on the ontology to get values (See Figure 2.4).

In the study by Pronobis and Jensfelt [44], a layered structure is used to modeling

objects and relations among them. They used chain-graph based conceptual map for

probabilistic reasoning on the knowledge ontology (See Figure 2.5).

Among these studies, similar to ours, there are also models that explicitly integrate
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Figure 2.4: A demonstration of context-aware framework proposed in [30] (Figure

source: [30])

Figure 2.5: A demonstration of the layered structure proposed in [44]. The top layer

represents conceptual layer. (Figure source: [44])
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context into the model [14, 43, 60]. For example, Wang et al. [60] extend LDA

to incorporate spatial positions between pixels in a local neighborhood in order to

segment an image into semantically meaningful regions. Philbin et al. [43], on the

other hand, include spatial arrangement between visual patches (i.e., words in LDA)

to group similar images into a topic.

Among these, the work of Çelikkanat et al. [14] is the closest to ours. Çelikkanat et

al. use object detections as visible variables and context as the latent variable in LDA.

However, in their work, the main focus was on incremental learning of context nodes,

and issues like spatial relations and generative abilities of the scene model were not

considered.

2.2 Relation Estimation and Reasoning

Without loss of generality, we can broadly analyze relation estimation and reasoning

studies in three main categories: The first category of methods use hand-crafted rules

to determine whether a pre-determined set of spatial relations were present between

objects in 2D or 3D, e.g., [55].

In the second category of methods, which use probabilistic graphical models such

as Markov Random Fields [2, 11], Conditional Random Fields [31], Implicit Shape

Models [36], and latent generative models [25], a probability distribution is modeled

for relations between objects or entities. In these studies, Anand et al. [2] considered

relations like “on-top” and “in-front” (and their symmetries); Celikkanat et al. [11],

“left”, “on”, and “in-front” (and their symmetries); Lin et al. [31], “on-top”, “close-

to” relations; Meissner et al. [36], 6-DoF relations (rotation and translation) between

objects; and, Joho et al. [25], an implicit model over local arrangements of objects is

learned.

In the third category, relation estimation is formulated as a classification problem

and solved using discriminative models, such as logistic regression [19], and deep

learning [24]. The study by Guadarrama et al. [19] studied relations like “above”,

“behind”, “close to”, “inside of”, “on”, and “left” (and their symmetries), whereas

12



only two relations (“left”, “behind” - and their symmetries) are considered in [24].

In [48], a simple neural network is proposed for relational reasoning. They use plug-

and-play structure to estimate relations among objects. In this work, objects mean

activations of Convolutional Neural Network (CNN) feature maps, and they used

Long-Short Term Memory (LSTM) network for question processing framework.

Existing efforts on modeling or estimating relations generally address the problem

either for relations or relations and objects, and not consider related concepts such as

affordances. Moreover, Boltzmann Machines have not been used for the problem in

a scene modeling context.

2.3 Affordance Prediction

The concept of affordance, owing to Gibson [18], pertains to the actions that are

provided by entities in the environment to the agents. With suitable formalisms for

robotics studies [15], affordance-based models have been proposed for many impor-

tant problems, such as manipulation [37], navigation [58], imitation learning [34],

planning [59, 26], conceptualization [3, 26], – see [23, 63] for a review.

An important issue in affordance-based approaches is to be able to estimate the

affordances of objects from visual input. For this end, support vector machines

[28, 59], bayesian networks [38, 39], markov random fields [7, 12], and deep net-

works [16, 27, 41] have been widely used in the literature. However, affordance

prediction is generally addressed independently from scene modeling tasks, and to

the best of our knowledge, Boltzmann Machines have not been used for modeling

affordances.

2.4 Boltzmann Machines

A Boltzmann Machine (BM) [1] is a stochastic, generative network. A BM can model

the probability distribution of data, denoted by v, with the help of hidden variables,
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Visible Units Hidden Units 

Restricted Boltzmann 

Machines 

Deep Boltzmann Machines General Boltzmann 

Machines 

Figure 2.6: An illustration of different types of Boltzmann Machines (BM): General

BM, Restricted BM and Deep BM. BM is stochastic network that is able to model

probability distributions of high-dimensional data, and therefore, generate novel

samples.

h:

ppvq “
ÿ

h

ppv,hq. (2.1)

In BMs, v “ tviuVi“1 Ă t0, 1u
V is called the set of visible nodes, and h “ thiu

H
i“1 Ă

t0, 1uH the hidden nodes. The visible nodes and the hidden nodes are connected

to each other and how they are connected have led to different models – see Figure

2.6. In BMs, the connections are bi-directional; i.e., information can flow in both

directions.

In a BM, one can talk about the compatibility, i.e., harmony, between two nodes

connected by an edge. If, e.g., niwijnj is high for two nodes connected by an edge

with weight wij , then nodes ni and nj are more compatible. However, generally, in

BMs, the negative harmony, i.e., the energy of the network is used:

Epv,hq “ ´
ÿ

iăj

viw
vv
ij vj ´

ÿ

iăj

hiw
hh
ij hj ´

ÿ

iăj

hiw
hv
ij vj, (2.2)

14



wherewvv, whh andwhv are the weights of the edges connecting visible-visible nodes,

hidden-hidden nodes, and hidden-visible nodes respectively.

Being inspired from statistical mechanics, where systems with lower energies are

favored more, BM associates the probability of being in a state (i.e., a configuration

of pv,hq) with the energy of the system as follows:

ppv,hq “
1

Z
expp´Epv,hqq, (2.3)

where the normalizing term, also called the partition function, is defined as: Z “
ř

v’,h’ Epv’,h’q. Notice that Z requires an integration over all possible states of the

system, which is impractical to calculate in practice. Therefore, ppv,hq is iteratively

learned by stochastically activating nodes in the network with probability based on

the change in the energy of the system for an update:

ppn “ 1q “
1

1` e∆En{T
, (2.4)

where n is a visible or a hidden node; ∆En is the change in energy of the system

if node n is turned on; and T is the temperature of the system, gradually decreased

(annealed) to a low value. When T is high, the system can make radical updates that

can even increase its energy; and when T is lowered, Equation 2.4 forces the network

to make more deterministic updates, which lower the energy of the system.

2.4.1 Training a BM

Training a BM means that its weights are updated to model ppvq as accurately as

possible. Let us use p`pvq to denote the true probability of the data, and p´pvq,

the probability estimated by the model. Then, a BM is trained in order to minimize

the dissimilarity, e.g., the Kullback-Leibler divergence, between p`pvq and p´pvq.

Taking gradient of the divergence with respect to a weight, wij , gives us the rate at

which we should update it:

wij Ð wij ´ αpp
`
ij ´ p

´
ijq, (2.5)

where p`ij is the expected joint activation of nodes si and sj when samples from the

data are clamped on the visible units and the state of the network is updated accord-
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ingly (called the positive phase); p´ij is the expected joint activation of nodes si and

sj when the network is randomly initialized and the state of the network is updated

accordingly (called the negative phase); and α is a learning rate.

For training BMs, maximum Likelihood based methods are used [1, 40, 46]. How-

ever, since the partition function, Z, is intractable, directly computing p`ij and p´ij is

not possible for general BMs. Therefore, Monte Carlo Markov Chain methods such

as Gibbs sampling or Variational Inference methods such as mean field approaches

are used to approximate p`ij and p´ij . Despite these methods, learning is still imprac-

tical owing to the connections within hidden and visible nodes, and potentially high

number of hidden nodes.

2.4.2 Restricted Boltzmann Machines (RBM)

Since training is rather slow and limiting in BM, its restricted version (Restricted

Boltzmann Machines) with only connections between hidden and visible nodes have

been proposed [47] (see Figure 2.6). With these restrictions, the hidden units are con-

ditionally independent given the visible units that makes learning practical. Overall

energy formula in RBMs is updated as follows:

E “ ´
1

2

|v|
ÿ

i“1

|h|
ÿ

j“1

vihjWij

Contrastive Divergence (CD) algorithm is used for training RBM. CD relies on ap-

proximation of gradient signal that indicated in 2.5. In this algorithm, the Markov

chain is initialized with the input sample, then hidden units are sampled (the positive

phase). Before finishing convergence of the Markov chain, hidden units are initialized

with the values that recently sampled and the negative phase is conducted. Even if

the CD cannot give exact values of weight’s gradients, it can give information about

the directions of gradients.
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2.4.3 Higher Order Boltzmann Machines

Some problems require the edges to combine more than two nodes at once, which

have led to the Higher-order Boltzmann Machines (HBM) [50]. With HBM, one can

introduce edges of any order to link multiple nodes together (See Figure 2.7). Overall

energy formula for HBM with tri-way edges is updated as follows:

E “ ´
1

2

|s|
ÿ

i“1

|s|
ÿ

j“1

|s|
ÿ

k“1

sisjskWijk

  

s
i

s
j s

k

w
ijk

Figure 2.7: An illustration of Higher Order Boltzmann Machines. An edge connects

more than two nodes.

2.4.4 Deep Boltzmann Machines

In a Deep Boltzmann Machine (DBM) [46], hidden nodes are stacked in layered

structure. By using hidden layers, high level representations can be built from unla-

beled data [46]. Unlike Deep Belief Nets, internal hidden layers get top-down and

bottom-up signals. The overall energy formula for DBM is updated as follows:

E “ ´
1

2

|v|
ÿ

i“1

|h1|
ÿ

j“1

vih
1
jW

1
ij ´

1

2

|h1|
ÿ

i“1

|h2|
ÿ

j“1

h1
ih

2
jW

2
ij ´

1

2

|h2|
ÿ

i“1

|h3|
ÿ

j“1

h2
ih

3
jW

3
ij

2.5 Summary

Main points of related work can be described as follows:
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‚ There is no effort on using Boltzmann Machines or its variants for contextual-

ized scene models.

‚ Existence of objects in the scene, relations and affordances among them con-

tribute to context.

‚ Structure of our model allows variety type of relations (spatial, temporal etc.)

and concepts (physical objects, affordances, temporal entities etc.) to be used

in model.

‚ Generative model can complete missing information about a scene according

to context.
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CHAPTER 3

COMBINING DIFFERENT KNOWLEDGE-BASES INTO A SINGLE

PARTIALLY-GROUNDED ROBOTIC KNOWLEDGE-BASE

In this chapter, we investigate different types of robotic knowledge bases to determine

necessities of contextual scene models.

The content of this chapter has been published as a technical report [8].

3.1 Knowledge-bases

Extending robot knowledge by using external knowledge sources (bases) is an im-

portant issue in robotics. There are several knowledge bases. All of these methods

rely on two main paradigms: logic-based or graph-based. These knowledge repre-

sentation methods have some advantages and disadvantages, and it is best if they are

combined together.

3.1.1 KnowRob

KnowRob is the robot knowledge ontology proposed by Tenorth and Beetz [56] – see

also Figure 3.1. In KnowRob, Knowledge is represented as formal logical statements

using predefined templates. Widely used robotic concepts are ordered in hierarchical

manner by using Web Ontology Language (OWL) syntax. There are variety of types

of concepts which are related to robotics in the KnowRob ontology. For example:
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Figure 3.1: An overview of the KnowRob knowledge-base. (Figure source: [56])

‚ Agent-Generic concepts such as robot types (PR2, B21...), person.

‚ Information Bearing concepts such as semantic map of environment, floor

plan.

‚ Mathematical or Computational concepts such as matrix, vectors, different

types of algorithms.

‚ Object type concepts such as color, shape or intrinsic state (device is on/off

etc.) of objects.

‚ Spatial concepts such as objects, object shapes, obstacles.

‚ Temporal concepts such as qualitative time of day (morning, afternoon).

A concept may have one or several parent concepts. Each concept may have sev-

eral properties. For example, spatial object concepts may have spatial relations with

other objects and event concepts may have hasSubEvent relation with some event

concepts.

KnowRob allows making assertions/insertions using an OWL language:

owl_assert(manipActions, onProperty, actionType),

owl_assert(manipActions, hasValue, ‘ActionOnObject’),

owl_assert(manipActions, type, ‘restrictions’),

owl_assert(manipPosModel, type, ‘ActionModel’).
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and make queries in the knowledge-base via the same language, e.g.:

owl_query(?OVEN, properPhysicalPartTypes, ?KNOB),

owl_query(?OVEN, type, ‘Oven’),

owl_query(?KNOB, causes-Underspecified, ?HEATING),

owl_query(?HEATING, postEvents, ?BOILING),

owl_query(?BOILING, type, ‘Boiling’).

KnowRob has the advantage of compatibility with Open Cyc∗, a comprehensive on-

tology including everyday common sense knowledge.

3.1.2 RoboBrain

RoboBrain is a knowledge engine introduced by Cornell and Stanford University in

2015 [49] – see Figure 3.2.

In contrast to KnowRob which represents knowledge in logical statements, Robo-

Brain represents knowledge as a directed graph. Each node represent concepts and

edges represents relations between concepts. There can be several edges between two

concepts. Knowledge graph can be extended by external sources if edges from the

edge set of RoboBrain is used. Robot Query Language (RQL) is used for reasoning

in the graph.

RQL can be used as interface between the agent and knowledge graph. The agent can

query possible affordances of perceived object , get trajectory to apply desired affor-

dance or get parameters of given trajectories etc. For instance, consider query q as

"affordances n:= fetch({name:n})Ñ [’HasAffordance’] Ñ (v{src:’Affordance’})". q

returns possible object affordances for each object which is intereseted in the environ-

ment. Now, consider query q2 as trajectories a:= fetch({handle : a})Ñ [’HasParam-

eters’] Ñ (v{src: ’Affordance’, type: ’Trajectory’ }) . q2 returns motion trajectories

for each affordances.

∗ http://www.opencyc.org/
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Figure 3.2: An illustration of the RoboBrain knowledge-base. (Figure source: [49])

3.1.3 Knowledge Base (KB) using Markov Logic Network (MLN)

A probabilistic graphical model for representing information between object-action

concepts was introduced by Yuke Zhu, Alireza Fathi and Li Fei-Fei from CS De-

partment of Stanford University [64] – see Figure 3.3. In this work, knowledge is

represented as a Markov Logic Network, composed of Markov Random Field and

First Order Logic.

In this model, as in RoboBrain, nodes correspond to concepts and edges correspond

to relations. There can be only one undirected edge between two nodes unlike in

RoboBrain.

Concepts have four categories: instances (objects), categories, affordances and at-

tributes (weight, size or visual attributes).

There are two main sources used to populate the knowledge graph: web and dataset.

Attribute concepts are collected from Amazon, eBay. Categorical concepts are col-
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(a)

Figure 3.3: An illustration of the probabilistic graphical knowledge-base. (Figure

source: [64])

lected from FreeBase, and WordNet. Affordance concepts are collected from Google

Ngram or manually labeled. The dataset is used for creating visual attributes of ob-

jects, infer the affordances of objects.

Using RoboBrain, affordance prediction of a novel object, estimating human pose for

an affordance and question answering by using knowledge graph is applicable.

3.1.4 ConceptNet

ConceptNet [54] is a free semantic network originated from Open Mind Common

Sense project [52] – see Figure 3.4 for a snapshot. It includes several kinds of rela-

tions between concepts that might be helpful for robotic research. There are denser

connection between concepts than projects mentioned above.

ConceptNet 5 is the most up-to-date version. It contains more than 2 million concepts

and approximately 28 million total edges. ConceptNet provides weights for each edge

determined by volunteer participants and knowledge sources on the web. Edges are
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Figure 3.4: A portion of a cluster with related concepts from ConceptNet (Figure

source: [54])

helpful while determining semantic similarity between concepts.

ConceptNet is also multilingual, it contains 10 core languages which is supported by

ConceptNet 5. They are English, French, Italian, German, Spanish, Russian, Por-

tuguese, Japanese, Dutch, Chinese. Furthermore, there are 68 languages that has

vocabulary with more than 10.000 words.

There can be variety of types of edges in a ConceptNet graph. Each edge between two

concepts indicates a relation between them. For instance, relatedTo is the most gen-

eral relation between two concepts. It indicates positive relation between concepts.

isA relation indicates subtype-supertype relation between two concepts. Full list of

relations can be found in [54].

3.1.5 Probabilistic Concept Web

The probabilistic concept web [13] is a probabilistic graphical representation of robot

knowledge based on Markov Random Fields. As in graph representation of knowl-

edge sources, concepts are nodes of the graph and edges are relations between nodes

– see Figure 3.5 for a snapshot.
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Each concept is represented by their prototypes that is extracted from training set by

using proposed method in [13]. Edge weights between concepts are determined by

co-occurrences of concepts in robot-object interaction.

There are three types of grounded concepts according to robot sensor space in the

probabilistic concept web:

‚ Noun concepts: {ball,box,cup,cylinder,plate,tool}.

‚ Adjective concepts: {edgy,round,noisy,silent,tall,short,hard,soft,thin,thick}

‚ Verb concepts: {drop, grasp, moveForward, moveBackward, moveLeft, moveRight,

pushBackward, pushForward, pushLeft, pushRight, shake, throw}

In original work [13], three scenarios are used to test the concept web. Firstly, iCub

perceives the object visually and guesses about its properties. Using Concept Web

convergence, properties (adjective concepts such as hard, round etc.) of objects are

refined and which behaviors (verb concepts shake, drop etc.) are applicable is deter-

mined.

Secondly, iCub is said to apply some behavior to given object. In this scenario, ob-

ject concepts and verb concepts are activated. After convergence in the MRF graph,

hidden concepts that indicate object properties are activated. Haptic and audio related

properties of objects are determined without touching the object using by MRF graph.

In last scenario, iCub is said to apply some behavior to multiple object on the envi-

ronment. Using Concept Web, iCub decides which object is the best one to apply

desired behavior.

3.1.6 A Comparison of the Knowledge-bases

As stated in Table 3.1, Concept Web, RoboBrain and KnowRob are robotic projects.

They try to represent knowledge in order for robots to manipulate objects better. KB

using MLN is a knowledge representation model for extracting knowledge from im-
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Figure 3.5: Schematic presentation of Scenario 1. iCub is presented with a cup,

allowed to interact with it freely, and expected to predict the type and properties of

the object, as well as what kind of behaviors can be applied on this object. The

converged concept web is depicted. The action space and verb concepts are

contoured with green, whereas blue and orange colors represent the noun and

adjective categories for the object, respectively. The gray and smaller fonts show

inactive concepts in the web, while bigger fonts and colored nodes represent

activated concepts. There are other concepts and connections that are not shown for

clarity. ML: Move-Left, MR: Move-Right, MB: Move-Backward, MF:

Move-Forward, PL: Push-Left, PR: Push-Right, PB: Push-Backward, PF:

Push-Forward. (Figure source: [13])

ages. ConceptNet is knowledge representation for general purpose in AI and Natural

Language Processing.

Only in concept web, knowledge in the graph is fully grounded in robot’s sensor

level. Therefore, each concept has semantic according to robots sensor stimuli. In

RoboBrain and KnowRob, concepts are also grounded but they include concepts that

are extracted from web without grounding. Other two works are not concerned with

grounding of concepts.

Concept Web includes concepts that are created by using haptic, audio and visual
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Table 3.1: Comparison of knowledge representation models
Probabilistic KB using
Concept Web MLN ConceptNet RoboBrain KnowRob

[13] [64] [54] [49] [56]
Field Robotic Image AI Robotic Robotic

Grounded Yes No No
Yes

(Partially)
Yes

(Partially)

Perception
Visual
Haptic
Audio

Image
Weight&Size

No
Grasping features

3D clouds
images, videos etc.

3D clouds

Representation Graph (MRF) Graph (MLN) Directed Directed Formal
graph graph statements

Knowledge Web, Volunteers, Web (Cyc)
Acquisition Robot Dataset Web Web/Robot Hand-coded

Robot
Interface None Queries Web/API Queries (RQL) Queries

sensors. Therefore, concept semantic has created according to the richest diversity

of sensor data. ConceptNet does not include physical semantic for concepts. Each

concept may interpreted by its relations with other concepts instead of sensor data.

Other works, concept grounding is made using by visual data including images, 3D

points, videos etc. KB using MLN is a web as a source for extracting size and weight

of objects also.

Concept Web and KB using MLN are based on Markov Random Field Theory (MRF).

In MRF, relations between nodes have weight represented as conditional probability

of activating each other. This theory allows probabilistic inference of knowledge

instead of deterministic ones. In ConceptNet, knowledge is represented by directed

graph and edges have weight. However, unlike in Concept Web and KB using MLN,

weights are determined hand-coded by using web source and volunteers. KnowRob

represents knowledge as formal statements using predefined templates.

Knowledge acquisition is made by robot in Concept Web, RoboBrain and Knowrob.

However, RoboBrain and KnowRob use web as knowledge source also. KB us-

ing MLN uses Stanford 40 Actions dataset[61] and web. ConceptNet knowledge

is crawled by using web and participating volunteers.

There is no interface between knowledge representation model and agent in Concept

Web. KB using MLN, RoboBrain and KnowRob use their own query languages as
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interface and ConceptNet has Python API for accessing knowledge graph.

3.2 Merging Concept Web, ConceptNet and KnowRob

We transfered concept web [13] concepts into KnowRob ontology. Affordances for

objects in KnowRob are not defined. Therefore, by using concept web, we assign

affordances for common noun concepts. In addition, we assign probability of having

some property given in adjectives to each noun concept.

Using ConceptNet 5, we include several super concept and subconcept of given con-

cepts. We can extract information about where an object can store and which behav-

iors are applicable for this object. Attributes of ball, box and cup concepts in Concept

Web are enriched by using ConceptNet 5.

Final properties of merged concepts are here, only some examples of common con-

cepts in three knowledge representation models are shown below. Source of the

knowledge is provided in parentheses:

‚ ball

– is subconcept of PortableObjects (KnowRob)

– may have spatial properties with objects such as being near of some object

etc. (KnowRob)

– has affordance of move, push, shake, throw (Concept Web)

– has probability of some adjective properties: soft, noisy, short, thick,

round (Concept Web)

– can be stored in a toybox (ConceptNet)

– have subtypes such as soccer ball, beach ball (ConceptNet)

– is used for throwing, bouncing, playing a game (ConceptNet)

‚ box

– is subconcept of SpatialThingTypeByShape (KnowRob)
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Figure 3.6: In this figure, integration of three knowledge sources is shown. As an

example, attributes of “ball” concepts in different knowledge sources are merged and

new “ball” concept is created in new knowledge source.

– may have spatial properties with objects such as being near of some object

etc. (KnowRob)

– has affordance of drop, grasp, move, push, shake, throw (Concept Web)

– has probability of some adjective properties: soft, noisy, short, thick, edgy

(Concept Web)

– can be stored in a any garage, ballpark (ConceptNet)

– have subtypes such as ballot bax (ConceptNet)

– is used for storing something in (ConceptNet)

‚ cup

– is subconcept of DrinkingVessel (KnowRob)

– may have spatial properties with objects such as being near of some object

etc. (KnowRob)

– is stored in some cup board (KnowRob)
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– has subconcept mug (KnowRob)

– has affordance of grasp, move, push (Concept Web)

– has probability of some adjective properties: hard, silent, short, thick,

round (Concept Web)

– can be stored in a table, shelf (ConceptNet)

– have subtypes such as champagne cup (ConceptNet)

– is used for drinking (ConceptNet)

‚ cylinder

– is subconcept of SpatialThingTypeByShape (KnowRob)

– may have spatial properties with objects such as being near of some object

etc. (KnowRob)

– has affordance of drop, grasp, move, push, shake, throw (Concept Web)

– has probability of some adjective properties: hard, silent, tall, thin, round

(Concept Web)

‚ grasp

– is subconcept of HoldingWithOneHand (KnowRob)

– has subconcept PowerGrasp, IntermediateGrasp, PrecisionGrasp (KnowRob)

– is grounded on iCUB robot (Concept Web)

‚ push

– is subconcept of TransportationEvent (KnowRob)

– might be directional such as push left/right/forward/backward (Concept

Web)

– is grounded on iCUB robot (Concept Web)
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CHAPTER 4

COSMO: A CONTEXTUALIZED SCENE MODEL WITH TRIWAY BM

In this chapter, we propose a novel model in order to modeling environment in con-

textual manner. Our model is based on Boltzmann Machines by extending them with

triway edges within visible nodes. We name the model as “COSMO” which stands

for “A Contextualized Scene Model With Triway BM”.

The context of this chapter has been published in “International Conference on Robotics

and Automation 2018” (ICRA 2018) [10] and is under revision for the Robotics and

Autonomous Systems (RAS) journal special issue on Semantic Policy and Action

Representations for Autonomous Robots (SPAR) [9].

4.1 The Model: COSMO

We extend and adapt DBM for contextualized scene modeling task. As shown in Fig-

ure 1.1, our model consists of visible (input) layer and hidden layer(s) corresponding

to contextual representation of the scene.

We define a scene (s P S) to be the tuple of an object vector (o) describing objects

currently visible to the robot (see Figure 4.1), the vector of the spatial relations (r)

between the objects, and the vector of affordances (a). A visible node corresponds

to an object, a relation or an affordance, and is set active (value 1) if corresponding

object, affordance or relation exists in the scene (in this sense, v “ po, r, aq). The

hidden nodes (h) then represent latent joint configurations of the visible nodes; i.e.,

they correspond to contextual information eminent in the scene.
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Figure 4.1: Object vector o describes existence of objects in the scene s. (Figure

source: [13])

Relation and affordance nodes link two object nodes with single tri-way edges, and

visible nodes are fully connected to hidden nodes (h). The overall energy of the

hybrid BM then is updated as follows:

Epo,h, r, aq “ ´
ÿ

iăj

hiw
ho
ij oj (4.1)

´
ÿ

i,j,k

wrijkrijkojok´
ÿ

i,j,k,l

wrhij rijkhl

´
ÿ

i,j,k

waijkaijkojok´
ÿ

i,j,k,l

wahij aijkhl,

where the new terms compared to the energy definition in Equation 2.2 are highlighted

in red. rijk denotes spatial relation node with type i, between object nodes oj and ok.

aijk is an affordance relation with type i, between objects nodes oj and ok. wrijk is the

weight of the tri-way edge connecting object nodes oj , ok and spatial relation node

(visible) ri; and, similarly, waijk is the weight of the tri-way edge connecting object

nodes oj , ok and affordance node (visible) ai.
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4.1.1 Training and Inference

In order to make training faster, we dropped the connections between the hidden

neurons and took gradient of the divergence pKLpp`po, r, aq } p´po, r, aqqq with

respect to each type of weight as in Equation 2.5.

Let’s denote G as a measure of the divergence pKLpp`po, r, aq } p´po, r, aqqq:

Gpo, r, aq “ KLpp`po, r, aq } p´po, r, aqq “
ÿ

α

p`poα, rα, aαq ln
p`poα, rα, aαq

p´poα, rα, aαq
,

(4.2)

where p`poα, rα, aαq is the probability of the visible nodes being in state α when the

input is clamped to the visible units, and p´poα, rα, aαq is the corresponding proba-

bility when network runs freely. Note that state a is concatenation of states of object,

relations and affordances nodes. For learning, we need to minimize G. Since G de-

pends on weights we can take partial derivatives of G with respect to the all types of

weights.

According to the new energy definition (Equation 4.2) and connections, probabilities

of being active for visible and hidden units are given by:

ppoi “ 1 | o,h, r, aq “ σ
´

ÿ

j

hjw
ho
ij `

ÿ

j,k

wrijkrijkoj `
ÿ

j,k

waijkaijkoj

¯

, (4.3)

pphl “ 1 | o, r, aq “ σ
´

ÿ

i

oiw
ho
il `

ÿ

i,j,k

rijkw
rh
ij `

ÿ

i,j,k

aijkw
ah
ij

¯

, (4.4)

pprijk “ 1 | o,hq “ σ
´

wrijkojok `
ÿ

l

wrhij hl

¯

, (4.5)

ppaijk “ 1 | o,hq “ σ
´

waijkojok `
ÿ

l

wahij hl

¯

. (4.6)

For training COSMO, in the positive phase, as usual, we clamp the visible units with

the objects, the relations and the affordances between the objects and calculate p` for

any edge in the network.

In the negative phase, firstly, object units are sampled with a two-step Gibbs sam-

pling by using activation of hidden units only. In this way, initially, the model sees

the environment as bag of objects by not considering relations and affordances. Then,
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relation and affordance nodes are sampled by using hidden nodes (context) and re-

cently sampled object nodes. We calculate p´ for any edge in the network with these

two steps.

The overall algorithm is summarized in Algorithm 1.

At the end of the negative phase, input scene (s) is re-sampled, and s1 denotes new

scene including recently sampled objects, relations and affordances during negative

phase.

Algorithm 1 Training COSMO.

1: Input: Training data, S “ tsiui; learning rate, α; number of epochs, m.

2: Output: Learned weights, w.

3:

4: for m epochs do

5: for s P S do

6: /* Positive Phase */

7: op0q Ð sαo , rp0q Ð sαr , ap0q Ð sαa ,

8: hp0q Ð pph | op0q, rp0q, ap0qq

9: Calculate p` for each edge.

10:

11: /* Negative Phase */

12: Sample ĥp0q using Eqn. 4.4.

13: op1q Ð 0, rp1q Ð 0, ap1q Ð 0

14: op1q Ð ppo | op1q, ĥp0q, rp1q, ap1qq

15: rp1q Ð ppr | op1q, ĥp0q, ap1qq

16: ap1q Ð ppa | op1q, ĥp0q, rp1qq

17: Sample ôp1q, r̂p1q, âp1q using Eqn. 4.3, 4.5, 4.6.

18: hp1q Ð pph | ôp1q, r̂p1q, âp1qq

19: Calculate p´ for each edge.

20:

21: Update weights using Eqn. 2.5.

Since our dataset has small number of samples and input vectors are too sparse, pre-
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cise inferences are crucial. Therefore, we prefer Gibbs sampling [17] that is a Monte

Carlo Markov Chain (MCMC) method to approximate true data distribution instead

of variational inference since MCMC methods can provide precise inference but vari-

ational inference methods cannot guarantee that [5].

4.1.2 Derivatives of Weights

Derivatives of weights can be calculated by taking partial derivative ofG with respect

to the particular types of weights.

For example, let us calculate BG{Bwhoij :

BG

Bwhoij
“ ´

ÿ

α

p`poα, rα, aαq

p´poα, rα, aαq

Bp´poα, rα, aαq

Bwhoij
. (4.7)

In Eq. 4.7, we do not take partial derivative of p`poα, rα, aαq with respect the weight

since the input is clamped to the visible units in this probability. Therefore, it does

not depend on weights.

Model expectations during negative phase can be defined as:

p´poα, rα, aαq “
ÿ

β

p´poα, rα, aα,hβq,

“

ř

β e
´Eαβ

ř

λµ e
´Eλµ

, (4.8)

where we assume T “ 0.

Recall the energy term (Equation 4.2), when visible units are in state α and hidden

states are in state β:

Epoα,hβ, rα, aαq “ ´
ÿ

iăj

hβi w
ho
ij o

α
j (4.9)

´
ÿ

i,j,k

wrijkr
α
ijko

α
j o

α
k´

ÿ

i,j,k,l

wrhij r
α
ijkh

β
l

´
ÿ

i,j,k

waijka
α
ijko

α
j o

α
k´

ÿ

i,j,k,l

wahij a
α
ijkh

β
l ,

where oα, rα and aα are vectors of visible units (objects, relations and affordances re-

spectively) where the visible units are in state α. oαi , rαijk and aαijk are object, relations
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and affordance units with specific indexes when the visible units are in state α. hβ

is vector of hidden units when they are in state β. hβi is a hidden unit with a specific

index when it is in state β.

We can calculate partial derivative of the energy term Epoα,hβ, rα, aαq with respect

to hiddens to objects weights Bwhoij .

Be´Eαβ

Bwhoij
“ e´Eαβhβi o

α
j . (4.10)

By using Equation 4.8, recall:

Bp´poα, rα, aαq

Bwhoij
“

B

ř

β e
´Eαβ

ř

λµ e
´Eλµ

Bwhoij
,

“

ř

β e
´Eαβhβi o

α
j

ř

λµ e
´Eλµ

´

ř

β e
´Eαβ

ř

λµ e
´Eλµhλi o

µ
j

p
ř

λµ e
´Eλµq2

,

“
ÿ

β

p´poα, rα, aα,hβqh
β
i o

α
j ,

´p´poα, rα, aαq
ÿ

λµ

p´poλ, rλ, aλ,hµqh
µ
i o

λ
j . (4.11)

We can rewrite positive and negative phase probabilities:

p`poα, rα, aα,hβq “ p`phβ|oα, rα, aαqp
`
poα, rα, aαq,

p´poα, rα, aα,hβq “ p´phβ|oα, rα, aαqp
´
poα, rα, aαq,

and, recall that probability of hidden states for given visible states are same when

network converges (i.e. hidden states are same when the input clamped to the visible

nodes or when it runs freely.). Hence:

p`phβ|oα, rα, aαq “ p´phβ|oα, rα, aαq (4.12)

and, note that when inputs are clamped to the visible nodes, summation of probabili-

ties of visible units being active for all visible configuration equals to 1:

ÿ

α

p`phβ|oα, rα, aαq “ 1. (4.13)
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By using Eq. 4.7, 4.11, 4.12 and 4.13, we can conclude that:

BG

Bwhoij
“ ă hioj ą

`
´ă hioj ą

´. (4.14)

where ă hioj ą
` is the average probability of both units hi and oj being active when

inputs are clamped to the visible nodes and ă hioj ą
´ is corresponding probability

when the network runs freely.
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CHAPTER 5

EXPERIMENTS AND RESULTS

In this section, we evaluate COSMO on several scene modeling and robotics problems

and compare the model against several baselines and alternative methods whenever

possible.

The context of this chapter has been published in “International Conference on Robotics

and Automation 2018” (ICRA 2018) [10] and has been submitted to the Robotics and

Autonomous Systems (RAS) journal special issue on Semantic Policy and Action

Representations for Autonomous Robots (SPAR) which is still under evaluation [9].

5.1 The Dataset

For our experiments, we formed a dataset composed of 6, 976 scenes, half of which is

sampled from the Visual Genome (VG) dataset [29] and the other half from the SUN-

RGBD dataset [53]. We used samples from both datasets since (i) the VG dataset

has spatial relationships but these do not include relations useful for robots, such as

left and right, and (ii) the VG dataset mostly includes outdoor datasets, which we

compensate using the SUN-RGBD dataset, which is composed of indoor scenes only.

Therefore, we included equal number of samples from both the VG and the SUN-

RGBD datasets. However, the SUN-RGBD dataset did not have spatial relations

labeled, therefore, we did manual labeling for the SUN-RGBD dataset.

Our dataset consists of 90 objects that commonly exist in scenes, including human-

like (man, woman, boy etc.), physical objects (cup, bottle, jacket etc.), part of build-
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Figure 5.1: Example scenes from the merged dataset used for the experiments.

ings (door, window etc.).

Our dataset is composed of the following eight spatial relations: left, right, front, be-

hind, on-top, under, above, below. These spatial relations are annotated in the VG

dataset already. However, we extended the original SUN-RGBD dataset by manu-

ally annotating these eight spatial relations. Moreover, we included verb-relations in

the VG dataset as affordances into the dataset. The set of affordances include eat-

ability, push-ability, play-ability, wear-ability, sit-ability, hold-ability, carry-ability,

ride-ability, push-ability, use-ability.

Let us use S “ ts1, ..., s6,976u, where si denotes ith sample, to denote the dataset. si
has a vector form that represents the presence of objects, relations and affordances

among them in the scene. Active (observed) variables are set to value 1, or to value 0

otherwise. Opposite spatial relations (e.g., left and right) can be represented as single

relations in BMs since if object o1 is to the left of object o2, then we can state that

object o2 is to the right of object o1. As a result, each sample is represented by a

binary vector that has length 113, 490 (90` 14ˆ 90ˆ 90).

5.2 Compared Models

We compare COSMO with General Boltzmann Machine (GBM), Restricted Boltz-

mann Machine (RBM) and Relation Network (RN) [48] for several scene reasoning

tasks that are crucial for various robotic scenarios. For GBM and RBM models, we

used the same number of hidden nodes as in COSMO – see Section 5.4.
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5.2.1 General Boltzmann Machine (GBM)

GBMs are unrestricted in terms of connectivity or the hierarchy in the network (either

among the hidden or the visible nodes). However, this may make learning impractical,

especially when hidden nodes are connected to each other. We allow connections

within visible nodes to incorporate interactions between objects as required for scene

modeling. In this structure, visible nodes consist of object, relation and affordance

nodes as in COSMO. Unlike COSMO, GBM uses two-way edges for relation and

affordance nodes, instead of tri-way edges. Similar to COSMO, all visible nodes

are fully connected to the hidden nodes but connections within hidden nodes are not

allowed. Therefore, the only difference between COSMO and the GBM model is

how relation and affordance nodes are connected to objects. To make it comparable

with COSMO, we used the same number of layers and hidden neurons in GBM as in

COSMO.

5.2.2 Restricted Boltzmann Machine (RBM)

Different from GBM, an RBM only allows connections between visible and hidden

nodes. To make it comparable with COSMO, we used the same number of layers and

hidden neurons in RBM as in COSMO.

5.2.3 Relation Network (RN)

RNs [48] are simple neural networks to address problems related to relational rea-

soning. We modified RNs as shown in Figure 5.2 to make them compatible for our

experiments: The input vectors are embedded with a Multi-Layer-Perceptron (MLP)

and the activations of MLP are used as object pairs for another MLP, called the g

network. In the original model, object pairs are concatenated with an embedding of

a query text; however, we omit this since we assume that the model has one type of

question for each scenario. For example, for the spatial relation estimation task, only

object and affordance vectors are used as input and spatial relations are predicted.
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Figure 5.2: The Relational network (RN) architecture: A scene is represented by

binary vector that indicates existence of object, spatial relations and affordances

among them. The input vector is embedded using Multi-Layer-Perceptron (MLP).

Activations of the MLP are used as feature maps to produce a set of objects for RN.

Objects are illustrated as blue, yellow and red. Object pairs are fed into the g

network whose output is fed into the f network to compute the relations. [Best

viewed in color]

In this case, the model is trying to answer the question “what are relations among

all objects in the scene?”. Training RN to answer a specific question “what is the

relation between object a and object b” requires additional training samples, includ-

ing question-answer pairs. These are crucial drawbacks of RN when compared to

COSMO. Being generative, COSMO have more flexibility on what can be queried

with the scene modeled.

Our implementation of the RN method closely follows the original study. However,

we had to adjust the architecture to fit to our data sizes. The embedding MLP net-

work is composed of 2 layers (with 128 and 128 neurons respectively) with ReLU

non-linearities. The g network is a MLP with 2 layers (with 256 and 256 neurons

respectively) with sigmoid non-linearities. The prediction network, f , then is a MLP

with 2 layers (with 64 and 64 neurons respectively) with sigmoid non-linearities.

We trained the RN model using Adam optimizer with default parameters (and learning

rate of 0.001), 32 sized-batches and early stopping.
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5.3 Network Training Performance

The dataset (composed of 6, 976 scenes) is split into three randomly: 60% for training,

30% for testing and 10% for validation. This split is used for training and testing

all methods. For evaluating the training performance, we calculated an error on the

difference between the clamped visible units and reconstructed visible states that are

sampled in the negative phase:

Etrain “
1

|S|
ÿ

s P S

ÿ

i

`

pps`i q ´ pps
´
i q
˘2
, (5.1)

where the cumulative sum is normalized with the total number of samples (|S|).

Figure 5.3 plots the error separately for the objects (o), the spatial relations (r) and

affordances (a). From the figure, we observe that the error is consistently decreasing

for all types of visible units for both the training data and the validation data, suggest-

ing that the networks is learning to represent the probability over objects, the spatial

relations and the affordances very well.

However, we observe in Figure 5.3(b) that the network learns affordances faster than

objects and relations. This difference is owing to the fact that the set of possible

affordances in a scene is much sparser than objects and relations, making the network

quickly learn to estimate 0 (zero) for affordances, leading to a sudden decrease in the

loss.

Table 5.1: Average running time in seconds (time) for one epoch and total number of
parameters for different models.

COSMO GBM RBM RN

Time (seconds) 181.06 208.22 179.06 102.30

# of params. 13, 802, 600 13, 871, 200 13, 734, 000 12, 463, 104

5.4 Analyzing the Hyper-parameters

We evaluated the effect of various hyper-parameters on COSMO’s training perfor-

mance (Eqn. 5.1). For all the analyses performed in this section, we looked at the

error on the validation data (see Section 5.1).
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Figure 5.3: Reconstruction error vs. epochs plot during COSMO training for (a)

objects and (b) spatial relations and affordances.

First, we analyzed the effect of the number of hidden layers. For this end, we tested

models with 1, 2, 3, 4 and 5 hidden layers. As shown in Figure 5.4, the model has

the lowest reconstruction error (for all types of visible nodes) with only one hidden

layer, and the error rises when number of hidden layers increases. This increase might

be because the dataset might be falling insufficient for the increase in the number of

parameters when the number of layers increases.

Secondly, we analyzed the effect of the number of hidden neurons in a hidden layer.

We tested 50, 100, 200, 400, 800 and 2000 hidden neurons. As shown in Figure
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Figure 5.4: Reconstruction errors (after 30 epochs) for different numbers of hidden

layers. (a) Reconstruction error for object nodes. (b) Reconstruction error for

relation and affordance nodes.

5.5, the reconstruction error decreases when number of hidden neurons increases, as

expected.

Lastly, we analyzed the effect of different annealing schedules. We tried the fol-

lowing annealing schedules (selected from [42]), namely, exponential multiplicative

cooling (emc, Eq. 5.2), linear multiplicative cooling (li-mc, Eq. 5.3) and logarithmic
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Figure 5.5: Reconstruction errors (after 30 epochs) for different number of hidden

nodes. (a) Reconstruction error for object nodes. (b) Reconstruction error for

relation nodes and affordance nodes.

multiplicative cooling (log-mc, Eq. 5.4), with initial temperature (T0) set to 4.0:

Ti “ T0 ¨ a
i, p0.8 ď a ď 0.9q (5.2)

Ti “
T0

1` aˆ i
, pa ą 0q (5.3)

Ti “
T0

1` a logp1` iq
, pa ą 1q (5.4)

As shown in Figure 5.6, although annealing schedules decreases reconstruction errors

all types of nodes, differences between them are not significant.
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In summary, our analysis suggests that COSMO with one hidden layer, with 400

hidden nodes (although, as shown in Figure 5.5, 800 or more hidden nodes provide

better performance, the performance gain is insignificant compared to the computa-

tional overload) and emc annealing performs best and therefore, in the rest of the

paper, we adopted these settings for COSMO. For RBM and GBM, we used the same

number of hidden nodes as COSMO.
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Figure 5.6: Reconstruction errors (after 30 epochs) for different annealing schedules

with initial temperature 4.0. (a) Reconstruction error for object nodes. (b)

Reconstruction error for relation and affordance nodes.
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5.5 Comparison Measures

For evaluating the performance of the methods, we use precision, recall and F-measure

which are defined as follows:

Precision “
TP

TP` FP
, (5.5)

Recall “
TP

TP` FN
, (5.6)

F-measure “ 2 ¨
Precision ¨ Recall
Precision` Recall

, (5.7)

where TP, FP and FN stand for the number of true positives, false positives and false

negatives, respectively. Definitions of TP, FP and FN are task-dependent, and there-

fore, they are defined for each task separately.

5.6 Task 1: Spatial Relation Estimation

Being generative, COSMO can estimate relations in the scene given the objects in the

scene. Contextual information that arises from active objects, regardless of spatial

relation and affordance nodes, allows the model to determine which spatial relations

should be active according to the context.

For testing, initially, the model sees the environment in a “bag of objects” sense by

clamping only objects to the visible nodes and relation nodes are set to zero. Next,

the hidden nodes (i.e., context) are sampled using object nodes only. Then, the spatial

relation nodes are sampled from objects, affordances and the context. This procedure

is summarized in Algorithm 2.

For this task, we define True Positive (TP) as the number of spatial relation nodes

which are active in both the input scene (s) and the reconstructed scene (s1); True

Negative (TN) as the number of spatial relation nodes which are both in-active in s

and s1; False Positive (FP) as the number of spatial relation nodes which are inactive

in s but active in s1; False Negative (FN) as the number of spatial relation nodes which
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Algorithm 2 Algorithm used for the relation estimation task (Task 1).
1: Input: A scene s; the number of Gibbs steps, k.

2: Output: Relation node activations, r.

3:

4: rÐ 0. Ź Set relation node activations to 0.

5: for k sampling steps do

6: oÐ so, aÐ sa Ź Clamp objects and affordances.

7: Sample hidden nodes h using Eq. 4.4.

8: Sample relation nodes r using Eq. 4.5.

are active in s and in-active in s1. These are defined formally as follows:

TP “
ˇ

ˇtx : x P G`r ^ x PM
`
r u

ˇ

ˇ , (5.8)

TN “
ˇ

ˇtx : x P G´r ^ x PM
´
r u

ˇ

ˇ , (5.9)

FP “
ˇ

ˇtx : x P G´r ^ x PM
`
r u

ˇ

ˇ , (5.10)

FN “
ˇ

ˇtx : x P G`r ^ x PM
´
r u

ˇ

ˇ , (5.11)

where, x is a relation node; G`r and G´r are respectively sets of active and passive

relation nodes in the sample; and M`
r and M´

r are sets of active and passive relation

nodes respectively at the end of model’s reconstruction.

Table 5.2 lists the performance of COSMO for this task and compares it against RBM,

GBM, and RN. In comparison to the other models, we see that COSMO provides the

best performance.

Moreover, we provide some visual examples in Figure 5.7, where we see that our

model can discover spatial relations between objects, i.e., how to roughly place a set

of objects together.

Table 5.2: Task 1 (Spatial Relation Estimation) performances.
Precision Recall F1-measure

COSMO 0.1511 0.3112 0.2034
GBM 0.1559 0.1125 0.1307
RBM 0.0043 0.0132 0.0066
RN 0.0166 0.0132 0.0147

49



left on top

relation 
prediction

(a)

above on top

relation 
prediction

(b)

Figure 5.7: Some example relations estimated by COSMO for given sets of objects

(Task 1). Only a subset of the relations are shown for the sake of visibility.

In some cases, naturally, the “bag of objects” approach may not provide enough con-

textual information in order model to predict ground truth spatial relationships in the

test set. For instance, consider a scene consisting of plate, table, cabinet objects. In

a kitchen with eating context, the plate can be on the table, whereas, in a kitchen

without eating context, plate is likely to be in the cabinet. These cases can reduce

testing accuracy for the estimated relation between objects like plate. However, given

such examples during training, COSMO is able to capture the probability of all these

cases and therefore handle scene modeling tasks in such settings accordingly.
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5.7 Task 2: What is missing in the scene?

In this task, COSMO predicts missing objects in the scene according to the current

context. The model is provided “partially observed scenes” where some of the objects

are removed randomly for testing.

Firstly, observed objects, spatial relations and affordances are clamped to the visible

units, then the model is relaxed to find hidden node activations (i.e. the context of

the scene). Finally, by using visible (scene description) and hidden (context) node

activations, the network tries to find the missing objects in the scene as outlined in

Algorithm 3.

For this task, we define TP as the number of object nodes that are activated correctly

according to ground truth sample; FP as the number of object nodes that the model

activates but it should be deactivated according to ground truth; TN as the number

of object nodes that are deactivated correctly according to ground truth and FN as

number of objects that the model deactivates yet should be activated according to

ground truth. We can formally define these as follows:

TP “
ˇ

ˇtx : x P G`o ^ x PM
`
o u

ˇ

ˇ , (5.12)

TN “
ˇ

ˇtx : x P G´o ^ x PM
´
o u

ˇ

ˇ ,

FP “
ˇ

ˇtx : x P G´o ^ x PM
`
o u

ˇ

ˇ ,

FN “
ˇ

ˇtx : x P G`o ^ x PM
´
o u

ˇ

ˇ ,

where x is an object node; G`o and G´o are the sets of active and passive object nodes

respectively in ground truth sample; and M`
o and M´

o are sets of active and passive

object nodes respectively at the end of model’s reconstruction.

As shown in Table 5.3, our model performs better than RBM, GBM and RN. See also

Figure 5.8, which shows some visual examples for most likely objects found for a

target position in the scene.
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Algorithm 3 The algorithm for finding missing objects (Task 2).
1: Input: A scene, s; the number of Gibbs steps, k.

2: Output: Initially in-active object nodes in s, o1.

3:

4: for k sampling steps do

5: oÐ so; rÐ sr; aÐ sa Ź Clamp input scene.

6: Sample hidden nodes h using Eq. 4.4.

7: Sample in-active object nodes o1 using Eq. 4.3.

Table 5.3: Task 2 (finding missing objects) performances.
Precision Recall F1-measure

COSMO 0.9387 0.0527 0.0998
GBM 0.8260 0.0415 0.0790
RBM 0.7250 0.0301 0.0578
RN 0.8000 0.0212 0.0414

5.8 Task 3: What is extra in the scene?

In this task, COSMO predicts objects that are out of context in the scene. For this

purpose, objects are randomly selected and added to the original scene for testing.

Firstly, observed objects, spatial relations and affordances are clamped to the visible

units, then the model is relaxed to find hidden node activations (i.e. the context of

the scene). Finally, by using visible (scene description) and hidden (context) node

activations, the network tries to remove objects that are out of context in the scene as

outlined in Algorithm 4.

For this task, we use the TP, TN, FP and FN as defined in Equation 5.12.

As shown in Table 5.4, our model performs better than RBM, GBM and RN for

finding extra objects in the scene. See also Figure 5.9, which shows some visual

examples for finding the object that is out of context in the scene.
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p=0.28

p=0.34

p=0.87What is missing
here?

(a)

p=0.24

p=0.88

p=0.09

What is missing
here?

(b)

Figure 5.8: Some examples illustrating the performance of COSMO on finding a

missing object in a scene (Task 2).

5.9 Task 4: Affordance Prediction

Affordances of objects may differ for different subjects in different contexts [57].

Therefore, agents should be aware of the context that they are in in order to reason

about the affordances of objects. We show that COSMO can allow agents to deter-
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Table 5.4: Task 3 (finding extra objects) performances.
Precision Recall F1-measure

COSMO 0.9183 0.0482 0.0917
GBM 0.8113 0.0479 0.0865
RBM 0.7826 0.0382 0.0729
RN 0.7368 0.0297 0.0572

left on top

p=0.86

p=0.84

p=0.91

p=0.02

Detected Context: 
office

(a)

left

p=0.92

p=0.87

p=0.93

p=0.05

Detected Context: 
kitchen

on top above

(b)

Figure 5.9: Some examples illustrating the performance of COSMO on finding the

out-of-context object in a scene (Task 3).
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Algorithm 4 The algorithm for finding the out-of-context object (Task 3).
1: Input: A scene, s; the number of Gibbs steps, k.

2: Output: Initially active object nodes in s, o1.

3:

4: for k sampling steps do

5: oÐ so; rÐ sr; aÐ sa Ź Clamp input scene.

6: Sample hidden nodes h using Eq. 4.4.

7: Sample active object nodes o1 using Eq. 4.3.

mine affordances of objects using the current context.

For this task, firstly, objects and relations are clamped to the visible nodes, and the

hidden nodes (i.e. context) are sampled. Then, affordance nodes are sampled using

hidden nodes (context), objects and relations (current scene), as illustrated in Algo-

rithm 5.

Algorithm 5 Algorithm for the affordance prediction task (Task 4).
1: Input: A scene, s; the number of Gibbs steps, k.

2: Output: Affordance node activations, a.

3:

4: aÐ 0. Ź Set affordance nodes to 0.

5: for k sampling steps do

6: oÐ so, rÐ sr Ź Clamp objects and relations.

7: Sample hidden nodes h using Eq. 4.4.

8: Sample affordance nodes a using Eq. 4.6.

For this task, we define TP as the number of affordance nodes that are activated

correctly according to the ground truth sample; FP as the number of affordance nodes

that the model activates but should be deactivated according to the ground truth; TN

as the number of affordance nodes that are deactivated correctly according to ground

truth, and FN as the number of affordance nodes that the model deactivates yet should
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be activated according to the ground truth. We defined them formally as follows:

TP “
ˇ

ˇtx : x P G`a ^ x PM
`
a u

ˇ

ˇ , (5.13)

TN “
ˇ

ˇtx : x P G´a ^ x PM
´
a u

ˇ

ˇ ,

FP “
ˇ

ˇtx : x P G´a ^ x PM
`
a u

ˇ

ˇ ,

FN “
ˇ

ˇtx : x P G`a ^ x PM
´
a u

ˇ

ˇ ,

where, x is an affordance node; G`a and G´a are sets of active and passive affordance

nodes respectively in the ground truth sample; and M`
a and M´

a are the sets of active

and passive affordance nodes respectively at the end of model’s reconstruction.

As shown in Table 5.5, our model performs better than RBM, GBM and RN. See

also Figure 5.10(a), which shows some visual examples for affordance prediction for

different objects.

Table 5.5: Task 4 (affordance prediction) performances.
Precision Recall F1-measure

COSMO 0.2039 0.3129 0.2469
GBM 0.1372 0.1068 0.1201
RBM 0.0769 0.0076 0.0138
RN 0.0125 0.0091 0.0105

5.10 Task 5: Objects affording an action

Being generative, COSMO allows reasoning about object affordances in various ways.

In this task, we evaluate the methods on finding objects that afford a certain action.

For this end, some of the object nodes, which are the object part of an affordance-

triplet, and corresponding affordance nodes are deactivated. Then, the model samples

hidden nodes using the partially observed scene. In the reconstruction phase, the

model samples deactivated objects and affordance nodes that includes these objects

using context and observed scene. This is formalized in Algorithm 6.

For this task, we use same formal definitions of TP, FP, TN and FN in Equation 5.13.

However, in this task,G`a ,G´a ,M`
a andM´

a include affordance nodes that correspond

to a specific action and subject instead of all affordance nodes.
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Table 5.6 lists the performance of the methods for finding the objects affording a

certain action. We see a significant difference between the performance of COSMO

and those of GBM, RBM and RN. See also Figure 5.10(b), which shows some visual

examples for predicting the object that affording specific action.

Algorithm 6 The algorithm for finding objects that afford a given action (Task 5).
1: Input: A scene, s; an action, act; the subject of action, subj; the number of Gibbs

steps, k.

2: Output: Active affordance nodes, aiaisio .

3: ia = index of act in affordance vocabulary.

4: io = index of subj in object vocabulary.

5: for k sampling steps do

6: oÐ so Ź Clamp objects to the visible nodes.

7: rÐ sr Ź Clamp relations to the visible nodes.

8: aÐ sa Ź Clamp affordances to the visible nodes.

9: Sample hidden nodes h using Eq. 4.4.

10: Sample affordance node aiaisio using Eq. 4.3.

Table 5.6: Task 5 (finding objects affording a given action) performances.
Precision Recall F1-measure

COSMO 0.3170 0.4482 0.3714
GBM 0.2537 0.0739 0.1144
RBM 0.0740 0.0869 0.0800
RN 0.0157 0.0689 0.0256

5.11 Task 6: Who is the actor for this task?

Robots should also be able to reason about the possible actors (subjects) of a given

action or a task. Context plays a critical role here since it can modulate the candidate

actors for a given action.

In this task, we evaluate performances on finding proper subjects (actors) for a certain

action with a specific object. For this end, some of the object nodes, which are the

subject part of an affordance-triplet, and affordance nodes are deactivated. Then, the
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Predicted affordances in the scene:
Human carrying suitcase
Human holding suitcase

(a)

  

What can 
human 
hold?

Human 0.23

Pan 0.92

Oven 0.12

(b)

Figure 5.10: Some examples illustrating (a) the performance of COSMO on

affordance prediction (Task 4) and (b) finding objects that affording specific action

(Task 5).

model samples hidden nodes using the partially observed scene. In the reconstruction

phase, the model samples deactivated objects and affordance nodes that have proper

subject for given action by using context and observed scene. This is formalized in

Algorithm 7.

For this task, we use same formal definitions of TP, FP, TN and FN in Equation 5.13.

However, in this task,G`a ,G´a ,M`
a andM´

a include affordance nodes that correspond

to a specific action and object instead of all affordance nodes.

In Table 5.7, the performances of the methods are listed. We see that GBM performs

better in terms of precision whereas COSMO yields a much better recall performance,

leading to an overall better performance in terms of the F-measure.

Table 5.7: Task 6 (What is the actor of the affordance?) performances.
Precision Recall F1-measure

COSMO 0.3055 0.4782 0.3728
GBM 0.3333 0.0689 0.1142
RBM 0.0539 0.0586 0.0561
RN 0.0312 0.1739 0.0529
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Algorithm 7 The algorithm for finding the subject for a given action (Task 6).
1: Input: A scene, s; an action, act; the object of action, obj; the number of Gibbs

steps, k.

2: Output: Active affordance nodes, aiaisio .

3: ia = index of act in affordance vocabulary.

4: io = index of obj in object vocabulary.

5: for k sampling steps do

6: oÐ so Ź Clamp objects to the visible nodes.

7: rÐ sr Ź Clamp relations to the visible nodes.

8: aÐ sa Ź Clamp affordances to the visible nodes.

9: Sample hidden nodes h using Eq. 4.4.

10: Sample affordance node aiaisio using Eq. 4.3.

5.12 Task 7: Improving Object Detection

In this task, we test whether we can use COSMO to rectify wrong detections and find

missing detections made by object detectors. For this purpose, we used three state-of-

the-art three object detection networks (namely, RetinaNet [32], Faster R-CNN [45],

and Mask R-CNN [20]) with the ResNet-101-FPN [21] backbone model trained on

the COCO dataset [33].

For this task, we first run the deep object detector on the input image. Then, we

provide the detected objects to COSMO, and relax the network to see how COSMO

updates the object nodes. We calculate average precision over 100 randomly selected

images and compare the performance of the deep detectors before and after applying

COSMO.

As shown in Table 5.8, COSMO significantly improves the detection performance

of the deep networks. Looking at the visual example provided in Figure 5.11, we

observe that COSMO can correct the mistakes made by the object detectors, and

suggest objects that were missed by the detectors.
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COSMO result:

Microwave 0.92

Bottle 0.82

Refrigerator 0.88

Remote 0.07

Object Detector result:

Cabinet 0.91

Figure 5.11: An example showing that COSMO improves the result of an object

detector. COSMO is provided by the objects that are labeled by the object detector

and updates the object nodes. After this step, COSMO assigns low probability to

“remote” object (i.e., it determines “remote” as out of context). Then, it assigns high

probability to “cabinet” object that should exist in the scene according to the context

(i.e., it determines “cabinet” is missing in the scene). Other objects are omitted for

the sake of visibility.

5.13 Task 8: Random scene generation

In this task, we demonstrate how we can use another generative ability of COSMO:

we can select a hidden node (or more of them, leaving the other hidden neurons

randomly initialized or set to zero), and sample visible nodes (including relations and

affordances) that describe a scene. Figure 5.12 shows a visual example.

5.14 Task 9: Experiments on a Real Robot

In this task, we evaluate COSMO on Nao and illustrate how the tasks 1-8 conducted

in this section can be useful for a robot. For this purpose, Nao uses Mask R-CNN
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Table 5.8: Task 7: Improving object detections with COSMO. The average precision
for different object detectors with and without COSMO are listed.

w/o COSMO w COSMO
RetinaNet [32] 0.4964 0.6966

Faster R-CNN [45] 0.4388 0.6752

Mask R-CNN [20] 0.4273 0.6648

Visible UnitsHidden Units Relation Units 

(visible)

0
01

Affordance Units 

(visible)

0 00
00

bedtable

microwave

Initialize hidden units with “kitchen” context

1

1

0

front
below

front
below

1 0

(a) (b)

Figure 5.12: An example illustrating scene generation capability of COSMO (Task

8). (a) When a context (hidden node) is activated, (b) active nodes in the sampled

visible nodes define a scene for the context. In (b), the “selected’ objects are placed

in the scene based on the predicted spatial relations.

to detect objects in the scene, and COSMO is initialized with these detections (only

object nodes are clamped with the detected objects, the other visible nodes (relations

and affordances) are estimated after sampling the hidden nodes). See Figure 5.13 for

a snapshot.

Once COSMO is relaxed, Nao can reason about objects, relations, affordances, miss-

ing objects or out-of-context objects in the scene. An interactive experiment has

been conducted with Nao where Nao answers questions about the scene using the

active nodes in COSMO. See the accompanying video (also provided at https:

//bozcani.github.io/COSMO) for the experiments.
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Figure 5.13: A snapshot of an experiment performed with Nao (Task 9). Nao uses

Mask R-CNN to detect objects in the scene, and COSMO is initialized with these

detections. Once this has been performed, Nao can reason about relations,

affordances, missing objects or out-of-context objects in the scene. See the

accompanying video (also provided at

https://bozcani.github.io/COSMO) for the experiments.
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CHAPTER 6

CONCLUSION AND DISCUSSION

In this thesis, we merged different types of robotic knowledge bases and proposed a

contextual scene model that is useful for several robotic tasks.

Before proposing a proper mathematical model for scene modeling, we analyzed dif-

ferent types of robotic knowledge bases. For this end, we investigated and compared

KnowRob [56], RoboBrain [49], KB using MLN [64], ConceptNet [54], ConceptWeb

[12]. By using Web Ontology Language (OWL), we merged some of the concepts of

ConceptWeb, ConceptNet and KnowRob, and we decided to represent objects, spatial

relations and affordances in our scene model.

Moreover, we proposed a novel method (COSMO) for contextualized scene model-

ing. For this purpose, we extended Boltzmann Machines (BMs) to include spatial

relations and affordances via tri-way edges in the model since we concluded that a

relation or an affordance can be represented as triplet that contains subject, relation

and object in the first part of this thesis. For integrating spatial relations and affor-

dances into the model, we introduced shared nodes into BMs, allowing the concept

of relations and affordances to be shared among different objects pairs. We evaluated

and compared our model on several tasks on a real dataset and a real robot platform.

The experimented tasks included spatial relation estimation, finding missing objects

in the scene, finding out-of-context objects, random scene generation, affordance pre-

diction, finding actors and objects for particular verb. We showed that our model is

the best compared to our baseline models (RBM, GBM, RN). Moreover, we tested

whether we can use COSMO to increase the performance of object detectors. For
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this end, we used annotations of objects that are detected by different types of ob-

ject detectors. COSMO works as contextual pipeline over perception pipeline (i.e.

object detectors). We showed that COSMO significantly improves object detection

performances.

Moreover, we run COSMO on NAO Humanoid Robot. For this task, we use object

detectors that detect objects in the images that are captured from NAO. By using

COSMO, NAO can reason about objects and relations and affordances among them.

6.1 Limitations and Future Work

The COSMO has a limitation of assuming fixed-length object vocabulary. Therefore,

novel objects that have not yet been encountered cannot be adapted to the model.

However, in real life, types of objects can vary according to the different contexts. To

overcome this problem, input layer would be designed in incremental manner.

The second limitation is related to the scalability. The model considers all possible

object pairs for given relations or affordances. Therefore, the number of relations and

affordances nodes increases exponentially with the increase in the number of objects.

In the future work, relation and affordance embedding can be used and adapted to the

COSMO.

The model represents the environment in terms of existence of objects. It does not

detect each object if multiple instances of an object are contained in a scene. Even

if we do not handle multiple objects explicitly, they can be inferred by activations of

relations. For example, if the model find relations of “the lamp is left of the bed” and

“the lamp is right of the bed”, it means there are at least two lamps in the scene.

In our work, spatial relations are represented as qualitative abstractions (left, right,

behind etc.) from metric data. This might be inadequate for tasks requiring precise

location detection of objects.

Lastly, the number of object nodes is rather few compared to numbers of affordance

and relation nodes. Therefore, effect of object nodes to hidden activations can be
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diminished by relation and affordance nodes. To overcome this problem, additional

weights can be added to links between object and hidden nodes in order to balance

effect of relations, affordances and objects to hidden activations.
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[15] E. Şahin, M. Çakmak, M. R. Dog̃ar, E. Ug̃ur, and G. Üçoluk. To afford or not
to afford: A new formalization of affordances toward affordance-based robot
control. Adaptive Behavior, 15(4):447–472, 2007.

[16] T.-T. Do, A. Nguyen, I. Reid, D. G. Caldwell, and N. G. Tsagarakis. Affor-
dancenet: An end-to-end deep learning approach for object affordance detec-
tion. arXiv preprint arXiv:1709.07326, 2017.

[17] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions, and the
bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), (6):721–741, 1984.

[18] J. J. Gibson. The Ecologial Approach to visual perception. Lawrence Erlbaum
Associates, 1986.

[19] S. Guadarrama, L. Riano, D. Golland, D. Gouhring, Y. Jia, D. Klein, P. Abbeel,
and T. Darrell. Grounding spatial relations for human-robot interaction. In
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
2013.

[20] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 2980–2988. IEEE, 2017.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recogni-
tion. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, 2016.

[22] W. Hwang, J. Park, H. Suh, H. Kim, and I. H. Suh. Ontology-based framework
of robot context modeling and reasoning for object recognition. In Int. Conf. on
Fuzzy Systems and Knowledge Discovery, 2006.

[23] L. Jamone, E. Ugur, A. Cangelosi, L. Fadiga, A. Bernardino, J. Piater, and
J. Santos-Victor. Affordances in psychology, neuroscience and robotics: a sur-
vey. IEEE Transactions on Cognitive and Developmental Systems, 2016.

68



[24] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and
R. Girshick. Clevr: A diagnostic dataset for compositional language and ele-
mentary visual reasoning. arXiv preprint arXiv:1612.06890, 2016.

[25] D. Joho, G. D. Tipaldi, N. Engelhard, C. Stachniss, and W. Burgard. Non-
parametric bayesian models for unsupervised scene analysis and reconstruction.
Robotics, page 161, 2013.

[26] S. Kalkan, N. Dag, O. Yürüten, A. M. Borghi, and E. Şahin. Verb concepts from
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