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ABSTRACT 
 

    

THE REPRESENTATION PROBLEM OF CAUSAL RELATIONSHIPS IN 
COMPLEX SYSTEMS MODELING 

 

 

Kocaoğlu, Başak 

M.A., Department of Philosophy 

Supervisor : Assoc. Prof. Dr. Aziz Fevzi Zambak 

July 2018, 100 pages 

 

 
An adequate representation for causal relations of a phenomenon offers (i) an ex- 

planatory architecture of the phenomenon; (ii) a basis for modeling the 

phenomenon; and thus, (iii) a way to make predictions about similar events. 

However, the criterion of the ‘right’ way to represent causation is highly disputed 

among econometrists and computer scientists as well as philosophers. Each 

representational framework may bear different ontological commitments 

concerning the nature of the causal connection. In this thesis, it is argued that the 

current representations embrace an ontology bound to linearity and will remain 

inadequate to represent complex systems as long as linearity is presumed. To 

characterize the relation between cause and effect in those systems it is needed 

that a representational framework for nonlinearly interacting complex phenomena. 

As a conclusion, the major obstacle in the way of representing nonlinear causation 

addressed as an ontological problem. 
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ÖZ 
 

 KOMPLEKS SİSTEMLERİN MODELLENMESİNDE NEDENSEL İLİŞKİLERİN  

TEMSİLİ PROBLEMİ 

 
Kocaoğlu, Başak 

Yüksek Lisans, Felsefe Bölümü 

Tez Yöneticisi : Doç. Dr. Aziz Fevzi Zambak  

Temmuz 2018, 100 sayfa 

 

 
Bir fenomenin temsil edilmiş nedensel ilişkileri fenomene dair (i) açıklayıcı yapısını 

(ii) modelleme için altyapısını, ve (iii) benzer durumlar hakkında öngörüde bulun- 

mayı sunar. Ancak, nedensel ilişkileri ‘doğru’ temsil etme biçemleri filozoflar kadar 

ekonometristler ve bilgisayar bilimciler tarafından da çokça tartışmalı bir konu ol- 

muştur. Mevcut temsil yapılarında nedensel bağıntının doğasına dair farklı ontolojik 

bağlanımlar bulunabilir. Bu temsil yapılarının lineerliğe dayalı bir ontolojisi olduğunu 

ve bu lineerlik varsayıldığı sürece söz konusu temsillerin kompleks sistemleri temsil 

etmede yetersiz kalmaya devam edeceklerini iddia edilmiştir. Kompleks sistemlerdeki 

neden-sonuç arasındaki ilişkinin betimlenmesi için, lineer olmayan yollarla etkileşen 

kompleks fenomenlerin temsilini veren bir “lineer-olmayan nedensel açıklama”ya 

ihtiyaç duyulmaktadır. Sonuç olarak, lineer-olmayan nedenselliği temsil etmedeki en 

büyük engelin ontolojik bir sorun olduğuna işaret edilmiştir.  

 

 
Anahtar Kelimeler: Nedensellik, Kompleks Sistemler, Modelleme, Lineer-
olmayan, İlişkisellik.  
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CHAPTER 1 

 

 
INTRODUCTION 

 

 
Modeling in sciences has an essential role of representing the systems in question to 

serve as an instrument of understanding and prediction. What makes models so 

important to sciences is that, especially for some systems, direct intervention to the 

systems may be inaccessible. Complex systems modeling considering the intricate 

nature of those systems, thus, constitutes a challenge for understanding and 

prediction. One of the main reasons of that being challenge is representing causal 

relationships. 

The aim of this thesis is to expose a problem with the ontological commitments that 

are made by causal models. Models on offer, often, are not intended to be bound to 

any ontological claim on causal relations. Rather, causality is represented as a lawlike 

relation that is to say a fixed bond which is applicable to any system. However, even 

at this point, to be noticed, an ontological commitment is already made considering 

the identifying properties of a causal relation. To be more precise, it is assumed that 

the nature of causality is such a thing that there are fixed, lawlike relations that hold 

across entities to affect and be affected by. Thus, this reciprocity between models 

and entities to be modeled itself require a philosophical scrutiny, yet, in this thesis, it 

is restricted to causal models that are proposed to be the representations of causal 

relationships in complex systems. In this sense, this thesis will question the 

applicability of causal models to complex systems. By the term of complex systems, 

however, it is denoted that the ‘whole’s that are constituted by various kinds of 

interconnected elements through nonlinear relations. What makes a system complex 

is the web of interrelations of the system. It is because given the same components, 

systems may still differ. The difference is built up by rearrangements of the 

components.  
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Multifunctionality, degeneracy, self-organization, autopoiesis, emergence are all 

arise according to such interrelations that are dynamically rebuilt in each state of the 

systems. Besides such internal dynamicity of the complex systems that those 

systems are co-evolving with their  environments. That is to say, complex systems 

actively affect and get affected by the media that they are in. So, complex systems 

are also coupled with their environments. 

In modeling, there are fundamental problems considering the representations of 

these highly intricate relations. The most striking problem is that in order to 

represent a complex system, simplification of the system in question has to be 

made. If the systems are consisted of billions of heterogeneous components (such as 

neurons, ganglions, pyramidal cells in the human brain) and even more relations 

between those components what should be done to gain a simplified yet adequate 

picture of these systems? Or, is it possible to represent complex systems in a 

simplified way but, at the same time, to be inclusive enough to capture such a 

complex causal structure? These concerns seek further clarification. 

1.1 Causation as a Problem in Science and Philosophy 

The main problem with the causation is that: we know, or to say least, we assume 

that there are some events that cause some others, yet we do not know what 

causation exactly is. It seems that smoking causes lung cancer, fast-food 

consumption causes obesity, a lack of specific gene causes to a disease, carbon 

emission causes global warming, and so. Also, we can predict and/or control such 

events, for example the lacking gene might be grown in laboratories and when it is 

injected to the patient, it can cure the disease. Or, with a dietary routine obesity 

could be prevented. On the other hand, these are not always the cases. Even though 

a person, who does not consume any fast food may still suffer from obesity. For 

instance, obesity may be caused by excessive hormone secretion. In this case, 

should we disregard all the cases that we observed obesity as a concomitant of 

eating fast food? Or, if we should count on causality in both of the cases, then what 

is the criterion of identifying causal relations? There are different answers for that, 

but, today there is no consensus on the identifying conditions or on the definition of 

causality. In scientific practice the answer is often given in terms of statistical  

inferences. Philosophical approach, however, is twofold: metaphysical and  
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epistemic. The definition of causation which concerns the realm of causal bonds 

constitute the metaphysical research paradigm whereas epistemic re- search focuses 

on our knowledge on causal relations. In that sense, scientific answers are also  

included in epistemic studies. It should be noted that, philosophically, it is a 

problem on its own that where to draw a line between ontology and epistemology. 

At this point, it can be said that this thesis walks on that alleged line; while causal 

models which are epistemic ‘devices’ for representing causality are investigated, the 

discrepancy between these models and the nature of the modeled entities will be 

questioned. The main problem, it will be argued, stems from the definition of 

causality that is embedded in causal models on offer.  

The systematic reasoning on definition of causality in philosophy can be traced 

back to Aristotle who has proposed a typology of causes (material, formal, efficient, 

final causes) to be found in the substances. During the medieval period the 

Aristotelian typology has dominated the studies on causal understanding of the 

nature, however, it was a theological interpretation of Aristotle’s works by the 

scholastic thinkers such as Saint Thomas Aquinas (Wallace, 1972). God, in that 

sense, is seen as the ultimate cause of all the ‘things’ replaced Aristotle’s unmoved 

mover. Besides Occasionalism which states that God is the only cause of all beings 

in the world, there are similar accounts of causation. The common ground in those 

accounts is that causation is taken to be granted for being necessary relation where 

such necessity could only ever be provided by God. On the other hand, there was a 

striking problem within Scholastic view on causation, if God is the cause of 

everything then what is left to bodies to do? With such legacy, thus, philosophers of 

early modern period had to deal with metaphysical problems of causation. In fact, 

early modern philosophers “with the exception of Hobbes, hold that some 

knowledge of God is critical to understanding nature and natural laws” 

(Clatterbaugh, 1999). Cartesian causation, for instance, accounts such laws of 

causal interactions where those laws are carried out by a law-giver, namely, God. In 

the works of Spinoza, however, God as natura nat- urans constitutes a non-

scholastic depiction of God. But, similar to early modern philosophers, causal 

connection has seen as logical connection where according to rationalist school, is 

the way how the world is constructed. It should be also noted that Francis Bacon  
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whom lived at the very beginnings of modern era, suggests that a methodology for 

systematic causal inference by induction (Reiss, 2007). Bacon has not (seem to)  

interested in metaphysical side of causality but rather its importance in controlling 

the nature. In late modern philosophies, it can be seen that a similar approach to  

causation in order to “identify genuine causal connections” (Clatterbaugh, 1999) 

than the metaphysical explanations of how bodies interact. 

David Hume, in that sense, challenged the common understanding of causality in 

terms of psychological experience of causal events. Consequently he found that 

whenever one refers causality all s/he has an idea of events that show (i) contiguity 

in space, (ii) temporal priority and, (iii) constant conjunction. It can be said that 

following attempts to describe causation, including contemporary efforts, rely on 

that analysis of causation put by Hume. Those accounts, thus, can be divided into 

two groups roughly: causal realists and reductionists. Causal realists are also 

recalled as anti-Humeans since it is thought that causal relation exists beyond the 

human experience. Reductionism in causality, contrarily, accounts causation in non-

causal terms. Note that, one can be a causal realist while methodologically bound to 

reductive analysis of causality. In fact, causal models of today are mostly fell under 

this category. 

Reductionist attempts to describe causation employed logical methods which are 

followed by mathematical analyses. The logical analysis of causation initially set by 

John Stuart Mill and advanced by John Leslie Mackie with INUS conditions where 

necessary and sufficient causes are discretely studied. Following those 

developments, logical analysis has gained its current form in terms of 

counterfactuality by David Lewis and his followers. The governing idea in here is 

that analyzing causal state- ments in conditional form. However, some philosophers 

like Curt John Ducasse are relied on the idea which is a stronger version of logical 

analysis: the ‘correct’ definition of the causal relation can only be given by 

conditionals, and the aspect of “constant conjunction is, therefore, no part of it” 

(Sosa and Tooley, 1993). A ma- jor problem within this framework is that in cases 

where there are more than one cause (‘overdetermination’), it becomes harder to 

represent causality in the form of conditional. The mathematical analysis, on the 

other hand, takes causation as a ‘functional dependency’. To represent causality in  
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functional dependencies was first made precise by Hans Reichenbach. He paved the 

way for causal inference from probabilistic dependencies since he put the idea 

that“simultaneous correlated events must have prior common causes” (Arntzenius, 

2010). By this way, causality could be detected in correlations
1
. Thus he proposed a  

principle which suggests that “two factors X and Y neither of which causes the other, 

if X and Y have a cause C in common (and C is the only factor in common in their 

causal past), then, P (X.Y/C) = P (X/C)P (Y/C)” (ibid). Today, it is proved that this 

principle is untenable in many cases, yet, it led the way of formalizing ‘conditional 

independencies’ among variables. Indeed, the principle of ‘causal Markov condition’ 

(Spirtes and Glymour, 1993) directly derived from the common cause principle. The 

causal Markov condition simply indicates that given its direct causes a variable is 

probabilistically independent of its non-effects. Thus it implies a version of common 

cause principle:  

If coincidences of two events A and B occur more frequently than would 

correspond to their independent occurrence, that is, if the events satisfy 

relation P (A.B) > P (A).P (B), then there exists a common cause C for 

these events such that the fork ACB is conjunctive, that is,  satisfies  

relations  P (C, A.B)  =  P (C, A).P (C, B),  P (C̄ , A.B)  = P (C̄ , A).P (C̄ , B),  

P (C, A) > P (C̄ , A), P (C, B) > P (C̄ , B). (Reichenbach, 1956) 

 

Based on the concept of conditional independency, probabilistic analyses of cau- 

sation are advanced by Patrick Suppes, Irving John Good, Wolfgang Spohn, John 

Williamson, Judea Pearl, Peter Spirtes, Clark Glymour, and Richard Scheines. The 

causal models that are investigated in this thesis, in that sense, embody both log- 

ical analysis (counterfactuals) and mathematical representations (probabilistic (in-) 

dependencies) of causation.   

1.2 Causation and Modeling  

The tools for modeling that are available to us today rely on the assumption that the 

systems behave linearly. However, there such systems that do not show linearity at 

all which are – reasonably, called nonlinear systems. Thus, when the linear 

methodology is applied to nonlinear data we face an incompatibility between state-

of-affairs
2
 and representations of them. Causal models that are hitherto put forward,  

1 See Reichenbach (1956). 

 
2  The way things are. 
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are also based on such linear methodology. In this thesis, it is argued that it is not 

plausible to apply those models to understand complex (thus, nonlinear) systems. 

This thesis, in this sense, suggests other routes to model causal relations in complex 

systems by exposing some handicaps concerning the current causal models. Thus, 

firstly, it will be introduced that the basics of the representations of systems. The 

discussions will start from the very beginnings of what is meant by systems and will 

extent to how to model them. Since the context is bound to modeling, the 

mathematical representation of the systems will be presented. Based on 

mathematics of the systems, models are distinguished as dynamical and stationary 

based on the behavior that is the way the output produced by the systems. Stationary 

systems are out of the context since they tend to stay in a balanced state which 

means that there is no activity and/or out- put production within those systems. 

Dynamical systems, on the other hand, may behave in linear or nonlinear way. 

Notice that throughout this thesis the deterministic systems are the ones that under 

investigation. If the systems are additive and show homogeny, consequently, the 

response (to say, the next state) is determined to be the linear combination of the 

previous (or initial) states. In this case systems are called linear. Linear 

combinations, mathematically, do hold analytical solutions. That is to say, each 

component are independent, thus adding or subtracting do not affect the nature of 

the components. Here, mathematical components stand in lieu of the decomposed 

parts of the represented entity. 

Linear models, thus, are perfect for representing analyzable entities, for example the 

electronic devices or like, watches. In linear models, due to the properties of addi- 

tivity and homogeneity, arrangement of the parts is nothing but a linear 

combination. Nonlinearity, as it is expected to be, lacks additivity and homogeneity 

yet it is representable as a function. The lacking of those properties, mathematically, 

hinders any analytical solutions for such functions. Yet, as a representation of an 

entity, it is not restrictive in the sense that any system that behaves nonlinearly is 

not de facto unanalyzable. We can analyze the biological organisms, for example. 

Rather, it has other restrictions/implications in terms of modeling such nonlinear 

behaviors. But to model the systems, at first, we need data.
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Data as a first step to represent an entity is generated through a process. This pro- 

cess is usually twofold: data collection and data interpretation. There are statistical 

assumptions made during data generation process. Setting aside the assumptions  

like the absence of any practical errors, it is exposed that these assumptions promote 

linearity. It is noteworthy since even though we expect from some systems to 

behave nonlinearly, at the very beginning, the collected data from the systems 

become linearized (at least to some extent) with such statistical assumptions. 

Throughout this thesis it will be discussed that whether linearization (at least to 

some extent) is a must in order to represent the systems.  

Data interpretation process consisted of a set of inference procedures that rely on 

the statistical assumptions. What to read from the collected data is up to such 

assumptions. For example if positive correlations assumed to be the indicators of a 

causal relation, then the variables of interest will be interpreted as causally linked. 

In this sense, the classical debate on whether correlation implies causation comes up 

at this level of data generation. 

What about nonlinearity? To dig into that issue there are two distinctions have to be 

made. Nonlinearity may be observed in simple systems like the behavior of a 

pendulum as well as complex systems. In that sense, complexity as a technical term 

seeks clarification in the context of systems. That is what it is intended to achieve in 

section 2.3.1. Hence, computational complexity will be distinguished from the term 

of complex systems. The relation that they have, on the other hand, will be briefly 

mentioned. The other distinction is made between the chaos and the complex 

systems. The phenomenon of chaos, indeed, is nonlinear in its nature; however the 

complex systems which are intrinsically nonlinear, are not necessarily chaotic. The 

reasons will be mentioned in the section 2.3.2. After those distinctions, it will be 

discussed that the characteristics of the complex systems in general. It will be 

emphasized that we observe such characteristics within complex systems due to 

nonlinear relations. What it is meant by nonlinearity also needs to be discussed. 

Thus, the focus will be on the term of nonlinearity in the context of complex 

systems and the patterns of behavior. How order is rebuilt from instability of the 

systems will constitute the main inquiry of the section 2.3.4.1. Following that, the 

specific features of the relations (that are causal) built up in those systems will be  
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put forward. My objective for the section 2.3.4.2 is to underline the importance of 

the relatedness among the complex systems.  

Chapter 2 will be concluded with a comparison between the linear assumptions and 

the basic features of the complex systems. It is intended to show the gap between 

linear methods and the complex systems which constitute the application domain of 

those methods. It will be explicated that the linear methods are insufficient to 

represent complex systems. Chapter 3 comprises a general analysis of causal 

theories that are referred in causal models on offer. The analysis aims to show the 

reciprocity between the causal theories and the causal models (and/or modeling 

techniques). Hence the representations of causal relations will be categorized 

according to their ontological commitments. Dependence and Production are the 

main categories for the representational frameworks of causation. This 

categorization is made in accordance with the recent literature, yet, in some details 

it differs from those available classifications. An example for that is a relatively 

new account of causal modeling is the causal emergence account which is put 

forward by Erik Hoel, Larissa Albantakis, and Giulio Tononi. This account is 

categorized under the production framework (in accordance with Russo and Illari’s 

classification), and more specifically, under the information-theoretical accounts for 

causation. It seems that, in fact, there is no strict line between those two frameworks 

of causal representations. In the same line Hoel denotes that information- theoretical 

account might be broad enough to include dependence accounts. I found such 

discussions on the information theoretical account of causation are fascinating but 

also, too demanding to be fairly summarized in a master’s thesis; thus in this thesis 

information-theoretic accounts will not be explained in detail. In that sense, to 

remain adherent to the philosophical literature, it will be referred that the structural 

equation models (SEMs) and the causal graphs that are advanced by Judea Pearl, 

when the term of causal models is recalled. In fact, in section 3.2, It is put that 

SEMs as the underlying idea behind the causal graphs as Pearl also admits in his 

writings. Besides its success in modeling linear systems, however, these causal 

models seem to fail in order to model the causal relations among the complex 

nonlinear systems. The proofs are listed in section 3.3 which simply aims to expose 

that causal models on offer are strictly tied to linearity assumptions. In other words,  
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the linear assumptions that are discussed in section 2.2, are also embedded in causal 

models. However, the linear methods are proved to be insufficient, then, how can 

we expect that causal models that assume linearity to be sufficient representations 

of causal relations in complex systems? A list of reasons, in accordance to the list in 

section 2.4, is made in order to explicitly compare the linear assumptions in causal 

models with the complex systems which, in this context, constitute the entities that 

are to be modeled. Hence in this thesis, it is intended to make discernable that the 

discrepancy between the ontological commitments that are made in causal models 

and the realm of the complex systems. 

Chapter 4 is reserved for the discussions of the possible solutions for representing 

causal relations in complex nonlinearity. Is linearization process (concerning the 

models) a requirement for to be represented? Is it possible to account a nonlinear  

causal framework for causal relations in complex systems? If possible then what 

steps have to be taken? If not what are the implications of that? Such questions will 

be asked throughout that chapter. In section 4.2, I ponder about the alternative 

theoretical frameworks for causal models through a discussion on the ontological 

status of the relations in complex systems. A representational framework of 

causality which emphasize relations, rather than emphasizing the nodes as current 

causal modes did, seems promising to me. The representation problem, however, 

still remains to be solved. Concluding remarks will be canvassed in Chapter 5.   
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CHAPTER 2 

 

 
THE REPRESENTATION PROBLEM IN COMPLEX 

SYSTEMS MODELING 

 

What is an entity that we are encountered in nature? How it appears to us? Does it 

appear as itself or otherwise? Such questions on the relation between an entity and 

its appearance have been occupied philosophy for thousands of years. The entities 

that are whether processes or objects, assumed to be constituents of the nature; yet, 

we still lack of a general agreement on what is the relation between an entity and its 

appearance, and how to approach to these entities in order to understand how nature 

works. The principal instrument that is adopted by modern science (Frigg and 

Hartmann, 2018) is modeling.  Models in science are the representations of target 

system that  is an entity in the world. Scientific approach towards the entities,  

however, may  also show variety depending on the research questions. For instance, 

to model an engine the researchers account entities as static elements while in 

biological modeling entities are considered to be dynamical organizations. 

In scientific models, thus, there are different ontological commitments towards the 

entities that are represented. My standpoint in these discussions is that we are 

surrounded by systems (entities should be considered as systems) and thereby to 

understand the nature, systems approach is needed. By systems approach it is not 

indicated that holistic view of nature that assumes "[t]here are some wholes whose 

natures are simply not determined by the nature of their parts" (Healey, 2016), but 

rather there are entities that are constituted by specific interrelations of their subunits 

within the environment. What differentiates the system from its environment is that 

some organization of subunits that produce response as a whole. Thus, systems are 

usually classified in regard to the behavior, namely the response that is produced 

under the specific conditions (a set of inputs). 
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In that sense, different types of responses may correspond to different systems. Yet, 

it is not trivial as it is put in here, especially for natural systems – including social 

ones, that are multifunctional
1
. That is to say, the same response can be produced 

within different components and/or different systems.  

Different systems, also, can be classified under the same category. Consider, for ex- 

ample, the organization of the nervous system (especially, of primates) which is 

consisted of specialized structures for specialized tasks that are carried out by a 

parallel and hierarchic system. Even the simplest task of seeing an object involves 

different levels of organization. Visual top-down processes (the ‘information’ flow 

of brain depending on our previous experiences, predispositions), for instance, 

required for external world perception while bottom-up processes (from the retina to 

visual cortex) are at play. This highly-intricate structure is considered as a complex 

system. One can argue that social constitutions also show similar patterns of 

organization. For example, the social policies have an influence on the behaviors of 

the individuals (top-down) whereas the policy makers make their decisions under 

the influence of the individuals (bottom-up). It is not argued that nervous systems 

and societies are alike, but rather that they show similar characteristics of the 

systems that today we call complex systems. The challenges of modeling such 

systems, it seems, consisted of insufficiency of the representational frameworks. 

The main obstacle in the way of representing the complex systems is the 

discrepancy between the ultimate response of the system and the specific outcomes 

of each system component. Any reduction of the system behavior to the sole 

component(s) in such a context, consequently, constitutes a problem. Ironically, to 

represent these systems, it is thought that, complexity needs to be reduced. In that 

sense, ‘how to represent’ is itself requires a philosophical investigation on whether 

it is possible to provide a proper representation for a complex system without 

making any concession from its complex nature.  

 

1 When the same (or similar-enough) components that are able to produce different responses it is called 

multifunctionality whereas ‘degeneracy’ indicates that functionally equivalent actions can be executed by 

different components. See section 2.3.4.  
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2.1 System 

A general definition for a system is that the set of constituents that are related with 

each other in specific manners. Systems may be classified as ‘open’ or ‘closed’ in 

regard to the relation between the systems and their media. For example, if there is 

no exchange of matter and/or energy or, if the system is somewhat isolated from its 

environment it is referred as closed system. Closed systems, usually, are the 

artificial systems or the systems that are put in an artificial medium. On the 

contrary, natural systems (e.g., biological entities) are considered to be open 

systems as long as they continue to be ‘open’ to the inputs from the environment. In 

mathematics, a system is represented as "a well-defined set of states" (Vasbinder 

and Gao, 2017) which may dynamical or stationary considering the changes in the 

system behavior. Thus, a system corresponds to a formalae of the rules that govern 

the state changes. If a system is stationary, the rule describes a state of balanced 

input-output that equals to no change whereas a dynamical system (DS) depicts 

change between the states. Thus, DS is "a rule for time evolution on a set of all 

possible states" (Meiss, 2007).  

A dynamical system, simply, the systems that change over time. Time evolution of 

the DSs can be "described over either discrete time steps or a continuous time line" 

(Sayama, 2015). DS in continuous time is defined in the form of differential 

equations and therefore, it is useful to represent abrupt changes. DSs in discrete 

time, on the other hand, are more useful to represent smooth changes in the system 

behavior. Discrete time DSs are consisted of iterated maps or, difference equations 

(ibid). A discrete-time dynamical system is represented as: 

 
xt = f (xt−1, t) (2.1) 

 
Whereas continuous-time dynamical systems are represented as follows: 

 

dx 
= f (x, t) (2.2) 

dt 
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In the equation of discrete DS, each state takes the state that is before as an 

argument of the function. By this way, states are determined stepwise by the 

previous states at chosen time intervals. On the other hand, the equation of 

continuous DS represents the derivation of states over time. There are no time 

intervals but continuous time. The time evolution or ‘the temporal evolution rule’ 

delineates the way of derivation of next state from previous state (Fusco et al., 

2014). DSs are grouped as either linear or nonlinear in regard to the course of 

temporal evolution. A system is linear if the state variables is only a linear 

combination (e.g., of their sum), and nonlinear if otherwise. If the next state, for 

example, is a trigonometric function of previous state variables (Sayama, 2015), the 

system is a nonlinear DS. 

2.2 Linear Systems  

2.2.1 Linearity and Linear Models 

Systems, in general, are modeled as the boxes that take inputs and produce outputs. 

Linear systems are the systems of equations where the previous states constitute the 

next states according to defined linear rules. Since linear equations are separable 

into its elements, the elements of linear systems can be studied analytically. 

Discreted elements can be recombined as such in the initial state of the system since 

linear systems hold additivity. Similarly, multiplication of the elements would result 

in multiplication of the following states (and/or responses) due to homogeneity. 

Hence, proportionality is preserved through the states of the linear systems.  

 

(a) (b) 

Figure 2.1: a. A model of system with its internal states, retrieved from Gorinevsky 
(2005), b. Another exemplar for modeling the systems, retrieved from Hover 
(2009).  
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Systems are called linear if for every time t0 and any two state-input-output pairs 

(Chen, 1995):  

 

 
 

By additivity that is depicted in (2.4), we understand that the measured system- 

response is mere "the sum of its responses to each of the stimuli presented 

separately" (Heeger, 2000). The property of homogeneity that is depicted in (2.5), 

on the other hand, suggests that "as we increase the strength of a simple input to a 

linear system, say we double it, then we predict that the output function will also be 

doubled" (ibid). For example, when input is doubled α in equation (2.5) is 

substituted with 2, thus we would estimate that output as 2y2(t) given 2x2 at time t0 

to a linear system under 2u2 (which stands for two times of noise and/or 

environmental constraints). These two properties, when combined, constitute a 

principle that is called ‘superposition rule’ which is a golden rule because it allows 

predicting the outcome given inputs. Thus, the behavior of the linear systems can be 

predicted. That is to say, given input x1 at time t0 to a linear system under u1, we 

observe y1 as an output. Likewise, given an input, at time t0, x2(t0) under u2 it is 

yielded y2 at time t; then, if one introduces these two inputs x1(t0) and x2(t0) the 

output of y1+y2 can be perfectly predicted.  

A real-world example for linear behavior would be the linear electrical circuits. 

Con- sider such a circuit, the current and voltage for any element in the circuit is the 

sum of the currents and voltages produced by each source acting independently  
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(Hayt et al., 1986). The manipulation of the batteries will proportionally result in an 

altered cur- rent. Linear systems, then, operate in such a way that same inputs  

always bring same outputs and thus, the response of the systems directly 

proportional to the inputs. The inputs that get into the system hold the role of causes 

while the outputs that are produced by the system considered as effects. The relation 

between cause and effect, then, is characterized as a linear relation.  

 

Figure 2.2: A simple representation of a linear electrical circuit where R stands for 
resistor, v as battery and i as current.  

2.2.2 Linear Assumptions in Data Generation Process 

To study the system behavior and/or the properties of the system, one needs to 

gather all the necessary data concerning the systems. The relevance of the data, 

mostly, de- pends on the focus of the research. For instance, if the researcher seeks 

to understand the relation between obesity and heart attacks in a population (the 

target system), then the data of IQ scores of that population would be redundant. If 

the data are obtained accordingly, then the target system is become represented in 

terms of obesity and heart attacks. 

The conditions that change or has different values for different entities are repre- 

sented with ‘variables’(Gravetter and Wallnau, 2016). In other words, an element 

that changes in each state is a variable. That change, mostly, attributed to a causal 

process where causes change the current state and/or property of the system. For ex- 

ample, xi under ui from the previous section, or the rates of obesity and heart 

attacks are the variables. 

Besides the state variables, the other factors (e.g., parameters, omitted causes or 

error terms as ui) are also measured to become quantitatively representable. 

Measurements are consisted of the collected data set which serves as a material for 

descriptive and/or inferential statistics (Daniel, 1991). The choice of statistical  
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means depends on the research question. For instance, if the question is that ‘what is 

the frequency of heart disease in Population-A?’ the descriptive means would be 

sufficient. However, if one seeks to understand the causes of the high rates of heart 

disease in Population-A, then inferential techniques (following the descriptive 

analysis of the current state of ‘high frequency of people with heart disease in 

Population-A’, for example) are used. 

The data can be obtained through different methods in regard to the research ques- 

tion(s) and the hypothesis. The system properties of interest may already be in its 

quantitative form, such as in IQ test results. If not, then the measurement techniques 

(e.g., surveys) applied to the target system properties, in order to convert the quali- 

tative data into the manageable forms. Once the collected data are quantifiable and 

organized, a representative data set from the data of whole population (target 

system) is selected.  

The representative data set, namely ‘the sample’, is usually chosen via the method 

of simple random sampling. This sampling method, as like many others, relies on 

the idea that given data consisted of representatives of heterogeneous elements (if 

there is any). Hence the randomly selected set from data does not show any 

significant deviation from the overall representation of the data. In this sense, it is 

assumed that the sample can adequately or, is sufficient enough to represent the 

whole (the system) that of interest.  

 
Figure 2.3: An illustration for the state of interest and collected data. 
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Data as measured properties, however, may show difference due to the way of 

quantification. For example, a survey (for example, Uncertainty Response Scale by 

Greco and Roger, 2001) that aims to classify decision-makers’ attitude towards  

uncertainty, has a scale of points 1 to 5. The point 1 stands for unsentimental people 

whereas point 5 stands for very sensitive and impulsive persons. However, a person 

who is scored around the 3 points (quantifiable form of ‘not-so-impulsive attitude’ 

toward uncertainty) may get 15 points (quantifiable form of ‘impulsive attitude’ 

toward uncertainty) on a scale of 1 to 20 points. In that sense, the evaluation of the 

collected data depends on how we read the data as well as the ways of scaling and 

measurement.   

The obtained data set is organized and simplified to get a ‘neat’ representation of 

the variables that are investigated. Especially, the techniques like functional 

magnetic resonance imagining (fMRI) to study the neural systems, demand 

‘cleansing’ of the collected data from noises and artifacts. Artifacts in fMRI data 

would be, for instance, the fluctuations due to thoracic movements during breathing 

(Raj et al., 2001). After such removal processes, the specific changes in the 

variables can be easily observed. The evaluation of whether there is a relation 

between the variables requires inferential data analysis. Since the direct relations 

cannot be observed during an event, researchers trace the sequences of changes in 

the variables. Consider Figure 2.4 and Figure 2.5 that illustrate a study that 

questions the effects of the two teaching methods that are introduced to first-grade 

students:  

 

Figure 2.4: Collected and organized data of first-grade children. Retrieved from 
Gravetter and Wallnau (2016).  
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The system in question in here is a population of first-grade children. The study is 

conducted to determine the effects of two different teaching methods in this popula- 

tion. Thus the inputs are Method A and Method B whereas the outcomes are the test 

scores of children. Samples stand in lieu of all of the students (population) who hold  

similar features such as similar family backgrounds, taught by same teachers, or the 

stress levels. Thereby, it becomes more justifiable to argue that ‘the test scores are 

affected’ since the only difference is the test scores of the children. Notice that, it is 

an assumption of linearity that the components (individuals) of a system are analyti- 

cally separable. Thereby, the arithmetic mean (average score) is become 

informative in showing the central tendency of the samples.  

 

 
Figure 2.5: Descriptive statistics for the samples A and B. Retreived from Gravetter 
and Wallnau (2016).  

 
The central tendencies of the sample data show a difference (5 points) between two 

teaching methods. If there are no methodological errors such as the sampling errors, 

the data would be interpreted as ‘Method A is more efficient teaching method than 

Method B’. Think of an additional input; say a textbook that is previously proved to 

be a boosting factor for test scores. If this is the case indeed, then one expects that 

an additional input, the textbook, when introduced to the students who taught by 

Method A, would be a boosting effect for higher scores. As well, students who 

taught by Method B would be increased their scores with the help of the textbook. 

However, due to proportionality of the effects, it is expected that the students taught 

by Method A with the usage of the textbook would still have higher scores than the 

students who taught by Method B even with the textbook usage. Hence, the aspect 

of additivity is assumed in such cases. 

The data interpretation, then, is an inference process that generalizes the results 

from sample data to overall system. The results, if show any ‘significant’
2
 dif- 

2 The p-values are used to determine whether the independent variable has significant effect on the dependent 

variable. 
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Figure 2.6: An illustration for current state of interest and interpreted data.   

ference, indicate the possible causal relations between the variables. The way we read 

the data usually relies on the assumption that the relations between variables hold the 

properties of additivity and homogeneity, thus those relations are assumed to be 

linear.  

2.3 Complex Systems  

2.3.1 Complexity 

Nervous systems, societies, stock markets, weather, etc. are all considered as 

complex systems whereas each of them has their own building blocks that completely 

differ compared to other systems. The scale, then, is not a criterion for complexity 

since even the microsystems (e.g., biological entities) may constitute a complex 

system. Yet, not all the systems that have interconnected parts (say, an electronic 

device) considered as complex systems. Then what is the criterion for distinguishing 

a complex system from any other system?  

The efficiency of an algorithm when confronted with different sizes of input is mea- 

sured according to the time that is taken to produce an output. The number of com- 

putational operations to execute an algorithm (that means to receive an output) is 

the criterion of complexity. Thus, computational complexity can be defined in 

polynomial time. The computational complexity is scaled with Big-O notation O(n), 

which describes the upper bound of the algorithm’s runtime with respect to the 
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amount of input (n). Each step of the operations may take different runtimes to 

produce an output, yet, each runtime is added in order to calculate the complexity of 

an algorithm. Because, the operations follow each other step by step, thus with an 

order. The steps never overlap. By this way, the input size (n) is directly 

proportional to the number of steps which follow orderly each other in time. By this 

way, O(n) represents the time taken by an algorithm which is directly proportional 

to the input size.    

An algorithm is considered to be solvable in polynomial time if the number of 

operations for a given input is O(n
k
) where k is a nonnegative integer and n is the 

size of the input. The algorithms that take polynomial time are consisted of tractable 

operations. However, some algorithms are not solvable in polynomial time. Such an 

algorithm is solvable only in non-deterministic Turing machine since, to produce an 

output, the number of steps to be taken are too much. On the other hand, systems’ 

complexity is beyond algorithmic definitions since the systems’ behavior is intricate 

in many respects (technically, high-dimensional), and such behavior cannot be 

assigned to merely the outputs of the components. Complex systems operate in a 

parallel and hierarchic manner. Thus the outputs can be produced through different 

ways rather than an orderly linear manner. In that sense, it is not trivial to provide a 

legitimate criterion of complexity in systems to apply all the complex systems. At 

this point, it is argued that nonlinearity may provide a criterion for deciding on 

whether a system is complex.  

Linearity implies order, it means that to arrive a point there is a specific way to go 

through. Any interference in such processes would result in either failure to arrive 

or an altered outcome. However, in complex systems we observe such behavior like 

degeneracy that is the ability of systems to produce an output from different ways. 

Furthermore, it can be said that the number of possible ways to arrive a point would 

consequently increase the complexity in the systems. That is due to nonlinear 

dynamics which generate alternative ways to go through. Nonlinear dynamics seem 

to be ubiquitous in complex systems and constitute a steering factor of increasing 

instability, thus responsible for bringing the system into a state of the edge of chaos 

At this stage, systems may result in more than one output, and such a result is 

specific to complex systems. However, every nonlinear behavior does not .
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necessarily executed by a complex system. What needs to be done is that the 

characteristics of complex systems (e.g., self-organization) should be studied in 

respect to underlying nonlinear relations. Section 2.3.3 and 2.3.4 devoted to these 

discussions.  

2.3.2 Chaos  

As discussed in section 2.1, a dynamical system is a deterministic mathematical model, 

since the next states are determined by previous states. Chaos is a phenomenon that 

refers to sensitivity to initial conditions of nonlinear dynamical systems (Gleick, 

1987). Even though the systems are deterministic, the long-term behavior of the 

systems is unpredictable due to nonlinearity
3
. In that regard, chaotic behavior can be 

defined as deterministic, nonlinear, and aperiodic behavior (Fuchs, 2013) that 

displays to sensitivity to initial conditions. A linear dynamical system is considered 

to be predictable even in the long-term be- cause, the next state of the system is the 

very linear combination of the previous. Thus the decomposition of that 

combination can reveal the previous state or else, the re- assembled components can 

reveal the states of the system. Likewise, if two systems hold the same time 

evolution rule with the initial conditions that are close enough (say, x1 = 1 and x2 = 

1.001), these systems would follow similar trajectories. In this sense, they are not 

sensitive to initial (previous) conditions. What makes a chaotic system to be 

unpredictable is, then, inapplicability of the superposition rule. Nonlinearity is the 

main source of chaos since a small difference in “the system’s initial condition is 

quickly magnified under iteration"(Feldman, 2012). Such iterations bring 

aperiodicity, namely, non-repeatability of the previous conditions, in that sense only 

short-term prediction is feasible. However, within one (e.g. logistic growth) or two 

dimensional (e.g. pendulum) nonlinear systems the chaotic behavior cannot be 

observed because of the topological reasons
4
. At least three variables are required 

for chaotic behavior as such in three celestial bodies or ‘3-body problem’ (Poincaré,  

3 Any imprecision in the calculations of the chaotic systems followed by amplified deviations from the original 
trajectory.  

 
4 From the video recordings of MAE5790-Nonlinear Dynamics and Chaos Lectures at Cornell University taught 
by Steven Strogatz.  
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1913) that interact under simple (Newtonian) rules. Thus, chaotic behavior may be 

seen in very few interacting elements whereas complex systems are consisted of 

enormous amounts of interactions within dynamic components and the 

environmental constraints. Due to the dynamic interactions of large amounts of 

elements complex systems are able to arrange itself under the changing conditions. 

In that sense, complex systems are usually considered to be at ‘edge of chaos’ 

(Kauffman, 1996) rather than to be strictly chaotic. Then, although the fact that a 

complex system may be chaotic, it is not implied that chaos necessarily a property 

of complex systems.   

2.3.3 Characteristics of Complex Systems 

The term of complex system stands for the ‘whole’s that are constituted by various 

kinds of inter-connected elements and their nonlinear relations such that these 

wholes behave in an untraceable manner yet deterministic, de-centralized, self-

organized and cannot be reconstructed via simply summing up the elements. The 

very reason for the difference between a lump of components and a complex system 

is the new characteristics that gained through interrelations among components. 

‘Emergence,’ ‘autopoiesis’ and/or ‘self-organization,’ ‘edge of chaos’ are classified 

as such characteristics. However, today, we are unable to reach beyond the vague 

descriptions of these generic concepts. 

The ambiguity in the generic concepts of emergence, self-organization, complexity, 

etc. stems from the fact that there is no consensus on the methodology to study 

these characteristics. The standard way to study the system behavior is analysis of 

the functions that are assigned to components. For example, to understand the role 

of a gene in producing a phenotype, researchers usually conduct knock-out 

experiments in which the interested gene is specifically deleted. If the phenotype 

does not appear after such a knock-out process, it is thought that that gene is 

responsible for the emergence of that phenotype. Similarly, it is expected that once 

the responsible element(s) that give(s) rise to self-organization (or any other 

characteristics) of a complex system, such systems will be explained. However, this  

 

5 To find more sophisticated  examples of degeneracy, see Edelman and Gally (2001), Sporns et al. (2000).  
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is not the case. In complex systems, especially in biological systems, the “functions  

cannot be assigned to [lower level] components in a one-to-one manner” (Edelman 

and Gally, 2001). The reason for that is in such systems due to degeneracy and 

multifunctionality, components do not hold fixed roles. In technical terms, 

degeneracy suggests that “structurally different elements, may yield the same or 

different functions depending on the context in which it is expressed” (ibid). An 

example for degenerate behavior is that different antibodies that bind to the same 

antigen” (Edelman, 1974)
5
. Yet, there is a theoretical confusion on the concepts of 

degeneracy and redundancy (Tononi et al., 1999) besides the other generic concepts 

of the complex systems characteristics. To overcome that, it is suggested that at first 

we need to understand the nature of the interactions among complex systems which 

are considered to be dynamical. 

 The term of dynamics in the context of complex systems stands as a generic 

concept for ‘time-changing patterns’ or ‘pattern of change’ (Luenberger, 1979). 

Such pat- terns indicate the changes in the relations among a system. These 

dynamics mostly consisted of positive feedback cycles − the very reason of 

nonlinearity and thus, in- stability in the systems. Positive feedback relations end in 

the amplified effects in each turn, by this way, each cycle steers the system into 

increasing change. So, it can be argued that in each turn, the ‘elements’ that get into 

the cycle are changing. Thereby, the relations become altered since the elements are 

rebuilt in each turn. The end-product of a positive feedback loop, say at time (t), 

becomes incommensurate with its initial loop-entrance conditions (at time t − 1) 

and this is the way how non-linearities appear.  

 

 

2.3.1.1 (b) 

Figure 2.7: (a) A simple representation of a feedback relation, (b) An example of a 
positive feedback loop: "a fluid particle hotter than its environment encounters ever 
colder fluid as it rises, which leads to the instability" (Manneville, 2006). 
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Figure 2.8: Snapshots of Rayleigh-Bénard cell convection from the experiment con- 
ducted by Pfander and Haupt (2015).  

 
In the example of Rayleigh-Bénard convection, we see that "the bulk motions of 

fluids generated by temperature inhomogeneities" (Nicolis, 1995) as an instance of 

self- organizing behavior. Such a phenomenon – a new structuration, requires high 

degrees of incorporation of the local elements (Nicolis and Prigogine, 1971). Given 

the heat from below, a positive feedback loop is initiated: the lower side of the fluid 

layer becomes heated then it rises, the upper side which is cooler moves below 

while the effects of gravitational forces compete with heated molecules. The 

positive feedbacks reiterate the local elements in each turn that results in 

fluctuations, and thus the stability of the system breaks down. At a critical value
6
 

the system responses to instability with the decentralized control which arises from 

local relations. Macroscopically – as it can be seen from the figures 2.7 (b) and 2.8, 

the fluid rearranges itself into a new type of organization through decentralized 

control. Such an example shows that "with self-organization, a new order of the 

system ‘emerges,’ an order of non-equilibrium, a non-static order" (Bertuglia and 

Vaio, 2005). 

Emergence, on the other hand, is a characteristic that suggests a novel phenomenon 

that arises due to the interrelations of the system components. It is often aforemen- 

tioned as the phenomenon of ‘a whole is more than the sum of its parts’. In other 

words, it is thought that there are such higher level entities that cannot be one-to-  

6 For details, see Nicolis and Prigogine (1971) 
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one mapped onto their constituent lower level entities. But, how could such a 

novelty appear? The answer, as it is argued for the other features of complex 

systems, is in the dynamical relations of the systems. However, it should be noted 

that kind of depiction of wholes and parts – which historically corresponds to 

Aristotelian metaphysics, is misleading if it is taken seriously. It is because 

ontological discrimination of the parts and the wholes leads to somewhat isolation 

of the parts while the relations are undermined. Philosophically it is called 

mereological ontology which is an unrealistic way to approach complex systems. In 

that sense, recent literature is more apt to Kantian description of wholes where "in 

an ‘organized being’ the parts exist for and by means of the whole, the whole exists for 

and by means of the parts" (Longo et al., 2012). Kauffman et al. offer many examples of 

Kantian wholes in biological context. Yet, to study such wholes is still a problem.   

As complex phenomena the social systems, similar to biological organizations, hold 

systemic characteristics. We encounter with (i) self-organization and autopoiesis where
7
, 

for example, two persons have met and decided to establish a family that followed by 

generations, or in sects; (ii) emergence where the relations at the level of individuals result 

in novel assemblies that cannot be predicted from merely personal characteristics; and 

with (iii) complexity since even the data among a group of people (say, consisted of 3 

individuals) would be enormous considering all of the aspects of the group’s dynamics 

and personal traits. In this sense, to get a comprehensive understanding of such social 

phenomena the system-characteristics should be considered. What makes a social system 

different from other one depends on those characteristics. Think of, for example, in the 

same country within similar-enough genetic inheritance and similar-enough environmental 

factors, we may see (and as the world history shows, we mostly see) that the social 

movements do not show similar patterns compared to past generations. The difference, 

then, must lie in the relations of the components which, in this case, are the individuals and 

their constitutions. The relations, the causes and their effects, are in fact, nonlinear, and 

thus interactions seem to be ever-changing. 

Nonlinear interactions may also give rise to the other aspects such as chaotic behavior. The 

trick with the nonlinearity is the disproportionality between the inputs (causes) and the  

7 In the cases of when there is no external specific ordering influence. 
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outputs (effects) of a system. In fact, nonlinear relationships yield the system to 

become sensitive to external influences. Yet, as discussed above, it is not certain 

that whether there is a certain recipe for characteristics of complex systems. On the 

other hand, the nonlinear relations seem to precede all of the characteristics that 

appear in a complex system.  

2.3.4 Nonlinearity 

Nonlinearity as a shunned term of the mathematics has been used to describe the 

dynamics among complex systems which are, simply, not analytically solvable. The 

term encompasses all of the situations where linearity is not applicable. So, it is 

abstruse in the sense that there is no clarification about the set of not-being-linear 

entities. In fact, philosophically, it would be an intriguing research question that 

whether it is possible to classify different types of nonlinear relations. However, I 

stress on the definition of not-behaving-linearly in this paper. Nonlinear dynamics, 

then, consisted of the relations that do not follow a linear trend. It is expected that 

within that line of thought, all of the properties that constitute linearity can unravel 

what nonlinearity is not. Hence, to define nonlinearity, we can, roughly, exclude the 

properties of linearity. Indeed, within nonlinear systems, the tools for linearity can 

not applicable unless the data set is linearized. Recall the positive feedback loop 

that is discussed in section 2.3.3. Firstly, the input and the output are incommen-

surate since they feed each other at every turn. Also, an increase in the input may 

result in exceeding the critical threshold which can lead to self-organi-zation as in 

the example of Rayleigh-Bénard cells; thus, the ultimate effect is not a 

superposition of the causes. Yet, in such nonlinear cases, during the evolution of the 

system, the link between cause and effect is not traceable, and this is the very reason 

that we cannot precisely predict the future outcome of the complex systems.  

2.3.4.1 Order and Disorder 

Do nonlinear dynamics encompass some order or, to say, follow some pattern? 

Such a question is put forward, because, we observe characteristics like self- or-

ganization, and/or the emergence of new forms due to cooperativity of the compo-

nents through nonlinear relations of the systems. The components are re- combined  

8 To see other related discussions Prigogine, 1978; Bak et al., 1987.  
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in each turn of positive feedback loops, by this way; the system is steered into an 

instable state. Surprisingly, the instabilities of the system yield to new formations of 

patterns. In that sense, new order seems to arise from the disorder8. Questioning 

whether the recipe of the new order is somehow given in nonlinear relationships, 

does not necessarily imply linearity within the term of order. However, there is no 

convenient way to think any order in terms of nonlinearity since nonlinearity 

appeals to instability and disorder in the systems. The clarification is indeed, needed 

considering the terms of order and disorder in the context of complex systems. The 

one possibility for defining order may be based on regularity. The events are 

regular, that is to say, they follow each other regularly and thus show a regular 

pattern. That sounds like causation, yet, insufficient to be. As another candidate to 

define order, one can consider the order as stability – a state of equilibrium, again, 

in the context of the systems. But how come an entity in a state of equilibrium 

"manifests itself as the collapse of a state, following internal instability or an action 

external to the system, and with the adjustment of the system to a new state" 

(Bertuglia and Vaio, 2005)? It is important to keep in mind that, especially while 

system organizes itself, the new pattern appears "with no specific ordering influence 

from the outside" (Kelso, 1997). If that is the case, then one should expect that some 

specific rules of interactions between the components, that is to say, an ‘internal 

logic’ (as Bertuglia & Vaio put) steers such behavior. Note that, there is no 

centralized control over the complex systems, thus that putative internal logic must 

lie in the relations between the components. But, how can we detect such an internal 

logic if there is? Can we extract "a deeper level of patterned order" (Capra, 1997)? 

Perturbing the system is one of the ways to detect that. In this sense, researchers 

(e.g. Scheffer et al., 2012; Carpenter and Kitchell, 1988; Dai et al., 2013) have been 

studying the factors that propel the system an abrupt transition toward an alternative 

state. A shift toward another state requires new ways of connections, thus a new 

ordering within the system. The point where systems transited to another state – 

namely the ‘critical point’, indicates that the interaction rules are about to change.  

Carpenter and Kitchell (1988) experimented with a whole-lake (in addition to an- 

other lake nearby as a reference in Michigan, USA) to specify the early warning  
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signals that indicate the affinity to the critical point for the change in food web. The 

lake that is manipulated is consisted of a low population of the predator fish (large- 

mouth bass) in contrast to large populations of the prey fishes (minnows). For 

several times, the researchers were intended to tweak the food web in the lake (Peter 

Lake) by supplying additional largemouth basses (in controlled amounts). The 

response of the lake consisted of some local repairs which carried out by feedback 

relations to preserve its state of prey-dominance. However, at some point, the 

system (food web in Peter Lake) has become slower in order to execute a response 

to those perturbations. Following that, the food web is completely traversed: Peter 

Lake became predator-dominant. The phenomenon of slowing down in producing a 

response is called ‘critical slowing down’ and it is observed in many complex 

systems. For example, in populations of budding yeast Saccharomyces cerevisiae, 

the indicators of critical slowing down are also observed based on spatiotemporal 

fluctuations in the system (Dai et al., 2013). The researchers put yeast cells in media 

consisted of sucrose which allow the yeast cells to grow cooperatively by sharing 

the hydrolysis products. By this way, positive feedback loops initiated between the 

cells which lead to bistability and a critical point (ibid). Since the response of the 

system is carried out by feedback relations, the critical slowing down may be 

implying a change in the relations. It would also be applicable to ‘flickering’ 

behavior (indecisiveness between alternate states, see Dakos et al. 2013) of the 

systems. Such experiments indicate a possibility to anticipate an upcoming pattern 

change once the rules of relations are comprehended.   

2.3.4.2 Spatiotemporal Patterns 

The transition process of stability to instability and then to (a new kind of) stability 

constitutes a spatiotemporal pattern of activity which we observe in nonlinear sys- 

tems
9
. Spatiotemporal patterns imply both spatial and temporal regularities. In this 

sense, different regularities embody different patterns. Such regularities correspond 

to the different types of connections between the components and between the 

systems and its media. A commonsensical example for a spatial pattern would be a 

knitting pattern. These spatial patterns, simply, are formed by different arrange- 

9 Although all complex systems are nonlinear, a nonlinear system is not necessarily a complex system as we 
have seen in Rayleigh-Bénard convection in section 2.3.3 (for more details see Walgraef, 2012).  
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 ments of the yarn. The way of stitching the each inch of the yarn to another inch 

yields a specific pattern (if one knows to how to knit, for sure). Notice that, even the 

components re- main the same (in this case, the same yarn) patterns show variety. 

Hence we can say that, the relatedness of each inch of the yarn determines the 

upcoming pattern.  

 

Figure 2.9: Knitting patterns. 

 

Unlike the knitting patterns, in complex systems components are dynamically 

‘coupled’ with each other and the environmental factors that affect (and may be 

affected by) the system without any centralized unit. The spatial couplings may be 

strong or weak (Kelso, 2012). The strength of coupling determines the system’s 

stability (whether it is stable, unstable, or metastable). If the coupling strength is 

considered to be weak, the system would be either metastable or unstable. In such 

states, the change in the interconnections of the system is highly possible.  

 

 

 

 

 

Figure 2.10: A conceptual view of the spatial and temporal order in the behavior of 
neural ensembles (retrieved from Tognoli and Kelso, 2013). Complex systems are 
in between order and disorder in time and space.  
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systems are In regards to couplings, some temporal patterns of activities (as such in 

developmental processes of an organism) arise due to the system dynamics. The pig 

embryo, for example, reaches 5 mm at approximately 17 – 18 days whereas the 

chick embryo of 4 - 4.5 days is approximately 5mm (Dye, 2011). Such 

spatiotemporal patterns can also show variety even in the same system.  The very 

reason for that is the interactions between the components are changing, namely,  

dynamical. Since the relations between components are not fixed (Tognoli and 

Kelso, 2013), a complex system can be both stable enough to preserve itself and 

flexible enough to change itself.  

2.4 The Insufficiency of Linear Methods to Represent Complex Systems 

In section 2.2 and 2.3, it is distinguished that systems are either nonlinear (and com- 

plex) or linear depending on the behavior of the system. To study linear systems, 

there is a wide range of tools which extracts the relations between the variables (by 

the means of inferential statistics) and, provides a neat way of modeling and predic- 

tion (based on the superposition principle). However, when these tools are applied 

to complex systems which are intrinsically nonlinear, the overall result is nothing 

but lack of understanding.  

2.4.1 Linear Methods 

(a) Optimized representation: Since most of the time the system of interest is 

overwhelmingly detailed to examine, we seek for the representations that do not 

contain any ‘unnecessary’ detail. Whether or not a datum is necessary depends on 

the research question. For example, if the research is intended to investigate the 

causal relationship between sugar consumption and obesity, a datum of ‘95% of 

people who suffer from obesity wear dark-colored clothes’ would be an unnecessary 

detail. The data of sugar consumption and obesity rates are optimized whereas the 

other conditions count as equal and thus are not represented.  

(b) Analysis: Analysis means that examining the parts (components) of the system 

separately. In other words, system is decomposed into its components. The analyst 

focuses on the mere components in order to understand system behavior. In 

population statistics, for example, to understand the population (system), the 

specific properties of a selected group of individuals (parts), namely, of a sample 

are analyzed. In biological systems, an organism is divided into its sub-units (e.g., 
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organelles like ribosomes). The analysis is performed with the extracted sub-units.  

(c) Normally distributed data: The collected data represent the population of 

interest. It is assumed that the data show a normal distribution which means that the 

values in data are more or less close to each other. Then, the average (mean) is "the 

one number that best describes what the data is like" (Liebovitch and Shehedah, 

2003). As the averages of the samples from the population get larger those means 

approach to a limiting value that is thought to be the real value of the population 

mean (ibid). Thus, the average value characterizes the data pretty well (ibid). As a 

graphical representation, normal distribution or, Gaussian distribution aims to show 

the distribution of population in regard to the central tendency which is the 

arithmetical average (mean) of the variables. It forms a ‘bell curve’ that is 

symmetrical “with the highest frequency in the middle and frequencies tapering off 

as you move toward the extreme” (Gravetter and Wallnau, 2016). The tails of the 

normal distribution graph indicate that extreme cases which are represented with 

low probabilities since the data are normally distributed the extremities hold low 

chance to be/or happen.  

 

 

Figure 2.11: A normal distribution graph (adapted from Gravetter and Wallnau, 

2016).  

 

(d) Connecting dots: The analyzed data constitute a fragmented picture of the event 

of interest. Then to answer the research questions, inferential procedures are 

required. The relationships between the variables are inferred according to specific 

methods. These methods look at the analyzed data to obtain information such as 
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high correlation rates, or temporal precedence (as in Granger causality) between 

variables. With the help of inference methods the dots connected via specific 

relations (e.g., causality) when the specific conditions (temporal precedence and 

significant correlation) are met. For instance, (1) sugar consumption ‘caused’ obesity 

and (2) the teaching method A ‘caused’ an increase in the test scores. In such cases, 

the same conditions are met for causality. Notice that, it is assumed that causal 

relation is linear in regards to proportionality: if sugar consumption is increased even 

more, the obesity rates would have also increased. The dots, then, connected through 

fixed linear relations.  

(e) Equation solving: A linear system can be mathematically represented as S = αx + 

b where S stands for the state of the system, x as a variable and, α and b as the 

parameters. S will change in regards to any change in x or b.  This change is 

‘proportional’, since a slight change in the value of x (or b) causes a slight change in the 

system behavior (to its new state) as a response. As discussed in section 2.2.1, due to 

additivity and homogeneity properties, if the system is introduced with additional 

variable y, the response will look like S2 = αx + y + b. If x + b + y are the solutions 

as in this case, then  P = cx + dy + eb is also a solution. In this sense, such equations 

can be solved analytically. 

2.4.2 Nonlinearity and Complexity 

To apply linear methods to complex systems, at first, nonlinearity has to be 

linearized (usually by approximating) in order to fit the data in the models. 

Furthermore, systems’ complexity is reduced to a non-complex representation of the 

system. Consequently, complex systems lose their characteristics when the linear 

methods adopted.  

(a*) 10 To decide on which detail is unnecessary is not a trivial task in complex 

systems. It is also disputable that whether there is any unnecessary datum in those 

systems. As discussed in section 2.3, complex systems are constituted by many 

interacting parts which cooperate without a centralized unit. Involvement of each 

component under the environmental constraints is a must to be a complex system. In 

such a compact context, it is harder and possibly misleading to ‘pick’ a sample from   

10 The enumeration of the articles involves a sign (*) to address that all articles are put orderly in accordance to 
previous list. In section 3.4 the same rule is followed considering the lists that are presented in here.  
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many interacting parts and get an optimized representation of the system. Moreover,   

isolating the system from its environment is not informative considering the 

undergoing feedback relations. Complex systems are mostly open systems and thus 

usually, co-evolving with their environments; it means that both environment and 

the system change the other accordingly. 

(b*) In complex systems, parts are dynamically integrated such that systems can 

produce behavior as a whole without any command center. This composed structure 

can also yield novel phenomena (namely, emergence) that cannot be assigned to 

components solely. In that sense, decomposition of a complex system is not an 

efficient way to represent (and/or explain) such phenomena. 

(c*) Statistical analysis requires that the variables are independent from each other 

(heights of the persons in a class) and characterizable by the mean value. However, 

since the behavior is nonlinear, the distribution of the data cannot be characterizable 

with ‘one value’. Even if the averages of whole population were calculated, the 

calculated value would not get ever closer to a fixed value, that means there is no 

population mean at all (Liebovitch and Shehedah, 2003). Also, due to linearity, 

extreme events represented with very low frequencies as ‘thin’ tails. But extreme 

cases (for example, the earthquakes that scaled 6+ in Ritcher scale) occur more 

frequently than a normal distribution graph represents11. 

(d*) The major difference between linear systems and complex systems is that non-

linear nature of the latter. The behavior of complex systems is governed by 

nonlinear relations. Thus, the proportionality (between the input and the out- come) 

does not hold within the complex systems. Positive feedback cycles as an exemplar 

of nonlinear relations (as discussed in section 2.3.3) show that relations are not 

fixed yet they are dynamical. In each turn of the feedback cycles, the relations are 

restored and thus there is a continuum change considering the relations. Also the 

couplings rest upon such nonlinear dynamics. The phenomena of generation of new 

configurations within systems depends on coupling strength which is determined by 

nonlinear interactions of both the components of the systems and the environment.  

 

11 For technical details please see the literature on heavy-tailed distributions and the power law. 
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(e*) Linear (differential) equations imply that the next state of the evolution of the 

system is the linear combination of its elements. Then it is possible to analytically 

solve the linear equations. It is also possible that linearize the state of the systems 

that are close to the conditions of the stable equilibrium (Bertuglia and Vaio, 2005) 

by approximation. However, such stable conditions are only avail- able at 

laboratories or in any isolated environment. Nonlinear equations, on the other hand, 

are too hard to solve and any imprecision in the conditions lead to enormous 

differences in the outcomes. The best way to cope with nonlinearity today is 

provided by computer simulations. Yet, they are limited in the sense of 

computational power, and representing all of the variables and parameters of an 

event. 
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CHAPTER 3 

 

 
CAUSAL REPRESENTATIONS AND THE CONCERNING 

PROBLEMS 

 

Is it possible to prevent global warming? Is carbon emulsion reduction really an 

effective way? If customers buy more goods, would the markets improve? How 

do neurons give rise to cognitive functions? Why do placebo pills affect some 

people? Why do systems behave in such ways? To answer such questions we 

appeal to causal explanations1. However, in contrast to growing body of scientific 

knowledge about those processes, there is no single, one-to-fit-all answer. Rather 

there are different answers2 which can deliver limited insight on the ongoing 

processes since the systems in question are complex. 

The difference, most of the time, stems from the opt for different representations 

of causality in the explanatory models. Then what is the reason for the 

employment of different causal representations? It is because we do not have a 

generic or universal definition of causality yet, and as a consequence, causal 

relationships may be depicted disparately. On the other hand, it is essential to 

adequately represent the causal relations since such a representation offers (i) an 

explanatory architecture of the phenomenon; (ii) a basis for modeling the 

phenomenon; and thus, (iii) a way to make predictions about similar events. The 

criterion of the adequacy of a causal representation is, however, problematic in 

itself. What is the ‘right’ way of representing causation? The one would be that 

best captures the state-of-affairs, or say, the reality itself. 

All of the causal representations, even if it is not explicitly put forward, rely on a 

theory of causality. That is to say, each representational framework (may) make  

1 My concern in this work is limited to causal explanations. However, in the literature there is an ongoing 

debate  on causal and non-causal explanations which is not discussed in this paper. For more information, 

please see the  works of Skow (2014), and Chirimuuta (2017). 

 

2 The answers may be compatible or in contrast with the other. 
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(different) ontological commitments concerning the nature of the causal connection. 

Counterfactual accounts, for example, rely on the ontological assumption of "[. . . ]  if 

the first object had not been, the second never had existed" (Hume, 1748). The current 

attempts to represent the relation between cause and effect, either reductive or non-

reductive in the Humean sense. Concessions have been made on at least one of the 

features of causality as such in the Bayesian approach: while the feature of 

difference-making is ensured; however, the feature of causal necessity is abandoned. 

Different representations, thus, may result in different causal inferences which can be 

contradictive if we hold the view that a particular set of causes always brings a 

particular set of effects. The situation gets even complicated when a complex 

phenomenon (e.g. neural system) brought into question since complex systems 

behave nonlinearly. My aim in this chapter is that to discuss the way we think of causal 

relations in ‘structural’ models. Models in general, of course, are not considered as 

complete descriptions of the state-of-affairs but rather, representations that can give an 

insight on what is going on in the real world. In this thesis it is concerned that the 

ontological commitments which are made within models in order to represent causality in 

complex systems.  

 3.1 Causal Representations in Models 

 In the literature, the research programs of "what are causal relationships?" and "how 

can one discover causal relationships?" constitute distinct territories (see Cartwright 

2007, and Williamson 2007). The causal methods assume that there are some causal 

relations (often, deterministic) and do not question the nature of that relation. The 

focus is to detect causality. In that sense, the causal models that fit best to our 

understanding of the world are proposed as methodological devices to hunt causes. 

However the methods, in fact, determine what we are looking for. For instance, it 

would be arduous to investigate celestial events via microscopes. The methodology 

that we adopt in ‘search of something’ is attached to what we think of ‘something  

is’. In philosophy, conventionally, we think of causation as a ‘necessary’ relation 

between events that display some features that are (i) contiguity in space-time, (ii) 

priority of causes, and (iii) constant conjunction (Hume, 1748). Following Hume, 

philosophical literature has divided into two camps: reductive accounts and causal 

realists. Former accounts approach to causal bond in terms of non-causal events such 
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as temporal priority of the events. Contrarily, causal realists are those who do not 

reduce causality to non-causal terms but rather seek a unique entity (can be whether 

relation or disposition) to ontologically admit that as causation. Since those non-

causal features can be seen as symptoms, or say, footprints of the causal bond, they 

can be still used to detect causality.  

In modeling it is vital to determine which assumptions are (going to be) regarded in 

order to provide the representation of a causal process. The reason for that is what it 

is seen as sufficient enough to claim that ‘something is a cause and/or causally 

related’ determines the interpretation of the model in terms of causal relation. In the 

literature, there has been an ongoing debate on whether the statistical relations are 

sufficient to claim causality. Considering the latest tools to be sufficient a set of 

extra-statistical assumptions are required. Still, however, extra-statistical 

assumptions of causality significantly constrain the phenomenon that is intended to 

be modeled.    

3.1.1 Causation as Dependence 

Based on the available theories of causation, causal relations are usually represented 

as sequences of events, i.e., a linear sequence of transitions from, or dependency of 

one state to the other. Yet, these two different representations differ in theories
3
 also. 

In that sense, contemporary philosophers (like Ned Hall) put an emphasis on that 

these representations indicate different "kinds of causation" (Hall, 2004). According 

to this classification, causal relation is regarded as either ‘dependence’(in other 

words, difference-making) relation or a process of the ‘production’ of the effect. 

There is no necessary mutual exclusion between two, yet, as Hall (ibid) put, some 

properties (e.g., transitivity) that are attributed to causal relations may contradict 

with other properties that have been seen as necessary counterparts for some causal 

theories. Dependence or difference-making accounts rely on the intuitive ideas of (1) 

‘causes make differences in terms of effects’, and (2) ‘effects are dependent to their 

causes’. Most of the scientific experiments are designed in order to expose such  

3 Since there is no available consensus on the classification of causal theories, that claim is also disputable. 

However, in this thesis the underlying idea is that each representation has its own ontological commitments 

whether or not it is intended to do so.  
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dependence relations. The basic design of an experiment consisted of (at least) two 

variables: dependent and independent variables. Independent variable is intentionally 

modified by researchers to observe whether any change is initiated on dependent 

variable. Even if there is a change it may not indicate causation. At this point one can 

substantiate only that there is a correlation between the variables. Thus, as it is 

discussed in section 2.2.2, the relations between the variables of interest are inferred 

according to observed changes in data. To causally interpret the data, however, 

additional assumptions must be introduced during data analysis. Those assumptions 

may vary due to the model that is intended to fit the data. Dependence/difference-

making accounts provide a range of such assumptions that may
4
 reside in different 

causal theories.  Causal theories that represent causality as a dependence relation and 

their extensions in causal models can be categorized as
5
: 

i. Regularity: Consider a simple observation toward causation. Whenever A oc- curs, the 

occurrence of B is followed A, and these two events contiguous in space also. Then one 

might argue that "A’s cause B’s’ iff A’s are regularly followed by B’s and contiguous" 

(Reiss, 2008). Note that, A and B stand for generalized cases of events (philosophically, 

‘types’). Such lawlike regular following of event (types) is the basis of regularity theory 

of causation. It is a reductive account in the sense that causality is reduced to non-causal 

terms (in this case, to regularity and contiguity). In other words, regularity theories 

intend to "analyze causation in terms of invariable patterns of succession" (Hitchcock, 

2018).  Invariability in patterns of succession implies a lawlike necessity which we seek 

to understand causation in terms of. However, necessity (in natural occurrences) is a 

philosophically challenging concept. Sufficiency, on the other hand, seems to be a 

convenient concept to reduce causal dependency to. In this sense, regularity theories 

had further improvements in terms of sufficient conditions by John Stuart Mill and John 

Leslie Mackie. With sufficient conditions, the focus is shifted to token-level events and 

singular causal claims from type-level events and general causal claims.  

 4  The theories are not necessarily mutually exclusive.  

 

 5 This categorization is based on the works of Hall (2004); Illari and Russo (2014), but differs from 

  them in respect to some details. 
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According to Mill, the cause should be taken as the whole conjunction of the 

conditions that are sufficient for the effect: 

The cause then, philosophically speaking, is the sum total of 
the conditions positive and negative taken together; the 
whole of the contingencies of every description, which 
being realised, the consequent invariably follows. (Mill, 
1911)  

 

 In resemblance to Mill, Mackie claimed that there are such conditions that at least 

are Insufficient and Non-redundant parts of Unnecessary and Sufficient (INUS) 

conditions. INUS conditions are the least requirements for causality. However, 

taking causes as the sums of the sufficient conditions is problematic in many aspects. 

The problems will not be discussed in detail due to the limited space and the scope 

of this thesis; but they can be listed as:  

 (a) Irrelevance: A causes B when A and I occur simultaneously. For 

 example, salt that has been hexed by a sorcerer invariably dissolves when 

 placed in water (Kyburg 1965 via Hitchcock 2018). 

 (b) Imperfect regularities: A is a sufficient condition of a B such that the 

 (differing) instances of A and B are spatiotemporally proximate, thus, clearly 

 is not a necessary condition of A causing B (Baumgartner, 2008). 

 (c) Asymmetry: Temporal precedence of cause(s). That is to say causes 

 (C) cause effects (E) and effects (E) cannot cause causes (C). 

 (d) Spurious regularities: Two parallel effects E1 and E2 of a common 

 cause C.  

In the philosophical literature there is an ongoing debate on whether regularity 

theories can handle with the problems enlisted. Today, at least there is a consensus 

on that even if regularity theories can handle the problems, the reassessed versions
6
 

of the theory are warranted. The most important (and related to this thesis) aspect of 

regularity regards ceteris paribus conditions. Ceteris paribus suggests that ‘all other 

things being equal’ or, ‘other things held constant’. It is argued that the Humean  

proposal of "an object, followed by another, and where all the objects similar to the   

6 In contemporary scene, Baumgartner (2008), Graßhoff and May (2001) and others attempt to provide an  

alternative account for counterfactual and probabilistic theories of causation.  



40 
 

first, are followed by objects similar to the second" (Hume, 1748) should be considered 

under ceteris paribus conditions. However, the application of ceteris paribus is itself 

problematic in respect to vague definition of it (Reutlinger et al., 2017). For example, 

which conditions should be considered as equal, fixed, or constant? Ceteris paribus 

conditions, indeed, constitute a fundamental problem in causal modeling 7. 

ii. Probability: If A causes B, then in the presence of A, it is plausible to think that 

probability of the occurrence of B raises given the state of absence of A. In this regard, 

earlier accounts of probabilistic dependence (put forward by Hans Reichenbach, Irving 

J. Good, Patrick Suppes) grounded on that assumption: ‘causes raise the probability of 

their effects’. It is formalized as follows: A causes B iff P (B|A) > P (B). However, there 

are some causes that seem to lower the effect’s probability. For example, a drug may 

inhibit releasing of a hormone and thereby regulate the function of an organ. In this case 

the drug (in fact, inhibition of the hormone) causes the regulation of the organ 

functioning. Or, similarly, omission of calcium-intake in human body may cause 

osteoporosis. To allow such chance-lowering cases, probabilistic accounts updated the 

central assumption as ‘causes change the probability of their effects’. Then, to detect 

causality one may look into statistical changes in data. As often put, correlation is not 

causation; but it can provide information about the underlying causal structure 

(Glymour and Cooper, 1999).  

The idea of causal discovery from probabilistic dependencies is gained strength as 

Bayesian nets method is introduced. Clark Glymour, Gregory F. Cooper, Peter Spirtes, 

Richard Sheines et almuni pioneered the use of Bayes-nets to detect causal relationships 

given observational data. In that framework, Bayesian net- works serve as a 

representation of causal relations. 

 

 A Bayesian network consists of a structural model and a set of 
probabilities. The structural model is a directed acyclic graph in which 
nodes represent variables and arcs represent probabilistic de- 
pendence. (ibid).  

 

 
 

7 In the literature it is discussed as the ‘context-sensitivity’, or ‘background knowledge’ proble
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    Figure 3.1: A directed acyclic graph (DAG). 

 

 

 

Figure 3.2: A directed acyclic graph (DAG) with the distributed probabilities. The 

probabilities to specify are P (A), P (B), P (C|A, B), P (E|C), P (C|D), P (F |E), and P 

(G|D, E, F ). Retrieved from Glymour and Cooper (1999).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: A causal Bayes net that is retreived from Glymour and Cooper (1999). 
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In causal Bayes nets arcs are interpreted as causal influences. Such 

interpretation of Bayes nets, however, requires additional assumptions to be 

introduced. Causal Markov Condition (CMC) and Faithfulness are the essential 

ones. CMC stands for each variable to be probabilistically independent of its 

nondescendants given its parents (ibid). Thus, direct causation is implied. 

Faithfulness condition, on the other hand, suggests CMC: "In a causal graph, no 

probabilistic independencies hold other than those predicted by the CMC" 

(Reiss, 2007). Then all the interdependices in data are not accidental but rather 

structural which means that resulting from the structure of the causal graph 

(Druzdzel, 2009). In the presence of (at least) those two assumptions 

manipulation is informative in terms of causation. In this regard, causal test 

undergoes with manipulations on selected variables. Consider figure 3.4:  

     

    Figure 3.4: A causal DAG. 

 

 

 

 

 

 

 

Figure 3.5: An example for spurious regularity retrieved from Hitchcock 

(2018). 

 
Any intervention on A will result in change in the causal chain of B → C, B → D 

then we can infer that A causes B. In this case, regularity theory would be in-

sufficient to explain the independency between C and D. Notice that spurious 

regularity problem is solved within probabilistic theory. Also, the problems of 

imperfect regularity and irrelevance are ruled out within this account. Imperfect  
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regularities such as in the case of "smoking is a cause of lung cancer, even though 

some smokers do not develop lung cancer" do not constitute a problem in 

probabilistic accounts since causes change the probability of their effects and thus, 

"an effect may still occur in the absence of a cause or fail to occur in its 

presence"(Hitchcock, 2018). The problem of irrelevance is ruled out because if 

there is no difference in terms of effects one cannot claim the presence of causal 

influence. The problem of asymmetry, however, remains.  

 

 
 

Figure 3.6: The variable E cancels (or say, inhibits) the variable D. 
 
 

 

Figure 3.7: In this case, collider variable is C. 

 

As a structural model, causal Bayes nets model the entity that is assumed to have a 

common set of causal relationships. If there are different sets of causal relationships 

then it becomes a causal mixture model where the mixture is represented by using a 

hidden binary variable (Glymour and Cooper, 1999). 

 
 
Figure 3.8: A causal Bayes net with a representation for causal mixture from 
Glymour and Cooper (1999).  
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Representing the different causal relations as a node (see H in the figure above), 

however, does not seem satisfactory to me contrary to Glymour and Cooper 

who claimed that is an adequate way to represent mixtures. The relation(s) 

between the mixture (H) and any other variable (Z) would be different (and 

probably more complicated) rather than the structural relation that is already 

assumed to be different from. In the next chapter, it is rather suggested that 

representing the different causal relationships appealing to the term of relation 

itself. In this specific case, it would correspond to such qualitative (and 

unfortunately loose) representation in figure 3.9.  

 

 

  Figure 3.9: An oversimplified suggestion of representing causal mixture 

  models. 

 

Although the discussion is kept it short in this section, as Glymour and 

Cooper (ibid) put, the discovery (and to me, the representation) of mixtures of 

causal structures is a challenging and largely open problem.  After all, 

probabilistic dependence is neither necessary nor sufficient for causation 

(Reiss, 2008). It is not necessary since there may be cancelling causes and not 

sufficient since there are cases of collider variables, and non-stationary time 

series (ibid) where the changes in probabilities can not be accounted for its 

direct causes (namely, its parents).   

iii. Invariance: Invariance condition is met when "a relationship between two 

or more variables is invariant if it would remain continue to hold - would 

remain stable or unchanged- as various other conditions change" (Woodward, 

1997). A safe definition for causality would be the one that holds property of 

invariance, thus a causal claim becomes generic and cleansed from any  

spurious or correlational relations. In that sense, invariance method is  
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developed as a test for causality in the early econometric models (suggested by 

Cowles Commission), and had further improvements by the works of James 

Woodward and Daniel Hausman with philosophical insights. Woodward and 

Hausman use the term of invariance in the sense that stability of the functional 

relation under some changes. Such that, there are equations that have a causal 

interpretation, satisfy certain requirements like invariance under intervention and 

independence of mechanisms (Hausman and Wood-ward, 1999). The equations that 

are studied by Woodward and Hausman mostly have the linear regression form as 

in equation 3.1. 

 

Y  = αX + U   (3.1) 

 

In the equation above Y represents the dependent variable and X represents the 

independent variable where U is the error term that stands for omitted causes. The 

parameter α represents the magnitude of X. If Y changes in the way described by 

the equation then this equation represents a causal relationship (between X and Y). 

As Woodward and Hausman put it, if Y doesn’t change in that way as a result of 

intervention that changes the value of X, then the equation will not be a correct 

description of the causal relation-ship between X and Y. Thus, in this framework, 

invariance is a property of being causal whereas intervention is a way to test that 

invariance conditions.  Woodward and Hausman also note that even some 

regression equations have the same mathematical solution, they might stand for 

different systems of causal relations. The structure of the equations bears a syntax 

for specific causal route. 

 

Y = aX + U (3.2) 

Z = bX + cY + V (3.3) 

Z = dX + W (3.4) 

 

(where d = b + ca and W = cU + V ) 
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Equations 3.2 and 3.3, 3.4 represent two different systems of causal relationships:  

 

Figure 3.10: The causal structures for given equations of 3.2 and 3.3, 3.4. Retrieved 

from Hausman and Woodward (1999).  

 

In the figure, (a) embodies the structure that is given by the equations of 3.2 and 3.3 

whereas the structure of 3.4 given as (b). In Woodward and Hausman’s framework, 

the equations 3.2 and 3.3, 3.4 describe different (causal) mechanisms. Such "sets of 

simultaneous linear equations satisfying specific constraints" are, hence, thought to 

be causal representations in the framework of invariance accounts (Cartwright, 2007). 

David Hendry also advocates similar account in terms of social policies: "causes must 

[...] satisfy certain probabilistic conditions and they must continue to do so under the 

policy interventions envisaged" (ibid). As an additional assumption, Woodward 

(2003) puts forward ‘modularity’ condition which states that "the mechanism 

described by each individual equation be distinct from the mechanisms described by 

the others" (Hausman and Woodward, 1999). Furthermore, it is argued that "[...] as 

modularity fails, the asserted causal structure fails to mirror what will happen under 

hypothetical interventions and, [...] fails to represent correctly the causal structure of 

the system" (ibid). However, modularity seems to fail at many examples of causal 

relations8. In that sense, modularity is a highly dis- puted condition in the literature 

and it reaches beyond the scope of this thesis. Concerning the causal relation that 

Woodward and Hausman (1999) argue that within modularity there is no pre-

supposition for linearity and/or additivity but rather the distinctiveness of the 

mechanisms is what modularity requires. In complex systems, as it will be discussed 

at the last section of this chapter, it is almost impossible to isolate such causal 

mechanisms. Moreover, Woodward and Hausman assert that their account is not  
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limited to linear equations, but rather such structural equations that are not linear 

can also be invariant under some changes and be modular:   

 

 Y = f (X) + U (3.5) 

  

 Z = g(X, Y ) + V (3.6) 

 
The structural representations for the equations 3.5 and 3.6 are not provided though, 

and as the authors admit such equations still assume that the error term, or say, the 

set of omitted causes, is additive (ibid). Hence, for nonlinear cases we have to 

assume that – at least the error term to be linear. To represent such cases like 3.5 

and 3.6 in terms of causal structures, as it will be argued in section 3.3, linearity has 

to be assumed.  

iv. Counterfactual: Hume had proposed a second definition (possibly he had not 

intended to do so) for causal dependence in a way that stands complementary  to his 

views on regularity (Menzies, 2017): "where, if the first object had not been, the 

second never had existed.” (Hume, 1748). Following Hume, Mill and Mackie are 

pondered about the logical forms of such conditional statements in order to analyze 

causal claims. The refined formalization of counterfactual account of causal 

dependence is found in the works of David Lewis. Counterfactual conditionals take 

the form of “if A had not occurred, C would not have occurred”. The analysis of 

"had not - would not" clauses is at the center of Lewis’ agenda of analyzing 

causality (Poellinger, 2012) in terms of possible world semantics. Lewis, indeed, 

takes counterfactual statements that are about possible alternatives to the actual 

situation (Lewis, 1973). Since "the semantics of conditionals exploits certain 

invariant relationships, certain dependencies" (Shulz, 2011), it is thought that causal 

claims can be reduced to counterfactual statements. Any alteration of the event 

changes the dependency relation between the events, thus expected to bring 

different consequences. Different versions of counterfactual dependence are 

available in the literature.  

 

 

8 For details please see Cartwright 2007, Illari and Russo 2014, and others. 
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 One of the versions
9
 of counterfactual account is "The Structural Equations 

Framework" that developed in the works of Hitchcock (2001, 2007); Wood- ward 

(2005); Woodward and Hitchcock (2003) in regard to Judea Pearl’s works on causal 

inference besides the works of Peter Spirtes, Clark Glymour, and Richard Scheines on 

causal Bayes nets (Menzies, 2017). Pearl’s agenda of causal inference, however, based 

on structural models rather than possible worlds semantics (Pearl, 2013). This account 

will be examined in section 3.2.  

 Despite the different versions of counterfactual account, the criticism toward 

counterfactuality mainly grounds on three basic assumptions of causation (Hall, 2004):  

 (a) Transitivity: a is a cause of b, and b cause of c; then a is a cause of c. 

 (b) Locality: Causal connection is provided via spatiotemporal contiguity of causal 

intermediates.  

(c) Intrinsicness: Causal relations hold by intrinsic, non-causal character. 

Hall argues that counterfactual accounts are not compatible with those assumptions 

(where production accounts are) and in fact, require "an entirely different kind of 

analysis" (ibid). Similarly, Maria Carla Galavotti and Nancy Cartwright think that there 

might be a variety of different causal relations (Cartwright, 2007) which are suitable for 

different analyses. On the other hand, the issue of whether counterfactual accounts can 

handle the problems raised by the assumptions that are given above is still a disputable 

topic.  

3.1.2 Causation as Production  

Difference-making accounts, in general, put emphasis on the effects in terms of ob- 

served changes. It is thought that tracing the changes in the putative effects may unveil 

causation. Production accounts, on the other hand, focus on causal process itself. Since 

the idea behind the difference-making accounts is not in contrast with the idea of  

production accounts (at least in  principle), there are also attempts to combine these accounts 

(for example, Handfield et al. 2008 attempt to integrate causal processes with causal Bayes 

nets). Yet, they still significantly differ in some respects.  

 

 9 Or, call it the extensions of counterfactual account. 



49 
 

Accounts that see causation as production (or say, process) depict causal link as "a 

continuous line in spacetime that transmits or propagates some kind of physical 

quantity or quantities" (Illari and Russo, 2014). In this sense, process accounts are 

more concerned to provide somewhat physical theory of causation. Earlier accounts 

of production are put forward under the influence of Bertnard Russell’s later works 

on causality. Contrary to his earlier thoughts on causation, Russell thinks that 

physical occurrences unfold in causal lines. These causal lines picture causality in 

spacetime. In the same vein, Jerrold Aronson and David Fair appeal to physical 

depiction of causality based on the exchange of energy and/or momentum (Dowe, 

2008). Causal relations, in these accounts, are represented as transference processes. 

Hence, Aronson and Fair advocated that causal relation to be "an objective feature 

of the world" (Dowe, 2000). 

The problems with transference account of causation had steered the discussion into 

a ‘processual’ view of causality. Wesley Salmon defended a process theory of 

causation which can be generalized as "a token event c caused a token event e if and  

only if c and e are connected by a series of intersecting causal processes whose 

intersections constitute causal interactions" (Gallow, 2017). In the framework of 

Salmon’s theory of causation, causal processes are regarded as a characteristic of 

some processes which transmit ‘marks’. However, a series of new problems have 

arisen due to mark transmission. Phil Dowe developed a revised version of 

Salmon’s account by pointing out those problems. Dowe advocated ‘conserved 

quantities’ instead of transmitted marks (Dowe, 2000). Similar problems are 

revealed mostly due to putative physical correspondents of causal links. As it can be 

seen, within production framework there is no established methodology and/or 

proposed models for causal processes. The application domain of production 

accounts is the physical models
10

 (e.g., the model for the electrical charge- 

exchanges) instead of a proposed causal model that comprises causal processes.  

Accordingly, the models that are investigated throughout this thesis rely on  

difference-making accounts of causation. However, it is noteworthy that in-

formation theoretic account of causation (that is classified under production  

 10 There is a debate on the application domain of process theories of causation. For detailed discussion please see  

 Russo (2010), and Machamer et al. (2000).  
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theories in Illari and Russo 2014) may constitute an exception in terms of causal 

modeling. In information theoretical framework, causal link is somewhat quantified 

and thus it is possible to propose a specific model based on this account. A recent 

causal account that is based on the information theory is recalled ‘causal 

emergence’ by Hoel et alumni. But information-theoretical account is not issued in 

this thesis since it would require a sophisticated study on itself
11

. 

3.2 Causal Models 

Even if there is no consensus on the definition of causation and the method for de- 

tecting it, at least, we can expect that a causal relation to be a stable relation across a 

given domain of constraints. Then the question is: Can we extract a schema of 

stable relations given dataset? Such a schema would constitute a structure that 

represents a (causal) mechanism. If the model is intended to uncover the structure 

underlying the data then it is classified as a ‘structural model’. Causal models on 

offer are all structural, in that sense What it is meant by structure, however, remains 

disputable. Earlier accounts that are adopted by Sewall Wright and Cowles 

Commission imply a mechanism that is  already defined in theory. The recent 

accounts of Pearl and Mouchart et al., on the other hand, aim to ‘give structure’ 

within the background knowledge that is provided by either theory or analyses of 

data (Illari and Russo, 2014). Structural (causal) models encompass structural 

equation models (SEMs), causal graphs, causal Bayes nets (CBN) methods, and 

variational model-framework all to- gether. However, the methodology for finding a 

causal structure may show variety. CBN adopts an inductive methodology (thus, it 

is an exploratory) whereas others use hypothetico-deductive inference method 

(Mouchart et al., 2010) which is a confirmatory method. Thus, each modeling 

technique has its own peculiarity in terms of interpretation of data but also some 

commonalities such as extra-statistical assumptions they made. In the following 

sections, the focus is that some of those  assumptions which are claimed to be 

essential for causally interpret the data. 

 

 

  11 For a comprehensive approach, please see the works of Collier (1999), Illari (2011), Floridi (2016),  Hoel 

 et al. (2013) and the related literature.  
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3.2.1 Structural Equation Models 

SEMs are consisted of a set of equations that take regression form (such as the 

equation 3.7). The general framework of SEMs, initially, put forward by Wright 

(1921) with the form of a path diagram (for example, see figure 3.11) to represent 

causal relations. Beyond the mathematical description, SEM has a syntax for 

causal interpretation.   

 

  Y  = αX + U (3.7) 

 

The equation 3.7 forms a structural equation where Y denotes effect(s) (according 

to right-hand-side convention), X represents cause(s) and how much X affects (α), 

and U stands for omitted cause(s) or, technically speaking, error terms in our 

observation. This form of structural equation (which is in the regression form) 

allow analytical solution and thus, to the separability of the variables. It means that 

when the variables and their determinants are known (or simply presumed) it is 

possible to predict the outcome of a causal chain:   

 
If we know the extent to which a variable X is determined by a 
certain cause M, which is independent of other causes, 
combines with them additively and acts on X in a linear 
manner, and if we know the extent to which M is determined by 
a more remote cause A, the degree of de- termination of X by A 
must be the product of the component degrees of determination. 
(Wright, 1921)  
 

In the presence of latent variables (omitted causes) it is still feasible to make predic- 

tions once the structure is put in the regression form. The form implies 

proportionality of the effects in regard to causes under given conditions. If the  

structure is known a priori, the data of the effects would be sufficient to infer 

(direct) causal influence or likewise, the data among observed causes and effects 

can reveal latent variables.  

To analyze causal chains Wright suggests the method of path analysis. This method 

"allows one to decompose the covariance [that is a measure of how much two 

random variables vary together] between two variables in a structural equation 

model    into   additive  components,  thus  helping  to  understand  how  the  inter-  
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relationships between many variables in a model predict the covariance between 

two selected variables" (Boker and McArdle, 2014). Performing path analysis 

would provide the prediction of system-states given the conditions by tracing the 

dependence relations. 

 

Figure 3.11: Path diagram of X = βM + U and M = A. It is interpreted as A causes 

M and M causes X under the conditions of U . 

 

Since the variables (the components) are decomposable, intervention (to specific 

variables) is possible. Remember the interventionist account which is based on 

structural equations. Due to the assumption of invariance, we expect that any 

change in the variables would steer a difference in the other as the way that is 

described by the equation. The equation propels a linear change in this form.  

Notice that, even the analytical solutions for the equations are mathematically same, 

each set of equations stands for a unique solution (with right-hand convention) 

which turns out to be a unique structure. Thereby they might represent different 

causal routes which, philosophically, imply different (causal) mechanisms 

(Woodward, 1997).  

 3.2.2 Causal Graphs  

Causal graphs are the DAGs that are causally interpreted (Scheines, 1997). As it is 

discussed in section 3.1.1, a DAG is a mathematical object that takes probability 

distributions among its nodes (variables). Thus, (in)dependency relations between 

the variables of interest are embodied in these graphs. Also, a DAG constitutes a 

structural model given the causal assumptions. Acyclicity (which means there are 

no feedback relations between variables), CMC, and Faithfulness are the basic 

assumptions that made up causal DAGs. However, to read the data in terms of 

causality — more specifically, the (in)dependency relations in the data, DAGs seek 

further assumptions. 
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Data generation process, as it is shortly discussed in section 2.2.2, is all about sta- 

tistical assumptions that researcher appeals in regard to the observed (and/or exper- 

imented) phenomena. Linearity, normal distribution, additivity, homoscedasticity 

are among such statistical assumptions. Causal interpretation, on the other hand, 

brings extra-statistical assumptions on the table. Extra-statistical assumptions 

constitute the untested causal assumptions which include causal acyclicity, causal 

priority, causal mechanism (Russo, 2010). Accordingly, causal models, independent 

of whether the approach is exploratory or confirmatory, encode both statistical and 

causal assumptions. 

SEMs in its traditional sense, do not hold specific causal assumptions but they im- 

pose a causal structure upon the system under investigation through the theories a 

priori given. Apart from traditional SEMs, Pearl in his seminal work on causal mod- 

eling (Pearl, 2009b) advanced the causal graphs with the encoded causal 

assumptions. Causal relations are represented in counterfactual forms. However, 

counterfactuality in Pearl’s framework does not refer to possible world semantics 

that is put forward by Lewis. Pearl states:  

 
In contrast with Lewis’s theory, [structural] counterfactuals are not 
based on an abstract notion of similarity among hypothetical worlds; 
instead they rest directly on the mechanisms (or ‘laws,’ to be fancy) that 
govern those worlds and on the invariant properties of those 
mechanisms. Lewis’s elusive ‘miracles’ are replaced by principled 
mini-surgeries, do(X= x), which represent a minimal change (to a 
model) necessary for establishing  the antecedent X = x (for all u). 
(Pearl, 2013)  

 

According to Pearl, to fit model to data a probabilistic analysis of counterfactuals is 

required, and that is provided through DAGs. Pearl delivers the link that serves as a 

bridge between causal models and observed data with the assumptions of d-

separation and backdoor paths. d-separation is a criterion of determining whether a 

set of variables (say, X) is independent of another set Y , given a third set Z. With 

this criterion it is intended "to associate ‘dependence’ with ‘connectedness’ (i.e., the 

existence of a connecting path) and ‘independence’ with ‘unconnected-ness’ or 

‘separation’"  (Pearl, 2009c). Backdoor and frontdoor conditions, similarly, rely on 

the separability of causal paths. Backdoor conditions are controlled by blocking the 

specific nodes.  
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Within such assumptions and counterfactuality, Pearl suggests a framework for 

causal calculus which allows to infer causal relations from a DAG under the "ideal 

manipulations and the changes in the probability distribution that follow such 

manipulations" (Scheines, 1997). Yet, the idea has roots in SEM:  

 
[...]feature of invariance permits us to use structural equations 
as a basis for modeling causal effects and counterfactuals. 
This is done through a mathematical operator called do(x) 
which simulates physical interventions by deleting certain 
functions from the model, replacing them by a constant X = x, 
while keeping the rest of the model unchanged. (Pearl, 2009a).  

 
Causality is, thus, represented as (level) invariant, decomposable into the 

components that are assumed to be related causally (thus, additive), acyclic, and 

structural counterfactual relation. In the frameworks of Pearl and Spirtes et al. it is 

argued that linearity is not demanded and it is the most important departure point 

from traditional SEMs (Pearl 2009b; Morgan and Winship 2007). Then, structural 

equations are not necessarily consisted of linear functions. As an example, Pearl 

(2009b) presents the formalization below:  

 

xi = fi(pai, ui) (3.8) 

 
where i = 1, 2, 3..., n 

 

In equation (3.8), immediate causes of xi, namely the connoting parents, are rep- 

resented as pai, and omitted causes correspond to ui. In this form, equation (3.8) 

constitutes a nonlinear, nonparametric generalization of the linear structural models 

(Pearl, 2009b). A similar argument is proposed by Woodward
12

, where some 

nonlinear functions (like Y = f (X) + U or Z = g(X, Y ) + V ) might represent 

invariant and modular structures. Yet, as it is discussed in previous sections, to 

argue that such equations  to be structural, the functions should be linear in their 

omitted causes (e.g., U and V ). In other words, to introduce invariance and 

modularity to nonlinear functions, at least the error terms (omitted causes) in the 

equation should be linear since it is not possible to decompose nonlinear equations 

analytically. 

 12 See in section 3.1.1. 
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Mini-surgeries that are operated in Pearl’s framework, CMC, Faithfulness and d- 

separation are, indeed, useful when the system in question is decomposable into 

some disjoint events (or parts, mechanisms) that can remain unchanged under 

specific interventions. However, in nonlinear cases (such as complex relations of 

biological systems mentioned in section 2.3.4) decomposing the system would 

result in loss of underlying (causal) relations. Think of, as an example, 

consciousness in humans. We (at least) know that specific brain regions are 

essential to be conscious; but even when we decompose all the neural system we are 

not able to explain how conscious processes are generated. Besides the ‘big issues’ 

like consciousness, at the abstract level of mathematics, nonlinear functions are not 

decomposable and thus treated with linearization methods. Likewise, in causal 

modeling we see that nonlinearity treated with the assumptions of additivity in noise 

(error terms) and/or additivity in parameters (see equation 3.9 from Mulaik 2009).  

 

 y = α1 + α2x + α3x
2
 + α4x

3
 + ... + αkx

k−1
 (3.9) 

 

Thus, linearity is assumed (at least to some extent) within the nonlinear representa- 

tions of causal relations. Causal models on offer, in that sense, do not seem applica- 

ble to nonlinear cases unless the nonlinearity is being linearized. But why linearized 

modeling is not a satisfactory way to represent causality in nonlinearity is the 

question that it is intended to be answered in the following sections.   

3.3 Linear Assumptions in Causal Models 

The structure that is described by the equations, represents a causal relation. What is 

implied by a structural equation in terms of causality then, would suggest what kind 

of causal relation that we are looking for. Although Pearl (2012), and others (like 

Spirtes et al.) have argued that it is not limited to linear functions, "a structural 

equation suggests that the relation between [the given variables are] linear" (Illari 

and Russo, 2014). Indeed, in contrast to a wide range of examples of linear causal 

structures in the literature, nonlinear cases are often either neglected or linearized 

(with the assumption of additivity of the error terms or the parameters, or with the 

approximation). It is argued that causal models on offer depict linear causal  



56 
 

relations (even when nonlinearity is admitted) since the structure hold a linear(ized) 

form. The form of linear structural equation (as we have already seen many times) 

goes like this:  

 
Y  = αX + U (3.10) 

 

 
In a causal model, this equation offers: 

1. in which conditions X causes Y (α times X cause Y in the presence of U 
13

). 

2. what remains unchanged in case of X causes Y . 

3. X is proportional to Y (α times X causes Y ). 

4. what would happen when components are manipulated (if X is erased Y would 

not be occurred).  

5. resolution of the structure by superposition: 

(a) additivity of the components (each cause is additive, and U the error 

term is independent of X the cause).  

(b) homogeneity of the system (as α increases the effect Y increases). 

6. a causal mechanism that is not interbedded with any other. An intervention on X 

leave intact all other mechanisms besides the mechanism that previously 

determined the value of X (Woodward, 2016).   

7. a description for graphical representation (two disjoint arrows that point Y and 

the strength of X to Y arrow is α).  

  

The nonlinear functions in structural equations take the forms of: 

 
Yi = fi(Xi, ui) (3.11) 

Y = f (X) + U (3.12) 

 

 

13 Generally such a claim is supported with a set of structural equations in order to specify the conditions. 
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The given forms of equations in a causal model suggest the causal claims of: 

 1. Y is affected by X 

 2. in which conditions X causes Y (X causes Y in the presence of U ). 

 3. (partial) additivity of the components (U the omitted cause is independent 

 of X the cause). 

 4. the graphical representation is the same as the linear ones (two disjoint 

 arrows that point Y : one is directed from U and the other defines a nonlinear 

 function of f(X)).   

The function f(X) is not decomposable if it constitutes a nonlinear function. In terms 

of causality, thus, there is nothing much to infer about the underlying causal relation 

from this form. However if it is presumed (or known) that noise is additive
14

, and 

the nonlinear function is a priori given (in principle) the effects (or the future states) 

can be approximately estimated. Or else, if the nonlinear function is linear in its 

parameters (as α’s in equation 3.9), it provides proportionality which makes easier 

to trace the changes in the effect(s). With such assumptions prediction becomes 

possible - at least - to some extent.  

Causation, indeed, seems to hold its predictive power in regard to proportionality. 

Think of, simply, if I consume fast food I will end up with increased body fat and 

weight; following the same reasoning if I consume too much fast food, the fat that I 

will gain would be commensurately increased. Under ceteris paribus conditions 

(e.g., same metabolic rate, same physical activity, etc.) it can be argued that fast 

food causes weight-gain. What if we observe that 90% of a fast-food-consumer 

population suffers from overweight? Does the same causal relation underlie in here?  

In structural models, it is assumed that causal relation is implanted in the probability 

distributions. In fact, according to this framework, there are causal relations within 

probabilistic relations that realize in structural form. That is to say, each input 

related to an exact output (by this way, proportionality ensured) thus, each input is  

14 For technical details please see Kun and Aapo (2016) and Peters et al. (2014). 
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actualized in a distinct mechanism. Causal processes, then, consisted of linear 

sequences of causes and effects that are not interbedded. Thereby, causation within 

the linear assumptions embodies such rules:   

i. The ultimate effect of the combined action of two (or more) different causes 

is merely the superposition of the effects of each cause taken individually 

(Nicolis, 1995). It does not matter whether causes are given separately or in 

a combined way. 

ii. Mathematically, causal processes can be modeled by (deterministic linear) 

differential equations since for any cause X, which is determined by Y with 

the unknown causes, Y = X + UY . 

iii. We can pilot the system’s evolution by means of the causes of known conse- 

quences, which are always the same type and, above all, that are 

proportional to the intensity of the cause (Bertuglia and Vaio, 2005). It is 

simply because if X caused Y, we expect that two X’s will cause two Y ’s. 

iv. Causality depends on the inputs merely; the combination of the inputs does 

not qualitatively change the output. The causal relation is fixed given the 

same causes. 

3.4 Linearity, Nonlinearity, and Causality 

In section 2.4 It is presented a list that comprises why linear methods are 

insufficient to represent the nonlinear phenomena. Likewise, throughout this chapter 

it is attempted to make explicit the linear assumptions made in causal models. 

Following that, here, it is intended to expand why causal models that are based on 

the assumptions of linearity are insufficient to represent the causal relations in 

complex (thus intrinsically nonlinear) systems. 

(a**) Ceteris paribus: Causal models offer an optimized representation of a causal 

relation while others (independent factors) are held constant or fixed. That is to say, 

a causal event is modeled under ceteris paribus condition. Since each causal model 

stands for a causal mechanism that is not interbedded with an- other, the causality is 

represented under heavily restricted conditions. Consequently the causal model we 

have is an isolated representation of "a" causal relation. On the other hand, in 

complex systems all of the components are interrelated in such a way that we  
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cannot speak of isolated (causal) mechanisms. Moreover, complex relations that 

are realized during adaption and/or co-evolution would not be modeled with 

current causal models. The reason is that acyclic relations like feedback 

mechanisms are not allowed in causal graphs
15

.   

(b**) Analysis: Causal models decompose the system that is to be modeled into 

probability distributions of the variables. Thus, the entity to be modeled is 

disintegrated. Separability of the components (which consist of all the variables, 

parameters, and omitted causes) makes what causal model is analyzable. 

Structure of the models is built on the assumptions that rely on the separability. 

Error terms (omitted factors) are separable since it is assumed that error terms 

are uncorrelated with each other and all the other variables in the model. The 

assumption of d-separation, especially, allows to determine the connectedness 

and separation of the variables under given conditions. 

Causation, as a relation between the variables, is inferred from the probability 

distributions of the components. However, decomposing a complex system 

would not be a favorable method if one seeks to understand the behavior as a 

system, or any other systemic properties since analysis results in interruption of 

the relations. Complex systems, on the other hand, are highly-integrated entities 

and hold characteristics like emergence which cannot be foreseen by the mere 

information on the components. 

(c**) Normal distribution: Causal models take probability distributions. Yet, to 

model dependency that is believed to indicate causality, a variety of statistical 

assumptions have to be made to get an interpretable dataset. One of the statistical 

assumptions is that the variables are normally distributed. But in nonlinear 

systems the distributions may (in fact, most of the time) show asymmetry. Given  

the causal model which is structural the parameters and the structure forms do 

affect the variables. Error terms, similarly, are not affected
16

 by intervention not 

since they stand for omitted factors (or say, noise). Since the relation between 

change under intervention. Intervention, if the model is adequate, would only 

15There are studies on causal modeling with acyclic relations (e.g., Hoyer et al. 2012); however, the extent is 

limited to acyclic linear relations. In complex systems, acyclic relations are accompanied with positive 

feedback loops which result in nonlinearity as it is discussed in section 2.3.3.   

 

16It is also an assumption as it is explicated in previous sections. 
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variables is nonlinear, in (complex) nonlinear cases, causal models assume that (at 

least) the omitted factors are additive which means that error terms are linear, and 

thus, normally distributed in the data. Consequently, I found that it is not a realistic 

treatment for nonlinear phenomena considering the open- systems where the omitted 

causes are more complicated to be classified under the term of noise or error terms. 

Variables and parameters are often found to be dependent on each other. This makes 

evaluating the system according to those average values of the data to be less 

reliable method.  

 (d**) Connecting dots and dependency: The main purpose of the causal models is to 

detect causal relations by exposing dependency relations. The dependency relation 

we look for is the one that remains invariant under specific changes. It is still an 

assumption; but also a good reason to believe that there is an underlying causal 

relation. However condition of invariance restricts causality to be fixed, proportional 

and thus, linear. The causal relation is fixed since it should remain unchanged under 

specific manipulations. Likewise, proportionality and linearity is encoded in the 

invariant (and modular) structural equations since the same proportion holds for 

same relation. On the other hand, complex systems are dynamical entities that 

undergo continuous changes. Also, historicity matters. That means a factor that is 

once a cause may no longer be a cause in the future states (one may consider the 

developmental processes, in   this sense). Moreover, due to nonlinear relations 

proportionality does not hold within inter- relations of such systems.  

(e**) Equation solving: Causal models offer a structural equation that holds an 

analytical solution, and a semantics to read the equation in terms of causality. Such 

structural equations hold the properties of additivity and homogeneity. Hence given 

superposition of the causes we can perfectly estimate the effects. The structural 

equation, thus, is a recipe for manipulation and prediction given the conditions. Even 

the system is manipulated, (it is assumed that) parameters do not change. It provides 

proportionality between the causes and their effects. However, today, complex 

systems can be modeled only in terms of nonlinear differential equations (because of 

the dynamicity). Nonlinear differential equations do not have analytical solutions. In 

this sense, they are not decomposable into its constituents.    
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Considering the problems that are listed above, the linear approach within causal 

models seems to be an untenable strategy to model causal relations of complex sys- 

tems. To regard nonlinearity among causal relations, however, a new 

representational framework is needed since all of the modeling tools that we have 

today rely on linearity assumptions. Yet, at first, it should be provided that an 

ontological basis that embraces nonlinear relations. The last chapter, with that in 

mind, is reserved for alternative routes to take in order to find a causal 

representation that best fits to complex nonlinear phenomena.  
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 CHAPTER 4 

 

 
 IS THERE AN ALTERNATIVE? 

 

 
"How does causation work in nonlinear (and complex) systems?" is the big question 

that is mainly concerned in this paper. Since it cannot be answered easily, I attempted 

to approach the question through meditating on the nature of relationships in complex 

systems. In complex systems, the components are interconnected in such a way that 

the action of each component can produce more than one response. That is the point 

where linear causation becomes obsolete. On the other hand, the problem arises: How 

can we detect (and/or model) causality in such a mass of outputs?  

The linear approach towards causation seeks  agreement on  the  context,  or to put in 

philosophical jargon, propels ceteris paribus conditions. Then, the components are 

represented as somewhat isolated from the environment and the complexity gets lost. 

Causality, due to linearity, bounded to the components solely, thus the relations that 

are assigned to the components do not hold dynamicity on their own. In other words, 

the components become overemphasized whereas the relational dynamics are 

ignored. On the contrary, in complex systems we see that the very same components 

may build connections in different compositions, thus can lead to different character- 

istics. A given representational framework that focuses on the causal relations rather 

than solely components, is it possible to capture the process of system’s evolution?  

I think it is possible and the very reason for that is any formalization that undermines 

the relations will not be sufficient to account complexity since it arises from the re- 

lations among the components (within their environments). As it is discussed in this 

paper, the relations are nonlinear as in the positive feedback loops. In the literature, 

positive feedback loops are recalled ‘circular causation’ or ‘reciprocal causation’ as 

well, and yet, we lack of a sound formalization for such loops in terms of causation. 

In fact, they are ignored since positive feedback cycles violate the assumptions of 

causal acyclicity. 
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Contrarily, the argument in here is that representations based on the dynamics of 

nonlinearity may provide causality in complex systems. To achieve that, however, 

we need "new tools of thought" (Prigogine and Stengers, 1984) rather than the 

linearized models of nonlinear relations. 

4.1 On Possibility of a Nonlinear Causal Account 

Modeling as a tool for thinking in sciences (and philosophy of sciences, of course) 

has its pros and cons. First of all, we develop models because models help us 

improve our understanding of entity of interest. Entity is being represented in 

models in a way that it becomes idealized in regard to manageable information load 

for humans. Due to the limited humane abilities, thus, models hold cognitive 

significance in sciences at the least. If not just for understanding the entity in 

question, models, when are adequately put, serve as prediction machines that can 

yield accurate results for circumstances given the input. In parallelism with the 

entity being represented, the trajectory of the behavior of the entity can be inferred 

through the related models. Yet, there are strict restrictions within the models. For 

example, models – by definition, can represent the entity only to some extent. They 

are restricted representations of the entities. In that sense, models are applicable to a 

class of circumstances rather than all of the possible scenarios. In linear systems, 

however, as it is discussed in section 2.2 that restriction may not constitute a 

problem at all. The reason for that is the behavior of the linear systems can be 

precisely estimated through a modeling principle which is called the rule of 

superposition. Contrarily, complex systems cannot be dispersed to the superposition 

of their parts. Besides such a drawback, a few other reasons that restrain to model 

complex systems are also presented in sections 2.3.1, 2.3.2, and 2.3.4. When the 

linear modeling tools are applied to such systems it does not seem that complex 

systems are represented fairly. Supporting that claim, it can be also considered that 

the everyday examples like inaccuracy in the predictions for the behaviors of stock 

markets, societies, or epidemics, etc. The insufficiency of linear modeling is already 

discussed in section 2.4. The lack of tools that regard nonlinearity and complexity is 

apparent. Then what can be done? First point that is in need of urgent clarification is 

that the procedures of representation and linearization in respect to modeling 

complex systems. It is said that models are kinds of idealized representations of the
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entities of interest. As an example of representation consider Figure 2.4 in section 

2.2.2 where the understanding of the subject that is taught to the school children is 

represented in the numbers of their test scores. An example of a model as a 

representation, on the other hand, would be the SEMs that stand for underlying causal 

mechanism of an event. In each case there are some assumptions – mostly statistical, 

and within such assumptions entities in quest are represented as in a linearized form. 

That is to say, the representations hold the properties of linearity such as separability 

or being normally distributed. The linearized form allows us to analyze the systems 

without disturbing the other factors which are not interested in our research question. 

In that sense entities cleansed from unnecessary details and thus representations can 

refer the entities in manageable forms. Otherwise, if all of the details were somewhat 

represented, the information load of those would be enormously high to comprehend. 

Moreover, as we have seen in the proposed causal models, nonlinearity does not 

allow decomposing the system mathematically and consequently, it is treated with 

either an additional compact term of some nonlinear function, such as f(X), or 

linearization in terms of parameters. Even though such linearization processes are 

executed, the models are insufficient to provide understanding and to predict the 

behavior of the entity. Yet, due to the properties of nonlinearity and being complex 

any attempt to represent such complex entities seem obliged to be linearized at least 

to some extent. Then the question is that: do representing and modeling necessarily 

prompt to (at least to some extent) linearization of the systems of interest? 

I think there is no such an obligation, however, we lack of tools to represent other- 

wise. Linear tools are handy and convenient whereas the models that are provided 

today by Nonlinear Dynamics Theory are mostly accessible to us via computer 

simulations since the data among complex systems are too hard to process. 

Eventually, it makes us to be disposed to use linear methods. The way of representing 

should be in regard to the nature of the system in question. Thus, how to achieve such 

a representational framework for complex systems is bound to our understanding of 

the nature of the complex systems. As it is discussed in previous chapters, dynamical 

relations rather than the mere components may provide an insight for understanding 

complex systems. At this point, then, I could only suggest to follow that line of 

thought: the representations should be based on relational  
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dynamics. But, how to capture relational dynamics? That is the exact point where 

we require new tools of thinking. The seduction of the linear thinking is so dense 

that, as it is discussed in section 3.3, even though we admit the nonlinearity we still 

attempt to reduce such nonlinearities into linearized forms. The reason for inability 

of linear thinking to capture relational dynamics is, first of all, that the linear 

approach as- sumes that the relations are fixed. That is to say, the relation between 

two (or more) components cannot vary. The only way to change a relation is that 

changing the components. In that sense, it is thought that relations are fixed by the 

bound components. Likewise, relations that hold efficacy are considered to be 

causal relations and such relations are also thought to be fixed, component-

dependent, and invariant. Causation, indeed, seems to agree with such conditions 

intuitively. For example, if aspirin relieves headache we expect that every intake of 

aspirin will do that. Does that mean causation is necessarily a linear concept? It is 

the second issue that needs clarification. 

In modeling the researcher deals with the states that stand in lieu of events, and their 

relations. The way of states relate may show linearity or may not. If the concomitant 

state is the linear combination of the previous one then it is called a linear relation 

between those states of interest. With additional assumptions of causation those 

states may be considered as causally linked also. But, notice that, causation as a 

relation type does not impose linearity at all. In SEMs and causal graphs that 

additional assumption toward causation is usually acyclicity of events
1
. Cyclic 

relations, on the other hand, mostly yield disproportionality between the initial state 

and following states
2
. In such cases, we expect that states are somehow related and 

there is causality in between, yet, the concomitant state (namely, the alleged effect) 

does not follow linearly. In linear systems causation may work as a linear relation, 

but not in nonlinear cases. In that context, I would suggest that there has to be a 

different causal account for nonlinear relations. Before making any suggestions for a 

new causal account, first, we need to know that under which circumstances a 

relation is called causal but not the otherwise. What is it expected from a causal  

1 If not, linearity of cyclic relations is usually what it is assumed. Please see section 3.3 and the related literature. 

 
2 See section 2.3.4. 
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relationship? This takes us back to the fundamental question: what is causation? The 

challenges to answer that are already made explicit in earlier debates on causation, as 

an instance, remember INUS conditions that are put by Mackie as the least 

requirements for being a cause. In the contemporary scene we have seen that 

identifiability of causes has gained more attention rather than understanding the 

nature of causal relation. It is believed that once the causes are identified, the effects 

following those will be unraveled or vice versa. The most striking drawback with all 

of those accounts of causation, I believe, is that we became so obsessed with hunting 

causes that the true nature of causality namely, the causal relation itself is 

undermined. Such an attitude towards causation may not constitute a problem within 

linear systems since the behavior of the system (the effects) can be inferred through 

mere inputs, or say, causes. However, when the case is nonlinear complex systems, 

mere input is not informative in terms of the future behavior of the systems. Relations 

are dynamical in complex systems. Because of such relational dynamicity, the very 

same causes may bring out different effects
3
. For a nonlinear causal account, then, 

the relational dynamics should be considered. I think that if causation is regarded to 

be a special relation rather than some influence power of the causes, such an account 

would enable to capture dynamicity of the complex relations. Considering the causal 

models that are available to us today, I would say that in those models causality is 

trapped in the nodes and that is the main reason for their inability to capture 

dynamicity. It is because in those models causation is represented as a fixed 

dependence of a node to another node. A change in the causal relation can be realized 

only if the nodes are changed. Different causal relations, likewise, are introduced as 

another node (remember the H in causal mixture models from section 3.1.1) in the 

causal structure. However, there is another reason that I found it should be 

reconsidered in context of complex systems. It constitutes the  third point that in need 

of clarification: the assumption of causal acyclicity. The assumption of acyclicity 

simply states that if C is a cause of E then E cannot cause C. It is, indeed, very 

intuitive to think like that, for example, throwing a stone causes windows to be 

broken but a broken window would not cause the act of throwing a stone. 

Nonetheless, there are such cases that the causal acyclicity seems to be lost.  

 

3 That ability is technically called multifunctionality. 
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Consider, for example, the process of child birth. Once the contractions  of labor has 

begun, the baby’s body is being pushed towards the cervix and the  cervix is 

stimulated. That stimulation leads to activation of neural signaling which causes 

oxytocin release. The released oxytocin causes more uterine contractions that make 

pressure on the cervix. In this case, oxytocin release – which is the effect, steers 

pressure on the cervix – that is the cause, thereby this event constitutes an example 

of a positive feedback loop. In section 2.3.4, a similar case (Rayleigh-Bénard cell 

convection) is already discussed in detail and it is advocated that characteristics of 

complex systems like self-organization arise due to such feedback relations. Yet, 

how systems feature such characteristics (e.g. self-organization) through such 

complex interactions is not a completely resolved issue even for today. The answer, 

however, may be given in terms of autocatalytic processes, which is in support of 

my claims on relational dynamics.  

An autocatalytic process is when is the case that the end-product of a (chemical) 

reaction is a catalyst of its own production. 

 
Figure 4.1: Image is retrieved from Hordijk and Steel (2015). 

 

As it can be seen from the graphical representation, the catalyzer intervenes to the 

relation itself rather than the reactant(s). In that form of relations, it is possible to 

represent the disproportionality between causes and effects since effect can directly 

influence the relation that in turn affects itself. Due to the ability of direct 

interference to the relation itself, relations would be dynamical rather than static 

forms. I believe that causal relations in complex systems can be modeled in. such a 

form of representation where relations may bear dynamicity on their own  That is to 

say, a causal relation can be changed without (heavily) disturbing the cause-

component. Similarly, an effect can be produced via different causes. A simple 

illustration would be that a causal relation that ends up with an effect of raised arms. 

An activity of neural clusters in brain causes the act of raising the arms where the 
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arms could have been raised by an external force, say by ropes. Since there is no 

abnormality in neural paths that can block the act of raising the arm, cause-

component in this case is not disturbed. It is already discussed in 3.3. This that mere 

dependency on inputs (the cause-components) disregards such cases of degeneracy. 

Counterfactual reading of the causal models – like, Y would not happened if X is not 

present, fails to explain degenerate cases since effect is dependent on a cause which 

manifests a relation in a fixed structural form. If X is somewhat deleted then it would 

have resulted in absence of Y (since same causes lead same effects). By this way it is 

inferred that X causes Y . However, in complex systems there are many cases that 

deletion does not result in absence of effects. For example Drosophila neurons have 

cytoplasmic Abelson tyrosine kinase – which has a role in neural development of the 

animal, and when the researchers have deleted of the gene that produces that enzyme 

there is no observed abnormality in neural development of the animal. They have 

found that a protein fasciclin, a cell-adhesion protein that “has no obvious structural 

or functional similarity” to the enzyme, seems to taking the role of that enzyme 

(Elkins et al. 1990 via Edelman and Gally 2001). In this case the best tool that a 

causal modeler has is that absence of the kinase would be represented as a different 

condition U2 which would be different state than ‘the kinase X causes some neural 

developmental products Y under condition U1’. Yet, I found it is not appropriate 

because the conditions should be considered as equivalent due to the fact that there is 

no additional (external or internal) constraint in the developmental process of the 

animal but the mere intervention on the kinase X. I would argue that when the kinase 

is deleted the relational dynamics are changed in such a way that a new relation is 

built between the fasciclin and the products. Please note that it is not specifically 

advocated that causal pluralism (both kinase and fasciclin as the causes), but 

dynamicity of the causal relations is put forward as a game-changer. Dynamical 

causal relations which can be represented in ‘relation to relation’ form are promising 

in that sense. In this  vein, as an alternative Stuart Kauffman’s work-constraint 

account of biological organisms (2000) and Montevil and Mossio’s work on 

organizational closure (2015) which is in the same line of Kauffman’s thoughts, may 

provide a framework of dynamical relations. Rather than emphasizing nonlinearity, 

however, they embrace relational dynamics of biological systems in their accounts.  
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Since the relations are not fixed, nonlinear causal interactions can be represented in 

such a form. On the other hand, a few drawbacks exist in that framework.  A major 

disadvantage that I found is that there is no established mathematical frame- work of 

‘relation to relation’ interactions. In causal models that are available to us today, 

since it is not allowed that kind of ‘arc to arc’ representation, nodes are responsible 

for the establishment of the (causal) relation. Each node as a variable is mapped to 

another, by this way, relations are expressed in terms of functions. Functions take 

arguments which can be a function on its own, yet, functions have to end up as 

variables. Relations are mathematically expressed as the form of equations and thus 

mapping a relation to another is not an acceptable way to represent in such a syntax. 

Another concern of a ‘relation to relation’ would be that the representation of the 

point of where the relations intervene to other relations. It can be clearly seen that 

point which is represented as a little black box in figure 4.1. Should that point be 

considered as a node? If it should, then what would be the difference of ‘arc to arc’ 

from ‘node to node’ ones?  At this stance it seems problematic, indeed. Yet, I think 

the problem arises because of the ambiguity of our understanding of relations. In 

Montevil and Mossio’s account
4
 components are believed to be holding causal 

powers, or say dispositions to establish a relation. It makes components to be prior 

to relations which constitutes a claim that I found highly problematic. Besides the 

philosophical literature on such potency to cause which is disputable since back to 

Aristotle, I argue that causality should not be understood in terms of causal powers 

of the components. Because it will not be possible to postulate an account that 

allows to represent ‘relation to relation’ as long as causation is attributed to some 

causal powers of the components rather than the relation itself. Then, to suggest an 

alternative account, first, we need to tackle the question of where to localize  

causation in terms of ontology. I argue that causation should be localized on the 

relation that is not supervenient on properties but ontologically primary. 

4.2 On the Ontological Status of Relations in Complex Systems 

The basic tenet of current causal models is that the linearity of the causal relations 

linearity implies that causes (and given conditions) hold additivity and homogeneity  

4 Even though it is not explicitly discussed, by the terms of ‘causal powers’ it is implied. Please see more in 
Mossio et al. (2009), Montévil and Mossio (2015), Mossio et al. (2013). 
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properties since each cause invokes a specific causal mechanism that is not 

interbedded with the others
5
. By this way, each causal mechanism can be modeled as 

a structure that is fixed between its relata
6
. That is the reason for the causal models 

are also called structural models. Here the structure serves as a template of causal 

relation that is to be work in the same principles (which are linearity, for proofs 

please see section 3.3) for all causal events. It is, indeed, appealing to intuitions about 

causation since we expect that a causal relation holds somewhat universality - same 

causes always bring same effects. Yet, it is discussed throughout this thesis that, 

nonlinear dynamical construction of complex systems contrasts with our intuitions of 

causality. Concerning causal models, on the other hand, the structure does not allow 

representing such nonlinear dynamicity. Besides the linearity assumption, causal 

assumptions like acyclicity constitute the ontological commitments toward the causal 

relations of the modeled system. I advocated in previous section that such 

assumptions disregard the dynamic-relational nature of complex systems. Here, I take 

my claim further: if ontological commitments of the models in regard to relations are 

not reworked, consequently, causal models will remain insufficient for complex 

cases. But, first, there is a philosophical challenge has to be canvassed: what is meant 

by the term of relation precisely?  

Relation is such an entity that holds between its relata. In causal models relation is, as 

it is mentioned before, represented as a dependency between variables thus, relata are 

the variables. The dependency relation is embodied as the structure, and this structure 

is built by relata
7
. Any difference in the relata consequently changes  the structure

8
 

but not otherwise. Structure itself cannot change unless (at least one of) the relatum is 

changed. Ontological presupposition in here, then, is that causal relation is 

supervenient on its relata. To put in other words, causality is “no addition of being” 

(Armstrong, 1997). Thus ontological status of (causal) relations is a secondary  

5 Separability principle.  

 

6 Entities that get related. Since complex systems are made up many components, causality is already admitted as 

a polyadic relation. 

 
7 Please consider variables in structural equations.  

 
8 See figure 3.10 in chapter 3. 
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position. I found it is problematic since in complex systems, relational dynamics 

steer the system behavior such that these systems are decentralized yet operate as a 

whole, give rise to emergent properties, hold degeneracy and multifunctionality. 

Thus, rather than solely determined by its relata, causal relations seem to have 

dynamicity on their own. In that sense the ontological assumption of causal relation 

is determined only by its relata might be misleading considering causal models. 

Attributing dynamicity
9
 to causal relations, however, makes one a causal realist. 

That is to say, causation is a part of reality. 

In causal models on offer, then, ontological commitments that are made in regard to 

causal relation itself rely on reductive analysis of causation. In fact, that should not 

be a surprise since it is already admitted that elusive nature of causal relation does 

not allow realistic approach and thus the adopted methodology is reductive in that 

sense. Yet, as I addressed throughout the thesis, to model dynamical causal relations 

an ontological commitment to causal realism would be more eligible in complex 

systems modeling. However, lacking of representational tools for causal realist 

modeling is a striking problem. 

As a recent alternative, Mumford and Anjum (2011) proposed vector models based 

on (pan)dispositionalist ontology. Dispositionalism, roughly speaking, implies that 

there exist things which have properties and all these properties are (causal) powers, 

or say dispositions (ibid). Commitment to powers which are causal, it is argued, 

opposes with Humean reductive approach to causation. Thus vector models are 

supposed to embody causal realist attitude toward causal modeling. Authors explain 

this as follows
10

:  

 

Neuron diagrams are conducive to a Humean ontology and, 
through a widespread and sometimes unquestioned use, they 
promote that ontology. If one were to be a realist about powers, 
however, one could opt for a better way of depicting a causal 
situation. Such a way will be offered – the vector model (…) 
(ibid).  
 

9 Here, the ability to change per se interpreted as a sufficient condition for existing. 

 
10 By the term of neuron diagrams they provide the examples of causal DAGs. Besides that, even they just 

mention SEMs that are advanced by Pearl in one sentence they do not claim any position for or against SEMs. 

However, the given descriptions for ‘neuron diagrams’ by their use of the term, it seems that they refer causal 

structural models in general. 
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Vectors, in that framework, represent “causal powers” which are “dispositions that 

are operating” upon a space called “quality space” (ibid). Direction (which  state is 

to be disposed) and intensity (length of the vector) is also represented with vectors 

in 2D or in more complex cases 3D spaces as follows:   

 
 

 

 

Figure 4.2: A vector model and causal powers of a, b, c, d, e, f which give rise  to R 

as a sum of the causal powers. Retrived from Mumford and Anjum (2011) 

 

 

Figure 4.3: 3D quality space by Mumford and Anjum (2011) 

 

As it can be seen from the figures, there are no relata represented but tendencies to 

be occurred. However, vectors are additive in resemblance to Mill’s sum of 

sufficient causes (ibid). Tendencies or their representations as vectors are drawn as 

in “flux”es while it is not shown that consequent (the effect) of exercising 

disposition. In that sense it is hard to imagine a relation between the cause and its 

effect but some ‘causing’s. In fact it is intended to model in that way since relations 

(according to dispositionalist ontology) are somewhat dispositional properties (Ellis, 

2007). Thus dispositionalists rely on the idea that there exist non-relational monadic 

properties which are the real constituents of the world. Events, in that sense, are the  
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property instantiations where dispositions are manifested. Relations are not 

ontologically fundamental since causal work is executed via powers that are held 

by components. So, it is portrayed that “relatedness without relations” (Fisk, 1972). 

The ontological status of relations, in that sense, is again secondary in 

dispositionalist view. Yet, it is argued in Mumford and Anjum (2011) that vector 

causal models which are based on dispositionalist ontology can represent 

nonlinearity. In what follows I put my argument against it as an example of why 

undermining relations ontologically will not help us in our attempts to represent 

dynamicity of causal relations which most of the time lead to nonlinearity.  

Vector models represent background conditions also as vectors, thus, a model com- 

prises causes, conditions, and a side in quality space which stands for each of the 

causes and conditions is disposed to. Since there is no relation in terms of ontol- 

ogy, all there exist causal powers (as vectors). The effect which is to be disposed 

to, then, is determined via a calculation of the sum of vectors (ibid) and thus 

combina- tion of powers does not matter. In this sense, vectors are (and obligated 

to be) addi- tive. Although Mumford and Anjum acknowledge nonlinearity in 

complex cases, it is not provided a representation of non-additive vectors but a 

metaphoric representation given below. Yet, nonlinearity, to repeat what is put 

before, is the disproportionality between causes and their effects.   

 

 Figure 4.4: Image is retrieved from Mumford and Anjum (2011). 

 

Butterfly effect which is the most known exemplar of nonlinearity of causation is, 

roughly, that small causes can lead big effects. Prediction horizon of such 

nonlinear cases is very narrow since dynamical relations – even within few 

numbers of interacting elements as in chaotic systems, make effects untraceable. 

Dynamicity of causal relations between the elements rather than the sum of causal 

potencies of elements is what makes up nonlinearity. Underrating the relations 

ontologically limits modeler to represent mere components (or powers that behold  
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by components) which result in, I recalled as, additivity fallacy
11

. See that in vector 

models, causal powers do not intersect
12

. Similarly, in structural models, causal relation 

that is the structure cannot intersect with any other and relata are (additively) placed in 

the regression form of equation. Dynamicity remains to be missing. 

 

Figure 4.5: A case for two drugs introduced simultaneously react reverse effect. G space 

represents wellness of the patient and F space stands for illness, as put by Mumford and 

Anjum (2011). Notice that causal powers do not intersect even in the cases where causes 

are ‘acting together’.  

All we can get by addition is that aggregates of elements (relata) where combination of 

the elements does not matter. But, in fact, combination is what really matters in complex 

systems. In its simplest terms think of two drugs which have different functions and lead 

to different effects by individually. These drugs when combined, how- ever, may reveal 

wholly different function. The drugs cooperatively do work which means they are 

related and that relation is built in  such a way that a new function is executed. However, 

if the ontological commitments that are made in causal models address that the relations 

as prior whereas properties or components are ontologically secondary, I argue, it might 

be possible to represent dynamical causal relations. Here, I mean that if the (causal) 

relations are taken to be real, then the representation of intersecting relations
13

 would not 

be disregarded. Metaphysical implications of such a stance, however, seem to recall  

11 Please do consider complex systems. If linear systems are issued, then it would not constitute a fallacy at all.  
 

 
12 In Nicholson and Dupré 2018 which is a recent book that is released just before this thesis being submitted, 
Mumford and Anjum put forward a revised version of their model to account overlapping causal processes at page 
69. However, I found that it does not constitute a satisfying rework of their model since overlapping causality is 
represented as (distinct) causal powers exercising some effects in parallelism through a time interval rather than in 
cooperation. 
 
 
13 I consider relations that are lacking in current models analyzed in previous sections.
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ontic structural realism (OSR). OSR, simply, states that all there is that the   

relational structure rather than individuals (Ladyman et al. 2007 and Ladyman 

2016). Thus relations are ontologically primary. Individuals as ontologically 

independent from relations cannot be existent. Some authors (such as Psillos 2001) 

stand against that since if all there is relation then there are relations without relata; 

however Ladyman emphasized that OSR does not require that but rather, relatum 

cannot be individual on its own. I found OSR as too radical considering their 

metaphysical attitude; on the other hand, for modeling purposes I believe that it 

might be helpful as an ontological basis to represent dynamical causal models since 

the relations are regarded. Yet, it is an open discussion in philosophy that how OSR 

accounts causal relations metaphysically
14

. Thus my claim is limited to modeling 

purposes: the ontological commitments in causal models for complex systems 

should regard relations as prior. In that framework, then, properties and/or 

components could be accounted secondary and it makes sense since in complex 

systems components do not exist individually yet their relations dynamically 

determined into their roles (or say, functions)
15

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

14 As a primary reference one can see chapter 5 ‘Causation in a Structural World’ in Ladyman et al. (2007) and 

 for more Saatsi (2017).  

 
15 One can think of plasticity and degeneracy like in case of Drosophilia from previous section. 
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    CHAPTER 5 

 

 
      CONCLUSION 

 

 
Sciences make use of models in order to explain the phenomena at hand, and if pos- 

sible, to predict the outcomes when manipulated. The scope of this thesis, thus, is 

consisted of causal models, since it is believed that explanation and prediction can be 

achieved through answering the ‘why-questions’ (Salmon, 1984) about the phe- 

nomenon. The model construction, on the other hand, requires some ontological 

commitments toward the nature of the phenomena. Notice that, during this process, it 

is not intended to question the nature of what-is out there but rather to assume what 

might be out there. Those assumptions constitute the frame of the models. All of the 

technical work is executed in that framework. Some models, however, may not be 

well-suited for a set of phenomena. In face of such inadequateness of models there 

are two main strategies to follow: either seek for advancements on the technical de- 

tails (which sometimes lead to ad hoc) or rework on the framework itself. This thesis 

addressed a call for latter strategy within causal models concerning complex systems. I 

advocated that the ontological commitments should have been questioned and this 

would require a philosophical study on itself. Because it seems that building assump- 

tions of the models – rather than the practical drawbacks like lack of full-knowledge 

of an event, in fact, impede adequately representing such systems. Those assumptions 

are, I argued, linearity and acyclicity of the causal connection. 

Representing causality as linear and acyclic relation appears to be incompatible with 

nonlinear settlement of complex systems where, also, many cyclic events have been. 

In the literature, there are few technical interventions that have already pointed out 

that either additivity (which is a property of linearity) or acyclicity had to be revised 

in order to apply causal models to nonlinear phenomena. Yet, lacking of 

philosophical background is the reason of those revisions to be remained shallow. At 

that point, what does it mean for a system to be linear or nonlinear has to be distin-  
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guished. Such a comparison revealed that proposed nonlinear extensions of causal 

models, in fact, constitute the linearized versions of nonlinear cases. 

Linearization would not be a problem in cases of nonlinear but close-to-equilibrium 

(which means near to being orderly) systems, however, it is a problem within 

complex systems since those systems are in between complete order and chaos. 

Such mediator state of complex systems is maintained through dynamical 

spatiotemporal relations. Linear framework, on the other hand, accounts (causal) 

relations to be fixed rather than dynamical. In that sense, I have indicated that a new 

framework is needed. However, since all of the available tools are developed to 

serve in linear framework, that alternative framework would have suffered from 

scarcity of tools. To overcome such challenges, it is implied that an ontology which 

prioritize relations rather than relata would be a way out.  
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APPENDICIES 

 

 

A. TURKISH SUMMARY/TÜRKÇE ÖZET 

 

 

Kompleks Sistemlerin Modellenmesinde Nedensel İlişkilerin Temsili Problemi 

Bilimde modelleme, sistemlerin temsili olarak söz konusu sistemleri anlama ve öngö-

rüde bulunma aracı olarak çok önemli bir role sahiptir. Modelleri bu denli önemli 

yapan şeyse, özellikle bazı sistemler için, sistemlere doğrudan müdahalenin müm-

kün olmayışıdır. Kompleks sistemlerin modellenmesi bu sistemlerin karmaşık 

doğaları göz önünde bulundurulduğunda, anlama ve öngörüde bulunma adına zor-

luk oluşturmaktadır. Bu sistemlerin modellenmesinin zor olmasının ana unsurların-

dan biri de nedensel ilişkilerin temsil edilmesi problemidir. Bu tezde amaç, nedensel 

modellerde yapılan ontolojik bağlanımlarla ilgili bir problemi ortaya koymaktır. 

Elimizdeki modeller, genel olarak, nedensel ilişkilere dair herhangi bir ontolojik 

iddiada bulunmama amacındadırlar. Modellerde, daha çok nedenselliğin kanun-

benzeri bir ilişki olarak temsil edildiği görülmektedir.  Kanun-benzeri  bir  ilişkiyle  

kastedilen  şey  ise  her  sisteme  uyarlanabilen  sabit  bir  bağdır. Daha açık olmak 

gerekirse, nedenselliğin doğası gereği sabitlenmiş, kanun-benzeri bir zorunluluk 

taşıyan, şeyleri etkileyen ve şeylerin etkilenmesini sağlayan ilişkilerden ibaret olduğu 

varsayılmaktadır.  Buradaki modeller ve modellenen şeyler arasındaki karşılıklı ilişki 

üzerine felsefi bir inceleme gerektirmektedir. Ancak bu tez, kompleks sistemlerdeki 

nedensellik ilişkilerinin temsili olarak öne sürülen nedensel modellerle sınırlıdır. Bu 

anlamda, çalışmada, nedensel modellerin kompleks sistemlere uygulanabilirliği 

tartışılmıştır.  Kompleks sistem terimiyle anlatılmak istenen şey ise lineer olmayan 

yollarla birbirine bağlanmış elemanlardan oluşan ‘bütün’lerdir.  Eğer bir  sistem  

kompleks  ise  sistemin  karşılıklı  ilişkiler  ağının  karmaşıklığı  yüksektir.  Çünkü 

sistemler aynı bileşenlere sahip olsalar dahi farklı sistemler oluşturabilmektedir. 

Farklılık, bileşenlerin farklı şekillerde biraraya gelmelerinden kaynaklanmaktadır. Bu 

biraraya gelişlerin oluşturduğu karşılıklı ilişkililik durumlarının dinamik olarak  her 

evrede yeniden  kurulmasıyla    çok-fonksiyonellik,    dejeneresi,    kendini-örgütleme, 
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kendini-yaratım, belirimlilik gibi karakteristikler ortaya çıkmaktadır. Böylesi bir içsel

dinamikliğin yanı sıra, kompleks sistemler çevreleriyle birlikte evrilmektedirler. Bu

demektir ki, kompleks sistemler aktif olarak içinde bulundukları çevreyi etkilemekte

ve aynı şekilde çevrelerinden etkilenmektedirler. Yani, kompleks sistemler ayrıca

çevreleriyle bağlaşıktır.

Modellemelerde, böylesi içiçe geçmiş karmaşık ilişkilerin temsil edilmesi açısından

birtakım temel problemler yer almaktadır. En göze çarpan problem ise kompleks

bir sistemin temsil edilmesi için basitleştirme yapılması gerekliliğidir. Eğer sistem-

ler milyonlarca heterojen bileşenden oluşuyorsa (örneğin insan beynindeki nöronlar,

ganglion hücreleri, piramitsel hücreler gibi) ve bu milyonlarca bileşenlerin daha da

fazla sayıdaki ilişkileri göz önünde bulundurulduğunda, bu (kompleks) sistemlerin

upuygun ama bastileştirilmiş bir şekilde betimlenmesi için ne yapılmalıdır? Ya da,

kompleks sistemlerin temsilini basit ama aynı zamanda onların karmaşık nedensel

yapılanmalarını kapsayacak kadar geniş bir şekilde sağlamak mümkün müdür? Tüm

bu meselelerin açıklığa kavuşturulması gerekmektedir.

Bilim ve Felsefede Bir Sorun Olarak Nedensellik

Nedensellik ile ilgili temel sorun şudur: bizler biliyoruz ki, ya da en azından varsayıy-

oruz ki, bazı olaylar bazı başka olaylara neden olmakta, fakat neden oluşun (bir başka

deyişle, nedenselliğin) tam olarak ne olduğunu tanımlayamıyoruz. Öyle gözüküyor

ki sigara içmek akciğer kanserine neden oluyor, fast-food tüketimi obeziteye neden

oluyor, bir genin eksikliği bir hastalığa neden oluyor, karbon salınımı küresel ısın-

maya neden oluyor, ve benzeri. Dahası, bu tür olaylar öngörülebilmekte ve/veya

olaylar üzerinde kontrol sağlanabilmektedir. Örneğin, eksik olan gen laboratuarlarda

yetiştirilerek hastaya enjekte edildiğinde hastalığı tedavi edebilmektedir veya diyet

yapılarak obezite engellenebilmektedir. Öte yandan, durum her zaman bu şekilde

değildir. Bir kişi fast-food tüketmemesine rağmen obez olmuş olabilir. Örneğin,

obezite hormon salınımını fazlalığından kaynaklanabilir. Bu durumda fast-food tüke-

timini takiben obezitenin gözlendiği tüm vakaları yok mu saymalıyız? Aksine, eğer

iki vaka için de nedenselliği varsaymalıysak nedensel ilişkileri tespit etme kriterimiz

nedir? Bu sorulara verilen cevaplar farklılık göstermektedir, fakat bugün ne nedensel-

liğin tespit kriterlerine dair ne de tanımına dair herhangi bir uzlaşma bulunmamak-

tadır. Bilimsel pratikte, cevap genellikle istatiksel çıkarımlar üzerinden verilmekte-
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dir. Ancak felsefi tutum iki yönlüdür: metafiziksel ve epistemik. Nedensel bağların

gerçekliğine dayalı nedensellik tanımları metafiziğin araştırma alanını oluştururken

epistemik çalışmaların konusu nedensel ilişkilere yönelik bilgilerimizdir. Burada

dikkat edilmelidir ki felsefi olarak ontoloji ve epistemoloji arasındaki çizginin nerede

çekilmesi gerektiği başlı başına bir sorundur. Bu tezin tam da bu sözde çizgi üz-

erinde yürüdüğü iddia edilebilir: nedensel modeller nedenselliği temsil eden epis-

temik aygıtlar olarak incelenirken modeller ve modellenen şeylerin doğaları arasın-

daki ilişki sorgulanmıştır. Asıl problemin günümüzün nedensel modellerinde gömülü

olan nedensellik tanımından kaynaklandığı iddia edilmiştir.

Felsefede, nedenselliğin tanımına dair sistematik akıl yürütmelerin izi Aristoteles’e

kadar sürülebilir. Aristoteles tözlerde bulunan nedenler (materyal, formel, etken, ni-

hai nedenler) sınıflandırması ortaya koymuştur. Bu Aristoteleci sınıflandırma Or-

taçağda da kabul görmüştür, fakat burada Aziz Thomas Aquinas gibi skolastik düşünür-

lerinin sunduğu teolojik yorumlaması (Wallace, 1972) görülmektedir. Tanrı, bu an-

lamda, tüm ‘şeylerin’ son nedeni olarak görülmüştür ve Aristoteles’in hareketsiz

hareket ettiricisinin yerini almıştır. Dünyadaki bütün varlıkların tek nedeni olarak

Tanrı’yı gören Aranedencilik akımının yanı sıra, benzeri nedensellik açıklamaları

sunulmuştur. O dönemde ortaya atılan tüm nedensellik felsefelerinin ortak zem-

ini nedenselliğin zorunlu bir ilişki olması ve dolayısıyla bu zorunluluğu sağlaya-

bilme yetisi yalnızca Tanrı’da olduğu düşüncesidir. Öteki yandan, nedenselliğin sko-

lastik açıklamalarında ciddi bir sorun yer almaktadır: eğer Tanrı herşeyin nedeni ise

geriye bedenlerin yapabileceği ne kalır? Bu düşünce mirasını devralan erken dönem

modern filozofları daha çok nedenselliğin metafiziği üzerine çalışmalar yapmışlardır.

Gerçekten de, erken modern dönem filozofları “Hobbes istisnasıyla, Tanrı hakkın-

daki bilginin doğayı ve doğa yasalarını anlamak için kritik bir öneme sahip olduğu

düşüncesini paylaşmışlardır” (Clatterbaugh, 1999). Örneğin, kartezyen nedensellik

anlayışı nedensel etkileşimleri sağlayan kanunların ancak bir kanun koyucu, yani bir

Tanrı tarafından verilebileceği düşüncesidir. Fakat Spinoza’da Tanrı doğalayan doğa

(natura naturans) olarak skolastik olmayan bir Tanrı tasviri vardır. Yine de diğer erken

modern dönem filozoflarına benzer olarak, nedensel bağıntı bir tür mantıksal bağıntı

olarak tam da gerçekliği oluşturan şeyin kendisi olarak görülmüştür. Tüm bunların

yanında, modern dönemin çok daha başlarında yaşamış olan düşünür Francis Ba-
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con’ın sistematik nedensel çıkarımlar için bir tür metodoloji sunduğu (Reiss, 2007)

da not edilmelidir. Bacon (öyle gözüküyor ki) nedenselliğin metafiziksel yönüyle il-

gilenmemiş, daha çok doğa üzerinde kontrol sağlanması yönünden nedenselliğin öne-

mine vurgu yapmıştır. Geç modern felsefelerde nedenselliğe benzeri bir yaklaşımın

olduğu iddia edilebilir. O dönemde, bedenlerin nasıl etkileştiğine yönelik metafizik-

sel sorulardan ziyade “nedensel bağıntının hakiki bir tespitinin” (Clatterburgh, 1999)

sağlanması yönünde nedensellik çalışmalarına rastlanmaktadır.

David Hume, bu anlamda, nedensel olayların psikolojik deneyimdeki karşılığı üz-

erinden sağduyusal nedensellik anlayışına meydan okumuştur. Hume nedensellik üz-

erine yaptığı akıl yürütmelerinin sonucunda şunu görmüştür: her nedensel olaylar

zincirinden bahsedildiğinde aslında (i) mekansal devamlılık ve (ii) zamanda öncelik-

lik gösteren, (iii) sürekli rastlaşan olaylardan söz edilmektedir. Devamında gelen ne-

denselliği tanımlama denemelerinin tamamı, günümüzdeki çalışmalar da dahil olmak

üzere, Hume’un bu nedensellik analizi fikrine dayanmaktadır. Bu çalışmalar, böyley-

likle, kabaca iki gruba ayrılabilir: nedensel realistler ve indirgemeciler. Nedensel re-

alistler aynı zamanda karşı-Humecular olarak anılmaktadırlar. Çünkü Hume’un iddia

ettiğinin aksine nedensel ilişkinin insan deneyiminin dışında da bir gerçekliğe sahip

olduğunu düşünmektedirler. Buna karşın olarak nedensel indirgemecilik, nedensel-

liği nedensel-olmayan terimler üzerinden açıklamaktadırlar. Şuna dikkat edilmelidir

ki, nedensel realist olup metodolojik olarak indirgemeci bir yol izlemek de mümkün.

Aslında, günümüzdeki nedensel modellerin hemen hepsi bu yolu izlemektedirler.

Nedenselliği tarif etmeye yönelik indirgemeci çalışmalar önceleri mantıksal yöntem-

leri benimserken daha sonraları matematiksel analizler üzerinden gelişmiştir. Ne-

denselliğin mantıksal analizi John Stuart Mill tarafından ortaya konulmuş ve de-

vamında John Leslie Mackie’nin çalışmalarıyla önem kazanmıştır. Mackie öne sürdüğü

INUS koşulu ile yeterli ve zorunlu nedenlerin farklı olabileceklerini göstermiştir.

Bu gelişmeleri takiben David Lewis’in karşıolgusal açıklamaları ile nedenselliğin

mantıksal analizi bugünkü şekline kavuşmuştur. Buradaki temel fikir nedensel öner-

melerin koşul önermesi formunda analizini yapmaktır. Hatta Curt John Ducasse gibi

bazı filozoflar bu fikri daha da ileri götürerek nedensel ilişkilerin ‘doğru’ bir tanımla-

masının ancak ve ancak koşul önermeleri formunda verilebileceğini ve böyleylikle

Hume’da gördüğümüz sürekli rastlaşma özelliğinin bu formda yerinin olmadığını
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(Sosa and Tooley, 1993) iddia etmişlerdir. Bu yaklaşımdaki en büyük problem ise bir-

den çok nedenin bulunduğu (üstbelirlenim) vakalarda nedenselliği koşul önermeleri

formunda temsil etmek neredeyse imkansız hale gelmesidir.

Nedenselliğin matematiksel analizi, bir diğer taraftan, nedenselliği ‘fonksiyonel bağlılık’

olarak ele almaktadır. Nedenselliği fonksiyonel bağlılıklar olarak temsil etme düşüncesi

ilk kez Hans Reichenbach tarafından başlı başına bir çalışma konusu halini almıştır.

Reichenbach aynı-zamanlı korele olayların ortak nedenler tarafından öncelenmesi

gerektiği fikrinden yola çıkarak nedenselliği olasılıksal bağlılıklardan çıkarsamanın

mümkün olabileceğini düşünmüştür. Böylece, korelasyonlardan nedensellik tespit

edilebilirdi. Reichenbach’ın nedensellik analizinde birbirine neden olmayan iki fak-

törün, X ve Y , ortak bir neden olan C’ye sahip olmaları durumunda P (X.Y/C) =

P (X/C)P (Y/C) olduğunu matematiksel olarak ‘Ortak Neden Prensibi’ ile tanım-

lanmıştır. Bugün bu prensibin birçok durumda kullanılamaz olduğu kanıtlansa da

değişkenler arasındaki ‘koşullu bağımsızlıklar’ın formalize edilmesi fikrine ışık tut-

muştur. Aslında, ‘nedensel Markov koşulu’ bu fikirden türetilmiştir (Spirtes ve Gly-

mour, 1993). Nedensel Markov koşulu bir değişkenin kendisinin sonucu olmayan

değişkenlerden olasılıksal olarak bağımsız olduğunu söyler. Buradaki koşullu bağım-

sızlık kavramına dayanarak daha sonraları nedenselliğin olasılıksal analizleri Patrick

Suppes, Irving John Good, Wolfgang Spohn, John Williamson, Judea Pearl, Peter

Spirtes, Clark Glymour ve Richard Scheines tarafından geliştirilmiştir. Bu tezde bahsi

geçen nedensel modeller nedenselliğin hem mantıksal analizi (karşıolgusallık) hem

de matematiksel temsilleri (olasılıksal bağlılıklar) konu edinmektedir.

Nedensellik ve Modelleme

Bugün elimizdeki modelleme gereçleri sistemlerin lineer davrandığı varsayımına dayan-

maktadır. Fakat bazı sistemler hiç de lineer davranış biçimi göstermemektedirler ve

bu sistemler, haliyle, lineer-olmayan sistemler olarak anılmaktadır. Dolayısıyla, bu

sistemlere ait lineer-olmayan verilere lineer metodlar uygulanması halinde şeyler (en-

tities) ile onların temsilleri arasında bir uyuşmazlık söz konusu olmaktadır. Bugüne

kadar ortaya konulan nedensel modeller de lineer bir metodoloji üzerine kurulmuş-

tur. Tezde bu modellerin kompleks (ve dolayısıyla, lineer-olmayan) sistemlere uygu-

lanmasının kompleks sistemlerin anlaşılmasında yeterli gelemeyeceği ortaya kon-

muştur. Bu anlamda tezde güncel nedensel modellerdeki handikapları ortaya ser-
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ilerek kompleks sistemlerdeki nedensellik ilişkilerinin modellenmesi için alernatif

yollar tartışılmıştır. Bu amaçla, ilk olarak sistemleri temsil etmedeki temel yöntemler

tartışılmıştır. Tartışmalar sistem teriminin anlamından başlayıp sistemleri nasıl mod-

ellediğimize kadar uzanmaktadır. Konun bağlamı modellemeler olması dolayısıyla

sistemlerin matematiksel temsilleri tartışılmıştır. Sistemlerin matematiğine bağlı olarak

modeller, sistemin davranışına (sistemin çıktı üretme şekline) göre durağan ve di-

namik olmak üzere iki ayrı gruba ayrılmaktadırlar. Durağan sistemler bu tezin bağlamı

dışında kalmaktadır, çünkü bu sistemler hiç bir aktivitenin olmadığı veya herhangi

bir çıktı üretiminin söz konusu olmadığı bir tür denge durumundadırlar. Öte yan-

dan dinamik sistemler lineer veya lineer-olmayan yollardan çıktı üreten sistemlerdir.

Burada dikkat edilmelidir ki tez boyunca deterministik (rastgele olmayan) sistemler

konu edilmiştir. Eğer sistemler toplanabilirlik özelliği gösteriyor ve homojenite söz

konusu ise sonuç olarak bu sistemlerin tepkisi (yani, bir sonraki durumu) önceki du-

rumların lineer kombinasyonu olarak belirlenmektedir. Bu sistemlere lineer sistem-

ler denilmektedir. Lineer kombinasyonlar matematiksel olarak analitik çözümlere

sahiptir. Bu demektir ki, her bileşen aslında birbirinden bağımsızdır ve bileşenleri

toplamak veya çıkarmak bileşenlerin doğasında bir değişikliğe yol açmaz. Buradaki

matematiksel elemanlar aslında, temsil edilen şeyin bileşenlerine ayrılmış halini tem-

sil etmektedir. Dolayısıyla lineer modeller analiz edilebilen şeyleri (örneğin, elek-

tronik aletleri veya saatleri) temsil etmek için çok uygundur. Lineer modellerde

toplanabilirlik ve homojenite sayesinde parçaların aranjmanı bu parçaların lineer kom-

binasyonunun ta kendisidir. Lineer-olmamaklık, öte yandan, toplanabilirlik ve homo-

jenite özelliklerinin olmamasıdır ve bir fonksiyon ile temsil edilmektedir. Bu özel-

liklerin olmaması, matematiksel olarak bu fonksiyonların analitik çözümlerinin ol-

maması anlamına gelmektedir. Yine de bu demek değildir ki lineer-olmayan biçim-

lerde davranan hiçbir sistemin analiz edilemez. Örneğin, biyolojik sistemler analiz

edilebilmektedirler. Lineer-olmamaklık daha çok modelleme anlamında bazı sınır-

landırmalara tabidir. Fakat sistemleri modellemek için önce veriye ihtiyaç vardır.

Veri bir şeyin temsil edilmesindeki ilk basamak olarak bazı prosedürler ile edinilir.

Bu süreç genellikle iki aşamalıdır: veri toplama ve verinin yorumlanması. Veri

edinim sürecinde birtakım istatiksel varsayımlarda bulunulmaktadır. Herhangi bir

pratik hatanın yokluğu gibi varsayımlar bir yana konulduğunda, tezde, bu istatik-

94



sel varsayımların lineerliği teşvik ettiği ortaya serilmiştir. Bunu göstermek önem-

lidir çünkü söz konusu istatiksel varsayımlar yüzünden lineer davranmayan sistem-

ler hakkında toplanan veriler yorumlanırken sistemler lineermiş gibi düşünülmekte-

dir. Tez boyunca kompleks sistemleri temsil etmek için lineerleştirme işlemlerinin

zorunlu olup olmadığı tartışılmıştır. Veri yorumlama işlemleri söz konusu istatiksel

varsayımlara dayalı olarak çıkarım yapılmasını sağlayan birtakım prosedürden oluş-

maktadır. Dolayısıyla veriden ne okunacağı bu varsayımlara göredir. Örneğin, eğer

pozitif korelasyonun nedensel ilişkinin göstergesi olduğu varsayılmışsa bu durumda

ilgili değişkenlerin nedensel olarak bağımlı oldukları çıkarımı yapılacaktır. Bu an-

lamda korelasyonun nedenselliği belirttiği tartışmaları veri oluşturma sürecinin tam

da bu aşamasında karşımıza çıkmaktadır.

Peki lineer-olmamaklık nerede yer almaktadır? Bunu tartışmak için önce şu iki ayrım

yapılmalıdır: lineer-olmayan sistemlerin kompleksite gösterip göstermemeleri ve kaotik

olup olmamaları. Lineer-olmayan davranışlara sarkaç gibi basit sistemlerde de rast-

lanılmaktadır. Bu anlamda teknik bir terim olarak kompleksite, kompleks sistem-

ler bağlamında açıklık getirilmesi gereken bir konudur. Bölüm 2.3.1’de tam da bu

konuya açıklık getirilmiştir. Böylelikle berimsel anlamdaki kompleksite terimi kom-

pleks sistemler teriminden farklı bir kavram olarak ele alınmıştır. Diğer taraftan bu

iki terim arasındaki ilişki tartışılmıştır. Açıklık getirilmesi gereken diğer bir konu

da kaos ve kompleks sistemler arasındaki ilişkidir. Kaos fenomeni, gerçekten de,

doğası gereği lineer olmayan bir fenomendir fakat bu demek değildir ki tüm kom-

pleks sistemler lineer olmayan fenomenler oldukları için aynı zamanda kaotik olmak

zorunda. Bu zorunlu olmayışın sebepleri bölüm 2.3.2’te açıkça tartışılmıştır. Bu

ayrımların ışığında kompleks sistemlerin karakteristikleri genel olarak tartışılmıştır.

Bahsedilen karakteristiklerin aslında kompleks sistemlerin lineer olmayan ilişkileri

sayesinde ortaya çıktıkları tartışılmıştır. Dolayısıyla lineer olmayan ilişkiler ile kaste-

dilen şeyin ne olduğu da ayrıntılı bir tartışmayı gerektirmiştir. Bu bağlamda lineer

olmamaklık, kompleks sistemlerdeki davranış örüntüsünü ortaya çıkaran bileşenler

arasındaki ilişkilerin türü olarak konu edinilmiştir. Düzenin stabil olmayan bir du-

rumdan ortaya nasıl yeniden kurulduğu bölüm ise 2.3.4.1’in ana tartışma konusu ol-

muştur. Devamında kurulan (nedensel) ilişkilerin bu sistemlerde nasıl ortaya çık-

tığı tartışılmıştır. Bu anlamda bölüm 2.3.4.2’deki amacım kompleks sistemlerde il-
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işkiselliğin kritik önem taşıdığını gerekçeleriyle ortaya koyarak vurgulamaktır. İk-

inci bölüm kompleks sistemlerin temel özellikleri ile lineerlik varsayımlarını karşı-

laştıran bir liste ile bitirilmiştir. Burada lineer metodların dayattığı özellikler ile kom-

pleks sistemlerin özellikleri arasındaki uçuruma dikkat çekilmiştir. Sonuç olarak li-

neer metodların kompleks sistemleri temsil etmede yetersiz oldukları gösterilmiştir.

Üçüncü bölüm, bugüne kadar öne sürülmüş nedensel modellerde referans gösterilen

nedensellik teorilerinin analizine yer verilmiştir. Bu analizin sunulmasındaki temel

amaç ise nedensellik teorileri ile nedensel modellerin (ve/veya modelleme teknikleri-

nin) karşılıklı ilişkisine işaret etmektir. Böylelikle nedensel ilişkilerin temsilleri,

bu temsillerin gösterdiği ontolojik bağlanımlara göre kategorize edilmiştir. Bağlılık

ve Süreç kategorileri nedenselliğin temsil çerçevelerini oluşturan iki temel kategori

olarak ele alınmıştır. Bu sınıflandırma güncel literatüre göe yapılmış olsa da bazı

detaylarda güncel sınıflandırmalardan farklılık göstermektedir. Bu detaylardan biri

yeni bir nedensel açıklama sisteminin eklenmiş olmasıdır. Bu yeni nedensellik öner-

isi nedensel belirimcilik olarak anılmaktadır. Erik Hoel, Larissa Albantakis ve Giulio

Tononi tarafından ortaya atılmış bu yeni görüş süreçsel nedensellik başlığı altında

ele alınmıştır. Bu başlık altında ele alınmasının sebebi Russo ve Illari’nin sınıflandır-

masına benzer olarak bu görüşün bir tür enformasyon-teorisi temelli nedensellik açık-

laması olmasıdır. Aslında bu iki nedensellik temsil kategorisi arasındaki sınır çok ke-

skin değildir. Benzer olarak Hoel aslında enformasyon teorisi temelli açıklamaların

bağlılık üzerinden yapılan nedensellik açıklamalarını da kapsayacak kadar geniş ola-

bileceğini belirtmektedir. Gerçekten de bu tartışmaların çok önem arz etmesine karşın

bir yüksek lisans tezinde tartışılamayacak kadar zorlu bir başlık olduğuna da dikkat

edilmelidir. Bu nedenle bu tezde enformasyon teorisi temelli nedensellik açıklamaları

ayrıntılı bir şekilde ele alınamamıştır. Dolayısıyla, güncel felsefi literatürüne bağlı

kalınarak nedensel modellerden bahsedilirken kastedilen şey yapısal denklem mod-

ellemeleri (YDM) ve Judea Pearl’ün öne sürdüğü nedensel grafikler olacaktır. Bölüm

3.2’de gösterildiği üzere Pearl’ün nedensel grafikleri aslında YDMnin geliştirilme-

siyle oluşturulmuştur. Lineer sistemleri modellemekteki üstün başarılarına karşın bu

nedensel modeller, kompleks lineer-olmayan sistemleri modellemede yetersiz kalmak-

tadırlar. Kanıtlar bölüm 3.3’te listelenerek öne sürülen nedensel modellerin aslında

lineerlik varsayımlarına sıkı sıkıya bağlı oldukları gösterilmiştir. Bir başka deyişle,

bölüm 2.2’de tartışılan lineer varsayımların aslında nedensel modellerde de gömülü
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oldukları gösterilmiştir. Eğer gerçekten de lineer metodlar kompleks sistemleri tem-

sil etmede yetersizlerse, lineerliği temel alan nedensel modellerin kompleks sistem-

lerdeki nedensel ilişkileri temsil etmede yeterli oldukları nasıl savunulabilir? Savunula-

mayacağını gösteren bir liste, bölüm 2.4’teki liste ile uyumlu bir şekilde sunulmuş-

tur. Böyle bir karşılaştırma yapılmasının sebebi ise nedensel modellerdeki lineer-

lik varsayımlarının gözettiği özellikler ile kompleks sistemlerin özellikleri arasındaki

uyuşmazlığı ortaya sermektir. Böylelikle, nedensel modellerdeki ontolojik bağlanım-

lar ile kompleks sistemlerin ontolojisi arasındaki ayrıklık gözle görülür hale getir-

ilmiştir. Dördüncü bölüm ise nedensel ilişkilerin kompleks lineer olmamaklık du-

rumuna uygun olarak temsil edilebilmesi için olası çözümleri tartışılmıştır. Mod-

ellerde temsil etmek için lineerleştirme işlemi zorunlu bir işlem midir? Kompleks

sistemlerdeki nedensel ilişkiler için lineer olmayan bir nedensellik açıklaması sun-

mak mümkün müdür? Eğer mümkünse hangi adımlar atılmalıdır? Eğer değilse bunun

sonuçları nelerdir? Bu bölüm boyunca bu sorular tartışılmıştır. Bölüm 4.2’de ise il-

işkilerin ontolojik statüleri üzerinden nedensellik modellemeri için alternatif teoriler

tartışılmıştır. İlişkileri önceleyen bir nedensellik temsili teorisi, bugünkü modellerde

yapılan nodların öncelenmesi düşüncesine nazaran, umut vaadedici gözükmektedir.

Fakat temsil problemi henüz çözülememiştir. Neden çözülemediği ise kapanış tartış-

ması olarak beşinci bölümde ele alınmıştır. Temel sorun olarak lineer olmayan kom-

pleks sistemlerde nedenselliğin nasıl işlediği ele alınmıştır. Bu sorun kolayca ce-

vaplanamayacağından soruna kompleks sistemlerdeki ilişkilerin doğası tartışılarak

yaklaşılmıştır. Kompleks sistemlerin bileşenleri öyle şekillerde bağlantılar kurmak-

tadırlar ki bir bileşenin aktivitesi bağımsız olamamakta ve dolayısıyla aktivite sonucu

birden fazla sonuç doğmaktadır. Tam da bu noktada lineer nedensellik yaklaşımı

kullanılamaz hale gelmektedir. Ancak aynı zamanda büyük bir problem karşımıza

çıkmaktadır: böylesi bir sonuçlar yığını içinden nedenselliği nasıl tespit edebiliriz

(ve/veya modelleyebiliriz)?

Nedenselliğe lineer yaklaşım bağlam üzerinde belirli bir sınırlandırmayı şart koşar ve

bu sınırlandırma üzerinden uzlaşı gerektirir. Bu bağlamdaki sınırlılığın felsefedeki

karşılığı ceteris paribus koşuludur. Bu ceteris paribus koşulları altında yapılan tem-

siller de, dolayısıyla, bileşenler çevrelerinden izole edilmiş olurlar. Bu da komplek-

sitenin ortadan kalkması anlamına gelmektedir. Lineerlik şartları altında nedensellik
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yalnızca bileşenlere bağımlıdır ve böylelikle ilişkilerin kendi başlarına bir dinamiklik

taşıması durumu söz konusu değildir. Bileşenler ancak belirli tip ilişkileri kurmakla

yükümlüdür. Bir başka deyişle, ilişkisel dinamikler göz ardı edilirken bileşenler fa-

zlaca önemsenmektedir. Öte yandan, kompleks sistemlere aynı bileşenlerin farklı

kompozisyonlarda yer almasıyla farklı karakteristiklerin ortaya çıktığını görmekteyiz.

Nedensel ilişkilerin, ilişkiselliğin kendisine odaklanan bir temsil yapısı ile kompleks

sistemlerin oluşum ve gelişim süreçlerini modelleyebilmek mümkün olur muydu?

Bu sorunun yanıtı hakkında tartışmalar yapılmıştır. Sonuç olarak matematiksel bir

altyapı sunulamasa da otokatalitik kümeler teorisinin bir çıkış yolu olabileceği sonu-

cuna varılmıştır. Otokatalitik kümelerde görülen kendi üretim sürecini katalize eden

reaksiyonların bizzat ilişkisel dinamikler üzerinde nedensel etkide bulunması fikri

kompleks sistem modellemelerinde baz alınabilir. İlişkisel dinamiklerin temsil edilmesi

kritik önem taşımaktadır, çünkü kompleks sistemlerin kompleks olmalarının sebebi,

yani belirimlilik gibi karakteristikleri göstermesi tam da bu ilişkisellik biçimleri sayesi-

ndedir. Tezde kompleksiteye yol açan en önemli ilişkisellik dinamiği olarak pozitif

geridönüt döngüleri işlenmiştir. Pozitif geridönüt döngüleri literatürde ‘döngüsel ne-

densellik’ veya ‘karşılıklı nedensellik’ kavramları olarak da karşımıza çıkmaktadır.

Lineer olmayan dinamikleri oluşturan bu döngüler modellemelerde ciddi problem-

lere yol açtığı için genelde ya lineerleştirilerek temsil edilmekte ya da tamamen yok

sayılmaktadır. Bunun nedeni ise tam da ilişkisel dinamkliği temsil edebilecek temsil

gereçlerimizin olmayışıdır. Bu gereçleri edinebilmek içinse Prigogine ve Stengers

(1984)’in belirttiği gibi yeni düşünce araçlarına ihtiyaç duyulmaktadır.

İlişkisel dinamikleri felsefi olarak temellendirebilmek için ontolojik bir sorgulama

gereklidir. Varlıkların doğasına ilişkin bu sorgulama yolu günümüzde iki kola ayrıl-

maktadır: Yeni-tözcülük ve Ontik Yapısal Realizm. Yeni-tözcülük, temel olarak,

bileşenlerin veya bileşenleri oluşturan alt-bileşenlerin tözsel bir varlık statüsünde olduk-

larını öne sürer. Tözün kendinde potansiyel olarak taşıdığı bir başka şey(lere) neden

olma eğilimleri nedensel ilişkiler olarak tecelli olur. Dolayısıyla ilişki var değildir,

ancak bileşenlerin tözleri ve töz olmaklığın getirdiği birtakım eğilimler vardır. On-

tik Yapısal Realizm ise aksine, tikellikten yani bağımsız olarak var olabilen tözler-

den söz etmenin mümkün olamayacağını herşeyin ilişkilerden ibaret olduğu düşünce-

sine dayanır. Metafiziksel olarak ciddi sorunlarla karşılaşsa da ontik yapısal realism,
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kompleks sistemleri modellemek adına uygun bir ontolojik altyapı sağlayabilir gibi

gözükmektedir. Bunun temel gerekçesi ise ilişkisel dinamiklerin temsil edilebileceği

uygun bir zemin ancak ilişkileri ön plana çıkaran bir ontolojiyle mümkün olabilir gibi

gözükmektedir.
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