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ABSTRACT 

 

A COMBINATORIAL TEST DATA GENERATION APPROACH USING 

FAULT DATA ANALYSIS AND DISCRETIZATION OF PARAMETER 

INPUT SPACE 

 

Bosnalı, Hakan 

M.Sc., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Aysu Betin Can 

 

June 2018, 54 pages 

 

Combinatorial Testing is an efficient testing strategy. It is based on the idea that 

many faults are caused by interactions between a relatively small number of 

parameters. However, determining the right interaction strength to generate data for 

different software is an issue in terms of efficiency. In addition to that, it requires the 

inputs in a discrete form, while that is not always the case. We propose a new 

combinatorial test data generator tool that combines fault data analysis to determine 

the right interaction strength for the specific domain of software and transformation 

of the continuous input space of parameters into discrete using well known test 

techniques. With this new tool, it is aimed to minimize test costs, while maximizing 

the confidence in test data. Experiments made with the tool support this idea with 

results showing a significant increase in test efficiency. 

 

Keywords: Combinatorial Testing, Fault Data Analysis  
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ÖZ 

 

HATA VERİSİ ANALİZİ VE DEĞİŞKENLERİN GİRDİ UZAYININ 

AYRIKLAŞTIRILMASINI KULLANAN BİR BİRLEŞİMSEL TEST VERİSİ 

ÜRETİMİ YAKLAŞIMI 

 

Bosnalı, Hakan 

Yüksek Lisans, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doç. Dr. Aysu Betin Can 

 

Haziran 2018, 54 sayfa 

 

Birleşimsel Test yöntemi verimli bir test stratejisidir. Bu yöntem, çoğu hatanın 

nispeten düşük sayıda değişkenin etkileşimi sonucu meydana geldiği kanısına 

dayanır. Fakat farklı yazılımlar için doğru etkileşim sayısını belirlemek verimlilik 

anlamında bir sorundur. Bununla birlikte, girdilerin ayrık bir biçimde olması 

gerekmektedir. Hata verisi analizi ile doğru etkileşim sayısını belirlemeyi ve 

değişkenlerin sürekli olan girdi uzayının iyi bilinen test teknikleri kullanılarak 

ayrıklaştırılmasını bir araya getiren yeni bir birleşimsel test verisi üreteci öneriyoruz. 

Bu yeni araçla, test maliyetleri en aza indirilirken, test verisine olan güvenin de en 

üst düzeye çıkarılması hedeflenmiştir. Yeni araçla yapılan deneyler de, sonuçlarda 

görülen test verimliliğinin önemli ölçüde artış göstermesi ile bu fikri 

desteklemektedir. 

 

Anahtar Kelimeler: Birleşimsel Test, Hata Verisi Analizi 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

Generating efficient test data with limited resources has always been an issue for 

software testing. Most of the time, testing all possible combinations is impossible, 

since testing becomes exhaustive as the number of inputs increases. Among the 

numerous available methods, Combinatorial Testing is proven to be an effective 

testing strategy [1] [14]. However, selecting the right degree of interaction is a 

problem and that affects the efficiency directly. For different software from different 

domains, the degree of interaction changes [1]. On the other hand, to be able to use 

this method, the range of inputs must be in a discrete form, but this is not the case at 

all times. Continuous ranges for numbers and uncountable combination of characters 

in a string field may not be suitable examples for inputs of this method. For these 

reasons, before using this approach, degree of interaction for the specific domain of 

software must be determined and the continuous input fields must be transformed 

into discrete. 

In this thesis, we aimed to develop an approach that overcomes these deficiencies. 

Since our working area is Black-box testing of software from Electronic Warfare and 

Radar domains, we had a valuable fault data for Graphical User Interface and 

Embedded software in these domains. We analyzed these fault data to obtain the 

interaction strengths for each domain. Afterwards, we developed a combinatorial test 

data generator tool that first transforms the continuous input fields into discrete using 

well known test techniques, then generates combinatorial test data using the analysis 

results for the specified domain to select the degree of interaction. This way, the 

lacking parts in combinatorial testing method were completed.  

To validate this new tool and the method, we designed experiments on a real 

industrial software from Radar Embedded domain to see if it helps reducing the 

effort and increasing the number of bugs found. The results showed that test effort 

was reduced by 80%, the number of test cases decreased by 76% and the number of 

bugs triggered increased by 36% comparing with the old method. Analysis of new 
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bugs showed that they were all triggered by the interaction between parameters. 

Moreover, test techniques used to discretize parameter input space also helped 

generating test cases to trigger exceptional faults. 

We also re-run the tests at the same setup with randomly generated test data to create 

a comparison baseline for the new approach. Comparing the results of new method 

with this case, the number of bugs found increased by 114%.  

In this approach, we combined fault data analysis to determine the right interaction 

strength according to domain of software, and discretization of continuous input 

space of parameters using well known test techniques to generate combinatorial test 

data. With this new tool, we aim to minimize test costs, while maximizing the 

confidence in test data. Experiments made with the tool support this idea with results 

showing a significant increase in test efficiency. 

The rest of the thesis is organized as follows. Chapter 2 gives an insight about the 

terms and methods that are used in this study. Chapter 3 consists of the review of the 

similar studies in the literature. Chapter 4 includes the fault data analysis of software 

in our domains. The design and work flow of test data generator tool is explained in 

detail in Chapter 5. Experiments on the tool and the results are given in Chapter 6. 

Finally, Chapter 7 contains conclusion and future work.  
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CHAPTER 2 

 

 

BACKGROUND 

 

 

 

2.1. Test Techniques 

In this section, we give related background information about software testing 

techniques, especially black box techniques as they are in our scope. 

Black Box Testing, is a software testing method that examines the functionality of a 

software without knowing its internal structure. It is interested in “What” the 

software is supposed to do, not “How” the software does it. It treats the system as a 

black-box and analyzes what outputs the system gives according to specific inputs. 

Test cases are derived from external descriptions of the software, including 

specifications, requirements and design parameters. Correct output is determined, 

often with the help of an oracle or a previous result that is known to be good. Below 

we list a sample of black box techniques. 

2.1.1. Equivalence Partitioning 

In this technique, inputs that result in similar behaviors of the system are divided into 

groups, so they are treated the same way. Test cases are designed to cover each 

partition at least once. For both valid and invalid data, equivalence partitions can be 

formed. Partitions can also be generated for outputs, internal values, time related 

values and interface parameters. It can be applied at any phase of testing. 

Equivalence partitioning aims to achieve input and output coverage. It reduces the 

time required for testing a software by decreasing the number of test cases. 

2.1.2. Boundary Value Analysis 

The edge values of an equivalence partition are more likely to behave different than 

the values within the partition. Therefore, testing the boundaries is likely to find 

some defects for the system. The maximum and the minimum values of a partition 

are called its boundary values. Both valid and invalid boundaries can be chosen 

while designing test cases. In this case, test vectors consist of the values which are on 

the either side of the boundary.  
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Boundary value analysis can be applied at any level of testing. Its application is easy 

and it is capable of finding defects with high probability. 

2.1.3. Error Guessing 

Error guessing is a commonly used experience-based technique. Testers can foresee 

some defects based on their experiences. Therefore an approach can be constructed 

by listing possible defects and designing test cases to find these defects. This 

approach is called as fault attack. The lists for the defects and failures can be formed 

based on experience, data available and from common knowledge. 

2.2. Combinatorial Testing 

Testing all possible combinations of parameters becomes exhaustive as the number 

of inputs increases. When there is a shortage of resources in cases like this, 

Combinatorial Testing method is very useful. It is a method that aims to increase the 

effectiveness of test procedure by reducing the number of test cases by selecting 

meaningful data according to a strategy. This method makes use of the idea that not 

every input parameter contributes to every fault generated by the system and many 

faults are caused by interactions between a relatively small number of parameters [1].  

Pairwise Testing, which is a combinatorial method, suggest that many faults in the 

system are triggered by the interaction of two parameter values. Therefore, while 

generating input to the system, every combination of values of any two parameters 

must be covered by at least one test case. For example, let us think of a system with 

three Boolean inputs. All possible combinations are 2
3 

= 8 tests. In pairwise testing 

method, we can cover all pairs with only 4 tests as seen in Table 1. Boolean values 

are denoted as 0 and 1. When you check each parameter pair, Parameter 1 and 2, 

Parameter 1 and 3, and Parameter 2 and 3, each set contains all possible 

combinations of two Boolean inputs {00, 01, 10, 11}. In this system, all the faults 

that are triggered by the interaction of at most two parameters as indicated in the 

Pairwise Testing method, can be found with only 4 test cases. 

 

 

 



 

5 

 

Table 1. Pairwise test set for 3 Boolean inputs 

 

 Parameter 1 Parameter 2 Parameter 3 

Test case 1 0 0 0 

Test case 2 0 1 1 

Test case 3 1 0 1 

Test case 4 1 1 0 

 

 

 

In this example, the difference between the test cases of two methods is only 4. 

However, as the number of input parameters and the possible values of them 

increase, the gap between the number of the test cases and the effort needed to apply 

them increase drastically. To illustrate, let a system consist of 4 controls, each having 

respectively 2, 3, 4 and 7 possible settings. There must be 2×3×4×7 = 168 test cases 

to cover all possible combinations. In this case, we can cover all pairs with only 28 

test cases, which is a quite logical choice for the sake of effectiveness. 

Some empirical investigations have concluded that from 50 to 97 percent of software 

faults could be identified by pairwise combinatorial testing [1]. Therefore, in case of 

limited resources, Pairwise Testing may be a good way to find most of the faults in 

the system. 

T-way Testing, which is the generalized form of Pairwise Testing, is based on the 

idea that some faults may be triggered by the interaction of more than two 

parameters. To generate these faults, interaction of t parameters is needed. Hence, in 

T-way testing, all combinations of any t parameters’ values must be included in at 

least one test case.  

For instance, let us consider the system in Table 2. It has 4 parameters with possible 

values of 2, 5, 3 and 2 respectively. To cover all the possible combinations of these 

parameters, we need 2×5×3×2 = 60 test cases.  
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Table 2. An illustration of a system with 4 parameters 

 

Parameter name Parameter Value 

a [true, false] 

b [0, 1, 2, 3, 4] 

c [qwert, zxcv, 265rge] 

d [ghn, 78ok] 

 

 

 

Now let us think we do not have enough resources to test all the combinations and 

decide to prepare a test set to cover only up to 3-way interactions. In this manner, a 

test set in Table 3 is prepared. As seen, only 30 test cases are enough for 3-way 

interactions of all parameters. When any 3 columns are picked, it can be seen that all 

the combinations of values for these 3 parameters are covered.   
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Table 3. 3-way test set for the system 

 

Test Case No. a b c d 

1 true 0 qwert ghn 

2 false 0 qwert 78ok 

3 true 0 zxcv 78ok 

4 false 0 zxcv ghn 

5 true 0 265rge ghn 

6 false 0 265rge 78ok 

7 true 1 qwert 78ok 

8 false 1 qwert ghn 

9 true 1 zxcv ghn 

10 false 1 zxcv 78ok 

11 true 1 265rge 78ok 

12 false 1 265rge ghn 

13 true 2 qwert ghn 

14 false 2 qwert 78ok 

15 true 2 zxcv 78ok 

16 false 2 zxcv ghn 

17 true 2 265rge ghn 

18 false 2 265rge 78ok 

19 true 3 qwert ghn 

20 false 3 qwert 78ok 

21 true 3 zxcv 78ok 

22 false 3 zxcv ghn 

23 true 3 265rge ghn 

24 false 3 265rge 78ok 

25 true 4 qwert ghn 

26 false 4 qwert 78ok 

27 true 4 zxcv 78ok 

28 false 4 zxcv ghn 

29 true 4 265rge ghn 

30 false 4 265rge 78ok 
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A 10-project empirical study [1] has shown that some faults were triggered by three-, 

four-, five, and six -way interactions in some systems which can be seen in Figure 1.  

 

 

 

 

 

Figure 1. Cumulative error detection rate vs number of interaction between 

parameters [1] 

 

 

 

In the light of these studies, T-way testing is better than pairwise testing when more 

resources are available or more precise testing is required. 
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CHAPTER 3 

 

 

LITERATURE REVIEW 

 

 

 

Software fault data is very important in terms of analyzing similar systems to prevent 

future occurrence of similar faults. Many approaches are proposed in order to 

achieve this goal, such as fault categorization, fault prediction, ontology based fault 

diagnosis and fault taxonomies etc. In all of these approaches, recorded fault data 

from earlier systems is in the center of all structure. Once the data is provided, the 

next step is to find the suitable method to analyze it. 

3.1. Fault Taxonomy 

 There are a number of studies on fault taxonomy. Here we discuss fault taxonomy 

studies for component-based software, service oriented architecture and web service 

composition. 

In [2], a software fault taxonomy for component based software is proposed. Known 

faults are classified regarding their causes and effects. In this model, there are mainly 

two fault classes: service-related and structure-related faults. Service-related faults 

are divided into subgroups as syntactic, semantic, or non-functional. On the other 

hand structure-related faults, which are related to the structure of the system, are 

grouped according to causes of faults such as faulty connectors, the infrastructure, 

and the topology. In Table 4, all main categories and sub-categories of them can be 

seen. As a result, it is stated that, classification of the faults in this manner is the 

initiative for developing effective tests and analysis, and identification of common 

faults. 
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Table 4. The error taxonomy presented by [2] 

 

Main Category Sub-Categories 

Syntactic  Interface Violation 

Semantic 

 Misunderstood on the Behavior 

 Misunderstood on Parameters 

 Misunderstood on Events 

 Misunderstood on the Interaction Protocol 

Non-Functional 
 Performances 

 Quality of Service 

Connectors 
 Disagreement on the Protocol 

 Quality of Service 

Infrastructure 
 Underlying Services 

 Underlying System 

Topology 

 Callback 

 Re-entrance 

 Recursion 

Other 

 Multi-thread 

 Heterogeneous Languages 

 Persistence 

 Inconsistence Events 

 

 

 

Another taxonomy is presented for Service-Oriented Architecture in [3]. This 

approach makes use of the steps of Service-Oriented Architecture to distinguish fault 

types, which are publishing, discovery, composition, binding, and execution. 

Publishing faults are said to occur when the system description is incorrect or it does 

not match the deployed service. Discovery faults can happen because of a non-

existing service or not being listed in lookup service. Composition faults can take 

place in case of incompatible components. Binding faults may arise due to 

authorization, authentication or accounting problems. When there is a mismatch 

between the result and the expected outcome, execution faults occur. In conclusion, it 



 

11 

 

is said that this distinction is important for building dependable systems and testing 

the system via fault injection. 

The study [4] proposes a fault taxonomy for web service composition. The faults are 

first divided into three major groups according to the causes: Physical, Development 

and Interaction faults. Then starting from these top-level groups, subcategories are 

formed and 6 fault classes are listed: development, operational, internal, external, 

hardware and software faults. Finally, with the help of observed effects, a matrix in 

Figure 2 is constructed. This approach is used for developing recovery techniques 

from failures. 

 

 

 

 

 

Figure 2. Taxonomy of faults, combined with observed effects [4] 
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3.2. Fault Diagnosis Ontology 

The study [5] proposes an ontology-based software test generation framework. It is 

used in automated test case selection as an application of knowledge engineering. 

The framework has four phases as seen in Figure 3. First phase is Test Objective 

Generation, which is managed by ontology. It takes rules, expert knowledge and 

behavioral model as input and generates test objectives. Second phase is Redundancy 

Checking, which checks test cases for the sake of fulfilling the objectives. Test 

objectives and some rule templates are fed into this phase and non-redundant test 

objectives are formed. In the third phase called Abstract Test Suite Ontology 

Generation, abstract test cases are generated using test generation methods in 

literature. Last phase is Executable Test Suite Generation. In this phase, executable 

test cases are generated from abstract test suite. In overall, this method depends on 

the solidity of rules and ontology given to the system. It is flexible and can be 

extended with the introduction of new behavioral models and expert knowledge. 
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Figure 3. Overview of the Fault Diagnosis Ontology framework [5] 

 

 

 

3.3. Software Fault Categorization 

In [6], some important studies on software fault categorization in the literature are 

analyzed. It summarizes these studies stating the fault categories and the fault 

attributes that help them build these categorization.  

The first study is Knuth’s errors of TEX [7]. It is based on the data collected from 

software projects for 10 years. Knuth has listed 9 fault classes each denoted by a 

letter: 

 “A algorithm awry 

 B blunder or botch 
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 D data structure debacle 

 F forgotten function 

 L language liability 

 M mismatch between modules 

 S surprising scenario 

 T trivial typo” [7] 

The below attributes of faults are used to construct these categories. 

 “Time of fault introduction (e.g., A - during specification of an algorithm, B - 

during coding) 

 Fault location (e.g., D - data structure; faults are also assigned to 

application modules) 

 Manifestation in source code or lack thereof (errors of commission and 

omission, e.g. F - forgotten function) 

 Sort of information misinterpreted by the programmer (e.g., M - module 

interfaces, L - language rules) 

 Programmer’s ability to avoid the fault at the time of its introduction (e.g., B 

- easily avoidable blunder, S - difficult-to-predict future scenario)” [7] 

Performance optimizations are not included in Knuth’s categorization. The fault 

frequencies could have also been included as an attribute. 

The second study is Beizer’s bug taxonomy [8]. Its data was collected from many 

software systems including defense, aerospace and communication domains and 

written in different programming languages. A total of 982 bugs were used to 

develop this classification. The attributes used to classify faults are: 

 “Time of fault introduction (e.g., specification, implementation, test) 

 Effects of fault activation (e.g., undesired control flow, data corruption) 

 Location (e.g., the entity which is deemed incorrect and requires fixing) 

 Type of required corrective action (e.g., requirement wrong/undesirable/not 

needed/ambiguous, data scope: “local should be global”)” [8] 

Using these attributes, a hierarchical tree was formed with 8 top level categories and 

over 100 leaf categories. Top level categories are:  
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 “Functional bugs: requirements and features (errors during specification of 

requirements) 

 Functionality as implemented (errors in the interpretation of requirements) 

 Structural bugs (mistakes during implementation concerning control flow and 

expression manipulation) 

 Data bugs (bugs in definition, structure or use of data) 

 Implementation (typographical bugs, violations of standards and 

conventions, errors in documentation) 

 Integration (bugs having to do with interfaces between components) 

 System and software architecture 

 Test definition and execution” [8] 

Frequency for each category is also presented in this study. 

The third study is Gray’s classification of software faults in production software [9]. 

Gray did not propose a fault categorization, but analyzed the reasons of failures. In 

this manner, the faults are divided in two types: 

 “Transient faults (called Heisenbugs in the original paper) whose activations 

can be masked by restoring a consistent initial state and retry; in other words 

they cannot be simply reproduced by repeated execution. 

 Non-transient faults (called Bohrbugs) whose activations cannot be masked 

by retry; these are the easily reproducible faults.” [9] 

Unlike others, Gray categorizes software faults with respect to their runtime 

behavior. 

Orthogonal Defect Classification [10] is the fourth study. It was produced by 

analyzing over 50 software projects at IBM. Defect classes found in this study are: 

 “Function (missing or wrong functionality, may require a formal design 

change) 

 Interface (addresses errors in communication between users, modules or 

device drivers) 

 Checking (faulty or missing validation of data and values in the source code) 

 Assignment (addresses faults in the source code such as faulty initialization) 
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 Timing/Serialization (errors that are corrected by improved management of 

shared and real-time resources) 

 Build/Package/Merge (addresses problems due to mistakes in library 

systems, management of changes, and version control) 

 Documentation (addresses publications and maintenance notes) 

 Algorithm (addresses efficiency or correctness problems which can be fixed 

by re-implementation without the need for requesting a design change)” [10] 

An attribute called “defect trigger” is specified to address the activation of faults. 

Another study analyzed in this paper is Eisenstadt’s bug war stories [11]. He asked 

many software developers about their most remarkable bug hunting stories. There 

were three questions to answer: “why difficult”, “how found”, and “root cause”. 

Third question yields a schema for fault categorization:  

 “mem – Memory clobbered or used up 

 vendor – Vendor’s problem (hardware or software) 

 des.logic – Unanticipated case (faulty design logic) 

 init – Wrong initialization; wrong type; definition clash 

 lex – Lexical problem, bad parse, or ambiguous syntax 

 var – Wrong variable or operator 

 unsolved – Unknown and still unsolved to this day 

 lang – Semantics ambiguous or misunderstood 

 behav – End user’s (or programmer’s) subtle behavior 

 ??? (No information)” [11] 

This study is based on the best practices of developers and aims to guide design of 

the future debugging tools. 

The last study is “A grammar based fault classification schema by DeMillo and 

Mathur” [11]. It is suggested that categorization of frequent faults can be used to 

select suitable test techniques. A grammar based fault categorization with the 

following categories is proposed: 

 “Spurious entity – requires the removal of its characteristic substring 

 Missing entity – requires the insertion of a syntactic entity 

 Misplaced entity – requires a change in its position 
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 Incorrect entity – for all other faults” [11] 

This approach is said to be appropriate for procedural programming languages, and 

may not be applicable to functional or logic programming languages. 

In conclusion, it is stated that project specific factors such as maturity of the 

software, operating environment or programming language have a quite big effect on 

software faults. Another information given at the end is that a systematic approach 

for handling these factors has not been established. 

3.4. Trends in Software Fault and Failure Data 

The paper [12] analyzes fault and failure data from two large, real world case studies 

which are the open-source application GCC, and a large-scale NASA mission. 

Mainly two questions are asked and used as a guide while analyzing these data:  

 “Are faults that cause individual failures localized, that is, do they belong to 

the same file, component, top level component, etc.? 

 Are some sources of failures (i.e., types of faults) more common than others?” 

[12] 

Some other software terms that are taken into consideration in this paper are:  

 “The Pareto principle (i.e., a small number of modules contain the majority 

of faults) 

 Fault persistence through the testing phase and pre and post release 

 The relationship between lines of code and faults 

 Similarities in fault densities within project phases and across projects.” [12] 

Investigation of Pareto principle on GCC, which can be seen in Figure 4, have shown 

that 20% of the files contain nearly 80% of the faults. Moreover, 100% of the faults 

are found in only 47% of the files. This result is perfectly parallel with Pareto 

principle. 
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Figure 4. Pareto diagram for GCC [12] 

 

 

 

The result of common resources of failures analysis on NASA mission can be seen in 

Figure 5. Requirements and coding faults are the most common fault types. 

Interestingly, design faults are less than 6% of all faults.  

 

 

 

 

 

Figure 5. Sources of failures for NASA mission [12] 
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In particular, it is claimed that requirements, coding and data faults are the three most 

common fault types. Rather than the common belief, most of the faults are related 

with the late phases of software development process. 

3.5. Combinatorial Testing 

Combinatorial testing is a very popular and an effective testing strategy. In this 

section we analyze the relation between faults and interaction strength, the AETG 

System and Combinatorial Interaction Testing. 

The study [13] investigates the relation between the software fault types and the 

average t-way interaction that causes them. The terms “Bohrbugs” which are simple 

bugs and easy to reproduce, and “Mandelbugs” which are complex bugs and more 

difficult to reproduce are analyzed in terms of average interaction strength. The 

below items guide the research: 

 “Are the complex Mandelbugs of higher interaction strength than the 

deterministic Bohrbugs? 

 And if so, how large is the difference? 

 Does it take longer to find the more complex bugs? 

 Implications for testers using combinatorial testing methods” [13] 

In this study, 242 bugs from bugs.mysql.com for MySQL software were examined. 

35 of them could not be classified as Bohrbug or Mandelbug. 25% of all the bugs did 

not have enough information to specify the number of interaction to cause the fault. 

The results of the analysis of remaining data are shown in Figure 6. Mandelbugs 

have higher interaction strength than Bohrbugs. This means that more factors are 

needed to trigger more complex errors. 
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Figure 6. Interaction strength and Average interaction strength for MySQL bugs [13] 

 

 

 

It is stated that the curves of two bug types are similar to each other but shifted by 

one factor. To be able to find all of bugs, 4-way testing for Bohrbugs and 5-way 

testing for Mandelbugs are sufficient. To sum up, the idea that T-way testing of up to 

6 factors provides the same level of confidence as exhaustive testing turned out to be 

true in MySQL case. 

After analyzing the fault data, it is time to find a method to generate input data for 

the tests. A combinatorial design based approach for testing pairwise, or t-way 

combinations of system parameters is proposed in [14]. It takes the system 

parameters and relations between them as an input. System parameters must be 

defined in terms of possible values they have. However, these parameters may have 

some restrictions and constraints that affect the values of each other. For this reason, 

there is an interface for the user to keep out the disallowed tests. Then, using all these 

information, a combinatorial algorithm generates the test data according to the 

interaction strength determined by the user. 

AETG was used to generate test cases for a system with 61 parameters, 29 of them 

with 2 values, 17 with 3 values and 15 with 4 values. Total combinations of these 

parameters result in 7.4 × 10
25

 test cases. AETG system produced 41 test cases for 

pairwise combinations. In the next release of the same system, there were 75 

parameters, 35 of them with 2 values, 39 with 3 values and 1 with 4 four values. 

Exhaustive testing of all the combinations would bring about a total of 5.5 × 10
29

 test 
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cases. In this case, AETG generated 28 pairwise test cases. Although the second case 

had more parameters than the first one, having less 4 valued parameters helped the 

second case to produce less test cases in total. The logarithmic growth features of 

AETG algorithm can be clearly seen from this outcome.  

In conclusion, the results of the experiments with the AETG system demonstrate that 

it is an effective and robust method to produce input data for the tests. 

Phases of Combinatorial Interaction Testing is explained in detail in [15]. Four 

phases consists of Modeling, Sampling, Test and Analyze, which can be seen in 

Figure 7. Modeling and Sampling phases define “What” to test, and Test and 

Analyze phases define “How” to test.  

 

 

 

 

 

Figure 7. Four phases of CIT [15] 

 

 

 

Modeling includes input space of SUT, configurations, constraints of system 

parameters etc. An input must be stated as a parameter that can have discrete values. 

If its possible values are continuous, then some common techniques like 

“Equivalence partitioning” and “Boundary Value Analysis” can be used to transform 

it to discrete. There may also be some constraints between the input parameters. To 

avoid invalid combinations of these parameters, constraints must be taken into 

consideration. Other than these, user may want to define some test data that must be 

included into test cases, or to remove unwanted or already tested cases. All of these 

forms the Modeling phase together. The problem with the Modeling is that 



 

22 

 

generation, modification and maintenance of it must be done manually in most of the 

cases. It should be done in an automatic manner including constructing input space, 

generating constraints and configuration, and helping the decision of interaction 

strength. 

Sampling is choosing the test data from the model defined in phase 1, with the help 

of an algorithm or a process. In this phase, test cases are generated according to a 

combinatorial approach and coverage criteria. To illustrate, selection of the 

interaction strength between system parameters, such as pairwise or 3-way etc., is 

done in Sampling phase. Existing sampling tools suffer from the lack of flexible and 

generic scenario generation. If there were a way to define an abstract model for users 

to build their own criteria, it would be more efficient and applicable. 

In Testing, the inputs and the samples are utilized to run the tests. It can be done in 

one shot or incrementally. Throughout the process, there may be some issues with 

managing the schedule and test case prioritization. Even if the plan and the model are 

carefully designed, testers may face some unpredictable problems during test phase. 

To overcome problems like these, test approach should be incremental and adaptive. 

After test phase, Analysis is done on test results to see if tests are failed or passed. 

Fault localization and fault characterization are performed on the parameters and 

values that caused the failure. To improve this process, it is important to support the 

analysis with tool that can combine different fault characterization approaches. 
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CHAPTER 4 

 

 

FAULT DATA ANALYSIS 

 

 

 

In this part of the study, we gathered a valuable fault data from a total of 6 projects 

and 30 Computer Software Configuration Items (CSCI) in the Electronic Warfare 

and Radar domain. The projects consist of both embedded and Graphical User 

Interface software. Each project has on the average 3400 requirements and 584000 

Lines of Code. Detailed project size metrics according to domain and software type 

are given in Table 5.  

 

 

 

Table 5. Average size metrics per CSCI according to domain and software type 

 

Domain Software type Requirements Lines of Code 

Electronic Warfare 
Embedded 500 63500 

GUI 575 135000 

Radar 
Embedded 150 30000 

GUI 375 57000 

 

 

 

In total, there were 1461 faults. We collected 10 features for each fault, shown in 

Table 6.  
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Table 6. Fields of faults and their possible values 

 

Field Possible values 

Detailed explanation of the 

fault 
Free text 

Detection phase 
CSCI test, Preparation test, Acceptance test, 

System integration test, System test 

Fault type Functional, Performance, Interface, Other 

Severity 1-3 (1 is most critical) 

Reproducibility 
Seen only once, Generated randomly, 

Regularly reproducible, Unknown 

Source of the fault 

System requirements, System design, Software 

requirements, Software design, Coding, 

Environment, Test 

Solution type 
Code correction, Document update, Test 

environment correction 

Effort for solution In minutes 

Verification method 
Analysis, Test, Demonstration, Document 

check 

Effort for verification In minutes 

 

 

 

We analyzed these data in order to design our future roadmap for improving our 

software test activities and making it more effective. While analyzing, we tried to 

find answers to certain questions. Some of these questions are gathered from the 

trending topics in the literature and some of them are triggered by the company 

developing these software projects. The questions are: 

 What is the distribution of the faults according to detection phase? 

 What is the distribution of the faults according to fault type? 

 What is the distribution of the faults according to source of the fault? [12] 

[16] 

 What is the effort for solution according to source of the fault? 

 What is the effort for solution of the most critical faults according to 

detection phase? [17] 

 What is the number of factors involved in failures? [13] 
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4.1. Distribution of the faults according to detection phase 

In the development life cycle, software start being tested at CSCI level. At this phase, 

one CSCI is tested alone while surroundings are just mock software that behave 

similar to real ones. After CSCI tests, two or more CSCIs that communicate with 

each other are brought together in System Integration Test phase to construct smaller 

system parts and find the bugs that may be triggered by the communication of 

different CSCIs. When these two steps are done, the system is fully operated at 

System test phase to analyze whether it works in accordance with the system 

requirements. Before Acceptance Test phase with the customer, a Preparation test is 

done as a walk through over the test procedure. Finally, acceptance test is done with 

the customer. 

We wanted to do an analysis to see at what point of the project, most of the faults 

were found. Common approach suggests that detection rate of bugs ideally drops 

towards the end of the software development life cycle. However, it is not always the 

case. In our analysis, which can be seen in Figure 8, when integrating different 

CSCIs, 38,06% of all faults were triggered. As the number of CSCIs increased, the 

communication overhead and the bugs due to issues of connecting different CSCIs 

also increased. The faults found at Acceptance test seemed to be quite high. This 

usually happens when customer does not get involved in the development of the 

software at the early phases, which leads to misunderstandings and a high fault rate 

at the acceptance phase. Looking at these results, improving CSCI test performance 

may help reduce the risks with less effort. 
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Figure 8. Distribution of the faults according to detection phase 

 

 

 

4.2. Distribution of the faults according to fault type 

Types of faults may have an effect on the solution type and effort. If one of the types 

is more common than others, then applying special techniques for finding that type of 

faults can reduce costs in total.  

When we analyzed the distribution of fault types which can be seen in Figure 9, 

87,41% of all faults were functional. It surely infer that finding functional faults at 

CSCI test should be the first priority in order to increase effectiveness.  
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Figure 9. Distribution of the faults according to fault type 

 

 

 

4.3. Distribution of the faults according to source of the fault 

In [12], the question “Are some sources of failures more common than others?” was 

asked while analyzing fault data. Their results have shown that the most common 

sources were requirements faults with 32,65% and coding faults with 32,58% of all 

faults. Then data problems followed them with 13,72%.  

In another paper [16], the fault data was analyzed in the form of “Defect Origins vs. 

Defects per Function Point”. Coding faults were first with 1,75 defects per function 

point, then design faults and requirement faults followed it with 1,25 and 1 defects 

per function point respectively. 

In this perspective, we applied this analysis to see the sources that caused the faults 

in detail. In our data, each fault had only one corresponding source which has the 

primary responsibility for triggering it. Coding was the first source that is responsible 

for causing a fault with a huge difference than others. The other sources and the 

distribution can be seen in Figure 10.  

According to these results, coding activities should be focused and analyzed in detail.  
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Figure 10. Distribution of the faults according to source of the fault 

 

 

 

4.4. The average effort for solution according to source of the fault 

The source of the fault itself could not be enough to explain everything. Therefore, 

we moved on analyzing the effect of the sources on effort for solution. The average 

effort for solution vs. sources of the fault graph can be seen in Figure 11. Design 

problems clearly required more effort than other sources. Then, requirements and 

coding followed design problems. It seemed that errors in early phase activities 

resulted in more effort for solving them. It justifies the idea that risks should be 

handled in early phases to reduce costs. 
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Figure 11. The average effort for solution according to source of the fault 

 

 

 

4.5. The average effort for solution of the most critical faults according to 

detection phase 

Another important issue was the incidence of critical faults at later stages in the 

project. It could cost more as the project proceeded towards the end. Software defect 

reduction top-10 list in [17] suggests that “Finding and fixing a software problem 

after delivery is often 100 times more expensive than finding and fixing it during the 

requirements and design phase.” It makes an emphasis on the importance of early 

phases like requirement analysis and design, early verification and validation to 

reduce the effort and cost of bug fixes. They use the “often” word to point out some 

exceptional cases. In small and noncritical software systems, this ratio is 5:1. Even 

large and critical software can have a smaller ratio with the help of good architectural 

practices. An example project that has well encapsulated modules in [18] has a ratio 

of 2:1. 

These ideas inspired us to do an analysis of the average effort for solution of the most 

critical faults according to detection phase. Looking at the results seen in Figure 12, 

the average effort for solving the most critical faults at early phases seemed to be 

easier. In CSCI test, it was way cheaper to handle critical faults than any other phase. 
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Preparation test had the highest average effort for solving a critical fault, which was 

about 3 times higher than CSCI test phase. 

 

 

 

 
 

Figure 12. The average effort for solution of the most critical faults according to 

detection phase 

 

 

 

4.6. The number of factors involved in failures 

An analysis of the relation between t-way interaction of input parameters and the bug 

types are made in [13]. The average and the total interaction strength for all bugs are 

collected. The results of the analysis show that the previous inferences about 6-way 

combinatorial testing being effective as exhaustive testing also apply to their case.  

We investigated the number of factors involved in failures in our fault data as well. 

First we categorized the projects according to their domain; Electronic Warfare (EW) 

and Radar, and software type; Embedded and GUI. After this categorization, we 

analyzed the “Detailed explanation of the fault” field to extract the interaction 

strength information for each fault. About 21% of the faults were not suitable for this 

analysis due to insufficient information given in the fault description.  
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Results were in harmony with the idea that 6-way combinatorial testing is effective 

as exhaustive testing. In Figure 13, number of interaction between parameters and 

corresponding cumulative error detection rate for all types of bugs are given. Radar 

Embedded bugs reach 100% coverage with an interaction strength of 4, Radar GUI 

bugs with 5, EW Embedded bugs with 5 and EW GUI bugs with 6. Hence, similarly 

in our case, 6-way combinatorial testing would be enough to find all the bugs. 

 

 

 

 

 

Figure 13. Interaction strength for EW and Radar bugs 

 

 

 

Average interaction strength for all bug types can be seen in Figure 14. EW bugs 

seem to have a higher average interaction strength than Radar bugs, indicating that it 
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is more difficult to trigger EW bugs than Radar bugs. In EW domain, the average of 

factors involved in failure for Embedded bugs is higher than GUI bugs, whereas in 

Radar domain, GUI bugs require more effort to be triggered than Embedded bugs.  

 

 

 

 

 

Figure 14. Average interaction strength for EW and Radar bugs 

  



 

33 

 

 

CHAPTER 5 

 

 

COMBINATORIAL TEST DATA GENERATOR 

 

 

 

After fault data analysis, we wanted to find a test data generation method using the 

results of the analysis. Since we had the interaction strength for each fault type and 

they were in compliance with the assumption made in [13], we decided to use 

combinatorial testing approach which is known to be an effective testing strategy [1] 

[14]. Because the analysis yielded the importance of functional tests, we needed to 

find an effective approach for functional tests as well. 

First we investigated the combinatorial test data generator tools available. Most of 

the existing tools were built for pairwise testing [20] (e.g. IPO, AllPairs, Jenny). We 

needed a tool that is capable of generating test data up to 6-way interactions of input 

parameters according to our analysis results. Moreover, it had to be a desktop 

application that provides an API for external tools. FireEye t-way testing tool, later 

named as Advanced Combinatorial Testing System (ACTS), presented in [19] 

seemed to be suitable for these constraints and performed better than its counterparts 

[20]. It supports t-way test set generation with t ranging from 1 to 6. It provides a 

GUI and a command line interface for external usage to generate combinatorial test 

data with various options. Thanks to these features, it satisfies most of our 

restrictions.  

ACTS uses an algorithm called In-Parameter-Order-General (IPOG), which is the 

generalized form of In-Parameter-Order algorithm from pairwise to t-way testing. 

The details of IPOG algorithm can be seen in Figure 15. For a system with t or more 

parameters, IPOG generates all combinations of first t parameters (lines 1-3), then 

extends this set by one parameter until a t-way set is generated for all parameters 

(lines 4-19). The extension part is done in two steps; horizontal (lines 6-10) and 

vertical growth (lines 11-18).  
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Figure 15. Algorithm IPOG-Test [19] 

 

 

 

Although ACTS answers most of our needs, it only accepts inputs in a discrete way. 

In our systems, we had continuous ranges for some parameters and this needed to be 

handled first to be able to use ACTS. Therefore, we needed to develop a tool that 

completes the lacking abilities of ACTS for our test data development process. 

5.1. Design Phase 

We designed a tool that takes parameters and their possible values and transforms 

them into discrete values using well known test techniques. Then, making use of the 

domain specific interaction strengths that we obtained during the analysis phase, it 

generates an input file for ACTS tool to generate combinatorial test data. Class 

diagram for the tool can be seen in Figure 16. 

Our design structure consists of 3 stages: reading the input from a file, discretizing 

the parameter values and generating the combinatorial test data using ACTS tool. 



 

 

 

3
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Figure 16. Class Diagram for Test Data Generator tool
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5.1.1. Configuring the test data generation 

Our tool has two input files to configure the test data generation: one for the domain 

specific interaction strengths and one for the system parameters.  

Interaction strength yields for the value “t” in t-way combinatorial testing. It also 

refers to “degree of interaction (doi)” between the parameters. In our tool, the 

interaction strengths for different domains can be configured easily with an xml file. 

We generated an xml file using the analysis results in Section 3 and added 4 domains 

and their interaction strength values. While selecting these values, we needed to 

make a trade-off between the number of test cases and the fault coverage because the 

number of test cases become larger as the interaction strength increases for full t-way 

coverage. For that reason, we analyzed the results in Section 4 and came up with the 

idea that the minimum interaction strengths that cover 90% or more of all faults 

would be optimum. According to this strategy, generated degree of interaction “doi” 

for each domain can be seen in Figure 17. This xml file can easily be extended for 

different domains just by adding a new line for the new domain and the degree of 

interaction value. 

 

 

 

 

 

Figure 17. Content of domain.xml file 

 

 

 

The second input file is for the system parameters, their values and test design 

techniques. It also contains the name of the system and the domain which the system 

belongs to. It can be in both xml and json format. Content of a json input file and an 

xml input file can be seen in Figure 18 and Figure 19 respectively. 

In the parameters section, for each parameter, there is a parameter name, resolution 

of its possible values, possible values and test design techniques that will be used in 
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discretizing the continuous values. Possible values field may differ according to 

parameter type. Users may define a range, enter some specific values that must be 

included in the test data, and a string with a specified length. If the parameter is a 

string, then resolution field stands for the length of the string. Otherwise it implies 

the minimum amount of change inside the defined range. A parameter can have more 

than one technique to transform its continuous values to discrete.  

Some combinations are not valid from the domain semantics, and must be excluded 

from the resulting test set. The constraints section allows users to specify conditions 

that will be taken into account during test data generation.  
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Figure 18. Content of a json input file 
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Figure 19. Content of an xml input file 

 

 

 

Our tool parses these input files using built-in Java xml libraries and an open source 

json library [21]. Then a TDGSystem object and its related Parameter and 

TestTechnique objects are created using InputParser class. 
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5.1.2. Discretizing the parameter values 

Once the system, parameters and test techniques are created, the second step is 

discretizing the parameter values. In this step, we made use of the well known test 

design techniques such as Equivalence Partitioning and Boundary Value Analysis. 

We also added Error Guessing and String Analysis for the first version. All of these 

techniques extend the abstract TestTechnique class (see Figure 16) and each of them 

implements the discretize(List values, String resolution) method according to their 

way of making parameter values discrete. Due to this structure, these techniques can 

be extended easily just by adding a new class that extends TestTechnique and 

implementing the discretize(List values, String resolution) method. Then, in the input 

file, the name of this class should be given in techniques of the parameters section. 

EquivalencePartitioning class implements the discretize(List values, String 

resolution) method by selecting a random value inside the given range of the 

parameter taking resolution into consideration. BoundaryValueAnalysis class selects 

min and max values in the range of the parameter, also (max+resolution) and (min-

resolution) values. ErrorGuessing class just selects the values given in the input file. 

This class was added to give the user the ability to add values that must be tested 

according to their experience. StringAnalysis class is used to discretize the 

parameters of string type. It uses the resolution in the input file as the max length of 

the string, then selects a string with zero length, a random string with the length 1, 

and a random string with the max length.  

After reading the input file, discretizeParameters() method of TDGSystem class is 

called. The sequence diagram for this method can be seen in Figure 20. In 

discretizeParameters() method, discretize() method for each parameter in the system 

is called. Then for every technique of the parameter, discretize(List values, String 

resolution) method is invoked. This method returns the list of discrete values that the 

technique produces. When the loop finishes, the field values of Parameter object is 

assigned with the new discrete values. After running the same procedure on all the 

parameters in the system, all continuous and undetermined values are transformed 

into specific, discrete and meaningful data.  
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Figure 20. Sequence diagram for discretizing the parameter values 

 

 

 

5.1.3. Generating the combinatorial test data 

Once we obtained the discrete parameter values, we need to feed these values to 

ACTS tool to generate the combinatorial test data. To be able to use ACTS tool, all 

system specifications, such as parameter values and constraints, should be 

transformed into an input file format which ACTS tool can understand. An example 

of an ACTS input file can be seen in Figure 21. It contains the system name, 

parameter names, types and their range, and if exists, the constraints information. 
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Figure 21. Content of an ACTS input file 

 

 

 

For the purpose of using ACTS tool, we generate a temporary input file with the 

information we have in TDGSystem class (see Figure 16). When generateData(String 

outputFile) method of the object of class TDGSystem is called, first the system name, 

parameter values and constraints are written in a file, as seen in the sequence diagram 

of generating the combinatorial test data in Figure 22.  

After creating the input file for ACTS tool, we need to collect the domain specific 

degree of interaction value for the System Under Test (SUT). The doi(String 

domainName) method of the class DomainLookup parses the domain.xml file 

mentioned in Section 5.1.1 and returns the integer degree of interaction value for the 

domain which SUT belongs to. This value is used as the “t” value for t-way 

combinatorial test data generation. 

Since we have the compatible input file and interaction strength for the parameters, 

we can run ACTS tool to generate test data. ACTS has a command line interface that 

helps users to exploit its features without GUI interaction. It takes the degree of 

interaction, the input file path and the output file path as command line parameters, 

then generates and writes the test data into the provided output file. Inside our tool, 

we call Runtime.exec() method and give required command line parameters to 

benefit from this feature of ACTS. We give the generated temporary input file path 

“actsInputFile”, degree of interaction value “doi” gathered for the SUT, and the 

output file path “outputFile” where the generated test data will be written (see Figure 

22). ACTS supports generating the output in four different formats: numeric, nist, 
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csv, excel. This option can also be configured easily by giving the command line 

parameter “Doutput”. In our case, the output file is generated in “CSV” format. With 

this final step, generation of t-way combinatorial test data for our system is 

completed.  
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Figure 22. Sequence diagram for generating the combinatorial test data 
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CHAPTER 6 

 

 

AN EXPERIMENT USING THE TEST DATA GENERATOR TOOL 

 

 

 

Once constructing the test data generator tool, we designed experiments to evaluate 

the tool to see if it really helps reducing test data generation effort and increasing the 

number of bugs found. For this purpose, we chose a real industrial software in Radar 

Embedded domain, with a size of 7000 Lines of Code. This software was tested 

before by generating test data manually. It had more than 180 parameters and 

therefore many possible cases to be tested. Generating test cases for this software 

required a huge effort; that is why we chose it for subject program (SUT) in our 

experiment to see the effect of our tool on test effort. 

One problem with the old test setup was setting parameter values manually, which 

required too much effort while our SUT had more than 180 parameters. Other than 

the effort of generating test data, another problem was selecting efficient test data 

with limited resources. In other words, since testing all possible cases was 

impossible, we needed to select the ones with higher chance to trigger bugs. For 

these reasons, our test data generator tool seemed to be a perfect fit for this case. 

6.1. Test Environment Setup 

We have an automatic test infrastructure which was developed in house for the 

purpose of testing software interfaces and certain test scenarios. It contains the 

interface descriptions and parameter information between different software. We can 

generate various test scenarios using this interface descriptions and set different 

parameter values. Then these scenarios are run automatically and expected test 

results are compared with the actual ones.  

This test automation infrastructure uses an xml file that contains parameter names, 

their possible values or ranges, test techniques that will be used to analyze them, and 

constraints between these parameters. This xml file is created automatically from an 

interface description file that is used for developing the SUT. Then, our 

infrastructure uses this xml to create a test scenario.  
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First, we constructed a base test scenario using SUT’s interface descriptions. After 

that, we needed to generate test cases using our test data generator tool. However, the 

test scenario created by the infrastructure had to be converted to the input format of 

our tool. We wrote a simple adapter software for this purpose. It works as a translator 

between the test infrastructure and our test data generator tool to convert each tool’s 

output to the other one’s input. This way our test data generation cycle shown in 

Figure 23, became fully automatic.  

 

 

 

 

 

Figure 23. Test data generation cycle 

 

 

 

The adapter software converts the parameter information inside the base scenario 

into an input file for the test data generator tool, mentioned in Section 5.1.1. Then the 

tool generates the combinatorial test data for the selected domain using the related 

interaction strength which we obtain from the domain.xml file mentioned in Section 

5.1.1. First, the tool discretizes the possible values of the parameters according to test 

techniques and then generates the combinatorial test data according to constraints, 

mentioned in Section 5.1.2 and 5.1.3. After generating the test data, the adapter 

software generates the expected outcomes for input data with the help of interface 

descriptions and converts these into a test infrastructure scenario file to complete the 

cycle. 

6.2. The Experiment and Test Results 

Throughout the experiment, we tried to answer certain questions and obtain some 

useful metrics to compare the old and the new method. These research questions 

were: 

 RQ1: How long did it take to prepare input files? 
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 RQ2: How long did it take to carry out tests? 

 RQ3: How many tests were generated? 

 RQ4: How many bugs were triggered? 

 RQ5: How many new bugs were found? 

 RQ6: How many old bugs went unnoticed?  

In the old method, we prepared input data and the expected outcomes manually with 

the help of our test infrastructure and ran them automatically. The process consisted 

of preparing one input and the related outcome at a time and running the test. Thanks 

to automatic test infrastructure, running one test took approximately 1 minute. 

However, preparing the input data and the expected outcomes took a huge effort. 

Taking that into account, preparing test cases and running the tests together cost 40 

staff-hour in total. 190 test cases were generated manually for the tests and 11 bugs 

were found.  

In the new method, we generated input data and expected outcomes with the test 

setup explained in Section 6.1. Preparing the base test scenario file took a little 

longer than the other steps in the test data generation cycle. After that, it only took 6 

seconds to create test cases with our new setup. In total, generating test cases and 

running the tests cost only 8 staff-hour. Our combinatorial test data generator created 

45 test cases and 15 bugs were triggered with this data set. Once we analyzed the 

results, we saw that 4 new bugs were discovered, and no old bugs went unnoticed 

with this new method. 

When we analyzed newly found bugs, we saw that they were all triggered by the 

interaction between parameters. This showed that combinatorial testing strategy was 

effective for us to find new bugs. Two of these faults were exceptional cases where 

they could only be triggered by the interaction of two parameters when each value 

was at different partitions. Here, equivalence partitioning technique helped us find 

these bugs. Another fault was triggered by the interaction of two parameters when 

only one of them was outside the minimum boundary and the absolute value of it was 

smaller than the other parameter. Boundary value analysis technique helped us 

trigger this fault. The last fault was caused when two parameters had string values 

with the length of zero. In this case, string analysis technique was effective. 
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The detailed results and comparisons can be seen in Figure 24, 25 and 26. The new 

method reduced the test effort by 80%. Moreover, although the number of test cases 

decreased by 76%, the number of bugs triggered increased by 36%. 

 

 

 

 

 

Figure 24. Comparison of effort in staff-hour 

 

 

 

 

 

Figure 25. Comparison of number of test cases 
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Figure 26. Comparison of number of bugs found between old method and new 

method 

 

 

 

To generate a comparison baseline for the new method, we also designed an 

experiment with randomly generated test data at the same test setup. For each 

parameter, we picked a random value in the range of the parameter for each test case 

and generated 45 test cases as in the new method. The results showed that only 7 

faults were discovered where all the faults were caused by the value of one parameter 

and no interactions were needed to trigger them. When we compare this case with 

our new method, we see 114% increase in the number of bugs found. The 

comparison of two cases can be seen in Figure 27.  

 

 

 



 

 50   

 

 
 

Figure 27. Comparison of number of bugs found between tests with random data and 

new method 

 

 

 

6.3. Threats to Validity 

The construct validity is related to possible issues in comparison baseline for our 

method. In the old method, tester’s bias while selecting test cases might have 

affected the results. To eliminate this threat, we designed another experiment with 

randomly generated test data in the same test setup. This way, the effect of tester was 

removed, and we had an objective test data and a more valid comparison baseline. 

The internal validity is related to discretization techniques and test data generation 

algorithm in our approach. Different techniques and tools might affect test data and 

result in different behaviors. To overcome this threat, we used well known test 

techniques for the discretization of the parameter input space, and an existing tool 

(ACTS) to generate combinatorial test data. We selected these after reviewing all 

available techniques and tools in the literature. 

The external validity is related to domain of software that is used in this study. We 

only applied our approach on Electronic Warfare and Radar domains, thus further 

analysis on software from different domains should be done for applicability.  

The reliability states that this approach can be repeated by other researchers. For this 

purpose, the steps in Sections 5, 6 and 7 are explained in detail.  
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CHAPTER 7 

 

 

CONCLUSION 

 

 

 

Software in Electronic Warfare and Radar domains have a large number of 

parameters with continuous input space. This situation results in uncountable 

possible combinations for test case generation. Since it is impossible to test all these 

combinations, we needed to find a method to minimize the number of test cases, 

while selecting ones with higher possibility of triggering bugs. Combinatorial 

Testing, which is proven to be an efficient testing strategy, seemed to be a good 

choice for our situation. However, it required inputs in a discrete form. Moreover, 

degree of interaction must have been different for each domain of software in terms 

of test efficiency issues. 

The approach we proposed fills these gaps with fault data analysis to determine the 

right degree of interaction according to domain of software, and discretization of 

parameter input space using well known test techniques. Fault data analysis that we 

made on different software domains helped us in specifying predefined degree of 

interaction values for each domain. These values were specified for future test data 

generation of specific domain of software. Discretization of continuous parameter 

input space was made using test techniques like Equivalence Partitioning, Boundary 

Value Analysis etc. This way, continuous range for a parameter was reduced to 

meaningful and discrete data with higher possibility to trigger bugs.  

Our approach combined these methods with combinatorial testing to create an 

efficient test data generation method. Experiments showed that the new method 

reduced the test effort by 80%, the number of test cases decreased by 76%, and the 

number of bugs triggered increased by 36% compared to the old method. Moreover, 

it increased the number of bugs by 114% compared to tests with random data. In 

addition to these improvements, analysis of the new faults showed that test 

techniques and combinatorial approach directly played a role in finding them. These 

results indicates that this new approach is an effective way that minimize test costs, 

while maximizing the confidence in test data.  
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This approach was only applied to software from Electronic Warfare and Radar 

domains. However, since the approach is in a general form, it can be easily applied to 

software from other domains. This way, it can contribute to efficiency and reduce 

test data generation costs for software in all domains.  

In the future, this approach can be extended to work with other test infrastructures as 

well. For this purpose, a generic API for external test automation tools can be 

provided.   
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