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ABSTRACT

REPRESENTING THE NONDOMINATED SET WITH A SMALL SUBSET
IN MULTI-OBJECTIVE MIXED INTEGER PROGRAMS

Doğan, Ilgın

M.S., Department of Industrial Engineering

Supervisor : Assist. Prof. Dr. Banu Lokman

Co-Supervisor : Prof. Dr. M. Murat Köksalan

June 2018, 86 pages

Multi-Objective Mixed Integer Programs (MOMIPs) have a wide variety of applica-

tion areas in real-life decision making problems. Since the number of nondominated

points grows exponentially with the problem size and finding all nondominated points

is typically hard and impractical in MOMIPs, generating a subset having “desired

properties” rises as an important problem. Motivated with this fact, we observe that

the distribution of nondominated points may be critical in defining the desired prop-

erties of the representative subset to be generated. Based on our observations, we

develop algorithms to generate a small subset of nondominated points that represents

the nondominated set with a prespecified coverage gap. Our computational experi-

ments show that our algorithms outperform the existing algorithms in terms of the

cardinality of the generated representative set and the solution time.

Keywords: Multi-Objective Mixed Integer Programming, Representative Subset, Non-

dominated Point, Supported Point, Coverage Gap
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ÖZ

ÇOK AMAÇLI KARIŞIK TAMSAYI PROBLEMLERİNDE BASKIN
KÜMENİN KÜÇÜK BİR ALTKÜME İLE TEMSİL EDİLMESİ

Doğan, Ilgın

Yüksek Lisans, Endüstri Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Banu Lokman

Ortak Tez Yöneticisi : Prof. Dr. M. Murat Köksalan

Haziran 2018 , 86 sayfa

Birçok karar verme probleminde geniş bir uygulama alanı bulunan Çok Amaçlı Karı-

şık Tamsayı Problemlerinde (ÇAKTP) problem boyutu arttıkça baskın nokta sayısı da

üssel olarak artmaktadır. Bu sebeple bütün baskın noktaları üretmek genellikle zor ve

kullanışsız olup istenilen özelliklere sahip küçük bir altküme ile bütün noktaları tem-

sil etmek amaçlanmaktadır. Bu motivasyon ile üretilecek altküme için istenilen özel-

liklerin tanımlanmasında baskın noktaların dağılımının belirleyici olabileceğini göz-

lemledik. Gözlemlerimize bağlı olarak geliştirdiğimiz algoritmalar verilen bir temsil

hatası ile tüm baskın noktaları temsil edecek küçük bir alt küme üretmektedir. Deney-

lerimiz, üretilen alt kümenin kardinalitesi ve çözüm süreleri açısından geliştirdiğimiz

algoritmaların mevcut algoritmalardan daha iyi çalıştığını göstermiştir.

Anahtar Kelimeler: Çok Amaçlı Karışık Tamsayı Programlama, Temsili Küme, Bas-

kın Nokta, Destekli Nokta, Kapsama Hatası
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CHAPTER 1

INTRODUCTION

In almost every real life problem, decision makers (DMs) encounter multiple objec-

tives that are usually conflicting with each other. Due to this conflict, these problems

do not have a single optimal solution but have a set of preferable solutions. The main

characteristic of these solutions is that in order to improve one objective, the DMs

must sacrifice from at least one of the other objectives. Then, the most preferred

solution is chosen from this set of solutions by the DMs.

In this thesis, we study Multi-Objective Mixed Integer Programs (MOMIPs). In the

MOMIP literature, these preferable solutions in the decision space are called as the

"efficient solutions" while their images on the objective space are called as the "non-

dominated points". The corresponding sets of these solutions are called as the "effi-

cient frontier" and the "nondominated frontier", respectively. Multi-Objective Integer

Programs (MOIPs) are a special case of MOMIPs where all variables are integers and

there is a finite number of nondominated points.

In large-sized practical problems, as the number of objectives increases, the number

of nondominated points increases exponentially. That is why, generating all nondom-

inated points is typically hard. Furthermore, trying to find the most preferred solution

among such a huge set is not practical for the DM. Therefore, to avoid unnecessary

computational effort, finding a subset of these points rises as an important research

area in MOMIPs. In the literature, there are some approaches developed to gener-

ate subsets of nondominated points considering certain quality measures specified by

the DMs. Such a subset can also be called as a representative set since it is used to

represent the whole nondominated frontier in terms of some desired quality measures.
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In this study, we develop algorithms to generate representative sets with desired prop-

erties. The desired properties could naturally differ from application to application.

Özarık (2017) observes that the distribution of nondominated points may be criti-

cal in defining the desired properties of the representative set to be generated. Once

the distribution of nondominated points is known, one may want to generate more

points from the densely populated regions. Alternatively, one may wish to positively

discriminate less dense regions in order to capture the properties of rare solutions

in addition to typical solutions. Considering all these possible implementations, our

algorithms are based on the typical properties of the distributions of nondominated

points in MOMIPs.

In MOMIPs, the points that can be found by solving a single-objective problem, that

is a weighted sum problem, are called as the "supported nondominated points". All

other nondominated points that cannot be generated by solving a weighted sum prob-

lem are called as the "unsupported nondominated points". In our algorithms, we

iteratively reduce the feasible set by excluding the regions that are dominated by the

previously found nondominated points. Then, we solve a weighted sum problem over

the reduced feasible set. While it generates a supported nondominated point defined

on the reduced region, the generated point may be an unsupported nondominated

point with respect to the original problem.

In the literature, there are some algorithms developed to generate representative sets

of nondominated points in MOMIPs. Some quality measures are defined to assess the

performance of these representative sets. Sayın (2000) suggests that a representative

set should cover each and every nondominated point of a MOMIP and how well each

point is covered can be measured by the coverage gap. There are some approaches

proposed to generate representative sets for a given coverage gap value. There is an

exact algorithm called as the Diversity Maximization Algorithm (DMA) proposed by

Masin and Bukchin (2008) and a similar approach developed by Sylva and Crema

(2007). These approaches try to find the most diverse set of nondominated points for

a given coverage gap value. Throughout the algorithm, as the number of generated

points increases, the number of binary variables and constraints added to their models

increase substantially. Therefore, the computational complexities of these algorithms

may be undesirable, especially in large-sized real-life problems.

2



As an improvement of these algorithms, Ceyhan et. al. (2014) propose two algorithms

called as the Subspace Based Approach (SBA) and the Territory Defining Algorithm

(TDA). These are also based on the same idea of iteratively generating the worst

represented nondominated point in terms of the coverage gap measure. SBA and

TDA present improvement in terms of the computational efficiency since they use

the search method proposed by Lokman and Köksalan (2013) that is based on the

enumeration of the nondominated subspaces. Due to this decomposition method,

their solution times are much less than the solution times of Sylva and Crema (2007)

and Masin and Bukchin (2008).

In this study, we propose two new algorithms that provide improvements to these

existing approaches in terms of both the solution quality and the computational effi-

ciency. Our purpose is to use the common properties of the density distributions of

the nondominated points in MOMIPs. We try to generate nondominated points from

the dense regions of the nondominated frontier in order to represent more points by

less number of representatives. To achieve this, while developing our algorithms, we

observed that the nondominated points which could represent more number of points

may have better weighted sum values due to the shape of the frontier.

In our first algorithm (called as the Territory-Excluded Supported Generating Algo-

rithm, TSGA), given a specific coverage gap value, we define some regions (called as

the territories) around each generated nondominated point and after excluding these

regions from the feasible space, we search for a new nondominated point by solving

a weighted sum problem over the reduced objective space. TSGA has a better per-

formance than the existing approaches in terms of both the solution quality and the

solution time. In our second algorithm (called as TSGA-II), we yield better represen-

tative sets in terms of the cardinality but the solutions times are longer than TSGA.

In this algorithm, we again work on the reduced objective space. We randomly se-

lect an objective and iteratively find the nondominated point that has the best value

in this objective. Then, we generate the representative point that will cover this point

by solving a weighted sum problem (excluding the selected objective) in each itera-

tion. The major characteristic of this algorithm is that we always guarantee to cover

all nondominated points in terms of the selected objective and for a problem with m

objectives, we search for the nondominated points in the (m− 1)-dimensional space.

3



Our computational experiments are performed on the randomly generated test in-

stances of the Multi-Objective Knapsack Problem (MOKP), Multi-Objective Assign-

ment Problem (MOAP) and mixed-integer knapsack problem. In order to assess the

performance of our algorithms, we generate all nondominated points of these prob-

lems. Then, we compare the quality of our representative sets with the quality of

the representative sets generated by Masin and Bukchin (2008) & Sylva and Crema

(2007) and Ceyhan et. al. (2014). We implement all algorithms by using the recently

proposed decomposition method by Dächert et. al. (2017). Our results show that

our algorithms outperform the existing ones in terms of both the cardinality of the

generated representative sets and the solution times. In addition, we solve for the

representative sets with the optimal cardinality for a given coverage gap value. Re-

sults indicate that our algorithms converge to the optimal cardinality better than the

existing approaches.

The organization of this thesis is as follows. In Chapter 2, we present the relevant pre-

liminaries including the quality measures and the description of the scaling method

used in our algorithms. In Chapter 3, we briefly review some recent approaches

developed to generate representative nondominated sets and some approximation al-

gorithms for MOMIPs. In Chapter 4, we first present the existing approaches that we

compare the performance of our algorithms against. Then, we describe our algorithms

TSGA and TSGA-II with their interactive applications. Finally, we report the results

of our computational experiments in Chapter 5 and we summarize our conclusions in

Chapter 6.
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CHAPTER 2

PRELIMINARIES

In this chapter, we provide the relevant background in Multi-Criteria Decision Mak-

ing (MCDM) and definitions of the quality measures proposed by Sayın (2000) for

representative sets of nondominated points in MOMIPs.

2.1 Background - Definitions

As a mathematical model, a MOMIP can be defined as follows:

(MOMIP) “Max” z = f(x), subject to x ∈ X,

where f(x) =
{
z1(x), z2(x), ..., zm(x)

}
is m-dimensional point in the objective

space, x is a vector in decision space. X ⊆ Zn is the feasible decision space and

Z is the feasible objective space.

Definition 2.1. A feasible decision point xi ∈ X is an efficient solution if there does

not exist any xj ∈ X such that

zk(xj) ≥ zk(xi) ∀k ∈
{

1, 2, ...,m
}

and zk(xj) > zk(xi) for at least one k.

If xi is an efficient solution, then its image in the objective space, f(xi), is said to be a

nondominated point.

For a MOMIP, we denote the set of efficient solutions as XE and the set of nondomi-

nated points as ZND.
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Definition 2.2. The ideal point of a MOMIP, zIP =
{
zIP1 , zIP2 , ..., zIPm

}
, is defined

as am-dimensional vector whose components are the best possible values of each ob-

jective. More specifically, it can be defined as follows for different types of MOMIPs:

• For a maximization problem:

zIPk = max
x∈X

(zk(x)) ∀k

• For a minimization problem:

zIPk = min
x∈X

(zk(x)) ∀k

Definition 2.3. The nadir point of a MOMIP, zNP =
{
zNP
1 , zNP

2 , ..., zNP
m

}
, is defined

as a m-dimensional vector consists of the worst objective values in the set of efficient

solutions, XE . Specifically,

• For a maximization problem:

zNP
k = min

x∈XE

(zk(x)) ∀k

• For a minimization problem:

zNP
k = max

x∈XE

(zk(x)) ∀k

2.2 Quality Measures

In real-life multi-objective decision making problems, presenting all nondominated

points to the DM gets harder and time consuming as the problem size increases. In-

stead, working with a subset of nondominated points is more practical and easier.

While generating such a subset of nondominated points, our purpose is to represent

all nondominated points according to quality levels desired by the DM. In order to

specify the quality of a representative subset, Sayın (2000) defines three performance

measures which are coverage gap, cardinality and uniformity measures.
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2.2.1 Coverage Gap Measure, α

Sayın (2000) suggests that a representative set should cover every portion of the ef-

ficient frontier. In order to measure this coverage attribute, Sayın (2000) defines the

following coverage measure:

Definition 2.4. Let R ⊂ ZND be a representative set of a maximization MOMIP. The

coverage gap for R can be calculated as follows:

α = max
z∈ZND

min
y∈R

d(z, y)

where d(z, y) is a distance metric.

To calculate the coverage gap of a representative set, Sayın (2000) uses a Tchebycheff

distance metric, i.e. max
k=1,2,...,m

|zk − yk|. Each nondominated point (z) is assigned to its

closest representative point y in terms of this metric which is defined as the maximum

of the differences in objective values of these two points. The distance between a

nondominated point and its closest representative point is the coverage gap of this

specific nondominated point. Then, among all nondominated points, the one with the

maximum coverage gap determines the coverage gap of the representative set, αR.

This point is called as the the worst represented nondominated point.

Masin and Bukchin (2008) suggests a different distance metric considering only the

objectives in which the nondominated point (z) is better than the representative point

(y). In this case, coverage gap of the representative set can be calculated as follows:

α = max
z∈ZND

min
y∈R

max
1≤k≤m

(zk − yk)

In our studies, we use the distance metric defined by Masin and Bukchin (2008). If

the coverage gap of a representative set R is αR, then there exists a nondominated

point which is α better than its representative in at least one objective. Also, by def-

inition, all nondominated points are at most α better than their representatives in at

least one objective. Then, a nondominated point is said to be α − dominated by its

representatives.
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Definition 2.5. Let R be a representative set of a maximization MOMIP. Let y ∈ R

represent z ∈ ZND such that zk ≤ yk +α for all k = 1, 2, ...,m. Then, z is said to be

α− dominated by y.

In our computational experiments, we used a scaling coefficient so that the coverage

gap value specified by DM is defined on the interval [0, 1]. The scaling coefficient

for objective k is
1

Rk

where Rk is the range of objective k on the efficient frontier for

a maximization problem, i.e.

Rk = max
x∈XE

(zk(x))− min
x∈XE

(zk(x))

2.2.2 Uniformity Measure, δ

The points in a representative set are desired to be uniformly distributed over the

nondominated frontier in order to present to the DM as much information as possible.

In the ideal case of uniformity, the representatives should be located as equally-spaced

from each other with respect to a given distance measure. In terms of uniformity, it

is undesired to generate representative points which are mostly located as clusters in

specific regions of the nondominated frontier. Sayın (2000) defines the uniformity

measure as follows:

Definition 2.6. Let R be a representative set of a maximization MOMIP. Then, R is

said to be δ-uniform if

min
y1,y2∈R

d(y1, y2) ≥ δ.

2.2.3 Cardinality Measure

Another quality measure for a representative set is cardinality defined by Sayın (2000).

The main purpose of generating a representative set of nondominated points is to

avoid the inefficiency of generating all points. Therefore, while satisfying the quality

level desired by the DM, our aim is to achieve this level with the minimum number

of points to minimize the computational effort.
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These three quality measures are closely interrelated with each other. For example,

we expect coverage gap to improve as the cardinality and uniformity increases. How-

ever, especially in large-sized real life problems, our main concern is to decrease the

computational effort which is directly related with the cardinality.

Example for Quality Measures

Consider a bi-objective problem with 8 nondominated points which are shown on

the scaled objective space in Figure 2.1. Suppose the generated representative set

is R =
{

(0.1, 0.9), (0.6, 0.6), (0.9, 0.3)
}

. Accordingly, the values of three quality

measures are given in Figure 2.1. The worst represented point is also shown since it

is represented with the maximum coverage gap among all nondominated points and

it determines the coverage gap of R.

Figure 2.1: Example of quality measures for a representative set
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CHAPTER 3

LITERATURE REVIEW

In this chapter, we review some exact and heuristic approaches in the MOMIP liter-

ature. There are so many approaches which have been proposed in order to generate

either all nondominated points in MOIPs or good representative subsets of nondomi-

nated points satisfying certain quality measures. Instead of the problem-specific ones,

we focus on general methods which can be applied to any problem type.

Finding all nondominated points of MOIPs requires high computational efforts es-

pecially in large-sized practical problems. Ehrgott and Gandibleux (2000) discuss

that as the problem size grows, the number of supported nondominated points in-

creases exponentially whereas the number of unsupported nondominated points in-

creases linearly. Therefore, while generating all nondominated points, the difficulty

of generating the supported ones increases the solution times mostly. As the number

of nondominated points increases, finding all of them becomes computationally hard.

As a result, several approaches have been developed in the literature to generate a

subset that represents all nondominated points for some desired quality measures.

Sylva and Crema (2007) propose an exact algorithm that can be used to generate

all nondominated points or a subset satisfying a given coverage gap value. They

iteratively solve a single model by adding m binary variables and (m+ 1) linear con-

straints for an m-objective problem. Masin and Bukchin (2008) also develop a very

similar approach. They define a diversity measure that is maximized for minimiza-

tion problems whereas Sylva and Crema (2007) use a measure that is minimized for

maximization problems. Although they use different mathematical formulations, the

computational complexities of both approaches increase significantly as the problem

size grows.
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Özlen and Azizoglu (2009) present a recursive algorithm which can be used to gen-

erate either the whole set or a subset of the nondominated points. It is developed

as an improvement to the classical constraint method. They increase efficiency by

identifying efficiency ranges for objectives. Özlen et. al. (2014) further improves

the efficiency of this algorithm by avoiding to solve previously solved submodels

throughout the solution process.

Lokman and Köksalan (2013) develop another exact algorithm for generating all non-

dominated points of MOIPs. In each iteration, after generating a nondominated point,

they reduce the search space by eliminating the regions dominated by the generated

point. Then, they decompose the reduced search space into subspaces by an enumer-

ation technique. This procedure outperforms Sylva and Crema (2007) and Özlen and

Azizoglu (2009) in terms of the computational complexity.

Kirlik and Sayın (2014) also propose a method to generate all nondominated points.

For an m-objective problem, they project each generated nondominated point to an

(m− 1)-dimensional objective space. Then, they create (m− 1)-dimensional regions

around the generated points and search for the next nondominated point within these

regions. This approach again outperforms Sylva and Crema (2007) and Özlen and

Azizoglu (2009) with respect to the solution times.

Boland et. al. (2015) present an objective space search method, called as the Balanced

Box method, which is designed to find all nondominated points of bi-objective integer

programs. This method enhances the efficiency significantly and shows a fast approx-

imation of the efficient frontier. They report that the performance of this method is

comparable with the ε-constraint method. Similarly, Boland et. al. (2016) suggest

the L-Shape Search method (LSM) which aims to find all nondominated points of

a tri-objective integer program. They define rectangles around each generated point

and sort them in the non-increasing order of their areas. In each iteration, by inducing

an L-shape within each rectangle, they search for a new nondominated point whose

projection is in the rectangle. They state that the efficiency of LSM comes from its

reliance on solving single-objective integer programs (IPs). They also try to avoid

solving unnecessary IPs and increase the overall efficiency of LSM. They show that

LSM is 17% faster on the average than Kirlik and Sayin (2014).
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In large-sized practical problems, instead of generating all nondominated points, pre-

senting a small subset to the DM is more useful and efficient. There are some quality

measures defined in the literature in order to assess the performance of the generated

small subset of nondominated points. Sayın (2000) suggests three main measures

which are the coverage gap, uniformity and cardinality measures. The generated rep-

resentative subset should cover each and every nondominated point and should be

well dispersed over the nondominated frontier. For a given coverage or uniformity

level, the cardinality of the representative set should be minimized in order to avoid

unnecessary computational efforts.

Ceyhan et. al. (2014) develop three algorithms to produce representative sets of

nondominated points for MOMIPs. Firstly, they developed an improved approach of

Sylva and Crema (2007) and Masin and Bukchin (2008). Their first approach (the

Subspace-Based Approach) generates a representative set for a given coverage gap

value or for a given cardinality level. They use the decomposition method of Lok-

man and Köksalan (2013) which eliminate the additional binary variables and linear

constraints in Sylva and Crema (2007). By this way, SBA improves the computa-

tional efficiency. Secondly, they develop the Territory Defining Algorithm (TDA)

which generates a representative set for a given coverage gap value by the DM. TDA

reduces the search space by excluding the territories contructed for each generated

point from the search space. Although the solution quality may be worse than SBA,

TDA requires less solution times.

Vaz et. al. (2015) propose several algorithms to find representative sets for bi-

objective discrete optimization problems. They consider uniformity, cardinality and

ε-indicator (similar to the coverage gap) measures. They develop several algorithms

which are either based on solving several subproblems or solving a sequence of feasi-

bility problems. They formulate these problems as special types of one-dimensional

facility location problems. For instance, the representation problem which tries to

maximize the uniformity for a given cardinality level, is defined as a k-dispersion

facility-location problem. They also develop algorithms which try to optimize two

performance measures simultaneously for a given number of representatives. They

conclude that since the related k-dispersion and k-center problems are generally NP-

hard, they say that their methods are not applicable for more than two objectives.
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Vassilvitskii and Yannakakis (2005) introduce the problem of finding a lower bound

on the cardinality of the representative set which will satisfy a certain coverage level.

Then, Bazgan et. al. (2015) work on this problem and for the bi-objective prob-

lems, they guarantee that their approximation method computes at most 3 times the

cardinality of the optimal representative set, which is called as a 3-approximation al-

gorithm. For the tri-objective optimization problems, they propose a greedy approach

under the assumption that all nondominated points are known in advance.

Filippi and Stevanato (2013) develop two approximation algorithms for bi-objective

combinatorial optimization problems. Their algorithms find a representative subset

such that each nondominated point is within a specific factor from a representative

point in terms of both objectives. They also show that the cardinality of their represen-

tative sets is at most three times worse than the optimal cardinality. The first algorithm

is called as the ABE algorithm which iteratively finds a new nondominated point and

partitions the objective space into four subspaces. The second algorithm is called

as AEC method which is stated as a modification of the well-known ε-constraint

method. They conduct some experiments on the Travelling Salesman Problem with

profits where maximizing profit and minimizing cost are the two conflicting objec-

tives. Their results show that their algorithms yield a guaranteed approximation to

the results of exact methods in an efficient way.

Shao and Ehrgott (2016) propose a method to generate representative sets for the con-

tinuous but non-convex nondominated sets while guaranteeing a specific coverage gap

and uniformity level. Specifically, they try to solve the NP-hard problem of finding a

number of evenly-distributed nondominated points of a MOLP (Multi-Objective Lin-

ear Program) for a given coverage gap value. Their method is stated as a combination

of the global shooting and the normal boundary intersection (NBI) methods. By com-

bining these methods, they take the advantage of the global shooting method in satis-

fying the coverage property and the advantage of NBI in generating evenly-distributed

nondominated points (which satisfies the uniformity property). They call their new

approach as “Revised Normal Boundary Intersection” (RNBI) method. They show

that the generated representative points are indeed evenly distributed and the RNBI

method is applicable for MOLPs with up to 8 objectives.
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Köksalan and Lokman (2009) approximate the nondominated frontiers in MOCO

problems. After scaling all objectives, they try to fit a smooth hypersurface, called as

an Lq surface, to the nondominated frontier which passes through all the hypothetical

extreme nondominated points and a centrally located nondominated point. Based on

their observations, they make analyses related with the typical characteristics of the

shapes of nondominated frontiers in MOCO problems.

Özarık (2017) develops algorithms to generate representative sets for different types

of MOIPs by defining a new quality measure. They introduce a density measure

and make analyses for identifying the typical distribution properties of nondominated

points over the frontier. Their approaches first approximate the nondominated fron-

tier by using the method of Köksalan and Lokman (2009). Then, they categorize

this approximated nondominated set based on the estimated density measures in each

subregion. By this way, they generate density-based representative sets for MOIPs.

Dächert et. al. (2017) develop one of the most recent decomposition methods in

the MOMIP literature. They decompose the whole feasible objective space into sub-

spaces which are defined by lower bound vectors. Then, they define a specific neigh-

borhood relation between these lower bounds and update the search space in each

iteration by updating these neighborhood relations. They show that due to the effi-

ciency of their update procedure, they outperforms all existing search methods in the

literature (such as Lokman and Köksalan (2013), Kirlik and Sayın (2014)) in terms

of computational efficiency.
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CHAPTER 4

ALGORITHMS FOR GENERATING REPRESENTATIVE SETS OF

NONDOMINATED POINTS

In this chapter, we present two approaches for representation of nondominated sets in

MOMIPs in terms of the quality measures defined in Chapter 2. Our main concern

is to cover all parts of the nondominated frontier by generating a small representative

subset of the nondominated points. Therefore, our main quality measures are the

coverage gap and the cardinality. Specifically, we aim to find a small subset that

represents the whole nondominated set with a prespecified coverage gap value. The

uniformity measure is also controlled implicitly since the algorithms are designed to

produce representative points within at least a certain distance from each other.

Before presenting our approaches, we briefly describe the existing algorithms that we

compare our experimental results against. These algoritms are the Diversity Maxi-

mization Algorithm (DMA) proposed by Masin and Bukchin (2008), the Subspace

Based Approach (SBA) and the Territory Defining Algorithm (TDA) developed by

Ceyhan et. al. (2014). Given a coverage gap value, our approaches are compared

with these algorithms in terms of the cardinality, solution times and number of mod-

els solved. All of these approaches can be used either to generate a representative

subset or the entire nondominated set.
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4.1 Existing Approaches

4.1.1 Diversity Maximization Algorithm (DMA)

DMA is an exact algorithm developed by Masin and Bukchin (2008). It is very sim-

ilar to the approach proposed by Sylva and Crema (2007). These approaches itera-

tively generate the worst represented nondominated point by the previously generated

representatives. Starting with an initial supported nondominated point, they solve a

model in each iteration which generates the nondominated point with the maximum

coverage gap value (which is the worst represented nondominated point by the cur-

rent representatives). The model (P0) shows the mathematical formulation proposed

by Sylva and Crema (2007). Let R =
{

y1, y2, ..., y|R|
}

be a representative set of a

maximization MOMIP with m objectives. Then,

(P0):

Max α + ε
m∑
k=1

λkzk

s.to.

zk(x) ≥ yik p
i
k + α− (Mk + U)(1− pik) ∀ i = 1, 2, ..., |R| ∀ k = 1, 2, ...,m

m∑
k=1

pik = 1 ∀ i = 1, 2, ..., |R|

pik ∈
{

0, 1
}
∀ i = 1, 2, ..., |R| ∀ k = 1, 2, ...,m

α ≥ 0

x ∈ X

where

Mk is the lower bound for zk(x),

U is an upper bound for d(zk(x)− zk(x′)) for any x, x′ ∈ X where d is a Tchebycheff

distance metric,

λk > 0 ∀ k = 1, 2, ...,m,

ε is a sufficiently small positive number.
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In (P0), the first constraint ensures that the optimal α value will be the maximum of

the Tchebycheff distances from the optimal solution to each representative point.

Sylva and Crema (2007) solves (P0) in each iteration by adding the newly generated

nondominated point to the set R. This corresponds to adding m binary variables and

(m+ 1) linear constraints to the model. The mathematical formulation used in DMA

also have the same number of binary variables and linear constraints. Therefore,

in terms of computational complexity, DMA and the approach of Sylva and Crema

(2007) turn out to be very inefficient as the number of generated representative points

increases.

Both approaches have two alternative stopping conditions. They continue until the

coverage gap value of the last generated point hits to a lower bound on the coverage

gap of R. In this case, all nondominated points are at most α better in at least one

objective than their closest representatives in R. If this lower bound set to zero, then

their algorithms generate all nondominated points of a MOIP. Another stopping con-

dition can be an upper bound on the cardinality of the representative set, |R|, desired

by the DM. Both of these stopping criteria can be used at the same time such that

algorithm continues until at least one of them holds.

4.1.2 Subspace Based Approach (SBA) and Territory Defining Algorithm (TDA)

Ceyhan et. al. (2014) propose the Subspace Based Approach (SBA). Similar to

the Diversity Maximization Algorithm (DMA), SBA iteratively generates the worst

represented point that is the nondominated point with the maximum coverage gap.

However, in order to eliminate the dominated regions by the already generated non-

dominated points, they use a decomposition method proposed by Lokman and Kök-

salan (2013) instead of adding new binary variables as in DMA. Lokman and Kök-

salan (2013) enumerate all subspaces that are not dominated by the current repre-

sentative points. Each subspace is defined by lower bounds on objectives where

lb =
{
lb1, lb2, ..., lbm

}
is a lower bound vector. Then, SBA iteratively solves the

following model (P1) for a maximization problem:
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(P1):

Max α + ε

m∑
k=1

λkzk

s.to.

zk(x) ≥ lbk + α ∀ k = 1, 2, ...,m

x ∈ X

In each iteration, SBA solves as many models as the number of nondominated sub-

spaces. After searching all subspaces and finding the nondominated points which

yield the maximum coverage gap in each subspace, they select the one with the max-

imum coverage gap among all found points and add this selected point to their repre-

sentative set. Similar to DMA, the stopping condition of SBA can be either a lower

bound on the coverage gap or an upper bound on the cardinality of the representative

set.

Although using the search method of Lokman and Köksalan (2013) provides a com-

putational advantage to SBA, the number of models solved in each iteration may

increase the solution times substantially as the number of generated points increases.

However, their computational experiments show that when both algorithms start with

the same initial nondominated point, solution times of SBA are significantly lower

than those of DMA especially as the cardinality of the representative set increases.

They argue that SBA solves much simpler models than DMA and the size of these

models do not increase as the algorithm proceeds. In addition, they keep the solutions

of the previously searched subspaces in order to avoid solving the same models un-

necessarily. As a result, as the cardinality increases, solution times of SBA increase

linearly while solution times of DMA increase exponentially.

In addition to SBA, Ceyhan et. al. (2014) develop the Territory Defining Algorithm

(TDA) which outperforms DMA and SBA in terms of solution times. TDA uses

the same subspace search method used in SBA and solves the model (P1) for each

subspace. However, in each iteration, TDA does not search all subspaces and does

not try to find the nondominated point with the maximum coverage gap. Instead, it

only solves the largest subspace and chooses its solution as the next representative

point. In other words, TDA solves only a single model in each iteration.
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They also suggest that instead of solving the largest subspace in each iteration of

TDA, different subspace selection techniques can be applied throughout the algo-

rithm. They also provide experimental results of selecting and solving a random

subspace in each iteration. According to their results, both cardinality and the solu-

tion times do not change significantly for two different subspace selection techniques

applied.

In order to satisfy a prespecified coverage gap, TDA defines specific regions around

each generated nondominated point called as territories. Specifically, all nondomi-

nated points that are α-dominated by a representative point y are included in its terri-

tory. Territory of y is defined by the hyperspace (H) in the m-dimensional objective

space such that H =
{
yk − ∆ ≤ zk(x) ≤ yk + ∆ ∀k ∈

{
1, ...,m

}
, x ∈ X

}
. If

the region that is dominated by the hyperspace H is denoted as HD, then the terri-

tory of a representative point y is defined by excluding two spaces from HD which

are the space dominated by y (yD) and the space dominating y (yU ), i.e. Ty = HD \{
yD∪yU

}
. The territories defined in two and three dimensional spaces are illustrated

in Figures 4.1 and 4.2, respectively.

Figure 4.1: Territories in a two dimensional objective space

Source: Ceyhan et. al. (2014)
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In order to eliminate the territories from the search space, TDA creates an artificial

representative point (y′) for each nondominated point (y) generated such that y′k =

yk +α ∀k ∈
{

1, ...,m
}

for a maximization problem. Then, they define lower bounds

of new subspaces by using the objective values of these artificial points. This way,

they avoid searching the regions that are α-dominated by the true points generated

by TDA. At the end of the algorithm, they show that all nondominated points are α-

dominated by the final R and the coverage gap of this representation does not exceed

the desired coverage gap value, α.

Figure 4.2: Graphical display of the three dimensional territory constructed around
point yk

Source: Ceyhan et. al. (2014)

The main difference of TDA is that since it does not search all subspaces in an it-

eration, it does not guarantee to generate the worst represented point as in SBA and

DMA. Although the solution quality (in terms of cardinality) may be worse than

DMA and SBA, Ceyhan et. al. (2014) show that the solution times decrease signifi-

cantly in TDA. It is much more efficient than DMA and SBA since it searches only a

single subspace and eliminates the territories from the search region in each iteration.
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4.2 Territory-Excluded Supported Generating Algorithm (TSGA)

In all of these approaches, assuming a coverage gap value specified by the DM, the

quality measure for a generated representative set is its cardinality. During an al-

gorithm, in order to reduce the cardinality of the final representative set, we should

iteratively generate nondominated points that will represent as many points as pos-

sible. Focusing on this purpose, we define a new attribute, called as the individual

representation power (irp), for each nondominated point that can be selected as a

representative point.

Definition 4.1. Let z ∈ ZND be a representative point of a maximization MOMIP.

Then, the number of nondominated points which are α-dominated by z is said to be

the individual representation power of z, Pz.

In developing TSGA, our main purpose is to generate the nondominated points with

higher irps in each iteration. Our main motivation is based on some important obser-

vations related with the general characteristics of the shapes and the density distribu-

tions of the nondominated frontiers in MOMIPs.

Firstly, we use the observations of Köksalan and Lokman (2009) where they approx-

imate the nondominated frontiers of MOCO problems by fitting smooth Lq hyper-

surfaces. Similar to our scaling method, they scale the objective space using the

ranges of the objectives on the nondominated frontier. Specifically, for a maxi-

mization problem, a nondominated vector (z1(x), z2(x), ..., zm(x)) is transformed to

a scaled vector (z′1(x), z′2(x), ..., z′m(x)) where z′k(x) =
zk(x)− zNP

k (x)

zIPk (x)− zNP
k (x)

and 0 ≤

z′k(x) ≤ 1 ∀k ∈
{

1, ...,m
}

. In the scaled objective space, they define hypothetical

extreme nondominated points such that z′k(x) = 1 and z′j(x) = 0 ∀j 6= k. They also

generate a centrally located nondominated point that has the minimum Tchebycheff

distance from the ideal point by solving min
x∈X

(max
k

(zk(x) − zIPk )). Then, they fit a

hypersurface to the nondominated frontier that passes through the central point and

all hypothetical extreme points. This hypersurface is called as the Lq surface where

q > 0 satisfies the following equation for each and every hypothetical nondominated

vector: Lq(z′) = (z′1)
q + (z′2)

q + ...+ (z′m)q = 1.
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According to their results, the Lq surface fitting the nondominated frontier of a mini-

mization problem generally has a convex shape whereas it is concave for a maximiza-

tion problem. An example is shown in Figure 4.3 for a bi-objective knapsack problem

with 200 items and 431 nondominated points.

Figure 4.3: The fitted Lq surface of a bi-objective knapsack problem instance

Secondly, Özarık (2017) makes observations related with the typical density distribu-

tions of the nondominated frontiers of MOMIPs. They introduce a density measure,

approximate the frontiers by Lq surfaces as in Köksalan and Lokman (2009) and

make analysis of the common properties of the nondominated sets. They define the

central point as the "center of density" and show that the value of their density mea-

sure decreases as we move away from this point through the edges of the frontier.

Especially in large-sized problems with many nondominated points, this observation

seems to be more typical. As an example, the density distribution of a knapsack

problem with three objectives and 5652 nondominated points is shown in Figure 4.4

where the density of the nondominated points increases as the color turns from blue to

red. According to their findings, 25% of the closest points to the "center of density"

contribute approximately 70% to the total density and the rest 75% of these points

contribute only approximately 30% to the total density. In other words, if we define

the parts around the central point as the "central region", their analyses show that the

"central region" of the nondominated frontier is typically the most dense region.

24



Figure 4.4: Density distribution of a 3-objective knapsack problem instance

Source: Özarık (2017)

If a nondominated point (z) has a high irp, then the number of nondominated points

that are α-dominated by z is high. If we remember the territory definition in TDA,

this corresponds to a high number of nondominated points located in the territory

of z. Therefore, in order to generate the representative points with high irps, we

should consider the number of nondominated points within the territories of these

representative points. When we consider the findings of Özarık (2017) related with

the distributions of nondominated frontiers, we can conclude that if we generate non-

dominated points that are located closer to the dense regions of the frontier, their

territories will obviously include more number of points and their irps will be high.

This is illustrated in Figure 4.5 for a 2-objective knapsack instance with 5652 non-

dominated points assuming a coverage gap value of 0.15. As can be seen from this

figure, territory of point B includes fewer number of nondominated points than terri-

tory of Point A which is located in a dense region of the frontier. Particularly, we can

say that the nondominated points located in the dense regions of the frontier (that are

closer to the "center of density") have high irps. Considering our main motivation

of reducing the cardinality of our final representative set, we desire to generate these

nondominated points in our algorithms.

When the typical shapes of the nondominated frontiers of MOMIPs are considered, it

can be seen that we can generate nondominated points from the dense regions of the

frontier by optimizing a weighted sum of objectives. This is shown in Figure 4.6 for

a bi-objective knapsack problem with 431 nondominated points. Since it is a maxi-
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mization problem, when we maximize a weighted sum of two objectives (shown by

the black line), it hits the central region of the frontier and generates a nondominated

point with a high irp due to the shape of the frontier.

(a) High irp in the dense region (b) Low irp in the sparse region

Figure 4.5: Territories in the dense and sparse regions of the nondominated frontier

After making all these observations, we performed additional analyses that support

our arguments. We examine the correlation between irps of the nondominated points

and the weighted sum of their objective values. The corresponding relationship is

shown in Figure 4.7 for a 3-objective knapsack problem instance with 3253 nondom-

inated points. The irp of each nondominated point is calculated for α = 50. When

we consider the individual data points in Figure 4.7a, although there are some devia-

tions, there is a strong positive correlation between the irps and weighted sum values

of the nondominated points. This can be observed more clearly in the histogram in

Figure 4.7b which shows that the nondominated points with greater weighted sum

values represent more nondominated points on the average.

Based on all of these discussions, we propose the Territory-Excluded Supported Gen-

erating Algorithm (TSGA) in which we generate the nondominated point that has the

maximum weighted sum value in the reduced search space at each iteration. We iter-

atively reduce the search space by excluding not only the dominated regions but also

the regions that are α-dominated by the previously generated representative points.

In order to achieve this, we define territories around each generated point as in TDA.

In order to exclude these territories from the search space, we define artificial repre-

sentative points that correspond to the upper corner points of the territories.
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Figure 4.6: Generating a nondominated point with high irp

For a given coverage gap value (α) and a generated nondominated point (y), an ar-

tificial nondominated point (y′) is defined as y′k = yk + α ∀k ∈
{

1, ...,m
}

for a

maximization problem. Using these artificial points, we exclude the territories from

the feasible objective space and obtain a reduced search space in each iteration. Then,

by solving a weighted sum problem, we generate a supported nondominated point of

this reduced problem.

(a) Individual Data Points (b) Histogram

Figure 4.7: Individual representation power vs. Weighted sum of objectives

In this weighted sum problem, we choose the weights based on the distribution of the

nondominated points over the feasible objective space. To maximize the individual

representation power, we target the dense regions. Özarık (2017) shows that the dense

regions are typically located closer to the central point, zC , that is the nondominated
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point with the minimum Tchebycheff distance to the ideal point. Based on this ob-

servation, we calculate the objective weights by using the plane that is tangent to the

Lq surface at the point zC . Specifically, the coefficients in the equation of this tangent

plane are normalized and set as the objective weights in our weighted sum problem.

For a bi-objective knapsack problem with 431 nondominated points, the Lq curve,

the "center of density" and the tangent line at this point are illustrated in Figure 4.8.

This way, the weight of each objective is chosen so that the weighted sum problem

generates nondominated points from the dense regions of the nondominated frontier.

Figure 4.8: The fitted Lq surface and the tangent line at the center of density of a
bi-objective knapsack problem instance

We search the objective space using the recently proposed decomposition method by

Dächert et. al. (2017) which outperforms the decomposition method of Lokman and

Köksalan (2013) in terms of computational efficiency. Similar to Lokman and Kök-

salan (2013), the search procedure of Dächert et. al. (2017) partitions the search space

into subspaces and each subspace is defined by a set of lower bounds on objectives

(for a a maximization problem), lb =
{
lb1, lb2, ..., lbm

}
. However, they introduce

a specific neighborhood relationship between these lower bounds which are updated

in each iteration. This update procedure is designed very efficiently and saves com-

putation time. Another point which makes their procedure faster is that they avoid

searching redundant search zones where redundancy is defined as follows:
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Definition 4.2. Let lb1 and lb2 be two lower bound vectors of a maximization MOMIP.

If lb1k = lb2k for some k = 1, ...,m and lb1j > lb2j for ∀j 6= k, then lb1 is said to be

a redundant lower bound vector which defines a redundant search zone.

By definition, it is known that the optimal solution in the search zone of lb2 will be

either the same as or better than the optimal solution in the search zone of lb1. This is

why there is no need to solve the submodel of the region defined by lb1. As the prob-

lem size grows, Dächert et. al. (2017) observe that the number of redundant search

zones increases. Therefore, their search procedure results in a substantial decrease

in solution times. Using this decomposition method, TSGA iteratively generates the

nondominated point with the maximum weighted sum value in each subspace by solv-

ing the model (P2). Then, among all these generated points, TSGA selects the one

with the maximum weighted sum value as the new representative point.

(P2):

Max
m∑
k=1

λkzk

s.to.

zk(x) ≥ lbk ∀ k = 1, 2, ...,m

x ∈ X

In the model (P2), λk denotes the coefficient of objective k including a scaling factor

and a weight factor. Specifically, we can define this coefficient as λk =
wk

Rk

where Rk

is the range of objective k on the efficient frontier and wk is the weight of objective

k calculated from the center of density of the nondominated frontier. Since we work

on the scaled objective space, the prespecified coverage gap value is defined on the

interval [0, 1]. This way, the size of the territories constructed around each generated

point is also scaled.

Although TSGA calculates the weights of the objectives based on the center of den-

sity of the nondominated frontier, some interactive applications can be designed so

that these weights are adjusted considering the preferences of the DM. Accordingly,

the territory sizes can be set inversely proportional to these weights. This way, we

can discriminate the nondominated solutions that are more preferable by the DM.

Examples for such applications are discussed in Section 4.5.
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During the algorithm, we keep some sets and lists that are defined as follows: R is

the set of the generated nondominated points, A is the set of the artificial nondom-

inated points and LB is the list of the nonredundant lower bound vectors with the

corresponding optimal solutions of (P2). At the beginning of the algorithm, the DM

specifies the coverage gap value, α∗. Then, the outline of the TSGA is given in the

following algorithm:

Algorithm 1 Territory-Excluded Supported Generating Algorithm (TSGA)
Initialization: R = Ø, A = Ø, LB = Ø. n = 0.

Step 0. Generate the initial nondominated point (y1) by solving model (P2) for

lbk = 0 ∀ k = 1, 2, ...,m. R =
{

y1
}

, A =
{

y′1
}

, n = 1. Update LB.

Step 1. For each lb ∈ LB do

Solve (P2) if necessary. If (P2) is feasible, let zlb be the nondominated point

found. Update LB.

If there exists any feasible solution then

n = n+1. yn = arg max
zlb

{∑
k

λkzk

}
. R = R∪

{
yn
}

. A = A∪
{

y′n
}

. Update

LB.

Else go to Step 2.

Step 2. Stop.

TSGA stops when the entire search space is infeasible which means that each non-

dominated point lies within the territory of at least one representative point. In other

words, each nondominated point is α-dominated by at least one representative point

at the end of the algorithm. This way, we guarantee that all nondominated points are

α-dominated by the final representative set generated by TSGA.
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4.3 Territory-Excluded Supported Generating Algorithm - II (TSGA-II)

In this section, we introduce our second algorithm, TSGA-II, that generates represen-

tative sets of nondominated points for MOMIPs for a given coverage gap value. Sim-

ilar to TSGA, we generate nondominated points by solving a weighted sum problem

in the reduced search space obtained by excluding the territories constructed around

the points generated in each iteration. By eliminating these territories, we guarantee

to represent all nondominated points by at most a prespecified coverage gap value.

The main advantage of this algorithm is that it provides us the opportunity to work

on an (m − 1)-dimensional objective space. We randomly choose one of the objec-

tives (say the pth objective) and we generate representative points in a nonincreasing

order of zp. After eliminating the nondominated points within the territories of cur-

rent representatives in each iteration, we first generate the nondominated point whose

pth objective function value is the best among all nondominated points from the re-

duced space (denoted by zIp(x)). Then, we generate the nondominated point from the

reduced space that has the highest weighted sum of the remaining objectives (for a

maximization problem) and α-dominates zIp(x). This generated nondominated point

is selected as the new representative point.

In the first iteration of TSGA-II, the first representative point, y1(x), is generated by

solving model (P4) so that it α-dominates zIp(x) which is found by solving model

(P3). We show that the pth objective function values of all other nondominated points

are at most α larger than the pth objective function value of y1(x). This enables us

to define the territories in the (m − 1)-dimensional objective space. As a result, we

optimize the weighted sum of (m− 1) objectives in the reduced search space.

(P3):

Max λpzp + ε

m∑
k=1, k 6=p

λkzk

s.to.

x ∈ X
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(P4):

Max

m∑
k=1, k 6=p

λkzk + ε(λp zp)

s.to.

zk ≥ z
Ip
k − αRk ∀ k = 1, 2, ...,m

x ∈ X

In (P3) and (P4), ε is a sufficiently small number and λk =
wk

Rk

where Rk is the range

of objective k on the efficient frontier and wk is the weight of objective k. Due to the

scaling of objectives, the territory sizes are defined as αRk ∀k ∈
{

1, ...,m
}

where

α ∈ [0, 1]. In (P4), the first constraint ensures that the generated point α-dominates

zIp(x) that is the nondominated point corresponding to the optimal solution of (P3).

Proposition 4.1. In a maximization MOMIP, let y1 ∈ ZND be the first representative

point generated by TSGA-II. Then, for any z ∈ ZND, y1p ≥ zp − αRp.

Proof. By definition, zIpp ≥ zp ∀ z ∈ ZND.

Since zIp is α-dominated by y1: y1k ≥ z
Ip
k − αRk ∀ k = 1, ..., p, ...,m.

Then, it directly follows: y1p ≥ z
Ip
p − αRp ≥ zp − αRp ∀ z ∈ ZND.

As stated in Proposition 4.1., since the first representative point generated by TSGA-

II represents all nondominated points in the pth objective, there is no need to construct

territories in the pth dimension of the objective space. This property is very significant

since it allows us to work on an (m− 1)-dimensional space throughout the algorithm.

In TSGA-II, we again search the objective space using the decomposition method of

Dächert et. al. (2017). In iteration n, TSGA-II solves model (P5) for each nonredun-

dant lower bound vector, lb. This model generates the nondominated point with the

maximum pth objective value in the search space defined by lb. Then, TSGA-II se-

lects the point with the maximum pth objective value among the nondominated points

corresponding to the optimal solutions of (P5) for all lower bound vectors. Let the

selected point be denoted as zInp . Then, the algorithm solves (P6) for each subspace
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in order to generate the nondominated point that α-dominates zInp and has the max-

imum weighted sum value for all objectives except zp. Lastly, among all generated

points, TSGA-II selects the one with the maximum weighted sum value (for (m− 1)

objectives) as the new representative.

(P5):

Max λpzp + ε
m∑

k=1, k 6=p

λkzk

s.to.

zk(x) ≥ lbk ∀ k 6= p

x ∈ X

(P6):

Max
m∑

k=1, k 6=p

λkzk + ε(λp zp)

s.to.

zk(x) ≥ z
Inp
k (x)− α∗Rk ∀ k = 1, 2, ...,m

zk(x) ≥ lbk ∀ k 6= p

x ∈ X

where ε is a sufficiently small number, λk =
wk

Rk

where Rk is the range of objective k

on the efficient frontier and wk is the weight of objective k. The weight of each ob-

jective is assigned as in TSGA based on the density distribution of the nondominated

frontier of a MOMIP. Specifically, these weights are the coefficients in the equation

of the tangent plane to the Lq surface at the center of density.

Another property of TSGA-II which should be highlighted is that it generates the

representative sets with the optimal cardinality for bi-objective mixed-integer prob-

lems. Since we work on an (m − 1)-dimensional space, the original bi-objective

problem reduces to a single objective problem. As a result, in addition to the solu-

tion quality, TSGA-II provides a significant computational advantage in bi-objective

mixed-integer problems.

33



Proposition 4.2. In a bi-objective mixed-integer problem, let R =
{

y1, y2, ..., yn
}

be

the current representative set in iteration n. Let the union of territories constructed

around n representatives be T =
{

Ty1∪Ty2∪...∪Tyn
}

. Then, TSGA-II generates yn+1

with the maximum individual representation power in the reduced objective space, i.e.

Pyn+1 = max
z∈ZND\T

Pz.

Proof. Without loss of generality, let p = 1.

Consider n = 0.

For a maximization problem, let zI1 be the optimal solution of (P3) and y1 be the

optimal solution of (P4).

To get contradiction, suppose that there exists z∗ 6= y1 ∈ ZND such that Pz∗ =

max
z∈ZND

Pz.

Then, Py1 < Pz∗ which implies that there exists z ∈ ZND such that z ∈ Tz∗ and

z /∈ Ty1 . Since z ∈ Tz∗ ,

z1 ≤ z∗1 + α∗R1 (4.1)

z2 ≤ z∗2 + α∗R2 (4.2)

Since z /∈ Ty1 , at least one of the inequalities (4.3) and (4.4) must be satisfied:

z1 > y11 + α∗R1 (4.3)

z2 > y12 + α∗R2 (4.4)

By the construction of the algorithm,

zI11 ≤ y11 + α∗R1 (4.5)

z∗2 ≤ y12 (4.6)

By definition of the ideal point, z1 ≤ zI11 .

By substitution to (4.5), it implies to z1 ≤ y11 + α∗R1 which contradicts with (4.3).

From (4.2) and (4.6), z2 ≤ z∗2 + α∗R2 ≤ y12 + α∗R2 which contradicts with (4.4).

Therefore, if there exists z ∈ ZND such that z ∈ Tz∗ , this implies that z ∈ Ty1 .

Consider n > 0. Let zIn1 be the nondominated point such that zn1 = max
z∈ZND\T

z1.
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Then, TSGA-II generates yn+1 such that

yn+1
2 = max

z∈ZND\T

{
z2| zk ≥ z

In1
k − α∗Rk ∀k, x ∈ X, ε > 0

}
.

Suppose that there exists zn∗ ∈ ZND\T such that Pzn∗ = max
z∈ZND\T

Pz.

Then, Pyn+1 < Pzn∗ which implies that there exists z ∈ ZND\T such that z ∈ Tzn∗ and

z /∈ Tyn+1 .

Since z ∈ Tzn∗ ,

z1 ≤ zn∗1 + α∗R1 (4.7)

z2 ≤ zn∗2 + α∗R2 (4.8)

Since z /∈ Tyn+1 , at least one of the inequalities (4.9) and (4.10) must be satisfied:

z1 > yn+1
1 + α∗R1 (4.9)

z2 > yn+1
2 + α∗R2 (4.10)

By the construction of the algorithm,

zI11 ≤ yn+1
1 + α∗R1 (4.11)

z∗2 ≤ yn+1
2 (4.12)

By definition of the ideal point, z1 ≤ z
In1
1 .

By substitution to (4.11), it implies to z1 ≤ yn+1
1 +α∗R1 which contradicts with (4.9).

From (4.8) and (4.12), z2 ≤ zn∗2 +α∗R2 ≤ yn+1
2 +α∗R2 which contradicts with (4.10).

Therefore, if there exists z ∈ ZND\T such that z ∈ Tzn∗ , this implies that z ∈ Tyn+1 .

Corollary 4.1. In a bi-objective mixed-integer problem, let R =
{

y1, y2, ..., ynf
}

be

the final representative set generated by TSGA-II. Then, nf is the minimum cardinality

which satisfies a given coverage gap value.

Proof. Let the union of territories constructed around nf representative points be

Tf =
{

T1 ∪ T2 ∪ ... ∪ Tnf

}
. In each iteration n, TSGA-II generates yn such that

Pyn = max
z∈ZND\T

Pz where zk ≥ zI1k − α∗Rk ∀k. Therefore, since TSGA-II represents

the maximum number of points in each iteration, it represents all nondominated points

with the minimum number of representative points.
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The sets and lists that we keep throughout the algorithm are all the same with TSGA.

R is the set of the generated representative nondominated points, A is the set of the

artificial representative nondominated points and LB is the list of the nonredundant

lower bound vectors with the corresponding optimal solutions of (P5). For a coverage

gap value (α∗) specified by the DM, the algorithm stops when all available search

zones are infeasible. Similar to TSGA, since we exclude the territories constructed

around each representative point throughout the algorithm, it is guaranteed that all

nondominated points are α-dominated by at least one of the representatives when the

algorithm stops. The outline of TSGA-II is provided in the following algorithm:

Algorithm 2 Territory-Excluded Supported Generating Algorithm-II (TSGA-II)
Initialization: R = Ø, A = Ø, LB = Ø. n = 0. Randomly choose an objective p.

Step 0. Solve (P3). Let the optimal solution be zIp . Then, solve (P4). Let the

optimal solution be y1. R =
{

y1
}

, A =
{

y′1
}

, n = 1. Update LB.

Step 1. For each lb ∈ LB do

Solve (P5) if necessary. If (P5) is feasible, let zlb be the nondominated point

found. Update LB.

If there exists any feasible solution then

zInp = arg max
zlb

{
zp
}

. Update LB. Go to Step 2.

Else go to Step 3.

Step 2. n = n+ 1. For each lb ∈ LB do

Solve (P6). If (P6) is feasible, let ylb be the nondominated point found. Update

LB.

If there exists any feasible solution then

yn = arg max
ylb

{∑
k 6=p

λkzk

}
. R = R ∪

{
yn
}

. A = A ∪
{

y′n
}

. Update LB.

Else yn = zInp .

Go to Step 1.

Step 3. Stop.
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While generating a representative set, there is always a trade-off between the solution

quality and the solution time. Although TSGA-II provides a significant improvement

in the solution quality, TSGA is much more efficient in terms of the computational

efforts. Since TSGA-II reduces one dimension in the objective space, the computation

times could be expected to decrease. However, TSGA-II generates two nondominated

points in each iteration by solving two models for each subspace. We keep the optimal

solutions of (P5) for each subspace that is solved in the previous iterations. However,

the optimal solution of (P6) for a subspace may change since the point zI
n
p is updated

in each iteration n. Therefore, we need to resolve (P6) for each feasible subspace in

an iteration. As a result, the solution times may increase significantly especially in

large-sized problems.
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4.4 Illustration of All Algorithms

In this section, we demonstrate the procedures of TSGA, TSGA-II and DMA (which

is equivalent to SBA such that both algorithms iteratively generate the nondominated

point with the maximum coverage gap value).

Consider a bi-objective knapsack problem instance with 40 items and 14 nondomi-

nated points. The layout of the nondominated points in the scaled objective space is

shown in Figure 4.9. Suppose that a representative set will be generated to satisfy a

coverage gap value α = 0.25.

Figure 4.9: Nondominated points of the example bi-objective knapsack problem

We first need to calculate the weights of objectives for TSGA and TSGA-II. In terms

of the Tchebycheff distance metric, the closest nondominated point to the ideal point

is found as (0.61, 0.70) that is the center of density (zC) of this problem. Then, the q

value is calculated as 1.610 when we solve the equation Lq((0.61, 0.70)) = 0.61q +

0.70q = 1. The equation of the line that is tangent to the Lq curve at the point zC is

z2 = −0.919z1. When the coefficients in this equation are normalized, the weight of

each objective is found as w1 = 0.479 and w2 = 0.521.
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Both DMA and TSGA are started with the same initial point (0.61, 0.70) that is the

optimal solution of max
x∈X

(w1z1(x) + w2z2(x)). For TSGA-II, suppose the randomly

selected objective is z1, then it generates the first representative point by solving the

model (P4) where zI1 = (1, 0). Then, the generated representative sets are as follows:

RDMA =
{

(0, 1), (0.61, 0.70), (0.88, 0.29), (1, 0)
}

,

RTSGA =
{

(0.13, 0.96), (0.61, 0.70), (0.88, 0.29)
}

,

RTSGA−II =
{

(0.40, 0.79), (0.75, 0.37)
}

.

In Figures 4.10, 4.11 and 4.12, these sets are shown where the representative points

are numbered according to their order of generation. The territories constructed

around each generated point in TSGA and TSGA-II are also shown.

Figure 4.10: Illustration of DMA for the bi-objective example problem (α = 0.25)

DMA generates the most diverse representatives located through the edges of the

nondominated frontier. Although TSGA starts with the same initial point, it generates

the nondominated points located closer to the central region of the frontier. This

is why the cardinality of RTSGA is less than the cardinality of RDMA. In Figure

4.12, it is clearly seen that TSGA-II satisfies the same coverage gap with only two

representatives located in the dense regions of the frontier. As a result, TSGA-II

generates the representative set with the minimum cardinality.
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Figure 4.11: Illustration of TSGA for the bi-objective example problem (α = 0.25)

Figure 4.12: Illustration of TSGA-II for the bi-objective example problem
(α = 0.25)
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4.5 Interactive Applications of TSGA and TSGA-II

For a given coverage gap value α, TSGA and TSGA-II generate representative non-

dominated points by optimizing a weighted sum of objectives as in the models (P2)

and (P6), respectively. As stated before, the coefficient of the kth objective function,

λk, in these models is composed of a scaling coefficient and a weight coefficient.

Specifically, λk =
wk

Rk

where Rk is the range of objective k on the efficient frontier

and wk is the weight of objective k calculated based on the density distribution of

the nondominated frontier. For 0 ≤ wk ≤ 1 ∀k = 1, ...,m, the size of the terri-

tories constructed around each representative nondominated point can be defined as
α

λk
∀k = 1, ...,m.

Particularly, we define our territory sizes as inversely proportional to the coefficients

of objectives (λk). Using this relation, we can adjust the weights and territory sizes

of objectives according to the preferences of the DM. We present two alternative

scenarios for integrating the preferences of the DM to our algorithms.

4.5.1 Preference-Based Weight Selection in TSGA and TSGA-II

The DM may specify preferences on objectives such that the allowed coverage gap

value is smaller for more important objectives. In this case, we consider to set the

weights of objective functions in our models as directly proportional to the weights

given by the DM. Since the territory size in an objective is defined as inversely pro-

portional to its weight coefficient, this makes the territory size larger for an objective

with less priority. For instance, for a bi-objective problem, if the DM gives more

importance to the first objective than the second one, then we set our weight coeffi-

cients such that w1 > w2. Accordingly, λ1 > λ2 and the territory size in objective 1

is smaller than objective 2, i.e.
α

λ1
<

α

λ2
. These territory sizes are shown in Figure

4.13a.
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(a) Preference-based territories (w1 > w2) (b) Desired region in the objective space

Figure 4.13: Illustrations of the interactive applications of TSGA and TSGA-II

4.5.2 Defining Indifference Regions in TSGA and TSGA-II

We may have the information related with the amounts for each objective that makes

the DM indifferent between alternative solutions. The DM can state these amounts

either at the beginning of the algorithm or can update these amounts based on the

generated points throughout the algorithm. Then, our territories can be defined as

indifference regions and their sizes can be set as directly proportional to these in-

difference amounts. Specifically, if the DM is known to be indifferent between yk

and yk + ∆k for the kth objective, then our artificial points and the coefficients of

objectives are defined as follows: y′k = yk +
∆k

Rk

and λk =
Rk

∆k

∀k ∈
{

1, ...,m
}

.

Moreover, the DM can specify a desired range of values for each objective. Then,

by using these ranges, we can define regions in the objective space such that the DM

would prefer nondominated points generated from these regions. In our algorithms,

we generate a subset of nondominated points which represents the entire frontier.

However, we could adjust our territory sizes considering to generate more nondomi-

nated points from the desired regions. Specifically, we could define different territory

sizes such that the smaller territories are constructed around the points generated from

the desired region. This allows smaller coverage gap values in the regions desired by

the DM. This way, we discriminate the nondominated points located in the desired

regions.
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An example is shown for the same bi-objective problem instance in Figure 4.13b

where the desired region defined by the DM is shown by a rectangle. As can be

seen, a smaller territory is constructed around the representative nondominated point

A than the territory of point B.

To summarize, the preferences of the DM can be integrated in our algorithms by set-

ting the objective weights and territory sizes accordingly. Therefore, our algorithms

are convenient to be designed as interactive procedures for generating representative

sets in MOMIPs.
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CHAPTER 5

COMPUTATIONAL EXPERIMENTS

In this chapter, we present the results of our computational experiments performed on

our algorithms (TSGA, TSGA-II) and three existing algorithms (DMA, SBA, TDA)

that are described in Chapter 4. We also compare our results with the representative

sets having the optimal cardinality for a given coverage gap value.

All experiments are conducted on randomly generated test instances of Multi-Objective

Knapsack Problem (MOKP) and Multi-Objective Assignment Problem (MOAP) with

three, four and five objectives (m = 3, 4, and 5). For each problem type and each m

value, we consider different problem sizes (l) and we have a set of 10 instances for

each problem size.

Additionally, in order to show that TSGA-II produces the same number of represen-

tative points with the optimal cardinality subsets, we also generate bi-objective (m =

2) knapsack and assignment problem instances. For each problem type, we have two

different problem sizes (l) and a set of 5 instances for each problem size.

In MOKP experiments, we have the following problem sizes:

• For m = 2: 100 and 200 items (2MOKP100, 2MOKP200)

• Form = 3: 10, 20, 30, 40, 50, and 100 items (3MOKP10, 3MOKP20, 3MOKP30,

3MOKP40, 3MOKP50, 3MOKP100)

• For m = 4: 10, 20, 30, and 40 items (4MOKP10, 4MOKP20, 4MOKP30,

4MOKP40)

• For m = 5: 10 and 20 items (5MOKP10, 5MOKP20)
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In MOAP experiments, we have the following problem sizes:

• For m = 2: 20 and 30 jobs (2MOAP20, 2MOAP30)

• Form = 3: 5, 10, 15, and 20 jobs (3MOAP5, 3MOAP10, 3MOAP15, 3MOAP20)

• For m = 4: 5, 10, and 15 jobs (4MOAP5, 4MOAP10, 4MOAP15)

• For m = 5: 5 and 10 jobs (5MOAP5, 5MOAP10)

We define MOKP and MOAP problems as given below:

Multi-Objective Knapsack Problem (MOKP):

“Max”
{
z1(x), z2(x), ..., zm(x)

}
s.to.

l∑
j=1

wjxj ≤ W

xj ∈
{

0, 1
}
∀ j = 1, 2, ..., l

where

zk(x) =
l∑

j=1

ckjxj,

ckj: Coefficient of item j in objective k,

wj: Weight of item j in the knapsack,

W : Knapsack capacity,

xj: Binary decision variable denoting whether item j is included in the knapsack.

For the knapsack problems with four and five objectives, we use test instances which

are generated by Kirlik and Sayın (2014). For comparison purposes, all other knap-

sack test instances are generated as in Köksalan and Lokman (2009). The objective

function coefficients and weight coefficients of the items are generated randomly from

the discrete uniform distribution taking values between 10 and 100. Then, capacity

of the knapsack is set to the half of the total of the weight coefficients of all items. To

express mathematically,

W =

l∑
j=1

wj

2
where ckj, wj ∈

[
10, 100

]
.
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Multi-Objective Assignment Problem (MOAP):

“Min”
{
z1(x), z2(x), ..., zm(x)

}
s.to.

l∑
j=1

xij = 1 ∀ i = 1, 2, ..., l

l∑
i=1

xij = 1 ∀ j = 1, 2, ..., l

xij ∈
{

0, 1
}
∀ i, j = 1, 2, ..., l

where

zk(x) =
l∑

i=1

l∑
j=1

ckijxij,

ckij: Coefficient for the cost of assignment of job i to worker j in objective k,

xij: Binary decision variable denoting whether job i is assigned to worker j or not.

Similar to the MOKP instances with two and three objectives, all MOAP test instances

are generated just like in Köksalan and Lokman (2009) such that the assignment co-

efficients in objective functions are randomly generated from the Discrete Uniform

distribution in the interval
[
10, 100

]
, i.e. ckij ∈

[
10, 100

]
.

The number of nondominated points for each of our MOKP and MOAP test instances

are provided in Appendices. In order to generate all nondominated points of these

problems, we used TSGA by setting the coverage gap value α = 0 which makes the

territory sizes equal to zero for all objectives.

Our algorithms TSGA and TSGA-II can also be implemented in Multi-Objective

Mixed Integer Programs (MOMIPs). In order to show this, we made computational

experiments with Mixed-Integer Knapsack test instances with three (3MIKP100),

four (4MIKP40) and five objectives (5MIKP20). The models of these problems

are same as the model MOKP defined above, except that half of the variables are

binary variables and half of them are defined as continuous variables between [0,

1]. These instances are also generated as in Köksalan and Lokman (2009) such that

ckj, wj ∈
[
10, 100

]
and W =

∑l
j=1wj

2
.
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As mentioned before, we decided to use the most recent search method developed by

Dächert et. al. (2017) in all experiments performed for the five algorithms (DMA,

SBA, TDA, TSGA, and TSGA-II), although SBA and TDA are originally designed

with the subspace enumeration method of Lokman and Köksalan (2013). Dächert

et. al. (2017) argue that their efficiency is based on avoiding to search redundant

lower bounds whereas other existing approaches possibly include redundancies which

makes them more complex. For further discussion, see Klamroth et. al. (2015) and

Dächert et. al. (2017).

In our experiments, we generate representative sets for different coverage gap values

on the interval [0, 1]. We use five different coverage gap values (α = 0.05, 0.10, 0.15,

0.20 and 0.25) which are defined as a percentage of the ranges of all objectives, where

the range of an objective on the nondominated frontier of a maximization problem can

be expressed as:

Rk = max
x∈XE

(zk(x))− min
x∈XE

(zk(x))

Since we generated all nondominated points of each of our MOIP test instances, we

are able to calculate the range values by using the true ideal and nadir values in all

objectives. However, in MOMIP experiments, since the true nadir point is not known,

we use the payoff nadir point to calculate the range of each objective.

In addition to the algorithms, since we know all nondominated points of each problem

instance, we solve the optimal cardinality model for each instance and α value:

Optimal Cardinality Problem:

Max

n∑
i=1

ri

s.to.

zik − z
j
ktij −M(1− tij) ≤ αRk ∀ i, j = 1, 2, ..., n, ∀ k = 1, 2, ...,m

n∑
i=1

tij = 1 ∀ j = 1, 2, ..., n

n∑
j=1

tij ≤Mri ∀ i = 1, 2, ..., n

ri ∈
{

0, 1
}
∀ i = 1, 2, ..., n

tij ∈
{

0, 1
}
∀ i, j = 1, 2, ..., n
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where n is the number of nondominated points of the problem,

M is a sufficiently large number,

zjk : kth objective function value of nondominated point j,

tij: Binary variable denoting whether nondominated point j is represented by point i,

ri: Binary variable denoting whether nondominated point i is selected as a represen-

tative.

Using the source code of Dächert et. al. (2017), all algorithms are coded in C pro-

gramming language by using the environment of Microsoft Visual Studio 2017 Pro-

fessional. We run these algorithms on parallel computers with Intel(R)Core(TM)i7-

477OS CPU @3.10 GHz, 16 GB RAM and Windows 10. As an optimization tool

to solve our mathematical models, we use the callable library of IBM ILOG CPLEX

12.5. Lastly, we solve the optimal cardinality problems using the software General

Algebraic Modeling System (GAMS) 23.9.5 and IBM ILOG CPLEX solver inte-

grated in its portfolio.

In Appendices, we report the averages and standard deviations of the performance

measures (cardinality, solution times and number of models solved) for all experi-

ments conducted with five algorithms. Here, we summarize our results by graphical

analyses. Firstly, in order to show the cardinality improvement of TSGA and TSGA-

II for different problem sizes, we compare the average cardinalities for 3-objective

knapsack problem instances in Figure 5.1. For the solution time improvement of

TSGA, a similar graph is provided in Figure 5.2. In both graphs, the values corre-

sponding to an algorithm are the averages of 10 test instances for each problem size.

Figure 5.1 shows that cardinality of our algorithms (TSGA and TSGA-II) are always

smaller than the cardinality of the existing approaches (DMA, SBA, TDA) for all

problem sizes. In addition, as the problem size increases, the gap between algorithms

also increases which shows that the cardinality improvement becomes more signif-

icant in large-sized problems. Specifically, for 3MOKP100 instances, the average

cardinality of TSGA is approximately 34% and 45% less than the average cardinali-

ties of DMA and TDA, respectively. For the same instances, the average cardinality

of TSGA-II is approximately 17% less than the average cardinality of TSGA.
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Figure 5.1: Cardinality comparison for different problem sizes of 3-objective
knapsack problem (Average of 10 replications, α = 0.05)

* Optimal cardinality model results could not be reported for 3MOKP100 instances since the models
were not solvable within 12 hours.

Moreover, the average cardinality of TSGA-II is the closest to the optimal cardinality

for all problem sizes. Particularly, for 3MOKP10 and 3MOKP20 instances, TSGA-II

generates the same representative sets with the optimal cardinality model as can be

seen in Figure 5.1.

Figure 5.2 shows that DMA is solved in excessive solution times especially in large-

sized problems. In terms of computational efficiency, TSGA is the best approach

among all other approaches. As the problem size increases, the solution time im-

provement of TSGA increases substantially. Although TDA solves a single model

in each iteration and TSGA solves as many models as the number of subspaces, the

average solution times of TSGA are less than the average solution times of TDA. For

3MOKP100 instances, the solution times of TSGA are approximately 41% and 46%

lower than those of SBA and TDA on the average. Lastly, TSGA-II requires longer

solution times than SBA and TDA due to the high number of models solved in each

iteration. However, it provides a significant improvement in the cardinality as shown

in Figure 5.1.
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Figure 5.2: CPU time (secs) comparison for different problem sizes of 3-objective
knapsack problem (Average of 10 replications, α = 0.05)

In Figures 5.3 and 5.4, for a specific problem size, the cardinalities and solution times

of each algorithm are compared for 3, 4 and 5-objective problems. The values plotted

are the averages of 10 instances for 3MOKP20, 4MOKP20 and 5MOKP20 problems.

As can be seen in Figure 5.3, TSGA and TSGA-II generate representative sets with

smaller cardinalities than DMA, SBA and TDA for all problem sizes. As the number

of objectives increases, their cardinality improvements seem to be more significant.

For 4MOKP20 instances, the average cardinality of TSGA is approximately 42% less

than DMA and TDA. Moreover, the cardinalities of the representative sets generated

by TSGA-II are always closer to the optimal cardinalities. On the average, the number

of representative points generated by TSGA-II is approximately 7%, 10% and 16%

higher than the optimal cardinalities for 3, 4 and 5-objective problems, respectively.

Figure 5.4 shows the time improvement of TSGA that increases as the number of ob-

jectives increases. For a knapsack problem with 20 items, as the number of objectives

increases from three to four, the saving in solution times increases from approxi-

mately 33% to 56% with respect to SBA and TDA.
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Figure 5.3: Cardinality comparison for 3, 4 and 5-objective knapsack problems
(Average of 10 replications, l = 20, α = 0.10)

Figure 5.4: CPU time (secs) comparison for 3, 4 and 5-objective knapsack problems
(Average of 10 replications, l = 20, α = 0.10)

Similar results are obtained in our experiments with MOMIPs. As can be seen in

Figures 5.5 and 5.6, TSGA and TSGA-II show better performances in MOMIPs. In

terms of the average cardinality, TSGA generates approximately 45-55% less number

of points than both SBA and TDA for all MOMIP instances. These cardinality im-

provements increases up to 65% for TSGA-II. (Since the problem sizes of 5MIKP20

instances are much smaller than 3MIKP100 and 4MIKP40 instances, the cardinality
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improvement of TSGA-II seems to be less significant for 5MIKP20 instances.) In

terms of solution times, TSGA again outperforms all other approaches. Its solution

times are approximately 57%, 73% and 65% less than those of SBA for 3MIKP100,

4MIKP40 and 5MIKP20 instances, respectively.

Figure 5.5: Cardinality comparison for 3, 4 and 5-objective mixed-integer knapsack
problems (Average of 10 replications, α = 0.10)

Figure 5.6: CPU time (secs) comparison for 3, 4 and 5-objective mixed-integer
knapsack problems (Average of 10 replications, α = 0.10)
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As discussed in Chapter 4, TSGA and TSGA-II choose the objective weights based

on the tangent plane to the Lq surface at the center of density. However, for the test

instances used in our experiments, we observe that the calculated weights of objec-

tives are approximately equal to each other. For these specific problem types, it can

be concluded that we can generate points from the dense regions by assigning equal

weights to all objectives without using the Lq surface. Based on this observation, we

conducted additional experiments for TSGA and TSGA-II.

Results of the experiments conducted by using the original weights and equal weights

are compared in Appendix F. For both TSGA and TSGA-II, the results of two varia-

tions are very similar to each other in terms of the cardinality of the generated repre-

sentative sets, the number of models solved and the solution times. However, TSGA

and TSGA-II use the problem-specific weights calculated based on the density distri-

bution of the nondominated frontier of any type of MOMIP.

As shown in Section 4.3, TSGA-II generates the representative set with the minimum

cardinality for a given coverage gap in bi-objective mixed-integer problems. In Table

5.1, the averages and standard deviations of the solution times of TSGA-II and the

optimal cardinality model are provided for 2MOKP200 and 2MOAP30 test instances.

As can be seen, for α = 0.10, the solution times of TSGA-II are approximately 100%

and 20% less than the solution times of the optimal cardinality model for the knapsack

and assignment problems, respectively.

Table 5.1: CPU time (secs) comparison of TSGA-II and
the optimal cardinality model for bi-objective problems

Problem α
TSGA-II Optimal

Avg. StDev. Avg. StDev.

2MOKP200

0.05 0.69 0.06 633.37 708.08
0.10 0.33 0.04 33.43 37.14
0.15 0.20 0.09 26.61 29.00
0.20 0.22 0.04 26.08 11.76
0.25 0.17 0.07 8.88 4.68

2MOAP30

0.05 0.62 0.09 0.56 0.15
0.10 0.36 0.07 0.46 0.11
0.15 0.22 0.02 0.63 0.09
0.20 0.18 0.06 0.37 0.16
0.25 0.10 0.01 0.33 0.11
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Table 5.1 also shows that as the coverage gap value decreases (and the number of

generated points increases), the solution time improvement of TSGA-II increases sig-

nificantly. In addition, since the problem sizes of 2MOKP200 instances are larger

than the 2MOAP30 instances, we can conclude that the solution time improvement

becomes more significant as the problem size grows. Especially for large-sized bi-

objective mixed-integer problems, TSGA-II is very efficient since it generates the

minimum cardinality representative sets much faster than the mathematical model.

Lastly, we test the sensitivity of TSGA-II to the objective function chosen randomly

at the beginning of the algorithm. For this purpose, we conduct preliminary exper-

iments with 3MOKP100 and 3MOAP20 test instances. For different coverage gap

values, the averages and standard deviations of the cardinalities of the 10 instances

for each problem type are reported in Table 5.2. Results indicate that different objec-

tives chosen at the beginning of the algorithm does not affect the solution quality of

TSGA-II significantly.

Table 5.2: The number of nondominated points generated for different
objective functions chosen at the beginning of TSGA-II

Problem α
z1 z2 z3

Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP100

0.05 37.80 6.55 38.10 7.85 36.70 6.80
0.10 11.40 2.12 11.10 2.82 11.30 2.21
0.15 5.70 1.06 5.30 1.16 5.40 0.70
0.20 3.80 0.42 3.60 0.52 3.80 0.42
0.25 3.00 0.00 3.00 0.47 3.00 0.00

3MOAP20

0.05 48.80 4.69 48.60 4.97 49.50 4.79
0.10 14.00 1.63 14.00 1.63 13.80 0.92
0.15 7.00 0.82 6.60 0.52 6.80 0.79
0.20 3.90 0.57 4.20 0.63 3.70 0.68
0.25 2.90 0.32 2.90 0.57 2.80 0.42
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CHAPTER 6

CONCLUSIONS

In real-life multi-objective decision making problems, as the number of objectives and

the problem size increase, the number of nondominated points increases substantially.

In order to ease the decision making process of the DM and in order to decrease

the computational effort, we prefer generating only a small subset of nondominated

points. Considering the performance measures desired by the DM, presenting such

a representative subset is more useful and practical. In this thesis, we develop two

algorithms to generate representative sets of nondominated points in MOMIPs and

we assess the quality of our sets by using the coverage gap and cardinality measures.

For a prespecified coverage gap value, we show that our algorithms end up with less

cardinality in a shorter amount of time than the existing approaches in the literature.

Our first approach, TSGA, is developed based on the observations on the density dis-

tribution and shape of the nondominated frontier. Instead of selecting the most diverse

representative points as in DMA and SBA, we find out that if the representatives are

selected closer to each other and located in the dense regions of the frontier, then more

points could be represented with less number of representatives. In order to achieve

this, we iteratively solve a weighted sum problem in our algorithms. Specifically,

we observe that the nondominated points with better weighted sum values are able to

represent more nondominated points. Furthermore, in order to guarantee the desired

coverage gap value, we define territories around each generated point and search for

the next representative after excluding these territories from the search space. Our

experiments show that TSGA satisfies a given coverage gap value with less number

of representatives and in a shorter time than the existing approaches.
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Our second algorithm, TSGA-II, yields better results than TSGA in terms of the car-

dinality of the generated representative sets. Although TSGA-II requires longer so-

lution times than the other approaches, it outperforms all of them in terms of the

solution quality. In TSGA-II, we again define territories around each generated point

and iteratively solve a weighted sum problem in the territory-excluded search space.

TSGA-II is designed so that we can reduce one dimension of the origional problem.

Specifically, for an m-objective problem, we optimize the weighted sum of (m − 1)

objectives excluding a randomly selected one. The territories and subspaces are also

defined for (m − 1) objectives throughout the solution process. Since we work on

an (m − 1)-dimensional objective space, the generated points are able to represent

more nondominated points in the territory-excluded regions. As a result, for a given

coverage gap value, TSGA-II represents the nondominated frontier of a MOMIP by a

smaller number of representatives than the existing approaches. This way, it provides

a significant improvement in the solution quality especially in large-sized problems.

For both TSGA and TSGA-II, we provide some application alternatives such that the

DM can incorporate in the weight selection process. The DM can either define some

preferences among objectives or specify an indifference range for each objective.

In both cases, we can define the weight of each objective as inversely proportional

to the territory size. Such an interactive process would be beneficial for presenting

representative sets that are more suitable to the preferences of the DM.

We conduct our computational experiments with the randomly generated MOKP,

MOAP and mixed-integer knapsack problem test instances with three, four and five

objectives. Then, we compare our results with the results of the existing approaches

in the literature that are called as DMA, SBA and TDA. To make a fair comparison,

we implement all algorithms by using the decomposition method recently developed

by Dächert et. al. (2017). These comparisons are made in terms of the cardinality of

the generated representative sets, the solution times and the number of models solved

by each algorithm. Our results show that TSGA and TSGA-II work well and outper-

form the existing approaches in terms of both the solution qualities and the solution

times.
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As future research, some interactive and problem specific solution strategies can be

designed for TSGA and TSGA-II. The preferences of the DM can be incorporated

throughout the solution process. The coverage gap value can be altered in each iter-

ation based on the region where the generated nondominated point is located. Fur-

thermore, in order to decrease our solution times (especially for TSGA-II), instead of

searching all subspaces in each iteration, the representative points may be generated

only from the specific regions desired by the DM. Lastly, an interesting work may be

changing the structure of the territories constructed around each representative point.

Especially for problems with more than two objectives, these territories may be de-

fined so that more subspaces could be excluded from the search space in each iteration

resulting in higher computational efficiency.
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APPENDIX A

LISTS OF THE GENERATED MOKP AND MOAP TEST INSTANCES (ALL

NONDOMINATED POINTS)

Table A.1: MOKP and MOAP Instances with m = 2

2MOKP100 2MOKP200 2MOAP20 2MOAP30
1 85 296 69 89
2 172 417 56 80
3 94 336 56 88
4 112 431 53 80
5 119 408 65 77

Table A.2: MOKP Instances with m = 3

3MOKP10 3MOKP20 3MOKP30 3MOKP40 3MOKP50 3MOKP100
1 6 54 125 245 221 3523
2 10 98 83 168 674 3114
3 14 57 198 175 750 2714
4 2 13 65 112 346 4773
5 6 25 206 212 736 2433
6 15 43 65 252 537 7203
7 3 37 88 269 379 3307
8 8 14 113 349 526 3062
9 9 17 147 90 127 4355

10 20 16 289 420 913 3198
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Table A.3: MOAP Instances with m = 3

3MOAP5 3MOAP10 3MOAP15 3MOAP20
1 20 104 578 1970
2 21 135 650 1247
3 20 169 940 1806
4 28 193 362 2150
5 18 270 640 2246
6 13 183 664 2813
7 15 249 554 1825
8 19 125 801 1591
9 6 325 299 1916

10 20 141 597 1521

Table A.4: MOKP Instances with m = 4 and m = 5

4MOKP10 4MOKP20 4MOKP30 4MOKP40 5MOKP10 5MOKP20
1 10 60 563 901 20 220
2 13 143 535 5018 19 95
3 7 325 226 508 23 76
4 6 17 517 1248 28 89
5 9 74 281 2351 13 110
6 19 152 191 1920 9 87
7 15 175 480 1435 9 61
8 5 116 262 741 25 211
9 22 77 186 3409 6 237

10 10 229 735 555 10 426

Table A.5: MOAP Instances with m = 4 and m = 5

4MOAP5 4MOAP10 4MOAP15 5MOAP5 5MOAP10
1 50 657 9463 37 3647
2 34 435 6254 42 2838
3 60 789 6032 42 3363
4 10 7099 4657 61 4832
5 45 1441 5748 48 2195
6 36 789 9921 50 4839
7 31 1234 8412 57 2622
8 24 671 4248 59 2775
9 40 1311 4437 60 3502

10 45 844 4346 44 3069
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APPENDIX B

CARDINALITY COMPARISON FOR DMA, SBA, TDA, TSGA, TSGA-II

AND THE OPTIMAL SUBSETS

Table B.1: Cardinality Comparison for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-II Optimal*

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP10 9.30

0.05 17.60 8.57 17.40 8.78 17.10 8.65 14.40 6.28 14.40 6.33 14.30 6.29
0.10 10.80 4.10 10.80 4.10 10.70 4.11 8.00 2.87 7.50 2.46 7.00 2.11
0.15 8.10 3.11 8.10 3.11 7.90 2.92 5.30 1.77 4.80 1.48 4.60 1.43
0.20 5.90 2.18 5.90 2.18 5.70 1.70 3.60 0.97 3.40 1.07 3.20 0.79
0.25 4.20 1.62 4.20 1.62 4.20 1.55 2.80 0.79 2.70 0.67 2.50 0.53

3MOKP20 37.40

0.05 36.80 7.07 36.90 7.08 40.70 9.10 27.70 5.66 27.00 4.90 25.30 4.52
0.10 19.00 3.06 19.00 3.06 19.40 3.72 12.20 2.25 11.70 1.89 9.80 1.32
0.15 12.50 2.51 12.50 2.51 11.90 2.23 6.80 1.14 6.60 1.17 5.40 0.70
0.20 8.80 1.32 8.80 1.32 8.60 1.78 4.90 0.88 4.00 0.82 3.50 0.53
0.25 5.60 1.17 5.60 1.17 5.60 0.84 3.30 0.48 3.00 0.67 2.50 0.53

3MOKP30 137.90

0.05 36.80 7.07 36.90 7.08 40.70 9.10 27.60 5.58 27.00 4.81 25.30 4.52
0.10 19.00 3.06 19.00 3.06 19.40 3.72 12.00 2.36 11.50 1.96 9.80 1.32
0.15 12.50 2.51 12.50 2.51 11.90 2.23 7.10 1.29 6.60 1.07 5.40 0.70
0.20 8.80 1.32 8.80 1.32 8.60 1.78 4.50 0.97 3.80 0.79 3.50 0.53
0.25 5.60 1.17 5.60 1.17 5.60 0.84 3.10 0.74 3.00 0.67 2.50 0.53

3MOKP40 229.20

0.05 39.90 9.83 39.70 9.75 41.70 12.81 26.70 8.67 25.00 8.47 22.30 7.35
0.10 20.60 4.45 20.60 4.45 20.40 3.84 10.10 2.42 9.40 1.96 7.50 2.01
0.15 12.80 2.25 12.80 2.25 12.50 2.68 5.70 1.25 5.10 1.29 4.50 1.08
0.20 8.60 2.59 8.60 2.59 8.30 2.26 3.90 0.74 3.70 0.48 3.00 0.67
0.25 5.00 1.83 5.00 1.83 4.90 1.79 3.00 1.15 2.60 0.70 2.30 0.48

3MOKP50 520.90

0.05 50.10 13.47 49.80 13.16 53.80 15.21 31.30 9.17 29.50 7.43 20.00 4.24
0.10 22.80 5.90 22.70 5.85 22.80 6.41 11.30 3.43 9.90 2.81 6.75 0.96
0.15 13.60 4.30 13.60 4.30 13.60 4.22 6.20 1.93 5.40 1.71 3.25 0.50
0.20 9.40 2.55 9.40 2.55 9.60 2.80 4.10 1.20 3.40 0.52 2.50 0.58
0.25 6.00 1.49 6.00 1.49 6.00 1.05 3.00 0.67 2.80 0.42 2.00 0.00

3MOKP100 3768.20

0.05 68.90 10.10 69.00 10.45 82.30 10.77 45.30 8.97 37.80 6.55 - -
0.10 30.20 4.69 30.20 4.69 31.80 4.59 13.30 3.33 11.40 2.12 - -
0.15 19.10 2.38 19.10 2.38 20.00 2.87 6.80 1.40 5.70 1.06 - -
0.20 12.80 1.75 12.80 1.75 13.10 2.18 4.30 0.67 3.80 0.42 - -
0.25 7.90 1.66 7.80 1.62 7.90 1.37 3.90 0.32 3.00 0.00 - -

* Results for 3MOKP100 instances are not reported since the models were not solvable within 4 hours.
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Table B.2: Cardinality Comparison for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II Optimal**

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOKP10 11.60

0.05 8.50 3.95 8.50 3.95 8.40 4.06 7.90 3.84 7.80 3.65 7.80 3.65
0.10 6.70 3.47 6.70 3.47 6.50 3.17 5.70 2.45 5.50 2.46 5.50 2.46
0.15 5.20 2.35 5.20 2.35 5.40 2.50 4.50 1.51 4.40 1.58 4.20 1.14
0.20 3.90 1.91 3.90 1.91 4.00 1.89 3.40 1.71 3.30 1.42 3.10 1.52
0.25 2.90 1.20 2.90 1.20 3.00 1.15 2.90 0.99 2.80 0.92 2.40 0.84

4MOKP20 136.80

0.05 43.30 19.93 43.30 19.93 43.60 21.00 32.80 14.99 33.10 15.55 31.80 14.35
0.10 22.00 8.45 22.00 8.45 22.80 9.31 13.00 4.69 13.10 4.61 11.90 4.31
0.15 13.70 5.68 13.70 5.68 14.40 6.67 7.60 3.47 7.40 2.37 6.40 2.07
0.20 8.60 2.91 8.60 2.91 8.40 3.37 5.00 1.76 4.30 1.34 4.00 1.15
0.25 5.70 1.95 5.70 1.95 5.30 1.95 3.30 1.06 3.20 1.03 2.80 0.79

4MOKP30 397.60

0.05 75.60 22.47 76.10 22.73 82.60 25.75 54.10 15.98 52.60 14.66 48.00 12.46
0.10 33.30 7.04 33.70 7.45 34.80 8.84 17.60 4.38 17.50 3.17 13.60 2.95
0.15 18.60 4.27 18.70 4.24 19.00 3.80 9.00 1.76 8.40 1.65 6.38 1.30
0.20 10.80 2.74 10.90 2.77 11.50 3.10 5.60 1.35 5.00 1.15 3.20 0.84
0.25 6.60 1.71 6.60 1.71 7.00 1.76 3.80 0.92 3.10 0.88 2.40 0.55

4MOKP40 1808.60

0.05 86.25 9.95 120.20 37.93 128.50 42.84 76.30 25.36 72.00 23.82 39.50 5.26
0.10 44.20 8.16 44.20 8.16 44.90 14.13 20.50 6.40 18.80 5.14 10.00 1.00
0.15 23.00 4.40 23.00 4.40 22.90 4.65 10.40 3.06 8.00 2.49 - -
0.20 13.30 2.63 13.30 2.63 13.50 2.80 6.00 1.41 5.20 0.92 - -
0.25 7.80 2.62 7.80 2.62 7.90 2.28 3.70 0.82 3.30 0.82 - -

* Fewer than 10 instances per cell are reported for 4MOKP40 since DMA could not be finalized within 12 hours.
** Results for 4MOKP40 instances (α ≥ 0.15) are not reported since the models were not solvable within 4 hours.

Table B.3: Cardinality Comparison for MOKP (m = 5)

DMA SBA TDA TSGA TSGA-II Optimal

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOKP10 16.20

0.05 14.30 6.09 14.30 6.09 14.10 6.05 13.70 5.42 13.70 5.42 13.70 5.42
0.10 10.50 3.84 10.50 3.84 10.70 4.08 9.30 3.47 9.30 3.47 9.30 3.47
0.15 8.20 2.66 8.20 2.66 8.40 2.91 7.20 1.93 7.00 2.11 6.90 2.13
0.20 6.80 2.20 6.80 2.20 6.60 2.27 5.70 1.42 5.30 1.64 5.20 1.48
0.25 4.60 1.51 4.60 1.51 4.40 1.35 4.70 1.06 4.30 1.25 3.90 0.88

5MOKP20 161.20

0.05 55.00 24.78 55.20 24.99 54.40 24.80 46.60 20.71 46.50 20.94 44.40 19.69
0.10 25.00 8.49 25.00 8.49 23.80 8.31 18.60 7.21 16.60 5.87 14.30 4.81
0.15 14.90 3.90 14.90 3.90 12.90 4.53 9.40 2.41 8.80 2.10 7.00 2.00
0.20 8.70 2.36 8.70 2.36 8.00 2.40 4.90 2.18 4.60 1.84 3.80 0.79
0.25 6.40 2.27 6.30 2.11 6.30 2.36 3.60 1.65 3.50 1.08 2.40 0.52
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Table B.4: Cardinality Comparison for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II Optimal*

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOAP5 18.00

0.05 14.20 3.88 14.10 3.98 14.30 4.22 13.30 4.11 13.10 4.15 13.10 4.15
0.10 10.70 3.30 10.60 3.27 11.10 3.70 9.40 3.37 8.90 2.88 8.80 2.82
0.15 8.30 2.45 8.20 2.44 8.30 2.71 6.80 1.75 6.70 1.77 6.60 1.78
0.20 6.10 1.91 5.90 1.97 5.80 1.99 4.90 1.45 4.50 1.51 4.30 1.34
0.25 4.60 1.90 4.40 1.90 4.50 1.96 4.00 1.63 3.50 1.08 3.10 0.99

3MOAP10 189.40

0.05 47.50 10.23 48.20 10.30 53.90 13.03 34.60 6.10 33.40 6.52 31.40 5.32
0.10 22.30 4.40 22.40 4.22 23.80 3.94 14.00 3.65 12.30 1.83 10.30 1.83
0.15 14.70 2.16 14.90 1.97 14.90 1.60 7.20 0.92 7.10 1.20 5.67 0.87
0.20 9.30 1.64 9.20 1.62 9.10 1.97 5.10 1.52 4.10 0.88 3.56 0.53
0.25 6.10 1.20 5.90 1.20 5.70 1.16 3.30 0.67 2.90 0.74 2.44 0.53

3MOAP15 608.50

0.05 62.90 10.06 61.50 10.41 68.40 13.49 39.30 9.87 37.20 6.63 26.00 3.83
0.10 28.00 2.94 27.00 3.40 28.40 3.92 14.20 2.20 11.80 2.15 - -
0.15 16.30 2.79 16.10 2.69 17.10 2.13 7.30 1.57 5.90 0.99 - -
0.20 10.50 2.07 10.20 2.04 10.60 2.22 4.90 0.74 3.90 0.74 - -
0.25 6.00 1.25 6.00 1.25 6.10 1.29 3.00 0.67 2.80 0.42 - -

3MOAP20 1908.50

0.05 78.60 6.31 78.80 7.74 92.40 7.24 56.70 6.29 48.80 4.69 - -
0.10 31.40 3.13 31.60 3.13 34.90 3.18 16.90 2.38 14.00 1.63 - -
0.15 21.20 3.22 21.50 3.44 21.40 3.27 8.60 1.17 7.00 0.82 - -
0.20 13.50 1.90 13.50 2.01 13.60 2.01 4.80 0.79 3.90 0.57 - -
0.25 8.60 1.71 8.50 1.65 8.50 1.35 3.70 0.67 2.90 0.32 - -

* Fewer than 10 instances per cell are reported for 3MOAP15 (α = 0.05). Other results are not reported for 3MOAP15 and 3MOAP20
instances since the models were not solvable within 4 hours.

Table B.5: Cardinality Comparison for MOAP (m = 4)

DMA* SBA TDA TSGA TSGA-II Optimal**

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOAP5 37.50

0.05 27.10 10.71 27.10 10.58 27.30 10.63 27.00 10.46 26.70 10.44 26.50 10.27
0.10 19.20 8.07 19.10 8.16 19.30 7.73 16.90 6.14 16.30 6.40 16.00 6.38
0.15 13.10 5.74 13.30 5.87 13.10 5.11 10.70 3.62 9.70 3.47 9.40 3.37
0.20 9.40 3.98 9.40 4.01 9.60 4.22 7.80 2.53 7.10 2.42 5.70 1.83
0.25 6.70 2.83 6.80 3.05 6.70 2.83 5.50 1.43 4.90 1.45 3.70 0.95

4MOAP10 1527.00

0.05 149.60 38.38 145.40 35.80 162.30 35.46 104.30 26.06 100.40 25.07 75.33 16.52
0.10 51.30 9.96 50.90 9.21 55.20 11.08 29.50 5.91 26.50 6.13 - -
0.15 27.20 4.96 26.80 4.83 27.60 4.86 14.50 2.59 12.20 3.12 - -
0.20 15.50 3.37 15.30 3.68 15.90 3.31 8.00 1.25 6.70 1.49 - -
0.25 9.50 1.35 9.30 1.25 9.10 1.10 5.10 0.88 4.10 0.88 - -

4MOAP15 6351.80

0.05 - - 233.40 84.84 272.90 93.70 147.30 57.22 134.00 52.74 - -
0.10 68.30 23.73 69.60 23.56 76.40 27.25 33.50 12.20 29.40 10.74 - -
0.15 34.20 12.43 35.00 12.43 35.90 12.32 13.00 4.37 11.20 3.55 - -
0.20 19.50 7.41 19.70 7.75 20.60 7.66 7.50 2.68 6.20 1.99 - -
0.25 11.00 3.94 11.00 4.00 11.70 4.35 4.90 1.60 3.80 1.14 - -

* Results are not reported for 4MOAP15 instances (α = 0.05) since DMA could not be finalized within 12 hours.
** Fewer than 10 instances are reported for 4MOAP10 (α = 0.05). Other results for 4MOAP10 and 4MOAP15 instances are not reported

since the models were not solvable within 4 hours.
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Table B.6: Cardinality Comparison for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II Optimal**

Problem |ZND| α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOAP5 50.00

0.05 36.90 5.99 36.60 5.72 36.70 5.62 35.80 5.88 35.70 5.89 35.30 5.50
0.10 21.90 4.86 22.10 4.82 23.30 5.29 21.00 3.83 20.30 3.74 20.00 3.37
0.15 14.50 3.63 14.70 3.62 14.90 2.81 12.80 2.30 11.70 1.77 11.90 2.51
0.20 10.60 2.27 10.30 2.41 11.20 2.39 8.30 1.49 8.00 1.49 7.10 1.45
0.25 8.10 1.85 7.60 1.43 8.00 1.56 6.30 1.06 5.60 1.43 4.90 0.57

5MOAP10 3368.20

0.05 - - 371.30 81.15 417.20 92.84 279.70 62.35 272.20 62.55 - -
0.10 96.00 16.32 99.00 16.93 108.90 18.93 60.60 10.43 56.60 12.84 - -
0.15 43.40 6.26 43.40 6.50 46.10 8.40 23.40 3.75 20.90 4.04 - -
0.20 24.10 5.70 24.10 6.06 25.60 6.40 12.30 2.58 10.90 1.37 - -
0.25 13.70 3.74 14.00 3.94 15.00 3.77 8.00 1.63 7.00 1.15 - -

* Results are not reported for 5MOAP10 instances (α = 0.05) since DMA could not be finalized within 12 hours.
** Results are not reported for 5MOAP10 instances since the models were not solvable within 4 hours.
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APPENDIX C

CPU TIME COMPARISON FOR DMA, SBA, TDA, TSGA AND TSGA-II

Table C.1: CPU Time (secs) Comparison for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP10

0.05 0.39 0.20 0.43 0.25 0.44 0.27 0.42 0.23 0.64 0.45
0.10 0.30 0.12 0.34 0.22 0.32 0.17 0.32 0.15 0.44 0.26
0.15 0.24 0.07 0.22 0.10 0.25 0.13 0.25 0.10 0.32 0.16
0.20 0.22 0.06 0.17 0.06 0.19 0.08 0.18 0.05 0.21 0.07
0.25 0.20 0.06 0.15 0.06 0.17 0.08 0.15 0.03 0.19 0.06

3MOKP20

0.05 1.37 0.97 1.44 0.79 1.42 0.86 1.20 0.71 2.30 1.70
0.10 0.67 0.34 0.74 0.30 0.74 0.32 0.49 0.22 0.86 0.47
0.15 0.48 0.23 0.55 0.25 0.47 0.19 0.31 0.16 0.46 0.24
0.20 0.34 0.15 0.36 0.18 0.32 0.13 0.20 0.08 0.29 0.14
0.25 0.25 0.12 0.25 0.12 0.22 0.11 0.15 0.05 0.21 0.08

3MOKP30

0.05 16.73 19.80 3.45 0.94 4.01 1.34 2.54 0.74 5.77 1.91
0.10 1.98 0.77 1.48 0.31 1.41 0.39 0.86 0.21 1.69 0.50
0.15 0.90 0.24 0.85 0.21 0.73 0.14 0.45 0.12 0.77 0.19
0.20 0.58 0.11 0.61 0.08 0.51 0.09 0.28 0.05 0.38 0.12
0.25 0.35 0.09 0.36 0.07 0.29 0.05 0.19 0.04 0.28 0.11

3MOKP40

0.05 29.47 29.00 3.97 1.26 4.43 1.97 2.37 0.95 5.61 2.73
0.10 3.17 2.25 1.69 0.48 1.60 0.43 0.73 0.24 1.36 0.51
0.15 1.07 0.40 0.97 0.17 0.85 0.20 0.37 0.12 0.59 0.21
0.20 0.58 0.21 0.61 0.18 0.52 0.14 0.23 0.04 0.35 0.07
0.25 0.32 0.14 0.34 0.14 0.29 0.12 0.16 0.07 0.23 0.09

3MOKP50

0.05 89.75 82.06 5.61 1.88 5.92 2.22 3.37 1.20 8.11 3.28
0.10 4.70 2.43 2.18 0.74 1.95 0.75 0.92 0.30 1.63 0.73
0.15 1.45 0.80 1.15 0.39 0.92 0.29 0.43 0.15 0.74 0.32
0.20 0.77 0.31 0.72 0.17 0.65 0.20 0.29 0.13 0.33 0.11
0.25 0.46 0.18 0.48 0.12 0.38 0.07 0.20 0.06 0.31 0.08

3MOKP100

0.05 1029.92 1040.06 10.83 2.45 11.82 2.13 6.37 1.84 14.84 4.35
0.10 11.74 3.83 3.64 0.50 3.38 0.58 1.35 0.43 2.35 0.69
0.15 3.69 0.95 1.99 0.17 1.76 0.30 0.55 0.16 1.00 0.30
0.20 1.62 0.51 1.23 0.15 1.04 0.17 0.35 0.05 0.50 0.08
0.25 0.77 0.23 0.73 0.16 0.59 0.10 0.37 0.11 0.40 0.04
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Table C.2: CPU Time (secs) Comparison for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOKP10

0.05 0.45 0.23 0.78 0.48 0.67 0.45 0.73 0.34 1.46 0.82
0.10 0.32 0.16 0.52 0.38 0.46 0.30 0.52 0.19 0.85 0.43
0.15 0.25 0.11 0.35 0.26 0.35 0.23 0.41 0.12 0.65 0.24
0.20 0.19 0.08 0.21 0.12 0.24 0.13 0.34 0.12 0.46 0.13
0.25 0.15 0.05 0.14 0.07 0.16 0.07 0.30 0.11 0.38 0.13

4MOKP20

0.05 22.49 31.58 8.87 5.20 10.12 7.27 6.75 4.46 30.86 26.06
0.10 2.33 1.94 3.43 1.88 3.82 2.60 1.59 0.81 4.58 2.67
0.15 0.97 0.51 1.68 0.95 1.82 1.30 0.77 0.50 1.71 0.83
0.20 0.51 0.18 0.88 0.36 0.84 0.52 0.40 0.20 0.76 0.38
0.25 0.33 0.12 0.51 0.21 0.44 0.21 0.24 0.08 0.43 0.21

4MOKP30

0.05 375.46 469.28 18.65 6.73 25.73 11.79 13.40 5.22 56.08 26.82
0.10 11.38 8.27 6.78 3.27 6.77 3.05 2.53 0.91 7.88 3.51
0.15 2.15 1.19 18.26 26.98 2.73 1.03 0.85 0.25 2.06 0.81
0.20 0.87 0.38 34.44 39.77 1.28 0.50 0.44 0.11 0.87 0.34
0.25 0.47 0.15 0.77 0.37 0.67 0.26 0.28 0.07 0.41 0.16

4MOKP40

0.05 1987.14 2479.89 40.98 20.42 51.55 27.09 21.20 11.36 121.68 69.42
0.10 90.30 82.17 10.25 3.19 10.68 5.89 3.13 1.59 10.07 5.38
0.15 6.40 4.03 3.77 0.98 3.45 1.22 1.22 0.53 2.35 1.29
0.20 1.61 0.70 1.77 0.47 1.64 0.68 0.52 0.16 0.98 0.32
0.25 0.70 0.38 44.80 16.72 0.74 0.32 0.31 0.11 0.47 0.20

* Fewer than 10 instances per cell are reported for 4MOKP40 since DMA could not be finalized within 12
hours.

Table C.3: CPU Time (secs) Comparison for MOKP (m = 5)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOKP10

0.05 0.87 0.50 2.92 2.07 2.49 1.66 2.42 1.57 7.50 6.15
0.10 0.51 0.24 1.65 0.89 1.51 0.81 1.33 0.67 3.20 2.07
0.15 0.39 0.16 1.05 0.60 0.96 0.52 0.96 0.42 1.79 0.96
0.20 0.32 0.12 0.76 0.37 0.68 0.32 0.61 0.20 1.06 0.62
0.25 0.21 0.07 0.38 0.16 0.34 0.15 0.44 0.16 0.65 0.26

5MOKP20

0.05 45.74 61.82 31.81 27.10 37.56 37.39 28.68 28.97 177.36 181.65
0.10 4.30 4.30 9.13 7.48 9.25 7.89 5.73 5.31 18.12 15.77
0.15 1.23 0.69 3.46 2.29 2.69 2.35 1.51 0.98 3.97 2.53
0.20 0.55 0.24 1.48 0.66 1.24 0.63 0.65 0.53 1.28 1.01
0.25 0.38 0.16 0.87 0.44 0.80 0.50 0.41 0.27 0.69 0.32
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Table C.4: CPU Time (secs) Comparison for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOAP5

0.05 0.73 0.26 0.62 0.20 0.70 0.24 0.53 0.18 1.10 0.45
0.10 0.48 0.19 0.39 0.14 0.48 0.22 0.36 0.14 0.63 0.27
0.15 0.35 0.12 0.29 0.11 0.33 0.14 0.24 0.08 0.44 0.16
0.20 0.25 0.09 0.20 0.07 0.27 0.11 0.18 0.06 0.26 0.11
0.25 0.20 0.08 0.15 0.07 0.20 0.10 0.15 0.07 0.19 0.06

3MOAP10

0.05 12.36 10.79 4.72 1.19 5.35 1.58 2.74 0.69 8.41 2.84
0.10 1.74 0.61 1.72 0.44 1.82 0.36 0.91 0.25 1.92 0.54
0.15 0.93 0.20 1.05 0.25 0.96 0.14 0.44 0.07 0.89 0.22
0.20 0.53 0.10 0.54 0.13 0.50 0.14 0.28 0.10 0.40 0.14
0.25 0.33 0.07 0.33 0.07 0.28 0.08 0.18 0.04 0.26 0.09

3MOAP15

0.05 66.42 57.03 8.68 1.78 9.27 2.34 4.13 1.17 14.86 4.78
0.10 4.10 0.99 3.16 0.38 3.20 0.75 1.24 0.23 2.60 0.85
0.15 1.52 0.25 1.66 0.26 1.63 0.23 0.61 0.12 0.98 0.39
0.20 0.85 0.19 1.00 0.25 0.88 0.19 0.40 0.07 0.50 0.10
0.25 0.46 0.11 0.55 0.15 0.47 0.11 0.24 0.05 0.33 0.05

3MOAP20

0.05 217.16 101.19 16.13 1.90 17.89 1.40 8.05 1.26 29.44 3.61
0.10 9.24 2.12 5.42 0.60 5.59 0.83 1.98 0.30 4.45 0.75
0.15 3.52 0.87 3.17 0.62 2.78 0.46 0.94 0.16 1.67 0.32
0.20 1.60 0.25 1.70 0.28 1.45 0.22 0.51 0.13 0.72 0.12
0.25 0.90 0.23 0.96 0.20 0.79 0.12 0.35 0.06 0.50 0.07

Table C.5: CPU Time (secs) Comparison for MOAP (m = 4)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOAP5

0.05 2.21 1.56 3.86 2.43 3.50 2.01 2.70 1.40 11.03 7.45
0.10 1.19 0.74 2.32 1.55 2.30 1.37 1.48 0.75 4.47 2.86
0.15 0.68 0.37 1.48 1.02 1.32 0.76 0.85 0.35 1.86 0.98
0.20 0.44 0.24 0.88 0.63 0.83 0.53 0.54 0.21 1.09 0.55
0.25 0.33 0.18 0.53 0.42 0.49 0.33 0.36 0.13 0.59 0.27

4MOAP10

0.05 7596.01 8417.43 54.35 18.09 65.58 22.99 33.45 10.59 257.31 137.87
0.10 32.10 20.26 13.65 3.86 14.93 4.43 5.44 1.93 22.19 10.30
0.15 4.04 1.71 5.29 1.34 5.26 1.44 1.81 0.46 5.53 2.88
0.20 1.28 0.38 2.38 0.73 2.30 0.85 0.75 0.16 1.68 0.67
0.25 0.66 0.10 1.15 0.32 0.98 0.26 0.45 0.10 0.74 0.28

4MOAP15

0.05 - - 151.03 64.26 176.79 75.15 52.24 26.66 668.63 495.34
0.10 644.76 722.79 30.52 12.36 33.54 15.09 7.03 3.09 43.69 25.67
0.15 22.63 14.32 11.12 4.47 11.14 4.90 1.97 0.75 6.95 3.17
0.20 4.00 2.24 4.77 2.00 4.62 2.44 0.93 0.32 2.32 0.92
0.25 1.22 0.60 2.26 1.03 1.82 0.82 0.55 0.17 0.97 0.38

* Results are not reported for 4MOAP15 instances (α = 0.05) since DMA could not be finalized within 12 hours.
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Table C.6: CPU Time (secs) Comparison for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOAP5

0.05 5.46 2.02 10.25 3.89 10.24 3.73 8.73 3.13 43.74 14.41
0.10 1.71 0.76 19.94 44.59 5.87 2.98 3.68 0.99 14.12 5.42
0.15 0.84 0.24 5.94 8.74 3.19 1.22 1.91 0.62 4.86 1.37
0.20 0.55 0.13 1.77 0.82 2.06 1.08 0.97 0.24 2.30 0.83
0.25 0.41 0.12 1.01 0.38 1.12 0.49 0.68 0.23 1.14 0.50

5MOAP10

0.05 - - 709.61 274.31 848.09 373.67 445.72 209.64 7376.14 5066.06
0.10 962.44 849.15 127.65 49.93 130.43 47.74 40.66 16.69 303.68 177.52
0.15 30.48 14.75 33.47 12.48 30.93 14.20 7.46 3.20 36.95 19.56
0.20 5.56 2.90 13.36 6.87 12.16 6.90 2.88 1.39 8.76 3.11
0.25 1.57 0.90 5.08 2.75 4.90 2.93 1.39 0.51 3.46 1.53

* Results are not reported for 5MOAP10 instances (α = 0.05) since DMA could not be finalized within 12 hours.
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APPENDIX D

COMPARISON OF NUMBER OF MODELS SOLVED FOR DMA, SBA, TDA,

TSGA AND TSGA-II

Table D.1: Comparison of Number of Models Solved for MOKP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP10

0.05 7.60 3.81 28.20 15.17 30.20 17.47 26.60 13.78 55.70 40.82
0.10 6.30 2.54 23.10 10.54 24.50 12.17 21.20 9.48 36.80 22.58
0.15 5.00 1.70 17.60 6.47 19.30 8.72 16.50 6.52 26.20 14.57
0.20 4.30 1.25 14.90 4.75 15.90 6.49 12.60 3.53 17.70 6.78
0.25 3.80 1.14 13.70 4.62 14.60 6.22 10.90 2.60 15.50 5.48

3MOKP20

0.05 17.60 8.57 68.60 36.52 70.00 38.14 53.00 25.49 142.10 94.94
0.10 10.80 4.10 41.40 17.02 42.00 17.08 28.00 10.38 54.40 30.25
0.15 8.10 3.11 30.90 13.58 30.40 12.31 18.50 6.70 28.00 12.66
0.20 5.90 2.18 21.10 8.46 21.10 7.34 12.50 3.60 18.10 8.67
0.25 4.20 1.62 14.70 5.72 15.10 5.88 9.80 2.94 13.30 5.06

3MOKP30

0.05 36.80 7.07 157.00 36.21 190.70 55.11 106.90 25.70 321.70 103.87
0.10 19.00 3.06 75.70 13.78 81.30 21.08 44.20 9.87 97.00 26.20
0.15 12.50 2.51 46.20 9.60 45.60 9.36 23.30 4.06 42.30 12.76
0.20 8.80 1.32 32.00 4.00 31.80 5.85 16.70 3.47 21.50 6.54
0.25 5.60 1.17 19.70 4.11 19.60 3.03 11.40 1.71 15.00 4.85

3MOKP40

0.05 39.90 9.83 167.10 47.61 192.00 71.91 97.70 34.10 298.00 136.60
0.10 20.60 4.45 79.40 19.83 81.60 16.91 35.60 9.73 72.10 19.20
0.15 12.80 2.25 46.90 8.31 46.50 11.51 19.70 4.57 31.30 10.88
0.20 8.60 2.59 30.30 9.13 30.20 8.40 13.00 2.58 19.60 2.95
0.25 5.00 1.83 17.40 6.22 17.10 6.12 10.20 3.88 12.80 4.21

3MOKP50

0.05 50.10 13.47 220.00 67.32 262.90 92.82 116.70 37.46 390.90 135.55
0.10 22.80 5.90 90.00 27.76 98.80 34.89 40.10 13.43 83.20 36.35
0.15 13.60 4.30 49.60 16.61 51.20 17.15 20.80 7.02 33.30 14.43
0.20 9.40 2.55 33.00 8.26 34.50 10.36 13.80 4.39 17.10 4.38
0.25 6.00 1.49 21.30 4.88 21.60 3.50 10.00 2.00 14.60 2.95

3MOKP100

0.05 68.90 10.10 303.80 50.17 416.40 58.60 167.90 36.88 546.80 120.74
0.10 30.20 4.69 113.50 18.20 138.30 25.23 46.90 14.17 92.80 22.14
0.15 19.10 2.38 68.40 8.42 77.90 13.12 22.60 5.27 36.20 9.48
0.20 12.80 1.75 44.60 6.28 47.80 8.93 14.00 2.31 19.90 3.57
0.25 7.90 1.66 27.10 5.38 27.60 4.53 12.70 0.95 14.70 1.49
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Table D.2: Comparison of Number of Models Solved for MOKP (m = 4)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOKP10

0.05 8.50 3.95 49.20 26.64 49.80 27.31 42.80 24.52 120.00 80.35
0.10 6.70 3.47 38.80 23.20 38.00 20.27 30.80 15.96 66.60 47.46
0.15 5.20 2.35 28.00 16.28 30.60 17.17 23.00 10.07 46.20 24.97
0.20 3.90 1.91 20.20 11.08 21.80 10.76 17.80 10.76 29.60 17.36
0.25 2.90 1.20 14.20 6.88 15.40 7.04 14.40 5.58 22.20 9.94

4MOKP20

0.05 43.30 19.93 443.20 275.96 489.20 332.02 259.40 149.88 1723.00 1344.08
0.10 22.00 8.45 194.20 112.95 225.00 136.98 86.00 39.33 314.60 171.98
0.15 13.70 5.68 101.60 57.65 121.00 82.08 47.00 32.69 117.60 55.51
0.20 8.60 2.91 55.40 22.03 58.40 34.80 26.80 11.68 48.20 20.96
0.25 5.70 1.95 32.80 12.02 31.20 14.31 16.20 6.05 29.80 13.31

4MOKP30

0.05 75.60 22.47 848.20 309.90 1062.80 431.71 449.60 151.87 2848.40 1147.50
0.10 33.30 7.04 308.60 87.49 367.00 149.28 114.40 37.35 456.80 206.77
0.15 18.60 4.27 143.80 46.90 161.20 49.76 50.00 13.27 134.40 55.72
0.20 10.80 2.74 73.80 22.47 82.60 31.22 26.60 6.52 54.60 24.56
0.25 6.60 1.71 39.80 16.12 43.60 15.49 18.20 5.01 26.80 11.56

4MOKP40

0.05 86.25 9.95 1651.00 724.71 2097.00 977.34 702.00 341.66 6056.60 3240.56
0.10 44.20 8.16 443.60 112.25 537.40 256.67 143.20 67.02 578.60 289.92
0.15 23.00 4.40 172.00 37.64 194.60 55.91 61.80 25.77 135.00 74.02
0.20 13.30 2.63 85.60 19.32 96.40 34.18 30.20 9.20 61.00 19.04
0.25 7.80 2.62 0.93 0.36 47.80 17.44 18.20 5.90 29.60 13.00

* Fewer than 10 instances per cell are reported for 4MOKP40 since DMA could not be finalized within 12 hours.

Table D.3: Comparison of Number of Models Solved for MOKP (m = 5)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOKP10

0.05 14.30 6.09 175.80 106.04 173.30 104.30 154.90 86.22 698.90 536.68
0.10 10.50 3.84 118.10 56.28 120.60 58.36 97.00 44.31 320.50 205.53
0.15 8.20 2.66 81.60 39.60 84.70 43.50 70.20 26.54 180.40 92.67
0.20 6.80 2.20 63.40 28.48 62.30 27.15 49.30 15.11 108.60 73.88
0.25 4.60 1.51 34.10 12.90 33.00 13.76 37.00 12.03 67.10 34.00

5MOKP20

0.05 55.00 24.78 1448.00 1257.49 1511.00 1367.14 923.30 819.24 9331.60 9104.69
0.10 25.00 8.49 485.60 399.59 489.10 367.34 272.50 228.08 1185.70 972.87
0.15 14.90 3.90 200.70 131.13 170.10 135.63 94.60 61.66 297.20 176.52
0.20 8.70 2.36 90.30 43.46 84.30 42.28 43.20 39.51 95.80 81.37
0.25 6.40 2.27 55.30 27.53 58.50 34.17 27.70 19.20 51.00 28.93
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Table D.4: Comparison of Number of Models Solved for MOAP (m = 3)

DMA SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOAP5

0.05 14.20 3.88 52.90 16.00 55.90 19.26 49.20 16.32 116.20 45.77
0.10 10.70 3.30 40.10 13.51 43.20 17.00 34.40 13.54 66.90 29.24
0.15 8.30 2.45 30.10 9.50 30.10 10.32 25.00 7.21 45.00 17.44
0.20 6.10 1.91 21.60 7.28 21.20 7.77 17.80 6.29 26.70 12.08
0.25 4.60 1.90 15.80 7.08 16.30 7.42 14.30 6.55 19.20 6.97

3MOAP10

0.05 47.50 10.23 209.30 50.50 254.30 68.61 130.20 26.47 497.10 165.85
0.10 22.30 4.40 88.60 19.24 100.80 19.66 51.10 14.37 114.60 30.91
0.15 14.70 2.16 54.30 8.25 56.80 7.16 24.10 3.38 53.20 13.36
0.20 9.30 1.64 32.00 5.83 32.80 7.73 17.10 5.65 24.80 8.75
0.25 6.10 1.20 20.50 4.22 20.00 4.78 11.10 2.02 15.10 5.65

3MOAP15

0.05 62.90 10.06 269.70 47.18 333.60 77.74 151.30 42.67 586.90 164.18
0.10 28.00 2.94 106.30 12.07 124.70 21.80 51.10 10.35 108.00 35.44
0.15 16.30 2.79 58.30 8.53 67.30 8.98 25.40 5.46 40.10 13.38
0.20 10.50 2.07 35.90 7.78 38.60 8.25 16.70 2.83 22.10 5.74
0.25 6.00 1.25 20.70 4.16 21.80 4.92 10.30 2.63 14.40 3.13

3MOAP20

0.05 78.60 6.31 355.50 38.05 455.70 32.35 219.20 25.76 818.90 98.59
0.10 31.40 3.13 127.60 12.33 155.60 20.38 62.40 9.48 128.60 21.58
0.15 21.20 3.22 80.20 13.75 84.60 13.72 30.60 4.30 48.80 7.66
0.20 13.50 1.90 47.20 7.27 50.10 7.28 16.60 3.41 22.10 3.84
0.25 8.60 1.71 28.80 5.09 29.70 4.60 12.20 2.10 15.20 2.20

Table D.5: Comparison of Number of Models Solved for MOAP (m = 4)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOAP5

0.05 27.10 10.71 276.60 157.68 290.80 159.17 234.60 116.40 1131.40 743.57
0.10 19.20 8.07 191.00 121.33 203.20 118.08 138.40 66.10 476.80 306.71
0.15 13.10 5.74 124.00 81.18 120.20 68.31 81.00 33.41 190.60 102.79
0.20 9.40 3.98 76.20 50.07 77.40 48.58 52.40 19.51 113.80 58.21
0.25 6.70 2.83 46.80 32.20 47.20 31.16 34.80 12.87 60.40 30.07

4MOAP10

0.05 149.60 38.38 2077.60 630.21 2648.40 811.26 1078.20 333.31 11365.00 5809.17
0.10 51.30 9.96 580.00 141.18 712.60 185.51 242.40 72.08 1165.40 552.84
0.15 27.20 4.96 239.60 50.88 275.00 67.65 98.40 25.14 310.40 163.68
0.20 15.50 3.37 116.00 32.47 129.60 41.53 44.60 8.15 100.80 38.20
0.25 9.50 1.35 61.00 13.33 58.40 11.89 27.60 6.26 44.20 17.47

4MOAP15

0.05 - - 3798.60 1530.84 5206.00 2053.43 1566.80 733.72 21795.60 15383.83
0.10 68.30 23.73 838.40 320.61 1120.20 473.90 260.80 111.70 1574.60 916.54
0.15 34.20 12.43 325.20 125.62 405.40 166.66 80.40 30.10 266.40 117.86
0.20 19.50 7.41 147.60 58.07 184.40 88.33 40.20 14.52 96.40 40.49
0.25 11.00 3.94 72.20 29.79 82.00 35.69 23.80 7.79 39.80 16.12

* Results are not reported for 4MOAP15 instances (α = 0.05) since DMA could not be finalized within 12 hours.
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Table D.6: Comparison of Number of Models Solved for MOAP (m = 5)

DMA* SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOAP5

0.05 36.90 5.99 750.90 280.56 774.70 262.15 641.60 186.02 4467.80 1423.35
0.10 21.90 4.86 427.10 180.77 500.20 238.22 337.00 94.11 1524.60 581.19
0.15 14.50 3.63 252.00 106.63 282.70 108.05 182.70 58.19 512.00 150.90
0.20 10.60 2.27 143.80 64.96 184.90 97.75 93.10 23.05 249.10 94.38
0.25 8.10 1.85 87.20 30.92 102.10 44.40 64.30 21.63 122.30 56.63

5MOAP10

0.05 - - 22859.50 8073.70 29379.30 11360.11 10408.50 4090.54 256990.30 162147.28
0.10 96.00 16.32 4475.50 1596.49 5413.10 1763.32 1509.10 511.96 12793.70 6761.05
0.15 43.40 6.26 1256.90 422.89 1430.90 565.93 354.10 127.90 1837.10 879.57
0.20 24.10 5.70 517.20 250.51 615.30 335.27 161.50 68.76 485.00 170.97
0.25 13.70 3.74 209.10 100.31 259.70 142.45 82.60 27.17 203.50 69.31

* Results are not reported for 5MOAP10 instances (α = 0.05) since DMA could not be finalized within 12 hours.
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APPENDIX E

COMPARISONS FOR EXPERIMENTS WITH MOMIPS

Table E.1: Cardinality Comparison for MOMIPs

SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MIKP100

0.05 93.10 16.60 112.80 18.48 63.90 14.43 47.30 11.00
0.10 33.50 4.86 37.60 4.93 16.80 3.36 12.90 2.42
0.15 22.00 4.03 22.10 4.48 7.60 1.78 6.20 0.92
0.20 14.20 2.97 14.90 3.31 4.90 0.88 3.70 0.48
0.25 9.60 1.96 9.90 1.97 3.60 0.52 3.00 0.47

4MIKP40

0.05 312.00 101.00 369.70 142.48 196.80 82.15 167.80 71.30
0.10 73.90 21.67 86.60 27.58 37.00 12.25 31.00 9.80
0.15 37.50 11.35 39.00 12.35 14.70 4.35 11.60 3.06
0.20 23.30 6.31 23.70 7.93 8.00 1.94 6.30 1.70
0.25 15.00 4.08 14.60 3.86 5.20 1.23 4.60 0.97

5MIKP20

0.05 335.40 299.97 351.50 317.07 238.70 223.06 206.70 210.07
0.10 70.90 49.01 75.60 52.64 42.40 31.60 39.00 31.66
0.15 33.30 16.55 34.70 21.13 17.10 10.82 14.60 9.71
0.20 18.70 7.86 19.40 9.66 9.10 5.28 7.90 4.46
0.25 12.70 6.70 11.70 6.04 5.60 2.50 4.80 1.93
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Table E.2: CPU Time Comparison for MOMIPs

SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MIKP100

0.05 6.64 1.44 8.96 1.53 3.72 0.98 10.09 3.43
0.10 2.13 0.36 2.63 0.48 0.93 0.22 1.54 0.41
0.15 1.21 0.26 1.34 0.35 0.41 0.11 0.58 0.13
0.20 0.72 0.14 0.81 0.18 0.26 0.05 0.31 0.06
0.25 0.46 0.10 0.52 0.13 0.20 0.03 0.25 0.05

4MIKP40

0.05 73.13 29.91 98.30 50.41 25.67 13.05 312.82 210.27
0.10 12.53 5.64 16.13 7.50 3.37 1.33 16.92 10.20
0.15 5.05 1.88 5.30 2.43 1.17 0.38 3.23 1.70
0.20 2.57 0.79 2.55 0.95 0.54 0.14 1.04 0.47
0.25 1.33 0.43 1.34 0.53 0.33 0.09 0.62 0.24

5MIKP20

0.05 245.56 340.17 317.65 488.11 119.94 190.41 3135.88 6895.00
0.10 30.67 36.78 38.39 48.18 10.76 14.52 99.03 198.39
0.15 8.99 8.29 10.80 11.47 2.95 3.00 13.06 18.35
0.20 3.94 3.35 4.20 3.40 1.17 1.23 3.45 4.36
0.25 2.17 2.08 1.93 1.76 0.55 0.37 1.07 0.70

Table E.3: Comparison of Number of Models Solved for MOMIPs

SBA TDA TSGA TSGA-II

Problem α Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MIKP100

0.05 409.70 84.22 592.40 100.97 227.70 57.76 705.60 260.46
0.10 131.40 23.21 175.10 30.56 57.60 12.82 104.50 29.04
0.15 80.40 15.56 92.50 24.07 25.30 6.29 38.50 8.62
0.20 51.20 10.79 56.10 12.74 16.10 3.07 18.60 3.37
0.25 33.70 6.78 35.60 7.52 11.80 1.55 14.20 2.94

4MIKP40

0.05 4704.80 2071.14 7286.40 3761.62 1877.20 1012.74 27208.00 18091.66
0.10 836.40 348.46 1232.60 565.96 250.80 96.90 1515.00 933.00
0.15 333.60 119.58 412.60 188.33 86.60 32.78 262.40 145.23
0.20 177.60 50.18 199.60 75.11 40.00 10.80 88.00 41.22
0.25 100.80 30.35 105.00 40.69 25.20 6.00 52.60 21.88

5MIKP20

0.05 16626.00 21980.52 20440.40 28423.01 7662.00 10998.90 244550.50 526726.66
0.10 2151.00 2446.02 2793.30 3304.24 816.30 1051.83 8455.20 16563.03
0.15 655.30 567.13 830.80 858.13 230.70 223.25 1177.10 1643.77
0.20 293.10 228.33 329.30 254.18 96.80 97.66 315.10 404.18
0.25 163.40 143.56 153.80 137.25 45.90 30.94 94.70 65.43
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APPENDIX F

COMPARISONS FOR VARIATIONS OF TSGA AND TSGA-II

Table F.1: TSGA Comparisons for MOKP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP10

0.05 7.20 3.52 7.20 3.52 0.42 0.23 0.45 0.28 26.60 13.78 25.80 13.26
0.10 5.70 2.21 5.60 2.27 0.32 0.15 0.35 0.19 21.20 9.48 20.00 8.81
0.15 4.50 1.58 4.60 1.51 0.25 0.10 0.28 0.14 16.50 6.52 15.90 5.32
0.20 3.50 0.85 3.60 0.84 0.18 0.05 0.25 0.16 12.60 3.53 12.40 2.76
0.25 3.00 0.67 3.00 0.67 0.15 0.03 0.23 0.27 10.90 2.60 10.50 2.07

3MOKP20

0.05 14.40 6.28 14.50 6.43 1.20 0.71 1.64 0.95 53.00 25.49 53.90 26.42
0.10 8.00 2.87 7.90 2.64 0.49 0.22 0.79 0.39 28.00 10.38 27.80 10.01
0.15 5.30 1.77 5.20 1.81 0.31 0.16 0.44 0.25 18.50 6.70 18.30 7.06
0.20 3.60 0.97 3.70 1.06 0.20 0.08 0.27 0.13 12.50 3.60 12.90 4.20
0.25 2.80 0.79 2.90 0.74 0.15 0.05 0.22 0.08 9.80 2.94 10.00 2.62

3MOKP30

0.05 27.70 5.66 27.60 5.58 2.54 0.74 4.10 1.17 106.90 25.70 108.10 25.77
0.10 12.20 2.25 12.00 2.36 0.86 0.21 1.25 0.40 44.20 9.87 43.30 11.00
0.15 6.80 1.14 7.10 1.29 0.45 0.12 0.55 0.16 23.30 4.06 24.30 4.42
0.20 4.90 0.88 4.50 0.97 0.28 0.05 0.39 0.15 16.70 3.47 15.50 4.01
0.25 3.30 0.48 3.10 0.74 0.19 0.04 0.19 0.07 11.40 1.71 10.40 2.22

3MOKP40

0.05 26.70 8.67 26.80 8.83 2.37 0.95 3.71 1.61 97.70 34.10 98.10 35.40
0.10 10.10 2.42 10.30 2.87 0.73 0.24 1.03 0.41 35.60 9.73 35.70 10.82
0.15 5.70 1.25 5.50 1.08 0.37 0.12 0.42 0.16 19.70 4.57 18.90 4.28
0.20 3.90 0.74 4.00 0.82 0.23 0.04 0.28 0.09 13.00 2.58 13.20 2.74
0.25 3.00 1.15 2.90 0.99 0.16 0.07 0.17 0.06 10.20 3.88 9.70 2.98

3MOKP50

0.05 31.30 9.17 31.50 8.91 3.37 1.20 3.19 1.04 116.70 37.46 117.10 34.93
0.10 11.30 3.43 11.20 3.12 0.92 0.30 0.91 0.32 40.10 13.43 40.90 13.25
0.15 6.20 1.93 6.10 1.60 0.43 0.15 0.39 0.12 20.80 7.02 20.20 5.33
0.20 4.10 1.20 4.20 1.23 0.29 0.13 0.27 0.10 13.80 4.39 14.20 4.24
0.25 3.00 0.67 3.10 0.74 0.20 0.06 0.19 0.07 10.00 2.00 10.30 2.21

3MOKP100

0.05 45.30 8.97 44.80 8.65 6.37 1.84 4.99 1.39 167.90 36.88 166.00 36.97
0.10 13.30 3.33 13.60 3.20 1.35 0.43 1.15 0.39 46.90 14.17 47.30 13.36
0.15 6.80 1.40 6.70 1.06 0.55 0.16 0.45 0.11 22.60 5.27 22.40 4.48
0.20 4.30 0.67 4.30 0.82 0.35 0.05 0.27 0.06 14.00 2.31 14.00 2.58
0.25 3.90 0.32 3.80 0.42 0.37 0.11 0.25 0.04 12.70 0.95 12.40 1.26
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Table F.2: TSGA Comparisons for MOKP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOKP10

0.05 7.90 3.84 7.80 3.65 0.73 0.34 0.63 0.47 42.80 24.52 41.40 21.68
0.10 5.70 2.45 5.50 2.46 0.52 0.19 0.40 0.29 30.80 15.96 28.80 14.65
0.15 4.50 1.51 4.30 1.25 0.41 0.12 0.27 0.11 23.00 10.07 21.00 7.66
0.20 3.40 1.71 3.10 1.52 0.34 0.12 0.18 0.09 17.80 10.76 15.40 8.26
0.25 2.90 0.99 2.70 1.06 0.30 0.11 0.15 0.06 14.40 5.58 13.20 5.29

4MOKP20

0.05 32.80 14.99 33.10 15.53 6.75 4.46 7.10 4.86 259.40 149.88 263.80 157.18
0.10 13.00 4.69 13.20 5.20 1.59 0.81 1.71 0.98 86.00 39.33 88.20 47.95
0.15 7.60 3.47 7.60 3.10 0.77 0.50 0.70 0.41 47.00 32.69 45.60 26.50
0.20 5.00 1.76 5.00 1.76 0.40 0.20 0.40 0.20 26.80 11.68 27.80 13.80
0.25 3.30 1.06 3.40 0.97 0.24 0.08 0.23 0.09 16.20 6.05 17.00 5.89

4MOKP30

0.05 54.10 15.98 54.00 15.85 13.40 5.22 13.01 5.19 449.60 151.87 445.60 154.81
0.10 17.60 4.38 18.00 4.55 2.53 0.91 2.33 0.81 114.40 37.35 112.00 35.63
0.15 9.00 1.76 8.80 2.04 0.85 0.25 0.82 0.24 50.00 13.27 47.80 14.55
0.20 5.60 1.35 5.30 1.57 0.44 0.11 0.40 0.14 26.60 6.52 25.60 7.18
0.25 3.80 0.92 3.70 0.67 0.28 0.07 0.24 0.06 18.20 5.01 17.80 4.24

4MOKP40

0.05 76.30 25.36 74.50 25.14 21.20 11.36 20.95 10.93 702.00 341.66 683.00 324.54
0.10 20.50 6.40 20.30 5.79 3.13 1.59 2.97 1.35 143.20 67.02 134.20 54.48
0.15 10.40 3.06 9.40 3.41 1.22 0.53 0.96 0.44 61.80 25.77 53.00 23.70
0.20 6.00 1.41 5.60 1.35 0.52 0.16 0.44 0.16 30.20 9.20 26.60 7.76
0.25 3.70 0.82 3.60 0.97 0.31 0.11 0.26 0.08 18.20 5.90 16.60 4.20

Table F.3: TSGA Comparisons for MOKP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOKP10

0.05 13.70 5.42 13.70 5.42 2.42 1.57 2.51 1.79 154.90 86.22 151.00 87.27
0.10 9.30 3.47 9.30 3.47 1.33 0.67 1.26 0.69 97.00 44.31 94.40 44.15
0.15 7.20 1.93 6.90 2.13 0.96 0.42 0.73 0.36 70.20 26.54 62.40 27.77
0.20 5.70 1.42 5.40 1.65 0.61 0.20 0.48 0.19 49.30 15.11 44.60 17.10
0.25 4.70 1.06 4.30 1.25 0.44 0.16 0.31 0.09 37.00 12.03 30.00 9.03

5MOKP20

0.05 46.60 20.71 46.00 20.85 28.68 28.97 30.67 33.00 923.30 819.24 902.20 816.98
0.10 18.60 7.21 16.70 5.33 5.73 5.31 4.69 4.10 272.50 228.08 225.30 164.78
0.15 9.40 2.41 9.10 2.96 1.51 0.98 1.41 1.30 94.60 61.66 87.90 67.89
0.20 4.90 2.18 4.60 1.96 0.65 0.53 0.51 0.37 43.20 39.51 35.50 24.65
0.25 3.60 1.65 3.10 0.99 0.41 0.27 0.28 0.14 27.70 19.20 22.10 10.75

80



Table F.4: TSGA Comparisons for MOAP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOAP5

0.05 13.30 4.11 13.20 4.05 0.53 0.18 0.71 0.30 49.20 16.32 49.00 15.42
0.10 9.40 3.37 9.10 3.14 0.36 0.14 0.42 0.16 34.40 13.54 33.50 12.17
0.15 6.80 1.75 6.80 1.87 0.24 0.08 0.34 0.10 25.00 7.21 24.90 7.89
0.20 4.90 1.45 4.70 1.34 0.18 0.06 0.22 0.08 17.80 6.29 16.70 5.29
0.25 4.00 1.63 3.60 1.26 0.15 0.07 0.17 0.07 14.30 6.55 12.50 4.22

3MOAP10

0.05 34.60 6.10 34.70 6.11 2.74 0.69 3.01 0.87 130.20 26.47 131.50 26.58
0.10 14.00 3.65 13.90 3.41 0.91 0.25 0.91 0.25 51.10 14.37 49.90 13.75
0.15 7.20 0.92 7.40 1.43 0.44 0.07 0.40 0.10 24.10 3.38 24.80 5.29
0.20 5.10 1.52 4.80 1.55 0.28 0.10 0.26 0.10 17.10 5.65 16.20 5.67
0.25 3.30 0.67 3.50 0.71 0.18 0.04 0.17 0.03 11.10 2.02 11.80 2.44

3MOAP15

0.05 39.30 9.87 39.60 9.75 4.13 1.17 4.07 1.14 151.30 42.67 150.90 40.58
0.10 14.20 2.20 13.80 2.82 1.24 0.23 1.17 0.30 51.10 10.35 49.60 11.97
0.15 7.30 1.57 7.00 1.25 0.61 0.12 0.54 0.12 25.40 5.46 24.10 4.31
0.20 4.90 0.74 4.60 0.84 0.40 0.07 0.31 0.05 16.70 2.83 15.30 2.54
0.25 3.00 0.67 3.20 0.63 0.24 0.05 0.22 0.06 10.30 2.63 10.80 2.20

3MOAP20

0.05 56.70 6.29 56.50 6.33 8.05 1.26 7.76 1.01 219.20 25.76 219.40 23.58
0.10 16.90 2.38 17.30 2.36 1.98 0.30 1.95 0.26 62.40 9.48 64.70 9.57
0.15 8.60 1.17 8.80 1.14 0.94 0.16 0.87 0.15 30.60 4.30 31.00 4.24
0.20 4.80 0.79 5.10 0.99 0.51 0.13 0.45 0.10 16.60 3.41 17.20 3.65
0.25 3.70 0.67 3.80 0.63 0.35 0.06 0.30 0.06 12.20 2.10 12.70 2.41

Table F.5: TSGA Comparisons for MOAP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOAP5

0.05 27.00 10.46 26.50 10.47 2.70 1.40 3.01 1.92 234.60 116.40 228.40 122.94
0.10 16.90 6.14 16.50 6.49 1.48 0.75 1.50 0.82 138.40 66.10 134.40 71.76
0.15 10.70 3.62 10.40 3.84 0.85 0.35 0.80 0.39 81.00 33.41 76.20 35.79
0.20 7.80 2.53 6.80 2.78 0.54 0.21 0.46 0.24 52.40 19.51 43.20 20.73
0.25 5.50 1.43 4.80 1.62 0.36 0.13 0.31 0.14 34.80 12.87 28.40 12.44

4MOAP10

0.05 104.30 26.06 102.80 25.23 33.45 10.59 32.61 10.60 1078.20 333.31 1052.20 330.62
0.10 29.50 5.91 30.50 6.04 5.44 1.93 5.37 1.83 242.40 72.08 246.80 67.49
0.15 14.50 2.59 14.30 2.63 1.81 0.46 1.58 0.38 98.40 25.14 91.80 21.61
0.20 8.00 1.25 8.00 1.05 0.75 0.16 0.71 0.15 44.60 8.15 43.80 8.34
0.25 5.10 0.88 4.90 0.88 0.45 0.10 0.38 0.08 27.60 6.26 25.00 4.90

4MOAP15

0.05 147.30 57.22 148.90 57.23 52.24 26.66 52.30 25.80 1566.80 733.72 1583.60 711.04
0.10 33.50 12.20 35.20 13.11 7.03 3.09 7.15 3.36 260.80 111.70 276.80 123.55
0.15 13.00 4.37 14.10 4.91 1.97 0.75 2.13 0.92 80.40 30.10 92.20 38.62
0.20 7.50 2.68 7.50 2.59 0.93 0.32 0.91 0.37 40.20 14.52 42.00 16.87
0.25 4.90 1.60 4.90 1.60 0.55 0.17 0.50 0.17 23.80 7.79 24.20 7.79
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Table F.6: TSGA Comparisons for MOAP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOAP5

0.05 35.80 5.88 35.30 5.50 8.73 3.13 7.93 2.65 641.60 186.02 608.90 184.55
0.10 21.00 3.83 20.40 3.41 3.68 0.99 3.54 1.07 337.00 94.11 315.90 91.48
0.15 12.80 2.30 11.80 1.81 1.91 0.62 1.64 0.54 182.70 58.19 153.90 48.16
0.20 8.30 1.49 7.90 0.88 0.97 0.24 0.85 0.20 93.10 23.05 84.20 19.38
0.25 6.30 1.06 5.70 0.82 0.68 0.23 0.51 0.14 64.30 21.63 50.80 13.18

5MOAP10

0.05 279.70 62.35 279.00 61.82 445.72 209.64 432.46 197.51 10408.50 4090.54 10261.10 4131.62
0.10 60.60 10.43 59.50 10.23 40.66 16.69 37.61 16.49 1509.10 511.96 1434.90 535.89
0.15 23.40 3.75 23.30 4.60 7.46 3.20 7.88 3.98 354.10 127.90 375.80 162.38
0.20 12.30 2.58 12.60 1.65 2.88 1.39 2.58 1.06 161.50 68.76 147.40 52.07
0.25 8.00 1.63 7.50 1.51 1.39 0.51 1.07 0.51 82.60 27.17 65.50 25.11

Table F.7: TSGA Comparisons for MOMIP Experiments

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.) TSGA (orig.) TSGA (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MIKP100

0.05 63.90 14.43 63.60 14.20 3.72 0.98 3.47 0.87 227.70 57.76 226.70 56.89
0.10 16.80 3.36 17.00 3.09 0.93 0.22 0.87 0.18 57.60 12.82 57.40 11.46
0.15 7.60 1.78 7.70 1.70 0.41 0.11 0.38 0.10 25.30 6.29 25.70 6.53
0.20 4.90 0.88 4.60 0.70 0.26 0.05 0.22 0.04 16.10 3.07 14.90 2.33
0.25 3.60 0.52 3.60 0.52 0.20 0.03 0.17 0.02 11.80 1.55 11.80 1.55

4MIKP40

0.05 196.80 82.15 193.20 75.62 25.67 13.05 25.76 14.21 1877.20 1012.74 1800.40 975.13
0.10 37.00 12.25 37.80 12.49 3.37 1.33 3.44 1.45 250.80 96.90 249.00 107.22
0.15 14.70 4.35 14.10 3.67 1.17 0.38 1.10 0.36 86.60 32.78 79.20 25.90
0.20 8.00 1.94 7.30 1.95 0.54 0.14 0.47 0.12 40.00 10.80 35.20 9.45
0.25 5.20 1.23 5.20 1.14 0.33 0.09 0.32 0.07 25.20 6.00 24.80 5.61

5MIKP20

0.05 238.70 223.06 234.80 233.01 119.94 190.41 107.48 168.66 7662.00 10998.90 6727.20 9722.02
0.10 42.40 31.60 40.70 33.47 10.76 14.52 10.05 13.28 816.30 1051.83 719.60 904.59
0.15 17.10 10.82 16.40 10.04 2.95 3.00 2.58 2.39 230.70 223.25 198.10 173.70
0.20 9.10 5.28 8.60 4.60 1.17 1.23 0.96 0.82 96.80 97.66 77.40 64.34
0.25 5.60 2.50 5.20 2.70 0.55 0.37 0.48 0.38 45.90 30.94 40.40 30.07
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Table F.8: TSGA-II Comparisons for MOKP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOKP10

0.05 7.20 3.52 7.20 3.52 0.64 0.45 0.65 0.47 55.70 40.82 55.70 40.82
0.10 5.50 2.17 5.50 2.17 0.44 0.26 0.43 0.26 36.80 22.58 36.80 22.58
0.15 4.30 1.42 4.30 1.42 0.32 0.16 0.30 0.15 26.20 14.57 26.20 14.57
0.20 3.40 0.84 3.40 0.84 0.21 0.07 0.22 0.10 17.70 6.78 17.70 6.78
0.25 3.10 0.74 3.10 0.74 0.19 0.06 0.19 0.07 15.50 5.48 15.50 5.48

3MOKP20

0.05 14.40 6.33 14.30 6.29 2.30 1.70 2.24 1.67 142.10 94.94 141.70 94.41
0.10 7.50 2.46 7.50 2.46 0.86 0.47 0.84 0.48 54.40 30.25 54.40 29.97
0.15 4.80 1.48 4.80 1.48 0.46 0.24 0.42 0.21 28.00 12.66 28.00 12.66
0.20 3.40 1.07 3.40 1.07 0.29 0.14 0.27 0.13 18.10 8.67 18.20 8.64
0.25 2.70 0.67 2.60 0.70 0.21 0.08 0.18 0.08 13.30 5.06 12.60 4.97

3MOKP30

0.05 27.00 4.90 27.00 4.81 5.77 1.91 5.48 1.81 321.70 103.87 322.60 99.62
0.10 11.70 1.89 11.50 1.96 1.69 0.50 1.56 0.48 97.00 26.20 93.70 25.29
0.15 6.60 1.17 6.60 1.07 0.77 0.19 0.68 0.16 42.30 12.76 42.10 10.73
0.20 4.00 0.82 3.80 0.79 0.38 0.12 0.35 0.10 21.50 6.54 19.80 5.75
0.25 3.00 0.67 3.00 0.67 0.28 0.11 0.24 0.07 15.00 4.85 15.00 4.85

3MOKP40

0.05 25.00 8.47 25.00 8.47 5.61 2.73 5.54 2.68 298.00 136.60 297.60 136.37
0.10 9.40 1.96 9.20 1.93 1.36 0.51 1.31 0.53 72.10 19.20 72.00 20.39
0.15 5.10 1.29 4.90 1.29 0.59 0.21 0.54 0.19 31.30 10.88 29.60 10.38
0.20 3.70 0.48 3.60 0.52 0.35 0.07 0.30 0.05 19.60 2.95 18.70 2.67
0.25 2.60 0.70 2.60 0.70 0.23 0.09 0.21 0.07 12.80 4.21 12.80 4.21

3MOKP50

0.05 29.50 7.43 29.40 7.44 8.11 3.28 8.17 3.42 390.90 135.55 395.90 141.39
0.10 9.90 2.81 10.00 2.87 1.63 0.73 1.55 0.72 83.20 36.35 84.00 36.22
0.15 5.40 1.71 5.40 1.71 0.74 0.32 0.64 0.29 33.30 14.43 33.30 14.43
0.20 3.40 0.52 3.40 0.52 0.33 0.11 0.32 0.08 17.10 4.38 17.10 4.38
0.25 2.80 0.42 2.80 0.42 0.31 0.08 0.27 0.06 14.60 2.95 14.30 2.95

3MOKP100

0.05 37.80 6.55 38.20 6.83 14.84 4.35 14.07 3.65 546.80 120.74 547.90 113.39
0.10 11.40 2.12 11.50 2.22 2.35 0.69 2.28 0.62 92.80 22.14 94.40 19.25
0.15 5.70 1.06 5.50 1.08 1.00 0.30 0.75 0.23 36.20 9.48 34.10 8.99
0.20 3.80 0.42 3.70 0.48 0.50 0.08 0.43 0.09 19.90 3.57 19.30 2.75
0.25 3.00 0.00 3.00 0.00 0.40 0.04 0.34 0.03 14.70 1.49 14.70 1.49
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Table F.9: TSGA-II Comparisons for MOKP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOKP10

0.05 7.80 3.65 7.80 3.65 1.46 0.82 1.26 0.92 120.00 80.35 120.00 80.35
0.10 5.50 2.46 5.50 2.46 0.85 0.43 0.68 0.50 66.60 47.46 66.60 47.46
0.15 4.40 1.58 4.20 1.14 0.65 0.24 0.42 0.20 46.20 24.97 42.40 16.47
0.20 3.30 1.42 3.20 1.48 0.46 0.13 0.27 0.18 29.60 17.36 29.00 18.93
0.25 2.80 0.92 2.60 0.97 0.38 0.13 0.20 0.10 22.20 9.94 20.40 10.59

4MOKP20

0.05 33.10 15.55 32.80 15.23 30.86 26.06 32.14 26.95 1723.00 1344.08 1694.40 1312.21
0.10 13.10 4.61 13.10 4.91 4.58 2.67 4.60 2.67 314.60 171.98 321.20 183.07
0.15 7.40 2.37 7.50 2.46 1.71 0.83 1.62 0.80 117.60 55.51 120.00 61.56
0.20 4.30 1.34 4.70 1.89 0.76 0.38 0.74 0.44 48.20 20.96 57.60 36.45
0.25 3.20 1.03 3.20 1.14 0.43 0.21 0.37 0.21 29.80 13.31 30.20 16.12

4MOKP30

0.05 52.60 14.66 51.70 14.35 56.08 26.82 53.90 27.43 2848.40 1147.50 2792.60 1159.67
0.10 17.50 3.17 17.00 3.65 7.88 3.51 7.13 3.53 456.80 206.77 437.20 208.21
0.15 8.40 1.65 7.90 1.52 2.06 0.81 1.75 0.60 134.40 55.72 118.00 36.57
0.20 5.00 1.15 5.00 1.15 0.87 0.34 0.80 0.31 54.60 24.56 54.60 24.56
0.25 3.10 0.88 3.10 0.88 0.41 0.16 0.40 0.20 26.80 11.56 26.80 11.56

4MOKP40

0.05 72.00 23.82 71.70 23.33 121.68 69.42 119.99 70.11 6056.60 3240.56 6061.20 3332.48
0.10 18.80 5.14 18.50 5.44 10.07 5.38 9.77 5.39 578.60 289.92 559.60 277.56
0.15 8.00 2.49 8.00 2.16 2.35 1.29 2.21 1.20 135.00 74.02 133.60 65.67
0.20 5.20 0.92 4.90 0.99 0.98 0.32 0.86 0.29 61.00 19.04 54.40 18.36
0.25 3.30 0.82 3.30 0.82 0.47 0.20 0.44 0.20 29.60 13.00 29.60 13.00

Table F.10: TSGA-II Comparisons for MOKP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOKP10

0.05 13.70 5.42 13.70 5.42 7.50 6.15 7.32 6.09 698.90 536.68 698.90 536.68
0.10 9.30 3.47 9.30 3.47 3.20 2.07 3.01 2.03 320.50 205.53 320.50 205.53
0.15 7.00 2.11 6.90 2.13 1.79 0.96 1.59 0.90 180.40 92.67 173.60 95.45
0.20 5.30 1.64 5.30 1.64 1.06 0.62 0.95 0.63 108.60 73.88 108.60 73.88
0.25 4.30 1.25 4.30 1.25 0.65 0.26 0.57 0.27 67.10 34.00 66.70 33.93

5MOKP20

0.05 46.50 20.94 46.00 20.81 177.36 181.65 170.35 180.60 9331.60 9104.69 9233.90 9084.06
0.10 16.60 5.87 16.20 5.81 18.12 15.77 17.11 16.14 1185.70 972.87 1153.40 974.22
0.15 8.80 2.10 8.80 2.53 3.97 2.53 4.03 2.70 297.20 176.52 311.80 189.71
0.20 4.60 1.84 4.50 1.65 1.28 1.01 1.09 0.81 95.80 81.37 87.10 65.67
0.25 3.50 1.08 3.40 1.07 0.69 0.32 0.59 0.36 51.00 28.93 50.90 32.71
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Table F.11: TSGA-II Comparisons for MOAP (m = 3)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MOAP5

0.05 13.10 4.15 13.10 4.15 1.10 0.45 1.08 0.45 116.20 45.77 116.20 45.77
0.10 8.90 2.88 8.80 2.82 0.63 0.27 0.59 0.26 66.90 29.24 65.70 28.89
0.15 6.70 1.77 6.70 1.77 0.44 0.16 0.40 0.16 45.00 17.44 45.20 17.64
0.20 4.50 1.51 4.60 1.51 0.26 0.11 0.25 0.11 26.70 12.08 27.40 11.79
0.25 3.50 1.08 3.50 1.18 0.19 0.06 0.18 0.07 19.20 6.97 19.20 7.61

3MOAP10

0.05 33.40 6.52 33.70 6.58 8.41 2.84 8.23 2.62 497.10 165.85 508.20 160.38
0.10 12.30 1.83 12.40 1.96 1.92 0.54 1.80 0.52 114.60 30.91 114.70 31.68
0.15 7.10 1.20 6.90 1.20 0.89 0.22 0.80 0.22 53.20 13.36 50.70 14.51
0.20 4.10 0.88 4.10 0.88 0.40 0.14 0.35 0.13 24.80 8.75 24.80 8.75
0.25 2.90 0.74 2.90 0.74 0.26 0.09 0.21 0.09 15.10 5.65 15.20 5.51

3MOAP15

0.05 37.20 6.63 36.90 6.82 14.86 4.78 14.14 4.27 586.90 164.18 573.70 157.24
0.10 11.80 2.15 11.60 1.96 2.60 0.85 2.45 0.82 108.00 35.44 101.90 35.52
0.15 5.90 0.99 5.90 0.74 0.98 0.39 0.89 0.25 40.10 13.38 39.90 9.98
0.20 3.90 0.74 3.60 0.52 0.50 0.10 0.41 0.08 22.10 5.74 19.50 3.41
0.25 2.80 0.42 2.80 0.42 0.33 0.05 0.28 0.05 14.40 3.13 14.40 3.13

3MOAP20

0.05 48.80 4.69 48.20 4.78 29.44 3.61 28.86 3.68 818.90 98.59 818.30 100.76
0.10 14.00 1.63 13.90 1.52 4.45 0.75 4.16 0.55 128.60 21.58 124.90 18.77
0.15 7.00 0.82 7.10 0.88 1.67 0.32 1.65 0.34 48.80 7.66 50.60 9.56
0.20 3.90 0.57 3.80 0.63 0.72 0.12 0.60 0.12 22.10 3.84 21.00 4.03
0.25 2.90 0.32 2.90 0.32 0.50 0.07 0.41 0.05 15.20 2.20 15.20 2.20

Table F.12: TSGA-II Comparisons for MOAP (m = 4)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

4MOAP5

0.05 26.70 10.44 26.60 10.45 11.03 7.45 10.35 7.08 1131.40 743.57 1122.20 745.08
0.10 16.30 6.40 16.10 6.33 4.47 2.86 4.11 2.68 476.80 306.71 475.80 303.53
0.15 9.70 3.47 9.60 3.53 1.86 0.98 1.63 0.92 190.60 102.79 189.20 108.53
0.20 7.10 2.42 6.30 2.16 1.09 0.55 0.79 0.44 113.80 58.21 92.60 53.99
0.25 4.90 1.45 4.30 1.57 0.59 0.27 0.43 0.25 60.40 30.07 48.80 30.29

4MOAP10

0.05 100.40 25.07 99.50 24.05 257.31 137.87 263.38 145.42 11365.00 5809.17 11170.60 5584.60
0.10 26.50 6.13 26.20 4.71 22.19 10.30 20.66 7.73 1165.40 552.84 1113.20 431.96
0.15 12.20 3.12 11.90 2.47 5.53 2.88 4.88 2.22 310.40 163.68 282.20 117.46
0.20 6.70 1.49 6.40 1.26 1.68 0.67 1.46 0.53 100.80 38.20 93.00 33.05
0.25 4.10 0.88 4.20 1.14 0.74 0.28 0.70 0.35 44.20 17.47 47.00 22.80

4MOAP15

0.05 134.00 52.74 138.50 55.31 668.63 495.34 687.92 494.61 21795.60 15383.83 23299.80 15931.96
0.10 29.40 10.74 30.10 10.74 43.69 25.67 44.10 26.74 1574.60 916.54 1636.20 974.50
0.15 11.20 3.55 11.20 3.91 6.95 3.17 6.67 3.13 266.40 117.86 265.40 121.17
0.20 6.20 1.99 6.10 2.13 2.32 0.92 2.18 1.08 96.40 40.49 95.80 45.65
0.25 3.80 1.14 4.10 1.20 0.97 0.38 0.98 0.37 39.80 16.12 45.40 17.33
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Table F.13: TSGA-II Comparisons for MOAP (m = 5)

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

5MOAP5

0.05 35.70 5.89 35.30 5.50 43.74 14.41 44.49 21.38 4467.80 1423.35 4365.00 1405.62
0.10 20.30 3.74 20.10 3.57 14.12 5.42 12.87 4.83 1524.60 581.19 1487.10 565.10
0.15 11.70 1.77 11.60 1.78 4.86 1.37 4.30 1.22 512.00 150.90 503.00 145.94
0.20 8.00 1.49 7.90 1.52 2.30 0.83 2.12 0.79 249.10 94.38 243.70 95.98
0.25 5.60 1.43 5.70 1.34 1.14 0.50 1.07 0.43 122.30 56.63 126.20 54.54

5MOAP10

0.05 272.20 62.55 270.30 62.13 7376.14 5066.06 7113.76 4990.02 256990.30 162147.28 253655.40 159486.84
0.10 56.60 12.84 54.30 11.14 303.68 177.52 323.63 177.87 12793.70 6761.05 11720.00 5524.03
0.15 20.90 4.04 20.70 3.89 36.95 19.56 43.51 24.97 1837.10 879.57 1847.50 908.13
0.20 10.90 1.37 10.40 1.35 8.76 3.11 8.78 3.33 485.00 170.97 436.50 124.55
0.25 7.00 1.15 6.10 1.20 3.46 1.53 2.81 1.38 203.50 69.31 156.80 69.01

Table F.14: TSGA-II Comparisons for MOMIP Experiments

Cardinality CPU Time (secs) Number of Models Solved

Problem α
TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.) TSGA-II (orig.) TSGA-II (eq.wt.)

Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev. Avg. StDev.

3MIKP100

0.05 47.30 11.00 47.40 11.11 10.09 3.43 9.49 3.42 705.60 260.46 709.30 260.90
0.10 12.90 2.42 12.90 2.56 1.54 0.41 1.46 0.41 104.50 29.04 106.10 30.54
0.15 6.20 0.92 6.00 0.94 0.58 0.13 0.51 0.10 38.50 8.62 36.50 8.18
0.20 3.70 0.48 3.70 0.48 0.31 0.06 0.28 0.05 18.60 3.37 18.60 3.37
0.25 3.00 0.47 2.90 0.32 0.25 0.05 0.20 0.03 14.20 2.94 13.50 2.12

4MIKP40

0.05 167.80 71.30 166.80 70.75 312.82 210.27 298.13 207.34 27208.00 18091.66 27217.80 18729.76
0.10 31.00 9.80 29.60 9.64 16.92 10.20 14.38 8.90 1515.00 933.00 1362.20 851.22
0.15 11.60 3.06 11.90 3.70 3.23 1.70 2.95 1.67 262.40 145.23 272.60 161.94
0.20 6.30 1.70 6.60 1.71 1.04 0.47 1.11 0.50 88.00 41.22 100.40 45.65
0.25 4.60 0.97 4.50 0.85 0.62 0.24 0.55 0.22 52.60 21.88 49.80 20.27

5MIKP20

0.05 206.70 210.07 207.00 217.84 3135.88 6895.00 3103.46 7147.06 244550.50 526726.66 253605.40 572271.84
0.10 39.00 31.66 39.10 30.86 99.03 198.39 95.93 190.90 8455.20 16563.03 8666.10 16829.32
0.15 14.60 9.71 15.10 10.62 13.06 18.35 14.33 20.63 1177.10 1643.77 1350.80 1942.35
0.20 7.90 4.46 7.40 4.09 3.45 4.36 2.80 3.63 315.10 404.18 267.20 346.96
0.25 4.80 1.93 5.00 2.49 1.07 0.70 1.21 1.16 94.70 65.43 117.00 113.29
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