IMAGE BASED SOLAR POSITION EDITING AND RELIGHTING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MURAT TURE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR
THE DEGREE OF MASTER OF SCIENCE
IN
COMPUTER ENGINEERING

JUNE 2018

Approval of the thesis:

IMAGE BASED SOLAR POSITION EDITING AND RELIGHTING

submitted by MURAT TURE in partial fulfillment of the requirements for the de-
gree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalipcilar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oguztiiziin
Head of Department, Computer Engineering

Assoc. Prof. Dr. Ahmet Oguz Akyiiz
Supervisor, Computer Engineering Department, METU

Examining Committee Members:

Prof. Dr. Tolga Kurtulus Capin
Computer Engineering Department, TEDU

Assoc. Prof. Dr. Ahmet Oguz Akyiiz
Computer Engineering Department, METU

Assoc. Prof. Dr. Aykut Erdem
Computer Engineering Department, Hacettepe University

Assoc. Prof. Dr. Sinan Kalkan
Computer Engineering Department, METU

Assoc. Prof. Dr. Yusuf Sahillioglu
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: MURAT TURE

Signature

v

ABSTRACT

IMAGE BASED SOLAR POSITION EDITING AND RELIGHTING

TURE, MURAT
M.S., Department of Computer Engineering
Supervisor : Assoc. Prof. Dr. Ahmet Oguz Akyiiz

June 2018, [54] pages

Capturing perfect photos is a challenging task that requires good composition and
timing. Failure to achieve them may result in ‘missing the moment’. For example,
when shooting photos at sunset the sun quickly disappears behind the horizon. In
this thesis, a new image editing algorithm is defined to let the user change the sun
position in a photo. This is the first study in the literature which tries to solve this par-
ticular image editing problem. The algorithm can be divided into three parts. First,
the image pixels are segmented into different categories, namely the sky, clouds, sun,
horizon, and the foreground. Then, a real-time rendered sky is replaced with the old
sky to allow changing the position of the sun. A color transfer algorithm is used to
cope with the differences that cannot be accurately deduced from a single photo such
as exposure, atmospheric parameters, and the camera response curve. Furthermore,
techniques for relighting the cloud and foreground pixels are proposed. Finally, these
relighted pixels are blended together by using the labels from the segmentation part
of the algorithm to generate the final image. The proposed image editing technique
works in real-time to provide instant feedback to the user. It also provides intutive
user controls to allow overriding and fine-tuning various automatically detected pa-
rameters.

Keywords: Image Editing, Rendering of Atmospheric Scattering, Image Segmenta-

tion, Color Transfer, Fully Convolutional Neural Networks

vi

(0Y/

GORUNTU TABANLI GUNES POZiSYONU DEGISTIRME VE YENIDEN
ISIKLANDIRMA

TURE, MURAT
Yiiksek Lisans, Bilgisayar Miithendisligi Boliimii
Tez Yoneticisi : Dog¢. Dr. Ahmet Oguz Akyiiz

Haziran 2018 , [54] sayfa

Fotografcilar icin mitkkemmel an1 yakalamak her zaman zor olmustur. Fotografin kont-
rol edilemeyen kisimlari en 1yi kompozisyonun yakalanmasini imkansiz hale getirebi-
lir. Bu ¢alismada, kullanicinin fotograftaki giines pozisyonunu degistirebilecegi yeni
bir goriintii diizenleme teknigi onerilmistir. Ik adim olarak fotograf piksel bazinda
gruplara ayrirlir. Bu gruplar gokyiizii, bulut, giines, ufuk ¢izgisi ve 6n plan olarak
tammlanmgtir. Ikinci olarak fotograftaki eski gokyiizii gercek zamanli bir atmosfer
1siklandirma algoritmasinin ¢iktisi ile degistirilir. Kamera ve atmosfer gibi gokyiizii
goriintiisiinii degistirebilecek farkliliklart dnlemek i¢in bir renk transfer teknigi bu
yeni gokyiiziine uygulanir. Bunun ardindan, giines pozisyonu farkli gokyiizii fotog-
raftaki karsili8i ile degistirilir. Son olarak da fotograftaki 6n plan ve bulut kisimlar
yeni gokyiiziiyle uyumla olacak sekilde yeniden 1siklandirilir. Bu teknik gercek za-
manl bir sekilde giinesin oynatilabilmesine olanak saglarken ayn1 zamanda otomatik
bulunan bir cok parametrenin de kullanici tarafindan kolaylikla degistirilebilmesi i¢in
arayuiz sunar.

Anahtar Kelimeler: Goriintii Diizenleme, Atmosferik Sacilmanin Isiklandirilmasi, Goriintii
Segmentasyonu, Renk Transferi, Tamamen Katlamali Sinir Aglar

vii

viii

ACKNOWLEDGMENTS

I would like to thank my advisor Assoc. Proc. Dr. Ahmet Oguz Akyuz for his huge
support for my thesis. He was the one who not only teached me Computer Graphics
but more important than that made me love Computer Graphics. I can not repay his
contributions to my academic work. I will never forget that.

I would like to thank my thesis committee members Prof. Dr. Tolga Kurtulus Capin,
Assoc. Prof. Dr. Ahmet Oguz Akyuz, Assoc. Prof. Dr. Aykut Erdem, Assoc. Prof.
Dr. Sinan Kalkan, Assoc. Prof. Dr. Yusuf Sahillioglu for their valuable feedback.

I would like to thank my mother and father who always be there for me when prob-
lems seem to be impossible to solve. I would not be here without their help.

I would like to thank my colleagues Gokhan Uras and Burak Dermanli. They were
always there when I had questions and it was always inspiring for me to see their
passion about Computer Graphics. I know that they will always stay hungry and
never stop being the individuals who improves their surroundings with their sheer
will. I also thank my old mentor and lead Serdar Kocdemir for molding my character
by being a role model for me.

The ’Presidente’ and my fellow brother Burak. I hope you and Giilsiim will have the
happiest life. I will never forget the conversations we had, meals we shared at late
hours and homeless looking joggings we had in the winter. I can never thank you
enough for the support you gave me.

Finally, I would like to thank my fellow Bard, engineer and scientist Serdar Yonar.
Even though we can not see each other that frequently, I know that you are doing
great out there. Never stop.

iX

TABLE OF CONTENTS

ABSTRACTI. . . . o oottt e e e e v
m ... vi
ACKNOWLEDGMENTS]. ooo i ix
............................. X

LIST OF TABLES

LISTOFFIGURES|.o o o Xiv

LIST OF ALGORITHMS

CHAPTERS

1 INTRODUCTIONI 1

2 REILATED WORKI o o o 5
[2.1 Image Editing|, 5

2.2 Background| ool 9

2.2.1 Scene Segmentation| 9

[2.2.2 Fully Convolutional Neural Networks| 10

223 Grabcutfo 10

[2.2.4 Cloud Segmentation| 12

[2.2.5 Sky Rendering| 12

2.2.5.1 Rendering Single Scattering Visible from |

Space| L 14

[2.2.5.2 Rendering Multiple Scattering| 15

[2.2.5.3 Sky Rendering in a Real time Game |

Enginel 15

2.2.5.4 Precomputed Atmospheric Scattering|. 16

2.2.6 Color Transfed 17

3 ALGORITHM st 19
[3.1 Image Segmentation| oL Lo 19
[3.1.1 Sky Segmentation|. 20

(3.1.1.1 Coarse Sky Segmentation| 21

(3.1.1.2 Sky Mask Refinement 22

B3.1.2 Horizon Line Detectionl. 24

[3.1.3 Sun Segmentation|. 24

[3.1.4 Cloud Segmentation| 26

[3.2 Sky Rendering| 27
[3.2.1 Assumptions about the Input Image| 27

[3.2.2 Calibration and Blending 27

[3.2.3 Matching Camera Properties| 28

[3.3 Foreground and Cloud Relighting| 29
[3.3.1 Foreground Relighting| 29

xi

B32 CloudRelighting] oo oo oo 31

[3.3.3 Generating the Final Image| 33

34

4 EXPERIMENTAL RESULTS 35
4.1 ClearSky| 35

‘4.2 Cloudy Sky| L . 40

S LIMITATIONSI oo 43
[5.1 Incorrectly Placed Horizon Line|. 43

[5.2 Cloud Segmentation Parameters|. 44

[5.3 Foreground Depth| 45

45

6 CONCLUSION AND FUTURE WORKI 47
47

47

48

REFERENCES| o 51

Xii

LIST OF TABLES

TABLES

Table 3.1 List of the terms used in the proposed method

Table 3.2 Run time performance counters of the technique. Units are in mil-

xiil

LIST OF FIGURES

FIGURES

Figure 2.1 Poisson 1image editing allows the user to transport a part of one

| image to another seamlessly. Image taken from [27]] 6
Figure|2.2 'The material properties of the object in the input image on the left |
| can be changed to be a transparent object or have a different BRDF. Image |
| taken from [20].] Lo L 7
Figure 2.3 Using the input image in the top left, the reflectance maps (right [
| side) can be found. Then the appearance of the cars can be changed by [
| changing the reflectance maps of the objects. Image taken from [30]| . . . 8
Figure[2.4 'The overall algorithm of the Data-driven Hallucination of Different |
| Times of Day from a Single Outdoor Photo. Image taken from [32]]. . . . 8
Figure[2.5 Results of the semantic aware sky replacement algorithm.| 9
Figure [2.6 Fully convolutional networks can easily learn and perform per |
| pixel segmentation tasks. Image taken from [24].. 10
Figure 2.7 Representation of an image as a graph and solving the segmenta- [
| tion problem with min cut algorithm. Image taken from [15].| 11
Figure 2.8 Grabcut takes the image and a rectangle as inputs. After the seg- [
| mentation 18 finished, user can use strokes to further refine the result. Im- |
| age taken from [31]. oo 11
Figure|2.9 Blue 1s the dominant color that 1s scattered at the sky. Meanwhile, [
| absence of a atmospheric layer results 1in a black moon sky. From left to [
| right, images are taken from [&l], [13)[.|. 13
Figure [2.10 Output of the algorithm of Nishita. Image taken from [26].. 15
Figure|[2.11 Computer generated images using multiple atmospheric scattering [
| effect. Image taken from [25]| 16
Figure [2.12 Precomputed 4D scattering data also allows the user to change the [
| camera height without any new computation. Images are taken from [16].|. 16

X1V

Figure[3.1 Overview of the proposed algorithm. Input image taken from [[1].| . 20

Figure|3.2 An mput image and the corresponding segmentation. Input image |
| takenfrom [1].| 20

Figure 3.3 Input image and the crude sky mask gathered with the FCN algo- |
| rithm. Mask 1s scaled to the size of the input 1mage. Input image taken |

| from [f.) ... 22

Figure 3.4 Using the input image and the foreground rectangle information |
| as mputs, Grabcut refines the coarse sky mask generated by FCN. Input |
| image taken from [1].| oo oo 23

Figure|3.5 An example showing a wrong segmentation with the bounding box |
| of FCNN segmentation and the correction from user stroke. Input image |
[taken from [2]o oo 23

Figure 3.6 Computed horizon line position for several inputs. From left to |
| right images are taken from [S], [6], ['Z].| 24

Figure [3.7 Sun segmentation mask in the second 1mage is calculated with a |
| flood fill algorithm from the first image and the user click on the sun. |
[Image taken from [1]].] L. 26

Figure 3.8 Left image 1s the cloud softness map M/, and the right one 1s the |
| cloudmask M_..| o 27

Figure 3.9 Using the sun position and horizon line, the rendered sky 1s cali- |
[brated to match with the input image. Input image taken from [1]].|. 28

Figure [3.10 The sky pixels of the left image are updated using sky rendering |
| algorithm. Input image taken from [1].| 28

Figure [3.11 Reinhard et al.’s color transfer algorithm [29] 1s used to reduce |
| differences with the rendered and original sky. Input image taken from [[1].| 29

Figure [3.12 After each movement of the sun, the new mean color of the sky 1s |
[calculated and the foreground 1s relighted with the equation. It can be seen |
| that as the sun 1s going down, the overall color of the foreground becomes |
| more orange. Image taken from [.o 30

Figure [3.13 The contrast of the foreground pixels 1s reduced with the factor |
| s. The left image 1s the relighted foreground without this effect while |
| contrast reduction 1s present at the right one. Image taken from [1]].| 31

Figure [3.14 The output of the cloud relighting method.| 33

XV

Figure [3.15 The sun in the input 1mage 1s moved by the user and the image [
| appearance 1s changed accordingly with the proposed algorithm. Image [
| taken from [[1].| 33

Figure 4.1 Input 1mage, and relighted outputs after incremental sun move- [
L ments. Note that as the sun 1s moved towards horizon color of the fore- |
| ground pixels 1s changed to a more orange hue. However, the relighting [
| of the sea is not successful. Image taken from [9]] 36

Figure[4.2 Input image, segmentation mask, and relighted outputs after incre- [
| mental sun movements. The foreground relighting looks natural because [
| of the foreground pixels with high diffuse reflection. Image taken from [8]] 37

Figure 4.3 Input image, segmentation mask, and relighted outputs after incre- [
| mental sun movements. When the sun 1s halfway to the horizon the lack [
| of the scattering calculation 1n foreground pixels 1s visible as the scat- [
I |
I

tering effect can not be modified correctly by the foreground relighting
algorithm. Image taken from [1O]). 37

Figure|4.4 Input image, segmentation mask, and relighted outputs after incre- |
| mental sun movements. The faulty segmentation of foreground lowers the [
| visual quality of the output. Image taken from [6]. 38

Figure 4.5 Input image, segmentation mask, and relighted outputs after incre- [
| mental sun movements. Image taken from [/].] 38

Figure 4.6 Input image, segmentation mask, and relighted outputs after incre- [
| mental sun movements. Image taken from [11] 39

Figure|4d.7 Input image, segmentation mask, and relighted outputs after incre- [
| mental sun movements. A night scene can be turned into a sunset. Image [
| taken from [12].] L 40

Figure 4.8 'To prevent false positive segmentation, some cloud pixels are sac- |
| rificed. This results in a less dense cloud field. Image taken from [3]].| . . . 41

Figure 4.9 If the cloud softness mask C* has enough contrast, cloud relighting [
| algorithm works well. This 1s indeed the case in this input. Also, the effect [
| of the foreground contrast reduction 1s visible. Image taken from [1].| . . . 42

Figure 4.10 A cloud mask with hard edges reduces the visual quality of the [
.................................... 42

Xvi

Figure [5.1 In this input the horizon line 1s estimated to be higher than its

| correct level. This results 1n a premature sun set. This gives the false 1m-

| pression that the mountains 1n the 1mage are actually a lot smaller. Image

[taken from [4].| 44
Figure|5.2 High threshold value 1s used to segment the clouds. This prevents |
| scattered pixels to be segmented. However, some parts of the cloud layer |
| 1s lost. Image taken from [3I].|o 0oL 44
Figure|5.3 After the sun movement the water pixels can not be relighted cor- |
| rectly without the BRDF. Image taken from [9].| 46

Xvil

LIST OF ALGORITHMS

ALGORITHMS

Algorithm|I Sun segmentation algorithm.|. 25

xXviii

Abbreviations

BRDF Bidirectional Reflectance Distribution Functions
CNN Convolutional Neural Network

CRF Conditional Random Field

FCN Fully Convolutional Network

GMM Gaussian Mixture Model

HDR High Dynamic Range

LDR Low Dynamic Range

Xix

XX

CHAPTER 1

INTRODUCTION

Capturing the perfect photo is the ultimate aim of every professional and amateur
photographer. Perfect photos are often taken when the alignment of many different
aspects like the orientation and position of the foreground objects as well as an aes-
thetic and meaningful background are established. Obtaining the desired composition
for the foreground objects are generally easier than obtaining a good composition for
the background. Especially, in outdoor scenes, the background is typically dynamic
and cannot be changed at the will of the photographer. In particular, photographs
containing the sun are difficult to capture due to the constant motion of the sun in
the sky and the appearance changes induced by this motion in the foreground. As
an example, a photographer may desire to capture a partial sunset together with a
particular dynamic foreground composition. However, despite the foreground being
ready, there may still be some time for the sun to reach the desired elevation. In this
case, the photographer must either wait for this moment risking the distortion of the
foreground or settle for an image with a non-ideal background. Furthermore, when
the scene is ready to be captured the photographer must make fast decisions to avoid

missing the perfect picture.

There are many image editing tools that allow post-processing a captured photograph
to obtain the desired look-and-feel. There are many filters in popular image editing
software such as Photoshop to introduce various effects [28]]. Similarly, popular photo
sharing platforms, such as Instagra allow the user to apply various effects to their
pictures. In the literature, there are also many image editing techniques that enable

advanced effects such as image based material editing [20]], inserting new objects into

1 http://www.instagram.com

photographs [22], and replacing the sky of an existing photograph [335]].

This thesis proposes a similar advanced image editing algorithm particularly targeting
an aspect of image editing that has been hitherto overlooked. The proposed approach
involves making modifications to the position of the sun as a post-processing effect.
The input to the algorithm is a single photograph. The user can make adjustments
by selecting the sun and changing its position in the sky. The proposed approach
allows not only simple changes but also drastic modifications such as setting the sun
behind the horizon, bringing back up a partially set sun, changing its both azimuthal
and elevation angles, entirely removing the sun, or adding the sun to a picture that
is devoid of it. Such modifications entail overall changes to the photograph so that
the entire photograph is consistent with respect to the new sun position. This thesis
attempts to show that such advanced image editing effects are not only possible but

can be applied in real-time to allow a fully interactive solution.

At the heart of the proposed algorithm lies a two-step sky segmentation in which
a coarse labelling of sky pixels is obtained in the first step [35] followed by sky
refinement [31] in the second. This segmentation permits re-rendering of the sky
regions using an atmospheric scattering algorithm [[16]. The result of this rendering
is smoothly blended using a color transfer algorithm [29] with the original sky to
stay faithful to the original picture. The foreground regions of the original sky (i.e.
clouds) are extracted, relighted with respect to the new sun position, and blended back
onto the image. Furthermore, the foreground regions of the original photograph are
also relighted to obtain a consistent look with respect the current sun position. All of
these operations are performed in real-time to allow instant feedback to the user. The
proposed algorithm is mostly automatic. However, intutive controls are provided to
the user to override certain parameters that are automatically extracted and provide

fine-tuned control on the appearance of the final image.

To summarize, the primary contributions of this thesis are:

e First image-based sun position modification algorithm in the literature,

e Realistic handling of various appearance effects that stem from updating the

sun position,

e A real-time implementation allowing all modifications to be fully interactive.

The rest of the thesis is organized as follows. Chapter 2] first describes the previous
image editing studies and then overviews the fundamental algorithms that are used
in the current study. In Chapter [3] the proposed algorithm is explained in detail.
This is followed by the experimental results shown in Chapter 4] Limitations of the
suggested approach are described in Chapter[5] Finally, the conclusions and potential

future improvements are given in Chapter 6]

CHAPTER 2

RELATED WORK

Image editing is an extensively studied subject within the computer graphics litera-
ture, and as a result, a large body of research exists that may serve as the background
for this thesis. In this chapter, this literature is organized into two categories. In the
first category, image editing techniques that are related to the presented work are dis-
cussed. In the second category, various techniques that serve as the building blocks

of the proposed method are reviewed.

2.1 Image Editing

Image editing refers to the notion of processing an input image to produce an output
image with desired characteristics. Such processing may occur at the global level

changing the entire appearance of the image or may be confined to local regions [27].

There are many image editing algorithms that are proposed in the literature. In Pois-
son image editing [27]], different editing tools are used with guided interpolation by
solving the Poisson equations. These tools vary from seamlessly transporting a part
of one image between images to changing the affect of the texture, the illumination

or making a texture tileable.

Khan et al. [20] devised an algorithm to change the BRDF of an object inside an high
dynamic range image and relight it with respect to its surroundings in the image. This
process is tailored to highly exploit the tolerance of human vision. The algorithm

can be divided into several parts of finding the object shape, calculating the environ-

5

sources destinations cloning seamless cloning

d ! cloning seamless cloning
sources/destinations

Figure 2.1: Poisson image editing allows the user to transport a part of one image to

another seamlessly. Image taken from [27]].

Figure 2.2: The material properties of the object in the input image on the left can be

changed to be a transparent object or have a different BRDF. Image taken from [20].

ment lighting and with the new material properties relighting of the object. Firstly,
the sigmoidal compression is used to capture the depth of the object pixels. Then, by
using the screen space gradients of the depth values, the normal of the object is ap-
proximated. Furthermore, in order to find the lighting properties of the environment,
the mesh pixels are removed and a hole filling algorithm is used to fill these pixels
with other pixels from the image. The center of the new image without the object is
placed into a two dimensional cartesian space and then warped to create a hemisphere
which has the same center. This hemisphere is duplicated in the other side to create
the HDR environment map. Finally, the BRDF of the image is changed and the light-
ing is sampled from the calculated HDR environment map. Also, a texture can be

wrapped around the object with the gradient field calculated at the first step.

Konstantinos [30] used convolutional neural networks to find the shape, material and
illumination of an object inside an image. A CNN is trained to find the reflectance
map of the objects inside an image. Reflectance map is the mapping of surface orien-
tation and properties of an object to its appearance. This is done with the assumptions

of constant material, distance light source and viewer.

Shih et al. [32] proposes an algorithm to change the time of day of a photo. This
algorithm uses a data-driven approach. The color transfer from one frame of the
video (for example sun rise) to another (night) is learned by a model. A matching
time lapse video is found for the input image and the affine color transfer for that

frame is applied to the input image. The overall algorithm is depicted in Figure 2.4]

As one of the more related algorithms to the current thesis, Tsai et al [35] proposed
an algorithm to change the sky with another one from a suitable image. First, the

scene is segmented by an FCN. Afterwards, with a online classifier, the result of

7

Figure 2.3: Using the input image in the top left, the reflectance maps (right side) can
be found. Then the appearance of the cars can be changed by changing the reflectance

maps of the objects. Image taken from [30].

(1) Retrieve from database. Time-lapse videos similar to input image (Sec 5.1)

(2) Compute a dense
correspondence across the input

image and the time-lapse , and then
warp the time-lapse (Sec. 5.2)

Affine color mapping learned
/ B from the time-lapse

(3) Locally affine transfer from time-lapse to the input image (Sec. 6).

Figure 2.4: The overall algorithm of the Data-driven Hallucination of Different Times

of Day from a Single Outdoor Photo. Image taken from [32].

(a) The first and the third images are input while the second and fourth are the sky replaced ones.

Image taken from [33].

Figure 2.5: Results of the semantic aware sky replacement algorithm.

the FCN is refined to match with the input resolution. Then, by using the semantic
information about the image, images with a matching sky box are found to be used as
a replacement for the sky in the original image. To correctly update the color of the
foreground, the semantic data from both images is used. Every pixel is updated with
the mean colors of the pixels from the other images which are at the same labels. Soft
blending of multiple label levels are also used in this relighting process to increase

the visual quality.

2.2 Background

In this section, various techniques that are used in the current thesis and therefore

serve as its backround are reviewed.

2.2.1 Scene Segmentation

Segmentation of an image into predefined labels is one of the problems that Com-
puter Vision algorithms try to solve. Nowadays, learning based techniques dominate
the computer vision research with their state-of-the-art performance on several bench-
marks. In this section, Fully Convolutional Networks (FCN) [24], Grabcut [31], and

color based cloud segmentation techniques [29] will be discussed.

9

forward/inference

backward/learning

o of
50 1

ek ™

Figure 2.6: Fully convolutional networks can easily learn and perform per pixel seg-

mentation tasks. Image taken from [24].

2.2.2 Fully Convolutional Neural Networks

Convolutional nueral networks are commonly used to solve semantic segmentation

problems where the task is to predict a category label for each pixel in a given image.

Long et al. [24]] used Fully Convolutional Neural Networks for the scene segmentation
problem. These networks significantly increase the performance and robustness of
the per pixel scene segmentation tasks. However, the output resolution is defined in
the model and constant for every input image. The model and the overall algorithm

of [24] can be seen in Figure [2.6]

2.2.3 Grabcut

Boykov et al. [135], in their seminal paper, define the segmentation problem as an
energy minimization problem. Firstly, the image is transformed into a graph with
the following rules. The initial foreground and background pixels are the sink nodes
of the graph. Every other pixel in the image is inserted as an intermediate node.
Connection between every pixel and their neighbours are defined as the edges in the
graph. Then, for every node a probability of being in whether the foreground and
background labels is computed. The energy of the edges which are the edge weights
are then defined as the difference of these probabilities of the edge nodes. Thus, one
can define finding the best segmentation of the images as finding the minimum cut
for this graph. Finally, a globally satisfying graph cut can be found in linear time
with max-flow/min-cut algorithm [[18]. Rother et al. [31]] improved the graph cut

10

(a) Image with seeds. (d) Segmentation results.
4 f

Background Background

@ terminal @ terminal

Object
terminal

(b) Graph.

Figure 2.7: Representation of an image as a graph and solving the segmentation prob-

lem with min cut algorithm. Image taken from [[13].

Automatic
B ———
Segmentation

User

\nteraction

Automatic
—_—
Segmentation

Figure 2.8: Grabcut takes the image and a rectangle as inputs. After the segmentation

is finished, user can use strokes to further refine the result. Image taken from [31]].

segmentation algorithm and named it Grabcut. Firstly, the gray scale color spaced
used in the original method is replaced with Gaussian Mixture Model (GMM). A
GMM value is calculated as a Gaussian mixture for both background and foreground.
The algorithm starts with the bounding box for the foreground object as an user input.
Then, the GMM values for labels are initialized with respect to the pixels that are
inside and outside of this rectangle. For every iteration, the min cut is found and the
result is used to better estimate the values of these GMM'’s. Finally, if there are errors
in some areas of the image, user can draw some strokes to change values of some
pixels. Then by using this information the minimum cut algorithm is run once more

and the result is the final segmentation of the foreground and the background pixels.

11

2.2.4 Cloud Segmentation

Cloud segmentation is used frequently at the atmospheric observation algorithms.
Robust segmentation of the clouds in an image is essential at the weather analysis
processes. The most robust algorithms to solve this problem usually uses color based

techniques.

Long et al. [23] calculates the ratio of red and blue channels. Then this value is
compared against a threshold to determine whether a pixel is cloud or not. Heinle et
al. [19] uses the difference of the red and blue channels to label the pixels. Souza et
al. [34]] computes the Saturation of the pixel color and use it to find the label. Finally,
Dev et al. [17] uses a learning based approach to segment clouds without the fine

tuning that the older techniques needed.

2.2.5 Sky Rendering

Accurate capture of atmospheric scattering effects is the key to render realistic skies
and big landscapes. Lots of different techniques are published to capture the scat-
tering effect of light while passing through a dense medium. The scientific notation

from [|16]] is used.

Earth’s atmosphere layer is a thick spherical layer around the planet. It has a different
density of air molecules at every height and it is responsible for the atmospheric
effects that is visible everyday and every hour. When light passes through a medium,
two things happen. It can get absorbed or it can get scattered away in a different
direction. Air molecules and aerosol particles are the two main medium that is the

reason of these effects in our atmosphere.

The light that is scattered away at # degrees away, can be found by the product of scat-
tering coefficient B® and phase function P. For the air molecules, Rayleigh theorem

states that:

BE(h,\) = (5.8,13.5,33.1) (2.1)
3

P.=—(1 2 2.2

" 167T(+7T) (22)

12

Notice that the blue component of the scattered light is more than the other compo-
nents. This is the reason for the sky appearing blue to our eyes. This happens most
when the sun is at the top of the sky. However, when the sun is rising or setting, the
most scattered wavelengths cannot reach our eyes resulting in an orange hue at these
times of the day. Also the lack of an atmosphere results in a sky where only the direct

sun light is visible. This is indeed the case at the moon surface as can be seen in

Figure[2.9

(a) Clear sky. (b) Sky of moon.

Figure 2.9: Blue is the dominant color that is scattered at the sky. Meanwhile, absence

of a atmospheric layer results in a black moon sky. From left to right, images are taken

from [8]], [13]].

For aeresol particles , Mie theorem defines the B® and P as:

P = (3/8m)(1 = ¢*)(1+ 1) /(2 + ¢°)(1 + ¢* — 2gp)** (2.4)

With these information, the light that is scattered to eye position = from the position
x(can be defined. This x(can be at the surface of the planet or a point at the sky. v

is the direction from x to x and s is the direction of sun direct light.

First the absorption function 7'(x,) for the light that comes from z to z is defined

as:

T(x,z0) = exp <— / " BS(y)dy) . (2.5)

13

Note that the amount of sun light is L,,. Ly which is the contribution of direct sun

reflected at the position xy and arrived at x is defined as follows:
Lo(z,z9) = T(z, 20) Lgyn, (2.6)
and R be the sum of every light that is reflected from z(and arrived at the x:

R(z, o) = T(x,x0)(a(x0)/7) / L(zg,w, s)w.n(xg)dw. (2.7)
2m
Also, the sum of the scattered light from z0 to x in the direction v is defined as .S as

follows.

S(z,v,5) = / " ey (AﬁBs(y)P(v,w)L(y,w,s)dw) dy. 28)

Finally, with all this formulas, total light that is reflected to = from o namely L(x,),

can be defined as:
L(z,v,s) = Lo(z,v,s) + R(z,v,s) + S(z,v, s). (2.9)

Computationally, the most expensive term is .S, as it requires the result of every scat-
tering event along the way to x. Now, the proposed methods in the literature to solve

L will be investigated.

2.2.5.1 Rendering Single Scattering Visible from Space

Nishita et al. [26] is the first to propose an algorithm for atmospheric rendering. This
work tries to solve the single scattering equation for the air particles with a numerical
approximation. The atmosphere layer is discretezed as thin spherical layers. Two
directions for light is taken into account. The direction from x to zy and from z, at
s direction to sun. The inner integral in S is computed iteratively. The result is the

ability to render the earth and the sea from space.

14

(a) Earth viewed from space

Figure 2.10: Output of the algorithm of Nishita. Image taken from [26].

2.2.5.2 Rendering Multiple Scattering

In the following years, Nishita improved his algorithm to account for multiple scat-

tering and the ability to view from inside the atmosphere layers.

In order to cope with the high order of integral to render the multiple scattering effect,
Nishita et al. proposed to divide the sky into voxels in which every voxel is
defined as a viewing direction to sky with respect to the viewer. Then, the scattering
effects at every reflection of the light ray is incrementally updated with respect to the

previous scattering.

2.2.5.3 Sky Rendering in a Real time Game Engine

In a real-time game engine, Wenzel et al. [36] was one of the first to render realistic
atmospheric scattering effect taking into account the Mie and Rayleight in-scattering.
A 128 x 128 grid is generated for the sky and the formula L is computed at this resolu-
tion. This computation is done in pixel shaders at the GPU. This data is independent

of camera direction and only gets updated once the sun direction changes. This pro-

15

Figure 2.11: Computer generated images using multiple atmospheric scattering ef-

fect. Image taken from [23].

>

Figure 2.12: Precomputed 4D scattering data also allows the user to change the cam-

era height without any new computation. Images are taken from [[16].

cess of re computing is done in several frames to ensure smooth transition of time of
day. The only assumption was that the camera is at ground level and infinitely far

away from the sky.

2.2.5.4 Precomputed Atmospheric Scattering

Bruneton et al. [16] introduced their work to precompute the multiple scattering of
atmospheric particles at a four dimensional spatial space. The results can be obtained
in real-time and unlike previous methods, the height of the camera from the ground
is taken into account. This enables the algorithm to render the atmospheric scattering

at every height, from ground to space.

16

2.2.6 Color Transfer

Transferring the characterics one image to another is a widely encountered problem
in many areas. These techniques can be used to enhance a photo to be more appealing
to the human perception. Also, one can use to generate new photos by merging two

photos together.

One of the pioneering color transfer techniques was proposed by Reinhard et al. [29].
In this method, the goal is to transfer the colors of one image to the second image.
First, both images are converted into the L3 color space. Per channel mean and
standart deviation of the two images are calculated. Denoting the mean of the images
as M, and M, and the standard deviations as Sy and S;. R is the ratio of the standard

deviation of the second image and the first image.

R =51/5, (2.10)

In order to transfer the first image into the second image, the following equation is
used : Let the initial pixel value of the images in LaB space are Ly and L,. The
mean of the first image is subtracted from every pixel in the first image. Then, the
intermediate pixel values found at the last step is multiplied by R. Finally, the mean

of the second image is added to the current values of pixels:

L' = (Lo — Mo)R) + M, (2.11)

This operation is applied to each color component and the result is converted back to

the red green blue (RGB) color space.

17

18

CHAPTER 3

ALGORITHM

The proposed algorithm takes two inputs which are the input image to be edited and
a user-click representing the position of the sun. The editing process is accomplished

in three stages. These are

e The segmentation of the scene into labels such as sky, clouds, foreground, sun

and the horizon,

e Sky rendering based on the new position of the sun,

e Relighting of the foreground and the clouds to make them consistent with the

new sun position.

An overview of the proposed algorithm is shown in Figure 3.1} Also, the notation

used throughout the algorithm can be seen in Table 3.1}

3.1 Image Segmentation

In order to correctly change the appearance of the image, the scene should first be
segmented into its categories with meaningful labels. The different object categories

important for this thesis are the sky, sun, clouds, foreground and the horizon (Fig-

ure[3.2)).

19

Figure 3.1: Overview of the proposed algorithm. Input image taken from [1].

z . -
r ’ :H
: %
F |
o 42 I
F - a r

(a) Input image (b) Computed labels

Figure 3.2: An input image and the corresponding segmentation. Input image taken
from [1]].

Each category requires a different segmentation approach as explained below.

3.1.1 Sky Segmentation

The proposed algorithm starts with finding a binary mask for the sky pixels. This

mask will be used for further segmentation steps as well as the relighting the entire

20

Notation Meaning Dimension
M Crude Sky Mask WxHx1
M Upsampled Crude Sky Mask WxHx1
M Refined Sky Mask WxHx1
cm Cloud Mask WxHx1
(O Cloud Softness Mask WxHx1
C Original Cloud Color WxHx3
cr Relighted Cloud Color WxHx3
Coopt Relighted Soft Cloud Color WxHx3

hick Relighted Thick Cloud Color WxHx3
S Original Sky Color WxHx3
S” Re-rendered Sky Color with Color Transfer WxHx3
BT Relighted Background Color WxHx3
Ir Final Image WxHx3

Table 3.1: List of the terms used in the proposed method

image with the new sun position.

3.1.1.1 Coarse SKky Segmentation

To segment the sky pixels of the input image, a fully convolutional network (FCN)
that represents the state-of-the-art for semantic segmentation is used [24]. The already
trained model of [38] and [39] is used. The output of this is the probability map for
each pixel of the input image, P(i, j, k), where i and j are the pixel coordinates and
k is the label index. For every pixel, the most probable label index Kj ; is defined as

follows:

K;; = argmax P(i, j, k) 3.1)
k

The coarse sky mask, M (i, 7), is then defined as follows:

1 iff(i,-: sky
M(i,j) = ’ ’ (3.2)

0 otherwise.

For computational efficiency, the FCN produces the segmentation results in 384 x 384

21

resolution. Therefore, the sky mask computed in Equation[3.2]has also low resolution.
This mask is upsampled to produce, M*, which is the sky mask in the original image
resolution. However, this upsampling process results in a crude sky mask that must

be refined. A sample result of this algorithm is depicted in Figure [3.3]

(a) Input image (b) Upscaled crude sky mask

Figure 3.3: Input image and the crude sky mask gathered with the FCN algorithm.

Mask is scaled to the size of the input image. Input image taken from [[1].

3.1.1.2 Sky Mask Refinement

In order to refine the sky mask various techniques were tested. Initially, custom
heuristics based on detecting edges in the original image in the neighbourhood of the
crude sky mask contours were employed. However, these did not provide satisfactory
results in different images in a consistent manner. Next, experiments were conducted
to use a dense conditional random field (CRF) [21]]. This algorithm uses the initial
segmentation results as unary potentials and computes pairwise potentials between
all pairs of pixels. However, the outputs of this algorithm were not satisfactory in all
cases as well. The best results were obtained using Grabcut segmentation [31]. Grab-
cut takes the original image as well as a screen-space bounding box of the foreground.
This bounding box is computed using the minimum and maximum pixel coordinates

of M* matrix. The results after the Grabcut refinement are shown in Figure 3.4

22

(a) Bounding box (b) Input Image (c) Refined sky mask

Figure 3.4: Using the input image and the foreground rectangle information as inputs,

Grabcut refines the coarse sky mask generated by FCN. Input image taken from [1]].

However, in pictures that have complex skylines, using the bounding box only may
result in incorrect segmentation. For these cases, an interface is provided for user to
draw strokes on the background to assist Grabcut in segmentation. The results of this

approach are shown in Figure [3.5]

(a) Rectangle From FCNN (b) Result of rectangle

(c) User stroke input (d) Result with user stroke

Figure 3.5: An example showing a wrong segmentation with the bounding box of FCNN segmen-

tation and the correction from user stroke. Input image taken from [2].

23

3.1.2 Horizon Line Detection

Detecting the horizon line is critical for the correct rendering of the sky when the
position of the sun is changed by the user. For instance, when the sun is set, the most
intense orange hues will be visible around the horizon in the regions close to the sun.
Therefore if the horizon line is detected in an incorrect position this colouring effect
will take place in an incorrect location. To find the horizon line, first an edge detection

is performed along the vertical axis of the upsampled and refined sky mask, M ™":

F(i,j) = |M"“"(i,j) — M*“"(i,j — 1)|, (3.3)

where F'(i, j) represents the binary edge mask. The horizon line is assumed to be at

the ;7 coordinate which has the maximum number of edge pixels in this coordinate:

width—1
arg max Z F(i,j). (3.4)
J i=0

This algorithm works well for landscape images (Figure [3.6) but may fail in images
where objects that occlude the horizon are close to the camera (e.g. a building with a
flat-roof). To cope with this, a user interface control is provided to allow the user to

modify this incorrect horizon line.

Figure 3.6: Computed horizon line position for several inputs. From left to right

images are taken from [5]], [6], [7].

3.1.3 Sun Segmentation

In the previous part, the cloud mask is found by using the ratio of red and blue chan-

nels. This techniques also labels the sun pixels as cloud because of the high red

24

channel values at the sun pixels. To cope with this, the set of sun pixels should be

found. Flood fill algorithm is used to label the sun pixels [33]].

At the beginning of the application, user clicks the sun to move it. The flood fill
algorithm starts with that pixel. Let the first pixel be Fy. Three structures are used.
Firstly, a stack .S to hold the non processed neighbours , an array F' which holds the
pixels already labelled as sun and a set P to hold the already processed pixels are
defined. F' and S is initialized with F,. Then, at every iteration, a pixel is popped
from S. If the luminance difference between F, and itself is lower then a threshold
M, it is pushed into F'. Also, in that case every neighbour which is not processed
before is pushed into the S. Finally, current pixel is inserted into the processed set
P. The algorithm is finished when the S is empty and /' denotes the sun pixels. This
technique can be seen in Algorithm

Algorithm 1: Sun segmentation algorithm.
Input: [: input image, F, : coordinate of the starting pixel

Output: F' : set of sun pixel coordinates

1 Function SegmentSun (/) :

2 while P is not empty do
3 if |I(current) — I(Py)| < M then
4 F.push(neihbour)
5 for neighbour < current.neighbours do
6 if P.contains(neighbour)is false then
7 ‘ S.push(neighbour)
8 end
9 end
10 end
11 P.push(current)
12 end
13 return F'

25

(a) Input image (b) Sun segmentation mask

Figure 3.7: Sun segmentation mask in the second image is calculated with a flood fill

algorithm from the first image and the user click on the sun. Image taken from [1].

3.1.4 Cloud Segmentation

In order to blend and relight the cloud pixels successfully, a cloud mask should be
calculated. The segmentation technique from [23]] is used to determine whether that
pixel is cloud or not. The output of this method is a binary mask. First, the ratio of
red and blue channels of the sky pixels are found. Then, the pixel is segmented as
cloud if this ratio is bigger than a threshold m,;,. The output mask C"™ is defined as
follows:

1 if (r/b) > mmin ,
cm = (r/®) 3.5)

0 otherwise.

The reflectance of the cloud pixels change rapidly with respect to their density. Thick
clouds does not let the light pass through itself, so their bluish appearance governed by
the light that is scattered between the clouds and the viewer. Using this observation,
it can be assumed that while the soft clouds will be bright, the color of the thick cloud
pixels will be more like a darker blue sky. To correctly relight thick cloud pixels, a
per pixel softness map is needed. To find this softness mask C*, just like the cloud
mask, the ratio of the red and blue channels are used. However, this time, C*® is a gray
scale mask, where the 0 value indicates that the ratio is at the minimum threshold m
while a value bigger than 1 indicates that the ratio is equal or bigger than a maximum

threshold which is defined as m,,,,,.. The calculation of the C* is as follows:

Cs = ((r/b) — Mumin) [(Muaz — Mmin) (3.6)

26

Figure 3.8: Left image is the cloud softness map M, and the right one is the cloud
mask M..

The output masks of the cloud segmentation algorithm can be seen in Figure

3.2 Sky Rendering

At this point, horizon line and the sun position is found. Using this information a
camera can be calibrated to match the sky rendering algorithm to the original image

as explained below.

3.2.1 Assumptions about the Input Image

Several assumptions are made about the camera that captured the input image. A
fixed field of view for the sky rendering algorithm is used throughout the algorithm.
When this assumption does not match with the reality, the shape of the scattering
effect around the sun can be different than the original image. Also, the elevation of

the camera from the ground is set to O throughout the technique.

3.2.2 Calibration and Blending

With the information gathered from photo and the assumptions made in Section|3.2.1
the camera and sun direction properties of the sky rendering algorithm can be ad-
justed. First, the sun position is found by getting the center pixel of the sun mask.

Then, the camera is rotated up or down till the horizon line in the rendered sky

27

g 1

- A
’ c—
=

(a) Input image (b) Calibration of rendered sky

Figure 3.9: Using the sun position and horizon line, the rendered sky is calibrated to

match with the input image. Input image taken from [[1]].

(a) Input image (b) Rendering result

Figure 3.10: The sky pixels of the left image are updated using sky rendering algo-

rithm. Input image taken from [1].

matches with the horizon in the image. The result of this calibration can be seen

in Figure[3.9

At this point, the rendered sky can be blended with the first image by using the refined
sky mask M"™" . Note that this blending also uses the cloud mask C' so that the cloud

pixels are used from the original image. The result of this operation can be seen in

Figure

3.2.3 Matching Camera Properties

There are information about the image that can not be deduced from one photo. They

are, exposure, camera response curve, and densities of atmospheric particles. To cope

28

with this, Reinhard’s Color Transfer algorithm [29] is used to match the visual of
rendered sky with the input image. Unlike the original algorithm, only the pixels that
were segmented as sky pixels are used. This ensures that, without any sun movement,
the new image looks as similar as possible to the old one. The result of the color

transfer can be seen in Figure [3.11]

(a) Input image (b) Rendering result (c) Result with color transfer

Figure 3.11: Reinhard et al.’s color transfer algorithm [29] is used to reduce differ-

ences with the rendered and original sky. Input image taken from [1]].

3.3 Foreground and Cloud Relighting

When the sun is moved by user and the appearance of the sky is changed, the color
of foreground and cloud pixels should be changed to match with the new lighting
environment. Foreground and cloud pixels are treated differently because of their

differences in surface shape and reflectance.

3.3.1 Foreground Relighting

Let S and F represent the mean colors of the sky and foreground regions in the
original picture, respectively. Denote their per-component ratio by @ = S/F. After
updating the sky color as explained in Section [2.2.5.4] the mean foreground color is
recomputed to preserve this ratio, i.e. [/ = () x S™ where x represents per-component
multiplication. To achieve this, each foreground pixel is scaled by the factor of F/F.

Fr= (%’ x F). 3.7)

This effect can be seen in Figure[3.12]

29

Figure 3.12: After each movement of the sun, the new mean color of the sky is cal-
culated and the foreground is relighted with the equation. It can be seen that as the
sun is going down, the overall color of the foreground becomes more orange. Image

taken from [8§]].

However, when the input image is LDR, the mean color of the sky pixels does not rep-
resent the lighting environment successfully. In real world, the illumination amount
of direct sun pixels are very high with respect to the sky pixels. However, the sun
pixels in the LDR input image are generally white while some clouds can be at the
some color as well. In order to cope with this, the power of the sun pixels is amplified
by a factor F'*. This ensures that the color change of the sun and occlusion of the sun
pixels effects the overall color of the foreground at a much higher rate and in a more

realistic way. The factor F* is used as 1000 for all of the input images.

Another key observation about the outdoor lighting is that the direct sun contribution
is much more powerful than the scattered sky colors and the transmitted sun rays
through the clouds. With this, it can said that when the sun is occluded by the clouds,
not only the color schema is changed to a more blue tint, the overall contrast of the
image is lowered. This assumption generally holds as long as the image is not fully

shadowed in the initial state.

To accommodate for this phenomena, the occlusion ratio for the sun pixels is found
after every movement of the sun and the overall contrast of the foreground is reduced
with respect to this occlusion value. A new variable s is introduced which is the cosine
power percentage of the visible sun pixels. Then, a colourfulness modulation formula
inspired from tone mapping to reduce the contrast of the foreground final colors is

employed. The final foreground relighting algorithm for the pixels is modified as

F" (C}>s ! (3.8)
= - iz .
Lf

where L’f is the luminance computed from the color C} after Equation and s is

follows:

30

the contrast term for the foreground relighting algorithm. As the sun is occluded with

clouds , s < 1 will result in reduced colorfulness. The effect of this can be seen in

Figure[3.13]

Figure 3.13: The contrast of the foreground pixels is reduced with the factor s. The
left image is the relighted foreground without this effect while contrast reduction is

present at the right one. Image taken from [1].

3.3.2 Cloud Relighting

The process of relighting the clouds can be divided into two parts. Changing the
appearance of the soft and thick clouds. Following masks were found in the cloud
segmentation chapter. S™ determines whether there that pixels is cloud or not. C? is

the mask for cloud softness and it’s value is higher at the pixels with denser clouds.

The overall cloud relighting algorithm can be expressed with the following equation:
C" = CoopC% + Ciar(1 = C7). (3.9)

Cinicr and C, ., are the relighted colors of the thick cloud pixels and the soft cloud
pixels. Once these are found, the final cloud color can be found by blending those
together with the thickness mask C®. According to the atmospheric scattering algo-
rithm, one can assume that when the clouds does not pass any sun light, the color of
that pixel is determined by only the scattered light from that point to the camera. Thus
it can be stated that the color of that cloud will be proportional to the sky light from
that same direction if there were no cloud at that direction. Using this observation,
the formula for relighting a thick cloud pixel can be derived. Note that .S is defined

as the first color of the re-rendered sky pixel. Then, S” is defined as the current color

31

of the rendered sky after the movement of the sun. Then, the relighted color of thick
cloud pixels, namely C},. ., can be found by changing C' by preserving the ratio of
Sy and S after the movement of the sun. Now, C7}, ., can be defined as follows:

SrC

o, =—-—. 3.10
thick S ()
In order to relight the soft cloud pixels, some observations needs to be made. Firstly,
the sun can be directly visible beneath a soft layer of clouds. F” is defined as the new
sun mask after the movement of sun. With this information, C’, can be defined as

follows:

Cly=SF' +C(1—F). 3.11)

Secondly, sun light can increase the intensity of soft cloud layers around whole cloud
clusters and this can be approximated with Lambert’s cosine law. Since the normals
of the cloud pixels are unknown, a blurred version of the sky rendering is used to
approximate the color changes in clouds around the sun. The blending factor is de-
fined with a simple variable which changes with respect to the distance to the sun.

Blending factor By is defined as follows:

By=1- min(j—c, 1). (3.12)

m

d. is the current distance to sun pixel in texture space while the d,, is the maximum
distance where the blend factor becomes 0. Also, By, is the smoothness factor for the
blending factor. The blurred version of the sky rendering is defined as S,. Then, final

soft cloud color C, ,, can be calculated with equation:

soft = CioSyBf + Cy(1 — By) (3.13)

Finally, the relighted cloud pixels, namely C" can be found by blending the relighted
soft and thick color pixels with the cloud softness mask C®. This can be seen at the

equation [3.14] Input and relighted colors of clouds can be seen in Figure [3.14]

C" = CLuC% + Cli (1 = C7) (3.14)

32

(a) Cloud pixels in the input image (b) Relighted cloud pixels

Figure 3.14: The output of the cloud relighting method.

(a) Input image (b) Output image

Figure 3.15: The sun in the input image is moved by the user and the image appear-

ance is changed accordingly with the proposed algorithm. Image taken from [[1]].

3.3.3 Generating the Final Image

The final color of the background(sky) pixels, namely B", can be found by blending
the relighted sky S” and relighted cloud C" pixels with respect to the cloud mask C™.
This process is shown at the equation [3.15]

BT =C"C™+ S(1—C™) (3.15)

Finally, the pixel colors of the output image, namely /", can be found by blending the
relighted foreground pixels F" and the background pixels B" using the background
mask M™":

I"=M"“"B"+(1—- M"“")F". (3.16)

The output of the proposed algorithm can be seen in Figure[3.15]

33

3.3.4 Performance

This technique heavily uses the Graphics Processing Unit. On the other hand, the
Central Processing Unit usage is very low. The run time processing can be group into

three categories. There are

e Computing the atmospheric scattering values
e Render the final sky, cloud and foreground pixels

e Computing the mean colors of foreground and sky to be used next frame

The first and the third items are computed in compute shaders while the second one
is rendered with a pixel shader. The following performance measurements are done
with a Nvidia Gtx 760 graphics card and with an input of 1024x698 resolution. The

results can be seen at Table 3.2

Atmospheric scattering | 21.2 ms
Rendering final image | 3.2 ms
Mean color computation | 2.4 ms
Total 28.8 ms

Table 3.2: Run time performance counters of the technique. Units are in milliseconds.

34

CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, the results of the algorithm will be presented with a variety of input
images. These images were collected with only the assumption that the sky is visible.
The sun starts with its initial position and is moved across the sky by the user. If there
is no sun in the image, one will be added by clicking at a random point in the sky.
The results are presented in two categories with respect to the presence and abscence

of clouds.

4.1 Clear Sky

In this section, the result of the input images that have no clouds in their sky region
will be demonstrated. These images commonly have a blue-yellow lighting environ-

ment. The altitude of the sun will lowered and the results will be discussed.

Once the sun is moved towards the horizon by the user, the mean color of the sky
transforms into a more orange hue. According to the proposed foreground relighting

algorithm, the mean color of the foreground will be changed as well. This can be seen

in Figures [d.1] -

Another thing to note that is the importance of the sun segmentation results. In Fig-
ure {.6| the scattering effect is powerful around the sun and the threshold used for the
flood fill algorithm is too high for that input. Because of this, the sun mask is larger
than what is supposed be. The effect of the bad segmentation is most visible at the

sunset. Once the false positive sun pixels starts to get occluded by the horizon, the

35

Figure 4.1: Input image, and relighted outputs after incremental sun movements. Note
that as the sun is moved towards horizon color of the foreground pixels is changed to

a more orange hue. However, the relighting of the sea is not successful. Image taken
from [9]].

36

Figure 4.2: Input image, segmentation mask, and relighted outputs after incremental
sun movements. The foreground relighting looks natural because of the foreground

pixels with high diffuse reflection. Image taken from [8].

= T

Figure 4.3: Input image, segmentation mask, and relighted outputs after incremental

sun movements. When the sun is halfway to the horizon the lack of the scattering
calculation in foreground pixels is visible as the scattering effect can not be modified

correctly by the foreground relighting algorithm. Image taken from [10Q].

37

Figure 4.4: Input image, segmentation mask, and relighted outputs after incremental
sun movements. The faulty segmentation of foreground lowers the visual quality of

the output. Image taken from [6]].

Figure 4.5: Input image, segmentation mask, and relighted outputs after incremental

sun movements. Image taken from [7].

38

Figure 4.6: Input image, segmentation mask, and relighted outputs after incremental

sun movements. Image taken from [L1]].

mean color of the sky reduces too rapidly with the sun amplification and this results

in a darker foreground.

In Figure[d.2] the scene segmentation algorithm labels the cloud pixels as foreground.
This negatively impacts the relighting result on these pixels. Soft cloud should pass
more light and the general foreground relighting algorithm can not capture this phe-

nomena.

While the distance to the camera increases or the altitude of the sun decreases the
scattering effect on the earth grows stronger . Proposed algorithm does not handle
this with the lack of the depth information. This results in a bad relighting at the
horizon line because there should be a more blurry and strong orange hue at those

pixels. This can be seen in Figure [{.3]

The foreground relighting algorithm works well in pixels with a strong lambertian re-
flection property. However, surfaces like sea or metal can not be accurately relighted.
Also, the proposed technique is unable to add or move the specular highlights. This
reduces the quality of the output images. This can be seen in Figures §.1]

39

Figure 4.7: Input image, segmentation mask, and relighted outputs after incremental

sun movements. A night scene can be turned into a sunset. Image taken from [12]].

One interesting result can be seen in Figure[4.7] The photo is taken at night. The only
visible light source in the scene is the moon. The proposed algorithm can segment
it as sun. The overall color of the sky is dark. With the color transfer, the rendered
sky is transformed to be dark, too. At the end, the output image looks like a dark sun
set. However, the lack of the reflection change in the water highly reduces the output

quality.

4.2 Cloudy Sky

The way clouds interact with light is very different because of their volumetric prop-
erties. The thickness of the volume directly impacts the light interaction. Soft cloud
pixels transmit more light while the thick clouds pixels only reflects the scattered light
on their surfaces. Handling this difference correctly is the most important point in the

cloud relighting algorithm.

As the cloud segmentation uses the ratio of red and blue channels, all of the clouds can

only be segmented correctly when this ratio is distinguishable in sky and cloud pixels.

40

Figure 4.8: To prevent false positive segmentation, some cloud pixels are sacrificed.

This results in a less dense cloud field. Image taken from [3]].

This happens only when there is no bright sky or dark cloud pixels. In these cases,
to not have false positive cloud pixels in the scattered areas, a high cloud threshold is
chosen at the cloud segmentation algorithm. This results in missing clouds, especially

the thick ones. This can be seen in Figure 4.8]

In Figure [4.9] it can be seen that the best cloud relighting results can be obtained
when the sky and cloud pixels are easy to segment. Also, a better visual quality can
be achieved when the histogram of the cloud softness mask C* is uniform which
means that the input image has clouds with many levels of thickness. The cloud
relighting algorithm works well with both very thick, very soft and also for clouds in
between by using blending for the intermediate pixels. Also, the effect of the contrast

reduction from sun occlusion for the foreground can be seen in Figure 4.9

41

Figure 4.9: If the cloud softness mask C* has enough contrast, cloud relighting al-
gorithm works well.This is indeed the case in this input. Also, the effect of the fore-

ground contrast reduction is visible. Image taken from [[1]].

I

Figure 4.10: A cloud mask with hard edges reduces the visual quality of the output.

As mentioned before, proposed algorithm can also insert sun into photos without one.
Figure .10]is an example for that. However, the hard edges of the cloud mask C™

lowers the visual quality of the output.

42

CHAPTER 5

LIMITATIONS

The challenge in this thesis is that our problem requires solving many subproblems.
Many of those problems are tackled by making many assumptions about the prop-
erties of the scene, atmosphere or camera. This forces the algorithm to have many
parameters and the selecting the optimal parameters are crucial to the overall success
of the algorithm. Also, some natural phenomena like the scattering effect on the fore-
ground, direct shadows, specular reflections on water or metallic objects or correct
calculation of indirect lighting was missing because of the lack of information like
depth, geometry and BRDF of these surfaces. In this chapter, the limitations caused

by aforementioned issues will be discussed.

5.1 Incorrectly Placed Horizon Line

The horizon line calculation algorithm reviewed at Subsection [3.1.2]finds the vertical
line with the most edge pixels in the sky mask. This technique fails when the camera
is tiled upwards or a big object is near the camera and occludes the sky. The vertical
line is found on the upper sections of the occluder object. Using this horizon line
results in a stretched sky rendering with a high scatter effect with a dominant orange
color. As the color transfer technique [29] works in a global scale , it can not undo

this error. Figure [5.1|demonstrates this issue.

43

Figure 5.1: In this input the horizon line is estimated to be higher than its correct
level. This results in a premature sun set. This gives the false impression that the

mountains in the image are actually a lot smaller. Image taken from [4]].

Figure 5.2: High threshold value is used to segment the clouds. This prevents scat-
tered pixels to be segmented. However, some parts of the cloud layer is lost. Image
taken from [3]].

5.2 Cloud Segmentation Parameters

The cloud segmentation algorithm defined at the Subsection [3.1.4] uses the ratio of
red and blue channels of the sky pixels to segment the cloud pixels. A minimum and
maximum value is defined for the ratio and the ratio is linearly transformed into this
region to have a 0 value at the minimum and 1 at maximum. This makes the tweaking
of these values paramount for the success of the cloud segmentation. Images that
have sky pixels with a higher ratio then the thick cloud regions can not be segmented
correctly this technique. In these cases, either false positive cloud pixels emerge from
some sky pixels or some thick cloud pixels are labelled as sky pixels. Generally, the

latter is chosen in the algorithm. Result of this can be seen in figure[5.2]

44

5.3 Foreground Depth

The geometric shape of the sky can be modelled without much information. This
enables the sky rendering to achieve realistic results without any other information.
However, lack of the surface depth forces the algorithm to disregard many effects in

foreground relighting.

The scattering algorithm at Chapter [2] dictates that the scattering effect on an object
increases with the distance to the camera. This effect also gets amplified when the
sun’s altitude is lower. Currently, the atmospheric scattering algorithm is only run for
the sky pixels at which the depth can be estimated by simple arithmetic. However, if
depth of the foreground pixels were available, the scattering effect could have been
applied to the foreground as well. Lack of this information, reduces the visual fidelity

of images with deep horizon lines.

Direct sun light is the most powerful light sources in the input images. This increases
the contrast between the occluded and not occluded pixels very. Also, the direction
and intensity of the shadows are a strong visual cue for the human perception. Like
scattering, lack of depth and geometry information forces the proposed algorithm to
neglect shadows. If the depth information were available, the foreground relighting
algorithm would be very different. Firstly, the algorithm proposed by Xu et al. [37]]
can detect and remove the shadow pixels from an image. After that, screen space ray
tracing techniques [14]] can be used to insert both new shadows and calculate better
ambient for the pixels according to the new sun direction. This would probably be

one of the best improvement for the proposed algorithm.

5.4 Surface BRDF

The reflectance of a surface governs how that surface interacst with light. Bidirec-
tional Reflection Distribution Function (BRDF is a four dimensional function which
takes position, normal, light direction and view direction as input and outputs the
color of that position. Many models are proposed to mimic the real life visuals of

many different materials. Without the BRDF of the pixels, the relighting algorithm

45

Figure 5.3: After the sun movement the water pixels can not be relighted correctly

without the BRDF. Image taken from [9]].

is not capable of handling specific types of material. For example, the specular high-
light on the sea, which is the result of a high gloss and high specular BRDF, does not
change when the sun moves. This is easily recognized by the human perception and

reduces the overall quality of the output. This can be seen in Figure [5.3]

46

CHAPTER 6

CONCLUSION AND FUTURE WORK

In this chapter, a brief summary of the algorithm that this thesis propose will be
given. Furthermore, possible, and most important improvements that can be done in

the future will be discussed.

6.1 Summary

This thesis proposes an algorithm to change the sun position in a photo. First, the
image is segmented in per-pixel fashion into several categories. Then, with this in-
formation, the sky is re-rendered using atmospheric scattering rendering algorithms
and blended with the old one. Using the color values of this new sky, the clouds and
the foreground is relighted to match with the new lighting environment. All of these
new information is blended by the segmentation masks calculated in the first part to

produce the final image.

6.2 Conclusions

The results section shows that this algorithm can generate successful results in a wide
section of inputs. Proposed technique can handle the clear sky images easily and
does not require too many tweaking to the parameters. A photo that were captured at
midday can be transformed into sunsets or sunrises. Even though the field of view or

horizon line can be different from the estimations, the results are visually pleasing.

47

Meanwhile, the cloudy images are harder to edit. The success of these images depend
on the cloud segmentation algorithm. Using the ratio of red and blue channels of the
sky pixels to segment clouds does not work very well at many of the inputs. When
the cloud softness mask has a uniform histogram the output of the cloud relighting is
successful and visually pleasing. Also, not being able to capture a soft blending mask

for the clouds can generate a hard lined cloud layer in the output.

Images with diffuse surfaces and soft shadows give better results. However the
ones with materials like water or metal can not be relighted correctly without the
reflectance information. Furthermore, the algorithm can not handle shadows which is
easily detectable by human perception when the shadow is sharp and ambient lighting

is low.

6.3 Future Work

The foreground relighting works by changing the mean of the foreground pixels with
respect to the new rendered sky. However, there many different lighting phenomena
that is not uniform at every pixel of the foreground. For example scattering effect can
not be applied to the foreground pixels because of the lack of depth information. With
a depth estimation algorithm , the atmospheric scattering technique can also calculate
the scattering effect of the foreground as well. This would increase the visual quality

of the results especially when the sun is setting or rising.

One other lighting parameter is the normal of the surfaces in the image. Light re-
flected from a surface is highly dependent on this parameter. The gradient of the
depth can be used to generate a view space normal and then the foreground can be

relighted by using this new information.

The least successful inputs for out algorithm is the images with high specular surfaces
like water or metal. The proposed foreground relighting algorithm is not able to
move the specular reflections on these images after the sun movement. To fix this,
reflectance inference algorithms can be used to first segment these surfaces and the
high specular pixels. Then, these pixels can be filled by the surface color and the new

specular reflection can be added by taking into account the new sun position.

48

A user study can be made to test the output of the algorithm by a group of user.
The images that were altered with the algorithm can be mixed with other landscape

photos. The questions:

e Which photo looks more realistic

e Which photo looks more pleasing

can be asked.

Finally, the results of this algorithm can be compared with the ground truth. A frame
from a time lapse video can be given as input and the output can be compared with
the corresponding frame. Also, computer generated images can be used to check not
only the final output of the algorithm, as well as the outputs from the intermediate

steps.

49

50

REFERENCES

[1] Input 0. https://www.flickr.com/photos/
lo_1s5e/4696937075/in/gallery—160672184@
NO05-72157689442588790/.

[2] Input 1. https://www.flickr.com/photos/stephanma/
15562839041/in/faves—-160672184@N05/.

[3] Input 10. https://www.flickr.com/photos/
antonnovoselov/8719805389/in/gallery—-160672184@
N05-72157689442588790/.

[4] Input 11. https://www.pexels.com/photo/
cold-daylight-landscape—-mountain—-279492/.

[5] Input 2. https://www.flickr.com/photos/125343440@N08/
20063352700/1in/faves-160672184@N05/.

[6] Input 3. https://www.flickr.com/photos/ruthanddave/
39729273041/in/faves-160672184@N05/.

[7] Input 4. https://www.flickr.com/photos/armin_vogel/
8401844416/in/faves—-160672184@N05/.

[8] Input 5. https://www.pexels.com/photo/
clouds—daylight—-highway—-landscape-461823/.

[9] Input 6. https://www.pexels.com/photo/
seagull-socaring-on—-top—-of—-pebble-field-at-beach-733292/
/.

[10] Input 7. https://www.pexels.com/photo/
countryside—-daylight—grass—-hd-wallpaper—-568236/.

[11] Input 8. https://www.pexels.com/photo/
man—-wearing—-gray—-long-sleeved-polo-shirt—near—-dock-989206/.

[12] Input 0. https://www.pexels.com/photo/
beautiful-beauty-blue-bright-414612/\

[13] Moon atmosphere. https://www.pexels.com/photo/
astronaut—-standing-beside—-american—-flag-on—-the—-moon—-39896/.

51

https://www.flickr.com/photos/lo_ise/4696937075/in/gallery-160672184@N05-72157689442588790/
https://www.flickr.com/photos/lo_ise/4696937075/in/gallery-160672184@N05-72157689442588790/
https://www.flickr.com/photos/lo_ise/4696937075/in/gallery-160672184@N05-72157689442588790/
https://www.flickr.com/photos/stephanma/15562839041/in/faves-160672184@N05/
https://www.flickr.com/photos/stephanma/15562839041/in/faves-160672184@N05/
https://www.flickr.com/photos/antonnovoselov/8719805389/in/gallery-160672184@N05-72157689442588790/
https://www.flickr.com/photos/antonnovoselov/8719805389/in/gallery-160672184@N05-72157689442588790/
https://www.flickr.com/photos/antonnovoselov/8719805389/in/gallery-160672184@N05-72157689442588790/
https://www.pexels.com/photo/cold-daylight-landscape-mountain-279492/
https://www.pexels.com/photo/cold-daylight-landscape-mountain-279492/
https://www.flickr.com/photos/125343440@N08/20063352700/in/faves-160672184@N05/
https://www.flickr.com/photos/125343440@N08/20063352700/in/faves-160672184@N05/
https://www.flickr.com/photos/ruthanddave/39729273041/in/faves-160672184@N05/
https://www.flickr.com/photos/ruthanddave/39729273041/in/faves-160672184@N05/
https://www.flickr.com/photos/armin_vogel/8401844416/in/faves-160672184@N05/
https://www.flickr.com/photos/armin_vogel/8401844416/in/faves-160672184@N05/
https://www.pexels.com/photo/clouds-daylight-highway-landscape-461823/
https://www.pexels.com/photo/clouds-daylight-highway-landscape-461823/
https://www.pexels.com/photo/seagull-soaring-on-top-of-pebble-field-at-beach-733292//
https://www.pexels.com/photo/seagull-soaring-on-top-of-pebble-field-at-beach-733292//
https://www.pexels.com/photo/seagull-soaring-on-top-of-pebble-field-at-beach-733292//
https://www.pexels.com/photo/countryside-daylight-grass-hd-wallpaper-568236/
https://www.pexels.com/photo/countryside-daylight-grass-hd-wallpaper-568236/
https://www.pexels.com/photo/man-wearing-gray-long-sleeved-polo-shirt-near-dock-989206/
https://www.pexels.com/photo/man-wearing-gray-long-sleeved-polo-shirt-near-dock-989206/
https://www.pexels.com/photo/beautiful-beauty-blue-bright-414612/
https://www.pexels.com/photo/beautiful-beauty-blue-bright-414612/
https://www.pexels.com/photo/astronaut-standing-beside-american-flag-on-the-moon-39896/
https://www.pexels.com/photo/astronaut-standing-beside-american-flag-on-the-moon-39896/

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Louis Bavoil and Miguel Sainz. Screen space ambient occlusion. NVIDIA de-
veloper information: http://developers. nvidia. com, 6, 2008.

Yuri Y Boykov and M-P Jolly. Interactive graph cuts for optimal boundary &
region segmentation of objects in nd images. In Computer Vision, 2001. ICCV
2001. Proceedings. Eighth IEEE International Conference on, volume 1, pages
105-112. IEEE, 2001.

Eric Bruneton and Fabrice Neyret. Precomputed atmospheric scattering. Com-
puter Graphics Forum, 27(4):1079-1086, 2008.

Soumyabrata Dev, Yee Hui Lee, and Stefan Winkler. Color-based segmentation
of sky/cloud images from ground-based cameras. IEEE Journal of Selected Top-
ics in Applied Earth Observations and Remote Sensing, 10(1):231-242, 2017.

Lester R Ford and Delbert R Fulkerson. Maximal flow through a network.
Canadian journal of Mathematics, 8(3):399-404, 1956.

Anna Heinle, Andreas Macke, and Anand Srivastav. Automatic cloud classifi-
cation of whole sky images. Atmospheric Measurement Techniques, 3(3):557—
567, 2010.

Erum Arif Khan, Erik Reinhard, Roland W Fleming, and Heinrich H Biilthoff.
Image-based material editing. In ACM Transactions on Graphics (TOG), vol-
ume 25, pages 654—-663. ACM, 2006.

Philipp Krihenbiihl and Vladlen Koltun. Efficient inference in fully connected
crfs with gaussian edge potentials. In Advances in neural information process-
ing systems, pages 109-117, 2011.

Jean-Francgois Lalonde, Derek Hoiem, Alexei A Efros, Carsten Rother, John
Winn, and Antonio Criminisi. Photo clip art. ACM transactions on graphics
(TOG), 26(3):3, 2007.

Charles N Long, Jeff M Sabburg, Josep Calbd, and David Pages. Retrieving
cloud characteristics from ground-based daytime color all-sky images. Journal
of Atmospheric and Oceanic Technology, 23(5):633-652, 2006.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional net-
works for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3431-3440, 2015.

Tomoyuki Nishita, Yoshinori Dobashi, Kazufumi Kaneda, and Hideo Ya-
mashita. Display method of the sky color taking into account multiple scat-
tering. In Pacific Graphics, volume 96, pages 117-132, 1996.

Tomoyuki Nishita, Takao Sirai, Katsumi Tadamura, and Eihachiro Nakamae.
Display of the earth taking into account atmospheric scattering. In Proceedings

52

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

of the 20th annual conference on Computer graphics and interactive techniques,
pages 175-182. ACM, 1993.

Patrick Pérez, Michel Gangnet, and Andrew Blake. Poisson image editing.

ACM Transactions on graphics (TOG), 22(3):313-318, 2003.

Adobe Photoshop. Adobe photoshop 5.0 limited edition, chapter 4: Making
color and tonal adjustments. Jan, 1:67-89, 1998.

Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color
transfer between images. IEEE Computer graphics and applications, 21(5):34—
41, 2001.

Konstantinos Rematas, Tobias Ritschel, Mario Fritz, Efstratios Gavves, and
Tinne Tuytelaars. Deep reflectance maps. In Computer Vision and Pattern
Recognition (CVPR), 2016 IEEE Conference on, pages 4508-4516. IEEE, 2016.

Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. Grabcut: Interac-
tive foreground extraction using iterated graph cuts. In ACM transactions on
graphics (TOG), volume 23, pages 309-314. ACM, 2004.

Yichang Shih, Sylvain Paris, Frédo Durand, and William T Freeman. Data-
driven hallucination of different times of day from a single outdoor photo. ACM
Transactions on Graphics (TOG), 32(6):200, 2013.

Pierre Soille. Morphological image analysis: principles and applications.
Springer Science & Business Media, 2013.

MP Souza-Echer, EB Pereira, LS Bins, and MAR Andrade. A simple method
for the assessment of the cloud cover state in high-latitude regions by a
ground-based digital camera. Journal of Atmospheric and Oceanic Technology,
23(3):437-447, 2006.

Yi-Hsuan Tsai, Xiaohui Shen, Zhe Lin, Kalyan Sunkavalli, and Ming-Hsuan
Yang. Sky is not the limit: semantic-aware sky replacement. ACM Trans.
Graph., 35(4):149—-1, 2016.

Carsten Wenzel. Real-time atmospheric effects in games. In ACM SIGGRAPH
2006 Courses, pages 113—128. ACM, 2006.

Li Xu, Feihu Qi, and Renjie Jiang. Shadow removal from a single image. In
Intelligent Systems Design and Applications, 2006. ISDA’06. Sixth International
Conference on, volume 2, pages 1049-1054. IEEE, 2006.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Semantic understanding of scenes through the ade20k dataset. arXiv
preprint arXiv:1608.05442, 2016.

53

[39] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio
Torralba. Scene parsing through ade20k dataset. In Proc. CVPR, 2017.

54

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	Introduction
	Related Work
	Image Editing
	Background
	Scene Segmentation
	Fully Convolutional Neural Networks
	Grabcut
	Cloud Segmentation
	Sky Rendering
	Rendering Single Scattering Visible from Space
	Rendering Multiple Scattering
	Sky Rendering in a Real time Game Engine
	Precomputed Atmospheric Scattering

	Color Transfer

	Algorithm
	Image Segmentation
	Sky Segmentation
	Coarse Sky Segmentation
	Sky Mask Refinement

	Horizon Line Detection
	Sun Segmentation
	Cloud Segmentation

	Sky Rendering
	Assumptions about the Input Image
	Calibration and Blending
	Matching Camera Properties

	Foreground and Cloud Relighting
	Foreground Relighting
	Cloud Relighting
	Generating the Final Image
	Performance

	Experimental Results
	Clear Sky
	Cloudy Sky

	Limitations
	Incorrectly Placed Horizon Line
	Cloud Segmentation Parameters
	Foreground Depth
	Surface BRDF

	Conclusion and Future Work
	Summary
	Conclusions
	Future Work

	REFERENCES
	APPENDICES

