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ABSTRACT

THE REPRESENTATION PROBLEM OF CAUSAL RELATIONSHIPS IN
COMPLEX SYSTEMS MODELING

Kocaoglu, Basak
M.A., Department of Philosophy
Supervisor : Assoc. Prof. Dr. Aziz Fevzi Zambak
July 2018, 100 pages

An adequate representation for causal relations of a phenomenon offers (i) an ex-
planatory architecture of the phenomenon; (ii) a basis for modeling the
phenomenon; and thus, (iii) a way to make predictions about similar events.
However, the criterion of the ‘right’ way to represent causation is highly disputed
among econometrists and computer scientists as well as philosophers. Each
representational framework may bear different ontological commitments
concerning the nature of the causal connection. In this thesis, it is argued that the
current representations embrace an ontology bound to linearity and will remain
inadequate to represent complex systems as long as linearity is presumed. To
characterize the relation between cause and effect in those systems it is needed
that a representational framework for nonlinearly interacting complex phenomena.
As a conclusion, the major obstacle in the way of representing nonlinear causation
addressed as an ontological problem.

Keywords: Causality, Complex Systems, Modeling, Nonlinearity, Relatedness.



0z

KOMPLEKS SISTEMLERIN MODELLENMESINDE NEDENSEL iLISKILERIN
TEMSILI PROBLEMI

Kocaoglu, Basak
Yiiksek Lisans, Felsefe Bolimii
Tez Yoneticisi : Dog. Dr. Aziz Fevzi Zambak
Temmuz 2018, 100 sayfa

Bir fenomenin temsil edilmis nedensel iliskileri fenomene dair (i) agiklayici yapisini
(i1) modelleme igin altyapisini, ve (iii) benzer durumlar hakkinda ongdriide bulun-
may1 sunar. Ancak, nedensel iliskileri ‘dogru’ temsil etme bigemleri filozoflar kadar
ekonometristler ve bilgisayar bilimciler tarafindan da c¢okca tartismali bir konu ol-
mustur. Mevcut temsil yapilarinda nedensel bagintinin dogasina dair farkli ontolojik
baglanimlar bulunabilir. Bu temsil yapilarinin lineerlige dayali bir ontolojisi oldugunu
ve bu lineerlik varsayildigr siirece s6z konusu temsillerin kompleks sistemleri temsil
etmede yetersiz kalmaya devam edeceklerini iddia edilmistir. Kompleks sistemlerdeki
neden-sonug arasindaki iliskinin betimlenmesi igin, lineer olmayan yollarla etkilesen
kompleks fenomenlerin temsilini veren bir “lineer-olmayan nedensel agiklama’ya
ihtiyag duyulmaktadir. Sonug olarak, lineer-olmayan nedenselligi temsil etmedeki en
biiylik engelin ontolojik bir sorun olduguna isaret edilmistir.

Anahtar Kelimeler: Nedensellik, Kompleks Sistemler, Modelleme, Lineer-
olmayan, Iligkisellik.
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CHAPTER 1

INTRODUCTION

Modeling in sciences has an essential role of representing the systems in question to
serve as an instrument of understanding and prediction. What makes models so
important to sciences is that, especially for some systems, direct intervention to the
systems may be inaccessible. Complex systems modeling considering the intricate
nature of those systems, thus, constitutes a challenge for understanding and
prediction. One of the main reasons of that being challenge is representing causal
relationships.

The aim of this thesis is to expose a problem with the ontological commitments that
are made by causal models. Models on offer, often, are not intended to be bound to
any ontological claim on causal relations. Rather, causality is represented as a lawlike
relation that is to say a fixed bond which is applicable to any system. However, even
at this point, to be noticed, an ontological commitment is already made considering
the identifying properties of a causal relation. To be more precise, it is assumed that
the nature of causality is such a thing that there are fixed, lawlike relations that hold
across entities to affect and be affected by. Thus, this reciprocity between models
and entitiesto be modeled itself require a philosophical scrutiny, yet, in this thesis, it
is restricted to causal models that are proposed to be the representations of causal
relationships in complex systems. In this sense, this thesis will question the
applicability of causal models to complex systems. By the term of complex systems,
however, it is denoted that the ‘whole’s that are constituted by various kinds of
interconnected elements through nonlinear relations. What makes a system complex
is the web of interrelations of the system. It is because given the same components,
systems may still differ. The difference is built up by rearrangements of the

components.



Multifunctionality, degeneracy, self-organization, autopoiesis, emergence are all
arise according to such interrelations that are dynamically rebuilt in each state of the
systems. Besides such internal dynamicity of the complex systems that those
systems are co-evolving with their environments. That is to say, complex systems
actively affect and get affected by the media that they are in. So, complex systems

are also coupled with their environments.

In modeling, there are fundamental problems considering the representations of
these highly intricate relations. The most striking problem is that in order to
represent a complex system, simplification of the system in question has to be
made. If the systems are consisted of billions of heterogeneous components (such as
neurons, ganglions, pyramidal cells in the human brain) and even more relations
between those components what should be done to gain a simplified yet adequate
picture of these systems? Or, is it possible to represent complex systems in a
simplified way but, at the same time, to be inclusive enough to capture such a

complex causal structure? These concerns seek further clarification.
1.1 Causation as a Problem in Science and Philosophy

The main problem with the causation is that: we know, or to say least, we assume
that there are some events that cause some others, yet we do not know what
causation exactly is. It seems that smoking causes lung cancer, fast-food
consumption causes obesity, a lack of specific gene causes to a disease, carbon
emission causes global warming, and so. Also, we can predict and/or control such
events, for example the lacking gene might be grown in laboratories and when it is
injected to the patient, it can cure the disease. Or, with a dietary routine obesity
could be prevented. On the other hand, these are not always the cases. Even though
a person, who does not consume any fast food may still suffer from obesity. For
instance, obesity may be caused by excessive hormone secretion. In this case,
should we disregard all the cases that we observed obesity as a concomitant of
eating fast food? Or, if we should count on causality in both of the cases, then what
is the criterion of identifying causal relations? There are different answers for that,
but, today there is no consensus on the identifying conditions or on the definition of
causality. In scientific practice the answer is often given in terms of statistical

inferences. Philosophical approach, however, is twofold: metaphysical and
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epistemic. The definition of causation which concerns the realm of causal bonds
constitute the metaphysical research paradigm whereas epistemic re- search focuses
on our knowledge on causal relations. In that sense, scientific answers are also
included in epistemic studies. It should be noted that, philosophically, it is a
problem on its own that where to draw a line between ontology and epistemology.
At this point, it can be said that this thesis walks on that alleged line; while causal
models which are epistemic ‘devices’ for representing causality are investigated, the
discrepancy between these models and the nature of the modeled entities will be
questioned. The main problem, it will be argued, stems from the definition of

causality that is embedded in causal models on offer.

The systematic reasoning on definition of causality in philosophy can be traced
back to Aristotle who has proposed a typology of causes (material, formal, efficient,
final causes) to be found in the substances. During the medieval period the
Aristotelian typology has dominated the studies on causal understanding of the
nature, however, it was a theological interpretation of Aristotle’s works by the
scholastic thinkers such as Saint Thomas Aquinas (Wallace, 1972). God, in that
sense, is seen as the ultimate cause of all the ‘things’ replaced Aristotle’s unmoved
mover. Besides Occasionalism which states that God is the only cause of all beings
in the world, there are similar accounts of causation. The common ground in those
accounts is that causation is taken to be granted for being necessary relation where
such necessity could only ever be provided by God. On the other hand, there was a
striking problem within Scholastic view on causation, if God is the cause of
everything then what is left to bodies to do? With such legacy, thus, philosophers of
early modern period had to deal with metaphysical problems of causation. In fact,
early modern philosophers “with the exception of Hobbes, hold that some
knowledge of God is critical to understanding nature and natural laws”
(Clatterbaugh, 1999). Cartesian causation, for instance, accounts such laws of
causal interactions where those laws are carried out by a law-giver, namely, God. In
the works of Spinoza, however, God as natura nat- urans constitutes a non-
scholastic depiction of God. But, similar to early modern philosophers, causal
connection has seen as logical connection where according to rationalist school, is

the way how the world is constructed. It should be also noted that Francis Bacon

3



whom lived at the very beginnings of modern era, suggests that a methodology for

systematic causal inference by induction (Reiss, 2007). Bacon has not (seem to)

interested in metaphysical side of causality but rather its importance in controlling
the nature. In late modern philosophies, it can be seen that a similar approach to
causation in order to “identify genuine causal connections” (Clatterbaugh, 1999)

than the metaphysical explanations of how bodies interact.

David Hume, in that sense, challenged the common understanding of causality in
terms of psychological experience of causal events. Consequently he found that
whenever one refers causality all s/he has an idea of events that show (i) contiguity
in space, (ii) temporal priority and, (iii) constant conjunction. It can be said that
following attempts to describe causation, including contemporary efforts, rely on
that analysis of causation put by Hume. Those accounts, thus, can be divided into
two groups roughly: causal realists and reductionists. Causal realists are also
recalled as anti-Humeans since it is thought that causal relation exists beyond the
human experience. Reductionism in causality, contrarily, accounts causation in non-
causal terms. Note that, one can be a causal realist while methodologically bound to
reductive analysis of causality. In fact, causal models of today are mostly fell under

this category.

Reductionist attempts to describe causation employed logical methods which are
followed by mathematical analyses. The logical analysis of causation initially set by
John Stuart Mill and advanced by John Leslie Mackie with INUS conditions where
necessary and sufficient causes are discretely studied. Following those
developments, logical analysis has gained its current form in terms of
counterfactuality by David Lewis and his followers. The governing idea in here is
that analyzing causal state- ments in conditional form. However, some philosophers
like Curt John Ducasse are relied on the idea which is a stronger version of logical
analysis: the ‘correct’ definition of the causal relation can only be given by
conditionals, and the aspect of “constant conjunction is, therefore, no part of it”
(Sosa and Tooley, 1993). A ma- jor problem within this framework is that in cases
where there are more than one cause (‘overdetermination’), it becomes harder to
represent causality in the form of conditional. The mathematical analysis, on the

other hand, takes causation as a ‘functional dependency’. To represent causality in
4



functional dependencies was first made precise by Hans Reichenbach. He paved the
way for causal inference from probabilistic dependencies since he put the idea
that“simultaneous correlated events must have prior common causes” (Arntzenius,
2010). By this way, causality could be detected in correlations’. Thus he proposed a
principle which suggests that “two factors X and Y neither of which causes the other,
if X and Y have a cause C in common (and C is the only factor in common in their
causal past), then, P (X.Y/C) = P (X/C)P (Y/C)” (ibid). Today, it is proved that this
principle is untenable in many cases, yet, it led the way of formalizing ‘conditional
independencies’ among variables. Indeed, the principle of ‘causal Markov condition’
(Spirtes and Glymour, 1993) directly derived from the common cause principle. The
causal Markov condition simply indicates that given its direct causes a variable is
probabilistically independent of its non-effects. Thus it implies a version of common
cause principle:

If coincidences of two events A and B occur more frequently than would
correspond to their independent occurrence, that is, if the events satisfy
relation P (A.B) > P (A).P (B), then there exists a common cause C for
these events such that the fork ACB is conjunctive, that is, satisfies

relations P(C,A.B) = P(C,A)P(C,B), P(C,AB) =P(C,A).P(C,B),
P(C,A)=>P(C,A),P(C,B) = P(C,B). (Reichenbach, 1956)
Based on the concept of conditional independency, probabilistic analyses of cau-
sation are advanced by Patrick Suppes, Irving John Good, Wolfgang Spohn, John
Williamson, Judea Pearl, Peter Spirtes, Clark Glymour, and Richard Scheines. The
causal models that are investigated in this thesis, in that sense, embody both log-
ical analysis (counterfactuals) and mathematical representations (probabilistic (in-)
dependencies) of causation.
1.2 Causation and Modeling
The tools for modeling that are available to us today rely on the assumption that the
systems behave linearly. However, there such systems that do not show linearity at
all which are — reasonably, called nonlinear systems. Thus, when the linear
methodology is applied to nonlinear data we face an incompatibility between state-

of-affairs? and representations of them. Causal models that are hitherto put forward,

! See Reichenbach (1956).
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are also based on such linear methodology. In this thesis, it is argued that it is not
plausible to apply those models to understand complex (thus, nonlinear) systems.
This thesis, in this sense, suggests other routes to model causal relations in complex
systems by exposing some handicaps concerning the current causal models. Thus,
firstly, it will be introduced that the basics of the representations of systems. The
discussions will start from the very beginnings of what is meant by systems and will
extent to how to model them. Since the context is bound to modeling, the
mathematical representation of the systems will be presented. Based on
mathematics of the systems, models are distinguished as dynamical and stationary
based on the behavior that is the way the output produced by the systems. Stationary
systems are out of the context since they tend to stay in a balanced state which
means that there is no activity and/or out- put production within those systems.
Dynamical systems, on the other hand, may behave in linear or nonlinear way.
Notice that throughout this thesis the deterministic systems are the ones that under
investigation. If the systems are additive and show homogeny, consequently, the
response (to say, the next state) is determined to be the linear combination of the
previous (or initial) states. In this case systems are called linear. Linear
combinations, mathematically, do hold analytical solutions. That is to say, each
component are independent, thus adding or subtracting do not affect the nature of
the components. Here, mathematical components stand in lieu of the decomposed
parts of the represented entity.

Linear models, thus, are perfect for representing analyzable entities, for example the
electronic devices or like, watches. In linear models, due to the properties of addi-
tivity and homogeneity, arrangement of the parts is nothing but a linear
combination. Nonlinearity, as it is expected to be, lacks additivity and homogeneity
yet it is representable as a function. The lacking of those properties, mathematically,
hinders any analytical solutions for such functions. Yet, as a representation of an
entity, it is not restrictive in the sense that any system that behaves nonlinearly is
not de facto unanalyzable. We can analyze the biological organisms, for example.
Rather, it has other restrictions/implications in terms of modeling such nonlinear

behaviors. But to model the systems, at first, we need data.



Data as a first step to represent an entity is generated through a process. This pro-
cess is usually twofold: data collection and data interpretation. There are statistical
assumptions made during data generation process. Setting aside the assumptions
like the absence of any practical errors, it is exposed that these assumptions promote
linearity. It is noteworthy since even though we expect from some systems to
behave nonlinearly, at the very beginning, the collected data from the systems
become linearized (at least to some extent) with such statistical assumptions.
Throughout this thesis it will be discussed that whether linearization (at least to

some extent) is a must in order to represent the systems.

Data interpretation process consisted of a set of inference procedures that rely on
the statistical assumptions. What to read from the collected data is up to such
assumptions. For example if positive correlations assumed to be the indicators of a
causal relation, then the variables of interest will be interpreted as causally linked.
In this sense, the classical debate on whether correlation implies causation comes up

at this level of data generation.

What about nonlinearity? To dig into that issue there are two distinctions have to be
made. Nonlinearity may be observed in simple systems like the behavior of a
pendulum as well as complex systems. In that sense, complexity as a technical term
seeks clarification in the context of systems. That is what it is intended to achieve in
section 2.3.1. Hence, computational complexity will be distinguished from the term
of complex systems. The relation that they have, on the other hand, will be briefly
mentioned. The other distinction is made between the chaos and the complex
systems. The phenomenon of chaos, indeed, is nonlinear in its nature; however the
complex systems which are intrinsically nonlinear, are not necessarily chaotic. The
reasons will be mentioned in the section 2.3.2. After those distinctions, it will be
discussed that the characteristics of the complex systems in general. It will be
emphasized that we observe such characteristics within complex systems due to
nonlinear relations. What it is meant by nonlinearity also needs to be discussed.
Thus, the focus will be on the term of nonlinearity in the context of complex
systems and the patterns of behavior. How order is rebuilt from instability of the
systems will constitute the main inquiry of the section 2.3.4.1. Following that, the

specific features of the relations (that are causal) built up in those systems will be
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put forward. My objective for the section 2.3.4.2 is to underline the importance of
the relatedness among the complex systems.

Chapter 2 will be concluded with a comparison between the linear assumptions and
the basic features of the complex systems. It is intended to show the gap between
linear methods and the complex systems which constitute the application domain of
those methods. It will be explicated that the linear methods are insufficient to
represent complex systems. Chapter 3 comprises a general analysis of causal
theories that are referred in causal models on offer. The analysis aims to show the
reciprocity between the causal theories and the causal models (and/or modeling
techniques). Hence the representations of causal relations will be categorized
according to their ontological commitments. Dependence and Production are the
main categories for the representational frameworks of causation. This
categorization is made in accordance with the recent literature, yet, in some details
it differs from those available classifications. An example for that is a relatively
new account of causal modeling is the causal emergence account which is put
forward by Erik Hoel, Larissa Albantakis, and Giulio Tononi. This account is
categorized under the production framework (in accordance with Russo and Illari’s
classification), and more specifically, under the information-theoretical accounts for
causation. It seems that, in fact, there is no strict line between those two frameworks
of causal representations. In the same line Hoel denotes that information- theoretical
account might be broad enough to include dependence accounts. | found such
discussions on the information theoretical account of causation are fascinating but
also, too demanding to be fairly summarized in a master’s thesis; thus in this thesis
information-theoretic accounts will not be explained in detail. In that sense, to
remain adherent to the philosophical literature, it will be referred that the structural
equation models (SEMs) and the causal graphs that are advanced by Judea Pearl,
when the term of causal models is recalled. In fact, in section 3.2, It is put that
SEMs as the underlying idea behind the causal graphs as Pearl also admits in his
writings. Besides its success in modeling linear systems, however, these causal
models seem to fail in order to model the causal relations among the complex
nonlinear systems. The proofs are listed in section 3.3 which simply aims to expose

that causal models on offer are strictly tied to linearity assumptions. In other words,

8



the linear assumptions that are discussed in section 2.2, are also embedded in causal
models. However, the linear methods are proved to be insufficient, then, how can
we expect that causal models that assume linearity to be sufficient representations
of causal relations in complex systems? A list of reasons, in accordance to the list in
section 2.4, is made in order to explicitly compare the linear assumptions in causal
models with the complex systems which, in this context, constitute the entities that
are to be modeled. Hence in this thesis, it is intended to make discernable that the
discrepancy between the ontological commitments that are made in causal models

and the realm of the complex systems.

Chapter 4 is reserved for the discussions of the possible solutions for representing
causal relations in complex nonlinearity. Is linearization process (concerning the
models) a requirement for to be represented? Is it possible to account a nonlinear
causal framework for causal relations in complex systems? If possible then what
steps have to be taken? If not what are the implications of that? Such questions will
be asked throughout that chapter. In section 4.2, |1 ponder about the alternative
theoretical frameworks for causal models through a discussion on the ontological
status of the relations in complex systems. A representational framework of
causality which emphasize relations, rather than emphasizing the nodes as current
causal modes did, seems promising to me. The representation problem, however,

still remains to be solved. Concluding remarks will be canvassed in Chapter 5.



CHAPTER 2

THE REPRESENTATION PROBLEM IN COMPLEX
SYSTEMS MODELING

What is an entity that we are encountered in nature? How it appears to us? Does it
appear as itself or otherwise? Such questions on the relation between an entity and
its appearance have been occupied philosophy for thousands of years. The entities
that are whether processes or objects, assumed to be constituents of the nature; yet,
we still lack of a general agreement on what is the relation between an entity and its
appearance, and how to approach to these entities in order to understand how nature
works. The principal instrument that is adopted by modern science (Frigg and
Hartmann, 2018) is modeling. Models in science are the representations of target
system that is an entity in the world. Scientific approach towards the entities,
however, may also show variety depending on the research questions. For instance,
to model an engine the researchers account entities as static elements while in

biological modeling entities are considered to be dynamical organizations.

In scientific models, thus, there are different ontological commitments towards the
entities that are represented. My standpoint in these discussions is that we are
surrounded by systems (entities should be considered as systems) and thereby to
understand the nature, systems approach is needed. By systems approach it is not
indicated that holistic view of nature that assumes "[t]here are some wholes whose
natures are simply not determined by the nature of their parts” (Healey, 2016), but
rather there are entities that are constituted by specific interrelations of theirsubunits
within the environment. What differentiates the system from its environment is that
some organization of subunits that produce response as a whole. Thus, systems are
usually classified in regard to the behavior, namely the response that is produced

under the specific conditions (a set of inputs).
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In that sense, different types of responses may correspond to different systems. Yet,
it is not trivial as it is put in here, especially for natural systems — including social
ones, that are multifunctional'. That is to say, the same response can be produced

within different components and/or different systems.

Different systems, also, can be classified under the same category. Consider, for ex-
ample, the organization of the nervous system (especially, of primates) which is
consisted of specialized structures for specialized tasks that are carried out by a
parallel and hierarchic system. Even the simplest task of seeing an object involves
different levels of organization. Visual top-down processes (the ‘information’ flow
of brain depending on our previous experiences, predispositions), for instance,
required for external world perception while bottom-up processes (from the retina to
visual cortex) are at play. This highly-intricate structure is considered as a complex
system. One can argue that social constitutions also show similar patterns of
organization. For example, the social policies have an influence on the behaviors of
the individuals (top-down) whereas the policy makers make their decisions under
the influence of the individuals (bottom-up). It is not argued that nervous systems
and societies are alike, but rather that they show similar characteristics of the
systems that today we call complex systems. The challenges of modeling such

systems, it seems, consisted of insufficiency of the representational frameworks.

The main obstacle in the way of representing the complex systems is the
discrepancy between the ultimate response of the system and the specific outcomes
of each system component. Any reduction of the system behavior to the sole
component(s) in such a context, consequently, constitutes a problem. Ironically, to
represent these systems, it is thought that, complexity needs to be reduced. In that
sense, ‘how to represent’ is itself requires a philosophical investigation on whether
it is possible to provide a proper representation for a complex system without

making any concession from its complex nature.

1When the same (or similar-enough) components that are able to produce different responses it is called
multifunctionality whereas ‘degeneracy’ indicates that functionally equivalent actions can be executed by
different components. See section 2.3.4.
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2.1 System

A general definition for a system is that the set of constituents that are related with
each other in specific manners. Systems may be classified as ‘open’ or ‘closed’ in
regard to the relation between the systems and their media. For example, if there is
no exchange of matter and/or energy or, if the system is somewhat isolated from its
environment it is referred as closed system. Closed systems, usually, are the
artificial systems or the systems that are put in an artificial medium. On the
contrary, natural systems (e.g., biological entities) are considered to be open
systems as long as they continue to be ‘open’ to the inputs from the environment. In
mathematics, a system is represented as "a well-defined set of states™ (Vasbhinder
and Gao, 2017) which may dynamical or stationary considering the changes in the
system behavior. Thus, a system corresponds to a formalae of the rules that govern
the state changes. If a system is stationary, the rule describes a state of balanced
input-output that equals to no change whereas a dynamical system (DS) depicts
change between the states. Thus, DS is "a rule for time evolution on a set of all
possible states” (Meiss, 2007).

A dynamical system, simply, the systems that change over time. Time evolution of
the DSs can be "described over either discrete time steps or a continuous time line"
(Sayama, 2015). DS in continuous time is defined in the form of differential
equations and therefore, it is useful to represent abrupt changes. DSs in discrete
time, on the other hand, are more useful to represent smooth changes in the system
behavior. Discrete time DSs are consisted of iterated maps or, difference equations

(ibid). A discrete-time dynamical system is represented as:

Xt = (X~ 1, 1) (2.1)

Whereas continuous-time dynamical systems are represented as follows:

X _ fx.1) 2.2)

dt
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In the equation of discrete DS, each state takes the state that is before as an
argument of the function. By this way, states are determined stepwise by the
previous states at chosen time intervals. On the other hand, the equation of
continuous DS represents the derivation of states over time. There are no time
intervals but continuous time. The time evolution or ‘the temporal evolution rule’
delineates the way of derivation of next state from previous state (Fusco et al.,
2014). DSs are grouped as either linear or nonlinear in regard to the course of
temporal evolution. A system is linear if the state variables is only a linear
combination (e.g., of their sum), and nonlinear if otherwise. If the next state, for
example, is a trigonometric function of previous state variables (Sayama, 2015), the

system is a nonlinear DS.
2.2 Linear Systems

2.2.1 Linearity and Linear Models

Systems, in general, are modeled as the boxes that take inputs and produce outputs.
Linear systems are the systems of equations where the previous states constitute the
next states according to defined linear rules. Since linear equations are separable
into its elements, the elements of linear systems can be studied analytically.
Discreted elements can be recombined as such in the initial state of the system since
linear systems hold additivity. Similarly, multiplication of the elements would result
in multiplication of the following states (and/or responses) due to homogeneity.
Hence, proportionality is preserved through the states of the linear systems.

Input signal | System Model Outputsignal nputu » System F outpu}y(t)
(control) internal states] (observation)
"Shfe inputuf) output 4

SystemF System G ——

yevolution

(2) (b)
Figure 2.1: a. A model of system with its internal states, retrieved from Gorinevsky

(2005), b. Another exemplar for modeling the systems, retrieved from Hover
(2009).
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Systems are called linear if for every time t; and any two state-input-output pairs
(Chen, 1995):

z;(to) R
yi(t).t = to (2.3)
ui(t),t > to

i = 1,2, we have

x1(to) + xo(to)
D e y1(t) + (), t > to 2.4)
uy(t) + us(t). t > tg

and

axy(ty) =
ay(t).t >ty (2.5)
auy(t),t > tp

By additivity that is depicted in (2.4), we understand that the measured system-
response is mere “"the sum of its responses to each of the stimuli presented
separately” (Heeger, 2000). The property of homogeneity that is depicted in (2.5),
on the other hand, suggests that "as we increase the strength of a simple input to a
linear system, say we double it, then we predict that the output function will also be
doubled” (ibid). For example, when input is doubled o in equation (2.5) is
substituted with 2, thus we would estimate that output as 2y,(t) given 2x, at time tp
to a linear system under 2u, (which stands for two times of noise and/or
environmental constraints). These two properties, when combined, constitute a
principle that is called ‘superposition rule’ which is a golden rule because it allows
predicting the outcome given inputs. Thus, the behavior of the linear systems can be
predicted. That is to say, given input x; at time to to a linear system under u;, we
observe y; as an output. Likewise, given an input, at time ty, X2(to) under uy it is
yielded y, at time t; then, if one introduces these two inputs Xi(to) and X(tp) the

output of y;+y, can be perfectly predicted.

A real-world example for linear behavior would be the linear electrical circuits.
Con- sider such a circuit, the current and voltage for any element in the circuit is the

sum of the currents and voltages produced by each source acting independently
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(Hayt et al., 1986). The manipulation of the batteries will proportionally result in an
altered cur- rent. Linear systems, then, operate in such a way that same inputs
always bring same outputs and thus, the response of the systems directly
proportional to the inputs. The inputs that get into the system hold the role of causes
while the outputs that are produced by the system considered as effects. The relation
between cause and effect, then, is characterized as a linear relation.

Figure 2.2: A simple representation of a linear electrical circuit where R stands for
resistor, v as battery and i as current.

2.2.2 Linear Assumptions in Data Generation Process

To study the system behavior and/or the properties of the system, one needs to
gather all the necessary data concerning the systems. The relevance of the data,
mostly, de- pends on the focus of the research. For instance, if the researcher seeks
to understand the relation between obesity and heart attacks in a population (the
target system), then the data of 1Q scores of that population would be redundant. If
the data are obtained accordingly, then the target system is become represented in

terms of obesity and heart attacks.

The conditions that change or has different values for different entities are repre-
sented with ‘variables’(Gravetter and Wallnau, 2016). In other words, an element
that changes in each state is a variable. That change, mostly, attributed to a causal
process where causes change the current state and/or property of the system. For ex-
ample, xi under ui from the previous section, or the rates of obesity and heart

attacks are the variables.

Besides the state variables, the other factors (e.g., parameters, omitted causes or
error terms as ui) are also measured to become quantitatively representable.
Measurements are consisted of the collected data set which serves as a material for

descriptive and/or inferential statistics (Daniel, 1991). The choice of statistical
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means depends on the research question. For instance, if the question is that ‘what is
the frequency of heart disease in Population-A?’ the descriptive means would be
sufficient. However, if one seeks to understand the causes of the high rates of heart
disease in Population-A, then inferential techniques (following the descriptive
analysis of the current state of ‘high frequency of people with heart disease in

Population-A’, for example) are used.

The data can be obtained through different methods in regard to the research ques-
tion(s) and the hypothesis. The system properties of interest may already be in its
quantitative form, such as in 1Q test results. If not, then the measurement techniques
(e.g., surveys) applied to the target system properties, in order to convert the quali-
tative data into the manageable forms. Once the collected data are quantifiable and
organized, a representative data set from the data of whole population (target

system) is selected.

The representative data set, namely ‘the sample’, is usually chosen via the method
of simple random sampling. This sampling method, as like many others, relies on
the idea that given data consisted of representatives of heterogeneous elements (if
there is any). Hence the randomly selected set from data does not show any
significant deviation from the overall representation of the data. In this sense, it is
assumed that the sample can adequately or, is sufficient enough to represent the
whole (the system) that of interest.

Figure 2.3: An illustration for the state of interest and collected data.
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Data as measured properties, however, may show difference due to the way of
quantification. For example, a survey (for example, Uncertainty Response Scale by
Greco and Roger, 2001) that aims to classify decision-makers’ attitude towards
uncertainty, has a scale of points 1 to 5. The point 1 stands for unsentimental people
whereas point 5 stands for very sensitive and impulsive persons. However, a person
who is scored around the 3 points (quantifiable form of ‘not-so-impulsive attitude’
toward uncertainty) may get 15 points (quantifiable form of ‘impulsive attitude’
toward uncertainty) on a scale of 1 to 20 points. In that sense, the evaluation of the
collected data depends on how we read the data as well as the ways of scaling and

measurement.

The obtained data set is organized and simplified to get a ‘neat’ representation of
the variables that are investigated. Especially, the techniques like functional
magnetic resonance imagining (fMRI) to study the neural systems, demand
‘cleansing’ of the collected data from noises and artifacts. Artifacts in fMRI data
would be, for instance, the fluctuations due to thoracic movements during breathing
(Raj et al., 2001). After such removal processes, the specific changes in the
variables can be easily observed. The evaluation of whether there is a relation
between the variables requires inferential data analysis. Since the direct relations
cannot be observed during an event, researchers trace the sequences of changes in
the variables. Consider Figure 2.4 and Figure 2.5 that illustrate a study that
questions the effects of the two teaching methods that are introduced to first-grade
students:

Population of
first-grade
children

Step1
Compare two teaching
methods (Experiment)

Data Sample A Sample B
Taught by Method A Taught by Method B

3 78 12 19 68 70 723 7N
7 77 1B 1 6 72 70 N
72 75 7% 718 7% 68 70 N
80 74 76 78 72 74 6O 72
73 77 74 8 76 713 70 10
77

Test scores for the students
in each sample

Figure 2.4: Collected and organized data of first-grade children. Retrieved from
Gravetter and Wallnau (2016).
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The system in question in here is a population of first-grade children. The study is
conducted to determine the effects of two different teaching methods in this popula-
tion. Thus the inputs are Method A and Method B whereas the outcomes are the test
scores of children. Samples stand in lieu of all of the students (population) who hold
similar features such as similar family backgrounds, taught by same teachers, or the
stress levels. Thereby, it becomes more justifiable to argue that ‘the test scores are
affected’ since the only difference is the test scores of the children. Notice that, it is
an assumption of linearity that the components (individuals) of a system are analyti-
cally separable. Thereby, the arithmetic mean (average score) is become
informative in showing the central tendency of the samples.

Sample A Sample B
Step 2 arbh . —
Descriptive statistics: | 70 80 85 65 T 75 80 85
Organize and simplify Average Avercge

score =76 score =71

Figure 2.5: Descriptive statistics for the samples A and B. Retreived from Gravetter
and Wallnau (2016).

The central tendencies of the sample data show a difference (5 points) between two
teaching methods. If there are no methodological errors such as the sampling errors,
the data would be interpreted as ‘Method A is more efficient teaching method than
Method B’. Think of an additional input; say a textbook that is previously proved to
be a boosting factor for test scores. If this is the case indeed, then one expects that
an additional input, the textbook, when introduced to the students who taught by
Method A, would be a boosting effect for higher scores. As well, students who
taught by Method B would be increased their scores with the help of the textbook.
However, due to proportionality of the effects, it is expected that the students taught
by Method A with the usage of the textbook would still have higher scores than the
students who taught by Method B even with the textbook usage. Hence, the aspect
of additivity is assumed in such cases.

The data interpretation, then, is an inference process that generalizes the results

from sample data to overall system. The results, if show any ‘significant? dif-

2 The p-values are used to determine whether the independent variable has significant effect on the dependent
variable.
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Figure 2.6: An illustration for current state of interest and interpreted data.

ference, indicate the possible causal relations between the variables. The way we read
the data usually relies on the assumption that the relations between variables hold the
properties of additivity and homogeneity, thus those relations are assumed to be

linear.
2.3 Complex Systems
2.3.1 Complexity

Nervous systems, societies, stock markets, weather, etc. are all considered as
complex systems whereas each of them has their own building blocks that completely
differ compared to other systems. The scale, then, is not a criterion for complexity
since even the microsystems (e.g., biological entities) may constitute a complex
system. Yet, not all the systems that have interconnected parts (say, an electronic
device) considered as complex systems. Then what is the criterion for distinguishing

a complex system from any other system?

The efficiency of an algorithm when confronted with different sizes of input is mea-
sured according to the time that is taken to produce an output. The number of com-
putational operations to execute an algorithm (that means to receive an output) is
the criterion of complexity. Thus, computational complexity can be defined in
polynomial time. The computational complexity is scaled with Big-O notation O(n),

which describes the upper bound of the algorithm’s runtime with respect to the
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amount of input (n). Each step of the operations may take different runtimes to
produce an output, yet, each runtime is added in order to calculate the complexity of
an algorithm. Because, the operations follow each other step by step, thus with an
order. The steps never overlap. By this way, the input size (n) is directly
proportional to the number of steps which follow orderly each other in time. By this
way, O(n) represents the time taken by an algorithm which is directly proportional

to the input size.

An algorithm is considered to be solvable in polynomial time if the number of
operations for a given input is O(n*) where k is a nonnegative integer and n is the
size of the input. The algorithms that take polynomial time are consisted of tractable
operations. However, some algorithms are not solvable in polynomial time. Such an
algorithm is solvable only in non-deterministic Turing machine since, to produce an
output, the number of steps to be taken are too much. On the other hand, systems’
complexity is beyond algorithmic definitions since the systems’ behavior is intricate
in many respects (technically, high-dimensional), and such behavior cannot be
assigned to merely the outputs of the components. Complex systems operate in a
parallel and hierarchic manner. Thus the outputs can be produced through different
ways rather than an orderly linear manner. In that sense, it is not trivial to provide a
legitimate criterion of complexity in systems to apply all the complex systems. At
this point, it is argued that nonlinearity may provide a criterion for deciding on

whether a system is complex.

Linearity implies order, it means that to arrive a point there is a specific way to go
through. Any interference in such processes would result in either failure to arrive
or an altered outcome. However, in complex systems we observe such behavior like
degeneracy that is the ability of systems to produce an output from different ways.
Furthermore, it can be said that the number of possible ways to arrive a point would
consequently increase the complexity in the systems. That is due to nonlinear
dynamics which generate alternative ways to go through. Nonlinear dynamics seem
to be ubiquitous in complex systems and constitute a steering factor of increasing
instability, thus responsible for bringing the system into a state of the edge of chaos
At this stage, systems may result in more than one output, and such a result is

specific to complex systems. However, every nonlinear behavior does not .
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necessarily executed by a complex system. What needs to be done is that the
characteristics of complex systems (e.g., self-organization) should be studied in
respect to underlying nonlinear relations. Section 2.3.3 and 2.3.4 devoted to these

discussions.
2.3.2 Chaos

Asdiscussed in section 2.1, adynamical system is a deterministic mathematical model,
since the next states are determined by previous states. Chaos is a phenomenon that
refers to sensitivity to initial conditions of nonlinear dynamical systems (Gleick,
1987). Even though the systems are deterministic, the long-term behavior of the
systems is unpredictable due to nonlinearity®. In that regard, chaotic behavior can be
defined as deterministic, nonlinear, and aperiodic behavior (Fuchs, 2013) that
displays to sensitivity to initial conditions. A linear dynamical system is considered
to be predictable even in the long-term be- cause, the next state of the system is the
very linear combination of the previous. Thus the decomposition of that
combination can reveal the previous state or else, the re- assembled components can
reveal the states of the system. Likewise, if two systems hold the same time
evolution rule with the initial conditions that are close enough (say, x1 = 1 and x2 =
1.001), these systems would follow similar trajectories. In this sense, they are not
sensitive to initial (previous) conditions. What makes a chaotic system to be
unpredictable is, then, inapplicability of the superposition rule. Nonlinearity is the
main source of chaos since a small difference in “the system’s initial condition is
quickly magnified under iteration"(Feldman, 2012). Such iterations bring
aperiodicity, namely, non-repeatability of the previous conditions, in that sense only
short-term prediction is feasible. However, within one (e.g. logistic growth) or two
dimensional (e.g. pendulum) nonlinear systems the chaotic behavior cannot be
observed because of the topological reasons®. At least three variables are required

for chaotic behavior as such in three celestial bodies or ‘3-body problem’ (Poincaré,

8 Any imprecision in the calculations of the chaotic systems followed by amplified deviations from the original
trajectory.

*From the video recordings of MAE5790-Nonlinear Dynamics and Chaos Lectures at Cornell University taught
by Steven Strogatz.
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1913) that interact under simple (Newtonian) rules. Thus, chaotic behavior may be
seen in very few interacting elements whereas complex systems are consisted of
enormous amounts of interactions within dynamic components and the
environmental constraints. Due to the dynamic interactions of large amounts of
elements complex systems are able to arrange itself under the changing conditions.
In that sense, complex systems are usually considered to be at ‘edge of chaos’
(Kauffman, 1996) rather than to be strictly chaotic. Then, although the fact that a
complex system may be chaotic, it is not implied that chaos necessarily a property

of complex systems.
2.3.3 Characteristics of Complex Systems

The term of complex system stands for the ‘whole’s that are constituted by various
kinds of inter-connected elements and their nonlinear relations such that these
wholes behave in an untraceable manner yet deterministic, de-centralized, self-
organized and cannot be reconstructed via simply summing up the elements. The
very reason for the difference between a lump of components and a complex system
is the new characteristics that gained through interrelations among components.
‘Emergence,” ‘autopoiesis’ and/or ‘self-organization,” ‘edge of chaos’ are classified
as such characteristics. However, today, we are unable to reach beyond the vague
descriptions of these generic concepts.

The ambiguity in the generic concepts of emergence, self-organization, complexity,
etc. stems from the fact that there is no consensus on the methodology to study
these characteristics. The standard way to study the system behavior is analysis of
the functions that are assigned to components. For example, to understand the role
of a gene in producing a phenotype, researchers usually conduct knock-out
experiments in which the interested gene is specifically deleted. If the phenotype
does not appear after such a knock-out process, it is thought that that gene is
responsible for the emergence of that phenotype. Similarly, it is expected that once
the responsible element(s) that give(s) rise to self-organization (or any other

characteristics) of a complex system, such systems will be explained. However, this

®To find more sophisticated examples of degeneracy, see Edelman and Gally (2001), Sporns et al. (2000).
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is not the case. In complex systems, especially in biological systems, the “functions
cannot be assigned to [lower level] components in a one-to-one manner” (Edelman
and Gally, 2001). The reason for that is in such systems due to degeneracy and
multifunctionality, components do not hold fixed roles. In technical terms,
degeneracy suggests that “structurally different elements, may yield the same or
different functions depending on the context in which it is expressed” (ibid). An
example for degenerate behavior is that different antibodies that bind to the same
antigen” (Edelman, 1974)°. Yet, there is a theoretical confusion on the concepts of
degeneracy and redundancy (Tononi et al., 1999) besides the other generic concepts
of the complex systems characteristics. To overcome that, it is suggested that at first
we need to understand the nature of the interactions among complex systems which

are considered to be dynamical.

The term of dynamics in the context of complex systems stands as a generic
concept for ‘time-changing patterns’ or ‘pattern of change’ (Luenberger, 1979).
Such pat- terns indicate the changes in the relations among a system. These
dynamics mostly consisted of positive feedback cycles — the very reason of
nonlinearity and thus, in- stability in the systems. Positive feedback relations end in
the amplified effects in each turn, by this way, each cycle steers the system into
increasing change. So, it can be argued that in each turn, the ‘elements’ that get into
the cycle are changing. Thereby, the relations become altered since the elements are
rebuilt in each turn. The end-product of a positive feedback loop, say at time (t),
becomes incommensurate with its initial loop-entrance conditions (at time ¢ — 1)

and this is the way how non-linearities appear.

2311 (b)
Figure 2.7: (a) A simple representation of a feedback relation, (b) An example of a
positive feedback loop: "a fluid particle hotter than its environment encounters ever
colder fluid as it rises, which leads to the instability” (Manneville, 2006).
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Figure 2.8: Snapshots of Rayleigh-Bénard cell convection from the experiment con-
ducted by Pfander and Haupt (2015).

In the example of Rayleigh-Bénard convection, we see that "the bulk motions of
fluids generated by temperature inhomogeneities" (Nicolis, 1995) as an instance of
self- organizing behavior. Such a phenomenon — a new structuration, requires high
degrees of incorporation of the local elements (Nicolis and Prigogine, 1971). Given
the heat from below, a positive feedback loop is initiated: the lower side of the fluid
layer becomes heated then it rises, the upper side which is cooler moves below
while the effects of gravitational forces compete with heated molecules. The
positive feedbacks reiterate the local elements in each turn that results in
fluctuations, and thus the stability of the system breaks down. At a critical value®
the system responses to instability with the decentralized control which arises from
local relations. Macroscopically — as it can be seen from the figures 2.7 (b) and 2.8,
the fluid rearranges itself into a new type of organization through decentralized
control. Such an example shows that "with self-organization, a new order of the
system ‘emerges,” an order of non-equilibrium, a non-static order" (Bertuglia and
Vaio, 2005).

Emergence, on the other hand, is a characteristic that suggests a novel phenomenon
that arises due to the interrelations of the system components. It is often aforemen-
tioned as the phenomenon of ‘a whole is more than the sum of its parts’. In other

words, it is thought that there are such higher level entities that cannot be one-to-

® For details, see Nicolis and Prigogine (1971)
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one mapped onto their constituent lower level entities. But, how could such a
novelty appear? The answer, as it is argued for the other features of complex
systems, is in the dynamical relations of the systems. However, it should be noted
that kind of depiction of wholes and parts — which historically corresponds to
Aristotelian metaphysics, is misleading if it is taken seriously. It is because
ontological discrimination of the parts and the wholes leads to somewhat isolation
of the parts while the relations are undermined. Philosophically it is called
mereological ontology which is an unrealistic way to approach complex systems. In
that sense, recent literature is more apt to Kantian description of wholes where "in
an ‘organized being’ the parts exist for and by means of the whole, the whole exists for
and by means of the parts” (Longo et al., 2012). Kauffman et al. offer many examples of

Kantian wholes in biological context. Yet, to study such wholes is still a problem.

As complex phenomena the social systems, similar to biological organizations, hold
systemic characteristics. We encounter with (i) self-organization and autopoiesis where’,
for example, two persons have met and decided to establish a family that followed by
generations, or in sects; (ii) emergence where the relations at the level of individuals result
in novel assemblies that cannot be predicted from merely personal characteristics; and
with (i) complexity since even the data among a group of people (say, consisted of 3
individuals) would be enormous considering all of the aspects of the group’s dynamics
and personal traits. In this sense, to get a comprehensive understanding of such social
phenomena the system-characteristics should be considered. What makes a social system
different from other one depends on those characteristics. Think of, for example, in the
same country within similar-enough genetic inheritance and similar-enough environmental
factors, we may see (and as the world history shows, we mostly see) that the social
movements do not show similar patterns compared to past generations. The difference,
then, must lie in the relations of the components which, in this case, are the individuals and
their constitutions. The relations, the causes and their effects, are in fact, nonlinear, and

thus interactions seem to be ever-changing.

Nonlinear interactions may also give rise to the other aspects such as chaotic behavior. The

trick with the nonlinearity is the disproportionality between the inputs (causes) and the

"In the cases of when there is no external specific ordering influence.
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outputs (effects) of a system. In fact, nonlinear relationships yield the system to
become sensitive to external influences. Yet, as discussed above, it is not certain
that whether there is a certain recipe for characteristics of complex systems. On the
other hand, the nonlinear relations seem to precede all of the characteristics that

appear in a complex system.
2.3.4 Nonlinearity

Nonlinearity as a shunned term of the mathematics has been used to describe the
dynamics among complex systems which are, simply, not analytically solvable. The
term encompasses all of the situations where linearity is not applicable. So, it is
abstruse in the sense that there is no clarification about the set of not-being-linear
entities. In fact, philosophically, it would be an intriguing research question that
whether it is possible to classify different types of nonlinear relations. However, |
stress on the definition of not-behaving-linearly in this paper. Nonlinear dynamics,
then, consisted of the relations that do not follow a linear trend. It is expected that
within that line of thought, all of the properties that constitute linearity can unravel
what nonlinearity is not. Hence, to define nonlinearity, we can, roughly, exclude the
properties of linearity. Indeed, within nonlinear systems, the tools for linearity can
not applicable unless the data set is linearized. Recall the positive feedback loop
that is discussed in section 2.3.3. Firstly, the input and the output are incommen-
surate since they feed each other at every turn. Also, an increase in the input may
result in exceeding the critical threshold which can lead to self-organi-zation as in
the example of Rayleigh-Bénard cells; thus, the ultimate effect is not a
superposition of the causes. Yet, in such nonlinear cases, during the evolution of the
system, the link between cause and effect is not traceable, and this is the very reason
that we cannot precisely predict the future outcome of the complex systems.
2.3.4.1 Order and Disorder

Do nonlinear dynamics encompass some order or, to say, follow some pattern?
Such a question is put forward, because, we observe characteristics like self- or-
ganization, and/or the emergence of new forms due to cooperativity of the compo-

nents through nonlinear relations of the systems. The components are re- combined

8To see other related discussions Prigogine, 1978; Bak et al., 1987.
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in each turn of positive feedback loops, by this way; the system is steered into an
instable state. Surprisingly, the instabilities of the system yield to new formations of
patterns. In that sense, new order seems to arise from the disorder8. Questioning
whether the recipe of the new order is somehow given in nonlinear relationships,
does not necessarily imply linearity within the term of order. However, there is no
convenient way to think any order in terms of nonlinearity since nonlinearity
appeals to instability and disorder in the systems. The clarification is indeed, needed
considering the terms of order and disorder in the context of complex systems. The
one possibility for defining order may be based on regularity. The events are
regular, that is to say, they follow each other regularly and thus show a regular
pattern. That sounds like causation, yet, insufficient to be. As another candidate to
define order, one can consider the order as stability — a state of equilibrium, again,
in the context of the systems. But how come an entity in a state of equilibrium
"manifests itself as the collapse of a state, following internal instability or an action
external to the system, and with the adjustment of the system to a new state"
(Bertuglia and Vaio, 2005)? It is important to keep in mind that, especially while
system organizes itself, the new pattern appears "with no specific ordering influence
from the outside"” (Kelso, 1997). If that is the case, then one should expect that some
specific rules of interactions between the components, that is to say, an ‘internal
logic’ (as Bertuglia & Vaio put) steers such behavior. Note that, there is no
centralized control over the complex systems, thus that putative internal logic must
lie in the relations between the components. But, how can we detect such an internal
logic if there is? Can we extract "a deeper level of patterned order" (Capra, 1997)?
Perturbing the system is one of the ways to detect that. In this sense, researchers
(e.g. Scheffer et al., 2012; Carpenter and Kitchell, 1988; Dai et al., 2013) have been
studying the factors that propel the system an abrupt transition toward an alternative
state. A shift toward another state requires new ways of connections, thus a new
ordering within the system. The point where systems transited to another state —

namely the ‘critical point’, indicates that the interaction rules are about to change.

Carpenter and Kitchell (1988) experimented with a whole-lake (in addition to an-

other lake nearby as a reference in Michigan, USA) to specify the early warning
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signals that indicate the affinity to the critical point for the change in food web. The
lake that is manipulated is consisted of a low population of the predator fish (large-
mouth bass) in contrast to large populations of the prey fishes (minnows). For
several times, the researchers were intended to tweak the food web in the lake (Peter
Lake) by supplying additional largemouth basses (in controlled amounts). The
response of the lake consisted of some local repairs which carried out by feedback
relations to preserve its state of prey-dominance. However, at some point, the
system (food web in Peter Lake) has become slower in order to execute a response
to those perturbations. Following that, the food web is completely traversed: Peter
Lake became predator-dominant. The phenomenon of slowing down in producing a
response is called ‘critical slowing down’ and it is observed in many complex
systems. For example, in populations of budding yeast Saccharomyces cerevisiae,
the indicators of critical slowing down are also observed based on spatiotemporal
fluctuations in the system (Dai et al., 2013). The researchers put yeast cells in media
consisted of sucrose which allow the yeast cells to grow cooperatively by sharing
the hydrolysis products. By this way, positive feedback loops initiated between the
cells which lead to bistability and a critical point (ibid). Since the response of the
system is carried out by feedback relations, the critical slowing down may be
implying a change in the relations. It would also be applicable to ‘flickering’
behavior (indecisiveness between alternate states, see Dakos et al. 2013) of the
systems. Such experiments indicate a possibility to anticipate an upcoming pattern

change once the rules of relations are comprehended.
2.3.4.2 Spatiotemporal Patterns

The transition process of stability to instability and then to (a new kind of) stability
constitutes a spatiotemporal pattern of activity which we observe in nonlinear sys-
tems”. Spatiotemporal patterns imply both spatial and temporal regularities. In this
sense, different regularities embody different patterns. Such regularities correspond
to the different types of connections between the components and between the
systems and its media. A commonsensical example for a spatial pattern would be a

knitting pattern. These spatial patterns, simply, are formed by different arrange-

® Although all complex systems are nonlinear, a nonlinear system is not necessarily a complex system as we
have seen in Rayleigh-Bénard convection in section 2.3.3 (for more details see Walgraef, 2012).
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ments of the yarn. The way of stitching the each inch of the yarn to another inch
yields a specific pattern (if one knows to how to knit, for sure). Notice that, even the
components re- main the same (in this case, the same yarn) patterns show variety.
Hence we can say that, the relatedness of each inch of the yarn determines the

upcoming pattern.

Figure 2.9: Knitting patterns.

Unlike the knitting patterns, in complex systems components are dynamically
‘coupled’ with each other and the environmental factors that affect (and may be
affected by) the system without any centralized unit. The spatial couplings may be
strong or weak (Kelso, 2012). The strength of coupling determines the system’s
stability (whether it is stable, unstable, or metastable). If the coupling strength is
considered to be weak, the system would be either metastable or unstable. In such

states, the change in the interconnections of the system is highly possible.

spatiotemporal
metastability

BEHAVOR IN TIME

synchn

disorderly BEHAVIOR IN SPACE orderly

disorderly

Figure 2.10: A conceptual view of the spatial and temporal order in the behavior of
neural ensembles (retrieved from Tognoli and Kelso, 2013). Complex systems are
in between order and disorder in time and space.
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systems are In regards to couplings, some temporal patterns of activities (as such in
developmental processes of an organism) arise due to the system dynamics. The pig
embryo, for example, reaches 5 mm at approximately 17 — 18 days whereas the
chick embryo of 4 - 4.5 days is approximately 5mm (Dye, 2011). Such
spatiotemporal patterns can also show variety even in the same system. The very
reason for that is the interactions between the components are changing, namely,
dynamical. Since the relations between components are not fixed (Tognoli and
Kelso, 2013), a complex system can be both stable enough to preserve itself and

flexible enough to change itself.
2.4 The Insufficiency of Linear Methods to Represent Complex Systems

In section 2.2 and 2.3, it is distinguished that systems are either nonlinear (and com-
plex) or linear depending on the behavior of the system. To study linear systems,
there is a wide range of tools which extracts the relations between the variables (by
the means of inferential statistics) and, provides a neat way of modeling and predic-
tion (based on the superposition principle). However, when these tools are applied
to complex systems which are intrinsically nonlinear, the overall result is nothing

but lack of understanding.
2.4.1 Linear Methods

(a) Optimized representation: Since most of the time the system of interest is
overwhelmingly detailed to examine, we seek for the representations that do not
contain any ‘unnecessary’ detail. Whether or not a datum is necessary depends on
the research question. For example, if the research is intended to investigate the
causal relationship between sugar consumption and obesity, a datum of ‘95% of
people who suffer from obesity wear dark-colored clothes’ would be an unnecessary
detail. The data of sugar consumption and obesity rates are optimized whereas the

other conditions count as equal and thus are not represented.

(b) Analysis: Analysis means that examining the parts (components) of the system
separately. In other words, system is decomposed into its components. The analyst
focuses on the mere components in order to understand system behavior. In
population statistics, for example, to understand the population (system), the
specific properties of a selected group of individuals (parts), namely, of a sample

are analyzed. In biological systems, an organism is divided into its sub-units (e.g.,
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organelles like ribosomes). The analysis is performed with the extracted sub-units.

(c) Normally distributed data: The collected data represent the population of
interest. It is assumed that the data show a normal distribution which means that the
values in data are more or less close to each other. Then, the average (mean) is "the
one number that best describes what the data is like" (Liebovitch and Shehedah,
2003). As the averages of the samples from the population get larger those means
approach to a limiting value that is thought to be the real value of the population
mean (ibid). Thus, the average value characterizes the data pretty well (ibid). As a
graphical representation, normal distribution or, Gaussian distribution aims to show
the distribution of population in regard to the central tendency which is the
arithmetical average (mean) of the variables. It forms a ‘bell curve’ that is
symmetrical “with the highest frequency in the middle and frequencies tapering off
as you move toward the extreme” (Gravetter and Wallnau, 2016). The tails of the
normal distribution graph indicate that extreme cases which are represented with
low probabilities since the data are normally distributed the extremities hold low

chance to be/or happen.

Middle 95%

High prokabifity values
(scores near p. = 400)

L
z2=-196 z=4+1.9%

Extreme 5%

Scores that are very unlikely
to be obtained from the original population

Figure 2.11: A normal distribution graph (adapted from Gravetter and Wallnau,
2016).

(d) Connecting dots: The analyzed data constitute a fragmented picture of the event
of interest. Then to answer the research questions, inferential procedures are
required. The relationships between the variables are inferred according to specific
methods. These methods look at the analyzed data to obtain information such as
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high correlation rates, or temporal precedence (as in Granger causality) between
variables. With the help of inference methods the dots connected via specific
relations (e.g., causality) when the specific conditions (temporal precedence and
significant correlation) are met. For instance, (1) sugar consumption ‘caused’ obesity
and (2) the teaching method A ‘caused’ an increase in the test scores. In such cases,
the same conditions are met for causality. Notice that, it is assumed that causal
relation is linear in regards to proportionality: if sugar consumption is increased even
more, the obesity rates would have also increased. The dots, then, connected through

fixed linear relations.

(e) Equation solving: A linear system can be mathematically represented as S = ox +
b where S stands for the state of the system, x as a variable and, o and b as the
parameters. S will change in regards to any change in x or b. This change is
‘proportional’, since a slight change in the value of x (or b) causes a slight change in the
system behavior (to its new state) as a response. As discussed in section 2.2.1, due to
additivity and homogeneity properties, if the system is introduced with additional
variable y, the response will look like S, = ax + y + b. If X + b + y are the solutions
as in this case, then P =cx + dy + eb is also a solution. In this sense, such equations

can be solved analytically.
2.4.2 Nonlinearity and Complexity

To apply linear methods to complex systems, at first, nonlinearity has to be
linearized (usually by approximating) in order to fit the data in the models.
Furthermore, systems’ complexity is reduced to a non-complex representation of the
system. Consequently, complex systems lose their characteristics when the linear

methods adopted.

(a*) *° To decide on which detail is unnecessary is not a trivial task in complex
systems. It is also disputable that whether there is any unnecessary datum in those
systems. As discussed in section 2.3, complex systems are constituted by many
interacting parts which cooperate without a centralized unit. Involvement of each
component under the environmental constraints is a must to be a complex system. In

such a compact context, it is harder and possibly misleading to ‘pick’ a sample from

1% The enumeration of the articles involves a sign (*) to address that all articles are put orderly in accordance to
previous list. In section 3.4 the same rule is followed considering the lists that are presented in here.
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many interacting parts and get an optimized representation of the system. Moreover,
isolating the system from its environment is not informative considering the
undergoing feedback relations. Complex systems are mostly open systems and thus
usually, co-evolving with their environments; it means that both environment and

the system change the other accordingly.

(b*) In complex systems, parts are dynamically integrated such that systems can
produce behavior as a whole without any command center. This composed structure
can also yield novel phenomena (namely, emergence) that cannot be assigned to
components solely. In that sense, decomposition of a complex system is not an

efficient way to represent (and/or explain) such phenomena.

(c*) Statistical analysis requires that the variables are independent from each other
(heights of the persons in a class) and characterizable by the mean value. However,
since the behavior is nonlinear, the distribution of the data cannot be characterizable
with ‘one value’. Even if the averages of whole population were calculated, the
calculated value would not get ever closer to a fixed value, that means there is no
population mean at all (Liebovitch and Shehedah, 2003). Also, due to linearity,
extreme events represented with very low frequencies as ‘thin’ tails. But extreme
cases (for example, the earthquakes that scaled 6+ in Ritcher scale) occur more

frequently than a normal distribution graph represents®?.

(d*) The major difference between linear systems and complex systems is that non-
linear nature of the latter. The behavior of complex systems is governed by
nonlinear relations. Thus, the proportionality (between the input and the out- come)
does not hold within the complex systems. Positive feedback cycles as an exemplar
of nonlinear relations (as discussed in section 2.3.3) show that relations are not
fixed yet they are dynamical. In each turn of the feedback cycles, the relations are
restored and thus there is a continuum change considering the relations. Also the
couplings rest upon such nonlinear dynamics. The phenomena of generation of new
configurations within systems depends on coupling strength which is determined by

nonlinear interactions of both the components of the systems and the environment.

1 For technical details please see the literature on heavy-tailed distributions and the power law.
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(e*) Linear (differential) equations imply that the next state of the evolution of the
system is the linear combination of its elements. Then it is possible to analytically
solve the linear equations. It is also possible that linearize the state of the systems
that are close to the conditions of the stable equilibrium (Bertuglia and Vaio, 2005)
by approximation. However, such stable conditions are only avail- able at
laboratories or in any isolated environment. Nonlinear equations, on the other hand,
are too hard to solve and any imprecision in the conditions lead to enormous
differences in the outcomes. The best way to cope with nonlinearity today is
provided by computer simulations. Yet, they are limited in the sense of
computational power, and representing all of the variables and parameters of an

event.
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CHAPTER 3

CAUSAL REPRESENTATIONS AND THE CONCERNING
PROBLEMS

Is it possible to prevent global warming? Is carbon emulsion reduction really an
effective way? If customers buy more goods, would the markets improve? How
do neurons give rise to cognitive functions? Why do placebo pills affect some
people? Why do systems behave in such ways? To answer such questions we
appeal to causal explanationst. However, in contrast to growing body of scientific
knowledge about those processes, there is no single, one-to-fit-all answer. Rather
there are different answers? which can deliver limited insight on the ongoing

processes since the systems in question are complex.

The difference, most of the time, stems from the opt for different representations
of causality in the explanatory models. Then what is the reason for the
employment of different causal representations? It is because we do not have a
generic or universal definition of causality yet, and as a consequence, causal
relationships may be depicted disparately. On the other hand, it is essential to
adequately represent the causal relations since such a representation offers (i) an
explanatory architecture of the phenomenon; (ii) a basis for modeling the
phenomenon; and thus, (iii) a way to make predictions about similar events. The
criterion of the adequacy of a causal representation is, however, problematic in
itself. What is the ‘right’ way of representing causation? The one would be that

best captures the state-of-affairs, or say, the reality itself.

All of the causal representations, even if it is not explicitly put forward, rely on a
theory of causality. That is to say, each representational framework (may) make

1 My concern in this work is limited to causal explanations. However, in the literature there is an ongoing
debate on causal and non-causal explanations which is not discussed in this paper. For more information,
please see the works of Skow (2014), and Chirimuuta (2017).

2 The answers may be compatible or in contrast with the other.
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(different) ontological commitments concerning the nature of the causal connection.
Counterfactual accounts, for example, rely on the ontological assumption of "[...] if
the first object had not been, the second never had existed” (Hume, 1748). The current
attempts to represent the relation between cause and effect, either reductive or non-
reductive in the Humean sense. Concessions have been made on at least one of the
features of causality as such in the Bayesian approach: while the feature of
difference-making is ensured; however, the feature of causal necessity is abandoned.
Different representations, thus, may result in different causal inferences which can be
contradictive if we hold the view that a particular set of causes always brings a
particular set of effects. The situation gets even complicated when a complex
phenomenon (e.g. neural system) brought into question since complex systems
behave nonlinearly. My aim in this chapter is that to discuss the way we think of causal
relations in ‘structural’ models. Models in general, of course, are not considered as
complete descriptions of the state-of-affairs but rather, representations that can give an
insight on what is going on in the real world. In this thesis it is concerned that the
ontological commitments which are made within models in order to represent causality in

complex systems.
3.1 Causal Representations in Models

In the literature, the research programs of "what are causal relationships?" and "how
can one discover causal relationships?" constitute distinct territories (see Cartwright
2007, and Williamson 2007). The causal methods assume that there are some causal
relations (often, deterministic) and do not question the nature of that relation. The
focus is to detect causality. In that sense, the causal models that fit best to our
understanding of the world are proposed as methodological devices to hunt causes.
However the methods, in fact, determine what we are looking for. For instance, it
would be arduous to investigate celestial events via microscopes. The methodology
that we adopt in ‘search of something’ is attached to what we think of ‘something
is’. In philosophy, conventionally, we think of causation as a ‘necessary’ relation
between events that display some features that are (i) contiguity in space-time, (ii)
priority of causes, and (iii) constant conjunction (Hume, 1748). Following Hume,
philosophical literature has divided into two camps: reductive accounts and causal

realists. Former accounts approach to causal bond in terms of non-causal events such
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as temporal priority of the events. Contrarily, causal realists are those who do not
reduce causality to non-causal terms but rather seek a unique entity (can be whether
relation or disposition) to ontologically admit that as causation. Since those non-
causal features can be seen as symptoms, or say, footprints of the causal bond, they

can be still used to detect causality.

In modeling it is vital to determine which assumptions are (going to be) regarded in
order to provide the representation of a causal process. The reason for that is what it
is seen as sufficient enough to claim that ‘something is a cause and/or causally
related’ determines the interpretation of the model in terms of causal relation. In the
literature, there has been an ongoing debate on whether the statistical relations are
sufficient to claim causality. Considering the latest tools to be sufficient a set of
extra-statistical assumptions are required. Still, however, extra-statistical
assumptions of causality significantly constrain the phenomenon that is intended to

be modeled.
3.1.1 Causation as Dependence

Based on the available theories of causation, causal relations are usually represented
as sequences of events, i.e., a linear sequence of transitions from, or dependency of
one state to the other. Yet, these two different representations differ in theories® also.
In that sense, contemporary philosophers (like Ned Hall) put an emphasis on that
these representations indicate different "kinds of causation™ (Hall, 2004). According
to this classification, causal relation is regarded as either ‘dependence’(in other
words, difference-making) relation or a process of the ‘production’ of the effect.
There is no necessary mutual exclusion between two, yet, as Hall (ibid) put, some
properties (e.g., transitivity) that are attributed to causal relations may contradict
with other properties that have been seen as necessary counterparts for some causal
theories. Dependence or difference-making accounts rely on the intuitive ideas of (1)
‘causes make differences in terms of effects’, and (2) ‘effects are dependent to their

causes’. Most of the scientific experiments are designed in order to expose such

% Since there is no available consensus on the classification of causal theories, that claim is also disputable.
However, in this thesis the underlying idea is that each representation has its own ontological commitments
whether or not it is intended to do so.

37



dependence relations. The basic design of an experiment consisted of (at least) two
variables: dependent and independent variables. Independent variable is intentionally
modified by researchers to observe whether any change is initiated on dependent
variable. Even if there is a change it may not indicate causation. At this point one can
substantiate only that there is a correlation between the variables. Thus, as it is
discussed in section 2.2.2, the relations between the variables of interest are inferred
according to observed changes in data. To causally interpret the data, however,
additional assumptions must be introduced during data analysis. Those assumptions
may vary due to the model that is intended to fit the data. Dependence/difference-
making accounts provide a range of such assumptions that may” reside in different
causal theories. Causal theories that represent causality as a dependence relation and

their extensions in causal models can be categorized as”:

i. Regularity: Consider a simple observation toward causation. Whenever A oc- curs, the
occurrence of B is followed A, and these two events contiguous in space also. Then one
might argue that "A’s cause B’s’ iff A’s are regularly followed by B’s and contiguous"
(Reiss, 2008). Note that, A and B stand for generalized cases of events (philosophically,
‘types’). Such lawlike regular following of event (types) is the basis of regularity theory
of causation. It is a reductive account in the sense that causality is reduced to non-causal
terms (in this case, to regularity and contiguity). In other words, regularity theories
intend to "analyze causation in terms of invariable patterns of succession™ (Hitchcock,
2018). Invariability in patterns of succession implies a lawlike necessity which we seek
to understand causation in terms of. However, necessity (in natural occurrences) is a
philosophically challenging concept. Sufficiency, on the other hand, seems to be a
convenient concept to reduce causal dependency to. In this sense, regularity theories
had further improvements in terms of sufficient conditions by John Stuart Mill and John
Leslie Mackie. With sufficient conditions, the focus is shifted to token-level events and

singular causal claims from type-level events and general causal claims.

* The theories are not necessarily mutually exclusive.

® This categorization is based on the works of Hall (2004); Illari and Russo (2014), but differs from
them in respect to some details.
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According to Mill, the cause should be taken as the whole conjunction of the

conditions that are sufficient for the effect:

The cause then, philosophically speaking, is the sum total of
the conditions positive and negative taken together; the
whole of the contingencies of every description, which
being realised, the consequent invariably follows. (Mill,
1911)

In resemblance to Mill, Mackie claimed that there are such conditions that at least
are Insufficient and Non-redundant parts of Unnecessary and Sufficient (INUS)
conditions. INUS conditions are the least requirements for causality. However,
taking causes as the sums of the sufficient conditions is problematic in many aspects.
The problems will not be discussed in detail due to the limited space and the scope

of this thesis; but they can be listed as:

@) Irrelevance: A causes B when A and | occur simultaneously. For
example, salt that has been hexed by a sorcerer invariably dissolves when
placed in water (Kyburg 1965 via Hitchcock 2018).

(b) Imperfect regularities: A is a sufficient condition of a B such that the
(differing) instances of A and B are spatiotemporally proximate, thus, clearly

is not a necessary condition of A causing B (Baumgartner, 2008).

(© Asymmetry: Temporal precedence of cause(s). That is to say causes
(C) cause effects (E) and effects (E) cannot cause causes (C).

(d) Spurious regularities: Two parallel effects E1 and E2 of a common

cause C.

In the philosophical literature there is an ongoing debate on whether regularity
theories can handle with the problems enlisted. Today, at least there is a consensus
on that even if regularity theories can handle the problems, the reassessed versions®
of the theory are warranted. The most important (and related to this thesis) aspect of
regularity regards ceteris paribus conditions. Ceteris paribus suggests that ‘all other
things being equal’ or, ‘other things held constant’. It is argued that the Humean

proposal of "an object, followed by another, and where all the objects similar to the

8 In contemporary scene, Baumgartner (2008), GraBhoff and May (2001) and others attempt to provide an
alternative account for counterfactual and probabilistic theories of causation.
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first, are followed by objects similar to the second” (Hume, 1748) should be considered
under ceteris paribus conditions. However, the application of ceteris paribus is itself
problematic in respect to vague definition of it (Reutlinger et al., 2017). For example,
which conditions should be considered as equal, fixed, or constant? Ceteris paribus

conditions, indeed, constitute a fundamental problem in causal modeling ’.

ii. Probability: If A causes B, then in the presence of A, it is plausible to think that
probability of the occurrence of B raises given the state of absence of A. In this regard,
earlier accounts of probabilistic dependence (put forward by Hans Reichenbach, Irving
J. Good, Patrick Suppes) grounded on that assumption: ‘causes raise the probability of
their effects’. It is formalized as follows: A causes B iff P (B|A) > P (B). However, there
are some causes that seem to lower the effect’s probability. For example, a drug may
inhibit releasing of a hormone and thereby regulate the function of an organ. In this case
the drug (in fact, inhibition of the hormone) causes the regulation of the organ
functioning. Or, similarly, omission of calcium-intake in human body may cause
osteoporosis. To allow such chance-lowering cases, probabilistic accounts updated the
central assumption as ‘causes change the probability of their effects’. Then, to detect
causality one may look into statistical changes in data. As often put, correlation is not
causation; but it can provide information about the underlying causal structure
(Glymour and Cooper, 1999).

The idea of causal discovery from probabilistic dependencies is gained strength as
Bayesian nets method is introduced. Clark Glymour, Gregory F. Cooper, Peter Spirtes,
Richard Sheines et almuni pioneered the use of Bayes-nets to detect causal relationships
given observational data. In that framework, Bayesian net- works serve as a

representation of causal relations.

A Bayesian network consists of a structural model and a set of
probabilities. The structural model is a directed acyclic graph in which
nodes represent variables and arcs represent probabilistic de-
pendence. (ibid).

" In the literature it is discussed as the ‘context-sensitivity’, or ‘background knowledge’ proble
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Figure 3.1: A directed acyclic graph (DAG).

Figure 3.2: A directed acyclic graph (DAG) with the distributed probabilities. The
probabilities to specify are P (A), P (B), P (C|A, B), P (E|C), P (C|D), P (F |[E), and P
(G|D, E, F). Retrieved from Glymour and Cooper (1999).
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Figure 3.3: A causal Bayes net that is retreived from Glymour and Cooper (1999).
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In causal Bayes nets arcs are interpreted as causal influences. Such
interpretation of Bayes nets, however, requires additional assumptions to be
introduced. Causal Markov Condition (CMC) and Faithfulness are the essential
ones. CMC stands for each variable to be probabilistically independent of its
nondescendants given its parents (ibid). Thus, direct causation is implied.
Faithfulness condition, on the other hand, suggests CMC: "In a causal graph, no
probabilistic independencies hold other than those predicted by the CMC"
(Reiss, 2007). Then all the interdependices in data are not accidental but rather
structural which means that resulting from the structure of the causal graph
(Druzdzel, 2009). In the presence of (at least) those two assumptions
manipulation is informative in terms of causation. In this regard, causal test

undergoes with manipulations on selected variables. Consider figure 3.4:

A
O

Figure 3.4: A causal DAG.
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Figure 3.5: An example for spurious regularity retrieved from Hitchcock
(2018).

Any intervention on A will result in change in the causal chain of B— C, B — D
then we can infer that A causes B. In this case, regularity theory would be in-
sufficient to explain the independency between C and D. Notice that spurious
regularity problem is solved within probabilistic theory. Also, the problems of

imperfect regularity and irrelevance are ruled out within this account. Imperfect
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regularities such as in the case of "smoking is a cause of lung cancer, even though
some smokers do not develop lung cancer" do not constitute a problem in
probabilistic accounts since causes change the probability of their effects and thus,
"an effect may still occur in the absence of a cause or fail to occur in its
presence”(Hitchcock, 2018). The problem of irrelevance is ruled out because if
there is no difference in terms of effects one cannot claim the presence of causal

influence. The problem of asymmetry, however, remains.

Figure 3.6: The variable E cancels (or say, inhibits) the variable D.

Figure 3.7: In this case, collider variable is C.

As a structural model, causal Bayes nets model the entity that is assumed to have a
common set of causal relationships. If there are different sets of causal relationships
then it becomes a causal mixture model where the mixture is represented by using a

hidden binary variable (Glymour and Cooper, 1999).
M%@

Figure 3.8: A causal Bayes net with a representation for causal mixture from
Glymour and Cooper (1999).
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Representing the different causal relations as a node (see H in the figure above),
however, does not seem satisfactory to me contrary to Glymour and Cooper
who claimed that is an adequate way to represent mixtures. The relation(s)
between the mixture (H) and any other variable (Z) would be different (and
probably more complicated) rather than the structural relation that is already
assumed to be different from. In the next chapter, it is rather suggested that
representing the different causal relationships appealing to the term of relation
itself. In this specific case, it would correspond to such qualitative (and

unfortunately loose) representation in figure 3.9.
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Figure 3.9: An oversimplified suggestion of representing causal mixture
models.

Although the discussion is kept it short in this section, as Glymour and
Cooper (ibid) put, the discovery (and to me, the representation) of mixtures of
causal structures is a challenging and largely open problem. After all,
probabilistic dependence is neither necessary nor sufficient for causation
(Reiss, 2008). It is not necessary since there may be cancelling causes and not
sufficient since there are cases of collider variables, and non-stationary time
series (ibid) where the changes in probabilities can not be accounted for its

direct causes (namely, its parents).

iii. Invariance: Invariance condition is met when "a relationship between two
or more variables is invariant if it would remain continue to hold - would
remain stable or unchanged- as various other conditions change” (Woodward,
1997). A safe definition for causality would be the one that holds property of
invariance, thus a causal claim becomes generic and cleansed from any

spurious or correlational relations. In that sense, invariance method is
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developed as a test for causality in the early econometric models (suggested by
Cowles Commission), and had further improvements by the works of James
Woodward and Daniel Hausman with philosophical insights. Woodward and
Hausman use the term of invariance in the sense that stability of the functional
relation under some changes. Such that, there are equations that have a causal
interpretation, satisfy certain requirements like invariance under intervention and
independence of mechanisms (Hausman and Wood-ward, 1999). The equations that
are studied by Woodward and Hausman mostly have the linear regression form as

in equation 3.1.

Y =aX+U (3.1)

In the equation above Y represents the dependent variable and X represents the
independent variable where U is the error term that stands for omitted causes. The
parameter o represents the magnitude of X. If Y changes in the way described by
the equation then this equation represents a causal relationship (between X and Y).
As Woodward and Hausman put it, if Y doesn’t change in that way as a result of
intervention that changes the value of X, then the equation will not be a correct
description of the causal relation-ship between X and Y. Thus, in this framework,
invariance is a property of being causal whereas intervention is a way to test that
invariance conditions. Woodward and Hausman also note that even some
regression equations have the same mathematical solution, they might stand for
different systems of causal relations. The structure of the equations bears a syntax

for specific causal route.

Y=aX+U (3.2)
Z=bX+cY+V (3.3)
Z=dX+W (3.4)

(whered=b+caand W=cU +V)
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Equations 3.2 and 3.3, 3.4 represent two different systems of causal relationships:

X U X
\%’
174
Y
g X
7z Z
(a) (b)

Figure 3.10: The causal structures for given equations of 3.2 and 3.3, 3.4. Retrieved
from Hausman and Woodward (1999).

In the figure, (a) embodies the structure that is given by the equations of 3.2 and 3.3
whereas the structure of 3.4 given as (b). In Woodward and Hausman’s framework,
the equations 3.2 and 3.3, 3.4 describe different (causal) mechanisms. Such "sets of
simultaneous linear equations satisfying specific constraints™ are, hence, thought to
be causal representations in the framework of invariance accounts (Cartwright, 2007).
David Hendry also advocates similar account in terms of social policies: "causes must
[...] satisfy certain probabilistic conditions and they must continue to do so under the
policy interventions envisaged” (ibid). As an additional assumption, Woodward
(2003) puts forward ‘modularity’ condition which states that "the mechanism
described by each individual equation be distinct from the mechanisms described by
the others" (Hausman and Woodward, 1999). Furthermore, it is argued that "[...] as
modularity fails, the asserted causal structure fails to mirror what will happen under
hypothetical interventions and, [...] fails to represent correctly the causal structure of
the system" (ibid). However, modularity seems to fail at many examples of causal
relations8. In that sense, modularity is a highly dis- puted condition in the literature
and it reaches beyond the scope of this thesis. Concerning the causal relation that
Woodward and Hausman (1999) argue that within modularity there is no pre-
supposition for linearity and/or additivity but rather the distinctiveness of the
mechanisms is what modularity requires. In complex systems, as it will be discussed
at the last section of this chapter, it is almost impossible to isolate such causal

mechanisms. Moreover, Woodward and Hausman assert that their account is not

46



limited to linear equations, but rather such structural equations that are not linear

can also be invariant under some changes and be modular:

Y =f(X) +U (3.5)

Z=g(X,Y)+V (3.6)

The structural representations for the equations 3.5 and 3.6 are not provided though,
and as the authors admit such equations still assume that the error term, or say, the
set of omitted causes, is additive (ibid). Hence, for nonlinear cases we have to
assume that — at least the error term to be linear. To represent such cases like 3.5
and 3.6 in terms of causal structures, as it will be argued in section 3.3, linearity has
to be assumed.

iv. Counterfactual: Hume had proposed a second definition (possibly he had not
intended to do so) for causal dependence in a way that stands complementary to his
views on regularity (Menzies, 2017): "where, if the first object had not been, the
second never had existed.” (Hume, 1748). Following Hume, Mill and Mackie are
pondered about the logical forms of such conditional statements in order to analyze
causal claims. The refined formalization of counterfactual account of causal
dependence is found in the works of David Lewis. Counterfactual conditionals take
the form of “if A had not occurred, C would not have occurred”. The analysis of
"had not - would not" clauses is at the center of Lewis’ agenda of analyzing
causality (Poellinger, 2012) in terms of possible world semantics. Lewis, indeed,
takes counterfactual statements that are about possible alternatives to the actual
situation (Lewis, 1973). Since "the semantics of conditionals exploits certain
invariant relationships, certain dependencies” (Shulz, 2011), it is thought that causal
claims can be reduced to counterfactual statements. Any alteration of the event
changes the dependency relation between the events, thus expected to bring
different consequences. Different versions of counterfactual dependence are
available in the literature.

8 For details please see Cartwright 2007, lllari and Russo 2014, and others.
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One of the versions® of counterfactual account is "The Structural Equations
Framework" that developed in the works of Hitchcock (2001, 2007); Wood- ward
(2005); Woodward and Hitchcock (2003) in regard to Judea Pearl’s works on causal
inference besides the works of Peter Spirtes, Clark Glymour, and Richard Scheines on
causal Bayes nets (Menzies, 2017). Pearl’s agenda of causal inference, however, based
on structural models rather than possible worlds semantics (Pearl, 2013). This account

will be examined in section 3.2.

Despite the different versions of counterfactual account, the criticism toward

counterfactuality mainly grounds on three basic assumptions of causation (Hall, 2004):
(@)  Transitivity: a is a cause of b, and b cause of c; then a is a cause of c.

(b)  Locality: Causal connection is provided via spatiotemporal contiguity of causal

intermediates.
(c) Intrinsicness: Causal relations hold by intrinsic, non-causal character.

Hall argues that counterfactual accounts are not compatible with those assumptions
(where production accounts are) and in fact, require "an entirely different kind of
analysis" (ibid). Similarly, Maria Carla Galavotti and Nancy Cartwright think that there
might be a variety of different causal relations (Cartwright, 2007) which are suitable for
different analyses. On the other hand, the issue of whether counterfactual accounts can
handle the problems raised by the assumptions that are given above is still a disputable

topic.
3.1.2 Causation as Production

Difference-making accounts, in general, put emphasis on the effects in terms of ob-
served changes. It is thought that tracing the changes in the putative effects may unveil
causation. Production accounts, on the other hand, focus on causal process itself. Since
the idea behind the difference-making accounts is not in contrast with the idea of
production accounts (at least in principle), there are also attempts to combine these accounts
(for example, Handfield et al. 2008 attempt to integrate causal processes with causal Bayes

nets). Yet, they still significantly differ in some respects.

® Or, call it the extensions of counterfactual account.
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Accounts that see causation as production (or say, process) depict causal link as "a
continuous line in spacetime that transmits or propagates some kind of physical
quantity or quantities” (Illari and Russo, 2014). In this sense, process accounts are
more concerned to provide somewhat physical theory of causation. Earlier accounts
of production are put forward under the influence of Bertnard Russell’s later works
on causality. Contrary to his earlier thoughts on causation, Russell thinks that
physical occurrences unfold in causal lines. These causal lines picture causality in
spacetime. In the same vein, Jerrold Aronson and David Fair appeal to physical
depiction of causality based on the exchange of energy and/or momentum (Dowe,
2008). Causal relations, in these accounts, are represented as transference processes.
Hence, Aronson and Fair advocated that causal relation to be "an objective feature
of the world" (Dowe, 2000).

The problems with transference account of causation had steered the discussion into
a ‘processual’ view of causality. Wesley Salmon defended a process theory of

causation which can be generalized as "a token event ¢ caused a token event e if and

only if ¢ and e are connected by a series of intersecting causal processes whose
intersections constitute causal interactions™ (Gallow, 2017). In the framework of
Salmon’s theory of causation, causal processes are regarded as a characteristic of
some processes which transmit ‘marks’. However, a series of new problems have
arisen due to mark transmission. Phil Dowe developed a revised version of
Salmon’s account by pointing out those problems. Dowe advocated ‘conserved
quantities’ instead of transmitted marks (Dowe, 2000). Similar problems are
revealed mostly due to putative physical correspondents of causal links. As it can be
seen, within production framework there is no established methodology and/or
proposed models for causal processes. The application domain of production
accounts is the physical models' (e.g., the model for the electrical charge-
exchanges) instead of a proposed causal model that comprises causal processes.
Accordingly, the models that are investigated throughout this thesis rely on
difference-making accounts of causation. However, it is noteworthy that in-

formation theoretic account of causation (that is classified under production

1% There is a debate on the application domain of process theories of causation. For detailed discussion please see
Russo (2010), and Machamer et al. (2000).
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theories in Illari and Russo 2014) may constitute an exception in terms of causal
modeling. In information theoretical framework, causal link is somewhat quantified
and thus it is possible to propose a specific model based on this account. A recent
causal account that is based on the information theory is recalled ‘causal
emergence’ by Hoel et alumni. But information-theoretical account is not issued in

this thesis since it would require a sophisticated study on itself"'.
3.2 Causal Models

Even if there is no consensus on the definition of causation and the method for de-
tecting it, at least, we can expect that a causal relation to be a stable relation across a
given domain of constraints. Then the question is: Can we extract a schema of
stable relations given dataset? Such a schema would constitute a structure that
represents a (causal) mechanism. If the model is intended to uncover the structure
underlying the data then it is classified as a ‘structural model’. Causal models on
offer are all structural, in that sense What it is meant by structure, however, remains
disputable. Earlier accounts that are adopted by Sewall Wright and Cowles
Commission imply a mechanism that is already defined in theory. The recent
accounts of Pearl and Mouchart et al., on the other hand, aim to ‘give structure’
within the background knowledge that is provided by either theory or analyses of
data (lllari and Russo, 2014). Structural (causal) models encompass structural
equation models (SEMs), causal graphs, causal Bayes nets (CBN) methods, and
variational model-framework all to- gether. However, the methodology for finding a
causal structure may show variety. CBN adopts an inductive methodology (thus, it
is an exploratory) whereas others use hypothetico-deductive inference method
(Mouchart et al., 2010) which is a confirmatory method. Thus, each modeling
technique has its own peculiarity in terms of interpretation of data but also some
commonalities such as extra-statistical assumptions they made. In the following
sections, the focus is that some of those assumptions which are claimed to be

essential for causally interpret the data.

1 For a comprehensive approach, please see the works of Collier (1999), lllari (2011), Floridi (2016), Hoel
et al. (2013) and the related literature.

50



3.2.1 Structural Equation Models

SEMs are consisted of a set of equations that take regression form (such as the
equation 3.7). The general framework of SEMs, initially, put forward by Wright
(1921) with the form of a path diagram (for example, see figure 3.11) to represent
causal relations. Beyond the mathematical description, SEM has a syntax for

causal interpretation.

Y = aX+U (3.7)

The equation 3.7 forms a structural equation where Y denotes effect(s) (according
to right-hand-side convention), X represents cause(s) and how much X affects (a),
and U stands for omitted cause(s) or, technically speaking, error terms in our
observation. This form of structural equation (which is in the regression form)
allow analytical solution and thus, to the separability of the variables. It means that
when the variables and their determinants are known (or simply presumed) it is

possible to predict the outcome of a causal chain:

If we know the extent to which a variable X is determined by a

certain cause M, which is independent of other causes,

combines with them additively and acts on X in a linear

manner, and if we know the extent to which M is determined by

a more remote cause A, the degree of de- termination of X by A

must be the product of the component degrees of determination.

(Wright, 1921)
In the presence of latent variables (omitted causes) it is still feasible to make predic-
tions once the structure is put in the regression form. The form implies
proportionality of the effects in regard to causes under given conditions. If the
structure is known a priori, the data of the effects would be sufficient to infer
(direct) causal influence or likewise, the data among observed causes and effects

can reveal latent variables.

To analyze causal chains Wright suggests the method of path analysis. This method
"allows one to decompose the covariance [that is a measure of how much two
random variables vary together] between two variables in a structural equation

model into additive components, thus helping to understand how the inter-
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relationships between many variables in a model predict the covariance between
two selected variables” (Boker and McArdle, 2014). Performing path analysis
would provide the prediction of system-states given the conditions by tracing the
dependence relations.

4 U
>~
M B X

Figure 3.11: Path diagram of X = M + U and M = A. It is interpreted as A causes
M and M causes X under the conditions of U .

Since the variables (the components) are decomposable, intervention (to specific
variables) is possible. Remember the interventionist account which is based on
structural equations. Due to the assumption of invariance, we expect that any
change in the variables would steer a difference in the other as the way that is

described by the equation. The equation propels a linear change in this form.

Notice that, even the analytical solutions for the equations are mathematically same,
each set of equations stands for a unique solution (with right-hand convention)
which turns out to be a unique structure. Thereby they might represent different
causal routes which, philosophically, imply different (causal) mechanisms
(Woodward, 1997).

3.2.2 Causal Graphs

Causal graphs are the DAGs that are causally interpreted (Scheines, 1997). As it is
discussed in section 3.1.1, a DAG is a mathematical object that takes probability
distributions among its nodes (variables). Thus, (in)dependency relations between
the variables of interest are embodied in these graphs. Also, a DAG constitutes a
structural model given the causal assumptions. Acyclicity (which means there are
no feedback relations between variables), CMC, and Faithfulness are the basic
assumptions that made up causal DAGs. However, to read the data in terms of
causality — more specifically, the (in)dependency relations in the data, DAGs seek

further assumptions.
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Data generation process, as it is shortly discussed in section 2.2.2, is all about sta-
tistical assumptions that researcher appeals in regard to the observed (and/or exper-
imented) phenomena. Linearity, normal distribution, additivity, homoscedasticity
are among such statistical assumptions. Causal interpretation, on the other hand,
brings extra-statistical assumptions on the table. Extra-statistical assumptions
constitute the untested causal assumptions which include causal acyclicity, causal
priority, causal mechanism (Russo, 2010). Accordingly, causal models, independent
of whether the approach is exploratory or confirmatory, encode both statistical and

causal assumptions.

SEMs in its traditional sense, do not hold specific causal assumptions but they im-
pose a causal structure upon the system under investigation through the theories a
priori given. Apart from traditional SEMs, Pearl in his seminal work on causal mod-
eling (Pearl, 2009b) advanced the causal graphs with the encoded causal
assumptions. Causal relations are represented in counterfactual forms. However,
counterfactuality in Pearl’s framework does not refer to possible world semantics

that is put forward by Lewis. Pearl states:

In contrast with Lewis’s theory, [structural] counterfactuals are not
based on an abstract notion of similarity among hypothetical worlds;
instead they rest directly on the mechanisms (or ‘laws,’ to be fancy) that
govern those worlds and on the invariant properties of those
mechanisms. Lewis’s elusive ‘miracles’ are replaced by principled
mini-surgeries, do(X= x), which represent a minimal change (to a
model) necessary for establishing the antecedent X = x (for all u).
(Pearl, 2013)

According to Pearl, to fit model to data a probabilistic analysis of counterfactuals is
required, and that is provided through DAGs. Pearl delivers the link that serves as a
bridge between causal models and observed data with the assumptions of d-
separation and backdoor paths. d-separation is a criterion of determining whether a
set of variables (say, X) is independent of another set Y , given a third set Z. With
this criterion it is intended "to associate ‘dependence’ with ‘connectedness’ (i.e., the
existence of a connecting path) and ‘independence’ with ‘unconnected-ness’ or
‘separation’" (Pearl, 2009c). Backdoor and frontdoor conditions, similarly, rely on
the separability of causal paths. Backdoor conditions are controlled by blocking the

specific nodes.
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Within such assumptions and counterfactuality, Pearl suggests a framework for
causal calculus which allows to infer causal relations from a DAG under the "ideal
manipulations and the changes in the probability distribution that follow such
manipulations” (Scheines, 1997). Yet, the idea has roots in SEM:

[...]feature of invariance permits us to use structural equations
as a basis for modeling causal effects and counterfactuals.
This is done through a mathematical operator called do(x)
which simulates physical interventions by deleting certain
functions from the model, replacing them by a constant X = X,
while keeping the rest of the model unchanged. (Pearl, 2009a).

Causality is, thus, represented as (level) invariant, decomposable into the
components that are assumed to be related causally (thus, additive), acyclic, and
structural counterfactual relation. In the frameworks of Pearl and Spirtes et al. it is
argued that linearity is not demanded and it is the most important departure point
from traditional SEMs (Pearl 2009b; Morgan and Winship 2007). Then, structural
equations are not necessarily consisted of linear functions. As an example, Pearl

(2009Db) presents the formalization below:

Xi =fi(pai,ui) (3.8)

wherei=1,2,3..,n

In equation (3.8), immediate causes of x;, namely the connoting parents, are rep-
resented as pa;, and omitted causes correspond to ui. In this form, equation (3.8)
constitutes a nonlinear, nonparametric generalization of the linear structural models
(Pearl, 2009b). A similar argument is proposed by Woodward, where some
nonlinear functions (like Y =f (X) + U or Z = g(X, Y ) + V) might represent
invariant and modular structures. Yet, as it is discussed in previous sections, to
argue that such equations to be structural, the functions should be linear in their
omitted causes (e.g., U and V ). In other words, to introduce invariance and
modularity to nonlinear functions, at least the error terms (omitted causes) in the
equation should be linear since it is not possible to decompose nonlinear equations

analytically.

125ee in section 3.1.1.
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Mini-surgeries that are operated in Pearl’s framework, CMC, Faithfulness and d-
separation are, indeed, useful when the system in question is decomposable into
some disjoint events (or parts, mechanisms) that can remain unchanged under
specific interventions. However, in nonlinear cases (such as complex relations of
biological systems mentioned in section 2.3.4) decomposing the system would
result in loss of underlying (causal) relations. Think of, as an example,
consciousness in humans. We (at least) know that specific brain regions are
essential to be conscious; but even when we decompose all the neural system we are
not able to explain how conscious processes are generated. Besides the ‘big issues’
like consciousness, at the abstract level of mathematics, nonlinear functions are not
decomposable and thus treated with linearization methods. Likewise, in causal
modeling we see that nonlinearity treated with the assumptions of additivity in noise

(error terms) and/or additivity in parameters (see equation 3.9 from Mulaik 2009).

y=m tax+t oaX> + agxX® + ..+ X! (3.9

Thus, linearity is assumed (at least to some extent) within the nonlinear representa-
tions of causal relations. Causal models on offer, in that sense, do not seem applica-
ble to nonlinear cases unless the nonlinearity is being linearized. But why linearized
modeling is not a satisfactory way to represent causality in nonlinearity is the

question that it is intended to be answered in the following sections.
3.3 Linear Assumptions in Causal Models

The structure that is described by the equations, represents a causal relation. What is
implied by a structural equation in terms of causality then, would suggest what kind
of causal relation that we are looking for. Although Pearl (2012), and others (like
Spirtes et al.) have argued that it is not limited to linear functions, "a structural
equation suggests that the relation between [the given variables are] linear” (lllari
and Russo, 2014). Indeed, in contrast to a wide range of examples of linear causal
structures in the literature, nonlinear cases are often either neglected or linearized
(with the assumption of additivity of the error terms or the parameters, or with the

approximation). It is argued that causal models on offer depict linear causal
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relations (even when nonlinearity is admitted) since the structure hold a linear(ized)

form. The form of linear structural equation (as we have already seen many times)

goes like this:

Y = ax+U (3.10)

In a causal model, this equation offers:

1.

2
3.
4

in which conditions X causes Y (atimes X cause Y in the presence of U*®).

. what remains unchanged in case of X causes Y .

X'is proportional to Y (a times X causes Y).

. what would happen when components are manipulated (if X is erased Y would

not be occurred).
resolution of the structure by superposition:

(a) additivity of the components (each cause is additive, and U the error
term is independent of X the cause).

(b) homogeneity of the system (as a.increases the effect Y increases).

a causal mechanism that is not interbedded with any other. An intervention on X
leave intact all other mechanisms besides the mechanism that previously
determined the value of X (Woodward, 2016).

a description for graphical representation (two disjoint arrows that point Y and

the strength of X to Y arrow is o).

The nonlinear functions in structural equations take the forms of:

Yi= fi(Xi, Ui) (3.11)

Y =f(X)+U (3.12)

13 Generally such a claim is supported with a set of structural equations in order to specify the conditions.
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The given forms of equations in a causal model suggest the causal claims of:
1. Y is affected by X
2. in which conditions X causes Y (X causes Y in the presence of U ).

3. (partial) additivity of the components (U the omitted cause is independent

of X the cause).

4. the graphical representation is the same as the linear ones (two disjoint
arrows that point Y : one is directed from U and the other defines a nonlinear
function of f(X)).

The function f(X) is not decomposable if it constitutes a nonlinear function. In terms
of causality, thus, there is nothing much to infer about the underlying causal relation
from this form. However if it is presumed (or known) that noise is additive*, and
the nonlinear function is a priori given (in principle) the effects (or the future states)
can be approximately estimated. Or else, if the nonlinear function is linear in its
parameters (as o’s in equation 3.9), it provides proportionality which makes easier
to trace the changes in the effect(s). With such assumptions prediction becomes

possible - at least - to some extent.

Causation, indeed, seems to hold its predictive power in regard to proportionality.
Think of, simply, if I consume fast food | will end up with increased body fat and
weight; following the same reasoning if I consume too much fast food, the fat that |
will gain would be commensurately increased. Under ceteris paribus conditions
(e.g., same metabolic rate, same physical activity, etc.) it can be argued that fast
food causes weight-gain. What if we observe that 90% of a fast-food-consumer

population suffers from overweight? Does the same causal relation underlie in here?

In structural models, it is assumed that causal relation is implanted in the probability
distributions. In fact, according to this framework, there are causal relations within
probabilistic relations that realize in structural form. That is to say, each input

related to an exact output (by this way, proportionality ensured) thus, each input is

% For technical details please see Kun and Aapo (2016) and Peters et al. (2014).
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actualized in a distinct mechanism. Causal processes, then, consisted of linear
sequences of causes and effects that are not interbedded. Thereby, causation within

the linear assumptions embodies such rules:

I The ultimate effect of the combined action of two (or more) different causes
is merely the superposition of the effects of each cause taken individually
(Nicolis, 1995). It does not matter whether causes are given separately or in

a combined way.

ii. Mathematically, causal processes can be modeled by (deterministic linear)
differential equations since for any cause X, which is determined by Y with

the unknown causes, Y = X + Uy .

iii. We can pilot the system’s evolution by means of the causes of known conse-
quences, which are always the same type and, above all, that are
proportional to the intensity of the cause (Bertuglia and Vaio, 2005). It is

simply because if X caused Y, we expect that two X’s will cause two Y ’s.

v, Causality depends on the inputs merely; the combination of the inputs does
not qualitatively change the output. The causal relation is fixed given the

same causes.
3.4 Linearity, Nonlinearity, and Causality

In section 2.4 It is presented a list that comprises why linear methods are
insufficient to represent the nonlinear phenomena. Likewise, throughout this chapter
it is attempted to make explicit the linear assumptions made in causal models.
Following that, here, it is intended to expand why causal models that are based on
the assumptions of linearity are insufficient to represent the causal relations in

complex (thus intrinsically nonlinear) systems.

(a**) Ceteris paribus: Causal models offer an optimized representation of a causal
relation while others (independent factors) are held constant or fixed. That is to say,
a causal event is modeled under ceteris paribus condition. Since each causal model
stands for a causal mechanism that is not interbedded with an- other, the causality is
represented under heavily restricted conditions. Consequently the causal model we
have is an isolated representation of "a" causal relation. On the other hand, in

complex systems all of the components are interrelated in such a way that we

58



cannot speak of isolated (causal) mechanisms. Moreover, complex relations that
are realized during adaption and/or co-evolution would not be modeled with
current causal models. The reason is that acyclic relations like feedback
mechanisms are not allowed in causal graphs™.

(b**) Analysis: Causal models decompose the system that is to be modeled into
probability distributions of the variables. Thus, the entity to be modeled is
disintegrated. Separability of the components (which consist of all the variables,
parameters, and omitted causes) makes what causal model is analyzable.
Structure of the models is built on the assumptions that rely on the separability.
Error terms (omitted factors) are separable since it is assumed that error terms
are uncorrelated with each other and all the other variables in the model. The
assumption of d-separation, especially, allows to determine the connectedness
and separation of the variables under given conditions.

Causation, as a relation between the variables, is inferred from the probability
distributions of the components. However, decomposing a complex system
would not be a favorable method if one seeks to understand the behavior as a
system, or any other systemic properties since analysis results in interruption of
the relations. Complex systems, on the other hand, are highly-integrated entities
and hold characteristics like emergence which cannot be foreseen by the mere
information on the components.

(c**) Normal distribution: Causal models take probability distributions. Yet, to
model dependency that is believed to indicate causality, a variety of statistical
assumptions have to be made to get an interpretable dataset. One of the statistical
assumptions is that the variables are normally distributed. But in nonlinear
systems the distributions may (in fact, most of the time) show asymmetry. Given
the causal model which is structural the parameters and the structure forms do
affect the variables. Error terms, similarly, are not affected® by intervention not
since they stand for omitted factors (or say, noise). Since the relation between

change under intervention. Intervention, if the model is adequate, would only

¥ There are studies on causal modeling with acyclic relations (e.g., Hoyer et al. 2012); however, the extent is
limited to acyclic linear relations. In complex systems, acyclic relations are accompanied with positive
feedback loops which result in nonlinearity as it is discussed in section 2.3.3.

1)t is also an assumption as it is explicated in previous sections.
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variables is nonlinear, in (complex) nonlinear cases, causal models assume that (at
least) the omitted factors are additive which means that error terms are linear, and
thus, normally distributed in the data. Consequently, | found that it is not a realistic
treatment for nonlinear phenomena considering the open- systems where the omitted
causes are more complicated to be classified under the term of noise or error terms.
Variables and parameters are often found to be dependent on each other. This makes
evaluating the system according to those average values of the data to be less

reliable method.

(d**) Connecting dots and dependency: The main purpose of the causal models is to
detect causal relations by exposing dependency relations. The dependency relation
we look for is the one that remains invariant under specific changes. It is still an
assumption; but also a good reason to believe that there is an underlying causal
relation. However condition of invariance restricts causality to be fixed, proportional
and thus, linear. The causal relation is fixed since it should remain unchanged under
specific manipulations. Likewise, proportionality and linearity is encoded in the
invariant (and modular) structural equations since the same proportion holds for
same relation. On the other hand, complex systems are dynamical entities that
undergo continuous changes. Also, historicity matters. That means a factor that is
once a cause may no longer be a cause in the future states (one may consider the
developmental processes, in  this sense). Moreover, due to nonlinear relations

proportionality does not hold within inter- relations of such systems.

(e**) Equation solving: Causal models offer a structural equation that holds an
analytical solution, and a semantics to read the equation in terms of causality. Such
structural equations hold the properties of additivity and homogeneity. Hence given
superposition of the causes we can perfectly estimate the effects. The structural
equation, thus, is a recipe for manipulation and prediction given the conditions. Even
the system is manipulated, (it is assumed that) parameters do not change. It provides
proportionality between the causes and their effects. However, today, complex
systems can be modeled only in terms of nonlinear differential equations (because of
the dynamicity). Nonlinear differential equations do not have analytical solutions. In

this sense, they are not decomposable into its constituents.
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Considering the problems that are listed above, the linear approach within causal
models seems to be an untenable strategy to model causal relations of complex sys-
tems. To regard nonlinearity among causal relations, however, a new
representational framework is needed since all of the modeling tools that we have
today rely on linearity assumptions. Yet, at first, it should be provided that an
ontological basis that embraces nonlinear relations. The last chapter, with that in
mind, is reserved for alternative routes to take in order to find a causal

representation that best fits to complex nonlinear phenomena.
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CHAPTER 4

IS THERE AN ALTERNATIVE?

"How does causation work in nonlinear (and complex) systems?" is the big question
that is mainly concerned in this paper. Since it cannot be answered easily, | attempted
to approach the question through meditating on the nature of relationships in complex
systems. In complex systems, the components are interconnected in such a way that
the action of each component can produce more than one response. That is the point
where linear causation becomes obsolete. On the other hand, the problem arises: How
can we detect (and/or model) causality in such a mass of outputs?

The linear approach towards causation seeks agreement on the context, or to put in
philosophical jargon, propels ceteris paribus conditions. Then, the components are
represented as somewhat isolated from the environment and the complexity gets lost.
Causality, due to linearity, bounded to the components solely, thus the relations that
are assigned to the components do not hold dynamicity on their own. In other words,
the components become overemphasized whereas the relational dynamics are
ignored. On the contrary, in complex systems we see that the very same components
may build connections in different compositions, thus can lead to different character-
istics. A given representational framework that focuses on the causal relations rather
than solely components, is it possible to capture the process of system’s evolution?

| think it is possible and the very reason for that is any formalization that undermines
the relations will not be sufficient to account complexity since it arises from the re-
lations among the components (within their environments). As it is discussed in this
paper, the relations are nonlinear as in the positive feedback loops. In the literature,
positive feedback loops are recalled ‘circular causation’ or ‘reciprocal causation’ as
well, and yet, we lack of a sound formalization for such loops in terms of causation.
In fact, they are ignored since positive feedback cycles violate the assumptions of

causal acyclicity.
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Contrarily, the argument in here is that representations based on the dynamics of
nonlinearity may provide causality in complex systems. To achieve that, however,
we need "new tools of thought" (Prigogine and Stengers, 1984) rather than the

linearized models of nonlinear relations.

4.1 On Possibility of a Nonlinear Causal Account

Modeling as a tool for thinking in sciences (and philosophy of sciences, of course)
has its pros and cons. First of all, we develop models because models help us
improve our understanding of entity of interest. Entity is being represented in
models in a way that it becomes idealized in regard to manageable information load
for humans. Due to the limited humane abilities, thus, models hold cognitive
significance in sciences at the least. If not just for understanding the entity in
question, models, when are adequately put, serve as prediction machines that can
yield accurate results for circumstances given the input. In parallelism with the
entity being represented, the trajectory of the behavior of the entity can be inferred
through the related models. Yet, there are strict restrictions within the models. For
example, models — by definition, can represent the entity only to some extent. They
are restricted representations of the entities. In that sense, models are applicable to a
class of circumstances rather than all of the possible scenarios. In linear systems,
however, as it is discussed in section 2.2 that restriction may not constitute a
problem at all. The reason for that is the behavior of the linear systems can be
precisely estimated through a modeling principle which is called the rule of
superposition. Contrarily, complex systems cannot be dispersed to the superposition
of their parts. Besides such a drawback, a few other reasons that restrain to model
complex systems are also presented in sections 2.3.1, 2.3.2, and 2.3.4. When the
linear modeling tools are applied to such systems it does not seem that complex
systems are represented fairly. Supporting that claim, it can be also considered that
the everyday examples like inaccuracy in the predictions for the behaviors of stock
markets, societies, or epidemics, etc. The insufficiency of linear modeling is already
discussed in section 2.4. The lack of tools that regard nonlinearity and complexity is
apparent. Then what can be done? First point that is in need of urgent clarification is
that the procedures of representation and linearization in respect to modeling
complex systems. It is said that models are kinds of idealized representations of the
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entities of interest. As an example of representation consider Figure 2.4 in section
2.2.2 where the understanding of the subject that is taught to the school children is
represented in the numbers of their test scores. An example of a model as a
representation, on the other hand, would be the SEMs that stand for underlying causal
mechanism of an event. In each case there are some assumptions — mostly statistical,
and within such assumptions entities in quest are represented as in a linearized form.
That is to say, the representations hold the properties of linearity such as separability
or being normally distributed. The linearized form allows us to analyze the systems
without disturbing the other factors which are not interested in our research question.
In that sense entities cleansed from unnecessary details and thus representations can
refer the entities in manageable forms. Otherwise, if all of the details were somewhat
represented, the information load of those would be enormously high to comprehend.
Moreover, as we have seen in the proposed causal models, nonlinearity does not
allow decomposing the system mathematically and consequently, it is treated with
either an additional compact term of some nonlinear function, such as f(X), or
linearization in terms of parameters. Even though such linearization processes are
executed, the models are insufficient to provide understanding and to predict the
behavior of the entity. Yet, due to the properties of nonlinearity and being complex
any attempt to represent such complex entities seem obliged to be linearized at least
to some extent. Then the question is that: do representing and modeling necessarily

prompt to (at least to some extent) linearization of the systems of interest?

| think there is no such an obligation, however, we lack of tools to represent other-
wise. Linear tools are handy and convenient whereas the models that are provided
today by Nonlinear Dynamics Theory are mostly accessible to us via computer
simulations since the data among complex systems are too hard to process.
Eventually, it makes us to be disposed to use linear methods. The way of representing
should be in regard to the nature of the system in question. Thus, how to achieve such
a representational framework for complex systems is bound to our understanding of
the nature of the complex systems. As it is discussed in previous chapters, dynamical
relations rather than the mere components may provide an insight for understanding
complex systems. At this point, then, I could only suggest to follow that line of
thought: the representations should be based on relational
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dynamics. But, how to capture relational dynamics? That is the exact point where
we require new tools of thinking. The seduction of the linear thinking is so dense
that, as it is discussed in section 3.3, even though we admit the nonlinearity we still
attempt to reduce such nonlinearities into linearized forms. The reason for inability
of linear thinking to capture relational dynamics is, first of all, that the linear
approach as- sumes that the relations are fixed. That is to say, the relation between
two (or more) components cannot vary. The only way to change a relation is that
changing the components. In that sense, it is thought that relations are fixed by the
bound components. Likewise, relations that hold efficacy are considered to be
causal relations and such relations are also thought to be fixed, component-
dependent, and invariant. Causation, indeed, seems to agree with such conditions
intuitively. For example, if aspirin relieves headache we expect that every intake of
aspirin will do that. Does that mean causation is necessarily a linear concept? It is
the second issue that needs clarification.

In modeling the researcher deals with the states that stand in lieu of events, and their
relations. The way of states relate may show linearity or may not. If the concomitant
state is the linear combination of the previous one then it is called a linear relation
between those states of interest. With additional assumptions of causation those
states may be considered as causally linked also. But, notice that, causation as a
relation type does not impose linearity at all. In SEMs and causal graphs that
additional assumption toward causation is usually acyclicity of events®. Cyclic
relations, on the other hand, mostly yield disproportionality between the initial state
and following states®. In such cases, we expect that states are somehow related and
there is causality in between, yet, the concomitant state (namely, the alleged effect)
does not follow linearly. In linear systems causation may work as a linear relation,
but not in nonlinear cases. In that context, | would suggest that there has to be a
different causal account for nonlinear relations. Before making any suggestions for a
new causal account, first, we need to know that under which circumstances a

relation is called causal but not the otherwise. What is it expected from a causal

! Ifnot, linearity of cyclic relations is usually what it is assumed. Please see section 3.3 and the related literature.

2 See section 2.3.4.
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relationship? This takes us back to the fundamental question: what is causation? The
challenges to answer that are already made explicit in earlier debates on causation, as
an instance, remember INUS conditions that are put by Mackie as the least
requirements for being a cause. In the contemporary scene we have seen that
identifiability of causes has gained more attention rather than understanding the
nature of causal relation. It is believed that once the causes are identified, the effects
following those will be unraveled or vice versa. The most striking drawback with all
of those accounts of causation, | believe, is that we became so obsessed with hunting
causes that the true nature of causality namely, the causal relation itself is
undermined. Such an attitude towards causation may not constitute a problem within
linear systems since the behavior of the system (the effects) can be inferred through
mere inputs, or say, causes. However, when the case is nonlinear complex systems,
mere input is not informative in terms of the future behavior of the systems. Relations
are dynamical in complex systems. Because of such relational dynamicity, the very
same causes may bring out different effects®. For a nonlinear causal account, then,
the relational dynamics should be considered. I think that if causation is regarded to
be a special relation rather than some influence power of the causes, such an account
would enable to capture dynamicity of the complex relations. Considering the causal
models that are available to us today, | would say that in those models causality is
trapped in the nodes and that is the main reason for their inability to capture
dynamicity. It is because in those models causation is represented as a fixed
dependence of a node to another node. A change in the causal relation can be realized
only if the nodes are changed. Different causal relations, likewise, are introduced as
another node (remember the H in causal mixture models from section 3.1.1) in the
causal structure. However, there is another reason that | found it should be
reconsidered in context of complex systems. It constitutes the third point that in need
of clarification: the assumption of causal acyclicity. The assumption of acyclicity
simply states that if C is a cause of E then E cannot cause C. It is, indeed, very
intuitive to think like that, for example, throwing a stone causes windows to be
broken but a broken window would not cause the act of throwing a stone.

Nonetheless, there are such cases that the causal acyclicity seems to be lost.

% That ability is technically called multifunctionality.
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Consider, for example, the process of child birth. Once the contractions of labor has
begun, the baby’s body is being pushed towards the cervix and the cervix is
stimulated. That stimulation leads to activation of neural signaling which causes
oxytocin release. The released oxytocin causes more uterine contractions that make
pressure on the cervix. In this case, oxytocin release — which is the effect, steers
pressure on the cervix — that is the cause, thereby this event constitutes an example
of a positive feedback loop. In section 2.3.4, a similar case (Rayleigh-Bénard cell
convection) is already discussed in detail and it is advocated that characteristics of
complex systems like self-organization arise due to such feedback relations. Yet,
how systems feature such characteristics (e.g. self-organization) through such
complex interactions is not a completely resolved issue even for today. The answer,
however, may be given in terms of autocatalytic processes, which is in support of

my claims on relational dynamics.

An autocatalytic process is when is the case that the end-product of a (chemical)
reaction is a catalyst of its own production.

Figure 4.1: Image is retrieved from Hordijk and Steel (2015).

As it can be seen from the graphical representation, the catalyzer intervenes to the
relation itself rather than the reactant(s). In that form of relations, it is possible to
represent the disproportionality between causes and effects since effect can directly
influence the relation that in turn affects itself. Due to the ability of direct
interference to the relation itself, relations would be dynamical rather than static
forms. | believe that causal relations in complex systems can be modeled in. such a
form of representation where relations may bear dynamicity on their own That is to
say, a causal relation can be changed without (heavily) disturbing the cause-
component. Similarly, an effect can be produced via different causes. A simple
illustration would be that a causal relation that ends up with an effect of raised arms.

An activity of neural clusters in brain causes the act of raising the arms where the
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arms could have been raised by an external force, say by ropes. Since there is no
abnormality in neural paths that can block the act of raising the arm, cause-
component in this case is not disturbed. It is already discussed in 3.3. This that mere
dependency on inputs (the cause-components) disregards such cases of degeneracy.
Counterfactual reading of the causal models — like, Y would not happened if X is not
present, fails to explain degenerate cases since effect is dependent on a cause which
manifests a relation in a fixed structural form. If X is somewhat deleted then it would
have resulted in absence of Y (since same causes lead same effects). By this way it is
inferred that X causes Y . However, in complex systems there are many cases that
deletion does not result in absence of effects. For example Drosophila neurons have
cytoplasmic Abelson tyrosine kinase — which has a role in neural development of the
animal, and when the researchers have deleted of the gene that produces that enzyme
there is no observed abnormality in neural development of the animal. They have
found that a protein fasciclin, a cell-adhesion protein that “has no obvious structural
or functional similarity” to the enzyme, seems to taking the role of that enzyme
(Elkins et al. 1990 via Edelman and Gally 2001). In this case the best tool that a
causal modeler has is that absence of the kinase would be represented as a different
condition U, which would be different state than ‘the kinase X causes some neural
developmental products Y under condition U;’. Yet, I found it is not appropriate
because the conditions should be considered as equivalent due to the fact that there is
no additional (external or internal) constraint in the developmental process of the
animal but the mere intervention on the kinase X. | would argue that when the kinase
is deleted the relational dynamics are changed in such a way that a new relation is
built between the fasciclin and the products. Please note that it is not specifically
advocated that causal pluralism (both kinase and fasciclin as the causes), but
dynamicity of the causal relations is put forward as a game-changer. Dynamical
causal relations which can be represented in ‘relation to relation’ form are promising
in that sense. In this vein, as an alternative Stuart Kauffman’s work-constraint
account of biological organisms (2000) and Montevil and Mossio’s work on
organizational closure (2015) which is in the same line of Kauffman’s thoughts, may
provide a framework of dynamical relations. Rather than emphasizing nonlinearity,

however, they embrace relational dynamics of biological systems in their accounts.
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Since the relations are not fixed, nonlinear causal interactions can be represented in
such a form. On the other hand, a few drawbacks exist in that framework. A major
disadvantage that | found is that there is no established mathematical frame- work of
‘relation to relation’ interactions. In causal models that are available to us today,
since it is not allowed that kind of ‘arc to arc’ representation, nodes are responsible
for the establishment of the (causal) relation. Each node as a variable is mapped to
another, by this way, relations are expressed in terms of functions. Functions take
arguments which can be a function on its own, yet, functions have to end up as
variables. Relations are mathematically expressed as the form of equations and thus
mapping a relation to another is not an acceptable way to represent in such a syntax.
Another concern of a ‘relation to relation” would be that the representation of the
point of where the relations intervene to other relations. It can be clearly seen that
point which is represented as a little black box in figure 4.1. Should that point be
considered as a node? If it should, then what would be the difference of ‘arc to arc’
from ‘node to node’ ones? At this stance it seems problematic, indeed. Yet, | think
the problem arises because of the ambiguity of our understanding of relations. In
Montevil and Mossio’s account’ components are believed to be holding causal
powers, or say dispositions to establish a relation. It makes components to be prior
to relations which constitutes a claim that | found highly problematic. Besides the
philosophical literature on such potency to cause which is disputable since back to
Aristotle, | argue that causality should not be understood in terms of causal powers
of the components. Because it will not be possible to postulate an account that
allows to represent ‘relation to relation’ as long as causation is attributed to some
causal powers of the components rather than the relation itself. Then, to suggest an
alternative account, first, we need to tackle the question of where to localize
causation in terms of ontology. | argue that causation should be localized on the
relation that is not supervenient on properties but ontologically primary.

4.2 On the Ontological Status of Relations in Complex Systems

The basic tenet of current causal models is that the linearity of the causal relations

linearity implies that causes (and given conditions) hold additivity and homogeneity

* Even though it is not explicitly discussed, by the terms of ‘causal powers” it is implied. Please see more in
Mossio et al. (2009), Montévil and Mossio (2015), Mossio et al. (2013).
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properties since each cause invokes a specific causal mechanism that is not
interbedded with the others®. By this way, each causal mechanism can be modeled as
a structure that is fixed between its relata®. That is the reason for the causal models
are also called structural models. Here the structure serves as a template of causal
relation that is to be work in the same principles (which are linearity, for proofs
please see section 3.3) for all causal events. It is, indeed, appealing to intuitions about
causation since we expect that a causal relation holds somewhat universality - same
causes always bring same effects. Yet, it is discussed throughout this thesis that,
nonlinear dynamical construction of complex systems contrasts with our intuitions of
causality. Concerning causal models, on the other hand, the structure does not allow
representing such nonlinear dynamicity. Besides the linearity assumption, causal
assumptions like acyclicity constitute the ontological commitments toward the causal
relations of the modeled system. | advocated in previous section that such
assumptions disregard the dynamic-relational nature of complex systems. Here, | take
my claim further: if ontological commitments of the models in regard to relations are
not reworked, consequently, causal models will remain insufficient for complex
cases. But, first, there is a philosophical challenge has to be canvassed: what is meant
by the term of relation precisely?

Relation is such an entity that holds between its relata. In causal models relation is, as
it is mentioned before, represented as a dependency between variables thus, relata are
the variables. The dependency relation is embodied as the structure, and this structure
is built by relata’. Any difference in the relata consequently changes the structure®
but not otherwise. Structure itself cannot change unless (at least one of) the relatum is
changed. Ontological presupposition in here, then, is that causal relation is
supervenient on its relata. To put in other words, causality is “no addition of being”

(Armstrong, 1997). Thus ontological status of (causal) relations is a secondary

® Separability principle.

® Entities that get related. Since complex systems are made up many components, causality is already admitted as
a polyadic relation.

" Please consider variables in structural equations.

® See figure 3.10 in chapter 3.
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position. | found it is problematic since in complex systems, relational dynamics
steer the system behavior such that these systems are decentralized yet operate as a
whole, give rise to emergent properties, hold degeneracy and multifunctionality.
Thus, rather than solely determined by its relata, causal relations seem to have
dynamicity on their own. In that sense the ontological assumption of causal relation
is determined only by its relata might be misleading considering causal models.
Attributing dynamicity” to causal relations, however, makes one a causal realist.

That is to say, causation is a part of reality.

In causal models on offer, then, ontological commitments that are made in regard to
causal relation itself rely on reductive analysis of causation. In fact, that should not
be a surprise since it is already admitted that elusive nature of causal relation does
not allow realistic approach and thus the adopted methodology is reductive in that
sense. Yet, as | addressed throughout the thesis, to model dynamical causal relations
an ontological commitment to causal realism would be more eligible in complex
systems modeling. However, lacking of representational tools for causal realist

modeling is a striking problem.

As a recent alternative, Mumford and Anjum (2011) proposed vector models based
on (pan)dispositionalist ontology. Dispositionalism, roughly speaking, implies that
there exist things which have properties and all these properties are (causal) powers,
or say dispositions (ibid). Commitment to powers which are causal, it is argued,
opposes with Humean reductive approach to causation. Thus vector models are
supposed to embody causal realist attitude toward causal modeling. Authors explain

this as follows™®:

Neuron diagrams are conducive to a Humean ontology and,
through a widespread and sometimes unquestioned use, they
promote that ontology. If one were to be a realist about powers,
however, one could opt for a better way of depicting a causal
situation. Such a way will be offered — the vector model (...)
(ibid).

®Here, the ability to change per se interpreted as a sufficient condition for existing.

10 By the term of neuron diagrams they provide the examples of causal DAGs. Besides that, even they just
mention SEMs that are advanced by Pearl in one sentence they do not claim any position for or against SEMs.
However, the given descriptions for ‘neuron diagrams’ by their use of the term, it seems that they refer causal
structural models in general.
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Vectors, in that framework, represent “causal powers” which are “dispositions that
are operating” upon a space called “quality space” (ibid). Direction (which state is
to be disposed) and intensity (length of the vector) is also represented with vectors

in 2D or in more complex cases 3D spaces as follows:

Figure 4.2: A vector model and causal powers of a, b, ¢, d, e, f which give rise toR
as a sum of the causal powers. Retrived from Mumford and Anjum (2011)
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Figure 4.3: 3D quality space by Mumford and Anjum (2011)

As it can be seen from the figures, there are no relata represented but tendencies to
be occurred. However, vectors are additive in resemblance to Mill’s sum of
sufficient causes (ibid). Tendencies or their representations as vectors are drawn as
in “flux”es while it is not shown that consequent (the effect) of exercising
disposition. In that sense it is hard to imagine a relation between the cause and its
effect but some ‘causing’s. In fact it is intended to model in that way since relations
(according to dispositionalist ontology) are somewhat dispositional properties (Ellis,
2007). Thus dispositionalists rely on the idea that there exist non-relational monadic

properties which are the real constituents of the world. Events, in that sense, are the
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property instantiations where dispositions are manifested. Relations are not
ontologically fundamental since causal work is executed via powers that are held
by components. So, it is portrayed that “relatedness without relations” (Fisk, 1972).
The ontological status of relations, in that sense, is again secondary in
dispositionalist view. Yet, it is argued in Mumford and Anjum (2011) that vector
causal models which are based on dispositionalist ontology can represent
nonlinearity. In what follows | put my argument against it as an example of why
undermining relations ontologically will not help us in our attempts to represent
dynamicity of causal relations which most of the time lead to nonlinearity.

Vector models represent background conditions also as vectors, thus, a model com-
prises causes, conditions, and a side in quality space which stands for each of the
causes and conditions is disposed to. Since there is no relation in terms of ontol-
ogy, all there exist causal powers (as vectors). The effect which is to be disposed
to, then, is determined via a calculation of the sum of vectors (ibid) and thus
combina- tion of powers does not matter. In this sense, vectors are (and obligated
to be) addi- tive. Although Mumford and Anjum acknowledge nonlinearity in
complex cases, it is not provided a representation of non-additive vectors but a
metaphoric representation given below. Yet, nonlinearity, to repeat what is put
before, is the disproportionality between causes and their effects.

[ ﬂ |
— L__4|
CAUSES EFFECT

Figure 4.4: Image is retrieved from Mumford and Anjum (2011).

Butterfly effect which is the most known exemplar of nonlinearity of causation is,
roughly, that small causes can lead big effects. Prediction horizon of such
nonlinear cases is very narrow since dynamical relations — even within few
numbers of interacting elements as in chaotic systems, make effects untraceable.
Dynamicity of causal relations between the elements rather than the sum of causal
potencies of elements is what makes up nonlinearity. Underrating the relations
ontologically limits modeler to represent mere components (or powers that behold
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by components) which result in, I recalled as, additivity fallacy*’. See that in vector
models, causal powers do not intersect'?. Similarly, in structural models, causal relation
that is the structure cannot intersect with any other and relata are (additively) placed in

the regression form of equation. Dynamicity remains to be missing.

An antipathetic case

Figure 4.5: A case for two drugs introduced simultaneously react reverse effect. G space
represents wellness of the patient and F space stands for illness, as put by Mumford and
Anjum (2011). Notice that causal powers do not intersect even in the cases where causes
are ‘acting together’.

All we can get by addition is that aggregates of elements (relata) where combination of
the elements does not matter. But, in fact, combination is what really matters in complex
systems. In its simplest terms think of two drugs which have different functions and lead
to different effects by individually. These drugs when combined, how- ever, may reveal
wholly different function. The drugs cooperatively do work which means they are
related and that relation is built in such a way that a new function is executed. However,
if the ontological commitments that are made in causal models address that the relations
as prior whereas properties or components are ontologically secondary, | argue, it might
be possible to represent dynamical causal relations. Here, 1 mean that if the (causal)
relations are taken to be real, then the representation of intersecting relations*® would not

be disregarded. Metaphysical implications of such a stance, however, seem to recall

U1 Please do consider complex systems. If linear systems are issued, then it would not constitute a fallacy at all.

12 In Nicholson and Dupré 2018 which is a recent book that is released just before this thesis being submitted,
Mumford and Anjum put forward a revised version of their model to account overlapping causal processes at page
69. However, | found that it does not constitute a satisfying rework of their model since overlapping causality is
represented as (distinct) causal powers exercising some effects in parallelism through a time interval rather than in
cooperation.

3 consider relations that are lacking in current models analyzed in previous sections.
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ontic structural realism (OSR). OSR, simply, states that all there is that the
relational structure rather than individuals (Ladyman et al. 2007 and Ladyman
2016). Thus relations are ontologically primary. Individuals as ontologically
independent from relations cannot be existent. Some authors (such as Psillos 2001)
stand against that since if all there is relation then there are relations without relata;
however Ladyman emphasized that OSR does not require that but rather, relatum
cannot be individual on its own. | found OSR as too radical considering their
metaphysical attitude; on the other hand, for modeling purposes | believe that it
might be helpful as an ontological basis to represent dynamical causal models since
the relations are regarded. Yet, it is an open discussion in philosophy that how OSR
accounts causal relations metaphysically'®. Thus my claim is limited to modeling
purposes: the ontological commitments in causal models for complex systems
should regard relations as prior. In that framework, then, properties and/or
components could be accounted secondary and it makes sense since in complex
systems components do not exist individually yet their relations dynamically
determined into their roles (or say, functions)™.

14 As a primary reference one can see chapter 5 ‘Causation in a Structural World” in Ladyman et al. (2007) and
for more Saatsi (2017).

15 One can think of plasticity and degeneracy like in case of Drosophilia from previous section.
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CHAPTER 5

CONCLUSION

Sciences make use of models in order to explain the phenomena at hand, and if pos-
sible, to predict the outcomes when manipulated. The scope of this thesis, thus, is
consisted of causal models, since it is believed that explanation and prediction can be
achieved through answering the ‘why-questions’ (Salmon, 1984) about the phe-
nomenon. The model construction, on the other hand, requires some ontological
commitments toward the nature of the phenomena. Notice that, during this process, it
is not intended to question the nature of what-is out there but rather to assume what
might be out there. Those assumptions constitute the frame of the models. All of the
technical work is executed in that framework. Some models, however, may not be
well-suited for a set of phenomena. In face of such inadequateness of models there
are two main strategies to follow: either seek for advancements on the technical de-
tails (which sometimes lead to ad hoc) or rework on the framework itself. This thesis
addressed a call for latter strategy within causal models concerning complex systems. |
advocated that the ontological commitments should have been questioned and this
would require a philosophical study on itself. Because it seems that building assump-
tions of the models — rather than the practical drawbacks like lack of full-knowledge
of an event, in fact, impede adequately representing such systems. Those assumptions

are, | argued, linearity and acyclicity of the causal connection.

Representing causality as linear and acyclic relation appears to be incompatible with
nonlinear settlement of complex systems where, also, many cyclic events have been.
In the literature, there are few technical interventions that have already pointed out
that either additivity (which is a property of linearity) or acyclicity had to be revised
in order to apply causal models to nonlinear phenomena. Yet, lacking of
philosophical background is the reason of those revisions to be remained shallow. At

that point, what does it mean for a system to be linear or nonlinear has to be distin-
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guished. Such a comparison revealed that proposed nonlinear extensions of causal

models, in fact, constitute the linearized versions of nonlinear cases.

Linearization would not be a problem in cases of nonlinear but close-to-equilibrium
(which means near to being orderly) systems, however, it is a problem within
complex systems since those systems are in between complete order and chaos.
Such mediator state of complex systems is maintained through dynamical
spatiotemporal relations. Linear framework, on the other hand, accounts (causal)
relations to be fixed rather than dynamical. In that sense, | have indicated that a new
framework is needed. However, since all of the available tools are developed to
serve in linear framework, that alternative framework would have suffered from
scarcity of tools. To overcome such challenges, it is implied that an ontology which

prioritize relations rather than relata would be a way out.
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APPENDICIES

A. TURKISH SUMMARY/TURKCE OZET

Kompleks Sistemlerin Modellenmesinde Nedensel Iliskilerin Temsili Problemi

Bilimde modelleme, sistemlerin temsili olarak s6z konusu sistemleri anlama ve 6ng6-
ride bulunma araci olarak ¢ok 6nemli bir role sahiptir. Modelleri bu denli 6nemli
yapan seyse, Ozellikle bazi sistemler igin, sistemlere dogrudan miidahalenin miim-
kiin olmayisidir. Kompleks sistemlerin modellenmesi bu sistemlerin karmasik
dogalar1 goz oniinde bulunduruldugunda, anlama ve 6ngériide bulunma adina zor-
luk olusturmaktadir. Bu sistemlerin modellenmesinin zor olmasinin ana unsurlarin-
dan biri de nedensel iligkilerin temsil edilmesi problemidir. Bu tezde amag, nedensel
modellerde yapilan ontolojik baglanimlarla ilgili bir problemi ortaya koymaktir.
Elimizdeki modeller, genel olarak, nedensel iliskilere dair herhangi bir ontolojik
iddiada bulunmama amacindadirlar. Modellerde, daha ¢ok nedenselligin kanun-
benzeri bir iligki olarak temsil edildigi goriilmektedir. Kanun-benzeri bir iliskiyle
kastedilen sey ise her sisteme uyarlanabilen sabit bir bagdir. Daha agik olmak
gerekirse, nedenselligin dogas1 geregi sabitlenmis, kanun-benzeri bir zorunluluk
tasiyan, seyleri etkileyen ve seylerin etkilenmesini saglayan iliskilerden ibaret oldugu
varsayllmaktadir. Buradaki modeller ve modellenen seyler arasindaki karsilikli iligki
tizerine felsefi bir inceleme gerektirmektedir. Ancak bu tez, kompleks sistemlerdeki
nedensellik iliskilerinin temsili olarak 6ne siiriilen nedensel modellerle sinirhidir. Bu
anlamda, c¢ahismada, nedensel modellerin kompleks sistemlere uygulanabilirligi
tartigilmistir. Kompleks sistem terimiyle anlatilmak istenen sey ise lineer olmayan
yollarla birbirine baglanmis elemanlardan olusan ‘biitiin’lerdir. Eger bir sistem
kompleks ise sistemin karsilikli iligkiler aginin karmasikligr yiiksektir. Ciinkii
sistemler ayni bilesenlere sahip olsalar dahi farkli sistemler olusturabilmektedir.
Farklilik, bilesenlerin farkli sekillerde biraraya gelmelerinden kaynaklanmaktadir. Bu
biraraya gelislerin olusturdugu karsilikli iligkililik durumlarinin dinamik olarak her

evrede yeniden kurulmasiyla ¢ok-fonksiyonellik, dejeneresi, kendini-orgiitleme,
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kendini-yaratim, belirimlilik gibi karakteristikler ortaya cikmaktadir. Boylesi bir i¢sel
dinamikligin yan1 sira, kompleks sistemler cevreleriyle birlikte evrilmektedirler. Bu
demektir ki, kompleks sistemler aktif olarak icinde bulunduklar ¢evreyi etkilemekte
ve ayn sekilde cevrelerinden etkilenmektedirler. Yani, kompleks sistemler ayrica

cevreleriyle baglasiktir.

Modellemelerde, boylesi icice gecmis karmasik iligkilerin temsil edilmesi agisindan
birtakim temel problemler yer almaktadir. En goze carpan problem ise kompleks
bir sistemin temsil edilmesi i¢in basitlestirme yapilmasi gerekliligidir. Eger sistem-
ler milyonlarca heterojen bilesenden olusuyorsa (6rnegin insan beynindeki noronlar,
ganglion hiicreleri, piramitsel hiicreler gibi) ve bu milyonlarca bilegenlerin daha da
fazla sayidaki iligkileri goz oniinde bulunduruldugunda, bu (kompleks) sistemlerin
upuygun ama bastilestirilmis bir sekilde betimlenmesi i¢in ne yapilmalidir? Ya da,
kompleks sistemlerin temsilini basit ama ayni zamanda onlarin karmagsik nedensel
yapilanmalarini kapsayacak kadar genis bir sekilde saglamak miimkiin miidiir? Tiim

bu meselelerin agikliga kavusturulmasi gerekmektedir.

Bilim ve Felsefede Bir Sorun Olarak Nedensellik

Nedensellik ile ilgili temel sorun sudur: bizler biliyoruz ki, ya da en azindan varsay1y-
oruz ki, bazi olaylar baz1 bagka olaylara neden olmakta, fakat neden olusun (bir bagka
deyisle, nedenselligin) tam olarak ne oldugunu tanimlayamiyoruz. Oyle goziikiiyor
ki sigara icmek akciger kanserine neden oluyor, fast-food tiiketimi obeziteye neden
oluyor, bir genin eksikligi bir hastaliga neden oluyor, karbon salinimi kiiresel 1sin-
maya neden oluyor, ve benzeri. Dahasi, bu tiir olaylar ongoriilebilmekte ve/veya
olaylar iizerinde kontrol saglanabilmektedir. Ornegin, eksik olan gen laboratuarlarda
yetistirilerek hastaya enjekte edildiginde hastalig1 tedavi edebilmektedir veya diyet
yapilarak obezite engellenebilmektedir. Ote yandan, durum her zaman bu sekilde
degildir. Bir kisi fast-food tiiketmemesine ragmen obez olmus olabilir. Ornegin,
obezite hormon salinimin fazlaligindan kaynaklanabilir. Bu durumda fast-food tiike-
timini takiben obezitenin gozlendigi tiim vakalar1 yok mu saymaliy1z? Aksine, eger
iki vaka icin de nedenselligi varsaymaliysak nedensel iliskileri tespit etme kriterimiz
nedir? Bu sorulara verilen cevaplar farklilik gostermektedir, fakat bugiin ne nedensel-
ligin tespit kriterlerine dair ne de tanimina dair herhangi bir uzlasma bulunmamak-

tadir. Bilimsel pratikte, cevap genellikle istatiksel ¢ikarimlar {izerinden verilmekte-

90



dir. Ancak felsefi tutum iki yonliidiir: metafiziksel ve epistemik. Nedensel baglarin
gercekligine dayali nedensellik tanimlar1 metafizigin arastirma alanini olustururken
epistemik calismalarin konusu nedensel iligkilere yonelik bilgilerimizdir. Burada
dikkat edilmelidir ki felsefi olarak ontoloji ve epistemoloji arasindaki ¢izginin nerede
cekilmesi gerektigi basgli basina bir sorundur. Bu tezin tam da bu soézde cizgi iiz-
erinde yliriidiigli iddia edilebilir: nedensel modeller nedenselligi temsil eden epis-
temik aygitlar olarak incelenirken modeller ve modellenen seylerin dogalar1 arasin-
daki iligki sorgulanmigtir. Asil problemin giiniimiiziin nedensel modellerinde gomiilii

olan nedensellik tanimindan kaynaklandig: iddia edilmistir.

Felsefede, nedenselligin tanimina dair sistematik akil yiirlitmelerin izi Aristoteles’e
kadar siiriilebilir. Aristoteles tozlerde bulunan nedenler (materyal, formel, etken, ni-
hai nedenler) simiflandirmasi ortaya koymustur. Bu Aristoteleci siniflandirma Or-
tacagda da kabul gormiistiir, fakat burada Aziz Thomas Aquinas gibi skolastik diisiiniir-
lerinin sundugu teolojik yorumlamasi (Wallace, 1972) goriilmektedir. Tanri, bu an-
lamda, tiim ‘seylerin’ son nedeni olarak goriilmiistiir ve Aristoteles’in hareketsiz
hareket ettiricisinin yerini almigtir. Diinyadaki biitiin varliklarin tek nedeni olarak
Tanr1’y1 goren Aranedencilik akiminin yani sira, benzeri nedensellik aciklamalari
sunulmugtur. O donemde ortaya atilan tiim nedensellik felsefelerinin ortak zem-
ini nedenselligin zorunlu bir iligki olmas1 ve dolayisiyla bu zorunlulugu saglaya-
bilme yetisi yalnizca Tanr1’da oldugu diisiincesidir. Oteki yandan, nedenselligin sko-
lastik aciklamalarinda ciddi bir sorun yer almaktadir: eger Tanr1 herseyin nedeni ise
geriye bedenlerin yapabilecegi ne kalir? Bu diisiince mirasini1 devralan erken donem
modern filozoflar1 daha ¢ok nedenselligin metafizii iizerine caligmalar yapmiglardir.
Gergekten de, erken modern donem filozoflar1 “Hobbes istisnasiyla, Tanr1 hakkin-
daki bilginin dogay1 ve doga yasalarin1 anlamak icin kritik bir 6neme sahip oldugu
diisiincesini paylagsmislardir” (Clatterbaugh, 1999). Ornegin, kartezyen nedensellik
anlayis1 nedensel etkilesimleri saglayan kanunlarin ancak bir kanun koyucu, yani bir
Tann tarafindan verilebilecegi diisiincesidir. Fakat Spinoza’da Tanr1 dogalayan doga
(natura naturans) olarak skolastik olmayan bir Tanr1 tasviri vardir. Yine de diger erken
modern donem filozoflarina benzer olarak, nedensel bagint1 bir tiir mantiksal baginti
olarak tam da gercekligi olusturan seyin kendisi olarak goriilmiistiir. Tiim bunlarin

yaninda, modern donemin ¢ok daha baslarinda yasamis olan diisiiniir Francis Ba-
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con’in sistematik nedensel ¢ikarimlar icin bir tiir metodoloji sundugu (Reiss, 2007)
da not edilmelidir. Bacon (6yle goziikiiyor ki) nedenselliin metafiziksel yoniiyle il-
gilenmemis, daha ¢cok doga iizerinde kontrol saglanmasi yoniinden nedenselligin 6ne-
mine vurgu yapmistir. Ge¢ modern felsefelerde nedensellige benzeri bir yaklasimin
oldugu iddia edilebilir. O donemde, bedenlerin nasil etkilestigine yonelik metafizik-
sel sorulardan ziyade “nedensel bagintinin hakiki bir tespitinin” (Clatterburgh, 1999)

saglanmasi yoniinde nedensellik ¢alismalarina rastlanmaktadir.

David Hume, bu anlamda, nedensel olaylarin psikolojik deneyimdeki karsilig1 iiz-
erinden sagduyusal nedensellik anlayisina meydan okumustur. Hume nedensellik iiz-
erine yaptig1 akil yiirlitmelerinin sonucunda sunu gormiistiir: her nedensel olaylar
zincirinden bahsedildiginde aslinda (i) mekansal devamlilik ve (i) zamanda Oncelik-
lik gosteren, (ii1) siirekli rastlasan olaylardan soz edilmektedir. Devaminda gelen ne-
denselligi tanimlama denemelerinin tamami, giiniimiizdeki ¢aligmalar da dahil olmak
tizere, Hume’un bu nedensellik analizi fikrine dayanmaktadir. Bu calismalar, boyley-
likle, kabaca iki gruba ayrilabilir: nedensel realistler ve indirgemeciler. Nedensel re-
alistler ayn1 zamanda karsi-Humecular olarak anilmaktadirlar. Ciinkii Hume’un iddia
ettiginin aksine nedensel iligkinin insan deneyiminin diginda da bir gerceklige sahip
oldugunu diisiinmektedirler. Buna karsin olarak nedensel indirgemecilik, nedensel-
ligi nedensel-olmayan terimler iizerinden agiklamaktadirlar. Suna dikkat edilmelidir
ki, nedensel realist olup metodolojik olarak indirgemeci bir yol izlemek de miimkiin.

Aslinda, giiniimiizdeki nedensel modellerin hemen hepsi bu yolu izlemektedirler.

Nedenselligi tarif etmeye yonelik indirgemeci calismalar 6nceleri mantiksal yontem-
leri benimserken daha sonralart matematiksel analizler tizerinden gelismistir. Ne-
denselligin mantiksal analizi John Stuart Mill tarafindan ortaya konulmus ve de-
vaminda John Leslie Mackie’nin ¢alismalariyla 6nem kazanmistir. Mackie 6ne stirdiigii
INUS kosulu ile yeterli ve zorunlu nedenlerin farkli olabileceklerini gostermistir.
Bu gelismeleri takiben David Lewis’in kargiolgusal agiklamalart ile nedenselligin
mantiksal analizi bugiinkii sekline kavugmustur. Buradaki temel fikir nedensel 6ner-
melerin kosul dnermesi formunda analizini yapmaktir. Hatta Curt John Ducasse gibi
bazi filozoflar bu fikri daha da ileri gotiirerek nedensel iligkilerin ‘dogru’ bir tanimla-
masinin ancak ve ancak kogul onermeleri formunda verilebilecegini ve boyleylikle

Hume’da gordiigiimiiz siirekli rastlasma ©zelliginin bu formda yerinin olmadigini
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(Sosa and Tooley, 1993) iddia etmislerdir. Bu yaklasimdaki en biiyiik problem ise bir-
den ¢ok nedenin bulundugu (iistbelirlenim) vakalarda nedenselligi kosul dnermeleri

formunda temsil etmek neredeyse imkansiz hale gelmesidir.

Nedenselligin matematiksel analizi, bir diger taraftan, nedenselligi ‘fonksiyonel baglilik’
olarak ele almaktadir. Nedenselligi fonksiyonel bagliliklar olarak temsil etme diisiincesi
ilk kez Hans Reichenbach tarafindan bash bagina bir ¢alisma konusu halini almigtir.
Reichenbach ayni-zamanli korele olaylarin ortak nedenler tarafindan oncelenmesi
gerektigi fikrinden yola ¢ikarak nedenselligi olasiliksal bagliliklardan ¢ikarsamanin
miimkiin olabilecegini diistinmiistiir. Boylece, korelasyonlardan nedensellik tespit
edilebilirdi. Reichenbach’in nedensellik analizinde birbirine neden olmayan iki fak-
toriin, X ve Y, ortak bir neden olan C”ye sahip olmalari durumunda P(X.Y/C) =
P(X/C)P(Y/C) oldugunu matematiksel olarak ‘Ortak Neden Prensibi’ ile tanim-
lanmistir. Bugiin bu prensibin bircok durumda kullanilamaz oldugu kanitlansa da
degiskenler arasindaki ‘kosullu bagimsizliklar’in formalize edilmesi fikrine 151k tut-
mustur. Aslinda, ‘nedensel Markov kosulu’ bu fikirden tiiretilmistir (Spirtes ve Gly-
mour, 1993). Nedensel Markov kosulu bir degigskenin kendisinin sonucu olmayan
degiskenlerden olasiliksal olarak bagimsiz oldugunu séyler. Buradaki kosullu bagim-
sizlik kavramina dayanarak daha sonralar1 nedenselligin olasiliksal analizleri Patrick
Suppes, Irving John Good, Wolfgang Spohn, John Williamson, Judea Pearl, Peter
Spirtes, Clark Glymour ve Richard Scheines tarafindan gelistirilmistir. Bu tezde bahsi
gecen nedensel modeller nedenselligin hem mantiksal analizi (karsiolgusallik) hem

de matematiksel temsilleri (olasiliksal bagliliklar) konu edinmektedir.
Nedensellik ve Modelleme

Bugiin elimizdeki modelleme gerecleri sistemlerin lineer davrandig1 varsayimina dayan-
maktadir. Fakat bazi sistemler hi¢ de lineer davranis bicimi gostermemektedirler ve
bu sistemler, haliyle, lineer-olmayan sistemler olarak anilmaktadir. Dolayisiyla, bu
sistemlere ait lineer-olmayan verilere lineer metodlar uygulanmasi halinde seyler (en-
tities) ile onlarin temsilleri arasinda bir uyusmazlik s6z konusu olmaktadir. Bugiine
kadar ortaya konulan nedensel modeller de lineer bir metodoloji tizerine kurulmus-
tur. Tezde bu modellerin kompleks (ve dolayisiyla, lineer-olmayan) sistemlere uygu-
lanmasinin kompleks sistemlerin anlagilmasinda yeterli gelemeyecegi ortaya kon-

mustur. Bu anlamda tezde giincel nedensel modellerdeki handikaplar1 ortaya ser-
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ilerek kompleks sistemlerdeki nedensellik iliskilerinin modellenmesi i¢in alernatif
yollar tartisilmigtir. Bu amagla, ilk olarak sistemleri temsil etmedeki temel yontemler
tartisilmistir. Tartismalar sistem teriminin anlamindan baglay1p sistemleri nasil mod-
elledigimize kadar uzanmaktadir. Konun baglami modellemeler olmasi dolayisiyla
sistemlerin matematiksel temsilleri tartisilmistir. Sistemlerin matematigine bagl olarak
modeller, sistemin davranigina (sistemin ¢ikti iretme sekline) gore duragan ve di-
namik olmak iizere iki ayr1 gruba ayrilmaktadirlar. Duragan sistemler bu tezin baglami
disinda kalmaktadir, ¢linkii bu sistemler hi¢ bir aktivitenin olmadigi veya herhangi
bir ¢ikt1 iiretiminin s6z konusu olmadig1 bir tiir denge durumundadirlar. Ote yan-
dan dinamik sistemler lineer veya lineer-olmayan yollardan ¢ikti lireten sistemlerdir.
Burada dikkat edilmelidir ki tez boyunca deterministik (rastgele olmayan) sistemler
konu edilmistir. Eger sistemler toplanabilirlik 6zelligi gosteriyor ve homojenite s6z
konusu ise sonug olarak bu sistemlerin tepkisi (yani, bir sonraki durumu) 6nceki du-
rumlarin lineer kombinasyonu olarak belirlenmektedir. Bu sistemlere lineer sistem-
ler denilmektedir. Lineer kombinasyonlar matematiksel olarak analitik ¢oziimlere
sahiptir. Bu demektir ki, her bilesen aslinda birbirinden bagimsizdir ve bilesenleri
toplamak veya c¢ikarmak bilesenlerin dogasinda bir degisiklige yol agmaz. Buradaki
matematiksel elemanlar aslinda, temsil edilen seyin bilesenlerine ayrilmis halini tem-
sil etmektedir. Dolayisiyla lineer modeller analiz edilebilen seyleri (6rnegin, elek-
tronik aletleri veya saatleri) temsil etmek icin ¢ok uygundur. Lineer modellerde
toplanabilirlik ve homojenite sayesinde pargalarin aranjmani bu parcalarin lineer kom-
binasyonunun ta kendisidir. Lineer-olmamaklik, 6te yandan, toplanabilirlik ve homo-
jenite Ozelliklerinin olmamasidir ve bir fonksiyon ile temsil edilmektedir. Bu o6zel-
liklerin olmamasi, matematiksel olarak bu fonksiyonlarin analitik ¢dziimlerinin ol-
mamast anlamina gelmektedir. Yine de bu demek degildir ki lineer-olmayan bicim-
lerde davranan higbir sistemin analiz edilemez. Ornegin, biyolojik sistemler analiz
edilebilmektedirler. Lineer-olmamaklik daha ¢ok modelleme anlaminda bazi sinir-

landirmalara tabidir. Fakat sistemleri modellemek i¢in dnce veriye ihtiyag¢ vardir.

Veri bir seyin temsil edilmesindeki ilk basamak olarak bazi prosediirler ile edinilir.
Bu siire¢ genellikle iki asamalidir: veri toplama ve verinin yorumlanmasi. Veri
edinim siirecinde birtakim istatiksel varsayimlarda bulunulmaktadir. Herhangi bir

pratik hatanin yoklugu gibi varsayimlar bir yana konuldugunda, tezde, bu istatik-
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sel varsayimlarin lineerligi tesvik ettigi ortaya serilmistir. Bunu gostermek onem-
lidir ¢iinkii s6z konusu istatiksel varsayimlar yiiziinden lineer davranmayan sistem-
ler hakkinda toplanan veriler yorumlanirken sistemler lineermis gibi diisiiniilmekte-
dir. Tez boyunca kompleks sistemleri temsil etmek i¢in lineerlestirme islemlerinin
zorunlu olup olmadig: tartisilmistir. Veri yorumlama islemleri soz konusu istatiksel
varsayimlara dayali olarak ¢ikarim yapilmasini saglayan birtakim prosediirden olus-
maktadir. Dolayisiyla veriden ne okunacagi bu varsayimlara goredir. Ornegin, eger
pozitif korelasyonun nedensel iliskinin gostergesi oldugu varsayilmigsa bu durumda
ilgili degiskenlerin nedensel olarak bagimli olduklari ¢ikarimi yapilacaktir. Bu an-
lamda korelasyonun nedenselligi belirttigi tartismalari veri olusturma siirecinin tam

da bu asamasinda karsimiza ¢ikmaktadir.

Peki lineer-olmamaklik nerede yer almaktadir? Bunu tartismak i¢in 6nce su iki ayrim
yapilmalidir: lineer-olmayan sistemlerin kompleksite gosterip gdstermemeleri ve kaotik
olup olmamalari. Lineer-olmayan davraniglara sarkac gibi basit sistemlerde de rast-
lanilmaktadir. Bu anlamda teknik bir terim olarak kompleksite, kompleks sistem-
ler baglaminda aciklik getirilmesi gereken bir konudur. Boliim 2.3.1°de tam da bu
konuya agiklik getirilmigstir. Boylelikle berimsel anlamdaki kompleksite terimi kom-
pleks sistemler teriminden farkli bir kavram olarak ele alinmistir. Diger taraftan bu
iki terim arasindaki iligki tartistlmistir.  Ag¢iklik getirilmesi gereken diger bir konu
da kaos ve kompleks sistemler arasindaki iligkidir. Kaos fenomeni, gercekten de,
dogas1 geregi lineer olmayan bir fenomendir fakat bu demek degildir ki tiim kom-
pleks sistemler lineer olmayan fenomenler olduklart i¢cin ayn1 zamanda kaotik olmak
zorunda. Bu zorunlu olmayisin sebepleri bolim 2.3.2°te acik¢a tartigilmistir. Bu
ayrimlarin 1s1831nda kompleks sistemlerin karakteristikleri genel olarak tartisilmistir.
Bahsedilen karakteristiklerin aslinda kompleks sistemlerin lineer olmayan iligkileri
sayesinde ortaya ¢iktiklar tartisilmistir. Dolayisiyla lineer olmayan iligkiler ile kaste-
dilen seyin ne oldugu da ayrintili bir tartismay1 gerektirmistir. Bu baglamda lineer
olmamaklik, kompleks sistemlerdeki davranis oriintiisiinii ortaya ¢ikaran bilesenler
arasindaki iligkilerin tiirii olarak konu edinilmigtir. Diizenin stabil olmayan bir du-
rumdan ortaya nasil yeniden kuruldugu boliim ise 2.3.4.1’in ana tartisma konusu ol-
mustur. Devaminda kurulan (nedensel) iliskilerin bu sistemlerde nasil ortaya cik-

t181 tartisitlmigtir. Bu anlamda boliim 2.3.4.2°deki amacim kompleks sistemlerde il-
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iskiselligin kritik onem tagidigim gerekceleriyle ortaya koyarak vurgulamaktir. k-
inci boliim kompleks sistemlerin temel 6zellikleri ile lineerlik varsayimlarini karsi-
lagtiran bir liste ile bitirilmistir. Burada lineer metodlarin dayattig1 6zellikler ile kom-
pleks sistemlerin Ozellikleri arasindaki uguruma dikkat ¢ekilmistir. Sonug olarak li-
neer metodlarin kompleks sistemleri temsil etmede yetersiz olduklar1 gosterilmistir.
Uciincii boliim, bugiine kadar 6ne siiriilmiis nedensel modellerde referans gosterilen
nedensellik teorilerinin analizine yer verilmigstir. Bu analizin sunulmasindaki temel
amag ise nedensellik teorileri ile nedensel modellerin (ve/veya modelleme teknikleri-
nin) karsilikli iligkisine isaret etmektir. Bdylelikle nedensel iligkilerin temsilleri,
bu temsillerin gosterdigi ontolojik baglanimlara gore kategorize edilmistir. Baghlik
ve Siire¢ kategorileri nedenselligin temsil ¢ercevelerini olusturan iki temel kategori
olarak ele alinmistir. Bu simiflandirma giincel literatiire goe yapilmis olsa da bazi
detaylarda giincel siniflandirmalardan farklilik gostermektedir. Bu detaylardan biri
yeni bir nedensel agiklama sisteminin eklenmis olmasidir. Bu yeni nedensellik oner-
1si nedensel belirimcilik olarak anilmaktadir. Erik Hoel, Larissa Albantakis ve Giulio
Tononi tarafindan ortaya atilmis bu yeni goriis siirecsel nedensellik bagligi altinda
ele alinmistir. Bu baglik altinda ele alinmasinin sebebi Russo ve Illari’nin simiflandir-
masina benzer olarak bu goriisiin bir tiir enformasyon-teorisi temelli nedensellik agik-
lamas1 olmasidir. Aslinda bu iki nedensellik temsil kategorisi arasindaki sinir ¢cok ke-
skin degildir. Benzer olarak Hoel aslinda enformasyon teorisi temelli agiklamalarin
baglilik iizerinden yapilan nedensellik aciklamalarini da kapsayacak kadar genis ola-
bilecegini belirtmektedir. Gercekten de bu tartismalarin ¢ok 6nem arz etmesine karsin
bir yiiksek lisans tezinde tartisilamayacak kadar zorlu bir baslik olduguna da dikkat
edilmelidir. Bu nedenle bu tezde enformasyon teorisi temelli nedensellik aciklamalari
ayrintili bir sekilde ele alinamamistir. Dolayisiyla, giincel felsefi literatiiriine bagli
kalinarak nedensel modellerden bahsedilirken kastedilen sey yapisal denklem mod-
ellemeleri (YDM) ve Judea Pearl’iin 6ne siirdiigii nedensel grafikler olacaktir. Bolim
3.2’de gosterildigi iizere Pearl’iin nedensel grafikleri aslinda YDMnin gelistirilme-
siyle olusturulmustur. Lineer sistemleri modellemekteki {istiin basarilarina karsin bu
nedensel modeller, kompleks lineer-olmayan sistemleri modellemede yetersiz kalmak-
tadirlar. Kanitlar boliim 3.3’te listelenerek One siiriilen nedensel modellerin aslinda
lineerlik varsayimlarina siki sikiya bagh olduklar1 gosterilmistir. Bir baska deyisle,

boliim 2.2’de tartisilan lineer varsayimlarin aslinda nedensel modellerde de gomiilii
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olduklar1 gosterilmistir. Eger gercekten de lineer metodlar kompleks sistemleri tem-
sil etmede yetersizlerse, lineerligi temel alan nedensel modellerin kompleks sistem-
lerdeki nedensel iligkileri temsil etmede yeterli olduklari nasil savunulabilir? Savunula-
mayacagini gosteren bir liste, boliim 2.4’teki liste ile uyumlu bir sekilde sunulmus-
tur. Boyle bir karsilastirma yapilmasinin sebebi ise nedensel modellerdeki lineer-
lik varsayimlarinin gozettigi 6zellikler ile kompleks sistemlerin 6zellikleri arasindaki
uyusmazlig ortaya sermektir. Boylelikle, nedensel modellerdeki ontolojik baglanim-
lar ile kompleks sistemlerin ontolojisi arasindaki ayriklik gozle goriiliir hale getir-
ilmigtir. Dordiincti bolim ise nedensel iligkilerin kompleks lineer olmamaklik du-
rumuna uygun olarak temsil edilebilmesi icin olast ¢oziimleri tartisilmistir. Mod-
ellerde temsil etmek icin lineerlestirme islemi zorunlu bir islem midir? Kompleks
sistemlerdeki nedensel iligkiler i¢in lineer olmayan bir nedensellik aciklamasi sun-
mak miimkiin miidiir? Eger miimkiinse hangi adimlar atilmalidir? Eger degilse bunun
sonuglar1 nelerdir? Bu boliim boyunca bu sorular tartisilmigtir. Bolim 4.2°de ise il-
igkilerin ontolojik statiileri iizerinden nedensellik modellemeri icin alternatif teoriler
tartigtlmistir. iliskileri 6nceleyen bir nedensellik temsili teorisi, bugiinkii modellerde
yapilan nodlarin 6ncelenmesi diisiincesine nazaran, umut vaadedici goziikmektedir.
Fakat temsil problemi heniiz ¢oziilememistir. Neden ¢oziilemedigi ise kapanis tartis-
masi olarak besinci boliimde ele alinmigtir. Temel sorun olarak lineer olmayan kom-
pleks sistemlerde nedenselligin nasil isledigi ele alinmistir. Bu sorun kolayca ce-
vaplanamayacagindan soruna kompleks sistemlerdeki iligkilerin dogas1 tartisilarak
yaklagilmistir. Kompleks sistemlerin bilesenleri dyle sekillerde baglantilar kurmak-
tadirlar ki bir bilegenin aktivitesi bagimsiz olamamakta ve dolayisiyla aktivite sonucu
birden fazla sonu¢ dogmaktadir. Tam da bu noktada lineer nedensellik yaklagimi
kullanilamaz hale gelmektedir. Ancak ayni zamanda biiyiik bir problem karsimiza
cikmaktadir: boylesi bir sonuglar yi18in1 i¢inden nedenselligi nasil tespit edebiliriz

(ve/veya modelleyebiliriz)?

Nedensellige lineer yaklasim baglam iizerinde belirli bir sinirlandirmay1 sart kosar ve
bu sinirlandirma iizerinden uzlag1 gerektirir. Bu baglamdaki sinirhiliin felsefedeki
karsilig1 ceteris paribus kosuludur. Bu ceteris paribus kosullar1 altinda yapilan tem-
siller de, dolayisiyla, bilesenler ¢evrelerinden izole edilmis olurlar. Bu da komplek-

sitenin ortadan kalkmas1 anlamina gelmektedir. Lineerlik sartlar1 altinda nedensellik
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yalnizca bilesenlere bagimlidir ve boylelikle iliskilerin kendi baglarina bir dinamiklik
tagimasi durumu s6z konusu degildir. Bilesenler ancak belirli tip iligkileri kurmakla
yiikiimlidiir. Bir baska deyisle, iliskisel dinamikler g6z ardi edilirken bilesenler fa-
zlaca onemsenmektedir. Ote yandan, kompleks sistemlere aym bilesenlerin farkli
kompozisyonlarda yer almasiyla farkli karakteristiklerin ortaya ¢iktigini1 géormekteyiz.
Nedensel iligkilerin, iligkiselligin kendisine odaklanan bir temsil yapisi ile kompleks
sistemlerin olusum ve gelisim siireclerini modelleyebilmek miimkiin olur muydu?
Bu sorunun yanit1 hakkinda tartismalar yapilmigtir. Sonug olarak matematiksel bir
altyap1 sunulamasa da otokatalitik kiimeler teorisinin bir ¢ikis yolu olabilecegi sonu-
cuna vartlmigstir. Otokatalitik kiimelerde goriilen kendi iiretim siirecini katalize eden
reaksiyonlarin bizzat iligkisel dinamikler iizerinde nedensel etkide bulunmasi fikri
kompleks sistem modellemelerinde baz alinabilir. Iliskisel dinamiklerin temsil edilmesi
kritik onem tasimaktadir, clinkii kompleks sistemlerin kompleks olmalarinin sebebi,
yani belirimlilik gibi karakteristikleri gostermesi tam da bu iligkisellik bicimleri sayesi-
ndedir. Tezde kompleksiteye yol acan en onemli iligkisellik dinamigi olarak pozitif
geridoniit dongiileri islenmigtir. Pozitif geridoniit dongiileri literatiirde ‘dongtisel ne-
densellik’ veya ‘karsilikli nedensellik’ kavramlart olarak da karsimiza ¢ikmaktadir.
Lineer olmayan dinamikleri olusturan bu dongiiler modellemelerde ciddi problem-
lere yol actig1 icin genelde ya lineerlestirilerek temsil edilmekte ya da tamamen yok
sayllmaktadir. Bunun nedeni ise tam da iligkisel dinamkligi temsil edebilecek temsil
gereclerimizin olmayisidir. Bu gerecleri edinebilmek icinse Prigogine ve Stengers

(1984)’in belirttigi gibi yeni diisiince araclarina ihtiya¢ duyulmaktadir.

Iliskisel dinamikleri felsefi olarak temellendirebilmek icin ontolojik bir sorgulama
gereklidir. Varliklarin dogasina iligkin bu sorgulama yolu giiniimiizde iki kola ayril-
maktadir: Yeni-tozciilik ve Ontik Yapisal Realizm. Yeni-tozciiliik, temel olarak,
bilesenlerin veya bilesenleri olusturan alt-bilesenlerin tozsel bir varlik statiistinde olduk-
larin1 One siirer. Toziin kendinde potansiyel olarak tasidig: bir bagka sey(lere) neden
olma egilimleri nedensel iliskiler olarak tecelli olur. Dolayisiyla iliski var degildir,
ancak bilesenlerin tozleri ve t6z olmakligin getirdigi birtakim egilimler vardir. On-
tik Yapisal Realizm ise aksine, tikellikten yani bagimsiz olarak var olabilen tozler-
den s6z etmenin miimkiin olamayacagini herseyin iligkilerden ibaret oldugu diisiince-

sine dayanir. Metafiziksel olarak ciddi sorunlarla karsilagsa da ontik yapisal realism,
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kompleks sistemleri modellemek adina uygun bir ontolojik altyapi saglayabilir gibi
goziitkmektedir. Bunun temel gerekcesi ise iligskisel dinamiklerin temsil edilebilecegi
uygun bir zemin ancak iligkileri 6n plana ¢ikaran bir ontolojiyle miimkiin olabilir gibi

goziikmektedir.
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