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ABSTRACT

IMPROVING THE EFFICIENCY OF DISTRIBUTED INFORMATION
RETRIEVAL USING HYBRID INDEX PARTITIONING

HAFIZOĞLU, Fatih
M.S., Department of Computer Engineering

Supervisor : Assoc. Prof. Dr. İsmail Sengör Altıngövde

June 2018, 45 pages

Selective search with traditional partitioning have advantages over exhaustive search
in terms of total query cost. However, it can suffer from query latency and load im-
balance for most of the time due to its nature. To overcome these issues, we proposed
a new partitioning method in this thesis, namely Hybrid partitioning. Our studies
shows that it is possible to obtain significant savings in query latency with this new
partitioning methodology. In addition to that, query processing with Hybrid partition-
ing also achieves perfect load balancing and provides resource optimization, which is
a key point for low resource environments.

Keywords: distributed search, selective search, document partitioning, document
clustering
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ÖZ

DAĞITIK BİLGİ GETİRME İÇİN MELEZ DOKÜMAN DAĞITIMI
KULLANILARAK VERİMLİLİĞİN ARTTIRILMASI

HAFIZOĞLU, Fatih
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Doç. Dr. İsmail Sengör Altıngövde

Haziran 2018 , 45 sayfa

Geleneksel döküman dağıtımı kullanılarak yapılan seçmeli aramalar kapsamlı arama-
larla kıyaslandığında toplam sorgu maliyeti açısından avantajlıdır. Fakat bu yöntem
sorgu bekleme süresi ve yük dağılımı açısından çoğu zaman kötü sonuçlar verebil-
mektedir. Bu tezde bu sorunlarla baş edebilmek için melez döküman dağıtımı ismiyle
yeni bir döküman dağıtımı yöntemi öneriyoruz. Çalışmalarımız melez döküman dağı-
tımı yöntemiyle sorgu bekleme süresi açısından ciddi kazançlar sağlamanın mümkün
olabileceğini göstermektedir. Buna ek olarak, melez döküman dağıtımı yöntemı yük
dağılımını da dengede tutabilmektedir ve kaynak kullanımında optimizasyon sağma-
maktadır. Bu özellik kısıtlı kaynaklı ortamlarda çok önemlidir.

Anahtar Kelimeler: dağıtık arama, seçmeli arama, döküman dağıtımı, döküman kü-
meleme
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Traditionally, a centralized index is used to search for a query inside a collection of

documents. However, it is realized that keeping one-large index is not feasible in the

real world because collection sizes are increasing exponentially. As a result of this, it

is necessary to partition the collection and distribute the search task. With the help of

the distribution, it will be possible to parallelize the search process.

Different partitioning methods are considered for enabling parallelization of the search

process, straight forward method being the random partitioning. In this method, doc-

uments are randomly assigned to physical shards and a central broker is responsible

to forward the query to all shards, collect the results from them and produce the final

result by merging the partials. The entire process is considered as exhaustive search

where all documents including query terms are processed.

Creating partitions based on the topics of documents is another method studied in IR

community for many years. Since determining topics of the queries is also possible,

only documents with relevant topics could be searched in this system. In this case,

the broker needs to determine the relevant shards and forward queries to those shards

only. This process, previously known as cluster-based retrieval [25] [1] for centralized

IR scenario, is called selective search [24]. The purpose of the selective search is to

produce high quality results while reducing the query processing cost.

Effectiveness of the selective search is examined in earlier works and findings show
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that quality of the results is usually close to exhaustive search [24]. In addition, it

is able to reduce total cost (i.e. total number of documents processed to produce

final results) by scoring documents with relevant topics only. However, even if it

reduces the total cost, efficiency is still questionable in terms of query latency. Since

all documents with a particular topic are put together, it may cause increases in query

latency. Besides, it is likely that there will be a load imbalance because the popularity

of the topics is not same.

1.2 Contribution of Thesis

Query latency and load imbalance are the two main issues in selective search. Our

main contribution in this work is to propose a solution that both improves query la-

tency and provides load balance across shards.

As a solution, we developed a new partitioning method namely Hybrid partitioning.

In this partitioning, we obtain the topics of documents but we do not use them to

determine physical locations of them. Instead, we still assign documents to shards

in a random manner. Inside shards, we used topics of documents to build cluster-

skipping indexes [12] [1]. Efficiency improvements with cluster-skipping indexes

have shown in centralized IR scenarios. In this work, we applied the same logic to

distributed search setup.

We have used TREC and AOL query sets along with 4 different clustering strate-

gies of the collection in order to be able to test partitioning methods in a variety of

setups. We applied exhaustive search with random partitioning and selective search

with Topic and Hybrid partitioning in each experiment and compare the results. In

these experiments, we show significant savings compared to the traditional selective

search in terms of the query latency while ensuring load balance.

Note that, we have presented our primarily findings in [19] and extended our experi-

ments in this thesis.
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1.3 Organization of Thesis

The organization of the thesis is as follows: Chapter 2 presents background informa-

tion about the selective search. The common approaches in partitioning and resource

selection methods are presented in detail. In Chapter 3, we present the proposed

methods to improve the efficiency of the selective search. In Chapter 4, the details

of the experimental setup (i.e., query sets, datasets, evaluation metrics and resource

selection methods) are explained. Chapter 5 provides the experimental results and in

Chapter 6, we present our conclusions and point to possible future work directions.
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CHAPTER 2

RELATED WORK

In this chapter, we first present the document clustering approaches studied in the

literature. Next, we review the methods for resource selection, which is one of the

key stages in the selective search.

2.1 Document Clustering for Distributed IR

The volume of the information on the Internet is increasing rapidly. In addition to this,

a large number of users are trying to access this information at the same time. Storing

such a volume of information and keeping it available require distributed solutions.

Barroso et al. explain in their work that in order to build an effective solution, Google

employs random partitioning for sharding and randomly assigns documents to the

nodes that are distributed worldwide [7]. Indeed, partitioning collections to multiple

nodes is a popular approach applied by both search engines and academic studies

[8, 9, 26, 27]. Cahoon et al. evaluate different setups in prior researches. Setups

of which sizes up to 128 GB distributed to servers that each contain approximately 1

GB. Single central broker used to manage these servers and servers are responsible for

producing results locally. In simulations, they parametrize number of CPUs, number

of disks and network utilization and evaluate different setups. Both previous studies

and theirs share the common architecture with the primary goal of providing load

balance and reducing response time at the same time. Results show that distributing

documents among nodes can improve both. However, entire collection needs to be

searched in order to produce final results.
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Another distributed search approach followed in earlier studies is to cluster docu-

ments with their topical similarities. The main idea here is motivated by the Cluster

Hypothesis introduced by Van Rijsbergen, which suggests that "Closely associated

documents tend to be relevant to the same requests" [35]. That is, documents that

are in the same clusters are most likely to be relevant to the query if their cluster is

determined as relevant to the query in comparison to the documents in other clusters.

Determining the relevant clusters is called resource selection phase in distributed in-

formation retrieval and will be described in next sub-section. Here, we focus on how

to cluster documents based on their similarities.

Algorithm 1 Clustering Algorithm with KL
Input: Collection C, Number of Shards K

Output: Clusters CL

1: RSD← RANDSAMPLE(C, K) // Randomly sample K documents from C

2: CENTROIDS← INITCENTROIDS(RSD) // Initialize centroids

3: for D ∈ C do

4: for k ∈ {1, . . . , K} do

5: FIND DIST (CLi, D)

6: end for

7: Assign d to CLn where CLn is the closest cluster

8: end for

9: if first phase then

10: CENTROIDS← GENERATECENTROINDS(CL) // Re-generate centroids

11: goto 2

12: end if

return CL

One of the challenging problems of clustering documents is the efficiency. Xu and

Croft introduce an efficient clustering technique in their work [36] with linear time

complexity. They employ a two-pass K-Means algorithm to cluster documents. In the

first phase, random K documents are selected as the initial centroids of the clusters

and for each remaining document, their algorithm (shown in Algorithm 1) finds the

closest cluster for that document and assigns it to that cluster. In the second phase,

results of the first phase are taken as the centroids of the clusters and the same process

6



is applied again. With the second phase, they intend to reduce the effect of random

initials selected in the first phase and possible mistakes caused by them. In short, their

approach applies the K-Means with only two passes. In order to find the distance

between a document and a cluster, they use Kullback-Liebler divergence metric in

Equation 2.1.

DIST (Ci, D) =
∑
w∈D

c(w,D)

|D|
log

c(w,D)/|D|
(c(w,D) + c(w,Ci))/(|D|+ |Ci|)

(2.1)

where

• c(w,D) and c(w,Ci) denote the number of occurrences of wordw on document

D and cluster Ci, respectively,

• |D| and |Ci| denote the size of document D and cluster Ci, respectively.

In another study, Puppin et al. use query logs to cluster documents [29]. In their

method, a query log applied with exhaustive search and obtained results are used for

representing documents. Documents are weighted by the queries that retrieved them.

Then, they co-cluster queries and documents accordingly. There are some major

drawbacks in their method. First of all, some documents were not retrieved by any

of the queries and they are grouped as another cluster. This issue could be solved by

using more comprehensive query log but this time complexity will increase since it

requires more and more queries to comprise all documents. Secondly, their method

highly depends on the query log. Even if the query log comprises all the documents,

it may still create unbalanced results in terms of document recalls and this will effect

clustering results.

Kulkarni and Callan also employ the K-Means clustering approach in their studies

[22, 23].They have modified some parts of the method described in [36] (Algorithm

1 and Equation 2.1). Instead of calculating distances between cluster centroids and

documents with KL divergence, they used the symmetric version of the method to

calculate the similarities between them. While doing this, they also fixed some issues

of Equation 2.1. First of all, they noticed that the equation is heavily biased on clusters

with fewer lengths. Secondly, since the equation is not symmetric, centroids of the
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clusters have very little effect on calculated distance while the importance of a term

inside documents dominates the distance value. And finally, they draw attention that

term weighting is not available in this formula. There should be inverse document

frequency and inverse collection frequency in the formula to calculate more accurate

values. In the light of these observations, they propose a new equation to calculate

the similarity of a document to a cluster centroid (Equation 2.2).

SIM(Ci, D) =
∑

w∈Ci
⋂
D

pc
i(w)log

pd(w)

λpB(w)
+ pd(w)log

pc
i(w)

λpB(w))
(2.2)

pc
i(w) = c(w,Ci)/

∑
w′

c(w
′
, Ci) (2.3)

pd(w) = (1− λ)c(w,D)
∑
w′

c(w
′
, D) + λpB(w) (2.4)

where

• c(w,D) and c(w,Ci) denote the number of occurrences of wordw on document

D and cluster Ci, respectively,

• pB(w) is the inverse frequency of w inside the collection.

Even if it has a linear time complexity, applying K-Means algorithm to a large col-

lection could be still very costly. Kulkarni and Callan have made another change in

here and instead of applying K-Means to the entire set, they decided to apply it to a

sampled subset of the collection. Once the centroids of the clusters are determined

over the sample, remaining documents could be clustered more easily. In their algo-

rithm (Algorithm 2), K-Means is applied to a randomly selected subset in 5 runs to

determine centroids of the clusters with setting centroids randomly at the start. Re-

ducing the set which K-Means applied to also provides the opportunity for multiple

runs with adding affordable costs. Then they dispatched the remaining documents

to clusters based on their similarities with cluster centroids. While calculating the

8



similarity between a document to cluster in both centroid determining phase and dis-

patching phase, the modified version of Kullback-Liebler divergence (Equation 2.3)

is used in their work.

Algorithm 2 Sample Based Clustering Algorithm with KL-SIM
Input: Collection C, Number of Shards K, Sample Percentage P

Output: Clusters CL

1: SC← RANDSAMPLE(C, SIZE(C) * P) // Randomly sample %P of documents

from C

2: RSD← RANDSAMPLE(SC, K) // Randomly sample K documents from SC

3: CENTROIDS← INITCENTROIDS(RSD) // Initialize centroids

4: for D ∈ SC do

5: for k ∈ {1, . . . , K} do

6: FIND SIM(CLi, D)

7: end for

8: Assign d to CLn where CLn is the most similar cluster

9: end for

10: if In first fourth phase then

11: CENTROIDS← GENERATECENTROINDS(CL) // Re-generate centroids

12: goto 4

13: end if

14: for D ∈ C\SC do

15: for k ∈ {1, . . . , K} do

16: FIND SIM(CLi, D)

17: end for

18: Assign d to CLn where CLn is the most similar cluster

19: end for

return CL

Dai et al. show that random decisions in K-Means clustering may result in mis-

clustered documents [17]. In order to improve the clustering strategy and prevent

possible mistakes due to random decisions made, they revise the methodology and

propose two new strategies in [18].

9



The first one is mentioned as query-driven clustering initialization algorithm (QInit)

and developed for preventing possible errors related to random cluster centroid ini-

tializations. In this method, they extract terms from query logs and cluster each term

with its corresponding word embeddings. Thus, terms for similar user search topics

are grouped together.

In addition to QInit, they also propose query-biased similarity metric (QKLD) in their

work. It is based on symmetric KLD also used in [22]. They suggest that Equation

2.2 works well in terms of topics in document corpus but it is insufficient in reflecting

user query topics. To reflect the latter, they add a weight to the equation that shows the

importance of a term in Equation 2.5. In particular, (αq(w) + b) part of the equation

adds the term importance in query log to the equation, while the remaining of it has

no difference than Equation 2.2.

SIMQKLD(C
i, D) =

∑
w∈Ci

⋂
D

(αq(w)+b)×(pci(w)log
pd(w)

λpB(w)
+pd(w)log

pc
i(w)

λpB(w))
)

(2.5)

αq(w) = log(wfw,Q + 1)× log( |D|
dfw,D

+ 1) (2.6)

where

• wfw,Q and dfw,D denote the term frequencies of word w on query log and doc-

uments in the corpus, respectively,

• |D| is the number of documents in total, and

• b is the smoothing parameter.

With QInit and QKLD, they produce 4 different clustering for the dataset with com-

binations of them. These are constructed as follows:

• KLD-Rand: Random seeds in cluster centroid initialization and KLD simi-

larity metric used in Equation 2.2.

10



• KLD-QInit: Query-driven cluster centroid initialization and KLD similarity

metric used in Equation 2.2.

• QKLD-Rand: Random seeds in cluster centroid initialization and QKLD

similarity metric used in Equation 2.5.

• QKLD-QInit: Query-driven cluster centroid initialization and QKLD simi-

larity metric used in Equation 2.5.

In their experiments, they found that KLD-QInit clusters have no differences than

KLD-Rand clusters and exclude it from the testbed. Other than this, they obtain sig-

nificant improvements in both efficiency and effectiveness with these new methodolo-

gies. The most effective and efficient results are obtained with QKLD-QInit which

uses both QInit and QKLD in cluster centroid initialization and similarity function

respectively. Since the clustering structure they have produced is available online1

we used them in our work to evaluate the performance of our index partitioning ap-

proaches.

2.2 Resource Selection

Another important phase of distributed information retrieval with selective search

is resource selection (i.e., finding the relevant clusters). Even if perfect clustering

could be achieved, it will be meaningless without a proper logic to identify the clus-

ters that should be conducted for a given query. On this subject, we will cover 6

different resource selection algorithms in this section. These are categorized as large-

document models and small-document models. As an example of large-document

models, CORI [10] will be discussed. On the other hand, Redde [34], CRCS(e) and

CRCS(l) [32], GAVG [31] and Redde.top [5, 6] will be covered as examples of small-

document resource selection approaches.

In CORI, a cluster is represented as bag-of-words that are the concatenation of the

containing documents [10]. Since each collection is represented as a document, clus-

ter selection algorithm works just like a document retrieval algorithm with taking the

1 http://boston.lti.cs.cmu.edu/appendices/CIKM2016-Dai/
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weight of the term in the collection as term frequency and inverse collection frequency

as inverse document frequency in the BM25 formula. The result of the resource se-

lection algorithm is the rankings of the documents that are representative of certain

clusters. Then, top-K clusters can easily be selected and the query can be forwarded

those clusters.

The motivation for the emergence small-document models is the observation that

CORI is not working well with mixed sized collections [34]. In order to overcome

this issue, Si and Callan proposed a new method, namely, Redde that inspired many

more methods afterward.

In Redde, a set of documents is randomly selected from each cluster. These docu-

ments grouped as a special cluster. Then, an index is created for this cluster. This

index is referred as Central Sample Index (CSI) and plays a big role in resource se-

lection algorithms of small-document models. In query processing phase, query is

first processed over CSI. Next, clusters are scored based on the number of documents

it has in the top-N results. At last, scores of the clusters are scaled with the proportion

of the size of sampled documents to the size of the original cluster. The formula for

calculating scores of the clusters is given in Equation 2.7.

SCORE(Ci, q) =
|Ci|
|Si|
×

∑
d∈Si,d∈R

1 (2.7)

where

• Si is the sampled documents from cluster Ci,

• R is the top N result obtained from CSI,

• |Ci| and |Si| are the sizes of the cluster and sampled documents of the cluster

respectively.

To improve Redde, Shokouhi proposed two new methods, namely, CRCS(l) and

CRCS(e) [32]. They followed the same path as Redde but changed the scoring al-

gorithm of the clusters. In their work, they stated that not each document of the top N

CSI result should make the same contribution to the cluster score and ranks of these
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documents should be taken into consideration. To enable this, two new equations

are introduced in their work. First one, CRCS(l), takes the position of the document

linearly in its formula shown in Equation 2.8. On the other hand, CRCS(e) takes the

rank exponentially in Equation 2.9.

SCORE(Ci, q) =
|Ci|
|Si|
×

∑
d∈Si,d∈R

N − j (2.8)

SCORE(Ci, q) =
|Ci|
|Si|
×

∑
d∈Si,d∈R

αε−β×j (2.9)

where

• j is the rank of document d in CSI result, and

• α and β are the coefficient parameters which are set to 1.2 and 2.8, respectively,

in their experiments.

Instead of using document ranks, Seo and Croft decided to use the scores of the

documents to calculate the scores of the clusters. To do this, they took the first m

results for each cluster in CSI result and calculated the geometric average of the scores

of these documents. If a cluster has less than m documents in CSI result, the minimum

scored document added until reaching m. The formula for calculating cluster scores

is given in Equation 2.10.

SCORE(Ci, q) = (
∏

d∈Si,d∈top m ofSi∈R

P (d, q))
1
m (2.10)

where

• P (d, q) is the score of document d in query q

Another method that uses the relevance scores of the documents in resource selection

is proposed by Arguello et al. and later called as Redde.top [5, 6]. This is also a

variant of Redde. Instead of using ranks or geometric averages of the scores of the
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documents, it uses the summation of the scores. The equation of cluster scoring

formula is given in Equation 2.11

SCORE(Ci, q) =
|Ci|
|Si|
×

∑
d∈Si,d∈R

P (d, q) (2.11)

In our experiments, we use Redde as it is widely used in related works that focus on

selective search [22, 24].

2.3 Cluster Skipping Indexes

Cluster skipping indexes are initially introduced by Can et al. in [12]. In their work,

they proposed a new structure to store inverted index files in order to improve the

performance of cluster based retrieval. In this new structure, cluster membership

information of documents are also stored in index files along with postings. With this

way, it becomes possible to process documents from best clusters and skip the others.

Later, Altingovde et al. adapted this structure to environments with compression [1].

This structure is also used in dynamic pruning [2] and recommendation systems [3].

However, our implementation is the first one that applies this idea to selective search

within a distributed information retrieval setup.
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CHAPTER 3

IMPROVING PARTITIONING TECHNIQUES FOR

SELECTIVE SEARCH

This chapter presents the new techniques proposed in this thesis in order to improve

selective search. In the first section, we will discuss selective search along with the

techniques used in general. Next, Hybrid partitioning method will be explained in

detail. Finally, we will introduce the distributed CSI method to further improve search

efficiency.

3.1 Selective Search

Distributed search is a well-known approach for searching large textual collections

with partitioning documents to multiple shards. Several methods are proposed to

partition the documents and the index across physical shards.

Random partitioning is one of them and it assigns documents to shards uniformly

at random [11]. It is the most common method used in industry. Search process in

the Random partitioned setup is simple as shown in Figure 3.1. The colors in the

figure show the topics of the documents. For random partitioned setup, topics of the

documents are not important. It just demonstrates that different documents are kept

together in this method. When a query is submitted to the broker, it directly forwards

the query to shards and waits for top-k results from each shard. After getting the

results from all shards, broker merges them and produces the final result. Since it

searches all the documents inside all the shards, this method is considered as exhaus-

tive search over the entire collection and produces the same results as if it is conducted
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Figure 3.1: Search process in Random partitioned setup.

Figure 3.2: Search process in Topic partitioned setup.
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using a single index on the entire collection. Notably, as search process is distributed

to multiple shards, it reduces the query latency.

Another method used in the distributed search is Topic partitioning. In this method,

documents are distributed to shards according to their topics and hence, topically sim-

ilar documents are kept together. A sample index, namely, CSI, is created after the

shard creation stage [4] [24]. The query processing steps can be seen in Figure 3.2.

When a query reaches to the broker, it is first processed over CSI. From the top-k re-

sults of CSI results, most relevant shards to the query are determined using resource

selection algorithms [33]. Next, query is forwarded to only these relevant shards.

Each shard produces its own top-k results and returns them to the broker. In the end,

returning results are merged in the broker and final top-k results are produced. In Fig-

ure 3.2, CSI processing yields that only documents with "Grey" topic are relevant to

the query and then query is forwarded to the shard which contains "Grey" documents.

The main motivation in selective search is reducing the costs in query processing

while maintaining the result quality in comparison to exhaustive search. Previous

studies [12], [4], [22] and [25] have shown that this is possible with various clus-

tering and resource selection strategies. In terms of the total cost, i.e., total number

of documents visited for a query, it is clear that cost can be reduced by selecting N

relevant shards (skippingK−N shards) for a query. However, efficiency is still ques-

tionable and studied by others [24]. Although total cost is valuable for showing the

total work done, longest execution path, i.e., query latency is a more important metric

than the total cost since it directly affects user experience. The latency is determined

by the slowest shard because broker needs to collect results from all shards before

merging them. In the environments with unbalanced cluster sizes, the longest execu-

tion path gaps between fastest and slowest shards become larger. To overcome this

issue, Kulkarni and Callan proposes the size bounded clusters that helps to produce

more balanced clusters. However, it still suffers in query latency compared to random

partitioning. As explained in Section 4, we will use CTotal(q) metric to study total

cost and CLatency(q) metric to study query latency and compare the results.

Another issue which may show up in Topic partitioning is load imbalance. It is very

likely that some of the shards are working for most of the time for popular queries
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while the others may work occasionally for less popular queries, and otherwise, re-

main idle. As result of this, resources may be wasted, which is undesirable in a

low-resource search setup. Kim et al. draw attention to this issue in their work [21]

and propose better shard distributions as a solution.

In our work, we build a new solution that produces effective results with reducing total

cost like Topic partitioning but fixing the query latency and load imbalance problems

at the same time.

3.2 Selective Search with Hybrid Partitioning

In the previous section, we mentioned the two main problems of selective search:

Query Latency and Load Imbalance. The first one has an impact on user experi-

ence while the second one causes troubles in resource utilization. As a solution, we

propose the Hybrid partitioning approach that still uses the topical clusters of the

documents but partition the documents randomly.

To achieve this goal, we inspired from the cluster-skipping index method [1] [12].

This method has been shown to improve both efficiency and effectiveness in single

shard setups. To enable cluster-skipping indexes in our setup, we first clustered the

documents and assigned each document to a cluster, i.e., a topic. Next, we distributed

documents randomly to the shards like Random partitioning. Inside shards, topics

of the documents are used to group them and shard indexes are created accordingly.

In other words, we distribute documents randomly to the physical shards but exploit

their logical clusters to create cluster-skipping indexes. While processing a query,

this method helps us to obtain a better load balance while reducing the number of

postings processed at each random shard.

The summary of the query processing steps could be seen in Figure 3.3. When a query

arrives to the broker, it is first conducted to CSI to determine the relevant clusters.

This resource selection step is exactly same as the one in Topic partitioning setup.

Next, the query is directed to all shards. It can be seen from the figure that postings

in a list are grouped by their logical clusters and every list start with cluster-skipping

nodes that are pointing the starts of documents belongs to a particular cluster. In this
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Figure 3.3: Search process in Hybrid partitioned setup.

way, it is possible to skip the documents that do not belong to the clusters identified

in the resource selection stage. Since all shards work on the query at the same time,

loads become more balanced compared to Topic partitioned setup. In addition to this,

not all postings processed inside shards which helps to keep the total cost low.

To understand the differences of these three setups in terms of query processing steps,

an example is illustrated in Figures 3.1, 3.2 and 3.3. Assuming a single word query

q with term t executed in all of these setups, we compute the query latency and total

cost. In the first setup, Random partitioned, the query is forwarded to all shards and

all posting lists inside shards for term t is processed. This means total cost, i.e., the

total number of postings processed, is 16 for this method, while query latency is 6

and determined by slowest shard - Shard2. In Topic partitioned setup, the query is

only forwarded to Shard1 because CSI results indicate that "Grey" cluster is relevant

to the query. This time the total cost and query latency are determined by Shard1

and that is both 7. When it comes to Hybrid partitioned setup, query is forwarded to

all shards but before that, relevant clusters are again determined with CSI processing.
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Figure 3.4: First phase of query processing in the distributed CSI setup.

In each shard, cluster skipping nodes and postings that are pointed by "Grey" cluster-

skip node is processed. This makes the total cost of the method as 15 and query

latency as 5 (3 skip nodes + 2 "Grey" postings on Shard1). In this toy example,

the latency of Hybrid method could be worse if the query topic was "Blue" but we

emphasize that the number of skipping nodes would be much less compared to posting

list size in practice (as number of clusters would be much smaller than the number

of documents) and this additional cost would not adversely affect the performance

gains obtained via Hybrid partitioning. In contrary, since all the documents related to

a particular topic are stored in same shard in Topic partitioned setup, query latency

could be much worse in certain cases. We remove the possibility of such cases by

distributing topically related documents to all shards.

3.3 Selective Search with Distributed CSI

While creating CSI, we mentioned that 1% of documents are randomly sampled from

all clusters. Since the first step of query processing in Topic and Hybrid partitioned

setups is sending the query to CSI, we added the processing cost of this stage to query

latency (Eq. 4.2) and total cost (Eq. 4.1) formulas, as typical in the literature [24].

Thus, for each query, the system has to do calculations in CSI whose size is 1% of

the index for the entire collection. This implies that while trying to reduce the query
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latency, CSI processing cost is dominating the overall cost, because our improvements

affect only the costs inside the shards, but not CSI.

Putting all together, we decided to distribute CSI to the physical shards (again, in

a random fashion) to reduce its cost and take advantage of parallel processing. In

distributed CSI setups, every physical shard of the system stores a subset of the CSI.

Query processing is done in two-phase. In the first phase, the query is forwarded to

all shards and it is evaluated over the shards’ local CSIs. Next, results are collected

and merged in broker and clusters relevant to the query are determined accordingly

(Figure 3.4). In the second phase, the query is only forwarded to certain shards in

Topic partitioned setup and forwarded to all shards in Hybrid one (together with the

information about "target" clusters).
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CHAPTER 4

EXPERIMENTAL SETUP

We will introduce the experimental setup used for the experiments in the next chapter.

To begin with, we will explain the query processing method. The next section will be

about the query sets. After that, evaluation metrics and partitioning methods will be

described one after another.

4.1 Query Processing

We used Zettair1 to construct the cluster and CSI indexes. Before processing queries,

we remove the stopwords. Okapi BM25 scoring scheme [30] is used to score docu-

ments with setting parameters k1 to 1.2 and b to 0.5.

4.2 Query Sets

Two query sets used in the experiments. TREC set consists of 200 queries from

TREC Web tracks between 2009 and 2012 [13, 14, 15, 16]. Query lengths in this

set vary from 1 to 10 with the average length of 2.1. The second one, AOL set,

consists of 100K queries that are randomly selected from the well-known AOL log

[28]. Minimum query length is 1 and maximum query length is 85 for this set with

the average length of 3.1. Relevance judgments are available for TREC set and used

for evaluations in this thesis. In order to evaluate the results for AOL set in terms

of effectiveness, we used top 20 exhaustive results as relevant documents for a query

1 http://www.seg.rmit.edu.au/zettair/
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and evaluate accordingly.

4.3 Evaluation Metrics

Effectiveness. The effectiveness results in this thesis are evaluated using Precision

(P@5, P@10 and P@20), Normalized Discounted Cumulative Gain (NDCG@20)

and Expected Reciprocal Rank (ERR@20) metrics. As mentioned in the previous

section, relevance judgments that are published for TREC Sets are used to evaluate

them. On the other hand, we created custom relevance judgments from exhaustive

search results for AOL Set. All metrics are calculated with Trec Eval2 or nDeval3.

Efficiency. Efficiency results are calculated in terms of total query cost (CTotal(q))

and query latency (CLatency(q)) as in [24].

CTotal(q) = |IqCSI |+
M∑
i=1

∑
c∈T

|IqM [i],c| (4.1)

CLatency(q) = max
1≤i≤M

(|IqCSI |+
∑
c∈T

|IqM [i],c|) (4.2)

where

• |Iq| is the total number of posting lists for each term in q,

• |IqCSI | is the query processing cost in CSI,

• |IqM [i],c| is the query processing cost for a cluster c located at a physical machine

M [i],

• T is the set of selected clusters for a query.

M[i],T otal =
∑
c∈T

|IqM [i],c| (4.3)

2 https://github.com/usnistgov/trec_eval/
3 https://github.com/trec-web/trec-web-2014/blob/master/src/eval/ndeval.c
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Table 4.1: Experiments on clusters sizes

K P@5 P@10 P@20 NDCG@20 ERR@20

50 0.3263 0.3121 0.2793 0.17972 0.12166
100 0.3343 0.3152 0.2811 0.18406 0.12316
250 0.3071 0.2965 0.2694 0.17507 0.11709

In addition to this, we also keep the physical machine statistics in terms of the total

work done to calculate the loads per machine M [i].

4.4 Collection and Partitioning

We used ClueWeb09 Cat-B collection in our experiments. This dataset consists of 50

million English web pages and it is widely used in distributed search setups4.

To create Topical clusters, we used the sample-based K-means algorithm described

in Chapter 2. Since applying the algorithm to the whole set would be costly, we

have randomly sampled a subset of documents, namely 1% of the collection, as in the

work of Kulkarni and Callan [22]. K documents are selected to initialize the cluster

centroids from these sampled documents randomly. Next, multiple K-Means runs are

executed to produce the final clustering of sampled documents. For each run after the

first one, previous run results used to determine the initial centroids of the clusters and

the same process applied again. Then the remaining documents are projected to these

clusters based on their similarities to cluster centroids. Kullback-Liebler divergence

method (Equation (2.2) [22]) is used to calculate the similarity between the cluster

centroids and documents.

In order to choose parameter K, we tried 3 different values as 50, 100 and 250. 200

queries from the TREC set between 2009 and 2012 are processed in these clusters

with Redde as resource selection algorithm and 10% of the resources are selected

in each run. The result of the experiments can be seen on Table 4.1. As K = 100

produces the best results in our experiments and to obtain comparable results with the

previous studies, the parameter K is set to 100.

4 http://lemurproject.org/clueweb09.php/
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Figure 4.1: Size distribution of the clusters.

We have also used the CW09B-KLD-Rand, CW09B-QKLD-Rand and CW09B-QKLD-

QInit clusters created by Dai et al. using the same dataset with different clustering

techniques [18]. CW09B-KLD-Rand is created with random seeds and Kullback-

Lieber divergence as similarity function, just like our clustering. In CW09B-QKLD-

Rand, they add term importance which is generated from query logs and word embed-

dings of the terms to Equation (2.2) [22]. For the final one, CW09B-QKLD-QInit, they

also changed the seed selection stage of the algorithm. Instead of randomly choosing

documents to create initial centroids of the clusters, they again used query logs and

word embeddings of the terms to create better centroids. The resulting clusterings

consist of 107, 128 and 123 clusters, respectively.

Figure 4.1 shows the size distributions of the clusters. While Topical clusters (our

setup) and CW09B-KLD-Rand datasets have large number of small-sized and large-

sized clusters, CW09B-QKLD-QInit and CW09B-QKLD-Rand datasets have more

mid-sized clusters. In addition to this, the distribution of the clusters in Topical clus-
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Table 4.2: Percentage of relevant documents covered in top N clusters

Dataset
N

1 3 5 10 10%
Our 55 84 93 99 99
CW09B-KLD-Rand 58 84 91 98 99
CW09B-QKLD-Rand 65 89 97 99 99
CW09B-QKLD-QInit 67 90 97 99 100

ters are very similar to the one in [20].

We have also calculated the cluster coverage percentages as another analysis on the

clusters in order to make sure that the topics are well distributed across the clusters. To

calculate the coverage percentages, we used 200 queries from TREC 2009-2012 sets

with relevance judgments. For each query, we looked for the clusters of the relevant

documents and sorted them with respect to the number of relevant documents covered.

Next, for each cluster in order, we calculated the percentage of documents covered

incrementally. Table 4.2 summarizes the coverage percentages with respect to the top

N clusters. The last column of the table shows that top 10% percent of clusters covers

at least 99% of the relevant documents. This analysis also helps us to determine the

number of clusters to be selected in resource selection algorithms which is the topic

of the next sub-section.

In addition to Topic partitioned setups we also created Hybrid partitioned ones. For

each clustering structure used in Topic partitioned setups, we partitioned documents

using the proposed Hybrid approach. For this method, documents are distributed

randomly to the clusters, but we are keeping their topics as logical clusters that doc-

uments belong. With this way, we are able to construct indexes with cluster-skipping

elements which are described in the previous chapter.

Finally, we have Random partitioned setup that documents assigned randomly to the

shards. Here we used the same distribution used in Hybrid partitioned setup in order

to have comparable results in Random and Hybrid partitioned setups.

In a low-resource setup, we are aware of the fact that we can’t use a physical node

for each cluster. So, we assume that there are M physical machines where M < K as

27



Table 4.3: Experiments on the number of selected resources N with different K val-
ues

K N p@5 p@10 p@20 NDCG@20 ERR@20

- - 0.3434 0.3157 0.2833 0.18585 0.12555

50
1 0.2505 0.2283 0.1813 0.12219 0.10259
3 0.3162 0.2980 0.2566 0.16540 0.11702
5 0.3263 0.3121 0.2793 0.17972 0.12166

100

1 0.2758 0.2490 0.1992 0.14478 0.10898
3 0.3242 0.3030 0.2551 0.17067 0.12265
5 0.3303 0.3182 0.2722 0.17696 0.12088

10 0.3343 0.3152 0.2811 0.18406 0.12316

250

1 0.2616 0.2429 0.1876 0.12645 0.09908
3 0.2879 0.2768 0.2341 0.15203 0.10964
5 0.2980 0.2833 0.2465 0.16438 0.11406

10 0.2970 0.2919 0.2609 0.16834 0.11220
25 0.3071 0.2965 0.2694 0.17507 0.11709

in [21]. For partitioning, we randomly assigned the clusters to the physical nodes. In

the end, each physical node hosts K/M clusters [24]. In this work, we choose M as

10.

4.5 Resource Selection

We used Redde [34] as the resource selection method in our experiments. To begin

with, we create a Central Sample Index (CSI) by randomly sampling the documents

from shards. Aly et al. tried sampling 1%, 2% and 4% of the documents in the same

dataset and observed very similar results with different sample rates [4]. Here, we

also decide to sample 1% of the documents based on the previous studies [4] and

[24].

To determine how many shards should be visited for a query, i.e., the parameter N,

we try different values and expand the experiment in Table 4.1. The results can be

seen on Table 4.3. The first line of the table shows the exhaustive search results. We

can say from these results that selecting 10% percentage of the shards is enough to
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produce effective results as much as the exhaustive search does.

For Topic and Hybrid partitioned setups queries are first executed over CSI and then

selected resources are determined with Redde. After that, the query is forwarded

to the selected shards in Topic partitioned setup. On the other hand, in the Hybrid

partitioned setup, the query is forwarded to all shards along with the information of

selected resources to allow skipping. On Random partitioned setup, CSI processing

skipped and query forwarded to all shards.
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CHAPTER 5

EXPERIMENTAL RESULTS

Several experiments are conducted to evaluate the performance of the Hybrid parti-

tioning. In what follows, we present the results in terms of effectiveness and efficiency

metrics that are described in Chapter 4.

5.1 Effectiveness

We have used two different query sets to measure the effectiveness of selective search

and compare it with exhaustive search.

Table 5.1 shows the results of TREC query set. This set consists of 200 queries

from 2009 to 2012 query sets and their relevance judgments are available. As it can

be seen from the results, the selective search produces comparable results with the

exhaustive search. Our results are also similar to [24], but the scores are better than

theirs because of the differences in the pre-processing methods used. In particular,

we use spam filtering while they apply stemming.

In addition to TREC query set, we also used 100K queries from AOL log to test the

partitioning methods in large scale. Since we didn’t have the relevance judgments of

AOL query set, we used exhaustive search results to evaluate them. For doing this,

first 20 results of the exhaustive search are assumed as relevant and selective search

results are evaluated based on them. The results can be seen in Table 5.2. At least

98% of the documents from top-5 results of the exhaustive search also occurs in top-

20 of selective search results for TREC query set. The precision score is 94% for
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top-10 results and 78% for top-20 results respectively. AOL query set results have

slightly worse results than TREC query set results as it can be seen from the last 4

rows of Table 5.2.

Table 5.1: Effectiveness results for TREC query set with selective search (Topic &
Hybrid partitioning) and exhaustive search (Random partitioning).

Partitioning Dataset K N
p

@5
p

@10
p

@20
ndcg
@20

err
@20

Random - 100 NA 0.34 0.32 0.28 0.19 0.13

Topic
&
Hybrid

Our 100 10 0.34 0.32 0.28 0.18 0.12
KLD-Rand 107 11 0.33 0.31 0.29 0.18 0.13
QKLD-Rand 128 13 0.34 0.32 0.28 0.18 0.13
QKLD-QInit 123 12 0.33 0.32 0.29 0.19 0.13

In conclusion, we found similar results as previous works like [24] and [18] revealing

that selective search can be as effective as exhaustive search. The differences in topi-

cal clustering stage have a minor impact in the effectiveness results but more balanced

shards are likely to yield better efficiency and load balancing results, as will be shown

in the next sections.

Table 5.2: Recall analysis for selective search results with Topic & Hybrid partition-
ing.

Query Set Dataset K N
p

@5
p

@10
p

@20
ndcg
@20

err
@20

TREC
200 Query

Our 100 10 0.98 0.94 0.78 0.84 0.17
KLD-Rand 107 11 0.99 0.96 0.80 0.86 0.17
QKLD-Rand 128 13 0.98 0.96 0.84 0.88 0.17
QKLD-QInit 123 12 0.99 0.95 0.84 0.88 0.17

AOL
100K Query

Our 100 10 0.93 0.86 0.63 0.73 0.16
KLD-Rand 107 11 0.92 0.85 0.65 0.73 0.16
QKLD-Rand 128 13 0.93 0.87 0.70 0.77 0.16
QKLD-QInit 123 12 0.93 0.87 0.71 0.77 0.16
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Table 5.3: Efficiency results for TREC query set with selective search (Topic & Hy-
brid partitioning) and exhaustive search (Random partitioning). CTotal and CLatency
are in million documents.

Partitioning Dataset K N CTotal CLatency

Random - 100 NA 4.579 0.46

Topic

Our 100 10 1.831 0.69
KLD-Rand 107 11 1.268 0.47
QKLD-Rand 128 13 1.177 0.40
QKLD-QInit 123 12 1.137 0.38

Hybrid

Our 100 10 1.833 0.23
KLD-Rand 107 11 1.270 0.17
QKLD-Rand 128 13 1.180 0.16
QKLD-QInit 123 12 1.140 0.16

Table 5.4: Efficiency results for AOL query set with selective search (Topic & Hybrid
partitioning) and exhaustive search (Random partitioning). CTotal and CLatency are in
million documents.

Partitioning Dataset K N CTotal CLatency

Random - 100 NA 6.506 0.65

Topic

Our 100 10 2.345 0.92
KLD-Rand 107 11 1.548 0.55
QKLD-Rand 128 13 1.442 0.47
QKLD-QInit 123 12 1.350 0.44

Hybrid

Our 100 10 2.348 0.30
KLD-Rand 107 11 1.551 0.21
QKLD-Rand 128 13 1.446 0.20
QKLD-QInit 123 12 1.353 0.17

5.2 Efficiency

Another important concern we take into account is the efficiency of the partitioning

methods. To evaluate this, we use CTotal and CLatency metrics. CTotal shows the total

cost in terms of the number of postings processed for a query. This metric used in
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earlier works [22] to compare Random partitioning with Topic partitioning. Later,

it is noticed that latency of the query, CTotal, is also important to evaluate methods

in terms of efficiency [24]. Indeed, latency directly effects the user experience and

should be taken into consideration.

We report the efficiency results of our experiments for two different query sets namely

TREC and AOL query sets in Table 5.3 and 5.4. In addition to these, we also report

the efficiency results obtained with distributed CSI setup in Table 5.5. Note that,

distributed CSI has no effect on CTotal since the it is the sum of all postings processed

and does not change. For this reason, we only report CLatency results in Table 5.5 for

both TREC and AOL query sets.

Table 5.5: Efficiency results in terms of query latency for both TREC and AOL query
sets with selective search (Topic & Hybrid partitioning) in distributed CSI setup.
CLatency is in million documents.

Partitioning Dataset K N
CLatency

TREC AOL

Topic

Our 100 10 0.65 0.86
KLD-Rand 107 11 0.43 0.49
QKLD-Rand 128 13 0.36 0.41
QKLD-QInit 123 12 0.34 0.40

Hybrid

Our 100 10 0.18 0.23
KLD-Rand 107 11 0.12 0.15
QKLD-Rand 128 13 0.11 0.14
QKLD-QInit 123 12 0.11 0.13

When we look at the results in Table 5.3, it is obvious that Topic partitioning has better

total cost results than Random partitioning for all four datasets. The improvements

vary from 60% to 75% depending on the dataset. Even if there are cluster-skipping

nodes in Hybrid partitioning, their effect on cost is very low and similar gains are also

valid for this method. However, in terms of the query latency, Topic partitioning has

not clear improvements over Random partitioning. In fact, there are datasets where

it works worse than Random partitioning. On the other hand, Hybrid partitioning

provides significant savings over both Random and Topic partitioning up to 65% and

66%, respectively. Results in Table 5.4 for AOL query set with 100K queries also
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reveal the same trends for a much larger query volume. In distributed CSI setups,

savings become even larger (i.e., %83 and 72%) since the cost of the CSI has more

effect on Hybrid partitioning as it can be seen from Table 5.5.

We also studied the tail latencies of these setups. The main purpose here is that in-

stead of looking at the averages, we also want to look at the 1% of the slowest queries

to understand the efficiency results better. For this experiment, latencies for each

query is determined for three methods and queries are resorted by the costs of Topic

partitioning setup. Figures in 5.1 plotted with those values obtained for four different

datasets. We can say from these figures that, Hybrid partitioning consistently pro-

duces lower latencies compared to other two methods for the tail queries. However,

there is no clear winner between Random and Topic partitioning methods because as

their performance vary for different queries.

5.3 Load Balancing

We present the relative loads of physical nodes and plotted them in Figure 5.2. As

it is stated earlier, we apply all partitioning methods to four different datasets and

report the results for each in Figures 5.2(a) to 5.2(d). In addition to this, since the

load distributions of Hybrid and Random partitioning methods are almost identical,

we only plot the former one for better visuals.

If we look at the results, Hybrid partitioning always yields balanced results for all

four datasets with each shard has 10% load relatively and thus, shares the total load

evenly. On the other hand, there is a load imbalance for Topic partitioning at various

levels. Nevertheless, even for the best case obtained with QKLD − QInit dataset

(Figure 5.2(d)), there is a 10% load difference between the busiest shard and the most

idle shard. This means that, due to load imbalance, some of the shards are waiting

in the idle state while others are overloaded. This is a huge obstacle for optimizing

resources which is one of the most important concerns in a low-resource environment

and justifies the importance of our Hybrid partitioning approach.
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(a)

(b)

(c)

(d)

Figure 5.1: Tail analysis of 4 datasets in terms of number of postings processed on
TREC query set: (a) OUR; (b) KLD-Rand; (c) QKLD-Rand; and, (d) QKLD-QInit.
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(a)

(b)

(c)

(d)

Figure 5.2: Load balancing analysis of 4 datasets in terms of relative load (%) of
the nodes on TREC query set: (a) OUR; (b) KLD-Rand; (c) QKLD-Rand; and, (d)
QKLD-QInit.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

In this thesis, a new approach to distributed IR problem is presented, namely, se-

lective search with Hybrid partitioning. We showed that traditional selective search

with Topic partitioning may suffer from high query latency and load imbalance al-

though it reduces the total query processing cost. To remedy these problems, our

proposed approach distributes all documents to physical shards randomly but uses

cluster-skipping indexes inside shards during query processing in order to make cal-

culations only for the documents that are in the clusters relevant to the query.

In addition to Hybrid partitioning, we also presented a new approach for CSI process-

ing, namely, selective search with distributed CSI. In this approach, documents inside

the CSI are distributed to physical shards to reduce the effect of CSI processing cost

in the query latency.

To evaluate our approaches and compare with others, we used two different query

sets. The first one is TREC query set which consists of 200 queries from TREC 2009

to 2012 and second one is AOL query set with 100K queries collected from well-

known AOL log. In addition, four different clustering strategies are used. Three of

them are taken from [18]. We also created one by using K-Means with sampling.

With varying query set-dataset combinations, we demonstrated the robustness of our

results.

Our experimental evaluation showed that Hybrid partitioning method reduces the total

cost like Topic partitioning while solving latency and load imbalance problems. For

every experiment, Hybrid partitioning produces better query latency results in com-
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parison to both Topic and Random partitioning. While doing this, it also achieves

perfect load balance and thus, allows the optimized use of system resources. More-

over, we also showed that parallelizing CSI processing with distributed CSI enables

further improvements in terms of query latency.

As a future work, separate indexes for each cluster can be constructed inside each

shard instead of using skip indexes. This may help the small overhead caused by

skipping nodes but also has two disadvantages. First one is, it will be hard to update

index files. Secondly, more random accesses will be needed inside disk during query

processing. We believe analyzing these trade-offs is an exciting future work direc-

tion. As another interesting research direction, instead of distributing CSI documents

randomly to the physical shards, a CSI could be created for each shard and selected

resources could be determined inside that shard. With this way, two-phase processing

won’t be needed.
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