

A COMBINATORIAL TEST DATA GENERATION APPROACH USING FAULT

DATA ANALYSIS AND DISCRETIZATION OF PARAMETER INPUT SPACE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

HAKAN BOSNALI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INFORMATION SYSTEMS

JUNE 2018

Approval of the thesis:

A COMBINATORIAL TEST DATA GENERATION APPROACH USING

FAULT DATA ANALYSIS AND DISCRETIZATION OF PARAMETER

INPUT SPACE

Submitted by HAKAN BOSNALI in partial fulfillment of the requirements for the

degree of Master of Science in Information Systems Department, Middle East

Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin

Dean, Graduate School of Informatics

Prof. Dr. Yasemin Yardımcı Çetin

Head of Department, Information Systems

Assoc. Prof. Dr. Aysu Betin Can

Supervisor, Information Systems Dept., METU

Examining Committee Members:

Prof. Dr. Halit Oğuztüzün

Computer Engineering Dept., METU

Assoc. Prof. Dr. Aysu Betin Can

Information Systems Dept., METU

Assoc. Prof. Dr. Erhan Eren

Information Systems Dept., METU

Assoc. Prof. Dr. Tuğba Taşkaya Temizel

Information Systems Dept., METU

Assist. Prof. Ayça Tarhan

Computer Engineering Dept., Hacettepe University

 Date: 22.06.2018

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced

all material and results that are not original to this work.

Name, Last name : Hakan Bosnalı

Signature :

v

ABSTRACT

A COMBINATORIAL TEST DATA GENERATION APPROACH USING

FAULT DATA ANALYSIS AND DISCRETIZATION OF PARAMETER

INPUT SPACE

Bosnalı, Hakan

M.Sc., Department of Information Systems

Supervisor: Assoc. Prof. Dr. Aysu Betin Can

June 2018, 54 pages

Combinatorial Testing is an efficient testing strategy. It is based on the idea that

many faults are caused by interactions between a relatively small number of

parameters. However, determining the right interaction strength to generate data for

different software is an issue in terms of efficiency. In addition to that, it requires the

inputs in a discrete form, while that is not always the case. We propose a new

combinatorial test data generator tool that combines fault data analysis to determine

the right interaction strength for the specific domain of software and transformation

of the continuous input space of parameters into discrete using well known test

techniques. With this new tool, it is aimed to minimize test costs, while maximizing

the confidence in test data. Experiments made with the tool support this idea with

results showing a significant increase in test efficiency.

Keywords: Combinatorial Testing, Fault Data Analysis

vi

ÖZ

HATA VERİSİ ANALİZİ VE DEĞİŞKENLERİN GİRDİ UZAYININ

AYRIKLAŞTIRILMASINI KULLANAN BİR BİRLEŞİMSEL TEST VERİSİ

ÜRETİMİ YAKLAŞIMI

Bosnalı, Hakan

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Aysu Betin Can

Haziran 2018, 54 sayfa

Birleşimsel Test yöntemi verimli bir test stratejisidir. Bu yöntem, çoğu hatanın

nispeten düşük sayıda değişkenin etkileşimi sonucu meydana geldiği kanısına

dayanır. Fakat farklı yazılımlar için doğru etkileşim sayısını belirlemek verimlilik

anlamında bir sorundur. Bununla birlikte, girdilerin ayrık bir biçimde olması

gerekmektedir. Hata verisi analizi ile doğru etkileşim sayısını belirlemeyi ve

değişkenlerin sürekli olan girdi uzayının iyi bilinen test teknikleri kullanılarak

ayrıklaştırılmasını bir araya getiren yeni bir birleşimsel test verisi üreteci öneriyoruz.

Bu yeni araçla, test maliyetleri en aza indirilirken, test verisine olan güvenin de en

üst düzeye çıkarılması hedeflenmiştir. Yeni araçla yapılan deneyler de, sonuçlarda

görülen test verimliliğinin önemli ölçüde artış göstermesi ile bu fikri

desteklemektedir.

Anahtar Kelimeler: Birleşimsel Test, Hata Verisi Analizi

vii

To My Family

viii

ACKNOWLEDGEMENTS

I wish to express my deepest gratitude to my supervisor Doç. Dr. Aysu Betin Can for

her guidance, advice, criticism, encouragements and insight throughout the research.

I would also like to thank my colleague Ms. Elifnur Öztürk for her support in

experiments.

Besides, I would like to express my appreciation to my mother Emine Baybaş, my

father Bülent Bosnalı and my sister Gözde Bosnalı for always supporting me.

ix

TABLE OF CONTENTS

ABSTRACT .. V

ÖZ .. VI

ACKNOWLEDGEMENTS .. VIII

TABLE OF CONTENTS ... IX

LIST OF TABLES .. X

LIST OF FIGURES ... XI

LIST OF ABBREVIATIONS ... XII

CHAPTER 1 ... 1

INTRODUCTION .. 1

CHAPTER 2 ... 3

BACKGROUND .. 3

2.1. Test Techniques ... 3

2.1.1. Equivalence Partitioning .. 3

2.1.2. Boundary Value Analysis .. 3

2.1.3. Error Guessing ... 4

2.2. Combinatorial Testing ... 4

CHAPTER 3 ... 9

LITERATURE REVIEW ... 9

3.1. Fault Taxonomy ... 9

3.2. Fault Diagnosis Ontology .. 12

3.3. Software Fault Categorization ... 13

3.4. Trends in Software Fault and Failure Data .. 17

3.5. Combinatorial Testing ... 19

CHAPTER 4 ... 23

FAULT DATA ANALYSIS ... 23

4.1. Distribution of the faults according to detection phase 25

4.2. Distribution of the faults according to fault type 26

4.3. Distribution of the faults according to source of the fault 27

4.4. The average effort for solution according to source of the fault 28

4.5. The average effort for solution of the most critical faults according to

detection phase .. 29

4.6. The number of factors involved in failures .. 30

CHAPTER 5 ... 33

COMBINATORIAL TEST DATA GENERATOR ... 33

5.1. Design Phase .. 34

5.1.1. Configuring the test data generation .. 36

5.1.2. Discretizing the parameter values .. 40

5.1.3. Generating the combinatorial test data ... 41

CHAPTER 6 ... 45

AN EXPERIMENT USING THE TEST DATA GENERATOR TOOL 45

6.1. Test Environment Setup... 45

6.2. The Experiment and Test Results .. 46

6.3. Threats to Validity ... 50

CHAPTER 7 ... 51

CONCLUSION .. 51

REFERENCES ... 53

x

LIST OF TABLES

Table 1. Pairwise test set for 3 Boolean inputs .. 5

Table 2. An illustration of a system with 4 parameters .. 6

Table 3. 3-way test set for the system .. 7

Table 4. The error taxonomy presented by [2] ... 10

Table 5. Average size metrics per CSCI according to domain and software type 23

Table 6. Fields of faults and their possible values ... 24

xi

LIST OF FIGURES

Figure 1. Cumulative error detection rate vs number of interaction between

parameters [1] ... 8

Figure 2. Taxonomy of faults, combined with observed effects [4] 11

Figure 3. Overview of the Fault Diagnosis Ontology framework [5] 13

Figure 4. Pareto diagram for GCC [12] .. 18

Figure 5. Sources of failures for NASA mission [12] .. 18

Figure 6. Interaction strength and Average interaction strength for MySQL bugs

[13] .. 20

Figure 7. Four phases of CIT [15] .. 21

Figure 8. Distribution of the faults according to detection phase 26

Figure 9. Distribution of the faults according to fault type 27

Figure 10. Distribution of the faults according to source of the fault 28

Figure 11. The average effort for solution according to source of the fault 29

Figure 12. The average effort for solution of the most critical faults according to

detection phase .. 30

Figure 13. Interaction strength for EW and Radar bugs 31

Figure 14. Average interaction strength for EW and Radar bugs 32

Figure 15. Algorithm IPOG-Test [19] .. 34

Figure 16. Class Diagram for Test Data Generator tool 35

Figure 17. Content of domain.xml file ... 36

Figure 18. Content of a json input file .. 38

Figure 19. Content of an xml input file .. 39

Figure 20. Sequence diagram for discretizing the parameter values 41

Figure 21. Content of an ACTS input file .. 42

Figure 22. Sequence diagram for generating the combinatorial test data 44

Figure 23. Test data generation cycle ... 46

Figure 24. Comparison of effort in staff-hour .. 48

Figure 25. Comparison of number of test cases.. 48

Figure 26. Comparison of number of bugs found between old method and new

method .. 49

Figure 27. Comparison of number of bugs found between tests with random data

and new method .. 50

xii

LIST OF ABBREVIATIONS

CSCI Computer Software Configuration Item

GUI Graphical User Interface

EW Electronic Warfare

ACTS Advanced Combinatorial Testing System

IPOG In-Parameter-Order-General

SUT System Under Test

1

CHAPTER 1

INTRODUCTION

Generating efficient test data with limited resources has always been an issue for

software testing. Most of the time, testing all possible combinations is impossible,

since testing becomes exhaustive as the number of inputs increases. Among the

numerous available methods, Combinatorial Testing is proven to be an effective

testing strategy [1] [14]. However, selecting the right degree of interaction is a

problem and that affects the efficiency directly. For different software from different

domains, the degree of interaction changes [1]. On the other hand, to be able to use

this method, the range of inputs must be in a discrete form, but this is not the case at

all times. Continuous ranges for numbers and uncountable combination of characters

in a string field may not be suitable examples for inputs of this method. For these

reasons, before using this approach, degree of interaction for the specific domain of

software must be determined and the continuous input fields must be transformed

into discrete.

In this thesis, we aimed to develop an approach that overcomes these deficiencies.

Since our working area is Black-box testing of software from Electronic Warfare and

Radar domains, we had a valuable fault data for Graphical User Interface and

Embedded software in these domains. We analyzed these fault data to obtain the

interaction strengths for each domain. Afterwards, we developed a combinatorial test

data generator tool that first transforms the continuous input fields into discrete using

well known test techniques, then generates combinatorial test data using the analysis

results for the specified domain to select the degree of interaction. This way, the

lacking parts in combinatorial testing method were completed.

To validate this new tool and the method, we designed experiments on a real

industrial software from Radar Embedded domain to see if it helps reducing the

effort and increasing the number of bugs found. The results showed that test effort

was reduced by 80%, the number of test cases decreased by 76% and the number of

bugs triggered increased by 36% comparing with the old method. Analysis of new

2

bugs showed that they were all triggered by the interaction between parameters.

Moreover, test techniques used to discretize parameter input space also helped

generating test cases to trigger exceptional faults.

We also re-run the tests at the same setup with randomly generated test data to create

a comparison baseline for the new approach. Comparing the results of new method

with this case, the number of bugs found increased by 114%.

In this approach, we combined fault data analysis to determine the right interaction

strength according to domain of software, and discretization of continuous input

space of parameters using well known test techniques to generate combinatorial test

data. With this new tool, we aim to minimize test costs, while maximizing the

confidence in test data. Experiments made with the tool support this idea with results

showing a significant increase in test efficiency.

The rest of the thesis is organized as follows. Chapter 2 gives an insight about the

terms and methods that are used in this study. Chapter 3 consists of the review of the

similar studies in the literature. Chapter 4 includes the fault data analysis of software

in our domains. The design and work flow of test data generator tool is explained in

detail in Chapter 5. Experiments on the tool and the results are given in Chapter 6.

Finally, Chapter 7 contains conclusion and future work.

3

CHAPTER 2

BACKGROUND

2.1. Test Techniques

In this section, we give related background information about software testing

techniques, especially black box techniques as they are in our scope.

Black Box Testing, is a software testing method that examines the functionality of a

software without knowing its internal structure. It is interested in “What” the

software is supposed to do, not “How” the software does it. It treats the system as a

black-box and analyzes what outputs the system gives according to specific inputs.

Test cases are derived from external descriptions of the software, including

specifications, requirements and design parameters. Correct output is determined,

often with the help of an oracle or a previous result that is known to be good. Below

we list a sample of black box techniques.

2.1.1. Equivalence Partitioning

In this technique, inputs that result in similar behaviors of the system are divided into

groups, so they are treated the same way. Test cases are designed to cover each

partition at least once. For both valid and invalid data, equivalence partitions can be

formed. Partitions can also be generated for outputs, internal values, time related

values and interface parameters. It can be applied at any phase of testing.

Equivalence partitioning aims to achieve input and output coverage. It reduces the

time required for testing a software by decreasing the number of test cases.

2.1.2. Boundary Value Analysis

The edge values of an equivalence partition are more likely to behave different than

the values within the partition. Therefore, testing the boundaries is likely to find

some defects for the system. The maximum and the minimum values of a partition

are called its boundary values. Both valid and invalid boundaries can be chosen

while designing test cases. In this case, test vectors consist of the values which are on

the either side of the boundary.

4

Boundary value analysis can be applied at any level of testing. Its application is easy

and it is capable of finding defects with high probability.

2.1.3. Error Guessing

Error guessing is a commonly used experience-based technique. Testers can foresee

some defects based on their experiences. Therefore an approach can be constructed

by listing possible defects and designing test cases to find these defects. This

approach is called as fault attack. The lists for the defects and failures can be formed

based on experience, data available and from common knowledge.

2.2. Combinatorial Testing

Testing all possible combinations of parameters becomes exhaustive as the number

of inputs increases. When there is a shortage of resources in cases like this,

Combinatorial Testing method is very useful. It is a method that aims to increase the

effectiveness of test procedure by reducing the number of test cases by selecting

meaningful data according to a strategy. This method makes use of the idea that not

every input parameter contributes to every fault generated by the system and many

faults are caused by interactions between a relatively small number of parameters [1].

Pairwise Testing, which is a combinatorial method, suggest that many faults in the

system are triggered by the interaction of two parameter values. Therefore, while

generating input to the system, every combination of values of any two parameters

must be covered by at least one test case. For example, let us think of a system with

three Boolean inputs. All possible combinations are 2
3

= 8 tests. In pairwise testing

method, we can cover all pairs with only 4 tests as seen in Table 1. Boolean values

are denoted as 0 and 1. When you check each parameter pair, Parameter 1 and 2,

Parameter 1 and 3, and Parameter 2 and 3, each set contains all possible

combinations of two Boolean inputs {00, 01, 10, 11}. In this system, all the faults

that are triggered by the interaction of at most two parameters as indicated in the

Pairwise Testing method, can be found with only 4 test cases.

5

Table 1. Pairwise test set for 3 Boolean inputs

 Parameter 1 Parameter 2 Parameter 3

Test case 1 0 0 0

Test case 2 0 1 1

Test case 3 1 0 1

Test case 4 1 1 0

In this example, the difference between the test cases of two methods is only 4.

However, as the number of input parameters and the possible values of them

increase, the gap between the number of the test cases and the effort needed to apply

them increase drastically. To illustrate, let a system consist of 4 controls, each having

respectively 2, 3, 4 and 7 possible settings. There must be 2×3×4×7 = 168 test cases

to cover all possible combinations. In this case, we can cover all pairs with only 28

test cases, which is a quite logical choice for the sake of effectiveness.

Some empirical investigations have concluded that from 50 to 97 percent of software

faults could be identified by pairwise combinatorial testing [1]. Therefore, in case of

limited resources, Pairwise Testing may be a good way to find most of the faults in

the system.

T-way Testing, which is the generalized form of Pairwise Testing, is based on the

idea that some faults may be triggered by the interaction of more than two

parameters. To generate these faults, interaction of t parameters is needed. Hence, in

T-way testing, all combinations of any t parameters’ values must be included in at

least one test case.

For instance, let us consider the system in Table 2. It has 4 parameters with possible

values of 2, 5, 3 and 2 respectively. To cover all the possible combinations of these

parameters, we need 2×5×3×2 = 60 test cases.

6

Table 2. An illustration of a system with 4 parameters

Parameter name Parameter Value

a [true, false]

b [0, 1, 2, 3, 4]

c [qwert, zxcv, 265rge]

d [ghn, 78ok]

Now let us think we do not have enough resources to test all the combinations and

decide to prepare a test set to cover only up to 3-way interactions. In this manner, a

test set in Table 3 is prepared. As seen, only 30 test cases are enough for 3-way

interactions of all parameters. When any 3 columns are picked, it can be seen that all

the combinations of values for these 3 parameters are covered.

7

Table 3. 3-way test set for the system

Test Case No. a b c d

1 true 0 qwert ghn

2 false 0 qwert 78ok

3 true 0 zxcv 78ok

4 false 0 zxcv ghn

5 true 0 265rge ghn

6 false 0 265rge 78ok

7 true 1 qwert 78ok

8 false 1 qwert ghn

9 true 1 zxcv ghn

10 false 1 zxcv 78ok

11 true 1 265rge 78ok

12 false 1 265rge ghn

13 true 2 qwert ghn

14 false 2 qwert 78ok

15 true 2 zxcv 78ok

16 false 2 zxcv ghn

17 true 2 265rge ghn

18 false 2 265rge 78ok

19 true 3 qwert ghn

20 false 3 qwert 78ok

21 true 3 zxcv 78ok

22 false 3 zxcv ghn

23 true 3 265rge ghn

24 false 3 265rge 78ok

25 true 4 qwert ghn

26 false 4 qwert 78ok

27 true 4 zxcv 78ok

28 false 4 zxcv ghn

29 true 4 265rge ghn

30 false 4 265rge 78ok

8

A 10-project empirical study [1] has shown that some faults were triggered by three-,

four-, five, and six -way interactions in some systems which can be seen in Figure 1.

Figure 1. Cumulative error detection rate vs number of interaction between

parameters [1]

In the light of these studies, T-way testing is better than pairwise testing when more

resources are available or more precise testing is required.

9

CHAPTER 3

LITERATURE REVIEW

Software fault data is very important in terms of analyzing similar systems to prevent

future occurrence of similar faults. Many approaches are proposed in order to

achieve this goal, such as fault categorization, fault prediction, ontology based fault

diagnosis and fault taxonomies etc. In all of these approaches, recorded fault data

from earlier systems is in the center of all structure. Once the data is provided, the

next step is to find the suitable method to analyze it.

3.1. Fault Taxonomy

 There are a number of studies on fault taxonomy. Here we discuss fault taxonomy

studies for component-based software, service oriented architecture and web service

composition.

In [2], a software fault taxonomy for component based software is proposed. Known

faults are classified regarding their causes and effects. In this model, there are mainly

two fault classes: service-related and structure-related faults. Service-related faults

are divided into subgroups as syntactic, semantic, or non-functional. On the other

hand structure-related faults, which are related to the structure of the system, are

grouped according to causes of faults such as faulty connectors, the infrastructure,

and the topology. In Table 4, all main categories and sub-categories of them can be

seen. As a result, it is stated that, classification of the faults in this manner is the

initiative for developing effective tests and analysis, and identification of common

faults.

10

Table 4. The error taxonomy presented by [2]

Main Category Sub-Categories

Syntactic Interface Violation

Semantic

 Misunderstood on the Behavior

 Misunderstood on Parameters

 Misunderstood on Events

 Misunderstood on the Interaction Protocol

Non-Functional
 Performances

 Quality of Service

Connectors
 Disagreement on the Protocol

 Quality of Service

Infrastructure
 Underlying Services

 Underlying System

Topology

 Callback

 Re-entrance

 Recursion

Other

 Multi-thread

 Heterogeneous Languages

 Persistence

 Inconsistence Events

Another taxonomy is presented for Service-Oriented Architecture in [3]. This

approach makes use of the steps of Service-Oriented Architecture to distinguish fault

types, which are publishing, discovery, composition, binding, and execution.

Publishing faults are said to occur when the system description is incorrect or it does

not match the deployed service. Discovery faults can happen because of a non-

existing service or not being listed in lookup service. Composition faults can take

place in case of incompatible components. Binding faults may arise due to

authorization, authentication or accounting problems. When there is a mismatch

between the result and the expected outcome, execution faults occur. In conclusion, it

11

is said that this distinction is important for building dependable systems and testing

the system via fault injection.

The study [4] proposes a fault taxonomy for web service composition. The faults are

first divided into three major groups according to the causes: Physical, Development

and Interaction faults. Then starting from these top-level groups, subcategories are

formed and 6 fault classes are listed: development, operational, internal, external,

hardware and software faults. Finally, with the help of observed effects, a matrix in

Figure 2 is constructed. This approach is used for developing recovery techniques

from failures.

Figure 2. Taxonomy of faults, combined with observed effects [4]

12

3.2. Fault Diagnosis Ontology

The study [5] proposes an ontology-based software test generation framework. It is

used in automated test case selection as an application of knowledge engineering.

The framework has four phases as seen in Figure 3. First phase is Test Objective

Generation, which is managed by ontology. It takes rules, expert knowledge and

behavioral model as input and generates test objectives. Second phase is Redundancy

Checking, which checks test cases for the sake of fulfilling the objectives. Test

objectives and some rule templates are fed into this phase and non-redundant test

objectives are formed. In the third phase called Abstract Test Suite Ontology

Generation, abstract test cases are generated using test generation methods in

literature. Last phase is Executable Test Suite Generation. In this phase, executable

test cases are generated from abstract test suite. In overall, this method depends on

the solidity of rules and ontology given to the system. It is flexible and can be

extended with the introduction of new behavioral models and expert knowledge.

13

Figure 3. Overview of the Fault Diagnosis Ontology framework [5]

3.3. Software Fault Categorization

In [6], some important studies on software fault categorization in the literature are

analyzed. It summarizes these studies stating the fault categories and the fault

attributes that help them build these categorization.

The first study is Knuth’s errors of TEX [7]. It is based on the data collected from

software projects for 10 years. Knuth has listed 9 fault classes each denoted by a

letter:

 “A algorithm awry

 B blunder or botch

14

 D data structure debacle

 F forgotten function

 L language liability

 M mismatch between modules

 S surprising scenario

 T trivial typo” [7]

The below attributes of faults are used to construct these categories.

 “Time of fault introduction (e.g., A - during specification of an algorithm, B -

during coding)

 Fault location (e.g., D - data structure; faults are also assigned to

application modules)

 Manifestation in source code or lack thereof (errors of commission and

omission, e.g. F - forgotten function)

 Sort of information misinterpreted by the programmer (e.g., M - module

interfaces, L - language rules)

 Programmer’s ability to avoid the fault at the time of its introduction (e.g., B

- easily avoidable blunder, S - difficult-to-predict future scenario)” [7]

Performance optimizations are not included in Knuth’s categorization. The fault

frequencies could have also been included as an attribute.

The second study is Beizer’s bug taxonomy [8]. Its data was collected from many

software systems including defense, aerospace and communication domains and

written in different programming languages. A total of 982 bugs were used to

develop this classification. The attributes used to classify faults are:

 “Time of fault introduction (e.g., specification, implementation, test)

 Effects of fault activation (e.g., undesired control flow, data corruption)

 Location (e.g., the entity which is deemed incorrect and requires fixing)

 Type of required corrective action (e.g., requirement wrong/undesirable/not

needed/ambiguous, data scope: “local should be global”)” [8]

Using these attributes, a hierarchical tree was formed with 8 top level categories and

over 100 leaf categories. Top level categories are:

15

 “Functional bugs: requirements and features (errors during specification of

requirements)

 Functionality as implemented (errors in the interpretation of requirements)

 Structural bugs (mistakes during implementation concerning control flow and

expression manipulation)

 Data bugs (bugs in definition, structure or use of data)

 Implementation (typographical bugs, violations of standards and

conventions, errors in documentation)

 Integration (bugs having to do with interfaces between components)

 System and software architecture

 Test definition and execution” [8]

Frequency for each category is also presented in this study.

The third study is Gray’s classification of software faults in production software [9].

Gray did not propose a fault categorization, but analyzed the reasons of failures. In

this manner, the faults are divided in two types:

 “Transient faults (called Heisenbugs in the original paper) whose activations

can be masked by restoring a consistent initial state and retry; in other words

they cannot be simply reproduced by repeated execution.

 Non-transient faults (called Bohrbugs) whose activations cannot be masked

by retry; these are the easily reproducible faults.” [9]

Unlike others, Gray categorizes software faults with respect to their runtime

behavior.

Orthogonal Defect Classification [10] is the fourth study. It was produced by

analyzing over 50 software projects at IBM. Defect classes found in this study are:

 “Function (missing or wrong functionality, may require a formal design

change)

 Interface (addresses errors in communication between users, modules or

device drivers)

 Checking (faulty or missing validation of data and values in the source code)

 Assignment (addresses faults in the source code such as faulty initialization)

16

 Timing/Serialization (errors that are corrected by improved management of

shared and real-time resources)

 Build/Package/Merge (addresses problems due to mistakes in library

systems, management of changes, and version control)

 Documentation (addresses publications and maintenance notes)

 Algorithm (addresses efficiency or correctness problems which can be fixed

by re-implementation without the need for requesting a design change)” [10]

An attribute called “defect trigger” is specified to address the activation of faults.

Another study analyzed in this paper is Eisenstadt’s bug war stories [11]. He asked

many software developers about their most remarkable bug hunting stories. There

were three questions to answer: “why difficult”, “how found”, and “root cause”.

Third question yields a schema for fault categorization:

 “mem – Memory clobbered or used up

 vendor – Vendor’s problem (hardware or software)

 des.logic – Unanticipated case (faulty design logic)

 init – Wrong initialization; wrong type; definition clash

 lex – Lexical problem, bad parse, or ambiguous syntax

 var – Wrong variable or operator

 unsolved – Unknown and still unsolved to this day

 lang – Semantics ambiguous or misunderstood

 behav – End user’s (or programmer’s) subtle behavior

 ??? (No information)” [11]

This study is based on the best practices of developers and aims to guide design of

the future debugging tools.

The last study is “A grammar based fault classification schema by DeMillo and

Mathur” [11]. It is suggested that categorization of frequent faults can be used to

select suitable test techniques. A grammar based fault categorization with the

following categories is proposed:

 “Spurious entity – requires the removal of its characteristic substring

 Missing entity – requires the insertion of a syntactic entity

 Misplaced entity – requires a change in its position

17

 Incorrect entity – for all other faults” [11]

This approach is said to be appropriate for procedural programming languages, and

may not be applicable to functional or logic programming languages.

In conclusion, it is stated that project specific factors such as maturity of the

software, operating environment or programming language have a quite big effect on

software faults. Another information given at the end is that a systematic approach

for handling these factors has not been established.

3.4. Trends in Software Fault and Failure Data

The paper [12] analyzes fault and failure data from two large, real world case studies

which are the open-source application GCC, and a large-scale NASA mission.

Mainly two questions are asked and used as a guide while analyzing these data:

 “Are faults that cause individual failures localized, that is, do they belong to

the same file, component, top level component, etc.?

 Are some sources of failures (i.e., types of faults) more common than others?”

[12]

Some other software terms that are taken into consideration in this paper are:

 “The Pareto principle (i.e., a small number of modules contain the majority

of faults)

 Fault persistence through the testing phase and pre and post release

 The relationship between lines of code and faults

 Similarities in fault densities within project phases and across projects.” [12]

Investigation of Pareto principle on GCC, which can be seen in Figure 4, have shown

that 20% of the files contain nearly 80% of the faults. Moreover, 100% of the faults

are found in only 47% of the files. This result is perfectly parallel with Pareto

principle.

18

Figure 4. Pareto diagram for GCC [12]

The result of common resources of failures analysis on NASA mission can be seen in

Figure 5. Requirements and coding faults are the most common fault types.

Interestingly, design faults are less than 6% of all faults.

Figure 5. Sources of failures for NASA mission [12]

19

In particular, it is claimed that requirements, coding and data faults are the three most

common fault types. Rather than the common belief, most of the faults are related

with the late phases of software development process.

3.5. Combinatorial Testing

Combinatorial testing is a very popular and an effective testing strategy. In this

section we analyze the relation between faults and interaction strength, the AETG

System and Combinatorial Interaction Testing.

The study [13] investigates the relation between the software fault types and the

average t-way interaction that causes them. The terms “Bohrbugs” which are simple

bugs and easy to reproduce, and “Mandelbugs” which are complex bugs and more

difficult to reproduce are analyzed in terms of average interaction strength. The

below items guide the research:

 “Are the complex Mandelbugs of higher interaction strength than the

deterministic Bohrbugs?

 And if so, how large is the difference?

 Does it take longer to find the more complex bugs?

 Implications for testers using combinatorial testing methods” [13]

In this study, 242 bugs from bugs.mysql.com for MySQL software were examined.

35 of them could not be classified as Bohrbug or Mandelbug. 25% of all the bugs did

not have enough information to specify the number of interaction to cause the fault.

The results of the analysis of remaining data are shown in Figure 6. Mandelbugs

have higher interaction strength than Bohrbugs. This means that more factors are

needed to trigger more complex errors.

20

Figure 6. Interaction strength and Average interaction strength for MySQL bugs [13]

It is stated that the curves of two bug types are similar to each other but shifted by

one factor. To be able to find all of bugs, 4-way testing for Bohrbugs and 5-way

testing for Mandelbugs are sufficient. To sum up, the idea that T-way testing of up to

6 factors provides the same level of confidence as exhaustive testing turned out to be

true in MySQL case.

After analyzing the fault data, it is time to find a method to generate input data for

the tests. A combinatorial design based approach for testing pairwise, or t-way

combinations of system parameters is proposed in [14]. It takes the system

parameters and relations between them as an input. System parameters must be

defined in terms of possible values they have. However, these parameters may have

some restrictions and constraints that affect the values of each other. For this reason,

there is an interface for the user to keep out the disallowed tests. Then, using all these

information, a combinatorial algorithm generates the test data according to the

interaction strength determined by the user.

AETG was used to generate test cases for a system with 61 parameters, 29 of them

with 2 values, 17 with 3 values and 15 with 4 values. Total combinations of these

parameters result in 7.4 × 10
25

 test cases. AETG system produced 41 test cases for

pairwise combinations. In the next release of the same system, there were 75

parameters, 35 of them with 2 values, 39 with 3 values and 1 with 4 four values.

Exhaustive testing of all the combinations would bring about a total of 5.5 × 10
29

 test

21

cases. In this case, AETG generated 28 pairwise test cases. Although the second case

had more parameters than the first one, having less 4 valued parameters helped the

second case to produce less test cases in total. The logarithmic growth features of

AETG algorithm can be clearly seen from this outcome.

In conclusion, the results of the experiments with the AETG system demonstrate that

it is an effective and robust method to produce input data for the tests.

Phases of Combinatorial Interaction Testing is explained in detail in [15]. Four

phases consists of Modeling, Sampling, Test and Analyze, which can be seen in

Figure 7. Modeling and Sampling phases define “What” to test, and Test and

Analyze phases define “How” to test.

Figure 7. Four phases of CIT [15]

Modeling includes input space of SUT, configurations, constraints of system

parameters etc. An input must be stated as a parameter that can have discrete values.

If its possible values are continuous, then some common techniques like

“Equivalence partitioning” and “Boundary Value Analysis” can be used to transform

it to discrete. There may also be some constraints between the input parameters. To

avoid invalid combinations of these parameters, constraints must be taken into

consideration. Other than these, user may want to define some test data that must be

included into test cases, or to remove unwanted or already tested cases. All of these

forms the Modeling phase together. The problem with the Modeling is that

22

generation, modification and maintenance of it must be done manually in most of the

cases. It should be done in an automatic manner including constructing input space,

generating constraints and configuration, and helping the decision of interaction

strength.

Sampling is choosing the test data from the model defined in phase 1, with the help

of an algorithm or a process. In this phase, test cases are generated according to a

combinatorial approach and coverage criteria. To illustrate, selection of the

interaction strength between system parameters, such as pairwise or 3-way etc., is

done in Sampling phase. Existing sampling tools suffer from the lack of flexible and

generic scenario generation. If there were a way to define an abstract model for users

to build their own criteria, it would be more efficient and applicable.

In Testing, the inputs and the samples are utilized to run the tests. It can be done in

one shot or incrementally. Throughout the process, there may be some issues with

managing the schedule and test case prioritization. Even if the plan and the model are

carefully designed, testers may face some unpredictable problems during test phase.

To overcome problems like these, test approach should be incremental and adaptive.

After test phase, Analysis is done on test results to see if tests are failed or passed.

Fault localization and fault characterization are performed on the parameters and

values that caused the failure. To improve this process, it is important to support the

analysis with tool that can combine different fault characterization approaches.

23

CHAPTER 4

FAULT DATA ANALYSIS

In this part of the study, we gathered a valuable fault data from a total of 6 projects

and 30 Computer Software Configuration Items (CSCI) in the Electronic Warfare

and Radar domain. The projects consist of both embedded and Graphical User

Interface software. Each project has on the average 3400 requirements and 584000

Lines of Code. Detailed project size metrics according to domain and software type

are given in Table 5.

Table 5. Average size metrics per CSCI according to domain and software type

Domain Software type Requirements Lines of Code

Electronic Warfare
Embedded 500 63500

GUI 575 135000

Radar
Embedded 150 30000

GUI 375 57000

In total, there were 1461 faults. We collected 10 features for each fault, shown in

Table 6.

24

Table 6. Fields of faults and their possible values

Field Possible values

Detailed explanation of the

fault
Free text

Detection phase
CSCI test, Preparation test, Acceptance test,

System integration test, System test

Fault type Functional, Performance, Interface, Other

Severity 1-3 (1 is most critical)

Reproducibility
Seen only once, Generated randomly,

Regularly reproducible, Unknown

Source of the fault

System requirements, System design, Software

requirements, Software design, Coding,

Environment, Test

Solution type
Code correction, Document update, Test

environment correction

Effort for solution In minutes

Verification method
Analysis, Test, Demonstration, Document

check

Effort for verification In minutes

We analyzed these data in order to design our future roadmap for improving our

software test activities and making it more effective. While analyzing, we tried to

find answers to certain questions. Some of these questions are gathered from the

trending topics in the literature and some of them are triggered by the company

developing these software projects. The questions are:

 What is the distribution of the faults according to detection phase?

 What is the distribution of the faults according to fault type?

 What is the distribution of the faults according to source of the fault? [12]

[16]

 What is the effort for solution according to source of the fault?

 What is the effort for solution of the most critical faults according to

detection phase? [17]

 What is the number of factors involved in failures? [13]

25

4.1. Distribution of the faults according to detection phase

In the development life cycle, software start being tested at CSCI level. At this phase,

one CSCI is tested alone while surroundings are just mock software that behave

similar to real ones. After CSCI tests, two or more CSCIs that communicate with

each other are brought together in System Integration Test phase to construct smaller

system parts and find the bugs that may be triggered by the communication of

different CSCIs. When these two steps are done, the system is fully operated at

System test phase to analyze whether it works in accordance with the system

requirements. Before Acceptance Test phase with the customer, a Preparation test is

done as a walk through over the test procedure. Finally, acceptance test is done with

the customer.

We wanted to do an analysis to see at what point of the project, most of the faults

were found. Common approach suggests that detection rate of bugs ideally drops

towards the end of the software development life cycle. However, it is not always the

case. In our analysis, which can be seen in Figure 8, when integrating different

CSCIs, 38,06% of all faults were triggered. As the number of CSCIs increased, the

communication overhead and the bugs due to issues of connecting different CSCIs

also increased. The faults found at Acceptance test seemed to be quite high. This

usually happens when customer does not get involved in the development of the

software at the early phases, which leads to misunderstandings and a high fault rate

at the acceptance phase. Looking at these results, improving CSCI test performance

may help reduce the risks with less effort.

26

Figure 8. Distribution of the faults according to detection phase

4.2. Distribution of the faults according to fault type

Types of faults may have an effect on the solution type and effort. If one of the types

is more common than others, then applying special techniques for finding that type of

faults can reduce costs in total.

When we analyzed the distribution of fault types which can be seen in Figure 9,

87,41% of all faults were functional. It surely infer that finding functional faults at

CSCI test should be the first priority in order to increase effectiveness.

27

Figure 9. Distribution of the faults according to fault type

4.3. Distribution of the faults according to source of the fault

In [12], the question “Are some sources of failures more common than others?” was

asked while analyzing fault data. Their results have shown that the most common

sources were requirements faults with 32,65% and coding faults with 32,58% of all

faults. Then data problems followed them with 13,72%.

In another paper [16], the fault data was analyzed in the form of “Defect Origins vs.

Defects per Function Point”. Coding faults were first with 1,75 defects per function

point, then design faults and requirement faults followed it with 1,25 and 1 defects

per function point respectively.

In this perspective, we applied this analysis to see the sources that caused the faults

in detail. In our data, each fault had only one corresponding source which has the

primary responsibility for triggering it. Coding was the first source that is responsible

for causing a fault with a huge difference than others. The other sources and the

distribution can be seen in Figure 10.

According to these results, coding activities should be focused and analyzed in detail.

28

Figure 10. Distribution of the faults according to source of the fault

4.4. The average effort for solution according to source of the fault

The source of the fault itself could not be enough to explain everything. Therefore,

we moved on analyzing the effect of the sources on effort for solution. The average

effort for solution vs. sources of the fault graph can be seen in Figure 11. Design

problems clearly required more effort than other sources. Then, requirements and

coding followed design problems. It seemed that errors in early phase activities

resulted in more effort for solving them. It justifies the idea that risks should be

handled in early phases to reduce costs.

29

Figure 11. The average effort for solution according to source of the fault

4.5. The average effort for solution of the most critical faults according to

detection phase

Another important issue was the incidence of critical faults at later stages in the

project. It could cost more as the project proceeded towards the end. Software defect

reduction top-10 list in [17] suggests that “Finding and fixing a software problem

after delivery is often 100 times more expensive than finding and fixing it during the

requirements and design phase.” It makes an emphasis on the importance of early

phases like requirement analysis and design, early verification and validation to

reduce the effort and cost of bug fixes. They use the “often” word to point out some

exceptional cases. In small and noncritical software systems, this ratio is 5:1. Even

large and critical software can have a smaller ratio with the help of good architectural

practices. An example project that has well encapsulated modules in [18] has a ratio

of 2:1.

These ideas inspired us to do an analysis of the average effort for solution of the most

critical faults according to detection phase. Looking at the results seen in Figure 12,

the average effort for solving the most critical faults at early phases seemed to be

easier. In CSCI test, it was way cheaper to handle critical faults than any other phase.

30

Preparation test had the highest average effort for solving a critical fault, which was

about 3 times higher than CSCI test phase.

Figure 12. The average effort for solution of the most critical faults according to

detection phase

4.6. The number of factors involved in failures

An analysis of the relation between t-way interaction of input parameters and the bug

types are made in [13]. The average and the total interaction strength for all bugs are

collected. The results of the analysis show that the previous inferences about 6-way

combinatorial testing being effective as exhaustive testing also apply to their case.

We investigated the number of factors involved in failures in our fault data as well.

First we categorized the projects according to their domain; Electronic Warfare (EW)

and Radar, and software type; Embedded and GUI. After this categorization, we

analyzed the “Detailed explanation of the fault” field to extract the interaction

strength information for each fault. About 21% of the faults were not suitable for this

analysis due to insufficient information given in the fault description.

31

Results were in harmony with the idea that 6-way combinatorial testing is effective

as exhaustive testing. In Figure 13, number of interaction between parameters and

corresponding cumulative error detection rate for all types of bugs are given. Radar

Embedded bugs reach 100% coverage with an interaction strength of 4, Radar GUI

bugs with 5, EW Embedded bugs with 5 and EW GUI bugs with 6. Hence, similarly

in our case, 6-way combinatorial testing would be enough to find all the bugs.

Figure 13. Interaction strength for EW and Radar bugs

Average interaction strength for all bug types can be seen in Figure 14. EW bugs

seem to have a higher average interaction strength than Radar bugs, indicating that it

32

is more difficult to trigger EW bugs than Radar bugs. In EW domain, the average of

factors involved in failure for Embedded bugs is higher than GUI bugs, whereas in

Radar domain, GUI bugs require more effort to be triggered than Embedded bugs.

Figure 14. Average interaction strength for EW and Radar bugs

33

CHAPTER 5

COMBINATORIAL TEST DATA GENERATOR

After fault data analysis, we wanted to find a test data generation method using the

results of the analysis. Since we had the interaction strength for each fault type and

they were in compliance with the assumption made in [13], we decided to use

combinatorial testing approach which is known to be an effective testing strategy [1]

[14]. Because the analysis yielded the importance of functional tests, we needed to

find an effective approach for functional tests as well.

First we investigated the combinatorial test data generator tools available. Most of

the existing tools were built for pairwise testing [20] (e.g. IPO, AllPairs, Jenny). We

needed a tool that is capable of generating test data up to 6-way interactions of input

parameters according to our analysis results. Moreover, it had to be a desktop

application that provides an API for external tools. FireEye t-way testing tool, later

named as Advanced Combinatorial Testing System (ACTS), presented in [19]

seemed to be suitable for these constraints and performed better than its counterparts

[20]. It supports t-way test set generation with t ranging from 1 to 6. It provides a

GUI and a command line interface for external usage to generate combinatorial test

data with various options. Thanks to these features, it satisfies most of our

restrictions.

ACTS uses an algorithm called In-Parameter-Order-General (IPOG), which is the

generalized form of In-Parameter-Order algorithm from pairwise to t-way testing.

The details of IPOG algorithm can be seen in Figure 15. For a system with t or more

parameters, IPOG generates all combinations of first t parameters (lines 1-3), then

extends this set by one parameter until a t-way set is generated for all parameters

(lines 4-19). The extension part is done in two steps; horizontal (lines 6-10) and

vertical growth (lines 11-18).

34

Figure 15. Algorithm IPOG-Test [19]

Although ACTS answers most of our needs, it only accepts inputs in a discrete way.

In our systems, we had continuous ranges for some parameters and this needed to be

handled first to be able to use ACTS. Therefore, we needed to develop a tool that

completes the lacking abilities of ACTS for our test data development process.

5.1. Design Phase

We designed a tool that takes parameters and their possible values and transforms

them into discrete values using well known test techniques. Then, making use of the

domain specific interaction strengths that we obtained during the analysis phase, it

generates an input file for ACTS tool to generate combinatorial test data. Class

diagram for the tool can be seen in Figure 16.

Our design structure consists of 3 stages: reading the input from a file, discretizing

the parameter values and generating the combinatorial test data using ACTS tool.

3
5

Figure 16. Class Diagram for Test Data Generator tool

 36

5.1.1. Configuring the test data generation

Our tool has two input files to configure the test data generation: one for the domain

specific interaction strengths and one for the system parameters.

Interaction strength yields for the value “t” in t-way combinatorial testing. It also

refers to “degree of interaction (doi)” between the parameters. In our tool, the

interaction strengths for different domains can be configured easily with an xml file.

We generated an xml file using the analysis results in Section 3 and added 4 domains

and their interaction strength values. While selecting these values, we needed to

make a trade-off between the number of test cases and the fault coverage because the

number of test cases become larger as the interaction strength increases for full t-way

coverage. For that reason, we analyzed the results in Section 4 and came up with the

idea that the minimum interaction strengths that cover 90% or more of all faults

would be optimum. According to this strategy, generated degree of interaction “doi”

for each domain can be seen in Figure 17. This xml file can easily be extended for

different domains just by adding a new line for the new domain and the degree of

interaction value.

Figure 17. Content of domain.xml file

The second input file is for the system parameters, their values and test design

techniques. It also contains the name of the system and the domain which the system

belongs to. It can be in both xml and json format. Content of a json input file and an

xml input file can be seen in Figure 18 and Figure 19 respectively.

In the parameters section, for each parameter, there is a parameter name, resolution

of its possible values, possible values and test design techniques that will be used in

 37

discretizing the continuous values. Possible values field may differ according to

parameter type. Users may define a range, enter some specific values that must be

included in the test data, and a string with a specified length. If the parameter is a

string, then resolution field stands for the length of the string. Otherwise it implies

the minimum amount of change inside the defined range. A parameter can have more

than one technique to transform its continuous values to discrete.

Some combinations are not valid from the domain semantics, and must be excluded

from the resulting test set. The constraints section allows users to specify conditions

that will be taken into account during test data generation.

 38

Figure 18. Content of a json input file

 39

Figure 19. Content of an xml input file

Our tool parses these input files using built-in Java xml libraries and an open source

json library [21]. Then a TDGSystem object and its related Parameter and

TestTechnique objects are created using InputParser class.

 40

5.1.2. Discretizing the parameter values

Once the system, parameters and test techniques are created, the second step is

discretizing the parameter values. In this step, we made use of the well known test

design techniques such as Equivalence Partitioning and Boundary Value Analysis.

We also added Error Guessing and String Analysis for the first version. All of these

techniques extend the abstract TestTechnique class (see Figure 16) and each of them

implements the discretize(List values, String resolution) method according to their

way of making parameter values discrete. Due to this structure, these techniques can

be extended easily just by adding a new class that extends TestTechnique and

implementing the discretize(List values, String resolution) method. Then, in the input

file, the name of this class should be given in techniques of the parameters section.

EquivalencePartitioning class implements the discretize(List values, String

resolution) method by selecting a random value inside the given range of the

parameter taking resolution into consideration. BoundaryValueAnalysis class selects

min and max values in the range of the parameter, also (max+resolution) and (min-

resolution) values. ErrorGuessing class just selects the values given in the input file.

This class was added to give the user the ability to add values that must be tested

according to their experience. StringAnalysis class is used to discretize the

parameters of string type. It uses the resolution in the input file as the max length of

the string, then selects a string with zero length, a random string with the length 1,

and a random string with the max length.

After reading the input file, discretizeParameters() method of TDGSystem class is

called. The sequence diagram for this method can be seen in Figure 20. In

discretizeParameters() method, discretize() method for each parameter in the system

is called. Then for every technique of the parameter, discretize(List values, String

resolution) method is invoked. This method returns the list of discrete values that the

technique produces. When the loop finishes, the field values of Parameter object is

assigned with the new discrete values. After running the same procedure on all the

parameters in the system, all continuous and undetermined values are transformed

into specific, discrete and meaningful data.

 41

Figure 20. Sequence diagram for discretizing the parameter values

5.1.3. Generating the combinatorial test data

Once we obtained the discrete parameter values, we need to feed these values to

ACTS tool to generate the combinatorial test data. To be able to use ACTS tool, all

system specifications, such as parameter values and constraints, should be

transformed into an input file format which ACTS tool can understand. An example

of an ACTS input file can be seen in Figure 21. It contains the system name,

parameter names, types and their range, and if exists, the constraints information.

 42

Figure 21. Content of an ACTS input file

For the purpose of using ACTS tool, we generate a temporary input file with the

information we have in TDGSystem class (see Figure 16). When generateData(String

outputFile) method of the object of class TDGSystem is called, first the system name,

parameter values and constraints are written in a file, as seen in the sequence diagram

of generating the combinatorial test data in Figure 22.

After creating the input file for ACTS tool, we need to collect the domain specific

degree of interaction value for the System Under Test (SUT). The doi(String

domainName) method of the class DomainLookup parses the domain.xml file

mentioned in Section 5.1.1 and returns the integer degree of interaction value for the

domain which SUT belongs to. This value is used as the “t” value for t-way

combinatorial test data generation.

Since we have the compatible input file and interaction strength for the parameters,

we can run ACTS tool to generate test data. ACTS has a command line interface that

helps users to exploit its features without GUI interaction. It takes the degree of

interaction, the input file path and the output file path as command line parameters,

then generates and writes the test data into the provided output file. Inside our tool,

we call Runtime.exec() method and give required command line parameters to

benefit from this feature of ACTS. We give the generated temporary input file path

“actsInputFile”, degree of interaction value “doi” gathered for the SUT, and the

output file path “outputFile” where the generated test data will be written (see Figure

22). ACTS supports generating the output in four different formats: numeric, nist,

 43

csv, excel. This option can also be configured easily by giving the command line

parameter “Doutput”. In our case, the output file is generated in “CSV” format. With

this final step, generation of t-way combinatorial test data for our system is

completed.

 44

Figure 22. Sequence diagram for generating the combinatorial test data

 45

CHAPTER 6

AN EXPERIMENT USING THE TEST DATA GENERATOR TOOL

Once constructing the test data generator tool, we designed experiments to evaluate

the tool to see if it really helps reducing test data generation effort and increasing the

number of bugs found. For this purpose, we chose a real industrial software in Radar

Embedded domain, with a size of 7000 Lines of Code. This software was tested

before by generating test data manually. It had more than 180 parameters and

therefore many possible cases to be tested. Generating test cases for this software

required a huge effort; that is why we chose it for subject program (SUT) in our

experiment to see the effect of our tool on test effort.

One problem with the old test setup was setting parameter values manually, which

required too much effort while our SUT had more than 180 parameters. Other than

the effort of generating test data, another problem was selecting efficient test data

with limited resources. In other words, since testing all possible cases was

impossible, we needed to select the ones with higher chance to trigger bugs. For

these reasons, our test data generator tool seemed to be a perfect fit for this case.

6.1. Test Environment Setup

We have an automatic test infrastructure which was developed in house for the

purpose of testing software interfaces and certain test scenarios. It contains the

interface descriptions and parameter information between different software. We can

generate various test scenarios using this interface descriptions and set different

parameter values. Then these scenarios are run automatically and expected test

results are compared with the actual ones.

This test automation infrastructure uses an xml file that contains parameter names,

their possible values or ranges, test techniques that will be used to analyze them, and

constraints between these parameters. This xml file is created automatically from an

interface description file that is used for developing the SUT. Then, our

infrastructure uses this xml to create a test scenario.

 46

First, we constructed a base test scenario using SUT’s interface descriptions. After

that, we needed to generate test cases using our test data generator tool. However, the

test scenario created by the infrastructure had to be converted to the input format of

our tool. We wrote a simple adapter software for this purpose. It works as a translator

between the test infrastructure and our test data generator tool to convert each tool’s

output to the other one’s input. This way our test data generation cycle shown in

Figure 23, became fully automatic.

Figure 23. Test data generation cycle

The adapter software converts the parameter information inside the base scenario

into an input file for the test data generator tool, mentioned in Section 5.1.1. Then the

tool generates the combinatorial test data for the selected domain using the related

interaction strength which we obtain from the domain.xml file mentioned in Section

5.1.1. First, the tool discretizes the possible values of the parameters according to test

techniques and then generates the combinatorial test data according to constraints,

mentioned in Section 5.1.2 and 5.1.3. After generating the test data, the adapter

software generates the expected outcomes for input data with the help of interface

descriptions and converts these into a test infrastructure scenario file to complete the

cycle.

6.2. The Experiment and Test Results

Throughout the experiment, we tried to answer certain questions and obtain some

useful metrics to compare the old and the new method. These research questions

were:

 RQ1: How long did it take to prepare input files?

 47

 RQ2: How long did it take to carry out tests?

 RQ3: How many tests were generated?

 RQ4: How many bugs were triggered?

 RQ5: How many new bugs were found?

 RQ6: How many old bugs went unnoticed?

In the old method, we prepared input data and the expected outcomes manually with

the help of our test infrastructure and ran them automatically. The process consisted

of preparing one input and the related outcome at a time and running the test. Thanks

to automatic test infrastructure, running one test took approximately 1 minute.

However, preparing the input data and the expected outcomes took a huge effort.

Taking that into account, preparing test cases and running the tests together cost 40

staff-hour in total. 190 test cases were generated manually for the tests and 11 bugs

were found.

In the new method, we generated input data and expected outcomes with the test

setup explained in Section 6.1. Preparing the base test scenario file took a little

longer than the other steps in the test data generation cycle. After that, it only took 6

seconds to create test cases with our new setup. In total, generating test cases and

running the tests cost only 8 staff-hour. Our combinatorial test data generator created

45 test cases and 15 bugs were triggered with this data set. Once we analyzed the

results, we saw that 4 new bugs were discovered, and no old bugs went unnoticed

with this new method.

When we analyzed newly found bugs, we saw that they were all triggered by the

interaction between parameters. This showed that combinatorial testing strategy was

effective for us to find new bugs. Two of these faults were exceptional cases where

they could only be triggered by the interaction of two parameters when each value

was at different partitions. Here, equivalence partitioning technique helped us find

these bugs. Another fault was triggered by the interaction of two parameters when

only one of them was outside the minimum boundary and the absolute value of it was

smaller than the other parameter. Boundary value analysis technique helped us

trigger this fault. The last fault was caused when two parameters had string values

with the length of zero. In this case, string analysis technique was effective.

 48

The detailed results and comparisons can be seen in Figure 24, 25 and 26. The new

method reduced the test effort by 80%. Moreover, although the number of test cases

decreased by 76%, the number of bugs triggered increased by 36%.

Figure 24. Comparison of effort in staff-hour

Figure 25. Comparison of number of test cases

 49

Figure 26. Comparison of number of bugs found between old method and new

method

To generate a comparison baseline for the new method, we also designed an

experiment with randomly generated test data at the same test setup. For each

parameter, we picked a random value in the range of the parameter for each test case

and generated 45 test cases as in the new method. The results showed that only 7

faults were discovered where all the faults were caused by the value of one parameter

and no interactions were needed to trigger them. When we compare this case with

our new method, we see 114% increase in the number of bugs found. The

comparison of two cases can be seen in Figure 27.

 50

Figure 27. Comparison of number of bugs found between tests with random data and

new method

6.3. Threats to Validity

The construct validity is related to possible issues in comparison baseline for our

method. In the old method, tester’s bias while selecting test cases might have

affected the results. To eliminate this threat, we designed another experiment with

randomly generated test data in the same test setup. This way, the effect of tester was

removed, and we had an objective test data and a more valid comparison baseline.

The internal validity is related to discretization techniques and test data generation

algorithm in our approach. Different techniques and tools might affect test data and

result in different behaviors. To overcome this threat, we used well known test

techniques for the discretization of the parameter input space, and an existing tool

(ACTS) to generate combinatorial test data. We selected these after reviewing all

available techniques and tools in the literature.

The external validity is related to domain of software that is used in this study. We

only applied our approach on Electronic Warfare and Radar domains, thus further

analysis on software from different domains should be done for applicability.

The reliability states that this approach can be repeated by other researchers. For this

purpose, the steps in Sections 5, 6 and 7 are explained in detail.

 51

CHAPTER 7

CONCLUSION

Software in Electronic Warfare and Radar domains have a large number of

parameters with continuous input space. This situation results in uncountable

possible combinations for test case generation. Since it is impossible to test all these

combinations, we needed to find a method to minimize the number of test cases,

while selecting ones with higher possibility of triggering bugs. Combinatorial

Testing, which is proven to be an efficient testing strategy, seemed to be a good

choice for our situation. However, it required inputs in a discrete form. Moreover,

degree of interaction must have been different for each domain of software in terms

of test efficiency issues.

The approach we proposed fills these gaps with fault data analysis to determine the

right degree of interaction according to domain of software, and discretization of

parameter input space using well known test techniques. Fault data analysis that we

made on different software domains helped us in specifying predefined degree of

interaction values for each domain. These values were specified for future test data

generation of specific domain of software. Discretization of continuous parameter

input space was made using test techniques like Equivalence Partitioning, Boundary

Value Analysis etc. This way, continuous range for a parameter was reduced to

meaningful and discrete data with higher possibility to trigger bugs.

Our approach combined these methods with combinatorial testing to create an

efficient test data generation method. Experiments showed that the new method

reduced the test effort by 80%, the number of test cases decreased by 76%, and the

number of bugs triggered increased by 36% compared to the old method. Moreover,

it increased the number of bugs by 114% compared to tests with random data. In

addition to these improvements, analysis of the new faults showed that test

techniques and combinatorial approach directly played a role in finding them. These

results indicates that this new approach is an effective way that minimize test costs,

while maximizing the confidence in test data.

 52

This approach was only applied to software from Electronic Warfare and Radar

domains. However, since the approach is in a general form, it can be easily applied to

software from other domains. This way, it can contribute to efficiency and reduce

test data generation costs for software in all domains.

In the future, this approach can be extended to work with other test infrastructures as

well. For this purpose, a generic API for external test automation tools can be

provided.

 53

REFERENCES

[1] Kuhn, R., Kacker, R., Lei, Y., & Hunter, J. (2009). Combinatorial Software

Testing. Computer, 42(7), 94-96.

[2] Mariani, L. (2003). A Fault Taxonomy for Component-Based Software.

Electronic Notes in Theoretical Computer Science, 82(6), 55-65.

[3] Bruning, S., Weissleder, S., & Malek, M. (2007). A Fault Taxonomy for Service-

Oriented Architecture. 10th IEEE High Assurance Systems Engineering Symposium

(HASE07).

[4] Chan, K. S., Bishop, J., Steyn, J., Baresi, L., & Guinea, S. (2009). A Fault

Taxonomy for Web Service Composition. Service-Oriented Computing - ICSOC

2007 Workshops Lecture Notes in Computer Science, 363-375.

[5] V. H. Nasser, W. Du, and D. MacIsaac, "An ontology-based software test

generation framework," in Proceedings of the 22nd International Conference on

Software Engineering & Knowledge Engineering, 2010, pp. 192-197.

[6] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring. Research issues in

software fault categorization. SIGSOFT Softw. Eng. Notes, 32(6):6, 2007.

[7] Donald E. Knuth. The errors of TEX. Software Practice and Experience,

19(7):607–685, July1989.

[8] Boris Beizer and Otto Vinter. Bug taxonomy and statistics. Technical report,

Software Engineering Mentor, 2630 Taastrup, 2001.

[9] Jim Gray. Why do computers stop and what can be done about it? In Proceedings

of Symposium on Reliability in Distributed Software and Database Systems (SRDS-

5), pages 3–12. IEEE CS Press, 1986.

[10] R. Chillarege, I.S. Bhandari, J.K. Chaar, M.J. Halliday, D.S. Moebus, B.K. Ray,

and M. Y. Wong. Orthogonal defect classification-a concept for in-process

measurements. IEEE Transactions on Software Engineering, 18(11):943–956, 1992.

 54

[11] Richard A. DeMillo and Aditya P. Mathur. A grammar based fault classification

scheme and its application to the classification of the errors of TEX. Technical

report, Software Engineering Research Center and Department of Computer

Sciences, Purdue University, 1995.

[12] M. Hamill, K. Goseva-Popstojanova, "Common Trends in Software Fault and

Failure Data", IEEE Trans. Software Eng., vol. 35, no. 4, pp. 484-496, July/Aug.

2009.

[13] Z. Ratliff, R. Kuhn, R. Kacker, Y. Lei, K. Trivedi, "The Relationship Between

Software Bug Type and Number of Factors Involved in Failures", Intl Wkshp

Combinatorial Testing, 2016.

[14] D.M. Cohen, S.R. Dalal, M.L. Fredman, G.C. Patton, "The AETG System: An

Approach to Testing Based on Combinatorial Design", IEEE Trans. Software Eng.,

vol. 23, no. 7, pp. 437-444, July 1997.

[15] C. Yilmaz, S. Fouch´e, M. B. Cohen, A. A. Porter, G. Demiröz, and U. Koc.

Moving forward with combinatorial interaction testing. IEEE Computer, 47(2):37–

45, 2014.

[16] Fenton, N., & Neil, M. (1999). A critique of software defect prediction models.

IEEE Transactions on Software Engineering, 25(5), 675-689.

[17] Basili, V. R., & Boehm, B. W. (2009). Foundations of empirical software

engineering: the legacy of Victor R. Basili; with 21 tables. Berlin: Springer.

[18] Royce, W. (2003). Software project management: a unified framework.

Reading: Addison-Wesley.

[19] Lei, Y., Kacker, R., Kuhn, D. R., Okun, V., & Lawrence, J. (2007). IPOG: A

General Strategy for T-Way Software Testing. 14th Annual IEEE International

Conference and Workshops on the Engineering of Computer-Based Systems

(ECBS07).

[20] Pairwise Testing Available Tools. Retrieved February, 2018, from

http://www.pairwise.org/tools.asp.

[21] JSON. Retrieved March, 2018, from http://www.json.org.

http://www.pairwise.org/tools.asp
http://www.json.org/

RB-SA01/F01 Rev:0 26.10.2011

TEZ FOTOKOPİ İZİN FORMU

ENSTİTÜ

Fen Bilimleri Enstitüsü

Sosyal Bilimler Enstitüsü

Uygulamalı Matematik Enstitüsü

Enformatik Enstitüsü

Deniz Bilimleri Enstitüsü

YAZARIN

Soyadı : Bosnalı
Adı : Hakan
Bölümü : Bilişim Sistemleri

TEZİN ADI (İngilizce) : A COMBINATORIAL TEST DATA GENERATION
APPROACH USING FAULT DATA ANALYSIS AND DISCRETIZATION OF
PARAMETER INPUT SPACE

TEZİN TÜRÜ: Yüksek Lisans Doktora

1. Tezimin tamamı dünya çapında erişime açılsın ve kaynak gösterilmek şartıyla
tezimin bir kısmı veya tamamının fotokopisi alınsın.

2. Tezimin tamamı yalnızca Orta Doğu Teknik Üniversitesi kullanıcılarının

erişimine açılsın. (Bu seçenekle tezinizin fotokopisi ya da elektronik kopyası
Kütüphane aracılığı ile ODTÜ dışına dağıtılmayacaktır.)

3. Tezim bir (1) yıl süreyle erişime kapalı olsun. (Bu seçenekle tezinizin

fotokopisi ya da elektronik kopyası Kütüphane aracılığı ile ODTÜ dışına
dağıtılmayacaktır.)

Yazarın imzası: Tarih: 22.06.2018

