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ABSTRACT

EQUIVARIANT REDUCTION OF MATRIX GAUGE THEORIES AND
EMERGENT CHAOTIC DYNAMICS

Toga, Goksu Can
M.S., Department of Physics
Supervisor : Prof. Dr. Seckin Kiirk¢iioglu

July 2018, [74] pages

In this thesis we focus on a massive deformation of a Yang-Mills matrix gauge the-
ory. We first layout the essential features of this model including fuzzy 4- sphere ex-
tremum of the mass deformed potential as well as its relation with string theoretic ma-
trix models such as the BFSS model. Starting with such a model with U(4N) gauge
symmetry, we determine the SU(4) equivariant fluctuations modes. We trace over
the fuzzy 4-spheres at the matrix levels N = ¢(n +1)(n +2)(n +3), (n: 1,2...5)
and obtain the corresponding low energy effective actions(LEA).This reduction over
fuzzy 4-sphere breaks the U(4) gauge symmetry down to U (1) x U(1), which is fur-
ther broken to Zy x 7 by the Gauss Law constraint on the gauge fields. We solve
numerically the Hamilton’s equations of motions for the corresponding phase space
variables and using the latter obtain the Lyapunov exponents, from which we con-
clude the presence of chaotic dynamics in the LEA. Finally in the Euclidean time,
we also find that the reduced LEA’s have kink solutions with topological charges in
Lo X T

Keywords: Matrix Models, Fuzzy Spaces, Yang Mills Models, Mass deformed matrix
models
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MATRIS AYAR TEORILERININ SIMETRIK INDIRGENMESI VE KAOTIK
DINAMIGI

Toga, Goksu Can
Yiiksek Lisans, Fizik Bolumii

Tez Yoneticisi : Prof. Dr. Seckin Kiirk¢iioglu

Temmuz 2018 , [74] sayfa

Bu tezde, ilk olarak kiitle deformasyonu tasiyan Yang Mills matris ayar teorilerine
odaklanildi. Bu modelin kiitle bozunumlu potansiyelinin ekstremumu olan fuzzy 4-
kiire konfigiirasyonlar: ile sicim teorisi kaynakli matris teorileri, 6rnegin BFSS mo-
deli, ile iligkisi ana hatlariyla ortaya konuldu. U (4/N') ayar simetrisini tagiyan bir mo-
delden baghyarak, SU(4) simetrik salmm modlarini elde ettik. N = ¢(n 4 1)(n +
2)(n + 3), (n = 1,...,5) matris mertebelerindeki fuzzy 4-kiireler iizerinde iz is-
lemi yapilarak, bu mertebelere denk diisen diisiik enerjili etkin eylemleri hesapladik.
Faz uzay1 degiskenlerinin Hamilton hareket denklemlerini niimerik metotlar ile ¢o-
ziip Lyapunov iistlerini de elde ettik. Bu bilgilerin 1s181inda ilgili diisiik enerjili et-
kin eylemlerin kaotik dinamigi oldugu sonucuna vardik. Son olarak, Oklidyen zaman
iminde diisiik enerjili etkin eylemlerin 1 + 0 boyutta bulunan tipik yapida instanton
¢cOziimleri tagidigini da gosterdik.

Anahtar Kelimeler: Matris Modelleri, Fuzzy Uzaylar, Yang Mills Modelleri
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CHAPTER 1

INTRODUCTION

Matrix gauge theories occupy an important place in current research in theoretical
physics, due to their various connections with M-theory and String theories. Among
these models, it may be useful to mention Banks-Fischler-Shenker-Suskind (BFSS)[!1]]
model, since the matrix model studied in this thesis is strongly tied to it as will be ex-
plained in detail in Chapter 2. BFSS model is a supersymmetric quantum mechanics
matrix model, whose bosonic part contains /N X N matrices transforming under the
adjoint representation of a local U(/N) gauge symmetry. These nine matrices coupled
with a single gauge field, through a covariant derivation and they couple each other
with a fourth order potential term. The model is invariant under a U (V) gauge sym-
metry and also under a global SO(9) symmetry, which is a rigid rotation of the nine

matrices.

The matrix entries depend on time only. We will only focus on the bosoinc part of
this model, therefore we do not discuss its fermionic content. This model arises dis-
crete light-cone quantization of M -theory on flat backgrounds(DLCQ). The massive
deformation of this model is known as the BMN matrix model[2], and it arises as the
DLCQ of M-theory on certain curved backgrounds. BMN model has fuzzy 2 spheres
and their direct sum as vacuum solutions. These matrix models provide a descrip-
tion of the dynamics of NV coincident D0-branes, which has the dual description of
a black hole in the large N and strong coupling limit[3]]. Recently, BFSS & BMN
matrix models have been subject to various studies exploring their chaotic dynamics
at the large temperature i.e. near classical level, with the motivation of gaining further

insights on the black hole description in the gravity dual [4), 3, 5, 6]



In this thesis, we focus on a massive deformation of Yang-Mills matrix gauge theory
with 5 matrices. This may be seen as a massive deformation of a subsector of the
BFSS model as we will explain in Chapter 2. In contrast with fuzzy 2-spheres ap-
pearing as classical solutions in the BMN theory this model have classical solutions
which are fuzzy four spheres(7, 8, 9]. Our main objective in the thesis is to examine
certain fluctuations satisfying symmetry constraints about this classical configuration
and utilizing their explicit form to obtain reduced effective actions. Subsequently,
we reveal the chaotic dynamics emerging from these effective actions by calculating
their Lyapunov exponents using numerical solutions to their Hamilton’s equations of

motion.

Next, we provide a detail outline of the thesis and a brief summary of our results. In
Chapter 2, we provide a general discussion of the fuzzy spaces[10, 11} [12]], first fo-
cusing on the construction and properties of the simplest of all fuzzy spaces, namely
the fuzzy sphere. After giving a brief description on how this construction gener-
alizes to complex projective spaces CP" and in particular, CP?, we focus on the
central subject of this thesis which is an extensive review of the construction of the
fuzzy 4-sphere[13, (14} [15, [16]. This chapter also includes a detailed description of
Yang-Mills matrix model with 5-matrices and massive and/or Chern-Simmons(CS)
type deformation terms. In particular, various features of the work of [13] on this
matrix model with CS term is reviewed here. Chapter 3 contains all the original re-
sults obtained in the study in collaboration with U. H. Coskun, S. Kiirk¢iioglu & G.
Unal [17]. Here we determine the equivariant parameterizations of the gauge fields
and the fluctuations of a mass-deformed U (4/N') Yang-Mills matrix model about the
four concentric fuzzy 4-sphere configurations. The latter are solutions of the matrix
model only for negative value (1> = —8) of the mass squared which may be an in-
dication of instabilities. Nevertheless the low energy effective actions(LEA) that we
obtain by performing traces over the equivariantly symmetric configurations at sev-
eral different matrix levels(sizes) all have potentials which are bounded from below,
which implies that the negativity of x? do not lead to instabilities under equivariant
fluctuations. After dimensional reduction U (4) gauge symmetry of the concentric S
configuration is reduced to U(1) x U(1) . Since the gauge fields in the LEAs are not

dynamical, their equations of motion yield not differential but algebraic equations,



which are constraint equations. They are known as the Gauss law constraints in the
literature[4]]. Solving these equations turns out to be equal to enforcing the two com-
plex fields in the LEAs to have zero charge, that is they are real under the abelian
gauge fields. This breaks U(1) x U(1) further down to Zs X Zs. This chapter con-
tains our findings providing ample evidence for the emergent Chaotic dynamics of
the LEAs. In particular, we find the Lyapunov spectrum at several different energies,
and give a number of plots demonstrating the time development of the Lyapunov ex-
ponents which all converge to fixed values well before the computation time used in
numerical calculations. (3.I)) summarizes our numerical findings for the Lyapunov
exponents. In the last section of this chapter we consider the structure of the LEA’s
in the Euclidean signature, and exhibit that they have kink solutions i.e. instantons in
1 + 0 dimensions[ 18, [19, 20]. Chapter 4 gives a summary of the results obtained &

conclusion reached in this thesis.






CHAPTER 2

INTRODUCTION TO FUZZY SPACES

In this chapter we introduce fuzzy spaces and explain our interest in them. In this
thesis we will focus on on Yang-Mills theories with fuzzy four sphere configurations.
In order to understand the Fuzzy S*, first we have to familiarize ourselves with the
fuzzy S? and CP? which are more elementary examples of fuzzy spaces and they
will be of use in the construction of fuzzy S* and understanding its detailed structure.
Lets start with stating some of our motivations to study fuzzy and non-commutative
geometries (First of all use of non commutative theory emerges in the context of
the String theory from the D brane configurations. In the theory of N coincident
D- branes described by the U(n) Yang-Mills theory. Coordinates of this theory are
represented by U(n) matrices and expectedly they are non-commutative). A more
intuitive motivation for studying fuzzy spaces is that as we dwell into smaller scales,
space time itself behaves quantized which can be understood in the context of non-
commutative geometry. Since we will construct S} as a S? bundle over CP? lets first
investigate the construction of S% and CP™ before introducing the Fuzzy S*. Here
we will follow the articles of Kimura[/13]],Steinacker[7]], notes of Ydri[[8]] and the book
of Balachandran et. al[[10]]

2.1 Construction of S% and CPY

We start our discussion with one of the most basic example of the fuzzy spaces SZ[21],
10]. Our plan is to review the construction and properties of the Fuzzy S? and then

Fuzzy CPY in order to familiarize the reader with the ideas of fuzzy spaces and



prepare for further developments.

2.1.1 Geometry of S?

We can define S? as the compact manifold embedded in R? fulfilling the relation[22]
x] + 25 + 23 = r? (71,79, 23) € R 2.1)

The algebra of smooth bounded functions on S? denoted as CP>(S?). Letting
f(x) € CP>(S?) with the coordiantes x; fulfilling the relation (2.1) we can expand

these functions as follows
3
f@ =" > faaTa - T, (2.2)
a1,a2,...ap=1
Equivalently functions on S? can be expanded in terms of Spherical Harmonics as
F0.0) = cinYim (0, ) (2.3)
im

With functions on S? in hand, we are in position to define the derivatives on S 2. This
is a map from C*°(S?) onto itself which is given by the generators of the rotation

group of S? and satisfies the Leibniz rule. We can write it as
L, = —i€y,2,0,, (2.4)

where the Greek indices p, v, p runs from 1 to 3. This relation can also be given in
vector notation as

L=—izxV (2.5)
L,’s fulfill the SU(2) commutation relations as expected.
[Lm Ll/] = ieuupr (2.6)

as expected it readily follows from || that x,,L,, = O so that ¥ | L which lead us
to realize that L is perpendicular to the radial direction on S? which means that it is

the tangential to the 5>

Laplacian on S? is given by

L*=1,L, (2.7)



From group theory and also from quantum mechanics we know that the eigenvalues
of this operator is [(l + 1) since it corresponds to the Casimir operator of the group
SU(2) from the former and they are essentially the angular momentum operators from
the latter, perspective. Also, note that we can define a scalar product on functions on
S? via

(F.9)= 5oz [ @ 82 — ) (@)l @8
For both f(z) and g(z) € C*(5?).
We can also define S? by making use of the first Hopf fibration. To this end consider
the Projection map P. Let g € SU(2) generated by the usual Pauli matrices 7. We

may write,

-1

gosg  =n.T. (2.9)

girg ™t =n.7,

where 79 = (0,0, 1),n, are unit vectors in R?2. One can understand this map in the
following way. Action of g rotates the unit vector 7y point along the positive x3

direction to a general radially outward vector 7. Indeed squaring both sides in (2.10)

we get
-1 -1 A A
9739 gT3g = M Ty T (2.10)
2 —1 PN -
9739~ = (O + i€uwpT,),
1= NNyl + 1€upN, My Ty,
1= Ty,

Let us note that if we take g — gh, with h € U(1) C SU(2) given as h = €293,
Using the (2.10) we find

gosg~" — ghsh™'g™! = ger® e g~ = goag™!, (2.11)

which shows us that (2.10)) is left invariant under the transformation g — gh. This
means that all element of gh = geée"3 of 3 = SU(2) are projected on to the same
point on S? We can express this equivalence class as

SU(2)

~ 2 %97‘3
ne S +— |ge ]GU(l)’

(2.12)

This amount to the construction of S? as the adjoint orbit of SU(2) through 3. In

other words, the equivalence class of parts ¢ = gh on S® are mapped to a single



point of S2. Since (2.10) is equivalent to rotation of 72 by an orthogonal matrix R €
SO(3) = SU(2) as
' = Rn, (2.13)

There is also another way to understand this Hopf Fibration. Starting from the 2
dimensional flat complex space C? spanned by Z = {z;, 25} and removing the origin

we can write coordinates of the complex plane as § = ﬁ Since we may write

£ = (&,8%) = (aq + i, Br +ifa), P =al+ai+ 8 +65=1 (2.14)

Observe that ¢ define the manifold S3. Now we can consider the projection map

IT: .53 — S? which can be given as

2, () = 1€ (2.15)

Obviously (2.15)) is invariant under the U(1) transformations & — £e®. We can check

that square of the z,, € S?, since

Lply = (fTTu£)2

(E8(T)apE8) (E1(Tu)1685), (2.16)
= &8(T0)as(Tu)ns,

= 188165 (0apdrs — 2€areps),

= l&atlE, — 2608l earens,

1 — 261€56165(000050,8),

= 1—-242,

= 1.

Where we have used the Fierz identity for Pauli matrices in passing from the 2" to

374 line of (2.16)) in the previous calculation. Which can be given more explicitly as.

(T1)ap(Tu)ye = Sap0v0 — 2€a-€60, 2.17)
= aglre — 200010 + 26000,
- — 0050y + 260003,

Thus we have showed that indeed z,, € S? with («, 3,7,0) = (1,2). And we have
constructed the descent chain of manifolds as C? — S® — S? where the second arrow
in this chain corresponds to the 15 Hopf Map, which we have previously discussed

from another perspective. SU(2) — S2.



2.1.2 Construction of Fuzzy S*

In order to get the fuzzy versions of these spaces we can quantize these manifolds in
the following manner. Consider replacing the complex coordinates z, and z, by the

operators a,, and ag
[aa, QH —1 (2.18)

Where «, 8 runs from 1 to 2, in other words, we have two pairs of annihilation and

creation operators. We can also define the number operator NV as
N = dla (2.19)

Where sum over repeated indices is implied. Now we need to parametrize the &,. As

an intermediate step we may write.

¢ ma L RS
VN VN

The condition N # 0 tells us that we have excluded the vacuum from the Fock

af

aa)
Q —
Il

N#£0 (2.20)

space. But clearly such condition can not be satisfied as successive application of the
annihilation operator aa# will naturally create it from any Fock state |m). This
N

problem, will not perisist as we move on the quantization of S2.

To get the quantized version of S? we replace (2.15) with

v,= e (2.21)

= ﬁah’uaﬁ,

— Lt
= ~ @' Tua.

Observe that [z, N| = 0, so we can restrict z,, to act on a subspace with eigenvalue
of N equal to n # 0. More specifically we may restrict to the (n + 1)-dimensional
Hilbert space spanned by the vectors.

(a])™ (ah)™

niy,Nog) =
|172> \/n_l‘\/n_g‘

Thus z,, are (n+1) X (n+1) Hermitian matrices acting on |ny, ng). By the irreducible

’0, 0> ) ny +No = N. (222)

action of z,, on these states the full matrix algebra of (n + 1) x (n + 1) is generated.



Note that we could relate the z; to the Schwinger construction of SU(2) generators

in the following way. For such L, that is generating SU(2) we have.

1

L,= §ama, (2.23)
with the usual commutation relations
[Lys L] = i€ Lp. (2.24)
Letting N = n in this subspace we get
L, = g%- (2.25)

Observe that the adjoint action of L, on af,

[L,.al] = %(TM)M [a}av,ai}, (2.26)
= %(Tu)véawéa:
= %( u)waiv
And likewise we get
[Lys aa] = %( wauty (2.27)

which shows that the operators a,, and a, transform as spin % under SU(2). Hence
the Hilbert space spanned by the state vectors created a/, span the n-fold symmetric

tensor product representation of SU(2).

Lol 3
272 2)

From standard quantum mechanics, we know that Casimir operator for SU (2) is given

by

(2.28)

SIE

n.n
LY = 5(5 + 1)1y, (2.29)

in the spin 7 irreducible representation. Now using the fact that z,, = 21,, as given
n

in (2.25) We can obtain the commutation relation between the coordinates z,, as

2
[xﬂ7xv] - ﬁe,u,upxp’ (230)
and these fulfill
2
xh = <1 + E) Lot (2.31)



We can refine the relation (2.31) by adjusting the scaling as r, = ——— L, rather

VI(+1)
than (2.25), which yields.

= W—Pw/’ 2.32
[mll?xV] \/m) ( )

which is more commonly encountered in the literature. Relations (2.1 and (2.32)
describe a fuzzy sphere S%(l), at the level n = 2(. Any element ,u, of the matrix
algebra Mat(2] + 1) is an element of this fuzzy sphere and it can be expanded in

terms of generators of S% as

M=>"Ci. i .. . (2.33)

Now that we have obtained the S% and functions on it we are in position to define the
scalar product on S%, which is given by the matrix scalar product, i.e. trace

1

M, M) = TrMiMy, = ———
(17 2) riviq Vg 201

MM, (2.34)

Which in the fuzzy setting replaces the integral given in (2.8). Note that from now
on 7T'r will stand for the normalized trace i.e. Tr1,,; = 1. We can also define the
left and right acting linear operators on Mat(2¢ + 1). Consider o! and o as linear
operators on Mat(2¢ + 1). Since they are are also (n + 1) X (n + 1) matrices. they

are naturally in the algebra Mat(2¢ 4 1) too. To be more explicit we have
oM = oM, a®M = Ma, (2.35)
where o oft, M € Mat(2¢ + 1). It is clear that these two operators commute.
[, 8%] =0 (2.36)

and
()t =a"pt  (af)" =pta" (237)
A set of these right and left acting operators can be the angular momentum operators

LF and L. We can write the action of the respective Casimirs

(LE)? |ny,ng) = L |ny,ng) = (0 + 1) |ny,ny) , (2.38)
(Lf)? (n1,ma| = (ny,no| LF = €(0 4+ 1) (n1, o , (2.39)

As expected both L/, and L} carries the spin — ¢ I RR of SU(2). With left and right

acting operators in hand we can define the adjoint action

L,M = adL,M = (L — L} )M = [L,, M]. (2.40)

11



Let’s sum up our progress up to here. We have defined the fuzzy space S%, showed
how to write the functions on it and also showed that how the operator acts on these
functions. In order to progress further we need a certain kind of operators that allows
us to define the derivatives on S%. And for that purpose we can use the angular
momentum operators we have just defined. Since they obey the Leibniz rule £;’s are
derivatives over the matrix algebra Mat(20+ 1) and hence on S%. In the commutative
limit [ — oo, we get

L, — —i€,,%,0, (2.41)

as can be compared with equation (2.6). This consolidates our interpretation of the
operators £, as derivative operators. But, what is the spectrum of these operators?

Since we have £, = Llf; — Lff It carries the tensor product representation

NS

®%:l®£:0@1@2---@2€ (2.42)

Thus £? can take on the eigenvalues (I + 1) where [ = 0,1, ...2¢. We see that the
angular momentum operator is truncated at a maximum value 2¢, which is a character-
istic property of the fuzzy spaces. Next natural step is to investigate the eigenvectors
of £? and L3. Eigenvectors of these operators are given in terms of the polarization
tensors 7},,,(n) where [ and m runs as follows j : 0...2¢ , m = —j...j which are
elements of Mat (2] + 1). These are (2¢ + 1)? linearly independent matrices and they
form a basis for the algebra Mat(2¢ + 1) and we have

LT = U1+ 1)Th, (2.43)

with the following inner product
(E’m’a ﬂm) = 5ll’6mm’~ (245)
Finally we can show the transformation properties of the 7;,,,’s under SU (2) as

T} = D(9)TimwD(g) ", (2.46)

Observe that this is the same transformation of the Y;,,,(, ¢) under finite rotations

Yim’(gv ¢) = Z D(g>£nm’ lm(ea ¢)a (247)
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where is what replaces the orthogonality relation .~ [ Y (0, )Yy, (0, ¢)dw =
01/ Ommy Of the spherical harmonics. Hence we can deduce that 7}, operators carries
the spin [ IRR of SU(2). We can conclude this section with one last remark on the
expansion of functions on the S% in terms of polarization tensors, which is given as
M =>" CynTim, which can be compared with and also the expansions given
in (2.8) for the ordinary sphere.

2.1.3 Fuzzy Complex Projective Spaces

In the previous section we have stated that the 5% can be obtained by the quantization
of the first Hopf Map. A Hopf like map can also be used to obtain the fuzzy versions
of the complex projective spaces CP"’s. So let us briefly explain the structure and

construction of these spaces since they will be an important part of the future discus-

sions. Just as we represent 5?2 = CP! = SUU((S) we may represent CP" as the coset
space
CpP* = SU(k+1)/U(k)
~ SU(k+1)/SU(k) x U(1) (2.48)

Now we will focus on the specific case of fuzzy CP?, but note that following dis-
cussion can be generalized to CP™. Here we will follow the references [23] We start
our construction with denoting the generators of the SU(3) group 7, (a = 1,...,8)

which carries the (n, 0) IRR of SU(3). Dimensions of this IRR of SU(3) is given as
1
N :=dim(n,0) = §(n +1)(n+2) (2.49)

For instance the usual 3-dimensional fundamental IRR is denoted by (1,0) = (m, 3)
while the anti-fundamental IRR is given by (0, 1) = 3 and the adjoint IRR is (1,1) =
8 They satisfy the usual SU(3) relations
[Tm Tb] = ifabcT07 (2.50)
T2 = in(n+3)1L,

Aapedy Ty = %TC. (2.51)
where d ;. is the totally symmetric tensor from

2
TaTb - Eéab + (dabc + fabc)Tc (252)
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We can introduce the Gell-Mann matrices A\, of SU(3) in the fundamental represen-
tation (1, 0). Taking the n-fold symmetric tensor product we construct the generators
T,

Ao Ao
T.=(5®1®...1+...1018... F)yn (2.53)

Now we will show that indeed these T, generates the fuzzy CP?. To do that first we
need to go back to the commutative CP?. We know that vectors of CP? have the
U(1) symmetry, meaning that e |¢)) for all § € [0, 27| denotes the same point. Since
CP? is the space of all rank one projection operators on C? the vector ¢ |¢) also
corresponds to the same projector P = |¢) (¢|. Let H,, and Hj be the Hilbert spaces
of the SU(3) IRR’s (n,0) and (1,0). Starting from a vector in R® which we denote

as 7 we attempt to define the projector.

1
Py = g1+ nata, (2.54)

where ¢, = ’\2—” are the generators of SU(3) in the fundamental representation (1, 0)

that satisfy the following

1
2tatb - gaab+(dabc+ifabc)tca (255)
1
TT(tatb) = §5ab7
1 )
Tr(tatbtc) = Z(dabc+zfabc)~

And the usual requirement of projection operators that they square to themselves, i.e.

P2 = P leads us to 77 being a point on CP? satisfying the following conditions
n,= 1, (2.56)

2
3¢,

dabcnanb = 3

With the coherent states of H3 denoted as |77, 3) we can write the projection operator
Py =1, 3) (3,1 . (2.57)
Using P3; we may write down it’s generalization to P, on Hy
Py =1, N)(N,7l| = (Ps®@ P; @ Py...Ps5)sym (2.58)
Computation of trace relations
Tr(tPs) = (i, 3|ta |, 3) = %n Tr(T,P,) = (i, N| T, i, N) = gn

(2.59)
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Using these trace identities we can identify fuzzy CP? atlevel N = $(n+1)(n + 2)

by the coordinate operators.

2
r, = —1,, (2.60)
n
satisfying the following
[xaa LL’b] - %fabcxcu
va  =3(+3)
AabeTaly, = %(1 + %)mc (2.61)

from these relations we can see that in the limit N — oo we retrieve the commutative
CP? as x, — n,. The algebra of function of fuzzy CP? can be identified with the
matrix algebra of N x N matrices which can be denoted by Maty. Similar to the
case of S% now the SU(3) group has two distinct actions on these algebra. The left
action of SU(3) is generated by (n,0) on the other hand right action is generated by
(0,n). Thus we have the following decomposition of M aty under the adjoint SU(3)
action.

(n,0) @ (0,n) = B} (p, ) (2.62)
In the same manner as discussed for fuzzy S?, we can expand a general function on

fuzzy CP% in terms of the polarization tensor of SU(3) IRR as
G=> GE T (2.63)
p=0

Here T;fy’g)’y are N x N matrices and the set (12, I3,Y) are the eigenvalues of the
casimir of SU(2) subgroup respectively its third component and the hypercharge of
the isotropy subgroup in (2.48). Now that we have defined the Hilbert space and
matrix algebra of fuzzy CP? what remains is the Laplacian on CP2. To find it we
may define the derivations on CP%. We know from our previous construction of
SZ that, the adjoint action of the generators of the symmetry group SU(3) on CP3.

Since, we can naturally see that the derivations on CP3 are generated by
Ty, ] (2.64)
and the Laplacian can be given as
Ay = [Ty, [T, ], (2.65)

This concludes our introduction to the basic examples fuzzy spaces. We will now

proceed to discuss the construction of fuzzy S* and its basic properties.

15



2.2 Introduction to Fuzzy Four Sphere S}

2.2.1 Construction of Fuzzy S*

Now we are in a position to start constructing the fuzzy S*. In this section we will be
following the previous works of [7, 18} 13]]
First of all let us start with the ordinary definition of 4-dimensional sphere, S*. To do

so, our first job is to define and embed it in R5. Then we have
St=(X = (X1, Xo,- -+, X5) €R?|X - X = R?). (2.66)
It is known that S* can be described as a coset space of
S* = 50(5)/50(4) (2.67)

so either from 1) or |i we see that coordinates of S*, given as X, transforms
as a vector under the SO(5) rotations.
Now we can start to quantize the S* in the pursuit of fuzzy S*. A fuzzy four sphere

can be constructed using the following relations

edbedey wrowg = Ce, (2.68)
Taa = P, (2.69)
where z,,(a : 1,...,5) represent the non-commuting coordinates of S7 , p is the

radius and C' = (8n + 16). Equations (2.68) and (2.69) requires some explanation.
We need to understand, in what way we can introduce a matrix algebra, to describe

the fuzzy 4-sphere, and connect this to the relations (2.68)) and (2.69). To this end let

us introduce the I"-matrices associated to the SO(5) group.

[-matrices are the 4 x 4 matrices satisfying the clifford algebra {T',, Ty} = 2d4,

(a,b:1,...,5) An explicit form may be given as
0 —io, 0 1, 1, 0
Fa = ; F4 = ) F5 = ) (270)
Zb‘a 0 :H_Q 0 0 _1]-2

Generators of the SO(5) are defined by ¥, = %[Fa,Fb]. Y’ generate the 4-
dimensional spinor representation of SO(5), which is given as (0, 1) in terms of the

Dynkin labels. I, also act on the 4-dimensional spinor space and therefor we may say
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that they carry the IRR (0, 1). Now we consider the n-fold symetric tensor product of

I',’s given as
XM =T,®10 - @14+ +101--@y)sym (2.71)
X, carry the (0,n) IRR of SO(5) and they have the dimension
N = dim(0,n) = é(n+ 1)(n+2)(n +3). (2.72)
The matrices X, satisfy the relations

X, X, = n(n+4)ly, (2.73)
el X Xy X Xg = € Xy Xeg = (8n+16)X,, (2.74)

In fact, it is not hard to prove (2.73) and we will do so a little later on. A somewhat
more detailed calculation is necesseary to show that holds. A detailed calcula-
tion is given in [24], but we will not attempt to reproduce it here. Comparing
and with we see that x, and X, are related by a constant of dimension
length i.e. z, = aX, and we have C' = (8n + 16)a?,p* = n(n + 4)a? based on the
dimensional analysis.

Using the commutator of these X, we can construct the generators of the SO(5)
algebra

1

Xa = 51Xa, Xo). (2.75)

These X, satisfy the usual SO(5) algebra. With the commutation relations
[Xzzln Xcd] = 2(6chad + 5adec - 6achd - 6bdXzzc)- (276)

From we see that there is something unusual about the fuzzy S* construction,
compared to the fuzzy S? and CP2. Namely, we see that commutators of X, are no
longer expressed in terms of linear combinations of X, (2.24). In other words the
algebra of X, do not close. This means that algebra of fuzzy S* is larger than the

matrix algebra generated by X, It also contains the matrices generated by X too.

Quadratic Casimir of SO(5) given in the (0, n) IRR reads

CA(SO()) = £ XarXia = 20(n + )L, @.77)
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Using the (2.68)) it is straightforward to get
X Xpe =n(n+4)04c + XoXe — 2X X, (2.78)
Observe that can also be written as.

1 1
EadeeXche —
2(n+2) 2(n +2)
Using (2.68)) we also find that X, transforms as vectors. under the adjoint action of

SO(5), indeed we have

Xap = — X XagXe. (2.79)

[Xaba Xc} = 2(5(1ch - 5cha> (280)

Alternatively we can en up with the same result by employing a generalized and
adapted form of Schwinger construction suitable for the present problem. Introducing

four pairs of annihilation-creation operators we can write.

X, = al (To)asas a,B:1,2 (2.81)

where a and a are the creation and annihilation operators corresponding to the 4
bosonic oscillators. Acting on the Fock space Hy = ajl . aIN |0). Note that H y is
same as the space that X,’s acton Hy = (04 X ... C’4)Sym. Which comes from the
symmetric product of C* where gamma matrices acts on naturally. Using this X, we
can obtain the following commutation relations. Introducing X,;, = a'¥,,a we have
that all the relations given previously for X, X, are satisfied with in this equivalent
formulation. We know that functions on four sphere, S*, can be expanded in terms of
the spherical harmonics

a(r) = ) am,Yim, (), (2.82)

=0 m;

where the latter are defined as
1 ; a a
Yim, () = 3 D plmo (2.83)

with fa(tl:,l,",?al being a symmetric traceless tensor(because of the requirement X; X; =
p%). and m; denoting the necessary labels in spherical harmonics on S?. We may have
expected a similarity with developments given for 5% and C P that for the fuzzy S*
ther matrices replacing the functions a(x) are

M = fj >t Tim, (2.84)

=0 m;
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T}, being the the spherical polarization tensors replacing Yy, .

Nevertheless our discussion so far have shown us that, the matrix algebra generated by
X,’s only do not close(see (2.75)) and therefore we can not simply represent matrices
for S} by . In the next section we discuss this point in more detail.

2.2.2  S% fiber over S}

We will now provide an argument revealing that there is indeed a fuzzy two sphere
attached to every point on the fuzzy S*. Attachment of these fuzzy 2 spheres on S5
may be seen as the presence of an internal spin degree of freedom for S%. We may

always choose to diagonalize one of the matrices X,, say we diagonalize X5.
Xogoe = (M0 —2,...,—n+2,-n) (2.85)

with eigenvalue m having the degeneracy ((n + 2)> — m?)/4. Now out of the 10
generators of SO(5) algebra, we take a set of 6 generators that SO(4) = SU(2) &
SU(2) subalgebra. Let N, and M, be the generators of SU(2) & SU(2) algebras.
We may take them as

l l

Ny = 4(X23 — Xu), M, = 4(X23 + X14), (2.86)
1 1

Ny = —Z(X13—X24)7 My = _Z(Xlg—X24),
1 1

N3 = —Z(X12—X34), M = _ZL(X12_X34),

We find that NV, and M), indeed satisfy the SU(2) & SU(2) Lie algebra commutation

relaions.
[Nus N = i, Ny, (2.87)
[MAHMV] = €upM),
[MM7NV] = 07

We can reverse this relation in order to get the X,;’s in terms of N,’s and M,,’s We

can calculate the Casimir operator for each of these SU(2) generators as. We find

using (2.68),(2.77),(2.78)

1

NN = e+ Xs)(n+4+ X5), (2.88)
1

MNMN = 1—6(n—X5)(n—|—4—X5)
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For a given eigenvalue of X; from (2.85)) we see from (2.88)) that IV, and M,, carry
the (n + X5 + 2)/2 and (n — X5 + 2)/2 dimensional representations of the SU(2)
they generate. The dimension of the SU(2) & SU(2) IRR (J1, .J5) is given by (2.J; +
1)(2J2 4+ 1). Thus, in order to check dimension of the matrices N, and A/, we sum

over the dimensions of possible IRRs, which we find to be

o (52) (4), 28
= la+r)n+2)(n+3),
_ N

which is equal to the size of our matrices as expected. At the north pole on S%, we

have X taking its maximal eigenvalues X5 = n This gives from (2.88) that

N,N, = ™ot (2.90)

M,M, = 0.

From (2.90) we observe that the IV, operators Casimir eigenvalue at the north pole
is equal to that of a spin j = % IRR of SU(2), while it is clearly the spin 0, trivial
representation for /,’s. a So we can argue that starting from the SO(5) generators
we have obtained a fuzzy S? attached at the north pole of the fuzzy S* with the radius
given in which only a factor of %L less then the radius of the original fuzzy S*
given in . Since the fuzzy 4-sphere has SO(5) symmetry we can conclude that
there is a S? attached to every point of the fuzzy S*. This extra degrees of freedom
coming as a fuzzy S? can be interpreted as an internal spin degree of freedom. .

In the commutative limit, S% is not only S* but in fact given by a S? fiber on 5. The
following discussion is based on [11].To see this limit it is suitable to scale the S}‘:

defining the following relations.

Xa Xab
Yo=—F—Y——=, Yuo=——, (2.91)
vn(n+4) ’ vn(n+4)
(2.92)
2
eadeeYaYZ)}/ch — 8(n+ ) Y. (293)

(n(n+4))32°°
In the commutative limit we have Y, — x,, Y,;, — wg. Furthermore, it can proved

using Schur’s Lemma that (2.68)) leads to

1 1
T YY)+ ;{Yab, Yaa} = 50u- (2.94)
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(2.93) can expressed using (2.68) as

8 2
6al)cclcay'aby;d — (7’L + )

Ye, 2.95
n(n +4) (2:99)

the equation (2.95)) is not independent from (2.93) but in the large n limit Y,,, Y,
decouple and the left hand side of (2.95]) becomes a constraint.

€ pweq = 0. (2.96)
Now let us introduce a 5 component vector which is an element of R?
Va = (Ziwal, 2iwa2, 2@&)@3, ina4, Ziwa5). (297)

This vector seems to be 5 dimensional but if one observers that it will always have at
least one zero component it can be stated that it is effectively 4 dimensional. We may

look at the properties of this vector. We have

5
VoVe=—4) YuYa, (2.98)
b=1
= 6ac — TgLc,s

where we have used the relation

1 1
Zxaxc + WapWhe = Zl(sac- (299)

V, also satisfies

V..T = 2iwgp T, (2.100)

Taking the square of both sides

= 4wbawad:cbxd, (2101)
1 1
4 — (70pa — 7TpTq)TpTq,
= Tald — TpTpTdld,

= 0.

In the last line we used the fact that coordinates squares to 1. Together these two

relations describe a 4 dimensional manifold. We can choose ¥ = (0,0,0,0,1) to
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be the north pole of S* by use of the rotational symmetry of the sphere. Then our

relations become

VoV, = bap, (2.102)
V,7 = 0,
V5 = O

where a, b runs from 1 to 4. V, spans an orthonormal basis of four vectors which
are all tangent to S*. Finally using the constraint (2.96) further eliminates one more
degree of freedom, leaving only 3 independent degrees of freedom in w,,, which still

fulfills wapwey = 1, which is nothing but a S2.

2.3 Basic Features of Gauge Theory on Fuzzy S},

In this subsection we will focus on the matrix gauge theories related to fuzzy four
sphere. Starting from the BFSS model action[1] and adding suitable deformations
like a mass term and/or Chern-Simmons like terms we can construct actions with
fuzzy S* extremums. Each term has its benefits and disadvantages[1]],[25]],[2].Let’s
start this section by briefly reviewing the matrix models to set the stage for further
developments. Starting from the Yang-Mills 5-matrix model in Minkowski signature
and with U(N) gauge symmetry, whose action may be given as

1

Sy = / dt Lyns — ng / dt Tr <§(DtAa)2 + }l[Aa,AbP) (2.103)

where A, (a : 1,...5) are N x N Hermitian matrices transforming under the adjoint

representation of U(N) as
A, - UAU, UecU(N), (2.104)

DA, = 0;A, — i[Ag, A,] are the covariant derivatives, A is a U(N) gauge field
transforming as

A= UTAU —iUTOU (2.105)

and 7'r stands for the normalized trace. For future reference we write out the potential
part of Ly, separately as

1 2
VYM = _4_92T70[Aa714b] . (2106)
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Clearly, Sy, is invariant under the U(N) gauge transformations given by
and (2.105). Sy is also invariant under the global SO(5) rotations of A, i.e A, —
Al = AwAs, R € SO(5) rigid rotations (Note that matrix elements of R are not
time dependent). It can be obtained from the dimensional reduction of the U(4N)
gauge theory in 5 + 1-dimensions to 0 + 1-dimensions, where the SO(5, 1) Lorentz
symmetry of the latter yields to the global SO(5) of the reduced theory. There are
two distinct deformations of Sy s preserving its U(N) gauge and the SO(5) global
symmetries. One of these is obtained by adding a fifth rank Chern-Simons term to

Sy (i.e. a Myers like term) which is given as
1 )\ abcde
SCS = - dtTr 56 AaAbACAdAe s (2107)
g
while the other is a massive deformation term of the form

1
Siass = ——5 / dt Tr > A (2.108)
9

Clearly both Scs and S,,,4ss are gauge invariant and invariant under rigid SO(5) ro-
tations.
For future purposes it is convenient to write out the potential terms for S; and S,

explicitly:

v = 177 (<4 Ag, A + u2A2) (2.109)
VQ = —%TT (%[Aa, Ab]2 + %€ab0d€AaAbAcAdAe) . (2110)

g

Note that S; and S; can be thought as deformations of the bosonic part of the BFSS
[1] matrix quantum mechanics. Whose action has the same form as in (2.103)) except
that there are NV x N matrices in other words the index a takes values from 1 to 9
in that case. We also know that BFSS model can be obtained from the dimensional
reduction of the YM theory in 9 + 1 dimensions to 0 + 1 dimensions [8] with the
SO(9,1) symmetry of the YM theory yielding to the global SO(9) symmetry of
the BFSS. By the use of deformation terms S,,,ss and/or S¢g this symmetry can be
broken down to SO(5) ® SO(4) and naturally splits the A, to a SO(5) and a SO(4)

vector.

In the rest of this section we will be interested in the pure matrix models, i.e. matrices
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without any time-dependence([l13]]. We can give our actions as,

Si= = ATr([Ae A[Au A — 12A,AL). @.111)
52 = _g%Tr(i[A“’ Ab} [Am Ab] + %€adeAaAbAcAdAe>7 (21 12)

S, and S are invariant under the global SO(5) symmetry as well as the U (N) gauge

symmetry, which simply takes the form
A, — UAUT, (2.113)

Ay — Ay + cal, (2.114)

here. Equation of motion for S, follows from the variation A, — A, + 6A, which
gives.

[Ap, [Ag, Ap)] + A% A, Ay A AGA. = 0, (2.115)

One of the two classical solutions for the equation of motion (2.115)) is simply given

by the diagonal matrices.

A, = diag (=™, ..., 2V), (2.116)

a

S, evaluated for this solution immediately yields S, = 0 Note that the diagonal matrix
solution is more stable at the classical level than the fuzzy four sphere solution since
corresponding values of the action at classical level. Another solution is provided by
a fuzzy 4-sphere i.e. for A, = X,, provided that we take \ = ni—&-Z The action then
takes the value \

Sy = _%ﬁ (2.117)
Which is negative and therefore less then S, = 0. Soit appears that fuzzy 4-sphere
is a more stable solution to then diagonal, commuting matrices. Let’s start
with expanding the matrices A, around the classical solution. In order to explore the

fluctuations about this classical solution we write

1
A.=1p (—Xa + aa> (2.118)
p
For convenience we can write the matrices which has dimensions of length

Wap = aXab (2119)
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Obviously ay, satisfy the same relations as X ;. Commutative limit of this construc-
tion can be obtained in the limit [ — O with fixed radius. In this limit coordinates and

(v, becomes commutative.

We have already seen that on S* that scalar fields can be expanded in terms of spheri-
cal harmonics. This was given in (2.83]). Discussions of the previous sections indicate
that, for fuzzy four sphere one has to also take into account that the fuzzy 2 spheres
attached to the fuzzy four sphere at every point. This expansion for the fuzzy 4-sphere
can achieved by expanding the N x N matrices in terms of the matrix spherical har-

monics(i.e. polarization tensor) Yy, n,m, (T, w) as

M(z,w) =YY Muyngin Yy, (7,0), (2.120)

n2=0ny,7i;
Here (n4,n9) label the SO(5) IRR’s (in the Dynkin labelling scheme) and with 1 >
ny > ng. Only n; = 0 in this expansion overlap expansion of functions given in
on S* other terms indicate and characterize the internal spin structure of S
the internal spin is labeled by n; and is cut off at a maximal value n, for a given
ny < n. We have ) "~ dim(n;,n;) = N?. Corresponding functions may be

written as

M(z,w) =Y > Moy Yningm, (7, 0) (2.121)
The algebra generated by these functions is noncommutative but associative. Here
the noncommutativity is generated by w,;, Which also generate the fuzzy two spheres
attached at each point on the fuzzy four sphere. A product which is commutative but
not associative. We know how to act with X, and X, on the M given in (2.120).
They act adjointly as

AdX, M = [X,, M], AdX M = [Xop, M] (2.122)

On the corresponding functions (2.121)), and in the commutative limit o — 0,7 — oo
with p — fixed adjoint actions of X, & X, the differential forms

Ad(Xa) — 21 (wabé?xb — [Ebawab) , (2123)

Ad(Xab) — 2 (xaé?xb — a:b&;a — wacawcb -+ wbcﬁwca) . (2124)

Where the derivative with respect to w’s are defined as

&ucd

- 6&05bd - 5ad60b (2125)
8wab
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In the commutative limit the adjoint action of X, and X, become the differential

operators [13]

ad X, — V=20 (ww0y, — 40.,,,) (2.126a)
ad Gab — Vab =2 (:r;a(?xb — l‘baa — wacawcb + wbcﬁwm) R (2126b)

We may note for future use that ©,V, = 2i (2,wap0z, — Tp240,,,) = 0, since the first
term in the r.h.s is already noted to vanish and the second term vanishes due to the
antisymmetry of w,,. We can explore these parts even more concretely by inspecting
the transformation of M (z,w) under SO(5) rotations. SO(5) acts on M (x,w) by

adjoint action as
AdX M (1, w) = e Xevab M (1, w)e Nevwat (2.127)
Expanding the exponential terms to first order in w,;, and using (2.124)) we have
M(z,w) + iwgp Ad(X ) ap M (2, w) (2.128)
= a(x, ) + 2iogy (40z, — 60z, — QacOay, + CcbOa,, ) A(T, ) (2.129)

Note that when we are working with the differential forms of the operators we use
the functions corresponding to matrices. Now we can determine the form of (2.129)
at the north pole of the fuzzy 4-sphere. In this case last two terms in can
be expressed using 6, = (w3, ws1,w12) » B = (w1, wa2, wy3) amd N, represent-
ing the coordinates corresponding to N, in (2.86). More precisely writing N, =

L — 0O,,,) We can find that at the North

i = 2i(%
_Z<§€/wpwup - wﬂ4) and aNM - 2Z(§€“Vpaw”p

pole (2.129) takes the form
M (2,w) + 2iwep (240, — 10, ) M (2, w) — 41(0, + ) €4p Ny On, M (z,w), (2.130)

The greek indices p, v runs from 1 to 3 as we have already stated earlier. We can
easily see that the second term of (2.130) corresponds to the usual orbital angular
momentum. While the last term governs the infinitesimal transformation under the
internal spin angular momentum. Fields a(z, ) can also be Taylor Expanded in

terms of coordinates NV, at the North pole,
1 n
M(z,w) = a(z,0)+N,, Iy, M|, _ +- ~+;Nm N O My, (2.131)

The first term in (2.131) can be interpreted as a scalar field with zero spin while the

(m + 1)th term can be carries spin-m i.e. Moy = 8N,u1---Num |N:0 1S a spin m

field..

26



2.3.1 Action S, as a Gauge Theory on St

In the last part of this chapter we follow [13] to discuss how 5’2 in (2.112)) can be
given the structure of a gauge theory on S%. A gauge covariant field strength tensor

may be introduced as,

1 1
Fop = —— | [Ag, Ap] + = Ae®%[A,, AjlA. ), 2.132
= s (a4 (0, 44, @.13)
Using the gauge transformation of A,, we immediately see that F, transforms co-
variantly under SU(N) gauge group as F,, — U'F,,U. Inserting (2.118) in (2.132)

We find

1 1 1 1 1
= L (X @)=~ [ X, 0]+ [0, ] Fapreee (—2Xcdae + - [Xesad) (—Xed + )) -
P P P P P
(2.133)
Clearly T'rF,,F;, is a gauge invariant term, which what we intend to introduce in
rewriting 52. We observe, from (2.132)) that F, F,; involves 5" & 4" order terms in
A, which are not present in 52, so these terms must be subtracted from 17 F,, F,;,. A

long but a straightforward calculation gives that

= (pt 1 9A

SQ = g2 TT(4FabFab 40<lp)2
/\2 abede f

_Wf [AG7A5]AC[Ad7A€]Af)7

where f<de/ follows from the contraction of two epsilon tensors €9"%¢e9he/ which

Pl A,, Ap)[Ae, Ad)Ac

(2.134)

we have explicitly showed in the appendix (B.5). For the infinitesimal gauge trans-
formations

U=e*214+id+0(\?). (2.135)

We have A, — A, + i[\, A,] = A + 0 A and therefore inserting (2.118) we get.

§A, —iap [)\, X, + aa], (2.136)
= iOé[)\’ Xa] + ZOép[)\, aa]7

= pa (%[Xa, A+, aa]) ,
Thus we get da,, as

San(z, ) = %[Xa, A, )] + i\, @), ad(x, @), (2.137)
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Thus a, are the gauge fields on the fuzzy S* background geometry while the
represents the infinitesimal gauge transformations of a, Finally, let us make a few
comments about the content of the gauge theory action. We will be brief here, as
this is not going to be the direction that we pursue to develop in the next chapter. A
natural laplacian operator on S% is given by ad(Xa)? = [Xap, [Xap, -] since it is the
quadratic Casimir operator of the symmetry group of S which is SO(5). On the
other hand we can also choose the operator ad(X,)? = [X,,[X,,.]]. This is also an
invariant of SO(5) and can indeed be written as difference of Casimir operators of
SO(6) and SO(5) We see from (2.133) and the first term of that the term
involving the double commutators of X, is given by

SLaplacian = MT?“ (ab [&, {&, ab”) ; (2.138)

29° poLp

and we therefore infer that the second option for the Laplacian is naturally appears
in the action . The corresponding spectrum for (adX,)? may be calculated
using group theory. On the spherical polarization tensors it takes its diagonal form

and given by

WX,y = [Xa, [Xa, Vo)) = 401 (r1 4 3) = ra(r2 + 1) Yoy, (2.139)
On the other hand the spectrum of (ad(X,;))? on Y,,,, is given by

ad X2 Yoy = [Xap, [Xavy Yiurs)] = 8(r1(r1 4+ 3) + ra(ra + 1)) Yy, (2.140)

Up to this point we have worked with the U(1) gauge group. One can easily general-

ize this to a general U(n) gauge group in the following way.
To — T, @1, (2.141)

and the replacement for the fluctuations are
n2
a=>)» a"eT" (2.142)
a=1

Where T" are denoting the generators of the U (n) algebra.
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CHAPTER 3

EQUIVARIANT FIELDS ON S

3.1 Mass Deformed Yang Mills Matrix Model

3.1.1 Matrix Models & the Fuzzy S* Configurations

From now on we will focus on the Yang Mills Model with the mass deformation and

with the gauge group U(4NV). The action is given as

S - 9_12 / daTr (%(pt AP+ 5[ A Au, ] - N%Aa) .G

where A, are 4N x 4N matrices. The potential part can be written out separately as
1

1
Vi ==Tr (——[Xa, X2 + ;ﬁxj) (3.2)
g 4

V) is extremized by the matrices fulfilling the equation
[Ap, [Ag, Ap)] — 247 Ay = 0 (3.3)
Equation is solved by a configuration given by four concentric S# as
Ay =X, ® 14 (3.4)

where X, are N x N matrices that form S} as discussed in the previous chapter.
Dimension of NV of these matrices is determined by the level n of the fuzzy 4-spheres

as(a detailed calculation from group theory is given in the appendix (A.1.4).)

N:é(n—i-l)(n—l—Q)(n—l—B), (3.5)

Fuzzy four spheres S% and their direct sums (even from different matrix levels) are

solutions of this equation for > = —8. In a recent article Steinacker [7] showed
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that the superficial instability implied by the negativity of 2 is actually cured by
quantum corrections in pure YM matrix model (i.e. in matrix models with no time
dependence). Let us also note that, we will see that superficial instability implied by
negativity of ;2 does not actually lead to a problem when we consider the equivari-
ant fluctuations of the S; action about the S} backgrounds. The reason for this is
essentially that the potential of the emergent equivariantly reduced action is bounded
from below at any finite matrix level, as we will see and discuss in more detail later
on. We may as well interpret this outcome as being due to the fact that the equiv-
ariant parametrization of the fluctuations introduces fluxes through the S% stabilizing
its radius. As we will see later on non-trivial fluxes leaves its imprints as kink type
solutions in the reduced action in Euclidean signature. This vacuum configuration
breaks the U(4N) symmetry of the action to U(NN) x U(4) and after setting A, as
coordinates of S}’s indicated by , we have only a U(4) gauge symmetry left.

Fluctuations about (3.4) may be written in general as.
A=X, ® 14+ F, (3.6)
3.1.2 Equivariant Fluctuation & Their Parametrization

Our aim is to find the fluctuations which are left invariant under the SO(5) rotations

of S} up to SU(4) gauge transformations. To do so, we introduce the symmetry

generators.
Wap = Xap @ Ly + Iy @ X, (3.7)
Where
Sy = 5[0 T (3.8)

are the generators of SO(5) in the 4-dimensional fundamental spinor representation

labeled by (0, 1). They can be embedded into the generators of SO(6) as

Yap = (Zaps Las) = (Zap, L) (3.9)

where A, B takes the values 1...6. ¥ 45 generate of the SO(6) = S%—i‘l) in the fun-
damental spinor representation labeled by (1, 0,0). Coming back to (3.7) we clearly
see that W, satisfies the SO(5) commutation relations. However, it carries reducible

representation of SO(5), since X, in the first terms carries the (0, ) IRR, while ¥,
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carries the (0,1) IRR of SO(5). The irreducible representation of W, can be de-
termined from the decomposition of the tensor product of these two representations.

This gives [20]
(0,n)®(0,1)=0,n+1)d(1,n—1)® (0,n—1) (3.10)

This discussion can be easily lifted to SO(6) group by writing Wup = (W, W)

with has the decomposition under SO(6) irreducibles as
(n,0,0) ® (1,0,0) = (n+1,0,0) ® (n — 1,1,0) (3.11)

Branching of (3.11)) under SO(5) IRRs yields precisely (3.10) (We show this explic-
itly in the Appendix(A.T.1). Let us now investigate the adjoint action of W, which
is given as

adWay, = W, ] = [Xap, ] + [Zaps (3.12)

Suppressing the tensor product with the identity matrices for ease in notation in (3.12))

First term generates the infinitesimal SO(5) rotations of the S, while the second

_ SU®M)
=7

representation content of adW,,, is given by the tensor product of r.h.s. of (3.10) with

term generates the SO(6) gauge transformations in SO(5). The irreducible

itself, That is
[(0,n+1)® (1,n—1)® (0,n—1)]* (3.13)

Using the LieArt package of Mathematica we infer that (3.12) has the IRR content
3(0,0) & 7(1,0) @ Higher dimensional IRRs (3.14)

where the bold terms represents the multiplicities of the respective IRRs. The part
of the direct sum given in (3.14) will be sufficient for our purposes. Using (3.12) we
define and impose the equivariant symmetry constraint on the gauge field A and the

fluctuations F,. around the (3.4) as

adWabAg = [Wab, .Ao] = 0, (3153)
adWapFro = [Way, F] = —2(04cFp — 0 Fl) (3.15b)

The first requirement means that the gauge fields Ay are transforming as scalars of
SO(5) under the adjoint action of W,;,, which is naturally expected since they do not

carry a SO(5) index. The second requirement implies that the fluctuations F, around
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the transform as a vector of SO(5). So we can deduce from the decomposition
(3.14) given above that the space of rotational invariants that may be constructed from
(0,n) and (0, 1) IRRs of SO(5) is 3-dimensional and the space of vectors that may
be constructed in terms of the intertwiners (0,7)&(0, 1) IRRs and X, is of dimension
7. In order to explicitly obtain the mentioned intertwiners of IRRs we can introduce

the projection operator.

—(Xap + Zap)? — 2Co (N
P=1] (Xab + Zab) 2(A\1)

Pl=p,. Pl=pP, I:1,23
202(>\[)_202()\J) ) I I I I ) &y Dy

JAI
(3.16)

where the factors of two in front of Casimirs are due to the unrestricted sum over a’s
and b’s. Pj are projections to the IRRs of SO(5) in the order given in the r.h.s of
and Cy(\;) stand for the quadratic Casimirs of SO(5) in the IRRs labeled by
Ar=((0,n+1),(1,n—1),(0,n—1)) Using and the fact that idempotents can
be given as (); = 14y — 2P; we may compute the intertwiners (0, )& (0, 1) IRRs as
the idempotents

(XS 4) (X 40— 16) — 16(n+ 1)(n + 2)
@ = 16(n+1)(n+2) N CRYLY

(XX 44n)(X - X —4n —16) +2(2n + 2)(2n + 6)
@2 = —2(2n + 2)(2n + 6) , (3170)

. (XX -4)(X X +4n) - 16(n+3)(n +2)
@s = 16(n + 3)(n + 2) ' (3.17¢)

By construction it is obvious that we do have Q% = 1,y and Q; = ()7 (As shown in

appendix (B.I) ). Let us also note that (); are not all independent from each other as
we have Z[ Q[ = —]14]\].

Observe that (X.X) appears in formulae (3.17a). A straightforward, but long calcula-
tion, whose details are given in the Appendix (B.I3), gives

(X -2)2 = 12T, TGy + 8n(n +2) X, Ty + 8n(n + 4) 1y . (3.18)

Adjoint representation of SO(6) ~ SU(4) branches under SO(5) as 15 — 5 & 10,
or in Dynkin notation[26]]:

(1,0,1) = (1,0) @ (0,2) . (3.19)

Thus, further insight on how SO(6) ~ SU(4) generators sits in these intertwiners is

gained by observing that (; contain, 10 of these generators as >.,;, and the remaining
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5as I, as seen from (3.18), transforming in 2(0, 1) and (1, 0) of SO(5), respectively.
Alluding to our remarks in the previous subsection after (3.5) we may say that the
equivariant parametrization of the fluctuations introduces topological fluxes through
the concentric S3’s, preventing the latter to shrink to zero radius and thereby stabilizes

the configuration. Using
Qup = (Wap, Tq) := lim ——— (3.20)

we find the commutative limit of (3.18]) takes the form
(X -%)?

= 8(wa L + 14). (3.21)

lim
n—oo n

Consequently, we find for ¢; := lim Q:
n—oo

1
@ o= (:cara—Zwabzab— 114> , (3.22a)

a<b
g2 = —Zal'a, (3.22b)
1
“ o= 5 (acafa + gwabzab — h) . (3.22¢)

Without going into any technicalities, regarding the S effective fiber coordinates w,p
over S*, our previous remark supported by the observation that the commutative limit
of this topological flux may be seen to be characterized via the second Chern number

on S*

1
cp(S*) = —/ p2(dpy) (dpa) =1, (3.23)
54

872

for the rank 4 projectors py = %(1 — q2) [22]].

Using these ’s we can solve the constraints given in (3.15a) and as follows.
To satisfy (3.15a), we may choose to parameterize the gauge field A, as

1 1 1
Ay = 5041421 + 50421141\/ + §CY3Q3 ; (3.24)

where «; = «;(t) (i : 1,2, 3) are functions of time only, and ); is eliminated in favor
of 14y using ;Qr = —14y. From this form of the gauge field it can be easily
observed that the SU(4) gauge symmetry is broken down to U(1) x U(1) x U(1).
However, later on we will see that the term proportional to identity matrix in (3.24)
does not survive the dimensional reduction and the gauge symmetry of the reduced

action is essentially U(1) x U(1).
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Now let us investigate the fluctuations F, that satisfy the requirement (3.15b) To
parametrize such vector we will again use the idempotents (); and the matrices X,
we have calculated previously. We have found the most useful parametrization for

future purposes is

F=i 20X+ 210+ 2 X ) + 2 G, @)

+ @3 <{Xa, Ql} - QS[Xa:QS]) + X3 ({Xa, Qz} - Ql[Xa,QlD
61 (Xut Tu+ QolX,Qs])

(3.25)

where curly brackets stand for anti-commutators and we have introduced ¢, = ¢,,(t)

and x, = x,(t) (1, v) : (1,2,3,4) as real functions of time only and the notation

X, 4 _Iv®l, _T,
n’ a n

n

(3.26)

The 1 factors appearing in the last three terms of F, via, X, and I, are naturally
n

expected to obtain a finite F,, in the commutative limit n — oco. Similar analysis, on

previous work on equivariant parameterizations of fluctuations over S% and S% x S%

[27, [12]] also carries the same features. Indeed, as n — oo, we find

. . +1 +1
Fy— f, = ZﬁVan + z&VaqLa + i @ Vaq + X22

2 2 2
+ ¢32xaQ1 + X32xaQS + ¢4$a . (327)

73V aq3

Where ¢; are given in (3.22a). Demanding the fluctuations f, to be tangential to S*
means that we have to take x,f, = 0. Since z,V, = 0, as noted after (2.125)), the
latter condition is satisfied if and only if ¢3(¢), y3(¢) and ¢4 (¢) all vanish in this limit.
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3.2 Dimensional Reduction of the Action S;

3.2.1 Structure of the Kinetic Term

Inserting the parametrizations (3.24)) and (3.25)) into the covariant derivative D, A, =

0y Aq — i[Ag, A,] we have

21X, Q)+ 2 X, Q)

+ 220,160 + 2.0
+ at¢3({Xa, Q1) — Q3[Xa7 Q3]) + Opxs({Xa, Qs} — Q1[Xq, Q1))

+at¢4(Xa+7a+Q3[Xan3]) 1¢2 [Qla[XaaQ H
041(4152 + 1)

atXl [

DX, = 5

Oéle

(@1, Q1] Xa, Q1]]
1¢3

(@1, [Xa, @s]] +

M[ [Ql; {Xa,Ql} QS{XCLJQE;”

1¢4

+ Q1, @s[Xa, Qs]] +

05005}~ 050 O+ 221015, 5+ e 01

O‘Qfl Qo X, Q) +1°22(0, (X, an + @21V, 01x,.a1
( 0 Q4 10 Q1) QX Qi)

N ;“)
O‘2¢4[Q3,X + Ty + Q3] X, Qs]]+

041X3

(@3, Q3[Xa, Qs]]

O‘m Qs { X, @5} — Q1 [Xa, Q)] +
7[@1, X + 7[@3, Xa).

(3.28)

Using the identities we provided in appendix and some more commutation
relations we can simplify the (3.28) to

DX, 22(8@1 — i ¢9)[Xa, Q1] + %(@Xl — danX2)[Xa, Q3]
+ %@@ +ia1¢1)Q1[Xa, Q1] + %(at)@ + i X2)Q3[Xa, Qs3]

+ 03 ({Xa, Qu} — Q[ Xa, Qs]) + Oixs({ Xa, @3} — Qu[Xa, Q1))
+ at¢4(Xa + 11a + Q?)[Xaa QBD

(3.29)
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Now we can introduce covariant derivative for the fields ¢; and y; where ¢ runs from

1to 2 as

D.¢; = 0,9 + t€ji1 04, (3.30)

Dix1 = Opxi + t€jiqnX;

Inserting these two into (3.29) we get

? l

Z(Dt¢1 - inDt¢2)[Xaa Ql] + 2<DtX1 - ZQ:SDtXQ)[Xm QS]

+ 8i03({Xa, Q1) — Q[ Xa, Qs)) + Iixs({Xa, Q) — Q1[Xa, Q1)) B-3D
+ 0p4(Xa + Yo + Q3[Xa, Q3)).

DtXa -

We are in position to calculate trace in the kinetic term of S;. Using both analytic
techniques & Mathematica we found the following results for the kinetic term. After

performing the traces over the matrices.:

n(n+4) 5, n(n+4)
CEN Ve e
N 2(n +4)(n® + 8n* + 18n® + 8n? — 11n)
n?(n+ 1)2(n + 3)?
12n(n + 4)
T2+ )(n+3) (Dop3dox3)
n(n+4)(—n® — 3n* + 17n + 35)
n?(n+1)(n+ 3)?2
- n(nnj(i)in3;L o) (0#490x3)
(n* 4+ 10n3 + 30n? + 34n + 45) PRe
2n2(n + 3)2 (901)
N 2n(n + 4)(n* + 8n3 + 18n% + 8n — 11)
n?(n+3)%(n+ 1)?

|2

1
§T'I"<D0Xa)2 = ’ 0X

(80¢3)2

(Oo¢30:94) (3.32)

(30X3)2

As it stands (3.32)) does not seem manifestly to be positively definite but with a quick
Mathematica check we can confirm that this is indeed, as it should be by construction.
In fact, we can make a linear field redefinition in the sector spanned by ¢3, ¢4, X3
such that the kinetic term (3.32) becomes diagonalized. The generic form of the
diagonalized kinetic term at a given value of n may be calculated, but it appears to be
a rather cluttered formula, with not practical value. So we don’t give it here. In the

ensuing section, we will work with actions with such redefined fields for the span of
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values n = 2, 3,4, 5. In the large n limit the trace (3.32) becomes the following

o1
lim STr(DoXa)* = [Dodl” + | Dox* +2(0100)°
nee 1 (3.33)
— 01930004 — Qoo X3 + 5(5@4)2 +2(oxs)?

3.2.2 Structure of the mass term

Now that we have calculated kinetic term we can continue with the calculation of the

mass term which is
Tr(AA,) =Tr(X, X, + X, F, + F,X, + F,F,) (3.34)

where X, are the vacuum solutions that describe S7. As in the previous case per-
forming analytic calculations and exploiting Mathematica we find the trace of the

mass term as.
— 1PTr(AA,) = — 1 Tr(Xo X, + 2X,F, + F,F,)

9 2n(n+4)|¢|2+ 2n(n +4) 4(n +4)(n* + 8n® + 18n? 4 8n — 11))
P\ 12 (n+3)2 n(n+ 1)%(n + 3)?
N nt+10n® +30n* +34n +45 ,  2(n+4)(—n® —3n? — 17n + 35)

Ix|* + (65 + X3)

n2(n+3)? #at n(n+1)(n + 3)? P304
24(n +4) 2(n+4)(n+5) (n 4+ 4)(—n3 — 4n® + Tn + 22)
T D3 T T sy T m+32mty) >

(n+4)(—n® — 8n? — 9n + 6) (n+4)(n*+6n+5)
(n+1)2(n +3) s (n+3)2

¢a + C(”)) :
(3.35)

where C(n) is an irrelevant constant term. Later, when we consider dynamics of
reduced actions we will adjust the overall constant factors in the action so that the

minimum of the potentials take the value zero.

Let us make a few remarks on (3.35) it contains terms that are linear in the fields
¢3, ¢4 and x3. These terms cause no harm for any finite values of n which is what
we will be interested in the following sections. However, to obtain a finite limit for
the n — oo case. it is required to assume that ¢3, ¢4 and Y3 vanish faster than %
Then(3.35)) converges to —2:%(|¢| + | x|?) in this limit. Let us also note that we have
u? = —8 since we are inspecting this term around the S} extremum satisfying
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3.2.3 Structure of the quartic term in S;

Now we are in position to discuss the quartic interaction term in S; which is

1
Z_LTT [Aa, Ab] [Aa, Ab]7 (336)

whit A, = X, + F, and F, given in (3.25). From (3.25) and (3.4) it is readily
observed that analytic calculations of these terms appears to be a formidable task so
instead we calculate for values n = 1,2, 3,4, 5 using Mathematica. Since these
values already corresponds to large span of matrix sizes 4N = 16,40, 80, 140, 224
respectively they will give us sufficient information to explore the dynamics of the

low energy reduced action.

3.3 Dynamics of the Reduced Action

3.3.1 Gauge symmetry and the Gauss Law Constraint

From (3.32) we see that the gauge fields () decouples completely after dimensional
reduction. Therefore the reduced actions obtained from &; are invariant under the

remaining U(1) x U(1) gauge group. The gauge transformations are given as

¢ = e™MWs Q) = ai(t) + M (1), (3.37)
Qa3 (t) + atAg(t)

X = e Oy al(t)

The ¢3,¢4 and x3 are real and thus uncharged under this U (1) x U (1) symmetry. Since
time derivatives of the fields a4 (¢) and a(t) does not appear in our action they have
no dynamics on their own. Thus their equations of motion will be algebraic in other
words they will be constraints that need to be fulfilled by the complex fields ¢ and x
These are called the the Gauss Law constraints and from the equation of motions of
a1 (t) & ay(t) that can br calculated using we find

11

ZWW(&@)*_(@@W*) = ait), (3.38)
ST E000 = @) = asle).

We can choose to work in the gauge a;(t) = 0 = as(t). This means that even if

these gauge fields are not zero we can make them vanish by the U(1) x U(1) gauge
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transformation given as
a;(t) = al(t) = a;(t) + 0o Fi(t), (3.39)

where F; are gauge functions and we can choose them such that «(t) = 0. Thus
we assume that such a gauge transformation is already made and we set «;(t) = 0.
This gauge choice can also be realized as the reality conditions ¢* = ¢ and x* =
X. Further investigating the gauge choice we observe that the Gauss law constraints
does not break the U(1) x U(1) gauge symmetry completely, but a residual
¢|(cos d,sin0)
and x = (x1, x2) = |x|(cos o,sin o), to express the constraints in the form

Zs X 7o remains. To be more explicit, we can write ¢ = (¢1, ¢2) =

1 1
0,0 = ngj¢iat¢j =0MN =0, O = nginath =0A;3=0. (3.40)

Therefore, the remaining Zy X Zo, symmetry is encoded in the gauge functions as
Ay (t) = A+ 7k and A3(t) = A+ ks, where A{ and A} are constants and &y, k3 €
Z5. This indicates that, for either of the gauge functions, A; or A3, we have more

generally
/ dt A = A(oo) — A(—o0) = 7k (3.41)

Due to (3.40), we have 6(t) = 0" + wk; and o(t) = ¢° + 7k3, and holds
for both 0(t) and o(t), as well. Having noted these points, we set ¢,(t) and x2(t)
to zero (i.e., we have both 6° and ¢ set to zero). Then, the Z, x Z, symmetry is
implemented by (¢1,x1) — (£¢1,E£x1) & (¢1,x1) — (£é1,Fx1). In section
we will consider the structure of the LEAs in the Euclidean time 7. Due to the
Zo X 75 symmetry, we will be able to explore possible kink type solutions of the LEAs
by choosing the appropriate boundary conditions on ¢;(7) and x;(7) as 7 — +oc.
Presence of topologically non-trivial boundary conditions on the latter can then be
attributed to the property (3.41) of the restricted gauge functions, which holds the

same in the Euclidean signature.

3.4 Structure of the Reduced Actions

Diagonalizing the kinetic term and setting ¢, and Y to the zero as discussed in the

previous section. LEA’s take a relatively simple form. For n = 2, 3,4, 5 we have that
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the Lagrangian is a functional of the five fields ¢y, x1, ¢3, X3, ¢4 and their generalized
velocities él, X1, q53, X3, ¢4. For instance, at n = 2, we have
Lin=2) :% (0.965& + 2.7¢% 4+ 12.94¢2 + 6.32¢2 + 0.88>'<§) — 1.09x} — 0.252x4
—2.03x3 4+ 6.99x% — 0.26x3x3 — 4.80x3 + 2.69x T3
+0.11x3 — 4.8x707 — 0.10X3¢7 4 3.77x3¢307 — 0.T7x30407
— 279302 — 146305 + 04430, — 1.62y 202 — 2.71 29>
+5.02x7¢3 — 5.11x d3¢a + 3.81x ds — 3.36X303
— 0.33x20% — 8.51x 203 + 1.92x 23y + 2.75x 24 — 0.64y305
— 0.67x30] — 19.2x3¢3 — 1.45x30307% + 1.80x30]
— 1.36x1x303 — 251X X304 — 13.05x3¢3 + 2.16x36504
+ 10.25x3¢304 + 1.07x304 — 3.700] — 32.51¢5¢;
4 0.90¢7¢7 + 41.66¢307 + 19.59¢304¢7 — 20.62¢407
+12.20¢7 — 14.33¢5 — 5.46¢3 + 41.31¢3 — 5.89¢3¢
+ 28.77¢% — 28.88¢5 — 3.423¢3¢7 + 22.60¢307 — 43.37¢);

— 46.70¢3 + 4.18¢3¢4 + 3.42¢3504 — 15.50¢364 + 16.80¢, — 29.6.
(3.42)

The equivariantly reduced Lagrangians at the levels n = 3,4, 5 are given in the ap-
pendix. Let us summarize the steps do taken, notations and conventions in obtaining
the LEA’s L, i) performed the linear transformation among the fields ¢35 — ¢,
¢4 — ¢, x3 — X5 which diagonalizes the kinetic term , and dropped the "’s in the
final form, ii) have set u*> = —8, iii) have imposed the Gauss law constraints as dis-
cussed in the previous section by setting ¢» = 0 and x» = 0, iv) adjusted the constant
in the final form of each L), so that the potentials V|,,), take the value zero at their
minima and v) introduced an over-dot (. .) to denote the time derivatives and vi) have
set the coupling constant g to one, as it has no effect on the classical physics save for

determining a global normalization in the energy unit.

A very important property of the reduced Lagrangian L, is that their potentials
are all bounded from below. Due to this reason we can conclude that at any level
n the equivariant fluctuations around the S} vacuum solutions does not cause any

instability. Reduced action for n = 1 appears as a special case since n = 1 case
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contains only the combinations of the real fields ¢3, ¢4, x3 with a new parametrization

® = ¢3 + ¢4 — x3 we can redefine the result for n = 1 as

5 15 5
Lin=1) —1—6xl + - ¢1 +5 —P? gxl +5x] — 309" — 609> — 4502¢3
(3.43)

15 5 35 215
+ 1502 — 45P¢° 4+ 450 — — 207 — —pt 4+ 2 — =
4 2 4 8
This can be expressed in a more elegant form as
Lo Loy 3ap 15 2 2 39 2
L(n:l) = §X1 + §¢1 + iq) - 4_1 (Cbl + X1 — 4) - (¢1 + 4(1)(1 + (I)) - 3)

— ¢t — 3(1+20)%¢] .
(3.44)

3.4.1 Lyapunov Spectrum for LEAs and Chaotic Dynamics

Reduced actions have Chaotic Dynamics. To reveal this we calculate the Lyapunov
spectrum. One of the basic tools to probe the presence of chaos in a dynamical sys-
tem is to compute the Lyapunov exponents, which measures the exponential growth
in perturbations. If, say, x(t) is a phase space coordinate, in a chaotic system the
perturbation in x(¢), denoted by dz(t), deviates exponentially from its initial value at
t = 0; |6x(t)| = [62(0)]e*!, A1, being the corresponding Lyapunov exponent cor-
responding to the phase space variable x(t). We outline a well-known procedure for

calculating the Lyapunov spectrum in Appendix(DJ)

The phase space corresponding the LEA are 10-dimensional, except for the n = 1

case, and spanned by

<¢37p¢37 ¢47p¢47 X35 Pxs» ¢1ap¢1 ) Xlup)a) ) (345)

where p; are the corresponding conjugate momenta and the Hamiltonians, H,), are
obtained from L, in the usual manner using H = p;q; — L. We have obtained the
Lyapunov spectrum for n = 1,2,3,4,5 at various energies (as determined by the
initial conditions) using numerical solutions for the Hamilton’s equations of motion.
For n = 1, dimension of the phase space phase space reduces to 6 as easily observed
from L, @]} The table below summarizes our numerical findings for the largest
Lyapunov exponent, Apq,, and the sum of the positive Lyapunov exponents, >, _, A

forn = 1,2,3,4,5 at several different values of the energy £. We have shaded
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the n = 1 column in this table to indicate the noted differences between this case
and the rest. Using the algorithm discussed in the appendix(D)). We have created a
MatLab code to obtain the Lyapunov spectrum where we input the initial conditions

that satisfy a certain energy to obtain the Lyapunov spectrum.

Table 3.1: LLE and KS Values

Energy |n=1|n=2|n=3|n=4|n=>5
- 92 033 1039 035 |0.07 |0.09 | Muax
B 0.51 [ 0.79 |041 |0.18 020 | >, A
£ — 30 058 |0.84 [0.84 |0.56 |032 | A\paa
N 085 |1.67 | 178 |1.09 |0.69 |> oA
£ — 100 0.96 1.94 1.87 1.52 1.37 | Anax
1.34 [ 460 [4.15 [294 [291 | Y, 0\
£ — 950 112 1227 1216 | 199 | 1.78 | A\paa
1.65 |5.65 |548 [4.76 |3.93 | >\ oA

In the table we give values for ), A for different values of energy £. The rea-
son for this is that these values are equal to the Kolmogorov-Sinai (KS) Entropy[28,
29] which is also known as the metric entropy. First of all KS Entropy can be thought
of as a single number say ~ that depends only on the chaotic dynamical system con-
sidered which measures the time rate of creation of information as the chaos evolves.
Secondly it is not really an physical entropy rather it provides a connection with the

physical entropy S(t). Naively this connection can be given as
as
Pl < 3.46
‘ dt| =" (5.46)

A more detailed explanation of the relationship between KS Entropy and Physical
Entropy can be found in Latora et.al. [29]. Uses of KS Entropy includes it’s relations
with Entanglement Entropy [30] and Bekenstein-Hawking Entropy [31] in various
contexts. Although we only state the values of KS Entropy and not explore those
directions that has been discussed above they remain interesting endeavors for future

studies.

Now we will present the time evolution of the Lyapunov exponents \;, (7, 1,...10)
forn = 1,2,3,4,5 at the energies £/ = 20, 30, 100, 250. We observe that for all of
these cases the Lyapunov exponents rapidly converges to constant values. We also

look at how the Lyapunov spectrum changes for given initial condition as n and as
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the energy increases. The plots Fig.(3.21}{3.24) are given for the initial condition
(1.25,1.2,1.35,1.2,1.06,1.2,1.5,1.4,1.9,1.3) . (3.47)

Plots (3.25}3.26) shows the evolution of A, for n = 2,3,4,5. We observe a de-
crease in the values of \,,,, as n increases further but it still is significantly larger
than zero. If one keeps on increasing n while keeping the energy fixed it is expected
that \,,.. to get smaller. This result is not surprising since, to keep the energy fixed
we would need to choose the initial conditions closer and closer to zero. Which even-
tually becomes not useful to probe the chaotic dynamics of our system.

From the figures - we see that the rate of decrease in \,,,, at different
energies as n takes on the values n = 3,4, 5 appears to be almost the same. Hence we
may argue that \,,,, will remain significantly larger than zero for increasing values
of n, provided that the system has sufficiently large energy. In the figure (3.31) we
give the values that LLE converges for energies I/ = 20, 30, 100, 250. Here we need
to keep in mind that phase space dimensions for n = 1 and other cases are different

so their detached values from the characteristic behavior does not raise any problem.

1 T T T T T 4 T T T T T
n=1 n=1
ol E=20 E=30
LLE=033 : LLE=058 |
06 4
) |
04 T
v B I — —

Lyapunov exponents

Lyapunov exponents

I I I I I I I I I I
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800
time time

Figure3.1: n =1, £ =20 Figure3.2: n =1, £ = 30
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3.5 Kink Solutions of LEA’s

In this section we will consider the matrix model in the Euclidean signature. The
Lagrangian for n = 1 can be given as
Lip=1) = éx’f + %gb'f + gcb’? + i (67 +x1—4) 2+§ (¢F +40(1 + @) — 3)
+ oixT + 3(1+20)%¢7 .
(3.48)

where ’ stands for derivatives with respect to the Euclidean time 7. We can easily

see from (3.48) that there are three different pairs of vacua, which are given by the

configurations
1
¢1::|:2’ X1207 o = _57
1 3
=0, x1==x2, & = 3T~ 5 (3.49)

Since either ¢; or x; vanish in these vacua, we infer that, the kink solutions could
be of the type with topological indices (£1,0) or (0,+1) € Zs & Zs. These are the

familiar kink solutions. Indeed, we find that the equations of motion are of the form

" (468 4+ 3x2¢1 + 61 (T + 60)(60 — 1)) = 0, (3.50a)
X —4(xi+36ixa —4x1) = 0, (3.50b)
" — (2(1 +2®) (3¢7 +4P(1+ ®) —3)) = 0. (3.50c)

which have the following solutions

(1) = 2tanh<2x/§7’> L ol =0, () =—-= (3.51)
with 6 (00) = £2,
61(7) =0, x(r) =2tanh(2v27), ®(7) = %or - g (3.52)
with 1 (£00) = £2.

It is instructive to see how the equations of motions (3.50) yield solutions given in

(3.51),(3.52). Substituting x; = 0 and & = —3 we see that (3.50b) & (3.50c) are
trivially satisfied and from (3.50a) we are left with

1 — (497 — 16¢1) = 0, (3.53)
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which can be simplified to the first order equation
7= 2(p2 — 4)2. (3.54)

Where the constant of integration is fixed from the form of the potential in (3.48)),
with y; =0and ¢ = —%. Choosing the positive square root for the kink solution we

have

¢ = V2(¢% — 4), (3.55)

which integrates as

[ vwe=s = /= 20
2—\1/§arctanh(%) — 7 (3.57)

or we can represent it as
é1(7) = 2 tanh (2\/§T> (3.58)

As we wanted to show. For further visualization we add a graphic of this kink solution

Figure 3.32: 7 vs 2 tanh (2v/27)
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3.5.1 Kinks atlevels n > 2

For n = 2,3, 4,5, the number of degenerate vacua increases. This may be expected
due to the larger number degrees of freedom in the LEAs. A similar structure in
vacuum configurations to that of n = 1 is observed, and allow for the kink solutions.

Atn = 3, for instance, we have eight pairs of degenerate vacua, which are given as

{d1 = 0., 05 — 2.56, by — 3.42,x1 — +2., x5 — —11.5},

{1 = 0., b3 — —0.28, bg — 0.55, x1 — £2., x5 — 1.46},

{1 = 0., 3 — 2.55, ¢4 — —0.60, x; — £2., x5 — —5.26},

{1 = 0., 5 = —0.27, ¢4 — 4.60, 1 — &= — 2., x5 — —4.79}, (3:59)
{1 = £2., b3 — 2.30, oy — 4.13,x1 — 0., x3 — —3.01},

{¢r = £2., 635 — —0.02, ¢4 — —0.16,x1 — 0., y3 — —7.04},

{61 — £2., b3 — 0.28, b4 — —0.55, x1 — 0., x5 — —1.46},

{1 — £2., 3 — 2.00, ¢4 — 4.51, x1 — 0., x5 — £8.59},

The equations of motion for L,—3) are coupled non-linear differential equations,
which are not easily solved. We may look at the linearized system of equations
around one of the minima. For notational simplicity, let us write (¢1, X1, ¢3, ¢4, X3) =
(S1, S2,85, 54, S5) := S and also write S = S° + s, where S is one of the vacuum

configurations and s are the fluctuations. The linearized system of equations is given

by
" o8 ‘/(3)

S. =
! 881'88]' 50

and for, say, S° = {¢; — £2., ¢35 — 2.00, ¢4 — 4.51,x; — 0., x3 — +8.59}, these

Si, (3.60)

take the form

2.6s] — 125.35; — 30.1s3 + 51.9s4 + 5.41s5 =
0.52sh) — 38.91sy, =
9.8s5 — 30.1s7 — 216.3s3 + 29.7s4 + 3.7s5, = 0, (3.61)

698:1/ + 51.981 + 29.783 — 110884 — 6.485, =

o o o o o

0928,5, + 5.481 + 3.783 - 6.484 - 5.885 =

The leading order profiles of the solutions of these equations which are regular as
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T — oo are given below, while the complete solutions are given in the Appendix.

51(7) = (—0.98¢; — 0.18¢o + 4.98¢3 + 1.11¢y4) o238 52(T) = cqe— 8650687

s3(7) =~ (—0.65¢; — 0.12¢5 + 3.28¢5 + 0.73¢4) e 2357

s54(T) = (7.75¢1 + 1.49¢y — 39.25¢5 — 8.73¢c4) e 2357

s5(7) &~ (—73.40c; — 13.99¢2 4 404.89¢53 + 89.86¢4) e 23T (3.62)
where ¢; (i : 1 -+ b) are arbitrary constants. These results give the profile of the kink

solution as for large 7.
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CHAPTER 4

CONCLUSIONS

In this thesis, We have started with an introduction of fuzzy spaces starting from the
basic examples of S% and CP? and continue to a richer space S} we have demon-
strated how to obtain the S} through several ways. Then we have showed how to
introduce functions living on S% and how to interpret the action S, as a gauge theory
on S#. In Chapter 2 and 3 we have investigated two different gauge theories, One with
a fifth order Chern-Simmons like and one with a mass deformation. We have seen that
choosing a fifth order deformation forces us on a fixed S} while with mass deforma-
tion one can choose any stack of S# for the purposes of our equivariant parametriza-
tion we choose stack of 4 fuzzy 4 spheres. However we need to take a negative mass
term in order to satisfy the vacuum solutions for the mass deformed action. Which at
first seems as a source of instability that is cured by the equivariant dimensional re-
duction. We introduced the SU (4) equivariant gauge fields on the S# and expand the
S extremum solutions around the vacuum with fluctuations that are elements of this
SU (4) equivariant fields. We have analytically calculated the two terms in our action
which are the mass term and the Dynamical term. But calculating the remaining part
of the potential term turns out to be a formidable problem so instead we get the re-
sult for n = 1,2, 3,4, 5 numerically using Mathematica. Using the numerical results
we have obtained the Lagrangians for the n = 1,2, 3,4, 5 and we observed that they
facilitate chaotic behavior. In order to verify our observation we have calculated the
Lyapunov spectrum for various Energies such as £/ = 20, 30, 100, 200 and for a fixed
initial condition (1.25,1.2,1.35,1.2,1.06,1.2,1.5,1.4,1.9, 1.3) we observed that the
Largest Lyapunov Exponents(LLE) converges rapidly to constant values which are

significantly larger than zero. Such values of LLE indicates highly chaotic behavior
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as we expected. We also plotted the n vs LLFE and n vs K SE plots to investigate the
characteristics of this chaotic behavior. Finally we investigated our actions in the Eu-
clidean time 7 and observed that they facilitates kink type solutions with topological

charges Zy X Zs.
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APPENDIX A

USEFUL RESULTS FROM GROUP THEORY

A.1 Brief Review of Group Theoretical Identities

A.1.1 Branching Rules

For this part of appendix we will briefly review some result from group theory from

our previous work.[32]. We know that irreducible representations of SO(2k) and
SO(2k—1)can be given in terms of the highest weight labels [A] = (A1, Ao, -+, Ak_1, Ag)
and [p] = (g1, g2, -+, pr—1) respectively. Branching of the IRR [A] of SO(2k) un-

der SO(2k — 1) IRRs follows from the rule [26]

M 2> > X > g > > gy > | Ak (A.1)

A.1.2 Quadratic Casimir operators of SO(2k) and SO(2k — 1) Lie algebras

Eigenvalues for the quadratic Casimir operators of SO(2k) and SO(2k — 1) in the
IRRs [A] = (A1, A2 -+ Ax), (1] = (1, p2 -+ pa—1), respectively are given as [26]:

k

CSOCR\] = Z Ni(\i + 2k — 20) (A.2)
=1
k—1
CSOCk=D1 Z pi(ps + 2k — 1 — 24) . (A.3)

=1
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Eigenvalues of quadratic Casimir operators of some specific IRRs are given as

I I?
cy (n+§,s) :Z+1n+1+n2+2n+32 (A.4)
I I
so) (£ _ L 4 A
e <2) i (AS)
I1 I?
Cy (n+§a§,s) =5 HIn 43040 +dn+ s (A.6)
I 1\ I?
SO(5)
[ — = — 2[ A.
cs (2,2) 5 T (A7)

A.1.3 Relationship between Dynkin and Highest weight labels

Throughout this thesis we have used highest weight labels (HW) and Dykin labels to
label the irreducible representations of Lie algebras. To be more precise other than
in section (2.3]) we have used Dykin labeling. Although the difference between them
is just algebraic. We give the relationship between Dykin labels and highest weight

labels to be more clear as follows For a SO(5) IRR , the labels are given as

(pv Q)Dynkin = (/\17 /\Q)HW

and the relation between these labels are given by

pP+q q

— = A\ = 2
2 272

To illustrate, (1/2,1/2)gw corresponds to (0, I) pynkin-

At

For a SO(6) IRR , the labels are given as

(p, q, T)Dynkm = (>\1, A2, )\3)HW

and the relation between these labels are given by

p+r /\2:p+r

N =
1= 4 2 2

For a SO(4) IRR the labels are

(Z% (])Dynkm = ()\17 /\2)HW

and the relation between these labels are given by

A = Pt \, P
2 2

To illustrate, (n+ /2, s) gw corresponds to (3(n+1/2+s), 3(n+1/2 = 5)) pynkin-
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A.1.4 Dimensional Relations

Using these labellings we can obtain the dimensional relations we have used in the
following way. As stated in previous sections dimension of X, can be obtained from
the dimension relations of the SO(5) algebra since they are constructed from the

symmetric tensor product of the I matrices they also respect the SO(5) relations
1
dz‘m(N,M):6(N+1)(M+1)(N+M+2)(2N+M+3), (A.8)

Setting N = 0 and M = n we get the dimensional relation (2.72)
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APPENDIX B

CALCULATIONS ON EQUIVARAINT REDUCTION

B.1 Details on the Dimensional Reduction

Let us show that the square of these operators are indeed 1. To do that we need to find
(G-%)?

GijGuZiiZn = %7 NG Gr (B.1)

abedm

Starting from relation €™ ~;~,~;,~; = 24+, and multiplying both sides with €
One can obtain

et M N GanGeg = 24€" 7, Gy G (B.2)

Left hand side can be calculated by expanding the product of epsilons as a determinant

5ai 5aj 5ak: 5al

N 5bi (5bj (Sbk 5bl
abedm _ijklm __

¢ ¢ o 5(:1 50]' 6Ck 5cl (B3)

5di 5dj 5dk 5dl

When calculated gives the result

gabedm jijklm _ sai ( §UI(§oh gl — sk gely _ bk (gei gdl _ gel gy - gbl(ged gk _ gek 6dj)XB' 4)
g ( gUi(gekgdl — gelgaky _ gk (geigdl _ gelgdiy 4 gbl(geigdk _ gdi 5ck)>

1 gak (5bz‘(6cj6dl ey gbi(geigdl _ gdigely 4 gbl(geigdi 6cj6di)>

_gsl (5bi<5cj5dk ek gdiy — gbi(geigdk _ gekgdiy 4 sk (geigdi 5di50j))
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Which is the most general form of the operator we have previously defined as fe¢de/
in (2.134). Multiplying (B.4) with v;7; 771G aGea We get
a1V ¥dGabGed + 4VeVaVa G abGed + 47aVeVa G apGed (B.5)
+4’7a7d76’}/cGachd + 470’7a7b7dGachd + 4’7d7a’707bGachd

Using anti commutation relation of gamma matrices we can arrange these terms as
4(67a’yb707dGachd + 12GabGab + 24/7alycGachb) (B6)

SO

Eadem’YmGachd = YWV VdGabGea — 2GabGab — 47V GavGep (B.7)

we know that 7,77 7aGapGea is equal to (G - X)? so

’Ya’Yb’Yc/deachd - €ab6dm’}/mGachd + 2GabGab - 4’7@’70Gachb (Bg)

Lets focus on the first term using G, = % [ X, X3] we can expand the term etbedma G onGeq

as

€ G b Geg = ieabcdmvm (XX XeXa — Xo X XaXe — Xo Xo XXy + X, X, X X,)
(B.9)
Which is equal to
ebedma X, Xy Xa X, (B.10)

We know that e?**™™m X X, X X, = 8(n + 2)X,,, and using this relation we find the
first term as

eredmay  GupGea = 8(n + 2) XonYm (B.11)

Now that we have found the first term we can move on to the second term which is

the Casimir of (0, n) IRR of SO(5) which can be written as
GabGab = —4n(n + 4) (B12)

Lastly the third term can be calculated in the following way

1 1
’Ya’YcGachb - 57@70Gachb + §7a/ycGachb (B13)
1 1
= 57&70Gachb + GabGab - §7a70Gchab
1
= 5%% [Galn Gcb] + GabGab
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Using the commutation relation of SO(5) generators we found the last term as
12’Ya’ycGac - 4GabGab (B14)
Combining all the terms together we get

(G-%)? =8n(n+ 2)XoVa + 12747Gac + 8n(n + 4)1yn (B.15)

. . .N)2
Lets investigate % as n goes to co

8(n + 2) X Ym + 8n(n + 4) + 12X,.Gyc
2

lim ( ) = 8(zmYm + 14)  (B.16)

n—o00 n

Where x,, represents the coordinates of R°. Now that we have found the limit of

)2 .. .
<Gn—§> we can calculate the limit of ()’s Lets start with ()

Cy2 2
lim Q, = ((i 22) Lon™ (B.17)

n—00 8n 8712
= —TmVm —1+2+1=—ZmYm = ¢

Taking the square

qg = TmTnYmVn (B.18)
1 N 1
= mexnvm% mexn%n%
1
= §$mxn{’}/m7 ")/n}
1
= — T Tn20mn
2
=1
Now focusing on (),
, (G-X)?  4nGX TmYm 1
]_ == = _— —_— = - - C EC - 1 B19
nhee VT T16n2 1602 g g Cedsd (B.19)

Taking the square

qg o TmTnYmIn acdzcdacdzcd xa’)/aacdzcd acdzcdxa’ya T VYm achcd 1
T = _ _

4 16 8 8 2 4 4
(B.20)
Where «,, represents coordinates of R'°. We know that G, G .qX X 1S equal to

=8(n+2) X, Ym + 8n(n +4) + 12%,.Go. (B.21)
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So divide both sides with n? and find
aabachachd - 8$m7m +8 (B22)

Putting this in (B.20) and organizing terms a little bit more leads us to

xaﬁ)/a&cdzcd Ckcdzcdxaﬁ)/a Oécdzcd
8 8 4

¢=1 (B.23)

For ¢? be equal to 1 we need last three terms of (B.23) to be equal to 0 which leads us
to the equality

Iaacd’}/azcd + O-/cdl‘azcdva - 20-/cclzcd (B24)

Lets show that RHS is indeed equal to LHS. We can put LHS in the following form

1
Qza@cd{'ya; 2cd} = §xaacd{7a7 ['707 f)/d}} (B25)

abcede

Using the relation €*“**~v,~.74 = 3|74, 7Ve] and multiplying both sides of this equation

with y,,, gives us

€N YYo= 3 [Yar Vel (B.26)

Using this equation we can conclude that
{f)/ma {f}/aa ’Vc}} = 2€ab0d6707d (B27)

Combining this with g, = —1/2¢%%q 4z, (B.25) becomes

—xgacdxe(eab“le)(e“bgfh)fyffyh (B.28)
= TgQfpTgY Y — LgQnf7Y fVn
= apnlVf, W) = 2025

As we wanted. Now we can focus on (J3. Observe that it has the same structure as

@1

. (G-X)?2 4nGX T Ym 1 1
1 1= gLy — = B.29
A6 T Ton2 g % T g (B.29)
a /a C ZC Ci EC a /a Ci EC
q§:1+x704d d |, Qed2icdTaY Qled2icd (B.30)

8 8 4
So same condition holds and we have ¢3 equal to 1.

Some useful identities among ()1, ()3 and X, that greatly simplify the analytic calcu-
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lations are listed below[33]].

[Qla {Xm Ql} - Q3 ch

[Xa, @s]] =0
[Xa, @s]] =0
(@3, Q1[Xa, ]| =0,
[Xa,Qs]] =0
[Q1,{Xa, Qs} — Q1[Xa, Q1]] =0

[Q3, [Xa, Q1] = 0

(@3, Q1[Xa, Q1] = 0

[Q1,{Xa, Q2}] =0 (B.31)
(@3, {Xa, @1} — Q3[Xa, Qs]]

[Q3,{Xa, @3} — Q1[Xa, Qu]]

0
0
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APPENDIX C

EXPLICIT FORMULA FOR LOW ENERGY REDUCED

ACTIONS AND THEIR MINIMUMS

C.1 Explicit Formula for LEA

Here we list the equivariantly reduced Lagrangians for n = 4,5, 3:

Lines) = % (1.35@ +2.6¢% + 8.38¢2 + 6.77¢% + 0.88>'<§) —1.66x}

— 1.66x] — 0.015x3 — 0.39x3 + 8.81x7 — 0.287x3x3 — 2.75X3

+ 3.47x 23 + 0.252x5 — 5.48x2¢? — 0.182x2¢? + 3.55x3030°

— 1.32x5040% — 3.72x30% — 0.164x3 b3 + 0.044x 3y — 7.09x 22

— 0.796x3¢2 + 14.2x2¢3 — 537\ Psds + 3.18X3 by — 0.852x 202

— 0.0543x26% — 2.59x 23 + 0.40x 2304 + 0.785x 24 + 0.010x 305

— 0.020x3¢3 — 14.3x3¢3 — 0.33x3¢3¢] — 0.18x 3¢5 — 2.92X7 X303

— 1.22 2364 — 10.38x303 + 0.402x302¢s + 7.01x30304 + 1.59x304
— 3.94¢7 — 16.04¢2¢% — 2.03¢2¢2 + 13.4¢% + 28.6¢3¢2 + 14.2¢3¢,07
— 1770405 — 5.49¢3 — 0.21¢; + 24.2¢5 — 0.73¢3¢5 + 3.47¢

— 66.403 — 1.99¢30; + 9.79¢307 — 16.53¢3 — 42.75¢3

+ 2.24¢3 ¢4 + 5.81¢2¢s — 11.5¢304 + 14.5¢4 — 31.0.
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Lines) = % (1.5ﬁ + 2.50% 4+ 7.549¢% + 6.537¢° + O.83>‘<§> —1.85x}

— 1.85xT — 0.006x3 — 0.22)3 + 9.31x% — 0.26x2x% — 2.20x2 + 3.45x %3
+0.245y3 — 5.625x7¢] — 0.181x3¢7 + 2.8x3¢3¢: — 0.96Tx 30405 — 3.69x307
—0.07x3¢3 + 0.015x 34 — 10.4x 242 — 0.190x3¢? + 18.01x 3¢

— 3.23x7 3¢ + 1.60x7 ¢4 — 0.45x305 — 0.018x363

— 145203 + 0.169 2304 + 0.372x 204 + 0.104x 303 + 0.0003y 307

— 10.40x3¢5 — 0.1003x3¢3¢7 — 0205365 — 3.37xTxa¢hs — 0.577xTx3¢4

— 8.29\303 + 0.071x3¢304 + 4.34x30304 + 1.16x304 — 3.88¢);

—9.6602¢2 — 1.197¢2¢% + 13.4¢2 + 20.9¢3¢? + 8.14¢p3p4>

— 11.95¢4¢% — 3.66¢5 — 0.019¢3 + 22.15¢5 — 0.12p3¢5 + 0.61¢5 — 77.93¢2
— 0.897¢3¢7 + 3.98¢3¢7 — 6.4007 — 38.93¢3 + 0.883p3¢4 + 5.42¢3¢4

— 7.43¢3¢p4 + 10.35¢4 — 31.
(C.2)

Loz = % (0.525(% +0.92%2 + 6.90342 + 2.60% + 9.8¢§> 143y
—0.053x3 — 0.814x3 + 8.10x% — 0.305x2x2 — 3.63x2 + 3.339x%x3
+0.226 3 — 5.25x5 ¢ — 0.165X307 + 4.0dx3030; — 1.34x30407

— 3.56x307 — 0.447x 33 + 0.128x3 s — 4.09\ 202 — 1.79x 3¢

+9.83x7 65 — 6.24x P304 + 4.20x b4 — 1.66x363

— 0.133x26% — 4.70x2¢3 + 0.86 X230 + 1.49X24

— 0.233¢5 — 0.142x305 — 17.80x305 — 0.75x3630] €3
+0.34x307 — 2.30xT X303 — LI6X] X304 — 12.48X3¢3

4 1.08x302¢4 + 9.19x3p304 + 1.64x 304 — 3.94¢] — 23.22¢2¢2

— 1.65¢20% + +13.14¢2 + 35.3¢3¢? + 18.84¢30407 — 21.27h4*

— 8.46¢5 — 1.19¢] + 29.74¢5 — 2.33¢305 + 11.24¢5 — 51.36¢;3

—2.91¢3¢7 + 16.41¢3¢75 — 29.82¢7 — 45.17¢)3 + 3.54¢5b4

+ 4.90¢5¢4 — 14.55¢3¢4 + 17.07¢4 — 30.61 .

70



C.2 Minimum Values of the Potential

Forn =3

{1 — 0., b3 — 2.55953, by — 3.41521, y1 — £2., x3 — —11.5045}

{d1 — 0., 5 — —0.277688, by — 0.548444, 1 — +2., y3 — 1.45505}

{1 — 0., ¢35 = 2.55117, ¢4 — —0.596206, x1 — £2., x5 — —5.25775} ,
{1 — 0., ¢35 — —0.269331, by — 4.55986, x1 — £ — 2., 3 — —4.79172} |
{1 — £2., ¢35 — 2.30365, ¢4 — 4.12784, x1 — 0., x3 — —3.00725}

{1 — £2., ¢35 — —0.0218119, ¢, — —0.164188, x; — 0., x5 — —7.04222} ,
{p1 = £2., b3 — 0.277688, ¢4 — —0.548444, y1 — 0., x5 — —1.45505} ,
{61 — £2., b3 — 2.00415, by — 4.5121, x1 — 0., x5 — £8.59443}

(C4)
Forn =14
{$1 — 0,3 — 2.4648, ¢4 — 2.89574, x; — +1., x5 — —12.403},
{¢1 = 0,03 — 2.27251, ¢4 — —0.169024, x; — £1., x5 — —7.91332},
{$1 — 0,3 — 0.87219, ¢4 — 4.6719, x; — £1., x5 — —7.43008},
{$1 — 0,3 — 0.679905, ¢4 — 1.60714, x; — £1., x5 — —2.94038}, C.5)

{d1 — 1., ¢35 — 0.892447, ¢4 — 0.644303, y1 — 0, x5 — —4.73132}
{d1 — +1., ¢35 — 2.25226, 4 — 3.85858, y1 — 0, x3 — —10.6121}
{o1 — +1., 3 — 2.42106, s — 3.8452, x1 — 0, x5 — —6.37635}
{o1 — £1., 63 — 0.723642, ¢4 — 0.65768, v — 0, 3 — —8.96706} ,
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Forn =5

{p1 — 0, p5 — 3.03956, Py — 2.63677, x1 — +1., x5 — —16.9732},

{1 — 0,5 — 0.921837, by — 2.07711, x1 — +1., x3 — —4.2708} ,

{1 — 0,3 — 2.59883, py — —2.66941, x; — £1., x5 — —11.0127} ,

{1 — 0,3 — 1.36257, by — 7.38328, x1 — £1., x5 — —10.2313} , o
{1 — £1.,p3 — 1.05886, ¢y — 0.279828, x1 — 0, x3 — —6.35122} ©o
{p1 = £1., b3 — 2.90254, 5 — 4.43405, 1 — 0, x5 — —14.8928} ,

{¢1 = £1., b3 — 3.10959, b5 — 4.79955, x1 — 0, x5 — —9.04226}

{¢1 — £1.,¢5 — 0.851816, by — —0.0856701, x1 — 0, x3 — —12.2018},

C.3 Asymptotic Profiles of the Kink Solution for L,

Solutions of (3.62)), which are regular as 7 — oo are given below

51(1) = (3.1c; + 0.49¢; — 6.52¢5 — 1.52¢4) e 347 +(0.07¢; — 0.005¢5 + 0.25¢5 + 0.16¢4) e~ 67

+(=1.17¢; — 0.3cy + 1.29¢3 + 0.26¢4) e~ 7 +(—0.98¢; — 0.18¢, + 4.98¢3 + 1.11¢y) e 257
(C.7)

s3(1) = (0.92¢; 4 0.15¢5 — 1.95¢3 — 0.46¢4) e 2447 4(—0.139¢; + 0.01cy — 0.48¢5 — 0.30cy) e~ %07
+(—0.14¢; — 0.035¢5 + 0.15¢5 + 0.03¢4) e~ 307 4(—0.65¢; — 0.12¢5 + 3.28¢3 + 0.73¢4) e 227

s4(T) = (7.74c; + 1.45¢o — 39.25¢3 — 8.73¢4) e > +(5.79¢; + 0.93¢y — 12.24c3 — 2.86¢4) e >*77
4(0.25¢; + 0.065¢5 — 0.28¢3 — 0.055¢4) e~ 37 4+(0.016¢; — 0.001cy 4 0.055¢3 + 0.035¢4) e~ %07

s5(7) = (3.09¢; + 0.49¢y — 6.26c3 — 1.47c,) e >*74+(0.20¢; + 0.051cy — 0.24c3 — 0.048¢4) e 207
+(0.025¢; + 0.00025¢; + 0.03¢3 + 0.03¢4) e 57 +(—73.40c; — 13.99¢; + 404.89¢5 + 89.86¢,4) e~ 37
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APPENDIX D

BASICS OF CALCULATION OF LYAPUNOV EXPONENTS

Looking at the results we obtained one can easily see that they can have chaotic be-
havior. To investigate if it really is the case we will compute the Lyapunov exponents
corresponding to our Lagrangians for various energies. Let us start this section with
a brief review of how to compute the Lyapunov exponents [4, 3, 5]. Suppose we have
a Hamiltonian H with a solution x(¢) which demonstrates chaotic behavior. If we
consider a nearby point z(¢) 4+ §(t). We expect this deviation to grow exponentially

in the regime of chaotic behavior.
[(t)] = |6(0)] e (D.1)

Where ) is a positive constant called a Lyapunov exponent. This exponential growth
we see in is the realization of heavy sensitivity on initial conditions in chaotic
system. So we can use these constant to decide if a system is chaotic or not. To com-
pute the Lyapunov constant for a general system we will do the following. Consider a
system of First order differential equations which represents the Hamilton’s equation

of motion of a Hamiltonian system.
T = F(x) (D.2)

where x is N dimensional vector. Taking a variation around & we obtain the following

_OF

0%i = O

oz’ (D.3)
Hence we see that we can express a deviation vector dx(t) can be expressed as

dz(t) = U(t)dz(0) (D.4)
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Where U (t) is the time translation operator. And by the use of linearity property of

the time translation operator we can obtain a general deviation vector in the form.
dx(t+t)=U)U(t)(0) (D.5)
And the Lyapunov exponent for this deviation vector is defined as

_ |62 (T)|
A= lim T 18 152(0)] (D-6)

And using the linearity property

A= lim 1
e 2 [0z(0)]

(D.7)
Now we are in position to generalize this procedure for n Lyapunov exponents.Firstly
we need to construct an orthonormal set of basis that spans the vector which is tan-
gent to the trajectory. Let this set of basis be labeled as {k},k2,...,kD}. Then by
applying the time translation operator U, we evolve each basis vector by At. Result-
ing in a new set of basis vectors {w}, w?, ..., w?}. Note that after the transformation
new basis vector are no longer orthonormal. To take care of this we follow the usual
Gram-Schmidt orthogonalization process. Doing so we obtain a new set of orthogo-

nal vectors {l%%, k2. l;:?}.Now we will compute the expansion rate of each vector

which will be used in the definition of Lyapunov exponent can be given as

]%k
ko Pk
ai = — =k (D.8)
1 po 1
Finally we normalize the orthogonal set of vectors {k!, k2, ... k7} which completes

a single cycle. Then this process should be repeated for /N times and the spectrum

Lyapunov exponents can be obtained as

A = lim E Z log(a (D.9)

By construction v;’s direction is the one with the highest sensitivity to initial condi-

tions so it’s corresponding expansion rate has the largest value in this region.
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