
 COST AWARE TCP SCHEDULER FOR BANDWIDTH AGGREGATION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF INFORMATICS OF

THE MIDDLE EAST TECHNICAL UNIVERSITY

BY

SERHAT AĞIRBAŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

INFORMATION SYSTEMS

JUNE 2018

COST AWARE TCP SCHEDULER FOR BANDWIDTH AGGREGATION

Submitted by Serhat Ağırbaş in partial fulfillment of the requirements for the degree of Master of

Science in Information Systems, Middle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics

Prof. Dr. Yasemin Yardımcı Çetin
Head of Department, Information Systems

Assoc. Prof. Dr. Altan Koçyiğit
Supervisor, Information Systems, METU

Dr. Cüneyt Sevgi
Co-Supervisor, Computer Tech. & Inf. Systems, Bilkent University

Examining Committee Members:

Assoc. Prof. Dr. Aysu Betin Can
Information Systems, METU

Assoc. Prof. Dr. Altan Koçyiğit
Information Systems, METU

Assist. Prof. Dr. Bilgin Avenoğlu
Computer Engineering, TED University

Assoc. Prof. Dr. Pekin Erhan Eren
Information Systems, METU

Assoc. Prof. Dr. Oumout Chouseinoglou
Industrial Engineering, Hacettepe University

Date: 11.06.2018

iii

I hereby declare that all information in this document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name, Last name : Serhat Ağırbaş

Signature :

iv

ABSTRACT

 COST AWARE TCP SCHEDULER FOR BANDWIDTH AGGREGATION

Ağırbaş, Serhat

MSc, Department of Information Systems

Supervisor: Assoc. Prof. Dr. Altan Koçyiğit

Co-Supervisor: Dr. Cüneyt Sevgi

June 2018, 83 pages

Constant bit rate, time sensitive data delivery is needed for many network applications
and these applications usually require high throughput and less variable delay. When
such applications run on mobile devices, the bandwidth available and the other
characteristics of the primary network connection may not be sufficient to provide
necessary quality of service. On the other hand, most of the mobile devices are
multihomed that is they are equipped with more than one network interface, hence they
can be connected to more than one network simultaneously. Therefore, the bandwidth
aggregation is a viable option for better quality of service in such cases. This thesis
tackles constant bit rate data delivery problem by utilizing multiple network connections
to satisfy bandwidth requirements in a cost effective manner specifically for time
sensitive file streaming applications. The proposed method, called Cost Aware TCP
Scheduler (CATS), aggregates the resources of two network connections which are
available on the client device in a cost aware manner to deliver enough bandwidth for
streaming applications. One of the connections is called the free connection and it is
considered to have fluctuating throughput and variable delay but no monetary cost of
use. The second connection is the paid connection that provides higher throughput and
less variable delay but there is monetary cost associated with data transfer. CATS
schedules data transfer over these connections to ensure timely delivery of data while
minimizing the data transfer cost. Experimental results show that CATS maximizes the
utilization of the free connection and minimizes the utilization of the paid connection
thereby reducing the total monetary cost without causing significant quality degradation.

Keywords: Bandwidth Aggregation, Cost Aware Scheduler, Time Sensitive Data
Transfer

v

 ÖZ

BANT GENİŞLİĞİ BİRLEŞTİRME İÇİN MALİYET FARKINDALIKLI

 TCP ZAMANLAYICI

Ağırbaş, Serhat

Yüksek Lisans, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Doç. Dr. Altan Koçyiğit

Ortak Tez Yöneticisi: Dr. Cüneyt Sevgi

Haziran 2018, 83 sayfa

Birçok ağ uygulaması zamana duyarlı sabit bit hızı aktarımına ihtiyaç duymaktadır ve bu
uygulamalar genellikle yüksek veri ve daha az değişken gecikme gerektirmektedir. Bu
tür uygulamalar mobil cihazlarda çalıştırıldığında, birincil ağ bağlantısının mevcut bant
genişliği ve diğer özellikleri gerekli hizmet kalitesini sağlamak için yeterli olmayabilir.
Diğer yandan, mobil cihazların çoğu birden fazla ağ arayüzü ile donatılmışlardır ve aynı
anda birden fazla ağa bağlanabilirler. Bu nedenle, birden fazla ağın bant genişliğinin
birleştirilmesi, bu gibi durumlarda daha kaliteli hizmet alınması için uygulanabilir bir
seçenektir. Bu tez, özellikle zamana duyarlı dosya transferi uygulamaları için bant
genişliği gereksinimlerini uygun maliyetli bir şekilde karşılamak üzere çoklu ağ
bağlantılarını kullanarak sabit bit hızı veri aktarımı problemini ele almaktadır. Cost
Aware TCP Scheduler (CATS) olarak adlandırılan yöntem, kullanıcı cihazında bulunan
iki ağ bağlantısının kaynaklarını, duraksız aktarım uygulamaları için yeterli bant
genişliği sağlamak amacıyla maliyeti gözeterek birleştirir. Bağlantılardan biri ücretsiz
bağlantı olarak adlandırılır ve bu bağlantının dalgalanan veri hacmine ve değişken
gecikmeye sahip olduğu kabul edilir, ancak parasal kullanım maliyeti yoktur. İkinci
bağlantı, daha yüksek veri hacmi ve daha az değişken gecikme sağlayan ücretli
bağlantıdır, ancak bu bağlantının veri aktarımıyla ilişkili parasal maliyet vardır. CATS,
veri aktarım maliyetini en aza indirirken, verilerin zamanında gönderilmesini sağlamak
için bu bağlantılar üzerinden veri aktarımını planlamaktadır. Deneysel sonuçlar,
CATS'in ücretsiz bağlantı kullanımını en üst düzeye çıkardığını ve ücretli bağlantı
kullanımını en aza indirdiğini ve böylece belirgin bir kalite bozukluğuna yol açmadan
toplam parasal maliyeti düşürdüğünü göstermektedir.

Anahtar Kelimeler: Bant Genişliği Birleşimi, Maliyet Farkındalıklı Zamanlayıcı,
Zamana Duyarlı Veri Transferi

vi

DEDICATION

To My Family…

vii

ACKNOWLEDGMENTS

First of all, I would like to express my gratitude to my supervisors Assoc. Prof. Dr.
Altan Koçyiğit and Dr. Cüneyt Sevgi for their valuable guidance, support and patience
throughout this study.

I am also grateful to Yasemin Öktem for her sincere support and assistance while
preparing this thesis study.

Finally, I would like to thank my family for their love, support and encouragement.

viii

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZ ... v

DEDICATION ... vi
ACKNOWLEDGMENTS ... vii
TABLE OF CONTENTS ... viii
LIST OF TABLES ... xi
LIST OF FIGURES ... xii
LIST OF ABBREVIATIONS .. xiv

CHAPTERS ... 1

1. INTRODUCTION .. 1

1.1. Motivation ... 1

1.2. Objective and Scope .. 2

1.3. Outline ... 3

2. BACKGROUND AND RELATED WORKS ... 5

2.1. MPTCP .. 5

2.2. SCTP.. 10

2.3. Cost Aware Schedulers.. 10

3. COST AWARE CONNECTION POOLING .. 13

3.1. Optimal Bandwidth Pooling .. 14

3.1.1. Scenario 1: FC Throughput Higher Than the Video Playout Rate 16

3.1.2. Scenario 2: FC Throughput is the Same with the Video Playout Rate 17

3.1.3. Scenario 3: FC Throughput is smaller than the Video Playout Rate 18

3.1.3.1. Solution 1: Use Only PL ... 19

3.1.3.2. Solution 2: Bandwidth Aggregation .. 21

3.1.4. Scenario 4: Variable FC Throughput ... 22

3.1.4.1. Solution: Client Notifications and On Demand Use of the PC 23

ix

3.2. Overview of Cost Aware TCP Scheduler ... 25

3.2.1. Communication Between The Client and The Server .. 27

3.2.1.1. Packet Structure .. 27

3.2.1.2 Packet Types .. 27

3.3. The CATS Client... 28

3.3.1. Connection Initilization .. 29

3.3.2. Chunk Receive Notification Mechanism ... 31

3.3.3. Chunk Usage and Time Synchronization Packets ... 33

3.3.4. The Cost Calculation .. 35

3.3.4.1. The Money Cost .. 35

3.3.4.2. The Quality Cost ... 35

3.4. The CATS Server .. 36

3.4.1. Scenario 1: FC Throughput Equal or Larger Than Chunk Usage Rate 37

3.4.1.1. Maximum Free Connection Utilization .. 37

3.4.2. Scenario 2: Free Connection Speed Lower Than Chunk Usage Rate 39

3.4.2.1. MCTT and SCTT Calculation ... 41

3.4.2.2. Chunk Scheduler ... 43

3.4.2.3. Chunk Sender .. 49

3.4.3. Scenario 3: Sudden Free Connection Throughput Decrease 50

3.4.3.1. Duplicate Chunk Send Tagging Mechanism ... 52

3.5. Implementation of CATS .. 54

3.5.1. The Client ... 54

3.5.2. The Server .. 56

4. EXPERIMENTAL RESULTS ... 59

4.1. Setup 1 .. 60

4.1.1. Experiment Scenario 1 ... 61

4.1.1.1. Test Parameters ... 61

4.1.1.2. Results ... 61

4.1.2. Experiment Scenario 2 ... 64

4.1.2.1. Test Parameters ... 64

4.1.2.2. Test Results ... 65

x

4.2. Setup 2 .. 66

4.2.1. Test Parameters .. 67

4.2.2. Results .. 68

4.3. Setup 3 ... 71

4.3.1. Test Parameters .. 72

4.3.2. Test Results .. 72

4.4. Setup 4 ... 74

4.4.1. Test Parameters .. 75

4.4.2. Results .. 76

4.5. Discussions ... 77

5. CONCLUSION AND FUTURE WORK ... 79

5.1. Conclusion .. 79

5.2. Future Work ... 80

REFERENCES ... 81

xi

LIST OF TABLES

Table 1 Packet Types ... 28

xii

LIST OF FIGURES

Figure 1 MPTCP Architecture [5] .. 6
Figure 2 A Client and A Server Using a Traditional TCP Connection 6
Figure 3 A Client and a Server using an MPTCP Connection ... 7
Figure 4 A Time Sensitive File Segmented in Chunks .. 13

Figure 5 Chunk Download Figure Notation ... 15
Figure 6 Scenario 1: FC Throughput Higher Than the Video Playout Rate 16
Figure 7 Scenario 2: FC Throughput is the Same with the Video Playout Rate 17
Figure 8 Scenario 3: FC Throughput is smaller than the Video Playout Rate 18
Figure 9 A Cost Inefficient Solution to Pause Problem in Scenario 3 19
Figure 10 A Cost efficient Solution to Pause Problem in Scenario 3 21
Figure 11 Scenario 4: Variable FC Throughput ... 22
Figure 12 CATS Solution to Scenario 4... 23
Figure 13 CATS Notification Mechanism ... 25
Figure 14 The Client and The Server Connection in CATS .. 26
Figure 15 General Packet Structure of CATS .. 27
Figure 16 Tasks Handled by The Client ... 29

Figure 17 The Client and The Server Connection Initialization Process 30
Figure 18 The Notification Mechanism Performed by the Client 32
Figure 19 The Chunk Usage Mechanism Performed by the Client 34
Figure 20 Tasks Handled by The Server .. 36
Figure 21 The Server Scenario 1 .. 37
Figure 22 The Server Scenario 2 .. 39
Figure 23 CATS Solution to Scenario 2... 40
Figure 24 MCTT and SCTT Calculation Mechanism for The Server 41

Figure 25 MCTT Calculation with CTT and RTT ... 42
Figure 26 An Example Portion of Sliding Window and Region of Interest 43
Figure 27 Chunk Scheduler Window Tagging Procedure ... 45

Figure 28 Time T Connection Window ... 46
Figure 29 Time T Command Window ... 46

Figure 30 Time T + 1 Connection Window ... 46
Figure 31 Time T + 1 Command Window ... 46

Figure 32 Chunk Sender Threads Working Mechanism .. 49
Figure 33 The Server Scenario 3 .. 50
Figure 34 Duplicate Chunk Send Solution for Scenario 3 ... 52
Figure 35 Duplicate Chunk Send Tagging Mechanism ... 53
Figure 36 UML Class Diagram for the CATS Client .. 55
Figure 37 UML Class Diagram for the CATS Server .. 57

xiii

Figure 38 Dummynet As Network Emulation Tool [25] ... 59
Figure 39 Experimental Setup 1 ... 60
Figure 40 Quality Cost for Experiment Scenario 1 .. 61
Figure 41 Free Connection TCP Throughput for Experiment Scenario 1 62
Figure 42 Money Cost for Experiment Scenario 1 .. 63
Figure 43 Quality Cost for Experiment Scenario 2 .. 65
Figure 44 Free Connection TCP Throughput for Experiment Scenario1 65
Figure 45 Money Cost for Experiment Scenario 2 .. 66

Figure 46 Experimental Setup 2 ... 67
Figure 47 Quality Cost for Setup 2 .. 68
Figure 48 Free Connection TCP Throughput for Setup 2 .. 69
Figure 49 Money Cost for Setup 2 ... 70
Figure 50 Experimental Setup 3 ... 71
Figure 51 MCTT Results for 600 Chunks.. 71
Figure 52 Quality Cost for Setup 3 .. 72
Figure 53 Free Connection TCP Throughput for Setup 3 .. 73
Figure 54 Money Cost for Setup 3 ... 74
Figure 55 Setup 4 Environment ... 75
Figure 56 Quality Cost for Setup 4 .. 76
Figure 57 Free Connection TCP Throughput for Setup 4 .. 76
Figure 58 Money Cost for Setup 4 ... 77

xiv

LIST OF ABBREVIATIONS

CATS Cost Aware TCP Scheduler
FL Free Link
FC Free Connection
PL Paid Link
PC Paid Connection
MPTCP Multipath TCP
SCTP Stream Control Transmission Protocol
MCTT Measured Chunk Transfer Time
CTT Chunk Transfer Time
RTT Round Trip Time
SCTT Smoothed Chunk Transfer Time
TEMCTT Time Elapsed Measured Chunk Transfer Time
USCTT Updated Smoothed Chunk Transfer Time
FCTT Free Connection TCP Throughput
LT Wall Clock Time of First Chunk Downloaded Over Free Connection
FT Wall Clock Time of Last Chunk Downloaded Over Free Connection
CC Chunk Count Downloaded Over Free Connection
MBS Mbit Size for Each Chunk
PCSCTT Paid Connection Smoothed Chunk Transfer Time
FCSCTT Free Connection Smoothed Chunk Transfer Time
CUR Chunk Usage Rate
MTT Measured TCP Throughput
BLEST Blocking Estimation
HOL Head of Line
ESPA Energy Usage Performance Aware

1

CHAPTER 1

CHAPTER

 INTRODUCTION

1.1. Motivation

Demand for higher Internet bandwidth is on the rise globally. Nielsen’s Law of Internet
Bandwidth [1] states that a user’s connection speed grows 50% each year. Particularly
with the introduction of mobile devices, people are connected to the Internet at any time
of their daily lives. Moreover, emerging technologies like Internet of Things (IOT) come
up with the result that more and more devices connect to the Internet and require more
bandwidth every passing day. In addition to advances in networking, increasing
processing power enables clients to employ more sophisticated applications. High
quality video streaming, social networking, online gaming and many other have become
common and widely used services.

Improvement of Internet connectivity is not always sufficient to provide adequate
throughput for some of the client applications. Applications like electronic e-mail and
web browsing are elastic which means they can tolerate delay, loss and bandwidth
fluctuations. For example, consider web, even if throughput of underlying connection is
low, user just experiences high latency but still the main functionality will be provided.
On the other hand, some applications such as voice over IP, video conference over IP
and video streaming are sensitive to bandwidth and delay variations and they require
guaranteed bandwidth and low delay variation for proper operation. For example,
consider stored video streaming which is a type of media streaming in which the data
from a video file is continuously delivered via the Internet to a remote user. In this
scenario, if the throughput of underlying connection is lower than the video playout rate,
client continuously experiences video pauses and this deteriorates user experience. Thus,
in such scenarios high throughput data delivery is important.

Many methods have been developed for enhancing available throughput for client
applications. One of these methods is bandwidth aggregation which corresponds to

2

utilization of more than one access network for one client application. Today, most of
the mobile devices are equipped with more than one network interface. Hence,
bandwidth aggregation is possible by turning on these multiple interfaces and
transferring data via connections established on multiple access networks. TCP pooling
is one of the most widely employed techniques for bandwidth aggregation. In TCP
pooling, multiple heterogeneous TCP connections are combined to provide more
bandwidth for client applications. Transmission Control Protocol (TCP) [2] has been
commonly used as a reliable communication protocol between hosts for more than 40
years for point to point data transfer over a single connection. A recent proposal called
Multipath TCP (MPTCP) [3] extends TCP to utilize multiple networks for a single
connection. MPTCP is backward compatible with TCP and it maintains separate data
paths via multiple network interfaces and combines these data paths to one logical
connection for one application. MPTCP is commonly associated with the multihomed
devices such as mobile phones that have both Wi-Fi and cellular network interfaces. The
scheduler of MPTCP decides which file segments will be delivered over which network
interface. Therefore, employed scheduling algorithm of MPTCP determines the
utilization ratio of each network interface.

Various TCP pooling methods and MPTCP schedulers have been developed to obtain
maximum throughput to improve client experience. However, most of these methods do
not take into account monetary cost associated with the utilization of access networks.
Usually, cellular interfaces provide lower delay, higher throughput and lower packet loss
rate when compared to Wi-Fi network interfaces of mobile devices. However, cellular
networks may have large monetary cost for each byte transferred while Wi-Fi network
interfaces are free. Therefore, the scheduler may also take into account the monetary
cost associated with data transfer in addition to providing higher quality of service. This
thesis investigates the use of multiple interfaces to minimize monetary cost while not
causing performance degradation. The main goal is to provide sufficient throughput to
client application with minimum monetary cost possibly by the maximum utilization of
free connections.

1.2.Objective and Scope

The purpose of this thesis study is to provide a bandwidth aggregation method for
transfer of constant bit rate time sensitive data over two heterogeneous access networks
called the free link and the paid link. Free connection established over the free link is
considered to have fluctuating throughput and variable delay, while paid connection
established over the paid link considered having higher throughput and less variable
delay. To provide enough throughput rather than maximizing throughput is the primary
approach employed to minimize paid link costs. This necessitates the maximization of
free utilization while minimizing the paid link usage.

3

CATS is compatible with the applications involving time sensitive data transfer like
stored video file streaming. However, CATS can be extended to support applications
such as videoconferencing and teleconferencing over IP.

In order to exemplify the problem addressed by CATS, consider a scenario in which a
stored video file is to be played out by a client. In this scenario a server streams the
stored video file and a client plays out the video chunks as they are delivered to it and
the playout rate is 5Mbit/s. The client also has two network interfaces; one of them is
Wi-Fi interface which has 3Mbit/s throughput while the other one is 4G/LTE interface
which has 10Mbit/s throughput. In this scenario, free link corresponds to Wi-Fi, while
paid link corresponds to 4G/LTE. Possible options to transfer video file to the client and
associated problems can be listed as;

1) Client tries to stream complete video file over Wi-Fi network interface but
the Wi-Fi throughput isn’t enough for video playout rate, client experiences
continuous pauses.

2) Client streams complete video file over 4G/LTE interface and experiences a
good video streaming, but because of complete streaming done over
4G/LTE interface, monetary cost will be high.

3) It is possible to aggregate the bandwidth of multiple interfaces for this
existing method. So the client may have a total of 13Mbit/s throughput even
if only 5Mbit/s is enough. Therefore, unnecessarily large cellular cost might
be caused by over utilization of 4G/LTE network and underutilization of
Wi-Fi network.

In this scenario, CATS system aims to stream the complete video file over both
interfaces but tries to minimize the use of 4G/LTE network. That is, the video file
chunks are downloaded over 4G/LTE network only when Wi-Fi network is not enough.
In this example, video file has 5Mbit/s playout rate and Wi-Fi throughput is 3Mbit/s. So,
only the difference, 2Mbit/s is aimed to be downloaded over 4G/LTE network. More
importantly, while doing this, the pauses in the playout is minimized. That is, quality of
service is preserved.

1.3.Outline

This thesis includes 5 chapters. In Chapter 2, existing methods for bandwidth
aggregation are inspected in detail.

In Chapter 3, proposed algorithm is explained in detail. Each logic component for
proposed algorithm is explained separately and the implementation of the proposed
algorithm is placed.

In Chapter 4, experimental results done with the implementation is placed. Experimental
results are compared with expected results and success of proposed algorithm is
evaluated.

4

In the last chapter, conclusions are drawn by referring to Chapter 4. Future works to be
done to improve proposed solution are suggested.

5

CHAPTER 2

 BACKGROUND AND RELATED WORKS

When TCP/IP has been specified 40 years ago, network applications, devices and the
Internet were much more different than they are today. In our day, applications require
higher bandwidth and lower latency than ever before because most of the data is stored
in cloud instead of local repositories and thus an excessive amount of data streamed
from cloud to local computers over the Internet. To be able to meet the needs of today’s
applications, mobile devices are now equipped with more than one interfaces such as
Wi-Fi and 4G/LTE. However, TCP communication protocol is not capable of utilizing
more than one interface for a single connection. Hence a TCP session can be established
through one network interface attached to each end-node. At this point, many connection
pooling and bandwidth aggregation methods and protocols have been proposed to meet
the need for more bandwidth. This chapter provides a brief review of such methods.

2.1. MPTCP

Multipath TCP (MPTCP) [3], which is an extension of TCP, comes forward as a
solution for the problem of utilizing multiple access networks while achieving reliable
delivery provided by TCP. MPTCP is currently standardized by IETF [4].

6

Figure 1 MPTCP Architecture [5]

MPTCP is a backward compatible extension to TCP and it can use multiple connections
established through multiple network interfaces for a connection (i.e., a bi-directional
data stream). Hence bandwidths of these network interfaces are combined to have one
higher bandwidth logical connection as shown in Figure 1. The data streams pushed by
each end-point are divided into several data chunks which are transferred through
multiple access networks. Hence, the application can maximize the throughput by means
of bandwidth aggregation on multiple network interfaces.

Figure 2 A Client and A Server Using a Traditional TCP Connection

7

Figure 3 A Client and a Server using an MPTCP Connection

In Figure 2, a client that has two different network interfaces attached to two different
access networks is illustrated. In this case, the client can use these access networks to
connect to a server through the Internet. However, if the client and the server are
connected to each other using standard TCP, only one of the access networks (e.g., the
Wi-Fi interface) can be utilized to exchange data. Alternatively, the client and the server
can be connected to each other using MPTCP (see Figure 3). Hence, both access
networks can be utilized by the client to transfer data to/from the server. In this case,
both end points divide the input data streams into chunks and transfer those chunks over
two different connections established through the Wi-Fi and the 4G interfaces. Thus, the
client can achieve higher throughput. Moreover, the client can also keep one of these
interfaces as a hot spare that will be used whenever the primary access network is
unavailable. Since both interfaces are active at any time, failover to the spare connection
can be performed very quickly. This is another advantage brought by MPTCP and
especially useful for the mobile devices.

The scheduler, which decides on which data chunk (i.e., TCP segment) will be sent via
which access network (i.e., TCP subflow), is the most crucial component of MPTCP.
The objective of a scheduler is to maximize the throughput by determining data chunk
transfer time, order, and transmission medium. A successful scheduler may improve
delay and other quality characteristics as well as throughput. Therefore, in MPTCP,
scheduler design has a significant effect on the performance.

MPTCP has a Linux Kernel Implementation [6] with three out of the box schedulers [7].
The Lowest Round Trip Time First (LowRTT) scheduler is the default scheduler for the
MPTCP implementation. LowRTT scheduler sends data over the subflow that has the
lowest estimated RTT value, until its congestion window is filled. In other words,
LowRTT scheduler firstly estimates RTT values for each subflow, and then it
continuously sends data over the one that has lowest RTT value, until it reaches the limit
of congestion window. Scheduling according to the lowest RTT value increases quality
of service. On the other hand, this may not be the best option if the user pays for amount

8

of data transferred over the access network providing lowest RTT. Hence, one of the
main goals of this thesis is to minimize monetary cost as well as improving quality of
service.

Another scheduler available in MPTCP Linux implementation is the Round-Robin (RR)
scheduler [7]. The RR scheduler selects the sublows and sends data over them in a
round-robin fashion. Hence, it distributes load evenly on subflows. The RR scheduler
sends a fixed amount of data (one segment by default) before switching to the next
subflow. The RR scheduler ensures the maximum utilization of all subflows as well as
distribution of data evenly on to the subflows. However, fully utilizing all the subflows
may not be needed in all cases. For example, if one of the subflows is via a free access
network, the other is via a paid access network, and the free connections throughput is
almost sufficient for the application, RR scheduler will unnecessarily utilize the paid
access network resulting in high monetary cost. Hence, one of the main goals of this
thesis is to maximize the utilization of free access networks and to utilize the paid access
network only when it is really needed.

The third available scheduler in MPTCP Linux implementation is the Redundant
Scheduler, which sends each segment over all subflows, redundantly. This scheduler
would be beneficial especially when reliability and timely delivery are main issues.
However, the Redundant Scheduler is, in many cases, inefficient.

There are many studies that propose novel MPTCP schedulers to improve data transfer
performance. In [8], authors propose a method to improve performance of LowRTT
scheduler by freezing the slow path. As it is explained above, LowRTT scheduler sends
data segments over the fast path until the congestion window is full. Then, the following
segments are sent over other slower paths. In the proposed method, if the RTT value
difference between the slow and the fast path is significant, the slow path is frozen and
the next data segment waits until the congestion window of fast path is available again.
The slow path is utilized and segments are sent over it if only if the fast path’s
congestion window is full and the remaining segment count is above some predefined
threshold value.

Yang also proposes a method to improve default LowRTT scheduler [9] and it is
claimed that sending chunks over different subflows based on only RTT values causes
congestion and packet losses. Therefore, throughput and other quality of service
characteristics deteriorate. Authors state that a good packet scheduler needs to select the
subflow based on not only its RTT but also its congestion level. The proposed scheduler
estimates the available capacity for each subflow. After available capacity estimation for
each subflow, authors’ scheduler calculates an “OCCUPIED” value by using
outstanding packets and available capacity estimation for each subflow. For the next
chunk, scheduler selects a subflow by checking “OCCUPIED” and RTT values. It
selects the subflow, which has the minimum RTT value and whose “OCCUPIED” value
is under the predefined threshold. Although the scheduler proposed by the authors

9

increases the throughput of default LowRTT scheduler under congested network
conditions, it may over-utilize a paid access network to maximize the throughput.

Head of Line (HoL) blocking occurs when the segments received over the fast path
aren’t processed because of excessively delayed earlier segments sent over slow path.
Blocking Estimation (BLEST) [10] scheduler is proposed to decrease HoL blocking
probability. At the beginning, BLEST scheduler operates similarly with the default
LowRTT scheduler and it sends segments over the fast path until its congestion window
is full. Then, the scheduler calculates the possibility of HOL blocking if the subsequent
chunks are sent over slow path. If the probability is larger than the predefined threshold,
the following segments are not sent until an empty spot in the congestion window of the
fast path is available. BLEST scheduler tries to eliminate HOL problem but it still uses
LowRTT scheduler as a baseline which causes utilization of the fast path as much as
possible which may be very expensive for the user.

In [11], MPTCP and Software Defined Network Controller (SDN) [12] are combined to
improve the default Round-Robin scheduler of MPTCP implementation. The RR
scheduler tries to distribute load over subflows by pushing a predefined number of
segments to each subflow at each round. The improvement proposed by the authors is to
set a different number of segments to transmit over each subflow in each round. Hence,
the main idea is to transform the Round-Robin scheduler to Weighted-Round-Robin
Scheduler. The number of segments to send in each round over each subflow is
determined by the SDN Controller by considering the current situation of the underlying
network. In this method, the users can also limit the utilization, hence the monetary cost,
of 4G/LTE connection. However, the mechanisms to achieve optimal utilization have
not been detailed in this work. In the experimental evaluation, different tests carried out
to see whether the WRR scheduler is compatible with the SDN controller. Moreover,
even if the 4G/LTE path is limited with the SDN controller, some of the chunks will be
still downloaded over 4G/LTE path even if it is not needed. For example, consider a
video streaming scenario in which the video play out rate is 1Mbit/s, Wi-Fi link speed is
3Mbit/s and 4G/LTE link speed is 5Mbit/s. SDN controller sets the number of segments
send in each round for Wi-Fi connection to 10 while it is set to 1 for 4G/LTE
connection. Even if the weight for 4G/LTE is limited in this scenario, 4G/LTE will be
still be utilized even when the Wi-Fi link’s bandwidth is sufficient to download all
chunks before scheduled playout times. SDN Controller just considers the current
situation of underlying network, it does not take into account the time sensitive nature of
the data that is to be sent.

In [13], [14], and [15] novel mechanisms are proposed to solve the issues in existing
MPTCP schedulers such as HOL blocking and out of order delivery. However, none of
these mechanisms focus on cost aware data delivery. In [16] and [17], energy saving
mechanisms have been proposed to decrease the energy consumption for mobile devices
when MPTCP is employed, but neither of these mechanisms consider cost aware
scheduling problem.

10

2.2. SCTP

Stream Control Protocol (SCTP) [18] is another protocol that enables multihoming.
SCTP is standardized by IETF. SCTP is a message oriented transport protocol and the
main purpose of it is the successful handover of data transfer to alternative interface
when the primary interface fails. An extension containing various schedulers for SCTP
has been standardized by IETF [19]. Schedulers such as Round Robin Scheduler, First
Come First Served Scheduler and Priority Based Scheduler are available in this
extension. However, none of these schedulers aims to stream time sensitive file in a cost
efficient manner, to aggregate bandwidths and to achieve minimum cost. Instead they
mainly focus on the problems like HoL blocking and successful handover.

In [20], authors propose a cost aware SCTP scheduler which transmits packets in a cost-
efficient manner for multi-homed vehicles. They propose a cost model which optimizes
how much money the client can pay, how much data the client wants to transfer (traffic
demand), delay profile of data and probability of Wi-Fi availability (Reachable hot spots
always change as the vehicle is moving). Cost efficiency is one of the objectives of this
study, and they considered delay tolerant data transfer. So, they don’t specifically
consider time sensitive data transfer. Moreover, this work considers the cellular network
as the primary access network and Wi-Fi is utilized only when it is available.

2.3. Cost Aware Schedulers

There are also scheduler proposals that consider monetary cost and energy consumption
in addition to throughput. Such schedulers are inspected in this section.

In [21], an algorithm for resource efficient video streaming for mobile devices is
proposed. The proposed algorithm minimizes the weighted sum objective of 4G/LTE
connection money cost and mobile device energy consumption. Firstly, they model the
scheduling problem as a Markov Decision Process and accordingly a scheduling
algorithm based on dynamic programming is developed. Then they develop a heuristic
algorithm that approximates the optimal scheduler. The algorithm proposed utilizes the
Wi-Fi connection only when the Wi-Fi connection’s throughput is enough to continue
video streaming. If not, the subsequent chunks are transferred over the cellular network.
This study focus on optimization of energy consumption and monetary cost of cellular
network usage but if the Wi-Fi access network is not sufficient for video streaming, it is
just switched off. However, in this thesis, we consider maximum utilization of free
access network even if the throughput achievable is just only a fraction of the required
bandwidth.

ESPA [22] is a 4G/LTE Wi-Fi interfaces bandwidth aggregation algorithm which uses
multi-cost function for mobile phone file transfers. ESPA’s cost function includes
battery life, data usage quota for cellular interface and file transfer completion time. It
compromises of three main parts; ESPA Network Interface Manager, ESPA Equalizer

11

and File Segment Manager. ESPA Equalizer takes cost formulation and weighting
factors for battery usage, 4G/LTE quota usage, and file transfer completion time. ESPA
Network Interface manager selects the best available interface in reference to estimated
throughputs. ESPA server receives feedback from ESPA Network Interface Manager
and dynamically sends individual segments of file to one of the available interfaces.
ESPA algorithm offers a good solution that involves cost, energy and the transfer
completion time for the files which are not necessarily time sensitive. That is, ESPA
doesn’t specifically propose a solution for time sensitive data transfer.

In [23], bandwidth aggregation for cellular and Wi-Fi access networks is aimed together
with cost-effectiveness for video streaming applications. Authors employ split-layer
SVC encoding and split video file in spatial basis to three parts as base layer (BL), and
two enhancement layers EL1 and EL2. Proposed system initially starts with
downloading BL and EL1 layers over the cellular network while downloading EL2 layer
over the Wi-Fi network. If the Wi-Fi network is in an excellent condition and sufficient
to download more than EL2 layer, EL1 layer and if possible, BL layer are also
downloaded over the Wi-Fi network. Otherwise, the Wi-Fi network is used to download
only the enhancement layer EL2, because BL and EL1 layers are considered as more
crucial layers for video playout. If the user chooses quota saving, only BL and EL layers
of video file can be downloaded over the cellular network in case the Wi-Fi network is
insufficient for these layers. Otherwise, if the user chooses the maximum quality, EL2
layer also can be downloaded over the cellular network in case the Wi-Fi network is
insufficient. This study pays attention to the video quality over cost efficiency. At the
beginning the cellular network utilized to download BL and EL1 layers however, if the
Wi-Fi does not provide necessary bandwidth, the cellular network is utilized to
download all layers including the base one. However, in this thesis, our aim is to utilize
free connection as much as possible throughout the data transfer. Moreover, the authors
employ a client-side request scheduling method which requests the next chunk after
receiving the notification of the previous one. In other words, they employ a stop and
wait method. However, if the network causes large delay, the proposed method can
utilize the free Wi-Fi connection less than its capacity since, Wi-Fi connection will be
idle during the propagation and queuing delay periods. In the experimental evaluations,
only the observed Wi-Fi throughput is given, if these values were compared with the
predefined or limited maximum Wi-Fi throughput, utilization problem could be
observed.

12

13

CHAPTER 3

 COST AWARE CONNECTION POOLING

Cost Aware TCP Scheduler (CATS) mainly focuses on constant bit-rate time sensitive
data delivery between a client and a server by utilizing connection pooling. Stored video
file streaming can be considered as one of the use-cases supported by the current
implementation of CATS. However, the main approach proposed in CATS can be
extended to cover various use-cases such as teleconferencing and videoconferencing
over multiple channels.

In subsequent discussions in this thesis, when we refer to constant bit-rate time sensitive
data, we are actually referring to data stored at the server and is segmented into chunks
that are consumed at the client in time orderly manner. A video file when streamed
between a server and a client can be considered as a typical example of high bit-rate
time sensitive data. Most of the video servers like YouTube [21] store and transfer the
video files in the form of chunks. And these chunks are delivered to the client which
plays out the received chunks in a continuous manner.

Chunk 1 Chunk 2 Chunk n-1 Chunk n

Figure 4 A Time Sensitive File Segmented in Chunks

In Figure 4, an example of file segmented into n chunks, is visualized. Each chunk
comprises fixed size data bytes that will be used at a certain time interval after the file
download/usage has been started. In CATS, the chunks, which are stored in the server,
are numbered from Chunk 1 to Chunk n. Client requests and uses received chunks
according to the scheduled usage time.

In CATS, Transmission Control Protocol (TCP) [2] is used to transfer chunks from a
server to a client. TCP is indeed segmenting the data pushed by application into data
packets but the applications utilizing TCP are oblivious to TCP segmentation. So CATS
employs its own file segmentation.

CATS client application starts consuming data when a chunk is received entirely. Hence,
from the client’s point of view, the fact that processing a chunk can only be possible

14

when it is received entirely. Chunks also serve as jitter avoidance buffers. Moreover, the
client usually uses the current chunk while the subsequent chunks are being downloaded.
As such, the length of chunks determines the chunk usage time and this is a configurable
parameter in CATS.

CATS primarily employs connection pooling for the timely delivery of file chunks. We
assume that the stored time sensitive data is delivered from a server to a client over two
parallel TCP connections each of which has different characteristics. First connection is
called the free connection (FC). FC is established on a free link (FL). A FL (and FCs
utilizing that FL) is considered to have fluctuating throughput and variable delay.
However, there is no monetary cost associated with FL usage. The second connection is
called the paid connection (PC) and it is established on a paid link (PL). A PL (and PCs
established on that PL) is considered to have higher throughput and lower variable
delay. As its name implies, there is monetary cost associated with PC usage.

In this thesis, we assume a scenario in which there is a client application processing high
bit-rate time sensitive data transferred from a server. We also assume that this client
device has at least two network interfaces such as Wi-Fi and cellular data. In this
scenario, we consider that the Wi-Fi link is FL and the cellular link such as 4G/LTE is
the PL.

We propose CATS to improve user experience by aggregating bandwidths of multiple
links while minimizing the monetary cost incurred by the PL usage. CATS is based on
bandwidth aggregation which is the utilization of multiple TCP connections for a single
application. The strength of CATS lies in its consideration of monetary cost as well as
QoS parameters in TCP connection pooling as opposed to the previous studies. Most of
the previous works done on TCP connection pooling aim to maximize throughput by
using multiple connections over separate links without considering monetary cost or
limitations on any of the connections. In CATS, the goal is providing enough throughput
to ensure timely delivery of chunks to the client rather than maximizing throughput and
for this purpose the FC is utilized as much as possible. The three goals of this thesis are
summarized as follows:

 Timely delivery of chunks to the client,
 Maximum Utilization of FC,
 Minimum Utilization of PC.

3.1.Optimal Bandwidth Pooling

This section investigates the role of different chunk scheduling mechanisms that can be
used to distribute load on the multiple heterogeneous channels on achieving
abovementioned goals for streaming time sensitive data. In order to simplify the
presentation, we consider a video streaming over multiple channels scenario in which a
server is streaming a video file to a mobile phone which has two network interfaces; Wi-

15

Fi and 4G/LTE. Suppose the client has established two connections to the streaming
server over these interfaces. The connection established via Wi-Fi interface represents
the FC and the connection established via 4G/LTE interface represents the PC. The
video file streamed from the server is segmented in chunks and the chunks are
transferred to the client and played out. The notation given in above Figure 5 will be
employed in the following discussion and illustrations.

 Figure 5 Chunk Download Figure Notation

16

3.1.1. Scenario 1: FC Throughput Higher Than the Video Playout Rate

 Figure 6 Scenario 1: FC Throughput Higher Than the Video Playout Rate

In scenario 1, client’s free connection throughput is assumed to be higher than the video
playout rate. As it is shown Figure 6, after the arrival of the first chunk, C1, client can
start the playout of C1 and in the meantime the subsequent chunks are downloaded over
free connection. For example, client downloads C2 and a bit of C3 while C1 is being
played. This will be true for the rest of the chunks. As it can be seen from Figure 6, the
client can stream the complete video file over only FC without any video pause. Hence,
we can conclude that, if FC’s throughput is higher than the video playout rate, no
additional connection and a special mechanism is needed for timely delivery of data.

17

3.1.2. Scenario 2: FC Throughput is the Same with the Video Playout Rate

Figure 7 Scenario 2: FC Throughput is the Same with the Video Playout Rate

In scenario 2, the client’s free connection throughput is exactly the same with the video
playout rate. As it is shown in Figure 7, the client starts video playout after the arrival of
C1 and C2 can be downloaded while C1 is being played out. This will be repeated for
the subsequent chunks. In this scenario, as long as the client fully utilizes FC, all of the
chunks can be downloaded over FC without any video pause as it can be seen from
Figure 7.

18

3.1.3. Scenario 3: FC Throughput is smaller than the Video Playout Rate

Figure 8 Scenario 3: FC Throughput is smaller than the Video Playout Rate

19

In the scenario 3, the FC’s throughput is smaller than the video playout rate. As it is
shown in Figure 8, the client experiences video pauses through complete video file
streaming when only the FC is used. For example, the client starts video playout when
C1 is delivered and while playing out C1, C2 could be downloaded. However, as shown
in Figure 8, when C1’s playout is complete, C2 will not be ready as the FC’s throughput
is lower than the video playout rate and the client has to pause until C2’s transfer
completes. Video pause is the most undesirable situation while video streaming and it
deteriorates the quality of video playout. To be able to cope with this situation, various
possible solutions will be explained.

3.1.3.1. Solution 1: Use Only PL

Figure 9 A Cost Inefficient Solution to Pause Problem in Scenario 3

Simplest solution for the client video pause problem could be to stream all video chunks
over the PC as shown in Figure 9. In this scenario we assumed that the PC’s throughput
is considerably higher than the video playout rate. If the server streams the entire video

20

file over the PC, all the chunks will be delivered to the client before their scheduled
playout times and there won’t be any video pause. On the other hand, client faces with
the cost of using PC. That is, data transferred over paid connection has a monetary cost
and downloading a complete video file over only paid connection can cost too much.
Furthermore, the client also wastes the FC bandwidth as it is not used. Even though,
FC’s throughput is lower than video playout rate, it can still be used to transfer some of
the chunks while avoiding video pause and this will reduce the overall cost of the video
transfer.

21

3.1.3.2. Solution 2: Bandwidth Aggregation

 Figure 10 A Cost efficient Solution to Pause Problem in Scenario 3

In Figure 10, utilizing both FC and PC to ensure timely delivery of data chunks while
minimizing the monetary cost is illustrated. In this scenario, FC and PC are pooled to
stream video file in a manner that achieves previously stated CATS goals. As it can be
seen from the Figure 10, some of the chunks such as C2 and C4 are transferred over the
PC and the rest of the chunks are transferred over the FC. After the delivery of C1, the
client starts video playout. If C2 was transferred over the FC, it would not be delivered
to the client before the scheduled playout time and the client would experience a video
pause. Alternatively, C2 is transferred over the PC and delivered to the client before its

22

scheduled playout time. In the meantime, FC is also being utilized for transferring C3
and delivered to the client after C2 is played out completely. Hence, the monetary cost is
minimized and the playout quality is maximized.

3.1.4. Scenario 4: Variable FC Throughput

 Figure 11 Scenario 4: Variable FC Throughput

In the previous scenarios, throughput of the FC is assumed to be constant. However, this
assumption is not always valid in real networks. In Figure 11, the case in which the FC’s

23

throughput is decreasing in time is illustrated. In this scenario, the client receives C1 and
then the video playout starts. The FC’s throughput is still sufficient to transfer C2 before
its scheduled playout time. However, as it can be seen from Figure 11, as throughput of
FC decreases, download time of the subsequent chunks increase. For example, when
playout of C2 is complete, client pauses as C3 is not completely received. The same
happens to the following chunks as long as the FC’s throughput remains smaller than the
playout rate.

3.1.4.1. Solution: Client Notifications and On Demand Use of the PC

Figure 12 CATS Solution to Scenario 4

In Figure 12, on demand use of the PC is illustrated. In this scenario, the FC’s
throughput decreases in time and the chunks which can be delivered to the client before
the scheduled playout times are pushed to the FC. If a chunk cannot be delivered to the
client timely over the FC, it is transferred over the PC. For example, C3’s estimated

24

delivery time over the FC is predicted to be large so it is going to miss the scheduled
playout time. Therefore, it is transferred over the PC and it is delivered to the client
timely. While C3 is being transmitted over PC, the FC is used to transfer C4 in order not
to waste FC’s bandwidth.

In order to determine whether a chunk can be delivered timely over the FC (and also
over the PC) the server should be able to predict the delivery time of the chunk.
Feedback from the client can be used for this purpose. In Figure 13, how the client
notifications can be used as a feedback to predict the delivery time is illustrated. For
each complete chunk received, the client sends a separate notification. The server can
record the time at which a chunk is pushed to the FC (or PC) and uses the client’s
notification for that chunk to measure delivery time. By considering the scheduled
playout time of the next chunk to be sent and recent delivery time measurement, the
connection that should be utilized to the transfer the chunk can be determined.

25

 Figure 13 CATS Notification Mechanism

3.2. Overview of Cost Aware TCP Scheduler

In this section, fundamental concepts that characterize the CATS and the mechanisms
employed by CATS are explained.

CATS consists of two modules: the CATS client and the CATS server. The CATS client
requests a time sensitive file stored on a CATS server. Upon receiving the request, the
CATS server sends the chunks of the file through two TCP connections to the CATS
client. These connections are FC and PC established over FL and PL attached to the
device running the CATS client as shown in Figure 14. Both FC and PC are initiated by
the CATS client. The CATS server is mainly responsible for selecting the connection to
be used while sending each chunk to the CATS client. The CATS sever also keeps track

26

of the chunk delivery times and determine when each chunk’s transmission is initiated
based on the feedback provided by the CATS client.

Figure 14 The Client and The Server Connection in CATS

As it will be explained in more detail in the subsequent sections of this chapter, there are
notification and time synchronization mechanisms in CATS. Hereinafter, the terms, the
client and the CATS client, and similarly the server and the CATS server will be used
interchangeably in the rest of the thesis. Client sends notification packets to server side
for each received chunk and these feedback packets are sent over paid connection. Client
also sends timestamps to the server in order to synchronize their time and these
synchronization packets are also sent over paid connection. In CATS, the server is the
side that is responsible for making the important decisions about data transfer in the
proposed algorithm. In the server, the requested file is segmented into a number of
chunks and these chunks are sent to the client after completing the initial handshake with
the client. The server is responsible for identification of the order of chunks to be sent,
the connection to be utilized for each chunk, and the time at which each chunk’s
transmission starts.

The client is simply responsible for the straightforward system operations or tasks such
as initializing and introducing the connections as free and paid connections at the
beginning and requesting the file. For each chunk received during the file download
process, the client sends notification packets to the server. The server uses these
notification packets to compute MCTT (Measured Chunk Transfer Time). The client
also sends time synchronization packets to the server after consumption of the chunks to
facilitate time synchronization.

In the next section, we discuss the proposed mechanisms executed at the client and the
server in more detail. All logic components and mechanisms for client and server sides
will be explained under separate titles.

27

3.2.1. Communication Between The Client and The Server

CATS employs 6 different types of packets exchanged between the client and the server
to execute the proposed algorithm. These packets are “DATA_CHUNK”,
“INIT_TRANSFER”, “TIME_SYNC”, “NOTIFICATION”, “END_TRANSFER”, and
“INIT_CONNECTION”. All of these packets use the CATS’s general packet structure
shown in Figure 15. The packets are differentiated with a packet type field values.
Moreover, each packet type has its own set of communication commands. The 4-byte
packet type header field identifies the type of the packet. The 4-byte length field
identifies the length of the data. Data field is the portion of the packet where actual user
data is carried.

3.2.1.1. Packet Structure

Packet Type

(4 Byte)

Length

(4 Byte)

Data

(Packet Data Byte Size)

Figure 15 General Packet Structure of CATS

3.2.1.2 Packet Types

The types of packets used by CATS are listed in the Table 1.

28

Table 1 Packet Types

Name of Packet Description

DATA_CHUNK These packets are sent from the server to
the client. Each chunk of a file is carried in
DATA_CHUNK packets.

INIT_TRANSFER These packets are sent from the client to
the server. Client sends INIT_TRANSFER
packets after the first initialization, to start
the file transfer.

TIME_SYNC These packets are sent from the client to
the server. Client sends TIME_SYNC
packets to synchronize time with the
server.

NOTIFICATION These packets are sent from the client to
the server. The Client sends
NOTIFICATION packets to notify the
server about each received chunk.

END_TRANSFER These packets are sent from the server to
the client to notify that all chunks have
been sent and the file transfer is
completed.

INIT_CONNECTION These packets are sent from the client to
the server to notify each connection
whether it is free or paid connection.

3.3. The CATS Client

The client streams time sensitive data in CATS. During the data streaming, client
downloads and processes the chunks by time order. The server is responsible for sending
the chunks to the client and running the scheduling algorithm. The tasks handled by the
client are depicted in Figure 16 by using a state diagram.

29

Figure 16 Tasks Handled by The Client

3.3.1. Connection Initilization

In CATS, the client connects to the server over two different TCP connections
simultaneously; free and paid TCP connections. From the stand point of the server, two
connections are identical, they only have specific port numbers and IP addresses.
However, in order our proposed algorithm to be executed, the server needs to
differentiate, which flow represents the free connection and which one represents the

30

paid connection. At system startup, the client is responsible of creating the connections
and introducing them to the server.

Figure 17 The Client and The Server Connection Initialization Process

In Figure 17, initialization process between the server and the client is visualized.
Firstly, the client creates a TCP socket from the free link and connects it to the server.
Then, client sends an “INIT_CONNECTION” packet for the connection and ensures

31

that server stamps this first connection as free connection. Secondly, the client creates a
TCP socket from the paid link and connects it to the server. As it is done for free
connection, client sends an “INIT_CONNECTION” packet for the paid connection and
ensures that the server stamps this connection as the paid connection. After this point, to
be able to start data streaming, the client sends “INIT_TRANSFER” packet to the
server. When the server receives “INIT _TRANSFER” packet, the chunks will be sent
over the free and the paid connections as it will be explained in Section 3.4.

3.3.2. Chunk Receive Notification Mechanism

In CATS, TCP is the only transport layer protocol in all means of communications. TCP
has its own ACK mechanism, and CATS is operating on the top of TCP layer. However,
CATS cannot reach and thus cannot use the ACK mechanism of TCP. This is the reason
why we introduce an additional ACK mechanism. This CATS specific ACK mechanism
is called CATS notification mechanism.

The Client sends notification packets to the server for the received chunks and these
notification packets play a very critical role for the consistent operation of the proposed
algorithm. The received notifications are the only way for the server to obtain MCTT
(Measured Chunk Transfer Time) for the sent chunks. As the server receives the
notifications for the sent chunks, it can estimate instant throughput of underlying
network by obtaining MCTT for each chunk. Another reason for exploiting the
notification packets is giving the information to the server whether any chunk which is
sent over free link will reach to client before its scheduled usage time or not and whether
duplicate send will be needed or not over paid link to prevent the client pause as it will
be described in Section 3.4.3.1.

32

Figure 18 The Notification Mechanism Performed by the Client

The server sends each chunk to the client with their sequence numbers, thus client can
identify the chunks by checking their sequence numbers. Client sends notification
packets for each chunk also with their sequence numbers, thus server can identify each
received notification packet belonging to which chunk.

Another important piece of information placed in the notification packets is the
connection type which the client received chunk over. The server may send each chunk
to the client over one of two available connections, free and paid connections, moreover
in some cases a chunk may be sent twice over both connections. As it will be explained

33

in the Section 3.4.2.1, server obtains Measured Chunk Transfer Time (MCTT) values for
each chunk sent over each connection separately. Therefore, it is necessary to put the
information about which chunk received over which connection into the notification
packets as it is shown in Figure 18.

The client sends notification packets over the paid connection. CATS is designed to
stream stored time sensitive file without pausing the client even in case of undesired
network conditions such as high jitter, lower throughput etc. CATS has only MCTT
values as feedback from the network. All the estimations and calculations are based on
the obtained MCTT values. Therefore, the paid connection is chosen to deliver
notification packets faster which would result more accurate MCTT results and better
estimations. The main drawback of sending notification packets over the paid
connection is its monetary cost. On the other hand, as the overhead of these notification
packets are relatively small when compared with the entire file to be streamed, the cost
of using the paid link can be considered as negligible.

3.3.3. Chunk Usage and Time Synchronization Packets

CATS can be used in various use-cases. In the domain of this thesis study, time
sensitive file streaming is handled. Therefore, the client side is considered as a time
sensitive file user which uses chunks of file by time order and pauses when the next
chunk is not received yet.

34

Figure 19 The Chunk Usage Mechanism Performed by the Client

The client has an initial buffer of 10 seconds before it starts to consume chunks. That is,
the client downloads the first chunk, but chunk usage starts after 10 seconds. As shown
in Figure 19, the client consumes the chunks one by one after the previous chunk’s
scheduled usage period is completed. If the next chunk is missing, the system updates
the quality cost, which will be explained in the next part.

Another key feature of the client is sending time synchronization packets. Proposed
CATS system is meant to be working and implemented in two different computers; as
client and server. It is observed that, due to many reasons like; client pause, processing
delays etc. scheduled usage times of chunks may change throughout the playout.
Contrary to the server, client can easily detect this change, since it knows the exact wall
clock time of each chunk’s usage time. Sending playout time to the server for each
chunk would be a solution but this would also be unnecessary transmission of many

35

bytes. Instead of sending timestamps for each chunk, the use of general offset value for
chunk usage would be easier and requires fewer bytes to be transmitted.

The Client gets wall clock time when the first chunk is used, and stores this time value
as the Start Time of the file streaming. Each chunk’s usage time is explicitly calculated
with the usage of first chunk with the formula below;

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑈𝑠𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 = 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 + 𝐶ℎ𝑢𝑛𝑘𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝐶ℎ𝑢𝑛𝑘 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 (1)

For the rest of the chunks, the client calculates difference between the estimated and
actual usage time offset as:

𝑂𝑓𝑓𝑠𝑒𝑡 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑈𝑠𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 – 𝐴𝑐𝑡𝑢𝑎𝑙 𝑈𝑠𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 (2)

Client sends this offset value to server and, thus server can accurately update usage
times for each chunk. Client sends offset value to server once again only if difference
between current offset value and last sent offset value reaches a predefined threshold
value. In CATS, this threshold value is set to 10% of a chunk’s time period which is
determined by carrying out several exploratory experiments.

3.3.4. The Cost Calculation

One of the tasks of client side in CATS is cost calculation. At the end of the time
sensitive file streaming, system’s success is evaluated with these calculated costs and
algorithm improvement is done in the light of these costs.

3.3.4.1. The Money Cost

Client counts all the chunks which are downloaded over the paid connection. At the end
of the file completion and streaming, money cost is calculated as the number of chunks
downloaded over paid connection.

3.3.4.2. The Quality Cost

As explained in the previous section, the client has a chunk usage mechanism. If a chunk
is available at the scheduled playout time, the client uses this chunk. But if the chunk is
not available, the client pauses and the client quality cost measures the pause duration
for each chunk missing its scheduled playout time. At the end of the streaming, the
quality cost calculator sums all pause durations.

36

3.4. The CATS Server

The server is the brain of the proposed algorithm. After the initialization, server side
makes the scheduling for the chunks transfer. The objectives of the scheduling algorithm
are maximum free connection utilization, minimum paid connection usage and minimum
client pause.

The server operation is summarized in Figure 20. In order to explain the mechanisms
employed by the CATS Server, a set of scenarios given below are used.

Figure 20 Tasks Handled by The Server

37

3.4.1. Scenario 1: FC Throughput Equal or Larger Than Chunk Usage Rate

Figure 21 The Server Scenario 1

In this scenario, free connection’s throughput is equal to scheduled chunk usage rate
(CUR) or higher than it, as shown in Figure 21. One may think that; no special
mechanism is needed in this scenario to be able to download the entire time sensitive file
over free connection. On the contrary, this scenario contains and explicitly displays the
first and the most basic mechanism of CATS system; how to fully utilize throughput of
free connection.

3.4.1.1. Maximum Free Connection Utilization

Consider a scenario where free connection has a throughput of 1Mbit/s while time
sensitive stored file to be streamed has a 1Mbit/s scheduled usage rate. In case of 100%
utilization of free connection, it is possible to download all chunks over free connection

38

without any money cost by 0% usage of paid connection. However, this is a challenging
situation because file to be sent is time sensitive and underlying network delays the
transmission of chunks.

One of the simple methods to utilize free connection fully is continuously writing all
chunks’ bytes to the free connection’s TCP socket. This method may be successful if the
file to be sent isn’t time sensitive and the goal is to minimize the complete file
transmission time. However, in the context of this thesis, file to be sent is time sensitive
and chunk n has higher priority than chunk n+1, n+2. In this scenario, despite their
scheduled usage time has not come yet, if many chunks are sent back to back it is not
possible to pull any of them back from TCP socket in case the free connection
throughput is not sufficient to deliver chunks before their scheduled usage time.

Another simple method can be employed to utilize free connection while sending chunks
is stop and wait to prevent congestion of underlying TCP connection. However, if the
underlying free link has large jitter, stop and wait method will result in less utilization of
free connection because of the wait period caused by network.

CATS proposes a free connection utilization method which avoids underlying network
congestion while utilizing free connection throughput close to maximum even if network
delay is high. CATS limits the maximum number of chunks to be sent over free
connection at any time by limiting the free connection’s TCP socket sender window
size. The socket buffer size is set to twice the chunk size. That is, a maximum two
chunks can be written to TCP socket of free connection. Therefore, maximum number of
bytes in flight limited to two chunks. In the meantime, as long as the round trip delay is
lower than the chunk transmission time, CATS can utilize free connection’s throughput
at a rate close to 100%. To be able to enable proper operation, chunk time in CATS is
chosen as 1 second. Thus, as long as sum of network delays is less than 1 second, CATS
can utilize the entire bandwidth of free connection.

39

3.4.2. Scenario 2: Free Connection Speed Lower Than Chunk Usage Rate

 Figure 22 The Server Scenario 2

In the previous scenario, free connection speed was sufficient to stream all data over it.
However, as it is visualized in the Figure 22, in this scenario, free connection throughput
is lower than chunk usage rate and this situation results in client pause.

40

Figure 23 CATS Solution to Scenario 2

One of the main goals of CATS is minimizing the client pause and to be able to achieve
this, the chunks which cannot arrive before their scheduled usage time should be
downloaded over paid connection instead of free connection, as it is shown in Figure 23.
Therefore, paid connection can be used for some chunks in this scenario. CATS decides
which chunk should be sent over which connection to stream data in a way causing
minimum client pause and minimum paid connection utilization. To this end, MCTT
estimates are used. In this section, the mechanisms used by CATS for this purpose are
explained in detail.

41

3.4.2.1. MCTT and SCTT Calculation

In CATS, MCTT (Measured Chunk Transfer Time) values are the only way to measure
the throughput of underlying connection. MCTT calculation is made after receiving each
notification packet as shown in Figure 24.

Figure 24 MCTT and SCTT Calculation Mechanism for The Server

42

Client gets and saves wall clock time when any chunk is sent. Chunks can be sent over
either free or paid connection, or both, so system gets and saves the sending times for
each chunk for each connection.

As described in the communication between client and server section, notification
packet sent by client contains two information; chunk number and the connection
through which the chunk is sent. Thus, server can calculate time difference between
sending time and notification receive time to determine MCTT value as shown in Figure
25.

Figure 25 MCTT Calculation with CTT and RTT

MCTT contains both CTT (Chunk Transfer Time) and propagation delay for
notifications packets as it is shown in the Figure 25. It is assumed that RTT (Round Trip
Time) value is much smaller than MCTT and MCTT is calculated for each chunk as:

𝑀𝐶𝑇𝑇 = 𝐶𝑇𝑇 + 𝑅𝑇𝑇 2⁄ (3)

RTT value is ignored, so;

𝑀𝐶𝑇𝑇 ≅ 𝐶𝑇𝑇 (4)

43

MCTT values are rapidly changing due to changing network conditions and it is very
challenging to make estimations depending on individual measurements. Smoother
MCTT values are needed for CATS and this necessity brings us to Smoothed Chunk
Transfer Time (SCTT) Calculation which is the exponentially weighted moving average
of MCTT measurements. Jacobson’s Algorithm [2] is employed for the calculation of
SCTT as:

𝑆𝐶𝑇𝑇 = 𝛼 ∗ 𝑆𝐶𝑇𝑇 + (1 − 𝛼) ∗ 𝑀𝐶𝑇𝑇 (5)

where value is used as 0.875 and it is obtained with heuristic experimental results.

3.4.2.2. Chunk Scheduler

Chunk scheduler is the most important part of CATS. In this section, the chunk
scheduler utilized in the proposed algorithm will be explained in detail.

Chunk scheduler uses two different tag windows to schedule chunks. Both windows are
maintained by the chunk scheduler and the contents are used by chunk sender threads.
Both windows have sliding window structure and region of interest contains information
for the chunks which are sent but not notified or not sent yet. As chunks are sent and
notified, windows slides and new region of interest contains new chunk numbers which
are sent but not notified or not sent yet.

1 2 3 4 5 6 7 8 9 10

Figure 26 An Example Portion of Sliding Window and Region of Interest

In Figure 26, an example portion of sliding window is visualized. Numbers represent the
chunk numbers, and grayed region is the current region of interest for the sliding
window. This means that, chunk numbers with 1, 2 and 3 have been sent and notified, so
algorithm has nothing to do with these chunks. Chunks 9 and 10 are out of the scope for
the time being and thus they are not scheduled and don’t contain any tagging
information yet. Chunks 4, 5, 6, 7 and 8 are in the region of interest of the chunk
scheduler.

The connection tag window contains the connection type information, that is, which
chunk will be sent over which connection. As connection tag window slides and new
untagged chunks are included in the region of interest, algorithm makes estimations for
these chunks. If the chunk will be able to deliver to the client before its scheduled usage
time when it is sent over free connection, it is tagged as free connection, otherwise it is
tagged as paid connection.

The other window is the command tag window and it includes the information whether
the chunk in the window must be sent immediately or the transmission must be delayed.
Sender threads read the command tag window and if “wait” command is set for any

44

chunk, it will not send the chunk immediately, otherwise if “send” command is tagged,
related chunk is sent immediately if the underlying socket is available.

Region of interest of both tag windows slide concurrently and same chunk numbers are
included in the region of interest of both connection and command tag windows. If any
chunk number is tagged or retagged in one of the tag windows, the same chunk number
is also tagged or retagged in the other tag window.

Sizes of region of interest for tag windows are initially set to 5 and this value is chosen
after several experiments conducted. Size can’t be smaller than 5 but it can increase
when needed. The only condition checked to increase size is the chunk count which is
tagged as free connection in the region of interest of the connection tag window. It is
aimed to utilize free connection throughput at a rate close to 100% during file streaming
and if any of the chunks is not tagged as free connection in the region of interest of
connection tag window, sender threads cannot send any chunk over free connection, so
this results in wasting the resources of free connection. So, window size is increased up
to a point at least one the chunk is tagged as free connection.

45

Figure 27 Chunk Scheduler Window Tagging Procedure

46

In Figure 27, activity diagram for chunk scheduler tagging operation is presented. At
each iteration, chunk scheduler reads chunk connection and command tag windows and
makes estimations for the chunks included in the region of interest of the sliding
window. Chunk scheduler periodically reads chunk command and connection windows
and tags each one again and again as the network conditions change.

10 11 12 13 14 15 16 17 18 19

Figure 28 Time T Connection Window

 Figure 30 Time T + 1 Connection Window

In Figure 28-31, an example sequential tagging case is delineated. Shaded region is the
region of interest for all windows. In Figure 28 and Figure 29, information included in
command and connection tag windows on Time T are represented by some color coding.
In Figure 30 and Figure 31, information included in command and connection tag
windows on time T + 1 are illustrated by different colors. Blue color in the connection
tag windows represents the free connection tag, while red color represents the paid
connection tag. Orange color in the command tag windows represents the chunk sent but
not notified tag, while black color represents chunk is not sent yet tag. In Time T,
chunks 12 and 13 are sent over free connection but their notification packet is not
received yet. Chunks 14, 15 and 16 are tagged as to be sent over free connection after
the estimations of chunk scheduler but they are not sent yet. In time T + 1, chunk 12 is
notified, both command and connection tag windows slide and new chunk number 17 is
in the region of interest. As it is mentioned before, chunks are not tagged only once, all
chunks in the region of interest are tagged periodically to be able to adapt to the rapidly
changing network conditions. For example, chunk 14 is tagged as free connection at
time T. But at Time T + 1, new notification packet received for chunk 12 and SCTT
value is updated. Therefore, with the updated SCTT value connection tag information
for chunk 14 is altered. At Time T, scheduler estimated chunk 14 as can be sent over

10 11 12 13 14 15 16 17 18 19

 Figure 29 Time T Command Window

10 11 12 13 14 15 16 17 18 19

10 11 12 13 14 15 16 17 18 19

 Figure 31 Time T + 1 Command Window

47

free connection as it can arrive before its scheduled usage time. However, after receiving
a new notification for chunk 12 and updating SCTT with this notification, sending chunk
14 from free connection would result client pause, therefore chunk 14 is retagged as to
be sent over paid connection.

As it is shown in Figure 27, chunk scheduler makes estimations for the chunks which are
in the region of interest of tag windows and in the light of these estimations it tags
command and connection tag windows. Whether a chunk will reach to the client before
its scheduled usage time or not is the only deciding factor to tag chunk connection tag
window. At each iteration, for each chunk to be tagged in the region of interest,
scheduler employs the following formula:

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑈𝑠𝑎𝑔𝑒 𝑇𝑖𝑚𝑒
= 𝑈𝑠𝑎𝑔𝑒𝑇𝑖𝑚𝑒𝑂𝑓𝑓𝑠𝑒𝑡 + 𝐶ℎ𝑢𝑛𝑘 𝑁𝑢𝑚𝑏𝑒𝑟 ∗ 𝐶ℎ𝑢𝑛𝑘 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 (6)

Client sends time synchronization packets to the server as explained in the client section.
Estimated scheduled usage time for each chunk is calculated with the usage time offset
value which received with the time synchronization packets sent by client. Server needs
to calculate and know exact scheduled usage time for each chunk to be able to decide the
connection which chunk will be sent over. According to the formula given above, chunk
usage time offset value (Equation 2) received from the client ensures that the server
calculates exact scheduled usage time for each chunk.

𝑈𝑆𝐶𝑇𝑇 = 𝛼 ∗ 𝑆𝐶𝑇𝑇 + (1 − 𝛼) ∗ 𝑇𝐸𝑀𝐶𝑇𝑇 (7)

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑇𝑖𝑚𝑒 + 𝑈𝑆𝐶𝑇𝑇 (8)

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝐸𝑠𝑖𝑚𝑎𝑡𝑒𝑑 𝑈𝑠𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝐴𝑟𝑟𝑖𝑣𝑎𝑙 (9)

To be able to decide the connection which a chunk will be sent over, estimated usage
time for each chunk must be compared to estimated arrival time as it is given in equation
9. Estimated arrival time is calculated with the updated version of the smoothed chunk
transfer time (SCTT) value; updated smoothed chunk transfer time (USCTT). SCTT is
calculated with MCTT values and it has the information of all past MCTT values but it
doesn’t have the information of time elapsed MCTT (TEMCTT) values of chunks which
are sent but not notified yet. USCTT is calculated by the algorithm only at the start of
each window tagging iteration. USCTT value is calculated with the combination of
SCTT value of free connection and not notified but sent chunk’s current Time Elapsed
MCTT values (TEMCTT). Not notified but sent chunks don’t have calculated MCTT
value yet but their current TEMCTT value can be calculated with the difference between
current time and their send time. If TEMCTT value of not notified but sent chunks is
greater than the calculated SCTT, in this case USCTT includes TEMCTT value too. This
feature added to the algorithm to be able to cope with sudden, huge deterioration of
underlying network. For example, at time T, free connection may be completely closed
or its throughput may be ten times lower than the throughput of time T – 1 because of

48

underlying network deterioration. At this point, algorithm may not get notification
packets for free connection for a long time because of any of the sent chunks are not
transmitted. Therefore algorithm assumes that SCTT value is the same as before and
keeps sending chunks from free connection with the estimations based on this obsolete
SCTT value. In this case, free connection is utilized inefficiently, chunks which will
never be able to reach before their scheduled usage time will be sent over it and free
connection will be more congested. However, with TEMCTT value calculation feature,
even if underlying network for free connection is as bad as to cannot transmit any sent
chunks, algorithm can continuously update its SCTT with TEMCTT values before
tagging any chunk. In the experimental results section, it will be represented that, sudden
bitrate changes in free connection doesn’t affect the outputs of the algorithm, this feature
is one of the most important reasons of this consequence.

Difference between estimated playout time and estimated arrival is calculated as it is
given in equations 7 to 9. If calculated difference value is greater than the predetermined
threshold value, chunk is tagged as free connection, otherwise chunk is tagged as paid
connection. At this point, predetermined threshold value is used to the cope with rapid
changes of underlying network. Threshold value is calculated as:

𝐹𝐶 𝑇𝑎𝑔 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝐶ℎ𝑢𝑛𝑘 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑 ∗ 4 (10)

CATS aims to minimum usage of paid connection. Because of this reason, if any chunk
is tagged as paid connection in the connection tag window, this chunk is not sent
immediately, due to possible throughput increase in free connection which makes
sending this chunk over free connection possible. It kept waiting before send until the
last critical time threshold value is reached. For example, if it is estimated that chunk n
can’t reach before its scheduled usage time if it is sent over free connection so it is
tagged as paid connection in the connection tag window. In the meantime, if it is sent
immediately over paid connection, it will be received by client way before its scheduled
usage time. In such scenarios, chunk’s send command is tagged as “wait”. Because in
the context of this thesis study it is considered that, throughput of free connection is very
variable. Throughput of free connection may increase in time and this can be detected
with the receipt of notification packets of chunk n-1, n-2 and sending chunk n before its
scheduled usage time over free connection may be possible. Therefore, chunks which
are tagged as paid connection, are kept waiting before sending until a threshold value is
reached, in case of free connection throughput increases and chunks can be retagged as
free connection. Thus, paid connection usage can be minimized.

Paid connection send command tag threshold value calculation formula is:

𝑃𝐶 𝑆𝑒𝑛𝑑 𝐶𝑜𝑚𝑚𝑎𝑛𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝐶ℎ𝑢𝑛𝑘 𝑇𝑖𝑚𝑒𝑃𝑒𝑟𝑖𝑜𝑑

2
 (11)

49

If the difference between estimated arrival and estimated chunk usage time is smaller
than threshold, chunk command tag window is tagged as “send”, otherwise chunk
command tag window is tagged as “wait”.

In the Figure 27, it is stated that, chunks which tagged as free connection in the
connection tag window are always tagged as “send” in the command tag window.
Because CATS aims maximum utilization of free connection.

3.4.2.3. Chunk Sender

In this section, working mechanism of chunk sender threads, which read the output of
chunk scheduler and send chunks to the client, are explained.

Figure 32 Chunk Sender Threads Working Mechanism

In Figure 32, working mechanism of sender threads are illustrated. In CATS, each
connection, free and paid connections, have their individual threads. Both threads are
identical, each of them just belonging to one of the connections. Threads read outputs of
chunk scheduler that are the tagged connection and command tag windows. If any chunk

50

is tagged in the connection tag window belongs to thread’s connection, command
window is checked, and if value of chunk’s command tag is “send”, chunk is written to
the connection’s TCP socket and sent from server to client.

3.4.3. Scenario 3: Sudden Free Connection Throughput Decrease

Figure 33 The Server Scenario 3

As it can be seen in Figure 33, sudden throughput decrease on free connection may
cause client pause. In some cases, any chunk may be scheduled and sent over free

51

connection, but because of sudden throughput decrease on free connection, that chunk
may not arrive before its scheduled usage time and this will result with the client pause.
In the Figure 33 it is shown that, chunk 1, 2, 3 and 4 are scheduled as to be sent over free
connection and all of them arrived before their scheduled usage time. Chunk 5 is also
scheduled to be sent over free connection and it is estimated as will arrive before its
scheduled usage time. However, because of the reasons like packet loss, sudden
connection throughput decrease, arrival of chunk 5 takes much more time than estimated
and this caused with the client pause. CATS include the duplicate chunk send
mechanism to cope with such situations.

52

3.4.3.1. Duplicate Chunk Send Tagging Mechanism

Figure 34 Duplicate Chunk Send Solution for Scenario 3

One of the main goals of CATS is maximum utilization of the free connection with an
efficiency ratio near 100% which means that, each chunk should be sent only once over
one connection. Downloading a chunk twice over both free and paid connection is an
undesirable case and accurate scheduling is aimed to prevent this undesirable
consequence. However, in some cases, underlying free connection’s conditions may
change rapidly because of packet loss, sudden throughput decrease therefore, scheduled
and sent over free connection chunks may not arrive before their scheduled usage. So in
such cases, chunks which are sent but then estimated as not will arrive on time, are re-
sent over paid connection. As illustrated in Figure 34, chunk 5 is sent over free

53

connection, but its arrival takes much more time than estimated and server cannot
receive its notification packet before expected time. Thus, to prevent client pause it is
duplicate sent over paid connection.

 Figure 35 Duplicate Chunk Send Tagging Mechanism

In Figure 35, duplicate chunk send tagging algorithm is illustrated. Duplicate chunk send
tagging covers the chunks which are sent over free connection, but not notified before
their scheduled usage time. These chunks are sent over paid connection once more. Sent
but not notified chunks are still in the scope of tagging windows. Hence, chunk
scheduler continuously checks these chunks in case of duplicate send is needed to
prevent client pause. At each iteration, chunk scheduler calculates difference between
estimated scheduled usage time of chunk and current time for the chunks which are sent

54

over free connection and not notified yet. If calculated difference value is smaller than
the duplicate send threshold value, chunk is retagged to be duplicate send over paid
connection and sent immediately to avoid client pause. The threshold value which is
obtained with heuristic experimental results is defined as below;

𝐷𝑢𝑝𝑙𝑖𝑐𝑎𝑡𝑒 𝑆𝑒𝑛𝑑 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑃𝐶𝑆𝐶𝑇𝑇 +
𝐶ℎ𝑢𝑛𝑘 𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑

2
 (12)

3.5. Implementation of CATS

It is aimed to implement CATS in a platform independent way so that any client
application can easily utilize it. Java Programming Language is a portable object
oriented language that lets application developers “write once, run anywhere”. Hence,
the Java programming language is used to create a prototype implementation of CATS.
In this section, implementation details for two fundamental parts; client and server are
explained by means of UML Class Diagrams.

3.5.1. The Client

The Client of CATS is responsible for tasks like; system initialization, chunk receiving,
cost calculation, sending notification packets and time synchronization. All of these
tasks are performed with client and its auxiliary Java classes.

55

Figure 36 UML Class Diagram for the CATS Client

In Figure 36, UML Class Diagram for the Client is given. Client class is the main class
for client side implementation. Client class performs its tasks by help of other helper
classes. One of these classes is client file user thread. CATS currently supports the use
case scenario of time sensitive data streaming. To be able to simulate a chunk user,
client user thread class is created. This class continuously consumes received chunks in
a time ordered manner.

CATS operates and makes real time decisions during time sensitive file streaming.
Because of this reason, optimization of the implementation is very crucial. One of the
most time consuming tasks for proposed system is TCP Socket operations. Excessive
numbers of bytes are read, written and interpreted during the system operation. All of
these socket operations are assigned to the free connection and the paid connection
classes for each connection. The free connection and the paid connection classes are
identical in terms of implementation and they are inherited from TCP Connection
Handler parent class. TCP Connection Handler class is responsible for handling TCP
socket connection, reading, writing bytes from socket etc. All of these socket operations
are handled also with the help of other auxiliary classes. One of these classes is TCP

56

Reader Thread class. This class continuously polls related socket and checks if there are
any incoming bytes. Socket polling and reading operation is implemented with a non-
blocking method. TCP Reader thread polls socket during a predefined timeout value, if it
receives as many bytes as predefined value, it polls again the related socket otherwise it
waits during the predefined timeout value. Thus, underlying processor is not occupied
continuously, if there are available bytes, they are read from the socket otherwise
processing power released during the timeout value for any other tasks.

TCP Reader Thread forwards read bytes to Message Decoder class. Message Decoder
class is responsible for interpreting the contents of the received packets. It has a circular
buffer structure and continuously puts bytes received from TCP Reader Thread to its
circular buffer. If bytes are interpreted as a complete command, length and data
application layer message, it transmits these messages to the client class.

Client also responsible for sending packets to the server and these messages also must be
in the correct format. Message Encoder is the class which is created to handle this task.
Message Encoder encodes messages to be sent in the correct format before sending to
the server.

Money and quality cost calculators are the measurement units for system success rate.
These classes will not be placed in the final application, but for system development and
verify phases, they are utilized as output creator of system success rate.

3.5.2. The Server

Server of CATS is responsible for the tasks like chunk scheduling, chunk sending etc. In
this section, classes implementing the server side are explained.

57

Figure 37 UML Class Diagram for the CATS Server

In Figure 37, server class diagram is given. Server class is the main class for
implementation of the server. Server class executes tasks of server side in the proposed
algorithm by organizing other supporting classes. Chunk scheduling is handled in Server
Scheduler Thread class which inherits Java Thread class and it continuously runs during
the time sensitive file streaming operation. In CATS, chunks are continuously tagged to
be able to keep track of changing network environments. Hence, chunk scheduler logic
part is implemented as an individual thread and it continuously polls network conditions
and tags, retags chunks’ send interface and command according to network conditions.

Server has chunk sender threads for each individual connection; free and paid
connections. As it can be seen from Figure 37, server class has Paid Connection Chunk
Sender and Free Connection Chunk Sender classes. Both classes are identical and they
inherit Server Sender Thread parent class. Only difference between Paid Connection
Chunk Sender and Free Connection Chunk Sender is type variable. Type variable is set
due to distinguish between paid connection and free connection. If type is set as free
connection sender, class sends chunks tagged as to be sent over free connection,
otherwise class sends chunks tagged as to be sent over paid connection.

58

Server TCP Handler class handles the incoming connections to the server. It
continuously polls for incoming TCP socket connection requests and for each
established connection, it creates a TCP Connection Handler to maintain that connection
during the operation. TCP Connection Handler, Message Encoder, Message Decoder
and TCP Reader Thread classes works same as described in the client implementation
section.

59

CHAPTER 4

 EXPERIMENTAL RESULTS

In the context of this thesis study, experiments are carried out by using the prototype
implementation of CATS to evaluate the performance of CATS under various
conditions. In this section, results of experiments realized on different setups with
different parameters to test different aspects of CATS are explained. The prototype is
implemented by using the Java programming language. Hence, in these experiments,
client and server implementations have been executed and tested on various operating
systems.

CATS tested under many different network conditions and Dummynet [24] is employed
to simulate different network conditions along the experiments. Dummynet is a live
network emulation tool, originally designed for applications including bandwidth
management. It simulates/enforces queue and bandwidth limitations, delays, packet
losses, and multipath effects.

Figure 38 Dummynet As Network Emulation Tool [25]

Dummynet runs within different operating systems; FreeBSD, OSX, Linux and
Windows and works by intercepting selected traffic on its way through the network
stack, as it is shown in the Figure 38, and passing packets to objects called pipes which

60

implemented as set of queues, a scheduler, and a link all with configurable features.
Features of Dummynet like bandwidth limitation, packet loss and delay are employed
for the experiments of CATS.

Quality Cost, Free Connection TCP Throughput (FCTT) and Money Cost are the metrics
to evaluate system success on each setup. Quality Cost corresponds to the total measured
client pause duration in milliseconds. Money Cost is the number of chunks downloaded
over paid connection. Free Connection TCP Throughput stands for the average
throughput of the free connection during the streaming. It is calculated as:

 FCTT: Free Connection TCP Throughput
 LT = Wall Clock Time of Latest Chunk Downloaded Over Free Connection
 FT = Wall Clock Time of First Chunk Downloaded Over Free Connection
 CC = Chunk Count Downloaded Over Free Connection
 MBS = Mbit Size for Each Chunk

FCTT =
𝐶𝐶 ∗ 𝑀𝐵𝑆

𝐿𝑇 − 𝐹𝑇
 (13)

4.1. Setup 1

In this setup, CATS is tested in an isolated network in which the client and the server are
connected via an access point. The purpose of testing CATS in a closed network is to
analyze the appropriateness of the proposed fundamental mechanisms without any
external interference.

Figure 39 Experimental Setup 1

Client implementation is executed on OSX operating system, while server
implementation is executed on Windows 7 operating system along the experiments done
on setup 1. Both computers are located at the same physical location as it is shown in
Figure 39. The client and the server connected to each other over 10 Gbit/s wireless
access point. The client connected to the access point over two different links which are

61

Ethernet and Wi-Fi links while the server connected to access point over Ethernet link.
Ethernet connection simulates the paid connection while Wi-Fi connection simulates the
free connection. Ethernet and Wi-Fi connection throughputs of the client are limited to
predefined values by using Dummynet to be able to analyze outputs of different
experimental scenarios. Two different experiment scenarios are realized at this setup,
and results of both will be analyzed in detail.

4.1.1. Experiment Scenario 1

Ten different tests are performed in this scenario. Maximum throughput of free and paid
connections which are simulated with Wi-Fi and Ethernet connections respectively, are
limited to constant bit rates for each test. The same throughput limits are used for each
test while different chunk usage rates (CUR) are employed.

4.1.1.1. Test Parameters

 Limited Free Connection Throughput: 3Mbit/s
 Limited Paid Connection Throughput: 10Mbit/s
 File Time Period: 10 Minutes
 Each Chunk Time Period: 1 Second
 Total Chunk Count: 600
 CUR: Different for Each Test, from 1Mbit/s to 6Mbit/s

4.1.1.2. Results

Figure 40 Quality Cost for Experiment Scenario 1

Ten different 10minute time sensitive file streaming tests with CURs; 1, 2, 2.5, 3, 3.5, 4,
4.5, 5, 5.5 and 6Mbit/s are carried out and quality cost results of them given in Figure

62

40. Total client pause for each test is measured as 0 milliseconds. One of the main goals
of CATS is the minimum client pause and it is achieved for each 10minute streaming
tests which all have different CURs. In this experiment scenario, client’s free
connection’s maximum throughput is limited to 3Mbit/s, while paid connection’s
maximum throughput is limited to 10Mbit/s. It is an expected result to measure 0
millisecond client pause for the tests which have CUR lower than 3Mbit/s, since free
connection’s throughput is sufficient to download all chunks before their scheduled
usage time. However, downloading all chunks over free connection before their
scheduled usage time for the tests that have CUR higher than 3Mbit/s is not possible. As
the results of test reveals, to be able to prevent client pause, some of the chunks are
downloaded over paid connection in the tests which have higher CUR than free
connection throughput.

Figure 41 Free Connection TCP Throughput for Experiment Scenario 1

The client and the server directly connected to the 10Gbit/s access point and their
maximum throughputs are limited via Dummynet in this setup. One of the main goals of
CATS is maximum utilization of free connection. Therefore, in the result of each test,
measured free connection TCP throughput is expected to be close to the maximum
throughput limitation value, 3Mbit/s. Free connection TCP throughputs (FCTT) of each
test are given in Figure 41 and according to the results, FCTT values for each test are
close to the limitation value, 3Mbit/s. Therefore, it would be true to say, CATS achieves
one of its main goals; maximum free connection utilization.

63

Figure 42 Money Cost for Experiment Scenario 1

Fully utilizing free connection bandwidth is not enough for complete success scenario
since efficient and accurate chunk scheduling is also one of the main goals of CATS. If
scheduling isn’t accurate which also means that free connection utilization is not
efficient, chunks sent over free connection will not arrive before their scheduled usage
time, in this case, these chunks will be duplicate sent over paid connection so this results
with higher money cost than expected. Therefore, to be able to evaluate the efficiency of
free connection utilization the possible minimum money cost is calculated and compared
with the measured one. Minimum money cost can be calculated as:

Minimum 𝑀𝑜𝑛𝑒𝑦 𝐶𝑜𝑠𝑡 =
𝐶𝑈𝑅 − 𝐹𝐶𝑀𝑇𝑇

𝐶𝑈𝑅
∗ 𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑢𝑛𝑘 𝐶𝑜𝑢𝑛𝑡 (14)

Measured and calculated money cost results for the tests are given in Figure 42. Blue
line represents the measured money cost while dashed red line represents the calculated
money cost. As it can be seen from Figure 42, in each ten test, measured and minimum
money cost results are very close, approximately the same. Minimum money cost
represents the chunk count that must be downloaded over paid connection because of
inadequacy of free connection throughput when compared to CUR. Therefore, obtaining
close measured and minimum money cost results means that CATS utilizes free
connection with a maximum rate of efficiency and it sends the chunks over paid
connection only when it is not possible to send them over free connection without client
pause.

Measured money cost result is zero for the tests which have chunk usage rate lower than
the limited free connection throughput, 3Mbit/s. As chunk usage rate increases and
exceeds the limited value of free connection throughput, CATS downloads some of the
chunks over paid connection to be able to prevent the client pause. Closeness of

64

measured and minimum money cost for each test is the most important indicator for the
success of CATS. Minimum money cost value reaches measured money cost value in
some test results as it can be seen from Figure 42. This difference is caused because of
initial chunk buffering as it is explained in the proposed algorithm section. Initial buffer
chunk count is predefined as 10 for each test.

Firstly, quality cost results are evaluated for each test and it is observed that the client
didn’t pause at any of the tests as it is aimed. Secondly, free connection throughput
which is limited with a constant value is compared with the measured free connection
TCP throughput and it is observed that CATS utilizes free connection close to 100%.
Finally, money cost result is evaluated. By combining the results of this test scenario, it
would be correct to say that, CATS achieves its goals; streaming time sensitive file in a
cost aware manner without any client pause.

4.1.2. Experiment Scenario 2

In this experiment scenario, all tests are performed in the setup 1. In the first experiment
scenario, limited free and paid connection throughputs remained constant for each test
while chunk usage rate is changed. Exact opposite scenario will be performed in this
section, limited free and paid connection throughputs will be changed in each test while
chunk usage rate will be constant for each test.

4.1.2.1. Test Parameters

 Limited Free Connection Throughput: Different for Each Test, 1Mbit/s to

6Mbit/s

 Limited Paid Connection Throughput: 10Mbit/s

 File Time Period: 10 Minutes

 Chunk Time Period: 1 Second

 Total Chunk Count: 600

 CUR: 5Mbit/s

65

4.1.2.2. Test Results

Figure 43 Quality Cost for Experiment Scenario 2

As it can be seen from the Figure 43, client didn’t pause at any of the ten tests. CATS
downloaded all of the chunks before their scheduled usage time for each test.

Figure 44 Free Connection TCP Throughput for Experiment Scenario1

In the previous experimental scenario, free connection throughput is limited with same
value, 3Mbit/s, for each test and FCTT could be evaluated only with this constant
limitation value. However, in this test scenario, because of different free connection
throughput limitations employed at each test, measured free connection TCP throughput
is evaluated for different limitation values. As it is explained before, client and server

66

directly connected in local network, over access point, and there is not any external
network interference. Therefore, measuring FCTT values close to the limitation value of
free connection throughput is expected. FCTT values for this experiment scenario are
given in Figure 44. Free connection throughput is limited with different values at each
test; 1Mbit/s, 2Mbit/s, 2.5Mbit/s, 3Mbit/s, 3.5Mbit/s, 4Mbit/s, 4.5Mbit/s, 5Mbit/s,
5.5Mbit/s and 6Mbit/s. As it can be seen from Figure 44, FCTT values are close to the
limited free connection throughputs for each test. So, it would be true to say that CATS
utilizes free connection close to the possible maximum for each different test which
employs different throughput limitation values.

Figure 45 Money Cost for Experiment Scenario 2

In this experimental scenario, CUR is fixed at 5Mbit/s for each test and free connection
throughput limit is changed for each test. Money cost result is expected as 0, for the tests
which have free connection throughput higher than 5Mbit/s while money cost is
expected more than 0 for the tests which have free connection throughput lower than
5Mbit/s. Money cost result is increasing with decreasing free connection throughput and
it is zero for the tests which have free connection throughput higher than 5Mbit/s, as it
can be seen from Figure 45. Minimum and measured money cost results are very close
and this means the efficient utilization of free connection.

4.2. Setup 2

In this setup, the client and the server are connected to each other over the Internet and
performance of CATS evaluated under variable network conditions.

67

Figure 46 Experimental Setup 2

The client and the server are located at different physical locations in this setup as shown
in Figure 46. The client is located at Yenimahalle, ANKARA and it is connected to
access point, which is also at the same physical location with the client, over two
different connections; Wi-Fi and Ethernet. Wi-Fi connection simulates free connection
while Ethernet connection simulates paid connection. Throughputs of both connections
are limited to the predefined limitation values at each test performed in this setup. The
server is located at METU, ANKARA and connected to the access network via Ethernet.
Client application is executed on OSX, while server application is executed on Ubuntu
16.04. As stated before, along the experiments, both client and server applications are
executed on different platforms to be able to evaluate the platform independency.

Main difference between setup 1 and setup 2 is the variability of the underlying network.
All the conditions are fixed for each test done in setup 1 because of local network
employed in it. On the other hand, in setup 2, the client and the server connected to each
other over the Internet so, propagation delay, queuing delay, packet losses are all
effected the transfer time of each data packet.

Ten different 10minute time sensitive stored file streaming tests are performed on this
setup. Paid and free connections of client is limited to a constant value for each test
while CUR is changed at each test.

4.2.1. Test Parameters

 Limited Free Connection Throughput: 3Mbit/s

 Limited Paid Connection Throughput: 10Mbit/s

68

 File Time Period: 10 Minutes

 Chunk Time Period: 1 Second

 Total Chunk Count: 600

 CUR: Different for Each Test, 1Mbit/s to 6Mbit/ s

4.2.2. Results

Figure 47 Quality Cost for Setup 2

Quality cost results obtained from the tests performed are given in Figure 12. The client
didn’t pause at any of the 10minute time sensitive file streaming tests which all have
different CURs.

69

Figure 48 Free Connection TCP Throughput for Setup 2

In setup 1, free connection utilization evaluation is done in a local network environment
which has relatively stable network conditions. However, in setup 2, even though free
connection throughput is limited artificially, the server and the client are connected over
internet and all network delays like propagation delay, queuing delay and packet losses
are added to the characteristic of free connection. In CATS, more than one chunks are
written to the free connection’s TCP socket to be able to eliminate the effect of network
delays. In Figure 48, measured free connection TCP throughputs are given for each test.
Even if setup 1 and setup 2 have completely different network conditions, CATS can
utilize free connection at a maximum rate in setup 2. Free connection throughput is
limited to 3Mbit/s while CUR is changed for all ten different tests as it is shown in
Figure 48. As it can be seen from the FCTT results, CATS utilized the free connection
with a value close to 100% for each test. When these results compared with the ones in
setup 1, it is possible to say that, CATS eliminates effects of network delays like
propagation and queuing, the FCTT values are close to the actual limited free connection
throughput values.

70

Figure 49 Money Cost for Setup 2

In Figure 49, money cost result for each test performed in setup 2 is given. Measured
money cost results are approximately the same with the minimum money cost results.
Experiment scenario 1 which is performed on setup 1 is similar to the tests are done in
this setup. However, chunk scheduling is a bit more challenging for this setup because of
the client and the server are connected over internet and factors like packet losses and
delays make it difficult to estimate accurately. However, as it can be seen from Figure
49, money cost results obtained in this setup is very close to the ones obtained in the
setup 1.

71

4.3. Setup 3

Figure 50 Experimental Setup 3

In setup 3, the client and the server are connected to each other over the Internet and
they are at different physical locations as shown in Figure 50. Wi-Fi connection
simulates free connection while Ethernet connection simulates paid connection in setup
3. The client host computer placed quite away from the wireless access point to
deteriorate the conditions as much as possible for free connection. Therefore, free
connection throughput decreased and became significantly variable. Paid connection
which is simulated with Ethernet connection connected to the access point with Ethernet
cable so, its throughput remains less variable. Client application is executed on
Windows 7 operating system while server application is executed on Ubuntu 16.04
during the tests performed in setup 3.

Figure 51 MCTT Results for 600 Chunks

72

MCTT values, which are obtained from one of the 10minute time sensitive file
streaming tests performed in this setup, are given in Figure 51. Obtained MCTT values
are variable between 350 milliseconds to 4200 milliseconds. In the previous setups,
CATS tested with more stable free connection throughput. But in setup 3, as it can be
seen from the MCTT values given in the above Figure 51, throughput of long distance
placed Wi-Fi which is simulating free connection is quite variable. Therefore, in setup 3,
CATS exposed to quite variable free connection throughput and results are obtained
under these conditions.

4.3.1. Test Parameters

 Free Connection Throughput: Unlimited, Long Distance Placed Wi-Fi

 Paid Connection Throughput: Unlimited, Cable Connected

 File Time Period: 10 Minutes

 Chunk Time Period: 1 Second

 Total Chunk Count: 600

 CUR: Variable for Each Test, 1Mbit/s to 9Mbit/s

4.3.2. Test Results

Figure 52 Quality Cost for Setup 3

During the tests realized in Setup 3, 10-minute time sensitive file streaming tests are
carried out with different CURs and their quality cost results are given in Figure 52. The

73

client didn’t pause in any of the tests. As it is given in the Figure 51, during these tests,
free connection throughput is quite variable. Even though network is excessively
variable for free connection, CATS scheduler estimated underlying network accurately
and all the chunks could be downloaded before their scheduled usage times over free
and paid connections. As it is explained in the proposed algorithm section, CATS has
duplicate chunk send feature and even if sudden changes occur in free connection
throughput, CATS duplicate send chunks over paid connection and thanks to this
mechanism, chunk arrives before its scheduled usage time and client pause is prevented
as it can be seen from the quality results given in the above Figure 52.

Figure 53 Free Connection TCP Throughput for Setup 3

Free connection throughput results for the tests are given in the above Figure 53. FCTT
results are comparable with limited free connection throughputs for the test setups 1 and
2. However, in this setup, any throughput limitation isn’t employed and the entire
throughput results are obtained with the long distance placed Wi-Fi connection which
simulates free connection. So, different FCTT values are obtained at each test.

74

Figure 54 Money Cost for Setup 3

As it is given in Figure 54, quite variable MCTT values are obtained for the chunks
downloaded over free connection during the tests performed in Setup 3. Even though
free connection’s throughput is quite variable, client didn’t pause at any of these nine
tests. One may think, most of the chunks are duplicate sent over paid connection when
free connection throughput changed suddenly and client pause is prevented only with
this method. However, using only this method would result with higher money cost and
this would contradict with one of the main goals of proposed CATS; minimum paid
connection utilization. Money Cost results are given in Figure 54 and as it can be seen
from the results, measured and minimum money cost results are very close to each other.
This result is obtained thanks to the sending chunks over free connection with
predefined offset value method described in the proposed algorithm section. Chunk
Scheduler sends chunks over free connection in advance with a security offset and by
doing so, even if free connection throughput changes suddenly, chunks downloaded over
free connection can arrive before their scheduled usage time. Thus method results with
efficient usage of free connection, which causes measured money cost is close to
minimum money cost as it can be seen from Money Cost results given in Figure 54.

4.4. Setup 4

In the previous 3 setups, paid connection is simulated with Ethernet connection because
of monetary cost of cellular connections. In this setup, paid connection directly
connected to the cellular 4G/LTE connection as it can be seen from Figure 55.

75

Figure 55 Setup 4 Environment

During tests performed in setup 3, free connection throughput is limited to 3Mbit/s and
CUR is changed for each test. Client application is executed on OSX while server
application is executed on Ubuntu 16.04.

4.4.1. Test Parameters

 Limited Free Connection Throughput: 3Mbit/s

 Limited Paid Connection Throughput: 10Mbit/s

 File Time Period: 1 Minute

 Chunk Time Period: 1 Second

 Total Chunk Count: 60

 CUR: Different for Each Test, 1Mbit/s to 5Mbit/s

76

4.4.2. Results

Figure 56 Quality Cost for Setup 4

Quality cost results for Setup 4 are given in the Figure 56 and client didn’t pause in any
of the tests. CATS downloaded all the chunks over two different connections, before
their scheduled time.

Figure 57 Free Connection TCP Throughput for Setup 4

Free connection throughput is limited to 3Mbit/s for each test and as it can be seen from
the given free connection TCP Throughput results placed in Figure 57, free connection
utilized with a value close to 3Mbit/s for all the tests.

77

Figure 58 Money Cost for Setup 4

Money Cost results for Setup 4 is given in Figure 58. Measured and minimum money
cost results are close to each other also in each test performed in setup 4. The reason
why minimum money cost result is larger than the measured money cost result is the
initial chunk buffering as stated before. In this setup, file duration is shorter, so chunk
count is lesser than other setups, so this difference is more visible.

4.5. Discussions

CATS tested under different network conditions to evaluate its success rate. At each
experimental setup, different network conditions are simulated and many tests are
performed. The quality cost result for each test performed at each setup is zero. Thus, it
would be true to deduce that CATS achieves one of its main goals; minimum client
pause.

Free connection TCP throughput value is calculated after each test and this value is
compared with actual bandwidth limitation value. It is observed that, CATS utilizes free
connection throughput close to the maximum at each test performed different
experimental setups. So, CATS achieves another goal of its; maximum free connection
utilization.

The money cost is calculated after completion of each test and it compared with the
possible minimum money cost which can be obtained with efficient usage of free
connection resources. At each test, it is observed that, the money cost and the minimum
money cost values are very close because of efficient utilization of free connection. That
is, CATS successfully achieves final goal of it; minimum paid connection usage.

78

79

CHAPTER 5

 CONCLUSION AND FUTURE WORK

5.1. Conclusion

Bandwidth aggregation, that is using more than one access network simultaneously to
achieve higher throughput, is being utilized by many applications to enhance the quality
of service. This thesis proposes a cost aware bandwidth aggregation method called
CATS that provides higher throughput by bandwidth aggregation while minimizing the
monetary cost associated with data transfer.

CATS focuses on transferring constant bit-rate time sensitive data from a server to a
client over two separate access networks called paid link and free link. The client
establishes two separate TCP connections, paid connection and free connection, to the
server through paid link and free link, respectively. The server divides the file into fixed
size chunks and sends chunks to the client over free and paid connections. Then the
client starts consuming received chunks while receiving subsequent chunks from the
server. The primary objective of CATS is to stream file chunks to the client in a cost
aware manner without causing significant quality of service degradation. To this end,
CATS maximizes the utilization of the free connection, minimizes the utilization of the
paid connection, and ensures timely delivery of chunks to receiver.

Apart from similar studies, CATS mainly focuses on the monetary cost and client
experience trade off. Most of the existing bandwidth aggregation methods focus on
maximizing the throughput and solving the problems such as head of line blocking and
out of order delivery problems associated with the utilization of multiple connections.
Only a few studies target cost aware bandwidth aggregation. For instance, in [22]
authors propose such a cost aware connection pooling method. However, the proposed
method focus on joint optimization of file transfer completion time and monetary cost
rather than the transfer of constant bit-rate time sensitive data. Split-layer SVC encoding
is employed with the cost effective scheduler for video streaming applications in [23],
but proposed scheduler aims to minimize the monetary cost only for the enhancement
layers of encoded video file.

80

In the scope of this thesis, CATS is implemented using the Java programming language.
Hence, the current implementation of CATS is available on platforms including desktop
as well as mobile devices that have Java virtual machine installed. The performance of
CATS under different network conditions is evaluated by several experiments carried
out on various test setups. Experimental results show that the proposed method
successfully provides timely delivery of time sensitive data from a server to a client with
the minimum possible monetary cost. In the light of the experimental results, it is
possible to conclude that the proposed method is suitable for the time sensitive
streaming applications that require high bandwidth that may not be provided by a single
connection. Therefore, the user experience can be enhanced while minimizing the
monetary cost.

5.2. Future Work

CATS designed and implemented as an individual application which delivers time
sensitive file from a server to a client. Current CATS implementation is specifically
designed for the real-time file streaming. However, it can easily be extended to support
real-time interactive multimedia applications such as video conferencing. The
implementation of CATS as a library that can be used by network applications is left as
a future work. Moreover, the primary mechanisms introduced by CATS can be used to
create a scheduler to have a cost aware MPTCP Linux kernel implementation of MPTCP
[6].

CATS employs EWMA [26] to estimate the delivery time of chunks. Furthermore, it is
possible to take into account delay variation as it is done in TCP timeout mechanism.

In this thesis, we employ TCP as transport layer protocol. It is possible to use UDP [27]
as transport layer protocol by implementing a reliability mechanism for CATS. We can
have more control over actual data transfer by creating smaller chunks and delivering
these chunks via UDP.

Video file streaming is one of the use-cases supported by the current implementation of
CATS. The client may request to change video playout rate while streaming video,
however current version of CATS doesn’t support change in chunk usage rate (video
playout rate). Thus, developing an additional mechanism to notify the server about the
client video playout change request and maintain chunk delivery according to the new
video playout rate is considered as a future work for making CATS more useful for
video streaming use-case.

As a future work, utilization of more than two connections and assigning different cost
values to each connection according to the client preference is considered.

In this thesis, only monetary cost is considered as a cost. However energy efficiency can
be taken into account as well as cost.

81

REFERENCES

[1] “Nielsen's Law of Internet Bandwidth,” Nielsen Norman Group. [Online].
Available: https://www.nngroup.com/articles/law-of-bandwidth/. [Accessed: 27-
May-2018].

[2] J. Postel, “Transmission Control Protocol,” IETF Tools, 1981. [Online].

Available: https://tools.ietf.org/html/rfc793. [Accessed: 26-May-2018].

[3] Ford, Raiciu, and Handley, “TCP Extensions for Multipath Operation with

Multiple Addresses,” » RFC Editor, Jan-2013. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc6824.txt. [Accessed: 26-May-2018].

[4] IETF. [Online]. Available: https://www.ietf.org/. [Accessed: 19-Jun-2018].

[5] “About Multipath TCP (MPTCP),” MPTCP. [Online]. Available:

https://www.tessares.net/technology/mptcp/. [Accessed: 27-May-2018].

[6] “Welcome to the Linux Kernel MultiPath TCP project,” MultiPath TCP - Linux

Kernel implementation : Main - Home Page browse. [Online]. Available:
https://www.multipath-tcp.org/. [Accessed: 26-May-2018].

[7] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental evaluation of

multipath TCP schedulers,” Proceedings of the 2014 ACM SIGCOMM workshop

on Capacity sharing workshop - CSWS 14, 2014.

[8] J. Hwang and J. Yoo, “Packet scheduling for Multipath TCP,” 2015 Seventh

International Conference on Ubiquitous and Future Networks, 2015.

[9] F. Yang, P. Amer, and N. Ekiz, “A Scheduler for Multipath TCP,” 2013 22nd

International Conference on Computer Communication and Networks (ICCCN),
2013.

[10] S. Ferlin, O. Alay, O. Mehani, and R. Boreli, “BLEST: Blocking estimation-

based MPTCP scheduler for heterogeneous networks,” 2016 IFIP Networking

Conference (IFIP Networking) and Workshops, 2016.

82

[11] T. D. Schepper, J. Struye, E. Zeljkovic, S. Latre, and J. Famaey, “Software-
defined multipath-TCP for smart mobile devices,” 2017 13th International

Conference on Network and Service Management (CNSM), 2017.

[12] E. Haleplidis, “Software-Defined Networking (SDN) : Layers and Architecture

Terminology,” IETF Tools, Jan-2015. [Online]. Available:
https://tools.ietf.org/html/rfc7426. [Accessed: 29-May-2018].

[13] H. A. Kim, B.-H. Oh, and J. Lee, “Improvement of MPTCP Performance in

heterogeneous network using packet scheduling mechanism,” 2012 18th Asia-

Pacific Conference on Communications (APCC), 2012.

[14] Y.-S. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens, “ECF: An MPTCP

Path Scheduler to Manage Heterogeneous Paths,” Proceedings of the 13th

International Conference on emerging Networking EXperiments and

Technologies - CoNEXT 17, 2017.

[15] F. Yang, Q. Wang, and P. D. Amer, “Out-of-Order Transmission for In-Order

Arrival Scheduling for Multipath TCP,” 2014 28th International Conference on

Advanced Information Networking and Applications Workshops, 2014.

[16] Q. Peng, M. Chen, A. Walid, and S. Low, “Energy efficient multipath TCP for

mobile devices,” Proceedings of the 15th ACM international symposium on

Mobile ad hoc networking and computing - MobiHoc 14, 2014.

[17] C. Pluntke, L. Eggert, and N. Kiukkonen, “Saving mobile device energy with

multipath TCP,” Proceedings of the sixth international workshop on MobiArch -

MobiArch 11, 2011.

[18] R. Stewart, “Stream Control Transmission Protocol,” IETF Tools, Sep-2007.

[Online]. Available: https://tools.ietf.org/html/rfc4960. [Accessed: 26-May-
2018].

[19] R. Stewart, “Stream Schedulers and User Message Interleaving for the Stream

Control Transmission Protocol,” IETF Tools, Nov-2017. [Online]. Available:
https://tools.ietf.org/html/rfc8260#section-3.1. [Accessed: 26-May-2018].

[20] Katsaros, Dianati, and Mehrdad, “A cost-effective SCTP extension for hybrid

vehicular networks,” Surrey Research Insight Open Access, 22-Jun-2017.
[Online]. Available: http://epubs.surrey.ac.uk/813945/. [Accessed: 26-May-
2018].

[21] J. Lee, K. Lee, C. Han, T. Kim, and S. Chong, “Resource-Efficient Mobile

Multimedia Streaming With Adaptive Network Selection,” IEEE Transactions

on Multimedia, vol. 18, no. 12, pp. 2517–2527, 2016.

83

[22] W. Lee, J. Koo, S. Choi, and Y. Park, “E$PA: Energy, usage ($), and
performance-aware LTE-WiFi adaptive activation scheme for
smartphones,” Proceeding of IEEE International Symposium on a World of

Wireless, Mobile and Multimedia Networks 2014, 2014.

[23] S. Moon, J. Yoo, and S. Kim, “Exploiting Adaptive Multi-interface Selection to

Improve QoS and Cost-Efficiency of Mobile Video Streaming,” 2015 IEEE

International Conference on Mobile Services, 2015.

[24] L. Rizzo, “Dummynet a simple approach to the evaluation of network

protocols,” ACM Computer Communication Review, vol. 27, pp. 31–31, Jan.
1997.

[25] “The Dummynet Project,” info.iet.unipi.it. [Online]. Available:

http://info.iet.unipi.it/~luigi/dummynet/. [Accessed: 27-May-2018].

[26] “Exponential Weighted Moving Average,” IETF. [Online]. Available:

https://www.ietf.org/proceedings/43/slides/pim-sharma-98dec/tsld017.htm.
[Accessed: 19-Jun-2018].

[27] “User Datagram Protocol,” IETF Tools. [Online]. Available:

https://tools.ietf.org/html/rfc768. [Accessed: 19-Jun-2018].

