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ABSTRACT 

 

 

 

 

FATIGUE PRE-CRACKING LIFE ESTIMATION FOR FRACTURE 

TOUGHNESS TEST SPECIMENS 

 

 

 

ALIPOUR GHASABI, AMIR 

M.S., Department of Mechanical Engineering 

                               Supervisor       : Prof. Dr. F. Suat Kadıoğlu 

 

 

June 2018, 102 pages 

 

 

This study is done for predicting fatigue crack initiation life and propagation life of 

a crack initiated at a notch and grown to a desired length. Both numerical analysis 

and experimental study was done for single edge notch bend type specimen. Crack 

initiation life prediction was done using strain-life approach applying different 

available models. For this purpose 2-D and 3-D finite element model of the specimen 

was created in Abaqus. By simulating the 2-D and 3-D model under static loading, 

notch maximum stress was found to calculate the notch elastic stress concentration 

factor. Applying Neuber’s rule local stresses and strains of notched part was 

calculated. These values were then compered to values found by elasto-plastic 

analysis done for 3-D model in Abaqus. Then, fatigue crack initiation life was 

predicted. For the propagation part, the required number of cycles to grow the 

initiated crack from 1 mm length to a desired length was calculated by using Walker 

and Paris equations. At the end the predicted lives were compared to experimental 

ones. It is found that reasonable agreement could be obtained, and the established 

procedure could be used in planning the preparation stages of cracked beam 

specimens. 
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ÖZ 

 

 

KIRIK ÖRGÜ TEST ÖRNEKLERİ İÇİN CATLAKTDAN ONCE 

YORULMA CYCLE HESAPLAMASI 

 

ALIPOUR GHASABI, AMIR 

Yüksek Lisans, Makina Mühendisli˘gi Bölümü 

Tez Yöneticisi      : Prof. Dr. F. Suat Kadıoğlu 

 

 

HAZIRAN 2018, 102 pages 

 

Bu çalışma, bir çentikte başlatılan ve istenilen uzunlukta büyütülmüş bir çatlağın 

yorulma çatlağı başlama ömrünü ve yayılma ömrünü kestirmek için yapılmıştır. Hem 

sayısal analiz hem de deneysel çalışma, tek kenarı çentikli eğilme tipi deney 

numunesi için yapıldı. Çatlak başlama inisasyon ömrü tahmini, mevcut farklı 

modelleri uygulayan gerinim-ömür yaklaşımı kullanılarak yapıldı. Bu amaçla 

Abaqus'ta örnek iki ve üç boyutlu sonlu eleman modeli oluşturuldu. Statik yüklenme 

altında iki boyutlu modelin simüle edilmesiyle, çentik elastik gerilme konsantrasyon 

faktörü için çentik maksimum gerilme hesaplanmıştır. Neuber’in kuralını 

uygulamak, yerel gerilmeler ve çentikli kısım gerinimleri hesaplandı. Bu değerler 

daha sonra Abaqus'ta 3-D modeli için yapılan elasto-plastik analizi ile bulunan 

değerlerle karşılaştırıldı (sadece on çevrim için). Daha sonra yorulma çatlağı başlama 

ömrü tahmin edildi. Yayılma kısmı için, başlatılan çatlağın 1 mm'den 6.4 mm'ye 

kadar uzatılması için gereken çevrim sayısı, Walker denklemi kullanılarak 

hesaplanmıştır. Sonunda tahmin edilen ömürler deneysel olanlarla karşılaştırıldı. 

Oldukça uyumlu sonuçlar elde edildiği ve uygulanan yöntemin çatlak içeren kiriş 

numunelerinin hazırlık aşamalarının planlanmasında kullanılabileceği bulunmuştur. 

 

 

Anahtar Kelimeler: Yorulma Çatlağkı Başlatma Ömrü, Çatlak yayılması, Sonlu 

Elemanlar Analizi 
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CHAPTER I 

 

INTRODUCTION 

  

 

1.1 Introduction 

 

To design a structure to prevent failure while subjected to static loading is straight 

forward, but in reality there are few components which are solely under static 

loading. So failure under cyclic loadings or in another words fatigue is a chief 

concern. Fatigue is a major mechanical failure phenomenon. Many books and papers 

point out that it causes 50 percent to 90 percent of all mechanical failures. Fatigue is 

mostly described in 3 stages: fatigue crack initiation, stable crack propagation and 

unstable crack propagation.[1][2][3] 

There can be two points of view to look at this problem, one is to prevent a crack 

initiation in the component, the other is when crack is initiated, to detect it and 

prevent it from propagating unstably before catastrophic failure occurs. Many 

industries like ship, aircraft, nuclear and automotive industries major considerations 

is preventing components to initiate crack and this is usually achieved by over-

conservative design.[1] 

Generally there are geometrical discontinuities and notches in mechanical 

components and structures, for example in aircraft industries fuselages need holes for 

their assembly. When there are external forces, these discontinuities are places where 

stress concentration will be produced and changing the diameter of holes or 

discontinuities will change stress concentration value. These stresses are usually 

higher than the nominal stresses and could result in crack initiation if precautions like 
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machining of holes in high quality or induction of residual stresses are not taken into 

account in manufacturing these components. So it is very useful to study crack 

initiation in the vicinity of notches.[2] 

While preventing crack initiation is one of the design concerns, knowledge of crack 

growth is also important. In real life many components contain cracks or very sharp 

crack-like notches. In these cases calculating the crack growth rate is useful to 

maintain operating stress limits and inspection intervals.[1] 

 

1.2 Previous Investigations 

 

Fatigue life prediction of structures with discontinuities has been extensively studied, 

Topper, Wetzel and Morrow used master plots of Neuber’s rule vs life based on 

smooth specimen fatigue results to accurately predict fatigue of notched aluminum 

alloy plates subjected to completely reversed loading.[4] 

Forman investigated crack initiation from flaws of changing radii (0.025 – 3.18 mm) 

in 7075-T6 aluminum. He used the ratio Kmax/Ka  to analyze the data where Ka 

depends on notch radius.[5] 

In another research by Morrow, Lawrence and others, cyclic properties of material 

was defined at first. They used a finite element analysis to find the stresses at given 

notch configuration. Then by using a computer model and cycle by cycle damage 

summation  they find the crack initiation life.[6] 

Other researchers like Glinka used equivalent strain-energy density method in 

prediction of fatigue crack initiation.[7] 

Buch, Vormwald and Seeger investigated the fatigue crack initiation time under the 

constant amplitude loading by the local stress-strain method and concluded that 

estimated accuracy mainly depended on the fatigue notch factor.[8] 
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Jiang applied a continuum mechanics approach for crack initiation and crack growth 

predictions, here a single fatigue damage criterion can model both stages. A rule is 

that any material point fails and form a fresh crack if the total accumulated fatigue 

damage reaches a limit.[9] 

For the crack propagation phase, studies have been done as well. For example, 

Andreaus and Baragatti studied the initiation and propagation of cracks in two 

different metal beams, one consist of 6082-T6 aluminum alloy and the other Fe430 

steel. Their motivation for doing this, is to study the vibrations of cracked beams 

through the introduction of an actual fatigue crack instead of – as is usual – a narrow 

slot.[10] 

Recently in the investigation of Ranganathan, he used short crack growth approach 

for consideration of crack initiation stage in estimation of total fatigue life.[11] 

The research of Benachours, Hadjoui and Benguediab on fatigue crack initiation and 

propagation in 2024 T351 alloy plate specimen with double through cracks 

emanating from a hole show that crack initiation and propagation were dependent on 

specimen geometry and applied stresses, fatigue life is related to crack initiation and 

growth, crack initiation is related to applied mean stress, stress concentrations and 

material properties.[12] 

Majid R. Ayatollahi et al. studied mixed mode fatigue crack initiation and growth in 

a CT specimen repaired by stop hole technique. They developed a numerical method 

which well predicts fatigue life extension of repaired specimens. In this study, the 

crack growth retardation and the location of fatigue crack initiation from stop-hole 

edge under different mode-mixities are examined. Different loading conditions were 

created by using a mixed-mode CT specimen made of Al_6061-T651. The numerical 

results show that in the existence of stop holes the reduction in the stress 

concentration becomes larger for mode-II loading conditions.[13] 
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1.3 Motivation and the Scope of the Thesis 

 

This thesis is motivated by the need for preparing several beam specimens containing 

sharp fatigue edge cracks, to be used in a (now concluded) TÜBİTAK project on 

vibrations of cracked beams [14]. Although such cracked beam specimens could be 

produced in an ad hoc manner through fatigue loading of beams with notches of 

arbitrary shape (such as a short saw cut or a saw cut terminating at a drilled hole) in 

three or four point bending configuration, initial trials show that such an effort is 

quite ineffective and a more methodical approach is required. 

Such a systematic approach should lead to the determination of fatigue loading 

conditions and a suitable notch geometry, such that 

 the specimen should not break due to unstable crack growth, 

 the specimen should not undergo any appreciable (macroscopic) plastic 

deformation, 

 A crack of desired depth could be grown in a reasonable time. 

 

In order to measure fracture toughness of materials, fatigue pre-cracking is 

commonly employed. In other words fatigue cracks are produced ahead of sharp 

notches under controlled loading. Although the standards such as ASTM E399 and 

ASTM E1820 provide several recommendations to apply this procedure in a speedy 

and orderly fashion, a method to estimate the crack initiation life and the life for a 

certain amount of crack extension is not described.  

Hence, in this thesis, both low cycle fatigue methods (strain life approach) and 

fracture mechanics methods (based on 𝑑𝑎/𝑑𝑁 vs 𝛥𝐾) are used to estimate the 

number of loading cycles required to have a crack of desired length ahead of a sharp 

notch. The recommendations (regarding notch geometry, loading configurations and 

load magnitudes) given in the above mentioned standards are not strictly followed 

but are taken as guidelines. Elastic and elasto-plastic finite element analyses were 

made using commercial finite element software ABAQUS® to obtain the required 

stress and strain concentration factors. A 1D stress analysis by using Neuber rule is 
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adopted in LCF calculations. The results are compared with actual experimental 

results, and the test and various analysis results are evaluated. 

 

1.3.1 Thesis Objectives 

 

The main objectives of this thesis can be summarized as follows: 

 To calculate the pre-cracking life of fracture toughness test specimen under 

constant amplitude loading 

 To estimate the propagation life of an initiated crack to desired length 

 And comparing the above results with experimental ones. 

 

1.4 Thesis Structure 

 

The first chapter of thesis is an introduction to this whole study. The basic concepts 

of fatigue and life estimation theories are reviewed in chapter two. Next, modeling 

and life calculations of crack initiation and propagation phases are established in 

chapter three, then experimental procedure and results are presented in chapter four. 

Then the comparisons of numerical and experimental results are done in chapter five 

finishing with conclusion and future work.  
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CHAPTER II 

 

LITERATURE REVIEW AND BACKGROUND 

 

 

2.1 Introduction and Historical Overview 

 

There are many types of mechanical failures in engineering world, but the most 

common one is fatigue which is caused by repeated loading. Although the number of 

failures are very tiny compared to successes, the cost to lives and injuries and dollars 

are still high, so there is a need for proper fatigue design which includes modeling, 

analyses and testing. If fatigue designs, modelings and simulations can get close to 

reality then the confidence in engineering results will increase.[15] 

Fatigue have been studied for nearly 160 years, the very first fatigue failure was 

detected in railways industry in 1840. It was reported that railroad axels failed 

regularly at shoulders.[16] The word fatigue was introduced in 1840s and 1850s to 

describe failure due to repeated stress. The first experiments was performed by 

August Wohler during 1850s and 1860s in Germany, the tests were concerned with 

railroad axel failures. He introduced the concept of S-N diagram and fatigue limit 

and figured out that for fatigue, the range of stress is more important than the 

maximum stress.[17] 

 

Figure2. 1 Drawing of a fatigue failure in an axle, sketched by Joseph Glynn following The Versailles 

accident, 1842[18] 
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2.2 Fatigue Design 

 

There are similarities and differences in fatigue design methods, the differences have 

arisen from the facts that a component or structure may be  

 safety important or safety unimportant 

 expensive or inexpensive 

 simple or complex 

 produced for one end product or thousands or millions of products 

 a modification or a new one 

Adequate computer added engineering (CAE) and computer aided manufacturing 

(CAM) capabilities may or may not be available to the designers. 

In all these above situations a common design flow chart can be produced as shown 

in figure 2.2.  

 

Figure2. 2 Fatigue design flow chart originated by H. S. Reemsnyder from Bethlehem Steel Corp. and 

slightly modified by H. 0. Fuchs. It was created for use by the Society of Automotive Engineers 

Fatigue Design and Evaluation (SAEFDE) Committee University of Iowa’s annual short course on 

Fatigue Concepts in Design. 
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Currently there are four fatigue life models, among which selecting the proper one is 

very important for design engineers: 

1) The nominal stress-life (S-N) model, first formulated between the 1850s and 

1870s 

2) The local strain-life (ε-N) model, first formulated in the 1960s. 

3) The fatigue crack growth (da/dN-ΔK) model, first formulated in the 1960s. 

4) The two-stage model, which is made of combining models 2 and 3 to join 

both macroscopic fatigue crack formation (nucleation) and fatigue crack 

propagation. 

As mentioned above the stress-life model has been available for 160 years, while the 

other methods have been existed since 1960s.  

In the S-N model, the estimation of fatigue life is done by using nominal stresses and 

relating them to local fatigue strengths in notched and un-notched members. The 

strain-life method is used directly for local strains and stresses at a notch and several 

methods are available for determining these local stresses or strains from nominal 

ones. The fatigue crack growth model uses fracture mechanics concepts and is used 

to estimate number of cycles required to grow a crack from an existed length to a 

final length and/or to fracture. The two stage method deals with a crack nucleation 

life prediction and crack growth life estimation and then adding these two to get a 

total fatigue life.[15] 

 

2.3 Fatigue Loading 

 

Components and structures in real life are subjected to various loadings. In some 

cases the loading histories are simple and repetitive and in some others are complex 

and random, an example of a complex and random one is ground-air-ground cycle of 

an aircraft shown in Figure 2.3. This figure shows a variable amplitude loading cycle. 
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Figure2. 3 Schematic ground-air-ground flight spectrum. 

Some of real life loading histories can be modeled as constant amplitude which can 

also be used to determine the material properties for fatigue design. Stress parameters 

to characterize constant amplitude cyclic loading are defined below, also a schematic 

of this loading is shown in figure 2.4. 

 

Figure2. 4 Schematic for constant amplitude cyclic loading 

Stress range: ∆𝑆 = 𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛 (2.1) 

Stress amplitude: 𝑆𝑎 =
∆𝑆

2
=

𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

2
(2.2) 

Mean stress: 𝑆𝑚 =
𝑆𝑚𝑎𝑥 + 𝑆𝑚𝑖𝑛

2
(2.3) 
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Stress ratio: 𝑅 =
𝑆𝑚𝑖𝑛

𝑆𝑚𝑎𝑥

(2.4) 

In above equations tensile stresses are taken as positive values and compressive 

stresses are taken as negative values. R=0 and R=-1 are two common conditions for 

testing materials to obtain fatigue properties, R=-1 is called fully reversed condition 

in which min maxS S  . R=0 (i.e. min 0S  ) condition is called pulsating tension or 

released tension. In constant amplitude loading, one cycle is equal to two reversals 

(in variable amplitude loading, reversals are used). In Figure 2.4 loads also can be 

used instead of stresses.[15] 

 

2.4 Steady State Cyclic Stress-Strain Relation 

 

Bauschinger[19] during the late nineteenth century observed that the stress-strain 

behavior of a material obtained from a monotonic tension or compression test can be 

different from the one that is obtained under cyclic loading. In his experiments it was 

seen that the yield strength of material was reduced after applying an opposite sign 

load that caused inelastic deformation. In Figure 2.5 it can be seen that the yielding 

in tension causes a reduction in yield strength in compression. So, the stress-strain 

behavior of metals can be changed by a single reversal of an inelastic strain. 

 

Figure2. 5 Bauschinger effect. (a) Tension loading. (b) Compression loading. (c) Tension loading 

followed by compression loading. 
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For most metals in the initial cycles of constant strain-amplitude controlled tests, the 

stress-strain relation gets stable after rapid softening or hardening (cyclic hardening 

and softening indicates increased and decreased resistance to deformation, 

respectively), so fatigue life can be characterized by steady-state behavior. A material 

cyclically stable stress-strain response which is named as the hysteresis loop is shown 

in Figure 2.6. 

 

Figure2. 6 Stable cyclic stress-strain hysteresis loop[15] 

The elastic work plus plastic work on a material under loading and unloading equals 

the inside of the hysteresis loop which is defined by the total strain range (Δε) and 

total stress range (Δσ). The hysteresis loop usually is taken at half of the total fatigue 

life. The summation of elastic strain component and plastic one (Δεe , Δεp) gives the 

total strain range, which is expressed as follows:[20] 

∆𝜀 = ∆𝜀𝑒 + ∆𝜀𝑝 =
∆𝜎

𝐸
+ ∆𝜀𝑝 (2.5) 

Where 

E = modulus of elasticity 
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From the hysteresis loops taken from a series of various strain amplitude tests and by 

plotting the locus of the loop tips on the same σ-ε coordinates one can construct a 

cyclic stress-strain curve as shown in Figure 2.7 which can be represented by the 

well-known Ramberg-Osgood equation: 

𝜀 = 𝜀𝑒 + 𝜀𝑝 =
𝜎

𝐸
+ (

𝜎

𝐾′
)

1 𝑛′⁄

(2.6) 

Where 

                                  𝐾′ = the cyclic strength coefficient 

                       𝑛′ = the cyclic strain hardening exponent 

    ′ (superscript) = the parameters associated with “cyclic behavior” to differentiate     

                              them from monotonic behavior parameters 

 

Figure2. 7 Construction of a cyclic stress-strain curve.[15] 

There is proposition by Masing[21] which states that the stress amplitude versus 

strain amplitude curve can also be represented by the expression for cyclic stress-

strain curve, this assumption is valid for homogeneous materials:  
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𝜀𝑎 = 𝜀𝑎
𝑒 + 𝜀𝑎

𝑝 =
𝜎𝑎

𝐸
+ (

𝜎𝑎

𝐾′
)

1 𝑛′⁄

(2.7) 

Where, 𝜀𝑎
𝑒 and 𝜀𝑎

𝑝
 = the elastic and plastic strain amplitudes, respectively. 

In terms of strain range (Δε) and stress range (Δσ), the above equation can be 

rewritten as follows: 

∆𝜎

2
=

∆𝜀𝑒

2
+

∆𝜀𝑝

2
=

∆𝜎

2𝐸
+ (

∆𝜎

2𝐾′
)

1 𝑛′⁄

(2.8) 

or in a reduced form as follows: 

𝛥𝜀 =
∆𝜎

𝐸
+ 2 (

∆𝜎

2𝐾′
)

1 𝑛′⁄

(2.9) 

 

2.5 Fatigue Life 

 

As mentioned before, there are there stages in fatigue failure process. First phase is 

the crack initiation, and then crack propagation phase up to a critical size and finally 

unstable fast crack growth to fracture is the last phase. Stress life (S-N) approach is 

one of the traditional models that put these three stages together and predicts the 

fatigue life. (S-N) approach has a great support of large database and 

analytical/empirical procedures which have been developed till now. In recent years 

there is an intense development in considering life prediction of each phase separately 

by using fracture-mechanics (F-M) approach.[22] 

Moreover, in accordance with induced cyclic strains, two cyclic loading domains are 

identified. If loadings are relatively low then the induced cyclic strains are mostly in 

the elastic range and a high number of cycles or long lives are reached. This domain 

is referred to as high-cycle fatigue (HCF). On the other hand, when cyclic loadings 

are relatively high, during each cycle there are important levels of induced plastic 

strains. Consequently number of cycles to failure is low and lives are short. This 

domain is named as low-cycle fatigue (LCF).[22] 
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Due to low induced plastic strains in high cycle fatigue domain, the stress life (S-N) 

approach is applicable to predict life in this domain, but in low cycle fatigue in 

accordance with the presence of high levels of plastic strains the stress life method is 

not suitable. So to predict fatigue life in low cycle fatigue domain, the strain-life       

(ε-N) approach is applicable which will be discussed in next section. 

 

2.6 Strain-Life (ε-N) Approach 

 

Nowadays strain-based approach to fatigue problems is widely used because strain 

can be measured and is a good quantity dealing with low-cycle fatigue problems. 

Notched member fatigue is the most common use of this approach. 

The strain-life design method is based on the assumption that the crack initiation life 

of a notched component is equal to that of a smooth laboratory specimen under the 

same cyclic strains as the material at the notch root. This concept is shown in Figure 

2.8. 

 

Figure2. 8 Concept of strain-life approach[23] 

With the help of this concept, it is possible to calculate the fatigue crack initiation 

life of a component under cyclic loading, if the strain-time history at the notched root 

and strain-life fatigue properties of smooth specimen is known. Then using fracture 
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mechanics concepts it is straight forward to determine the remaining fatigue crack 

growth life of the component. The strain-based approach is also called local strain 

approach because fatigue damage calculations are done with direct assessing of local 

strains. 

During most of fatigue life hysteresis loops can predominate and can be reduced 

elastic strain ranges/amplitudes and plastic ones. Number of cycles to failure can be 

between 10 and 106. The strain life fatigue is also called low cycle fatigue since most 

life cycles are fewer than about 105. 

Strain-life fatigue curves illustrated in Figure 2.9 are plotted on log-log scales. In this 

figure Nf is the number of cycles to failure and 2Nf is the number of reversals to 

failure. One of the failure criteria for strain-life curves may be the life to a small 

detectable crack. 

 

Figure2. 9 Schematic of a total strain-life curve.[15] 

From Figure 2.9 it can be seen that the total strain amplitude has been split into elastic 

and plastic strain components from the steady-state hysteresis loops. It is possible to 
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approximate both the elastic and plastic curves as straight lines. By summing elastic 

and plastic strains at a given life (Nf), the total strain can be calculated. The plastic 

strain component is predominant at large strains and short lives (LCF), and the elastic 

strain component is predominant at small strains and long lives (HCF). From figure 

2.9, 𝜎𝑓
′ 𝐸⁄  and 𝜀𝑓

′  are the intercepts of the two straight lines at 2𝑁𝑓 = 1 for the elastic 

component and plastic component, respectively. b and c are the slopes of the elastic 

and plastic lines, respectively. Now the equation for strain-life data of small smooth 

axial specimens can be expressed as: 

∆𝜀

2
= 𝜀𝑎 =

∆𝜀𝑒

2
+

∆𝜀𝑝

2
=

𝜎𝑓
′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐

(2.10) 

Where  

              
∆𝜀

2
= total strain amplitude = 𝜀𝑎 

            
∆𝜀𝑒

2
= elastic strain amplitude =

∆𝜎

2𝐸
=

𝜎𝑎

𝐸
 

            
∆𝜀𝑝

2
= plastic strain amplitude =

∆𝜀

2
−

∆𝜀𝑒

2
 

               𝜀𝑓
′ = fatigue ductility coefficient 

              c = fatigue ductility exponent 

              𝜎𝑓
′ = fatigue strength coefficient 

              b = fatigue strength exponent 

             E = modulus of elasticity 

            
∆𝜎

2
= stress amplitude = 𝜎𝑎 

The above equation is called the strain-life equation for the zero mean stress situation. 

Solving this equation for Nf  for a given strain amplitude needs iteration technique or 

numerical/graphical solutions. 
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The first part of the Eq. (2.10) which relates life to elastic strain is Basquin’s 

equation[24] as follows: 

∆𝜎

2
= 𝜎𝑎 = 𝜎𝑓

′(2𝑁𝑓)
𝑏

(2.11) 

And the second part of the Eq. (2.10) is the Manson-Coffin equation[25], [26] which 

relates life to plastic strain and is expressed as: 

∆𝜀𝑝

2
= 𝜀𝑓

′ (2𝑁𝑓)
𝑐

(2.12) 

The intersection of elastic and plastic strain-life curves is called the transition fatigue 

life. This life occurs when the elastic and plastic components of strains are equal and 

is expressed as: 

2𝑁𝑡 = (
𝜀𝑓

′ 𝐸

𝜎𝑓
′ )

1
𝑏−𝑐

(2.13) 

The lives less than the transition fatigue life are in the LCF regime where the strains 

are mainly plastic and the lives larger than (2𝑁𝑡) are in the HCF regime where the 

strains are mainly elastic. 

As a conclusion for strain-life testing of un-notched smooth specimens concerning 

failure criteria is that the fatigue crack length of 0.25 to 5 mm means the life to failure 

but this range is large so the length of 1 mm fatigue crack can be referred as life to 

failure.[15] 

The strain-based approach covers both LCF and HCF regimes and can be applied for 

each. In long-life cases where small plastic strains may exist this approach can be 

used by neglecting the plastic strain term in Eq. (2.10) and in this way the strain-life 

equation reduces to Basquin’s Eq. (2.11).[15] 
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2.7 Estimate of strain-Life fatigue Properties 

 

When there is no data of experimental strain-life fatigue, it is possible to estimate 

cyclic and fatigue behavior of a material. Using a log-log scale, the intercept and 

slope of the linear least squares fit to stress amplitude, ∆𝜎/2 , versus reversals to 

failure, 2Nf , are the fatigue strength coefficient, 𝜎𝑓
′, and the fatigue strength exponent, 

b. Then there should be stress-number of cycles data. 

And similar to above estimation, using a log-log scale, the intercept and slope of the 

linear least squares fit to plastic strain amplitude, ∆𝜀𝑝 2⁄ , versus reversals to failure, 

2Nf, are the fatigue ductility coefficient, 𝜀𝑓
′ , and the fatigue ductility exponent, c. 

determining plastic strain amplitude can be done in two ways, one is to measure it 

directly from half of the width of stable hysteresis loops at 𝜎 = 0 and the other more 

conveniently used is to calculate using following equation:[15] 

∆𝜀𝑝

2
=

∆𝜀

2
−

∆𝜎

2𝐸
(2.14) 

Fatigue life is dependent upon the applied strain amplitude and cannot be controlled. 

Thus, the independent variable treatment of stress and plastic strain amplitudes and 

dependent variable treatment of fatigue life is needed while fitting the data to 

determine the four strain-life properties. 

To obtain the cyclic strength coefficient, 𝐾′, and the cyclic strain hardening exponent, 

𝑛′, the stable stress amplitude versus plastic strain amplitude data are fitted. By using 

the low-cycle fatigue properties 𝐾′ and 𝑛′ can be roughly estimated using following 

equations which are derived from compatibility of strain-life equations: 

𝐾′ =
𝜎𝑓

′

(𝜀𝑓
′ )

𝑏
𝑐

       and       𝑛′ =
𝑏

𝑐
(2.15) 

In most cases the ranges of fatigue properties are as: 

b from about -0.06 to -0.14 
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c from about -0.4 to -0.7 

There is a review and evaluation for existing estimation techniques for cyclic and 

fatigue properties by Lee and Song[27]. In this review they reach to a conclusion that 

for a given ultimate tensile strength, the medians method by Meggiolaro & 

Castro[28] is recommended for aluminum alloys. And also in this review they 

evaluated most of the models proposed to estimate ultimate tensile strength from 

hardness and figure out that for both steel and aluminum alloys the Mitchell’s 

equation[29] gives the best results which is expressed as: 

𝑆𝑡,𝑢(MPa) = 3.45HB (2.16) 

 

2.8 Mean Stress Effects 

 

The discussed fatigue behavior and cyclic strain controlled deformation in previous 

sections were all in fully reversed condition, =
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
= −1 =

𝜀𝑚𝑖𝑛

𝜀𝑚𝑎𝑥
 . But in many 

applications a mean strain\stress effect may exist. There can be a full or partiall 

relaxation of mean stress as shown in Figure 2.10, usually caused by strain controlled 

cycling with mean strain. Plastic deformation presence is the cause to this relaxation 

so the rate of it depends on the magnitude of plastic strain amplitude, this means that 

if the strain amplitude is large, the means stress relaxation is more.[15] 

 

Figure2. 10 Mean stress relaxation under strain-controlled cycling with a mean strain 
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Mean strain has influence on fatigue behavior when it results in a non-fully relaxed 

mean stress. In low cycle fatigue region there is more stress relaxation due to large 

plastic strains at higher strain amplitudes, so mean stress has a smaller effect on 

fatigue life in low cycle fatigue region than it has in high cycle fatigue region. This 

behavior for SAE 1045 hardened steel is shown in Figure 2.11.[15] 

 

Figure2. 11 Mean stress effect on fatigue life of SAE 1045 hardened steel 

To quantify the mean stress effect on fatigue behavior, several mean stress correction 

models are available dealing with the local strain-life approach. Next, some of them 

are introduced. 

 

2.8.1 Modified Morrow Approach 

 

The original mean stress correction model was presented by Morrow[30] in 1968. 

Since mean stress is negligible in LCF regime (where the plastic strain has large 

values) and has a noticeable effect in HCF regime (where the plastic strain has low 

values), the modified Morrow equation is expressed as: 
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∆𝜀

2
= 𝜀𝑎 =

𝜎𝑓
′ − 𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐

(2.17) 

Where 

         σm =  the mean stress 

In equation above for tensile and compressive values, σm is taken as positive and 

negative respectively. From this equation it is predicted that compressive mean 

stresses are beneficial, and tensile mean stresses are detrimental to fatigue life. More 

mean stress effect at long lives is predicted using Eq. (2.17) as also can be concluded 

from Figure 2.11 which is an experimental figure. This equation incorrectly predicts 

the dependency of elastic to plastic strain ratio on mean stress which is not true since 

the shape of the stress-strain hysteresis loop is not dependent on the mean stress. The 

extensive usage of this equation has been for steels and had more success in HCF 

regime. 

 

2.8.2 Manson-Halford Model 

 

An alternative version of Morrow’s Means stress correction model for fatigue life is 

given by Manson and Halford [31]. In this model to maintain the independence of 

the elastic-plastic strain ratio from mean stress, they include mean stress parameter 

in both the elastic and plastic terms of strain-life equation expressed as: 

∆𝜀

2
= 𝜀𝑎 =

𝜎𝑓
′ − 𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (
𝜎𝑓

′ − 𝜎𝑚

𝜎𝑓
′ )

𝑐 𝑏⁄

(2𝑁𝑓)
𝑐

(2.18) 

This equation exaggerates mean stress effect at short lives where domination of 

plastic strains exists and mean stress relaxation occurs. 
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2.8.3 Smith, Watson, and Topper (SWT) Parameter 

 

Another mean stress correction model for strain-based fatigue life is suggested by 

Smith, Watson, and Topper[32] which is based on strain-life test data with various 

mean stresses. This model is expressed as: 

𝜎𝑚𝑎𝑥𝜀𝑎 =
(𝜎𝑓

′)
2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎𝑓

′𝜀𝑓
′ (2𝑁𝑓)

𝑏+𝑐
(2.19) 

Where 

        𝜎𝑚𝑎𝑥 = 𝜎𝑚 + 𝜎𝑎 > 0 

The assumption that for a given life, the product 𝜎𝑚𝑎𝑥𝜎𝑎 remains constant for 

different combinations of strain amplitude, εa , and mean stress, σm , is the basis of the 

SWT equation. Fatigue damage becomes zero and infinite life prediction occurs if 

the σmax becomes zero or negative (compressive maximum stress), so tension must 

exist in order to have fatigue fractures. The SWT results are acceptable for a wide 

range of materials. For steels it is as accurate as Morrow model, and for aluminum 

alloys it is fairly good. The SWT equation has been successfully applied to 

precipitation-hardened aluminum alloys in the 2000 and 7000 series by Dowling[33] 

 

2.8.4 Walker Mean Stress Equation 

 

The walker Mean stress equation is expressed as[34]: 

∆𝜀

2
= 𝜀𝑎 =

𝜎𝑓
′

𝐸
(

1 − 𝑅

2
)

(1−𝛾)

(2𝑁𝑓)
𝑏

+ 𝜀𝑓
′ (

1 − 𝑅

2
)

𝑐(1−𝛾) 𝑏⁄

(2𝑁𝑓)
𝑐

(2.20) 

Where 

         γ = Walker constant 

         R = 
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
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In a case that γ is known, among all the mean stress correction models that discussed, 

the accuracy of Walker mean stress equation is probably the highest. 

 

2.9 Material Response at Notch Tip 

 

One of the key points in fatigue studies is the effect of notches and these have been 

under consideration for more than 140 years. These geometrical discontinuities exist 

in most of components and machines like welds on plates, rivet holes in sheets and 

keyways on shafts. To reduce harmful notch effects, some suitable treatments should 

be considered.[15] 

 

2.9.1 Elastic Stress Concentration Factor 

 

Concentration of stresses and strains occur at notches and as long as σ/ε=constant=E, 

this concentration is characterized by Kt, and defined as: 

𝐾𝑡 =
𝜎

𝑠
=

𝜀

𝑒
(2.21) 

Where 

       σ and ε = local stress and strain at notch 

       S and e = nominal stress and strain 

Figure 2.12 shows a plate with a hole. The nominal stress is defined as load divided 

by net area. Net area is the area without considering the notch (the hole in figure 

2.12).  
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Figure2. 12 A plate with a hole 

Some of the ways of obtaining elastic stress concentration factors are mentioned 

below: 

 Theory of elasticity 

 Numerical solutions 

 Experimental measurements (e.g. photoelasticity and strain gages) 

Using numerical solution, the most common and widely used method is finite 

element method (FEM). A fine mesh around the notch tip is required to have accurate 

results. 

 

2.9.2 The Fatigue Notch Factor Kf 

 

Figure 2.13 shows stress-life (S-N) curve of an un-notched and notched specimen, it 

can be seen that existence of the notches reduces the stress amplitude for a given life, 

and this reduction should be done by the factor Kt, but as it can be seen, the actual 

experimental data lies above estimation done by Kt factor and this means that the 

notch has less effect than expected. So, the actual reduction especially for long lives 

( Nf ≥ 106 ) is characterized by factor Kf  and it is called fatigue notch factor. Kf  is 

expressed as below: 

𝐾𝑓 =
Smooth fatigue strength

Notched fatigue strength
≤ 𝐾𝑡 (2.22) 

As a base Kf  is estimated for zero mean stress cases. 
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Figure2. 13 Effect of a notch on the rotating bending S-N behavior of an aluminum alloy, and 

comparisons with strength reductions using Kt and Kf[35] 

For large radius of notch tip ρ, the Kf  value will be equal to Kt value, but for small 

notch radius (lower Kf and longer fatigue initiation life and less damage) the 

difference will be large. The cause of this difference can be explained through the 

local yielding behavior or the stress field intensity theory.[36][37][38] The yielding 

at the notch root caused by cyclic behavior reduces the notch root stress, particularly 

at shorter lives. This explanation is suggested by the local yielding theory, and the 

stress field intensity theory assumes that an average stress acting over a finite volume 

of the material at the notch root controls the fatigue life instead of maximum stress 

on the surface of the notch root which is calculated using Kt . This average stress is 

lower than the maximum surface stress.[15] 

 

2.9.3 Notch Sensitivity Factor q and Empirical estimations for Kf  

 

Notch sensitivity, q, can be expressed as: 

𝑞 =
𝑘𝑓 − 1

𝑘𝑡 − 1
(2.23) 
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The values for q are between 0 (Kf = 1, no notch effect) and 1 (Kf  = 0, full notch 

effect). Peterson[39] suggested an estimated formulation for q as: 

𝑞 =
1

1 +
𝛼
𝜌

(2.24) 

Where  

        α = material constant in length dimensions 

        ρ = radius at the notch root 

 

Figure 2.14 which is also provided by Peterson shows variation of q with notch radius 

and material. Form this figure a typical value for aluminum alloys can be reached as: 

𝛼 = 0.51 mm              (aluminum alloys) (2.25) 

 

Figure2. 14 Notch sensitivity curves 

Combining Equation (2.23) with Equation (2.24) gives a formula to calculate Kf 

directly from α, as: 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 +
𝛼
𝜌

(2.26) 

Another empirical relationship for q and Kf is suggested by Neuber: 
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𝑞 =
1

1 + √
𝛽
𝜌

(2.27)
 

𝐾𝑓 = 1 +
𝐾𝑡 − 1

1 + √
𝛽
𝜌

(2.28)
 

Where 

         β = Neuber’s material constant 

Figure 2.15 shows typical values of β for steels and heat treated aluminum alloys 

developed by Kuhn. An expression for β by fitting the curve for aluminum one is as 

follow[34]: 

log𝛽 = −9.402 × 10−9𝜎𝑢
3 + 1.422 × 10−5𝜎𝑢

2 − 8.249 × 10−3𝜎𝑢 + 1.451 (2.29) 

𝛽, mm = 10log𝛽 (2.30) 

 

Figure2. 15 Neuber constant curves for steel and T-series aluminum alloys 
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2.9.4 Strain Life Approach in Notched Members 

 

Strain life approach is commonly used in fatigue of notched members, since the 

deformation in notch root is usually not elastic. In strain-life approach stresses and 

strains at notch root are employed but in stress-life approach, it is the nominal stresses 

that have the main role. To use strain-life approach in notched members, two tasks 

need to be done, first one is to determine local stresses and strains at the notch root 

and the second one is using these stresses and strains in strain-life equation discussed 

in previous sections. To obtain the local stress and strains, three ways is discussed in 

following sections.[15] 

For notched members, local stresses and strains and nominal stresses and strains are 

shown in Figure 2.16.  

 

Figure2. 16 Local and nominal stresses and strains of a notched member[15] 

In this thesis net cross-sectional area is used for nominal stress and strain. 

For stresses and strains in elastic range following expressions are valid: 

𝜎 = 𝐾𝑡𝑆                𝜀 = 𝐾𝑡𝑒 (2.31) 

Commonly local stresses induced by sufficiently high loads are higher than the yield 

strength and their value will be less than local stress calculated with 𝐾𝑡𝑆, thus, 



 30    

 

relating local stress to nominal stress with 𝐾𝑡 is no longer applicable; and also there 

is no proportionality between strains and stresses. In this situation, defining stress 

and strain concentration factors is useful: 

𝐾𝜎 =
𝜎

𝑆
(2.32) 

𝐾𝑒 =
𝜀

𝑒
(2.33) 

In Figure 2.17 variation of strain and stress concentration factors with local stress is 

schematically shown. From figure it is obvious that when local stress is less than 

yielding stress, material behaves elastically, strains and stresses are proportional to 

each other with modulus of elasticity constant E. With increasing local stress above 

yielding strength, plastic deformations, reduction of 𝐾𝜎, increasing of  𝐾𝑒, and 

inelastic behavior occur. 

 

Figure2. 17 Concentration factors variation with local (notch) stress 

As discussed in previous section, the monotonic strain-stress curve expressed by 

Ramberg-Osgood equation relates stress and strain as: 

𝜀 = 𝜀𝑒 + 𝜀𝑝 =
𝜎

𝐸
+ (

𝜎

𝐾
)

1 𝑛⁄

(2.34) 

Where 

         n = monotonic strain hardening exponent 
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         K = monotonic strength coefficient 

For a given nominal stress S or nominal strain e, local stress or strain can be 

determined by three ways as: 

 Experimental methods 

 Finite element methods 

 Analytical methods 

Finite element method needs a fine mesh and small element size around geometrical 

discontinuities like notches as well as a good representation for material stress-strain 

behavior like Ramberg-Osgood equation. For using analytical methods, the value of 

elastic stress concentration factor is needed. The combination of linear finite element 

method and analytical method is used for complex geometries where calculating 

elastic stress concentration factor is difficult. In this approach, the calculated elastic 

stress concentration factor using FEM is employed along with analytical methods to 

obtain local stress and strains. The linear rule, Neuber’s rule, and Glinka’s rule (strain 

energy density rule) are three analytical methods which will be discussed in next 

sections. 

 

2.9.4.1 The Linear Rule 

 

The Linear rule[15] is expressed as: 

𝐾𝜀 = 𝐾𝑡 =
𝜀

𝑒
(2.35) 

For nominal elastic condition, following equation is applicable: 

𝑒 =
𝑆

𝐸
(2.36) 

From the two equations above, local strain can be calculated, and for determining 

local stress Equation (2.34) can be used. In case of cyclic loadings, the range of 

stresses and strains are used. The linear rule is suitable for extreme plane strain cases. 
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2.9.4.2 Neuber’s Rule 

 

Following equation which is a rule for nonlinear material behavior is suggested by 

Neuber for longitudinal grooved shaft under torsional loading[40]: 

𝐾𝜀𝐾𝜎 = 𝐾𝑡
2 (2.37) 

 

By substituting expressions for strain and stress concentration factors: 

𝜀𝜎 = 𝐾𝑡
2𝑒𝑆 (2.38) 

From this rule it is found that the elastic stress concentration factor is the geometric 

mean of the true stress and strain concentration factors. 

Simultaneous solution of Neuber’s rule and the stress-strain equation is required to 

determine local strains and stresses. Plotting Equation (2.38) and the stress-strain 

relation (2.34) on a σ-ε coordinate it can be seen that the intersection of these two 

curves, which is point A in Figure 2.18 defines the local stress and strain values which 

is desired. 

 

Figure2. 18 Determination of local stress and strain using Neuber’s rule 
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Neuber’s rule for nominal elastic behavior can be reduce to following equation by 

substituting e as S/E: 

𝜀𝜎 =
(𝐾𝑡𝑆)2

𝐸
(2.39) 

 

By combining Equation (2.39) with Equation (2.34), local stress σ can be found by 

solving following equation using iteration or numerical techniques: 

𝜎2

𝐸
+ 𝜎 (

𝜎

𝐾
)

1 𝑛⁄

=
(𝐾𝑡𝑆)2

𝐸
(2.40) 

Replacing stresses and strains with strain and stress ranges and monotonic stress-

strain relation with hysteresis one, local stresses and strains for cyclic loading cases 

can be found. Also for cyclic loading situations, while using Neuber’s rule, Topper 

et al.[4] suggested to use fatigue notch factor Kf instead of stress concentration factor 

Kt since it will give results that are closer to experimental ones (reduction in degree 

of conservatism). For cyclic loading and nominal elastic behavior following relations 

are available: 

∆𝜀∆𝜎 = 𝐾𝑓
2∆𝑒∆𝑆 (2.41) 

for nominal elastic situation:     ∆𝑒 =
∆𝑆

𝐸
(2.42) 

∆𝜀∆𝜎 =
(𝐾𝑓∆𝑆)

2

𝐸
(2.43) 

(∆𝜎)2

𝐸
+ 2∆𝜎 (

∆𝜎

2𝐾′
)

1 𝑛⁄ ′

=
(𝐾𝑓∆𝑆)

2

𝐸
(2.44) 

𝛥𝜀 =
∆𝜎

𝐸
+ 2 (

∆𝜎

2𝐾′
)

1 𝑛′⁄

(2.45) 

After obtaining local stress range from Equation (2.44), it is possible to obtain strain 

range from hysteresis loop equation (Equation 2.45)). Then maximum stress could 
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also be obtained. Having these values in hand, calculating notch strain amplitude and 

notch mean stress can be done using: 

𝜀𝑎 =
∆𝜀

2
(2.46) 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
(2.47) 

 These values are used in fatigue life prediction formulas discussed previously. 

 

2.9.4.3 Glinka’s Rule 

 

Another notch analysis method has been introduced by Glinka[41]. In this method it 

is assumed that the factor 𝐾𝑡
2 relates the notch root strain energy density (We) to the 

energy density caused by nominal stress and strain (Ws): 

𝑊𝑒 = 𝐾𝑡
2𝑊𝑠 (2.48) 

In case of nominally elastic behavior: 

𝑊𝑠 =
1

2

𝑆2

𝐸
(2.49) 

𝑊𝑒 =
𝜎2

2𝐸
+

𝜎

1 + 𝑛
(

𝜎

𝐾
)

1 𝑛⁄

(2.50) 

Resulting in: 

𝜎2

𝐸
+

2𝜎

1 + 𝑛
(

𝜎

𝐾
)

1 𝑛⁄

=
(𝐾𝑡𝑆)2

𝐸
(2.51) 

Equation is the well-known Glinka’s rule or strain energy density formula, physical 

interpretation of this rule is shown in Figure 2.19. 
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Figure2. 19 Strain energy density method 

The only difference between using Neuber’s rule and Glinka’s rule (Equations (2.40) 

and (2.51)) is the term 2/(1+n). By applying Glinka’s rule, longer fatigue life is 

predicted since smaller notch strain and stress is predicted, so application of Neuber’s 

rule is a more conservative way of fatigue life prediction. 

Again in the case of cyclic loading, stresses and strains should be replace with 

corresponding ranges, and monotonic stress-strain loop equation should be replaced 

with hysteresis one ( using 𝐾′ and 𝑛′, instead of K and n): 

(∆𝜎)2

𝐸
+

4∆𝜎

1 + 𝑛′
(

∆𝜎

2𝐾′
)

1 𝑛⁄ ′

=
(𝐾𝑡∆𝑆)2

𝐸
(2.52) 

Among these three notch analysis methods, the least conservative fatigue life results 

can be obtained by using the Linear rule, and the most conservative one can be 

obtained by Neuber’s rule, and using Glinka’s rule, results will be between the Linear 

rule results and Neuber’s rule results. 
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2.10 Review of Linear Elastic Fracture Mechanics (LEFM) 

 

The existence of a crack in an engineering component or structure can significantly 

reduce its strength and life. The total life of a component can be divided into crack 

initiation life and crack growth life as follows: 

𝑁𝑡𝑜𝑡𝑎𝑙 = 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑁𝑔𝑟𝑜𝑤𝑡ℎ 

                                                                 ↓                 ↓ 

                                                               S-N           LEFM 

                                                               ε-N 

Ninitiation may range from zero to almost the entire life 

Ngrowth can be very small or nearly the entire life 

There has been a heavy use of fracture mechanics in aerospace, ship, nuclear and 

ground vehicle (recently) industries. Using Fracture mechanics concepts, the strength 

of a component which has a crack or flaw can be assessed. For materials that behave 

mostly elastic during the fatigue process, LEFM concepts are used. 

 

2.10.1 Loading Modes 

 

There are three modes by which a crack can extend, these three modes are shown in 

Figure 2.20. Since cracks tend to grow on the maximum tensile stress plane, the most 

common mode in fatigue is mode I. 
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Figure2. 20 Three modes of crack extension 

 

2.10.2 Stress Intensity Factor 

 

The basic work done for development of stress intensity factor was done by 

Griffith[42] nearly a century ago. Later, using Griffith’s theory, Irwin[43] quantified 

the crack tip driving force as stress intensity factor K: 

𝐺 =
𝐾2

𝐸
      for plane stress (2.53) 

𝐺 =
𝐾2

𝐸
(1 − 𝜈2)      for plane strain (2.54) 

Where 

G = Energy release rate (required elastic energy per unit crack surface area for crack 

extension) 

The determination of K values can be done by analytical and computational 

calculations by using theory of elasticity and experimental methods like photo-

elasticity. The dependence of K on the combination of crack length, loading, and 

geometry can be expressed as: 

𝐾 = 𝑆√𝜋𝑎 𝑓 (
𝑎

𝑊
)        or       𝐾 = 𝑆√𝑎 𝑌 (2.55) 

Where 
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         a = the crack length 

         S = the nominal stress (assuming the crack did not exist) 

        𝑓 (
𝑎

𝑤
), and Y = dimensionless geometry parameters 

         W = a width dimension 

The common unit for K is MPa√m  

For a single edge notched beam (SENB) in bending shown in Figure 2.21, the K value 

is calculated in one of the following forms: 

 

Figure2. 21 SENB in bending 

𝐾𝐼 = 𝜎𝑛𝑜𝑚√𝜋𝑎 [
1.106 − 1.552 (

𝑎

𝑊
) + 7.71 (

𝑎

𝑊
)

2

− 13.53 (
𝑎

𝑊
)

3

+14.23 (
𝑎

𝑊
)

4 ] (2.56)  

Equation (2.56) is suitable for S = 8W 

𝐾𝐼 = 𝜎𝑛𝑜𝑚√𝑎
1.99 −  

𝑎
𝑊  (1 −  

𝑎
𝑊) (2.15 − 3.93

𝑎
𝑊  + 2.7 (

𝑎
𝑊)

2

)

(1 + 2
𝑎
𝑊) (1 −

𝑎
𝑊)

3/2
(2.57) 

Where 

𝜎𝑛𝑜𝑚 =
𝑀𝑐

𝐼
=

6𝑀

𝐵𝑊2
=

3𝑃𝑆

2𝐵𝑊2
         and         𝐵 = Thickness (2.58) 

Equation (2.57) is suitable for a specimen with S=4W 

An alternative expression for K in terms of applied load P is given as: 



 39    

 

𝐾𝐼 =
𝑃

𝐵√𝑊
𝑓 (

𝑎

𝑊
) (2.59) 

Where, 

𝑓 (
𝑎

𝑊
) =

3
𝑆
𝑊

√
𝑎
𝑊

2 (1 + 2
𝑎
𝑊) (1 −

𝑎
𝑊)

3 2⁄
[

1.99 −
𝑎

𝑊
(1 −

𝑎

𝑊
)

{2.15 − 3.93 (
𝑎

𝑊
) + 2.7 (

𝑎

𝑊
)

2

}
] (2.60) 

Here, S = span length 

 

2.10.3 Monotonic and Cyclic Plastic Zone 

 

In order to use LEFM theory, the region of yielding at the crack tip which is called 

the plastic zone, needs to be not very large. For calculating the plastic zone size under 

monotonic and cyclic loading following expressions are used: 

2𝑟𝑦 =
1

𝜋
(

𝐾

𝑆𝑦
)

2

                       for plane stress (2.61) 

2𝑟𝑦
′ ≅

1

4𝜋
(

∆𝐾

𝑆𝑦
)

2

                   for plane stress (2.62) 

2𝑟𝑦 ≅
1

3𝜋
(

𝐾

𝑆𝑦
)

2

                    for plane strain (2.63) 

2𝑟𝑦
′ ≅

1

12𝜋
(

∆𝐾

𝑆𝑦
)

2

                for plane strain (2.64) 

Where, 

          2ry = monotonic plastic zone size 

          Sy = yield strength 

          2𝑟𝑦
′ = cyclic plastic zone size  



 40    

 

There is an approximate limitation suggestion to use LEFM concepts under 

monotonic loading as: 

𝑟𝑦 ≤
𝑎

8
(2.65) 

 

2.11 Fatigue Crack Growth (FCG) 

 

The initial existence of a crack with a dangerous size (Having a critical size which 

would cause immediate unstable fracture upon loading) is unusual, so, for brittle 

fracture to occur, a cyclic loading is required to make the crack to grow and reach a 

critical size. This process is called fatigue crack growth. 

The crack length, a, versus number of cycles, N, for three identical specimens under 

different cyclic loadings are shown in Figure 2.22. 

 

Figure2. 22 Fatigue crack length versus number of cycles to fracture 

As seen in Figure 2.22, FCG life and fracture crack length gets shorter as cyclic 

stresses gets larger. And also the crack growth rates are higher at larger stresses. The 

slope at a point on an a-N curve equals the rate of the crack growth, da/dN or (Δa/ΔN). 
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For fatigue crack growth under constant amplitude cyclic loading, following 

expression are used: 

∆𝜎𝑛𝑜𝑚 = 𝜎𝑛𝑜𝑚𝑚𝑎𝑥
− 𝜎𝑛𝑜𝑚𝑚𝑖𝑛

(2.66) 

∆𝐾 = ∆𝜎𝑛𝑜𝑚√𝜋𝑎 𝑓 (
𝑎

𝑊
) (2.67) 

𝐾𝑚𝑎𝑥 = 𝜎𝑛𝑜𝑚𝑚𝑎𝑥√𝜋𝑎 𝑓 (
𝑎

𝑊
) (2.68) 

𝐾𝑚𝑖𝑛 = 𝜎𝑛𝑜𝑚𝑚𝑖𝑛√𝜋𝑎 𝑓 (
𝑎

𝑊
) (2.69) 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 (2.70) 

∆𝐾 =
∆𝑃

𝐵√𝑊
 𝑓 (

𝑎

𝑊
) (2.71) 

𝑅 =
𝑃𝑚𝑖𝑛

𝑃𝑚𝑎𝑥
=

𝜎𝑛𝑜𝑚𝑚𝑖𝑛

𝜎𝑛𝑜𝑚𝑚𝑎𝑥

=
𝐾𝑚𝑖𝑛

𝐾𝑚𝑎𝑥

(2.72) 

Where 

         𝜎𝑛𝑜𝑚 = nominal stress 

In case that 𝜎𝑛𝑜𝑚𝑚𝑖𝑛  is compressive, Kmin will be taken as zero because stress intensity 

factor is undefined in compression. 

For expressing fatigue crack growth, the convenient form is as follows: 

𝑑𝑎

𝑑𝑁
= 𝑓(∆𝐾, 𝑅) (2.73) 

The crack growth rate versus stress intensity factor range curve can be obtained by 

applying LEFM theory. The log-log scale of a da/dN vs stress intensity factor range 

is shown in Figure 2.23. This curve consists of three regions. At Region II where ΔK 

values are in intermediate level, the curve is linear. In region I and III where ΔK 

values are low and high respectively, the crack growth rate deviates from linearity. 

A crack will not grow below a threshold value of ΔK available in region I. The rate 
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of the crack growth is very high and unstable at region III till it reaches a critical 

value of K at which fracture occurs.  

 

 

Figure2. 23 Fatigue crack growth rate, a schematic sigmoidal behavior 

The linear part of the curve which is related to stable macroscopic crack growth can 

be represented by the following power law relationship as suggested by Paris and 

Erdogan[44]: 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (2.74) 

In above relation named as Paris Law, C and m are the material constants determined 

experimentally and named as Paris constants. Paris equation is used mostly for R = 0 

loading. Since integrating Paris Law gives conservative FCG lives, it can be used for 

three regions in most cases. 

Stress-life (S-N) or strain-life (ε-N) equations are usually based on fully reversed 

stress or strain situations, but FCG data are usually based on pulsating tension 

situation with  R = 0. 
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2.11.1 Mean Stress Effects for FCG 

 

For a given ΔK, by increasing R ratio crack growth rate also increase, this effect is 

stronger for brittle materials and weak for ductile materials. R ratio also has less effect 

in region II than regions I and III. These effects are shown schematically in Figure 

2.24. 

 

Figure2. 24 schematic mean stress effect on FCG 

 

2.11.1.1 The Walker Equation for FCG 

 

One of the empirical relationships for describing mean stress effects with R ≥ 0 can 

be expressed by applying Walker relationship to stress intensity factor range as 

follows: 
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𝑑𝑎

𝑑𝑁
=

𝐶0

(1 − 𝑅)𝑚(1−𝛾)
 (∆𝐾)𝑚 = 𝐶′(∆𝐾)𝑚 (2.75) 

Where C0 and m are the Paris Coefficients and slope for R = 0 condition and γ is the 

Walker constant which is a material constant, The slope of the curve m is not effected 

by R, but 𝐶′ (the Walker equation coefficient) is expressed as: 

𝐶′ =
𝐶0

(1 − 𝑅)𝑚(1−𝛾)
(2.76) 

 

2.12 Fracture Toughness Testing 

 

To measure the resistance of a material to crack growth is named fracture toughness 

test. ASTM is one of the organizations that publish standardized procedures for 

fracture toughness measurements. 

 

2.12.1 Specimen Configurations 

 

ASTM standards allows five types of specimens to characterize fracture initiation 

and crack growth which are: 

 The compact specimen 

 The single edge notched bend SE(B) geometry 

 The arc-shaped specimen 

 The disk specimen 

 The middle tension (MT) panel 

These five specimen are shown in Figure 2.25. 
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Figure2. 25 Standardized test specimens: (a) compact specimen, (b) disk-shaped compact specimen, 

(c) single-edge-notched bend SE(B) specimen, (d) middle tension (MT) specimen, and (e) arc-shaped 

specimen.[45] 

 

The crack length (a), the thickness (B), and width (W) are three important 

characteristic dimensions of each specimen. In general W=2B and a/W≈ 0.5. The 

flexibility of SE(B) specimen is more with respect to size. Although, the standard 

length for loading span is 4W, with a single fixture wide range of SE(B) specimens 

can be tested because the loading span can be adjusted continuously to any value that 

is in its range of capacity if the fixture design is proper. The Figure 2.26 shows an 

apparatus for three-point bend testing.[45] 
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Figure2. 26 Three-point bending apparatus for testing SE(B) specimens 

 

2.12.2 Fatigue Pre-cracking 

 

In order to use fracture mechanics theory, infinitely sharp cracks are needed prior to 

loading. In spite of the fact that specimens that are used in laboratory are away from 

this ideal, it is possible to produce adequately sharp cracks using cyclic loading. The 

pre-cracking procedure in a typical specimen is shown in Figure 2.27. 

 

Figure2. 27 Fatigue pre-cracking of a typical specimen, a fatigue crack is initiated at the notch tip 

through cyclic loading 

It can be seen that a fatigue crack is initiated at tip of the machined notch and by 

careful control of cyclic loads it propagates to the desired length. 

Nowadays modern servo-hydraulic test machines can be programmed to produce 

sinusoidal loading and other wave forms loadings. 
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The production of initiated fatigue crack must be in such a way that it does not have 

an unwanted influence on the toughness value which will be measured. To measure 

precise fracture toughness the fatigue crack must meet the following conditions: 

 The radius of crack tip at failure must be much larger than the radius of 

initiated fatigue crack. 

 The plastic zone which is produced during fatigue cracking must be smaller 

than the plastic zone at fracture.[45] 

 

2.12.3 Measurement Tools 

 

During any fracture toughness test, measuring the applied load and a characteristic 

displacement on the test specimen is a minimum need. In order to measure applied 

loads, the load cells are needed and nearly all test machines are equipped with them. 

The most common equipment to measure displacements in fracture mechanics tests 

is the clip gage which is shown in Figure 2.28. The clip gage attaches to the mouth 

of the, crack; it is made of four resistance-strain gages bonded to a pair of cantilever 

beams. When beams deflects a change of voltage across the strain gages occur, this 

voltage change varies linearly with displacement. There should be attached or 

machined sharp knife edges into the specimen to enable the clip gages to be attached 

into them to ensure free rotation of each beam ends.[45] 

 

Figure2. 28 Measurement of the crack-mouth-opening displacement with a clip gage. 
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2.12.4 KIc Testing 

 

KIc is the critical value of mode I stress intensity factor which can be used as a proper 

fracture parameter in a material that acts linearly elastic prior to failure, such that the 

produced plastic zone is small enough compared to specimen dimensions. In 1970, 

the first standardized KIc testing method, ASTM E 399[46], was published. In ASTM 

E 399, KIc is referred to as “plain strain fracture toughness”.  

Much of early fracture toughness testing was performed on thin sections and it was 

shown that Kc which is a thickness-dependent apparent toughness might not be a 

single valued material property. On the other hand, when the specimen is sufficiently 

thick, (i.e. plane strain conditions prevail) then KIc is thickness independent. Hence 

it is called plane strain fracture toughness and it is a material property. Thus tests 

were shifted from thin sections to thick sections in order to develop testing methods 

for KIc determination. 

 

2.12.4.1 ASTM E 399 

 

Specimen configurations that are permitted by E 399 are: the compact, SE(B), arc-

shaped, and disk-shaped specimens. They are usually fabricated with W=2B. To 

produce a sharp crack, fatigue pre-cracking is required for all test specimens. The 

ratio of allowed crack size to width (a/W) in E 399 is between 0.45 and 0.55. If the 

technician follows all the procedure outlined in the standard, almost all the 

mechanical tests including fracture toughness test lead to valid results. However, KIc 

test may produce invalid result if the plastic zone at fracture is too large. 

Due to strict size necessities, E 399 recommends to check the below size 

requirements for a valid KIc: 

𝐵, 𝑎 ≥ 2.5 (
𝐾𝐼𝑐

𝜎𝑌𝑆
)

2

(2.77) 
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0.45 ≤ 𝑎 𝑊⁄ ≤ 0.55 (2.78) 

Although by increasing strength there is a tendency to decrease toughness, there is 

not a specific relationship between KIc and σYS in metals, so strength-thickness table 

in E 399 should be used when a better data is not available. According to ASTM E- 

399 for fatigue pre-cracking, Kmax should be no larger than 0.8 KIc. At the final size 

of the crack Kmax should be less than 0.6 KIc and also during fatigue Kmax should 

always be less than KIc to avoid failure of the specimen. 

To select proper loads the user needs to know anticipated KIc value. If he or she acts 

in conservative way and selects low loads, pre-cracking time may be too long or 

otherwise by selecting high loads the results may be invalid. 

Testing pre-cracked specimens according to E 399 requires to monitor and record 

applied loads and crack opening displacements. Three typical types of load-

displacement curves with critical load PQ which is defined for each type of curve are 

shown in Figure 2.29. 

In the 5% method, the P5 is found by contracting a line from origin that has a slope 

5% less than the recorded slope so for the type I case the load-displacement curve is 

smooth and it deviates slightly from linearity before reaching a maximum load Pmax. 

So for type I curve, PQ=P5. For type I case where a small amount of unstable crack 

growth (i.e. a pop-in) occurs before the curve deviates from linearity by 5%. So for 

type II curve PQ is defined at the pop-in. Type III failures are those in which failure 

proceeds across the entire remaining ligament without hesitation and in this case 

PQ=Pmax 

 

Figure2. 29 Three types of load-displacement behavior in a KIc test. 
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From the PQ value and measured crack length, provisional fracture toughness KQ can 

be calculated from the following relationship: 

𝐾𝑄 =
𝑃𝑄

𝐵√𝑊
𝑓 (

𝑎

𝑊
) (2.79) 

Where 𝑓(𝑎 𝑊)⁄  is a dimensionless function of 𝑎 𝑊⁄  which is given in E 399 for four 

types of specimens. The calculated KQ value is a valid KIc result only if all the validity 

requirements in the standard are met including: 

0.45 ≤ 𝑎 𝑊 ≤ 0.55⁄ (2.80) 

𝐵, 𝑎 ≥ 2.5 (
𝐾𝑄

𝜎𝑌𝑆
)

2

(2.81) 

𝑃𝑚𝑎𝑥 ≤ 1.10𝑃𝑄 (2.82) 

If all the requirements of ASTM E 399 are met by the test, then 𝐾𝑄 = 𝐾𝐼𝑐. 
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CHAPTER III 

 

LIFE PREDICTIONS 

 

 

In this chapter, through the application of strain-life method (using corresponding 

formulas by Morrow, SWT, Manson-Halford and Walker), along with FEM 

simulations, fatigue crack initiation life under a specific cyclic loading is determined; 

and then fatigue crack propagation life up to a desired crack length is calculated 

applying LEFM approach with the help of Walker and Paris equations. 

 

3.1 Geometry, Loading and Boundary Conditions of Problem 

 

A single edge notched bend (SENB) specimen of rectangular cross section was 

analyzed in this thesis. The geometry and dimensions of this specimen are drawn 

using SOLIDWORKS software which is shown in Figure 3.1. The dimensions are in 

[mm] and are selected according to ASTM E399 standard described in section 2.12 

of chapter II. The specimen is loaded in three point bending condition. A schematic 

of loading and supports is illustrated in Figure 3.2. The specimen is under cyclic 

loading; its maximum and minimum values are 8 [KN] and 0.8 [KN] respectively 

(R=0.1 suggested by ASTM E399). The maximum loading value is selected 

according to ASTM E399 standard suggestion (80% of limiting load). During fatigue 

pre-cracking Kmax should be less than 80% of KIc. The span length (distance between 

supports) is 120 [mm] = 4W. For KIc=29 MPa[10] and for a crack length of 14.4 

[mm], the limiting load is calculated using Equation (2.59), Plim=10000 [N]. 
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Figure3. 1 Geometry and dimensions of SENB specimen drawn by SOLIDWORKS software. 

Dimensions are in [mm] 
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Figure3. 2 Schematic of specimen loading and boundary conditions 

 

3.2 Material of the Specimen 

 

The specimens analyzed and tested in this study are made of aluminum alloy 6082 

T651. The major alloying ingredients of 6xxx-series aluminum alloys are magnesium 

and silicon. These series of aluminum alloys are mostly used in automotive, 

aerospace and ship industries as structural materials because of their various and 

attractive combinations of properties such as medium and high strength, formability, 

fatigue resistance and low cost. Among these series, 6082 has the highest strength 

but it has relatively low ductility so it has been chosen. Al 6082 is heat treatable and 

has a high corrosion resistance. To have the aluminum alloy 6082 furnished in T651 

temper, metal is solution heat-treated, stress relieved by stretching, and then 

artificially aged. 

The chemical composition of al 6082 is shown in Table 3.1, and the 

physical/mechanical properties of al 6082 T651 is shown in Table 3.2. 

Table3.1: Chemical composition of al 6082 

Chemical 

element 

Silicon 

(Si) 

Magnesium 

(Mg) 

Manganese 

(Mn) 

Iron 

(Fe) 

Chromium 

(Cr) 

Zinc 

(Zn) 

Titanium 

(Ti) 

Copper 

(Cu) 

Aluminum 

(Al) 

%Present 0.7-1.3 0.6-1.2 0.4-1.0 
0-

0.5 
0-0.25 

0-

0.2 
0-0.1 0-0.1 Balance 
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Table3. 2: Physical and mechanical properties of al 6082 T651 

Density 
Modulus of 

Elasticity (E) 
Poisson’s Ratio 

Yield Tensile 

Strength (YTS) 

Ultimate Tensile 

Strength (UTS) 

2.7 g/cm3 70 GPa 0.33 280 MPa 320 MPa 

 

 

3.3 Stress Analysis of Specimen in Abaqus® 

 

In order to predict fatigue crack initiation life using strain-life formulas, elastic stress 

concentration factor at the notched part of the specimen is required. For this purpose 

maximum stress at the notch tip of the specimen under the described loading is 

determined using Abaqus software. 

To analyze stress in the specimen using Abaqus, a two dimensional half model (with 

plane stress\plane strain assumption) and a three dimensional quarter model are 

created. Since specimen is symmetric in x and z directions it is suitable to model half 

of the specimen for 2-D analysis and quarter of the specimen for 3-D analysis to 

reduce the processing time of analyzes. The created models are shown in Figure 3.3. 

The notch radius was taken as 0.25 [mm]. (This value is an estimate based on the 

enlarged photographs of a notch produced by a particular cutter in the same material, 

in an earlier study [14]). 

                                                              

 

Figure 3.3 (continued in next page) 

(a) 
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Figure3. 3 (a): 2-D half model created by Abaqus. (b): 3-D quarter model created by Abaqus 

The loading and boundary conditions were defined after defining material properties 

and completing assembly and step parts in Abaqus. Figure 3.4 shows the loading and 

boundary conditions defined on the specimen in Abaqus. 

 

 

Figure3. 4 Loading and boundary conditions defined in Abaqus, (a): 2-D model, (b): 3-D model 

(b) 

(a) 

(b) 
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The loading segments in above figure is magnified in Figure 3.5. It can be seen that 

loading is taken as pressure load on a very small area through defining a partition.  

 

 

Figure3. 5 Applied loading as a pressure load over a very small area. (a): 2-D model, (b): 3-D model 

One of the defined boundary conditions in Figure 3.4 is support boundary condition 

and the others are x-symmetry and z-symmetry boundary conditions as shown in 

Figure3.6 and 3.7. 

(a) 

(b) 
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Figure3. 6 Support boundary condition. (a): 2-D model, (b): 3-D model 

 

      

Figure3. 7 (a): x-symmetry boundary condition for 2-D model. (b) & (c): x-symmetry & z-symmetry 

BC for 3-D model 

(a) (b) 

(a) (b) (c) 
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After defining load and boundary conditions as discussed above, meshing should be 

considered. Because of notch geometry and importance of analysis accuracy around 

notch tip, fine meshing should be done around the notch tip. After many meshing 

iterations (by choosing different meshing techniques and element shapes), the best 

meshing technique and element shape reached as shown in Figure 3.8. This was done 

with the help of defining partitions which allows to apply different meshing 

techniques and seedings for each partition. Each color shows a different meshing 

technique which is structured for green parts, free for pink part and sweep for yellow 

part. Element shapes are quadratic in both green and pink parts for 2-D model and 

hexahedral in both green and yellow parts for 3-D model. Algorithm used in free 

meshing of pink part is advancing front with mapped meshing everywhere 

appropriate and medial axis for yellow part with minimize the mesh transition 

selected. 

 

 

Figure3. 8 Meshing controls of specimen model in Abaqus. (a): 2-D model, (b): 3-D model 

(a) 

(b) 
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After defining meshing controls, seeding of edges were done with a lot of various 

combinations of edge seeds reaching to appropriate seeding combination. Initial 

analysis for 2-D model was done with linear elements (CPE4R), but convergence of 

results was not reached. Because of this, element type is changed to quadrilateral to 

have a more accurate stress analysis. Element type used for this specimen model is 

CPE8R (an 8-node biquadratic plane strain quadrilateral, reduced integration). A 

convergence study were done and the final mesh of the specimen model is obtained 

with a total number of 113345 quadratic quadrilateral elements of type CPE8R. And 

for 3-D model meshing was done by using element type of C3D8 (an 8-node linear 

brick) and a total number of 125334 elements. Meshing patterns for both models are 

shown in Figure 3.9.  

 

 

Figure3. 9 Meshing pattern of specimen model in Abaqus. (a): 2-Dmodel, (b): 3-D model 

(a) 

(b) 



 60    

 

In the above figure, fine mesh around notch tip is magnified in Figure 3.10 for 2-D 

model and Figure 3.11 for 3-D mdoel. 

 

Figure3. 10 Fine mesh around notch of specimen 2-D model in Abaqus 

 

Figure3. 11 Fine mesh around notch tip of specimen 3-D model in Abaqus 

Next task was creating jobs and submitting models to analyze. Figure 3.12 shows the 

result of linear elastic analysis as stress distribution around the notch tip of the 

specimen. Red colored regions have the highest stress magnitudes. The maximum 

value for stress in the notch tip (applied load is P=800 [N]) is:  

   𝜎𝑚𝑎𝑥 = 116.798         MPa             2-D model

      𝜎𝑚𝑎𝑥 = 80.776         MPa             3-D model (3.1)
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Figure3. 12 Stress distribution around notch tip analyzed by Abaqus. (a): 2-D model, (b): 3-D model 

Stress distribution extending from notch root to surface where the loading is applied 

is also shown in Figure 3.13. 

 

 

Figure3. 13 Stress distribution extending from notch root to surface where the loading is applied. 

(a) 

(b) 

(a) 

(b) 
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Also a stress analysis was done with 3D quarter model with plane strain boundary 

condition to check 2-D stress analysis availability. The result of analysis as stress 

around the notch and also stress distribution of the notch tip through thickness of 

model is shown in figure 3.14. 

 

 

Figure3. 14 (a) 3-D quarter model stress analysis with plane strain boundary condition. (b) stress 

distribution of notch tip through thickness of model 

From figure 3.14 it is concluded that both 2-D and 3-D analyses with plane strain 

boundary condition give same stress results.  
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3.4 Calculation of Elastic and Fatigue Stress Concentration Factor, Kt and Kf 

 

In order to obtain elastic stress concentration factor, Kt, net sectional nominal stress 

of the notch tip, 𝜎𝑛𝑜𝑚, is also required and it is calculated using following formula: 

𝜎𝑛𝑜𝑚 =
𝑀𝑐

𝐼
(3.2) 

Where, 

         𝜎𝑛𝑜𝑚 = nominal stress 

         M = bending moment 

          c = distance from neutral axis to extreme fiber 

          I = moment of inertia 

With maximum stress and net sectional nominal stress of notch tip in hand now it is 

possible to obtain elastic stress concentration factor of the notch using following 

formula: 

𝐾𝑡 =
𝜎𝑚𝑎𝑥

𝜎𝑛𝑜𝑚

(3.3) 

Applied load and obtained results for stress and stress concentration factor are 

summarized in Table 3.3. 

Table3. 3: Applied load and corresponding 𝜎𝑚𝑎𝑥 , 𝜎𝑛𝑜𝑚, and Kt 

Applied 

Load 

 [N] 

M 

[N.m] 

C 

[m] 

I 

 [M4] 

Maximum Stress at  

Notch Tip 

𝜎𝑚𝑎𝑥  [MPa] 

Nominal 

Stress 

𝜎𝑛𝑜𝑚 

[MPa] 

Elastic Stress 

Concentration 

Factor 

Kt 

2-D 3-D 2-D 3-D 

800  24  
0.0

1  
(4/3)(10-8) 116.798 80.776 18 6.4887 4.487 
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Topper et al.[4] suggested to use fatigue stress concentration factor, Kf, instead of 

elastic stress concentration factor Kt, since the predicted fatigue lives using Kf  fits 

better to actual experimental results. 

As discussed in section 9.3 of chapter II, there are two formulas for obtaining fatigue 

stress concentration factor, one is suggested by Neuber and the other is suggested by 

Peterson as: 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
= 1 +

𝐾𝑡 − 1

1 + √
𝛽
𝜌

(3.4)
 

𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛
= 1 +

𝐾𝑡 − 1

1 +
𝛼
𝜌

(3.5) 

Where 

         ρ = notch radius 

         β = Neuber’s material constant 

         α = Peterson’s material constant 

For obtaining Neuber’s material constant following formula can be used which is 

developed by fitting the curve that Kuhn provided[34]: 

log𝛽 = −9.402 × 10−9𝜎𝑢
3 + 1.422 × 10−5𝜎𝑢

2 − 8.249 × 10−3𝜎𝑢 + 1.451 (3.6) 

𝛽, mm = 10log𝛽 (3.7) 

And for aluminum alloys the suggested value for Peterson’s material constant in 

reference[15] is: 

𝛼 = 0.51 mm (3.8) 

Table 3.4 provides the corresponding results for fatigue stress concentration factor 

calculated by Neuber’s and Peterson’s formula. 
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Table3. 4: fatigue stress concentration factor  

Peterson’s material 

constant 

α 

Neuber’s material 

constant 

β 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 

2-D 3-D 2-D 3-D 

0.51 mm 0.9107 2.8871 2.198 2.8055 2.147 

 

As seen in Table 3.4, value of Kf calculated using Neuber formula is higher than that 

calculated using Peterson formula. So with Neuber formula for elastic stress 

concentration factor, predicted lives are more conservative than that with Peterson 

formula. 

 

3.5 Cyclic Material Properties and Calculation of Cyclic Local Stresses and 

Strains 

 

With Kf  value and cyclic material properties in hand it is possible to obtain cyclic 

local stresses and strains and ranges of them using Neuber’s rule discussed in section 

9.4.2 of chapter II. The cyclic properties of al 6082 T6 is obtained from two 

difference references[47][48] with slightly different values and are summarized in 

Table 3.5. 

Table3. 5: Strain-life and cyclic properties of 6082 T6 aluminum alloy 

Properties Reference[47] Reference[48] 

Cyclic hardening exponent, 𝑛′ 0.064 0.064 

Cyclic hardening coefficient, 𝐾′ 

[MPa] 
443 444 

Fatigue strength exponent, b -0.0695 -0.07 

Fatigue strength coefficient, 𝜎𝑓
′ 

[MPa] 
485 487 

Fatigue ductility exponent, c -0.827 -0.593 

Fatigue ductility coefficient, 𝜀𝑓
′  0.773 0.209 
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The corresponding formulas to obtain cyclic local stresses and strains are 

summarized below: 

𝜀𝑚𝑎𝑥𝜎𝑚𝑎𝑥 =
(𝐾𝑓𝑆𝑚𝑎𝑥)

2

𝐸
(3.9) 

𝜀𝑚𝑎𝑥 =
𝜎𝑚𝑎𝑥

𝐸
+ (

𝜎𝑚𝑎𝑥

𝐾′
)

1 𝑛′⁄

(3.10) 

𝜎𝑚𝑎𝑥
2

𝐸
+ 𝜎𝑚𝑎𝑥 (

𝜎𝑚𝑎𝑥

𝐾′
)

1 𝑛′⁄

=
(𝐾𝑓𝑆𝑚𝑎𝑥)

2

𝐸
(3.11) 

∆𝜀∆𝜎 =
(𝐾𝑓∆𝑆)

2

𝐸
(3.12) 

𝛥𝜀 =
∆𝜎

𝐸
+ 2 (

∆𝜎

2𝐾′
)

1 𝑛′⁄

(3.13) 

(∆𝜎)2

𝐸
+ 2∆𝜎 (

∆𝜎

2𝐾′
)

1 𝑛⁄ ′

=
(𝐾𝑓∆𝑆)

2

𝐸
(3.14) 

𝜎𝑚𝑖𝑛 = 𝜎𝑚𝑎𝑥 − ∆𝜎 (3.15) 

𝜎𝑚 =
𝜎𝑚𝑎𝑥 + 𝜎𝑚𝑖𝑛

2
(3.16) 

Cyclic local stresses and strains and corresponding ranges were calculated using 

Equations (3.9)-(3.16) for each one of the cyclic material properties given in Table 

3.5. These calculations were done for elastic stress concentration factor, Kt, and also 

for both Neuber and Peterson fatigue stress concentration factors, Kf, separately. The 

results are presented in Table 3.6 and Figure 3.15. As an example the calculation 

process considering material properties of reference[47] and  𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟   obtained from 

2-D analysis  are described below: 

To obtain σmax , the equations (3.9) and (3.10) were combined and a code in 

matlab[49] was written. With some iterations the σmax value was obtained. Iterations 

are done by assuming a trial value then comparing the values of left and right side of 
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equation, when they match, the assumed trial value will be the answer. Matlab code 

is as following: 

Next Δσ was obtained through combining Equations (3.12) and (3.13). Again with a 

code written in matlab and with some iterations the corresponding value for Δσ was 

obtained. The matlab code is as follows: 

smax=180 

smin=18 

deltas=162 

kt=2.8871 

E=70000 

kprime=443 

nprime=0.064 

deltasigma=464.781 

(((kt*deltas)^2)/E) 

(((deltasigma)^2)/E)+(2*(deltasigma)*((deltasigma/(2*kprime))^(1/nprime))) 

Next corresponding values for σmin , σm , εmax , and Δε are obtained through a code 

written in matlab as follows: 

kt=2.8871 

smax=180 

E=70000 

sigmamax=323.37 

deltasigma=464.781 

sigmamin=sigmamax-deltasigma 

sigmam=(sigmamax+sigmamin)/2 

epsilonmax=((kt*smax)^2)/(E*sigmamax) 

deltaepsilon=((kt*deltas)^2)/(E*deltasigma) 

smax=180 

smin=18 

Δs=162 MPa 

kt=2.8871 

E=70000 

kprime=443 

nprime=0.064 

sigmamax=323.37 

(((kt*smax)^2)/E) 

(((sigmamax)^2)/E)+((sigmamax)*((sigmamax/kprime)^(1/nprime))) 
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Figure3. 15 Determination of cyclic local stresses and strains and their ranges using Neuber’s rule for 

material reference[47]. (a) & (b) using Kt ; (c) & (d) using 𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
; (e) & (f) using 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

. All by 

2-D model result. And by 3-D model result: (g) & (h) using 𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
; (i) & (j) using 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

  



 69    

 

Table3. 6: Cyclic local stresses and strains  

 

Material Reference[47] Material Reference[48] 

2-D 3-D 2-D 3-D 

𝐾𝑡 
6.4887 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 

2.8871 

𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛
 

2.8055 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 

2.8055 

𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛
 

2.147 

𝐾𝑡 
6.4887 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 

2.8871 

𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛
 

2.198 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 

2.8055 

𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛
 

2.147 

𝜎𝑚𝑎𝑥 
[MPa] 

364.85 323.37 321.66 305.22 303.38 365.61 324.00 322.29 305.77 303.92 

∆𝜎 
[MPa] 

648.06 464.78 452.56 356.03 347.78 649.34 464.87 452.62 356.03 347.78 

𝜎𝑚𝑖𝑛 
[MPa] 

-
283.21 

-141.41 -130.89 -50.81 -44.4 -283.7 -140.86 -130.33 -50.26 -43.86 

𝜎𝑚 
[MPa] 

40.82 90.979 95.382 127.20 129.49 40.944 91.570 95.981 127.75 130.03 

𝜀𝑚𝑎𝑥 0.0534 0.0119 0.0113 0.0073 0.0070 0.0533 0.0119 0.0113 0.0073 0.0070 

𝛥𝜀 0.0244 0.0067 0.0065 0.0051 0.0050 0.0243 0.0067 0.0065 0.0051 0.0050 

 

In above results it is seen that minimum cyclic stress is negative while R=0.1. The 

negative cyclic minimum stress comes from residual stresses induced by cyclic 

loadings.[15] 

Beside calculated local stresses and strains using Neuber’s rule summarized in Table 

3.6, 2-D and 3-D elasto-plastic analysis was done for ten cycles in Abaqus software 

to obtain local stress and strains at the notch tip of specimen. The loading and 

boundaries are in three point bending condition as in previous analyses. The 

specimen material stress-strain data shown in figure 3.16(a), was defined for Abaqus 

by filling a table to perform elasto-plastic analysis. Cyclic loading was applied 

through defining an amplitude for ten cycles. The defined amplitude is shown in 

Figure 3.16(b).  The amplitude value of 1 is maximum applied load (8KN) and the 

amplitude value of .1 is the minimum applied load (0.8KN). For 3-D analysis a mesh 

with total number of 151140 linear hexahedral elements of type C3D8R is used.  



 70    

 

    

Figure3. 16 (a): Al 6082 T6 streess-strain plot[50] (b): Defined Amplitude in Abaqus for ten cycles  

Figure 3.17 shows the stress results of 2-D and 3-D elasto-plastic analysis. In abaqus 

there is no such an option as selecting just plane stress or plain strain, instead both of 

them can be selected and then a depth of model is asked which in our model is 20 

[mm]. 

 

 

Figure 3.17 (continued in next page) 

(a) (b) 
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Figure3. 17 maximum and minimum local stresses after ten cycles. (a) and (b) for 2-D analysis and 

(c) and (d) for 3-D analysis 

 

With examining Abaqus analysis results, small reduction in maximum stress 

magnitude and small increase of residual stress in after each cycle was observed.  

Local stresses and strains (in x-direction) of the notch tip at the end of ten cycles from 

each 2-D and 3-D analysis are summarized in Table 3.7. 
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Table3. 7: local stresses and strains at the end of ten cycles obtained from 2-D and 3-D analysis in 

Abaqus. (E) is total strain. (LE) is the logarithmic strain which is true strain.  

 2-D 3-D 

𝜎𝑚𝑎𝑥  [MPa] 335.16 368.7 

𝜎𝑚𝑖𝑛  [MPa] -320.217 -237.9 

∆𝜎 [MPa] 655.87 606.6 

𝜎𝑚 [MPa] 7.765 65.4 

𝜀𝑚𝑎𝑥 
0.02656 (LE) 

0.02621 (E) 

0.01473 (LE) 

0.01462 (E) 

𝜀𝑚𝑖𝑛 
0.01086(LE) 

0.01080 (E) 

0.00704 (LE) 

0.00701 (E) 

∆𝜀 
0.0157 (LE) 

0.0155 

0.00769 (LE) 

0.00761 (E) 

 

The difference between 2-D and 3-D analysis results may arises from the plane 

stress/strain assumption applied in 2-D model. But 3-D analysis results are more 

close to Neuber rule results calculated using stress concentration factor acquired 

using 2-D analysis. The little difference may be due to lack of applied cycles which 

here are ten. To get more accurate results, it is required that elasto-plastic analysis 

should be done for approximately half of specimen life cycles (it requires powerful 

and expensive computers and it is time consuming). 

 

3.6 Fatigue Crack Initiation Life Prediction 

 

After obtaining cyclic material properties and cyclic local stresses and strains 

presented in Table 3.5 and (3.6-3.7) respectively, next step was prediction of fatigue 
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crack initiation life using strain-life formula described in section 6 of chapter II. Nf is 

the life (number of cycles) to be calculated not (2Nf) which is reversals. This formula 

is as follows: 

∆𝜀

2
= 𝜀𝑎 =

∆𝜀𝑒

2
+

∆𝜀𝑝

2
=

𝜎𝑓
′

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐

(3.17) 

As observable in Table 3.6, a considerable cyclic local mean stress exists, so it is 

useful to apply strain-life formulas which are modified considering mean stress 

effect. These formulas are described in section 8 of chapter II and are summarized as 

follows: 

Modified Morrow Equation 

∆𝜀

2
=

𝜎𝑓
′ − 𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (2𝑁𝑓)
𝑐

(3.18) 

Manson-Halford Equation 

∆𝜀

2
=

𝜎𝑓
′ − 𝜎𝑚

𝐸
(2𝑁𝑓)

𝑏
+ 𝜀𝑓

′ (
𝜎𝑓

′ − 𝜎𝑚

𝜎𝑓
′ )

𝑐 𝑏⁄

(2𝑁𝑓)
𝑐

(3.19) 

SWT Equation 

𝜎𝑚𝑎𝑥𝜀𝑎 =
(𝜎𝑓

′)
2

𝐸
(2𝑁𝑓)

2𝑏
+ 𝜎𝑓

′𝜀𝑓
′ (2𝑁𝑓)

𝑏+𝑐
(3.20) 

 

Walker Equation (R = 
𝜎𝑚𝑖𝑛

𝜎𝑚𝑎𝑥
 ) 

∆𝜀

2
=

𝜎𝑓
′

𝐸
(

1 − 𝑅

2
)

(1−𝛾)

(2𝑁𝑓)
𝑏

+ 𝜀𝑓
′ (

1 − 𝑅

2
)

𝑐(1−𝛾) 𝑏⁄

(2𝑁𝑓)
𝑐

(3.21) 

Using Equations (3.17) to (3.21), fatigue crack initiation life was calculated for each 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 and 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 and for each set of material properties presented in Table 3.5. 

Also by using local stresses and strains obtained by 3-D elasto-plastic analysis, 

fatigue crack initiation life was calculated. The results are presented in Table 3.8. 
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Table3. 8: Fatigue crack initiation life predictions 

 

Material Reference[47] Material Reference[48] 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA  

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA  
2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 

Strain-Life 

Equation 

[cycles] 

19400 - 37200 - 7100 36500 - 64500 - 14900 

Modified 

Morrow [cycles] 
4160 15500 5700 21000 3050 9350 33000 12900 43000 6650 

SWT 

[cycles] 
3984 23400 4690 27500 1462 6620 33500 7745 38500 2410 

Walker 

[cycles] 
3510 33000 6040 52000 2600 6650 40000 10450 60000 5450 

Manson-Halford 

[cycles] 
980 7000 1600 11000 900 1870 8300 2800 12500 1900 

 

With inspecting Table 3.8, it is observable that in general, the modified Morrow and 

walker formulas give highest life for 2-D and 3-D respectively, and the Manson-

Halford formula gives the least life. 

To illustrate the procedure of calculating fatigue crack initiation life by using material 

properties in reference[47] and Neuber fatigue stress concentration factor 𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 , 

a code is presented below: 

In this matlab code of, fatigue crack initiation life formulas corresponding to various 

estimation approaches are written and lives are found by iterations: 
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Strain-Life Equation: 

deltaepsilon=0.0067 

sigmafprime=485 

b=-0.0695 

c=-0.827 

epsilonfprime=0.773 

E=70000 

Ni=19400 

deltaepsilon/2 

(((sigmafprime)/E)*((2*Ni)^b))+(epsilonfprime*((2*Ni)^c)) 

 

Modified Morrow: 

sigmam=90.979 

deltaepsilon=0.0067 

sigmafprime=485 

b=-0.0695 

c=-0.827 

epsilonfprime=0.773 

E=70000 

Ni=4160 

deltaepsilon/2 

(((sigmafprime-sigmam)/E)*((2*Ni)^b))+(epsilonfprime*((2*Ni)^c)) 

 

SWT: 

sigmamax=323.37 

deltaepsilon=0.0067 

sigmafprime=485 

b=-0.0695 

c=-0.827 

epsilonfprime=0.773 

Ni=3984 

E=70000 

sigmamax*(deltaepsilon/2) 

((((sigmafprime)^2)/E)*((2*Ni)^(2*b)))+(epsilonfprime*sigmafprime*((2*Ni)^(b+c))) 
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Walker: 

R=-0.4319 

gamma=0.641 

deltaepsilon=0.0067 

sigmafprime=485 

b=-0.0695 

c=-0.827 

epsilonfprime=0.773 

E=70000 

Ni=3510 

deltaepsilon/2 

(((sigmafprime)/E)*((1-R)/2)^(1-gamma)*((2*Ni)^b))+(epsilonfprime*(((1-R)/2)^((c*(1-

gamma))/b))*((2*Ni)^c)) 

 

Manson-Halford: 

sigmam=90.979 

deltaepsilon=0.0067 

sigmafprime=485 

b=-0.0695 

c=-0.827 

epsilonfprime=0.773 

Ni=980 

deltaepsilon/2 

(((sigmafprime-sigmam)/E)*((2*Ni)^b))+(epsilonfprime*(((sigmafprime-

sigmam)/sigmafprime)^(c/b))*((2*Ni)^c)) 

 

 

3.7 Fatigue Crack Growth Life Prediction 

 

Here an initial crack size of 1 [mm] is assumed. In order to apply LEFM concepts it 

is also necessary that the crack length emanating from the notch root should be long 

enough so that it extends beyond the plastic zone around the notch tip. This length in 

general is about 1 mm. The next step is to calculate the number of cycles to grow the 

nucleated crack to a desired length. This goal is accomplished by using Paris law and 

Walker equation for FCG. The main parameter in FCG equations is Stress intensity 
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factor range, ΔK, as described in section 10.2 of chapter II. The formulas for 

calculation of ΔK are summarized as follows: 

∆𝐾 = ∆𝜎𝑛𝑜𝑚√𝜋𝑎𝑓 (
𝑎

𝑊
) (3.21) 

For three point bending configuration: 

∆𝐾 =
3∆𝑃𝑆

2𝐵𝑊2 √𝑎
1.99 −  

𝑎
𝑊  (1 −  

𝑎
𝑊) (2.15 − 3.93

𝑎
𝑊  + 2.7 (

𝑎
𝑊)

2

)

(1 + 2
𝑎
𝑊) (1 −

𝑎
𝑊)

3
2

(3.22) 

where 

         S = span length 

         ΔP = applied load range (Pmax – Pmin ) 

         B = thickness of specimen 

        W = specimen height 

          a = crack length 

General form of FCG relation is as follows: 

𝑑𝑎

𝑑𝑁
= 𝑓(∆𝐾 , 𝑅) (3.23) 

And some of FCG equations are also summarized as follows: 

Paris equation: 

𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 (3.24) 

where C and m are Paris constants. 

Walker equation: 

𝑑𝑎

𝑑𝑁
=

𝐶0

(1 − 𝑅)𝑚(1−𝛾)
 (∆𝐾)𝑚 (3.25) 

Where 𝐶0 and m are Paris constant for R = 0 condition and 𝛾 is Walker constant. 



 78    

 

To calculate the required number of cycles to grow a crack from an initial length, ai, 

to a final length, af, integration of one of the FCG equations can be done. Since f(a/W) 

is changing as the crack grows, closed form integration is not possible. With 

numerical integration from one of FCG equations, it is possible to obtain FCG life. 

For this purpose equation (3.24) is discretize in n intervals within the range of initial 

value, ai, and final value, af, of the crack size a, as follows: 

∆𝑎𝑗 = 𝑎𝑗+1 − 𝑎𝑗   (𝑗 = 1.2. … , 𝑛) (3.26) 

Then the initial integral is substituted by a summation as follows: 

𝑁 = ∫ (
𝑑𝑁

𝑑𝑎
) 𝑑𝑎 = ∑ ∆𝑁𝑗 = ∑

∆𝑎𝑗

𝑓(∆𝐾, 𝑅)

𝑓

𝑖

𝑓

𝑖

𝑎𝑓

𝑎𝑖

(3.27) 

The material data required for FCG is presented in Table 3.9 as follows: 

Table3. 9: FCG material data[10],[51],[52] 

Fatigue crack 

growth threshold 

∆𝐾𝑡ℎ [MPa√m] 

Fracture 

toughness KIc 

[MPa√m] 

Paris constant C 

[mm/cycle/MPa√m] 

Paris 

constant m 

Walker 

equation 

constant γ 

3 29 2.71×10-8 3.7 0.641 

- - 1.8×10-8 3.8 - 

- - 6.1×10-9 4.2 - 

- - 3.31×10-7 2.629 - 

 

For the crack to grow it is needed that ΔK be larger than its threshold value, ΔKth, 

and lower than critical value, KIc. In this study, at the minimum crack length (11 mm 

which is the notch depth plus the assumed initial crack size): 

ΔK=15.049 MPa > ΔKth =3 MPa 
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Calculation of above result was done in matlab using following code: 

 

a=11 

Pmax=8000 

Pmin=800 

B=20 

W=30 

S=120 

KImax=10^(-3/2)*(Pmax/(B*sqrt(W)))*[(3*(S/W)*sqrt(a/W))/(2*(1+2*(a/W))*(1-(a/W))^(3/2))]*[1.99-

(a/W)*(1-(a/W))*(2.15-3.93*(a/W)+2.7*(a/W)^2)] 

KImin=10^(-3/2)*(Pmin/(B*sqrt(W)))*[(3*(S/W)*sqrt(a/W))/(2*(1+2*(a/W))*(1-(a/W))^(3/2))]*[1.99-

(a/W)*(1-(a/W))*(2.15-3.93*(a/W)+2.7*(a/W)^2)] 

deltaKI=KImax-KImin 

 

A code with the knowledge described in section 3.7 was written in Matlab[49] 

software for the calculation of number of cycles to grow an initiated crack of 11 mm 

length to a 16.4 mm length (including the notch length which is 10 mm). The results 

are plotted as a versus N, ΔK versus N, and Kmax versus N shown in Figure 3.18. It is 

seen from the figures that Walker equation gives more conservative life estimations 

than Paris equation. 
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Figure3. 18 FCG life prediction using Walker equation for the initiated crack to grow from 1 [mm] 

length to 6.5 [mm] length. (a) Crack length versus Number of cycles; (b) ΔK  versus Number of cycles; 

(c) Kmax versus Number of cycles 
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3.8 Total Fatigue Life  

 

After calculation of fatigue crack initiation life in section 3.6 and crack propagation 

life up to desired length (16.4 mm), now it is time to add these two lives to get total 

life. For FCG, the life calculated using Walker equation is used. The results are 

presented in Table 3.10 as follows: 

Table3. 10 Total fatigue life up to crack length of 16.4 mm 

Total Fatigue 

Life up to 
16.4 [mm] 

Material Reference[47] Material Reference[48] 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA 
2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 

Strain-Life 

Equation + 

FCG 
[cycles] 

22835 - 40635 - 10535 39935 - 67935 - 18335 

Modified 

Morrow + 
FCG[cycles] 

7595 18935 9135 24435 6485 12785 36435 16335 46435 10085 

SWT + FCG 
[cycles] 

7419 26835 8125 30935 4897 10055 36935 11180 41935 5845 

Walker + 

FCG 
[cycles] 

6945 36435 9475 55435 6035 10085 43435 13885 15935 8885 

Manson-

Halford + 

FCG [cycles] 

4415 10435 5035 14435 4335 5305 11735 6235 63435 5335 
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CHAPTER IV 

 

EXPERIMENTAL ANALYSES 

 

 

Three test were done under constant amplitude cyclic loadings. First test was done 

with a SEN (B) specimen with identical notch dimensions to simulated one in 

previous chapter. The width, thickness and length of specimen are 20 [mm], 30 [mm] 

and 550 [mm] respectively. This test was done as a pilot experiment in four point 

bending condition. In order to track crack growth in as many ways as possible, two 

gages were attached to the specimen. One was a strain gage attached to back face of 

the specimen to measure the strains and the other was a crack propagation gage 

(Vishay Micro-Measurements, TK-09-CPB02-005/DP). The pattern of crack 

propagation gage consists of 10 resistor strands of different length connected in 

parallel. It is bonded to the specimen over the crack propagation area. When the crack 

grows through the gage pattern it causes successive open-circuiting of the strands 

which results in an increase in total resistance. This produces stepped increases in 

resistance with successive open-circuiting as shown in figure 4.1. The distance 

between each strand is known, so it is possible to record the propagation of crack as 

each strands breaks. The specimen with bonded gages are shown in figure 4.2. 

                                         

Figure 4. 1 (a): Gage resistance chart, (b): Specimen with bonded gages 

(a) (b) 
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In order to accelerate crack growth in this pilot test, it is decided to induce some 

tensile residual stresses at the notch root. For producing these residual stresses the 

specimen was under cyclic loading for 5 minutes in four point bending condition, 

such that the notch root is compressed Then it was under cyclic loading with 

maximum value of 15 [KN] and minimum value of 1.5 [KN] at 10 [Hz]. Load values 

are selected according to ASTM E399 Standard.  The cyclic loading was produced 

with DARTEC 9500 servo-hydraulic universal testing machine shown in figure 4.3.  

After 8 minutes of cyclic loading the specimen fractured as shown in figure 4.4. 

                  

Figure 4. 2 (a): DARTEC machine, (b): Fractured specimen 

By doing pilot test we concluded that  

 Our data acquisition device worked well and we could collected all five data 

(Time, Force, Displacement, Crack length, Strain at the back side of the 

notch) successfully. 

 The crack grew almost perfectly up to fracture that is there was no deviation 

in crack direction and the crack is quite straight without a zigzag pattern. Post 

fracture examination of crack surface visually indicated that the crack front is 

also quite straight, the parts near the boundary just slightly behind the part in 

the middle, 

(a) (b) 
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The results of this pilot test as various plots are shown in figure4.5. 

 

 

 

 

Figure 4. 3 Pilot test results as: (a) load-N, (b) displacement-N, (c) & (d) displacement-N & stiffness-

N between 2000 cycles and 5500 cycles, and (e) crack propagation gage resistance-time. From (b), it 

can be seen that a small increase in displacement from 2000 cycles to 5500 cycles is due to crack 

growth. 
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The other two main tests were done with 2 identical specimens with the same 

dimensions of specimen simulated in previous chapter. For each specimen, one crack 

propagation gage (Vishay Micro-Measurements, TK-09-CPB02-005/DP) is bonded 

to one side of the notch, and a foil type gage (KRAK GAGE) is bonded to the other 

side of the notch. Photographs of specimen 1 with bonded gages are shown in figure 

4.6 and photographs of specimen 2 with bonded gages are shown in figure 4.7. 

            

Figure 4. 4 Photographs of specimen 1 with bonded gages 

          

Figure 4. 5 Photographs of specimen 2 with bonded gages 

The crack length foil (KRAK GAGE) serves as a transducer. The KRAK GAGE-

structure consists of a conducting layer on an electrically insulating backing. The 

KRAK GAGE's are bonded, similar to the strain gage technique, onto the specimen 

and then connected to the FRACTOMAT. The crack length measuring system 

FRACTOMAT is based on the indirect potential drop method and continuously 

indicates the measuring values.[53] 
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The testing setup with the specimen is shown in figure 4.8. 

 

Figure 4. 6 The testing setup with specimen 

The first specimen was loaded cyclically in opposite direction under four point 

bending condition for about 6 minutes with maximum and minimum load magnitudes 

of 8 KN and 1.2 KN to produce crack accelerating residual stresses in the specimen. 

Then for each specimen an identical test was done in three point bending condition. 

For each test the loading inputs were 8 [KN] as maximum load and 0.8 [KN] as 

minimum load with a frequency of 10 [Hz]. These load values are based on the 

estimated KIc of the specimens and recommendations of ASTM E399 standard for 

fracture toughness test specimens. First test was done for the specimen with tensile 

residual stresses and the second test was done for the specimen without any residual 

stresses. 
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After test photographs of the specimen with residual and the specimen without 

residual stresses are shown in figure 4.9 and 4.10 respectively. 

   

Figure 4. 7 After test photographs of specimen with residual stresses 

   

Figure 4. 8 After test photographs of specimen without residual stresses 
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Tests Data was acquired at a sampling rate of 100 [Hz]. Then acquired data was 

analyzed with Matlab software. The result of data analyzes for test one (specimen 

with residual stresses) and test two (specimen without residual stresses) are shown in 

figure 4.11 and 4.12 respectively. The load line displacement data were acquired in 

the tests for calculating the crack length by using the formula which is provided by 

[10]. But there was an error in data acquisition device resulting in incorrect 

displacements values, so this approach was not used in this study. 

By inspecting figure 4.11(a) and 4.12 (a), it is observable that maximum and 

minimum load values are converged about 2000 cycles. 
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Figure 4. 9 Test one results. (a): maximum and minimum magnitudes of load versus N. (b): 

maximum and minimum values of displacement versus N. (c): crack length (acquired using krak 

gage) versus N. It should be noted that notch depth is included in crack length. 
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Figure 4. 10 Test two results. (a): maximum and minimum magnitudes of load versus N. (b): maximum 

and minimum values of displacement versus N. (c): crack length (acquired using krak gage) versus N. 

(d): crack length (acquired using crack propagation gage) versus N. 



 92    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 93    

 

 

CHAPTER V 

 

COMPARISONS, CONCLUSION AND FUTURE WORK  

 

 

In this study, in chapter III, fatigue crack initiation life for cracked beam specimen 

was estimated then the life for propagating the initiated crack to a desired length was 

also calculated. Then tests were done for the simulated geometry on two specimens 

to determine the fatigue crack initiation life and the life required to propagate it to a 

desired length in reality. One of the tests was with a specimen with residual stresses 

and the other was with a specimen without residual stresses. 

To compare the predicted fatigue crack initiation life with the experimental one 

(specimen without residual stresses), first an initiated crack length should be 

assumed. In literature a crack size in order of 1 mm is suggested to be taken as 

initiated fatigue crack length [15]. However this is an approximation. In this study 

predicted lives are compared with 0.1 mm and 1 mm crack length as initiated fatigue 

crack size. The comparison is shown in table 5.1.  0.1 mm corresponds to the smallest 

crack which could be detected by FRACTOMAT device. 

By inspecting table 5.1, it is seen that for a crack length of 0.1 mm as initiated crack 

size, the lives predicted by Morrow and Walker approach by using Peterson stress 

concentration factor obtained by 2-D stress analysis and material cyclic properties of 

[48] are close to the life obtained by experiment. On the other hand, assuming 

initiated crack length as 1 mm, the life predicted by Morrow by using Peterson stress 

concentration factor obtained by 3-D stress analysis and material cyclic properties of 

[47] well agree with the life obtained by experiment. 
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Table 5. 1 Fatigue crack initiation life (numerical & experimental) 

 

Material Reference[47] Material Reference[48] 

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA  

𝐾𝑓𝑛𝑒𝑢𝑏𝑒𝑟
 𝐾𝑓𝑃𝑒𝑡𝑒𝑟𝑠𝑜𝑛

 
3-D 

FEA  
2-D 3-D 2-D 3-D 2-D 3-D 2-D 3-D 

Strain-Life Equation 

[cycles] 
19400 - 37200 - 7100 36500 - 64500 - 14900 

Modified Morrow 

[cycles] 
4160 15500 5700 21000 3050 9350 33000 12900 43000 6650 

SWT 

[cycles] 
3984 23400 4690 27500 1462 6620 33500 7745 38500 2410 

Walker 

[cycles] 
3510 33000 6040 52000 2600 6650 40000 10450 60000 5450 

Manson-Halford 
[cycles] 

980 7000 1600 11000 900 1870 8300 2800 12500 1900 

Experiment 

[cycles] 

Initiated 

crack 
length 

0.1 

[mm] 

12000 

Initiated 

crack 

length 1 
[mm] 

20720 
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Fatigue crack initiation and propagation versus number of cycles obtained by 

numerical calculations and experiment for specimen without residual stresses are 

shown in figure 5.1. 

 

 

Figure 5. 1 Fatigue crack initiation and propagation life. (These are obtained by both numerical and 

experimental analyses for specimen without residual stresses.) (a): 0.1 mm assumed initiated crack 

length. (b): 1 mm assumed crack initiation length 

It is observable from above plots that assuming crack initiation length as 1 mm gives 

better results in FCG predictions. 

To monitor the influence of residual stresses on fatigue crack initiation and 

propagation the results of data analyses of two specimens are plotted together in 

figure 5.2. 
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Figure 5. 2 Crack initiation and propagation life of specimens with and without residual stresses 

It is clearly observable that residual stresses induced to the specimen accelerated the 

initiation and propagation of fatigue crack. 

The little differences between numerical predictions and experimental results may 

arise from errors that are mentioned below as: 

 Material cyclic and strength properties which were not provided by producer 

of specimens.  

 The notch tip may not have the exact dimensions of the simulated one in 

Abaqus. 

 The adhesive used was not the one suggested by gage manufacturers. 

 Some errors may be induced by loading machine and data acquisition device. 

At the bottom line with the procedure presented in this study, and during the 

experiments, the specimens prepared 

 Did not break due to an unstable crack growth during the tests (except the 

pilot one which was not simulated). 

 Did not undergo a macroscopic plastic deformation. 

 A crack of desired length grew in a reasonable time (about 56 minutes for 

specimen without residual stresses and about 42 minutes for specimen with 

residual stresses). 
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 Inducing tensile residual stresses significantly accelerate crack initiation and 

growth. 

 Crack growth could be successfully monitored by using different means 

which produce consistent results. 

Therefore it is concluded that the procedure applied in this thesis could be a useful 

approach to predict the crack initiation and propagation lives of cracked beam test 

specimens. By using this approach and trying different notch geometries (depth and 

tip radius) as well as load levels, one can find appropriate values of these parameters 

and minimize the time required to prepare many cracked beam test specimens. 

As some future work followings can be considered: 

 More refined crack initiation models can be employed. 

 Matching theory and experiment for mixed-mode crack initiation and 

propagation can be considered for broader applications. 

 Quantifying the effects of residual stress by simulations and experiments 

can be accomplished. 

 Quantifying the effect of residual stressing on fracture toughness can be 

investigated. 
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