
CRACK DETECTION WITH DEEP LEARNING:

AN EXEMPLARY STUDY OF DATA DESIGN IN ARCHITECTURE

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

ÇAĞLAR FIRAT ÖZGENEL

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN

BUILDING SCIENCE IN ARCHITECTURE

MAY 2018

Approval of the thesis:

CRACK DETECTION WITH DEEP LEARNING:

AN EXEMPLARY STUDY OF DATA DESIGN IN ARCHITECTURE

submitted by ÇAĞLAR FIRAT ÖZGENEL in partial fulfillment of the requirements

for the degree of Doctor of Philosophy in Building Science Graduate Program,

Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar ___________________

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. F. Cana Bilsel ___________________

Head of Department, Department of Architecture

Prof. Dr. Arzu Gönenç Sorguç ___________________

Supervisor, Department of Architecture, METU

Examining Committee Members:

Assoc. Prof. Dr. Ayşe Tavukçuoğlu ___________________

Department of Architecture, METU

Prof. Dr. Arzu Gönenç Sorguç ___________________

Department of Architecture, METU

Prof. Dr. Birgül Çolakoğlu ___________________

Department of Architecture, İTÜ

Prof. Dr. Mine Özkar Kabakçıoğlu ___________________

Department of Architecture, İTÜ

Assist. Prof. Dr. Elif Sürer ___________________

Modelling and Simulation, METU

Date: 30.05.2018

iv

I hereby declare that all information in this thesis document has been obtained

and presented in accordance with academic rules and ethical conduct. I also

declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

 Name, Last name: Çağlar Fırat ÖZGENEL

 Signature:

ABSTRACT

CRACK DETECTION WITH DEEP LEARNING:

AN EXEMPLARY STUDY OF DATA DESIGN IN ARCHITECTURE

Özgenel, Çağlar Fırat

Ph.D. in Building Science, Department of Architecture

Supervisor: Prof. Dr. Arzu Gönenç Sorguç

May 2018, 181 pages

Dramatic increase of available data in the last 20 years transformed the role of

data in artificial intelligence algorithms for problem solving. Deep learning

embodies potentials for both finding novel correlations within data, and

improvement in decision making process in its massiveness. Thus, this approach

is prominent in processing such massive data by removing the necessity of

explicitly determining features relevant to the solution. Reformulation of the

problem in terms of determining which data represent the problem and

evaluating the results emerge as the primary challenges in deep learning

applications.

Within the scope of this thesis, data design term is introduced to describe end to

end process of problem solving with deep learning algorithms which is suitable

for broad range of applications including problems in architecture. Data design

defined as a holistic approach embracing the process from problem

(re)formulation to evaluation of the results considering the interrelations of

decisions made throughout the process. In this context, data design in

architecture is exemplified with the task of crack detection in buildings in order

to minimize subjectivity in the course of evaluating the results. For this purpose,

the relation between data and deep learning framework, case specific evaluation

requirements and strategies for enhancing the performance are inspected

v

vi

through image classification and semantic segmentation applications for crack

detection. Concordantly, this study contributes to the literature not only with the

introduction and framing of data design but also with the proposal of crack

detection specific evaluation metrics for both image classification and

segmentation applications and a novel method is proposed employing quad tree

and deep learning algorithms in conjunction for semantic segmentation of objects

with limited visual features. As a result, data design and respective consequences

are discussed in depth and demonstrated regarding the case dependency,

decisions taken in the course of implementation and their influences to both

process and the results.

Keywords: data design, deep learning, convolutional neural networks, crack detection,

semantic segmentation

ÖZ

DERİN ÖĞRENME İLE ÇATLAK TESPİTİ:

MİMARLIKTA VERİ TASARIMI ÖRNEK ÇALIŞMASI

Özgenel, Çağlar Fırat

Doktora, Yapı Bilimleri, Mimarlık Bölümü

Tez Yöneticisi: Prof. Dr. Arzu Gönenç Sorguç

Mayıs 2018, 181 sayfa

Son 20 yıldaki ulaşılabilir verilerin hızlı bir şekilde artması, problem çözme için

yapay zeka kullanımında verinin rolünü de değiştirmiştir. Derin öğrenme, verinin

fazlalığı ile hem verilerde yeni korelasyonlar bulma hem de karar verme

görevlerindeki performansı arttırmak için potansiyeller içermektedir. Bu

nedenle, bu yaklaşım, çözüm ile ilgili görülen özelliklerin açık bir şekilde

belirlenmesi gerekliliğini ortadan kaldırarak, bu tür büyük verilerin işlenmesinde

öne çıkmaktadır. Problemi hangi verinin temsil ettiğinin belirlenmesi ile

problemin yeniden yapılandırılması ve sonuçların değerlendirilmesi, derin

öğrenme uygulamalarında birincil zorluklar olarak ortaya çıkmaktadır.

Bu tez kapsamında, mimarlık problemleri de dahil olmak üzere geniş bir

uygulama yelpazesi için uygun olan derin öğrenme algoritmaları ile problem

çözme sürecini baştan sona tanımlamak için veri tasarım terimi önerilmiştir. Veri

tasarımı, problemin yeniden formüle edilmesinden sonuçların

değerlendirilmesine kadar olan ve süreç boyunca alınan kararların karşılıklı

ilişkilerini göz önünde bulundurulduğu bütüncül bir yaklaşım olarak

tanımlanmıştır. Bu bağlamda, mimarlıkta veri tasarımı, sonuçların

değerlendirilmesinde öznelliği en aza indirgemek için binalarda çatlak tespiti ile

örneklenmiştir. Bu amaçla, veri tasarımı ve derin öğrenme arasındaki ilişki,

duruma özel değerlendirme gereksinimleri ve performansın artırılmasına

vii

viii

yönelik stratejiler, çatlak tespiti için görsel sınıflandırması ve semantik bölütleme

uygulamaları ile incelenmiştir. Buna paralel olarak, bu tez çalışması, sadece veri

tasarımının tanıtılması ve çerçevesinin çizilmesi ile değil, aynı zamanda görüntü

sınıflandırması ve bölütleme uygulamaları için çatlak tespitine özel

değerlendirme ölçümlerinin önerilmesi ile literatüre katkıda bulunmaktadır ve

sınırlı görsel özelliklere sahip nesnelerin semantik bölütlenmesi için dördün ağaç

(quad tree) ve derin öğrenme algoritmalarının beraber kullanıldığı yeni bir

yöntem önerilmektedir. Sonuç olarak, veri tasarımı ve ilgili sonuçları

derinlemesine tartışılmakta ve duruma özel olma, uygulama sürecinde alınan

kararlar ve bunların hem sürece hem de sonuçlara olan etkilerine açıklanmıştır.

Anahtar Kelimeler: veri tasarımı, derin öğrenme, evrişimli sinir ağları, çatlak tespiti,

semantik bölütleme

ix

in the memory of Cotton Grandma

x

ACKNOWLEDGEMENTS

I would firstly like to express my gratitude to my supervisor Arzu Gönenç Sorguç not

only because of her academic guidance, motivation and criticism in the course of

finding the best but also for being a great mentor showing how to be a decent

researcher, teacher and team member. I am honored to be her student for a life time

and I feel privileged to work with her in numerous projects, courses and research which

provided invaluable experience. Without her support and mentoring, this study would

not have been possible.

I also want to thank to jury members, Assoc. Prof. Ayşe Tavukçuoğlu, Prof. Dr. Birgül

Çolakoğlu, Prof. Dr. Mine Özkar Kabakçıoğlu and Assist. Prof. Elif Sürer for their

valuable discussions and comments both during the research and in my thesis defense.

I owe gratitude to my workfellows and members of DDTeam, firstly to my dearest

diplococcus Müge Kruşa Yemişcioğlu for being my sister that I never had. Endless

discussions, support and her endurance in my grumpy times provided energy,

motivation and determination. I would also like to thank Serkan Ülgen and Fatih

Küçüksubaşı for their friendship, being supportive throughout the study. I enjoyed and

learned a lot from every moment we shared. I also thank to Orkun Sönmez and

members of METU Faculty of Architecture.

I want to thank to Serkan Alkan, Barış Yazıcı, Arsev Aydınoğlu, JeanPiere Demir,

Gizem Yetiş and Murat Akın for their support and their hospitality.

Lastly, I owe a very important debt to my beloved wife Elif Özgenel for standing with

me, her endless love and understanding. She is the hidden hero of this study by

constantly motivating and supporting me. I also thank Püskül, Björn, and all little

friends for their calming and soothing energy.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiv

LIST OF FIGURES .. xvi

LIST OF ABBREVIATIONS ... xix

CHAPTERS

1.INTRODUCTION .. 1

1.1 Problem Statement .. 2

1.2 Hypothesis .. 7

1.3 Objectives and Scope ... 8

1.4 Methodology .. 9

1.5 Significance and Contributions .. 9

2.LITERATURE SURVEY ... 11

2.1 Traditional Machine Learning vs Deep Learning .. 12

2.2 Crack Detection as a Machine Learning Application in Architecture 17

3.THEORIES AND POSTULATE .. 33

3.1 Pre and Post Deep Learning Phases ... 35

xii

3.2 Convolutional Neural Network as an Exemplary Deep Learning Method 37

3.2.1 Loss (Error) Function and Gradient Descend ... 41

3.2.2 Parameter Update Methods ... 42

3.2.3 Overfitting Problem ... 44

3.2.4 Convolutional Neural Networks (CNN) Architecture 46

3.2.5 Utilization of CNN in Custom Problems .. 52

4.CLASSIFICATION OF CRACK IMAGES – COMPARATIVE ANALYSIS OF

PRETRAINED CONVOLUTIONAL NEURAL NETWORKS 55

4.1. Parameters effecting performance of CNN’s on crack detection 56

4.1.1. Dataset .. 56

4.1.2 Number of Epochs for Training .. 60

4.1.3 Network dependent parameters: Number of convolutional layers and

number of learnable parameters ... 60

4.2 Evaluation Metrics ... 63

4.3 Results and Discussions ... 66

5.SEMANTIC SEGMENTATION OF CRACK IMAGES QUADP (A NOVEL

QUADTREE INTEGRATED DEEP LEARNING ALGORITHM) 73

5.1. Semantic Segmentation Approaches ... 74

5.2 Semantic Segmentation of Cracks .. 77

5.3 QuadP ... 78

5.3.1 Issues caused by nature of cracks and semantic segmentation task 82

5.3.2 Resolutions for addressing the issues .. 83

5.4 Performance inspection of QuadP .. 90

5.4.1 Evaluation Metrics .. 91

5.4.2 Results and Discussions .. 92

6.CONCLUSION ... 99

xiii

6.1 General Discussions ... 99

6.2 Recommendations for Future Work ... 106

REFERENCES ... 109

APPENDICES

I. PRETRAINED NETWORK ARCHITECTURES .. 117

II. CLASSIFICATION TEST RESULTS ... 151

III. CRACK BASED SEMANTIC SEGMENTATION METRIC RESULTS 167

CURRICULUM VITAE .. 177

xiv

LIST OF TABLES

Table 1. Major characteristics of prominent AI approaches .. 3

Table 2.List of studies utilizing machine learning for crack classification 21

Table 3. Test cases and respective challenges .. 59

Table 4. Number of images in datasets used for training and validation 59

Table 5. Pretrained networks and respective number of convolution layers and

learnable parameters ... 63

Table 6. Accuracy vs confidence weighted accuracy on sample test cases 65

Table 7. Highest scoring test and validation CwA scores for pretrained networks ... 66

Table 8. Mean accuracy, mean CwA scores for test cases ... 68

Table 9. computational time for 28K training set for 1 epoch 71

Table 10. Issues and corresponding approaches .. 84

Table 11. Test cases and dataset sizes for semantic segmentation evaluation 91

Table 12. Global semantic segmentation results for 4 test cases 93

Table 13. Class based semantic segmentation results for 4 test cases 94

Table 14. Number of objects and mean orientaion scores for 4 test cases 95

Table 15. Research questions, objectives and contributions of the study 101

Table 16. AlexNet Architecture ... 117

Table 17. VGG16 Architecture .. 118

Table 18.VGG19 Architecture ... 119

Table 19. GoogleNet Architecture ... 120

Table 20.ResNet50 Architecture .. 123

Table 21. ResNet101 Architecture ... 127

Table 22. ResNet152 Architecture ... 135

Table 23. Fully Convolutional Network Architecture ... 147

Table 24. SegNet Architecture ... 148

xv

Table 25. Test 1 Classification Accuracy Results .. 151

Table 26. Test2 Classification Accuracy Results ... 153

Table 27. Test 3 Classification Accuracy Results .. 155

Table 28. Test 4 Classification Accuracy Results .. 157

Table 29. Test 1 Classification confidence weighted Accuracy Results 159

Table 30. Test 2 Classification confidence weighted Accuracy Results 161

Table 31. Test 3 Classification confidence weighted Accuracy Results 163

Table 32. Test 4 Classification confidence weighted Accuracy Results 165

Table 33. Crack based semantic segmentation metric results (per sample) 167

xvi

LIST OF FIGURES

Figure 1. Machine Learning Workflow (drawn by author) .. 13

Figure 2. ML and DL workflow (Gill, 2017) ... 15

Figure 3. Practical challenges for crack detection, a) the painting as the noise at the

background (left), b) shadow shadowing crack and present noise to be

misclassification (middle), b) jointing at left presents noise (right) 19

Figure 4. Abstracted workflow for image classification with traditional ML (drawn by

author) .. 20

Figure 5. Black box workflow representation of CNN classification (drawn by author)

 .. 20

Figure 6. k-Nearest neighbor classification (drawn by author) 23

Figure 7. Support Vector Machine (drawn by author) ... 26

Figure 8. Decision Tree (Alpaydin, 2010) ... 27

Figure 9. Neural Network Structure (drawn by author) ... 28

Figure 10. Convolutional Neural Network Architecture (Yakopcic, Alom and Taha,

2016) ... 30

Figure 11.Abstraction of deep learning phases and decision taken at each phase (drawn

by author) ... 34

Figure 12. Simple representation of a typical ANN (drawn by author) 38

Figure 13. ANN node output calculation (Ghanghau, 2017) 39

Figure 14. Backpropagation algorithm (drawn by author) ... 41

Figure 15. Visualization of gradient descent algorithm with respect to two features.

(drawn by author) ... 42

Figure 16. High convergence and low convergence rates for parameter update (drawn

by author) ... 43

xvii

Figure 17. Illustration of underfitting, optimum and overfitting function estimations

(drawn by author) ... 45

Figure 18. Accuracy vs Epoch graph showing overfitting (drawn by author) 46

Figure 19. A simple representation of CNN workflow (Lecun et al., 1998) 47

Figure 20. Visualization of convolution operation on a7x7 input with3x3 kernel (drawn

by author) ... 48

Figure 21. ReLU, tanh(x) and Sigmoid function (drawn by author) 50

Figure 22. Exemplary max pooling operation with spatial extent of 2 and stride of 2

(drawn by author) ... 50

Figure 24. GoogleNet inception module (Szegedy et al., 2015) 61

Figure 25. ResNet residual block (He et al., 2016) .. 62

Figure 26. Network performance (top 1 accuracy) vs computational cost (number of

operations) for well-known CNN's (Canziani, Paszke and Culurciello, 2016) 62

Figure 27. Mean difference between CwA and accuracy scores (drawn by author) . 67

Figure 28. Mean accuracy and mean CwA vs %10 intervals (drawn by author)....... 67

Figure 29. FCN32, FCN16, and FCN8 layer architecture (Long, Shelhamer and

Darrell, 2014). .. 74

Figure 30. DeconvNet architecture (Badrinarayanan, Kendall and Cipolla, 2015) ... 75

Figure 31. SegNet architecture (Badrinarayanan, Handa, et al., 2015) 76

Figure 32. Pixel based data storage (raster images), subdivided image patches for CNN

and quadtree division result (drawn by author) ... 79

Figure 33. CNN and quadtree division in QuadP flowchart (drawn by author) 81

Figure 34.Issues caused by the nature of cracks in adaptation of quadtree division to

CNN. Object corresponding to the region border (top left), losing object connectedness

and jaggedness of object outlines (top right), losing features due to excessive focusing

(bottom left and bottom right) (drawn by author) .. 82

Figure 35. Quadtree and control meta axes decomposition and resulting decomposition

by merging two (drawn by author) .. 84

Figure 36. Two axes system method on an object corresponding to region boundary

(drawn by author) ... 85

xviii

Figure 37. Region scores overlaid on crack image (top left), region scores (top right),

Segmentation image based on quadtree division (bottom left), Region scores with 0.5

threshold (bottom right) (drawn by author) .. 87

Figure 38. 3D Reconstruction and linear interpolation of pixel probabilities to obtain

probability surface (drawn by author) .. 88

Figure 39. Probability map obtained by linear interpolation (top left), probability map

obtained by 0,5 threshold (top right), semantic segmentation result (bottom left), image

segmentation overlaid on original image (bottom right) (drawn by author) 88

Figure 40. QuadP flowchart (drawn by author) ... 89

Figure 41.Comparison of network outputs versus original image and ground truth. a)

Input image, b) manually drawn ground truth, c) QuadP result, d) FCN result, e)

SegNet result (drawn by author) .. 96

xix

LIST OF ABBREVIATIONS

AI Artificial Intelligence

ANN Artificial Neural Network

BF Boundary F-score

CNN Convolutional Neural Network

CPU Central Processing Unit

CwA Confidence weighted Accuracy

DAG Directed Acyclic Graph

DL Deep Learning

FC Fully Connected

FCN Fully Convolutional Network

GPU Graphics Processing Unit

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoT Internet of Things

IoU Intersection over Union

K-NN K-Nearest Neighbor

ML Machine Learning

MNIST Modified National Institute of Standards and Technology

NAG Nesterov Accelerated Gradient

NB Naïve Bayes

RAM Random Access Memory

ReLU Rectified Linear Unit

RF Random Forest

xx

SVM Support Vector Machine

UAV Unmanned Aerial Vehicle

VOC Visual Object Classes

1

CHAPTER 1

INTRODUCTION

"Science, as well as technology, will in the near and in the farther future

increasingly turn from problems of intensity, substance, and energy, to

problems of structure, organization, information, and control."

John von Neumann (1949)

“How human mind works” is one of the oldest questions and dates back to Aristotle.

Since then research on “human mind” escalate continuously and especially starting

from the 19th century, they attain a new level with the advances in mathematics and

psychology. At the beginning of 20th century, research on the problem-solving act of

human mind became one of the key subjects in parallel with the question of whether it

is possible for machines to think like a human. This idea was first officially manifested

in Turing’s (1950) efficacious study titled “Computing Machinery and Intelligence”.

Following this, famous researchers, Herbert Simon, Allen Newell, John McCarthy,

Arthur Samuel and Marvin Minsky, gathered under the umbrella term Artificial

Intelligence (AI). The introduction of the term AI enabled the encapsulation of several

studies on human-machine interaction, human intelligence, and machine intelligence.

Human problem-solving ability, which is one of the key features of human intelligence

was also conceived as the measure of machine intelligence. Hence, many studies

focused on problem-solving processes in terms of finding ways of the redefinition of

the problem, specifying the constraints, determining the objectives and the relevant

2

data. While problem-solving process started to find its projection in algorithms and

models, what is the processed information (i.e. data) have remained a puzzling

question in AI. Turing’s studies on data once more brought the importance of the role

of data in problem-solving through questions like “what is the data”, “how can it be

processed”, “how can the data be validated/verified”, “what does the data mean”. Since

then, understanding and controlling data has been one of the major research fields of

AI.

The history of AI shows fluctuations in parallel with the available technologies and

funding, but the studies never ceased. In the last decades, the advancements of data

crunching and storing technologies, and correspondingly exponential accumulation of

data praise the importance of AI. This appraisal is observed in a number of studies and

papers in the field (Shoham et al., 2017). Today, AI infiltrated our daily and

professional lives, embedded in devices and software such as smart voice assistants in

mobile devices, autonomous driving vehicles or diagnostic tools in medicine.

It should be noted that in this changing role of AI, not only the mathematical basis of

algorithms embedded in AI models but the data incorporated within them plays an

important role. Hence, today, one of the major tasks in AI studies is to define and

utilize the useful data in the huge data reservoir.

In this dissertation, the framing of data within the abundance for a given task is referred

as data design. The data design term connotes but is not limited to the selection of

data. The related consequences in terms of the perception of the task, validation of the

AI and the outcome are also an inherent part of data design and are discussed in depth

in the following sections of this study.

1.1 Problem Statement

Artificial intelligence, since the very first days, has always been a problem-solving

process in machines which is realized through algorithms. The essential characteristic

of AI algorithms is to fully or partially model the problem-solving processes and the

human mind. This eventually leads to two parallel, but at the same time separate

3

implementation areas; namely narrow AI and broad AI1. The major difference between

these two study fields lies on the definition of the task; narrow AI is mostly employed

in tangible problems which can be considered as problems for which either objectives,

constraints or goals can be defined whereas broad AI studies focused on replicating

the human mind and skills regardless of any specific task. Most of the contemporary

implementations of AI belongs to narrow AI in which definition of the problem and

handling the data are essential to the success of AI algorithms. In that sense, there are

several approaches, which successfully employed AI algorithms, dating back to 1940’s

when the AI was first proposed. Among these, expert systems, evolutionary

algorithms, and machine learning are the prominent ones that are still in use today. The

major characteristics of these approaches are shown in Table 1 indicating the process

and data:

Table 1. Major characteristics of prominent AI approaches

Expert Systems Evolutionary

Algorithms

Machine Learning

Reflected

Information
Field Knowledge Fitness Function

Implicit field expertise

for developing the

system structure

Input Data
Input data for a new

case
Constraints

Previous occurrences

for training, new data

representing a case for

test

Process Through If-else clauses
Optimization of

generated data
Optimization of system

Data flow
Data are fed forward

through a set of rules

Data are generated and

optimized with respect

to the fitness function

Learns from the data via

feedforward and

backward mechanisms

Validation

Once the system is

constructed no need for

validation

Due to hard

performance metrics

The accuracy of the

input-output match

Use cases

Fields which the

knowledge can be

modeled with if-else

clauses

Fields which the fitness

function/objective

function can be

modeled

Cases which appropiate

data are present

Example Medicine, Law

Well-defined generative

problems, such as

component optimization

Clustering, decision

making, classification

tasks

1 Narrow AI is also known as applied or weak AI whereas broad AI is referred to as strong or full AI

4

As it is shown in Table 1, the way how the problem is declared into AI, such as either

by defining constraints, embedding field knowledge or training through previous

solutions determines the differences among algorithms. The role of data in all these

algorithms has also shown differences since data can be the input like in the expert

systems, or it can be self-generated within the algorithm as in evolutionary algorithms.

It should also be noted that each of these methods are developed by approaching the

problem-solving task from a different perspective and is strong in different problem

domains. While expert systems are widely utilized in problem areas where the

knowledge can be modeled by rule-based procedures, evolutionary algorithms are

prominent in well-defined generative problems such as optimization tasks in

engineering and/or architecture, and machine learning is popular in fields in which

appropriate amount of data are present. The increase of data, in terms of both quality

and quantity, makes machine learning a subject of interest for exploiting the potentials

hidden in the mass of data. It is important to pay attention that even though the

algorithms mentioned above have been employed for decades, they are still open to

improvement and continuously optimized with the emerging technologies and

methods and with respect to available data.

Starting from 1980’s the exponential growth of data which is usually referred as Big

Data, can be considered as a game changer in existing AI strategies. Even though there

are numerous definitions of Big Data, one of the most cited definition is made by U.S.

National Institute of Standards and Technology (NIST) as:

Big Data consists of extensive datasetsprimarily in the characteristics of

volume, variety, velocity, and/or variabilitythat require a scalable architecture

for efficient storage, manipulation, and analysis. (NIST Big Data Public

Working Group, 2015)

While first three characteristics; namely volume, variety and velocity are self-

explanatory, variability (also used as veracity) denotes the uncertainty hence the

reliability of data. The preprocessing of raw data is actually a refinement act analogous

to a purification process for which irrelevant and/or redundant data are excluded. In

5

that sense, the large amount of Big Data also means a complex data refinement process

which becomes an actual challenge of contemporary AI implementations.

Although the term is usually used to define a large amount of data in a positive

connotation, it should also be understood that it is mostly unstructured i.e. raw, and

needed to be refined in order to bring in compliance with the algorithm in the context

of the task. In this respect, the appropriateness and reliability of data play a more

important role than the plentitude only. Wisely selected and carefully preprocessed

data with limited volume may have more potential for machine learning

implementations than huge data streams without the refinement process have in some

cases. Hence, it is necessary to point it out that Big Data or any data, which is useful

for the task, is important in AI and in this regard, AI implementations should not be

confined with Big Data applications.

Despite the concerns presented above in relation with Big Data and its use, all the

conventional machine learning algorithms still benefit from the abundance of data as

long as the aptitude of data and the problem task is ensured since learning action is

achieved through finding the patterns. In this respect, traditional machine learning

implementations necessitate data refinement as not being capable of operating on raw

data. For that reason, such algorithms are often utilized in conjunction with a feature

extraction operation where the user defines the relevant features for the solution of the

problem. Deep learning algorithms are differing from traditional ML algorithms as

conducting feature extraction autonomously within the algorithm.

Deep learning algorithms have gained popularity as a response to the demand of Big

Data processing (e.g. Alsheikh et al., 2016; Wilamowski, Wu and Korniak, 2016;

Zhang et al., 2018), improving the machine learning process by allowing to achieve

complex data relations which are not necessarily conceived by human mind. In that

sense, deep learning algorithms compared with traditional ML approaches necessitates

new mindsets and redefinition of the statement of the problem into the machine. In

traditional ML approaches, users are required to explicitly define the relevant features

of the problem and craft the data accordingly. Contrarily, deep learning algorithms

conduct feature extraction phase within the algorithm, forcing researchers to redefine

6

what raw data2 is and how the data should be used in a task. Consequently, the

associative links present in humanly ways of problem-solving become obsolete in deep

learning. The user has the opportunity to explore the features which may seem

irrelevant for the problem and utilize these unlikely features to either improve the

solution and/or make an introspection towards the accustomed way of problem-

solving. This new mindset presents a dichotomy for the user; as being a potential for

exploring new possibilities and at the same time a challenge with the necessity of

breaking the routine.

Contemporary DL implementations succeeded in various fields such as visual

perception (Chatfield et al., 2014; Szegedy et al., 2015; Wu, Zhong and Liu, 2017),

autonomous control(Chen et al., 2015), and language translations (Collobert and

Weston, 2008) and even have shown promising results in generative tasks such as

generation of photorealistic images (Goodfellow et al., 2014). Among these study

fields, computer vision is one of the leading implementation areas which DL

approaches have already proven themselves with high success rates. On the other hand,

the user is forced to abandon the accustomed way of problem-solving strategies thus

complicating the ability to trace the flow of information and correspondingly the

evaluation of the outcome. Thus, most of the studies are focused on very well defined

tasks such as object detection which the objects have plentiful features.

Implementations on cases with scarce features and tasks requiring subjective

interpretation are rather limited. In this sense, problem definition, evaluation, and

validation which are implicitly involved in designating the data have great importance.

In this implementation process, determining the useful data within the bulk of Big Data

is a very fuzzy and a challenging task, which not only requires field expertise but also

AI literacy and being capable of devising quantitative mechanisms for validation of

the system and the outcome. Today most of the research is conducted employing the

accuracy based metrics3 for validation of the results rather than questioning the

2 In this study, raw data is defined as a multilayered unstructured bulk of data which needs to be

elaborated. Elaboration of raw data does not mean solely data selection but instead trying to get the best

suitable data for the given task.
3 For exemplary discussions on shortcomings of accuracy based metrics see (Goertzel, 2015; Powers,

2015)

7

precision requirement specific to the task, and the relationship between data provided

and performance. The subjectivity, which is inherently involved in the selection of

data, is accepted as de facto and often attributed to field expertise or intuition. This

research also discusses the subjects regarding the validation metrics and the relevance

of data selection in deep learning algorithms.

Consequently, this thesis addresses the importance of designating the data in deep

learning algorithms and this process of data elaboration is defined as data design

rather than selection or crafting the data. In this respect, data design in deep learning

algorithms is exemplified through crack detection in buildings using visual data. The

reason of selecting crack detection as the case study is that the task is challenging for

DL algorithms as the visual data have limited features for discrimination of cracks;

albeit a straightforward task for humans, easing validation of the outcome and the

algorithm without the need of subjective interpretation. Yet, the case provides a basis

for scrutinizing the data design in terms of data selection, data and performance

relation and evaluation of outcome and algorithm. In addition, potentials of novel

algorithms for performance improvements are discussed and exemplified through the

case study.

1.2 Hypothesis

The hypothesis of this research can be stated as, the success of AI implementations

and raw data processing frameworks together with improvement in the process

depends on the data design which requires field expertise related with the problem, AI

literacy and reformulation of the problem through the data. These competences are

also the core requirements for making improvements in the process.

Data design is scrutinized by means of following research questions:

1. How data design influences output and evaluation of DL algorithm?

2. How can metrics for the evaluation of the results be determined?

3. Is it possible to decide on optimal values for number and quality of data to

guide data designers?

8

4. What is the relationship between data design and the structure of DL

framework?

1.3 Objectives and Scope

Architecture has both a challenging and benefitting position in the utilization of deep

learning algorithms in accordance with data design. Since architecture faces a broad

range of problem from well-defined to wicked with varying complexities and in

different scales, architecture poses a challenge for AI and DL frameworks. On the

other hand, the abundance and operability on interrelated multidimensional data make

architecture a strong candidate for effective utilization of deep learning algorithms.

Although the potential application area of deep learning and thus data design is

enormous in architecture, the complexity of the problem and the requirement of

subjective interpretation is directly reflected to the evaluation of the outcome. Hence,

as the subjectivity involved in data design increases, the evaluation of the outcome

also becomes a personal task and not possible to quantify. Meanwhile, the deep

learning algorithms to be utilized in problems of architecture remains the same in terms

of the mathematical basis.

The aim of this research is to reveal the challenges in the deep learning

implementations while focusing on the significance of data design in architecture. In

this respect, within the scope of this thesis, the research is focused on the working

principles of DL and data design process through a tangible task which is crack

detection in buildings and topics which require a subjective evaluation of the outcome

such as sketching or designing are excluded.

The main objectives of the research are:

 To exemplify and highlight the constituents of data design

 To demonstrate the potentials of deep learning algorithms in problems of

architecture

 To explore case specific metrics for the output evaluation and validation of the

DL frameworks

 To identify case specific limitations and potentials of DL algorithms

9

 To explicate the working principles of DL to provide AI literacy

 To demonstrate how DL frameworks can be used in conjunction with other

algorithms for precision advancements

 To provide a holistic understanding of data design

1.4 Methodology

In order to achieve a holistic understanding of data design, the discussion is pursued

over a controlled case study. The crack detection in buildings by means of visual

inspection is a straightforward task for human cognition. Hence the evaluation of the

outcome involves minimum subjective interpretation of the data. In that sense, the

research is purely quantitative and empirical based on statistical results.

In order to understand the significance of data design, firstly, a comparative study

regarding the traditional ML and DL frameworks in relation to the selection, handling

and control of data. In this regard, the potentials and challenges of data design is

highlighted with respect to the differences and similarities of ML and DL frameworks.

The study is then focused on machine learning implementations for crack detection

task to establish a benchmark regarding the state of art. Secondly, data design is

postulated and explained in detail. Correspondingly, working principles of DL are

inspected considering the interaction between DL structure and data design. The study

is continued with the in-depth application of crack detection by means of DL

approaches and the relationship between framework, data design and performance of

the system are inspected. Thereafter, the study is deepened with focusing on pixel-

wise predictions and a novel method for crack segmentation is proposed by the

utilization of DL algorithms and quadtree algorithms to demonstrate how to utilize DL

algorithms in conjunction with existing frameworks to increase the performance and

to exploit the potentials of data design.

1.5 Significance and Contributions

Utilization of DL frameworks in custom tasks is a holistic process for which the

success is governed with the coherence of provided data, DL algorithm and evaluation

methods of the results. Data design comprises this process end to end, and aims to

10

achieve a complete understanding for DL implementations by addressing significant

aspects which determines the success of the application. These aspects include but not

limited to the subjectivity involved in both data selection and evaluation of the results,

the relationship between DL framework and data, and strategies for task specific

precision enhancements. In that sense, introduction of data design is the most

significant contribution of this study. It is believed that data design approach provides

a frame for further studies especially for tasks requiring subjective interpretation.

Furthermore, this thesis contributes to literature by exemplifying case specificity of

the DL applications through crack detection in buildings. For that purpose, task

specific evaluation metrics are devised and proposed for two classification problems

at different scales; namely image and pixel classification. While confidence weighted

accuracy metric enables comparison of frameworks with respect to both correctness

and confidence of predictions, crack metrics (i.e. number of crack objects and mean

orientation) provides a tool for measuring the success of pixel level predictions with

respect to the adequacy of the results for post processing.

Moreover, a novel method is proposed with the combination of DL and quadtree

algorithms for pixel level predictions of crack regions. In that sense, the proposed

method not only sets a precedent for task specific precision enhancement strategies,

but also constructs a new mindset for quadtree subdivision operation in conjunction

with DL algorithms. Although the method is developed for crack detection task, it is

also applicable to objects with visually similar features with cracks such as blood veins

or tree branches.

11

CHAPTER 2

LITERATURE SURVEY

"More data beats clever algorithms, but better data beats more data."

Peter Norvig

The dramatic increase in the available data and advancements in ML and DL

algorithms create a huge demand for experts having insight and experience to be able

to select and process necessary data for the given task. Today, such experts have

different names like data architect, data engineer, data scientist, feature engineer for

which their task has broadened with the introduction of Big Data demanding new skill

sets which transforms data science as well.

Data science is defined by NIST (2015) as:

… the extraction of actionable knowledge directly from data through a process

of discovery, or hypothesis formulation and hypothesis testing. Data science can

be understood as the activities happening in the processing layer of the system

architecture, against data stored in the data layer, in order to extract knowledge

from the raw data.

In the realm of this new definition, the major role of these experts is to extract, refine

and decide on the relevant data regarding the available dataset for the given problem.

Yet the accessibility of data is ambiguous and Big Data is not open access to all experts

and researchers. All definitions regarding data science and corresponding roles

12

presume that a relevant part of Big Data is provided and does not encapsulate the

selection of that part or acquisition/creation of dataset from scratch.

This chapter of the study presents the current literature on machine learning studies in

terms of attaining, managing and handling data. For this purpose, differences and

similarities between traditional machine learning (ML) and deep learning (DL) in

terms of designating, handling and controlling the data are examined. The discussion

is elaborated through inspection of machine learning implementations for crack

detection in buildings as an exemplary case for architecture and a specific literature on

crack detection is present.

2.1 Traditional Machine Learning vs Deep Learning

Several definitions of machine learning are present in the literature. Among these

definition, two of them are highly acknowledged describing the main principles of the

machine learning idea. Arthur Samuel, who introduced the term in 1959, defines

machine learning as the field of study that gives computers the ability to learn without

being explicitly programmed (Samuel, 1959). A more technical definitive explanation

is made by Tom Mitchell. Mitchell (1997) describes machine learning as systems

which are optimized with respect to the patterns in training data in order to make a

prediction for new query:

A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E.

The generic structure of any ML algorithm can be illustrated in Figure 1 regarding

Mitchell’s definition.

The experience (E) referred above is the provided data to be trained determining the

success or failure of the algorithm in accordance with the given task (T). The level of

convergence of the trained data for the expected results is denoted by performance (P)

which is implicitly defined in the definition of the task. Definition of task (T), thus the

performance (P) plays a more significant role in ML problem-solving. It should be

13

noted that, each training dataset (E) has a different potential for any problem, ill-

defined or well-defined. The very same training dataset (E) may change the

algorithms’ performance. Similarly, when the task and performance definitions are

changed, the ML algorithm may yield different outputs, or it may even fail to provide

an acceptable solution for the concerned problem.

Training

Data

Learning

Model

Query Result

Experience

(E)

Task

(T)

Performance

(P)

Test Data

Figure 1. Machine Learning Workflow (drawn by author)

Traditional ML techniques are operated with the predetermined number of input

features. Hence, such techniques require a data preprocessing phase where the user

extracts the features which is believed to be relevant with the task in other terms user

makes an abstraction of the problem. The presumptions of the user regarding the

relevance of inputs and the task are reflected to the framework. After data input, data

are processed by means of probability calculations and depending on the number of

features utilized in the solution. It is possible to trace the information flow in a

comprehensible way and to intervene at mid-stages towards optimization.

Nevertheless, as the complexity of the problem and number of features included

increase, it becomes harder to follow the connections. The output of the framework is

strictly dependent on features that users determine prior to the execution of the

algorithm. Hence, traditional ML methods reflect how the user approaches the

problem. Concordantly, the evaluation of the output is based on the performance

criteria defined by the user while selecting the features constituting the task.

One of the most important characteristics of traditional ML techniques is the

specification of all the relevant (in the eyes of the user) features to the problem task.

14

Haque (2007) articulates this problem while elaborating Pask’s conversation theory

and relevance to design as:

… if a designer specifies all parts of a design and hence all behaviors that the

constituent parts can conceivably have at the beginning, then the eventual

identity and functioning of that design will be limited by what the designer can

predict. It is therefore closed to novelty and can only respond to preconceptions

that were explicitly or implicitly built into it.

In such cases, ML algorithms conduct a straightforward task, finding the

contributions/influence of features to the solution. This approach guarantees the

desired type of outcome, at least in terms of revealing a correlation between inputs and

outputs. Thus, defining every features of the problem does not necessarily connote a

negative meaning especially if the aim is to utilize ML for very well defined tasks and

to exploit the computational capacity of the framework.

Contrarily to traditional ML frameworks, DL algorithms omit the preprocessing phase

which the relevant features are determined. As a result, the user selects the data which

are believed to represent the task. The comparison of ML and DL workflows are

illustrated in Figure 2.

As shown in Figure 2, the feature extraction phase is conducted within the framework

and optimized throughout the process. The associative links constructed for the

problem-solving strategy is broken and the user is forced to focus on the representative

power of the data rather than the relevance of features. As the raw data constitute more

information than selected features for traditional ML frameworks, the process is often

incomprehensible to the user and referred as black box algorithms. Being black box is

not caused by the model itself but as a result of the complexity of data relations which

is beyond the data crunching capacity of humans. Thus, it is not possible to intervene

during the process and extract mid process instances. Yet the outputs at the end of each

iteration can be observed and reused as a starting point for a new training session. The

output is determined by the provided data and as the algorithm is based on finding the

patterns to achieve a generic function resembling the input data, the evaluation is

embedded to the data provided.

15

Figure 2. ML and DL workflow (Gill, 2017)

As the user cannot intervene the data process, DL literacy emerges as an essential skill

for controlling and collaborating with intelligent machines. Without a profound

understanding of the framework which the task is conducted, the user has only the

liberty of data selection. In such cases, the success (if the algorithm succeeds) of the

outcome is somewhat coincidental and have a capacity of improvement in the event of

deeper understanding and deliberate selection of the framework, redefinition of the

task and data selection with respect to the working principles of chosen DL algorithm.

The choice of data has the primary importance for the utilization of DL as the data

provided directly influence the output and the evaluation criteria are implicitly defined

within the dataset provided. There is no ultimate answer on which data is apt for the

completion of problem task and each dataset results in different solutions. Hence,

choice of data remains a challenging task involving subjective interpretation.

Working principle of DL algorithms is based on finding patterns among the data

provided. By definition, with each new dataset obtained as the result of data design,

framework obtains a generic function for the representation of the data. It is especially

promising for ill-defined tasks which the task can’t be transcribed in a procedural way.

In that sense, the output of the framework can be utilized as a tool for broadening the

perception of the problems highlighting the importance of certain features seemingly

16

irrelevant to the task or a tool for introspection about intuitive actions taken while

manually solving the problems.

In response to this, the evaluation of the outcome is a major challenge. As the

performance of the output is not bounded with the performance metrics of the problem

task but based on the resemblance to the input data, the subjectivity embedded in the

selection of data is pursued to the data evaluation. For well-defined problems which

objective evaluation of the output is possible, as in optimization problems, it is possible

to quantify the performance of the framework. On the other hand, as the problem

becomes ill-defined, the evaluation of the framework becomes a qualitative task based

on the preferences of the user. Turing (1949) refers to this problem in his famous quote

regarding sonnet writing machines as:

 ... I do not see why it [a computer] should not enter any one of the fields

normally covered by the human intellect, and eventually compete on equal terms.

I do not think you can even draw the line about sonnets, though the comparison

is perhaps a little bit unfair because a sonnet written by a machine will be better

appreciated by another machine.

In such cases, DL algorithms can be utilized as personalized co-workers for ill-defined

problems which we can only communicate by means of data.

Architecture, which embodies tasks with varying scales, complexities, and subjective

interpretation requirements, provides a broad field of study for DL implementation. It

is not always possible to explicitly determine the features of the solution or structuring

the problem solving act in procedural way in problems of architecture. Thus, being

able to train learning models without the necessity of explicitly defining the

constituents of the problem poses a great potential for architecture. On the other hand,

it is not possible to cover the diversity of architectural problems due to three major

challenges namely; lack of publicly available data for all problems, lack of adequate

hardware to process the data (even if data were publicly available) and most

importantly the objective measurement of success especially for tasks requiring

subjective interpretation.

17

For these reasons, the discussions and elaboration are pursued by means of focusing

on a well-defined task; namely crack detection from visual data, in order to concretize

data design with quantifiable and measurable results. Crack detection is a

straightforward task for human perception and therefore the algorithm and the results

can be evaluated without subjective interpretation. Still, it poses a challenge for the

DL algorithms due to the lack of discriminative features defining cracks. Hence, DL

algorithms, as well as the computer vision algorithms, are prone to confuse shadows,

foreign objects, and drawings with cracks. For the case implementation, CNN

framework is utilized as its capability to process raw data while conserving spatial

relations which is crucial in tasks regarding architecture. As CNN’s use similar

building blocks and mode of operation regardless of the task, crack detection is utilized

to scrutinize a complicated subject in simple terms. For this purpose, traditional ML

and DL (i.e. CNN) implementations for crack detection are examined in Chapter 2.

2.2 Crack Detection as a Machine Learning Application in Architecture

Advancements in machine learning influence fields which are seeking autonomous

conduction of tasks. Increasing capabilities of machine learning frameworks hold

promise for high speed, high accuracy and high precision and autonomous predictions.

Recent studies and applications prove that computer algorithms can be more powerful

in decision-making tasks without being objected to subjective bias or in other terms

human error as in manual conduction of the task (Lecun, Bengio and Hinton, 2015;

Schmidhuber, 2015).

Building inspection is one of the fields which requires the minimization of error due

to the importance of the possible implications. In this respect, machine learning

algorithms have been utilized in the building inspection with the aim of increasing

precision and accuracy.

The process of building inspection can be broken down with abstraction in three phases

with increasing complexity; as detection of defect (predicting existence), analysis of

defect (predicting metrics – numeric prediction) and inferring from results. Cracks, as

being one of the most information bearing sign of structural failure, can also be

detected, analyzed and evaluated by means of machine learning algorithms. Even

18

though crack detection can be conducted with respect to various data such as infrared

thermography and/or acoustics based responses, visual data captured with still camera

is still the most feasible in terms of the equipment required and majority of the

inspections of buildings are conducted with respect to visual data due to ease of data

acquisition.

Despite the fact that visual inspection is the most favorable approach, processing of

visual data is not a straightforward task and have challenges caused by the nature of

the task. Particularly, crack detection in the built environment is a challenging task for

any computer vision and machine learning method. The success of machine learning

algorithms is originated by the ability of framework to learn and use the discriminative

features defining classes of objects. In the case of crack detection, the number of such

discriminative features are limited. Hence, the features defining cracks can be easily

confused with any object having irregular and jagged edges having high contrast with

surface texture. The practical challenges caused by the nature of the cracks can be

listed as below and illustrated in Figure 3:

a) Orientation and spatial positioning of cracks are unpredictable. Hence,

it is not possible to make an inference from directionality of high

contrast regions to classify cracks.

b) Discriminative crack features are easily confused with noise in the

background texture, foreign objects and/or irregularities in application

such as exposure of jointing

c) Inhomogeneous illumination of the surface causes occlusion of crack

segments endangering the conservation of crack continuity (Zou et al.,

2012; Wang et al., 2017)

19

Figure 3. Practical challenges for crack detection, a) the painting as the noise at the

background (left), b) shadow shadowing crack and present noise to be

misclassification (middle), b) jointing at left presents noise (right)

Due to the challenges mentioned above, an adaptive framework which is able to

discriminate cracks and any other objects and/or surface texture, in other words, a

framework which is not susceptible to noise in data is the ultimate goal for autonomous

crack detection. The task of crack detection can be evaluated as a classification

problem whether it is conducted for predicting the existence of cracks in an image or

pixel-wise prediction of crack regions. Machine learning field offers numerous

approaches to classification problem with increasing accuracy due to the continuous

research and improvements in the field.

By nature, classification with respect to multiple features is a multidimensional

problem. When visual data captured by means of cameras is considered, raw data

contains vast amount of data represented as pixels. As the computational cost and

memory constraints are directly related to the number of features, it is not feasible to

treat each pixel as a feature in the course of utilization of machine learning classifiers

(Koch et al., 2015). Hence, several steps are followed to reduce the dimensionality of

the data. These steps are defined and can be abstracted as image segmentation and

feature extraction in common practice. As a result, the workflow for image

classification can be illustrated as having three stages; namely image segmentation,

feature extraction, and feature classification (Sinha and Fieguth, 2006; Gonzalez,

Woods and Eddins, 2009; Wu, Liu and He, 2015).

20

Image Input
Classification

Result

Feature

Extraction

Image

Classification

- ML

Image

Segmentation

Figure 4. Abstracted workflow for image classification with traditional ML (drawn

by author)

Among these steps, image segmentation is used as a tool to be able to conduct feature

extraction and commonly perceived as a part of feature extraction step. Image

segmentation and feature extraction steps are often conducted with manual or semi-

autonomous/adaptive methods which require user input. Even though there are studies

aiming conduction of image segmentation and feature extraction, the separate

conduction of the steps results in accumulated error of the classification. As a result,

either the overall process involves manual decisions or the process is conducted in

series of autonomous algorithms which the error is cumulatively increased. In such

cases, obtained framework is often applicable to certain cases and lose performance

with varying conditions. Studies, which embraces crack detection workflow as series

of operation, are focusing on selection and finding the optimum combination of

methods.

Convolutional neural networks (CNN’s) pose a different approach to fragmental

conduction of classification task. CNN’s conduct the feature extraction and

classification tasks within single framework without the need of image segmentation

preprocessing. Hence, the case-specific bias caused by manual decisions in feature

extraction step and cumulative accumulation of error is avoided in CNN’s. Abstracted

black box representation workflow of CNN’s is illustrated in Figure 5.

Image Input
Convolutional

Neural Network

Classification

Result

Figure 5. Black box workflow representation of CNN classification (drawn by

author)

21

There are several studies in the literature proving the applicability of CNN’s to crack

detection in built environment task (e.g. Gopalakrishnan et al., 2017; Liu et al., 2017).

Furthermore, CNN applications are extendable to perform localization and semantic

segmentation of images. Localization by means of CNN’s aims to draw a bounding

box to the classified objects while semantic segmentation of images deals with labeling

of pixels with respect to the object class they belong and is different from image

segmentation mentioned in classification workflow. Image segmentation is used as a

preprocessing tool for reducing the dimensionality of input data and does not aim to

conduct pixel-wise labeling as the classification is conducted in later steps of the

workflow. Hence, while semantic segmentation is a goal to achieve, image

segmentation refers to initial step required before feature extraction and utilization of

machine learning classifiers.

A comprehensive but not complete list of studies which uses machine learning

methods in correspondence with segmentation and feature extraction methods, and

studies utilizing CNN are shared in Table 2.

Table 2.List of studies utilizing machine learning for crack classification

Reference Application

Area

Segmentation & Feature

Extraction

Classification

(Liu et al., 2002) Tunnels - Discriminant analysis

method

- Threshold

- Support vector machine

(Sinha and

Fieguth, 2006)

Pipelines - Statistical feature

extraction

- Neural network

- K-Nearest neighbors

(Kabir, Rivard

and Ballivy, 2008)

Bridges - Wavelet transform

- Statistical feature

extraction

- Neural network

(Yang and Su,

2008)

Sewer pipes - Wavelet transform

- Co-occurrence matrix

- Neural networks

- Support vector machine

(Moon and Kim,

2011)

Generic

concrete

- Median subtraction

- Gaussian low pass filter

- Threshold

- Morphological

operations

- Neural network

22

Table 2. List of studies utilizing machine learning for crack classification (cont’d)

Reference Application

Area

Segmentation & Feature

Extraction

- Classification

(Zhang et al.,

2014)

Subway

tunnels

- Average smoothing

- Morphological operations

- Threshold

- Statistical feature extraction

- Neural network

- Support vector machine

- K-nearest neighbors

(Lattanzi and

Miller, 2014)

Generic

concrete

- Wavelet transform

- Canny edge detector

- Statistical feature extraction

- Naïve Bayes

- Decision trees

- K-nearest neighbors

(Wu, Liu and

He, 2015)

Sewer pipes - Wavelet transform

- Contourlet transform

- Maximum response filter

bank

- Decision trees

(Gibert, Patel

and Chellappa,

2015)

Railways Convolutional Neural Network

(Schmugge et al.,

2015)

Power Plants - Morphological operations

- Linelet-based segmentation

(Naïve Bayes)

- Neural network

(Santur,

Karaköse and

Akın, 2016)

Railways - Principal component analysis

- Singular value decomposition

- Histogram mean

- Decision trees

(Zhang et al.,

2016)

Roads Convolutional Neural Network

(Ersoz, Pekcan

and Teke, 2017)

Pavements - Threshold

- Median filtering

- Morphological operations

- Support vector machine

(Li et al., 2017) Bridges - Region-based active contour

- Statistical feature extraction

- Support vector machine

(Gopalakrishnan

et al., 2017)

Pavements Convolutional Neural Network

(Liu et al., 2017) Buildings Convolutional Neural Network

(Cha, Choi and

Büyüköztürk,

2017)

Generic

concrete

Convolutional Neural Network

(Eisenbach,

Stricker and

Debes, 2017)

Roads Convolutional Neural Network

(Wang et al.,

2017)

Pavements Convolutional Neural Network

(Pauly et al.,

2017)

Pavements Convolutional Neural Network

(Küçüksubaşı,

2017)

Buildings Convolutional Neural Network

23

The aim of the list is not to present a corpus of machine learning applications but to

provide an insight on how broad the possible combinations of methods are. As the

scope of this study is focused on machine learning algorithms for crack detection, the

studies mentioned in Table 2 are categorized with respect to the machine learning

methods employed and exemplary studies are briefly discussed. The image

segmentation and feature extraction methods are discussed in relation to the machine

learning methods which they are utilized in conjunction with. Case-specific machine

learning applications and hybrid methods are discarded for categorization and such

methods are grouped under the parenting approach. The only exception among the

specialized methods is convolutional neural networks as CNN combines image

segmentation and feature extraction steps in itself; hence operated differently from

neural networks.

K-Nearest Neighbors(Cover and Hart, 1967): As one the simplest methods in machine

learning, K-NN frameworks are trained with only feeding labeled input data. When an

unlabeled datum is classified with respect to the training data, neighboring k data

points, which is a user-determined number, are located and the majority of the data

points determines the class of the unlabeled test data.

Figure 6. k-Nearest neighbor classification (drawn by author)

The studies utilizing the k-NN method for crack classification generally used for

benchmarking and comparative analysis of the performance of studies proposal rather

than employing k-NN as the primary approach.

24

Sinha et al. (2006) used the neuro-fuzzy network, which is essentially neural network,

for classification of buried pipe defect. For comparative analysis of proposed method,

the k-NN method is used. For feature extraction, study utilized statistical feature

extraction methods and determined a series of features to calculate from segmented

image such as area of regions, number of objects, minor and major axis lengths. They

proposed a neuro-fuzzy network as a modified version of artificial neural network

operated in conjunction with a neuro-fuzzy classifier and projection neural network.

In their comparative analysis for classification accuracy of k-NN, fuzzy k-NN and

neural network variations, k-NN scored %81 accuracy for crack/hole classification

while the maximum accuracy obtained with other methods is %94.1. (Sinha and

Fieguth, 2006)

Similarly, Zhang, et al. (2014) applied k-NN, support vector machine and two neural

network based methods as radial basis function neural network and extreme learning

machine for classification of cracks in subway tunnels. The study utilized several

methods subsequently such as average smoothing, morphological operations such as

black top hat transformation, applying threshold for image segmentation and used

statistical methods for feature extraction based on standard deviation from shape

distance histogram. Even though test accuracies of utilized classifiers are similar,

extreme learning machine scored highest with %91,6 followed by support vector

machine, radial basis function neural network and k-NN classifiers. K-NN scored

%88,7 for this experiment (Zhang et al., 2014).

Naïve Bayes: Naïve Bayes algorithm is operated similarly to k-NN algorithm and

checks for the vicinity of new data for neighboring training data. However, Naïve

Bayes algorithm also considers a priori probability depending on the previous

observations. Class prediction is made by taking the maximum probability with respect

to the number of data points within the predetermined vicinity and its multiplication

with prior probability.

Lattanzi et al. (2014) focused on the performance of image segmentation and feature

extraction steps. They used k-means approach which constructs clusters with respect

to the mean value of clusters and compared with Canny edge detector and Haar wavelet

25

transformation. The segmentation results are tested with Naive Bayes, decision trees,

k-NN and the overall classification performance is inspected with Bayesian networks,

decision trees, neural networks and k-NN. Naïve Bayes classifier results in conjunction

with Canny edge operator (Canny, 1986) performed better than other classifier –

segmentation couples for image variance test. On the other hand, for the segmentation

effectiveness, Naïve Bayes results are lower than decision tree and k-NN scores

(Lattanzi and Miller, 2014).

Schumugge et al. (2015) utilized a kernel based filtering for segmentation named as

linelets. After applying line filter, the line segments are joined by training a Naïve

Bayes classifier to check the line segments within the vicinity of a threshold to obtain

continuity. Morphological operations are applied to the image in parallel for

comparison of two methods. Both segmentation results are tested with neural networks

and anomaly classifiers. It is reported that linelet segmentation, which utilizes Naïve

Bayes classifier, performed %38 better than morphology based segmentation

(Schmugge et al., 2015). Study of Schumugge et al. is significant as the study aims to

conduct image segmentation with machine learning with the utilization of filters and

Naïve Bayes classifiers.

Support Vector Machine: Support vector machines are proposed by Vapnik and Lerner

in 1963(Vapnik and Lerner, 1963). The main idea behind the support vector machine

is to classify data by constructing hyperplanes dividing the classes. For this purpose,

the distance of data to hyperplane is used as a measure to be maximized.

A modified version of SVM’s is kernel SVM (Boser, Guyon and Vapnik, 1992), which

operates as the same way as linear SVM’s the data is processed with a kernel function

to be able to handle nonlinear classification. It should be noted that SVM operates in

feature space and requires feature extraction to process images.

Liu et al. preprocessed the image with two thresholds method which one threshold is

determined with Discriminate Analysis Method and second threshold is applied with

respect to the calculated intensity gradient vector. In addition, a balancing operation is

conducted with respect to the gravity centers of sub-images. After extracting the

features, support vector machine is used for the classification (Liu et al., 2002).

26

Figure 7. Support Vector Machine (drawn by author)

Yang et al. (2008) used wavelet transformation and co-occurrence matrix for image

segmentation and feature extraction steps. The extracted features are trained with

support vector machine and two neural network based classifiers as back-propagation

neural network and radial basis network. Support vector machine with radial kernel is

observed to perform better than the backpropagating neural network, radial basis

network and support vector machine with polynomial kernel (Yang and Su, 2008).

Ersöz et al. (2017) are focused on crack detection from images captured by

autonomous aerial vehicles. Image segmentation is conducted manually by setting

threshold for each training image and geometric properties of image regions are

calculated to extract features. The features are then used for classification by means of

SVM (Ersoz, Pekcan and Teke, 2017). Even though reported accuracy is 97%, manual

threshold approach for image segmentation introduces a bias towards the dataset. On

the other hand, the studies mentioned above proves the performance of SVM if the

features are determined carefully.

Decision Trees: Decision tree classifiers are operated to construct a tree-like structure

having the most influential feature as the main node and other features are represented

as branches of the trees to conclude with resulting classes. The entropy of the system

is checked and the hierarchy of the features are constructed to minimize the entropy.

Decision trees are mainly decision support algorithms.

27

Figure 8. Decision Tree (Alpaydin, 2010)

Wu et al. (2015) use contourlet transformation which is a wavelet transformation

technique after transferring input image to grayscale image. After contourlet

transformation, the image is divided into high-pass image and low pass image to be

processed with directional filters. By this way, it is aimed to obtain smoother edge

detection. The preprocessed images are used for feature extraction by means of co-

occurrence matrix and Tamura features and extracted features are classified with

several ensemble methods as AdaBoost, Random Forest, Rotation Forest and

RotBoost which are all based on decision tree idea. The mentioned ensemble methods

are operated to boost the performance of a classifier by means of supporting with

several other classifiers. The differentiation between methods are caused by the

construction of decision trees and have the results are brought together. The results of

ensemble methods are compared with neural network based methods (multilayer

perceptron, radial basis function neural network) and support vector machine. The best

result is obtained with RotBoost method which is trained with statistical feature vectors

with %89,96 accuracy (Wu, Liu and He, 2015).

Santur et al. (2016) also used Random Forest method which is an ensemble method

based on decision trees. Even though the study is focusing on railways, image

classification of visual data to detect defects is similar to crack detection task in

buildings. Several methods are used for dimensionality reduction such as principal

component analysis, kernel principal component analysis, singular value

28

decomposition and histogram matching separately to observe the influence of feature

extraction step on the accuracy. The resulting features are used for training random

forest algorithm. As a result the combination of principal component analysis and

histogram matching yields 85% accuracy (Santur, Karaköse and Akın, 2016).

Neural Networks: Among other classifiers, neural networks are relatively the most

complex method. Neural networks are multilayered structures which each layer

contains several nodes. At each node, a simple linear function is operated. Neural

networks learn from training data by adjusting the weight/influence of the functions

taking place in nodes and conducts classification. Misclassified samples are used to

calculate the error and propagated back to revise the influence of the nodes. Each node

at the layer is connected to the nodes at the following layer. Hence a fully connected

structure is established to construct a relation between each feature.

Kabir et al. (2008) used neural networks for classification of damages in bridge

infrastructures. For image segmentation and feature extraction, wavelet transformation

and texture analysis are conducted respectively and extracted features are used for

training artificial neural network. They compared the accuracy results with respect to

the input type, i.e. grayscale, color and infrared images and obtained between %70.6

to %84.1 accuracy for three different datasets (Kabir, Rivard and Ballivy, 2008).

Output
1

Output
2

Node
1-1

Node
1-2

Node
1-3

Node
1-4

Node
2-1

Node
2-2

Node
2-3

Input 1

Input 1

Input 1

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 9. Neural Network Structure (drawn by author)

29

Similarly Moon et al. (2011) used series of preprocessing methods such as median

subtraction, Gaussian low pass filter, threshold for segmentation and morphological

operations for feature extraction. The resulting features are used for training artificial

neural network. The proposed workflow achieved %90.25 accuracy as an average of

two test cases (Moon and Kim, 2011).

The studies present above embrace multi-step process for conduction of crack

classification with respect to visual data. As the training data depending on the case

studies, selected methods and determined parameters vary, it is not possible to draw a

conclusion regarding which method is more suitable for which step. As a controlled

study on the comparison of classifiers, Enterazi-Maleki et al. (2009) constructed 29

different datasets with increasing number continuous and discrete variables and

investigated the performance of well-known machine learning classifiers (Entezari-

Maleki, Rezaei and Minaei-Bidgoli, 2009). The samples belonging to variables

(features) are randomly generated to avoid any bias caused by the data selection. It is

observed for datasets with high number of samples, decision trees, k-NN and SVM

methods are highly efficient. While Naïve Bayes classifier performs worse, neural

networks are not included in the comparison.

In a similar study, Huang et al. (2003) compare decision trees, SVM and Naïve Bayes

classifiers with respect to accuracy and area under curve metrics. The study reported

SVM, Naïve Bayes, and C4.4 (decision tree method) scores are comparable while

C4.5, which is another method for constructing decision trees, is outperformed by

other classifiers (Huang, Lu and Ling, 2003). The dataset utilized in this study is

randomly generated by different from the dataset used in the study of Enterazi-Maleki

et al. and reflects real-world problems.

Even though such studies provide an insight about the optimal conditions which the

classifiers perform, case dependent variables such as selection of features, previous

operations enabling reducing dimensionality are dominant on the resulting

performance of the overall framework. A comprehensive study on crack detection

which performs a grid search to determine which factors are more dominant and under

30

which conditions the machine learning algorithms perform better is not present to the

best of authors knowledge.

Convolutional Neural Networks: Convolutional neural networks are operated

differently from other machine learning classifiers as the framework contains feature

extraction step in itself and does not require image segmentation as a preprocessing

step. CNN is based on neural network architecture. Yet, while neural networks are

bounded with high computational cost due to the fully connected structure of neural

networks, CNN’s don’t have to be fully connected and contains multiple layers in its

architecture. While leading layers operate for extracting features, final layers of the

CNN architecture is composed just like neural networks and operates as a classifier.

CNN’s can be evaluated as a kernel-based neural network architecture as at each layer

of the network, the image is convolved with a series of filters. The output of the

convolutions is treated like the nodes of the basic neural networks and their weights

are adjusted similarly. There are two approaches for working with CNN’s as training

a network from scratch, which refers to the determination of the number of layers and

weights are randomly initialized and transfer learning which refers to the utilization of

a pretrained network with respect to another dataset which may be completely different

from the task in question.

Figure 10. Convolutional Neural Network Architecture (Yakopcic, Alom and Taha,

2016)

31

Studies of Zhang et al. (2016), Eisenbach et al. (2017), Pauly et al. (2017) and Cha et.

al. (2017) can be given as examples of studies which constructs and trains CNN’s from

scratch. The networks constructed in these studies have relatively limited number of

layers with respect to the network configurations which utilizes pretrained networks.

Zhang et al. (2016) constructed a CNN with 6 convolution layers and trained the

network with 600K and tested with 200K road images while Eisenbach et al. (2017)

utilized a network with 11 convolution layers and used datasets with sizes of 4,9M for

training and 1,2M for testing. In the study of Eisenbach et al., (2017) the network

proposed by Zhang et al. (2016) is compared with their result and 11 layered CNN is

reported to perform slightly better than the network with 6 convolution layers. Pauly

et al. (2017) also investigates the relation between the number of convolution layers

and the networks’ performance by comparing accuracies of 6 layered and 7 layered

networks. CNN containing 7 convolution layers is reported to achieve %91,3 accuracy

performing better than the network containing 6 convolution layers (Pauly et al.,

2017).

The study conducted by Cha, et al. (2017) used a framework with 4 convolutional

layers for concrete crack detection in building cases. The study investigates the

relationship between the influence of training dataset size and the network is trained

with several dataset sizes varying from 2K to 40K images. It is advised to utilize more

than 10K images for training based on validation scores (Cha, Choi and Büyüköztürk,

2017).

Gopalakrishnan et al. (2017) focused on transfer learning approach by utilizing

pretrained networks and fine tuning for crack detection task. VGG-16, a highly

acknowledged pretrained CNN, is utilized for distress detection in pavements. The

network is trained with 760 images and tested with 212 images in total. For

comparative analysis, classifier layers of CNN are replaced with random forest,

extremely randomized trees, SVM and logistic regression classifiers. The study

reported %90 accuracy for the original version of the pretrained network as the highest

scoring option (Gopalakrishnan et al., 2017).

32

Similarly, Küçüksubaşı (2017) focused on crack classification by means of transfer

learning for the path planning of an autonomous UAV building inspection system.

Author utilized Inception v3 network which is fine-tuned with 1040 image samples

and tested on a dataset containing 64K images. The reported accuracy of Inception v3

network is %97 which is a considerable achievement proving the applicability of

pretrained networks on crack classification task (Küçüksubaşı, 2017). The size of

training dataset required for achieving high accuracies for pretrained networks is

remarkably less than the required size for training from scratch.

Even though the number of studies utilizing CNN is gaining momentum, most of the

studies focus on impact of one or two variables governing the performance of the

algorithms. A comprehensive study focusing on multi-variables such as the influence

of dataset size, the number of layers and the number of learnable parameters in a

holistic approach, is not present to the best of authors knowledge.

Moreover, the relationship between data and the performance of the frameworks

employed is investigated with respect to the quantity of the data (i.e. how many images

are employed) rather than the quality (i.e. at which extent does data represent the

generic case). In that sense, the selection of data remains as an elusive act often

bounded with the expertise and/or intuition of the user who provides data to the

framework.

This thesis focuses on the improvement of the performance of CNN algorithms not

only in terms of finding optimal values for the variables and parameters of CNN

algorithms but also by means of inspecting the influence of data selection to achieve a

holistic understanding of visual data processing with DL algorithms.

33

CHAPTER 3

THEORIES AND POSTULATE

“In deep learning, the algorithms we use now are versions of the

algorithms we were developing in the 1980s, 1990s. People were very

optimistic about them, but it turns out they didn’t work too well. Now

we know the reason is they didn’t work too well is that we didn’t have

powerful enough computers, we didn’t have enough data sets to train

them.”

Geoffrey Hinton (2016)

In this thesis, a new term “data design” is introduced to describe the data handling

process from a broad perspective starting from the redefinition of the task as a problem

of learning from data, to the evaluation of the result for the given task. In that sense,

data design is not solely determination/selection of data, but also includes

reformulation of the problem, evaluation of frameworks and results, and utilizing or

devising appropiate metrics for the task. Despite the crucial role of data design in the

success of traditional machine learning (ML) and deep learning (DL) approaches, it is

not considered as an overall process explicitly and it is mostly present implicitly in the

algorithms without any further assessment. However, holistic understanding of the

overall process is crucial for the success of the frameworks. In that sense, data design

necessitates expertise, experience and literacy in relation with the given task and DL.

34

Development of an apt DL framework for any task requires holistic understanding of

not only available data and technology, but also the entire process including

redefinition of the problem accordingly. Concordantly, data design, like all design

problems, is context-sensitive and it is not possible to provide generic strategies fitting

for all kinds of tasks. Hence, establishing the link between task and the framework is

essential in DL implementations.

Any DL implementations can be abstracted as a three phase process, namely; pre DL

phase, which the user selects, preprocesses, and provides the data; DL phase, which

the framework is trained with respect to the data provided, and post DL phase which

the results and thus the performance of the framework is evaluated. The conformity

between the decisions taken at each phase and the task plays a determining role in the

performance of the framework. Three phases, decisions and how are they interrelated

in these phases are shown in Figure 11.

Reformulating the

problem

Determining

which data

represents the task

and the solution

Determining the

appropriate DL

algorithm with

respect to the task

Determining the

data structure for

DL algorithm

Constructing the

appropriate DL

structure for

processing the

data

Determining the

DL algorithm

parameters

Devising and/or

determining task

specific metrics

Determining the

evaluation method

for the results

Pre DL Phase DL Phase Post DL Phase

Figure 11.Abstraction of deep learning phases and decision taken at each phase

(drawn by author)

35

Data design as proposed in this study, embraces all of the three phases, yet this study

puts emphasis on pre and post DL phases which the adaptation of DL algorithms for a

specific task takes place. In pre and post DL phases user actively makes decisions on

how to reflect task as a DL problem. Although constructing DL structure and

determining the related parameters are dependent on the data selected, DL phase is

more context free with respect to pre and post DL phases. In this regard, firstly pre and

post deep learning phases will be examined to inspect the case dependency of the

actions and decisions in the scope of data design. Then, convolutional neural networks

are investigated as an exemplary framework of DL applications.

3.1 Pre and Post Deep Learning Phases

Deep learning algorithms together with possibility of using raw data change

preprocessing of training data. In this context, the major difference between traditional

ML algorithms and DL algorithms relies on the necessity of feature extraction prior to

training. In traditional ML algorithms, it is possible to directly reflect the features

which are believed to be relevant to the task with traditional ML algorithms.

Contrarily, DL implementations operate with raw data and determines the relevant

features within the algorithm. Hence, the users are obliged to formulate the task not by

determining the features but by means of designating the relevant data. In the course

of reformulation of the task and designing the data, subjective assessment of relevant

data is necessitated, regardless of the complexity of the task. Reformulation of the

problem requires revisiting the question of which data represents the case rather than

which properties (features) of the case contributes to the solution. In that sense,

accustomed way of problem analysis in terms of differentiating constituents of

problem becomes obsolete.

On the other hand, elimination of feature extraction process emerges as a liberty for

tasks requiring subjective interpretation and creativity such as arts. In such cases, users

are able to customize frameworks regarding their personal taste by designating data

solely with respect to their preferences. The capability of personalization for tasks

involving subjectivity makes data design and working with raw data appealing.

36

Regardless of the complexity and subjectivity involved in the reformulation of the

problem, the role of data design is crucial; prior experiences, knowledge on the subject

even intuition determines the performance of the framework.

One of the most important tasks in pre DL phase is the determination of the framework

and establishing the compatibility of data accordingly. There are several DL

algorithms developed to respond various needs. For instance, recurrent neural

networks are more suitable for task comprising time data, whereas convolutional

neural networks are more appropriate for tasks requiring conservation of spatial

relations. While data representing the task impose selection of a compatible algorithm,

computational limitations of the hardware and technical limitations of the selected

algorithm constraints the data input. Hence, the selected data are required to be

preprocessed in order to be operable with the DL framework. It should be noted that

the preprocessing operation referred herein is not a feature extraction operation but

instead transforming the data without altering the information embodied. Thus, the

preprocessing operation can be regarded as an act of craftsmanship requiring

comprehension of framework limitations and handling the data accordingly without

soiling. In this context, determining the relevant data for the solution of the task is not

only a problem of representation but also a matter of usability. Hence, pre DL phase

is composed of series of actions aiming translation of a specific task to machine. These

actions are intrinsically interacting actions and are required to be handled integrally.

Reformulation of the problem and data provided to DL framework correspondingly

have direct effect on the results of the given task by implicitly defining the evaluation.

Case specific nature of implementations necessitate case specific evaluations.

Subjectivity involved in the pre DL phase is reflected to the post DL phase as a matter

of determining case specific evaluation methods. In this respect, defining the desired

outcome and devising relevant metrics for measuring the performance of the DL

framework is an inevitable task.

As discussed in Chapter 2, evaluating the results for straightforward problems, which

the subjective interpretation has minimal contribution in data selection and problem

definition, is also a straightforward task. On the other hand, as the subjectivity

37

increases in pre DL phase, the evaluation of the results is bounded with the personal

preferences of the user providing the data. For example, while it is possible to assess

the success of DL implementation for face detection task with accuracy based metrics,

the success of a music composing DL implementation can ideally be evaluated by the

user who selects the data for training the DL algorithm.

Within the scope of Chapter 3, DL phase is scrutinized through convolutional neural

network as an example of deep learning algorithms. By this way, it is aimed to

investigate the decisions specified in Figure 11 and reveal how the framework is

effected by pre and post DL phases and influence the results.

3.2 Convolutional Neural Network as an Exemplary Deep Learning Method

Convolutional neural network (CNN) is a widely used method for the analysis of visual

data in machine learning. Although the majority of the applications are based on visual

data, CNN’s have proven themselves in processing volumetric data, in other words

spatial data in three dimensional space. For this purpose, CNN’s have the most

potential for application to problems in architecture and therefore selected as the

framework to be employed as an exemplary deep learning algorithm for

implementations in architecture.

CNN studies are hugely inspired by visual cognition studies in 1950’s. The studies of

Hubel and Wiesel (1959) showed that receptive fields of neurons in visual cortex are

sensitive to some specific visual stimuli. It is observed that different parts of the visual

cortex of cats are stimulated in the presence of varying illumination patterns. It is

concluded that the visual cortex is composed of columnar structures which are

sensitive not to every perceived dot in the visual field but to various shapes such as

edges at different orientations (Hubel and Wiesel, 1959). This columnar architecture

works together to perceive objects. This idea forms the basis of CNN's.

As CNN is a method of machine learning, the basic procedure of implementation is

teaching the system numerous data (training) and then make predictions on new data

with respect to the learned patterns among training data which is used for teaching the

38

system (testing). In the case of CNN’s, the data is either images or any data represented

in image form, i.e. 3D matrix with height, width, and channels.

CNN’s are based on artificial neural network architecture (ANN) and employs the

same approach of ANN’s while training and making predictions. It is essential to grasp

the working principles of ANN’s to construct a fully integrated understanding of

CNN’s.

The artificial neural network is a machine learning classifier which user feeds data to

the system. The system is trained with the provided data to capture patterns and

differentiating features to finally determine different classes of outputs. the

terminology and methods explained in this section are limited to the terminology and

methods utilized in CNN applications even though ANN’s have larger application

area.

ANN’s are constructed with a biological analogy. With reference to neurons firing at

different rates in the presence of diverse events, so-called neurons in ANN’s have also

different values with different input data. These neurons transmit the values to form

neural pathways to obtain desired output values.

A simple representation of a typical ANN system is shown below:

Output
1

Output
2

Node
1-1

Node
1-2

Node
1-3

Node
1-4

Node
2-1

Node
2-2

Node
2-3

Input 1

Input 1

Input 1

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 12. Simple representation of a typical ANN (drawn by author)

39

 As can be seen from Figure 12, there are three main distinct regions as an input layer,

hidden layer(s) and an output layer. Hidden layer(s) is the region where nodes (neurons

or perceptron) resides and they have simple mathematical functions to map input data

to output data.

For each of the nodes, the function is represented as:

 y = wx + b (1)

Where w is the weight and b is the bias of the input. The bias term in this function does

not define the bias of the overall system but instead defines a shift in solution space

while weight parameter defines the slope of a linear function.

In the presence of multiple hidden layers, the nodes of following layers take inputs

from the layer before them and are sequentially operated. The function of the neural

network in total can be defined as:

 𝑔 = 𝑓𝐿 ∘ … ∘ 𝑓1 (2)

where each subscript represents a layer and f represents the function of a node. As can

be seen, the general function of the neural network is a nested function of each node

and have more representational power even though the constituents of the general

function are linear functions. The output of a node is a function of the input

connections’ weight, bias of the node followed by an activation function which maps

the output between a definite range. Most of the activation functions map output value

to 0-1 range. The calculation of the output of a single node is illustrate as below:

Figure 13. ANN node output calculation (Ghanghau, 2017)

40

As a result, the output of a node can be generalized with the equation:

 𝑥𝑜𝑢𝑡 = 𝑓(∑ 𝑥𝑖𝑤𝑖𝑖 + 𝑏) (3)

Where f(x) is the activation function, b is the bias of the node, wi is the weight of the

connection, xi is the input.

Once the outputs of the network are calculated with respect to the input value, weights

of the connections and bias parameters for each node; the first phase of learning is

completed for one iteration. This stage is named as forward pass where the input data

is passed forward through the network.

In most of the cases, first iteration will score poorly with high rates of mismatch

between output and desired classes. As the ultimate goal is to train the network to

obtain desired outputs, the weight and bias parameters must be optimized to correctly

map input data to desired output. For this purpose, a method named as backpropagation

is employed. Backpropagation algorithm consists four stages for the optimization of

weight and bias parameters of nodes and can be characterized with (1) the forward

pass, (2) calculation of loss which is the calculation of discrepancy between the output

and desired outcome, (3) backpropagation which traces the error backwards step by

step to determine the contribution of bias and weight parameters to the error and (4)

parameter update to minimize loss. This process is iterated until system provides

desired outcomes, in other terms when the loss is minimized.

41

Output
1

Output
2

Node
1-1

Node
1-2

Node
1-3

Node
1-4

Node
2-1

Node
2-2

Node
2-3

Input 1

Input 1

Input 1

Feedforward Data

C
alculate erro

r

Backpropagate Error

U
p

d
at

e
P

ar
am

et
er

Figure 14. Backpropagation algorithm (drawn by author)

3.2.1 Loss (Error) Function and Gradient Descend

The loss function determines how different the output data and desired output are. The

most generic loss function, which is also known as mean squared error can be defined

as follows:

 𝐶(𝑤, 𝑏) ≡
1

2𝑛
∑ ||𝑦(𝑥) − 𝑎||2

𝑥 (4)

where C is the loss (cost or objective) function n is the number of inputs, y(x) is the

calculated output with respect to input x and a is the expected output. Both C(w,b) and

y(x) are dependent on weight and bias parameters.. The aim of the neural network is

to incrementally decrease the loss value and converge to minimum.

After one forward pass, the loss function is calculated to be minimized by means of

gradient descent algorithm. The aim of the gradient descent algorithm is to find global

minimum for loss function and for this purpose gradient vector of loss function is

calculated with respect to weight and bias variables included in the network. 2-

dimensional visualization of gradient descent algorithm is shown in Figure 15.

42

Figure 15. Visualization of gradient descent algorithm with respect to two features.

(drawn by author)

As there are multi-layers and multi-nodes in the network, the problem is actually a

multidimensional problem. The gradient vector of loss function can be generalized as:

 ∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣1
, … ,

𝜕𝐶

𝜕𝑣𝑚
)𝑇 (5)

as C is the loss function and v represents the weight and bias parameters. The slope of

the gradient vector is calculated by taking derivative of loss function with respect to

the concerned parameter. Once the slope of the gradient vector is determined, it is

possible to propagate in that direction to ensure loss function takes a smaller value in

the next iteration. This procedure is called backward pass and is the determination of

the contribution of the weight of layers to the loss function. After this step, the

parameters are updated with respect to gradient vector.

3.2.2 Parameter Update Methods

There are several update methods in the literature. The fundamentals of parameter

updating are shared to provide an understanding regarding the process.

43

The simplest form of update function which is also known as the vanilla update is as

follows:

 𝑣 → 𝑣′ = 𝑣 − 𝜂∇𝜃𝐶(𝜃) (6)

where η is learning rate, which is a user-defined parameter, can be defined as the step

size at each iteration for updating parameter v. Vanilla update can be perceived as

taking a step with fixed length towards the direction which the loss decreases. With

high learning rates, there is a risk of making big steps to miss global minimum and

with low learning rates reaching the minimum can take high computational time.

Figure 16. High convergence and low convergence rates for parameter update (drawn

by author)

As can be seen from Figure 16, when step size/learning rate is too high, it is possible

to oscillate between values and not being able to reach minimum loss value. On the

other hand, when the step size/learning rate is too small, it requires many iterations to

converge to minima resulting in increased computation time. Vanilla update disregards

the direction of previous updates which poses a problem when training samples have

considerable diversity which results in slow convergence rates. Hence, the

performance of networks employing vanilla update is highly dependent on the choice

of user and wise-choice for learning rate requires expertise in the implementation of

such models. In order to overcome the shortcomings of vanilla update method, more

adaptive update rules are developed. The simplest version of adaptive update rule is

momentum update.

44

Momentum update utilizes momentum parameter for taking the history of previous

updates into account. Hence, consistency between iterations is established. The generic

formula of parameter update with momentum is as follows:

 𝑣𝑡+1 = 𝑣𝑡 − 𝜇𝑣𝑡−1 − 𝜂∇𝑣𝐶(𝑣) (7)

where µ is momentum and vt-1 is the previous parameter update.

Several more momentum update based parameter update methods exist such as

Nesterov Momentum, or Nesterov Accelerated Gradient(NAG)(Nesterov, 1983). Even

though momentum update based methods provide responsiveness at different levels,

the learning rate remains fixed among parameters. When a vast amount of parameters

is considered, adaptive learning rates are desired to have more diversity among layers

and parameters to converge generic results.

Methods such as Adagrad (Duchi, Hazan and Singer, 2011), Adadelta (Zeiler, 2012),

Adam (Kingma and Ba, 2014), Adamax (Kingma and Ba, 2014), and Nadam (Dozat,

2016) aims to provide more responsiveness throughout to training and among different

parameters. The main advantage of methods having adaptive learning rates is that there

is no need for manually tuning the learning rate with respect to the problem. Instead,

the update rule calculates what the learning rate should be for each parameter and step.

It should be noted that the choice of method for parameter update is highly dependent

on the problem to be solved, the size and variance of datasets. In addition, utilization

of vanilla update with wisely guessed variables may provide better results than more

advanced methods with poorly selected variables. Nonetheless, in terms of

computational time, adaptive methods are proven to be faster than non-adaptive

methods (Ruder, 2016).

3.2.3 Overfitting Problem

Like all statistical models, the ANN’s have a risk of overfitting. Overfitting can be

described as fitting undesirably well to a particular set of data and possibly failing to

obtain a generic function for new data to be predicted. In case of neural network

training, if the network learns all features specific to the data used during the training,

45

the solution may not be accurate for new data to be inspected. In Figure 17,

underfitting, optimum and overfitting function estimations are illustrated.

Figure 17. Illustration of underfitting, optimum and overfitting function estimations

(drawn by author)

Obviously, the error rates in overfitting situation are smaller than the optimum

situation for training data. However, when the data distribution is inspected, it is more

likely that new data will not reside on the function estimate in overfitting condition

and the optimum case will have lower rates of error and more representational power

in the presence of new data. In order to overcome the risk of overfitting, there are

several approaches utilized both while preparing the data and constructing the network.

One of the most commonly used approaches chosen in the process of preparing

training data is to divide the dataset into partitions such that major part of the data is

used for training while the rest or a minor part is used for calculation of loss function.

This minor part is called validation set. Another minor part of the dataset can be

separated optionally or new dataset representing the real case can be constructed for

cross-validation. The graphs which plot accuracy versus iteration or epoch (in other

terms training cycles, which all training data are inspected by the network for once),

shows whether overfitting occurs or not during the training process. In Figure 18, an

exemplary graph showing accuracy scores over number of epochs for overfitting

concerns. Ideally, validation accuracy follows training accuracy at very similar rates.

46

Figure 18. Accuracy vs Epoch graph showing overfitting (drawn by author)

Decision made at the pre DL phase regarding the selection of the framework and the

data are directly reflected in accuracy vs epoch or error vs epoch graphics. If the

complexity of the data and the framework are not incompatible, the corresponding

graphics may reveal underfitting or overfitting. In such cases, data and framework

preferences must be revisited to establish compatibility.

3.2.4 Convolutional Neural Networks (CNN) Architecture

CNN's operate with the same principle with ANNs in terms of having hidden layers

which weight and bias factors are assigned and optimized throughout the training,

having stages of forward pass, calculation of loss, backward pass and parameter

update. In contrast, CNN layers do not need to be fully connected and have specialized

hidden layers for specific tasks. In addition, in case of CNN’s the inputs are

represented as 3D arrays or tensors having height, width and feature channels (depth)

while ANN’s are commonly utilized with limited number of inputs in feature space.

CNN applications are mainly focused on but not limited to image-based analysis and

processing.

47

A typical CNN consists 4 major layer types as convolution layer, ReLU (Rectified

Linear Unit) layer, pooling layer and fully-connected layer and these layers are called

building blocks of CNN's. A simple representation of CNN workflow is presented

below.

Figure 19. A simple representation of CNN workflow (Lecun et al., 1998)

As in ANN, CNN’s may also have multiple layers of each type of building blocks and

generally have a layer pattern as follows:

𝐼𝑁𝑃𝑈𝑇 → [[𝐶𝑂𝑁𝑉 → 𝑅𝐸𝐿𝑈] ∗ 𝑁 → 𝑃𝑂𝑂𝐿] ∗ 𝑀 → [𝐹𝐶 → 𝑅𝐸𝐿𝑈] ∗ 𝐾 → 𝐹𝐶

(Karpathy, 2018)

Where N, M and K denotes number of repetitions of the building block groups which

they are multiplied with. N is bigger than 0 and usually is also bigger than 3; M is

bigger or equal to 0 and K is bigger than 0 and usually is also bigger than 3.

It should be noted that the spatial dimensions of data gradually decrease due to

convolution and pooling operations finally resulting in a probability for each possible

prediction classes. As the size reduction is strictly bounded with the mathematics

behind these operations, input and output sizes determine the number of operations

and parameters governing these operations.

Convolution: The very first and the most important operation which forms the basis

of CNN’s, is convolution operation. In CNN’s, images are represented as numerical

values and for each pixel in the image, corresponding row and column cell has a value

48

denoting its color or brightness. The matrices representing the images can be either 2D

or may have more dimensions with respect to the color mode.

Convolution operation is the multiplication of image pixel data with a convolution

operator by taking dot product. Convolution operators, which are also known as

kernels, filters or feature detectors, are also matrices having smaller dimensions and

are multiplied by iterating from left to right and top to bottom.

Figure 20. Visualization of convolution operation on a7x7 input with3x3 kernel

(drawn by author)

Single convolution operations are commonly used in computer vision with the

utilization of several convolution operators for different purposes such as edge

detection, blurring, sharpening etc. In CNN's, multiple convolution operators are

initialized and given weight and bias values resulting in 3D or 4D tensors with

dimensions of width and height of the image (W, H), optionally color channel of the

image (C) and the number of filters (D-depth) used in convolution operation. These

operations are named as feature extraction. In CNN applications multiple convolution

operators are used in a single layer to obtain different features of the images. For

example, the system workflow shown in Figure 19 consists 3 different convolution

operations in the first layer. The output of the convolution operation is called Feature

Map, Convolved Feature or Activation Map. Convolution operation has two major

49

hyperparameters4 apart from spatial parameters as stride and zero-padding. Stride is

the number of pixels to shift after multiplication of filter with the corresponding

window (receptive field) and zero-padding is the number of pixels to pad the image in

order to include borders of the image or to acquire an output with desired dimensions

for next operation.

As data are propagated through the network, extracted features of previous input are

fed to the next convolution operation. As a result, network initially is able to detect

edges and blobs, followed by primitive shapes and continue with more so-called

abstract features representing spatial relations between object components and details

in the image. For instance, for face detection task, more abstract features correspond

to nose and eyes and how they come together to form a face.

One of the important implementation detail is named as parameter sharing which

dramatically reduces the number of parameters to compute. In convolutional layers,

the weight is shared among the height and width dimension of the input. As a result,

the number of weights is reduced by the input width and height dimension with the

assumption of spatial locations of input share the same weight and bias parameters.

This implementation detail enables CNN to work on big image inputs and expand the

network in terms of the number of layers and filters without exceeding the

computational limitations.

Introduction of Non-Linearity: The output of convolution operation may consist

negative values for image brightness data caused by matrix multiplication. Rectified

Linear Unit (ReLU) function conserves positive values while replacing zero values

with negative pixel brightness data. Other functions serving the same purpose such as

tanh or sigmoid functions can also be used with respect to the application. Introduction

of non-linearity operation uses non-linear functions to represent real-world data. In

addition, these functions also contribute to the reduction of computational time.

4 User defined parameters

50

Figure 21. ReLU, tanh(x) and Sigmoid function (drawn by author)

Pooling(Subsampling): Pooling operation is used to reduce the spatial dimensions of

the input while conserving the important information. For this purpose, maximum,

average or sum of an area which is defined by the window value is taken. For example,

for a 3x3 window value, 9 pixel values are taken and an output value is obtained by

taking average, sum or maximum of these 9 values. Then next 3x3 neighborhood is

selected by striding the window on the input image. This step is especially important

as pooling operation reduces data size while conserving the important information;

hence increases computational performance. Also, the network becomes invariant to

small distortions and transformation.

Figure 22. Exemplary max pooling operation with spatial extent of 2 and stride of 2

(drawn by author)

Fully Connected Layers: Fully connected layers are the part where the system reduces

the output of the preceding layers to the number of classes which the system gives a

prediction score of. Fully connected layers are the last block of layers before prediction

so network combines all the information gathered to make an integrated prediction.

51

For this purpose, fully connected part of the CNN’s are operated as ANN as a classifier.

Hence, the number of parameters (weights) dramatically increases with respect to

convolutional layers.

Treating the output | Softmax Classifier: Once the output of the last fully connected

layer size is reduced to number of classes to predict from, either loss is calculated

(during training) to backpropagate error and optimize weights or a classification

function is fit (during the test) to output best matching class and class score. For

different classification problems such as binary classification, multi-class

classification, different loss functions are implemented. However, all of these

functions can be simplified to the loss function defined in the previous section. For

testing or prediction purposes utilization of softmax classifier is the most common

application as it is differentiable and the sum of probabilities is equal to 1 which yields

a percentage distribution among classes. Softmax function is defined as follows:

 𝑓𝑗(𝑧) =
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
 (8)

Where z is the class scores and k is the number of classes. The negative logarithm of

softmax function is taken to obtain cross entropy loss which is to be minimized in the

course of training. Cross entropy function is shown as below:

 𝐿𝑗 = − log
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
 (9)

It should be noted other classifier mentioned in Chapter 2 can be utilized instead of

softmax classifier. However, the method of choice does not affect the CNN

architecture.

Apart from essential building blocks of CNN’s, there are several other blocks widely

utilized in CNN implementations. The absence of such blocks does not prevent CNN’s

from operating but blocks such as batch normalization or dropout layers increase the

performance of CNN’s in many cases and contribute to avoidance of overfitting.

Dropout layers freeze a portion of network nodes and respective input and output

connections to these nodes. In this way, the operation effectively eliminates the

possibility of any node or feature to dominate which have possibility to cause

52

overfitting. Batch normalization layer normalizes the input of the following layer with

zero means. This provides standardization of data through the network enabling fast

learning without overfitting.

3.2.5 Utilization of CNN in Custom Problems

It is possible to either construct the CNN architecture from scratch by fine-tuning each

and every parameter such as the number of layers, number of convolution operations,

determination of convolution operators. The construction of CNN architecture is often

defined as black art and even though there are certain patterns for layer formations and

rule of thumb advices, the best performing CNN architecture for a custom problem is

highly dependent on the constituents of the problem i.e. size and variety of dataset, the

nature of classification task. In addition, fine-tuning every parameter of the CNN from

scratch requires high computational cost and time. Apart from computational

concerns, the size and variety of the dataset also determine the performance of CNN.

For training a network from scratch, thousands of images per class is required in order

to avoid overfitting even if all the methods mentioned above regarding overfitting are

employed.

Alternatively, several CNN’s which are trained on different datasets are available for

fine-tuning. The process of fine-tuning some or all parameters of a pretrained network

is called “transfer learning”. Such pretrained networks are usually trained on public

data provided for annual challenges such as Imagenet Large Scale Visual Recognition

Challenge (ILSVRC) provided by Imagenet (Stanford Vision Lab, 2018) which the

dataset has 1,2 million images from 1000 classes or Pascal Visual Object Classes

Challenge hosted by the University of Oxford5 (Oxford Robotics Institute, 2018)

which the dataset has approximately 20000 images for training and testing from 20

classes. As can be seen from the number of classes and number of images, provided

datasets are trained for generic purposes and general use. The classes include both

animate and inanimate objects.

5 Pascal VOC Challenge lastly took place in 2012. However, the database provided is still widely used

for training networks.

53

However, the variety provided in such datasets does not guarantee that the pretrained

networks trained in these datasets will perform well in custom task and is mostly

dependent on the similarity of custom problem dataset and dataset used in pretrained

network. If the datasets are dissimilar, and custom dataset contains enough number of

samples (~500 images per class for transfer learning) for each class, then pretrained

network can be fine-tuned for the custom problem. The ability to fine-tuned pretrained

networks for custom tasks increases the applicability of CNN’s in everyday tasks

without the requirement of supercomputers and high computational time for training.

In addition, owing to the transfer learning researchers don’t need to struggle for

network configuration process for utilization of CNN is custom tasks.

Information on fundamentals of how CNN’s work shared so far is based on generic

applications. However, the network performance is highly dependent on data design,

i.e. size and variance of the dataset, and application case together with the

configuration of the network utilized. As mentioned in chapter 1 and 2, CNN

algorithms; and thus deep learning algorithms are inspected through the crack

detection case study in order to achieve a holistic understanding not only from

theoretical perspective but also by means of hands-on practice. In this context, the

CNN implementations are investigated in two different tasks and scales as; crack

classification (whether an image contains cracks or not) and crack semantic

segmentation (whether a pixel belongs to a crack or not) in Chapter 4 and 5

respectively.

54

55

CHAPTER 4

CLASSIFICATION OF CRACK IMAGES – COMPARATIVE ANALYSIS OF

PRETRAINED CONVOLUTIONAL NEURAL NETWORKS

“With too little data, you won’t be able to make any conclusions that

you trust. With loads of data you will find relationships that aren’t

real…”

Douglas Merrill

Image processing is one of the driving fields of convolutional neural network (CNN)

research even though these frameworks are also employed in several applications other

than image processing. As described in Chapter 3, it is possible to either construct a

network from scratch or employ a pretrained network in the course of transfer learning

for utilization of CNN’s in custom task. Requirements of these two approaches vary

especially in terms of quantity of data and challenges in the configuration of the

network structure. Within the scope of Chapter 4, transfer learning approach is adopted

due to requirement of less data for training and simplicity of the case specific

implementation. In that sense, it is aimed to focus on data rather than CNN structure

in the scope of data design.

Transfer learning eases utilization of CNN’s in custom tasks with their already built

configuration and learned parameters with respect to some generic dataset. However,

high performance of the pretrained network on the new case is not guaranteed and is

highly dependent on the dataset provided to the network and the complexity matching

between the task and the network. For the sake of example, a highly acknowledged

56

pretrained network may perform poorly if sufficient number of data samples with

adequate variance is not provided. Similarly, if the pretrained network is designed for

complex classification tasks, network may be subjected to overfitting when utilized on

much simpler tasks.

Even though there are several studies on utilization of CNN’s in crack detection task,

most of these studies are based on constructing CNN’s from scratch and networks

utilized in these studies have limited number of layers. The studies focusing on using

pretrained networks on crack detection task have proven the applicability of transfer

learning for this task. Yet, a comprehensive study inspecting multiple dimensions,

such as influence of dataset size, number of convolution layers, learnable parameters,

of this complex task is not present. Within the scope of Chapter 4, a comprehensive

analysis on performance of pretrained networks on crack detection and the parameters

effecting this performance is conducted. The performances of the networks are

inspected in four test cases with varying similarities to training dataset to evaluate the

applicability of learned features to diverse cases.

4.1. Parameters effecting performance of CNN’s on crack detection

Within the scope of Chapter 4, it is aimed to reveal which properties of CNN

architecture and how the decisions taken throughout the process effect performance.

For this purpose, multidimensional performance analysis on pretrained networks for

crack detection task is conducted and effects of the variables listed below are

inspected.

4.1.1. Dataset

Size of training dataset and variance among the data play a crucial role in the

performance of the network. It is known that pretrained networks require less data

compared to the networks which are trained from scratch, as pretrained networks have

already adjusted weights by learning from vast amount of data. For transfer learning

applications, it is assumed that layer weights are only fine-tuned to adapt to new cases

and fast convergence of layer weights is expected. Common practice refers to hundreds

to thousands of training data per class (in crack classification task: crack and

57

background) is sufficient for obtaining highly accurate predictions. However, as

pretrained networks are often trained for generic classification tasks which performs

prediction among numerous object classes with high level features, whether the

common practice is applicable to binary problem of crack presence or not is unknown.

Furthermore, for subjects having low level features, risk of overfitting is imminent

with the increasing number of training data.

The dataset utilized in the present study is based on 550 full resolution images with

3024x4032 pixel dimensions. The full resolution images are subdivided into 224x224

pixel image patches in order to conform with CNN input sizes. 500 of the mentioned

images are captured from walls and floors of several buildings in METU Ankara

Campus from approximately 1 meter away from the surface and camera facing directly

to the target surface. In addition, all 500 images are captured at similar times of the

day and the year to have similar illumination conditions. However, dataset have

variance in terms of surface finishes, e.g. exposed concrete, plastering and paint. 40K

224x224 pixel images are extracted from the first set of images constituting 500

images and will be named base dataset hereafter. Base dataset contains equal number

of positive and negative images and used for training and validation of networks. The

base dataset is publicly shared (Özgenel, 2018).

The second set of images contains test data for three different cases and captured at

different times of the day and year from different buildings with varying materials.

Second dataset contains images from concrete surfaces from buildings, concrete

surfaces from pavements and brickwork surface from buildings. Each of the cases are

discussed in detail in correspondence with the results. 500 224x224 pixel images are

extracted for each test case resulting in a total of 1500 images from 50 full resolution

images.

Training dataset: The base dataset is partitioned into three parts as training, validation

and test datasets with 0.7, 0.15 and 0.15 ratios as convention. As a result, 28K training,

6K validation and 6K test datasets are obtained. While conserving 6k test dataset,

training and validation datasets are randomly reduced to 21K, 14K, 7K, 3,5K, 1,75K,

0,7K and 0,35K. Even though, the resulting dataset sizes don’t enable to conduct a grid

58

search to find optimum size of training dataset, it is possible to trace the effect of

training dataset size on the performance of CNN’s.

Validation dataset: Validation dataset is used to evaluate and monitor the network

throughout the training. Learning curves of the training are inspected to detect whether

overfitting occurs or not. The 0,7 to 0,15 ratio between training dataset and validation

dataset is conserved for varying sizes of training dataset cases.

Test dataset: The performances of the trained networks are inspected on four distinct

test datasets. First test dataset consists 6K images which are randomly selected from

the base dataset and referred to Test1 case hereafter. The images in Test1 dataset have

high resemblance with three training datasets and represents the case which the test

images are visually similar to training dataset.

The second, third and fourth test cases are constructed from second dataset

representing three diverse cases in terms of illumination, camera orientation and

material. All of the test cases have 500 images which 250 consists crack images and

250 consists only background. Test cases are respectively, concrete material –

pavement (Test2), concrete material – building (Test3) and brickwork – building

(Test4). Test2 and Test3 investigates the transferability of learned features to similar

cases but with varying illumination conditions and camera orientations. Test4 is the

most challenging task as the background features such as brickwork jointing is visually

similar to cracks. The challenges present at each test case are summarized in Table 3.

It should be noted that the exemplary images shown in Test1 belongs to the base

dataset which 70 and 15 percentage of the dataset is used for training and validation

respectively.

59

Table 3. Test cases and respective challenges

The resulting sizes datasets are shown in Table 4:

Table 4. Number of images in datasets used for training and validation

60

4.1.2 Number of Epochs for Training

The relation between performance of networks and number of epochs, i.e. the number

of iterations which network goes through all training samples, is inspected to observe

how fast the networks converge to obtain high accuracy. As the number of epochs

increases, networks have tendency to overfit to training samples. Yet, minimum

number of epochs are highly dependent on the nature of the subject matter, variance

among the dataset and similarity between training data and test data. Within the scope

of this study, all networks are trained for 10 epochs with varying dataset sizes.

4.1.3 Network dependent parameters: Number of convolutional layers and

number of learnable parameters

Number of convolutional layers and number of learnable parameters denote the

complexity and measures for the deepness of the networks. As the configurations of

pretrained networks are already established, it is not possible to conduct a grid search

for these parameters. Yet, the selection of networks presents variance among number

of layers and number of learnable parameters to enable analysis of how the complexity

of networks effects the performance for crack detection task. Characteristics of the

networks used in tests are described as below. It should be noted that the descriptions

and respective measures of success is dependent to networks’ performance on

ILSVRC dataset which contains more than 1,2M images from 1000 object classes.

AlexNet (Krizhevsky, Sutskever and Hinton, 2012): AlexNet is the first CNN to

perform considerably well in ILSVRC in 2012. Implementation of ReLU and dropout

layers to avoid overfitting and decrease training time are major contributions to the

field which are being widely used. The network has a simple architecture consisting

five convolution and three fully connected layers. The layer structure is hierarchical

which layers are structured in a linear way, one following the other.

VGG Net (Simonyan and Zisserman, 2015): VGG Net, which has VGG16 and VGG19

versions with different number of layers, has an influential role in the field as the study

emphasized the importance of depth (in terms of number of layers) over the complexity

of the content of the layers. The architecture uses consistently 3x3 convolutional layers

61

together with pooling to decrease the spatial dimension. VGG Net is considerably

larger than the AlexNet and VGG16 and VGG19 versions are shown in APPENDIX

I. Even though VGG Net was not the winner of ILSRVC 2014 Challenge, it is used

widely as a baseline with its robust structure and as a basis for deep learning tasks

other than classification.

GoogleNet (Szegedy et al., 2015): GoogleNet, as the winner of ILSRVC 2014

challenge, is one of the first studies which did not use hierarchical approach for the

formation of layers. The introduction of inception module, which an input is processed

in 4 different paths and are concatenated as one output, changed the way the CNN’s

are structured. Such networks are realized by employing directed acyclic graph

method enabling non-hierarchical connection among layers and called as DAG

Networks. Structure of the inception module is shown as below:

Figure 23. GoogleNet inception module (Szegedy et al., 2015)

Apart from the inception module, GoogleNet uses single fully connected layer which

dramatically reduces the number of parameters. GoogleNet has 12 times fewer

parameters than AlexNet while having nearly 5 times more layers (over 100 layers).

The full architecture of GoogleNet is shown in APPENDIX I. Inception v3 and v4 are

also developed and achieved huge success which are based on GoogleNet architecture.

62

Microsoft ResNet (He et al., 2016): ResNet, which is the winner of ILSVRC 2015 by

surpassing %5 top5 error with %3,6 error rate, also employs DAG Network structure

by constructing residual blocks. Residual blocks have two pathways which one path

has series of convolution and ReLU layers while other path directly transmits the input

data. The outputs of two paths are summed. Simple visualization of a residual block is

shown as below and full ResNet architecture is shown in APPENDIX I.

Figure 24. ResNet residual block (He et al., 2016)

ResNet has three versions of ResNet 152, ResNet 101 and ResNet 50 which contains

152, 101 and 50 layers respectively.

Study of Canziani et al. (2016) summarizes the computational cost and performance

of well-known CNN architectures and the results are shown as below:

Figure 25. Network performance (top 1 accuracy) vs computational cost (number of

operations) for well-known CNN's (Canziani, Paszke and Culurciello, 2016)

63

As can be seen from Figure 25, the performance of ResNet surpasses the performance

of VGG, GoogleNet and AlexNet architectures while recent versions of GoogleNet

(Inception v3 and v4) have higher performance for top 1 accuracy. VGG is seen to

have the most computational cost among other while achieving the best performance

among simple/plain networks having hierarchical layer connections.

Pretrained networks and respective number of convolutional layers and learnable

parameters are shown in Table 5.

Table 5. Pretrained networks and respective number of convolution layers and

learnable parameters

 # of Convolution

Layers

of Learnable

Parameters

AlexNet 8 60M

VGG16 16 138M

VGG19 19 144M

GoogleNet 22 7M

ResNet50 50 25.6M

ResNet101 101 44.5M

ResNet152 152 60.2M

As the relation between number of convolution layers and number of parameters are

not linear, it is possible to trace which one of the parameters have more influence on

the performance of the networks. Other constituents of the networks such as utilization

of batch normalization, number of pooling layers, layer configuration are not inspected

within the scope of this study.

4.2 Evaluation Metrics

Confidence of the results obtained from networks provide valuable information

regarding how well the networks learn the discriminant features of cracks and how

confident they are in their predictions. Conventional evaluation metrics such as

accuracy, precision and recall, F score are based on only decisions and it is not possible

64

to make an evaluation regarding confidence of the networks. Formulas of the

mentioned conventional metrics are as given below:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (10)

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (12)

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (13)

Where TP, TN, FP, FN denote True Positive, True Negative, False Positive and False

Negative and resemble (mis)matching of targeted class and prediction.

In order to take confidences of the networks into consideration for the evaluation of

network performances, a novel metric which is named confidence weighted accuracy

is proposed.

Performance of the networks are compared with respect to their confidence weighted

accuracies. The formulas of mean accuracy and mean confidence weighted accuracy

are as below:

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝛿𝑡𝑟𝑢𝑡ℎ𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
 (14)

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖∗𝛿𝑡𝑟𝑢𝑡ℎ𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
 (15)

where, 𝛿𝑖,𝑗 is Kronecker delta function which output 1when i is equal to j and 0 when

i is different than j. In other terms, 𝛿𝑖,𝑗 outputs 1 when networks makes a correct

prediction and 0 when network fails.

Confidence weighted accuracy (CwA) calculation contains more information

regarding how well the networks learn crack features by taking the confidence of

network into account. Contribution of CwA can be illustrated with the example cases

below.

65

Table 6. Accuracy vs confidence weighted accuracy on sample test cases

Case

Predictions Accuracy CwA

1 Prediction True True False False 0.5 0.375

Confidence 0.9 0.6 0.9 0.6

2 Prediction True True True True 1 0.675

Confidence 0.675 0.675 0.675 0.675

3 Prediction True True True False 0.75 0.675

Confidence 0.9 0.9 0.9 0.6

Table 6 illustrates 7 cases which varies in number of predictions and confidence scores

for these predictions. In the first case, 4 predictions are made, which two of these

predictions are correct with 0,9 and 0,6 confidence scores respectively and two

predictions are wrong with the same confidence scores, i.e. one high and one relatively

low confident score for both correct and wrong prediction. While accuracy metric

outputs 0,5 score denoting equal distribution of predictions, CwA output 0,375 by

penalizing the low confidence of true prediction.

CwA scores for the second and third cases are both 0,675 although accuracy scores

output 1 and 0,75 respectively. While third case has one wrong prediction, it is as

valuable as the network making all correct predictions but with low confidence.

Effective range of accuracy and CwA metrics is conserved as networks can score

between 0 and 1. Essentially, CwA opts for correct predictions with high confidence

and penalizes both wrong predictions and low confidence scores.

One drawback of CwA metric can be defined as the calculation is based on whether

the predictions are correct or not and disregards the ratio of classes, i.e. how many of

the predictions are true positive, true negative, false positive or false negative.

However, as the crack detection task is treated as a binary problem within the scope of

this study and classes have equal importance. Furthermore, the datasets which CwA is

analyzed are balanced in terms of number of samples per class. Hence, the information

on contribution of confidence is chosen over information on class dependent behavior

of predictions.

66

4.3 Results and Discussions

Each of the previously mentioned pretrained networks are trained with varying sizes

of datasets for 10 epochs resulting in 560 (7 networks, 8 training datasets, 10 epochs)

trained networks. These networks are subjected to 4 different test cases and confidence

weighted accuracy results are stored in a 4D matrix with 2240 (7 networks, 8 training

datasets, 10 epochs, 4 test cases) members. Both accuracy and confidence weighted

accuracy scores are shared in Appendix 2.

The networks used in the scope of this study are pretrained on ImageNet (Stanford

Vision Lab, 2018) data and obtained from MatConvNet (MatConvNet Team, 2018)

website. All tests are conducted with MatConvNet library and Matlab 2017a

(Mathworks, 2018) on a desktop workstation with 2 Intel Xeon E5-2697 v2 @2,7 GHz

CPU cores, 64GB RAM and NVIDIA Quadro K6000 GPU. On the other hand,

multidimensional analysis approach is applicable to any other pretrained network and

any other programming language.

For the sake of simplicity, highest scoring cases per test case are shared in

Table 7 and all results are shared in Appendix 2. In addition, results are discussed per

case and per parameter as below.

Table 7. Highest scoring test and validation CwA scores for pretrained networks

67

The discrepancy between accuracy scores and CwA scores is illustrated in Figure 26

and Figure 27 and shared in Table 8.

Figure 26. Mean difference between CwA and accuracy scores (drawn by author)

Figure 27. Mean accuracy and mean CwA vs %10 intervals (drawn by author)

As can be seen from the figures and table, the biggest difference in %10 intervals is

observed in %60-%70 accuracy interval with %4.98 change. %90-%100 accuracy

interval where the majority of the network scores concentrated the influence of CwA

is around %2.5. However, %2.5 contribution of CwA calculation enable sorting among

the performances of networks. In addition, the positive influence of CwA which

0

0,02

0,04

0,06

50-60 60-70 70-80 80-90 90-100

D
if

fe
re

n
ce

Intervals

Mean Difference between CwA and

Accuracy Scores

0,5

0,6

0,7

0,8

0,9

1

50-60 60-70 70-80 80-90 90-100

S
co

re
s

Intervals

Mean Accuracy vs Mean CwA

mean Accuracy mean CwA

68

increases accuracy scores denote that the networks have high confidence scores when

making correct predictions while having low confidence scores for wrong predictions.

Table 8. Mean accuracy, mean CwA scores for test cases

Mean

Accuracy

50-60 60-70 70-80 80-90 90-100

Test1 NaN 0.606 NaN 0.86 0.993

Test2 0.512 0.652 0.743 0.853 0.941

Test3 0.518 0.646 0.746 0.851 0.929

Test4 0.532 0.658 0.758 0.843 0.917

Mean 0.521 0.6408 0.7485 0.852 0.945

Mean CwA 50-60 60-70 70-80 80-90 90-100

Test1 NaN 0.5455 NaN 0.754 0.986

Test2 0.495 0.609 0.679 0.822 0.904

Test3 0.5 0.609 0.721 0.825 0.909

Test4 0.505 0.6 0.716 0.809 0.881

Mean 0.5 0.591 0.705 0.803 0.92

Difference 50-60 60-70 70-80 80-90 90-100

Test1 0 0.0605 0 0.106 0.007

Test2 0.017 0.043 0.064 0.031 0.037

Test3 0.018 0.037 0.025 0.026 0.02

Test4 0.027 0.058 0.042 0.034 0.036

Mean 0.021 0.0498 0.0435 0.049 0.025

Test1 CwA for first epoch with 0,35K dataset

Test 1 accuracies for first epoch with the least number of image samples are inspected

to observe how fast the networks converge. AlexNet, VGG16, VGG19 and GoogleNet

achieved more than 0,9 CwA. Especially fast convergence of VGG16 and VGG19 is

significant when the dataset size is considered. On the other hand, even though ResNet

networks scored much lower at first epoch, they scored over 0,9 CwA at the second

epoch.

69

Test 1 CwA

As all networks scored over 0,9 CwA at the second epoch, later iterations are basically

fine tuning to converge to CwA of 1. All networks benefitted from the larger dataset

sizes scoring the highest CwA with over 21K image samples. However, when the

scores present in Appendix 2 are inspected, the differences are barely noticeable and

it is not possible whether overfitting occurs as the validation dataset is randomly

chosen from the base dataset which the training datasets are also extracted from.

Whether the learned features are transferrable to other cases or the networks overfit to

the training samples are tested in Test2, Test3 and Test4 which have variations in terms

of camera orientation, illumination and material.

Test 2 CwA for concrete material – pavement as application area

Even though the application area is different from the training datasets, the cracks in

pavement have less shadowing and visually more discernable with respect to Test 3

case (concrete material- building as application area). As can be seen from Table 3,

the images are more homogeneously illuminated resulting in high contrast among

crack regions and material texture. When scores are inspected, while VGG networks

and GoogleNet networks scored similar to the scores of Test1, AlexNet and ResNet

networks scored much lower. Among ResNet networks, ResNet50 was the most

successful one with 0,9 CwA. The tendency to overfit is observable with the increasing

number of layer for ResNet family with decreasing CwA scores as 0,77 and 0,62 by

respectively ResNet101 and ResNet152. Low score of AlexNet is attributed to the low

number of convolution layers as VGG networks, which have similar architecture but

with more convolution layers, achieved considerably high at Test2.

Test 3 CwA for concrete material – building as application area

Test 3 data is similar to training data and Test 2 data in terms of having concrete

material texture. However, camera - surface orientation, illumination conditions and

camera distance shows variance with respect to the training dataset. Test 3 can be

considered as the test whether the networks achieved a generic solution for prediction

of cracks on concrete surfaces. Similar to Test 2 case, VGG networks and GoogleNet

scored over 0,92 with VGG16 achieved the highest score with 0,98. With the

70

increasing variance ResNet family scored below 0,8 which is an indication of

overfitting. In addition, the highest scoring ResNet50 and ResNet101 networks are

trained with 0,35K and 0,7K training samples which supports overfitting suspicion. As

the number of samples for training increases, scores of ResNet family networks

decrease.

Test 4 CwA for brickwork material – building as application area

Test 4 is the most challenging task among test cases as the background texture and

jointing for brickwork have high probability of misclassification as cracks. Hence, Test

4 reveals whether the networks operate based on contrast differences or are able to

extract crack features and detect cracks regardless of the material cracks reside on.

With lower scores but having the same trend, VGG 16 and GoogleNet achieved the

highest scores among the pretrained networks which are utilized in the scope of this

study. Especially, 0,96 score of VGG16 is promising in terms of obtaining a generic

crack classifier regardless of the material. While ResNet networks scored similarly to

other test cases, AlexNet scored around 0,88. The consistent scores of AlexNet for all

test cases show that AlexNet is able to extract crack features which are adaptable to

other cases. Yet, the relatively simple architecture of AlexNet is more susceptible to

noise resulting in scores below 0,9.

Size of training dataset

When the scores for all tests are considered, it is observed that the accuracies of large

training datasets are comparable with small training datasets per case. For Test 1,

highest scores are obtained with the largest training datasets. As the training dataset

and test dataset for Test1 are extracted from the same base dataset, all networks benefit

from more image samples in the course of training. Therefore, it can be generalized

as, in the event of having similar images for test cases, the size of training dataset

positively influences the accuracy. On the other hand, when the test images show

variance in terms of camera-surface orientation, camera distance to surface and/or

illumination conditions, networks tend to achieve higher scores with smaller training

datasets. 3,5K images are seen to be sufficient for learning crack features without

subjecting to overfitting. Yet, the optimum size of training dataset is highly related

71

with the test case, images and image capturing conditions and 3,5K training dataset

size should not be perceived as optimum.

The same analysis is also valid for number of training epochs. If the training images

and test images have high similarity, number of epoch for training increases the

accuracy whereas for diverse cases, higher number of epochs increases risk of

overfitting and networks tend to have bias towards training set.

Number of convolution layers and learnable parameters

When Test2, Test3 and Test4, which challenges networks in terms of illumination

conditions, camera orientation and distance to surface, and subject material, are

inspected VGG networks and GoogleNet networks have higher scores without being

subjected to overfitting. As shown in Table 5, these networks have 16 to 22

convolution layers and no correlation between learnable parameters. Despite having

different network architecture approaches, it can be inferred that an optimum window

between 16 and 22 layers of convolution for obtaining a generic crack classifier. This

inference is also supported with the decreasing performance of ResNet family with the

increasing number of layers.

Computational time

Computational time required for training 28K training dataset for 1 epoch for all

networks and their mean accuracies of highest scoring networks per case are shared in

Table 9.

Table 9. computational time for 28K training set for 1 epoch

28K dataset | per Epoch Training Time (s) Mean CwA

AlexNet 133 0,89

VGG16 2827 0,98

VGG19 2943 0,96

GoogleNet 1227 0,96

ResNet50 1666 0,82

ResNet101 2447 0,82

ResNet152 3789 0,70

72

The computational cost of the networks are as expected, having correlation with the

study of Canziani et al. which is shown in Figure 25. When the computational times

analyzed in consideration with their performance, GoogleNet performs scores 0,95 in

less than half computational time than VGG networks. However, VGG16 is the most

successful in terms of CwA. On the other hand, AlexNet provides near 0,9 CwA with

considerably less computational time which increases its preferability when

experimenting on the datasets but not for actual test cases.

Within the scope of Chapter 4, a multidimensional analysis of variables effecting

performance of pretrained networks on crack classification. The findings obtained in

this analysis are aimed to provide foreknowledge to researchers working on crack

detection task whether for building applications or not. It is believed that, the results

and optimal ranges achieved in the course of the analysis are applicable to other cases

which the discriminative visual features are limited. Furthermore, the analysis present

herein provides a framework for the evaluation of pretrained networks and enable

selection of the best performing network for future studies.

73

CHAPTER 5

SEMANTIC SEGMENTATION OF CRACK IMAGES

QUADP (A NOVEL QUADTREE INTEGRATED DEEP LEARNING

ALGORITHM)

"There's no sense in being precise when you don't even know what

you're talking about."

John von Neumann

Semantic segmentation provides more information with respect to image classification

methods as the goal is to output pixel wise prediction and labeling of images resulting

in object regions with finely traced contours. By nature, as the outlines of the objects

from different classes are obtained, it is possible to use the output to predict form, size

and spatial relations between objects in the scene. In case for semantic segmentation

of cracks, various features of detected cracks can be measured with respect to the crack

boundaries such as orientation, width, number of cracks in an image. Furthermore,

semantic segmentation applications provide significant information regarding the

behavior of the networks utilized in the implementation. It is possible to trace which

regions activate the network for classification of images and by this way it enables

users to have an insight on the working principles of CNN’s.

There are several studies aiming semantic segmentation with the utilization of deep

learning frameworks. These studies have differences in their methodology and

approach towards semantic segmentation of images.

74

5.1. Semantic Segmentation Approaches

Three of the highly acknowledged studies; namely Fully Convolutional Networks,

Deconvolutional Networks and SegNet, are explained below in consideration with the

differences in their approaches while utilizing CNN framework in their studies. It

should be noted that present studies are developed with the aim of achieving a generic

framework and tested against generic datasets such as PASCAL VOC dataset.

Fully Convolutional Network (FCN)(Long, Shelhamer and Darrell, 2014): Studies of

Long, et.al. can be given as an exemplary study which is commonly used and

referenced. In their study, fully connected layers of pretrained networks (AlexNet,

GoogleNet, and VGG) are converted to fully convolutional layers and the activation

maps of the determined layers are upsampled to match input image dimensions. Then,

upsampled activation maps are overlapped to obtain final output. Three versions of

the fully convolutional network (FCN) is developed and their architecture is shown

below:

Figure 28. FCN32, FCN16, and FCN8 layer architecture (Long, Shelhamer and

Darrell, 2014).

While FCN32s version only upsamples 7th convolution layer activation, FCN16s takes

4th pooling layer activation and 7th convolution layer activation into account and

FCN8s uses 3rd pooling layer activations in addition to FCN16s. As the upsampling

75

ratio decreases, the network is operated as a DAG network and combines information

gathered from different layers. Among the pretrained networks used in this study,

VGG shows the best performance against GoogleNet and AlexNet. It is reported that

the consistent kernel size for convolution and hierarchical structure of VGG network

makes it more suitable for reconstruction of images for segmentation tasks. Native

input and output sizes of images are 500 to 500 pixels.

The upsampling mentioned in the study is not an image interpolation method but rather

a learnable filter which is named as deconvolution layer. Deconvolution layer basically

conducts the inverse of convolution layer. Deconvolution layer is introduced within

the scope of this study and employed by various benchmarking studies in semantic

segmentation.

DeconvNet (Noh, Hong and Han, 2015): The studies of Noh, et.al also utilizes

deconvolution layers based on the VGG16 network. DeconvNet architecture follows

a more hierarchical way from FCN by consistently downsampling the image until

classification and upsampling to reach semantic segmentation result. The architecture

of DeconvNet is shown in Figure 29.

Figure 29. DeconvNet architecture (Badrinarayanan, Kendall and Cipolla, 2015)

In addition to deconvolution layer, unpooling layer is introduced in DeconvNet study.

Unpooling layer effectively upsamples the data in consideration with respective

pooling operation in the convolutional network. The symmetric architecture of

convolutional and deconvolution network sections enables DeconvNet to keep track

76

of which pixel is used for output of pooling and which pixels are discarded and reflects

this information to unpooling operation. As DeconvNet is based on VGG16, native

input-output sizes of images are 224 to 224 pixels.

SegNet: First version of SegNet has a similar architecture with DeconvNet as both

architectures use VGG 16 as a base for convolution part (Badrinarayanan, Handa and

Cipolla, 2015). In contrast with DeconvNet, SegNet reduces the number of parameters

to be learned to increase computational capabilities resulting in better accuracy results

in fewer iterations. The study is then extended to enable custom layer formations

(Badrinarayanan, Handa and Cipolla, 2015). In this study, the network architecture is

chosen to be flat, each layer having the depth of 64 and having fully connected

structure among the layers while preserving convolution-deconvolution dual (named

as encoder-decoder in the study). Both studies are conducted on 360 to 480 pixel

images. 4 encoder and 4 decoder layers are present in the SegNet and are shown in

Figure 30.

Figure 30. SegNet architecture (Badrinarayanan, Handa, et al., 2015)

In contrast to classification applications, semantic segmentation frameworks require

ground truth images which each pixel in the input image are labeled rather than object

classes per image. Hence, the required data for training such networks are proportional

with the dimensions of the training images. On the other hand, for classification

operation, only the class which the image belongs to is required. Despite having

77

different approaches in their frameworks, all of the studies mentioned above are highly

acknowledged and widely used semantic segmentation applications and have

comparable accuracies in terms of semantic segmentation metrics.

5.2 Semantic Segmentation of Cracks

Semantic segmentation of crack images contains possibly vital information for

assessment of cracks. It is possible to predict the number of cracks, their orientation

and pixel based width by post processing the object outlines extracted by means of

semantic segmentation. Furthermore, it is possible to conduct metric measurement if

the camera – surface orientation, camera distance and extrinsic camera parameters are

known for the image input. Hence, precise segmentation of cracks has utmost

importance for fields including but not limited to autonomous inspection and structural

health monitoring of buildings.

CNN’s are powerful frameworks for image processing tasks and have shown

promising results on achieving a generic crack classification framework as discussed

in Chapter 4. Being adaptable to various materials and cases while achieving high

accuracy forms a basis for utilization of CNN’s in semantic segmentation of cracks.

However, the challenges caused by the nature of cracks, which are present in Chapter

2 for crack classification, pursue with increasing influence in semantic segmentation.

These challenges are recapped and additional challenges in consideration with the

semantic segmentation task as defined as below:

Challenges caused by the low level discriminative features of cracks:

Discriminative crack features are easily confused with noise in the background texture,

foreign objects and/or irregularities in application such as exposure of jointing. For

semantic segmentation, noises in a focused part of an image cause crack class

activation even if the region is not a part of the crack. For crack classification task,

softmax classifier compensate false activation and even if the confidence scores

decreases, prediction results are less effected from local noises. Another challenge is

the inhomogeneous illumination of the surface which causes occlusion of crack

segments endangering the conservation of crack continuity. Shadowed part of the

78

images reduces sensitivity to discriminative features of cracks. When the goal is

determining the presence of crack, conserving the crack continuity is not crucial as

long as the networks detects the presence of cracks. However, for semantic

segmentation, loss of crack continuity results in error for making measurements. For

example, a single crack, which is occluded due to inhomogeneous illumination, may

result in semantic segmentation output having more than one crack segments.

Challenges caused by the amount of data:

Building inspection by means of visual data requires collection of vast amount of data.

Even though CNN’s have capability of processing more information with respect to

machine learning classifier, they are not necessarily lightweight frameworks either. As

the number of layers and number of learnable parameters increase, memory concerns

arise while processing high resolution images. In such cases, either images are

subdivided into image patches and processed separately to combine the results later or

images are downsampled if the fine details are not important. For crack detection case,

downsampling high resolution images is not an option as even hairline cracks matter

for classification. In the case of subdividing and combining back the image patches,

the continuation of cracks is not guaranteed as image patches are processed

independently.

In order to overcome the challenges mentioned above, a novel method which combines

quadtree division algorithm and CNN’s is proposed and will be referred as QuadP

hereafter.

5.3 QuadP

QuadP aims to conduct image segmentation by extracting and processing probability

maps from either binary (presence) or weighted (confidence) classification results.

Within the framework of QuadP, while the challenges based on the low level

discriminative features of cracks are addressed by utilizing classification results

instead of achieving activation maps, the challenges caused by the amount of data are

addressed with the utilization of quadtree division method.

79

Quadtree is a highly acknowledged tree data structure which is widely utilized for data

encoding in fields varying from image processing to state estimation in control theory.

In general terms, quadtree division algorithms rearrange data in a tree data structure to

enable fast and easy access among scattered data. For this purpose, a particular

addressing method is utilized. This addressing is based on subdividing the dataspace

into four quadrants in case of fulfilling a specified criterion. This criterion is also

named decomposition condition. The process of subdividing continues until a

termination condition or all of the data are indexed separately. As the decomposition

occurs as long as the decomposition criterion is satisfied, the algorithm focused on

regions where concerned data exists and does not use memory for unimportant parts

of dataspace. Various implementation methods of this basic idea are proposed and

widely utilized in different cases. Some of the region quadtree, which the data region

is directly divided into four equal quadrants having data points reside in; point

quadtree, which the region is divided in a way that the edges of regions correspond to

data points; and matrix quadtree, which is operated like region quadtree but the

division iteration is continued until the smallest cell is obtained. Among these methods,

especially matrix quadtree is widely used in image encoding where pixels are treated

as the smallest cells. Quadtree division algorithm is known to be more memory

efficient with respect to methods storing all data in dataspace.

 Figure 31. Pixel based data storage (raster images), subdivided image patches for

CNN and quadtree division result (drawn by author)

80

In Figure 31, three images illustrating different data storing strategies are shared. First

image represents a raster image where data for all pixels are stored individually. For

high resolution images, memory consumption is the highest among the three images.

Second image represents the conventional subdivision of images in cases which CNN

operations have memory concerns. Even though it is more memory efficient, the

divisions represent the data coarsely. Third image represents quadtree division. The

image is iteratively subdivided into quadrants. It is both memory efficient and have

fine details representing the data.

QuadP is constructed on the idea of utilizing CNN classification results as the

decomposition condition of quadtree division algorithms to conduct semantic

segmentation of cracks. Consequently, four main objectives are determined to be

achieved. These objectives are explained as below:

1. Precision: As the output of the QuadP, precise crack outlines are expected to

be able to conduct measurement. Precision referred here is not only how the

obtained outlines corresponds to the crack region but also how the obtained

outlines perform in measurements. For this purpose, the outputs are evaluated

both with respect to pixel-wise accuracy and crack based metrics such as

number of objects and mean orientation.

2. Flexibility: QuadP is desired to be flexible in terms of being operable in

conjunction with any decision making framework. Even though CNN’s have

proven themselves on crack detection task, QuadP is aimed to be adaptable to

any classification method so that performance of QuadP can be improved in

the presence of a better performing classification framework.

3. Lightweight: QuadP is aimed to be lightweight in terms of computational

memory so that the method enables operation on high resolution images

without losing the connectedness of juxtaposed multiple images.

4. Robustness: QuadP is aimed to be robust in terms of being insensitive to noise

which is frequently encountered in building inspection applications while

effectively focusing on crack regions and features.

81

Motivated with the objectives mentioned above, QuadP is developed as a hybrid

method of CNN classification and quadtree division algorithm. How these methods

are blended is shown in Figure 32.

Figure 32. CNN and quadtree division in QuadP flowchart (drawn by author)

Workflow of QuadP can be explained recursive division of positively classified

regions as cracks into quadrants and subjecting the quadrants to crack classification

for next iteration. By nature, quadtree division algorithm focuses on where the

relevant information is present. Due to the focusing, resulting quadrants contain less

pixels at each iteration. When regions contain limited number of pixel failing to

represent discriminative crack features, CNN algorithm classifies the region as a non-

crack region even if the previous iteration results in positive classification. The

process is iterated until the resulting image region is not divisible to quadrants or every

region is classified as non-crack regions. In the course of subdivision, both indices of

regions and confidence results of the respective classification is stored. As each image

region is classified individually and results are merged after the classification results

are obtained, memory requirement of QuadP is bounded with the memory requirement

of CNN for classifying a single image region. On the other hand, QuadP algorithm is

suitable for parallelization of the process and when the memory capacity allows

parallel processing of multiple image regions, computational time can be reduced.

IMAGE
CNN

classification

Classified as

Crack?

Negative

Regions

Positive

Regions

Quadtree

Division

Yes

No

Size divisible with 2? END
Yes No

82

5.3.1 Issues caused by nature of cracks and semantic segmentation task

The challenges due to the nature of cracks which mentioned above are inspected in

detail to be addressed while implementing QuadP algorithm. These challenges are

illustrated and discussed as below:

Figure 33.Issues caused by the nature of cracks in adaptation of quadtree division to

CNN. Object corresponding to the region border (top left), losing object

connectedness and jaggedness of object outlines (top right), losing features due to

excessive focusing (bottom left and bottom right) (drawn by author)

Object corresponding to the region border: While processing high resolution image,

the image is subdivided into image patches. Division borders play a crucial role for

classification task as in the event of cracks corresponding to the subdivision/region

border, it is not possible to detect discriminative crack features. In such cases,

classification algorithm outputs false negative results, even though the region of

interest contains parts of the whole. In Figure 33 top right image, bottom left quadrant

is classified as false negative.

Losing object connectedness: Both quadtree division and subdivision for processing

the high resolution images with CNN focuses on the content of subdivided region by

nature. Hence, the relationship between neighboring regions are disregarded. When

considered with objects corresponding to region borders, object connectedness may be

83

lost which does not reflect the actual case. In such cases, the measurements conducted

on semantic segmentation output gives erroneous results as multiple crack segments

are obtained from single crack. In Figure 33 top right image, object connectedness is

lost at regions marked with red.

Losing feature due to excessive focusing: As quadtree iteratively divides positively

classified image patches into quadrants, the dimensions of region of interest gets

smaller at each iteration. Before reaching pixel scale, focused region loses its ability

to hold discriminative crack features. In such cases, classification algorithm fails to

predict the region as a positive crack region even if the same region is classified

positively in the previous iteration. In Figure 33 bottom image, the region marked with

red loses features due to the excessive focusing and is classified as negative even

though the region resides inside crack region.

Jaggedness of object outlines: As the method utilizes quadtree division for refinement

of object boundary, the positively classified regions are subdivided into quadrants in

horizontal and vertical axis. Hence, the object boundary is limited with only vertical

and horizontal lines. As image classification requires feature detection of concerned

object, obtained object outlines do not have pixel scale precision. In Figure 33 top right

image, blue regions denote crack presence. As can be seen from the image, the outlines

show jaggedness.

5.3.2 Resolutions for addressing the issues

In order to resolve these issues, three methods are developed as:

i) defining two meta axes as quadtree and control axes for decomposition,

ii) region scoring,

iii) 3D interpolation of region scores

These methods also construct the bridge between quadtree division algorithm and

CNN. Methods and corresponding addressed issues are shown in Table 10. Each of

the method is described in detail below.

84

Table 10. Issues and corresponding approaches

Issue Method

Object corresponding to the region border 2 meta axes

Losing object connectedness 2 meta axes

Losing feature due to excessive focusing Region Scoring

Jaggedness of object outlines 3D interpolation of region scores

2 meta axes approach: In quadtree division implementations, the regions are indexed

in a way to access the data in query. In image processing implementations, this

indexing is constructed with respect to row and column values of the regions and

iteration number. However, as mentioned before, strictly dividing the regions into

quadrants result in losing the relation between neighboring regions. This approach

causes losing crack continuity in crack detection and segmentation applications. In

order to tackle this challenge and preserve crack continuity by taking neighborhood

relations into account, quadtree division is conducted in two instances which one

instance is shifted with half the region dimensions in vertical and horizontal axes. Two

instances are then superposed to merge the information gathered from two axis system.

While first instance conducts regular quadtree division, the second instance controls

the neighborhood relations of regions examined in first instance. These instances are

named as quadtree and control meta axes to refer spatial indexing which the quadtree

division results are stored. The approach is illustrated in Figure 34.

Figure 34. Quadtree and control meta axes decomposition and resulting

decomposition by merging two (drawn by author)

85

For the first iteration only, the original image is zero-padded, i.e. outer boundary is

populated with zero values, with half of the region dimension in order to take image

borders into account for superposing. By nature, zero-padded regions don’t have any

relevant information for crack classification and does not contribute to the

classification. Yet, the image area which the zero-padded regions share with and

contain crack features are positively classified. For second and later iterations, the need

of zero-padding is required only if the crack is extended to image border. Otherwise,

the zero-padded region shown in Figure 34 corresponds to the neighboring regions.

After the classification, the regions are labeled with respect to the prediction and

upsampled with the factor of two for dimensional conformance between quadtree axis

and control axis. The results are merged with OR logical gate. If a region is classified

as crack by any of the instances, the result is stored as positive.

Idea of two shifted meta axes method effectively eliminates to problem of objects

corresponding to the region boundaries and thus loss of object connectedness.

Exemplary implementation is illustrated in Figure 35. Two regions residing at the left

of top image are both classified as non-crack regions due to corresponding region

border. Yet, these regions are positively classified as crack regions by the control meta

axis and labeled as positive for later iterations.

Figure 35. Two axes system method on an object corresponding to region boundary

(drawn by author)

86

Region scoring: Region scoring is based on the idea of conservation of confidence

scores as well as quadtree decomposition conditions. The aim of the region scoring

method is to keep track of previous iterations. At each iteration, as the dimension of

subdivided quadrant is reduced by the factor of two, the results are upsampled with the

same factor to match with previous iteration. Then the scores are summed up to

cumulatively store the how many times a region is positively classified as crack and if

possible the confidence scores of these predictions are also stored. When the algorithm

is terminated, the resultant score is divided by the total iteration number to normalize

scores. As a result, region scores reflecting its decomposition history is obtained for

each region. The calculation of final scores is as below:

𝑅𝑥𝑦 =
∑ 𝑃𝑥𝑦,𝑖 ∗ 𝑆𝑥𝑦,𝑖

𝑘
𝑖=1

𝑘

Where R is region score, S is confidence score, P is binary prediction value, i is number

of iteration, xy denotes the pixel/region location and k is the number of total iterations.

S and P are provided by CNN and taken without subjecting any change. Confidence

score resides between 0 and 1 while binary prediction value is either 0 or 1 denoting

presence of crack. For multiclass problems, such as detection multiple defects as well

as cracks, each class is treated separately as a binary problem of presence. Region

scoring method aggressively penalizes regions which are not classified as cracks; thus

quickly refines object boundaries. On the other hand, as the region scoring method

preserves region decomposition history, problems caused by the excessive focusing

resulting in objects losing their features are resolved and such regions still contribute

to the probability distribution with high scores. As a result, region scoring outputs a

probability map between 0 and 1.

Exemplary implementation of region scoring is illustrated in Figure 36. Top left image

shows region scores overlaid on original image and used as an alpha map. Low scoring

regions are more transparent than high scoring regions. Top right image shows the

region scoring output with relative heat map denoting region scores. Bottom images

are binary and heat map illustrations of region scoring by applying threshold with the

value of 0,5 which the probability of presence is higher than the probability of absence.

87

Figure 36. Region scores overlaid on crack image (top left), region scores (top right),

Segmentation image based on quadtree division (bottom left), Region scores with 0.5

threshold (bottom right) (drawn by author)

3D Interpolation of region scores: In order to refine object boundaries, the problem is

treated as a probability distribution in 3D space with width, height and region score

dimensions. In other words, probability map with low resolution is transferred to 3D

space to increase the resolution of probability map. The coordinates of image patch

center points created by quadtree decomposition are extracted and their z-axis values

are obtained from their respective probability obtained by region scoring. Then data

points are connected to the neighboring points by linear interpolation to obtain a

probability surface. Higher order interpolation techniques are not preferred due

unnecessary smoothing of the surface resulting in loss of precision. An exemplary 3D

interpolation of region scores to obtain probability distribution in shown in Figure 37.

Once the surface function is obtained, the probability values for each pixel is obtained

by using the probability function. After obtaining per-pixel probability values, the

problem is converted back to a 2D space to conduct semantic segmentation. The image

is applied threshold of 0,5 where presence exceeds probability of absence. Figure 38

shows the stages of obtaining semantic segmentation results.

88

Figure 37. 3D Reconstruction and linear interpolation of pixel probabilities to obtain

probability surface (drawn by author)

Apart from obtaining probability distribution of the image, 3D interpolation of region

scores also serves for resolving the issue of jaggedness of outlines and provides

semantic segmentation results with more precise boundaries.

Figure 38. Probability map obtained by linear interpolation (top left), probability map

obtained by 0,5 threshold (top right), semantic segmentation result (bottom left),

image segmentation overlaid on original image (bottom right) (drawn by author)

89

To sum up, detailed QuadP flow chart showing how CNN, quadtree division

algorithm, 2 meta axes, region scoring and 3D interpolation steps come together is

shown in Figure 39.

Figure 39. QuadP flowchart (drawn by author)

90

5.4 Performance inspection of QuadP

In order to test the performance of QuadP, semantic segmentation task is conducted

and the performance of QuadP is compared with two highly acknowledged semantic

segmentation methods, namely Fully Convolutional Networks (FCN) and SegNet. In

order to avoid bias which may be caused because of the classification stage of the

semantic segmentation, experiments are conducted with VGG16 pretrained network

which is natively utilized in FCN and SegNet methods. Deconvolutional Networks are

not included into comparison as VGG16 version of SegNet is the improved version of

Deconvolutional Networks.

Both FCN and SegNet are end-to end trained with 6775 crack image samples with

500x500 pixel dimension together with the ground truth maps. The ground truth

images are handcrafted by pixel scale painting. On the other hand, for experimentation

with QuadP, VGG16 network trained with 1,75K image dataset, which contains 875

positive and 875 negative samples with 224x224 pixel dimension, is utilized. For

validation, 376 images which are equally distributed to binary classes are used.

Mentioned VGG16 network is also one of the best scoring network among the network

compared in Chapter 4 and have a mean CwA score of %96,375 for binary

classification of crack images. On the other hand, it should be noted that the

performance of QuadP is bounded with the performance of VGG16 network, which

are %99.2, %90.45, %97.79 and %81,75 accuracy scores and %99.8, %91.3, %98.1

and %96.3 CwA scores for test cases 1,2,3 and 4 respectively. Multiple VGG16

networks are intentionally not selected to observe the adaptability of a single network

on multiple semantic segmentation tasks.

For testing the performances of three approaches, the approach utilized in Chapter 4

for performance comparison of pretrained network is chosen. Total of 491 full

resolution images are used throughout the experiments. The test cases are explained in

detail in Chapter 4. The distribution of test images per case is as shown below:

91

Table 11. Test cases and dataset sizes for semantic segmentation evaluation

Case Number of Images

Building – concrete 458

Pavement – concrete 16

Building – concrete with varying conditions 9

Building - brickwork 8

5.4.1 Evaluation Metrics

The performances of three methods are evaluated with respect to two set of metrics,

namely semantic segmentation metrics and crack based metrics. First set of metrics is

based on semantic segmentation performance and consists five highly acknowledged

metrics. These metrics are as below and calculated both globally and per class:

- Global Accuracy: Global accuracy measures the percentage of correctly

classified pixels without consideration of classes. The formula of global

accuracy is as below:

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Where TP, FP, TN and FN stand for respectively True Positive, False Positive,

True Negative and False Negative.

- Mean Accuracy (Accuracy): Mean accuracy measures the average of

percentages of correctly classified pixels per pixel. The formula is as below:

𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Accuracy metric is the calculation of the score per class.

- Intersection over Union (IoU): IoU measures the ratio of correctly classified

pixels over sum of number of ground truth pixels and predicted pixels per class.

Formula is as below:

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁

While calculated IoU score per class, average of IoU score is taken for global

calculation.

92

- Weighted IoU: Weighted IoU measures average of IoU weighted by the

number of pixels of corresponding class

- Mean Boundary F1 (BF) Score: BF score is the extension of F-score for

semantic segmentation evaluation. The formula is shared in Chapter 4. Mean

BF score measures how well the predicted outline conforms with ground truth

outline. For global evaluations average of BF scores are calculated.

Second set of metrics are proposed within the scope of this study with the aim of

evaluating crack based on important features. These metrics are defined as below:

- Number of Objects: Number of objects calculates the number of individual

regions for crack class. For connectedness 4-connected neighborhood of the

regions are inspected. It is a measure of how well the object connectedness is

preserved.

- Mean Orientation: Mean orientation measures the major axis orientation of

individual crack regions and takes the average weighted with the area of the

regions. It is a measure of influence of falsely classified regions on the output

result.

A metric for pixel based crack width is not proposed as semantic segmentation

metrics already cover how well the contours are matching with BF-Score.

5.4.2 Results and Discussions

The performances of methods are inspected with respect to two set of metrics on 4 test

cases. The results of global and class based semantic segmentation metrics for 4 test

cases are shared in Table 12 and Table 13.

93

Table 12. Global semantic segmentation results for 4 test cases

Case Method Global Accuracy Mean Accuracy IoU Weighted IoU Mean BF

Test1

FCN 0.9915 0.7410 0.7347 0.9831 0.9605

SegNet 0.9904 0.8444 0.7646 0.9829 0.9104

QuadP 0.9809 0.9011 0.6954 0.9714 0.8979

Test2

FCN 0.9271 0.6989 0.6131 0.8793 0.4891

SegNet 0.8351 0.8915 0.5600 0.7844 0.2294

QuadP 0.8914 0.7466 0.5828 0.8423 0.4831

Test3

FCN 0.9855 0.8007 0.6816 0.9766 0.7660

SegNet 0.8948 0.9115 0.5031 0.8814 0.4716

QuadP 0.9481 0.8536 0.5605 0.9364 0.5439

Test4

FCN 0.9475 0.7823 0.5534 0.9341 0.4436

SegNet 0.4575 0.6941 0.2382 0.4421 0.1675

QuadP 0.9456 0.8334 0.5610 0.9324 0.5202

When results of global semantic segmentation results are inspected, it is seen that FCN

has the highest score for global accuracy for all cases while QuadP has comparable

scores with FCN. For test cases 2, 3 and 4 where the illumination conditions, camera-

surface orientations and materials change, performance of SegNet significantly drops,

especially in test 4. On the other hand, for mean accuracy which represents the average

of class accuracies, results of SegNet is higher than FCN and QuadP. High score is

SegNet is due to the accuracy of detecting cracks but also being susceptible to noise

resulting in falsely classified background as cracks. IoU and Weighted IoU score of

FCN and QuadP are comparable and observed to be higher than SegNet for test cases

2, 3 and 4. For test case 1, even though QuadP scored the lowest, the result is

comparable to counterparts. For BF score which evaluates how well the object

contours match, FCN has the highest score for test 1 and test 3 while QuadP scored

higher than FCN in test 4. Both have similar results in test case 2. To sum up, QuadP

achieved comparable scores with highly acknowledge methods, even surpassing in

challenging test cases. In order to obtain more information about the performances of

methods, class based metrics are inspected.

94

Table 13. Class based semantic segmentation results for 4 test cases

Case Method Class Accuracy IoU Mean BF

Test 1 FCN Crack 0.4803 0.4779 0.9519

Background 0.9999 0.9914 0.9691

SegNet Crack 0.6936 0.5389 0.8960

Background 0.9953 0.9903 0.9248

QuadP Crack 0.8187 0.4101 0.8740

Background 0.9836 0.9806 0.9219

Test 2 FCN Crack 0.4318 0.3014 0.4395

Background 0.9660 0.9247 0.5388

SegNet Crack 0.9557 0.2973 0.201

Background 0.8254 0.8227 0.2578

QuadP Crack 0.5771 0.279 0.3763

Background 0.9161 0.8866 0.5898

Test 3 FCN Crack 0.6104 0.3778 0.7090

Background 0.9910 0.9854 0.8230

SegNet Crack 0.9286 0.1128 0.4241

Background 0.8943 0.8934 0.5191

QuadP Crack 0.7563 0.1734 0.3818

Background 0.9509 0.9475 0.7061

Test4 FCN Crack 0.6116 0.1597 0.3637

Background 0.9531 0.9470 0.5234

SegNet Crack 0.9388 0.0275 0.1046

Background 0.4495 0.449 0.2304

QuadP Crack 0.7174 0.177 0.3574

Background 0.9494 0.9449 0.683

For class based semantic segmentation evaluation, QuadP achieved promising results

by achieving the highest accuracy for crack class in test 1, background class in test2.

In general, FCN scored the highest background accuracy for all test cases while SegNet

achieved high scores for crack accuracy for test cases 2, 3 and 4. However, class based

accuracy can be misleading as only correctly classified pixels over ground truth pixels

are calculated. Hence, if all the image is classified as crack by falsely classifying

background, the crack accuracy would be 1. For this purpose, class based accuracies

are evaluated together with IoU and Mean BF scores. For IoU scores, FCN has the

highest scores for test case 1, 2 and 3 while for the most challenging task which deals

with segmentation of brickwork surfaces, QuadP achieved the highest score. For other

cases, QuadP also scored comparable to counterparts. When mean BF scores are

95

inspected, a similar result is observed. To sum up, FCN achieved to better than SegNet

and QuadP for semantic segmentation metrics with close margin with QuadP. QuadP

managed to score close scores to FCN, even surpassing SegNet and FCN in some of

the challenging test cases.

However, the outputs of these methods are only valuable if the results are adequate for

crack measurements. For this purpose, second set of metrics are analyzed and summary

of the analysis is shared in Table 14.

Table 14. Number of objects and mean orientaion scores for 4 test cases

Number Objects

(percentage error)

Number of

Objects (count)

Mean Orientation

(percentage error)

Test 1 FCN 22.852 18.6x 0.076

SegNet 727.002 536.8x 0.108

QuadP 4.685 4.3x 0.053

Test 2 FCN 252.261 187.2x 0.177

SegNet 6216.913 4906.9x 0.180

QuadP 7.914 6.2x 0.293

Test 3 FCN 186.751 49.1x 0.131

SegNet 5510.248 2751.1x 0.149

QuadP 9.974 4x 0.127

Test 4 FCN 257.335 69.9x 0.328

SegNet 10351.102 3470.8x 0.597

QuadP 12.234 3.45x 0.177

When number of objects and mean orientation scores are inspected, it is seen that FCN

and SegNet fails to preserve object connectedness in cases which the object classes

have low features which can be easily confused with background noise. While QuadP

also suffers from losing object connectedness and prediction of more cracks than the

truth, the results of FCN and SegNet are considerably higher than QuadP and ground

truth which risks conduction of measurement with respect to semantic segmentation

results. For mean orientation scores, QuadP scored the best by getting the lowest

percentage error in three of four test cases with considerable gap between counterparts.

For test case 2, FCN scored better than QuadP. When the performances of networks

96

for classification task are inspected, VGG16 network scored its considerably low for

the test case 2 with %90,45 accuracy and %91.3 CwA for the utilized network for the

semantic segmentation tests. Hence, the performance of QuadP is also bounded by the

%90,45 performance of VGG16 network utilized.

When the results are observed visually, the rationale of performance scores both for

semantic segmentation metrics and crack based metrics are evident. A sample

comparison of original image, ground truth and results of QuadP, FCN and SegNet is

shared in Figure 40Figure 39.

Figure 40.Comparison of network outputs versus original image and ground truth. a)

Input image, b) manually drawn ground truth, c) QuadP result, d) FCN result, e)

SegNet result (drawn by author)

As can be seen from the Figure 40, FCN and SegNet have finer outlines with respect

to QuadP but crack connectedness is lost in many regions. While QuadP have tendency

to overestimate crack region, FCN underestimates the crack width. On the other hand,

SegNet has multiple segmentations and false classified pixels across the image canvas.

The proposed method within the scope of this study is believed to fulfill the objectives

mentioned previously as being precise, flexible, lightweight and robust. QuadP

achieved considerable well in crack based metrics while having comparable results in

semantic segmentation metrics. The scores of QuadP is doubtlessly effected with the

performance of VGG16 network. However, it is believed that the performance can be

97

improved when QuadP method is utilized in conjunction with better performing

networks or classification algorithms due its flexible nature.

As a result, Chapter 5 explains semantic segmentation process with the utilization of

CNN algorithms. Thus, it is aimed to provide in depth perception of how CNN’s

operate by means of visualization of regions effecting the classification process. In

addition, Chapter 5 constitutes examples of how the precision can be enhanced by

means of utilizing various algorithms in conjunction and how case specific evaluation

metrics can be devised and is crucial in determining the performance of CNN

algorithms.

98

99

CHAPTER 6

CONCLUSION

Machine learning approaches and deep learning algorithms gained importance in the

last two decades due to the availability of accumulated vast amount of data. When the

contemporary technology and the means of data collection are taken into account, it is

possible to foresee that the Big Data will continue to grow apace in terms of quantity

and complexity. Correspondingly, the machine learning approaches and raw data

processing algorithms, either deep learning or any other algorithm to be developed in

future, will be prominent in the future. In order to survive in the data deluge and

appraise useful information embedded in the mass of data, one needs to be able to have

an insight on what this mass embodies, which part is relevant to the task and capability

of formulating the task as a problem of learning from data. When the applicable fields

of DL algorithms are considered, available data comprises more potentials than what

can be achieved by only focusing on training phase, especially in cases which the

subjective interpretation and personal taste are necessitated. In this context, data design

term is introduced within the scope of this thesis as an instrument to control,

collaborate with and evaluate the data and the algorithms to reach desired outcome.

6.1 General Discussions

Data design, which is defined and explained in depth in chapter 3, covers data related

choices and their impacts in the course of utilizing deep learning or any other raw data

processing framework. These choices include but not limited to data selection,

100

reformulation of the task in terms of selected data, establishing the compatibility

between algorithm and data, and devising task specific evaluation/assessment metrics.

Correspondingly, this study is constructed on the hypothesis of data design is one the

most important act effecting the performance of raw data processing (i.e. deep

learning) algorithms, and explores the questions of “how does data design influence

output and evaluation of DL algorithm?”, “how can metrics for the evaluation of the

results be determined?”, “is it possible to decide on optimal values for number and

quality of data to guide data designers?” and “what is the relationship between data

design and the structure of DL framework?”. The outline of the thesis in relation with

the research questions, objectives and contributions are highlighted in Table 15.

Accordingly, the present study aims to achieve the research objectives in four chapters.

Chapter 2 inspects how the data is incorporated for problem solving in traditional

machine learning and deep learning algorithms. Traditional ML and DL frameworks

pose considerable differences even though the mathematics behind the algorithms are

almost the same. The ways of handling problems with these two approaches

necessitate different strategies due to the nature of data provided to each framework.

While traditional ML algorithms necessitate explicit definition of the features relevant

the task, DL algorithms conduct feature extraction within the framework. Hence, users

are obliged to redefine the problem regarding the available and relevant data instead

of an accustomed way of problem definition through constraints and logical

presumptions. Breaking the routine way of problem definition for machine learning

implementations provides an opportunity for working on problems which the relevant

features cannot be decoded such as problems requiring intuitive decisions. On the other

hand, data remains as the only instrument to define the problem and desired outcome,

putting emphasis on both data selection and evaluation of the results. Both of these

actions involve subjective interpretation to an extent, regardless of the complexity and

nature of the problem. Yet, as the subjectivity involved in the data increases to reflect

personal preferences, results can only be evaluated by the user who provides the data.

101

T
ab

le
 1

5
.

R
es

ea
rc

h
 q

u
es

ti
o
n

s,
 o

b
je

ct
iv

es
 a

n
d

 c
o
n

tr
ib

u
ti

o
n

s
o

f
th

e
st

u
d

y

102

Being able to operate on raw data without explicitly defining the relevant features to

the task has significant potentials, especially for disciplines such as architecture which

comprises problems with varying complexities, scales and requirement of subjective

interpretation. Especially, convolutional neural networks become prominent among

DL algorithms for implementations in architecture due to the fact that CNN’s are

capable of processing multidimensional raw data while conserving the spatial relations

which is crucial for architecture.

For elaboration of the discussion, crack detection in buildings is chosen as the case

study with the aim of exemplifying the DL implementations. As crack detection is a

straightforward task for human perception, objective evaluation of the results is

possible. Yet, it is a challenging problem for DL algorithms at the same time, as cracks

have limited visual features to be discriminated from non-crack objects such as

shadows, foreign objects and irregularities on the surface. A comprehensive literature

survey is conducted on machine learning implementations for crack detection

including deep learning examples. As studies on crack detection in buildings are

limited, the survey is extended to include infrastructures artifacts. Reported

performances are compared in relation with how the data is handled in each study.

As a result of the literature survey, it is observed that performance of CNN applications

surpasses the traditional ML applications and number of studies employing CNN has

considerably increased since 2015. It should be noted that the inspected studies focus

on different application areas such as sewer pipes or buildings and the data employed

in these studies are exclusive to the studies. Hence, the performance comparison is

based on the reported results and does not reflect the superiority of any algorithm or

approach but instead is perceived as a benchmark for the implementation phase of the

study. One of the most significant findings of the study is that the data selection in

terms of site of acquisition, quality and representativeness of data is implicitly referred

in the applications and reasons for providing that particular dataset remains obscure.

For this reason, it is not possible to trace the influence of data selection to the

performance of the implementations.

103

Data design is introduced and discussed in depth as the major contribution of this thesis

in Chapter 3. Data design aims to construct a frame for series of actions taken in the

course of employing DL algorithms for custom problems. In that sense, data design is

neither solely selection of data nor the task specific evaluation of the outcome but

instead an end to end approach to process. For this purpose, the process is divided into

three phases as pre DL, DL and post DL phases and decisions taken at each phase are

determined together with the interrelations respectively. Study attaches utmost

importance to pre and post DL phases as the relationship between DL algorithms and

task is constructed in these phases by means of reformulating the task as a problem of

learning from data and getting sensible inferences from the results DL algorithm

outputs by means of using or devising task specific evaluation methods.

Pre DL phase is composed of four tasks which are reformulation of the problem,

determining the data representing the case and the solution, determining sutiable DL

framework and crafting the data without altering the information with respect to the

selected DL framework. The decisions taken at this phase directly effects DL and post

DL phases in terms of configuring the DL structure, determining the DL parameters,

determining evaluation method and case specific metrics. As illustrated and discussed

in Chapter 3, the decisions taken at each phase are not in a linear order. Instead they

are interrelated effecting each other and require holistic understanding of the data

design process, field expertise and DL literacy. Chapter 3 also contributes to DL

literacy by explaining the working principles of convolutional neural networks as an

exemplary DL framework apt for applications in architecture. While scrutinizing

mathematics and structure of CNN, the relevance of data design is also investigated.

As data design is context sensitive for which the data and decisions are task specific,

the discussion is pursued in Chapters 4 and 5 with the case of crack detection in

buildings.

Chapter 4 and Chapter 5 exemplifies data design process and demonstrates how DL

algorithms can be utilized in architecture through crack detection in buildings. In

addition, case study is used as a facilitator to investigate and identify the task

specificity of data design in relation with its potentials and limitations. While Chapter

104

4 handles crack detection in image level, i.e. presence of crack in an image; Chapter 5

focuses on pixel level predictions for the determination of crack region in an image.

One of the contributions of this study is the comprehensive analysis of parameters

effecting the performance of convolutional neural networks in crack detection task.

For this purpose, 7 highly acknowledged pretrained networks are employed and a

multidimensional analysis regarding training dataset size, number of training epochs,

number of convolution layers and number of learnable parameters is conducted in

Chapter 4. By this means, it is aimed to inspect how each of these parameters effect

the training and testing performance so that further studies can employ this

foreknowledge to start with wise guess for construction and/or implementation of

CNN networks on crack detection. It is observed even though it is not possible to

obtain a generic recipe for the data design process, it is possible to achieve optimal

ranges specific to tasks.

In the course of obtaining the most suitable network and parameters for crack

detection, it is observed that pretrained networks converge rapidly and obtain high

accuracy results. On the other hand, for crack detection task, confidence of the

prediction is as valuable as the prediction itself revealing valuable information on how

the algorithm behaves in the course of making predictions. For this purpose,

confidence weighted accuracy (CwA) is proposed to differentiate between multiple

networks having similar accuracies with respect to their confidences. Thus,

introduction of CwA is regarded as a contribution to the field and an example of

devising evaluation metrics for concerned task.

Chapter 4 also demonstrates the power of CNN’s in the course of obtaining generic

solutions. Even though the networks are only trained with images of crack on concrete

surfaces, the resulting framework performed considerably successfully on brickwork

and pavement images. Hence, it is possible to conclude that the trained networks

obtained generic features defining the cracks and are applicable to other materials and

cases even though they are not trained with the data of these materials.

Similarly, Chapter 5 focuses on pixel level prediction of crack regions by means of

semantic segmentation method. In that sense, the thesis constitutes the first study

105

which conducts the semantic segmentation of cracks on buildings as application area

to be evaluated against semantic segmentation metrics. Even though semantic

segmentation metrics provide valuable information based on pixel predictions, it is

believed that each case require additional metrics in order to evaluate the compatibility

of results with the desired outcome. For semantic segmentation of cracks, the outputs

are expected to reveal crack properties for further analysis and inference on the

severity of cracks. In that sense, conservation of crack connectedness and making

predictions in correct orientation provide valuable information for the assessment of

structural performance of buildings. For this purpose, case specific metrics (i.e. crack

metrics) are proposed to evaluate the segmentation results besides semantic

segmentation metrics. Similar to confidence weighted accuracy in Chapter 4, crack

metrics are also contributions to the field and exemplifies of case specific metrics for

the evaluation of the DL framework.

In order to conduct crack segmentation, two highly acknowledged frameworks;

namely Fully Convolutional Networks and SegNet, are utilized as well as QuadP

framework which is proposed within the scope of this thesis. It is observed that both

FCN and SegNet are prone to lose object connectivity even though obtaining high

scores in segmentation metrics.

One of the biggest contribution of the study can be evaluated as the introduction of a

novel semantic segmentation method which combines quadtree algorithm and CNN.

Proposed method is novel in terms of linking separate algorithms to benefit from their

strong properties and by this way to develop a lightweight, flexible and yet precise and

robust method for crack detection task. In that sense, QuadP embodies novel

approaches to semantic segmentation. These approaches can be summarized as

utilization of two meta axes for conservation of neighboring regions for quadtree

division algorithms and handling probability distribution in 3D space to obtain a

probability surface obtained from binary classification results. Achieving comparable

results in semantic segmentation metrics and having better performance in crack based

metrics without the requirement of ground truth images is a considerable success.

Even though the study is proposed in consideration with crack detection, it is believed

106

that QuadP will have similar performance for semantic segmentation of subject which

have only low level discriminative features such as blood veins or tree branches.

In the light of the findings discussed above, it is confirmed that how the problem is

reflected to deep learning algorithms and how the data is designated have an

undeniable role in the success of the implementation. In order to get the best out of DL

algorithms, the process of implementation must be perceived with a holistic view

which is the core of data design.

6.2 Recommendations for Future Work

Data design, which is introduced within the scope of this thesis, is exemplified with a

well-defined task in order to validate the postulate through quantifiable analysis. Yet,

the importance of data design becomes more significant as the level of subjectivity

involved in the task. For prospective studies, it is recommended to investigate the

methods for evaluation of the results, especially for the tasks involving personal

preferences. In that sense, documentation and publication of case specific DL

evaluation metrics have utmost importance for guiding new researchers and for

establishing a common ground for case specific implementations. Similarly, studies

on case specific optimal ranges for parameters influencing the performance of DL

algorithms are encouraged in order to provide foreknowledge to researchers.

This study scratches the surface of possible implementations in architecture. Although

handling highly complex and multidimensional architecture problems is not possible

due to hardware limitations and lack of data, it is believed that each study focusing on

partial implementations will provide priceless know-how and experience for future

researchers. It is evident that hardware constraints will be resolved in near future. Yet,

data acquisition for problems of architecture may not be possible for individual

researcher which puts emphasis on publicly available data.

In that sense, one of the challenges encountered in the process of conducting this study

is the lack of standardized data. Absence of such data not only causes incompatibility

of the studies, but also obliges researchers to spend invaluable time and effort for

collection of data. It is evident that establishing standardized datasets targeting custom

107

tasks will accelerate the developments in deep learning and also increase effective use

of DL algorithms in various fields. In addition, it will be possible to compare DL

algorithms without the influence of data selection for specific cases.

Within the scope of this thesis, operability of several algorithms in conjunction for

precision enhancements is demonstrated with QuadP method. Yet, QuadP resides as

an exemplary study among many possible algorithm combinations. As each case

brings its own potentials and challenges, deliberate analysis is advised for searching

for algorithms to fuse with ML or DL algorithms. In this respect, it would be possible

to overcome the limitations of DL algorithms and achieve more precise or preferable

results depending on the task.

108

109

REFERENCES

Alpaydin, E. (2010) Introduction to Machine Learning. MIT Press. doi:

10.1016/j.neuroimage.2010.11.004.

Alsheikh, M. A., Niyato, D., Lin, S., Tan, H.-P. and Han, Z. (2016) ‘Mobile Big Data

Analytics Using Deep Learning and Apache Spark’, IEEE Network, 30(3), pp. 22–29.

doi: 10.1109/MNET.2016.7474340.

Badrinarayanan, V., Handa, A. and Cipolla, R. (2015) ‘SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling’. doi:

10.1103/PhysRevX.5.041024.

Badrinarayanan, V., Kendall, A. and Cipolla, R. (2015) ‘SegNet: A Deep

Convolutional Encoder-Decoder Architecture for Image Segmentation’, pp. 1–14. doi:

10.1109/TPAMI.2016.2644615.

Boser, B. E., Guyon, I. M. and Vapnik, V. N. (1992) ‘A Training Algorithm for

Optimal Margin Classiiers’, Proceedings of the fifth annual workshop on

Computational learning theory, pp. 144–152. doi: 10.1.1.21.3818.

Canny, J. (1986) ‘A Computational Approach to Edge Detection’, in IEEE Tranaction

on Pattern Analysis and Machine Intelligence. IEEE, pp. 679–697. doi:

10.1109/TPAMI.1986.4767851.

Canziani, A., Paszke, A. and Culurciello, E. (2016) ‘An Analysis of Deep Neural

Network Models for Practical Applications’, pp. 1–7. Available at:

http://arxiv.org/abs/1605.07678.

Cha, Y.-J., Choi, W. and Büyüköztürk, O. (2017) ‘Deep Learning-Based Crack

Damage Detection Using Convolutional Neural Networks’, Computer-Aided Civil and

Infrastructure Engineering, 32(5), pp. 361–378. doi: 10.1111/mice.12263.

110

Chatfield, K., Simonyan, K., Vedaldi, A. and Zisserman, A. (2014) ‘Return of the

Devil in the Details: Delving Deep into Convolutional Nets’. doi: 10.5244/C.28.6.

Chen, C., Seff, A., A., K. and Xiao, J. (2015) ‘DeepDriving: Learning Affordance for

Direct Perception in Autonomous Driving’, in ICCV ’15 Proceedings of the 2015 IEEE

International Conference on Computer Vision (ICCV), pp. 2722–2730. Available at:

http://deepdriving.cs.princeton.edu/.

Collobert, R. and Weston, J. (2008) ‘A unified architecture for natural language

processing: Deep neural networks with multitask learning’, Proceedings of the 25th

international conference on Machine learning, pp. 160–167. doi:

10.1145/1390156.1390177.

Cover, T. and Hart, P. (1967) ‘Nearest neighbor pattern classification’, IEEE

Transactions on Information Theory, 13(1), pp. 21–27. doi:

10.1109/TIT.1967.1053964.

Dozat, T. (2016) ‘Incorporating Nesterov Momentum into Adam’, ICLR Workshop,

(1), pp. 2013–2016.

Duchi, J., Hazan, E. and Singer, Y. (2011) ‘Adaptive Subgradient Methods for Online

Learning and Stochastic Optimization’, Journal of Machine Learning Research, 12,

pp. 2121–2159. doi: 10.1109/CDC.2012.6426698.

Eisenbach, M., Stricker, R. and Debes, K. (2017) ‘Crack Detection with an Interactive

and Adaptive Video Inspection System’, in Arbeitsgruppentagung

Infrastrukturmanagement, pp. 94–103.

Entezari-Maleki, R., Rezaei, A. and Minaei-Bidgoli, B. (2009) ‘Comparison of

Classification Methods Based on the Type of Attributes and Sample Size’, Journal of

Convergence Information Technology, 4(3), pp. 94–102. doi:

10.4156/jcit.vol4.issue3.14.

Ersoz, A. B., Pekcan, O. and Teke, T. (2017) ‘Crack identification for rigid pavements

using unmanned aerial vehicles’, IOP Conference Series: Materials Science and

Engineering, 236(1). doi: 10.1088/1757-899X/236/1/012101.

111

Ghanghau, I. (2017) Activation Functions in Neural Networks. Available at:

https://isaacchanghau.github.io/post/activation_functions/ (Accessed: 22 April 2018).

Gibert, X., Patel, V. M. and Chellappa, R. (2015) ‘Semantic Segmentation of Railway

Track Images with Deep Convolutional Neural Networks’, pp. 621–625.

Gill, J. K. (2017) Log Analytics With Deep Learning And Machine Learning,

Xenonstack. Available at: https://www.xenonstack.com/blog/data-science/log-

analytics-with-deep-learning-and-machine-learning (Accessed: 22 April 2018).

Goertzel, B. (2015) ‘Are there deep reasons underlying the pathologies of today’s deep

learning algorithms?’, Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9205,

pp. 70–79. doi: 10.1007/978-3-319-21365-1_8.

Gonzalez, R. C., Woods, R. E. and Eddins, S. L. (2009) Digital image processing. 2nd

edn. Gatesmark Publishing. doi: 10.1016/0734-189X(90)90171-Q.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y. (2014) ‘Generative Adversarial Networks’, pp. 1–9. doi:

10.1001/jamainternmed.2016.8245.

Gopalakrishnan, K., Khaitan, S. K., Choudhary, A. and Agrawal, A. (2017) ‘Deep

Convolutional Neural Networks with transfer learning for computer vision-based data-

driven pavement distress detection’, Construction and Building Materials. Elsevier

Ltd, 157(September), pp. 322–330. doi: 10.1016/j.conbuildmat.2017.09.110.

Haque, U. (2007) ‘The Architectural Relevance of Gordon Pask’, Architectural

Design, 77(4), pp. 54–61. doi: 10.1002/ad.487.

He, K., Zhang, X., Ren, S. and Sun, J. (2016) ‘Deep Residual Learning for Image

Recognition’, 2016 IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 770–778. doi: 10.1109/CVPR.2016.90.

Huang, J., Lu, J. and Ling, C. X. (2003) ‘Comparing naive Bayes, decision trees, and

SVM with AUC and accuracy’, Third IEEE International Conference on Data Mining,

pp. 553–556. doi: 10.1109/ICDM.2003.1250975.

112

Hubel, D. and Wiesel, T. (1959) ‘Receptive fields of single neurones in the cat’s striate

cortex’, The Journal of physiology, 148(3), pp. 574–591.

Kabir, S., Rivard, P. and Ballivy, G. (2008) ‘Neural-network-based damage

classification of bridge infrastructure using texture analysis’, Canadian Journal of

Civil Engineering, 35(3), pp. 258–267. doi: 10.1139/L07-105.

Karpathy, A. (2018) CS231n Convolutional Neural Networks for Visual Recognition.

Available at: http://cs231n.github.io/convolutional-networks/ (Accessed: 27 April

2018).

Kingma, D. P. and Ba, J. (2014) ‘Adam: A Method for Stochastic Optimization’, pp.

1–15. doi: http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503.

Koch, C., Georgieva, K., Kasireddy, V., Akinci, B. and Fieguth, P. (2015) ‘A review

on computer vision based defect detection and condition assessment of concrete and

asphalt civil infrastructure’, Advanced Engineering Informatics. Elsevier Ltd, 29(2),

pp. 196–210. doi: 10.1016/j.aei.2015.01.008.

Krizhevsky, A., Sutskever, I. and Hinton, G. E. (2012) ‘ImageNet Classification with

Deep Convolutional Neural Networks’, Advances In Neural Information Processing

Systems, pp. 1–9. doi: http://dx.doi.org/10.1016/j.protcy.2014.09.007.

Küçüksubaşı, F. (2017) An Integrated System Design for Building Inspection by

Autonomous UAVs. Middle East Technical Unviersity.

Lattanzi, D. and Miller, G. R. (2014) ‘Robust Automated Concrete Damage Detection

Algorithms for Field Applications’, Journal of Computing in Civil Engineering,

28(April), p. 120917010504009. doi: 10.1061/(ASCE)CP.1943-5487.0000257.

Lecun, Y., Bengio, Y. and Hinton, G. (2015) ‘Deep learning’, Nature, 521(7553), pp.

436–444. doi: 10.1038/nature14539.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998) ‘Gradient-Based Learning

Applied to Document Recognition’, Proceedings of the IEEE, 86(11), pp. 2278–2323.

doi: 10.1109/5.726791.

113

Lee, A. (2016) ‘The meaning of AlphaGo , the AI program that beat a Go champ’,

Maclean’s, pp. 1–7. Available at: http://www.macleans.ca/society/science/the-

meaning-of-alphago-the-ai-program-that-beat-a-go-champ/.

Li, G., Zhao, X., Du, K., Ru, F. and Zhang, Y. (2017) ‘Recognition and evaluation of

bridge cracks with modified active contour model and greedy search-based support

vector machine’, Automation in Construction. Elsevier B.V., 78, pp. 51–61.

Liu, L., Yan, R. J., Maruvanchery, V., Kayacan, E., Chen, I. M. and Tiong, L. K.

(2017) ‘Transfer learning on convolutional activation feature as applied to a building

quality assessment robot’, International Journal of Advanced Robotic Systems, 14(3),

pp. 1–12. doi: 10.1177/1729881417712620.

Liu, Z., Suandi, S. A., Ohashi, T. and Ejima, T. (2002) ‘Tunnel crack detection and

classification system based on image processing’, Electronic Imaging 2002, 4664, pp.

145–152.

Long, J., Shelhamer, E. and Darrell, T. (2014) ‘Fully Convolutional Networks for

Semantic Segmentation’. doi: 10.1109/TPAMI.2016.2572683.

MatConvNet Team (2018) MatConvNet. Available at:

http://www.vlfeat.org/matconvnet/ (Accessed: 29 April 2018).

Mathworks (2018) MATLAB - Mathworks - MATLAB & Simulink. Available at:

https://www.mathworks.com/products/matlab.html (Accessed: 29 April 2018).

Mitchell, T. (1997) Machine learning. McGraw-Hill. doi: 10.1007/978-3-540-75488-

6_2.

Moon, H. and Kim, J. (2011) ‘Inteligent Crack Detecting Algorithm On The Concrete

Crack Image Using Neural network’, Proceedings of the 28th ISARC, Seoul, Korea,

pp. 1461–1467. Available at: http://www.iaarc.org/publications/fulltext/P2-20.pdf.

Nesterov, Y. (1983) ‘A Method of Solving A Convex Programming Problem With

Convergence rate O(1/k^2)’, Soviet Mathematics Doklady, pp. 372–376. Available at:

http://www.core.ucl.ac.be/~nesterov/Research/Papers/DAN83.pdf.

NIST Big Data Public Working Group (2015) NIST Special Publication 1500-1 - NIST

114

Big Data Interoperability Framework: Volume 1, Definitions, NIST Special

Publication. doi: http://dx.doi.org/10.6028/NIST.SP.1500-1.

Noh, H., Hong, S. and Han, B. (2015) ‘Learning deconvolution network for semantic

segmentation’, Proceedings of the IEEE International Conference on Computer

Vision, 2015 Inter, pp. 1520–1528. doi: 10.1109/ICCV.2015.178.

Oxford Robotics Institute (2018) The PASCAL Visual Object Classes Homepage.

Available at: http://host.robots.ox.ac.uk/pascal/VOC/ (Accessed: 29 April 2018).

Özgenel, Ç. F. (2018) ‘Concrete Crack Images for Classification’. Mendeley Data. doi:

10.17632/5y9wdsg2zt.1.

Pauly, L., Peel, H., Luo, S., Hogg, D. and Fuentes, R. (2017) ‘Deeper Networks for

Pavement Crack Detection’, in Proceedings of the 34th ISARC. 34th International

Symposium in Automation and Robotics in Construction. Taipei, pp. 479–485. doi:

https://doi.org/10.22260/ISARC2017/0066.

Powers, D. M. W. (2015) What the F-measure doesn’t measure: Features, Flaws,

Fallacies and Fixes. doi: KIT-14-001.

Ruder, S. (2016) ‘An overview of gradient descent optimization algorithms’, pp. 1–

14. doi: 10.1111/j.0006-341X.1999.00591.x.

Samuel, A. L. (1959) ‘Some Studies in Machine Learning Using the Game of

Checkers’, IBM Journal of Research and Development, 3(3), pp. 210–229.

Santur, Y., Karaköse, M. and Akın, E. (2016) ‘Random Forest Based Diagnosis

Approach for Rail Fault Inspection in Railways’, in National Conference on Electrical,

Electronics and Biomedical Engineering (ELECO), 2016. Bursa: IEEE, pp. 745–750.

Schmidhuber, J. (2015) ‘Deep Learning in neural networks: An overview’, Neural

Networks. Elsevier Ltd, 61, pp. 85–117. doi: 10.1016/j.neunet.2014.09.003.

Schmugge, S. J., Nguyen, N. R., Thao, C., Lindberg, J., Grizzi, R., Joffe, C. and Shin,

M. C. (2015) ‘Automatic detection of cracks during power plant inspection’,

Proceedings of the 3rd International Conference on Applied Robotics for the Power

Industry, CARPI 2014, (Figure 1). doi: 10.1109/CARPI.2014.7030042.

115

Shoham, Y., Perrault, R., Brynjolfsson, E., Clark, J. and LeGassick, C. (2017)

‘Artificial Intelligence Index, November 2017’, (November), p. 101. Available at:

https://aiindex.org/.

Simonyan, K. and Zisserman, A. (2015) ‘Very Deep Convolutional Networks for

Large-Scale Image Recognition’, in International Conference on Learning

Representations (ICRL), pp. 1–14. doi: 10.1016/j.infsof.2008.09.005.

Sinha, S. K. and Fieguth, P. W. (2006) ‘Neuro-fuzzy network for the classification of

buried pipe defects’, Automation in Construction, 15(1), pp. 73–83. doi:

10.1016/j.autcon.2005.02.005.

Stanford Vision Lab (2018) ImageNet. Available at: http://www.image-net.org

(Accessed: 29 April 2018).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A. (2015) ‘Going deeper with convolutions’, in

Proceedings of the IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 1–9. doi: 10.1109/CVPR.2015.7298594.

Turing, A. M. (1950) ‘Computing machinery and intelligence’, Mind, 49, pp. 433–

460. doi: 10.1007/978-1-4020-6710-5_3.

Vapnik, V. and Lerner, A. (1963) ‘Pattern recognition using generalized portrait

method’, Automation and remote control, 24(6), pp. 774–780. doi: citeulike-article-

id:619639.

Wang, K. C. P., Zhang, A., Li, J. Q., Fei, Y., Chen, C. and Li, B. (2017) ‘Deep Learning

for Asphalt Pavement Cracking Recognition Using Convolutional Neural Network’,

in Conference: International Conference on Highway Pavements and Airfield

Technology 2017, pp. 166–177.

Wilamowski, B. M., Wu, B. and Korniak, J. (2016) ‘Big Data an Deep Learning’, in

International Conference on Intelligent Engineering Systems (INES). Budapest: IEEE,

pp. 11–16. doi: 10.1109/INES.2016.7555103.

116

Wu, S., Zhong, S. and Liu, Y. (2017) ‘Deep residual learning for image steganalysis’,

Multimedia Tools and Applications, pp. 1–17. doi: 10.1007/s11042-017-4440-4.

Wu, W., Liu, Z. and He, Y. (2015) ‘Classification of defects with ensemble methods

in the automated visual inspection of sewer pipes’, Pattern Analysis and Applications,

18(2), pp. 263–276. doi: 10.1007/s10044-013-0355-5.

Yakopcic, C., Alom, M. Z. and Taha, T. M. (2016) ‘Memristor crossbar deep network

implementation based on a Convolutional neural network’, Proceedings of the

International Joint Conference on Neural Networks, 2016–Octob, pp. 963–970. doi:

10.1109/IJCNN.2016.7727302.

Yang, M. D. and Su, T. C. (2008) ‘Automated diagnosis of sewer pipe defects based

on machine learning approaches’, Expert Systems with Applications, 35(3), pp. 1327–

1337. doi: 10.1016/j.eswa.2007.08.013.

Zeiler, M. D. (2012) ‘ADADELTA: An Adaptive Learning Rate Method’. Available

at: http://arxiv.org/abs/1212.5701.

Zhang, L., Yang, F., Zhang, Y. D. and Zhu, Y. J. (2016) ‘Road Crack Detection Using

Deep Convolutional Neural Network’, in 2016 IEEE International Conference on

Image Processing (ICIP). doi: 10.1109/ICIP.2016.7533052.

Zhang, Q., Yang, L. T., Chen, Z. and Li, P. (2018) ‘A survey on deep learning for big

data’, Information Fusion. Elsevier, 42(October 2017), pp. 146–157. doi:

10.1016/j.inffus.2017.10.006.

Zhang, W., Zhang, Z., Qi, D. and Liu, Y. (2014) ‘Automatic crack detection and

classification method for subway tunnel safety monitoring’, Sensors (Switzerland),

14(10), pp. 19307–19328. doi: 10.3390/s141019307.

Zou, Q., Cao, Y., Li, Q., Mao, Q. and Wang, S. (2012) ‘CrackTree: Automatic crack

detection from pavement images’, Pattern Recognition Letters. Elsevier B.V., 33(3),

pp. 227–238. doi: 10.1016/j.patrec.2011.11.004.

117

APPENDIX I

PRETRAINED NETWORK ARCHITECTURES

Table 16. AlexNet Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1 Convolution x0 x1 11x11x3x96 96

relu1 ReLu x1 x2

norm1
Local Response

Normalization
x2 x3

pool1 Max Pooling x3 x4

conv2 Convolution x4 x5 5x5x48x255 256

relu2 ReLu x5 x6

norm2
Local Response

Normalization
x6 x7

pool2 Max Pooling x7 x8

conv3 Convolution x8 x9 3x3x256x384 384

relu3 ReLu x9 x10

conv4 Convolution x10 x11 3x3x192x384 384

relu4 ReLu x11 x12

conv5 Convolution x12 x13 3x3x192x256 256

relu5 ReLu x13 x14

pool5 Max Pooling x14 x15

fc6 Convolution x15 x16 6x6x256x4096 4096

relu6 ReLu x16 x17

fc7 Convolution x17 x18 1x1x4096x4096 4096

relu7 ReLu x18 x19

fc8 Convolution x19 x20 1x1x4096x1000 1000

prob Softmax x20 x21

118

Table 17. VGG16 Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1_1 Convolution x0 x1 3x3x3x64 64

relu1_1 ReLu x1 x2

conv1_2 Convolution x2 x3 3x3x64x64 64

relu1_2 ReLu x3 x4

pool1 Max Pooling x4 x5

conv2_1 Convolution x5 x6 3x3x64x128 128

relu2_1 ReLu x6 x7

conv2_2 Convolution x7 x8 3x3x128x128 128

relu2_2 ReLu x8 x9

pool2 Max Pooling x9 x10

conv3_1 Convolution x10 x11 3x3x128x256 256

relu3_1 ReLu x11 x12

conv3_2 Convolution x12 x13 3x3x256x256 256

relu3_2 ReLu x13 x14

conv3_3 Convolution x14 x15 3x3x256x256 256

relu3_3 ReLu x15 x16

pool3 Max Pooling x16 x17

conv4_1 Convolution x17 x18 3x3x256x512 512

relu4_1 ReLu x18 x19

conv4_2 Convolution x19 x20 3x3x512x512 512

relu4_2 ReLu x20 x21

conv4_3 Convolution x21 x22 3x3x512x512 512

relu4_3 ReLu x22 x23

pool4 Max Pooling x23 x24

conv5_1 Convolution x24 x25 3x3x512x512 512

relu5_1 ReLu x25 x26

conv5_2 Convolution x26 x27 3x3x512x512 512

relu5_2 ReLu x27 x28

conv5_3 Convolution x28 x29 3x3x512x512 512

relu5_3 ReLu x29 x30

pool5 Max Pooling x30 x31

fc6 Convolution x31 x32 7x7x512x4096 4096

relu6 ReLu x32 x33

fc7 Convolution x33 x34 1x1x4096x4096 4096

relu7 ReLu x34 x35

fc8 Convolution x35 x36 1x1x4096x1000 1000

prob Softmax x36 x37

119

Table 18.VGG19 Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1_1 Convolution x0 x1 3x3x3x64 64

relu1_1 ReLu x1 x2

conv1_2 Convolution x2 x3 3x3x64x64 64

relu1_2 ReLu x3 x4

pool1 Max Pooling x4 x5

conv2_1 Convolution x5 x6 3x3x64x128 128

relu2_1 ReLu x6 x7

conv2_2 Convolution x7 x8 3x3x128x128 128

relu2_2 ReLu x8 x9

pool2 Max Pooling x9 x10

conv3_1 Convolution x10 x11 3x3x128x256 256

relu3_1 ReLu x11 x12

conv3_2 Convolution x12 x13 3x3x256x256 256

relu3_2 ReLu x13 x14

conv3_3 Convolution x14 x15 3x3x256x256 256

relu3_3 ReLu x15 x16

conv3_4 Convolution x16 x17 3x3x256x256 256

relu3_4 ReLu x17 x18

pool3 Max Pooling x18 x19

conv4_1 Convolution x19 x20 3x3x256x512 512

relu4_1 ReLu x20 x21

conv4_2 Convolution x21 x22 3x3x512x512 512

relu4_2 ReLu x22 x23

conv4_3 Convolution x23 x24 3x3x512x512 512

relu4_3 ReLu x24 x25

conv4_4 Convolution x25 x26 3x3x512x512 512

relu4_4 ReLu x26 x27

pool4 Max Pooling x27 x28

conv5_1 Convolution x28 x29 3x3x512x512 512

relu5_1 ReLu x29 x30

conv5_2 Convolution x30 x31 3x3x512x512 512

relu5_2 ReLu x31 x32

conv5_3 Convolution x32 x33 3x3x512x512 512

relu5_3 ReLu x33 x34

conv5_4 Convolution x34 x35 3x3x512x512 512

relu5_4 ReLu x35 x36

pool5 Max Pooling x36 x37

fc6 Convolution x37 x38 7x7x512x4096 4096

relu6 ReLu x38 x39

fc7 Convolution x39 x40 1x1x4096x4096 4096

relu7 ReLu x40 x41

fc8 Convolution x41 x42 1x1x4096x1000 1000

prob Softmax x42 x43

120

Table 19. GoogleNet Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1 Convolution data conv1 7x7x3x64 64

relu1 ReLu conv1 conv1x

pool1 Max Pooling conv1x pool1

norm1
Local Response

Normalization
pool1 norm1

reduction2 Convolution norm1 reduction2 1x1x64x64 64

relu_reduction2 ReLu reduction2 reduction2x

conv2 Convolution reduction2x conv2 3x3x64x192 192

relu2 ReLu conv2 conv2x

norm2
Local Response

Normalization
conv2x norm2

pool2 Max Pooling norm2 pool2

icp1_reduction1 Convolution pool2 icp1_reduction1 1x1x192x96 96

relu_icp1_reduction1 ReLu icp1_reduction1 icp1_reduction1x

icp1_reduction2 Convolution pool2 icp1_reduction2 1x1x192x16 16

relu_icp1_reduction2 ReLu icp1_reduction2 icp1_reduction2x

icp1_pool Max Pooling pool2 icp1_pool

icp1_out0 Convolution pool2 icp1_out0 1x1x192x64 64

relu_icp1_out0 ReLu icp1_out0 icp1_out0x

icp1_out1 Convolution icp1_reduction1x icp1_out1 3x3x96x128 128

relu_icp1_out1 ReLu icp1_out1 icp1_out1x

icp1_out2 Convolution icp1_reduction2x icp1_out2 5x5x16x32 32

relu_icp1_out2 ReLu icp1_out2 icp1_out2x

icp1_out3 Convolution icp1_pool icp1_out3 1x1x192x32 32

relu_icp1_out3 ReLu icp1_out3 icp1_out3x

icp2_in Concatenate

icp1_out0x,

icp1_out1x,

icp1_out2x,
icp1_out3x

icp2_in

icp2_reduction1 Convolution icp2_in icp2_reduction1 1x1x256x128 128

relu_icp2_reduction1 ReLu icp2_reduction1 icp2_reduction1x

icp2_reduction2 Convolution icp2_in icp2_reduction2 1x1x256x32 32

relu_icp2_reduction2 ReLu icp2_reduction2 icp2_reduction2x

icp2_pool Max Pooling icp2_in icp2_pool

icp2_out0 Convolution icp2_in icp2_out0 1x1x256x128 128

relu_icp2_out0 ReLu icp2_out0 icp2_out0x

icp2_out1 Convolution icp2_reduction1x icp2_out1 3x3x128x192 192

relu_icp2_out1 ReLu icp2_out1 icp2_out1x

icp2_out2 Convolution icp2_reduction2x icp2_out2 5x5x32x96 96

relu_icp2_out2 ReLu icp2_out2 icp2_out2x

icp2_out3 Convolution icp2_pool icp2_out3 1x1x256x64 64

relu_icp2_out3 ReLu icp2_out3 icp2_out3x

icp2_out Concatenate

icp2_out0x,
icp2_out1x,

icp2_out2x,

icp2_out3x

icp2_out

icp3_in Max Pooling icp2_out icp3_in

icp3_reduction1 Convolution icp3_in icp3_reduction1 1x1x480x96 96

relu_icp3_reduction1 ReLu icp3_reduction1 icp3_reduction1x

icp3_reduction2 Convolution icp3_in icp3_reduction2 1x1x480x16 16

relu_icp3_reduction2 ReLu icp3_reduction2 icp3_reduction2x

icp3_pool Max Pooling icp3_in icp3_pool

icp3_out0 Convolution icp3_in icp3_out0 1x1x480x192 192

relu_icp3_out0 ReLu icp3_out0 icp3_out0x

icp3_out1 Convolution icp3_reduction1x icp3_out1 3x3x96x208 208

relu_icp3_out1 ReLu icp3_out1 icp3_out1x

icp3_out2 Convolution icp3_reduction2x icp3_out2 5x5x16x48 48

relu_icp3_out2 ReLu icp3_out2 icp3_out2x

icp3_out3 Convolution icp3_pool icp3_out3 1x1x480x64 64

relu_icp3_out3 ReLu icp3_out3 icp3_out3x

121

Table 19. GoogleNet Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

icp3_out Concatenate

icp3_out0x,

icp3_out1x,
icp3_out2x,

icp3_out3x

icp3_out

cls1_pool Max Pooling icp3_out cls1_pool

cls1_reduction Convolution cls1_pool cls1_reduction 1x1x512x128 128

relu_cls1_reduction ReLu cls1_reduction cls1_reductionx

cls1_fc1 Convolution cls1_reductionx cls1_fc1 4x4x128x1024 1024

relu_cls1_fc1 ReLu cls1_fc1 cls1_fc1x

cls1_fc2 Convolution cls1_fc1x cls1_fc2 1x1x1024x1000 1000

icp4_reduction1 Convolution icp3_out icp4_reduction1 1x1x512x112 112

relu_icp4_reduction1 ReLu icp4_reduction1 icp4_reduction1x

icp4_reduction2 Convolution icp3_out icp4_reduction2 1x1x512x24 24

relu_icp4_reduction2 ReLu icp4_reduction2 icp4_reduction2x

icp4_pool Max Pooling icp3_out icp4_pool

icp4_out0 Convolution icp3_out icp4_out0 1x1x512x160 160

relu_icp4_out0 ReLu icp4_out0 icp4_out0x

icp4_out1 Convolution icp4_reduction1x icp4_out1 3x3x112x224 224

relu_icp4_out1 ReLu icp4_out1 icp4_out1x

icp4_out2 Convolution icp4_reduction2x icp4_out2 5x5x24x64 64

relu_icp4_out2 ReLu icp4_out2 icp4_out2x

icp4_out3 Convolution icp4_pool icp4_out3 1x1x512x64 64

relu_icp4_out3 ReLu icp4_out3 icp4_out3x

icp4_out Concatenation

icp4_out0x,

icp4_out1x,

icp4_out2x,
icp4_out3x

icp4_out

icp5_reduction1 Convolution icp4_out icp5_reduction1 1x1x512x128 128

relu_icp5_reduction1 ReLu icp5_reduction1 icp5_reduction1x

icp5_reduction2 Convolution icp4_out icp5_reduction2 1x1x512x24 24

relu_icp5_reduction2 ReLu icp5_reduction2 icp5_reduction2x

icp5_pool Max Pooling icp4_out icp5_pool

icp5_out0 Convolution icp4_out icp5_out0 1x1x512x128 128

relu_icp5_out0 ReLu icp5_out0 icp5_out0x

icp5_out1 Convolution icp5_reduction1x icp5_out1 3x3x128x256 256

relu_icp5_out1 ReLu icp5_out1 icp5_out1x

icp5_out2 Convolution icp5_reduction2x icp5_out2 5x5x24x64 64

relu_icp5_out2 ReLu icp5_out2 icp5_out2x

icp5_out3 Convolution icp5_pool icp5_out3 1x1x512x64 64

relu_icp5_out3 ReLu icp5_out3 icp5_out3x

icp5_out Concatenation

icp5_out0x,

icp5_out1x,
icp5_out2x,

icp5_out3x

icp5_out

icp6_reduction1 Convolution icp5_out icp6_reduction1 1x1x512x144 144

relu_icp6_reduction1 ReLu icp6_reduction1 icp6_reduction1x

icp6_reduction2 Convolution icp5_out icp6_reduction2 1x1x512x32 32

relu_icp6_reduction2 ReLu icp6_reduction2 icp6_reduction2x

icp6_pool Max Pooling icp5_out icp6_pool

icp6_out0 Convolution icp5_out icp6_out0 1x1x512x112 112

relu_icp6_out0 ReLu icp6_out0 icp6_out0x

icp6_out1 Convolution icp6_reduction1x icp6_out1 3x3x144x288 288

relu_icp6_out1 ReLu icp6_out1 icp6_out1x

icp6_out2 Convolution icp6_reduction2x icp6_out2 5x5x32x64 64

relu_icp6_out2 ReLu icp6_out2 icp6_out2x

icp6_out3 Convolution icp6_pool icp6_out3 1x1x512x64 64

relu_icp6_out3 ReLu icp6_out3 icp6_out3x

icp6_out Concatenation

icp6_out0x,
icp6_out1x,

icp6_out2x,
icp6_out3x

icp6_out

cls2_pool Max Pooling icp6_out cls2_pool

122

Table 19. GoogleNet Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

cls2_reduction Convolution cls2_pool cls2_reduction 1x1x528x128 128

relu_cls2_reduction ReLu cls2_reduction cls2_reductionx

cls2_fc1 Convolution cls2_reductionx cls2_fc1 4x4x128x1024 1024

relu_cls2_fc1 ReLu cls2_fc1 cls2_fc1x

cls2_fc2 Convolution cls2_fc1x cls2_fc2 1x1x1024x1000 1000

icp7_reduction1 Convolution icp6_out icp7_reduction1 1x1x528x160 160

relu_icp7_reduction1 ReLu icp7_reduction1 icp7_reduction1x

icp7_reduction2 Convolution icp6_out icp7_reduction2 1x1x528x32 32

relu_icp7_reduction2 ReLu icp7_reduction2 icp7_reduction2x

icp7_pool Max Pooling icp6_out icp7_pool

icp7_out0 Convolution icp6_out icp7_out0 1x1x528x256 256

relu_icp7_out0 ReLu icp7_out0 icp7_out0x

icp7_out1 Convolution icp7_reduction1x icp7_out1 3x3x160x320 320

relu_icp7_out1 ReLu icp7_out1 icp7_out1x

icp7_out2 Convolution icp7_reduction2x icp7_out2 5x5x32x128 128

relu_icp7_out2 ReLu icp7_out2 icp7_out2x

icp7_out3 Convolution icp7_pool icp7_out3 1x1x528x128 128

relu_icp7_out3 ReLu icp7_out3 icp7_out3x

icp7_out Concatenation

icp7_out0x,
icp7_out1x,

icp7_out2x,

icp7_out3x

icp7_out

icp8_in Max Pooling icp7_out icp8_in

icp8_reduction1 Convolution icp8_in icp8_reduction1 1x1x832x160 160

relu_icp8_reduction1 ReLu icp8_reduction1 icp8_reduction1x

icp8_reduction2 Convolution icp8_in icp8_reduction2 1x1x832x32 32

relu_icp8_reduction2 ReLu icp8_reduction2 icp8_reduction2x

icp8_pool Max Pooling icp8_in icp8_pool

icp8_out0 Convolution icp8_in icp8_out0 1x1x832x256 256

relu_icp8_out0 ReLu icp8_out0 icp8_out0x

icp8_out1 Convolution icp8_reduction1x icp8_out1 3x3x160x320 320

relu_icp8_out1 ReLu icp8_out1 icp8_out1x

icp8_out2 Convolution icp8_reduction2x icp8_out2 5x5x32x128 128

relu_icp8_out2 ReLu icp8_out2 icp8_out2x

icp8_out3 Convolution icp8_pool icp8_out3 1x1x832x128 128

relu_icp8_out3 ReLu icp8_out3 icp8_out3x

icp8_out Concatenation

icp8_out0x,

icp8_out1x,
icp8_out2x,

icp8_out3x

icp8_out

icp9_reduction1 Convolution icp8_out icp9_reduction1 1x1x832x192 192

relu_icp9_reduction1 ReLu icp9_reduction1 icp9_reduction1x

icp9_reduction2 Convolution icp8_out icp9_reduction2 1x1x832x48 48

relu_icp9_reduction2 ReLu icp9_reduction2 icp9_reduction2x

icp9_pool Max Pooling icp8_out icp9_pool

icp9_out0 Convolution icp8_out icp9_out0 1x1x832x384 384

relu_icp9_out0 ReLu icp9_out0 icp9_out0x

icp9_out1 Convolution icp9_reduction1x icp9_out1 3x3x192x384 384

relu_icp9_out1 ReLu icp9_out1 icp9_out1x

icp9_out2 Convolution icp9_reduction2x icp9_out2 5x5x48x128 128

relu_icp9_out2 ReLu icp9_out2 icp9_out2x

icp9_out3 Convolution icp9_pool icp9_out3 1x1x832x128 128

relu_icp9_out3 ReLu icp9_out3 icp9_out3x

icp9_out Concatenation

icp9_out0x,
icp9_out1x,

icp9_out2x,

icp9_out3x

icp9_out

cls3_pool Max Pooling icp9_out cls3_pool

cls3_fc Convolution cls3_pool cls3_fc 1x1x1024x1000 1000

softmax Softmax cls3_fc prob

123

Table 20.ResNet50 Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1 Convolution data conv1 7x7x3x64 64

bn_conv1
Batch
Normalization

conv1 conv1x

conv1_relu ReLu conv1x conv1xxx

pool1 Max Pooling conv1xxx pool1

res2a_branch1 Convolution pool1 res2a_branch1 1x1x64x256 256

bn2a_branch1
Batch
Normalization

res2a_branch1 res2a_branch1x

res2a_branch2a Convolution pool1 res2a_branch2a 1x1x64x64 64

bn2a_branch2a
Batch

Normalization
res2a_branch2a res2a_branch2ax

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx

res2a_branch2b Convolution res2a_branch2axxx res2a_branch2b 3x3x64x64 64

bn2a_branch2b
Batch

Normalization
res2a_branch2b res2a_branch2bx

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx

res2a_branch2c Convolution res2a_branch2bxxx res2a_branch2c 1x1x64x256 256

bn2a_branch2c
Batch

Normalization
res2a_branch2c res2a_branch2cx

res2a Summation
res2a_branch1x,
res2a_branch2cx

res2a

res2a_relu ReLu res2a res2ax

res2b_branch2a Convolution res2ax res2b_branch2a 1x1x256x64 64

bn2b_branch2a
Batch

Normalization
res2b_branch2a res2b_branch2ax

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx

res2b_branch2b Convolution res2b_branch2axxx res2b_branch2b 3x3x64x64 64

bn2b_branch2b
Batch

Normalization
res2b_branch2b res2b_branch2bx

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx

res2b_branch2c Convolution res2b_branch2bxxx res2b_branch2c 1x1x64x256 256

bn2b_branch2c
Batch

Normalization
res2b_branch2c res2b_branch2cx

res2b Summation
res2ax,
res2b_branch2cx

res2b

res2b_relu ReLu res2b res2bx

res2c_branch2a Convolution res2bx res2c_branch2a 1x1x256x64 64

bn2c_branch2a
Batch
Normalization

res2c_branch2a res2c_branch2ax

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx

res2c_branch2b Convolution res2c_branch2axxx res2c_branch2b 3x3x64x64 64

bn2c_branch2b
Batch

Normalization
res2c_branch2b res2c_branch2bx

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx

res2c_branch2c Convolution res2c_branch2bxxx res2c_branch2c 1x1x64x256 256

bn2c_branch2c
Batch

Normalization
res2c_branch2c res2c_branch2cx

res2c Summation
res2bx,
res2c_branch2cx

res2c

res2c_relu ReLu res2c res2cx

res3a_branch1 Convolution res2cx res3a_branch1 1x1x256x512 512

bn3a_branch1
Batch
Normalization

res3a_branch1 res3a_branch1x

res3a_branch2a Convolution res2cx res3a_branch2a 1x1x256x128 128

bn3a_branch2a
Batch

Normalization
res3a_branch2a res3a_branch2ax

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx

res3a_branch2b Convolution res3a_branch2axxx res3a_branch2b 3x3x128x128 128

bn3a_branch2b
Batch

Normalization
res3a_branch2b res3a_branch2bx

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx

res3a_branch2c Convolution res3a_branch2bxxx res3a_branch2c 1x1x128x512 512

124

Table 20. ResNet50 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn3a_branch2c
Batch

Normalization
res3a_branch2c res3a_branch2cx

res3a Summation
res3a_branch1x,

res3a_branch2cx
res3a

res3a_relu ReLu res3a res3ax

res3b_branch2a Convolution res3ax res3b_branch2a 1x1x512x128 128

bn3b_branch2a
Batch
Normalization

res3b_branch2a res3b_branch2ax

res3b_branch2a_relu ReLu res3b_branch2ax res3b_branch2axxx

res3b_branch2b Convolution res3b_branch2axxx res3b_branch2b 3x3x128x128 128

bn3b_branch2b
Batch
Normalization

res3b_branch2b res3b_branch2bx

res3b_branch2b_relu ReLu res3b_branch2bx res3b_branch2bxxx

res3b_branch2c Convolution res3b_branch2bxxx res3b_branch2c 1x1x128x512 512

bn3b_branch2c
Batch
Normalization

res3b_branch2c res3b_branch2cx

res3b Summation
res3ax,

res3b_branch2cx
res3b

res3b_relu ReLu res3b res3bx

res3c_branch2a Convolution res3bx res3c_branch2a 1x1x512x128 128

bn3c_branch2a
Batch

Normalization
res3c_branch2a res3c_branch2ax

res3c_branch2a_relu ReLu res3c_branch2ax res3c_branch2axxx

res3c_branch2b Convolution res3c_branch2axxx res3c_branch2b 3x3x128x128 128

bn3c_branch2b
Batch
Normalization

res3c_branch2b res3c_branch2bx

res3c_branch2b_relu ReLu res3c_branch2bx res3c_branch2bxxx

res3c_branch2c Convolution res3c_branch2bxxx res3c_branch2c 1x1x128x512 512

bn3c_branch2c
Batch
Normalization

res3c_branch2c res3c_branch2cx

res3c Summation
res3bx,

res3c_branch2cx
res3c

res3c_relu ReLu res3c res3cx

res3d_branch2a Convolution res3cx res3d_branch2a 1x1x512x128 128

bn3d_branch2a
Batch

Normalization
res3d_branch2a res3d_branch2ax

res3d_branch2a_relu ReLu res3d_branch2ax res3d_branch2axxx

res3d_branch2b Convolution res3d_branch2axxx res3d_branch2b 3x3x128x128 128

bn3d_branch2b
Batch

Normalization
res3d_branch2b res3d_branch2bx

res3d_branch2b_relu ReLu res3d_branch2bx res3d_branch2bxxx

res3d_branch2c Convolution res3d_branch2bxxx res3d_branch2c 1x1x128x512 512

bn3d_branch2c
Batch
Normalization

res3d_branch2c res3d_branch2cx

res3d Summation
res3cx,

res3d_branch2cx
res3d

res3d_relu ReLu res3d res3dx

res4a_branch1 Convolution res3dx res4a_branch1 1x1x512x1024 1024

bn4a_branch1
Batch

Normalization
res4a_branch1 res4a_branch1x

res4a_branch2a Convolution res3dx res4a_branch2a 1x1x512x256 256

bn4a_branch2a
Batch
Normalization

res4a_branch2a res4a_branch2ax

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx

res4a_branch2b Convolution res4a_branch2axxx res4a_branch2b 3x3x256x256 256

bn4a_branch2b
Batch
Normalization

res4a_branch2b res4a_branch2bx

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx

res4a_branch2c Convolution res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024

bn4a_branch2c
Batch
Normalization

res4a_branch2c res4a_branch2cx

125

Table 20. ResNet50 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4a Summation
res4a_branch1x,

res4a_branch2cx
res4a

res4a_relu ReLu res4a res4ax

res4b_branch2a Convolution res4ax res4b_branch2a 1x1x1024x256 256

bn4b_branch2a
Batch

Normalization
res4b_branch2a res4b_branch2ax

res4b_branch2a_relu ReLu res4b_branch2ax res4b_branch2axxx

res4b_branch2b Convolution res4b_branch2axxx res4b_branch2b 3x3x256x256 256

bn4b_branch2b
Batch

Normalization
res4b_branch2b res4b_branch2bx

res4b_branch2b_relu ReLu res4b_branch2bx res4b_branch2bxxx

res4b_branch2c Convolution res4b_branch2bxxx res4b_branch2c 1x1x256x1024 1024

bn4b_branch2c
Batch

Normalization
res4b_branch2c res4b_branch2cx

res4b Summation
res4ax,
res4b_branch2cx

res4b

res4b_relu ReLu res4b res4bx

res4c_branch2a Convolution res4bx res4c_branch2a 1x1x1024x256 256

bn4c_branch2a
Batch

Normalization
res4c_branch2a res4c_branch2ax

res4c_branch2a_relu ReLu res4c_branch2ax res4c_branch2axxx

res4c_branch2b Convolution res4c_branch2axxx res4c_branch2b 3x3x256x256 256

bn4c_branch2b
Batch

Normalization
res4c_branch2b res4c_branch2bx

res4c_branch2b_relu ReLu res4c_branch2bx res4c_branch2bxxx

res4c_branch2c Convolution res4c_branch2bxxx res4c_branch2c 1x1x256x1024 1024

bn4c_branch2c
Batch

Normalization
res4c_branch2c res4c_branch2cx

res4c Summation
res4bx,
res4c_branch2cx

res4c

res4c_relu ReLu res4c res4cx

res4d_branch2a Convolution res4cx res4d_branch2a 1x1x1024x256 256

bn4d_branch2a
Batch

Normalization
res4d_branch2a res4d_branch2ax

res4d_branch2a_relu ReLu res4d_branch2ax res4d_branch2axxx

res4d_branch2b Convolution res4d_branch2axxx res4d_branch2b 3x3x256x256 256

bn4d_branch2b
Batch

Normalization
res4d_branch2b res4d_branch2bx

res4d_branch2b_relu ReLu res4d_branch2bx res4d_branch2bxxx

res4d_branch2c Convolution res4d_branch2bxxx res4d_branch2c 1x1x256x1024 1024

bn4d_branch2c
Batch

Normalization
res4d_branch2c res4d_branch2cx

res4d Summation
res4cx,
res4d_branch2cx

res4d

res4d_relu ReLu res4d res4dx

res4e_branch2a Convolution res4dx res4e_branch2a 1x1x1024x256 256

bn4e_branch2a
Batch
Normalization

res4e_branch2a res4e_branch2ax

res4e_branch2a_relu ReLu res4e_branch2ax res4e_branch2axxx

res4e_branch2b Convolution res4e_branch2axxx res4e_branch2b 3x3x256x256 256

bn4e_branch2b
Batch

Normalization
res4e_branch2b res4e_branch2bx

res4e_branch2b_relu ReLu res4e_branch2bx res4e_branch2bxxx

res4e_branch2c Convolution res4e_branch2bxxx res4e_branch2c 1x1x256x1024 1024

bn4e_branch2c
Batch

Normalization
res4e_branch2c res4e_branch2cx

res4e Summation
res4dx,
res4e_branch2cx

res4e

res4e_relu ReLu res4e res4ex

res4f_branch2a Convolution res4ex res4f_branch2a 1x1x1024x256 256

bn4f_branch2a
Batch
Normalization

res4f_branch2a res4f_branch2ax

126

Table 20. ResNet50 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4f_branch2a_relu ReLu res4f_branch2ax res4f_branch2axxx

res4f_branch2b Convolution res4f_branch2axxx res4f_branch2b 3x3x256x256 256

bn4f_branch2b
Batch
Normalization

res4f_branch2b res4f_branch2bx

res4f_branch2b_relu ReLu res4f_branch2bx res4f_branch2bxxx

res4f_branch2c Convolution res4f_branch2bxxx res4f_branch2c 1x1x256x1024 1024

bn4f_branch2c
Batch
Normalization

res4f_branch2c res4f_branch2cx

res4f Summation
res4ex,

res4f_branch2cx
res4f

res4f_relu ReLu res4f res4fx

res5a_branch1 Convolution res4fx res5a_branch1 1x1x1024x2048 2048

bn5a_branch1
Batch

Normalization
res5a_branch1 res5a_branch1x

res5a_branch2a Convolution res4fx res5a_branch2a 1x1x1024x512 512

bn5a_branch2a
Batch
Normalization

res5a_branch2a res5a_branch2ax

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx

res5a_branch2b Convolution res5a_branch2axxx res5a_branch2b 3x3x512x512 512

bn5a_branch2b
Batch
Normalization

res5a_branch2b res5a_branch2bx

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx

res5a_branch2c Convolution res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048

bn5a_branch2c
Batch

Normalization
res5a_branch2c res5a_branch2cx

res5a Summation
res5a_branch1x,

res5a_branch2cx
res5a

res5a_relu ReLu res5a res5ax

res5b_branch2a Convolution res5ax res5b_branch2a 1x1x2048x512 512

bn5b_branch2a
Batch
Normalization

res5b_branch2a res5b_branch2ax

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx

res5b_branch2b Convolution res5b_branch2axxx res5b_branch2b 3x3x512x512 512

bn5b_branch2b
Batch
Normalization

res5b_branch2b res5b_branch2bx

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx

res5b_branch2c Convolution res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048

bn5b_branch2c
Batch
Normalization

res5b_branch2c res5b_branch2cx

res5b Summation
res5ax,

res5b_branch2cx
res5b

res5b_relu ReLu res5b res5bx

res5c_branch2a Convolution res5bx res5c_branch2a 1x1x2048x512 512

bn5c_branch2a
Batch

Normalization
res5c_branch2a res5c_branch2ax

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx

res5c_branch2b Convolution res5c_branch2axxx res5c_branch2b 3x3x512x512 512

bn5c_branch2b
Batch
Normalization

res5c_branch2b res5c_branch2bx

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx

res5c_branch2c Convolution res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048

bn5c_branch2c
Batch
Normalization

res5c_branch2c res5c_branch2cx

res5c Summation
res5bx,

res5c_branch2cx
res5c

res5c_relu ReLu res5c res5cx

pool5
Average
Pooling

res5cx pool5

fc1000 Convolution pool5 fc1000 1x1x2048x1000 1000

prob SoftMax fc1000 prob

127

Table 21. ResNet101 Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1 Convolutional data conv1 7x7x3x64 64

bn_conv1
Batch
Normalization

conv1 conv1x

conv1_relu ReLu conv1x conv1xxx

pool1 Max Pooling conv1xxx pool1

res2a_branch1 Convolutional pool1 res2a_branch1 1x1x64x256 256

bn2a_branch1
Batch
Normalization

res2a_branch1 res2a_branch1x

res2a_branch2a Convolutional pool1 res2a_branch2a 1x1x64x64 64

bn2a_branch2a
Batch

Normalization
res2a_branch2a res2a_branch2ax

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx

res2a_branch2b Convolutional res2a_branch2axxx res2a_branch2b 3x3x64x64 64

bn2a_branch2b
Batch

Normalization
res2a_branch2b res2a_branch2bx

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx

res2a_branch2c Convolutional res2a_branch2bxxx res2a_branch2c 1x1x64x256 256

bn2a_branch2c
Batch

Normalization
res2a_branch2c res2a_branch2cx

res2a Summation
res2a_branch1x,
res2a_branch2cx

res2a

res2a_relu ReLu res2a res2ax

res2b_branch2a Convolutional res2ax res2b_branch2a 1x1x256x64 64

bn2b_branch2a
Batch

Normalization
res2b_branch2a res2b_branch2ax

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx

res2b_branch2b Convolutional res2b_branch2axxx res2b_branch2b 3x3x64x64 64

bn2b_branch2b
Batch

Normalization
res2b_branch2b res2b_branch2bx

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx

res2b_branch2c Convolutional res2b_branch2bxxx res2b_branch2c 1x1x64x256 256

bn2b_branch2c
Batch

Normalization
res2b_branch2c res2b_branch2cx

res2b Summation
res2ax,
res2b_branch2cx

res2b

res2b_relu ReLu res2b res2bx

res2c_branch2a Convolutional res2bx res2c_branch2a 1x1x256x64 64

bn2c_branch2a
Batch
Normalization

res2c_branch2a res2c_branch2ax

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx

res2c_branch2b Convolutional res2c_branch2axxx res2c_branch2b 3x3x64x64 64

bn2c_branch2b
Batch

Normalization
res2c_branch2b res2c_branch2bx

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx

res2c_branch2c Convolutional res2c_branch2bxxx res2c_branch2c 1x1x64x256 256

bn2c_branch2c
Batch

Normalization
res2c_branch2c res2c_branch2cx

res2c Summation
res2bx,
res2c_branch2cx

res2c

res2c_relu ReLu res2c res2cx

res3a_branch1 Convolutional res2cx res3a_branch1 1x1x256x512 512

bn3a_branch1
Batch
Normalization

res3a_branch1 res3a_branch1x

res3a_branch2a Convolutional res2cx res3a_branch2a 1x1x256x128 128

bn3a_branch2a
Batch

Normalization
res3a_branch2a res3a_branch2ax

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx

res3a_branch2b Convolutional res3a_branch2axxx res3a_branch2b 3x3x128x128 128

bn3a_branch2b
Batch

Normalization
res3a_branch2b res3a_branch2bx

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx

res3a_branch2c Convolutional res3a_branch2bxxx res3a_branch2c 1x1x128x512 512

128

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn3a_branch2c
Batch

Normalization
res3a_branch2c res3a_branch2cx

res3a Summation
res3a_branch1x,

res3a_branch2cx
res3a

res3a_relu ReLu res3a res3ax

res3b1_branch2a Convolutional res3ax res3b1_branch2a 1x1x512x128 128

bn3b1_branch2a
Batch
Normalization

res3b1_branch2a res3b1_branch2ax

res3b1_branch2a_relu ReLu res3b1_branch2ax res3b1_branch2axxx

res3b1_branch2b Convolutional res3b1_branch2axxx res3b1_branch2b 3x3x128x128 128

bn3b1_branch2b
Batch
Normalization

res3b1_branch2b res3b1_branch2bx

res3b1_branch2b_relu ReLu res3b1_branch2bx res3b1_branch2bxxx

res3b1_branch2c Convolutional res3b1_branch2bxxx res3b1_branch2c 1x1x128x512 512

bn3b1_branch2c
Batch
Normalization

res3b1_branch2c res3b1_branch2cx

res3b1 Summation
res3ax,

res3b1_branch2cx
res3b1

res3b1_relu ReLu res3b1 res3b1x

res3b2_branch2a Convolutional res3b1x res3b2_branch2a 1x1x512x128 128

bn3b2_branch2a
Batch

Normalization
res3b2_branch2a res3b2_branch2ax

res3b2_branch2a_relu ReLu res3b2_branch2ax res3b2_branch2axxx

res3b2_branch2b Convolutional res3b2_branch2axxx res3b2_branch2b 3x3x128x128 128

bn3b2_branch2b
Batch
Normalization

res3b2_branch2b res3b2_branch2bx

res3b2_branch2b_relu ReLu res3b2_branch2bx res3b2_branch2bxxx

res3b2_branch2c Convolutional res3b2_branch2bxxx res3b2_branch2c 1x1x128x512 512

bn3b2_branch2c
Batch
Normalization

res3b2_branch2c res3b2_branch2cx

res3b2 Summation
res3b1x,

res3b2_branch2cx
res3b2

res3b2_relu ReLu res3b2 res3b2x

res3b3_branch2a Convolutional res3b2x res3b3_branch2a 1x1x512x128 128

bn3b3_branch2a
Batch

Normalization
res3b3_branch2a res3b3_branch2ax

res3b3_branch2a_relu ReLu res3b3_branch2ax res3b3_branch2axxx

res3b3_branch2b Convolutional res3b3_branch2axxx res3b3_branch2b 3x3x128x128 128

bn3b3_branch2b
Batch

Normalization
res3b3_branch2b res3b3_branch2bx

res3b3_branch2b_relu ReLu res3b3_branch2bx res3b3_branch2bxxx

res3b3_branch2c Convolutional res3b3_branch2bxxx res3b3_branch2c 1x1x128x512 512

bn3b3_branch2c
Batch
Normalization

res3b3_branch2c res3b3_branch2cx

res3b3 Summation
res3b2x,

res3b3_branch2cx
res3b3

res3b3_relu ReLu res3b3 res3b3x

res4a_branch1 Convolutional res3b3x res4a_branch1 1x1x512x1024 1024

bn4a_branch1
Batch

Normalization
res4a_branch1 res4a_branch1x

res4a_branch2a Convolutional res3b3x res4a_branch2a 1x1x512x256 256

bn4a_branch2a
Batch
Normalization

res4a_branch2a res4a_branch2ax

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx

res4a_branch2b Convolutional res4a_branch2axxx res4a_branch2b 3x3x256x256 256

bn4a_branch2b
Batch
Normalization

res4a_branch2b res4a_branch2bx

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx

res4a_branch2c Convolutional res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024

bn4a_branch2c
Batch
Normalization

res4a_branch2c res4a_branch2cx

129

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4a Summation
res4a_branch1x,

res4a_branch2cx
res4a

res4a_relu ReLu res4a res4ax

res4b1_branch2a Convolutional res4ax res4b1_branch2a 1x1x1024x256 256

bn4b1_branch2a
Batch

Normalization
res4b1_branch2a res4b1_branch2ax

res4b1_branch2a_relu ReLu res4b1_branch2ax res4b1_branch2axxx

res4b1_branch2b Convolutional res4b1_branch2axxx res4b1_branch2b 3x3x256x256 256

bn4b1_branch2b
Batch

Normalization
res4b1_branch2b res4b1_branch2bx

res4b1_branch2b_relu ReLu res4b1_branch2bx res4b1_branch2bxxx

res4b1_branch2c Convolutional res4b1_branch2bxxx res4b1_branch2c 1x1x256x1024 1024

bn4b1_branch2c
Batch

Normalization
res4b1_branch2c res4b1_branch2cx

res4b1 Summation
res4ax,
res4b1_branch2cx

res4b1

res4b1_relu ReLu res4b1 res4b1x

res4b2_branch2a Convolutional res4b1x res4b2_branch2a 1x1x1024x256 256

bn4b2_branch2a
Batch

Normalization
res4b2_branch2a res4b2_branch2ax

res4b2_branch2a_relu ReLu res4b2_branch2ax res4b2_branch2axxx

res4b2_branch2b Convolutional res4b2_branch2axxx res4b2_branch2b 3x3x256x256 256

bn4b2_branch2b
Batch

Normalization
res4b2_branch2b res4b2_branch2bx

res4b2_branch2b_relu ReLu res4b2_branch2bx res4b2_branch2bxxx

res4b2_branch2c Convolutional res4b2_branch2bxxx res4b2_branch2c 1x1x256x1024 1024

bn4b2_branch2c
Batch

Normalization
res4b2_branch2c res4b2_branch2cx

res4b2 Summation
res4b1x,
res4b2_branch2cx

res4b2

res4b2_relu ReLu res4b2 res4b2x

res4b3_branch2a Convolutional res4b2x res4b3_branch2a 1x1x1024x256 256

bn4b3_branch2a
Batch

Normalization
res4b3_branch2a res4b3_branch2ax

res4b3_branch2a_relu ReLu res4b3_branch2ax res4b3_branch2axxx

res4b3_branch2b Convolutional res4b3_branch2axxx res4b3_branch2b 3x3x256x256 256

bn4b3_branch2b
Batch

Normalization
res4b3_branch2b res4b3_branch2bx

res4b3_branch2b_relu ReLu res4b3_branch2bx res4b3_branch2bxxx

res4b3_branch2c Convolutional res4b3_branch2bxxx res4b3_branch2c 1x1x256x1024 1024

bn4b3_branch2c
Batch

Normalization
res4b3_branch2c res4b3_branch2cx

res4b3 Summation
res4b2x,
res4b3_branch2cx

res4b3

res4b3_relu ReLu res4b3 res4b3x

res4b4_branch2a Convolutional res4b3x res4b4_branch2a 1x1x1024x256 256

bn4b4_branch2a
Batch
Normalization

res4b4_branch2a res4b4_branch2ax

res4b4_branch2a_relu ReLu res4b4_branch2ax res4b4_branch2axxx

res4b4_branch2b Convolutional res4b4_branch2axxx res4b4_branch2b 3x3x256x256 256

bn4b4_branch2b
Batch

Normalization
res4b4_branch2b res4b4_branch2bx

res4b4_branch2b_relu ReLu res4b4_branch2bx res4b4_branch2bxxx

res4b4_branch2c Convolutional res4b4_branch2bxxx res4b4_branch2c 1x1x256x1024 1024

bn4b4_branch2c
Batch

Normalization
res4b4_branch2c res4b4_branch2cx

res4b4 Summation
res4b3x,
res4b4_branch2cx

res4b4

res4b4_relu ReLu res4b4 res4b4x

res4b5_branch2a Convolutional res4b4x res4b5_branch2a 1x1x1024x256 256

bn4b5_branch2a
Batch
Normalization

res4b5_branch2a res4b5_branch2ax

130

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b5_branch2a_relu ReLu res4b5_branch2ax res4b5_branch2axxx

res4b5_branch2b Convolutional res4b5_branch2axxx res4b5_branch2b 3x3x256x256 256

bn4b5_branch2b
Batch
Normalization

res4b5_branch2b res4b5_branch2bx

res4b5_branch2b_relu ReLu res4b5_branch2bx res4b5_branch2bxxx

res4b5_branch2c Convolutional res4b5_branch2bxxx res4b5_branch2c 1x1x256x1024 1024

bn4b5_branch2c
Batch
Normalization

res4b5_branch2c res4b5_branch2cx

res4b5 Summation
res4b4x,

res4b5_branch2cx
res4b5

res4b5_relu ReLu res4b5 res4b5x

res4b6_branch2a Convolutional res4b5x res4b6_branch2a 1x1x1024x256 256

bn4b6_branch2a
Batch

Normalization
res4b6_branch2a res4b6_branch2ax

res4b6_branch2a_relu ReLu res4b6_branch2ax res4b6_branch2axxx

res4b6_branch2b Convolutional res4b6_branch2axxx res4b6_branch2b 3x3x256x256 256

bn4b6_branch2b
Batch

Normalization
res4b6_branch2b res4b6_branch2bx

res4b6_branch2b_relu ReLu res4b6_branch2bx res4b6_branch2bxxx

res4b6_branch2c Convolutional res4b6_branch2bxxx res4b6_branch2c 1x1x256x1024 1024

bn4b6_branch2c
Batch
Normalization

res4b6_branch2c res4b6_branch2cx

res4b6 Summation
res4b5x,

res4b6_branch2cx
res4b6

res4b6_relu ReLu res4b6 res4b6x

res4b7_branch2a Convolutional res4b6x res4b7_branch2a 1x1x1024x256 256

bn4b7_branch2a
Batch

Normalization
res4b7_branch2a res4b7_branch2ax

res4b7_branch2a_relu ReLu res4b7_branch2ax res4b7_branch2axxx

res4b7_branch2b Convolutional res4b7_branch2axxx res4b7_branch2b 3x3x256x256 256

bn4b7_branch2b
Batch

Normalization
res4b7_branch2b res4b7_branch2bx

res4b7_branch2b_relu ReLu res4b7_branch2bx res4b7_branch2bxxx

res4b7_branch2c Convolutional res4b7_branch2bxxx res4b7_branch2c 1x1x256x1024 1024

bn4b7_branch2c
Batch
Normalization

res4b7_branch2c res4b7_branch2cx

res4b7 Summation
res4b6x,

res4b7_branch2cx
res4b7

res4b7_relu ReLu res4b7 res4b7x

res4b8_branch2a Convolutional res4b7x res4b8_branch2a 1x1x1024x256 256

bn4b8_branch2a
Batch

Normalization
res4b8_branch2a res4b8_branch2ax

res4b8_branch2a_relu ReLu res4b8_branch2ax res4b8_branch2axxx

res4b8_branch2b Convolutional res4b8_branch2axxx res4b8_branch2b 3x3x256x256 256

bn4b8_branch2b
Batch

Normalization
res4b8_branch2b res4b8_branch2bx

res4b8_branch2b_relu ReLu res4b8_branch2bx res4b8_branch2bxxx

res4b8_branch2c Convolutional res4b8_branch2bxxx res4b8_branch2c 1x1x256x1024 1024

bn4b8_branch2c
Batch

Normalization
res4b8_branch2c res4b8_branch2cx

res4b8 Summation
res4b7x,

res4b8_branch2cx
res4b8

res4b8_relu ReLu res4b8 res4b8x

res4b9_branch2a Convolutional res4b8x res4b9_branch2a 1x1x1024x256 256

bn4b9_branch2a
Batch

Normalization
res4b9_branch2a res4b9_branch2ax

res4b9_branch2a_relu ReLu res4b9_branch2ax res4b9_branch2axxx

res4b9_branch2b Convolutional res4b9_branch2axxx res4b9_branch2b 3x3x256x256 256

bn4b9_branch2b
Batch

Normalization
res4b9_branch2b res4b9_branch2bx

res4b9_branch2b_relu ReLu res4b9_branch2bx res4b9_branch2bxxx

res4b9_branch2c Convolutional res4b9_branch2bxxx res4b9_branch2c 1x1x256x1024 1024

131

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b9_branch2c
Batch

Normalization
res4b9_branch2c res4b9_branch2cx

res4b9 Summation
res4b8x,

res4b9_branch2cx
res4b9

res4b9_relu ReLu res4b9 res4b9x

res4b10_branch2a Convolutional res4b9x res4b10_branch2a 1x1x1024x256 256

bn4b10_branch2a
Batch
Normalization

res4b10_branch2a res4b10_branch2ax

res4b10_branch2a_relu ReLu res4b10_branch2ax res4b10_branch2axxx

res4b10_branch2b Convolutional res4b10_branch2axxx res4b10_branch2b 3x3x256x256 256

bn4b10_branch2b
Batch
Normalization

res4b10_branch2b res4b10_branch2bx

res4b10_branch2b_relu ReLu res4b10_branch2bx res4b10_branch2bxxx

res4b10_branch2c Convolutional res4b10_branch2bxxx res4b10_branch2c 1x1x256x1024 1024

bn4b10_branch2c
Batch
Normalization

res4b10_branch2c res4b10_branch2cx

res4b10 Summation
res4b9x,

res4b10_branch2cx
res4b10

res4b10_relu ReLu res4b10 res4b10x

res4b11_branch2a Convolutional res4b10x res4b11_branch2a 1x1x1024x256 256

bn4b11_branch2a
Batch

Normalization
res4b11_branch2a res4b11_branch2ax

res4b11_branch2a_relu ReLu res4b11_branch2ax res4b11_branch2axxx

res4b11_branch2b Convolutional res4b11_branch2axxx res4b11_branch2b 3x3x256x256 256

bn4b11_branch2b
Batch
Normalization

res4b11_branch2b res4b11_branch2bx

res4b11_branch2b_relu ReLu res4b11_branch2bx res4b11_branch2bxxx

res4b11_branch2c Convolutional res4b11_branch2bxxx res4b11_branch2c 1x1x256x1024 1024

bn4b11_branch2c
Batch
Normalization

res4b11_branch2c res4b11_branch2cx

res4b11 Summation
res4b10x,

res4b11_branch2cx
res4b11

res4b11_relu ReLu res4b11 res4b11x

res4b12_branch2a Convolutional res4b11x res4b12_branch2a 1x1x1024x256 256

bn4b12_branch2a
Batch

Normalization
res4b12_branch2a res4b12_branch2ax

res4b12_branch2a_relu ReLu res4b12_branch2ax res4b12_branch2axxx

res4b12_branch2b Convolutional res4b12_branch2axxx res4b12_branch2b 3x3x256x256 256

bn4b12_branch2b
Batch

Normalization
res4b12_branch2b res4b12_branch2bx

res4b12_branch2b_relu ReLu res4b12_branch2bx res4b12_branch2bxxx

res4b12_branch2c Convolutional res4b12_branch2bxxx res4b12_branch2c 1x1x256x1024 1024

bn4b12_branch2c
Batch
Normalization

res4b12_branch2c res4b12_branch2cx

res4b12 Summation
res4b11x,

res4b12_branch2cx
res4b12

res4b12_relu ReLu res4b12 res4b12x

res4b13_branch2a Convolutional res4b12x res4b13_branch2a 1x1x1024x256 256

bn4b13_branch2a
Batch

Normalization
res4b13_branch2a res4b13_branch2ax

res4b13_branch2a_relu ReLu res4b13_branch2ax res4b13_branch2axxx

res4b13_branch2b Convolutional res4b13_branch2axxx res4b13_branch2b 3x3x256x256 256

bn4b13_branch2b
Batch

Normalization
res4b13_branch2b res4b13_branch2bx

res4b13_branch2b_relu ReLu res4b13_branch2bx res4b13_branch2bxxx

res4b13_branch2c Convolutional res4b13_branch2bxxx res4b13_branch2c 1x1x256x1024 1024

bn4b13_branch2c
Batch
Normalization

res4b13_branch2c res4b13_branch2cx

res4b13 Summation
res4b12x,

res4b13_branch2cx
res4b13

res4b13_relu ReLu res4b13 res4b13x

res4b14_branch2a Convolutional res4b13x res4b14_branch2a 1x1x1024x256 256

132

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b14_branch2a
Batch

Normalization
res4b14_branch2a res4b14_branch2ax

res4b14_branch2a_relu ReLu res4b14_branch2ax res4b14_branch2axxx

res4b14_branch2b Convolutional res4b14_branch2axxx res4b14_branch2b 3x3x256x256 256

bn4b14_branch2b
Batch

Normalization
res4b14_branch2b res4b14_branch2bx

res4b14_branch2b_relu ReLu res4b14_branch2bx res4b14_branch2bxxx

res4b14_branch2c Convolutional res4b14_branch2bxxx res4b14_branch2c 1x1x256x1024 1024

bn4b14_branch2c
Batch

Normalization
res4b14_branch2c res4b14_branch2cx

res4b14 Summation
res4b13x,
res4b14_branch2cx

res4b14

res4b14_relu ReLu res4b14 res4b14x

res4b15_branch2a Convolutional res4b14x res4b15_branch2a 1x1x1024x256 256

bn4b15_branch2a
Batch
Normalization

res4b15_branch2a res4b15_branch2ax

res4b15_branch2a_relu ReLu res4b15_branch2ax res4b15_branch2axxx

res4b15_branch2b Convolutional res4b15_branch2axxx res4b15_branch2b 3x3x256x256 256

bn4b15_branch2b
Batch

Normalization
res4b15_branch2b res4b15_branch2bx

res4b15_branch2b_relu ReLu res4b15_branch2bx res4b15_branch2bxxx

res4b15_branch2c Convolutional res4b15_branch2bxxx res4b15_branch2c 1x1x256x1024 1024

bn4b15_branch2c
Batch

Normalization
res4b15_branch2c res4b15_branch2cx

res4b15 Summation
res4b14x,
res4b15_branch2cx

res4b15

res4b15_relu ReLu res4b15 res4b15x

res4b16_branch2a Convolutional res4b15x res4b16_branch2a 1x1x1024x256 256

bn4b16_branch2a
Batch
Normalization

res4b16_branch2a res4b16_branch2ax

res4b16_branch2a_relu ReLu res4b16_branch2ax res4b16_branch2axxx

res4b16_branch2b Convolutional res4b16_branch2axxx res4b16_branch2b 3x3x256x256 256

bn4b16_branch2b
Batch

Normalization
res4b16_branch2b res4b16_branch2bx

res4b16_branch2b_relu ReLu res4b16_branch2bx res4b16_branch2bxxx

res4b16_branch2c Convolutional res4b16_branch2bxxx res4b16_branch2c 1x1x256x1024 1024

bn4b16_branch2c
Batch

Normalization
res4b16_branch2c res4b16_branch2cx

res4b16 Summation
res4b15x,

res4b16_branch2cx
res4b16

res4b16_relu ReLu res4b16 res4b16x

res4b17_branch2a Convolutional res4b16x res4b17_branch2a 1x1x1024x256 256

bn4b17_branch2a
Batch
Normalization

res4b17_branch2a res4b17_branch2ax

res4b17_branch2a_relu ReLu res4b17_branch2ax res4b17_branch2axxx

res4b17_branch2b Convolutional res4b17_branch2axxx res4b17_branch2b 3x3x256x256 256

bn4b17_branch2b
Batch
Normalization

res4b17_branch2b res4b17_branch2bx

res4b17_branch2b_relu ReLu res4b17_branch2bx res4b17_branch2bxxx

res4b17_branch2c Convolutional res4b17_branch2bxxx res4b17_branch2c 1x1x256x1024 1024

bn4b17_branch2c
Batch

Normalization
res4b17_branch2c res4b17_branch2cx

res4b17 Summation
res4b16x,

res4b17_branch2cx
res4b17

res4b17_relu ReLu res4b17 res4b17x

res4b18_branch2a Convolutional res4b17x res4b18_branch2a 1x1x1024x256 256

bn4b18_branch2a
Batch
Normalization

res4b18_branch2a res4b18_branch2ax

res4b18_branch2a_relu ReLu res4b18_branch2ax res4b18_branch2axxx

res4b18_branch2b Convolutional res4b18_branch2axxx res4b18_branch2b 3x3x256x256 256

bn4b18_branch2b
Batch
Normalization

res4b18_branch2b res4b18_branch2bx

133

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b18_branch2b_relu ReLu res4b18_branch2bx res4b18_branch2bxxx

res4b18_branch2c Convolutional res4b18_branch2bxxx res4b18_branch2c 1x1x256x1024 1024

bn4b18_branch2c
Batch
Normalization

res4b18_branch2c res4b18_branch2cx

res4b18 Summation
res4b17x,

res4b18_branch2cx
res4b18

res4b18_relu ReLu res4b18 res4b18x

res4b19_branch2a Convolutional res4b18x res4b19_branch2a 1x1x1024x256 256

bn4b19_branch2a
Batch

Normalization
res4b19_branch2a res4b19_branch2ax

res4b19_branch2a_relu ReLu res4b19_branch2ax res4b19_branch2axxx

res4b19_branch2b Convolutional res4b19_branch2axxx res4b19_branch2b 3x3x256x256 256

bn4b19_branch2b
Batch

Normalization
res4b19_branch2b res4b19_branch2bx

res4b19_branch2b_relu ReLu res4b19_branch2bx res4b19_branch2bxxx

res4b19_branch2c Convolutional res4b19_branch2bxxx res4b19_branch2c 1x1x256x1024 1024

bn4b19_branch2c
Batch

Normalization
res4b19_branch2c res4b19_branch2cx

res4b19 Summation
res4b18x,

res4b19_branch2cx
res4b19

res4b19_relu ReLu res4b19 res4b19x

res4b20_branch2a Convolutional res4b19x res4b20_branch2a 1x1x1024x256 256

bn4b20_branch2a
Batch

Normalization
res4b20_branch2a res4b20_branch2ax

res4b20_branch2a_relu ReLu res4b20_branch2ax res4b20_branch2axxx

res4b20_branch2b Convolutional res4b20_branch2axxx res4b20_branch2b 3x3x256x256 256

bn4b20_branch2b
Batch

Normalization
res4b20_branch2b res4b20_branch2bx

res4b20_branch2b_relu ReLu res4b20_branch2bx res4b20_branch2bxxx

res4b20_branch2c Convolutional res4b20_branch2bxxx res4b20_branch2c 1x1x256x1024 1024

bn4b20_branch2c
Batch

Normalization
res4b20_branch2c res4b20_branch2cx

res4b20 Summation
res4b19x,

res4b20_branch2cx
res4b20

res4b20_relu ReLu res4b20 res4b20x

res4b21_branch2a Convolutional res4b20x res4b21_branch2a 1x1x1024x256 256

bn4b21_branch2a
Batch

Normalization
res4b21_branch2a res4b21_branch2ax

res4b21_branch2a_relu ReLu res4b21_branch2ax res4b21_branch2axxx

res4b21_branch2b Convolutional res4b21_branch2axxx res4b21_branch2b 3x3x256x256 256

bn4b21_branch2b
Batch

Normalization
res4b21_branch2b res4b21_branch2bx

res4b21_branch2b_relu ReLu res4b21_branch2bx res4b21_branch2bxxx

res4b21_branch2c Convolutional res4b21_branch2bxxx res4b21_branch2c 1x1x256x1024 1024

bn4b21_branch2c
Batch

Normalization
res4b21_branch2c res4b21_branch2cx

res4b21 Summation
res4b20x,
res4b21_branch2cx

res4b21

res4b21_relu ReLu res4b21 res4b21x

res4b22_branch2a Convolutional res4b21x res4b22_branch2a 1x1x1024x256 256

bn4b22_branch2a
Batch

Normalization
res4b22_branch2a res4b22_branch2ax

res4b22_branch2a_relu ReLu res4b22_branch2ax res4b22_branch2axxx

res4b22_branch2b Convolutional res4b22_branch2axxx res4b22_branch2b 3x3x256x256 256

bn4b22_branch2b
Batch

Normalization
res4b22_branch2b res4b22_branch2bx

res4b22_branch2b_relu ReLu res4b22_branch2bx res4b22_branch2bxxx

res4b22_branch2c Convolutional res4b22_branch2bxxx res4b22_branch2c 1x1x256x1024 1024

bn4b22_branch2c
Batch

Normalization
res4b22_branch2c res4b22_branch2cx

res4b22 Summation
res4b21x,
res4b22_branch2cx

res4b22

134

Table 21. ResNet101 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b22_relu ReLu res4b22 res4b22x

res5a_branch1 Convolutional res4b22x res5a_branch1 1x1x1024x2048 2048

bn5a_branch1
Batch
Normalization

res5a_branch1 res5a_branch1x

res5a_branch2a Convolutional res4b22x res5a_branch2a 1x1x1024x512 512

bn5a_branch2a
Batch

Normalization
res5a_branch2a res5a_branch2ax

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx

res5a_branch2b Convolutional res5a_branch2axxx res5a_branch2b 3x3x512x512 512

bn5a_branch2b
Batch

Normalization
res5a_branch2b res5a_branch2bx

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx

res5a_branch2c Convolutional res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048

bn5a_branch2c
Batch

Normalization
res5a_branch2c res5a_branch2cx

res5a Summation
res5a_branch1x,
res5a_branch2cx

res5a

res5a_relu ReLu res5a res5ax

res5b_branch2a Convolutional res5ax res5b_branch2a 1x1x2048x512 512

bn5b_branch2a
Batch
Normalization

res5b_branch2a res5b_branch2ax

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx

res5b_branch2b Convolutional res5b_branch2axxx res5b_branch2b 3x3x512x512 512

bn5b_branch2b
Batch

Normalization
res5b_branch2b res5b_branch2bx

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx

res5b_branch2c Convolutional res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048

bn5b_branch2c
Batch

Normalization
res5b_branch2c res5b_branch2cx

res5b Summation
res5ax,
res5b_branch2cx

res5b

res5b_relu ReLu res5b res5bx

res5c_branch2a Convolutional res5bx res5c_branch2a 1x1x2048x512 512

bn5c_branch2a
Batch
Normalization

res5c_branch2a res5c_branch2ax

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx

res5c_branch2b Convolutional res5c_branch2axxx res5c_branch2b 3x3x512x512 512

bn5c_branch2b
Batch
Normalization

res5c_branch2b res5c_branch2bx

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx

res5c_branch2c Convolutional res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048

bn5c_branch2c
Batch

Normalization
res5c_branch2c res5c_branch2cx

res5c Summation
res5bx,

res5c_branch2cx
res5c

res5c_relu ReLu res5c res5cx

pool5
Average
Pooling

res5cx pool5

fc1000 Convolutional pool5 fc1000 1x1x2048x1000 1000

prob SoftMax fc1000 prob

135

Table 22. ResNet152 Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1 Convolution data conv1 7x7x3x64 64

bn_conv1
Batch
Normalization

conv1 conv1x

conv1_relu ReLu conv1x conv1xxx

pool1 Max Pooling conv1xxx pool1

res2a_branch1 Convolution pool1 res2a_branch1 1x1x64x256 256

bn2a_branch1
Batch
Normalization

res2a_branch1 res2a_branch1x

res2a_branch2a Convolution pool1 res2a_branch2a 1x1x64x64 64

bn2a_branch2a
Batch

Normalization
res2a_branch2a res2a_branch2ax

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx

res2a_branch2b Convolution res2a_branch2axxx res2a_branch2b 3x3x64x64 64

bn2a_branch2b
Batch

Normalization
res2a_branch2b res2a_branch2bx

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx

res2a_branch2c Convolution res2a_branch2bxxx res2a_branch2c 1x1x64x256 256

bn2a_branch2c
Batch

Normalization
res2a_branch2c res2a_branch2cx

res2a Summation
res2a_branch1x,
res2a_branch2cx

res2a

res2a_relu ReLu res2a res2ax

res2b_branch2a Convolution res2ax res2b_branch2a 1x1x256x64 64

bn2b_branch2a
Batch

Normalization
res2b_branch2a res2b_branch2ax

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx

res2b_branch2b Convolution res2b_branch2axxx res2b_branch2b 3x3x64x64 64

bn2b_branch2b
Batch

Normalization
res2b_branch2b res2b_branch2bx

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx

res2b_branch2c Convolution res2b_branch2bxxx res2b_branch2c 1x1x64x256 256

bn2b_branch2c
Batch

Normalization
res2b_branch2c res2b_branch2cx

res2b Summation
res2ax,
res2b_branch2cx

res2b

res2b_relu ReLu res2b res2bx

res2c_branch2a Convolution res2bx res2c_branch2a 1x1x256x64 64

bn2c_branch2a
Batch
Normalization

res2c_branch2a res2c_branch2ax

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx

res2c_branch2b Convolution res2c_branch2axxx res2c_branch2b 3x3x64x64 64

bn2c_branch2b
Batch

Normalization
res2c_branch2b res2c_branch2bx

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx

res2c_branch2c Convolution res2c_branch2bxxx res2c_branch2c 1x1x64x256 256

bn2c_branch2c
Batch

Normalization
res2c_branch2c res2c_branch2cx

res2c Summation
res2bx,
res2c_branch2cx

res2c

res2c_relu ReLu res2c res2cx

res3a_branch1 Convolution res2cx res3a_branch1 1x1x256x512 512

bn3a_branch1
Batch
Normalization

res3a_branch1 res3a_branch1x

res3a_branch2a Convolution res2cx res3a_branch2a 1x1x256x128 128

bn3a_branch2a
Batch

Normalization
res3a_branch2a res3a_branch2ax

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx

res3a_branch2b Convolution res3a_branch2axxx res3a_branch2b 3x3x128x128 128

bn3a_branch2b
Batch

Normalization
res3a_branch2b res3a_branch2bx

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx

res3a_branch2c Convolution res3a_branch2bxxx res3a_branch2c 1x1x128x512 512

136

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn3a_branch2c
Batch

Normalization
res3a_branch2c res3a_branch2cx

res3a Summation
res3a_branch1x,

res3a_branch2cx
res3a

res3a_relu ReLu res3a res3ax

res3b1_branch2a Convolution res3ax res3b1_branch2a 1x1x512x128 128

bn3b1_branch2a
Batch
Normalization

res3b1_branch2a res3b1_branch2ax

res3b1_branch2a_relu ReLu res3b1_branch2ax res3b1_branch2axxx

res3b1_branch2b Convolution res3b1_branch2axxx res3b1_branch2b 3x3x128x128 128

bn3b1_branch2b
Batch
Normalization

res3b1_branch2b res3b1_branch2bx

res3b1_branch2b_relu ReLu res3b1_branch2bx res3b1_branch2bxxx

res3b1_branch2c Convolution res3b1_branch2bxxx res3b1_branch2c 1x1x128x512 512

bn3b1_branch2c
Batch
Normalization

res3b1_branch2c res3b1_branch2cx

res3b1 Summation
res3ax,

res3b1_branch2cx
res3b1

res3b1_relu ReLu res3b1 res3b1x

res3b2_branch2a Convolution res3b1x res3b2_branch2a 1x1x512x128 128

bn3b2_branch2a
Batch

Normalization
res3b2_branch2a res3b2_branch2ax

res3b2_branch2a_relu ReLu res3b2_branch2ax res3b2_branch2axxx

res3b2_branch2b Convolution res3b2_branch2axxx res3b2_branch2b 3x3x128x128 128

bn3b2_branch2b
Batch
Normalization

res3b2_branch2b res3b2_branch2bx

res3b2_branch2b_relu ReLu res3b2_branch2bx res3b2_branch2bxxx

res3b2_branch2c Convolution res3b2_branch2bxxx res3b2_branch2c 1x1x128x512 512

bn3b2_branch2c
Batch
Normalization

res3b2_branch2c res3b2_branch2cx

res3b2 Summation
res3b1x,

res3b2_branch2cx
res3b2

res3b2_relu ReLu res3b2 res3b2x

res3b3_branch2a Convolution res3b2x res3b3_branch2a 1x1x512x128 128

bn3b3_branch2a
Batch

Normalization
res3b3_branch2a res3b3_branch2ax

res3b3_branch2a_relu ReLu res3b3_branch2ax res3b3_branch2axxx

res3b3_branch2b Convolution res3b3_branch2axxx res3b3_branch2b 3x3x128x128 128

bn3b3_branch2b
Batch

Normalization
res3b3_branch2b res3b3_branch2bx

res3b3_branch2b_relu ReLu res3b3_branch2bx res3b3_branch2bxxx

res3b3_branch2c Convolution res3b3_branch2bxxx res3b3_branch2c 1x1x128x512 512

bn3b3_branch2c
Batch
Normalization

res3b3_branch2c res3b3_branch2cx

res3b3 Summation
res3b2x,

res3b3_branch2cx
res3b3

res3b3_relu ReLu res3b3 res3b3x

res3b4_branch2a Convolution res3b3x res3b4_branch2a 1x1x512x128 128

bn3b4_branch2a
Batch

Normalization
res3b4_branch2a res3b4_branch2ax

res3b4_branch2a_relu ReLu res3b4_branch2ax res3b4_branch2axxx

res3b4_branch2b Convolution res3b4_branch2axxx res3b4_branch2b 3x3x128x128 128

bn3b4_branch2b
Batch

Normalization
res3b4_branch2b res3b4_branch2bx

res3b4_branch2b_relu ReLu res3b4_branch2bx res3b4_branch2bxxx

res3b4_branch2c Convolution res3b4_branch2bxxx res3b4_branch2c 1x1x128x512 512

bn3b4_branch2c
Batch
Normalization

res3b4_branch2c res3b4_branch2cx

res3b4 Summation
res3b3x,

res3b4_branch2cx
res3b4

res3b4_relu ReLu res3b4 res3b4x

res3b5_branch2a Convolution res3b4x res3b5_branch2a 1x1x512x128 128

137

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn3b5_branch2a
Batch

Normalization
res3b5_branch2a res3b5_branch2ax

res3b5_branch2a_relu ReLu res3b5_branch2ax res3b5_branch2axxx

res3b5_branch2b Convolution res3b5_branch2axxx res3b5_branch2b 3x3x128x128 128

bn3b5_branch2b
Batch

Normalization
res3b5_branch2b res3b5_branch2bx

res3b5_branch2b_relu ReLu res3b5_branch2bx res3b5_branch2bxxx

res3b5_branch2c Convolution res3b5_branch2bxxx res3b5_branch2c 1x1x128x512 512

bn3b5_branch2c
Batch

Normalization
res3b5_branch2c res3b5_branch2cx

res3b5 Summation
res3b4x,
res3b5_branch2cx

res3b5

res3b5_relu ReLu res3b5 res3b5x

res3b6_branch2a Convolution res3b5x res3b6_branch2a 1x1x512x128 128

bn3b6_branch2a
Batch
Normalization

res3b6_branch2a res3b6_branch2ax

res3b6_branch2a_relu ReLu res3b6_branch2ax res3b6_branch2axxx

res3b6_branch2b Convolution res3b6_branch2axxx res3b6_branch2b 3x3x128x128 128

bn3b6_branch2b
Batch

Normalization
res3b6_branch2b res3b6_branch2bx

res3b6_branch2b_relu ReLu res3b6_branch2bx res3b6_branch2bxxx

res3b6_branch2c Convolution res3b6_branch2bxxx res3b6_branch2c 1x1x128x512 512

bn3b6_branch2c
Batch

Normalization
res3b6_branch2c res3b6_branch2cx

res3b6 Summation
res3b5x,
res3b6_branch2cx

res3b6

res3b6_relu ReLu res3b6 res3b6x

res3b7_branch2a Convolution res3b6x res3b7_branch2a 1x1x512x128 128

bn3b7_branch2a
Batch
Normalization

res3b7_branch2a res3b7_branch2ax

res3b7_branch2a_relu ReLu res3b7_branch2ax res3b7_branch2axxx

res3b7_branch2b Convolution res3b7_branch2axxx res3b7_branch2b 3x3x128x128 128

bn3b7_branch2b
Batch

Normalization
res3b7_branch2b res3b7_branch2bx

res3b7_branch2b_relu ReLu res3b7_branch2bx res3b7_branch2bxxx

res3b7_branch2c Convolution res3b7_branch2bxxx res3b7_branch2c 1x1x128x512 512

bn3b7_branch2c
Batch

Normalization
res3b7_branch2c res3b7_branch2cx

res3b7 Summation
res3b6x,

res3b7_branch2cx
res3b7

res3b7_relu ReLu res3b7 res3b7x

res4a_branch1 Convolution res3b7x res4a_branch1 1x1x512x1024 1024

bn4a_branch1
Batch
Normalization

res4a_branch1 res4a_branch1x

res4a_branch2a Convolution res3b7x res4a_branch2a 1x1x512x256 256

bn4a_branch2a
Batch

Normalization
res4a_branch2a res4a_branch2ax

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx

res4a_branch2b Convolution res4a_branch2axxx res4a_branch2b 3x3x256x256 256

bn4a_branch2b
Batch

Normalization
res4a_branch2b res4a_branch2bx

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx

res4a_branch2c Convolution res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024

bn4a_branch2c
Batch

Normalization
res4a_branch2c res4a_branch2cx

res4a Summation
res4a_branch1x,
res4a_branch2cx

res4a

res4a_relu ReLu res4a res4ax

res4b1_branch2a Convolution res4ax res4b1_branch2a 1x1x1024x256 256

bn4b1_branch2a
Batch
Normalization

res4b1_branch2a res4b1_branch2ax

res4b1_branch2a_relu ReLu res4b1_branch2ax res4b1_branch2axxx

138

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b1_branch2b Convolution res4b1_branch2axxx res4b1_branch2b 3x3x256x256 256

bn4b1_branch2b
Batch
Normalization

res4b1_branch2b res4b1_branch2bx

res4b1_branch2b_relu ReLu res4b1_branch2bx res4b1_branch2bxxx

res4b1_branch2c Convolution res4b1_branch2bxxx res4b1_branch2c 1x1x256x1024 1024

bn4b1_branch2c
Batch

Normalization
res4b1_branch2c res4b1_branch2cx

res4b1 Summation
res4ax,

res4b1_branch2cx
res4b1

res4b1_relu ReLu res4b1 res4b1x

res4b2_branch2a Convolution res4b1x res4b2_branch2a 1x1x1024x256 256

bn4b2_branch2a
Batch

Normalization
res4b2_branch2a res4b2_branch2ax

res4b2_branch2a_relu ReLu res4b2_branch2ax res4b2_branch2axxx

res4b2_branch2b Convolution res4b2_branch2axxx res4b2_branch2b 3x3x256x256 256

bn4b2_branch2b
Batch
Normalization

res4b2_branch2b res4b2_branch2bx

res4b2_branch2b_relu ReLu res4b2_branch2bx res4b2_branch2bxxx

res4b2_branch2c Convolution res4b2_branch2bxxx res4b2_branch2c 1x1x256x1024 1024

bn4b2_branch2c
Batch
Normalization

res4b2_branch2c res4b2_branch2cx

res4b2 Summation
res4b1x,

res4b2_branch2cx
res4b2

res4b2_relu ReLu res4b2 res4b2x

res4b3_branch2a Convolution res4b2x res4b3_branch2a 1x1x1024x256 256

bn4b3_branch2a
Batch

Normalization
res4b3_branch2a res4b3_branch2ax

res4b3_branch2a_relu ReLu res4b3_branch2ax res4b3_branch2axxx

res4b3_branch2b Convolution res4b3_branch2axxx res4b3_branch2b 3x3x256x256 256

bn4b3_branch2b
Batch
Normalization

res4b3_branch2b res4b3_branch2bx

res4b3_branch2b_relu ReLu res4b3_branch2bx res4b3_branch2bxxx

res4b3_branch2c Convolution res4b3_branch2bxxx res4b3_branch2c 1x1x256x1024 1024

bn4b3_branch2c
Batch
Normalization

res4b3_branch2c res4b3_branch2cx

res4b3 Summation
res4b2x,

res4b3_branch2cx
res4b3

res4b3_relu ReLu res4b3 res4b3x

res4b4_branch2a Convolution res4b3x res4b4_branch2a 1x1x1024x256 256

bn4b4_branch2a
Batch

Normalization
res4b4_branch2a res4b4_branch2ax

res4b4_branch2a_relu ReLu res4b4_branch2ax res4b4_branch2axxx

res4b4_branch2b Convolution res4b4_branch2axxx res4b4_branch2b 3x3x256x256 256

bn4b4_branch2b
Batch

Normalization
res4b4_branch2b res4b4_branch2bx

res4b4_branch2b_relu ReLu res4b4_branch2bx res4b4_branch2bxxx

res4b4_branch2c Convolution res4b4_branch2bxxx res4b4_branch2c 1x1x256x1024 1024

bn4b4_branch2c
Batch
Normalization

res4b4_branch2c res4b4_branch2cx

res4b4 Summation
res4b3x,

res4b4_branch2cx
res4b4

res4b4_relu ReLu res4b4 res4b4x

res4b5_branch2a Convolution res4b4x res4b5_branch2a 1x1x1024x256 256

bn4b5_branch2a
Batch

Normalization
res4b5_branch2a res4b5_branch2ax

res4b5_branch2a_relu ReLu res4b5_branch2ax res4b5_branch2axxx

res4b5_branch2b Convolution res4b5_branch2axxx res4b5_branch2b 3x3x256x256 256

bn4b5_branch2b
Batch

Normalization
res4b5_branch2b res4b5_branch2bx

res4b5_branch2b_relu ReLu res4b5_branch2bx res4b5_branch2bxxx

res4b5_branch2c Convolution res4b5_branch2bxxx res4b5_branch2c 1x1x256x1024 1024

139

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b5_branch2c
Batch

Normalization
res4b5_branch2c res4b5_branch2cx

res4b5 Summation
res4b4x,

res4b5_branch2cx
res4b5

res4b5_relu ReLu res4b5 res4b5x

res4b6_branch2a Convolution res4b5x res4b6_branch2a 1x1x1024x256 256

bn4b6_branch2a
Batch
Normalization

res4b6_branch2a res4b6_branch2ax

res4b6_branch2a_relu ReLu res4b6_branch2ax res4b6_branch2axxx

res4b6_branch2b Convolution res4b6_branch2axxx res4b6_branch2b 3x3x256x256 256

bn4b6_branch2b
Batch
Normalization

res4b6_branch2b res4b6_branch2bx

res4b6_branch2b_relu ReLu res4b6_branch2bx res4b6_branch2bxxx

res4b6_branch2c Convolution res4b6_branch2bxxx res4b6_branch2c 1x1x256x1024 1024

bn4b6_branch2c
Batch
Normalization

res4b6_branch2c res4b6_branch2cx

res4b6 Summation
res4b5x,

res4b6_branch2cx
res4b6

res4b6_relu ReLu res4b6 res4b6x

res4b7_branch2a Convolution res4b6x res4b7_branch2a 1x1x1024x256 256

bn4b7_branch2a
Batch

Normalization
res4b7_branch2a res4b7_branch2ax

res4b7_branch2a_relu ReLu res4b7_branch2ax res4b7_branch2axxx

res4b7_branch2b Convolution res4b7_branch2axxx res4b7_branch2b 3x3x256x256 256

bn4b7_branch2b
Batch
Normalization

res4b7_branch2b res4b7_branch2bx

res4b7_branch2b_relu ReLu res4b7_branch2bx res4b7_branch2bxxx

res4b7_branch2c Convolution res4b7_branch2bxxx res4b7_branch2c 1x1x256x1024 1024

bn4b7_branch2c
Batch
Normalization

res4b7_branch2c res4b7_branch2cx

res4b7 Summation
res4b6x,

res4b7_branch2cx
res4b7

res4b7_relu ReLu res4b7 res4b7x

res4b8_branch2a Convolution res4b7x res4b8_branch2a 1x1x1024x256 256

bn4b8_branch2a
Batch

Normalization
res4b8_branch2a res4b8_branch2ax

res4b8_branch2a_relu ReLu res4b8_branch2ax res4b8_branch2axxx

res4b8_branch2b Convolution res4b8_branch2axxx res4b8_branch2b 3x3x256x256 256

bn4b8_branch2b
Batch

Normalization
res4b8_branch2b res4b8_branch2bx

res4b8_branch2b_relu ReLu res4b8_branch2bx res4b8_branch2bxxx

res4b8_branch2c Convolution res4b8_branch2bxxx res4b8_branch2c 1x1x256x1024 1024

bn4b8_branch2c
Batch
Normalization

res4b8_branch2c res4b8_branch2cx

res4b8 Summation
res4b7x,

res4b8_branch2cx
res4b8

res4b8_relu ReLu res4b8 res4b8x

res4b9_branch2a Convolution res4b8x res4b9_branch2a 1x1x1024x256 256

bn4b9_branch2a
Batch

Normalization
res4b9_branch2a res4b9_branch2ax

res4b9_branch2a_relu ReLu res4b9_branch2ax res4b9_branch2axxx

res4b9_branch2b Convolution res4b9_branch2axxx res4b9_branch2b 3x3x256x256 256

bn4b9_branch2b
Batch

Normalization
res4b9_branch2b res4b9_branch2bx

res4b9_branch2b_relu ReLu res4b9_branch2bx res4b9_branch2bxxx

res4b9_branch2c Convolution res4b9_branch2bxxx res4b9_branch2c 1x1x256x1024 1024

bn4b9_branch2c
Batch
Normalization

res4b9_branch2c res4b9_branch2cx

res4b9 Summation
res4b8x,

res4b9_branch2cx
res4b9

res4b9_relu ReLu res4b9 res4b9x

res4b10_branch2a Convolution res4b9x res4b10_branch2a 1x1x1024x256 256

140

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b10_branch2a
Batch

Normalization
res4b10_branch2a res4b10_branch2ax

res4b10_branch2a_relu ReLu res4b10_branch2ax res4b10_branch2axxx

res4b10_branch2b Convolution res4b10_branch2axxx res4b10_branch2b 3x3x256x256 256

bn4b10_branch2b
Batch

Normalization
res4b10_branch2b res4b10_branch2bx

res4b10_branch2b_relu ReLu res4b10_branch2bx res4b10_branch2bxxx

res4b10_branch2c Convolution res4b10_branch2bxxx res4b10_branch2c 1x1x256x1024 1024

bn4b10_branch2c
Batch

Normalization
res4b10_branch2c res4b10_branch2cx

res4b10 Summation
res4b9x,
res4b10_branch2cx

res4b10

res4b10_relu ReLu res4b10 res4b10x

res4b11_branch2a Convolution res4b10x res4b11_branch2a 1x1x1024x256 256

bn4b11_branch2a
Batch
Normalization

res4b11_branch2a res4b11_branch2ax

res4b11_branch2a_relu ReLu res4b11_branch2ax res4b11_branch2axxx

res4b11_branch2b Convolution res4b11_branch2axxx res4b11_branch2b 3x3x256x256 256

bn4b11_branch2b
Batch

Normalization
res4b11_branch2b res4b11_branch2bx

res4b11_branch2b_relu ReLu res4b11_branch2bx res4b11_branch2bxxx

res4b11_branch2c Convolution res4b11_branch2bxxx res4b11_branch2c 1x1x256x1024 1024

bn4b11_branch2c
Batch

Normalization
res4b11_branch2c res4b11_branch2cx

res4b11 Summation
res4b10x,
res4b11_branch2cx

res4b11

res4b11_relu ReLu res4b11 res4b11x

res4b12_branch2a Convolution res4b11x res4b12_branch2a 1x1x1024x256 256

bn4b12_branch2a
Batch
Normalization

res4b12_branch2a res4b12_branch2ax

res4b12_branch2a_relu ReLu res4b12_branch2ax res4b12_branch2axxx

res4b12_branch2b Convolution res4b12_branch2axxx res4b12_branch2b 3x3x256x256 256

bn4b12_branch2b
Batch

Normalization
res4b12_branch2b res4b12_branch2bx

res4b12_branch2b_relu ReLu res4b12_branch2bx res4b12_branch2bxxx

res4b12_branch2c Convolution res4b12_branch2bxxx res4b12_branch2c 1x1x256x1024 1024

bn4b12_branch2c
Batch

Normalization
res4b12_branch2c res4b12_branch2cx

res4b12 Summation
res4b11x,

res4b12_branch2cx
res4b12

res4b12_relu ReLu res4b12 res4b12x

res4b13_branch2a Convolution res4b12x res4b13_branch2a 1x1x1024x256 256

bn4b13_branch2a
Batch
Normalization

res4b13_branch2a res4b13_branch2ax

res4b13_branch2a_relu ReLu res4b13_branch2ax res4b13_branch2axxx

res4b13_branch2b Convolution res4b13_branch2axxx res4b13_branch2b 3x3x256x256 256

bn4b13_branch2b
Batch
Normalization

res4b13_branch2b res4b13_branch2bx

res4b13_branch2b_relu ReLu res4b13_branch2bx res4b13_branch2bxxx

res4b13_branch2c Convolution res4b13_branch2bxxx res4b13_branch2c 1x1x256x1024 1024

bn4b13_branch2c
Batch

Normalization
res4b13_branch2c res4b13_branch2cx

res4b13 Summation
res4b12x,

res4b13_branch2cx
res4b13

res4b13_relu ReLu res4b13 res4b13x

res4b14_branch2a Convolution res4b13x res4b14_branch2a 1x1x1024x256 256

bn4b14_branch2a
Batch
Normalization

res4b14_branch2a res4b14_branch2ax

res4b14_branch2a_relu ReLu res4b14_branch2ax res4b14_branch2axxx

res4b14_branch2b Convolution res4b14_branch2axxx res4b14_branch2b 3x3x256x256 256

bn4b14_branch2b
Batch
Normalization

res4b14_branch2b res4b14_branch2bx

141

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b14_branch2b_relu ReLu res4b14_branch2bx res4b14_branch2bxxx

res4b14_branch2c Convolution res4b14_branch2bxxx res4b14_branch2c 1x1x256x1024 1024

bn4b14_branch2c
Batch
Normalization

res4b14_branch2c res4b14_branch2cx

res4b14 Summation
res4b13x,

res4b14_branch2cx
res4b14

res4b14_relu ReLu res4b14 res4b14x

res4b15_branch2a Convolution res4b14x res4b15_branch2a 1x1x1024x256 256

bn4b15_branch2a
Batch

Normalization
res4b15_branch2a res4b15_branch2ax

res4b15_branch2a_relu ReLu res4b15_branch2ax res4b15_branch2axxx

res4b15_branch2b Convolution res4b15_branch2axxx res4b15_branch2b 3x3x256x256 256

bn4b15_branch2b
Batch

Normalization
res4b15_branch2b res4b15_branch2bx

res4b15_branch2b_relu ReLu res4b15_branch2bx res4b15_branch2bxxx

res4b15_branch2c Convolution res4b15_branch2bxxx res4b15_branch2c 1x1x256x1024 1024

bn4b15_branch2c
Batch

Normalization
res4b15_branch2c res4b15_branch2cx

res4b15 Summation
res4b14x,
res4b15_branch2cx

res4b15

res4b15_relu ReLu res4b15 res4b15x

res4b16_branch2a Convolution res4b15x res4b16_branch2a 1x1x1024x256 256

bn4b16_branch2a
Batch

Normalization
res4b16_branch2a res4b16_branch2ax

res4b16_branch2a_relu ReLu res4b16_branch2ax res4b16_branch2axxx

res4b16_branch2b Convolution res4b16_branch2axxx res4b16_branch2b 3x3x256x256 256

bn4b16_branch2b
Batch

Normalization
res4b16_branch2b res4b16_branch2bx

res4b16_branch2b_relu ReLu res4b16_branch2bx res4b16_branch2bxxx

res4b16_branch2c Convolution res4b16_branch2bxxx res4b16_branch2c 1x1x256x1024 1024

bn4b16_branch2c
Batch

Normalization
res4b16_branch2c res4b16_branch2cx

res4b16 Summation
res4b15x,
res4b16_branch2cx

res4b16

res4b16_relu ReLu res4b16 res4b16x

res4b17_branch2a Convolution res4b16x res4b17_branch2a 1x1x1024x256 256

bn4b17_branch2a
Batch
Normalization

res4b17_branch2a res4b17_branch2ax

res4b17_branch2a_relu ReLu res4b17_branch2ax res4b17_branch2axxx

res4b17_branch2b Convolution res4b17_branch2axxx res4b17_branch2b 3x3x256x256 256

bn4b17_branch2b
Batch

Normalization
res4b17_branch2b res4b17_branch2bx

res4b17_branch2b_relu ReLu res4b17_branch2bx res4b17_branch2bxxx

res4b17_branch2c Convolution res4b17_branch2bxxx res4b17_branch2c 1x1x256x1024 1024

bn4b17_branch2c
Batch

Normalization
res4b17_branch2c res4b17_branch2cx

res4b17 Summation
res4b16x,
res4b17_branch2cx

res4b17

res4b17_relu ReLu res4b17 res4b17x

res4b18_branch2a Convolution res4b17x res4b18_branch2a 1x1x1024x256 256

bn4b18_branch2a
Batch
Normalization

res4b18_branch2a res4b18_branch2ax

res4b18_branch2a_relu ReLu res4b18_branch2ax res4b18_branch2axxx

res4b18_branch2b Convolution res4b18_branch2axxx res4b18_branch2b 3x3x256x256 256

bn4b18_branch2b
Batch

Normalization
res4b18_branch2b res4b18_branch2bx

res4b18_branch2b_relu ReLu res4b18_branch2bx res4b18_branch2bxxx

res4b18_branch2c Convolution res4b18_branch2bxxx res4b18_branch2c 1x1x256x1024 1024

bn4b18_branch2c
Batch

Normalization
res4b18_branch2c res4b18_branch2cx

142

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b18 Summation
res4b17x,

res4b18_branch2cx
res4b18

res4b18_relu ReLu res4b18 res4b18x

res4b19_branch2a Convolution res4b18x res4b19_branch2a 1x1x1024x256 256

bn4b19_branch2a
Batch

Normalization
res4b19_branch2a res4b19_branch2ax

res4b19_branch2a_relu ReLu res4b19_branch2ax res4b19_branch2axxx

res4b19_branch2b Convolution res4b19_branch2axxx res4b19_branch2b 3x3x256x256 256

bn4b19_branch2b
Batch

Normalization
res4b19_branch2b res4b19_branch2bx

res4b19_branch2b_relu ReLu res4b19_branch2bx res4b19_branch2bxxx

res4b19_branch2c Convolution res4b19_branch2bxxx res4b19_branch2c 1x1x256x1024 1024

bn4b19_branch2c
Batch

Normalization
res4b19_branch2c res4b19_branch2cx

res4b19 Summation
res4b18x,
res4b19_branch2cx

res4b19

res4b19_relu ReLu res4b19 res4b19x

res4b20_branch2a Convolution res4b19x res4b20_branch2a 1x1x1024x256 256

bn4b20_branch2a
Batch

Normalization
res4b20_branch2a res4b20_branch2ax

res4b20_branch2a_relu ReLu res4b20_branch2ax res4b20_branch2axxx

res4b20_branch2b Convolution res4b20_branch2axxx res4b20_branch2b 3x3x256x256 256

bn4b20_branch2b
Batch

Normalization
res4b20_branch2b res4b20_branch2bx

res4b20_branch2b_relu ReLu res4b20_branch2bx res4b20_branch2bxxx

res4b20_branch2c Convolution res4b20_branch2bxxx res4b20_branch2c 1x1x256x1024 1024

bn4b20_branch2c
Batch

Normalization
res4b20_branch2c res4b20_branch2cx

res4b20 Summation
res4b19x,
res4b20_branch2cx

res4b20

res4b20_relu ReLu res4b20 res4b20x

res4b21_branch2a Convolution res4b20x res4b21_branch2a 1x1x1024x256 256

bn4b21_branch2a
Batch

Normalization
res4b21_branch2a res4b21_branch2ax

res4b21_branch2a_relu ReLu res4b21_branch2ax res4b21_branch2axxx

res4b21_branch2b Convolution res4b21_branch2axxx res4b21_branch2b 3x3x256x256 256

bn4b21_branch2b
Batch

Normalization
res4b21_branch2b res4b21_branch2bx

res4b21_branch2b_relu ReLu res4b21_branch2bx res4b21_branch2bxxx

res4b21_branch2c Convolution res4b21_branch2bxxx res4b21_branch2c 1x1x256x1024 1024

bn4b21_branch2c
Batch

Normalization
res4b21_branch2c res4b21_branch2cx

res4b21 Summation
res4b20x,
res4b21_branch2cx

res4b21

res4b21_relu ReLu res4b21 res4b21x

res4b22_branch2a Convolution res4b21x res4b22_branch2a 1x1x1024x256 256

bn4b22_branch2a
Batch
Normalization

res4b22_branch2a res4b22_branch2ax

res4b22_branch2a_relu ReLu res4b22_branch2ax res4b22_branch2axxx

res4b22_branch2b Convolution res4b22_branch2axxx res4b22_branch2b 3x3x256x256 256

bn4b22_branch2b
Batch

Normalization
res4b22_branch2b res4b22_branch2bx

res4b22_branch2b_relu ReLu res4b22_branch2bx res4b22_branch2bxxx

res4b22_branch2c Convolution res4b22_branch2bxxx res4b22_branch2c 1x1x256x1024 1024

bn4b22_branch2c
Batch

Normalization
res4b22_branch2c res4b22_branch2cx

res4b22 Summation
res4b21x,
res4b22_branch2cx

res4b22

res4b22_relu ReLu res4b22 res4b22x

res4b23_branch2a Convolution res4b22x res4b23_branch2a 1x1x1024x256 256

bn4b23_branch2a
Batch
Normalization

res4b23_branch2a res4b23_branch2ax

143

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res4b23_branch2a_relu ReLu res4b23_branch2ax res4b23_branch2axxx

res4b23_branch2b Convolution res4b23_branch2axxx res4b23_branch2b 3x3x256x256 256

bn4b23_branch2b
Batch
Normalization

res4b23_branch2b res4b23_branch2bx

res4b23_branch2b_relu ReLu res4b23_branch2bx res4b23_branch2bxxx

res4b23_branch2c Convolution res4b23_branch2bxxx res4b23_branch2c 1x1x256x1024 1024

bn4b23_branch2c
Batch
Normalization

res4b23_branch2c res4b23_branch2cx

res4b23 Summation
res4b22x,

res4b23_branch2cx
res4b23

res4b23_relu ReLu res4b23 res4b23x

res4b24_branch2a Convolution res4b23x res4b24_branch2a 1x1x1024x256 256

bn4b24_branch2a
Batch

Normalization
res4b24_branch2a res4b24_branch2ax

res4b24_branch2a_relu ReLu res4b24_branch2ax res4b24_branch2axxx

res4b24_branch2b Convolution res4b24_branch2axxx res4b24_branch2b 3x3x256x256 256

bn4b24_branch2b
Batch

Normalization
res4b24_branch2b res4b24_branch2bx

res4b24_branch2b_relu ReLu res4b24_branch2bx res4b24_branch2bxxx

res4b24_branch2c Convolution res4b24_branch2bxxx res4b24_branch2c 1x1x256x1024 1024

bn4b24_branch2c
Batch
Normalization

res4b24_branch2c res4b24_branch2cx

res4b24 Summation
res4b23x,

res4b24_branch2cx
res4b24

res4b24_relu ReLu res4b24 res4b24x

res4b25_branch2a Convolution res4b24x res4b25_branch2a 1x1x1024x256 256

bn4b25_branch2a
Batch

Normalization
res4b25_branch2a res4b25_branch2ax

res4b25_branch2a_relu ReLu res4b25_branch2ax res4b25_branch2axxx

res4b25_branch2b Convolution res4b25_branch2axxx res4b25_branch2b 3x3x256x256 256

bn4b25_branch2b
Batch

Normalization
res4b25_branch2b res4b25_branch2bx

res4b25_branch2b_relu ReLu res4b25_branch2bx res4b25_branch2bxxx

res4b25_branch2c Convolution res4b25_branch2bxxx res4b25_branch2c 1x1x256x1024 1024

bn4b25_branch2c
Batch
Normalization

res4b25_branch2c res4b25_branch2cx

res4b25 Summation
res4b24x,

res4b25_branch2cx
res4b25

res4b25_relu ReLu res4b25 res4b25x

res4b26_branch2a Convolution res4b25x res4b26_branch2a 1x1x1024x256 256

bn4b26_branch2a
Batch

Normalization
res4b26_branch2a res4b26_branch2ax

res4b26_branch2a_relu ReLu res4b26_branch2ax res4b26_branch2axxx

res4b26_branch2b Convolution res4b26_branch2axxx res4b26_branch2b 3x3x256x256 256

bn4b26_branch2b
Batch

Normalization
res4b26_branch2b res4b26_branch2bx

res4b26_branch2b_relu ReLu res4b26_branch2bx res4b26_branch2bxxx

res4b26_branch2c Convolution res4b26_branch2bxxx res4b26_branch2c 1x1x256x1024 1024

bn4b26_branch2c
Batch

Normalization
res4b26_branch2c res4b26_branch2cx

res4b26 Summation
res4b25x,

res4b26_branch2cx
res4b26

res4b26_relu ReLu res4b26 res4b26x

res4b27_branch2a Convolution res4b26x res4b27_branch2a 1x1x1024x256 256

bn4b27_branch2a
Batch

Normalization
res4b27_branch2a res4b27_branch2ax

res4b27_branch2a_relu ReLu res4b27_branch2ax res4b27_branch2axxx

res4b27_branch2b Convolution res4b27_branch2axxx res4b27_branch2b 3x3x256x256 256

bn4b27_branch2b
Batch

Normalization
res4b27_branch2b res4b27_branch2bx

res4b27_branch2b_relu ReLu res4b27_branch2bx res4b27_branch2bxxx

res4b27_branch2c Convolution res4b27_branch2bxxx res4b27_branch2c 1x1x256x1024 1024

144

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b27_branch2c
Batch

Normalization
res4b27_branch2c res4b27_branch2cx

res4b27 Summation
res4b26x,

res4b27_branch2cx
res4b27

res4b27_relu ReLu res4b27 res4b27x

res4b28_branch2a Convolution res4b27x res4b28_branch2a 1x1x1024x256 256

bn4b28_branch2a
Batch
Normalization

res4b28_branch2a res4b28_branch2ax

res4b28_branch2a_relu ReLu res4b28_branch2ax res4b28_branch2axxx

res4b28_branch2b Convolution res4b28_branch2axxx res4b28_branch2b 3x3x256x256 256

bn4b28_branch2b
Batch
Normalization

res4b28_branch2b res4b28_branch2bx

res4b28_branch2b_relu ReLu res4b28_branch2bx res4b28_branch2bxxx

res4b28_branch2c Convolution res4b28_branch2bxxx res4b28_branch2c 1x1x256x1024 1024

bn4b28_branch2c
Batch
Normalization

res4b28_branch2c res4b28_branch2cx

res4b28 Summation
res4b27x,

res4b28_branch2cx
res4b28

res4b28_relu ReLu res4b28 res4b28x

res4b29_branch2a Convolution res4b28x res4b29_branch2a 1x1x1024x256 256

bn4b29_branch2a
Batch

Normalization
res4b29_branch2a res4b29_branch2ax

res4b29_branch2a_relu ReLu res4b29_branch2ax res4b29_branch2axxx

res4b29_branch2b Convolution res4b29_branch2axxx res4b29_branch2b 3x3x256x256 256

bn4b29_branch2b
Batch
Normalization

res4b29_branch2b res4b29_branch2bx

res4b29_branch2b_relu ReLu res4b29_branch2bx res4b29_branch2bxxx

res4b29_branch2c Convolution res4b29_branch2bxxx res4b29_branch2c 1x1x256x1024 1024

bn4b29_branch2c
Batch
Normalization

res4b29_branch2c res4b29_branch2cx

res4b29 Summation
res4b28x,

res4b29_branch2cx
res4b29

res4b29_relu ReLu res4b29 res4b29x

res4b30_branch2a Convolution res4b29x res4b30_branch2a 1x1x1024x256 256

bn4b30_branch2a
Batch

Normalization
res4b30_branch2a res4b30_branch2ax

res4b30_branch2a_relu ReLu res4b30_branch2ax res4b30_branch2axxx

res4b30_branch2b Convolution res4b30_branch2axxx res4b30_branch2b 3x3x256x256 256

bn4b30_branch2b
Batch

Normalization
res4b30_branch2b res4b30_branch2bx

res4b30_branch2b_relu ReLu res4b30_branch2bx res4b30_branch2bxxx

res4b30_branch2c Convolution res4b30_branch2bxxx res4b30_branch2c 1x1x256x1024 1024

bn4b30_branch2c
Batch
Normalization

res4b30_branch2c res4b30_branch2cx

res4b30 Summation
res4b29x,

res4b30_branch2cx
res4b30

res4b30_relu ReLu res4b30 res4b30x

res4b31_branch2a Convolution res4b30x res4b31_branch2a 1x1x1024x256 256

bn4b31_branch2a
Batch

Normalization
res4b31_branch2a res4b31_branch2ax

res4b31_branch2a_relu ReLu res4b31_branch2ax res4b31_branch2axxx

res4b31_branch2b Convolution res4b31_branch2axxx res4b31_branch2b 3x3x256x256 256

bn4b31_branch2b
Batch

Normalization
res4b31_branch2b res4b31_branch2bx

res4b31_branch2b_relu ReLu res4b31_branch2bx res4b31_branch2bxxx

res4b31_branch2c Convolution res4b31_branch2bxxx res4b31_branch2c 1x1x256x1024 1024

bn4b31_branch2c
Batch
Normalization

res4b31_branch2c res4b31_branch2cx

res4b31 Summation
res4b30x,

res4b31_branch2cx
res4b31

res4b31_relu ReLu res4b31 res4b31x

res4b32_branch2a Convolution res4b31x res4b32_branch2a 1x1x1024x256 256

145

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

bn4b32_branch2a
Batch

Normalization
res4b32_branch2a res4b32_branch2ax

res4b32_branch2a_relu ReLu res4b32_branch2ax res4b32_branch2axxx

res4b32_branch2b Convolution res4b32_branch2axxx res4b32_branch2b 3x3x256x256 256

bn4b32_branch2b
Batch

Normalization
res4b32_branch2b res4b32_branch2bx

res4b32_branch2b_relu ReLu res4b32_branch2bx res4b32_branch2bxxx

res4b32_branch2c Convolution res4b32_branch2bxxx res4b32_branch2c 1x1x256x1024 1024

bn4b32_branch2c
Batch

Normalization
res4b32_branch2c res4b32_branch2cx

res4b32 Summation
res4b31x,
res4b32_branch2cx

res4b32

res4b32_relu ReLu res4b32 res4b32x

res4b33_branch2a Convolution res4b32x res4b33_branch2a 1x1x1024x256 256

bn4b33_branch2a
Batch
Normalization

res4b33_branch2a res4b33_branch2ax

res4b33_branch2a_relu ReLu res4b33_branch2ax res4b33_branch2axxx

res4b33_branch2b Convolution res4b33_branch2axxx res4b33_branch2b 3x3x256x256 256

bn4b33_branch2b
Batch

Normalization
res4b33_branch2b res4b33_branch2bx

res4b33_branch2b_relu ReLu res4b33_branch2bx res4b33_branch2bxxx

res4b33_branch2c Convolution res4b33_branch2bxxx res4b33_branch2c 1x1x256x1024 1024

bn4b33_branch2c
Batch

Normalization
res4b33_branch2c res4b33_branch2cx

res4b33 Summation
res4b32x,
res4b33_branch2cx

res4b33

res4b33_relu ReLu res4b33 res4b33x

res4b34_branch2a Convolution res4b33x res4b34_branch2a 1x1x1024x256 256

bn4b34_branch2a
Batch
Normalization

res4b34_branch2a res4b34_branch2ax

res4b34_branch2a_relu ReLu res4b34_branch2ax res4b34_branch2axxx

res4b34_branch2b Convolution res4b34_branch2axxx res4b34_branch2b 3x3x256x256 256

bn4b34_branch2b
Batch

Normalization
res4b34_branch2b res4b34_branch2bx

res4b34_branch2b_relu ReLu res4b34_branch2bx res4b34_branch2bxxx

res4b34_branch2c Convolution res4b34_branch2bxxx res4b34_branch2c 1x1x256x1024 1024

bn4b34_branch2c
Batch

Normalization
res4b34_branch2c res4b34_branch2cx

res4b34 Summation
res4b33x,

res4b34_branch2cx
res4b34

res4b34_relu ReLu res4b34 res4b34x

res4b35_branch2a Convolution res4b34x res4b35_branch2a 1x1x1024x256 256

bn4b35_branch2a
Batch
Normalization

res4b35_branch2a res4b35_branch2ax

res4b35_branch2a_relu ReLu res4b35_branch2ax res4b35_branch2axxx

res4b35_branch2b Convolution res4b35_branch2axxx res4b35_branch2b 3x3x256x256 256

bn4b35_branch2b
Batch
Normalization

res4b35_branch2b res4b35_branch2bx

res4b35_branch2b_relu ReLu res4b35_branch2bx res4b35_branch2bxxx

res4b35_branch2c Convolution res4b35_branch2bxxx res4b35_branch2c 1x1x256x1024 1024

bn4b35_branch2c
Batch

Normalization
res4b35_branch2c res4b35_branch2cx

res4b35 Summation
res4b34x,

res4b35_branch2cx
res4b35

res4b35_relu ReLu res4b35 res4b35x

res5a_branch1 Convolution res4b35x res5a_branch1 1x1x1024x2048 2048

bn5a_branch1
Batch
Normalization

res5a_branch1 res5a_branch1x

res5a_branch2a Convolution res4b35x res5a_branch2a 1x1x1024x512 512

bn5a_branch2a
Batch
Normalization

res5a_branch2a res5a_branch2ax

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx

146

Table 22. ResNet152 Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

res5a_branch2b Convolution res5a_branch2axxx res5a_branch2b 3x3x512x512 512

bn5a_branch2b
Batch
Normalization

res5a_branch2b res5a_branch2bx

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx

res5a_branch2c Convolution res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048

bn5a_branch2c
Batch

Normalization
res5a_branch2c res5a_branch2cx

res5a Summation
res5a_branch1x,

res5a_branch2cx
res5a

res5a_relu ReLu res5a res5ax

res5b_branch2a Convolution res5ax res5b_branch2a 1x1x2048x512 512

bn5b_branch2a
Batch

Normalization
res5b_branch2a res5b_branch2ax

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx

res5b_branch2b Convolution res5b_branch2axxx res5b_branch2b 3x3x512x512 512

bn5b_branch2b
Batch
Normalization

res5b_branch2b res5b_branch2bx

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx

res5b_branch2c Convolution res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048

bn5b_branch2c
Batch
Normalization

res5b_branch2c res5b_branch2cx

res5b Summation
res5ax,

res5b_branch2cx
res5b

res5b_relu ReLu res5b res5bx

res5c_branch2a Convolution res5bx res5c_branch2a 1x1x2048x512 512

bn5c_branch2a
Batch

Normalization
res5c_branch2a res5c_branch2ax

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx

res5c_branch2b Convolution res5c_branch2axxx res5c_branch2b 3x3x512x512 512

bn5c_branch2b
Batch
Normalization

res5c_branch2b res5c_branch2bx

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx

res5c_branch2c Convolution res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048

bn5c_branch2c
Batch
Normalization

res5c_branch2c res5c_branch2cx

res5c Summation
res5bx,

res5c_branch2cx
res5c

res5c_relu ReLu res5c res5cx

pool5 Average Pooling res5cx pool5

fc1000 Convolution pool5 fc1000 1x1x2048x1000 1000

prob SoftMax fc1000 prob

147

Table 23. Fully Convolutional Network Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1_1 Convolution data conv1_1 3x3x3x64 64

relu1_1 ReLu conv1_1 conv1_1x

conv1_2 Convolution conv1_1x conv1_2 3x3x64x64 64

relu1_2 ReLu conv1_2 conv1_2x

pool1 Max Pooling conv1_2x pool1

conv2_1 Convolution pool1 conv2_1 3x3x64x128 128

relu2_1 ReLu conv2_1 conv2_1x

conv2_2 Convolution conv2_1x conv2_2 3x3x128x128 128

relu2_2 ReLu conv2_2 conv2_2x

pool2 Max Pooling conv2_2x pool2

conv3_1 Convolution pool2 conv3_1 3x3x128x256 256

relu3_1 ReLu conv3_1 conv3_1x

conv3_2 Convolution conv3_1x conv3_2 3x3x256x256 256

relu3_2 ReLu conv3_2 conv3_2x

conv3_3 Convolution conv3_2x conv3_3 3x3x256x256 256

relu3_3 ReLu conv3_3 conv3_3x

pool3 Max Pooling conv3_3x pool3

conv4_1 Convolution pool3 conv4_1 3x3x256x512 512

relu4_1 ReLu conv4_1 conv4_1x

conv4_2 Convolution conv4_1x conv4_2 3x3x512x512 512

relu4_2 ReLu conv4_2 conv4_2x

conv4_3 Convolution conv4_2x conv4_3 3x3x512x512 512

relu4_3 ReLu conv4_3 conv4_3x

pool4 Max Pooling conv4_3x pool4

conv5_1 Convolution pool4 conv5_1 3x3x512x512 512

relu5_1 ReLu conv5_1 conv5_1x

conv5_2 Convolution conv5_1x conv5_2 3x3x512x512 512

relu5_2 ReLu conv5_2 conv5_2x

conv5_3 Convolution conv5_2x conv5_3 3x3x512x512 512

relu5_3 ReLu conv5_3 conv5_3x

pool5 Max Pooling conv5_3x pool5

fc6 Convolution pool5 fc6 7x7x512x4096 4096

relu6 ReLu fc6 fc6x

fc7 Convolution fc6x fc7 1x1x4096x4096 4096

relu7 ReLu fc7 fc7x

score_fr Convolution fc7x score 1x1x4096x21 21

score2 Convolution Transpose score score2 4x4x21x21 21

score_pool4 Convolution pool4 score_pool4 1x1x512x21 21

crop Crop
score_pool4,

score2
score_pool4c

fuse Summation
score2,
score_pool4c

score_fused

score4 Convolution Transpose score_fused score4 4x4x21x21 21

score_pool3 Convolution pool3 score_pool3 1x1x256x21 21

cropx Crop
score_pool3,

score4
score_pool3c

fusex Summation
score4,

score_pool3c
score_final

upsample Convolution Transpose score_final bigscore 16x16x21x21 21

cropxx Crop bigscore, data upscore

148

Table 24. SegNet Architecture

Layer Name Block Type Input Output Filter Weights
Bias

Weights

conv1_1 Convolution data conv1_1 3x3x3x64 64

bn_conv1_1
Batch
Normalization

conv1_1 bn_conv1_1

relu1_1 ReLu bn_conv1_1 relu1_1

conv1_2 Convolution relu1_1 conv1_2 3x3x64x64 64

bn_conv1_2
Batch

Normalization
conv1_2 bn_conv1_2

relu1_2 ReLu bn_conv1_2 relu1_2

pool1 Max Pooling relu1_2 pool1

conv2_1 Convolution pool1 conv2_1 3x3x64x128 128

bn_conv2_1
Batch
Normalization

conv2_1 bn_conv2_1

relu2_1 ReLu bn_conv2_1 relu2_1

conv2_2 Convolution relu2_1 conv2_2 3x3x128x128 128

bn_conv2_2
Batch

Normalization
conv2_2 bn_conv2_2

relu2_2 ReLu bn_conv2_2 relu2_2

pool2 Max Pooling relu2_2 pool2

conv3_1 Convolution pool2 conv3_1 3x3x128x256 256

bn_conv3_1
Batch

Normalization
conv3_1 bn_conv3_1

relu3_1 ReLu bn_conv3_1 relu3_1

conv3_2 Convolution relu3_1 conv3_2 3x3x256x256 256

bn_conv3_2
Batch

Normalization
conv3_2 bn_conv3_2

relu3_2 ReLu bn_conv3_2 relu3_2

conv3_3 Convolution relu3_2 conv3_3 3x3x256x256 256

bn_conv3_3
Batch

Normalization
conv3_3 bn_conv3_3

relu3_3 ReLu bn_conv3_3 relu3_3

pool3 Max Pooling relu3_3 pool3

conv4_1 Convolution pool3 conv4_1 3x3x256x512 512

bn_conv4_1
Batch

Normalization
conv4_1 bn_conv4_1

relu4_1 ReLu bn_conv4_1 relu4_1

conv4_2 Convolution relu4_1 conv4_2 3x3x512x512 512

bn_conv4_2
Batch

Normalization
conv4_2 bn_conv4_2

relu4_2 ReLu bn_conv4_2 relu4_2

conv4_3 Convolution relu4_2 conv4_3 3x3x512x512 512

bn_conv4_3
Batch

Normalization
conv4_3 bn_conv4_3

relu4_3 ReLu bn_conv4_3 relu4_3

pool4 Max Pooling relu4_3 pool4

conv5_1 Convolution pool4 conv5_1 3x3x512x512 512

bn_conv5_1
Batch

Normalization
conv5_1 bn_conv5_1

relu5_1 ReLu bn_conv5_1 relu5_1

conv5_2 Convolution relu5_1 conv5_2 3x3x512x512 512

bn_conv5_2
Batch
Normalization

conv5_2 bn_conv5_2

relu5_2 ReLu bn_conv5_2 relu5_2

conv5_3 Convolution relu5_2 conv5_3 3x3x512x512 512

bn_conv5_3
Batch
Normalization

conv5_3 bn_conv5_3

relu5_3 ReLu bn_conv5_3 relu5_3

pool5 Max Pooling relu5_3 pool5

decoder5_unpool Max Unpooling pool5 decoder5_unpool

decoder5_conv3 Convolution decoder5_unpool decoder5_conv3 3x3x512x512 512

decoder5_bn_3
Batch
Normalization

decoder5_conv3 decoder5_bn_3

decoder5_relu_3 ReLu decoder5_bn_3 decoder5_relu_3

149

Table 24. SegNet Architecture (cont’d)

Layer Name Block Type Input Output Filter Weights
Bias

Weights

decoder5_conv2 Convolution decoder5_relu_3 decoder5_conv2 3x3x512x512 512

decoder5_bn_2
Batch
Normalization

decoder5_conv2 decoder5_bn_2

decoder5_relu_2 ReLu decoder5_bn_2 decoder5_relu_2

decoder5_conv1 Convolution decoder5_relu_2 decoder5_conv1 3x3x512x512 512

decoder5_bn_1
Batch

Normalization
decoder5_conv1 decoder5_bn_1

decoder5_relu_1 ReLu decoder5_bn_1 decoder5_relu_1

decoder4_unpool Max Unpooling
decoder5_relu_1,

pool4
decoder4_unpool

decoder4_conv3 Convolution decoder4_unpool decoder4_conv3 3x3x512x512 512

decoder4_bn_3
Batch

Normalization
decoder4_conv3 decoder4_bn_3

decoder4_relu_3 ReLu decoder4_bn_3 decoder4_relu_3

decoder4_conv2 Convolution decoder4_relu_3 decoder4_conv2 3x3x512x512 512

decoder4_bn_2
Batch
Normalization

decoder4_conv2 decoder4_bn_2

decoder4_relu_2 ReLu decoder4_bn_2 decoder4_relu_2

decoder4_conv1 Convolution decoder4_relu_2 decoder4_conv1 3x3x512x256 256

decoder4_bn_1
Batch
Normalization

decoder4_conv1 decoder4_bn_1

decoder4_relu_1 ReLu decoder4_bn_1 decoder4_relu_1

decoder3_unpool Max Unpooling
decoder4_relu_1,

pool3
decoder3_unpool

decoder3_conv3 Convolution decoder3_unpool decoder3_conv3 3x3x256x256 256

decoder3_bn_3
Batch

Normalization
decoder3_conv3 decoder3_bn_3

decoder3_relu_3 ReLu decoder3_bn_3 decoder3_relu_3

decoder3_conv2 Convolution decoder3_relu_3 decoder3_conv2 3x3x256x256 256

decoder3_bn_2
Batch
Normalization

decoder3_conv2 decoder3_bn_2

decoder3_relu_2 ReLu decoder3_bn_2 decoder3_relu_2

decoder3_conv1 Convolution decoder3_relu_2 decoder3_conv1 3x3x256x128 128

decoder3_bn_1
Batch
Normalization

decoder3_conv1 decoder3_bn_1

decoder3_relu_1 ReLu decoder3_bn_1 decoder3_relu_1

decoder2_unpool Max Unpooling
decoder3_relu_1,

pool2
decoder2_unpool

decoder2_conv2 Convolution decoder2_unpool decoder2_conv2 3x3x128x128 128

decoder2_bn_2
Batch

Normalization
decoder2_conv2 decoder2_bn_2

decoder2_relu_2 ReLu decoder2_bn_2 decoder2_relu_2

decoder2_conv1 Convolution decoder2_relu_2 decoder2_conv1 3x3x128x64 64

decoder2_bn_1
Batch

Normalization
decoder2_conv1 decoder2_bn_1

decoder2_relu_1 ReLu decoder2_bn_1 decoder2_relu_1

decoder1_unpool Max Unpooling
decoder2_relu_1,
pool1

decoder1_unpool

decoder1_conv2 Convolution decoder1_unpool decoder1_conv2 3x3x64x64 64

decoder1_bn_2
Batch

Normalization
decoder1_conv2 decoder1_bn_2

decoder1_relu_2 ReLu decoder1_bn_2 decoder1_relu_2

decoder1_conv1 Convolution decoder1_relu_2 decoder1_conv1 3x3x64x2 2

decoder1_bn_1
Batch

Normalization
decoder1_conv1 decoder1_bn_1

decoder1_relu_1 ReLu decoder1_bn_1 decoder1_relu_1

softmax Softmax decoder1_relu_1 softmax

pixelLabels
Cross Entropy

Loss
softmax pixelLabels

150

151

APPENDIX II

 CLASSIFICATION TEST RESULTS

Table 25. Test 1 Classification Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,8800 0,9467 0,9800 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867

0.7K 0,9267 0,9933 0,9900 0,9900 0,9900 0,9933 0,9933 0,9933 0,9933 0,9933

1.75K 0,9907 0,9907 0,9933 0,9947 0,9933 0,9933 0,9933 0,9933 0,9947 0,9947

3.5K 0,9964 0,9972 0,9978 0,9981 0,9978 0,9979 0,9981 0,9981 0,9981 0,9983

7K 0,9967 0,9974 0,9972 0,9966 0,9969 0,9971 0,9969 0,9971 0,9971 0,9971

14K 0,9974 0,9974 0,9979 0,9981 0,9979 0,9979 0,9979 0,9979 0,9979 0,9979

21K 0,9971 0,9976 0,9978 0,9978 0,9976 0,9976 0,9976 0,9978 0,9978 0,9978

28K 0,9983 0,9988 0,9988 0,9988 0,9988 0,9988 0,9986 0,9988 0,9988 0,9988

AlexNet - Test 1
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,9667 1,0000 0,9867 0,9800 0,9800 0,9867 0,9933 0,9933 0,9933 1,0000

0.7K 0,9933 0,9700 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900

1.75K 0,9867 0,9893 0,9653 0,9920 0,9880 0,9880 0,9907 0,9907 0,9907 0,9907

3.5K 0,9993 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995

7K 0,9986 0,9983 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

14K 0,9991 0,9993 0,9995 0,9993 0,9993 0,9995 0,9993 0,9993 0,9993 0,9993

21K 0,9998 0,9998 0,9997 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

28K 0,9995 0,9986 0,9997 0,9990 0,9995 0,9997 0,9995 0,9995 0,9995 0,9997

VGG16 - Test1
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8933 0,8267 0,9400 0,9133 1,0000 0,9733 0,9733 0,9733 0,9733 0,9733

0.7K 1,0000 0,9800 0,9933 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867

1.75K 0,9907 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920

3.5K 0,9988 0,9988 0,9988 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

7K 0,9986 0,9991 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

14K 0,9967 0,9988 0,9991 0,9988 0,9988 0,9990 0,9990 0,9990 0,9990 0,9990

21K 0,9990 0,9995 0,9997 0,9995 0,9995 0,9997 0,9997 0,9995 0,9997 0,9997

28K 0,9988 0,9991 0,9990 0,9990 0,9993 0,9993 0,9993 0,9993 0,9993 0,9997

VGG19 - Test1
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

152

Table 25. Test 1 Classification Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,8667 0,9200 0,9333 0,9333 0,9333 0,9667 0,9667 0,9733 0,9733 0,9733

0.7K 0,9367 0,9633 0,9733 0,9800 0,9833 0,9867 0,9900 0,9900 0,9900 0,9933

1.75K 0,9560 0,9827 0,9893 0,9960 0,9973 0,9973 0,9973 0,9960 0,9960 0,9960

3.5K 0,9954 0,9978 0,9978 0,9974 0,9976 0,9981 0,9981 0,9981 0,9981 0,9983

7K 0,9972 0,9978 0,9979 0,9978 0,9978 0,9979 0,9978 0,9978 0,9978 0,9979

14K 0,9979 0,9974 0,9981 0,9981 0,9988 0,9985 0,9985 0,9985 0,9986 0,9985

21K 0,9976 0,9986 0,9986 0,9990 0,9990 0,9990 0,9990 0,9991 0,9993 0,9993

28K 0,9979 0,9985 0,9985 0,9986 0,9985 0,9986 0,9986 0,9985 0,9986 0,9986

GoogleNet -

Test1

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,7367 0,9500 0,9667 0,9833 0,9867 0,9900 0,9917 0,9933 0,9933 0,9933

0.7K 0,8608 0,9700 0,9817 0,9858 0,9875 0,9883 0,9892 0,9900 0,9883 0,9900

1.75K 0,9857 0,9957 0,9960 0,9967 0,9973 0,9973 0,9967 0,9973 0,9973 0,9977

3.5K 0,9931 0,9955 0,9959 0,9957 0,9962 0,9960 0,9960 0,9969 0,9964 0,9960

7K 0,9966 0,9978 0,9976 0,9981 0,9978 0,9981 0,9988 0,9985 0,9983 0,9983

14K 0,9983 0,9991 0,9991 0,9991 0,9991 0,9990 0,9991 0,9990 0,9990 0,9990

21K 0,9972 0,9983 0,9983 0,9981 0,9988 0,9986 0,9988 0,9990 0,9991 0,9991

28K 0,9979 0,9988 0,9988 0,9990 0,9986 0,9988 0,9986 0,9988 0,9988 0,9991

ResNet50 -

Test1

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8367 0,9750 0,9917 0,9900 0,9883 0,9883 0,9883 0,9883 0,9883 0,9883

0.7K 0,9350 0,9908 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933

1.75K 0,9950 0,9983 0,9987 0,9970 0,9977 0,9973 0,9970 0,9983 0,9983 0,9977

3.5K 0,9954 0,9960 0,9966 0,9960 0,9969 0,9969 0,9974 0,9962 0,9969 0,9969

7K 0,9936 0,9952 0,9966 0,9971 0,9969 0,9971 0,9967 0,9974 0,9974 0,9971

14K 0,9971 0,9978 0,9983 0,9981 0,9978 0,9985 0,9986 0,9986 0,9986 0,9986

21K 0,9988 0,9979 0,9986 0,9983 0,9985 0,9990 0,9988 0,9986 0,9986 0,9986

28K 0,9967 0,9983 0,9979 0,9991 0,9990 0,9993 0,9991 0,9985 0,9978 0,9990

ResNet101 -

Test1

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5733 0,9700 0,9750 0,9733 0,9750 0,9783 0,9783 0,9783 0,9817 0,9817

0.7K 0,9442 0,9867 0,9875 0,9892 0,9875 0,9892 0,9892 0,9908 0,9908 0,9883

1.75K 0,9917 0,9950 0,9947 0,9960 0,9977 0,9973 0,9977 0,9990 0,9990 0,9990

3.5K 0,9720 0,9740 0,9733 0,9768 0,9699 0,9745 0,9766 0,9720 0,9744 0,9775

7K 0,9929 0,9952 0,9957 0,9969 0,9971 0,9969 0,9972 0,9976 0,9974 0,9978

14K 0,9940 0,9947 0,9929 0,9897 0,9907 0,9921 0,9921 0,9912 0,9905 0,9921

21K 0,9921 0,9923 0,9914 0,9948 0,9943 0,9969 0,9954 0,9964 0,9959 0,9983

28K 0,9768 0,9813 0,9782 0,9773 0,9825 0,9831 0,9806 0,9830 0,9854 0,9826

ResNet152 -

Test1

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

153

Table 26. Test2 Classification Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,6021 0,5694 0,5654 0,5648 0,5654 0,5648 0,5681 0,5681 0,5681 0,5694

0.7K 0,7847 0,5694 0,5452 0,5419 0,5510 0,5641 0,5681 0,5674 0,5674 0,5661

1.75K 0,5766 0,5864 0,6126 0,6165 0,6106 0,6099 0,6106 0,6106 0,6113 0,6113

3.5K 0,6963 0,6957 0,6872 0,6891 0,6819 0,6813 0,6793 0,6767 0,6760 0,6767

7K 0,7637 0,7219 0,7029 0,6819 0,6931 0,6924 0,6904 0,6813 0,6819 0,6800

14K 0,6859 0,6558 0,6571 0,6603 0,6453 0,6505 0,6518 0,6486 0,6479 0,6479

21K 0,6800 0,6708 0,6944 0,6872 0,6787 0,6715 0,6715 0,6649 0,6721 0,6728

28K 0,7736 0,7984 0,7893 0,7906 0,7834 0,7762 0,7742 0,7755 0,7644 0,7605

AlexNet - Test

2

Number of Epoch
Tr

ai
n

in
g

D
at

as
e

t
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,9634 0,9666 0,9143 0,8802 0,8724 0,8809 0,8855 0,8914 0,8959 0,8979

0.7K 0,6970 0,9470 0,9025 0,8861 0,9018 0,9123 0,9149 0,9175 0,9175 0,9162

1.75K 0,6603 0,7055 0,6414 0,9045 0,8554 0,8554 0,8586 0,8586 0,8573 0,8567

3.5K 0,9332 0,9490 0,9463 0,9457 0,9470 0,9470 0,9470 0,9450 0,9463 0,9463

7K 0,7186 0,7821 0,6774 0,6721 0,6728 0,6728 0,6728 0,6708 0,6708 0,6708

14K 0,8213 0,8089 0,7788 0,8488 0,8298 0,8213 0,8318 0,8292 0,8312 0,8318

21K 0,9516 0,9673 0,8881 0,8750 0,8704 0,8868 0,9005 0,8815 0,8946 0,8855

28K 0,8750 0,8704 0,8370 0,8527 0,8586 0,8488 0,8580 0,8639 0,8632 0,8580

VGG16 - Test2
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5903 0,4503 0,5831 0,5046 0,9071 0,7101 0,7349 0,7277 0,7199 0,7160

0.7K 0,7480 0,7304 0,7723 0,8259 0,8115 0,8069 0,8056 0,8010 0,8004 0,7978

1.75K 0,8259 0,8645 0,8514 0,8541 0,8547 0,8541 0,8527 0,8514 0,8508 0,8501

3.5K 0,9823 0,9548 0,9319 0,9516 0,9522 0,9522 0,9522 0,9522 0,9542 0,9542

7K 0,9771 0,9149 0,9202 0,9130 0,9123 0,9123 0,9123 0,9103 0,9103 0,9103

14K 0,7297 0,6414 0,5746 0,5982 0,5798 0,5602 0,5668 0,5654 0,5622 0,5654

21K 0,9090 0,8613 0,8495 0,8174 0,8168 0,8305 0,8298 0,8272 0,8390 0,8344

28K 0,5969 0,7029 0,7912 0,7657 0,7441 0,7467 0,7336 0,7389 0,7317 0,7297

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG19 - Test2

1 2 3 4 5 6 7 8 9 10

0.35K 0,9136 0,9483 0,9627 0,9647 0,9725 0,9810 0,9869 0,9863 0,9869 0,9869

0.7K 0,7232 0,7526 0,7899 0,8298 0,8599 0,8757 0,8861 0,8927 0,8959 0,8999

1.75K 0,9365 0,9555 0,9496 0,9516 0,9483 0,9431 0,9424 0,9431 0,9476 0,9470

3.5K 0,6315 0,5903 0,6165 0,6263 0,6355 0,6302 0,6224 0,6243 0,6276 0,6276

7K 0,8063 0,7513 0,7140 0,6865 0,7094 0,7173 0,7225 0,7094 0,7173 0,7120

14K 0,6623 0,6060 0,6152 0,6099 0,5792 0,5877 0,5864 0,5759 0,5733 0,5805

21K 0,6073 0,5955 0,5903 0,5766 0,5700 0,5504 0,5537 0,5373 0,5563 0,5537

28K 0,7343 0,6747 0,6675 0,6250 0,6374 0,6217 0,6027 0,6250 0,5923 0,5694

GoogleNet -

Test2

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

154

Table 26. Test 2 Classification Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,9025 0,6793 0,4974 0,4810 0,4908 0,4961 0,4980 0,4980 0,4980 0,4980

0.7K 0,6885 0,4921 0,5039 0,5033 0,5046 0,5007 0,5007 0,5020 0,5020 0,5007

1.75K 0,5000 0,4993 0,4993 0,4987 0,4987 0,4987 0,4980 0,4987 0,4987 0,4987

3.5K 0,5137 0,5118 0,4699 0,4234 0,4156 0,4077 0,4332 0,4025 0,3842 0,4077

7K 0,5687 0,5628 0,5393 0,5229 0,5386 0,5975 0,5445 0,5412 0,5412 0,5517

14K 0,4980 0,4967 0,4935 0,4941 0,4941 0,4882 0,5020 0,4849 0,4836 0,4882

21K 0,4836 0,4679 0,4483 0,4725 0,4254 0,4280 0,4679 0,4031 0,4352 0,4143

28K 0,4601 0,4313 0,4457 0,4522 0,3619 0,3220 0,3874 0,3920 0,4228 0,4071

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet50 -

Test2

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5065 0,5177 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5105 0,5000 0,5007 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

1.75K 0,7363 0,7232 0,7349 0,7395 0,7467 0,7330 0,7552 0,7624 0,7637 0,7441

3.5K 0,5223 0,5347 0,5524 0,5798 0,5753 0,5720 0,6027 0,6374 0,6342 0,5753

7K 0,7160 0,7565 0,7277 0,7402 0,7565 0,7349 0,7291 0,7258 0,7709 0,7382

14K 0,6178 0,6139 0,6152 0,6047 0,5838 0,5609 0,5550 0,5687 0,5497 0,5563

21K 0,6584 0,6643 0,6446 0,6918 0,7173 0,6760 0,6616 0,6433 0,6204 0,6302

28K 0,6008 0,7160 0,6839 0,6996 0,7212 0,7363 0,7343 0,7251 0,7402 0,7258

ResNet101 -

Test2

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,4791 0,5020 0,4961 0,4954 0,4974 0,4967 0,4974 0,4961 0,4967 0,4961

0.7K 0,5000 0,5000 0,5020 0,5039 0,5033 0,5020 0,5033 0,5020 0,5020 0,5013

1.75K 0,5039 0,5033 0,5046 0,5033 0,5033 0,5033 0,5007 0,5046 0,5026 0,5026

3.5K 0,5000 0,5000 0,5000 0,5000 0,5000 0,4987 0,4993 0,4993 0,5000 0,5000

7K 0,6171 0,5694 0,5864 0,5641 0,5465 0,5589 0,5425 0,5419 0,5497 0,5491

14K 0,4725 0,4732 0,4771 0,4758 0,4791 0,4745 0,4797 0,4692 0,4712 0,4699

21K 0,5177 0,5065 0,5046 0,5295 0,5079 0,5380 0,5301 0,5321 0,5223 0,5596

28K 0,5079 0,5124 0,5065 0,5020 0,5065 0,5033 0,5065 0,5098 0,5124 0,5000

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet152 -

Test2

Number of Epoch

155

Table 27. Test 3 Classification Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,6124 0,5964 0,6064 0,6185 0,6145 0,6185 0,6205 0,6225 0,6325 0,6345

0.7K 0,8574 0,6365 0,5863 0,5863 0,5984 0,6225 0,6325 0,6305 0,6265 0,6265

1.75K 0,6827 0,6807 0,7369 0,7430 0,7390 0,7390 0,7390 0,7390 0,7369 0,7369

3.5K 0,6767 0,6747 0,6546 0,6506 0,6446 0,6426 0,6365 0,6365 0,6345 0,6345

7K 0,8193 0,7711 0,7088 0,6827 0,6888 0,6948 0,6968 0,6867 0,6888 0,6888

14K 0,7751 0,7309 0,7269 0,7390 0,7088 0,7149 0,7229 0,7048 0,7088 0,7068

21K 0,6627 0,6345 0,6707 0,6667 0,6466 0,6345 0,6446 0,6325 0,6486 0,6526

28K 0,7410 0,7530 0,7450 0,7470 0,7530 0,7490 0,7490 0,7490 0,7470 0,7450

AlexNet -

Test 3

Number of Epoch
Tr

ai
n

in
g

D
at

as
e

t
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8373 0,8695 0,7731 0,7590 0,7550 0,7590 0,7631 0,7651 0,7731 0,7731

0.7K 0,8153 0,7992 0,8153 0,8173 0,8133 0,8173 0,8133 0,8133 0,8133 0,8133

1.75K 0,8655 0,8594 0,6948 0,9779 0,9699 0,9719 0,9719 0,9719 0,9719 0,9719

3.5K 0,8614 0,8474 0,8474 0,8474 0,8494 0,8494 0,8494 0,8474 0,8494 0,8494

7K 0,7088 0,7691 0,7008 0,6928 0,6928 0,6908 0,6888 0,6847 0,6847 0,6847

14K 0,7309 0,7229 0,7390 0,7771 0,7691 0,7570 0,7731 0,7731 0,7771 0,7811

21K 0,9518 0,9458 0,8092 0,8313 0,8293 0,8434 0,8755 0,8494 0,8614 0,8534

28K 0,8434 0,8614 0,8273 0,8594 0,8715 0,8755 0,8815 0,8896 0,8896 0,8896

VGG16 -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6265 0,6024 0,6024 0,5201 0,8976 0,8213 0,8434 0,8353 0,8313 0,8293

0.7K 0,6928 0,6566 0,7008 0,7470 0,7369 0,7309 0,7289 0,7229 0,7229 0,7229

1.75K 0,8554 0,9116 0,9056 0,9076 0,9116 0,9116 0,9116 0,9116 0,9116 0,9116

3.5K 0,9639 0,8896 0,8715 0,8855 0,8876 0,8876 0,8876 0,8876 0,8876 0,8896

7K 0,7932 0,7751 0,7851 0,7811 0,7811 0,7811 0,7831 0,7831 0,7871 0,7871

14K 0,7369 0,6486 0,6165 0,6305 0,6225 0,6124 0,6225 0,6185 0,6124 0,6185

21K 0,9498 0,9317 0,9157 0,9036 0,9036 0,9197 0,9197 0,9157 0,9197 0,9197

28K 0,7108 0,8333 0,8956 0,8855 0,8815 0,8835 0,8815 0,8835 0,8795 0,8815

VGG19 -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6667 0,6908 0,7008 0,7149 0,7289 0,7329 0,7390 0,7309 0,7229 0,7149

0.7K 0,8213 0,8193 0,8233 0,8112 0,8133 0,8112 0,8112 0,8133 0,8153 0,8112

1.75K 0,8936 0,8996 0,8896 0,9056 0,9036 0,9076 0,9116 0,9137 0,9217 0,9217

3.5K 0,6707 0,6667 0,6867 0,6968 0,7028 0,7048 0,7048 0,7068 0,7068 0,7108

7K 0,7892 0,7731 0,7430 0,7390 0,7450 0,7470 0,7470 0,7470 0,7470 0,7470

14K 0,7309 0,6827 0,6968 0,6928 0,6606 0,6747 0,6747 0,6667 0,6667 0,6727

21K 0,6486 0,6325 0,6285 0,6285 0,6185 0,5964 0,6024 0,5843 0,6004 0,5984

28K 0,8112 0,7871 0,7811 0,7590 0,7671 0,7590 0,7530 0,7691 0,7510 0,7329

GoogleNet -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

156

Table 27. Test 3 Classification Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,6446 0,5683 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5382 0,5803 0,5803 0,5904 0,5984 0,5924 0,6024 0,6004 0,6004 0,5884

1.75K 0,5060 0,5060 0,5100 0,5060 0,5040 0,5020 0,5000 0,5040 0,5000 0,5080

3.5K 0,4859 0,4859 0,4900 0,4779 0,4759 0,4659 0,4699 0,4719 0,4920 0,4779

7K 0,4719 0,4679 0,4578 0,4699 0,4719 0,4739 0,4679 0,4618 0,4739 0,4719

14K 0,5000 0,5060 0,5100 0,5020 0,5100 0,5100 0,5181 0,5141 0,5060 0,5100

21K 0,4900 0,4880 0,4880 0,4920 0,4679 0,4639 0,4779 0,4538 0,4558 0,4699

28K 0,4960 0,4940 0,4980 0,5000 0,4940 0,4859 0,4940 0,4940 0,4980 0,4940

ResNet50 -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6968 0,6446 0,5221 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,7430 0,5161 0,5321 0,5402 0,5422 0,5321 0,5382 0,5502 0,5502 0,5502

1.75K 0,5341 0,5321 0,5301 0,5261 0,5261 0,5321 0,5261 0,5341 0,5261 0,5341

3.5K 0,5884 0,5863 0,5863 0,6225 0,5984 0,5904 0,6325 0,6466 0,6486 0,6285

7K 0,6325 0,6225 0,6165 0,6305 0,6265 0,6285 0,6104 0,6325 0,6225 0,6265

14K 0,5502 0,5301 0,5221 0,5241 0,5221 0,5221 0,5201 0,4960 0,5141 0,5241

21K 0,5984 0,5924 0,5884 0,6104 0,5884 0,5743 0,5904 0,5984 0,5743 0,5843

28K 0,5402 0,5803 0,5683 0,5904 0,5843 0,5823 0,6104 0,6225 0,6064 0,5944

ResNet101 -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5201 0,5120 0,5080 0,4940 0,4940 0,4980 0,4960 0,5000 0,4960 0,4960

0.7K 0,5020 0,5020 0,5100 0,5281 0,5321 0,5321 0,5321 0,5321 0,5241 0,5321

1.75K 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

3.5K 0,5020 0,5040 0,5020 0,5020 0,5040 0,5000 0,5060 0,5040 0,5040 0,5060

7K 0,5141 0,5141 0,5060 0,5060 0,5040 0,5100 0,5040 0,5040 0,5060 0,5020

14K 0,5201 0,5141 0,5080 0,5040 0,5161 0,5422 0,5040 0,5100 0,5060 0,5141

21K 0,5181 0,5141 0,5020 0,5201 0,5060 0,5281 0,5261 0,5241 0,5221 0,5402

28K 0,4940 0,4880 0,5020 0,5020 0,4980 0,5060 0,5020 0,4900 0,5040 0,5100

ResNet152 -

Test3

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

157

Table 28. Test 4 Classification Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,5741 0,5684 0,5722 0,5760 0,5798 0,5875 0,5913 0,5970 0,6008 0,5989

0.7K 0,7624 0,5779 0,5475 0,5456 0,5513 0,5589 0,5608 0,5589 0,5589 0,5589

1.75K 0,7757 0,7947 0,8365 0,8460 0,8327 0,8289 0,8232 0,8232 0,8251 0,8232

3.5K 0,7015 0,6977 0,6787 0,6768 0,6673 0,6635 0,6616 0,6616 0,6578 0,6578

7K 0,8669 0,8232 0,7871 0,7738 0,7776 0,7776 0,7776 0,7757 0,7738 0,7719

14K 0,7567 0,6920 0,6920 0,7015 0,6654 0,6711 0,6768 0,6692 0,6654 0,6692

21K 0,8346 0,8232 0,8479 0,8460 0,8384 0,8384 0,8384 0,8365 0,8403 0,8422

28K 0,7757 0,7890 0,7757 0,7700 0,7738 0,7700 0,7719 0,7776 0,7757 0,7738

AlexNet -

Test 4

Number of Epoch
Tr

ai
n

in
g

D
at

as
e

t
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6711 0,5342 0,5608 0,5019 0,8707 0,8308 0,8441 0,8403 0,8384 0,8384

0.7K 0,6768 0,7186 0,7433 0,7586 0,7567 0,7605 0,7662 0,7605 0,7605 0,7643

1.75K 0,7738 0,8213 0,8194 0,8175 0,8175 0,8194 0,8194 0,8194 0,8194 0,8194

3.5K 0,8460 0,8764 0,8745 0,8821 0,8840 0,8821 0,8821 0,8821 0,8783 0,8783

7K 0,7243 0,7985 0,8023 0,8042 0,8042 0,8061 0,8080 0,8099 0,8118 0,8156

14K 0,7833 0,7795 0,7338 0,7833 0,7529 0,7281 0,7395 0,7376 0,7376 0,7414

21K 0,7700 0,8251 0,8156 0,8232 0,8289 0,8232 0,8232 0,8213 0,8232 0,8213

28K 0,8384 0,8308 0,8346 0,8441 0,8384 0,8422 0,8441 0,8422 0,8460 0,8460

VGG19 -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8042 0,8479 0,8821 0,8726 0,8745 0,8745 0,8764 0,8745 0,8783 0,8764

0.7K 0,6768 0,8346 0,8137 0,8004 0,8004 0,8118 0,8156 0,8156 0,8156 0,8156

1.75K 0,7719 0,8688 0,7643 0,9563 0,9392 0,9373 0,9392 0,9392 0,9411 0,9373

3.5K 0,8232 0,8118 0,8137 0,8080 0,8061 0,8099 0,8099 0,8061 0,8118 0,8080

7K 0,8175 0,8384 0,8365 0,8308 0,8289 0,8289 0,8289 0,8289 0,8270 0,8270

14K 0,8080 0,7909 0,8232 0,8669 0,8460 0,8403 0,8593 0,8593 0,8612 0,8631

21K 0,8612 0,8593 0,8726 0,8726 0,8707 0,8745 0,8669 0,8688 0,8650 0,8650

28K 0,8289 0,7947 0,8004 0,8099 0,8175 0,8175 0,8137 0,8099 0,8099 0,8080

VGG16 -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5323 0,5627 0,5837 0,6331 0,6711 0,6882 0,6996 0,7186 0,7338 0,7414

0.7K 0,8175 0,8346 0,8707 0,8859 0,8973 0,8992 0,9011 0,9011 0,9049 0,9049

1.75K 0,7529 0,8327 0,8536 0,8726 0,8821 0,8897 0,9030 0,9049 0,9068 0,9068

3.5K 0,8517 0,8593 0,8935 0,9049 0,8992 0,9030 0,9030 0,9030 0,9030 0,8992

7K 0,8745 0,8707 0,8593 0,8555 0,8631 0,8688 0,8783 0,8669 0,8802 0,8840

14K 0,7662 0,7015 0,7072 0,7034 0,6654 0,6825 0,6806 0,6616 0,6578 0,6673

21K 0,7053 0,6901 0,6863 0,6787 0,6730 0,6445 0,6578 0,6426 0,6635 0,6654

28K 0,8973 0,8631 0,8745 0,8498 0,8783 0,8726 0,8574 0,8783 0,8669 0,8403

GoogleNet -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

158

Table 28. Test 4 Classification Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,6901 0,6806 0,5494 0,5057 0,5076 0,5000 0,5000 0,5019 0,5019 0,5038

0.7K 0,6274 0,5989 0,5551 0,5418 0,5475 0,5323 0,5342 0,5418 0,5475 0,5399

1.75K 0,5266 0,5171 0,5209 0,5684 0,5285 0,5456 0,5171 0,5342 0,5171 0,5513

3.5K 0,5209 0,5342 0,5057 0,4981 0,4905 0,4867 0,4943 0,5038 0,4981 0,5095

7K 0,4563 0,4449 0,4297 0,4411 0,4392 0,4544 0,4468 0,4240 0,4392 0,4354

14K 0,5266 0,5380 0,5418 0,5304 0,5437 0,5323 0,5741 0,5494 0,5494 0,5532

21K 0,5399 0,5304 0,5190 0,5304 0,5380 0,5570 0,5418 0,5894 0,5266 0,5684

28K 0,5038 0,4981 0,5057 0,5038 0,4962 0,4981 0,5019 0,5038 0,5038 0,4962

ResNet50 -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5494 0,5913 0,5627 0,5380 0,5095 0,5133 0,5152 0,5190 0,5133 0,5133

0.7K 0,5570 0,5418 0,5722 0,5837 0,5741 0,5589 0,5646 0,5703 0,5760 0,6008

1.75K 0,6388 0,6407 0,6559 0,6616 0,6464 0,6806 0,6445 0,6787 0,6407 0,6692

3.5K 0,6141 0,6103 0,6331 0,6578 0,6350 0,6464 0,6540 0,6521 0,6502 0,6445

7K 0,6179 0,6521 0,6445 0,6350 0,6464 0,6654 0,6654 0,6844 0,6711 0,6711

14K 0,5779 0,5989 0,5703 0,5722 0,5760 0,5722 0,5665 0,5703 0,5513 0,5703

21K 0,6502 0,6692 0,6464 0,6901 0,6730 0,6635 0,6749 0,7091 0,6977 0,7243

28K 0,5722 0,5684 0,5722 0,5837 0,5894 0,6065 0,6027 0,6046 0,5875 0,6046

ResNet101 -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,4924 0,5437 0,5285 0,5114 0,5171 0,5095 0,5076 0,5000 0,5114 0,5057

0.7K 0,5190 0,5076 0,5114 0,5342 0,5285 0,5266 0,5285 0,5228 0,5323 0,5342

1.75K 0,5076 0,5095 0,5114 0,5076 0,5095 0,5057 0,5114 0,5114 0,5114 0,5114

3.5K 0,5114 0,5076 0,5076 0,5095 0,5095 0,5095 0,5114 0,5114 0,5095 0,5114

7K 0,5266 0,5209 0,5247 0,5247 0,5209 0,5247 0,5228 0,5228 0,5171 0,5247

14K 0,5760 0,5741 0,5475 0,5209 0,5513 0,5817 0,5513 0,5380 0,5266 0,5532

21K 0,5570 0,5418 0,5228 0,5532 0,5399 0,5665 0,5589 0,5665 0,5532 0,6198

28K 0,5190 0,5399 0,5342 0,5190 0,5285 0,5171 0,5228 0,5418 0,5627 0,5551

ResNet152 -

Test4

Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

159

Table 29. Test 1 Classification confidence weighted Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,8965 0,9737 0,9886 0,9914 0,9924 0,9936 0,9935 0,9938 0,9942 0,9943

0.7K 0,9413 0,9936 0,9890 0,9912 0,9948 0,9964 0,9969 0,9969 0,9969 0,9969

1.75K 0,9948 0,9950 0,9964 0,9966 0,9966 0,9964 0,9964 0,9964 0,9966 0,9966

3.5K 0,9973 0,9979 0,9982 0,9984 0,9982 0,9983 0,9984 0,9984 0,9984 0,9985

7K 0,9974 0,9979 0,9979 0,9974 0,9977 0,9978 0,9978 0,9978 0,9978 0,9978

14K 0,9979 0,9979 0,9982 0,9984 0,9982 0,9983 0,9983 0,9983 0,9983 0,9983

21K 0,9976 0,9979 0,9980 0,9981 0,9980 0,9980 0,9980 0,9981 0,9982 0,9982

28K 0,9985 0,9989 0,9990 0,9990 0,9990 0,9991 0,9990 0,9991 0,9991 0,9991

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

AlexNet - Test 1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9957 0,9957 0,9981 0,9985 0,9981 0,9979 0,9978 0,9979 0,9979 0,9979

0.7K 0,9964 0,9979 0,9986 0,9986 0,9986 0,9986 0,9986 0,9985 0,9985 0,9985

1.75K 0,9981 0,9983 0,9931 0,9981 0,9986 0,9986 0,9986 0,9986 0,9986 0,9986

3.5K 0,9994 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995

7K 0,9989 0,9985 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

14K 0,9992 0,9994 0,9995 0,9994 0,9994 0,9995 0,9994 0,9994 0,9994 0,9994

21K 0,9998 0,9998 0,9997 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

28K 0,9996 0,9990 0,9997 0,9993 0,9996 0,9997 0,9996 0,9996 0,9996 0,9997

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG16 - Test1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9905 0,9759 0,9847 0,9733 0,9943 0,9967 0,9967 0,9967 0,9967 0,9967

0.7K 0,9945 0,9948 0,9979 0,9969 0,9969 0,9966 0,9971 0,9974 0,9974 0,9974

1.75K 0,9969 0,9985 0,9986 0,9988 0,9988 0,9988 0,9988 0,9988 0,9988 0,9988

3.5K 0,9990 0,9990 0,9990 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

7K 0,9989 0,9992 0,9992 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

14K 0,9972 0,9989 0,9992 0,9989 0,9990 0,9991 0,9990 0,9991 0,9991 0,9990

21K 0,9991 0,9996 0,9997 0,9996 0,9996 0,9997 0,9997 0,9996 0,9997 0,9997

28K 0,9991 0,9994 0,9993 0,9993 0,9995 0,9995 0,9995 0,9995 0,9995 0,9997

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG19 - Test1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8968 0,9229 0,9374 0,9512 0,9572 0,9637 0,9692 0,9749 0,9776 0,9799

0.7K 0,9155 0,9443 0,9656 0,9768 0,9814 0,9856 0,9880 0,9893 0,9912 0,9923

1.75K 0,9596 0,9830 0,9892 0,9928 0,9950 0,9954 0,9955 0,9960 0,9966 0,9962

3.5K 0,9964 0,9982 0,9982 0,9981 0,9982 0,9985 0,9985 0,9985 0,9986 0,9987

7K 0,9975 0,9980 0,9981 0,9979 0,9979 0,9980 0,9980 0,9979 0,9979 0,9980

14K 0,9981 0,9979 0,9984 0,9984 0,9989 0,9987 0,9987 0,9987 0,9988 0,9987

21K 0,9982 0,9989 0,9990 0,9992 0,9992 0,9991 0,9992 0,9993 0,9994 0,9994

28K 0,9982 0,9987 0,9987 0,9988 0,9987 0,9988 0,9988 0,9987 0,9988 0,9989

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

GoogleNet -

Test1

Number of Epoch

160

Table 29. Test 1 Classification confidence weighted Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,8099 0,9451 0,9723 0,9799 0,9813 0,9821 0,9830 0,9831 0,9833 0,9838

0.7K 0,8535 0,9675 0,9868 0,9892 0,9911 0,9912 0,9917 0,9919 0,9921 0,9923

1.75K 0,9673 0,9911 0,9909 0,9938 0,9945 0,9954 0,9954 0,9955 0,9955 0,9962

3.5K 0,9947 0,9965 0,9968 0,9968 0,9970 0,9971 0,9971 0,9977 0,9973 0,9969

7K 0,9975 0,9984 0,9983 0,9987 0,9983 0,9986 0,9991 0,9989 0,9986 0,9987

14K 0,9988 0,9994 0,9993 0,9993 0,9994 0,9991 0,9993 0,9991 0,9991 0,9991

21K 0,9979 0,9986 0,9987 0,9985 0,9990 0,9990 0,9991 0,9991 0,9992 0,9992

28K 0,9985 0,9990 0,9991 0,9992 0,9990 0,9991 0,9990 0,9991 0,9991 0,9994

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet50 -

Test1

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8584 0,9283 0,9584 0,9723 0,9754 0,9756 0,9766 0,9776 0,9778 0,9780

0.7K 0,8619 0,9579 0,9818 0,9861 0,9866 0,9880 0,9881 0,9900 0,9886 0,9893

1.75K 0,9811 0,9916 0,9926 0,9948 0,9936 0,9952 0,9950 0,9957 0,9952 0,9952

3.5K 0,9966 0,9970 0,9974 0,9972 0,9976 0,9977 0,9979 0,9973 0,9977 0,9975

7K 0,9953 0,9966 0,9974 0,9977 0,9976 0,9977 0,9974 0,9979 0,9979 0,9977

14K 0,9978 0,9983 0,9987 0,9986 0,9984 0,9988 0,9988 0,9988 0,9988 0,9989

21K 0,9991 0,9985 0,9990 0,9987 0,9987 0,9991 0,9989 0,9989 0,9990 0,9989

28K 0,9977 0,9986 0,9984 0,9992 0,9991 0,9994 0,9993 0,9988 0,9982 0,9992

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet101 -

Test1

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6063 0,9257 0,9714 0,9778 0,9799 0,9814 0,9816 0,9802 0,9809 0,9819

0.7K 0,8464 0,9630 0,9819 0,9864 0,9866 0,9862 0,9866 0,9864 0,9868 0,9857

1.75K 0,9739 0,9861 0,9874 0,9923 0,9909 0,9926 0,9926 0,9933 0,9931 0,9931

3.5K 0,9760 0,9768 0,9765 0,9797 0,9723 0,9778 0,9793 0,9752 0,9769 0,9799

7K 0,9949 0,9966 0,9970 0,9976 0,9977 0,9977 0,9979 0,9981 0,9980 0,9982

14K 0,9952 0,9957 0,9939 0,9909 0,9921 0,9933 0,9929 0,9923 0,9916 0,9931

21K 0,9937 0,9936 0,9924 0,9959 0,9951 0,9975 0,9961 0,9971 0,9967 0,9986

28K 0,9783 0,9827 0,9794 0,9785 0,9837 0,9844 0,9817 0,9842 0,9863 0,9838

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet152 -

Test1

Number of Epoch

161

Table 30. Test 2 Classification confidence weighted Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,6107 0,5800 0,5746 0,5726 0,5719 0,5714 0,5729 0,5731 0,5734 0,5744

0.7K 0,8060 0,5760 0,5474 0,5458 0,5562 0,5682 0,5730 0,5724 0,5719 0,5708

1.75K 0,5842 0,5917 0,6210 0,6251 0,6185 0,6177 0,6179 0,6182 0,6186 0,6188

3.5K 0,7142 0,7144 0,7041 0,7050 0,6977 0,6973 0,6944 0,6922 0,6913 0,6916

7K 0,7825 0,7428 0,7204 0,6980 0,7084 0,7086 0,7067 0,6976 0,6985 0,6964

14K 0,7017 0,6663 0,6686 0,6749 0,6548 0,6610 0,6626 0,6582 0,6577 0,6579

21K 0,6883 0,6802 0,7059 0,6995 0,6894 0,6811 0,6818 0,6739 0,6832 0,6843

28K 0,7951 0,8201 0,8078 0,8094 0,8024 0,7962 0,7950 0,7958 0,7839 0,7796

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

AlexNet - Test 2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9697 0,9724 0,9233 0,8896 0,8825 0,8901 0,8956 0,9008 0,9048 0,9067

0.7K 0,7160 0,9583 0,9169 0,9016 0,9169 0,9269 0,9296 0,9320 0,9319 0,9313

1.75K 0,6643 0,7128 0,6453 0,9136 0,8631 0,8628 0,8660 0,8660 0,8652 0,8641

3.5K 0,9446 0,9566 0,9549 0,9541 0,9550 0,9551 0,9551 0,9536 0,9547 0,9547

7K 0,7305 0,7941 0,6883 0,6812 0,6827 0,6826 0,6821 0,6803 0,6804 0,6804

14K 0,8370 0,8245 0,7955 0,8620 0,8440 0,8337 0,8455 0,8429 0,8442 0,8456

21K 0,9600 0,9734 0,9009 0,8881 0,8827 0,8986 0,9116 0,8931 0,9062 0,8970

28K 0,8895 0,8824 0,8509 0,8653 0,8695 0,8601 0,8688 0,8753 0,8738 0,8681

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG16 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5928 0,4461 0,5957 0,5065 0,9209 0,7264 0,7515 0,7438 0,7363 0,7318

0.7K 0,7602 0,7389 0,7838 0,8372 0,8249 0,8197 0,8175 0,8133 0,8118 0,8094

1.75K 0,8476 0,8808 0,8688 0,8713 0,8720 0,8716 0,8702 0,8694 0,8688 0,8684

3.5K 0,9859 0,9619 0,9422 0,9589 0,9594 0,9597 0,9598 0,9598 0,9612 0,9613

7K 0,9823 0,9256 0,9302 0,9244 0,9239 0,9240 0,9237 0,9223 0,9226 0,9225

14K 0,7424 0,6481 0,5781 0,6030 0,5830 0,5640 0,5700 0,5680 0,5644 0,5673

21K 0,9246 0,8797 0,8699 0,8361 0,8348 0,8481 0,8471 0,8449 0,8553 0,8515

28K 0,6140 0,7211 0,8107 0,7867 0,7636 0,7661 0,7536 0,7584 0,7512 0,7477

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG19 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9313 0,9602 0,9719 0,9749 0,9809 0,9866 0,9904 0,9903 0,9907 0,9906

0.7K 0,7421 0,7764 0,8167 0,8551 0,8820 0,8968 0,9063 0,9123 0,9158 0,9189

1.75K 0,9500 0,9658 0,9611 0,9622 0,9599 0,9566 0,9563 0,9566 0,9598 0,9591

3.5K 0,6556 0,6079 0,6387 0,6481 0,6585 0,6485 0,6404 0,6421 0,6438 0,6441

7K 0,8265 0,7689 0,7313 0,7044 0,7257 0,7321 0,7376 0,7239 0,7327 0,7275

14K 0,6745 0,6145 0,6247 0,6193 0,5862 0,5968 0,5951 0,5827 0,5800 0,5877

21K 0,6316 0,6177 0,6085 0,5923 0,5838 0,5618 0,5661 0,5474 0,5673 0,5650

28K 0,7593 0,7006 0,6932 0,6419 0,6561 0,6387 0,6176 0,6424 0,6067 0,5830

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

GoogleNet - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9219 0,6937 0,4953 0,4803 0,4898 0,4954 0,4972 0,4974 0,4976 0,4981

0.7K 0,7047 0,4941 0,5075 0,5063 0,5076 0,5030 0,5028 0,5047 0,5043 0,5037

1.75K 0,4988 0,4988 0,4990 0,4980 0,4984 0,4982 0,4976 0,4977 0,4980 0,4975

3.5K 0,5131 0,5137 0,4695 0,4197 0,4141 0,4059 0,4289 0,4011 0,3814 0,4061

7K 0,5720 0,5657 0,5425 0,5252 0,5419 0,6007 0,5443 0,5458 0,5444 0,5547

14K 0,4977 0,4955 0,4928 0,4914 0,4921 0,4870 0,4991 0,4843 0,4830 0,4868

21K 0,4855 0,4681 0,4447 0,4691 0,4209 0,4221 0,4643 0,4011 0,4282 0,4075

28K 0,4594 0,4301 0,4454 0,4533 0,3586 0,3223 0,3851 0,3903 0,4197 0,4045

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet50 - Test2
Number of Epoch

162

Table 30. Test 2 Classification confidence weighted Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,5229 0,5270 0,5088 0,5015 0,5004 0,5002 0,5002 0,5002 0,5002 0,5002

0.7K 0,5338 0,5005 0,5011 0,5007 0,5006 0,5004 0,5004 0,5006 0,5006 0,5007

1.75K 0,7585 0,7446 0,7577 0,7666 0,7701 0,7594 0,7758 0,7951 0,7845 0,7744

3.5K 0,5515 0,5643 0,5816 0,6085 0,6030 0,6009 0,6288 0,6646 0,6599 0,6057

7K 0,7346 0,7768 0,7488 0,7616 0,7770 0,7553 0,7507 0,7489 0,7894 0,7622

14K 0,6287 0,6265 0,6287 0,6188 0,5944 0,5658 0,5640 0,5732 0,5550 0,5636

21K 0,6762 0,6850 0,6618 0,7094 0,7307 0,6868 0,6783 0,6547 0,6316 0,6407

28K 0,6185 0,7315 0,7012 0,7106 0,7328 0,7459 0,7456 0,7393 0,7547 0,7374

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet101 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,4679 0,4964 0,4957 0,4943 0,4950 0,4948 0,4954 0,4939 0,4955 0,4950

0.7K 0,5003 0,5001 0,5027 0,5049 0,5038 0,5023 0,5037 0,5022 0,5024 0,5015

1.75K 0,5060 0,5070 0,5094 0,5087 0,5079 0,5084 0,5024 0,5092 0,5062 0,5061

3.5K 0,4996 0,4996 0,4996 0,4991 0,4999 0,4976 0,4986 0,4989 0,4996 0,4992

7K 0,6349 0,5805 0,5942 0,5761 0,5545 0,5714 0,5545 0,5532 0,5588 0,5573

14K 0,4739 0,4784 0,4756 0,4755 0,4772 0,4732 0,4781 0,4693 0,4709 0,4702

21K 0,5192 0,5085 0,5047 0,5294 0,5103 0,5381 0,5297 0,5328 0,5245 0,5602

28K 0,5077 0,5104 0,5061 0,5012 0,5059 0,5022 0,5063 0,5085 0,5119 0,4998

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet152 - Test2
Number of Epoch

163

Table 31. Test 3 Classification confidence weighted Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,6209 0,6080 0,6193 0,6293 0,6290 0,6334 0,6364 0,6394 0,6465 0,6491

0.7K 0,8812 0,6536 0,5961 0,5969 0,6137 0,6371 0,6476 0,6457 0,6423 0,6414

1.75K 0,6960 0,6938 0,7433 0,7489 0,7434 0,7431 0,7432 0,7437 0,7429 0,7431

3.5K 0,6895 0,6880 0,6673 0,6624 0,6550 0,6526 0,6472 0,6467 0,6446 0,6445

7K 0,8355 0,7863 0,7342 0,7044 0,7126 0,7172 0,7169 0,7058 0,7076 0,7065

14K 0,7843 0,7395 0,7381 0,7495 0,7198 0,7263 0,7322 0,7188 0,7205 0,7194

21K 0,6681 0,6427 0,6774 0,6729 0,6555 0,6433 0,6511 0,6405 0,6552 0,6581

28K 0,7524 0,7657 0,7585 0,7595 0,7648 0,7611 0,7606 0,7620 0,7565 0,7552

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

AlexNet - Test 3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8532 0,8822 0,7837 0,7649 0,7618 0,7668 0,7715 0,7744 0,7799 0,7807

0.7K 0,8358 0,8060 0,8260 0,8295 0,8259 0,8270 0,8247 0,8247 0,8250 0,8252

1.75K 0,8709 0,8627 0,7001 0,9818 0,9731 0,9741 0,9744 0,9744 0,9744 0,9742

3.5K 0,8700 0,8556 0,8565 0,8561 0,8582 0,8588 0,8593 0,8575 0,8598 0,8601

7K 0,7157 0,7755 0,7043 0,6960 0,6959 0,6942 0,6925 0,6894 0,6893 0,6890

14K 0,7320 0,7306 0,7439 0,7861 0,7768 0,7668 0,7809 0,7808 0,7835 0,7871

21K 0,9575 0,9544 0,8260 0,8418 0,8407 0,8585 0,8865 0,8625 0,8767 0,8671

28K 0,8539 0,8650 0,8405 0,8688 0,8804 0,8830 0,8911 0,8988 0,8986 0,8974

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG16 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6285 0,6191 0,6049 0,5253 0,9048 0,8336 0,8543 0,8481 0,8441 0,8418

0.7K 0,6987 0,6637 0,7079 0,7539 0,7443 0,7386 0,7363 0,7315 0,7304 0,7295

1.75K 0,8742 0,9280 0,9195 0,9215 0,9239 0,9239 0,9236 0,9235 0,9234 0,9235

3.5K 0,9700 0,8983 0,8817 0,8977 0,8987 0,8988 0,8989 0,8987 0,8991 0,9003

7K 0,7982 0,7816 0,7899 0,7866 0,7870 0,7874 0,7886 0,7883 0,7908 0,7908

14K 0,7423 0,6512 0,6193 0,6347 0,6252 0,6140 0,6216 0,6185 0,6143 0,6186

21K 0,9551 0,9416 0,9239 0,9108 0,9121 0,9245 0,9245 0,9218 0,9258 0,9255

28K 0,7306 0,8513 0,9109 0,9008 0,8951 0,8978 0,8944 0,8969 0,8934 0,8935

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

VGG19 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6729 0,6989 0,7122 0,7254 0,7366 0,7404 0,7437 0,7382 0,7322 0,7261

0.7K 0,8377 0,8377 0,8405 0,8340 0,8332 0,8303 0,8290 0,8291 0,8293 0,8263

1.75K 0,9124 0,9143 0,9036 0,9144 0,9150 0,9186 0,9224 0,9247 0,9305 0,9308

3.5K 0,6821 0,6717 0,6945 0,7068 0,7165 0,7156 0,7144 0,7171 0,7183 0,7216

7K 0,7974 0,7796 0,7522 0,7440 0,7531 0,7559 0,7579 0,7537 0,7568 0,7549

14K 0,7375 0,6918 0,7055 0,7012 0,6679 0,6842 0,6851 0,6728 0,6723 0,6810

21K 0,6577 0,6452 0,6390 0,6347 0,6239 0,6010 0,6095 0,5901 0,6068 0,6060

28K 0,8331 0,8044 0,8015 0,7731 0,7853 0,7751 0,7664 0,7876 0,7659 0,7451

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

GoogleNet - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6673 0,5645 0,5012 0,4996 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5412 0,5830 0,5866 0,5948 0,6012 0,5943 0,6014 0,6070 0,6055 0,5921

1.75K 0,5056 0,5055 0,5086 0,5082 0,5040 0,5041 0,5014 0,5034 0,5007 0,5087

3.5K 0,4864 0,4862 0,4888 0,4774 0,4761 0,4675 0,4718 0,4755 0,4935 0,4816

7K 0,4715 0,4684 0,4586 0,4694 0,4680 0,4734 0,4678 0,4613 0,4737 0,4719

14K 0,5010 0,5053 0,5106 0,5021 0,5092 0,5084 0,5167 0,5101 0,5048 0,5080

21K 0,4894 0,4865 0,4865 0,4906 0,4678 0,4612 0,4738 0,4542 0,4551 0,4667

28K 0,4963 0,4947 0,4975 0,4996 0,4938 0,4868 0,4947 0,4942 0,4971 0,4948

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet50 - Test3
Number of Epoch

164

Table 31. Test 3 Classification confidence weighted Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,7208 0,6424 0,5244 0,5020 0,4991 0,4991 0,4991 0,4988 0,4989 0,4997

0.7K 0,7606 0,5245 0,5330 0,5380 0,5407 0,5307 0,5372 0,5462 0,5486 0,5461

1.75K 0,5403 0,5359 0,5365 0,5335 0,5329 0,5389 0,5325 0,5412 0,5329 0,5398

3.5K 0,6071 0,6049 0,6099 0,6402 0,6204 0,6141 0,6530 0,6609 0,6606 0,6433

7K 0,6249 0,6213 0,6165 0,6292 0,6295 0,6292 0,6167 0,6280 0,6259 0,6287

14K 0,5506 0,5354 0,5275 0,5276 0,5226 0,5218 0,5265 0,5024 0,5245 0,5269

21K 0,6100 0,6070 0,5977 0,6178 0,5962 0,5850 0,6013 0,6075 0,5859 0,5962

28K 0,5478 0,5806 0,5753 0,6011 0,5862 0,5922 0,6159 0,6257 0,6094 0,6044

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet101 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5487 0,5132 0,5079 0,4964 0,4968 0,5000 0,4984 0,4997 0,4975 0,4979

0.7K 0,5046 0,5030 0,5150 0,5337 0,5349 0,5338 0,5331 0,5309 0,5268 0,5400

1.75K 0,5006 0,5007 0,5007 0,5007 0,5007 0,5008 0,5004 0,5008 0,5007 0,5006

3.5K 0,5022 0,5033 0,5018 0,5032 0,5030 0,5011 0,5057 0,5035 0,5029 0,5071

7K 0,5259 0,5237 0,5148 0,5145 0,5101 0,5176 0,5124 0,5111 0,5123 0,5098

14K 0,5233 0,5189 0,5107 0,5051 0,5175 0,5497 0,5090 0,5132 0,5093 0,5167

21K 0,5188 0,5134 0,5026 0,5212 0,5077 0,5296 0,5239 0,5237 0,5213 0,5424

28K 0,4931 0,4900 0,5029 0,5019 0,4977 0,5070 0,5026 0,4914 0,5068 0,5134

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

ResNet152 - Test3
Number of Epoch

165

Table 32. Test 4 Classification confidence weighted Accuracy Results

1 2 3 4 5 6 7 8 9 10

0.35K 0,5841 0,5759 0,5799 0,5840 0,5883 0,5950 0,5991 0,6040 0,6076 0,6079

0.7K 0,7754 0,5882 0,5526 0,5508 0,5583 0,5666 0,5696 0,5678 0,5669 0,5663

1.75K 0,7949 0,8091 0,8506 0,8585 0,8486 0,8461 0,8429 0,8431 0,8440 0,8430

3.5K 0,7190 0,7156 0,6958 0,6916 0,6822 0,6788 0,6755 0,6745 0,6715 0,6713

7K 0,8821 0,8449 0,8130 0,7952 0,7998 0,7998 0,7983 0,7935 0,7925 0,7904

14K 0,7755 0,7104 0,7095 0,7196 0,6829 0,6901 0,6950 0,6866 0,6842 0,6870

21K 0,8501 0,8388 0,8630 0,8615 0,8543 0,8517 0,8524 0,8483 0,8541 0,8559

28K 0,7984 0,8128 0,8001 0,7965 0,8015 0,7980 0,7991 0,8041 0,7984 0,7973

AlexNet - Test 4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8261 0,8680 0,8936 0,8846 0,8850 0,8863 0,8881 0,8873 0,8893 0,8882

0.7K 0,6813 0,8553 0,8294 0,8150 0,8183 0,8273 0,8301 0,8305 0,8301 0,8300

1.75K 0,7835 0,8816 0,7823 0,9633 0,9476 0,9465 0,9484 0,9485 0,9494 0,9471

3.5K 0,8412 0,8252 0,8282 0,8250 0,8233 0,8250 0,8249 0,8232 0,8258 0,8236

7K 0,8372 0,8487 0,8517 0,8466 0,8444 0,8437 0,8430 0,8425 0,8411 0,8407

14K 0,8298 0,8069 0,8397 0,8819 0,8655 0,8589 0,8738 0,8734 0,8748 0,8766

21K 0,8769 0,8725 0,8941 0,8933 0,8911 0,8935 0,8870 0,8887 0,8854 0,8854

28K 0,8400 0,8081 0,8212 0,8214 0,8302 0,8294 0,8256 0,8212 0,8214 0,8210

VGG16 - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6900 0,5467 0,5678 0,5059 0,8962 0,8474 0,8606 0,8570 0,8546 0,8537

0.7K 0,6853 0,7273 0,7587 0,7721 0,7711 0,7733 0,7764 0,7735 0,7735 0,7756

1.75K 0,7914 0,8323 0,8299 0,8282 0,8278 0,8286 0,8287 0,8287 0,8286 0,8284

3.5K 0,8547 0,8949 0,8926 0,8976 0,8987 0,8976 0,8975 0,8975 0,8953 0,8952

7K 0,7374 0,8147 0,8171 0,8200 0,8207 0,8221 0,8237 0,8251 0,8262 0,8285

14K 0,7975 0,7940 0,7499 0,7918 0,7664 0,7410 0,7534 0,7514 0,7494 0,7548

21K 0,7764 0,8345 0,8256 0,8364 0,8391 0,8348 0,8340 0,8327 0,8316 0,8309

28K 0,8551 0,8473 0,8540 0,8614 0,8580 0,8619 0,8620 0,8615 0,8634 0,8633

VGG19 - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5415 0,5789 0,6088 0,6543 0,6893 0,7091 0,7238 0,7414 0,7552 0,7633

0.7K 0,8419 0,8646 0,8944 0,9078 0,9158 0,9181 0,9200 0,9207 0,9231 0,9233

1.75K 0,7745 0,8572 0,8762 0,8896 0,8968 0,9028 0,9108 0,9122 0,9131 0,9134

3.5K 0,8757 0,8809 0,9106 0,9184 0,9167 0,9167 0,9154 0,9153 0,9150 0,9131

7K 0,8898 0,8854 0,8739 0,8661 0,8766 0,8840 0,8914 0,8823 0,8922 0,8933

14K 0,7836 0,7169 0,7252 0,7188 0,6762 0,6941 0,6928 0,6717 0,6677 0,6793

21K 0,7173 0,7024 0,7011 0,6923 0,6860 0,6537 0,6713 0,6492 0,6762 0,6790

28K 0,9106 0,8830 0,8896 0,8659 0,8885 0,8820 0,8701 0,8899 0,8768 0,8548

GoogleNet - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,7066 0,6834 0,5475 0,5053 0,5056 0,4991 0,4994 0,5007 0,5009 0,5019

0.7K 0,6446 0,6089 0,5603 0,5451 0,5498 0,5383 0,5396 0,5471 0,5499 0,5435

1.75K 0,5291 0,5227 0,5239 0,5684 0,5335 0,5485 0,5186 0,5392 0,5203 0,5540

3.5K 0,5182 0,5298 0,5127 0,5038 0,4956 0,4944 0,5010 0,5113 0,5046 0,5177

7K 0,4566 0,4470 0,4314 0,4381 0,4394 0,4573 0,4450 0,4297 0,4406 0,4390

14K 0,5257 0,5384 0,5412 0,5317 0,5414 0,5318 0,5677 0,5476 0,5480 0,5486

21K 0,5379 0,5282 0,5189 0,5279 0,5372 0,5594 0,5381 0,5914 0,5285 0,5685

28K 0,5047 0,5007 0,5058 0,5044 0,4989 0,4989 0,5022 0,5033 0,5045 0,4983

ResNet50 - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

166

Table 32. Test 4 Classification confidence weighted Accuracy Results (cont’d)

1 2 3 4 5 6 7 8 9 10

0.35K 0,5611 0,6078 0,5737 0,5401 0,5151 0,5141 0,5143 0,5162 0,5126 0,5124

0.7K 0,5770 0,5504 0,5825 0,5938 0,5874 0,5691 0,5786 0,5847 0,5948 0,6119

1.75K 0,6494 0,6539 0,6700 0,6707 0,6588 0,6944 0,6590 0,6960 0,6566 0,6819

3.5K 0,6198 0,6182 0,6354 0,6659 0,6440 0,6546 0,6612 0,6660 0,6642 0,6558

7K 0,6308 0,6677 0,6632 0,6559 0,6704 0,6807 0,6849 0,7002 0,6865 0,6916

14K 0,5903 0,6046 0,5788 0,5803 0,5844 0,5735 0,5741 0,5771 0,5596 0,5731

21K 0,6618 0,6816 0,6573 0,7027 0,6845 0,6751 0,6888 0,7244 0,7103 0,7403

28K 0,5691 0,5745 0,5786 0,5951 0,5954 0,6153 0,6124 0,6171 0,5987 0,6145

ResNet101 - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5024 0,5481 0,5301 0,5127 0,5156 0,5124 0,5105 0,5032 0,5115 0,5088

0.7K 0,5296 0,5095 0,5184 0,5411 0,5381 0,5363 0,5389 0,5330 0,5381 0,5357

1.75K 0,5086 0,5116 0,5162 0,5133 0,5129 0,5117 0,5130 0,5152 0,5141 0,5137

3.5K 0,5096 0,5071 0,5073 0,5096 0,5075 0,5089 0,5104 0,5101 0,5083 0,5112

7K 0,5377 0,5308 0,5317 0,5306 0,5256 0,5332 0,5298 0,5291 0,5228 0,5299

14K 0,5810 0,5818 0,5513 0,5205 0,5516 0,5880 0,5524 0,5405 0,5306 0,5541

21K 0,5553 0,5433 0,5232 0,5602 0,5421 0,5719 0,5619 0,5701 0,5567 0,6212

28K 0,5222 0,5413 0,5361 0,5185 0,5333 0,5221 0,5268 0,5426 0,5646 0,5581

ResNet152 - Test4
Number of Epoch

Tr
ai

n
in

g
D

at
as

e
t

Si
ze

167

APPENDIX III

CRACK BASED SEMANTIC SEGMENTATION METRIC RESULTS

Table 33. Crack based semantic segmentation metric results (per sample)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

1 6 5 55 4060 1 61,00 -72,01 -1,06 10,81

2 1 1 18 628 2 -32,55 -32,53 -29,73 -28,40

3 3 4 105 1197 3 -78,51 -78,98 -30,48 -43,45

4 3 2 59 883 4 -61,49 44,52 -17,62 -34,33

5 2 1 20 639 5 -72,80 -73,15 -73,23 -17,05

6 1 10 39 805 6 -48,17 -45,36 -50,07 -44,24

7 2 1 25 720 7 -62,16 -65,12 -29,99 -53,47

8 3 3 92 1154 8 -9,39 -12,03 -8,18 -6,35

9 2 4 61 830 9 -7,39 -12,49 -15,25 -12,30

10 2 2 46 705 10 -12,33 -12,35 -14,11 -9,22

11 2 3 53 756 11 -11,10 -11,05 -10,83 -6,55

12 1 1 73 727 12 -19,77 -20,13 -11,82 -14,78

13 1 5 78 793 13 -14,79 -8,41 -2,93 -9,62

14 3 2 52 734 14 -5,91 -3,73 -1,01 -4,32

15 4 4 76 580 15 -6,80 -7,64 -6,55 -10,00

16 5 1 92 775 16 1,75 -4,38 -6,75 -1,14

17 2 1 70 877 17 -54,44 -56,31 -43,91 -41,39

18 2 6 26 598 18 -51,88 -55,00 -51,19 -48,62

19 2 1 50 728 19 -53,44 -46,00 -42,06 -43,39

20 2 3 33 814 20 -21,80 -23,21 -20,95 -19,05

21 1 2 45 711 21 -11,08 -11,06 -9,33 -11,55

22 6 5 69 816 22 -28,43 -25,55 -21,73 -23,80

23 5 9 54 895 23 6,88 3,57 11,52 10,12

24 2 5 69 1280 24 10,00 18,56 9,87 7,31

25 4 34 126 1464 25 -17,60 -14,52 -16,79 -10,10

26 3 8 34 820 26 -14,38 -15,60 -16,35 -12,86

27 6 12 55 1013 27 9,14 16,46 3,37 4,92

28 4 6 53 910 28 -25,13 -23,09 -27,39 -21,64

29 8 6 68 1027 29 -20,60 -19,32 -9,88 -10,43

30 2 3 73 1000 30 -8,64 -9,14 -10,06 -9,89

31 8 6 58 898 31 -14,45 -3,74 -8,99 -9,91

32 3 5 45 787 32 -15,95 -5,47 -8,58 -9,11

33 4 12 60 1767 33 -41,56 -57,68 7,24 -4,55

34 4 97 75 1494 34 54,10 51,19 47,74 39,34

35 1 7 35 773 35 -75,55 -82,47 -2,99 0,80

36 2 3 33 844 36 -38,93 -39,81 -38,65 -34,89

37 3 9 43 1112 37 -46,64 -50,88 -42,71 -40,68

38 2 15 46 936 38 -25,88 -26,36 -33,09 -28,08

39 1 9 35 891 39 -32,65 -30,92 -34,81 -35,18

168

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

40 1 4 28 734 40 -19,53 -18,75 -19,93 -20,38

41 1 28 49 1161 41 -44,21 -43,14 -43,42 -37,94

42 4 8 44 1062 42 -45,08 -45,23 -44,05 -39,67

43 2 2 34 1094 43 -43,64 -43,14 -42,54 -33,25

44 1 79 42 777 44 -16,36 -16,23 -12,44 -13,12

45 2 8 53 1154 45 -39,52 -40,22 -36,20 -35,81

46 1 5 68 1645 46 -88,67 -86,90 27,86 -12,10

47 2 8 48 1166 47 61,71 61,46 63,66 62,05

48 3 7 50 1117 48 39,10 41,96 42,35 39,77

49 2 11 79 1188 49 27,60 24,00 25,64 27,23

50 1 4 33 921 50 9,38 9,20 12,81 17,43

51 1 5 31 798 51 31,71 31,11 25,78 29,94

52 2 31 24 927 52 0,56 -0,55 0,04 -0,93

53 2 7 28 1457 53 -7,22 -7,01 -8,36 -7,45

54 6 5 116 1243 54 -3,96 -19,54 -6,93 -7,41

55 5 61 118 1745 55 9,84 13,94 -0,98 3,73

56 1 40 57 1223 56 -23,78 -28,28 -21,18 -19,41

57 2 12 49 1244 57 -10,14 -7,56 -13,83 -10,98

58 2 68 35 857 58 2,88 0,15 2,86 2,73

59 2 10 42 976 59 -0,38 1,24 -0,09 -4,93

60 1 9 33 961 60 -15,31 -13,45 -13,73 -17,88

61 1 13 130 1903 61 -24,93 -32,52 -12,61 -7,21

62 1 12 179 1905 62 -1,37 6,31 -8,14 -9,24

63 2 10 51 875 63 39,86 39,88 34,86 36,35

64 1 3 28 845 64 65,00 64,07 50,49 33,29

65 2 17 40 1145 65 53,86 64,73 54,95 29,15

66 1 23 24 938 66 86,31 85,86 -12,03 15,14

67 1 7 33 1016 67 85,06 85,19 21,59 17,44

68 2 2 34 794 68 -71,66 87,93 -55,68 -2,25

69 1 9 42 728 69 -75,67 -74,63 -17,66 -37,24

70 3 7 56 984 70 -74,43 -76,55 -63,49 -60,20

71 1 7 33 875 71 85,79 78,07 25,06 1,03

72 4 24 104 1598 72 -70,70 -74,83 -49,88 -32,98

73 1 47 38 1135 73 72,51 62,41 18,42 38,15

74 2 14 51 1304 74 72,68 70,30 72,63 54,52

75 3 39 60 1703 75 69,78 59,65 42,15 47,48

76 3 13 40 1441 76 68,71 67,62 51,86 53,82

77 2 20 68 1617 77 36,44 33,31 33,20 31,97

78 1 23 66 1214 78 20,38 16,11 17,55 22,88

79 4 6 38 988 79 16,20 20,60 15,75 14,42

80 2 16 38 948 80 18,88 23,22 21,86 19,19

81 2 10 108 1242 81 -7,40 -10,75 -0,74 -1,26

82 4 3 150 1205 82 -9,51 -32,92 -12,49 -5,29

83 2 14 42 870 83 13,31 12,90 9,88 8,56

84 1 7 98 1508 84 -18,25 -20,88 -11,84 -12,86

85 3 10 39 683 85 1,19 6,95 3,74 2,77

86 2 9 27 530 86 5,33 6,81 5,03 3,68

87 1 5 36 1638 87 -78,64 -66,29 -53,64 -43,37

88 5 7 41 837 88 -5,29 -5,88 -9,78 -8,92

89 3 6 84 2280 89 4,06 1,25 -5,36 -5,93

90 1 3 8 663 90 1,43 2,77 -1,42 -3,63

91 2 5 18 674 91 0,12 2,78 1,13 -0,02

92 2 6 23 844 92 6,07 7,37 6,43 7,58

93 3 8 37 836 93 -3,07 -1,06 -7,62 -8,30

94 6 9 44 948 94 -2,64 -6,73 -4,57 -5,95

95 3 23 61 1122 95 9,52 9,11 -1,17 2,88

96 4 5 74 1094 96 -23,14 -28,02 -21,72 -14,68

97 3 8 67 1050 97 4,08 -9,44 -9,81 -6,50

98 2 20 65 1560 98 -12,11 -9,16 -9,55 -6,58

169

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

99 2 2 21 3814 99 56,03 62,25 17,73 11,47

100 3 2 27 4816 100 -70,21 -88,14 -84,98 1,51

101 3 5 28 1115 101 -63,04 -58,54 -62,78 -59,21

102 1 9 22 2514 102 -34,81 -35,29 -34,46 -30,61

103 2 27 74 3707 103 -34,20 -32,86 -30,96 -28,19

104 2 4 29 1065 104 -6,58 -9,30 -6,30 -5,80

105 1 2 23 911 105 -0,12 0,03 -2,11 -5,37

106 1 3 28 1120 106 61,97 61,91 61,72 32,48

107 2 8 29 3299 107 -2,22 -0,11 3,81 -1,88

108 2 17 54 1444 108 2,67 8,61 5,56 1,93

109 2 4 21 5369 109 77,51 77,08 25,44 7,91

110 2 4 64 1793 110 -77,19 -76,05 -63,16 -7,54

111 4 8 101 2838 111 -47,58 -48,03 -29,98 -21,44

112 2 19 16 660 112 -58,24 -58,23 -50,17 -40,77

113 3 8 61 1081 113 -39,16 -35,13 -30,21 -28,65

114 1 7 95 3358 114 -13,24 -5,49 -8,38 10,74

115 1 4 56 1400 115 -22,65 -23,04 -16,37 -18,80

116 3 9 38 1005 116 -11,35 -10,60 -18,46 -17,71

117 1 2 25 8812 117 85,77 84,69 23,90 18,17

118 3 32 49 2429 118 -20,24 -20,64 -16,26 -5,33

119 2 35 144 3059 119 -15,60 -16,99 -11,25 5,09

120 2 46 193 6160 120 -68,87 -37,04 -47,22 -7,05

121 3 32 65 1104 121 -50,26 -50,35 -55,14 -43,88

122 1 2 32 734 122 87,11 88,05 22,65 12,70

123 2 5 31 855 123 74,74 74,81 68,89 34,31

124 3 10 54 1042 124 37,21 38,03 36,98 37,56

125 3 5 69 11570 125 20,35 24,42 17,29 8,17

126 1 2 44 4387 126 12,89 13,48 22,30 10,26

127 6 11 76 8953 127 2,80 5,92 7,53 3,61

128 2 6 24 1043 128 60,06 52,93 58,69 55,29

129 1 11 29 998 129 83,04 73,39 75,10 19,62

130 2 4 17 810 130 -7,97 -9,95 -7,31 -10,82

131 4 12 45 1066 131 -8,94 -9,43 -11,03 -9,59

132 1 8 10 790 132 -19,30 -18,76 -18,25 -18,96

133 2 2 33 942 133 -11,56 -18,66 -11,09 -9,11

134 2 1 7 626 134 -26,13 -19,82 -26,28 -18,49

135 2 2 16 706 135 8,27 8,63 9,38 8,08

136 1 1 14 598 136 16,21 17,03 10,02 10,73

137 1 1 14 709 137 9,34 9,87 13,46 2,42

138 2 3 15 646 138 1,40 4,78 0,98 -0,87

139 1 1 11 490 139 -3,17 -2,75 1,08 -0,12

140 1 1 11 495 140 -6,76 -6,25 -1,20 -4,83

141 2 5 22 866 141 1,48 -0,84 3,69 -1,15

142 2 8 29 816 142 1,66 0,10 4,62 4,39

143 5 15 70 1249 143 3,80 -0,11 6,02 2,90

144 1 9 24 770 144 -5,69 -7,54 -7,43 0,64

145 1 9 40 1128 145 -35,06 -37,03 -34,01 -26,26

146 2 4 27 848 146 -24,21 -23,40 -20,16 -21,13

147 1 8 28 902 147 -18,04 -18,64 -13,64 -17,05

148 2 9 64 1061 148 23,54 23,53 20,57 22,81

149 3 7 24 887 149 30,52 28,74 30,43 27,56

150 2 3 50 842 150 29,17 29,32 31,19 26,29

151 2 13 28 684 151 -39,85 -40,81 -38,73 -40,82

152 2 3 36 691 152 -29,92 -26,55 -24,37 -27,97

153 1 3 21 681 153 3,03 2,37 -2,29 3,70

154 2 13 28 1026 154 -7,64 -7,60 -9,48 -4,56

155 3 44 27 700 155 -28,29 -28,55 -28,20 -24,18

156 6 64 43 875 156 -15,97 -15,43 -11,82 -10,27

157 3 3 8 506 157 -8,29 -5,26 -8,49 -9,10

170

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

158 1 1 32 856 158 16,87 15,92 13,07 14,57

159 3 14 74 1108 159 33,69 26,32 28,44 27,16

160 3 16 40 813 160 30,52 39,16 36,56 39,35

161 1 7 68 1039 161 21,40 4,65 11,97 3,21

162 4 31 84 1128 162 -23,75 -22,66 -24,16 -14,46

163 1 4 52 826 163 -1,70 -2,07 5,00 0,40

164 1 15 26 584 164 -33,77 -31,37 -24,22 -22,53

165 4 1 32 930 165 -26,31 -34,34 -33,82 -26,29

166 2 5 60 1255 166 55,01 56,00 39,95 36,22

167 1 8 34 2253 167 75,73 69,60 51,41 47,98

168 1 3 18 804 168 78,51 80,20 45,28 44,40

169 1 7 30 769 169 30,18 29,71 32,09 25,37

170 2 6 14 685 170 34,84 30,34 29,59 30,04

171 1 5 17 744 171 34,33 33,43 33,05 29,62

172 1 6 18 814 172 -5,93 -13,48 -12,76 -16,90

173 1 4 45 967 173 2,30 -0,02 3,55 3,30

174 2 3 27 595 174 6,44 6,43 3,37 5,36

175 2 12 41 872 175 -2,32 10,21 -2,60 -6,01

176 3 4 23 723 176 14,46 9,53 5,83 5,98

177 2 1 21 706 177 -11,91 -11,71 -8,84 -9,59

178 3 7 57 945 178 -14,49 -6,64 -9,35 -4,25

179 1 9 16 516 179 -13,09 -13,68 -11,16 -13,26

180 2 2 37 576 180 -14,51 -13,43 -10,25 -11,65

181 2 3 30 714 181 -7,34 -1,99 -12,08 -6,98

182 2 4 46 746 182 -21,28 -32,08 -27,52 -19,99

183 2 5 20 600 183 -2,40 0,64 -4,10 -2,55

184 3 17 19 742 184 -12,24 -12,34 -9,70 -10,42

185 2 35 144 2330 185 76,21 -11,08 -1,29 -3,11

186 4 5 72 1281 186 -54,71 -45,06 -43,39 -37,66

187 2 5 63 1183 187 -19,41 -17,04 -29,67 -33,35

188 4 5 61 978 188 -24,66 -23,97 -27,35 -23,25

189 2 17 45 862 189 -34,97 -39,28 -29,01 -28,63

190 2 39 56 898 190 -16,62 -18,13 -18,98 -10,67

191 5 17 87 1536 191 -19,32 -22,84 -17,59 -15,54

192 4 9 78 1001 192 -25,62 -23,40 -25,69 -20,02

193 2 9 56 1163 193 4,64 9,44 -3,19 1,82

194 1 1 47 693 194 -7,34 -6,60 -7,34 -4,03

195 2 8 58 980 195 -14,50 -9,66 -7,24 -6,59

196 2 6 41 947 196 -39,90 -40,65 -39,84 -38,34

197 1 5 29 835 197 -26,83 -37,65 -32,18 -22,90

198 2 5 39 732 198 -23,74 -26,20 -32,05 -28,94

199 1 3 56 815 199 -33,97 -33,51 -30,58 -37,51

200 1 1 34 729 200 -34,42 -34,18 -38,18 -35,69

201 3 4 92 1252 201 16,51 20,92 21,63 19,29

202 1 1 31 984 202 -42,23 -42,20 -42,48 -37,75

203 2 9 53 892 203 -33,81 -39,51 -32,79 -32,33

204 2 9 43 1117 204 -11,82 -14,62 -11,14 -10,18

205 1 6 31 674 205 0,44 1,18 -1,91 1,60

206 2 45 57 1032 206 -28,36 -27,84 -21,04 -18,21

207 1 1 24 583 207 -11,24 -11,19 -10,94 -7,89

208 1 9 55 965 208 -14,45 -7,01 -24,30 -18,68

209 1 4 23 542 209 -25,21 -28,03 -27,12 -27,86

210 3 5 86 903 210 6,31 -0,23 9,46 20,89

211 2 3 28 1270 211 68,21 66,77 59,25 22,04

212 4 4 42 855 212 -4,07 -4,81 -4,65 -3,85

213 4 2 31 771 213 -0,78 -4,05 -5,22 -2,04

214 1 1 26 622 214 -20,29 -20,95 -18,60 -16,59

215 3 2 32 716 215 -16,78 -18,55 -17,64 -17,01

216 2 5 49 730 216 27,38 26,99 24,19 23,02

171

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

217 2 3 39 820 217 33,09 30,84 27,01 26,27

218 1 3 47 1887 218 2,96 4,28 1,65 1,39

219 2 4 39 785 219 -9,38 -11,72 -6,71 -4,23

220 2 4 36 786 220 -26,39 -27,98 -23,95 -17,37

221 2 2 22 876 221 -19,54 -20,08 -12,75 -14,22

222 3 6 39 982 222 16,14 18,22 17,44 14,93

223 2 6 26 717 223 -28,16 -31,45 -30,35 -27,80

224 3 6 37 916 224 -27,35 -23,43 -29,23 -22,50

225 3 17 27 669 225 -19,39 -23,46 -16,67 -17,85

226 2 5 18 916 226 -32,28 -31,54 -28,70 -25,71

227 3 7 37 712 227 -19,75 -19,83 -14,76 -15,60

228 2 8 52 1787 228 -4,47 1,79 -6,65 32,98

229 1 8 48 1236 229 -8,57 -10,27 -6,71 -5,67

230 5 8 33 758 230 -7,98 -4,70 -9,84 -11,09

231 3 21 39 834 231 38,00 37,70 36,49 39,47

232 4 27 86 1486 232 27,49 29,23 26,90 23,49

233 1 6 46 660 233 14,36 13,99 6,28 8,30

234 1 8 38 651 234 5,62 5,69 8,60 6,88

235 6 6 84 1083 235 4,10 -15,21 -11,67 -6,07

236 3 3 36 681 236 -1,05 -0,41 -3,69 -1,66

237 2 8 42 714 237 5,14 7,69 11,85 7,76

238 5 5 115 1577 238 14,12 -7,32 6,26 0,56

239 2 22 71 1851 239 11,14 59,33 11,91 15,38

240 3 8 22 692 240 -11,60 -12,11 -9,30 -10,28

241 5 7 70 4851 241 -0,97 2,13 -2,67 -0,71

242 1 4 31 788 242 1,64 0,78 1,74 3,17

243 1 3 27 727 243 -1,10 -1,09 -1,18 1,72

244 1 8 32 567 244 -4,95 -4,53 -7,20 -6,06

245 3 12 126 2005 245 -0,05 3,65 -9,46 -3,44

246 1 6 80 3268 246 -74,27 28,48 -38,35 -13,83

247 1 7 31 3062 247 15,10 15,17 24,39 16,40

248 2 4 55 2153 248 71,97 49,69 2,41 26,66

249 5 7 83 1763 249 56,95 59,60 52,79 54,70

250 4 12 82 2195 250 26,27 25,50 23,38 23,53

251 1 3 47 4857 251 7,04 6,64 6,00 3,25

252 1 5 42 5437 252 87,74 36,17 -35,31 -11,55

253 2 2 39 4175 253 47,30 44,43 45,70 32,60

254 3 3 44 3012 254 39,88 37,08 35,84 27,07

255 1 31 32 7871 255 -43,32 -49,86 -37,58 -24,11

256 2 3 36 5812 256 9,44 4,86 4,56 3,96

257 1 2 52 5463 257 -89,72 89,68 -17,29 -11,75

258 5 3 27 4033 258 -6,25 1,80 4,82 2,91

259 2 5 35 1174 259 27,28 30,04 26,98 26,20

260 1 6 26 2642 260 55,45 50,99 54,86 44,10

261 3 19 81 4309 261 49,34 49,81 54,78 38,37

262 2 7 24 1350 262 83,34 59,42 28,77 16,53

263 1 2 20 927 263 89,88 89,91 -24,49 26,94

264 1 3 19 1147 264 -28,15 -27,00 -26,43 -16,35

265 2 6 25 4903 265 -86,90 -84,24 -71,71 0,93

266 5 10 59 1520 266 -47,47 -73,31 -66,60 -11,65

267 1 3 26 6654 267 -13,41 -12,92 -12,53 5,62

268 6 4 66 2433 268 12,84 13,62 9,47 10,01

269 5 6 100 3024 269 36,52 42,52 39,54 34,47

270 2 3 14 752 270 31,76 30,58 34,90 27,02

271 1 9 59 1105 271 48,98 42,98 56,31 48,89

272 3 7 98 3488 272 73,20 68,28 13,39 -22,96

273 1 4 62 1601 273 67,31 66,91 69,98 43,00

274 4 8 33 1136 274 77,98 76,75 76,67 31,53

275 3 50 46 2785 275 66,52 69,23 72,10 7,93

172

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth
QuadP FCN SegNet

Image

Number

Ground

Truth
QuadP FCN SegNet

276 5 76 137 2843 276 72,99 69,86 28,39 -25,12

277 2 39 177 6928 277 10,64 1,36 13,38 -9,93

278 2 18 65 1154 278 20,16 15,67 17,56 16,68

279 2 2 31 820 279 -5,22 -1,93 1,54 -3,27

280 2 5 24 881 280 -15,56 -15,00 -18,58 -16,87

281 6 12 53 1210 281 -44,85 -46,00 -51,86 -45,66

282 3 5 59 12494 282 -68,85 -64,88 -60,33 -14,46

283 3 3 49 3855 283 -74,71 -67,11 -45,99 -17,80

284 5 9 70 9359 284 27,47 -77,81 -19,05 -8,68

285 2 8 23 1158 285 -30,11 -35,75 -27,63 -27,48

286 1 11 28 1131 286 -7,06 -11,35 -3,28 -13,50

287 2 4 19 893 287 82,11 72,88 81,04 57,82

288 6 7 50 1174 288 59,76 78,76 70,22 43,94

289 1 4 9 941 289 70,58 71,08 70,86 65,38

290 3 4 28 993 290 79,76 71,77 48,80 34,29

291 2 3 6 642 291 63,81 70,21 63,73 70,15

292 3 2 20 687 292 -80,95 -80,67 -74,10 -16,35

293 3 1 12 773 293 -70,65 -73,20 -70,51 -1,26

294 1 1 12 762 294 -80,90 -80,12 -77,16 -6,91

295 2 7 18 720 295 68,84 -84,49 54,74 -24,01

296 1 1 8 501 296 83,28 84,03 -39,84 -18,19

297 3 2 22 819 297 -61,04 89,27 -36,62 -8,24

298 3 13 28 833 298 -83,55 -89,37 20,89 -31,45

299 8 8 72 1372 299 -43,19 -83,26 -55,23 -18,59

300 1 13 29 814 300 84,44 82,58 44,99 4,51

301 1 13 50 1388 301 55,49 50,54 51,61 50,23

302 1 6 47 1151 302 55,15 53,09 52,21 51,45

303 2 16 20 888 303 63,51 67,25 64,57 64,88

304 1 10 25 966 304 72,06 69,81 14,17 31,74

305 2 10 68 1075 305 -65,99 -65,62 -60,14 -59,27

306 3 8 33 856 306 -59,61 -61,03 -59,36 -61,38

307 3 6 44 872 307 -60,85 -60,89 -57,40 -64,79

308 2 1 27 646 308 50,15 49,21 52,20 49,01

309 2 2 36 670 309 59,98 64,31 64,79 57,44

310 3 4 24 664 310 -84,68 -87,52 -22,71 -40,28

311 1 6 30 1130 311 81,91 82,18 51,72 26,14

312 3 17 29 720 312 61,66 56,32 56,19 42,93

313 5 11 44 924 313 70,29 40,40 63,96 44,66

314 6 3 7 550 314 44,69 82,46 46,58 33,08

315 5 7 35 868 315 -70,39 -73,96 -72,16 -61,17

316 5 9 65 1222 316 -60,13 -58,78 -60,18 -61,57

317 2 24 41 814 317 -46,83 -50,12 -45,88 -45,40

318 8 30 84 1148 318 12,82 16,38 17,10 14,45

319 1 7 53 878 319 88,94 84,66 -17,66 -11,92

320 4 11 30 578 320 52,75 28,87 54,55 45,85

321 6 1 32 925 321 62,05 55,81 57,10 58,13

322 6 8 55 1256 322 -25,02 -20,35 -25,92 -17,80

323 3 4 20 754 323 -7,49 -9,78 -7,40 -6,47

324 1 7 27 830 324 -59,79 -60,25 -58,10 -63,76

325 2 1 15 696 325 -53,87 -54,79 -59,53 -43,72

326 2 21 22 831 326 -54,25 -52,68 -54,13 -53,65

327 1 4 19 867 327 84,48 78,68 76,64 -15,02

328 1 2 45 998 328 -87,95 -89,87 -71,96 1,19

329 2 2 30 614 329 -83,14 -65,46 -75,17 -29,10

330 3 15 37 893 330 80,13 -30,93 -8,90 0,16

331 5 6 24 749 331 -78,22 -78,90 -14,36 -27,13

332 3 1 25 744 332 76,71 78,27 57,67 25,78

333 2 4 52 972 333 74,42 72,95 5,84 4,68

334 3 8 15 572 334 80,90 71,24 77,29 57,05

173

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth
QuadP FCN SegNet

Image

Number

Ground

Truth
QuadP FCN SegNet

335 1 7 36 659 335 75,87 76,71 28,80 20,41

336 2 4 29 730 336 82,32 -18,78 -8,41 -10,28

337 2 7 42 765 337 67,95 65,02 51,89 69,43

338 2 6 22 627 338 87,49 -89,25 23,54 5,94

339 4 15 17 681 339 77,53 77,20 78,01 49,65

340 3 6 68 1332 340 34,98 44,80 36,45 33,37

341 3 15 65 1246 341 65,21 69,43 58,41 54,30

342 3 4 57 978 342 64,86 57,55 52,28 33,80

343 2 13 42 914 343 54,90 43,95 44,29 22,36

344 1 38 49 984 344 73,33 71,02 67,24 47,57

345 4 21 70 1015 345 62,15 55,45 62,97 68,54

346 2 22 59 1139 346 -85,55 -79,08 67,20 26,24

347 1 2 46 658 347 82,58 83,20 19,75 39,43

348 1 8 60 1058 348 80,24 80,43 2,86 -2,89

349 1 6 43 1019 349 50,31 49,30 49,62 46,59

350 1 8 28 893 350 63,15 50,80 49,92 51,13

351 1 2 57 882 351 55,96 55,26 59,31 50,70

352 1 1 41 712 352 55,55 55,80 50,49 53,17

353 2 1 95 1239 353 -73,84 -74,18 -54,52 -61,72

354 1 2 30 1081 354 47,77 47,86 46,84 51,23

355 1 7 55 875 355 50,23 49,74 48,72 57,65

356 2 11 43 1077 356 77,12 75,72 59,93 47,82

357 1 52 26 670 357 -89,58 15,05 54,66 30,92

358 1 40 60 1124 358 62,24 60,56 66,00 29,40

359 1 1 24 661 359 78,76 78,95 78,71 52,26

360 3 4 25 604 360 60,28 65,09 60,19 61,49

361 2 7 28 1209 361 -22,51 -23,63 -25,76 -18,36

362 5 5 42 877 362 -6,39 -3,46 -4,67 -4,21

363 3 3 27 800 363 -0,50 -4,17 -4,66 -2,06

364 3 1 30 744 364 -18,96 -20,95 -18,69 -15,53

365 2 2 33 775 365 -17,32 -18,50 -17,21 -17,04

366 1 5 48 828 366 27,29 27,13 24,40 22,84

367 3 2 40 841 367 -9,38 -11,87 -10,55 -3,75

368 2 3 35 853 368 -26,49 -27,53 -23,57 -16,67

369 7 11 124 1572 369 17,83 74,41 18,47 -2,18

370 2 3 38 986 370 16,20 16,37 17,59 14,55

371 2 5 29 765 371 -27,85 -31,67 -30,32 -28,05

372 3 8 40 985 372 -27,37 -24,83 -28,90 -26,12

373 2 16 28 751 373 -18,53 -23,68 -17,14 -17,55

374 1 6 19 907 374 -32,39 -31,72 -29,81 -26,71

375 3 9 38 784 375 -19,74 -19,70 -14,26 -16,78

376 3 3 53 1905 376 -5,94 1,71 -4,94 32,23

377 3 14 33 737 377 -8,08 -4,75 -9,88 -11,28

378 2 10 44 813 378 37,92 38,19 36,59 39,26

379 3 61 78 1506 379 27,42 28,49 27,35 21,90

380 2 9 32 822 380 75,38 73,53 57,39 41,90

381 1 5 48 685 381 14,44 13,95 6,29 8,59

382 1 15 39 718 382 5,60 7,01 7,35 6,94

383 6 5 92 1191 383 -1,99 -15,12 -10,37 -6,40

384 2 3 38 732 384 -0,94 -0,87 -3,52 -1,71

385 2 8 44 789 385 5,17 7,13 12,07 8,94

386 3 7 27 753 386 78,44 77,54 54,64 41,78

387 5 2 64 6233 387 82,35 -87,94 -22,63 7,23

388 1 3 32 879 388 -88,51 -88,39 61,95 -8,16

389 5 12 51 1030 389 -4,26 -70,12 -34,69 -14,27

390 1 7 29 730 390 88,90 88,89 56,34 1,50

391 1 6 28 572 391 85,04 85,69 80,93 12,50

392 7 3 55 980 392 57,75 62,86 59,83 38,34

393 9 5 71 1115 393 71,03 59,60 56,66 35,40

174

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth
QuadP FCN SegNet

Image

Number

Ground

Truth
QuadP FCN SegNet

394 2 26 67 1077 394 80,62 80,72 15,97 46,83

395 3 3 58 896 395 11,68 -19,71 6,89 8,01

396 3 5 67 989 396 72,78 78,83 46,51 15,08

397 3 3 46 953 397 30,50 82,68 39,36 10,26

398 1 8 32 819 398 17,89 7,38 12,08 4,91

399 1 7 30 929 399 50,66 50,21 50,55 49,15

400 4 15 48 1159 400 43,11 39,03 45,56 46,77

401 2 12 49 1232 401 64,13 63,48 52,40 60,06

402 1 11 35 976 402 57,34 55,80 55,20 53,27

403 1 3 21 703 403 17,19 16,79 16,74 24,24

404 1 35 51 1222 404 46,19 45,78 43,58 48,50

405 4 8 51 1096 405 45,20 44,91 43,44 46,77

406 1 2 37 1224 406 46,65 46,49 46,72 52,25

407 1 66 47 855 407 73,63 77,90 68,50 52,84

408 3 9 57 1147 408 50,09 50,22 47,02 51,13

409 3 6 64 1624 409 0,85 6,60 -2,73 1,98

410 2 8 43 1140 410 -24,11 -24,70 -22,35 -23,14

411 3 6 49 1176 411 -51,04 -52,45 -46,74 -44,34

412 2 12 81 1317 412 -62,10 -53,37 -56,33 -39,03

413 1 7 38 989 413 -80,57 -80,38 28,98 -17,87

414 1 3 31 814 414 -58,28 -58,56 -60,85 -47,64

415 2 8 25 994 415 88,35 -84,55 -49,01 -11,47

416 3 14 32 1422 416 80,00 67,66 80,33 20,67

417 5 7 108 1414 417 74,14 68,46 69,87 18,86

418 9 60 121 1859 418 -79,51 -74,57 -18,91 -19,96

419 1 9 60 1493 419 66,18 61,45 67,98 53,30

420 2 15 44 1424 420 79,58 73,13 74,12 17,75

421 6 66 36 897 421 -77,29 -82,39 -82,12 20,40

422 3 11 43 1141 422 -85,12 -88,50 -88,05 17,27

423 1 16 35 936 423 74,57 57,76 56,56 46,01

424 6 2 23 835 424 21,39 24,89 25,19 33,96

425 4 8 55 882 425 -48,68 -49,98 -53,19 -47,45

426 1 8 26 835 426 -24,96 -24,18 -22,14 -23,93

427 2 38 37 1434 427 -8,83 -9,57 -0,89 0,03

428 2 14 24 1053 428 -3,53 -5,27 -7,86 -10,95

429 1 8 36 1032 429 -4,61 -4,63 -13,32 -8,48

430 3 2 36 838 430 0,30 -2,21 8,00 -2,89

431 4 3 50 874 431 16,43 10,05 8,78 10,29

432 1 14 55 1041 432 13,18 12,68 20,21 19,36

433 2 2 82 1294 433 65,37 77,82 34,80 28,32

434 2 9 35 1005 434 -4,67 -4,88 4,98 8,42

435 7 62 109 1892 435 9,70 14,86 12,16 10,40

436 1 60 39 1309 436 -17,35 -14,52 -12,46 -14,93

437 4 21 58 1427 437 -16,09 -15,87 -16,25 -24,56

438 4 44 59 1729 438 -20,16 -21,92 -20,75 -19,90

439 1 28 41 1499 439 -19,53 -20,98 -22,06 -19,16

440 6 21 78 1604 440 -51,44 -52,80 -52,55 -49,99

441 4 51 71 1257 441 -66,22 -60,72 -68,41 -47,79

442 6 11 41 1075 442 -72,14 -69,02 -36,51 -8,88

443 3 19 42 1049 443 -71,12 -65,47 -67,50 -25,86

444 3 4 66 832 444 74,29 78,33 43,15 28,28

445 7 10 110 1300 445 -28,65 78,05 36,37 15,05

446 3 14 41 881 446 -74,80 -77,40 -75,21 -43,31

447 1 12 47 773 447 -84,08 -80,87 -35,57 -4,88

448 1 15 31 510 448 -82,80 -82,36 -61,24 -7,16

449 3 8 99 3011 449 -24,77 -88,04 -15,44 16,37

450 3 3 9 641 450 -75,57 -87,50 -58,70 38,54

451 1 7 22 777 451 -82,44 -82,68 19,54 5,58

452 1 8 23 878 452 -82,81 -82,75 -71,50 -11,10

175

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d)

Number of Objects Mean Orientation (Degrees)

Test 1 - Building - Concrete Test 1 - Building - Concrete

Image

Number

Ground

Truth
QuadP FCN SegNet

Image

Number

Ground

Truth
QuadP FCN SegNet

453 3 35 40 872 453 78,08 74,18 -27,50 34,55

454 6 9 49 923 454 46,64 77,09 56,17 19,91

455 4 38 65 1278 455 64,89 -80,79 29,56 -11,35

456 7 11 76 1204 456 53,87 62,38 46,86 39,42

457 5 8 67 1102 457 -20,59 80,40 23,14 29,70

458 6 28 69 1591 458 76,02 73,64 34,86 34,33

Test 2 - Pavement - Concrete Test 2 - Pavement - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

1 7 89 2811 68764 1 -0,02 -22,06 2,58 -18,13

2 14 21 906 38776 2 -82,97 -82,10 -27,26 -41,86

3 13 20 1130 35694 3 -82,26 -78,32 -55,79 -44,97

4 7 28 1245 29537 4 -89,48 -77,05 -59,52 -49,29

5 6 131 737 22984 5 83,41 5,82 53,46 61,38

6 16 44 1469 53109 6 -79,84 -69,28 -53,41 -41,88

7 20 17 1509 33522 7 89,12 70,70 -64,63 58,08

8 6 99 1741 37914 8 84,89 69,57 24,04 55,18

9 14 35 1349 64007 9 84,00 71,96 -10,92 50,87

10 19 47 1678 43158 10 -72,58 -4,41 -17,16 -33,07

11 4 89 4054 78870 11 33,46 18,86 -10,93 4,16

12 8 134 3490 65867 12 -61,60 -45,45 -9,17 -18,11

13 10 46 3115 75428 13 36,89 30,53 -0,87 6,45

14 8 176 3766 89222 14 4,68 -28,92 4,42 -7,10

15 12 37 1785 55651 15 -89,93 21,10 -10,70 -47,49

16 7 51 1228 46590 16 82,83 -12,59 -11,72 60,93

Test 3 - Building - Concrete Test 3 - Building - Concrete

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

1 3 7 154 2290 1 -21,41 -60,83 14,22 -45,68

2 3 31 268 3679 2 -45,73 -73,73 -10,58 -30,37

3 10 6 189 3108 3 43,91 43,81 34,79 35,63

4 4 11 246 6147 4 -8,65 7,90 2,91 1,27

5 8 4 10 26386 5 22,14 24,35 21,34 14,20

6 4 5 38 2509 6 -77,71 -60,45 -68,37 -54,81

7 8 25 158 4472 7 -77,55 -59,29 -55,03 -32,53

8 27 43 999 97998 8 78,14 68,72 46,54 52,55

9 4 156 1428 35960 9 63,67 42,42 39,48 13,56

Test 4 - Building - Brickwork Test 4 - Building Brickwork

Image

Number

Ground

Truth QuadP FCN SegNet
Image

Number

Ground

Truth QuadP FCN SegNet

1 15 73 787 14846 1 9,28 15,74 45,39 83,75

2 1 23 698 16156 2 -86,95 -69,95 -41,46 24,39

3 8 32 743 22193 3 -80,05 -55,54 -46,16 16,45

4 7 28 592 35660 4 -0,98 -22,35 -20,24 -84,95

5 4 21 454 40490 5 -81,05 10,27 0,34 -86,34

6 31 39 804 43550 6 -54,22 -53,40 -0,95 83,55

7 9 32 669 51982 7 -86,36 -32,31 7,47 70,27

8 2 18 638 42375 8 -85,78 -69,09 -0,92 81,53

176

177

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name Özgenel, Çağlar Fırat

Tel 05364868713

web www.firatozgenel.com | dds.archweb.metu.edu.tr

e-mail firatozgenel@gmail.com | fozgenel@metu.edu.tr

Address Üniversiteler Mah. Dumlupınar Bulvarı No:1 METU Department of

Architecture, Çankaya, Ankara, TURKEY

EDUCATION

2012 - 2018 Ph.D. Middle East Technical University (METU) / Building Science

2009 - 2012 M.Sc. Middle East Technical University (METU) / Building Science

2004 - 2009 B.Sc. Middle East Technical University (METU) / Physics

2001- 2004 TED Ankara College (High School) / Ankara

WORK EXPERIENCE

02.2013 – … Middle East Technical University / Specialist

10.2012 – 02.2013 METU Faculty of Architecture

Student Assistant (ARCH470, ARCH475 and ARCD 501)

10.2012 – 03.2013 METU Faculty of Architecture

Digital Design Studio - Rhinoceros and Grasshopper Tutor

10.2009 – 02.2010 METU Faculty of Architecture Digital Design Studio

Autodesk Maya Tutor

178

PUBLICATIONS

International Publications

2015 – Gönenç Sorguç A., Özgenel Ç.F., ‘Proposal of a New Tool for 3D Pattern Generation’

Nexus Network Journal, 17:2, p.655-670, 2015.

2013 – Özgenel, Ç.F., Gönenç Sorguç, A., “New Room Acoustics Tool for Architects: RAT

(Room Acoustics Tool)”, LAP Lambert Academic Publishing, 2013.

2011 – Özgenel Ç.F., Gönenç Sorguç, A., ‘Sayısal Ortamda Tasarımın Deneyimlenmesi için

Arayüzlerin Geliştirilmesi: Bir Ön Tasarım Parametresi Olarak Ses’ (Developing an Interface

for Experiencing Design in Computational Medium: Sound as a Pre-Design Parameter),

METU Journal of Architecture, 28:2, p.248-253, 2011(2).

National and International Conference and Symposium Presentations

2018 – Özgenel, Ç.F., Gönenç Sorguç, A. “Performance Comparison of Pretrained

Convolutional Neural Networks on Crack Detection in Buildings”, ISARC 2018, Berlin

(accepted)

2018 – Gönenç Sorguç, A., Kruşa Yemişcioğlu, M., Özgenel, Ç.F.,” Multiverse of a Form:

Snowflake to Shelter”, eCAADe 2018, Lodz. (accepted)

2018 –Kruşa Yemişcioğlu, M., Gönenç Sorguç, A., Özgenel, Ç.F.,”Crystal Formation and

Symmetry in the Search of Patterns in Architecture”, eCAADe 2018, Lodz. (accepted)

2017 – Gönenç Sorguç, A., Kruşa Yemişcioğlu, M., Özgenel, Ç.F., Katipoğlu, M. O.,

Rasulzade, R. “The Role of VR as a New Game Changer in Computational Design Education”,

eCAADe 2017, Rome.

2017 – Gönenç Sorguç, A., Özgenel, Ç.F., Küçüksubaşı, F., Kruşa Yemişcioğlu, M., Ülgen S.

“Mimarlık Eğitiminde Tepkimeli Kinetik Sistem Taklaşımı”(Responsive Kinetic System

Approach in Architectural Education), XI. MSTAS, Ankara.

2016 – Özgenel, Ç.F. “Otonom Çatlak Tespitinde Kullanılan Görüntü Işleme Yöntemleri Ve

Teknolojinin Potansiyelleri,” (Potentials of Image Processing Methods and Technology Used

in Autonomous Crack Detection), 3. Yapı Kongresi (3rd Building Conferene), Ankara.

179

2016 – Gönenç Sorguç,A., Özgenel,Ç.F., Kruşa,M.,Küçüksubaşı,F., Ülgen, S. “Biçim

Arayışında Sayısal İmalat/Üretim Teknolojilerin Dönüştürücü Gücü” (Transformative Power

of Digital Manufacturing/Production Technologies in Form Finding), X. MSTAS, İstanbul.

2015 – Kilis, S., Alkış, Y., Kadirhan, Z., Özgenel, Ç.F., Çetinkaya, H.H., Tokel, S.T.

“Development of a Virtual Learning Environment: Hittites Empire”, EIED 2015, Paris.

2014 – Gönenç Sorguç,A., Özgenel,Ç.F. “Proposal of a New Tool for 3D Pattern Generation”,

Nexus 2014: Relationships between Architecture & Mathematics / Ankara.

2012 – Özgenel Ç. F., Gönenç Sorguç, A., “A New Method Of Curve Fitting For Calculating

Reverberation Time From Impulse Responses With Insufficient Length”, Internoise 2012 New

York City.

2010 – Özgenel Ç. F., Gönenç Sorguç, A., “Sayısal Ortamda, Tasarımın Deneyimlenebilmesi

için Arayüzlerin Geliştirilmesi: Bir Ön-Tasarım Parametresi olarak Ses” (Developing an

Interface for Experiencing Design in Computational Medium: Sound as a Pre-Design

Parameter) “, IV. MSTAS, İstanbul.

Editorial

2017 - Gönenç Sorguç, Arzu; Kruşa Yemişcioğlu, Müge; Özgenel, Çağlar Fırat (eds.) (2017).

MSTAS2017: XI. Mimarlıkta Sayısal Tasarım Ulusal Sempozyumu (XI. National Symposium

on Digital Design in Architecture): İmkansız Mekanlar: Olanaksızın Olanağı (Impossible

Spaces: Possibility of Impossible), Book, Editor, METU Faculty of Architecture Press

Refereeing

2014 – Referee for METU Journal of the Faculty of Architecture

ORGANIZED EVENTS

15 – 16.06.2017 MSTAS.2017: 11. Mimarlıkta Sayısal Tasarım Ulusal Sempozyumu

(National Symposium of Computational Design in Architecture),

Member of the Organizing Committee (mstas2017.metu.edu.tr)

22.10 – 20.11.2016 3. Istanbul Design Bienale

Contributor

180

09 – 12.06.2014 Nexus2014: Relationship between Mathematics and

Architecture. Conference organizing committee member, PhD-Day

Coordinator.

10 – 13.05.2013 Aggregated Workshop / Workshop Assistant

06 – 09.12.2012 Parametric Design Workshop / Workshop Assistant

RESEARCH PROJECTS

01.2017 – … Greening the Skills of Architecture Students via STEAM

Education (ARCHISTEAM)

EU Project Erasmus + KA2 2016-1-TR01-KA203-034962

Project Researcher / METU

05.2016 – 06.2016 Istanbul New Airport Steel Construction

Consultant, Researcher

02.2015 – 12.2017 Design of Curriculum for Woodworking CNC Operators in

Turkey

EU Project Erasmus + KA2 2014-1-TR01-KA200-013304

Project Researcher / METU

01.2016 – 12.2016 Development of Navigation Algorithm for Autonomous/Semi-

autonomous Robotic Systems to be Utilized in Building

Inspection/Monitoring BAP-02-01-2016-004

Project Researcher / METU

02.2014 – 12.2016 Gişe Geçişleri İçin Aktif Gürültü Bariyeri (Active Noise Barrier

for Toll Booths) SanTez - 0553.STZ.2013-2 Funded by Turkish

Ministry of Science and Industry

Project Researcher/ METU

07.2013 – 03.2014 METU Campus Vertical and Horizontal Noise Mapping

BAP – 0811- DPT.2013K120500-3.

Project Researcher / METU

181

06.2012 – 01.2013 Hacettepe University Conservatory Building Acoustical

Consultancy/ Project Researcher

04.2012 – 08.2012 Türkiye Büyük Millet Meclisi (Turkish National Assembly of

Turkey) Acoustical Consultancy

Project Researcher

2012 Türk Telekom Çağrı Merkezi Gürültü Azaltımı (Türk Telekom

Call Center Noise Reduction), 2012-02-01-1-0011

03.2012 - 08.2012 Yunus Emre Power Plant Noise Control

Project Researcher

ASSISTED COURSES

ARCH 470 | Digital Design Studio (2009 - …)

ARCH 475 | Advanced Digital Design Studio (2009 - …)

ARCH 333 | Mathematics in Architecture (2013 - …)

ARCH 479 | Acoustical Design of Halls for Musical Performance (2013 - …)

BS 770 | Digital Fabrication Techniques in Architecture (2015 - …)

FOREIGN LANGUAGES

 English : Fluent

 German : Intermediate

ATTENDED WORKSHOPS AND CERTIFICATES

 Autodesk Revit Workshop at METU

 SoundPlan Noise Mapping Certificate

 A-2 Type Evaluation of Environmental Noise Certificate (Chamber of Physics

Engineering of Turkey)

REFERENCES

Available upon request

