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ABSTRACT

CORRELATION-BASED VARIATIONAL CHANGE DETECTION

Aktaş, Gizem

M.S., Department of Computer Engineering

Supervisor : Prof. Dr. Fatoş Tunay Yarman Vural

June 2018, 140 pages

Change detection is an important research topic for observing the earth but there are

various challenges to obtain an accurate change map such as image noise, subtle dif-

ferences and image acquisition alteration. Various studies handled these problems as

separate steps. In the first step, images are registered, then the image noise are elimi-

nated. After images are normalized to eliminate image acquisition differences, actual

change detection routine can be applied as a final step. However, this step-by-step

approach leads to accumulation of errors in each step which leads to decrease in ac-

curacy of final change detection map. Step-by-step approach is widely used because

these problems are interpenetrated to each other and researchers use this to divide

problem into sub-problems. In this study, a correlation based variational change de-

tection (CVCD) method for elevation models is proposed. In essence, CVCD aims to

produce smooth change maps while preserving the details of the terrain by minimiz-

ing a variational cost function. In this variational cost function a novel correlation-

based data fidelity term is used with an `1-norm regularization term which imposes

smoothness on obtained change map. In addition, `1-norm TV regularization term is

preferred because it can preserve details such as point-changes, edges and corners of
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changes. In order to minimize the proposed cost function using simple approxima-

tions in an iterative manner, a simple and efficient algorithm is suggested. Quantita-

tive experiments on synthetic noisy data show that CVCD can provide a detection rate

of 95% while staying in the low false alarm regime, i.e. less than 10−2. Also, quali-

tative experiments on real-world data show the success of the CVCD for the changes

with different characteristics.

Keywords: change detection, correlation, total variation, point cloud, LIDAR, digital

surface model
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ÖZ

İLİNTİ TABANLI DEĞİŞİKLİK TESPİTİ

Aktaş, Gizem

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Fatoş Tunay Yarman Vural

Haziran 2018 , 140 sayfa

Değişiklik tespiti, dünya yüzeyini gözlemlemek için kullanılan oldukça önemli bir

araştırma konusudur. Fakat doğru bir değişiklik haritası elde etmenin görüntünün gü-

rültülü olması, gözle fark edilemeyen değişimlerin olması ve görüntü alma işlemin-

deki farklılıklar gibi çeşitli zorlukları vardır. Çeşitli çalışmalar bu problemleri, gö-

rüntü alma farklarını ortadan kaldırmak için gürültüyü azaltma, görüntü örtüştürme

ve görüntü normalleştirme gibi ayrı adımlar olarak ele almıştır. Bu birbirinin içine

geçmiş büyük bir problemi, alt problemlere ayırarak adım adım çözme yöntemi ol-

dukça yaygın bir şekilde kullanılmaktadır. Fakat, bu yaklaşımda her adımda meydana

gelebilecek hatalar bir sonraki adımın da sonucunu etkilemektedir ve dolayısıyla her

adımda biriken hatalar en son elde edilen değişiklik tespiti haritasının da mutlak doğ-

ruluğunun azalmasına neden olmaktadır. Bu çalışmada, yükseklik modelleri için ilinti

tabanlı değişimsel bir değişiklik tespit yöntemi önerilmiştir. Özünde bu yöntem, de-

ğişimsel bir maliyet fonksiyonunu en küçülterek çözmektedir. Bu maliyet fonksiyonu

değişim tespiti yapılan arazinin detaylarını korurken aynı zamanda da elde edilen de-

ğişim haritasının pürüzsüz olmasını amaçlar. Bu değişimsel maliyet fonksiyonunda,
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yeni bir ilinti tabanlı veri sadakat terimi ve elde edilen değişiklik haritası üzerinde

pürüzsüzlüğü sağlayan bir `1-norm düzenlileştirme terimi kullanılır. Ayrıca, değişim

bölgelerinin kenarları ve köşeleri gibi özniteliklerini koruyabildiği için `1-norm top-

lam varyasyon (TV) düzenlilik terimi tercih edilir. Önerilen maliyet fonksiyonu, basit

matematiksel yaklaşımlar kullanılarak basit be etkili bir algoritma ile yinelenen bir

şekilde en küçültülür. Sentetik veri üzerinde yapılan nicel deneyler, önerilen algorit-

manın düşük yanlış alarm ile çalışırken, yani 10−2 değerinden daha az, yüksek tespit

oranı (%95) sağlayabildiğini göstermektedir. Ayrıca, gerçek uzaktan algılama veri-

leri üzerinde yapılan niteliksel deneyler, farklı özelliklere sahip değişiklikler için de

önerilen algoritmanın başarısını göstermektedir.

Anahtar Kelimeler: değişiklik tespiti, ilinti, toplam değişim, nokta bulutu, LIDAR,

sayısal yüzey modeli
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The planet we live on, the earth, and its natural resources are very important for

humankind to continue to exist. As long as humankind continues to think, they will

continue to make many contributions to the world with the technology and inventions

they have developed since people are constantly curious and inquisitive since their

existence because of their nature. In the direction of their curiosity, each day they add

something new to the earth. In each second we breathe, the earth is changing due to

the consequences of our interventions while we are making a place to stay, warming

up, feeding our belly, transporting from one place to another, inventing and producing

something new.

With the contributions of humankind to developing technology, their own curiosity is

also exponentially increasing. Along with the technology, human beings are informed

about the natural disasters such as earthquakes, tsunamis, volcanic explosions, forest

fires, and floods and also the effects of natural disasters on the formation of the world

as well as on their daily lives. To give a specific example, as one of the most well-

known facts, water is indispensable for human life. According to Wired Science, it is

estimated that the waters that flow from rivers, lakes and aquifers towards the ocean

dry before they reach to the ocean. This is the result of lessened precipitation brought

on by deforestation and the construction of man-made dams that occupy water stream

in wasteful ways. The reduced water flow influences the climate change and species

that live in the wetland. The detecting, understanding and explaining of the relation-

ships between the human and nature is important to make the world better and more
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viable while managing and using the resources [25]. In accordance with this detailed

information, people can make deep inspections about the surface of the earth. Re-

mote sensing is one of the most important technologies that has been developed to

satisfy the curiosity of the people. It is the science that combines a large source of

information and technology used to make observations, analysis and inferences about

the earth and atmospheric events without actually being in contact with the earth [33].

The main source of that knowledge is the measurements and images obtained by col-

lecting and recording reflected or emitted energy from the platforms on aerial and

space vehicles [29]. At the end of many years of success in photographic technology

and the methods used to observe the world, the first world observation was made with

TIROS weather satellite, in 1960. This experience is known as the first use of remote

sensing term in history [11].

Remote sensing has been widely used in many areas such as geological, archeologi-

cal, atmospherical, civil and military applications since it has been developed. Image

and video analysis applications in these areas can be exemplified as forest detec-

tion, biomass estimate, real-time monitoring and tracking of various disasters like

fire, flood, earthquake, eruptions and drought, disaster prevention, urban, port or road

mapping, 3D modeling of structures, verification of international treaties, border con-

trol, weather forecast, tracking of climate change and air quality, etc [33]. For the past

fifty years, remote sensing has also been used in many academic studies and many im-

age processing algorithms. It has a huge importance when the contributions of these

applications to the daily lives of people are considered. Within these applications, it

is also clear that change detection algorithm is very important in various fields such as

disaster monitoring and prevention, surveillance, urban monitoring, agriculture mon-

itoring. In our decade, its popularity is increasing each and every day [47].

One of the most interesting subjects is change analysis in the earth science that inves-

tigates the world in the direction of people’s curiosity, tries to make the earth better,

and evolves with the use of remote sensing systems for this purpose. Change detection

is getting even more popular nowadays. To detect changes of earth’s surface timely

and accurately is extremely important and remote sensing images is widely used for

object detection and analysis by monitoring the earth’s surface from satellites or air-

borne platforms with the help of the sensors for many decades. A change analysis is a
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process that detects how the attributes of an identified region change between two or

more time periods. Change detection identifies the pixels of multi-temporal images

that belong to same geographic region on the earth, but are taken in different times

as changed or unchanged. While determining the change, the most important point is

not directly taking the difference of two images’ pixel values. In a powerful change

detection algorithm, the meaningful changes like construction or destruction of build-

ings, forestation or deforestation, and residential developments should be determined

[52].

The images that are studied for the development of change detection algorithms in

academic or industrial researches are very numerous and this diversity in the remotely

sensed input images is due to the variety in the systems and methods used to obtain

them. The sensor used to obtain the image needs to be on a fixed platform in order to

be able to collect and record the energy reflected or emitted from the target or from

the surface while observing the earth. The platforms on which the sensor is stabilized

can be localized in various places such as a ladder, a tall building, a pier or a crane on

the ground or a balloon, an aircraft or a helicopter in the air or a spacecraft or a satel-

lite outside of the world’s atmosphere. Film photography, radiometer, spectrometer,

hyperspectral radiometer, radio detection and ranging (RADAR), synthetic aperture

radar (SAR), and light detection and ranging (LIDAR) can be examples of remote sen-

sors. The choice of sensor for any task has always a trade-off. To illustrate, despite

photographic systems have high quality in spatial resolution to provide very detailed

information from the observed region, the observed area is very limited and supplied

images are weak due to spectral sensitivity beside other sensors. Nevertheless, non-

photographic sensors are too complex optically, mechanically, and electrically. This

complexity leads to system limitations in terms of power, space and stability causing

to high costs [33]. Beside these, there are also various geometric distortions regard-

less of the type of sensor or platform. In remote sensing, three-dimensional earth’s

surface is tried to be represented accurately with two-dimensional image which leads

to such large geometric distortions [29]. In addition, the monitoring, processing and

management of natural resources in very large areas requires a lot of time, workload

and storage to collect a lot of data. To avoid such problems, in recent years, LIDAR

technology has been the most effective system to represent the earth’s surface thanks
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to ability of storing the data directly in a point cloud form [4, 61].

1.2 Scope and Goal

In this thesis, the proposed study aims to provide a complete, robust and efficient

change detection algorithm in remotely sensed elevation models. The purpose of the

proposed method is to detect significant variations such as construction or destruc-

tion of buildings, forestation or deforestation instead of minimal differences like gaps

or sensor noises. In addition, this method handles detecting changes as newly com-

ing and demolished objects, separately. This privilege distinguishes the proposed

method from the counterparts in the literature. Although, there exist a vast amount

change detection methods, there is not enough data in remote sensing applications.

Because of this reason, especially, supervised approaches are not preferred for the

change analysis in remote sensing domain. Therefore, an unsupervised change detec-

tion algorithm, called as Correlation-based Variational Change Detection (CVCD),

is proposed to determine the changes on the elevation maps. In this study, elevation

models are preferred as the data since they are less affected from the seasonal changes.

Therefore, they can be incorporated to improve the accuracy of the algorithms for de-

tecting the changes. This approach determines the changes while eliminating the

effect of image noise due to the nature of remote sensing systems by minimizing

correlation based variational cost function. In this variational cost function a novel

correlation-based data fidelity term is used with an `1-norm regularization term which

imposes smoothness on obtained change map. Due to the success of the correlation

similarity metric, correlation-based data fidelity term is preferred to provide similar-

ity of two associated images within the variational framework. It is employed with

`1-norm total variation (TV) regularization term to deal with subtle differences such

as noise. `1-norm TV regularization term is preferred because it can preserve details

such as point-changes, corners and edges of changes. With the help of a numerical

approach used in solving of this proposed cost function, geometrically correct and

visually attractive change mask is obtained. The most important purpose of this study

is to present all qualitative features mentioned above in an effective, fast and robust

method. The results of the proposed method have more than %95 accuracy.
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1.3 Outline

The outline of the thesis is as follows. First chapter makes an entrance to the specified

research area and defines the proposed study. Literature survey for change detection

and the employed techniques are presented in the second chapter. This chapter also

includes explanations for the theoretic background of the utilized methods in the vari-

ational framework. After overviewing the background of important subjects in the

first two chapters, third chapter is about digital surface models which are the inputs

for the proposed change detection method. The DSM generation types are reviewed

and compared. Specifically, information about Lidar sensor such as platforms, com-

ponents and applications of it and a variational based DSM generation method using

Lidar point cloud data is emphasized in this chapter. Fourth chapter focuses on the

details of the proposed algorithm. Fifth chapter defines the experiments conducted

on different datasets and discusses the obtained results. Lastly, study is concluded in

the sixth chapter by wrapping up the key themes and suggesting the possible future

work.
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CHAPTER 2

LITERATURE SURVEY ON CHANGE DETECTION

METHODS AND DATA FOR CHANGE ANALYSIS

In this chapter, it is presented a brief overview on the change detection problem for

the remotely sensed data. The first section focuses on change detection problem and

employed approaches in the literature. The following section investigates variational

methods in image analysis domain since the proposed approach is based on varia-

tional methods.

2.1 An Overview of Change Detection Problem and Employed Methods in Lit-

erature

The monitoring of natural phenomena around the world and the decision-making in

the course of the following natural events in the world are extremely important for

solving the problems that may arise. Nowadays, with the use of remote sensing sys-

tems more and more, world surface and natural resources can be continuously mon-

itored and real time information can be produced and managed. Furthermore, the

identification of natural resources, the extraction of inventories, the planned use of

these resources and the protection of ecological balance are important criteria dealt

with in the development of the world. The use of remote sensing data is crucial to ob-

taining accurate, fast and cost-effective data and information in order to identify and

update existing assets and potentials of natural resources, and to monitor and update

temporal changes in the world. With the help of the widely and easily used remote

sensing technology which enables high quality images to be acquired in a serial man-

ner, change analysis has begun to gain an important place among studies in the field
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of computer vision.

A simple definition of change detection is to compare aerial photographs or satellite

images of the same region at different times. In a more formal definition, change

analysis is a process that measures how qualitative and quantitative characteristics

of a given region have changed between two or more time periods. The point of

the change detection is not taking the simple difference of two images, the aimed

changes should be meaningful changes like construction or destruction of buildings,

man made structures, forestation or deforestation and residential developments.

Since it is possible to acquire multi-temporal images from earth’s surface quickly and

accurately with the help of developing advanced remote sensing technology, remote

sensing applications are developing and playing major role for monitoring, analyz-

ing, understanding and managing the sources of nature. Important change detection

applications including land-use and land-cover change detection, forest or vegetation

change detection, forest mortality analysis, defoliation and damage assessment, de-

forestation, wetland change detection, forest fire and fire-affected area detection, ur-

ban change detection, environmental change analysis, crop monitoring, sea/ice track-

ing, and map updating are reviewed in a detailed survey by Lu at 2004 [37].

Although developments in remote sensing technologies providing timely and cost-

effectively information about the observation of the earth surface have a significant

potential in the image world, change detection may suffer from usage of this technol-

ogy and may cause some problems that affect the analysis of change. Pacifici et. al.

summarized some of the major problems that could be encountered in his research

published as follows [44]. The first issue is that data must be processed in very large

dimensions in order to detect changes in a small field. The second one is that too

many satellite sensor types are used; however, the spectral bands of all these sensors

are not identical, so the acquired images are not exactly the same. Next, image noises

due to various reasons such as sensor calibration, humidity on the ground, weather

and light conditions cause changes that do not really exist between obtained images

at different times. Errors that may arise in the course of overlapping of multispectral

images or geometric distortion of each image, may cause false detections. Although

the preferred sensors are different, the types of acquired images obtained are different,
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and the usage area of the developed application is different, the proposed methods fo-

cus on only one of the mentioned problems or these problems are ignored, basically

the goal is always the same: "Identification of altered regions between at least two

acquired images at different times from the same region."

In this direction, a good change detection algorithm should involve major require-

ments. The selection of the change detection method which can be varied according

to data and problem. There exists a vast amount of change detection methods for

different data types like, SAR, electro-optic (EO), hyper-spectral, 3D medical imag-

ing, and LIDAR in the literature. A vast amount of change detection methods are

suggested to provide solutions to the mentioned application areas. In 2004, Radke et.

al. dealt with methods of change detection and its application areas in a published

research paper [47]. Although the methods in this study have not been developed for

remote sensing data, it shows that the methods of change analysis are developed in

the same way for other areas in the literature. The change detection methods are in-

troduced in two main categories as simple and advanced. Image differencing, image

rationing, image thresholding, change vector analysis (CVA) are among the simple

methods while significance and likelihood ratio tests, mixture and predictive mod-

els are in the second category. In 1989, Singh published a research article dealing

with more recent change detection methods for remotely sensed data [52]. Lu et al.

(2004) explained in detail the mostly used algorithms, the accuracy assessment and

the effecting factors of the algorithms [37]. The most commonly employed algo-

rithms are frequently taken advantage of in change detection methods can be grouped

as seven categories. Some of the methods in the four main groups are as follows:

The simplest category is called as algebra based techniques including simple image

differencing, image regression, image rationing, and thresholding [38]. The second

category is transformation based techniques which are principle component analysis

(PCA), change vector analysis, background subtraction, tasseled cap (KT), Gramm-

Schmidt, and Chi-Square. The other group includes classification based methods such

as post-classification comparison, expectation maximization (EM) and artificial neu-

ral networks (ANN) [52]. Advanced approaches such as Markov random field (MRF)

[60, 10] graph cut [65], variational level set [8, 12] are the fourth category. Pacifici

reviewed all the methods in the literature more generally under two category as su-
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pervised and unsupervised [44]. He mentioned about the limitations and advantages

of the methods in these two categories. Apart from the methods mentioned earlier,

unsupervised approaches such as reduced parzen estimation (RPE), maximum a pos-

teriori probability decision (MAP) and iteratively re-weighted multivariate alteration

detection (IR-MAD) are also reviewed in this study. According to him, supervised

methods have many advantages over unsupervised methods. The types of changes to

be analyzed can be exactly determined. Change detection results can be produced in-

dependently from radiometric, atmospheric and light conditions. In addition, change

analysis can be performed independently of the sensor from which the image is gen-

erated. Unfortunately, a very huge amount of training dataset is needed to generate

appropriate results in supervised methods and the acquisition of a proper training set

is usually a difficult and costly expensive.

The trending approach nowadays is applying deep learning techniques in change de-

tection since deep learning is a relatively new machine learning method and been

paid more and more attention every year. In [66], an innovative change detection al-

gorithm which focuses on analyzing multi temporal SAR images is proposed. This

approach uses deep neural networks for handling problems of image change detec-

tion. Deep neural networks give the ability to represent images and learn features in

an abstract way. Unsupervised feature learning and supervised fine-tuning is featured

in proposed deep learning method. This study states that presence of sparkle noise

is one of the significant problems in change detection on SAR images, unfortunately

the sparkle noise handling method of the proposed algorithm is not clearly mentioned.

Another drawback of this paper is not stating explicitly whether the training parame-

ters of the proposed deep learning method stays identical when different datasets are

used. In [26], a formal problem statement is proposed which makes effective usage

of deep learning methods possible for analyzing time-dependent series obtained from

remote sensing images. Also, a new framework is introduced for the development of

deep learning models in targeted change detection. This study mentions various ad-

vantages of deep learning approaches in change detection methods like being able to

extract only the specified classed of changes. Meanwhile it is also stated that amount

of the data for training models limits the current solutions in a negative manner. Un-

fortunately the proposed framework is not implemented in the paper which prevents

10



evaluating the deep learning approach for change detection with tests and results of

those tests. In [13], a new difference image creation method which uses deep neu-

ral networks is proposed. The most significant modification of the proposed back

propagation algorithm is adjusting deep belief network to increase the difference on

changed areas meanwhile decreasing the difference on unchanged areas. The pro-

posed method can avoid the radiometric correction procedures for change detection

and suppress the noise effectively compared to traditional methods. One significant

deficit of this study is labeling the training data manually. Using deep learning in

change detection algorithms has both its advantages and disadvantages. However,

since the data collection from remote sensing systems are not easily accessible and

low cost, it is difficult to train a deep neural network in order to achieve high perfor-

mance and generic results for remote sensing applications.

These algorithms are suggested to provide partial solutions, to look out for contigu-

ity relationship, and handle feature based segmentation by using difference image.

However, a robust change detection method which covers a wide range of application

areas is still a challenging problem due to various reasons. A crucial set of problems

such as radar illumination, registration errors due to platform motion or moving re-

flector, sensor noise or subtle changes like leaf movements which affect the quality of

the change maps are reported due to the seasonal and/or meteorological changes.

The most decisive part while designing a change detection algorithm is being able

to construct a cost function which captures the desired changes while it remains in-

variant under superfluous variations. In the proposed method, this crucial step is

achieved by using variational methods including various data fidelity terms with `2-

norm or `1-norm.

2.2 Variational Methods

In this section an overview will be briefly discussed about the variational methods that

are widely used in many applications in the signal and image processing community.

In particular, the noise reduction method that inspires the Digital Elevation Model

(DEM) generation method and the proposed change detection method in this study
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will be explained in detail.

2.2.1 Variational Calculus

The calculus of variations is a field of mathematics which is used to find the largest

or the smallest possible value of an unknown functional [20]. Variational calculus

deals with functionals, which can be defined as functions of a function or a set of

functions. Function is a mapping from one number to another value. A notation of

any function is shown as y = f(x). On the other hand, a functional can be defined

as a mapping from a function to a value which means that while it takes a function as

input, it generates a value as its output. Functionals are considered as definite integrals

that are involving the functions and derivatives of the functions. The representation

of a functional can be J(x, y), where J is a functional operator and y = f(x) is

the function. In practice, functionals are dependent to function derivatives. The aim

of the variational calculus is to find a function that minimizes or maximizes of a

functional, subject to certain boundary conditions using the Euler-Lagrange equation

of the calculus of variations [17].

Variational methods are used in a wide range of areas including finite element analy-

sis, quantum mechanics, statistical mechanics, and computer vision. The applications

of variational methods for each example, a complex problem is converted to a simple

problem and it is characterized by the decomposition of the freedom of degree in the

original problem [28]. Various scientific and engineering problems can be formu-

lated in variational calculus form and one of the most famous problems in the history

is "Brachistochrone Problem". This problem is stated as "Given two points on a plane

at different heights, what is the shape of the wire down which a bead will slide (with-

out friction) under the influence of gravity so as to pass from the upper point to the

lower point in the shortest amount of time?" [50]. Even though the shortest path is a

straight line between the given two points, when the curve is under a constraint such

as gravity the solution is changing and many possible solutions may occur. Figure 2.1

shows the representation of the brachistochrone problem, there exist many possible

routes between two points, A and B; however, the frontmost ball is at the cycloid

route from these paths.
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Figure 2.1: Brachistochrone Problem: A ball is traversing through different paths

from A to B

In the modern world, images are becoming more and more important and are used to

represent and understand the physical world. Since images provide a huge amount

of information and the modern computers have the capability of processing more

data, computer vision and image processing are amongst the most popular topics.

Many problems in these topics can be considered as minimization problems. These

continuous minimization problems can be exemplified as image denoising, image de-

blurring, image inpainting, shape denoising, super-resolution, image segmentation,

optical flow and 3D reconstruction. For example, image denoising can be defined as

noise removal from an image in image processing community. It can be redefined as

finding a smooth approximation to the noisy image in the space of images in mathe-

matic world. While image segmentation problem is partitioning the image into object

and background, it can be redefined as finding smooth closed curve between the ob-

ject and background. As it can be easily seen from the examples given, the aim is to

formulate the image problem in the form of a minimization problem with the given

constraints and solve the determined unknown function using calculus of variations.

Even though variational methods are perfectly proper for inverse problems, it is not

always possible to solve these problems using direct methods. The variational frame-

work can be adopted into image world by minimizing of energy functional, E.
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f ∗ = argmin
f

E(f) , (2.1)

where f ∗ is the aimed solution of f . For instance, a probability information can be

attached into the solution for a fundamental image denoising problem using Bayesian

inference framework. In this model, the unseen true image is represented with f , g

is the observed noisy image and η shows the additive noise, g = f + η. The joint

probability for f and g, called as chain rule, can be written as Equation 2.2:

P(f, g) = P(f |g)P(g) = P(g|f)P(f) . (2.2)

According to Bayesian formula the expression can be rewritten as Equation 2.3,

P(f |g) =
P(g|f)P(f)

P(g)
, (2.3)

where P(f |g) is the posterior probability, P(f) represents the prior probability of

hypothesis, the evidence is indicated with P(g) and finally P(g|f) shows the likeli-

hood. Here, the posterior probability which is identified as energy functional will be

maximized. It is aimed to estimate most likely solution f ∗ when the observed data

and prior belief are given. This approach is called as maximum aposteriori (MAP)

estimation and it can be defined at Equation 2.4:

f ∗ = argmax
f

P(g|f)P(f)

P(g)
. (2.4)

Since the denominator part of the right hand side of the equation is just used for the

normalization, the posterior probability density function (PDF) integrates to unity.

Hence, the MAP estimation of Bayesian inference can be rewritten as following Equa-

tion 2.5:
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f ∗ = argmax
f
P(g|f)P(f) . (2.5)

In our problem, the pixels in the images are assumed to be independent and identi-

cally distributed according to the probability law. Since all measurements are mutu-

ally independent the likelihood is for the entire data is represented and substituted at

Equation 2.6:

f ∗ = argmax
f

N∏
i=1

P(gi|fi)P(fi) . (2.6)

where i is the pixel index, N represents the total number of pixels in the image. It is

considered as the all intensity values in the images are normal distributed and have

the Gaussian noise, the likelihood can be defined as the following Equation 2.7:

N∏
i=1

P(gi|fi) ∝
N∏
i=1

e(− (fi−gi)
2

2σ2
) . (2.7)

Since the probability of the fi, prior probability, is sufficiently characterized by its

neighbours that is indicated at Equation 2.8:

P(f) = P(f1...fn) = P(f1|f2...fn)P(f2...fn) ∝
N−1∏
i=1

P(fi|fi+1) . (2.8)

When the intensity values of the image are distributed with smoothness prior, this

case corresponds to total variation (TV) of f and this prior probability is described

as Equation 2.9,

P(f) ∝
N−1∏
i=1

e(−λ|fi−fi+1|) , (2.9)

where, fi is the current pixel intensity and fi+1 indicates the neighbour pixel. λ

is a positive constant value that controls the smoothness factor. Because logarithm
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function is strictly monotonous function, taking the logarithm of the probabilities

preserves the inequalities. So that multiplication of the probabilities can be trans-

formed into addition of log-probabilities to make calculations simple that is redefined

at Equation 2.10:

f ∗ = argmax
f

N∑
i=1

{logP(gi|gi)}+ logP(f) . (2.10)

In addition, instead of maximizing the probability distribution, it is preferable to min-

imize its negative logarithm. The final energy is drawn up for the defined image

denoising problem as the following Equation 2.11:

E(f) =
N∑
i=1

|gi − fi|2

2σ2
+ λ

N−1∑
i=1

|fi − fi+1| . (2.11)

2.2.2 Total Variation Method

In the variational approaches, it is seen that the preferred prior information influences

the MAP estimation under the Bayesian framework for a given problem domain, im-

age denoising problem. As a result of the estimation steps, the solution of the prob-

lem is transformed to a total variation based energy minimization problem. The total

variation concept for one real value is introduced in Camille Jordan by a conver-

gence theorem for Fourier Series of discontinuous periodic functions, in 1881 [27].

Later, some physical concepts are adopted to image processing world; for instance,

in 1990, scale-space and edge preserving smoothing using diffusion is suggested by

Perona and Malik [45], total variational based image denoising approach is proposed

by Rudin, Osher and Fatemi [49], in 1992. Since TV based approaches provide reg-

ularizing in inverse problems and preserves sharp discontinuities in the solutions, the

solutions are commonly used in signal and image processing communities for many

applications such as image denoising [14], [43], change detection [8], [12], and struc-

ture extraction [63].
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2.2.2.1 `2-norm TV Denoising on 1D Signal

In this subsection, a numerical algorithm of TV denoising for one-dimensional (1D)

signal is presented. The existence of noise in a signal is an important problem for de-

veloped applications in the sense of increasing the performance ratio of the algorithm

and producing more real results in the engineering and science fields. Of course, since

noise is an inevitable problem in the image, it adversely affects any image processing

operation and must be removed from the image or at least be reduced. According to

Rudin et al. (1992), true signal is usually extracted from the noisy signal using the

least square dependent methods and in their work, they aimed to find the denoised

signal using variational methods involving `2-norm because it leads to a set of linear

equations [49].

The aim of the suggested method is to find denoised signal, f , efficiently. In order to

estimate denoised signal, this proposed cost function, J(f) is solved by minimizing

with respect to f , that is described in Equation 2.20;

f ∗ = argmin
f

J(f) , (2.12)

where f ∗ indicates the aimed denoised signal. The cost function which is proposed

for denoising problem for noisy 1D discrete signal is given in equation 2.13;

J(f) =
N∑
i=1

(fi − gi)2 + λ|(∇f)i|22 , (2.13)

where, J(f) represents the cost function, g is the given noisy signal, g = (g[1], ..., g[N ]) ∈
RN of sizeN ≥ 1, f indicates the noise removed signal, f ∈ RN . i is the index of the

signal and N is the total number of elements in the signal. ∇ denotes the gradient op-

erator and since the signal has only one dimension the derivative of the signal is only

taken in one direction, x. Therefore, the derivative operator is indicated as ∂x which

is rewritten in Equation 2.14. λ, smoothness parameter, is a positive scalar constant

that determines the smoothness level of the obtained signal and controls the balance

between the removing the noise from signal and preserving the signal content.
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J(f) =
N∑
i=1

(fi − gi)2 + λ|(∂xf)i|2 . (2.14)

In Equation 2.14, the first term is described as data fidelity term that is used to make

denoised signal is similar to the input signal. The second term, TV-regularizer, is

added to cost function in order to preserve large-scale edges while penalizing the

gradient changes on the signal.

In order to solve this denoising problem and find the optimum denoised signal, it is

necessary to take the derivative of the cost function and set it to zero. Since both data

fidelity term and TV-regularizer term are quadratic, they are differentiable and strictly

convex. Henceforth; since the cost function contains quadratic terms, Equation 2.13,

can be written in matrix-vector form, as follows;

J(vf ) = (vf − vg)>(vf − vg) + λ(vf>Dx
>Dxvf ) , (2.15)

where vf and vg are the vector representations of the f and g signals, respectively.

Dx indicates the Toeplitz matrix which is designed for taking the partial derivative of

the signal in x direction. In order to illustrate a small version of Dx for a 1D signal

with 10 elements is shown in below;

Dx =



1 -1 0 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0

0 0 0 0 1 -1 0 0 0 0

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 0 0 1 -1 0 0

0 0 0 0 0 0 0 1 -1 0

0 0 0 0 0 0 0 0 1 -1

0 0 0 0 0 0 0 0 0 0


Since the objective function, J(vf ) is strictly convex and differentiable, the derivation

18



of J(vf ) with respect to vf and equalizing it to zero presented in Equation 2.16;

∂J(vf )

∂vf
= 0 . (2.16)

The mathematical steps related to derivation operations are processed and aligned in

the following Equation 2.17,

2(vf − vg) + 2λDx
>Dxvf = 0 , (2.17)

where the terms are simplified and vf coefficients can be collected as the following

Equation 2.18:

(I + λDx
>Dx)vf = vg . (2.18)

The simplified version of the cost function can be depicted as a linear system as shown

in Equation 2.19;

Av
(n+1)
f = b ,

A = I + λDx
>Dx ,

b = vg ,

(2.19)

where I is the identity matrix. Note that, A and b belongs to nth iteration. In Equation

2.19, A is sparse, positive definite, 5-point Laplacian matrix. In this solution, since

A is a positive definite and tridiagonal matrix, this linear system can be solved using

tridiagonal matrix algorithm (TDMA) in order to estimate the aimed denoised signal.

Since taking inverse of the matrix with high dimensions is computationally expen-

sive and TDMA solves this linear system in O(n) complexity, this this approach is

preferred.

The experimental signals and results related to `2-norm based total variatonal denois-

ing on 1D signal are shown in Figure 2.2:
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: `2-norm denoising results on 1D signal with different λ parameters and

constant ε = 10−5 (a) Original signal, f (b) Noisy signal, g (c) `2-norm denoised

signal, f ′ , over the noisy signal, where λ = 0.5 (d) `2-norm denoised signal, f ′ over

the noisy signal, where λ = 1 (e) `2-norm denoised signal, f ′ , over the noisy signal,

where λ = 10 (f) `2-norm denoised signal, f ′ , over the noisy signal, where λ = 50
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When `2-norm cost function is used, the penalty is estimated by multiplication of

square of the difference of two numbers and λ value for the minimizer. The purpose of

the minimizer is to find the optimum denoised signal by minimizing the cost function.

Since the penalty is calculated as a numerically large value because of the quadratic

second term, various λ values are tested in order to diminish the penalty. However,

when a small λ is chosen, the denoising operation is almost never achieved as it is

shown in Figure 2.2c and Figure 2.2d. When the appropriate λ value is given to

minimizer, it prefers to be smoother in transitions rather than a great amount penalty

by making one big jump. In this case, the edges are not preserved as it can be seen in

Figure 2.2e and Figure 2.2f. Although `2-norm is differentiable, strictly convex, and

easily resolvable, it is not edge preserving. Because of this reason, `1-norm which

provides more sparsity, is mostly preferred in the literature.

2.2.2.2 `1-norm Total Variation Denoising on 1D Signal

In this section, a numerical algorithm of `1-norm based TV denoising for 1D sig-

nal is presented. Rudin et al. (1992) indicates that `1-norm based TV approaches

are more appropriate than `2-norm based ones. When the same problem is solved

with these two different approaches under the same conditions, the result of `1-norm

approximation looks better than the `2-norm [49].

The aim of the method is to find denoised signal, f , efficiently in terms of speed of

the algorithm. In order to estimate denoised signal, this proposed cost function, J(f)

is solved by minimizing with respect to f , that is described in Equation 2.20;

f ∗ = argmin
f

J(f) , (2.20)

where f ∗ indicates the aimed denoised signal. The proposed cost function for denois-

ing problem for noisy 1D discrete signal is given in equation 2.21;

J(f) =
N∑
i=1

(fi − gi)2 + λ|(∇f)i|11 , (2.21)
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where J represents the cost function, g is the estimated noisy signal, g = (g[1], ..., g[N ]) ∈
RN of sizeN ≥ 1, f indicates the noise removed signal, f ∈ RN . i is the index of the

signal and N is the total number of elements in the signal. ∇ denotes the gradient op-

erator and since the signal has only one dimension the derivative of the signal is only

taken in one direction, x. Therefore, the derivative operator is indicated as ∂x which

is rewritten in Equation 2.22. λ, smoothness parameter, is a positive scalar constant

that determines the smoothness level of the obtained signal and controls the balance

between the removing the noise from signal and preserving the signal content.

J(f) =
N∑
i=1

(fi − gi)2 + λ|(∂xf)i| . (2.22)

In equation 2.22, the first term is described as data fidelity term that is used to

make denoised signal is similar to the input signal. Because of the quadratic inten-

sity difference, it is not allowed that many pixels drastically change their values so

that diminishing salient edges are automatically prevented [39]. The second term,

TV-regularizer, is added to cost function in order to preserve large-scale edges and

corners while penalizing the gradient changes on the signal.

In order to solve this denoising problem and to find the optimum denoised signal, it

is necessary to take the derivative of the cost function and equalize it to zero. At this

point; although, the `1-norm is preferred in the denoising problem because it provides

a more accurate solution than `2-norm, it also has its’ drawbacks. In the proposed `1-

norm based cost function, the derivative of `1-norm term cannot be taken directly

because of the discontinuity at 0. `1-norm is known as the least absolute function and

the derivative of an absolute function cannot be taken because it is not differentiable

at sharp point that is 0. An example graph of absolute function, y = |x|, is given at

Figure 2.3.

22



Figure 2.3: The absolute value function

According to definition of the derivative, the left and right hand limits of must be

same at a point in order to take the derivative of the function at that point. In other

words, the derivative must be a continuous function. However, it is obviously shown

that (Figure 2.4), the slope of the absolute function to the left equals to −1 and to the

right equals to 1. Since they are different, this absolute function is not differentiable.

Figure 2.4: The derivative of an absolute value function

An absolute function is approximated using quadratic approximation method which

is formulated as Equation 2.23 in order to use convex optimization methods [43, 41].
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|x| ≈Q(x̂)x2, Q(x̂) = (|x̂|+ ε)−1 , (2.23)

where ε is a small positive constant which is used to avoid indefinite division caused

by the zero value of the denominator in the division process. In addition, x̂ is a

constant proxy for x such that x̂ ← x, Q(x̂) is the coefficient of the quadratic ap-

proximation of |x|. In this approximation method, the absolute function is fitted into

a quadratic function with respect to x value. Starting from a point on x domain, the

new quadratic function is fitted iteratively for each x value until the global minima

point is found. Note that, the newly approximated function is exactly accurate only

on both of around evaluated x̂ points and 0, and approximation accuracy decreases as

x diverges from these points. As it can be observed from the plots on Figure 2.5, in

each iteration, the error between the fitted function and the original absolute function

is decreasing while the x value comes closer to global minima.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5: Absolute function and quadratic approximations of absolute function for

different x values (a) x = 2.0 (b) x = 1.5 (c) x = 1.0 (d) x = 0.5 (e) x = 0 (f) x = 0,

zoomed
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According to Equation 2.23; in order to minimize the proposed cost function, `1-norm

based regularizer term is quadratically approximated in Equation 2.24;

|(∂xf)i| ≈ (Wx)i(∂xf)2
i , (Wx)i = Q((∂xf̂)i) , (2.24)

where (Wx)i is the constant denominator of the quadratic approximation which is

evaluated at f̂ , proxy for f . Moreover, the iteration index (n) is added, since the

approximated cost function needs to be solved iteratively and each term belongs to

nth iteration unless otherwise specified, for the sake of simplicity. After the quadratic

approximation for the `1-norm is applied to the cost function, it becomes as follows:

J (n)(f) =
N∑
i=1

(fi − gi)2 + λ(Wx)i(∂xf)2
i . (2.25)

Because the first term is a quadratic, it is differentiable and the second term of the

cost function is, also, differentiable. Hence, this differentiable cost function can be

written as matrix-vector form which is shown in Equation 2.26;

J (n)(vf ) = (vf − vg)>(vf − vg) + λ(vf
>Dx

>WxDxvf ) , (2.26)

where vf and vg are the vector representations of the f and g signals, respectively.

Dx indicates the Toeplitz matrix which is explained in Section 2.2.2.1 in detail. Wx

denotes the diagonal weight matrix that holds the (Wx)i coefficients on its diagonal.

Since the objective function, J (n)(vf ) is strictly convex and differentiable, the deriva-

tive is taken with respect to vf , that is presented in Equation 2.27;

∂J (n)(vf )

∂vf
= 0 . (2.27)

The mathematical steps related to derivation operations are proposed and aligned in

the following Equation 2.28,

2(vf − vg) + 2λDx
>DxDxvf = 0 , (2.28)
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where the terms are simplified and vf coefficients can be collected as the following

Equation 2.29;

(I + λDx
>WxDx)vf = vg , (2.29)

where I is the identity matrix. Equation 2.29 is represented as a linear system as

shown in Equation 2.30;

Av
(n+1)
f = b ,

A = I + λDx
>WxDx ,

b = vg .

(2.30)

In Equation 2.30, A is sparse, positive definite, 5-point Laplacian matrix. Note that,

A and b belongs to nth iteration. In this solution, since A is positive definite matrix,

the aimed denoised signal is estimated minimizing the cost function according to

Algorithm 1 in an iterative manner due to applied approximations. In each iteration,

obtained sparse linear system is solved by using the preconditioned conjugate gradient

(PCG) with the incomplete Cholesky (IC) preconditioner to evaluate the v(n+1)
f . In

Algorithm 1, maximum number of PCG iterations is set to 100, convergence tolerance

of the solver is set to 10−3, nmax = 10, and Ctolerance = 10−3 as defaults.
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Algorithm 1 `1-norm Total Variation Denoising on 1D Signal
Input: g, λ, ε, nmax, Ctolerance

1: v
(1)
f ← vg ← g

2: for n = 1 : nmax do

3: vf̂ ← v
(n)
f

4: (Wx)i = Q((∂xf̂)i)

5: A(n) ← I + λDx
>WxDx

6: v
(n)
b ← vg

7: Solve A(n)v
(n+1)

f̂
= v

(n)
g

8: if ‖v(n+1)

f̂
− vf̂‖∞ < Ctolerance then break the loop

9: end for

10: f ← vectorToImage(v
(n+1)
f )

Output: f

In the 8th step of this TV denoising algorithm, the infinite repetition of the algorithm

is limited by the maximum number of iterations.

The synthetically geberated signals and results related to `1-norm based total varia-

tional denoising on 1D signal are shown in Figure 2.6:
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(a) (b)

(c) (d)

(e) (f)

Figure 2.6: `1-norm denoising results on 1D signal with different λ parameters and

constant ε = 10−5(a) Original signal, f (b) Noisy signal, g (c) `1-norm denoised

signal, f ′ , over the noisy signal, where λ = 0.5 (d) `1-norm denoised signal, f ′ over

the noisy signal, where λ = 1 (e) `1-norm denoised signal, f ′ , over the noisy signal,

where λ = 10 (f) `1-norm denoised signal, f ′ , over the noisy signal, where λ = 50
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In the `1-norm based total variation denoising approach, quadratic approximation

compresses the signal amplitudes especially when the λ value is increased as can

be seen in Figure 2.6f. Because of this reason is that as the λ value grows, the mini-

mizer takes the real value, f , away from the approximated value, f̂ , quickly. In order

to prevent this situation, slow-step regularization is proposed which prevents the de-

sired solution being too far from the approximated value f̂ point. This additional

suggestion is explained in detail Section 2.2.2.3.

2.2.2.3 `1-norm TV Denoising with Slow Step Regularizer on 1D Signal

In this approach, a new term is added to proposed cost function in order not to move

away the applied quadratic approximation from the original function while taking the

derivative of the `1-norm based term. By the aid of the added slow step regularization

term, the denoised signal f̂ does not move away from the original signal f .

In the Section 2.2.2.2, the Equation 2.25 is modified as the following Equation 2.31 by

including the small step regularization after the quadratic approximation of `1-norm

based regularizer term in order to minimize the proposed cost function.

J (n)(f) =
N∑
i=1

(fi − gi)2 + λ(Wx)i(∂xf)2
i + γ(fi − f̂i)2 , (2.31)

where g indicates observed noisy signal and f is the denoised signal. i and N denote

the pixel index and pixel count of the signal, respectively. Smoothness parameter,

λ, and damping parameter, γ, are positive constants. (Wx)i represents the constant

denominators of the quadratic approximation which is evaluated at f̂ , proxy for f .

(fp− f̂i)2 is a new regularization term which provides that fi stays close to f̂i and that

is controlled by damping parameter. Moreover, the iteration index (n) is added, since

the approximated cost function needs to be solved iteratively and each term belongs

to nth iteration unless otherwise specified, for the sake of simplicity.

Equation 2.31 is strictly convex and differentiable since all terms are quadratic and

convex. The cost function is written in matrix-vector form as follows;
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J (n)(vf ) = (vf − vg)>(vf − vg) + λ(vf
>Dx

>WxDxvf ) + γ(vf − vf̂ )
>(vf − vf̂ ) ,

(2.32)

where vf , vf̂ and vg are the vector representations of the f , f̂ and g signals, respec-

tively. Dx indicates the Toeplitz matrix which is explained in Section 2.2.2.1 in detail.

Wx denotes the diagonal matrix form of (Wx)i.

Since the objective function, J (n)(vf ), is strictly convex and differentiable, taking

derivation with respect to vf and equalizing it to zero are presented in Equation 2.33;

∂J (n)(vf )

∂vf
= 0 . (2.33)

The result of the derivation operations are provided as follows,

2(vf − vg) + 2λ(Dx
>WxDx)vf + 2γ(vf − vf̂ ) = 0 , (2.34)

where the terms are simplified and vf coefficients can be collected as follows;

(
(1 + γ)I + λ(Dx

>WxDx) +
)
vf = vg + γvf̂ , (2.35)

where I is the identity matrix. Equation 2.35 is depicted as a linear system as shown

in Equation 2.36;

Av
(n+1)
f = b ,

A = (1 + γ)I + λ(Dx
>WxDx) ,

b = vg + γvf̂ .

(2.36)

In Equation 2.19, A is sparse, positive definite, 5-point Laplacian matrix. Note that,

A and b belongs to nth iteration. In this solution, since A is positive definite matrix,

the aimed denoised signal is estimated by minimizing the cost function according to

Algorithm 2 in an iterative manner due to applied approximations. In each iteration, a

sparse linear system is solved by using the preconditioned conjugate gradient (PCG)
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with the incomplete Cholesky (IC) preconditioner to evaluate the v(n+1)
f . In Algorithm

2, maximum number of PCG iterations is set to 100, convergence tolerance of the

solver is set to 10−3, nmax = 10, and Ctolerance = 10−3 as defaults.

Algorithm 2 `1-norm Total Variation Denoising with Small Step Regularization on

1D Signal
Input: g, λ, ε, nmax, Ctolerance

1: v
(1)
f ← vg ← g

2: for n = 1 : nmax do

3: vf̂ ← v
(n)
f

4: (Wx)i = Q((∂xf̂)i)

5: A(n) ← (1 + γ)I + λ(Dx
>WxDx)

6: v
(n)
b ← vg + γvf̂

7: Solve A(n)v
(n+1)

f̂
= v

(n)
g

8: if ‖v(n+1)

f̂
− vf̂‖∞ < Ctolerance then break the loop

9: end for

10: f ← v
(n+1)
f

Output: f

In the 8th step of this TV denoising algorithm, the infinite repetition of the algorithm

is limited by the maximum number of iterations.

The experimental signals and results related to `1-norm based total variational denois-

ing with slow step regularizer on 1D signal are shown in Figure 2.7:
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(a) (b)

(c) (d)

(e) (f)

Figure 2.7: `1-norm denoising with small step regularizer adaptation results on 1D

signal using different smoothing parameters, λ, and constant ε = 10−5 and γ = xxx

(a) Original signal, f (b) Noisy signal, g (c) `1-norm denoised signal, f ′ , over the

noisy signal, where λ = 0.5 (d) `1-norm denoised signal, f ′ over the noisy signal,

where λ = 1 (e) `1-norm denoised signal, f ′ , over the noisy signal, where λ = 10 (f)

`1-norm denoised signal, f ′ , over the noisy signal, where λ = 50
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As it can be seen in the Figure 2.7, the obtained denoised signal by the small step

advance is closer to the original noisy signal and it is observed that the accuracy of

the proposed method is increased. In addition; although, the smoothness parameter λ

is still has an effect on the results, the dependency of the proposed method with this

parameter has been reduced.

2.2.2.4 `1-norm TV Image Denoising

In this section, a total variational based image denoising approach is explained which

is commonly discussed in the signal and image processing communities for many

times [49, 40, 41]. This approach is stated as an optimization problem of a `1-norm

based cost function minimization using quadratic and linear approximation. In order

to estimate despeckled image, f , the minimization of the proposed cost function is

defined as follows;

f ∗ = argmin
f

J(f) , (2.37)

where f ∗ represents the desired despeckled image and J(f) is the proposed varia-

tional cost function which is defined as in the following Equation 2.38;

J(f) =
N∑
i=1

(fi − gi)2 + λ|(∇f)i| , (2.38)

where g denotes the original noisy signal. i and N indicate the pixel index and pixel

count in the image, respectively. ∇ represents the gradient operator and λ is a positive

constant that controls the balance between removing the noise from signal and pre-

serving the signal content and also determines the smoothness level of the denoised

signal. In the proposed cost function, the first term is called as data fidelity term which

provides that denoised image is similar to the noisy signal given as input. Because of

the using quadratic intensity difference, it is not allowed that many pixels drastically

change their values so that diminishing salient edges are automatically prevented [39].

The second term, `1-norm TV regularizer, is added to preserve details such as large

scale edges, corners and small sized objects while penalizing the gradient changes on
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the image. In this term, since the image has two dimensions, ∇ gradient operator is

expanded as partial derivatives, ∂x and ∂y, of the images with respect to x and y in

Equation 2.39 as follows;

J(f) =
N∑
i=1

(fi − gi)2 + λ
(
|(∂xf)i|+ |(∂yf)i|

)
. (2.39)

In order to estimate the despeckled image, the cost function given in 2.39 is minimized

by taking the derivative of the cost function and equalizing it to zero. However, the

cost function is not differentiable because of the `1-norm based term. `1-norm is

known as the least absolute function and the derivative of an absolute function cannot

be taken directly because of discontinuity at 0. As explained at section 2.2.2.2 in

detail and shown in Equation 2.23; these `1-norm based TV regularization terms in

Equation 2.39 are quadratically approximated in Equation 2.40;

|(∂xf)i| ≈ (Wx)i(∂xf)2
i , (Wx)i = Q((∂xf̂)i) ,

|(∂yf)i| ≈ (Wy)i(∂yf)2
i , (Wy)i = Q((∂yf̂)i) ,

(2.40)

where f̂ is a proxy for f . (Wx)i and (Wy)i are the constant denominators of the

quadratic approximations which are evaluated at f̂ .

In addition, the slow-step regularization term is added to force the solution to be close

to f̂ , considering the fact that applied approximations are only accurate around this

value [40, 41]. Due to the quadratic approximations, the cost function will be solved

iteratively so that the iteration index is added into the cost function. After substituting

the approximations in Equation 2.40 into Equation 2.39 and expanding the terms, the

cost function is described in Equation 2.41;

J (n)(f) =
N∑
i=1

(fi − gi)2

+λ̂
(
(Wx)i(∂xf)2

i

)
+ (Wy)i(∂yf)2

i

+γ(fi − f̂i)2 ,

(2.41)

where γ indicates the damping parameter which controls how f̂ is far away from f . n
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represents the iteration index and each term belongs to nth iteration unless otherwise

specified, for the sake of simplicity.

Equation 2.41 is strictly convex and differentiable since the first term is a quadratic

and convex function and the second term is differentiable. This quadratically approx-

imated differentiable equation can be reorganized in matrix-vector form in Equation

2.42;

J (n)(vf ) = (vf − vg)>(vf − vg)

+ λ(vf
>Lvf )

+ γ(vf − vf̂ )
>(vf − vf̂ ) ,

(2.42)

where vf , vg, and vf̂ denote the vector forms of f , g, and f̂ , respectively. L is defined

as L = Dx
>WxDx + Dy

>WyDy for a compact representation of the Equation

2.42. Here, Wx and Wy indicate the diagonal weight matrices that hold the (Wx)i

and (Wy)i coefficients, respectively. In addition, in order to take the derivative of an

image with respect to x, it is calculated as the difference of adjacent pixel values at

the same row. In the same way; while taking the derivative of an image with respect

to y, it is calculated as the difference of two adjacent pixels at the same column.

However, the right and bottom boundaries of the matrix causes the problem while

taking the derivatives. At this point, Dx and Dy are the Toeplitz matrices consisting

of discrete operators, where derivatives are zero at the right and bottom boundaries

of the domain. Dx and Dy are designed for partial derivative of the 2D image with

respect to x and y, respectively.

Illustration of Dx Toeplitz matrix which belongs to an image with 4x3 dimensions is

shown below;
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Dx =



-1 1 0 0 0 0 0 0 0 0 0 0

0 -1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 1 0 0 0 0 0 0 0

0 0 0 0 -1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 -1 1 0 0 0 0

0 0 0 0 0 0 0 -1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 1 0

0 0 0 0 0 0 0 0 0 0 -1 1

0 0 0 0 0 0 0 0 0 0 0 0


Illustration of Dy Toeplitz matrix which belongs to an image with 4x3 dimensions is

shown below;

Dy =



-1 0 0 1 0 0 0 0 0 0 0 0

0 -1 0 0 1 0 0 0 0 0 0 0

0 0 -1 0 0 1 0 0 0 0 0 0

0 0 0 -1 0 0 1 0 0 0 0 0

0 0 0 0 -1 0 0 1 0 0 0 0

0 0 0 0 0 -1 0 0 1 0 0 0

0 0 0 0 0 0 -1 0 0 1 0 0

0 0 0 0 0 0 0 -1 0 0 1 0

0 0 0 0 0 0 0 0 -1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0


This matrix-vector form of the cost function, J (n)(vf ), is differentiable. In order to

determine the denoised signal, f , the cost function is minimized applying convex

optimization methods. This minimization problem is solved by taking the derivative

of the J (n)(vf ) with respect to vf and setting equal it to zero as follows:
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∂J (n)(vf )

∂vf
= 0 . (2.43)

This derivation procedure is processed and a substage is shown in Equation 2.44;

2(vf − vg) + 2λ(Lvf ) + 2γ(vf − vf̂ ) = 0 , (2.44)

After applying mathematical derivations and alignments into Equation 2.44, a linear

system is obtained at the end of the procedures. The obtained linear system is shown

in Equation 2.45;

Av
(n+1)
f = b ,

A = (1 + γ)I + λL ,

b = vg + γvf̂ ,

(2.45)

where I is the identity matrix. Note that, A and b belongs to nth iteration. In Equation

2.45, A is sparse, positive definite, 5-point Laplacian matrix. Since A is positive

definite, cost function in Equation 2.42 is strictly convex. This linear system can be

efficiently solved using an efficient iterative solver according to Algorithm 3. While

evaluating the v(n+1)
f , preconditioned conjugate gradient (PCG) with an incomplete-

Cholesky (IC) preconditioner is used to solve this linear system in each iteration.

The inputs of the algorithm is initially given as follows; maximum number of PCG

iterations is 102, convergence tolerance of PCG is 10−3, nmax = 10, and Ctolerance =

10−3.
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Algorithm 3 `1-norm TV Image Denoising
Input: g, λ, ε, nmax, Ctolerance

1: v
(1)
f ← vg ← g

2: for n = 1 : nmax do

3: vf̂ ← v
(n)
f

4: (Wx)i = Q((∂xf̂)i)

5: (Wy)i = Q((∂yf̂)i)

6: A(n) ← (1 + γ)I + λL

7: v
(n)
b ← vg + γvf̂

8: Solve A(n)v
(n+1)

f̂
= v

(n)
g

9: if ‖v(n+1)

f̂
− vf̂‖∞ < Ctolerance then break the loop

10: end for

11: f ← vectorToImage(vf
(n+1))

Output: f

In the 9th step of this TV denoising algorithm, the repetition of the algorithm is limited

by the maximum number of iterations.

The first set of experimental images and results related to `1-norm based total vari-

ational image denoising are shown in Figure 2.8. These tests are performed on syn-

thetically generated image. The original image, is shown in Figure 2.8a, is created

with 400x400 dimensions with various geometric figures such as squares, circles, and

triangles in different sizes. The noisy image in Figure 2.8b is obtained by adding

Gaussian noise with parameters zero mean, µ = 0 and standard deviation, σ = 25, to

the original synthetic image.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.8: `1-norm total variation based image denoising using different smoothing

parameters, λ, and constant ε = 10−5 and γ = 1 (a) Original synthetic image (b)

Noisy synthetic image (c) `1-norm denoised image, where λ = 1 (d) `1-norm de-

noised image, where λ = 10 (e) `1-norm denoised image, where λ = 25 (f) `1-norm

denoised image, where λ = 50
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As it can be seen in Figure 2.8, when the smoothness level, λ is increased (from Figure

2.8c to Figure 2.8f) the noise amount decreases. This situation can be understood

from the quantitative noise ratios; meanwhile, the generated noisy signal has signal

to noise ratio (SNR) of 13.30 db, SNR of denoised signal is increasing as 13.87 db,

22.20 db, 28.55 db, and 29.42 db.

The second set of experimental images and results related to `1-norm based total

variational image denoising are shown in Figure 2.9. These tests are performed on

Lena image, which is commonly used in image processing area and an image of me

and my sister.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.9: `1-norm total variation based image denoising using different images with

same parameters λ = 25, ε = 10−5 and γ = 1 (a) Original Lena image (b) Original

my image (c) Noisy Lena ımage (d) Noisy my image (e) `1-norm denoised Lena

image (f) `1-norm denoised my image
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The noisy images in Figure 2.9c and 2.9d are obtained by adding Gauissan noise with

parameters, zero mean, µ = 0 and standard deviation, σ = 25, to the original Lena

image and my family image seen in Figure 2.9a and 2.9b, respectively. `1-norm total

variation based image denoising method is applied with same parameters to the noisy

images. Figure 2.9e is the denoised image with parameters λ = 25, ε = 10−2 and

γ = 1.0. The obtained SNR of noisy signal is 14.55 db, meanwhile SNR of denoised

signal is 23.50 db in test with this parameters. Figure 2.9f is the denoised image with

parameters λ = 25, ε = 10−2 and γ = 1. The obtained SNR of noisy signal is 12.98

db, meanwhile SNR of denoised signal is 27.82 db in the second test.
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CHAPTER 3

DIGITAL SURFACE MODEL (DSM)

In the first section of this chapter, an overview of digital surface model (DSM) for re-

motely sensed data is given. This section focuses on DSMs since two multi-temporal

registered DSMs are the input data of the proposed change detection method of this

study. The following sections explain employed technologies for DSM generation. In

the second section, LIDAR systems, a relatively new technology used to acquire 3D

elevation data, are described, in detail. It is also mentioned how data is acquired and

which applications are developed using this data. Finally, a DSM generation approach

based on variational methods is proposed in this section. The third and fourth sections

mention photogrammetry and SAR interferometry based DSMs, respectively.

3.1 An Overview of DSM Generation in Literature

3D modeling of the earth’s surface has a great significance worldwide. The main

reason of this significance is the common use of the height information for many

applications in the fields of military operations, remote sensing, geology, mining in-

dustry, landscape architecture, agriculture, forest management, urban and regional

planning, city modeling, traffic control, and civil engineering [31]. Digital elevation

model (DEM) is 3D representation of the surface of the earth corresponding to el-

evation measurement as a raster layer or a triangular irregular network (TIN) in a

digital form. DEM is used as a generic form and has two types which are digital

surface model (DSM) and digital terrain model (DTM). DSM is described as the sur-

face of the earth containing topography, all vegetation and man-made objects such

as buildings, bridges, and poles. DTM is another kind of DEM that is described as
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the bare earth’s surface including geographical elements and natural features such as

rivers, ridge lines but not containing man-made objects and vegetation [59, 22]. The

difference between DSM and DTM can be seen in Figure 3.1.

Figure 3.1: A simple representation of DSM and DEM over a region

DSM and DTM data can be generated using both active and passive sensors with the

help of ground, aerial or satellite technologies such as LIDAR, stereo photogramme-

try, and SAR interferometry [9].

3.2 LIDAR based DSM

LIDAR is one of the most favorable source for collecting terrain data and generating

surface models. LIDAR term is acronym for Light Detection and Ranging or Light

Imaging, Detection and Ranging and is called as sometimes LADAR, LiDAR, lidar,

Lidar, laser scanning, or 3D scanning [16]. LIDAR is an active remote sensor that

is used to describe the surface of the earth and that matures and evolves day by day.

The active sensor is a remote sensing device that reflects the energy, whose origin

is not any natural source, to the earth and receives it back from the earth’s surface,

according to the definition [58, 29]. In LIDAR technology, sensor transmits laser

pulses to the target, which can be described as any object that reflects the energy
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on the earth surface, too frequently like a hundred thousand times per second. The

whole laser pulse or a part of it which illuminates the target is reflected from the target

according to the reflectivity and this process triggers the receiver in the sensor. The

path of laser pulse between the receiver and the target is demonstrated in Figure 3.2.

Figure 3.2: The transmission path of the laser pulse between the laser receiver and

the target on the ground

By this way, the receiver calculates the elapsed time between the initiation and the

return of that pulse. It measures the distance between the target and the sensor using

the knowledge of velocity of light in the form of a pulsed laser and calculated elapsed

time. This distance can be called as the range and is calculated according to following

equation 3.1;

R =
te ∗ vc

2
, (3.1)

where distance is represented as R, te is the elapsed time and vc is the speed of

the light which is a known value. The equation must be divided by two to get the

actual distance between the sensor and the target. With the combination of other

exact information supported by other components of the sensor, the accurate, precise

and three-dimensional information is produced about the surface and shape of the

earth and its characteristic features [30, 48, 24].

47



3.2.1 LIDAR Platforms

It is very important to know the platform on which sensor is placed and its’ position to

ensure that accuracy of any image processing algorithm developed with LIDAR data.

LIDAR sensors can be classified to three categories according to mounted platform:

space-borne platforms, airborne platforms and ground-based platforms. When the

sensor is mounted to an airborne device such as airplane, helicopter or drone, this

sensor belongs to Aerial Laser Scanner (ALS) category. In the ground-based category,

if it is placed to a static object on the ground like a tripod or mast, it is called as

Terrestrial Laser Scanner (TLS) and if placed to a dynamic object like a moving

vehicle, it is called as Mobile Laser Scanner (MLS). The last class is called as Satellite

Laser Scanner (SLS) because the sensor is placed to a satellite vehicle. Each one has

own advantages when compared to the produced data that are used in practice.

3.2.2 Components of LIDAR System

In LIDAR systems, there exist some main components to collect and store the geo-

graphically coordinated data of the terrain in an accurate way. In order to achieve the

most precise result, each component must individually operate successfully and the

combination of these components also must work in a harmony [53, 51]. The system

components can be seen in Figure 3.3.

Figure 3.3: The main components of LIDAR system [56]
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1. Laser Source and Laser Detector: After a consistent stream of laser pulses

is generated by laser scanner and fired from the scanning mechanism, a mirror

spins or scans them to reflect towards to the surface. The laser pulses reflected

back from the target surface is received and recorded by an electro-optical re-

ceiver. This process is frequently repeated to obtain highly accurate, dense and

automated data.

2. Timing Electronics: The highly sensitive timer measures the elapsed time be-

tween the separation of the laser pulse from the scanner and the return to the

scanner, exactly.

3. Global Positioning System (GPS): When the LIDAR data is acquired, it is

highly critical that the data should be geographically positioned accurately. In

order to provide geo-referenced data, GPS that is now a widely used navigation

system is integrated to LIDAR systems.

4. Inertia Measurement Unit (IMU): While calculating the accurate range be-

tween the surface, the precise angle and location of the scanner is necessary.

The inertial navigation system has three components which are accelerometer,

gyroscope, and magnetometer. With the help pf these components, the IMU

records the pitch, roll, and yaw of the scanner relative to the ground.

5. Computer Processing Resources: With the embedded and integrated software

tools, mission planning can be provided to determine the route of the vehicle.

Collected raw data of the sensor can be displayed on a screen, pre-processed

and post-processed like extracting, geo-referencing, classifying and analyzing.

In addition to dedicated computer and software tools, a data recording system

such as a hard disk is needed to collect and combine all of measured data.

3.2.3 LIDAR Data

Since laser systems use own source of energy to emit laser beams, data collection

can be operated in anytime of day like daylight, overcast or night independent from

the sun. However; since the LIDAR sensors cannot penetrate the clouds, they can

only collect the data when the sensors are below the clouds. Moreover, the sensors
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are affected negatively from bad weather conditions such as rain, fog, mist, smoke

and snowstorm [46]. The collection of returns with three-dimensional coordinates

as called as point cloud. Features in the landscape can be represented according to

the return pulses. For example, while the first return represents the top of the trees

or buildings, generally the last return can be associated with the ground especially

in forestry regions. The quality of the LIDAR dataset is determined by resolution

which can be defined as number of laser pulses per unit area and it depends on the

speed of the aircraft, the flying altitude, laser pulse emission rate and field of view

(FOV) of the system. In order to acquire high resolution data which has greater point

count, the aircraft flies at low altitude with high frequency rate and narrow FOV. In

addition to coordinates of return points, the strength of the return pulses is recorded

as intensity. The intensity values are dependent to reflectivity of the object surface

which laser pulse hits. Intensity values can be used to extract features from the data

and the classification of points. In addition, when a camera is mounted to the LIDAR

platform, the red, green and blue image channel values are also kept for each point

cloud [54, 51].

The commonly used public file format to store three-dimensional point cloud LIDAR

data is LAS which is information specific to nature of the LIDAR data. Even though

there exist many LIDAR point data record formats according to used LIDAR system,

one of commonly used formats is shown as table 3.1:
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Table 3.1: Point Data Record Format

Item Format Size Required

X long 4 bytes *

Y long 4 bytes *

Z long 4 bytes *

Intensity unsigned short 2 bytes

Return Number 3 bits (bits 0,1,2) 3 bits *

Number of Returns (given pulse) 3 bits (bits 3,4,5) 3 bits *

Scan Direction Flag 1 bit (bit 6) 1 bit *

Edge of Flight Line 1 bit (bit 7) 1 bit *

Classification unsigned char 1 byte *

Scan Angle Rank char 1 byte *

User Data unsigned char 1 byte

Point Source ID unsigned short 2 byte *

Red unsigned short 2 byte *

Green unsigned short 2 byte *

Blue unsigned short 2 byte *

3.2.4 LIDAR Applications

It is obvious that, LIDAR systems are widely used in many exciting areas like envi-

ronmental, military, civil, security, historical and cultural areas because it is possible

to acquire an accurate, fast and versatile three dimensional data. Some applications

are developed using LIDAR systems are listed as follows:

• Vegetation applications: Forest monitoring for natural disasters like fire, flood,

detection of deforestation, measurement of canopy heights and closure, char-

acterization of canopy density, estimation of biomass volume, [34], estimation

of tree height and density, mapping of individual tree and crown, estimation of

leaf area index [57], view of agricultural land, crop mapping,

• Environmental applications: Determination of coastal change, damage as-
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sessment after natural disasters like flood, oil and gas exploration, hurricanes,

earthquakes, landslides, flood mapping, measurement of wetlands, measure-

ment of moving glacial regions including snow and ice covered areas, carbon

dioxide, sulphur methane, noise and light pollution prediction [62], bird popu-

lation modeling, land cover classification [34]

• Urban applications: Road, building, waterway extraction and mapping, 3D

city model for planning, transportation planning, street tree mapping, wireless

telecommunication localization, tracking of traffic [62]

• Other applications: Weather forecast, determination of clouds, measurement

of wind, tracking of climate change and air quality, border control, aiding in the

planning of archeological regions, calculation of ore volumes, cellular network

planning, recording of accidents and crime, designing, constructing and restor-

ing buildings, navigation systems, detection of speed of vehicles, identification

of obstacles in military [3]
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3.2.5 DSM Generation using Variational Methods

In this section, a variational based DSM generation method is proposed using point

cloud data [5]. With the help of the LIDAR sensors, it is possible to collect high

quality three dimensional coordinates of points in terms of accuracy and density, di-

rectly. In addition, it is the most preferable way to generate DSM using airborne laser

systems because planning a flight and collecting data from difficult and large regions

such as forests, vegetation-heavy areas and inclined territories is easy and effective.

With these advantages, it is possible to generate highly detailed elevation raster map

with high resolution. On the other hand; because of the highly detailed data, a huge

volume of data has to be dealt with. Storage, processing and manipulation of this data

is difficult and expensive [9, 36]. Even though, there are many methods to generate

DSM from LIDAR data in the literature [6, 23, 55, 21]; DSM generation method is

suggested in this section and used as preprocessing step for change detection in this

thesis.

Figure 3.4: An example of generated DSM from LIDAR point cloud
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In this proposed method, construction of accurate DSM is defined as an optimization

problem and it is solved by minimizing a cost function, which is defined in equation

3.2:

H∗ = argmin
H

J(H) , (3.2)

where,H indicates the surface model and J(H) represents the proposed cost function

which is minimized with respect to H . The variational cost function is formulated in

the following equation 3.3:

J(H) =
N∑
i

Ki(Hi −Mi)
2 + λ|(∇H)i|11 , (3.3)

where, M is a raster image which is generated as a height map by projecting LIDAR

point cloud data into 2D grid map according to a resolution. The raster image gen-

eration is explained in Algorithm 4. H represents the aimed digital surface model.

N indicates the number of pixels in the images. ∇ denotes the gradient operator and

since the surface model has two dimensions the derivatives of the map are taken in

two directions, x and y. Therefore, the derivative operator is indicated as ∂x and ∂y.

In order to determine which cell has at least a laser pulse, a 2D indicator matrix, K,

is created with the same dimensions as the raster image. i indicates the indices of 2D

M , H and and K matrices. In the raster image, the cells are checked for whether any

laser point has fallen into the cell of raster image or not. If the cell has at least one

laser pulse projected from point-cloud to 2D map M, then the pixel that has the same

x and y indices of the indicator matrix is set to 1, otherwise 0.
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Figure 3.5: The flow diagram of raster grid data construction
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Algorithm 4 Raster Image Generation, las2grid
Input: Point Cloud P , Grid Size (Resolution) R

1: Find the minimum and maximum coordinates of; P minX,

maxX, minY , maxY

2: nRows← ceil((maxX −minX)/R)

3: nCols← ceil((maxY −minY )/R)

4: Create zero matrix with size estimated number of rows

and cols, G

5: for i = 1 : pointSize do

6: xIndex← (P.X(i)−minX)/R

7: yIndex← (P.Y (i)−minY )/R

8: if G[yIndex][xIndex] < P.Z(i) then

9: G[yIndex][xIndex] = P.Z(i)

10: else

11: Do nothing

12: end if

13: end for

Output: G

In Algorithm 4, the resolution of the raster image can be determined in two different

ways. In the first method, the resolution is given as an input by the user as a grid size,

R. Secondly, the resolution can be calculated automatically determining an optimum

grid size according to an algorithmic approach which is a similar to the algorithms

used in compressing sensing (CS), in the literature [19]. It is a signal reconstruction

method commonly used in mathematics, electrical engineering, computer science and

physics areas. Despite the development of machines with extraordinary computing

power for each application to be used in various areas such as image processing,

computer vision, medical imaging, remote surveillance and genetics, there exists still

a tremendous challenge in handling and processing all kinds of signals. While multi-

dimensional data is being processed, the signal is compressed to give the most concise

representation of the underlying phenomenon with an acceptable distortion in order

to achieve cost reduction and to overcome the computational inefficiency. The CS

method, which is one of the most popular methods used to express the signal as more
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sparse or compressed provides a considerable reduction in sampling and computation

cost. The underlying idea of CS is that a finite-dimensional signal with a sparse

appearance can be reproduced from a small, linear and nonadaptive set [15].

In this proposed method, though the CS method is not directly applied, the very large

point cloud data is compressed to occupy a smaller space before data is started to

being processed by being inspired from the main idea of CS method. In the gridding

method, it is possible to reconstruct the whole data by interpolating the points falling

between the cells. With this method, even if there are no LIDAR points in the cells

of the grid, it is enough that about 25% of the whole pixels are being full in order to

represent the original data without deteriorating. According to Algorithm 4, the raw

LIDAR data is loaded as the input, then x, y, and z values are read and converted to

point cloud. Using the specified resolution, the point cloud data is divided into peer

cells using the minimum and maximum coordinate information of the points in the

data. The elevation value which is the highest value among the laser points falling

into each cell is assigned as the value of that pixel. In case of absence of points at a

cell, the value of pixel is determined as no value. Therefore, using a dense 3D point

cloud data, a 2D grid data that is meaningful, sufficient and sparse is produced.

In the proposed cost function, the first term, which is called as data fidelity term,

allows these H and M maps resemble each other, which means that result surface

model, H , is similar to original height map, M . The second term is defined as reg-

ularization term which is used to penalize the gradient changes on surface map in

`1-norm manner. The effect of the regularizer term is based on λ parameter which is a

positive scalar value and the smoothness parameter, which determines the smoothness

level. The behaviour of the proposed cost function changes depending on the indi-

cator matrix. In the case Ki equals to 1, the system performs a smoothing on those

cells while preserving the details because of the `1-norm TV regularization term. In

the other case; where cells have no data, it is disabled and the optimizer tries to inter-

polate empty cells in the M matrix, since data fidelity term is multiplied by 0. This

diffusion operation can be called as interpolation [35]. The optimization operation

forces a softening, while preserving the details of the produced surface model in the

laser point located cells of the indicator matrix, but in the absence of the point, to fill

the relevant gaps while smoothing the map [43].
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The formulation can be rewritten with the anisotropic expression in 2D as given in

equation 3.4:

J(H) =
N∑
i

Ki(Hi −Mi)
2 + λ

(
| (∂xH)i | + | (∂yH)i |

)
. (3.4)

In order to solve this problem and to find the optimum surface model, it is necessary to

take the derivative of the cost function and equalize it to zero, since the cost function

is convex. However, in this cost function, the derivative of the regularizer term cannot

be taken since it is `1-norm. The derivative of an absolute function cannot be taken

because it is not differentiable at sharp point that is 0 which is explained in section

2.2.2.2. According to Equation 2.23; a quadratic approximations of partial derivations

of H with respect to x and y are written as in Equation 3.5 [43];

|(∂xH)i| ≈ (Wx)i(∂xH)2
i , (Wx)i = Q((∂xĤ)i) ,

|(∂yH)i| ≈ (Wy)i(∂yH)2
i , (Wy)i = Q((∂yĤ)i) ,

(3.5)

where, (Wx)i, and (Wy)i are the coefficients for the quadratic approximations of the

absolute terms which are evaluated at Ĥ , proxy of H .

In addition, the slow-step regularization term is added to force the solution to be

close to Ĥ , considering the fact that approximations are only accurate around this

value, as explained in 2.2.2.3, in detail. Due to the quadratic approximations, the

`1-norm regularization term of the cost function is approximated numerically. In this

mathematical approach, it is aimed to find the best fit value for the objective function

and it is performed iteratively by fitting a function to each value of the surface map.

After applying the approximations in Equation 3.5 into the Equation 3.4, the cost

function is defined in Equation 3.6;

J (n)(H) =
N∑
i

Ki(Hi −Mi)
2

+ λ
(
(Wx)i(∂xH)2

i + (Wy)i(∂yH)2
i

)
+ γ(Hi − Ĥi)

2 ,

(3.6)
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where, γ denotes the damping parameter and n is the iteration number, which is used

to solve iteratively the cost function due to quadratic approximations. In the equation

3.6, in order to keep the expression of the equation simple, the number of iteration is

not added to each term of the right side of the equality. Unless indicated otherwise,

each H and Ĥ terms belong to nth iteration. Since (Wx)i and (Wy)i are assumed to

be constant and all the other terms are already quadratic, the new representation of

the model is differentiable. This differentiable cost function can be converted into

matrix-vector form which is as in Equation 3.7;

J (n)(vh) = (vh − vm)>K(vh − vm)

+ λ(v>h Lvh)

+ γ(vh − vĥ)
>(vh − vĥ) ,

(3.7)

where, vh, vĥ, and vm are the vector representations of theH , Ĥ , andM , respectively.

K is a diagonal indicator matrix where all are in size of NxN where N is the number

of cells in the grid (width×height). L is defined as L = Dx
>DxDx +Dy

>WyDy,

where Wx and Wy are the diagonal weight matrices that hold the (Wx)i and (Wy)i

coefficients on their diagonals, respectively. Dx and Dy are the Toeplitz matrices

that are designed for partial derivative of the 2D surface map with respect to x and y,

respectively. Toeplitz matrices are expressed in detail and exemplified for a sample

matrix in Section 2.2.2.1 and Section 2.2.2.4. Although not specified here for the sake

of simplicity of the representation, surface map belongs to nth iteration in the vector

format.

Since the objective function, J (n)(vh), is strictly convex and differentiable, the min-

ima can be found by taking the derivative of J (n)(vh) with respect to vh. At this point,

the derivative of the matrix-vector form of the cost function can be taken with respect

to vh and set it to zero that is shown in Equation 3.8.

∂J (n)(vh)

∂vh
= 0 . (3.8)

All the operations related to taking the derivative and setting it to zero are performed,

as given in Equation 3.9:
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2K(vh − vm) + 2λvhL + 2γ(vh − vĥ) = 0 (3.9)

Finally, a linear system of equations is acquired as in Equation 3.10;

Av
(n+1)
h = b ,

A = (1 + γ)K + λL ,

b = Kvm + γvĥ ,

(3.10)

where, n represents the iteration number. A and b belongs to nth iteration. As it can

be easily understood from the equations, the corresponding linear system updates the

result surface model depending on A and vb in each iteration. Since A is a positive

definite, 5-point Laplacian and sparse matrix, this linear system can be efficiently

solved using an efficient iterative solver. In order to find the surface model in Equation

3.10, preconditioned conjugate gradient (PCG) with an incomplete-Cholesky (IC)

preconditioner is used.

Algorithm 5 DSM Generation
Input: Point Cloud P , Grid Size R, λ, ε, nmax ← 5

1: G← las2grid(P,R)

2: Mi ← max(Gi), where i is the index of matrix

3: Ki =

0, if Gi = ∅

1, if Gi 6= ∅

4: v
(1)
h ← vm

5: for n = 1 : nmax do

6: (Wx)i = Q((∂xĤ)i)

7: (Wy)i = Q((∂yĤ)i)

8: A(n) = (1 + γ)K + λL

9: v
(n)
b = Kvm + γvĥ

10: Solve Equation 3.10 to find v
(n+1)
h

11: end for

12: H ← vectorToMatrix(v
(n+1)
h )

Output: H
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3.2.6 Experimental Results of DSM Generation Method

In this section, the experimental results, related to variational method based DSM

generation on a sample data, are presented. The sample point cloud, which is col-

lected from the Baltimore region of Maryland, USA. There exist 1.650.677 points in

the whole original data and the total area covered is 1.339 square kilometers. Ap-

proximately, the LIDAR point density is equal to 1.57 samples per square meter and

LIDAR point spacing is 1 meter. The measured error at the points is 18.5 centimeters

and the maximum measured height on the data is 96.67 meters. In addition, this data

does not include the classification information of points. In order to visually present

the results of the proposed method within the scope of this study, a small patch con-

taining trees, buildings and roads was cropped instead of working with all the data.

In this patch, there are 170.318 points and LIDAR point density is 1.64 samples per

square meter. The used LIDAR data sample, the electro optic image of the same

region and the extracted DSM is shown in Figure 3.6:
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(a) (b)

(c) (d)

(e)

Figure 3.6: (a) 2D view of the sample point cloud data (b) 3D view of the sample point

cloud data (c) Electro-optic image of the same region (d) 2D view of the extracted

DSM (e) 3D view of extracted DSM, R = 0.425 and λ = 0.01
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In Figure 3.6a and Figure 3.6b, the point cloud data is classified using Global Mapper

software tool was used to make the trees and buildings look better visually. The

electro-optic image, Figure 3.6c, is taken from Google Earth using the KML file

which represents the boundaries of the region. The DSM generation result is stored

as an image with float type. The float image is loaded to Global Mapper and visualised

as 2D and 3D form in Figure 3.6d and Figure 3.6e.

The digital surface models generated by the proposed method depend on two different

parameters, namely, the resolution used in the grid structure and the level of smooth-

ing in the variational cost function. Firstly, DSM produced with different resolution

values are shown in Figure 3.7 to analyse the effect of resolution on the result of the

suggested method.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.7: The effects of resolution on the 3D DSMs (a) DSM, R = 0.25 (b) A

region that is zoomed on DSM, R = 0.25 (c) DSM, R = 1.0 (d) A region that is

zoomed on DSM, R = 1.0 (e) DSM, R = 0.425 that is optimum resolution (f) A

region that is zoomed on DSM, R = 0.425; λ = 0.01
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In the first step of the proposed DSM generation method, changing the resolution

value of the raster image used as the grid size in the algorithm causes a change in

the number of LIDAR points on a cell. When the resolution value is increased which

means grid size is enlarged, the area covered by the cell in the reality also grows in the

reality. Since the number of points falling on a cell and the possibility of at least one

point falling into a cell, the number of cells have "no data" values in the maximum

height map is reduced. The effects of the resolution on the number of empty cells

in the raster image are shown in the indicator matrices, height maps and final DSMs

produced with different resolution parameters in Figure 3.8. As it can easily be seen

from the indicator matrices in Figure 3.8a and Figure 3.8b, when the resolution is

increased, the number of empty cells is decreasing. When the DSM results produced

by two different resolution parameters are compared in Figure 3.7b and Figure 3.7d

which are the zoomed regions of the generated surface models with different resolu-

tion parameters, since when the value of the resolution is small, the number of empty

cells in the height map increases, the amount of cells will be interpolated through

the altitude values is also large and the possibility of errors in the produced DSM is

high. As the resolution continues to increase, the probability of at least one laser point

drops into each cell increases, and the interpolation throughout the elevation values

effect decreases, in which case the produced surface model that reflects the real world

more accurately. As mentioned earlier, each pixel in the height map is assigned height

information with the highest value among the points falling on that cell, and when the

grid size is increased, the number of points falling into each cell is increasing. While

only points that have the highest values are stored from many points in the cell, the

other height values are lost. In that case, the noise points in the data, the loss in

height values and the interpolation among the remaining points cause the production

of erroneous results again. For this reason, an ideal resolution value must be specified

in order to create an accurate and complete surface model. An optimum grid size is

estimated to be ensure such that 25% of all the pixels in the elevation map should

be filled which means that the ratio of the number of full pixels to the number of all

pixels is 25% according to the proposed cost function. In Figure 3.7e and Figure 3.7f,

the DSM is extracted with optimum resolution value, R = 0.425 which is calculated

iteratively with 0.025 steps in a range of defined minimum and maximum grid sizes,

respectively 0.05 and 5.00.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: The effects of resolution on the intermediate steps on the algorithm (a)

Indicator matrix (K), R = 0.5 (b) Indicator matrix (K), R = 1.0 (c) Generated

height map (M ), R = 0.25 (d) Generated height map (M ), R = 0.25 (e) 2D view of

extracted DSM (H), R = 0.25 (f) 2D view of extracted DSM (H), R = 1.0
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Another parameter affecting the result in the study is the level of smoothing used

in the cost function 3.3. As can be seen in Figure 3.9, the amount of smoothing at

the end of the algorithm is increasing in directly proportional to the value of the λ

parameter. When the value is kept very small, it is observed that there are undesirable

elevations called noise on the model even if the details are preserved on the surface.

On the contrary, increasing the value too much, it is observed that while the small

elevations on the model disappear, the features of objects such as the corners and

edges of buildings are deformed. In Figure 3.9, the surface models are extracted with

the estimated optimum resolution value and varied λ parameters. For this sample

data, the smoothness parameter is considered as 0.01 to produce the DSM which is

preserving the features of the objects while eliminating the noise. Note that, since

no data cells must be interpolated, λ cannot be set as zero. Hence it must be at least

given a small number such as 10−8 if minimal smoothing is desired.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: The effects of smoothness on the 3D DSMs (a) DSM, λ = 0.001 (b) A

region that is zoomed on DSM, λ = 0.001 (c) DSM, λ = 0.1 (d) A region that is

zoomed on DSM, λ = 0.1 (e) DSM, λ = 10 (f) A region that is zoomed on DSM,

λ = 10; R = 0.425
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3.3 Photogrammetry based DSM

Figure 3.10: An example of photogrammetry based DSM generation

Photogrammetry can be defined as the science of generating reliable information from

the multiple 2D photographs of a region that are captured from different positions and

angles. Using any kind of digital cameras, at least two stereo image pair is taken in

order to produce a map including 3D information about any real-world object and 3D

model of the earth’s surface

Photogrammetry is an older technology than laser scanning and it was introduced as a

robust triangulation method by David Lowe from the University of British Columbia,

in 1999 [32]. Whenever the locations of the cameras and the scales of the images are

known, the coordinates of any point in 3D space and/or the exact distance between

any two points in the scene can be determined. A great number of applications such

as 3D elevation model generation like DEM such as DSM and DTM, constitution and

visualization of different types of maps like topographic, vegetation and road maps,

2D and 3D reconstruction and classification of objects are highly integrated with the
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help of this technology [6, 1].

When photogrammetry is compared with LIDAR, both of them has their own advan-

tages and disadvantages. The most crucial strength of photogrammetry is being more

cost-effective since the equipments like digital cameras are significantly cheaper than

LIDAR components while collecting the data. In addition, the preferred software

and hardware used to process a set of 2D photographs are cheaper than those used to

process high density 3D point cloud data. Another important advantage is that pho-

togrammetry takes less time and less human effort to acquire the data. Furthermore,

it is more portable, versatile, flexible and speedy. Finally, textures of the surfaces are

better represented visually. On the other hand; although photogrammetry has high

planimetric accuracy, it has a weakness in depth accuracy. However, since laser scan-

ners collect directly 3D information about a surface of any object, it is more reliable

in depth accuracy, especially over large areas. Since photographs are not captured

automatically and depend on decision of an expert, it causes more human error. The

last significant disadvantage of photogrammetry is that errors may occur while 3D

modeling of reflective and transparent surfaces [32, 1, 2].
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3.4 SAR Interferometry based DSM

Figure 3.11: An example of photogrammetry based DSM generation

Synthetic aperture radar (SAR) is a type of active sensing and it generates SAR im-

ages that are widely used for modeling and mapping the earth’s surface because of

their being of high-resolution, day and night and weather-independent. These im-

ages are generated from the backscattered radiation signals that are spread from an

antenna towards the surface of earth. SAR systems are commonly used for monitor-

ing tasks and provide information about the properties of the earth’s surface such as

topography, morphology, roughness and the characteristics of the reflective layer [7].

Interferometric SAR (InSAR) images are also used for modeling and mapping sur-

face of earth. In order to generate InSAR images, at least two complex SAR images

that are captured from the same area but from slightly different line of sight are re-

quired. These different SAR images can be acquired in two different ways: The first

method is mounting two radars to the distinct platforms. The second one is passing

with the same radar at two different times [18]. InSAR images are generated using
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the phase differences of these multiple complex SAR images and used in a variety

of applications such as DEM generation, detection and identification of natural disas-

ters like earthquake, volcanoes, glacier flows, and landslides, analysis of vegetation

properties, monitoring of subsidence and structural stability [7].

Generated DEM quality depends on various factors according to preferred InSAR

image generation method. To illustrate, the character of terrain like roughness, reflec-

tivity and slope, or the type of vegetation on the observed ground surface may affect

the quality of the DEMs. In addition, time interval between two passes has an effect

such that increasing this interval decreases the resolution of generated DEM. Finally,

the locations, point of views and orientations of the mounted radars have an impact

on DEM quality [9].

When compared with photogrammetry based and LIDAR based DEM, SAR interfer-

ometry based DEM has advantage in terms of coverage area since wider terrains can

be monitored by radar satellites rather than the ones obtained by drones or aircrafts.

Another great strength of radar based imaging is the fact it is not affected from neither

day and night nor weather conditions such as clouds and fog. However, the weakness

of this approach is generating less detailed and less accurate DEM [64, 9].
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CHAPTER 4

A NEW CORRELATION BASED VARIATIONAL CHANGE

DETECTION METHOD

In this chapter, a new correlation-based variational change detection method is pro-

posed for multi-temporal elevation maps. The first section focuses on the proposed

cost function and its data fidelity and regularization term explanations. In the second

section, the minimization of the proposed cost function is discussed.

4.1 Correlation-Based Variational Change Detection (CVCD)

In this section, a change detection method is proposed which determines the change

map (C) between two elevation maps by minimization of a novel correlation based

variational cost function. Cost function J(C) is minimized with respect to C in order

to determine the change map as follows:

C∗ = argmin
C

J(C) . (4.1)

The proposed cost function to be minimized is defined as in the following Equation

4.2:

J(C) = −ρ(H1 + C,H2 − C) + λz‖C‖1
1

+ λs‖∇C‖1
1 ,

(4.2)

where, H1 and H2 are the registered multi-temporal elevation maps, C is the com-

puted change map as the output of the algorithm, λz and λs are positive constants,
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and ∇ is the gradient operator. Here, H1 and H2 are constructed as digital surface

models in Section 3.2.5 where they are acquired from the same geographical area at

time t1 and t2. Note that, C is numerically half of the final change map since it is

symmetrically influenced by both elevation maps. In this cost function, ρ indicates

the cross correlation function that is described in Equation 4.3 for any images, A and

B;

ρ(A,B) =
N∑
i=1

(Ai − µA)(Bi − µB) , (4.3)

where, N is the number of pixels, i is the pixel index, µA and µB denote the average

pixel values for the images A and B.

In Equation 4.2, the first term and second term are together defined as a data fidelity

term. ρ measures the degree of similarity between the first and second height map.

However, cross correlation metric does not consider shift on elevation in height maps

since ρ(A,B) and ρ(A,B + ∆z) lead to the same correlation value for an arbitrary

constant ∆z. In the cross correlation function (Equation 4.3), for the shifted B the

second multiplier can be described as (Bi + ∆z − µB+∆z). Adding ∆z to each pixel

value results in increasing average value by ∆z which is described as (Bi + ∆z −
(µB + ∆z)). This description equals to (Bi−µB). Therefore, it can be deduced that

any shift in one of the elevation map leads to the same cost function value; thus, cross

correlation based term itself is not a sufficient data fidelity term. Thus, the `1-norm

based term ‖C‖1
1 with a small positive weight of λz is added into the data fidelity

term in order to impose sparsity on change map C, namely cross correlation based

regularization. Here, sparse change map means that there are no changes for at least

half of the pixels. Therefore, median value of the change map should be close to 0

which is enforced by ‖C‖1
1. The proof is as follows:

Let’s define S as the sum of desired change map C and undesired shift ∆z, such that

S = C + ∆z. Desired change map C can be found using C = S − ∆z, where ∆z

is not known. In Equation 4.2, cross correlation based term and TV regularization

term are independent from ∆z. Therefore, only ‖C‖1
1 in Equation 4.2 needs to be

minimized with respect to ∆z as follows:
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C∗ = S −∆z∗ , (4.4)

where,

∆z∗ = argmin
∆z

‖S −∆z‖1
1 . (4.5)

This equation can be written in summation form as below:

∆z∗ = argmin
∆z

N∑
i=1

|Si −∆z| . (4.6)

One should notice that ∂|∆z|
∂∆z

= sgn(∆z), which is the sub-gradient of the non-smooth

`1-norm where sgn(.) is the sign function. Hence, deriving the sum above yields∑N
i=1 sgn(Si −∆z). This equals to zero only when the number of positive items

equals the number of negative items which happens when ∆z is the median of the

D. Thus, ∆z should be equal (or approximately equal) toM(S) whereM(.) is the

median function. If H1 and H2 are noise free, perfectly registered, and there is no

shift (∆z = 0) in pixel values between H1 and H2 then change map C is simply

equals to H2 −H1. We assume that C is sparse and at least half of the pixels contain

no change so that median of C is approximately zero. Less pixels will be around zero

if there is an undesired shift (∆z 6= 0) between H1 and H2. So, as shown in proof, the

regularization term will shift the pixel elevation values in C to increase the sparsity

such that median of the C will be close to zero (see Figure 4.1).

In Equation 4.2, the third term is called as `1-norm TV regularization term, which

implies a penalty on the changes in image gradients TV regularization term imposes

smoothness on the change map by filtering the subtle differences such as noise where

λs controls the smoothness level. In this term, ∇ is the gradient operator of 2D

change map which is expanded as partial derivatives in two directions, ∂x and ∂y. In

this study, `1-norm TV regularization term is preferred due its success in preserving

details such as the edges of the objects, corners of the objects, and small sized (i.e.

point-sized) objects for various image processing.
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First, cross correlation based term is expanded as described in Equation 4.3. Sec-

ond, the the first term is rewritten as the sum of the absolute values according using

the `1-norm definition. Lastly, the gradient operator is defined as the sum of partial

derivatives with respect to x and y and rewritten as the sum of the absolute values of

these partial derivatives. Expanded cost function is given in Equation 4.7;

J(C) =−
N∑
i=1

(H1i + Ci − µ1)(H2i − Ci − µ2)

+ λz

N∑
i=1

|Ci|+ λs

N∑
i=1

(
|(∂xC)i|+ |(∂yC)i|

)
,

(4.7)

where, N is the number of pixels in change map and i is the pixel index. Note that,

µ1 and µ2 are the mean of H1 +C and H2−C, respectively. Using the substitutions

Ĥ1 = (H1 − µ1) and Ĥ2 = −(H2 − µ2) and applying algebraic simplifications

Equation 4.7 is transformed into Equation 4.8 as below:

J(C) =
N∑
i=1

(Ci + Ĥ1i)(Ci + Ĥ2i)

+λz|Ci|+ λs(|(∂xC)i|+ |(∂yC)i|) .

(4.8)

Instead of using constant weight λz for each pixel, weights are calculated adaptively

for each pixel that is defined in Equation 4.9. Using λzi helps ‖C‖1
1 term to decreases

dependency to the magnitudes of the changes in each pixel within the cost function.

Here, λzi gets larger as Ci gets closer to median of C and λzi gets closer to 0 as Ci

deviates from median of C.

λzi = λz
(
(1 + εz)−

|C̃i|+ εz

‖C̃‖∞ + εz

)
, (4.9)

where, C̃ = C −M(C) is median centered form of C, ‖C̃‖∞ = maxj |C̃j| is max-

imum of C̃, and εz is a small positive constant whose value is assigned as 10−5 to

guarantee that λzi > 0. Finally, Equation 4.10 is obtained after replacing the fixed λz

in the Equation 4.8 with the adaptive λzi as below:
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J(C) =
N∑
i=1

(Ci + Ĥ1i)(Ci + Ĥ2i)

+λzi |Ci|+ λs(|(∂xC)i|+ |(∂yC)i|) .

(4.10)

In Figure 4.1, contribution of the term with adaptive λzi is shown for the Equation 4.10

using a 1D synthetic example. In this example, C = H2−H1, as an estimated change

map, λz = 0.1, and λs = 0 to ignore the TV regularization term. Note that, there is a

3 meter difference between H1 and H2 so that in this example ∆z = 3. Since cross

correlation based term and TV regularization term are independent from the shift in

C, optimizer can freely shift C by an arbitrary constant such that regularization term

becomes minimum. As seen in Figure 4.1, the regularization term becomes minimum

when ∆z = 3.

(a) (b)

Figure 4.1: Synthetically generated 1D signal to prove that necessity of λz term: a)

Data, b) Cost function w.r.t. ∆z

4.2 Minimization of the Cost Function

Change map can be estimated by minimizing the proposed cost function given in

Equation 4.10. However, the cost function contains absolute terms that are not dif-

ferentiable, due to the discontinuity at zero. As explained at section 2.2.2.2 in detail,

these absolute terms are approximated using quadratic approximation [41] as given
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in the Equation 4.11 as follows;

|z| ≈Q(ẑ)z2, Q(ẑ) = (|ẑ|+ ε)−1 , (4.11)

where, ẑ is a constant proxy for z, such that ẑ ← z, Q(ẑ) is the coefficient of the

quadratic approximation of |z|, and ε is a small positive constant to avoid division by

zero in Q(ẑ). Note that, approximations are only accurate around ẑ and accuracy of

the approximation increases as ε gets smaller. If ε is less than 0.1, the accuracy of the

approximation increases. Nevertheless, when the ε is too small (less than 10−5, errors

in numerical operations originating from double precision start to increase. Hence, ε

to be used between 0.1 and 10−5 provides a sufficient tradeoff. When ε = 0.1, the

cost function is solved fast but `1-norm TV regularization quality drops. If ε is less

than 10−5, the system produces results slowly but `1-norm TV regularization quality

is higher.

Absolute terms in cross correlation based regularization term and TV regularization

term in Equation 4.10 are approximated using the approximations given as below:

|Ci| ≈ (Wc)iC
2
i , (Wc)i = Q(Ĉi) ,

|(∂xC)i| ≈ (Wx)i(∂xC)2
i , (Wx)i = Q((∂xĈ)i) ,

|(∂yC)i| ≈ (Wy)i(∂yC)2
i , (Wy)i = Q((∂yĈ)i) ,

(4.12)

where, (Wc)i, (Wx)i, and (Wy)i are the coefficients for the quadratic approximations

of the absolute terms which are evaluated at Ĉ.

Substituting the approximations in Equation 4.12 into Equation 4.10 and expanding

the terms lead to the below differentiable cost function. Moreover, a new regular-

ization term is added to force the solution to be close to Ĉ, considering the fact that

employed approximations are only accurate around this value [40, 41]. Finally, in

order to minimize the cost function, convex optimization methods are preferred. Due

to the employed approximations, the cost function will be solved iteratively, so that

the iteration index is added into the cost function. After all placeholders have been

placed in the relevant places, the cost function is described as Equation 4.13;
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J (n)(C) =
N∑
i=1

C2
i + (Ĥ1i + Ĥ2i)Ci + Ĥ1iĤ2i

+λzi(Wc)iC
2
i

+λs
(
(Wx)i(∂xC)2

i + (Wy)i(∂yC)2
i

+ (Ci − Ĉi)2
)
,

(4.13)

where, n indicates the iteration number and for the sake of simplicity n is not added

into each term in the right side of the equality. Unless otherwise specified, each term

belongs to nth iteration. Note that, Ĥ1 and Ĥ2 should be re-evaluated in each iteration.

The reorganized quadratic approximated cost function can be cast into matrix-vector

form as below (Equation 4.14);

J (n)(vc) = vc
>vc + (vĥ1 + vĥ2)

>vc + v>
ĥ1
vĥ2

+ (vc
>Zvc)

+ λs
(
vc
>Lvc) + (vc − vĉ)>(vc − vĉ)

)
,

(4.14)

where, vĥ1 , vĥ2 , and vc are the vector forms of Ĥ1, Ĥ2, and C, respectively. Z and

L are defined as Z = WzWc and L = Dx
>WxDx + Dy

>WyDy for having a

cost function in a compact form. Here, Wz, Wc, Wx, and Wy denote the diagonal

matrices that hold weights λ̂zi , (Wc)i, (Wx)i, and (Wy)i on the diagonals, respectively.

Also, Dx and Dy represent the Toeplitz matrices that are designed for taking partial

derivatives of the 2D change map with respect to x and y as explained in 2.2.2.4.

Despite it is not stated for the sake of simplicity of the equation’s appearance, change

map still belongs to nth iteration in the matrix-vector representation.

Since this matrix-vector form cost function, J (n)(vc), is differentiable, it enables an

optimization procedure and its minimization can be solved by taking its derivative

with respect to vc and equalizing it to zero as below.

∂J (n)(vc)

∂vc
= 0 . (4.15)

After the mathematical derivations are processed and aligned, the decomposition of

the obtained linear system is given in the following Equation 4.16;
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Av(n+1)
c = b ,

A = (1 + λs)I + (Z + λsL) ,

b = λsvĉ −
1

2
(vĥ1 + vĥ2) ,

(4.16)

where, I is the identity matrix. Note that, A and b belongs to nth iteration. In Equation

4.16, A is sparse, positive definite, 5-point Laplacian matrix. Since A is positive

definite cost function in Equation 4.14 is strictly convex, minimization leads to the

global minimum. The proof is as follows:

Let A in the Equation 4.16 be the second derivative (i.e. Hessian) of the cost function

J (n)(vc) given in the equation 4.14. A symmetric matrix A ∈ RNxN is called positive

definite (thus J (n)(vc) is strictly convex), denoted by A � 0, if xᵀAx > 0, for every

x ∈ RN with x 6= 0.

∂2J (n)(vc)

∂2vc
= (1 + λs)I + (Z + λsL) = A . (4.17)

Identity matrix I is positive definite and λs is positive. Therefore, we should show

that xᵀ(Z+λsL)x > 0 to guarantee that xᵀAx > 0 for all non-zero x. If we distribute

xᵀ and x from left and right onto (Z + λsL):

xᵀZx+ λsx
ᵀLx > 0 . (4.18)

Which is satisfied when below inequalities are satisfied:

xᵀZx > 0, xᵀLx > 0 , (4.19)

where Z equals to WzWc; therefore, it is a diagonal matrix with positive entries

since Wz and Wc are also diagonal matrix with positive entries (see Equation 4.9

and Equation 4.12). Thus, xᵀZx > 0 is satisfied.

xᵀLx > 0 can be expanded as below two inequalities:
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xᵀ(Dx
>WxDx)x > 0 ,

xᵀ(Dy
>WyDy)x > 0 ,

(4.20)

which can be also expressed as:

v>xWxvx > 0, v>y Wyvy > 0 , (4.21)

where, vx = Dxx and vy = Dyx. Here, vx and vy are non-zero vectors since x

is a non-zero vector and Dx and Dy are Toeplitz matrices with non-zero diagonal

elements. Both inequalities are satisfied, since Wx and Wy are all diagonal matri-

ces with positive entries (see and Equation 4.12). Thus, both first order optimality

conditions and second order optimality conditions are satisfied which shows that cost

function J (n)(vc) given in equation 4.14 is strictly convex.

The proposed cost function is minimized in Algorithm 6 in an iterative manner due

to the employed approximations. In each iteration, a sparse linear system is solved

by using the preconditioned conjugate gradient (PCG) with the incomplete Cholesky

(IC) preconditioner to evaluate the v(n+1)
c . In Algorithm 6, ε = 10−5, maximum

number of PCG iterations is set to 102, PCG convergence tolerance is set to 10−3,

nmax = 102, and Ctolerance = 10−3 as defaults. At the beginning of the algorithm, the

pixel values of the change map v1
c is initialized and converted to vector form according

to Algorithm 7.
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Algorithm 6 Correlation Based Variational Change Detection
Input: H1, H2, λs, ε, nmax, Ctolerance

1: v
(1)
c ← InitializeChangeV ector(H1, H2)

2: λz = 0.1

3: for n = 1 : nmax do

4: vĉ ← v
(n)
c

5: (Wc)i = Q(Ĉi)

6: (Wx)i = Q((∂xĈ)i)

7: (Wy)i = Q((∂yĈ)i)

8: A(n) = (1 + λs)I + (Z + λsL)

9: v
(n)
b = λsvĉ − 1

2
(vĥ1 + vĥ2)

10: Solve A(n)v
(n+1)
c = v

(n)
b to find v

(n+1)
c

11: if ‖v(n+1)
c − vĉ‖∞ < Ctolerance then break the loop

12: end for

13: where C ← vectorToImage(v
(n+1)
c )

Output: 2C

Algorithm 7 Initialize Change Vector
Input: H1, H2

1: Cinitial = (H2 −H1)

2: Ccentered = Cinitial −M(Cinitial)

3: vc ← imageToV ector(1
2
Ccentered)

Output: vc
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CHAPTER 5

EXPERIMENTAL ANALYSIS OF THE

CORRELATION-BASED VARIATIONAL CHANGE

DETECTION METHOD

In this chapter, results of the proposed change detection method are examined under

a collection of datasets with different parameters and/or conditions. Four different

sets of experiments are carried out in this chapter where each one constitutes a sub-

section respectively. In the first set of experiments the convexity of the proposed

method is justified by giving different initial change maps to the cost function of the

method. In the second set of experiments the effects of the smoothness factor of the

proposed method are visualized. For this goal first the effect of the additive noise of

the input height maps is tested, then after finding out the optimal noise parameter,

the initialization of the cost function is also tested with this noise parameter. In the

third set of experiments the effects of the noise level on the data for the proposed

methods are demonstrated by changing the smoothness parameter. In the fourth set

of tests show that the effects of the smoothness level of the proposed method on the

real world datasets. The chapter is organized in five subsections. Addition to the

before mentioned four different set of experiments, in the last subsection testing en-

vironment is reviewed. Experiments are done with four different datasets each one

for the respective subsection. Synthetically generated 1D signal is used for the first

set of experiments, meanwhile for the second set of experiments synthetically gener-

ated 2D signal is used. For the third set of experiments, synthetically generated real

world data is made use of. The real world 3D point cloud data acquired by LIDAR

technology is used for the last set of experiments.
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In this subsection, proposed algorithm is tested with different parameters and affect-

ing factors using a set of dataset. Since some of datasets include synthetically created

data and some of them are real-world digital elevation data, the following sections are

divided by the type of dataset used. For each used dataset section, a factor influencing

the algorithm result was tested and performance results were pointed out.

5.1 Experiments on Simulated 1D Signal

This set of experiments arranged to prove the convexity of the proposed cost func-

tion which is already proved theoretically in Section 4.2. 1D signals are synthetically

created to demonstrate the effects of the change results as visually convincing. The

following subsections explain how the synthetic data is generated and how the initial-

ization of the change map affects the result of the proposed method.

5.1.0.1 1D Synthetic Signal Generation

To start with, for the first input of the change detection method, an initial signal is

generated between a range [−5, 5] as a polynomial form, p(x) = ax2 + bx+ c, where

a = −0.1, b = 0.01, and c = 8.0. The second signal is adapted from the first signal

by adding a constant value, ∆h = 3.0 to whole signal on y-axes. In order to compose

changes between these two signals, different amounts are added or subtracted from

the different coordinates of second signal.

Finally, the Gaussian noise with constant noise amplitude, 0.1, and variance, 1.0, are

added to these signals. These two generated noisy signals have SNR values as 37.37

db and 40.40 db, respectively. Note that, these noise levels are identical for each run

of test meanwhile different for each signal. In this regard, it can be ensured that same

test case is performed on each run.

In order to measure the performance of the proposed method and show how close the

obtained result to the synthetically added changes, the ground truth (GT) is designated

before adding the noise into images. Synthetically generated two signals are shown

with blue and red colors and GT is shown with the green color in Figure 5.1;
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Figure 5.1: Synthetically Generated 1D Signals and Ground Truth

5.1.0.2 Experimental Results on 1D Synthetic Signals

In this section, the set of test cases is just drawn up to experience the effect of the

different initial change map given to the cost function to be minimized on the result.

The experiments that indicate the effects of different initializations for the minimiza-

tion problem are carried out. Because of this reason, the other parameters used in

the proposed method are kept same for each test case. These parameters are set as

λs = 0.15, ε = 10−5, Ctolerance = 10−3 which is called as convergence tolerance,

and nmax = 102 which is maximum iteration. Firstly the closeness of the obtained

result with the ground truth is presented in Figure 5.2 for each initial change map.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)
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(i) (j)

(k) (l)

Figure 5.2: The effects of the initialization of the change map for the proposed cost

function minimization (a-b) Change map is initialized with zeros and result change

map of that case (c-d) Change map is initialized with ones and result change map of

that case (e-f) Change map is initialized with uniformly distributed random numbers

and result change map of that case (g-h) Change map is initialized with normalized

random noise and result change map of that case (i-j) Change map is initialized with

white gaussian noise having and result change map of that case (k-l) Change map is

initialized as described in Algorithm 7 and result change map of that case

In Figure 5.2; the first columns demonstrates the synthetically generated 1D input

signals and initial change map to be given to proposed cost function. The second

columns show that the ground truth and result change map at the same plot. It is

clearly seen that the change result map for each case is identical as the GT. In the
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first test, change map is initialized with zeros which is shown in Figure 5.2a and the

result change map is shown in Figure 5.2b. The evaluated root mean square error

(RMSE) between the GT and the result is 0.009. For the second test case, change

map is initialized with 1 values which is shown in Figure 5.2c and the result change

map is shown in Figure 5.2d. RMSE for the ones change initialization is 0.005. Then,

change map is initialized with uniformly distributed random numbers in Figure 5.2e

and normally distributed random numbers in Figure 5.2g. The result change maps are

shown in Figure 5.2f and Figure 5.2h and RMSEs are 0.005 and 0.014, respectively. In

the other test case, initial change map is generated with white Gaussian noise having

zero mean and power −6 dBW in Figure 5.2i. The result of the proposed approach is

shown in Figure 5.2j and RMSE is evaluated as 0.013. Finally, the change map has

been initiated as explained in the Section 4.2, in detail and described as pseudo-code

in Algorithm 7. The initial and final change maps are shown in Figure 5.2k and in

Figure 5.2l, respectively. The RMSE of this test case is evaluated as 0.005. When

the calculated RMSE results for each test case are analyzed, it is clearly seen that the

values are so close to 0, which means that, the final change map is so close to the GT

data.

Secondly; if the cost function is convex, the cost function converges to the same point

regardless of the starting point of the minimization method. With these different ini-

tiates, the cost function converges to the same point which is shown in the following

Figure 5.3.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The indication that the cost function converges to same value for each

initialization (a) Change map is initialized with zeros and result change map of that

case (b) Change map is initialized with ones and result change map of that case (c)

Change map is initialized with random noise and result change map of that case (d)

Change map is initialized with normalized random noise and result change map of

that case (e) Change map is initialized with white gaussian noise and result change

map of that case (f) Change map is initialized as described in Algorithm 7
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As it can be seen in Figure 5.3, since the proposed method is strictly convex which

is proved theoretically in Section 4.2, the objective function converges to exact same

global minima point which is −1.107.

5.2 Experiments on Simulated 2D Signal

The goal of this test case is visualizing the effects of the smoothness factor of the

proposed change detection method in a better way on the third dimension. Since the

proposed method claims that reducing the image noise while preserving the features

of the objects such as edges and corners of the buildings, it is important to demonstrate

the effectiveness of the algorithm.

5.2.0.3 2D Synthetic Map Generation

In accordance with this purpose, a 2D zeros matrix with size of 512× 512 is created,

then a variety of geometrical figures with different height values are inserted to rep-

resent some real world objects such as buildings, trees, grasses, lake, road and water

way which is shown in Figure 5.4a. This generated ground truth is saved to evaluate

performance of the proposed method and shown in Figure 5.4b. In order to obtain

the synthetic data as a real height map, an example of height map, Figure 5.4c, with

size of 2048 × 2048 from the Netherlands region was downloaded from the internet.

Since the terrain elevation of the Netherlands is not very high, simulated changes to

be added into the elevation map of this area can be easily seen. Then, it is scaled to

size of the created synthetic 2D matrix. The 3D view of the height map can be seen

in Figure 5.4d.
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(a) (b)

(c) (d)

Figure 5.4: (a) Synthetically generated changes in colorful view (b) Ground truth (c)

Initial height map in 2D view (d) Initial height map in 3D view

Two different input height maps of the proposed change detection method are shown

in Figure 5.6a and Figure 5.6b designed as follows: One of these two inputs are

thought as the first image that is captured at the first time, the other one is the second

image that is taken later. It is assumed that; between these two time periods, there are

variants such as the cutting of the trees in the area, the construction and destruction

of the new buildings, the germination of grasses, the road constructions, the drying

of the waterway and the formation of a lake, in course of time. For providing these
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adaptations, while some geometric figures are added into first image some of them is

removed from the first image and some figures are applied to the second image in the

same way. When playing with the figures to obtain change, there exists an important

point to pay attention. After adding water-based figures into height maps to create

changes in water areas, the Gaussian noise with the zero mean and standard deviation

parameter as 2.5, is added to height maps in order to simulate the real world. The

reason of this approach is that; in the real world, the water level slowly deepens from

the ground towards the deepest side. At the end of applied this adaptations, Finally,

zero mean Gaussian noise with constant noise amplitude, 1.0, and variance, 1.0, are

added to both height maps, which are shown in Figure 5.5 as different colored ver-

sions, to adapt the sensor noise problem of the remote sensing data into the synthetic

data. The signal noise ratios of these two synthetically generated height maps with

these constants are 37.72 db and 37.80 db, respectively.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: 2D views of synthetically generated height maps (a)The first height map

as grayscale, at time t1 (b) The second height map as grayscale, at time t2 (c) The

first height map as auto contrasted, at time t1 (d) The second height map as auto

contrasted, at time t2 (e) The first height map as colored, at time t1 (f) The second

height map as colored, at time t2
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3D view of the height maps are also shown in Figure 5.6 to visualize the objects how

added into the ground or extracted from the ground.

(a)

(b)

Figure 5.6: 3D views of synthetically generated height maps (a)The first height map,

at time t1 (b) The second height map, at time t2
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5.2.0.4 Experimental Results on 2D Synthetic Maps

In this section, the first constituent to be tested is the effect of the noise of the in-

put height maps on the results of the proposed method. For this test case, in or-

der to generate synthetic height maps having different noise levels, a set of various

noise amplitude values but same noise variance, 1.0, are given to the Gaussian noise

adding function. The proposed method is applied to height map tuples with different

smoothness level, λs, for each noise level. The other parameters are set to ε = 10−5,

Ctolerance = 10−5 which is called as convergence tolerance, and nmax = 102 which is

maximum iteration.
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(a)

(b)

Figure 5.7: Change results of the proposed algorithm where λs = 0.15, SNR = 37.7

db and change map is initialized as described in Algorithm 7 (a) 2D colorful view of

the change detection result (b) 3D view of the change detection result
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For this test scenario, five different noise levels are tested with the signal noise ra-

tios as 10 db, 18 db, 38 db, 58 db, and 98 db. To achieve this the noise amplitudes

are set to 25, 10, 1, 0.1, and 0.001, respectively, during the generation of the noisy

maps. Note that, as the SNR increases the amount of noise in the elevation maps

decreases. Hence, in test cases with high SNR values, more accurate results are ob-

tained with low smoothness level parameters. Meanwhile; with low SNR values,

more accurate results are obtained with high smoothness level parameters. However;

when the smoothing parameter is greatly increased denoising operation is performed

excessively. Because of this reason, the obtained result gets away from the ground

truth and AUC values are decreased. To prove this statement quantitatively, area un-

der curve (AUC) values are evaluated as a performance metric for each noise level

and smoothness parameter, which are shown in Figure 5.8.
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(a)

(b)

98



(c)

(d)
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(e)

Figure 5.8: The AUC values diagrams of newly added (green) and demolished (red)

objects for each smoothness level of the different noise levels (a) SNR = 10 db (b)

SNR = 18 db (c) SNR = 38 db (d) SNR = 58 db (e) SNR = 98 db

In Figure 5.8a, since the synthetically created input height maps have too much signal

noise, the low smoothness parameter, λs, is insufficient to solve problem. While

the softening level parameter remained below 5, the performance of the algorithm

remained low. As a result of excessively increasing the value of smoothing parameter,

the performance of the algorithm may also decrease. As this effect is clearly seen in

Figure 5.8b, the AUC values increase until the λs sets to 2.5, but after this value of the

λs the AUC values start to fall. In other noise level tests, the accuracy of the proposed

method usually decreases as the value is increased, while the performance results are

usually fairly high with small smoothness values, which are shown in Figure 5.8c,

Figure 5.8d and Figure 5.8e.
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Table 5.1: Optimal Smoothness Parameters for Different Noise Levels

SNR Noise Amplitude λs AUC - Newly Build Obj. AUC - Demolished Obj.

10 25 7.0 0.9553 0.9761

18 10 2.5 0.9869 0.9941

38 1 0.141 0.9996 0.9995

58 0.1 0.005 0.9996 0.9998

98 0.001 0.015 0.9996 0.9998

The ideal elevation map pair which has SNR as 38 db is chosen to test other factors

that can change the result of the algorithm from different noise levels. The initializa-

tion of the cost function which was tested on 1D signal is also tested on 2D height

maps. In order to determine the smoothness level of the algorithm which gives the

most optimum result, which has the highest AUC values, for this noise amount; the

algorithm is run as Brute-Force with various smoothness level. λs is increased by

0.01 between 0.01 and 1 because this range gives the highest AUC values for this

noise level as it can be seen in Figure 5.8c. The plotted receiver operating character-

istic (ROC) curve which is evaluated AUC values for each λs in this range is shown

in Figure 5.9.
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Figure 5.9: The ROC curves of newly build and demolished objects for SNR = 38 db

and smoothness level range between 0.01 and 1.0

During the generation of synthetic dataset, between the first and second time pe-

riod, demolished changes are adapted less than newly build objects in terms of height

values and regional area. For this reason, in Figure 5.3, the AUC values of the demol-

ished changes which is red ROC curve decreases more rapid than the AUC values of

newly coming objects which is green ROC curve.

For selected height maps, the experiments are performed to see the effect of the dif-

ferent initializations of the cost function to be minimized on the result.

The experiments that indicate the effects of different initializations for the minimiza-

tion problem are carried out. Because of this reason, the other parameters used in

the proposed method are kept same for each test case. These parameters are set as

λs = 0.15 which is determined as mentioned above, ε = 10−5, Ctolerance = 10−5

which is called as convergence tolerance, and nmax = 102 which is maximum itera-

tion.
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(a)

(b)
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(c)

(d)
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(e)

(f)

Figure 5.10: The effects on the AUC values of the initialization of the change map

for the proposed cost function minimization (a) Change map is initialized with zeros

and result change map of that case (b) Change map is initialized with ones and result

change map of that case (c) Change map is initialized with uniformly distributed

random numbers and result change map of that case (d) Change map is initialized

with normalized random noise and result change map of that case (e) Change map

is initialized with white gaussian noise having and result change map of that case (f)

Change map is initialized as described in Algorithm 7 and result change map of that

case
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In Figure 5.10; area under curves which is the performance metric of the proposed

method for both newly added and demolished objects, separately. As it can be obvi-

ously seen, the AUC values are same for each initialization despite the curve of the

plots are different.

When the cost function is convex, the cost function converges to the same point re-

gardless of the starting point of the minimization method. With these different initial-

izations, the cost function converges to the same point which is shown in the following

Figure 5.11.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: The indication that the cost function converges to same value for each

initialization (a) Change map is initialized with zeros and result change map of that

case (b) Change map is initialized with ones and result change map of that case (c)

Change map is initialized with random noise and result change map of that case (d)

Change map is initialized with normalized random noise and result change map of

that case (e) Change map is initialized with white gaussian noise and result change

map of that case (f) Change map is initialized as described in Algorithm 7
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As it can be seen in Figure 5.11, since the proposed method is strictly convex which

is proved theoretically in Section 4.2, the objective function converges to same global

minima point which is −29.91.

5.3 Experiments on Synthetically Generated Real World Data

5.3.0.5 Synthetically Real World Data Generation

This dataset is prepared to apply the proposed method to see the effects of smoothness

level for different noise levels on real world data. The data is collected from Cerkes

village belongs to Cankiri city of Turkey via photogrammetry based techniques. The

original data covers 11 km2 area with 5 cm pixel resolution. The whole area contains

a wide variety of terrestrial shapes and real-world objects such as buildings, poles,

cars, trees, bridges, roads, hills, rivers, etc. Nar et al. 2018, generated the DSM and

DTM of the original data in his study [42].

For this study, the small patches of the DSM and DTM are specified to work on the

proposed method. In order to create a variation between two time intervals, two input

height maps of the proposed method is set as DSM patch and DTM patch. When DSM

patch is chosen as the first input data and DTM patch is chosen as the second input,

the changes that occur in two time intervals are seen as demolished objects. Because,

the objects are seen as destructed while passing from surface model to terrain model.

On the contrary, the changes are seen as newly build objects when DTM is chosen as

the first input and DSM is chosen as the second input. This dataset is created with 5

DSM and 5 DTM patches.

5.3.0.6 Experimental Results on Synthetically Generated Real World Data

In this set of experiments, first of all, 60% of the selected patches (3 DSM and 3

DTM patches) is allocated as training dataset to identify the best parameters of the

proposed method and the remaining is allocated as test dataset to see the performance

result of the proposed method with the determined parameters. In order to identify

the optimum smoothness level for each noise level, zero mean Gaussian noise with
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different noise amplitude and noise variance parameters are added to train patches.

Note that; in this test case, it does not matter the change type whether demolished

or newly built because the AUC values are exactly same for each condition. So that,

the inputs are set such that the objects disappear in this time interval. Hence, ROC

curves are only plotted for demolished objects. The GT is obtained by applying a

small threshold value, τ = 0.01, to difference of these elevation maps such that

GT = (DSM −DTM) > τ .

In order to visualize the effects of the smoothness parameter of the proposed method

for different noise level on the training data, ROC curves of each case for some noise

levels, SNR approximately equals to 29 db, 57 db and 97 db, are shown in Figure

5.25, Figure 5.13 and Figure 5.14, respectively.
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(a)

(b)

(c)

Figure 5.12: The ROC curves of each training samples at identical noise level, SNR

≈ 29 db (a) ROC curve of the first training pair (b) ROC curve of the second training

pair (c) ROC curve of the third training pair
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(a)

(b)

(c)

Figure 5.13: The ROC curves of each training samples at identical noise level, SNR

≈ 57 db (a) ROC curve of the first training pair (b) ROC curve of the second training

pair (c) ROC curve of the third training pair
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(a)

(b)

(c)

Figure 5.14: The ROC curves of each training samples at identical noise level, SNR

≈ 97 db (a) ROC curve of the first training pair (b) ROC curve of the second training

pair (c) ROC curve of the third training pair
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The maximum AUC values for each noise level independent of the level of smooth-

ness are indicated in Table 5.2;

Table 5.2: Maximum AUC Values

∼ 29 db ∼ 37 db ∼ 57 db ∼ 77 db ∼ 97 db ∼ 117 db

Patch1 0.9933 0.9947 0.9961 0.9984 0.9997 1.0000

Patch2 0.9335 0.9267 0.9701 0.9848 0.9985 1.0000

Patch3 0.9308 0.9636 0.9950 0.9963 0.9982 1.0000

The average values of AUC values of three training patches are estimated for each

smoothness level at each noise level which is shown in Table 5.3. The best smoothness

levels that give the highest average AUC value is determined as the optimum λs for

each chosen noise level and they are shown with red colors.

Table 5.3: Average AUC Values

SNR

λs 0.001 0.01 0.1 1.0 2.5 5.0 10.0 25.0 50.0 100.0

∼ 29 db 0.6170 0.6173 0.6071 0.6108 0.6671 0.8106 0.9179 0.9520 0.9440 0.9264

∼ 37 db 0.6803 0.6798 0.6779 0.7747 0.9066 0.9523 0.9576 0.9433 0.9364 0.9306

∼ 57 db 0.8702 0.8636 0.8882 0.9850 0.9794 0.9721 0.9614 0.9460 0.9376 0.9307

∼ 77 db 0.9390 0.9465 0.9900 0.9928 0.9828 0.9721 0.9611 0.9461 0.9371 0.9326

∼ 97 db 0.9969 0.9986 0.9939 0.9928 0.9826 0.9720 0.9611 0.9455 0.9376 0.9317

∼ 117 db 1.0000 0.9996 0.9978 0.9926 0.9825 0.9720 0.9610 0.9454 0.9371 0.9304

According to table of average AUC values, a testable noise level, ≈ 57 db, is chosen

to show the performance results of the proposed method on the test patches. ROC

curves of these test samples for different smoothness parameters are shown in Figure

5.15:
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(a)

(b)

Figure 5.15: The ROC curves of each test samples at identical noise level, SNR ≈ 57

db (a) ROC curve of the first test pair (b) ROC curve of the second test pair

As it can be seen in Figure 5.15, the proposed algorithm yields the highest AUC value

with the smoothness level parameter as λs = 1 for each test patches. The maximum

AUC values are 0.95676 and 0.95676 for first test pair and second pair, respectively.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.16: 2D views of three training patches and change results (a-c) Raster images

of the training patches (d-f) DSMs of the training patches (g-i) DTMs of the training

patches (j-l) Change result maps of the training patches, where SNR ≈ 57 db, λs =

1.0
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The training input patches of the proposed method and the result change maps of these

DSM and DTMs with the determined optimum smoothness parameter at an average

noise level are shown in Figure 5.16.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

Figure 5.17: 2D views of three training patches and change results (a-b) Raster images

of the test patches (c-d) DSMs of the test patches (e-f) DTMs of the test patches (g-h)

Change result maps of the test patches, where SNR ≈ 57 db, λs = 1.0 (i-j) Cost

functions of the test patches

In Figure 5.18, the ROC curves are plotted of the fourth and fifth test patch with the

optimum smoothness level, λs = 1.0 and SNR ≈ 57 db, separately.
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Figure 5.18: ROC curves of the test patches
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5.4 Experiments on LIDAR Based DSM

5.4.0.7 Real World Dataset

In this section, the real world 3D point cloud data acquired by Lidar technology is

used in order to apply the proposed method and to indicate its performance results.

The point cloud samples used in this study are obtained in two different ways. Firstly,

they are downloaded from the OpenTopography site, which is available to everyone

as an open source. From this open-source site, data that are determined as appropri-

ate for conducting the tests are taken from the same region but from different years

are detected. These identified data belong to the Wax Lake region in the state of

Louisiana, USA. The acquisition and processing of the data with the Lidar sensor is

completed by the National Center for Airborne Laser Mapping (NCALM). Flights

were conducted in 2009 and 2013 to obtain data from the region. The second way of

obtaining data is purchasing from mapping company. This data are taken from Bilbao

region in Spain in 2005 and 2008. The properties of the Lidar dataset such as loca-

tion, coordinates, number of points, density, year, etc. are stored in their metadata as

listed in Table 5.4:
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5.4.0.8 Experimental Results on Real World Dataset

Since the first set of real world Lidar data is already geolocated, accurately; the point

cloud data is directly employed in the preprocessing step, DSM generation, of the

proposed method. The intermediate outputs of the DSM generation process is shown

in Figure 5.19. The parameters used for the DSM generation method are as follows;

grid size, R = 0.5 and smoothness level, λ = 2.50.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.19: The first columns are indicator matrices, the second columns are height

maps and the right most columns are digital surface models (a-c) First region in 2009

(d-f) First region in 2013 (g-i) Second region in 2009 (j-l) Second region in 2013
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In the obtained surface models, the regions where the changes are clearly evident are

determined and cropped from the entire map. The ground truth is generated by a

geomatic engineer for demolished and newly built changes in the cropped patches,

separately. The raster images of open source data are taken by Google Earth engine,

currently.

The following figures indicate the DSMs as inputs, the result change map as output

and ROC curves as performance metrics of the proposed method for each data pair.
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(a)

(b)

(c)

Figure 5.20: 2D images of Wax Lake region (a) Electro optic raster image (b) DSM,

2009 (c) DSM, 2013 125



(a)

(b)

Figure 5.21: The result of the proposed method where smoothness level λs = 1.0 (a)

RGB change result map (b) ROC curves for newly built and demolished objects
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(a)

(b)

(c)

Figure 5.22: 2D images of another zone from Wax Lake region (a) Electro optic raster

image (b) DSM, 2009 (c) DSM, 2013 127



(a)

(b)

Figure 5.23: The result of the proposed method where smoothness level λs = 1.0 (a)

RGB change result map (b) ROC curves for newly built and demolished objects

The second set of real data does not have accurate location values so that this entire

original data is geolocated to coordinates of Bilbao region, Spain. Then, DSM of the

data is processed using Global Mapper application and saved as float elevation map

with 1m resolution. Since the proposed method can use both the elevation map and

point cloud data, in this set of tests DSMs are employed as inputs.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.24: 2D images of Bilbao region and change results of the proposed method

where λs = 1.0 (a-c) Raster images of 2005 (d-f) Raster images of 2008 (g-i) DSMs

of 2005 (j-l) DSMs of 2008 (m-o) Change result maps
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(a)

(b)

(c)

Figure 5.25: The ROC curves of the proposed method where smoothness level, λs =

1.0 (a) The first determined region patch (b) The second determined region patch (c)

The third determined region patch
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5.5 Testing Environment

All the tests are performed on a computer with the following specifications are listed

in Table 5.5.

Table 5.5: Computer Specifications

Operating System Mac OS (High Sierra)

Memory (RAM) 8GB of 1600MHz DDR3L onboard memory

Hard Disk 2.6GHz - 128GB128GB PCIe-based flash storage

Processor 2.6GHz dual-core Intel Core i5 processor

Graphics Card Intel Iris 1536 MB

All the implementations are executed using Matlab version R2015b. Some results are

visualized using Global Mapper toolkit.
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CHAPTER 6

SUMMARY AND CONCLUSION

6.1 Thesis Sumary

In this study, a new change detection method, correlation-based variational change

detection (CVCD), is proposed. This proposed method is constructed as an optimiza-

tion problem for digital surface models. CVCD extracts the meaningful changes such

as construction or destruction of buildings, forestation or deforestation by minimizing

a correlation based variational cost function in a complete, robust and efficient way.

Since the employed cost function has cross correlation based data fidelity term and `1-

norm TV regularization term, while detecting these significant changes, it smoothes

the result change map but preserves the features of changes such as point-changes

and corners and edges of the changes. Furthermore; this proposed method deals with

detecting changes as newly coming and demolished objects, separately. In order to

solve this optimization problem, an efficient numerical minimization approach is ap-

plied to the strictly convex function. Hence, fast convergence to global minima is

guaranteed. Performance of the method is shown quantitatively, using ROC curves,

on synthetically generated 1D signals, 2D signals and a real-world elevation model.

The method is, also, analyzed qualitatively, on real-world multi-temporal elevation

masks, containing changes with different characteristics. The experiments reveal that

proposed method generates satisfactory results.
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6.2 Discussion and Future Work

Currently, since the Lidar sensors are very expensive and the planned flights are very

costly, the acquisition of Lidar data is very overpriced. Especially since the second

flight from a region is lavishness, the elevation map of the same region is not extracted

for the second time. In the future, if the use of LIDAR sensors becomes widespread,

a huge amount of data can be obtained cheaply. So that, this obtained data can be

used for training process of deep learning algorithms. This provides an opportunity

to increase the accuracy of the change detection algorithms and decreases the work

load of humans.
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