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ABSTRACT 

CRACK DETECTION WITH DEEP LEARNING:  

AN EXEMPLARY STUDY OF DATA DESIGN IN ARCHITECTURE 

Özgenel, Çağlar Fırat 

Ph.D. in Building Science, Department of Architecture 

Supervisor: Prof. Dr. Arzu Gönenç Sorguç 

May 2018, 181 pages 

Dramatic increase of available data in the last 20 years transformed the role of 

data in artificial intelligence algorithms for problem solving. Deep learning 

embodies potentials for both finding novel correlations within data, and 

improvement in decision making process in its massiveness. Thus, this approach 

is prominent in processing such massive data by removing the necessity of 

explicitly determining features relevant to the solution. Reformulation of the 

problem in terms of determining which data represent the problem and 

evaluating the results emerge as the primary challenges in deep learning 

applications.  

Within the scope of this thesis, data design term is introduced to describe end to 

end process of problem solving with deep learning algorithms which is suitable 

for broad range of applications including problems in architecture. Data design 

defined as a holistic approach embracing the process from problem 

(re)formulation to evaluation of the results considering the interrelations of 

decisions made throughout the process. In this context, data design in 

architecture is exemplified with the task of crack detection in buildings in order 

to minimize subjectivity in the course of evaluating the results. For this purpose, 

the relation between data and deep learning framework, case specific evaluation 

requirements and strategies for enhancing the performance are inspected 
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through image classification and semantic segmentation applications for crack 

detection. Concordantly, this study contributes to the literature not only with the 

introduction and framing of data design but also with the proposal of crack 

detection specific evaluation metrics for both image classification and 

segmentation applications and a novel method is proposed employing quad tree 

and deep learning algorithms in conjunction for semantic segmentation of objects 

with limited visual features. As a result, data design and respective consequences 

are discussed in depth and demonstrated regarding the case dependency, 

decisions taken in the course of implementation and their influences to both 

process and the results.  

Keywords: data design, deep learning, convolutional neural networks, crack detection, 

semantic segmentation 



ÖZ 

DERİN ÖĞRENME İLE ÇATLAK TESPİTİ:  

MİMARLIKTA VERİ TASARIMI ÖRNEK ÇALIŞMASI 

Özgenel, Çağlar Fırat 

Doktora, Yapı Bilimleri, Mimarlık Bölümü 

Tez Yöneticisi: Prof. Dr. Arzu Gönenç Sorguç 

Mayıs 2018, 181 sayfa 

Son 20 yıldaki ulaşılabilir verilerin hızlı bir şekilde artması, problem çözme için 

yapay zeka kullanımında verinin rolünü de değiştirmiştir. Derin öğrenme, verinin 

fazlalığı ile hem verilerde yeni korelasyonlar bulma hem de karar verme 

görevlerindeki performansı arttırmak için potansiyeller içermektedir. Bu 

nedenle, bu yaklaşım, çözüm ile ilgili görülen özelliklerin açık bir şekilde 

belirlenmesi gerekliliğini ortadan kaldırarak, bu tür büyük verilerin işlenmesinde 

öne çıkmaktadır. Problemi hangi verinin temsil ettiğinin belirlenmesi ile 

problemin yeniden yapılandırılması ve sonuçların değerlendirilmesi, derin 

öğrenme uygulamalarında birincil zorluklar olarak ortaya çıkmaktadır. 

Bu tez kapsamında, mimarlık problemleri de dahil olmak üzere geniş bir 

uygulama yelpazesi için uygun olan derin öğrenme algoritmaları ile problem 

çözme sürecini baştan sona tanımlamak için veri tasarım terimi önerilmiştir. Veri 

tasarımı, problemin yeniden formüle edilmesinden sonuçların 

değerlendirilmesine kadar olan ve süreç boyunca alınan kararların karşılıklı 

ilişkilerini göz önünde bulundurulduğu bütüncül bir yaklaşım olarak 

tanımlanmıştır. Bu bağlamda, mimarlıkta veri tasarımı, sonuçların 

değerlendirilmesinde öznelliği en aza indirgemek için binalarda çatlak tespiti ile 

örneklenmiştir. Bu amaçla, veri tasarımı ve derin öğrenme arasındaki ilişki, 

duruma özel değerlendirme gereksinimleri ve performansın artırılmasına 
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yönelik stratejiler, çatlak tespiti için görsel sınıflandırması ve semantik bölütleme 

uygulamaları ile incelenmiştir. Buna paralel olarak, bu tez çalışması, sadece veri 

tasarımının tanıtılması ve çerçevesinin çizilmesi ile değil, aynı zamanda görüntü 

sınıflandırması ve bölütleme uygulamaları için çatlak tespitine özel 

değerlendirme ölçümlerinin önerilmesi ile literatüre katkıda bulunmaktadır ve 

sınırlı görsel özelliklere sahip nesnelerin semantik bölütlenmesi için dördün ağaç 

(quad tree) ve derin öğrenme algoritmalarının beraber kullanıldığı yeni bir 

yöntem önerilmektedir. Sonuç olarak, veri tasarımı ve ilgili sonuçları 

derinlemesine tartışılmakta ve duruma özel olma, uygulama sürecinde alınan 

kararlar ve bunların hem sürece hem de sonuçlara olan etkilerine açıklanmıştır. 

 

Anahtar Kelimeler: veri tasarımı, derin öğrenme, evrişimli sinir ağları, çatlak tespiti, 

semantik bölütleme 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

 

"Science, as well as technology, will in the near and in the farther future 

increasingly turn from problems of intensity, substance, and energy, to 

problems of structure, organization, information, and control."   

John von Neumann (1949) 

 

“How human mind works” is one of the oldest questions and dates back to Aristotle. 

Since then research on “human mind” escalate continuously and especially starting 

from the 19th century, they attain a new level with the advances in mathematics and 

psychology. At the beginning of 20th century, research on the problem-solving act of 

human mind became one of the key subjects in parallel with the question of whether it 

is possible for machines to think like a human. This idea was first officially manifested 

in Turing’s (1950) efficacious study titled “Computing Machinery and Intelligence”. 

Following this, famous researchers, Herbert Simon, Allen Newell, John McCarthy, 

Arthur Samuel and Marvin Minsky, gathered under the umbrella term Artificial 

Intelligence (AI). The introduction of the term AI enabled the encapsulation of several 

studies on human-machine interaction, human intelligence, and machine intelligence. 

Human problem-solving ability, which is one of the key features of human intelligence 

was also conceived as the measure of machine intelligence. Hence, many studies 

focused on problem-solving processes in terms of finding ways of the redefinition of 

the problem, specifying the constraints, determining the objectives and the relevant 
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data. While problem-solving process started to find its projection in algorithms and 

models, what is the processed information (i.e. data) have remained a puzzling 

question in AI. Turing’s studies on data once more brought the importance of the role 

of data in problem-solving through questions like “what is the data”, “how can it be 

processed”, “how can the data be validated/verified”, “what does the data mean”. Since 

then, understanding and controlling data has been one of the major research fields of 

AI.  

The history of AI shows fluctuations in parallel with the available technologies and 

funding, but the studies never ceased. In the last decades, the advancements of data 

crunching and storing technologies, and correspondingly exponential accumulation of 

data praise the importance of AI. This appraisal is observed in a number of studies and 

papers in the field (Shoham et al., 2017). Today, AI infiltrated our daily and 

professional lives, embedded in devices and software such as smart voice assistants in 

mobile devices, autonomous driving vehicles or diagnostic tools in medicine.  

It should be noted that in this changing role of AI, not only the mathematical basis of 

algorithms embedded in AI models but the data incorporated within them plays an 

important role. Hence, today, one of the major tasks in AI studies is to define and 

utilize the useful data in the huge data reservoir.  

In this dissertation, the framing of data within the abundance for a given task is referred 

as data design. The data design term connotes but is not limited to the selection of 

data. The related consequences in terms of the perception of the task, validation of the 

AI and the outcome are also an inherent part of data design and are discussed in depth 

in the following sections of this study. 

1.1 Problem Statement 

Artificial intelligence, since the very first days, has always been a problem-solving 

process in machines which is realized through algorithms. The essential characteristic 

of AI algorithms is to fully or partially model the problem-solving processes and the 

human mind. This eventually leads to two parallel, but at the same time separate 
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implementation areas; namely narrow AI and broad AI1. The major difference between 

these two study fields lies on the definition of the task; narrow AI is mostly employed 

in tangible problems which can be considered as problems for which either objectives, 

constraints or goals can be defined whereas broad AI studies focused on replicating 

the human mind and skills regardless of any specific task. Most of the contemporary 

implementations of AI belongs to narrow AI in which definition of the problem and 

handling the data are essential to the success of AI algorithms. In that sense, there are 

several approaches, which successfully employed AI algorithms, dating back to 1940’s 

when the AI was first proposed. Among these, expert systems, evolutionary 

algorithms, and machine learning are the prominent ones that are still in use today. The 

major characteristics of these approaches are shown in Table 1 indicating the process 

and data:  

 

Table 1. Major characteristics of prominent AI approaches 
 

Expert Systems Evolutionary 

Algorithms 

Machine Learning 

Reflected 

Information 
Field Knowledge Fitness Function 

Implicit field expertise 

for developing the 

system structure 

Input Data 
Input data for a new 

case 
Constraints 

Previous occurrences 

for training, new data 

representing a case for 

test 

Process Through If-else clauses 
Optimization of 

generated data 
Optimization of system 

Data flow 
Data are fed forward 

through a set of rules 

Data are generated and 

optimized with respect 

to the fitness function 

Learns from the data via 

feedforward and 

backward mechanisms 

Validation 

Once the system is 

constructed no need for 

validation 

Due to hard 

performance metrics 

The accuracy of the 

input-output match 

Use cases 

Fields which the 

knowledge can be 

modeled with if-else 

clauses 

Fields which the fitness 

function/objective 

function can be 

modeled 

Cases which appropiate 

data are present 

Example Medicine, Law 

Well-defined generative 

problems, such as 

component optimization  

Clustering, decision 

making, classification 

tasks 

                                                 
1 Narrow AI is also known as applied or weak AI whereas broad AI is referred to as strong or full AI 
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As it is shown in Table 1, the way how the problem is declared into AI, such as either 

by defining constraints, embedding field knowledge or training through previous 

solutions determines the differences among algorithms. The role of data in all these 

algorithms has also shown differences since data can be the input like in the expert 

systems, or it can be self-generated within the algorithm as in evolutionary algorithms. 

It should also be noted that each of these methods are developed by approaching the 

problem-solving task from a different perspective and is strong in different problem 

domains. While expert systems are widely utilized in problem areas where the 

knowledge can be modeled by rule-based procedures, evolutionary algorithms are 

prominent in well-defined generative problems such as optimization tasks in 

engineering and/or architecture, and machine learning is popular in fields in which 

appropriate amount of data are present. The increase of data, in terms of both quality 

and quantity, makes machine learning a subject of interest for exploiting the potentials 

hidden in the mass of data. It is important to pay attention that even though the 

algorithms mentioned above have been employed for decades, they are still open to 

improvement and continuously optimized with the emerging technologies and 

methods and with respect to available data.    

Starting from 1980’s the exponential growth of data which is usually referred as Big 

Data, can be considered as a game changer in existing AI strategies. Even though there 

are numerous definitions of Big Data, one of the most cited definition is made by U.S. 

National Institute of Standards and Technology (NIST) as: 

 

Big Data consists of extensive datasetsprimarily in the characteristics of 

volume, variety, velocity, and/or variabilitythat require a scalable architecture 

for efficient storage, manipulation, and analysis. (NIST Big Data Public 

Working Group, 2015) 

 

While first three characteristics; namely volume, variety and velocity are self-

explanatory, variability (also used as veracity) denotes the uncertainty hence the 

reliability of data. The preprocessing of raw data is actually a refinement act analogous 

to a purification process for which irrelevant and/or redundant data are excluded. In 
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that sense, the large amount of Big Data also means a complex data refinement process 

which becomes an actual challenge of contemporary AI implementations. 

Although the term is usually used to define a large amount of data in a positive 

connotation, it should also be understood that it is mostly unstructured i.e. raw, and 

needed to be refined in order to bring in compliance with the algorithm in the context 

of the task. In this respect, the appropriateness and reliability of data play a more 

important role than the plentitude only. Wisely selected and carefully preprocessed 

data with limited volume may have more potential for machine learning 

implementations than huge data streams without the refinement process have in some 

cases. Hence, it is necessary to point it out that Big Data or any data, which is useful 

for the task, is important in AI and in this regard, AI implementations should not be 

confined with Big Data applications.  

Despite the concerns presented above in relation with Big Data and its use, all the 

conventional machine learning algorithms still benefit from the abundance of data as 

long as the aptitude of data and the problem task is ensured since learning action is 

achieved through finding the patterns. In this respect, traditional machine learning 

implementations necessitate data refinement as not being capable of operating on raw 

data. For that reason, such algorithms are often utilized in conjunction with a feature 

extraction operation where the user defines the relevant features for the solution of the 

problem. Deep learning algorithms are differing from traditional ML algorithms as 

conducting feature extraction autonomously within the algorithm.  

Deep learning algorithms have gained popularity as a response to the demand of Big 

Data processing (e.g. Alsheikh et al., 2016; Wilamowski, Wu and Korniak, 2016; 

Zhang et al., 2018), improving the machine learning process by allowing to achieve 

complex data relations which are not necessarily conceived by human mind. In that 

sense, deep learning algorithms compared with traditional ML approaches necessitates 

new mindsets and redefinition of the statement of the problem into the machine. In 

traditional ML approaches, users are required to explicitly define the relevant features 

of the problem and craft the data accordingly. Contrarily, deep learning algorithms 

conduct feature extraction phase within the algorithm, forcing researchers to redefine 
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what raw data2 is and how the data should be used in a task. Consequently, the 

associative links present in humanly ways of problem-solving become obsolete in deep 

learning. The user has the opportunity to explore the features which may seem 

irrelevant for the problem and utilize these unlikely features to either improve the 

solution and/or make an introspection towards the accustomed way of problem-

solving. This new mindset presents a dichotomy for the user; as being a potential for 

exploring new possibilities and at the same time a challenge with the necessity of 

breaking the routine. 

Contemporary DL implementations succeeded in various fields such as visual 

perception (Chatfield et al., 2014; Szegedy et al., 2015; Wu, Zhong and Liu, 2017), 

autonomous control(Chen et al., 2015), and language translations (Collobert and 

Weston, 2008) and even have shown promising results in generative tasks such as 

generation of photorealistic images (Goodfellow et al., 2014). Among these study 

fields, computer vision is one of the leading implementation areas which DL 

approaches have already proven themselves with high success rates. On the other hand, 

the user is forced to abandon the accustomed way of problem-solving strategies thus 

complicating the ability to trace the flow of information and correspondingly the 

evaluation of the outcome. Thus, most of the studies are focused on very well defined 

tasks such as object detection which the objects have plentiful features. 

Implementations on cases with scarce features and tasks requiring subjective 

interpretation are rather limited. In this sense, problem definition, evaluation, and 

validation which are implicitly involved in designating the data have great importance.  

In this implementation process, determining the useful data within the bulk of Big Data 

is a very fuzzy and a challenging task, which not only requires field expertise but also 

AI literacy and being capable of devising quantitative mechanisms for validation of 

the system and the outcome. Today most of the research is conducted employing the 

accuracy based metrics3 for validation of the results rather than questioning the 

                                                 
2 In this study, raw data is defined as a multilayered unstructured bulk of data which needs to be 

elaborated. Elaboration of raw data does not mean solely data selection but instead trying to get the best 

suitable data for the given task. 
3 For exemplary discussions on shortcomings of accuracy based metrics see (Goertzel, 2015; Powers, 

2015) 
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precision requirement specific to the task, and the relationship between data provided 

and performance. The subjectivity, which is inherently involved in the selection of 

data, is accepted as de facto and often attributed to field expertise or intuition. This 

research also discusses the subjects regarding the validation metrics and the relevance 

of data selection in deep learning algorithms.  

Consequently, this thesis addresses the importance of designating the data in deep 

learning algorithms and this process of data elaboration is defined as data design 

rather than selection or crafting the data. In this respect, data design in deep learning 

algorithms is exemplified through crack detection in buildings using visual data. The 

reason of selecting crack detection as the case study is that the task is challenging for 

DL algorithms as the visual data have limited features for discrimination of cracks; 

albeit a straightforward task for humans, easing validation of the outcome and the 

algorithm without the need of subjective interpretation. Yet, the case provides a basis 

for scrutinizing the data design in terms of data selection, data and performance 

relation and evaluation of outcome and algorithm. In addition, potentials of novel 

algorithms for performance improvements are discussed and exemplified through the 

case study.  

1.2 Hypothesis 

The hypothesis of this research can be stated as, the success of AI implementations 

and raw data processing frameworks together with improvement in the process 

depends on the data design which requires field expertise related with the problem, AI 

literacy and reformulation of the problem through the data. These competences are 

also the core requirements for making improvements in the process.  

Data design is scrutinized by means of following research questions:  

1. How data design influences output and evaluation of DL algorithm?  

2. How can metrics for the evaluation of the results be determined?  

3. Is it possible to decide on optimal values for number and quality of data to 

guide data designers?  
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4. What is the relationship between data design and the structure of DL 

framework? 

1.3 Objectives and Scope 

Architecture has both a challenging and benefitting position in the utilization of deep 

learning algorithms in accordance with data design. Since architecture faces a broad 

range of problem from well-defined to wicked with varying complexities and in 

different scales, architecture poses a challenge for AI and DL frameworks. On the 

other hand, the abundance and operability on interrelated multidimensional data make 

architecture a strong candidate for effective utilization of deep learning algorithms. 

Although the potential application area of deep learning and thus data design is 

enormous in architecture, the complexity of the problem and the requirement of 

subjective interpretation is directly reflected to the evaluation of the outcome. Hence, 

as the subjectivity involved in data design increases, the evaluation of the outcome 

also becomes a personal task and not possible to quantify. Meanwhile, the deep 

learning algorithms to be utilized in problems of architecture remains the same in terms 

of the mathematical basis. 

The aim of this research is to reveal the challenges in the deep learning 

implementations while focusing on the significance of data design in architecture. In 

this respect, within the scope of this thesis, the research is focused on the working 

principles of DL and data design process through a tangible task which is crack 

detection in buildings and topics which require a subjective evaluation of the outcome 

such as sketching or designing are excluded.  

The main objectives of the research are: 

 To exemplify and highlight the constituents of data design  

 To demonstrate the potentials of deep learning algorithms in problems of 

architecture 

 To explore case specific metrics for the output evaluation and validation of the 

DL frameworks 

 To identify case specific limitations and potentials of DL algorithms  
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 To explicate the working principles of DL to provide AI literacy 

 To demonstrate how DL frameworks can be used in conjunction with other 

algorithms for precision advancements 

 To provide a holistic understanding of data design  

1.4 Methodology 

In order to achieve a holistic understanding of data design, the discussion is pursued 

over a controlled case study. The crack detection in buildings by means of visual 

inspection is a straightforward task for human cognition. Hence the evaluation of the 

outcome involves minimum subjective interpretation of the data. In that sense, the 

research is purely quantitative and empirical based on statistical results.  

In order to understand the significance of data design, firstly, a comparative study 

regarding the traditional ML and DL frameworks in relation to the selection, handling 

and control of data. In this regard, the potentials and challenges of data design is 

highlighted with respect to the differences and similarities of ML and DL frameworks. 

The study is then focused on machine learning implementations for crack detection 

task to establish a benchmark regarding the state of art. Secondly, data design is 

postulated and explained in detail. Correspondingly, working principles of DL are 

inspected considering the interaction between DL structure and data design. The study 

is continued with the in-depth application of crack detection by means of DL 

approaches and the relationship between framework, data design and performance of 

the system are inspected. Thereafter, the study is deepened with focusing on pixel-

wise predictions and a novel method for crack segmentation is proposed by the 

utilization of DL algorithms and quadtree algorithms to demonstrate how to utilize DL 

algorithms in conjunction with existing frameworks to increase the performance and 

to exploit the potentials of data design.   

1.5 Significance and Contributions  

Utilization of DL frameworks in custom tasks is a holistic process for which the 

success is governed with the coherence of provided data, DL algorithm and evaluation 

methods of the results. Data design comprises this process end to end, and aims to 
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achieve a complete understanding for DL implementations by addressing significant 

aspects which determines the success of the application. These aspects include but not 

limited to the subjectivity involved in both data selection and evaluation of the results, 

the relationship between DL framework and data, and strategies for task specific 

precision enhancements. In that sense, introduction of data design is the most 

significant contribution of this study. It is believed that data design approach provides 

a frame for further studies especially for tasks requiring subjective interpretation.  

Furthermore, this thesis contributes to literature by exemplifying case specificity of 

the DL applications through crack detection in buildings. For that purpose, task 

specific evaluation metrics are devised and proposed for two classification problems 

at different scales; namely image and pixel classification. While confidence weighted 

accuracy metric enables comparison of frameworks with respect to both correctness 

and confidence of predictions, crack metrics (i.e. number of crack objects and mean 

orientation) provides a tool for measuring the success of pixel level predictions with 

respect to the adequacy of the results for post processing.  

Moreover, a novel method is proposed with the combination of DL and quadtree 

algorithms for pixel level predictions of crack regions. In that sense, the proposed 

method not only sets a precedent for task specific precision enhancement strategies, 

but also constructs a new mindset for quadtree subdivision operation in conjunction 

with DL algorithms.  Although the method is developed for crack detection task, it is 

also applicable to objects with visually similar features with cracks such as blood veins 

or tree branches.  
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 

 

 

"More data beats clever algorithms, but better data beats more data."  

Peter Norvig 

 

The dramatic increase in the available data and advancements in ML and DL 

algorithms create a huge demand for experts having insight and experience to be able 

to select and process necessary data for the given task. Today, such experts have 

different names like data architect, data engineer, data scientist, feature engineer for 

which their task has broadened with the introduction of Big Data demanding new skill 

sets which transforms data science as well.  

Data science is defined by NIST (2015) as: 

 

… the extraction of actionable knowledge directly from data through a process 

of discovery, or hypothesis formulation and hypothesis testing. Data science can 

be understood as the activities happening in the processing layer of the system 

architecture, against data stored in the data layer, in order to extract knowledge 

from the raw data. 

 

In the realm of this new definition, the major role of these experts is to extract, refine 

and decide on the relevant data regarding the available dataset for the given problem. 

Yet the accessibility of data is ambiguous and Big Data is not open access to all experts 

and researchers. All definitions regarding data science and corresponding roles 
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presume that a relevant part of Big Data is provided and does not encapsulate the 

selection of that part or acquisition/creation of dataset from scratch.  

This chapter of the study presents the current literature on machine learning studies in 

terms of attaining, managing and handling data. For this purpose, differences and 

similarities between traditional machine learning (ML) and deep learning (DL) in 

terms of designating, handling and controlling the data are examined. The discussion 

is elaborated through inspection of machine learning implementations for crack 

detection in buildings as an exemplary case for architecture and a specific literature on 

crack detection is present.  

2.1 Traditional Machine Learning vs Deep Learning 

Several definitions of machine learning are present in the literature. Among these 

definition, two of them are highly acknowledged describing the main principles of the 

machine learning idea. Arthur Samuel, who introduced the term in 1959, defines 

machine learning as the field of study that gives computers the ability to learn without 

being explicitly programmed (Samuel, 1959). A more technical definitive explanation 

is made by Tom Mitchell. Mitchell (1997) describes machine learning as systems 

which are optimized with respect to the patterns in training data in order to make a 

prediction for new query:  

 

A computer program is said to learn from experience E with respect to some 

class of tasks T and performance measure P, if its performance at tasks in T, as 

measured by P, improves with experience E. 

 

The generic structure of any ML algorithm can be illustrated in Figure 1 regarding 

Mitchell’s definition. 

The experience (E) referred above is the provided data to be trained determining the 

success or failure of the algorithm in accordance with the given task (T). The level of 

convergence of the trained data for the expected results is denoted by performance (P) 

which is implicitly defined in the definition of the task. Definition of task (T), thus the 

performance (P) plays a more significant role in ML problem-solving. It should be 
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noted that, each training dataset (E) has a different potential for any problem, ill-

defined or well-defined. The very same training dataset (E) may change the 

algorithms’ performance. Similarly, when the task and performance definitions are 

changed, the ML algorithm may yield different outputs, or it may even fail to provide 

an acceptable solution for the concerned problem.  

 

Training 

Data

Learning 

Model

Query Result

Experience 

(E)

Task 

(T)

Performance 

(P)

Test Data

 

Figure 1. Machine Learning Workflow (drawn by author) 

 

Traditional ML techniques are operated with the predetermined number of input 

features. Hence, such techniques require a data preprocessing phase where the user 

extracts the features which is believed to be relevant with the task in other terms user 

makes an abstraction of the problem. The presumptions of the user regarding the 

relevance of inputs and the task are reflected to the framework. After data input, data 

are processed by means of probability calculations and depending on the number of 

features utilized in the solution. It is possible to trace the information flow in a 

comprehensible way and to intervene at mid-stages towards optimization. 

Nevertheless, as the complexity of the problem and number of features included 

increase, it becomes harder to follow the connections. The output of the framework is 

strictly dependent on features that users determine prior to the execution of the 

algorithm. Hence, traditional ML methods reflect how the user approaches the 

problem. Concordantly, the evaluation of the output is based on the performance 

criteria defined by the user while selecting the features constituting the task.  

One of the most important characteristics of traditional ML techniques is the 

specification of all the relevant (in the eyes of the user) features to the problem task. 
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Haque (2007) articulates this problem while elaborating Pask’s conversation theory 

and relevance to design as: 

 

… if a designer specifies all parts of a design and hence all behaviors that the 

constituent parts can conceivably have at the beginning, then the eventual 

identity and functioning of that design will be limited by what the designer can 

predict. It is therefore closed to novelty and can only respond to preconceptions 

that were explicitly or implicitly built into it. 

  

In such cases, ML algorithms conduct a straightforward task, finding the 

contributions/influence of features to the solution. This approach guarantees the 

desired type of outcome, at least in terms of revealing a correlation between inputs and 

outputs. Thus, defining every features of the problem does not necessarily connote a 

negative meaning especially if the aim is to utilize ML for very well defined tasks and 

to exploit the computational capacity of the framework. 

Contrarily to traditional ML frameworks, DL algorithms omit the preprocessing phase 

which the relevant features are determined. As a result, the user selects the data which 

are believed to represent the task. The comparison of ML and DL workflows are 

illustrated in  Figure 2. 

As shown in Figure 2, the feature extraction phase is conducted within the framework 

and optimized throughout the process. The associative links constructed for the 

problem-solving strategy is broken and the user is forced to focus on the representative 

power of the data rather than the relevance of features. As the raw data constitute more 

information than selected features for traditional ML frameworks, the process is often 

incomprehensible to the user and referred as black box algorithms. Being black box is 

not caused by the model itself but as a result of the complexity of data relations which 

is beyond the data crunching capacity of humans. Thus, it is not possible to intervene 

during the process and extract mid process instances. Yet the outputs at the end of each 

iteration can be observed and reused as a starting point for a new training session. The 

output is determined by the provided data and as the algorithm is based on finding the 

patterns to achieve a generic function resembling the input data, the evaluation is 

embedded to the data provided. 
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Figure 2. ML and DL workflow (Gill, 2017) 

 

As the user cannot intervene the data process, DL literacy emerges as an essential skill 

for controlling and collaborating with intelligent machines. Without a profound 

understanding of the framework which the task is conducted, the user has only the 

liberty of data selection. In such cases, the success (if the algorithm succeeds) of the 

outcome is somewhat coincidental and have a capacity of improvement in the event of 

deeper understanding and deliberate selection of the framework, redefinition of the 

task and data selection with respect to the working principles of chosen DL algorithm. 

The choice of data has the primary importance for the utilization of DL as the data 

provided directly influence the output and the evaluation criteria are implicitly defined 

within the dataset provided. There is no ultimate answer on which data is apt for the 

completion of problem task and each dataset results in different solutions. Hence, 

choice of data remains a challenging task involving subjective interpretation.  

Working principle of DL algorithms is based on finding patterns among the data 

provided. By definition, with each new dataset obtained as the result of data design, 

framework obtains a generic function for the representation of the data. It is especially 

promising for ill-defined tasks which the task can’t be transcribed in a procedural way. 

In that sense, the output of the framework can be utilized as a tool for broadening the 

perception of the problems highlighting the importance of certain features seemingly 
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irrelevant to the task or a tool for introspection about intuitive actions taken while 

manually solving the problems.  

In response to this, the evaluation of the outcome is a major challenge. As the 

performance of the output is not bounded with the performance metrics of the problem 

task but based on the resemblance to the input data, the subjectivity embedded in the 

selection of data is pursued to the data evaluation. For well-defined problems which 

objective evaluation of the output is possible, as in optimization problems, it is possible 

to quantify the performance of the framework. On the other hand, as the problem 

becomes ill-defined, the evaluation of the framework becomes a qualitative task based 

on the preferences of the user. Turing (1949) refers to this problem in his famous quote 

regarding sonnet writing machines as:  

 

 ... I do not see why it [a computer] should not enter any one of the fields 

normally covered by the human intellect, and eventually compete on equal terms. 

I do not think you can even draw the line about sonnets, though the comparison 

is perhaps a little bit unfair because a sonnet written by a machine will be better 

appreciated by another machine. 

 

In such cases, DL algorithms can be utilized as personalized co-workers for ill-defined 

problems which we can only communicate by means of data.  

Architecture, which embodies tasks with varying scales, complexities, and subjective 

interpretation requirements, provides a broad field of study for DL implementation. It 

is not always possible to explicitly determine the features of the solution or structuring 

the problem solving act in procedural way in problems of architecture. Thus, being 

able to train learning models without the necessity of explicitly defining the 

constituents of the problem poses a great potential for architecture. On the other hand, 

it is not possible to cover the diversity of architectural problems due to three major 

challenges namely; lack of publicly available data for all problems, lack of adequate 

hardware to process the data (even if data were publicly available) and most 

importantly the objective measurement of success especially for tasks requiring 

subjective interpretation.  



 

 

17 

For these reasons, the discussions and elaboration are pursued by means of focusing 

on a well-defined task; namely crack detection from visual data, in order to concretize 

data design with quantifiable and measurable results. Crack detection is a 

straightforward task for human perception and therefore the algorithm and the results 

can be evaluated without subjective interpretation. Still, it poses a challenge for the 

DL algorithms due to the lack of discriminative features defining cracks. Hence, DL 

algorithms, as well as the computer vision algorithms, are prone to confuse shadows, 

foreign objects, and drawings with cracks. For the case implementation, CNN 

framework is utilized as its capability to process raw data while conserving spatial 

relations which is crucial in tasks regarding architecture. As CNN’s use similar 

building blocks and mode of operation regardless of the task, crack detection is utilized 

to scrutinize a complicated subject in simple terms. For this purpose, traditional ML 

and DL (i.e. CNN) implementations for crack detection are examined in Chapter 2. 

2.2 Crack Detection as a Machine Learning Application in Architecture 

Advancements in machine learning influence fields which are seeking autonomous 

conduction of tasks. Increasing capabilities of machine learning frameworks hold 

promise for high speed, high accuracy and high precision and autonomous predictions. 

Recent studies and applications prove that computer algorithms can be more powerful 

in decision-making tasks without being objected to subjective bias or in other terms 

human error as in manual conduction of the task (Lecun, Bengio and Hinton, 2015; 

Schmidhuber, 2015).  

Building inspection is one of the fields which requires the minimization of error due 

to the importance of the possible implications. In this respect, machine learning 

algorithms have been utilized in the building inspection with the aim of increasing 

precision and accuracy.  

The process of building inspection can be broken down with abstraction in three phases 

with increasing complexity; as detection of defect (predicting existence), analysis of 

defect (predicting metrics – numeric prediction) and inferring from results. Cracks, as 

being one of the most information bearing sign of structural failure, can also be 

detected, analyzed and evaluated by means of machine learning algorithms.  Even 
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though crack detection can be conducted with respect to various data such as infrared 

thermography and/or acoustics based responses, visual data captured with still camera 

is still the most feasible in terms of the equipment required and majority of the 

inspections of buildings are conducted with respect to visual data due to ease of data 

acquisition.  

Despite the fact that visual inspection is the most favorable approach, processing of 

visual data is not a straightforward task and have challenges caused by the nature of 

the task. Particularly, crack detection in the built environment is a challenging task for 

any computer vision and machine learning method. The success of machine learning 

algorithms is originated by the ability of framework to learn and use the discriminative 

features defining classes of objects. In the case of crack detection, the number of such 

discriminative features are limited. Hence, the features defining cracks can be easily 

confused with any object having irregular and jagged edges having high contrast with 

surface texture. The practical challenges caused by the nature of the cracks can be 

listed as below and illustrated in Figure 3: 

a) Orientation and spatial positioning of cracks are unpredictable. Hence, 

it is not possible to make an inference from directionality of high 

contrast regions to classify cracks. 

b) Discriminative crack features are easily confused with noise in the 

background texture, foreign objects and/or irregularities in application 

such as exposure of jointing 

c) Inhomogeneous illumination of the surface causes occlusion of crack 

segments endangering the conservation of crack continuity (Zou et al., 

2012; Wang et al., 2017) 
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Figure 3. Practical challenges for crack detection, a) the painting as the noise at the 

background (left), b) shadow shadowing crack and present noise to be 

misclassification (middle), b) jointing at left presents noise (right) 

 

Due to the challenges mentioned above, an adaptive framework which is able to 

discriminate cracks and any other objects and/or surface texture, in other words, a 

framework which is not susceptible to noise in data is the ultimate goal for autonomous 

crack detection. The task of crack detection can be evaluated as a classification 

problem whether it is conducted for predicting the existence of cracks in an image or 

pixel-wise prediction of crack regions. Machine learning field offers numerous 

approaches to classification problem with increasing accuracy due to the continuous 

research and improvements in the field.  

By nature, classification with respect to multiple features is a multidimensional 

problem. When visual data captured by means of cameras is considered, raw data 

contains vast amount of data represented as pixels. As the computational cost and 

memory constraints are directly related to the number of features, it is not feasible to 

treat each pixel as a feature in the course of utilization of machine learning classifiers 

(Koch et al., 2015). Hence, several steps are followed to reduce the dimensionality of 

the data. These steps are defined and can be abstracted as image segmentation and 

feature extraction in common practice. As a result, the workflow for image 

classification can be illustrated as having three stages; namely image segmentation, 

feature extraction, and feature classification (Sinha and Fieguth, 2006; Gonzalez, 

Woods and Eddins, 2009; Wu, Liu and He, 2015). 
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Figure 4. Abstracted workflow for image classification with traditional ML (drawn 

by author) 

 

Among these steps, image segmentation is used as a tool to be able to conduct feature 

extraction and commonly perceived as a part of feature extraction step. Image 

segmentation and feature extraction steps are often conducted with manual or semi-

autonomous/adaptive methods which require user input. Even though there are studies 

aiming conduction of image segmentation and feature extraction, the separate 

conduction of the steps results in accumulated error of the classification. As a result, 

either the overall process involves manual decisions or the process is conducted in 

series of autonomous algorithms which the error is cumulatively increased. In such 

cases, obtained framework is often applicable to certain cases and lose performance 

with varying conditions. Studies, which embraces crack detection workflow as series 

of operation, are focusing on selection and finding the optimum combination of 

methods.  

Convolutional neural networks (CNN’s) pose a different approach to fragmental 

conduction of classification task. CNN’s conduct the feature extraction and 

classification tasks within single framework without the need of image segmentation 

preprocessing. Hence, the case-specific bias caused by manual decisions in feature 

extraction step and cumulative accumulation of error is avoided in CNN’s. Abstracted 

black box representation workflow of CNN’s is illustrated in Figure 5. 

 

Image Input
Convolutional 

Neural Network

Classification 

Result

 

Figure 5. Black box workflow representation of CNN classification (drawn by 

author) 
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There are several studies in the literature proving the applicability of CNN’s to crack 

detection in built environment task (e.g. Gopalakrishnan et al., 2017; Liu et al., 2017). 

Furthermore, CNN applications are extendable to perform localization and semantic 

segmentation of images. Localization by means of CNN’s aims to draw a bounding 

box to the classified objects while semantic segmentation of images deals with labeling 

of pixels with respect to the object class they belong and is different from image 

segmentation mentioned in classification workflow. Image segmentation is used as a 

preprocessing tool for reducing the dimensionality of input data and does not aim to 

conduct pixel-wise labeling as the classification is conducted in later steps of the 

workflow. Hence, while semantic segmentation is a goal to achieve, image 

segmentation refers to initial step required before feature extraction and utilization of 

machine learning classifiers.  

A comprehensive but not complete list of studies which uses machine learning 

methods in correspondence with segmentation and feature extraction methods, and 

studies utilizing CNN are shared in Table 2. 

 

Table 2.List of studies utilizing machine learning for crack classification 

Reference Application 

Area 

Segmentation & Feature 

Extraction 

Classification 

(Liu et al., 2002) Tunnels - Discriminant analysis 

method 

- Threshold 

- Support vector machine 

(Sinha and 

Fieguth, 2006) 

Pipelines - Statistical feature 

extraction 

- Neural network 

- K-Nearest neighbors 

(Kabir, Rivard 

and Ballivy, 2008) 

Bridges - Wavelet transform 

- Statistical feature 

extraction 

- Neural network 

(Yang and Su, 

2008) 

Sewer pipes - Wavelet transform 

- Co-occurrence matrix 

- Neural networks 

- Support vector machine 

(Moon and Kim, 

2011) 

Generic 

concrete 

- Median subtraction 

- Gaussian low pass filter 

- Threshold 

- Morphological 

operations 

- Neural network 
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Table 2. List of studies utilizing machine learning for crack classification (cont’d) 

Reference Application 

Area 

Segmentation & Feature 

Extraction 

- Classification 

(Zhang et al., 

2014) 

Subway 

tunnels 

- Average smoothing 

- Morphological operations 

- Threshold 

- Statistical feature extraction 

- Neural network 

- Support vector machine 

- K-nearest neighbors 

(Lattanzi and 

Miller, 2014) 

 

Generic 

concrete 

- Wavelet transform 

- Canny edge detector 

- Statistical feature extraction 

- Naïve Bayes 

- Decision trees 

- K-nearest neighbors 

(Wu, Liu and 

He, 2015) 

 

Sewer pipes - Wavelet transform 

- Contourlet transform 

- Maximum response filter 

bank 

- Decision trees 

(Gibert, Patel 

and Chellappa, 

2015) 

Railways Convolutional Neural Network 

(Schmugge et al., 

2015) 

Power Plants - Morphological operations 

- Linelet-based segmentation 

(Naïve Bayes) 

- Neural network 

(Santur, 

Karaköse and 

Akın, 2016) 

Railways - Principal component analysis 

- Singular value decomposition 

- Histogram mean 

- Decision trees 

(Zhang et al., 

2016) 

Roads Convolutional Neural Network 

(Ersoz, Pekcan 

and Teke, 2017) 

Pavements - Threshold 

- Median filtering 

- Morphological operations 

- Support vector machine 

(Li et al., 2017) Bridges - Region-based active contour 

- Statistical feature extraction 

- Support vector machine 

(Gopalakrishnan 

et al., 2017) 

Pavements Convolutional Neural Network 

(Liu et al., 2017) Buildings Convolutional Neural Network 

(Cha, Choi and 

Büyüköztürk, 

2017) 

Generic 

concrete 

Convolutional Neural Network 

(Eisenbach, 

Stricker and 

Debes, 2017) 

Roads Convolutional Neural Network 

(Wang et al., 

2017) 

Pavements Convolutional Neural Network 

(Pauly et al., 

2017) 

Pavements Convolutional Neural Network 

(Küçüksubaşı, 

2017) 

Buildings Convolutional Neural Network 
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The aim of the list is not to present a corpus of machine learning applications but to 

provide an insight on how broad the possible combinations of methods are. As the 

scope of this study is focused on machine learning algorithms for crack detection, the 

studies mentioned in Table 2 are categorized with respect to the machine learning 

methods employed and exemplary studies are briefly discussed. The image 

segmentation and feature extraction methods are discussed in relation to the machine 

learning methods which they are utilized in conjunction with. Case-specific machine 

learning applications and hybrid methods are discarded for categorization and such 

methods are grouped under the parenting approach. The only exception among the 

specialized methods is convolutional neural networks as CNN combines image 

segmentation and feature extraction steps in itself; hence operated differently from 

neural networks.  

K-Nearest Neighbors(Cover and Hart, 1967): As one the simplest methods in machine 

learning, K-NN frameworks are trained with only feeding labeled input data. When an 

unlabeled datum is classified with respect to the training data, neighboring k data 

points, which is a user-determined number, are located and the majority of the data 

points determines the class of the unlabeled test data.  

 

 

Figure 6. k-Nearest neighbor classification (drawn by author) 

 

The studies utilizing the k-NN method for crack classification generally used for 

benchmarking and comparative analysis of the performance of studies proposal rather 

than employing k-NN as the primary approach. 
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Sinha et al. (2006) used the neuro-fuzzy network, which is essentially neural network, 

for classification of buried pipe defect. For comparative analysis of proposed method, 

the k-NN method is used. For feature extraction, study utilized statistical feature 

extraction methods and determined a series of features to calculate from segmented 

image such as area of regions, number of objects, minor and major axis lengths. They 

proposed a neuro-fuzzy network as a modified version of artificial neural network 

operated in conjunction with a neuro-fuzzy classifier and projection neural network. 

In their comparative analysis for classification accuracy of k-NN, fuzzy k-NN and 

neural network variations, k-NN scored %81 accuracy for crack/hole classification 

while the maximum accuracy obtained with other methods is %94.1. (Sinha and 

Fieguth, 2006) 

Similarly, Zhang, et al. (2014) applied k-NN, support vector machine and two neural 

network based methods as radial basis function neural network and extreme learning 

machine for classification of cracks in subway tunnels. The study utilized several 

methods subsequently such as average smoothing, morphological operations such as 

black top hat transformation, applying threshold for image segmentation and used 

statistical methods for feature extraction based on standard deviation from shape 

distance histogram.  Even though test accuracies of utilized classifiers are similar, 

extreme learning machine scored highest with %91,6 followed by support vector 

machine, radial basis function neural network and k-NN classifiers. K-NN scored 

%88,7 for this experiment (Zhang et al., 2014). 

Naïve Bayes: Naïve Bayes algorithm is operated similarly to k-NN algorithm and 

checks for the vicinity of new data for neighboring training data. However, Naïve 

Bayes algorithm also considers a priori probability depending on the previous 

observations. Class prediction is made by taking the maximum probability with respect 

to the number of data points within the predetermined vicinity and its multiplication 

with prior probability.  

Lattanzi et al.  (2014) focused on the performance of image segmentation and feature 

extraction steps. They used k-means approach which constructs clusters with respect 

to the mean value of clusters and compared with Canny edge detector and Haar wavelet 
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transformation. The segmentation results are tested with Naive Bayes, decision trees, 

k-NN and the overall classification performance is inspected with Bayesian networks, 

decision trees, neural networks and k-NN. Naïve Bayes classifier results in conjunction 

with Canny edge operator (Canny, 1986) performed better than other classifier – 

segmentation couples for image variance test. On the other hand, for the segmentation 

effectiveness, Naïve Bayes results are lower than decision tree and k-NN scores 

(Lattanzi and Miller, 2014). 

Schumugge et al. (2015) utilized a kernel based filtering for segmentation named as 

linelets. After applying line filter, the line segments are joined by training a Naïve 

Bayes classifier to check the line segments within the vicinity of a threshold to obtain 

continuity. Morphological operations are applied to the image in parallel for 

comparison of two methods. Both segmentation results are tested with neural networks 

and anomaly classifiers. It is reported that linelet segmentation, which utilizes Naïve 

Bayes classifier, performed %38 better than morphology based segmentation 

(Schmugge et al., 2015). Study of Schumugge et al. is significant as the study aims to 

conduct image segmentation with machine learning with the utilization of filters and 

Naïve Bayes classifiers.  

Support Vector Machine: Support vector machines are proposed by Vapnik and Lerner 

in 1963(Vapnik and Lerner, 1963). The main idea behind the support vector machine 

is to classify data by constructing hyperplanes dividing the classes. For this purpose, 

the distance of data to hyperplane is used as a measure to be maximized.  

A modified version of SVM’s is kernel SVM (Boser, Guyon and Vapnik, 1992), which 

operates as the same way as linear SVM’s the data is processed with a kernel function 

to be able to handle nonlinear classification.  It should be noted that SVM operates in 

feature space and requires feature extraction to process images.  

Liu et al. preprocessed the image with two thresholds method which one threshold is 

determined with Discriminate Analysis Method and second threshold is applied with 

respect to the calculated intensity gradient vector. In addition, a balancing operation is 

conducted with respect to the gravity centers of sub-images. After extracting the 

features, support vector machine is used for the classification (Liu et al., 2002). 
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Figure 7. Support Vector Machine (drawn by author) 

 

Yang et al. (2008) used wavelet transformation and co-occurrence matrix for image 

segmentation and feature extraction steps. The extracted features are trained with 

support vector machine and two neural network based classifiers as back-propagation 

neural network and radial basis network. Support vector machine with radial kernel is 

observed to perform better than the backpropagating neural network, radial basis 

network and support vector machine with polynomial kernel (Yang and Su, 2008).  

Ersöz et al. (2017) are focused on crack detection from images captured by 

autonomous aerial vehicles. Image segmentation is conducted manually by setting 

threshold for each training image and geometric properties of image regions are 

calculated to extract features. The features are then used for classification by means of 

SVM (Ersoz, Pekcan and Teke, 2017).  Even though reported accuracy is 97%, manual 

threshold approach for image segmentation introduces a bias towards the dataset. On 

the other hand, the studies mentioned above proves the performance of SVM if the 

features are determined carefully.  

Decision Trees: Decision tree classifiers are operated to construct a tree-like structure 

having the most influential feature as the main node and other features are represented 

as branches of the trees to conclude with resulting classes. The entropy of the system 

is checked and the hierarchy of the features are constructed to minimize the entropy. 

Decision trees are mainly decision support algorithms.  
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Figure 8. Decision Tree (Alpaydin, 2010) 

 

Wu et al. (2015) use contourlet transformation which is a wavelet transformation 

technique after transferring input image to grayscale image. After contourlet 

transformation, the image is divided into high-pass image and low pass image to be 

processed with directional filters. By this way, it is aimed to obtain smoother edge 

detection. The preprocessed images are used for feature extraction by means of co-

occurrence matrix and Tamura features and extracted features are classified with 

several ensemble methods as AdaBoost, Random Forest, Rotation Forest and 

RotBoost which are all based on decision tree idea. The mentioned ensemble methods 

are operated to boost the performance of a classifier by means of supporting with 

several other classifiers. The differentiation between methods are caused by the 

construction of decision trees and have the results are brought together. The results of 

ensemble methods are compared with neural network based methods (multilayer 

perceptron, radial basis function neural network) and support vector machine. The best 

result is obtained with RotBoost method which is trained with statistical feature vectors 

with %89,96 accuracy (Wu, Liu and He, 2015). 

Santur et al.  (2016) also used Random Forest method which is an ensemble method 

based on decision trees. Even though the study is focusing on railways, image 

classification of visual data to detect defects is similar to crack detection task in 

buildings. Several methods are used for dimensionality reduction such as principal 

component analysis, kernel principal component analysis, singular value 
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decomposition and histogram matching separately to observe the influence of feature 

extraction step on the accuracy. The resulting features are used for training random 

forest algorithm.  As a result the combination of principal component analysis and 

histogram matching yields 85% accuracy (Santur, Karaköse and Akın, 2016).  

Neural Networks: Among other classifiers, neural networks are relatively the most 

complex method. Neural networks are multilayered structures which each layer 

contains several nodes. At each node, a simple linear function is operated. Neural 

networks learn from training data by adjusting the weight/influence of the functions 

taking place in nodes and conducts classification. Misclassified samples are used to 

calculate the error and propagated back to revise the influence of the nodes. Each node 

at the layer is connected to the nodes at the following layer. Hence a fully connected 

structure is established to construct a relation between each feature.  

Kabir et al. (2008) used neural networks for classification of damages in bridge 

infrastructures. For image segmentation and feature extraction, wavelet transformation 

and texture analysis are conducted respectively and extracted features are used for 

training artificial neural network. They compared the accuracy results with respect to 

the input type, i.e. grayscale, color and infrared images and obtained between %70.6 

to %84.1 accuracy for three different datasets (Kabir, Rivard and Ballivy, 2008).  
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Figure 9. Neural Network Structure (drawn by author) 
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Similarly Moon et al. (2011) used series of preprocessing methods such as median 

subtraction, Gaussian low pass filter, threshold for segmentation and morphological 

operations for feature extraction. The resulting features are used for training artificial 

neural network. The proposed workflow achieved %90.25 accuracy as an average of 

two test cases (Moon and Kim, 2011).  

The studies present above embrace multi-step process for conduction of crack 

classification with respect to visual data. As the training data depending on the case 

studies, selected methods and determined parameters vary, it is not possible to draw a 

conclusion regarding which method is more suitable for which step. As a controlled 

study on the comparison of classifiers, Enterazi-Maleki et al.  (2009) constructed 29 

different datasets with increasing number continuous and discrete variables and 

investigated the performance of well-known machine learning classifiers (Entezari-

Maleki, Rezaei and Minaei-Bidgoli, 2009). The samples belonging to variables 

(features) are randomly generated to avoid any bias caused by the data selection. It is 

observed for datasets with high number of samples, decision trees, k-NN and SVM 

methods are highly efficient. While Naïve Bayes classifier performs worse, neural 

networks are not included in the comparison.   

In a similar study, Huang et al. (2003) compare decision trees, SVM and Naïve Bayes 

classifiers with respect to accuracy and area under curve metrics. The study reported 

SVM, Naïve Bayes, and C4.4 (decision tree method) scores are comparable while 

C4.5, which is another method for constructing decision trees, is outperformed by 

other classifiers  (Huang, Lu and Ling, 2003). The dataset utilized in this study is 

randomly generated by different from the dataset used in the study of Enterazi-Maleki 

et al. and reflects real-world problems.   

Even though such studies provide an insight about the optimal conditions which the 

classifiers perform, case dependent variables such as selection of features, previous 

operations enabling reducing dimensionality are dominant on the resulting 

performance of the overall framework. A comprehensive study on crack detection 

which performs a grid search to determine which factors are more dominant and under 
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which conditions the machine learning algorithms perform better is not present to the 

best of authors knowledge.  

Convolutional Neural Networks: Convolutional neural networks are operated 

differently from other machine learning classifiers as the framework contains feature 

extraction step in itself and does not require image segmentation as a preprocessing 

step. CNN is based on neural network architecture. Yet, while neural networks are 

bounded with high computational cost due to the fully connected structure of neural 

networks, CNN’s don’t have to be fully connected and contains multiple layers in its 

architecture. While leading layers operate for extracting features, final layers of the 

CNN architecture is composed just like neural networks and operates as a classifier.  

CNN’s can be evaluated as a kernel-based neural network architecture as at each layer 

of the network, the image is convolved with a series of filters. The output of the 

convolutions is treated like the nodes of the basic neural networks and their weights 

are adjusted similarly.  There are two approaches for working with CNN’s as training 

a network from scratch, which refers to the determination of the number of layers and 

weights are randomly initialized and transfer learning which refers to the utilization of 

a pretrained network with respect to another dataset which may be completely different 

from the task in question.  

 

 

Figure 10. Convolutional Neural Network Architecture (Yakopcic, Alom and Taha, 

2016) 
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Studies of Zhang et al. (2016), Eisenbach et al. (2017), Pauly et al. (2017) and Cha et. 

al. (2017) can be given as examples of studies which constructs and trains CNN’s from 

scratch. The networks constructed in these studies have relatively limited number of 

layers with respect to the network configurations which utilizes pretrained networks. 

Zhang et al.  (2016) constructed a CNN with 6 convolution layers and trained the 

network with 600K and tested with 200K road images while Eisenbach et al.  (2017) 

utilized a network with 11 convolution layers and used datasets with sizes of 4,9M for 

training and 1,2M for testing. In the study of Eisenbach et al., (2017) the network 

proposed by Zhang et al. (2016) is compared with their result and 11 layered CNN is 

reported to perform slightly better than the network with 6 convolution layers. Pauly 

et al. (2017) also investigates the relation between the number of convolution layers 

and the networks’ performance by comparing accuracies of 6 layered and 7 layered 

networks. CNN containing 7 convolution layers is reported to achieve %91,3 accuracy 

performing better than the network containing 6 convolution layers (Pauly et al., 

2017).  

The study conducted by Cha, et al. (2017) used a framework with 4 convolutional 

layers for concrete crack detection in building cases. The study investigates the 

relationship between the influence of training dataset size and the network is trained 

with several dataset sizes varying from 2K to 40K images. It is advised to utilize more 

than 10K images for training based on validation scores (Cha, Choi and Büyüköztürk, 

2017).  

Gopalakrishnan et al. (2017) focused on transfer learning approach by utilizing 

pretrained networks and fine tuning for crack detection task. VGG-16, a highly 

acknowledged pretrained CNN, is utilized for distress detection in pavements. The 

network is trained with 760 images and tested with 212 images in total. For 

comparative analysis, classifier layers of CNN are replaced with random forest, 

extremely randomized trees, SVM and logistic regression classifiers. The study 

reported %90 accuracy for the original version of the pretrained network as the highest 

scoring option (Gopalakrishnan et al., 2017).  
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Similarly, Küçüksubaşı (2017) focused on crack classification by means of transfer 

learning for the path planning of an autonomous UAV building inspection system. 

Author utilized Inception v3 network which is fine-tuned with 1040 image samples 

and tested on a dataset containing 64K images. The reported accuracy of Inception v3 

network is %97 which is a considerable achievement proving the applicability of 

pretrained networks on crack classification task (Küçüksubaşı, 2017). The size of 

training dataset required for achieving high accuracies for pretrained networks is 

remarkably less than the required size for training from scratch.   

Even though the number of studies utilizing CNN is gaining momentum, most of the 

studies focus on impact of one or two variables governing the performance of the 

algorithms. A comprehensive study focusing on multi-variables such as the influence 

of dataset size, the number of layers and the number of learnable parameters in a 

holistic approach, is not present to the best of authors knowledge.  

Moreover, the relationship between data and the performance of the frameworks 

employed is investigated with respect to the quantity of the data (i.e. how many images 

are employed) rather than the quality (i.e. at which extent does data represent the 

generic case). In that sense, the selection of data remains as an elusive act often 

bounded with the expertise and/or intuition of the user who provides data to the 

framework.  

This thesis focuses on the improvement of the performance of CNN algorithms not 

only in terms of finding optimal values for the variables and parameters of CNN 

algorithms but also by means of inspecting the influence of data selection to achieve a 

holistic understanding of visual data processing with DL algorithms.  
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CHAPTER 3 

 

 

THEORIES AND POSTULATE 

 

 

 

“In deep learning, the algorithms we use now are versions of the 

algorithms we were developing in the 1980s, 1990s. People were very 

optimistic about them, but it turns out they didn’t work too well. Now 

we know the reason is they didn’t work too well is that we didn’t have 

powerful enough computers, we didn’t have enough data sets to train 

them.” 

Geoffrey Hinton (2016) 

 

In this thesis, a new term “data design” is introduced to describe the data handling 

process from a broad perspective starting from the redefinition of the task as a problem 

of learning from data, to the evaluation of the result for the given task. In that sense, 

data design is not solely determination/selection of data, but also includes 

reformulation of the problem, evaluation of frameworks and results, and utilizing or 

devising appropiate metrics for the task. Despite the crucial role of data design in the 

success of traditional machine learning (ML) and deep learning (DL) approaches, it is 

not considered as an overall process explicitly and it is mostly present implicitly in the 

algorithms without any further assessment. However, holistic understanding of the 

overall process is crucial for the success of the frameworks. In that sense, data design 

necessitates expertise, experience and literacy in relation with the given task and DL.  
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Development of an apt DL framework for any task requires holistic understanding of 

not only available data and technology, but also the entire process including 

redefinition of the problem accordingly. Concordantly, data design, like all design 

problems, is context-sensitive and it is not possible to provide generic strategies fitting 

for all kinds of tasks. Hence, establishing the link between task and the framework is 

essential in DL implementations.  

Any DL implementations can be abstracted as a three phase process, namely; pre DL 

phase, which the user selects, preprocesses, and provides the data; DL phase, which 

the framework is trained with respect to the data provided, and post DL phase which 

the results and thus the performance of the framework is evaluated. The conformity 

between the decisions taken at each phase and the task plays a determining role in the 

performance of the framework. Three phases, decisions and how are they interrelated 

in these phases are shown in Figure 11. 
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Figure 11.Abstraction of deep learning phases and decision taken at each phase 

(drawn by author) 
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Data design as proposed in this study, embraces all of the three phases, yet this study 

puts emphasis on pre and post DL phases which the adaptation of DL algorithms for a 

specific task takes place. In pre and post DL phases user actively makes decisions on 

how to reflect task as a DL problem. Although constructing DL structure and 

determining the related parameters are dependent on the data selected, DL phase is 

more context free with respect to pre and post DL phases. In this regard, firstly pre and 

post deep learning phases will be examined to inspect the case dependency of the 

actions and decisions in the scope of data design. Then, convolutional neural networks 

are investigated as an exemplary framework of DL applications.  

3.1 Pre and Post Deep Learning Phases 

Deep learning algorithms together with possibility of using raw data change 

preprocessing of training data. In this context, the major difference between traditional 

ML algorithms and DL algorithms relies on the necessity of feature extraction prior to 

training.  In traditional ML algorithms, it is possible to directly reflect the features 

which are believed to be relevant to the task with traditional ML algorithms. 

Contrarily, DL implementations operate with raw data and determines the relevant 

features within the algorithm. Hence, the users are obliged to formulate the task not by 

determining the features but by means of designating the relevant data. In the course 

of reformulation of the task and designing the data, subjective assessment of relevant 

data is necessitated, regardless of the complexity of the task. Reformulation of the 

problem requires revisiting the question of which data represents the case rather than 

which properties (features) of the case contributes to the solution. In that sense, 

accustomed way of problem analysis in terms of differentiating constituents of 

problem becomes obsolete.  

On the other hand, elimination of feature extraction process emerges as a liberty for 

tasks requiring subjective interpretation and creativity such as arts. In such cases, users 

are able to customize frameworks regarding their personal taste by designating data 

solely with respect to their preferences. The capability of personalization for tasks 

involving subjectivity makes data design and working with raw data appealing. 
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Regardless of the complexity and subjectivity involved in the reformulation of the 

problem, the role of data design is crucial; prior experiences, knowledge on the subject 

even intuition determines the performance of the framework.  

One of the most important tasks in pre DL phase is the determination of the framework 

and establishing the compatibility of data accordingly. There are several DL 

algorithms developed to respond various needs. For instance, recurrent neural 

networks are more suitable for task comprising time data, whereas convolutional 

neural networks are more appropriate for tasks requiring conservation of spatial 

relations. While data representing the task impose selection of a compatible algorithm, 

computational limitations of the hardware and technical limitations of the selected 

algorithm constraints the data input. Hence, the selected data are required to be 

preprocessed in order to be operable with the DL framework. It should be noted that 

the preprocessing operation referred herein is not a feature extraction operation but 

instead transforming the data without altering the information embodied. Thus, the 

preprocessing operation can be regarded as an act of craftsmanship requiring 

comprehension of framework limitations and handling the data accordingly without 

soiling. In this context, determining the relevant data for the solution of the task is not 

only a problem of representation but also a matter of usability.  Hence, pre DL phase 

is composed of series of actions aiming translation of a specific task to machine. These 

actions are intrinsically interacting actions and are required to be handled integrally.   

Reformulation of the problem and data provided to DL framework correspondingly 

have direct effect on the results of the given task by implicitly defining the evaluation. 

Case specific nature of implementations necessitate case specific evaluations. 

Subjectivity involved in the pre DL phase is reflected to the post DL phase as a matter 

of determining case specific evaluation methods. In this respect, defining the desired 

outcome and devising relevant metrics for measuring the performance of the DL 

framework is an inevitable task.  

As discussed in Chapter 2, evaluating the results for straightforward problems, which 

the subjective interpretation has minimal contribution in data selection and problem 

definition, is also a straightforward task. On the other hand, as the subjectivity 
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increases in pre DL phase, the evaluation of the results is bounded with the personal 

preferences of the user providing the data. For example, while it is possible to assess 

the success of DL implementation for face detection task with accuracy based metrics, 

the success of a music composing DL implementation can ideally be evaluated by the 

user who selects the data for training the DL algorithm.  

Within the scope of Chapter 3, DL phase is scrutinized through convolutional neural 

network as an example of deep learning algorithms. By this way, it is aimed to 

investigate the decisions specified in Figure 11 and reveal how the framework is 

effected by pre and post DL phases and influence the results.  

3.2 Convolutional Neural Network as an Exemplary Deep Learning Method 

Convolutional neural network (CNN) is a widely used method for the analysis of visual 

data in machine learning. Although the majority of the applications are based on visual 

data, CNN’s have proven themselves in processing volumetric data, in other words 

spatial data in three dimensional space. For this purpose, CNN’s have the most 

potential for application to problems in architecture and therefore selected as the 

framework to be employed as an exemplary deep learning algorithm for 

implementations in architecture.  

CNN studies are hugely inspired by visual cognition studies in 1950’s. The studies of 

Hubel and Wiesel (1959) showed that receptive fields of neurons in visual cortex are 

sensitive to some specific visual stimuli. It is observed that different parts of the visual 

cortex of cats are stimulated in the presence of varying illumination patterns. It is 

concluded that the visual cortex is composed of columnar structures which are 

sensitive not to every perceived dot in the visual field but to various shapes such as 

edges at different orientations (Hubel and Wiesel, 1959). This columnar architecture 

works together to perceive objects. This idea forms the basis of CNN's.  

As CNN is a method of machine learning, the basic procedure of implementation is 

teaching the system numerous data (training) and then make predictions on new data 

with respect to the learned patterns among training data which is used for teaching the 
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system (testing). In the case of CNN’s, the data is either images or any data represented 

in image form, i.e. 3D matrix with height, width, and channels.  

CNN’s are based on artificial neural network architecture (ANN) and employs the 

same approach of ANN’s while training and making predictions. It is essential to grasp 

the working principles of ANN’s to construct a fully integrated understanding of 

CNN’s.  

The artificial neural network is a machine learning classifier which user feeds data to 

the system. The system is trained with the provided data to capture patterns and 

differentiating features to finally determine different classes of outputs. the 

terminology and methods explained in this section are limited to the terminology and 

methods utilized in CNN applications even though ANN’s have larger application 

area. 

ANN’s are constructed with a biological analogy. With reference to neurons firing at 

different rates in the presence of diverse events, so-called neurons in ANN’s have also 

different values with different input data. These neurons transmit the values to form 

neural pathways to obtain desired output values.  

A simple representation of a typical ANN system is shown below:  
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Figure 12. Simple representation of a typical ANN (drawn by author) 
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 As can be seen from Figure 12,  there are three main distinct regions as an input layer, 

hidden layer(s) and an output layer. Hidden layer(s) is the region where nodes (neurons 

or perceptron) resides and they have simple mathematical functions to map input data 

to output data.  

For each of the nodes, the function is represented as:  

 y = wx + b (1) 

Where w is the weight and b is the bias of the input. The bias term in this function does 

not define the bias of the overall system but instead defines a shift in solution space 

while weight parameter defines the slope of a linear function.  

In the presence of multiple hidden layers, the nodes of following layers take inputs 

from the layer before them and are sequentially operated. The function of the neural 

network in total can be defined as: 

 𝑔 =  𝑓𝐿 ∘ … ∘ 𝑓1   (2) 

where each subscript represents a layer and f represents the function of a node. As can 

be seen, the general function of the neural network is a nested function of each node 

and have more representational power even though the constituents of the general 

function are linear functions. The output of a node is a function of the input 

connections’ weight, bias of the node followed by an activation function which maps 

the output between a definite range. Most of the activation functions map output value 

to 0-1 range. The calculation of the output of a single node is illustrate as below:  

 

 

Figure 13. ANN node output calculation (Ghanghau, 2017) 
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As a result, the output of a node can be generalized with the equation: 

 𝑥𝑜𝑢𝑡 = 𝑓(∑ 𝑥𝑖𝑤𝑖𝑖 + 𝑏) (3) 

Where f(x) is the activation function, b is the bias of the node, wi is the weight of the 

connection, xi is the input.  

Once the outputs of the network are calculated with respect to the input value, weights 

of the connections and bias parameters for each node; the first phase of learning is 

completed for one iteration. This stage is named as forward pass where the input data 

is passed forward through the network.  

In most of the cases, first iteration will score poorly with high rates of mismatch 

between output and desired classes. As the ultimate goal is to train the network to 

obtain desired outputs, the weight and bias parameters must be optimized to correctly 

map input data to desired output. For this purpose, a method named as backpropagation 

is employed. Backpropagation algorithm consists four stages for the optimization of 

weight and bias parameters of nodes and can be characterized with (1) the forward 

pass, (2) calculation of loss which is the calculation of discrepancy between the output 

and desired outcome, (3) backpropagation which traces the error backwards step by 

step to determine the contribution of bias and weight parameters to the error and (4) 

parameter update to minimize loss. This process is iterated until system provides 

desired outcomes, in other terms when the loss is minimized.   
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Figure 14. Backpropagation algorithm (drawn by author) 

 

3.2.1 Loss (Error) Function and Gradient Descend 

The loss function determines how different the output data and desired output are. The 

most generic loss function, which is also known as mean squared error can be defined 

as follows: 

 𝐶(𝑤, 𝑏) ≡
1

2𝑛
∑ ||𝑦(𝑥) − 𝑎||2

𝑥   (4) 

 

where C is the loss (cost or objective) function n is the number of inputs, y(x) is the 

calculated output with respect to input x and a is the expected output. Both C(w,b) and 

y(x) are dependent on weight and bias parameters.. The aim of the neural network is 

to incrementally decrease the loss value and converge to minimum. 

After one forward pass, the loss function is calculated to be minimized by means of 

gradient descent algorithm. The aim of the gradient descent algorithm is to find global 

minimum for loss function and for this purpose gradient vector of loss function is 

calculated with respect to weight and bias variables included in the network. 2-

dimensional visualization of gradient descent algorithm is shown in Figure 15. 
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Figure 15. Visualization of gradient descent algorithm with respect to two features. 

(drawn by author) 

 

As there are multi-layers and multi-nodes in the network, the problem is actually a 

multidimensional problem. The gradient vector of loss function can be generalized as: 

 ∇𝐶 ≡ (
𝜕𝐶

𝜕𝑣1
, … ,

𝜕𝐶

𝜕𝑣𝑚
)𝑇 (5) 

as C is the loss function and v represents the weight and bias parameters. The slope of 

the gradient vector is calculated by taking derivative of loss function with respect to 

the concerned parameter. Once the slope of the gradient vector is determined, it is 

possible to propagate in that direction to ensure loss function takes a smaller value in 

the next iteration. This procedure is called backward pass and is the determination of 

the contribution of the weight of layers to the loss function. After this step, the 

parameters are updated with respect to gradient vector.  

3.2.2 Parameter Update Methods 

There are several update methods in the literature. The fundamentals of parameter 

updating are shared to provide an understanding regarding the process.  
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The simplest form of update function which is also known as the vanilla update is as 

follows: 

 𝑣 → 𝑣′ = 𝑣 −  𝜂∇𝜃𝐶(𝜃) (6) 

where η is learning rate, which is a user-defined parameter, can be defined as the step 

size at each iteration for updating parameter v. Vanilla update can be perceived as 

taking a step with fixed length towards the direction which the loss decreases. With 

high learning rates, there is a risk of making big steps to miss global minimum and 

with low learning rates reaching the minimum can take high computational time.  

 

 

Figure 16. High convergence and low convergence rates for parameter update (drawn 

by author) 

 

As can be seen from Figure 16, when step size/learning rate is too high, it is possible 

to oscillate between values and not being able to reach minimum loss value. On the 

other hand, when the step size/learning rate is too small, it requires many iterations to 

converge to minima resulting in increased computation time. Vanilla update disregards 

the direction of previous updates which poses a problem when training samples have 

considerable diversity which results in slow convergence rates. Hence, the 

performance of networks employing vanilla update is highly dependent on the choice 

of user and wise-choice for learning rate requires expertise in the implementation of 

such models. In order to overcome the shortcomings of vanilla update method, more 

adaptive update rules are developed. The simplest version of adaptive update rule is 

momentum update.  
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Momentum update utilizes momentum parameter for taking the history of previous 

updates into account. Hence, consistency between iterations is established. The generic 

formula of parameter update with momentum is as follows:  

 𝑣𝑡+1 = 𝑣𝑡 − 𝜇𝑣𝑡−1 − 𝜂∇𝑣𝐶(𝑣)  (7) 

where µ is momentum and vt-1 is the previous parameter update.  

Several more momentum update based parameter update methods exist such as 

Nesterov Momentum, or Nesterov Accelerated Gradient(NAG)(Nesterov, 1983). Even 

though momentum update based methods provide responsiveness at different levels, 

the learning rate remains fixed among parameters. When a vast amount of parameters 

is considered, adaptive learning rates are desired to have more diversity among layers 

and parameters to converge generic results.  

Methods such as Adagrad (Duchi, Hazan and Singer, 2011), Adadelta (Zeiler, 2012), 

Adam (Kingma and Ba, 2014), Adamax (Kingma and Ba, 2014), and Nadam (Dozat, 

2016) aims to provide more responsiveness throughout to training and among different 

parameters. The main advantage of methods having adaptive learning rates is that there 

is no need for manually tuning the learning rate with respect to the problem. Instead, 

the update rule calculates what the learning rate should be for each parameter and step.  

It should be noted that the choice of method for parameter update is highly dependent 

on the problem to be solved, the size and variance of datasets. In addition, utilization 

of vanilla update with wisely guessed variables may provide better results than more 

advanced methods with poorly selected variables. Nonetheless, in terms of 

computational time, adaptive methods are proven to be faster than non-adaptive 

methods (Ruder, 2016).  

3.2.3 Overfitting Problem 

Like all statistical models, the ANN’s have a risk of overfitting. Overfitting can be 

described as fitting undesirably well to a particular set of data and possibly failing to 

obtain a generic function for new data to be predicted. In case of neural network 

training, if the network learns all features specific to the data used during the training, 



 

 

45 

the solution may not be accurate for new data to be inspected. In Figure 17, 

underfitting, optimum and overfitting function estimations are illustrated.  

 

 

Figure 17. Illustration of underfitting, optimum and overfitting function estimations 

(drawn by author) 

 

Obviously, the error rates in overfitting situation are smaller than the optimum 

situation for training data. However, when the data distribution is inspected, it is more 

likely that new data will not reside on the function estimate in overfitting condition 

and the optimum case will have lower rates of error and more representational power 

in the presence of new data. In order to overcome the risk of overfitting, there are 

several approaches utilized both while preparing the data and constructing the network. 

One of the most commonly used approaches chosen in the process of preparing 

training data is to divide the dataset into partitions such that major part of the data is 

used for training while the rest or a minor part is used for calculation of loss function. 

This minor part is called validation set. Another minor part of the dataset can be 

separated optionally or new dataset representing the real case can be constructed for 

cross-validation. The graphs which plot accuracy versus iteration or epoch (in other 

terms training cycles, which all training data are inspected by the network for once), 

shows whether overfitting occurs or not during the training process. In Figure 18, an 

exemplary graph showing accuracy scores over number of epochs for overfitting 

concerns. Ideally, validation accuracy follows training accuracy at very similar rates.  
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Figure 18. Accuracy vs Epoch graph showing overfitting (drawn by author) 

 

Decision made at the pre DL phase regarding the selection of the framework and the 

data are directly reflected in accuracy vs epoch or error vs epoch graphics. If the 

complexity of the data and the framework are not incompatible, the corresponding 

graphics may reveal underfitting or overfitting. In such cases, data and framework 

preferences must be revisited to establish compatibility.  

3.2.4 Convolutional Neural Networks (CNN) Architecture 

CNN's operate with the same principle with ANNs in terms of having hidden layers 

which weight and bias factors are assigned and optimized throughout the training, 

having stages of forward pass, calculation of loss, backward pass and parameter 

update. In contrast, CNN layers do not need to be fully connected and have specialized 

hidden layers for specific tasks. In addition, in case of CNN’s the inputs are 

represented as 3D arrays or tensors having height, width and feature channels (depth) 

while ANN’s are commonly utilized with limited number of inputs in feature space. 

CNN applications are mainly focused on but not limited to image-based analysis and 

processing.  
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A typical CNN consists 4 major layer types as convolution layer, ReLU (Rectified 

Linear Unit) layer, pooling layer and fully-connected layer and these layers are called 

building blocks of CNN's. A simple representation of CNN workflow is presented 

below.   

 

 

Figure 19. A simple representation of CNN workflow (Lecun et al., 1998) 

 

As in ANN, CNN’s may also have multiple layers of each type of building blocks and 

generally have a layer pattern as follows:  

𝐼𝑁𝑃𝑈𝑇 → [[𝐶𝑂𝑁𝑉 → 𝑅𝐸𝐿𝑈] ∗ 𝑁 → 𝑃𝑂𝑂𝐿] ∗ 𝑀 → [𝐹𝐶 → 𝑅𝐸𝐿𝑈] ∗ 𝐾 → 𝐹𝐶  

(Karpathy, 2018) 

Where N, M and K denotes number of repetitions of the building block groups which 

they are multiplied with. N is bigger than 0 and usually is also bigger than 3; M is 

bigger or equal to 0 and K is bigger than 0 and usually is also bigger than 3.  

It should be noted that the spatial dimensions of data gradually decrease due to 

convolution and pooling operations finally resulting in a probability for each possible 

prediction classes. As the size reduction is strictly bounded with the mathematics 

behind these operations, input and output sizes determine the number of operations 

and parameters governing these operations.  

Convolution: The very first and the most important operation which forms the basis 

of CNN’s, is convolution operation. In CNN’s, images are represented as numerical 

values and for each pixel in the image, corresponding row and column cell has a value 
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denoting its color or brightness. The matrices representing the images can be either 2D 

or may have more dimensions with respect to the color mode.  

Convolution operation is the multiplication of image pixel data with a convolution 

operator by taking dot product. Convolution operators, which are also known as 

kernels, filters or feature detectors, are also matrices having smaller dimensions and 

are multiplied by iterating from left to right and top to bottom. 

 

 

Figure 20. Visualization of convolution operation on a7x7 input with3x3 kernel 

(drawn by author) 

 

Single convolution operations are commonly used in computer vision with the 

utilization of several convolution operators for different purposes such as edge 

detection, blurring, sharpening etc. In CNN's, multiple convolution operators are 

initialized and given weight and bias values resulting in 3D or 4D tensors with 

dimensions of width and height of the image (W, H), optionally color channel of the 

image (C) and the number of filters (D-depth) used in convolution operation. These 

operations are named as feature extraction. In CNN applications multiple convolution 

operators are used in a single layer to obtain different features of the images. For 

example, the system workflow shown in Figure 19 consists 3 different convolution 

operations in the first layer. The output of the convolution operation is called Feature 

Map, Convolved Feature or Activation Map. Convolution operation has two major 
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hyperparameters4 apart from spatial parameters as stride and zero-padding. Stride is 

the number of pixels to shift after multiplication of filter with the corresponding 

window (receptive field) and zero-padding is the number of pixels to pad the image in 

order to include borders of the image or to acquire an output with desired dimensions 

for next operation.  

As data are propagated through the network, extracted features of previous input are 

fed to the next convolution operation. As a result, network initially is able to detect 

edges and blobs, followed by primitive shapes and continue with more so-called 

abstract features representing spatial relations between object components and details 

in the image. For instance, for face detection task, more abstract features correspond 

to nose and eyes and how they come together to form a face.  

One of the important implementation detail is named as parameter sharing which 

dramatically reduces the number of parameters to compute. In convolutional layers, 

the weight is shared among the height and width dimension of the input. As a result, 

the number of weights is reduced by the input width and height dimension with the 

assumption of spatial locations of input share the same weight and bias parameters. 

This implementation detail enables CNN to work on big image inputs and expand the 

network in terms of the number of layers and filters without exceeding the 

computational limitations.   

Introduction of Non-Linearity:  The output of convolution operation may consist 

negative values for image brightness data caused by matrix multiplication. Rectified 

Linear Unit (ReLU) function conserves positive values while replacing zero values 

with negative pixel brightness data. Other functions serving the same purpose such as 

tanh or sigmoid functions can also be used with respect to the application. Introduction 

of non-linearity operation uses non-linear functions to represent real-world data. In 

addition, these functions also contribute to the reduction of computational time.  

 

                                                 
4 User defined parameters 
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Figure 21. ReLU, tanh(x) and Sigmoid function (drawn by author) 

 

Pooling(Subsampling): Pooling operation is used to reduce the spatial dimensions of 

the input while conserving the important information. For this purpose, maximum, 

average or sum of an area which is defined by the window value is taken. For example, 

for a 3x3 window value, 9 pixel values are taken and an output value is obtained by 

taking average, sum or maximum of these 9 values. Then next 3x3 neighborhood is 

selected by striding the window on the input image. This step is especially important 

as pooling operation reduces data size while conserving the important information; 

hence increases computational performance. Also, the network becomes invariant to 

small distortions and transformation. 

 

 

Figure 22. Exemplary max pooling operation with spatial extent of 2 and stride of 2 

(drawn by author) 

 

Fully Connected Layers: Fully connected layers are the part where the system reduces 

the output of the preceding layers to the number of classes which the system gives a 

prediction score of. Fully connected layers are the last block of layers before prediction 

so network combines all the information gathered to make an integrated prediction. 
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For this purpose, fully connected part of the CNN’s are operated as ANN as a classifier. 

Hence, the number of parameters (weights) dramatically increases with respect to 

convolutional layers.  

Treating the output | Softmax Classifier: Once the output of the last fully connected 

layer size is reduced to number of classes to predict from, either loss is calculated 

(during training) to backpropagate error and optimize weights or a classification 

function is fit (during the test) to output best matching class and class score. For 

different classification problems such as binary classification, multi-class 

classification, different loss functions are implemented. However, all of these 

functions can be simplified to the loss function defined in the previous section. For 

testing or prediction purposes utilization of softmax classifier is the most common 

application as it is differentiable and the sum of probabilities is equal to 1 which yields 

a percentage distribution among classes. Softmax function is defined as follows:  

 𝑓𝑗(𝑧) =  
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
 (8) 

Where z is the class scores and k is the number of classes. The negative logarithm of 

softmax function is taken to obtain cross entropy loss which is to be minimized in the 

course of training. Cross entropy function is shown as below: 

 𝐿𝑗 = − log
𝑒

𝑧𝑗

∑ 𝑒𝑧𝑘𝑘
 (9) 

It should be noted other classifier mentioned in Chapter 2 can be utilized instead of 

softmax classifier. However, the method of choice does not affect the CNN 

architecture.  

Apart from essential building blocks of CNN’s, there are several other blocks widely 

utilized in CNN implementations. The absence of such blocks does not prevent CNN’s 

from operating but blocks such as batch normalization or dropout layers increase the 

performance of CNN’s in many cases and contribute to avoidance of overfitting.  

Dropout layers freeze a portion of network nodes and respective input and output 

connections to these nodes. In this way, the operation effectively eliminates the 

possibility of any node or feature to dominate which have possibility to cause 
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overfitting. Batch normalization layer normalizes the input of the following layer with 

zero means. This provides standardization of data through the network enabling fast 

learning without overfitting. 

3.2.5 Utilization of CNN in Custom Problems 

It is possible to either construct the CNN architecture from scratch by fine-tuning each 

and every parameter such as the number of layers, number of convolution operations, 

determination of convolution operators. The construction of CNN architecture is often 

defined as black art and even though there are certain patterns for layer formations and 

rule of thumb advices, the best performing CNN architecture for a custom problem is 

highly dependent on the constituents of the problem i.e. size and variety of dataset, the 

nature of classification task. In addition, fine-tuning every parameter of the CNN from 

scratch requires high computational cost and time. Apart from computational 

concerns, the size and variety of the dataset also determine the performance of CNN. 

For training a network from scratch, thousands of images per class is required in order 

to avoid overfitting even if all the methods mentioned above regarding overfitting are 

employed.  

Alternatively, several CNN’s which are trained on different datasets are available for 

fine-tuning. The process of fine-tuning some or all parameters of a pretrained network 

is called “transfer learning”.  Such pretrained networks are usually trained on public 

data provided for annual challenges such as Imagenet Large Scale Visual Recognition 

Challenge (ILSVRC) provided by Imagenet (Stanford Vision Lab, 2018) which the 

dataset has 1,2 million images from 1000 classes or Pascal Visual Object Classes 

Challenge hosted by the University of Oxford5 (Oxford Robotics Institute, 2018) 

which the dataset has approximately 20000 images for training and testing from 20 

classes. As can be seen from the number of classes and number of images, provided 

datasets are trained for generic purposes and general use. The classes include both 

animate and inanimate objects.  

                                                 
5 Pascal VOC Challenge lastly took place in 2012. However, the database provided is still widely used 

for training networks. 
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However, the variety provided in such datasets does not guarantee that the pretrained 

networks trained in these datasets will perform well in custom task and is mostly 

dependent on the similarity of custom problem dataset and dataset used in pretrained 

network. If the datasets are dissimilar, and custom dataset contains enough number of 

samples (~500 images per class for transfer learning) for each class, then pretrained 

network can be fine-tuned for the custom problem. The ability to fine-tuned pretrained 

networks for custom tasks increases the applicability of CNN’s in everyday tasks 

without the requirement of supercomputers and high computational time for training. 

In addition, owing to the transfer learning researchers don’t need to struggle for 

network configuration process for utilization of CNN is custom tasks.  

Information on fundamentals of how CNN’s work shared so far is based on generic 

applications. However, the network performance is highly dependent on data design, 

i.e. size and variance of the dataset, and application case together with the 

configuration of the network utilized. As mentioned in chapter 1 and 2, CNN 

algorithms; and thus deep learning algorithms are inspected through the crack 

detection case study in order to achieve a holistic understanding not only from 

theoretical perspective but also by means of hands-on practice. In this context, the 

CNN implementations are investigated in two different tasks and scales as; crack 

classification (whether an image contains cracks or not) and crack semantic 

segmentation (whether a pixel belongs to a crack or not) in Chapter 4 and 5 

respectively.  
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CHAPTER 4 

 

 

CLASSIFICATION OF CRACK IMAGES – COMPARATIVE ANALYSIS OF 

PRETRAINED CONVOLUTIONAL NEURAL NETWORKS 

 

 

 

“With too little data, you won’t be able to make any conclusions that 

you trust. With loads of data you will find relationships that aren’t 

real…”  

Douglas Merrill 

 

Image processing is one of the driving fields of convolutional neural network (CNN) 

research even though these frameworks are also employed in several applications other 

than image processing. As described in Chapter 3, it is possible to either construct a 

network from scratch or employ a pretrained network in the course of transfer learning 

for utilization of CNN’s in custom task. Requirements of these two approaches vary 

especially in terms of quantity of data and challenges in the configuration of the 

network structure. Within the scope of Chapter 4, transfer learning approach is adopted 

due to requirement of less data for training and simplicity of the case specific 

implementation. In that sense, it is aimed to focus on data rather than CNN structure 

in the scope of data design.  

Transfer learning eases utilization of CNN’s in custom tasks with their already built 

configuration and learned parameters with respect to some generic dataset. However, 

high performance of the pretrained network on the new case is not guaranteed and is 

highly dependent on the dataset provided to the network and the complexity matching 

between the task and the network. For the sake of example, a highly acknowledged 
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pretrained network may perform poorly if sufficient number of data samples with 

adequate variance is not provided. Similarly, if the pretrained network is designed for 

complex classification tasks, network may be subjected to overfitting when utilized on 

much simpler tasks.  

Even though there are several studies on utilization of CNN’s in crack detection task, 

most of these studies are based on constructing CNN’s from scratch and networks 

utilized in these studies have limited number of layers. The studies focusing on using 

pretrained networks on crack detection task have proven the applicability of transfer 

learning for this task. Yet, a comprehensive study inspecting multiple dimensions, 

such as influence of dataset size, number of convolution layers, learnable parameters, 

of this complex task is not present. Within the scope of Chapter 4, a comprehensive 

analysis on performance of pretrained networks on crack detection and the parameters 

effecting this performance is conducted. The performances of the networks are 

inspected in four test cases with varying similarities to training dataset to evaluate the 

applicability of learned features to diverse cases.  

4.1. Parameters effecting performance of CNN’s on crack detection 

Within the scope of Chapter 4, it is aimed to reveal which properties of CNN 

architecture and how the decisions taken throughout the process effect performance. 

For this purpose, multidimensional performance analysis on pretrained networks for 

crack detection task is conducted and effects of the variables listed below are 

inspected. 

4.1.1. Dataset 

Size of training dataset and variance among the data play a crucial role in the 

performance of the network. It is known that pretrained networks require less data 

compared to the networks which are trained from scratch, as pretrained networks have 

already adjusted weights by learning from vast amount of data. For transfer learning 

applications, it is assumed that layer weights are only fine-tuned to adapt to new cases 

and fast convergence of layer weights is expected. Common practice refers to hundreds 

to thousands of training data per class (in crack classification task: crack and 
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background) is sufficient for obtaining highly accurate predictions. However, as 

pretrained networks are often trained for generic classification tasks which performs 

prediction among numerous object classes with high level features, whether the 

common practice is applicable to binary problem of crack presence or not is unknown. 

Furthermore, for subjects having low level features, risk of overfitting is imminent 

with the increasing number of training data.   

The dataset utilized in the present study is based on 550 full resolution images with 

3024x4032 pixel dimensions. The full resolution images are subdivided into 224x224 

pixel image patches in order to conform with CNN input sizes. 500 of the mentioned 

images are captured from walls and floors of several buildings in METU Ankara 

Campus from approximately 1 meter away from the surface and camera facing directly 

to the target surface. In addition, all 500 images are captured at similar times of the 

day and the year to have similar illumination conditions. However, dataset have 

variance in terms of surface finishes, e.g. exposed concrete, plastering and paint. 40K 

224x224 pixel images are extracted from the first set of images constituting 500 

images and will be named base dataset hereafter. Base dataset contains equal number 

of positive and negative images and used for training and validation of networks. The 

base dataset is publicly shared (Özgenel, 2018).  

The second set of images contains test data for three different cases and captured at 

different times of the day and year from different buildings with varying materials. 

Second dataset contains images from concrete surfaces from buildings, concrete 

surfaces from pavements and brickwork surface from buildings. Each of the cases are 

discussed in detail in correspondence with the results. 500 224x224 pixel images are 

extracted for each test case resulting in a total of 1500 images from 50 full resolution 

images.  

Training dataset: The base dataset is partitioned into three parts as training, validation 

and test datasets with 0.7, 0.15 and 0.15 ratios as convention. As a result, 28K training, 

6K validation and 6K test datasets are obtained. While conserving 6k test dataset, 

training and validation datasets are randomly reduced to 21K, 14K, 7K, 3,5K, 1,75K, 

0,7K and 0,35K. Even though, the resulting dataset sizes don’t enable to conduct a grid 
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search to find optimum size of training dataset, it is possible to trace the effect of 

training dataset size on the performance of CNN’s.  

Validation dataset: Validation dataset is used to evaluate and monitor the network 

throughout the training. Learning curves of the training are inspected to detect whether 

overfitting occurs or not. The 0,7 to 0,15 ratio between training dataset and validation 

dataset is conserved for varying sizes of training dataset cases.  

Test dataset: The performances of the trained networks are inspected on four distinct 

test datasets. First test dataset consists 6K images which are randomly selected from 

the base dataset and referred to Test1 case hereafter. The images in Test1 dataset have 

high resemblance with three training datasets and represents the case which the test 

images are visually similar to training dataset.  

The second, third and fourth test cases are constructed from second dataset 

representing three diverse cases in terms of illumination, camera orientation and 

material. All of the test cases have 500 images which 250 consists crack images and 

250 consists only background. Test cases are respectively, concrete material – 

pavement (Test2), concrete material – building (Test3) and brickwork – building 

(Test4).  Test2 and Test3 investigates the transferability of learned features to similar 

cases but with varying illumination conditions and camera orientations. Test4 is the 

most challenging task as the background features such as brickwork jointing is visually 

similar to cracks. The challenges present at each test case are summarized in Table 3. 

It should be noted that the exemplary images shown in Test1 belongs to the base 

dataset which 70 and 15 percentage of the dataset is used for training and validation 

respectively.    
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Table 3. Test cases and respective challenges 

 

 

The resulting sizes datasets are shown in Table 4: 

 

Table 4. Number of images in datasets used for training and validation  
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4.1.2 Number of Epochs for Training 

The relation between performance of networks and number of epochs, i.e. the number 

of iterations which network goes through all training samples, is inspected to observe 

how fast the networks converge to obtain high accuracy. As the number of epochs 

increases, networks have tendency to overfit to training samples. Yet, minimum 

number of epochs are highly dependent on the nature of the subject matter, variance 

among the dataset and similarity between training data and test data. Within the scope 

of this study, all networks are trained for 10 epochs with varying dataset sizes.  

4.1.3 Network dependent parameters: Number of convolutional layers and 

number of learnable parameters 

Number of convolutional layers and number of learnable parameters denote the 

complexity and measures for the deepness of the networks. As the configurations of 

pretrained networks are already established, it is not possible to conduct a grid search 

for these parameters. Yet, the selection of networks presents variance among number 

of layers and number of learnable parameters to enable analysis of how the complexity 

of networks effects the performance for crack detection task.  Characteristics of the 

networks used in tests are described as below. It should be noted that the descriptions 

and respective measures of success is dependent to networks’ performance on 

ILSVRC dataset which contains more than 1,2M images from 1000 object classes.  

AlexNet (Krizhevsky, Sutskever and Hinton, 2012): AlexNet is the first CNN to 

perform considerably well in ILSVRC in 2012. Implementation of ReLU and dropout 

layers to avoid overfitting and decrease training time are major contributions to the 

field which are being widely used. The network has a simple architecture consisting 

five convolution and three fully connected layers. The layer structure is hierarchical 

which layers are structured in a linear way, one following the other. 

VGG Net (Simonyan and Zisserman, 2015): VGG Net, which has VGG16 and VGG19 

versions with different number of layers,  has an influential role in the field as the study 

emphasized the importance of depth (in terms of number of layers) over the complexity 

of the content of the layers. The architecture uses consistently 3x3 convolutional layers 
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together with pooling to decrease the spatial dimension. VGG Net is considerably 

larger than the AlexNet and VGG16 and VGG19 versions are shown in APPENDIX 

I. Even though VGG Net was not the winner of ILSRVC 2014 Challenge, it is used 

widely as a baseline with its robust structure and as a basis for deep learning tasks 

other than classification.  

GoogleNet (Szegedy et al., 2015): GoogleNet, as the winner of ILSRVC 2014 

challenge, is one of the first studies which did not use hierarchical approach for the 

formation of layers. The introduction of inception module, which an input is processed 

in 4 different paths and are concatenated as one output, changed the way the CNN’s 

are structured.  Such networks are realized by employing directed acyclic graph 

method enabling non-hierarchical connection among layers and called as DAG 

Networks. Structure of the inception module is shown as below:  

 

Figure 23. GoogleNet inception module (Szegedy et al., 2015) 

 

Apart from the inception module, GoogleNet uses single fully connected layer which 

dramatically reduces the number of parameters. GoogleNet has 12 times fewer 

parameters than AlexNet while having nearly 5 times more layers (over 100 layers). 

The full architecture of GoogleNet is shown in APPENDIX I. Inception v3 and v4 are 

also developed and achieved huge success which are based on GoogleNet architecture.  
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Microsoft ResNet (He et al., 2016): ResNet, which is the winner of ILSVRC 2015 by 

surpassing %5 top5 error with %3,6 error rate, also employs DAG Network structure 

by constructing residual blocks. Residual blocks have two pathways which one path 

has series of convolution and ReLU layers while other path directly transmits the input 

data. The outputs of two paths are summed. Simple visualization of a residual block is 

shown as below and full ResNet architecture is shown in APPENDIX I. 

 

 

Figure 24. ResNet residual block (He et al., 2016) 

 

ResNet has three versions of ResNet 152, ResNet 101 and ResNet 50 which contains 

152, 101 and 50 layers respectively.  

Study of Canziani et al. (2016) summarizes the computational cost and performance 

of well-known CNN architectures and the results are shown as below:  

 

 

Figure 25. Network performance (top 1 accuracy) vs computational cost (number of 

operations) for well-known  CNN's (Canziani, Paszke and Culurciello, 2016) 
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As can be seen from Figure 25, the performance of ResNet surpasses the performance 

of VGG, GoogleNet and AlexNet architectures while recent versions of GoogleNet 

(Inception v3 and v4) have higher performance for top 1 accuracy. VGG is seen to 

have the most computational cost among other while achieving the best performance 

among simple/plain networks having hierarchical layer connections.  

Pretrained networks and respective number of convolutional layers and learnable 

parameters are shown in Table 5. 

 

Table 5. Pretrained networks and respective number of convolution layers and 

learnable parameters 

 # of Convolution  

Layers 

# of Learnable 

Parameters 

AlexNet 8 60M 

VGG16 16 138M 

VGG19 19 144M 

GoogleNet 22 7M 

ResNet50 50 25.6M 

ResNet101 101 44.5M 

ResNet152 152 60.2M 

 

As the relation between number of convolution layers and number of parameters are 

not linear, it is possible to trace which one of the parameters have more influence on 

the performance of the networks. Other constituents of the networks such as utilization 

of batch normalization, number of pooling layers, layer configuration are not inspected 

within the scope of this study.  

4.2 Evaluation Metrics 

Confidence of the results obtained from networks provide valuable information 

regarding how well the networks learn the discriminant features of cracks and how 

confident they are in their predictions. Conventional evaluation metrics such as 

accuracy, precision and recall, F score are based on only decisions and it is not possible 
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to make an evaluation regarding confidence of the networks. Formulas of the 

mentioned conventional metrics are as given below: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (10) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (11) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (12) 

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2.
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
  (13) 

Where TP, TN, FP, FN denote True Positive, True Negative, False Positive and False 

Negative and resemble (mis)matching of targeted class and prediction.  

In order to take confidences of the networks into consideration for the evaluation of 

network performances, a novel metric which is named confidence weighted accuracy 

is proposed.  

Performance of the networks are compared with respect to their confidence weighted 

accuracies. The formulas of mean accuracy and mean confidence weighted accuracy 

are as below: 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝛿𝑡𝑟𝑢𝑡ℎ𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
  (14) 

 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑖∗𝛿𝑡𝑟𝑢𝑡ℎ𝑖,𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑖

𝑁
𝑖=1

𝑁
 (15) 

 

where, 𝛿𝑖,𝑗  is Kronecker delta function which output 1when i is equal to j and 0 when 

i is different than j. In other terms, 𝛿𝑖,𝑗 outputs 1 when networks makes a correct 

prediction and 0 when network fails. 

Confidence weighted accuracy (CwA) calculation contains more information 

regarding how well the networks learn crack features by taking the confidence of 

network into account. Contribution of CwA can be illustrated with the example cases 

below. 
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Table 6. Accuracy vs confidence weighted accuracy on sample test cases 

Case 
 

Predictions Accuracy CwA 

1 Prediction True True False False 0.5 0.375 

Confidence 0.9 0.6 0.9 0.6 

2 Prediction True True True True 1 0.675 

Confidence 0.675 0.675 0.675 0.675 

3 Prediction True True True False 0.75 0.675 

Confidence 0.9 0.9 0.9 0.6 

 

Table 6 illustrates 7 cases which varies in number of predictions and confidence scores 

for these predictions. In the first case, 4 predictions are made, which two of these 

predictions are correct with 0,9 and 0,6 confidence scores respectively and two 

predictions are wrong with the same confidence scores, i.e. one high and one relatively 

low confident score for both correct and wrong prediction.  While accuracy metric 

outputs 0,5 score denoting equal distribution of predictions, CwA output 0,375 by 

penalizing the low confidence of true prediction.  

CwA scores for the second and third cases are both 0,675 although accuracy scores 

output 1 and 0,75 respectively.  While third case has one wrong prediction, it is as 

valuable as the network making all correct predictions but with low confidence.  

Effective range of accuracy and CwA metrics is conserved as networks can score 

between 0 and 1. Essentially, CwA opts for correct predictions with high confidence 

and penalizes both wrong predictions and low confidence scores.  

One drawback of CwA metric can be defined as the calculation is based on whether 

the predictions are correct or not and disregards the ratio of classes, i.e. how many of 

the predictions are true positive, true negative, false positive or false negative. 

However, as the crack detection task is treated as a binary problem within the scope of 

this study and classes have equal importance. Furthermore, the datasets which CwA is 

analyzed are balanced in terms of number of samples per class. Hence, the information 

on contribution of confidence is chosen over information on class dependent behavior 

of predictions.   
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4.3 Results and Discussions 

Each of the previously mentioned pretrained networks are trained with varying sizes 

of datasets for 10 epochs resulting in 560 (7 networks, 8 training datasets, 10 epochs) 

trained networks. These networks are subjected to 4 different test cases and confidence 

weighted accuracy results are stored in a 4D matrix with 2240 (7 networks, 8 training 

datasets, 10 epochs, 4 test cases) members. Both accuracy and confidence weighted 

accuracy scores are shared in Appendix 2. 

The networks used in the scope of this study are pretrained on ImageNet (Stanford 

Vision Lab, 2018) data and obtained from MatConvNet (MatConvNet Team, 2018) 

website. All tests are conducted with MatConvNet library and Matlab 2017a 

(Mathworks, 2018) on a desktop workstation with 2 Intel Xeon E5-2697 v2 @2,7 GHz 

CPU cores, 64GB RAM and NVIDIA Quadro K6000 GPU. On the other hand, 

multidimensional analysis approach is applicable to any other pretrained network and 

any other programming language.  

For the sake of simplicity, highest scoring cases per test case are shared in  

Table 7 and all results are shared in Appendix 2. In addition, results are discussed per 

case and per parameter as below.  

 

Table 7. Highest scoring test and validation CwA scores for pretrained networks 
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The discrepancy between accuracy scores and CwA scores is illustrated in Figure 26 

and Figure 27 and shared in Table 8.  

 

 

Figure 26. Mean difference between CwA and accuracy scores (drawn by author) 

 

 

Figure 27. Mean accuracy and mean CwA vs %10 intervals (drawn by author) 

 

As can be seen from the figures and table, the biggest difference in %10 intervals is 

observed in %60-%70 accuracy interval with %4.98 change. %90-%100 accuracy 

interval where the majority of the network scores concentrated the influence of CwA 

is around %2.5. However, %2.5 contribution of CwA calculation enable sorting among 

the performances of networks. In addition, the positive influence of CwA which 
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increases accuracy scores denote that the networks have high confidence scores when 

making correct predictions while having low confidence scores for wrong predictions.  

 

Table 8. Mean accuracy, mean CwA scores for test cases 

Mean 

Accuracy 

50-60 60-70 70-80 80-90 90-100 

Test1 NaN 0.606 NaN 0.86 0.993 

Test2 0.512 0.652 0.743 0.853 0.941 

Test3 0.518 0.646 0.746 0.851 0.929 

Test4 0.532 0.658 0.758 0.843 0.917 

Mean 0.521 0.6408 0.7485 0.852 0.945 
      

Mean CwA 50-60 60-70 70-80 80-90 90-100 

Test1 NaN 0.5455 NaN 0.754 0.986 

Test2 0.495 0.609 0.679 0.822 0.904 

Test3 0.5 0.609 0.721 0.825 0.909 

Test4 0.505 0.6 0.716 0.809 0.881 

Mean 0.5 0.591 0.705 0.803 0.92 
      

Difference 50-60 60-70 70-80 80-90 90-100 

Test1 0 0.0605 0 0.106 0.007 

Test2 0.017 0.043 0.064 0.031 0.037 

Test3 0.018 0.037 0.025 0.026 0.02 

Test4 0.027 0.058 0.042 0.034 0.036 

Mean 0.021 0.0498 0.0435 0.049 0.025 

 

Test1 CwA for first epoch with 0,35K dataset 

Test 1 accuracies for first epoch with the least number of image samples are inspected 

to observe how fast the networks converge. AlexNet, VGG16, VGG19 and GoogleNet 

achieved more than 0,9 CwA. Especially fast convergence of VGG16 and VGG19 is 

significant when the dataset size is considered. On the other hand, even though ResNet 

networks scored much lower at first epoch, they scored over 0,9 CwA at the second 

epoch.  

 

 



 

 

69 

Test 1 CwA 

As all networks scored over 0,9 CwA at the second epoch, later iterations are basically 

fine tuning to converge to CwA of 1. All networks benefitted from the larger dataset 

sizes scoring the highest CwA with over 21K image samples. However, when the 

scores present in Appendix 2 are inspected, the differences are barely noticeable and 

it is not possible whether overfitting occurs as the validation dataset is randomly 

chosen from the base dataset which the training datasets are also extracted from. 

Whether the learned features are transferrable to other cases or the networks overfit to 

the training samples are tested in Test2, Test3 and Test4 which have variations in terms 

of camera orientation, illumination and material.  

Test 2 CwA for concrete material – pavement as application area 

Even though the application area is different from the training datasets, the cracks in 

pavement have less shadowing and visually more discernable with respect to Test 3 

case (concrete material- building as application area). As can be seen from Table 3, 

the images are more homogeneously illuminated resulting in high contrast among 

crack regions and material texture. When scores are inspected, while VGG networks 

and GoogleNet networks scored similar to the scores of Test1, AlexNet and ResNet 

networks scored much lower.  Among ResNet networks, ResNet50 was the most 

successful one with 0,9 CwA. The tendency to overfit is observable with the increasing 

number of layer for ResNet family with decreasing CwA scores as 0,77 and 0,62 by 

respectively ResNet101 and ResNet152. Low score of AlexNet is attributed to the low 

number of convolution layers as VGG networks, which have similar architecture but 

with more convolution layers, achieved considerably high at Test2.  

Test 3 CwA for concrete material – building as application area 

Test 3 data is similar to training data and Test 2 data in terms of having concrete 

material texture. However, camera - surface orientation, illumination conditions and 

camera distance shows variance with respect to the training dataset. Test 3 can be 

considered as the test whether the networks achieved a generic solution for prediction 

of cracks on concrete surfaces. Similar to Test 2 case, VGG networks and GoogleNet 

scored over 0,92 with VGG16 achieved the highest score with 0,98. With the 
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increasing variance ResNet family scored below 0,8 which is an indication of 

overfitting. In addition, the highest scoring ResNet50 and ResNet101 networks are 

trained with 0,35K and 0,7K training samples which supports overfitting suspicion. As 

the number of samples for training increases, scores of ResNet family networks 

decrease.  

Test 4 CwA for brickwork material – building as application area 

Test 4 is the most challenging task among test cases as the background texture and 

jointing for brickwork have high probability of misclassification as cracks. Hence, Test 

4 reveals whether the networks operate based on contrast differences or are able to 

extract crack features and detect cracks regardless of the material cracks reside on. 

With lower scores but having the same trend, VGG 16 and GoogleNet achieved the 

highest scores among the pretrained networks which are utilized in the scope of this 

study. Especially, 0,96 score of VGG16 is promising in terms of obtaining a generic 

crack classifier regardless of the material. While ResNet networks scored similarly to 

other test cases, AlexNet scored around 0,88. The consistent scores of AlexNet for all 

test cases show that AlexNet is able to extract crack features which are adaptable to 

other cases. Yet, the relatively simple architecture of AlexNet is more susceptible to 

noise resulting in scores below 0,9.  

Size of training dataset 

When the scores for all tests are considered, it is observed that the accuracies of large 

training datasets are comparable with small training datasets per case. For Test 1, 

highest scores are obtained with the largest training datasets. As the training dataset 

and test dataset for Test1 are extracted from the same base dataset, all networks benefit 

from more image samples in the course of training. Therefore, it can be generalized 

as, in the event of having similar images for test cases, the size of training dataset 

positively influences the accuracy. On the other hand, when the test images show 

variance in terms of camera-surface orientation, camera distance to surface and/or 

illumination conditions, networks tend to achieve higher scores with smaller training 

datasets. 3,5K images are seen to be sufficient for learning crack features without 

subjecting to overfitting. Yet, the optimum size of training dataset is highly related 
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with the test case, images and image capturing conditions and 3,5K training dataset 

size should not be perceived as optimum.  

The same analysis is also valid for number of training epochs. If the training images 

and test images have high similarity, number of epoch for training increases the 

accuracy whereas for diverse cases, higher number of epochs increases risk of 

overfitting and networks tend to have bias towards training set.  

Number of convolution layers and learnable parameters 

When Test2, Test3 and Test4, which challenges networks in terms of illumination 

conditions, camera orientation and distance to surface, and subject material, are 

inspected VGG networks and GoogleNet networks have higher scores without being 

subjected to overfitting. As shown in Table 5, these networks have 16 to 22 

convolution layers and no correlation between learnable parameters. Despite having 

different network architecture approaches, it can be inferred that an optimum window 

between 16 and 22 layers of convolution for obtaining a generic crack classifier. This 

inference is also supported with the decreasing performance of ResNet family with the 

increasing number of layers.  

Computational time 

Computational time required for training 28K training dataset for 1 epoch for all 

networks and their mean accuracies of highest scoring networks per case are shared in 

Table 9. 

 

Table 9. computational time for 28K training set for 1 epoch 

28K dataset | per Epoch Training Time (s) Mean CwA 

AlexNet 133 0,89 

VGG16 2827 0,98 

VGG19 2943 0,96 

GoogleNet 1227 0,96 

ResNet50 1666 0,82 

ResNet101 2447 0,82 

ResNet152 3789 0,70 
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The computational cost of the networks are as expected, having correlation with the 

study of Canziani et al. which is shown in Figure 25. When the computational times 

analyzed in consideration with their performance, GoogleNet performs scores 0,95 in 

less than half computational time than VGG networks. However, VGG16 is the most 

successful in terms of CwA. On the other hand, AlexNet provides near 0,9 CwA with 

considerably less computational time which increases its preferability when 

experimenting on the datasets but not for actual test cases. 

Within the scope of Chapter 4, a multidimensional analysis of variables effecting 

performance of pretrained networks on crack classification. The findings obtained in 

this analysis are aimed to provide foreknowledge to researchers working on crack 

detection task whether for building applications or not. It is believed that, the results 

and optimal ranges achieved in the course of the analysis are applicable to other cases 

which the discriminative visual features are limited. Furthermore, the analysis present 

herein provides a framework for the evaluation of pretrained networks and enable 

selection of the best performing network for future studies.  
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CHAPTER 5 

 

 

SEMANTIC SEGMENTATION OF CRACK IMAGES 

QUADP (A NOVEL QUADTREE INTEGRATED DEEP LEARNING 

ALGORITHM) 

 

 

 

"There's no sense in being precise when you don't even know what 

you're talking about."  

John von Neumann 

 

Semantic segmentation provides more information with respect to image classification 

methods as the goal is to output pixel wise prediction and labeling of images resulting 

in object regions with finely traced contours. By nature, as the outlines of the objects 

from different classes are obtained, it is possible to use the output to predict form, size 

and spatial relations between objects in the scene.  In case for semantic segmentation 

of cracks, various features of detected cracks can be measured with respect to the crack 

boundaries such as orientation, width, number of cracks in an image. Furthermore, 

semantic segmentation applications provide significant information regarding the 

behavior of the networks utilized in the implementation. It is possible to trace which 

regions activate the network for classification of images and by this way it enables 

users to have an insight on the working principles of CNN’s.  

There are several studies aiming semantic segmentation with the utilization of deep 

learning frameworks. These studies have differences in their methodology and 

approach towards semantic segmentation of images.  
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5.1. Semantic Segmentation Approaches 

Three of the highly acknowledged studies; namely Fully Convolutional Networks, 

Deconvolutional Networks and SegNet, are explained below in consideration with the 

differences in their approaches while utilizing CNN framework in their studies. It 

should be noted that present studies are developed with the aim of achieving a generic 

framework and tested against generic datasets such as PASCAL VOC dataset.  

Fully Convolutional Network (FCN)(Long, Shelhamer and Darrell, 2014): Studies of 

Long, et.al. can be given as an exemplary study which is commonly used and 

referenced. In their study, fully connected layers of pretrained networks (AlexNet, 

GoogleNet, and VGG) are converted to fully convolutional layers and the activation 

maps of the determined layers are upsampled to match input image dimensions. Then, 

upsampled activation maps are overlapped to obtain final output.  Three versions of 

the fully convolutional network (FCN) is developed and their architecture is shown 

below:  

 

 

Figure 28. FCN32, FCN16, and FCN8 layer architecture (Long, Shelhamer and 

Darrell, 2014).  

 

While FCN32s version only upsamples 7th convolution layer activation, FCN16s takes 

4th pooling layer activation and 7th convolution layer activation into account and 

FCN8s uses 3rd pooling layer activations in addition to FCN16s. As the upsampling 
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ratio decreases, the network is operated as a DAG network and combines information 

gathered from different layers. Among the pretrained networks used in this study, 

VGG shows the best performance against GoogleNet and AlexNet. It is reported that 

the consistent kernel size for convolution and hierarchical structure of VGG network 

makes it more suitable for reconstruction of images for segmentation tasks. Native 

input and output sizes of images are 500 to 500 pixels.  

The upsampling mentioned in the study is not an image interpolation method but rather 

a learnable filter which is named as deconvolution layer. Deconvolution layer basically 

conducts the inverse of convolution layer. Deconvolution layer is introduced within 

the scope of this study and employed by various benchmarking studies in semantic 

segmentation.  

DeconvNet (Noh, Hong and Han, 2015): The studies of Noh, et.al also utilizes 

deconvolution layers based on the VGG16 network. DeconvNet architecture follows 

a more hierarchical way from FCN by consistently downsampling the image until 

classification and upsampling to reach semantic segmentation result. The architecture 

of DeconvNet is shown in Figure 29. 

 

 

Figure 29. DeconvNet architecture (Badrinarayanan, Kendall and Cipolla, 2015) 

 

In addition to deconvolution layer, unpooling layer is introduced in DeconvNet study. 

Unpooling layer effectively upsamples the data in consideration with respective 

pooling operation in the convolutional network. The symmetric architecture of 

convolutional and deconvolution network sections enables DeconvNet to keep track 
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of which pixel is used for output of pooling and which pixels are discarded and reflects 

this information to unpooling operation. As DeconvNet is based on VGG16, native 

input-output sizes of images are 224 to 224 pixels.  

SegNet: First version of SegNet has a similar architecture with DeconvNet as both 

architectures use VGG 16 as a base for convolution part (Badrinarayanan, Handa and 

Cipolla, 2015). In contrast with DeconvNet, SegNet reduces the number of parameters 

to be learned to increase computational capabilities resulting in better accuracy results 

in fewer iterations. The study is then extended to enable custom layer formations 

(Badrinarayanan, Handa and Cipolla, 2015). In this study, the network architecture is 

chosen to be flat, each layer having the depth of 64 and having fully connected 

structure among the layers while preserving convolution-deconvolution dual (named 

as encoder-decoder in the study). Both studies are conducted on 360 to 480 pixel 

images. 4 encoder and 4 decoder layers are present in the SegNet and are shown in 

Figure 30. 

 

 

Figure 30. SegNet architecture (Badrinarayanan, Handa, et al., 2015) 

 

In contrast to classification applications, semantic segmentation frameworks require 

ground truth images which each pixel in the input image are labeled rather than object 

classes per image. Hence, the required data for training such networks are proportional 

with the dimensions of the training images. On the other hand, for classification 

operation, only the class which the image belongs to is required. Despite having 
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different approaches in their frameworks, all of the studies mentioned above are highly 

acknowledged and widely used semantic segmentation applications and have 

comparable accuracies in terms of semantic segmentation metrics.  

5.2 Semantic Segmentation of Cracks 

Semantic segmentation of crack images contains possibly vital information for 

assessment of cracks. It is possible to predict the number of cracks, their orientation 

and pixel based width by post processing the object outlines extracted by means of 

semantic segmentation. Furthermore, it is possible to conduct metric measurement if 

the camera – surface orientation, camera distance and extrinsic camera parameters are 

known for the image input. Hence, precise segmentation of cracks has utmost 

importance for fields including but not limited to autonomous inspection and structural 

health monitoring of buildings.  

CNN’s are powerful frameworks for image processing tasks and have shown 

promising results on achieving a generic crack classification framework as discussed 

in Chapter 4. Being adaptable to various materials and cases while achieving high 

accuracy forms a basis for utilization of CNN’s in semantic segmentation of cracks.  

However, the challenges caused by the nature of cracks, which are present in Chapter 

2 for crack classification, pursue with increasing influence in semantic segmentation. 

These challenges are recapped and additional challenges in consideration with the 

semantic segmentation task as defined as below: 

Challenges caused by the low level discriminative features of cracks: 

Discriminative crack features are easily confused with noise in the background texture, 

foreign objects and/or irregularities in application such as exposure of jointing. For 

semantic segmentation, noises in a focused part of an image cause crack class 

activation even if the region is not a part of the crack. For crack classification task, 

softmax classifier compensate false activation and even if the confidence scores 

decreases, prediction results are less effected from local noises. Another challenge is 

the inhomogeneous illumination of the surface which causes occlusion of crack 

segments endangering the conservation of crack continuity. Shadowed part of the 
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images reduces sensitivity to discriminative features of cracks. When the goal is 

determining the presence of crack, conserving the crack continuity is not crucial as 

long as the networks detects the presence of cracks. However, for semantic 

segmentation, loss of crack continuity results in error for making measurements. For 

example, a single crack, which is occluded due to inhomogeneous illumination, may 

result in semantic segmentation output having more than one crack segments. 

Challenges caused by the amount of data: 

Building inspection by means of visual data requires collection of vast amount of data. 

Even though CNN’s have capability of processing more information with respect to 

machine learning classifier, they are not necessarily lightweight frameworks either. As 

the number of layers and number of learnable parameters increase, memory concerns 

arise while processing high resolution images. In such cases, either images are 

subdivided into image patches and processed separately to combine the results later or 

images are downsampled if the fine details are not important. For crack detection case, 

downsampling high resolution images is not an option as even hairline cracks matter 

for classification. In the case of subdividing and combining back the image patches, 

the continuation of cracks is not guaranteed as image patches are processed 

independently.  

In order to overcome the challenges mentioned above, a novel method which combines 

quadtree division algorithm and CNN’s is proposed and will be referred as QuadP 

hereafter.  

5.3 QuadP 

QuadP aims to conduct image segmentation by extracting and processing probability 

maps from either binary (presence) or weighted (confidence) classification results. 

Within the framework of QuadP, while the challenges based on the low level 

discriminative features of cracks are addressed by utilizing classification results 

instead of achieving activation maps, the challenges caused by the amount of data are 

addressed with the utilization of quadtree division method.  
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Quadtree is a highly acknowledged tree data structure which is widely utilized for data 

encoding in fields varying from image processing to state estimation in control theory. 

In general terms, quadtree division algorithms rearrange data in a tree data structure to 

enable fast and easy access among scattered data. For this purpose, a particular 

addressing method is utilized. This addressing is based on subdividing the dataspace 

into four quadrants in case of fulfilling a specified criterion. This criterion is also 

named decomposition condition. The process of subdividing continues until a 

termination condition or all of the data are indexed separately. As the decomposition 

occurs as long as the decomposition criterion is satisfied, the algorithm focused on 

regions where concerned data exists and does not use memory for unimportant parts 

of dataspace. Various implementation methods of this basic idea are proposed and 

widely utilized in different cases. Some of the region quadtree, which the data region 

is directly divided into four equal quadrants having data points reside in; point 

quadtree, which the region is divided in a way that the edges of regions correspond to 

data points; and matrix quadtree, which is operated like region quadtree but the 

division iteration is continued until the smallest cell is obtained. Among these methods, 

especially matrix quadtree is widely used in image encoding where pixels are treated 

as the smallest cells. Quadtree division algorithm is known to be more memory 

efficient with respect to methods storing all data in dataspace.  

 

 

 Figure 31. Pixel based data storage (raster images), subdivided image patches for 

CNN and quadtree division result (drawn by author) 
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In Figure 31, three images illustrating different data storing strategies are shared. First 

image represents a raster image where data for all pixels are stored individually. For 

high resolution images, memory consumption is the highest among the three images. 

Second image represents the conventional subdivision of images in cases which CNN 

operations have memory concerns. Even though it is more memory efficient, the 

divisions represent the data coarsely. Third image represents quadtree division. The 

image is iteratively subdivided into quadrants. It is both memory efficient and have 

fine details representing the data.  

QuadP is constructed on the idea of utilizing CNN classification results as the 

decomposition condition of quadtree division algorithms to conduct semantic 

segmentation of cracks. Consequently, four main objectives are determined to be 

achieved. These objectives are explained as below:  

1. Precision: As the output of the QuadP, precise crack outlines are expected to 

be able to conduct measurement. Precision referred here is not only how the 

obtained outlines corresponds to the crack region but also how the obtained 

outlines perform in measurements. For this purpose, the outputs are evaluated 

both with respect to pixel-wise accuracy and crack based metrics such as 

number of objects and mean orientation. 

2. Flexibility: QuadP is desired to be flexible in terms of being operable in 

conjunction with any decision making framework. Even though CNN’s have 

proven themselves on crack detection task, QuadP is aimed to be adaptable to 

any classification method so that performance of QuadP can be improved in 

the presence of a better performing classification framework.  

3. Lightweight: QuadP is aimed to be lightweight in terms of computational 

memory so that the method enables operation on high resolution images 

without losing the connectedness of juxtaposed multiple images.  

4. Robustness: QuadP is aimed to be robust in terms of being insensitive to noise 

which is frequently encountered in building inspection applications while 

effectively focusing on crack regions and features.  
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Motivated with the objectives mentioned above, QuadP is developed as a hybrid 

method of CNN classification and quadtree division algorithm. How these methods 

are blended is shown in Figure 32.  

 

 

Figure 32. CNN and quadtree division in QuadP flowchart (drawn by author) 

 

Workflow of QuadP can be explained recursive division of positively classified 

regions as cracks into quadrants and subjecting the quadrants to crack classification 

for next iteration. By nature, quadtree division algorithm focuses on where the 

relevant information is present. Due to the focusing, resulting quadrants contain less 

pixels at each iteration. When regions contain limited number of pixel failing to 

represent discriminative crack features, CNN algorithm classifies the region as a non-

crack region even if the previous iteration results in positive classification. The 

process is iterated until the resulting image region is not divisible to quadrants or every 

region is classified as non-crack regions. In the course of subdivision, both indices of 

regions and confidence results of the respective classification is stored. As each image 

region is classified individually and results are merged after the classification results 

are obtained, memory requirement of QuadP is bounded with the memory requirement 

of CNN for classifying a single image region. On the other hand, QuadP algorithm is 

suitable for parallelization of the process and when the memory capacity allows 

parallel processing of multiple image regions, computational time can be reduced.  
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5.3.1 Issues caused by nature of cracks and semantic segmentation task 

The challenges due to the nature of cracks which mentioned above are inspected in 

detail to be addressed while implementing QuadP algorithm. These challenges are 

illustrated and discussed as below: 

 

 

Figure 33.Issues caused by the nature of cracks in adaptation of quadtree division to 

CNN. Object corresponding to the region border (top left), losing object 

connectedness and jaggedness of object outlines (top right), losing features due to 

excessive focusing (bottom left and bottom right) (drawn by author) 

 

Object corresponding to the region border: While processing high resolution image, 

the image is subdivided into image patches. Division borders play a crucial role for 

classification task as in the event of cracks corresponding to the subdivision/region 

border, it is not possible to detect discriminative crack features. In such cases, 

classification algorithm outputs false negative results, even though the region of 

interest contains parts of the whole. In Figure 33 top right image, bottom left quadrant 

is classified as false negative. 

Losing object connectedness: Both quadtree division and subdivision for processing 

the high resolution images with CNN focuses on the content of subdivided region by 

nature. Hence, the relationship between neighboring regions are disregarded. When 

considered with objects corresponding to region borders, object connectedness may be 
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lost which does not reflect the actual case. In such cases, the measurements conducted 

on semantic segmentation output gives erroneous results as multiple crack segments 

are obtained from single crack. In Figure 33 top right image, object connectedness is 

lost at regions marked with red. 

Losing feature due to excessive focusing: As quadtree iteratively divides positively 

classified image patches into quadrants, the dimensions of region of interest gets 

smaller at each iteration. Before reaching pixel scale, focused region loses its ability 

to hold discriminative crack features.  In such cases, classification algorithm fails to 

predict the region as a positive crack region even if the same region is classified 

positively in the previous iteration. In Figure 33 bottom image, the region marked with 

red loses features due to the excessive focusing and is classified as negative even 

though the region resides inside crack region.  

Jaggedness of object outlines: As the method utilizes quadtree division for refinement 

of object boundary, the positively classified regions are subdivided into quadrants in 

horizontal and vertical axis. Hence, the object boundary is limited with only vertical 

and horizontal lines. As image classification requires feature detection of concerned 

object, obtained object outlines do not have pixel scale precision. In Figure 33 top right 

image, blue regions denote crack presence. As can be seen from the image, the outlines 

show jaggedness. 

5.3.2 Resolutions for addressing the issues 

In order to resolve these issues, three methods are developed as:  

i) defining two meta axes as quadtree and control axes for decomposition,  

ii)  region scoring,  

iii) 3D interpolation of region scores  

These methods also construct the bridge between quadtree division algorithm and 

CNN. Methods and corresponding addressed issues are shown in Table 10.  Each of 

the method is described in detail below. 
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Table 10. Issues and corresponding approaches 

Issue Method 

Object corresponding to the region border 2 meta axes 

Losing object connectedness 2 meta axes 

Losing feature due to excessive focusing Region Scoring 

Jaggedness of object outlines 3D interpolation of region scores 

 

2 meta axes approach: In quadtree division implementations, the regions are indexed 

in a way to access the data in query. In image processing implementations, this 

indexing is constructed with respect to row and column values of the regions and 

iteration number. However, as mentioned before, strictly dividing the regions into 

quadrants result in losing the relation between neighboring regions. This approach 

causes losing crack continuity in crack detection and segmentation applications. In 

order to tackle this challenge and preserve crack continuity by taking neighborhood 

relations into account, quadtree division is conducted in two instances which one 

instance is shifted with half the region dimensions in vertical and horizontal axes. Two 

instances are then superposed to merge the information gathered from two axis system. 

While first instance conducts regular quadtree division, the second instance controls 

the neighborhood relations of regions examined in first instance. These instances are 

named as quadtree and control meta axes to refer spatial indexing which the quadtree 

division results are stored. The approach is illustrated in  Figure 34. 

 

 

Figure 34. Quadtree and control meta axes decomposition and resulting 

decomposition by merging two (drawn by author) 
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For the first iteration only, the original image is zero-padded, i.e. outer boundary is 

populated with zero values, with half of the region dimension in order to take image 

borders into account for superposing. By nature, zero-padded regions don’t have any 

relevant information for crack classification and does not contribute to the 

classification. Yet, the image area which the zero-padded regions share with and 

contain crack features are positively classified. For second and later iterations, the need 

of zero-padding is required only if the crack is extended to image border. Otherwise, 

the zero-padded region shown in Figure 34 corresponds to the neighboring regions. 

After the classification, the regions are labeled with respect to the prediction and 

upsampled with the factor of two for dimensional conformance between quadtree axis 

and control axis. The results are merged with OR logical gate. If a region is classified 

as crack by any of the instances, the result is stored as positive.  

Idea of two shifted meta axes method effectively eliminates to problem of objects 

corresponding to the region boundaries and thus loss of object connectedness. 

Exemplary implementation is illustrated in  Figure 35. Two regions residing at the left 

of top image are both classified as non-crack regions due to corresponding region 

border. Yet, these regions are positively classified as crack regions by the control meta 

axis and labeled as positive for later iterations.  

 

 

Figure 35. Two axes system method on an object corresponding to region boundary 

(drawn by author) 
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Region scoring: Region scoring is based on the idea of conservation of confidence 

scores as well as quadtree decomposition conditions. The aim of the region scoring 

method is to keep track of previous iterations. At each iteration, as the dimension of 

subdivided quadrant is reduced by the factor of two, the results are upsampled with the 

same factor to match with previous iteration. Then the scores are summed up to 

cumulatively store the how many times a region is positively classified as crack and if 

possible the confidence scores of these predictions are also stored. When the algorithm 

is terminated, the resultant score is divided by the total iteration number to normalize 

scores. As a result, region scores reflecting its decomposition history is obtained for 

each region. The calculation of final scores is as below: 

𝑅𝑥𝑦 =
∑ 𝑃𝑥𝑦,𝑖 ∗ 𝑆𝑥𝑦,𝑖

𝑘
𝑖=1

𝑘
 

Where R is region score, S is confidence score, P is binary prediction value, i is number 

of iteration, xy denotes the pixel/region location and k is the number of total iterations. 

S and P are provided by CNN and taken without subjecting any change. Confidence 

score resides between 0 and 1 while binary prediction value is either 0 or 1 denoting 

presence of crack. For multiclass problems, such as detection multiple defects as well 

as cracks, each class is treated separately as a binary problem of presence. Region 

scoring method aggressively penalizes regions which are not classified as cracks; thus 

quickly refines object boundaries. On the other hand, as the region scoring method 

preserves region decomposition history, problems caused by the excessive focusing 

resulting in objects losing their features are resolved and such regions still contribute 

to the probability distribution with high scores. As a result, region scoring outputs a 

probability map between 0 and 1.  

Exemplary implementation of region scoring is illustrated in Figure 36. Top left image 

shows region scores overlaid on original image and used as an alpha map. Low scoring 

regions are more transparent than high scoring regions. Top right image shows the 

region scoring output with relative heat map denoting region scores. Bottom images 

are binary and heat map illustrations of region scoring by applying threshold with the 

value of 0,5 which the probability of presence is higher than the probability of absence.  
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Figure 36. Region scores overlaid on crack image (top left), region scores (top right), 

Segmentation image based on quadtree division (bottom left), Region scores with 0.5 

threshold (bottom right) (drawn by author) 

 

3D Interpolation of region scores: In order to refine object boundaries, the problem is 

treated as a probability distribution in 3D space with width, height and region score 

dimensions. In other words, probability map with low resolution is transferred to 3D 

space to increase the resolution of probability map. The coordinates of image patch 

center points created by quadtree decomposition are extracted and their z-axis values 

are obtained from their respective probability obtained by region scoring. Then data 

points are connected to the neighboring points by linear interpolation to obtain a 

probability surface. Higher order interpolation techniques are not preferred due 

unnecessary smoothing of the surface resulting in loss of precision. An exemplary 3D 

interpolation of region scores to obtain probability distribution in shown in Figure 37. 

Once the surface function is obtained, the probability values for each pixel is obtained 

by using the probability function. After obtaining per-pixel probability values, the 

problem is converted back to a 2D space to conduct semantic segmentation. The image 

is applied threshold of 0,5 where presence exceeds probability of absence. Figure 38 

shows the stages of obtaining semantic segmentation results.  
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Figure 37. 3D Reconstruction and linear interpolation of pixel probabilities to obtain 

probability surface (drawn by author)  

 

Apart from obtaining probability distribution of the image, 3D interpolation of region 

scores also serves for resolving the issue of jaggedness of outlines and provides 

semantic segmentation results with more precise boundaries.  

 

 

Figure 38. Probability map obtained by linear interpolation (top left), probability map 

obtained by 0,5 threshold (top right), semantic segmentation result (bottom left), 

image segmentation overlaid on original image (bottom right) (drawn by author) 
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To sum up, detailed QuadP flow chart showing how CNN, quadtree division 

algorithm, 2 meta axes, region scoring and 3D interpolation steps come together is 

shown in Figure 39. 

 

 

Figure 39. QuadP flowchart (drawn by author) 
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5.4 Performance inspection of QuadP 

In order to test the performance of QuadP, semantic segmentation task is conducted 

and the performance of QuadP is compared with two highly acknowledged semantic 

segmentation methods, namely Fully Convolutional Networks (FCN) and SegNet. In 

order to avoid bias which may be caused because of the classification stage of the 

semantic segmentation, experiments are conducted with VGG16 pretrained network 

which is natively utilized in FCN and SegNet methods. Deconvolutional Networks are 

not included into comparison as VGG16 version of SegNet is the improved version of 

Deconvolutional Networks.  

Both FCN and SegNet are end-to end trained with 6775 crack image samples with 

500x500 pixel dimension together with the ground truth maps. The ground truth 

images are handcrafted by pixel scale painting. On the other hand, for experimentation 

with QuadP, VGG16 network trained with 1,75K image dataset, which contains 875 

positive and 875 negative samples with 224x224 pixel dimension, is utilized. For 

validation, 376 images which are equally distributed to binary classes are used. 

Mentioned VGG16 network is also one of the best scoring network among the network 

compared in Chapter 4 and have a mean CwA score of %96,375 for binary 

classification of crack images. On the other hand, it should be noted that the 

performance of QuadP is bounded with the performance of VGG16 network, which 

are %99.2, %90.45, %97.79 and %81,75 accuracy scores and %99.8, %91.3, %98.1 

and %96.3 CwA scores for test cases 1,2,3 and 4 respectively. Multiple VGG16 

networks are intentionally not selected to observe the adaptability of a single network 

on multiple semantic segmentation tasks.  

For testing the performances of three approaches, the approach utilized in Chapter 4 

for performance comparison of pretrained network is chosen. Total of 491 full 

resolution images are used throughout the experiments. The test cases are explained in 

detail in Chapter 4. The distribution of test images per case is as shown below: 
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Table 11. Test cases and dataset sizes for semantic segmentation evaluation 

Case Number of Images 

Building – concrete 458 

Pavement – concrete 16 

Building – concrete with varying conditions 9 

Building - brickwork 8 

 

5.4.1 Evaluation Metrics 

The performances of three methods are evaluated with respect to two set of metrics, 

namely semantic segmentation metrics and crack based metrics. First set of metrics is 

based on semantic segmentation performance and consists five highly acknowledged 

metrics. These metrics are as below and calculated both globally and per class: 

- Global Accuracy: Global accuracy measures the percentage of correctly 

classified pixels without consideration of classes. The formula of global 

accuracy is as below: 

𝐺𝑙𝑜𝑏𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Where TP, FP, TN and FN stand for respectively True Positive, False Positive, 

True Negative and False Negative. 

-  Mean Accuracy (Accuracy): Mean accuracy measures the average of 

percentages of correctly classified pixels per pixel. The formula is as below: 

𝑀𝑒𝑎𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Accuracy metric is the calculation of the score per class. 

- Intersection over Union (IoU): IoU measures the ratio of correctly classified 

pixels over sum of number of ground truth pixels and predicted pixels per class. 

Formula is as below: 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

While calculated IoU score per class, average of IoU score is taken for global 

calculation.  
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- Weighted IoU: Weighted IoU measures average of IoU weighted by the 

number of pixels of corresponding class 

- Mean Boundary F1 (BF) Score: BF score is the extension of F-score for 

semantic segmentation evaluation. The formula is shared in Chapter 4. Mean 

BF score measures how well the predicted outline conforms with ground truth 

outline. For global evaluations average of BF scores are calculated.  

Second set of metrics are proposed within the scope of this study with the aim of 

evaluating crack based on important features. These metrics are defined as below: 

- Number of Objects: Number of objects calculates the number of individual 

regions for crack class. For connectedness 4-connected neighborhood of the 

regions are inspected. It is a measure of how well the object connectedness is 

preserved.  

- Mean Orientation: Mean orientation measures the major axis orientation of 

individual crack regions and takes the average weighted with the area of the 

regions. It is a measure of influence of falsely classified regions on the output 

result.  

A metric for pixel based crack width is not proposed as semantic segmentation 

metrics already cover how well the contours are matching with BF-Score.  

5.4.2 Results and Discussions 

The performances of methods are inspected with respect to two set of metrics on 4 test 

cases. The results of global and class based semantic segmentation metrics for 4 test 

cases are shared in Table 12 and Table 13.  
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Table 12. Global semantic segmentation results for 4 test cases 

Case Method Global Accuracy Mean Accuracy IoU Weighted IoU Mean BF 

Test1 

FCN 0.9915 0.7410 0.7347 0.9831 0.9605 

SegNet 0.9904 0.8444 0.7646 0.9829 0.9104 

QuadP 0.9809 0.9011 0.6954 0.9714 0.8979 

Test2 

FCN 0.9271 0.6989 0.6131 0.8793 0.4891 

SegNet 0.8351 0.8915 0.5600 0.7844 0.2294 

QuadP 0.8914 0.7466 0.5828 0.8423 0.4831 

Test3 

FCN 0.9855 0.8007 0.6816 0.9766 0.7660 

SegNet 0.8948 0.9115 0.5031 0.8814 0.4716 

QuadP 0.9481 0.8536 0.5605 0.9364 0.5439 

Test4 

FCN 0.9475 0.7823 0.5534 0.9341 0.4436 

SegNet 0.4575 0.6941 0.2382 0.4421 0.1675 

QuadP 0.9456 0.8334 0.5610 0.9324 0.5202 

 

When results of global semantic segmentation results are inspected, it is seen that FCN 

has the highest score for global accuracy for all cases while QuadP has comparable 

scores with FCN. For test cases 2, 3 and 4 where the illumination conditions, camera-

surface orientations and materials change, performance of SegNet significantly drops, 

especially in test 4. On the other hand, for mean accuracy which represents the average 

of class accuracies, results of SegNet is higher than FCN and QuadP. High score is 

SegNet is due to the accuracy of detecting cracks but also being susceptible to noise 

resulting in falsely classified background as cracks. IoU and Weighted IoU score of 

FCN and QuadP are comparable and observed to be higher than SegNet for test cases 

2, 3 and 4. For test case 1, even though QuadP scored the lowest, the result is 

comparable to counterparts. For BF score which evaluates how well the object 

contours match, FCN has the highest score for test 1 and test 3 while QuadP scored 

higher than FCN in test 4. Both have similar results in test case 2. To sum up, QuadP 

achieved comparable scores with highly acknowledge methods, even surpassing in 

challenging test cases. In order to obtain more information about the performances of 

methods, class based metrics are inspected.  

 

 



 

 

94 

Table 13. Class based semantic segmentation results for 4 test cases 

Case Method Class Accuracy IoU Mean BF 

Test 1 FCN Crack 0.4803 0.4779 0.9519 

Background 0.9999 0.9914 0.9691 

SegNet Crack 0.6936 0.5389 0.8960 

Background 0.9953 0.9903 0.9248 

QuadP Crack 0.8187 0.4101 0.8740 

Background 0.9836 0.9806 0.9219 

Test 2 FCN Crack 0.4318 0.3014 0.4395 

Background 0.9660 0.9247 0.5388 

SegNet Crack 0.9557 0.2973 0.201 

Background 0.8254 0.8227 0.2578 

QuadP Crack 0.5771 0.279 0.3763 

Background 0.9161 0.8866 0.5898 

Test 3 FCN Crack 0.6104 0.3778 0.7090 

Background 0.9910 0.9854 0.8230 

SegNet Crack 0.9286 0.1128 0.4241 

Background 0.8943 0.8934 0.5191 

QuadP Crack 0.7563 0.1734 0.3818 

Background 0.9509 0.9475 0.7061 

Test4 FCN Crack 0.6116 0.1597 0.3637 

Background 0.9531 0.9470 0.5234 

SegNet Crack 0.9388 0.0275 0.1046 

Background 0.4495 0.449 0.2304 

QuadP Crack 0.7174 0.177 0.3574 

Background 0.9494 0.9449 0.683 

 

For class based semantic segmentation evaluation, QuadP achieved promising results 

by achieving the highest accuracy for crack class in test 1, background class in test2. 

In general, FCN scored the highest background accuracy for all test cases while SegNet 

achieved high scores for crack accuracy for test cases 2, 3 and 4. However, class based 

accuracy can be misleading as only correctly classified pixels over ground truth pixels 

are calculated. Hence, if all the image is classified as crack by falsely classifying 

background, the crack accuracy would be 1. For this purpose, class based accuracies 

are evaluated together with IoU and Mean BF scores. For IoU scores, FCN has the 

highest scores for test case 1, 2 and 3 while for the most challenging task which deals 

with segmentation of brickwork surfaces, QuadP achieved the highest score. For other 

cases, QuadP also scored comparable to counterparts. When mean BF scores are 
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inspected, a similar result is observed. To sum up, FCN achieved to better than SegNet 

and QuadP for semantic segmentation metrics with close margin with QuadP. QuadP 

managed to score close scores to FCN, even surpassing SegNet and FCN in some of 

the challenging test cases.  

However, the outputs of these methods are only valuable if the results are adequate for 

crack measurements. For this purpose, second set of metrics are analyzed and summary 

of the analysis is shared in Table 14.  

 

Table 14. Number of objects and mean orientaion scores for 4 test cases 

  
Number Objects 

(percentage error) 

Number of 

Objects (count) 

Mean Orientation 

(percentage error) 

Test 1 FCN 22.852 18.6x 0.076 

SegNet 727.002 536.8x 0.108 

QuadP 4.685 4.3x 0.053 

Test 2 FCN 252.261 187.2x 0.177 

SegNet 6216.913 4906.9x 0.180 

QuadP 7.914 6.2x 0.293 

Test 3 FCN 186.751 49.1x 0.131 

SegNet 5510.248 2751.1x 0.149 

QuadP 9.974 4x 0.127 

Test 4 FCN 257.335 69.9x 0.328 

SegNet 10351.102 3470.8x 0.597 

QuadP 12.234 3.45x 0.177 

 

When number of objects and mean orientation scores are inspected, it is seen that FCN 

and SegNet fails to preserve object connectedness in cases which the object classes 

have low features which can be easily confused with background noise. While QuadP 

also suffers from losing object connectedness and prediction of more cracks than the 

truth, the results of FCN and SegNet are considerably higher than QuadP and ground 

truth which risks conduction of measurement with respect to semantic segmentation 

results. For mean orientation scores, QuadP scored the best by getting the lowest 

percentage error in three of four test cases with considerable gap between counterparts. 

For test case 2, FCN scored better than QuadP.  When the performances of networks 



 

 

96 

for classification task are inspected, VGG16 network scored its considerably low for 

the test case 2 with %90,45 accuracy and %91.3 CwA for the utilized network for the 

semantic segmentation tests. Hence, the performance of QuadP is also bounded by the 

%90,45 performance of VGG16 network utilized.  

When the results are observed visually, the rationale of performance scores both for 

semantic segmentation metrics and crack based metrics are evident. A sample 

comparison of original image, ground truth and results of QuadP, FCN and SegNet is 

shared in Figure 40Figure 39. 

 

 

Figure 40.Comparison of network outputs versus original image and ground truth. a) 

Input image, b) manually drawn ground truth, c) QuadP result, d) FCN result, e) 

SegNet result (drawn by author) 

 

As can be seen from the Figure 40, FCN and SegNet have finer outlines with respect 

to QuadP but crack connectedness is lost in many regions. While QuadP have tendency 

to overestimate crack region, FCN underestimates the crack width. On the other hand, 

SegNet has multiple segmentations and false classified pixels across the image canvas.  

The proposed method within the scope of this study is believed to fulfill the objectives 

mentioned previously as being precise, flexible, lightweight and robust. QuadP 

achieved considerable well in crack based metrics while having comparable results in 

semantic segmentation metrics. The scores of QuadP is doubtlessly effected with the 

performance of VGG16 network. However, it is believed that the performance can be 
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improved when QuadP method is utilized in conjunction with better performing 

networks or classification algorithms due its flexible nature.  

As a result, Chapter 5 explains semantic segmentation process with the utilization of 

CNN algorithms. Thus, it is aimed to provide in depth perception of how CNN’s 

operate by means of visualization of regions effecting the classification process. In 

addition, Chapter 5 constitutes examples of how the precision can be enhanced by 

means of utilizing various algorithms in conjunction and how case specific evaluation 

metrics can be devised and is crucial in determining the performance of CNN 

algorithms.  
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CHAPTER 6 

 

 

CONCLUSION 

 

 

 

Machine learning approaches and deep learning algorithms gained importance in the 

last two decades due to the availability of accumulated vast amount of data. When the 

contemporary technology and the means of data collection are taken into account, it is 

possible to foresee that the Big Data will continue to grow apace in terms of quantity 

and complexity. Correspondingly, the machine learning approaches and raw data 

processing algorithms, either deep learning or any other algorithm to be developed in 

future, will be prominent in the future. In order to survive in the data deluge and 

appraise useful information embedded in the mass of data, one needs to be able to have 

an insight on what this mass embodies, which part is relevant to the task and capability 

of formulating the task as a problem of learning from data. When the applicable fields 

of DL algorithms are considered, available data comprises more potentials than what 

can be achieved by only focusing on training phase, especially in cases which the 

subjective interpretation and personal taste are necessitated. In this context, data design 

term is introduced within the scope of this thesis as an instrument to control, 

collaborate with and evaluate the data and the algorithms to reach desired outcome.  

6.1 General Discussions 

Data design, which is defined and explained in depth in chapter 3, covers data related 

choices and their impacts in the course of utilizing deep learning or any other raw data 

processing framework. These choices include but not limited to data selection, 
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reformulation of the task in terms of selected data, establishing the compatibility 

between algorithm and data, and devising task specific evaluation/assessment metrics.  

Correspondingly, this study is constructed on the hypothesis of data design is one the 

most important act effecting the performance of raw data processing (i.e. deep 

learning) algorithms, and explores the questions of “how does data design influence 

output and evaluation of DL algorithm?”, “how can metrics for the evaluation of the 

results be determined?”, “is it possible to decide on optimal values for number and 

quality of data to guide data designers?” and “what is the relationship between data 

design and the structure of DL framework?”. The outline of the thesis in relation with 

the research questions, objectives and contributions are highlighted in Table 15. 

Accordingly, the present study aims to achieve the research objectives in four chapters. 

Chapter 2 inspects how the data is incorporated for problem solving in traditional 

machine learning and deep learning algorithms. Traditional ML and DL frameworks 

pose considerable differences even though the mathematics behind the algorithms are 

almost the same. The ways of handling problems with these two approaches 

necessitate different strategies due to the nature of data provided to each framework. 

While traditional ML algorithms necessitate explicit definition of the features relevant 

the task, DL algorithms conduct feature extraction within the framework. Hence, users 

are obliged to redefine the problem regarding the available and relevant data instead 

of an accustomed way of problem definition through constraints and logical 

presumptions. Breaking the routine way of problem definition for machine learning 

implementations provides an opportunity for working on problems which the relevant 

features cannot be decoded such as problems requiring intuitive decisions. On the other 

hand, data remains as the only instrument to define the problem and desired outcome, 

putting emphasis on both data selection and evaluation of the results. Both of these 

actions involve subjective interpretation to an extent, regardless of the complexity and 

nature of the problem. Yet, as the subjectivity involved in the data increases to reflect 

personal preferences, results can only be evaluated by the user who provides the data.  
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Being able to operate on raw data without explicitly defining the relevant features to 

the task has significant potentials, especially for disciplines such as architecture which 

comprises problems with varying complexities, scales and requirement of subjective 

interpretation. Especially, convolutional neural networks become prominent among 

DL algorithms for implementations in architecture due to the fact that CNN’s are 

capable of processing multidimensional raw data while conserving the spatial relations 

which is crucial for architecture.  

For elaboration of the discussion, crack detection in buildings is chosen as the case 

study with the aim of exemplifying the DL implementations. As crack detection is a 

straightforward task for human perception, objective evaluation of the results is 

possible. Yet, it is a challenging problem for DL algorithms at the same time, as cracks 

have limited visual features to be discriminated from non-crack objects such as 

shadows, foreign objects and irregularities on the surface. A comprehensive literature 

survey is conducted on machine learning implementations for crack detection 

including deep learning examples. As studies on crack detection in buildings are 

limited, the survey is extended to include infrastructures artifacts. Reported 

performances are compared in relation with how the data is handled in each study.  

As a result of the literature survey, it is observed that performance of CNN applications 

surpasses the traditional ML applications and number of studies employing CNN has 

considerably increased since 2015. It should be noted that the inspected studies focus 

on different application areas such as sewer pipes or buildings and the data employed 

in these studies are exclusive to the studies. Hence, the performance comparison is 

based on the reported results and does not reflect the superiority of any algorithm or 

approach but instead is perceived as a benchmark for the implementation phase of the 

study. One of the most significant findings of the study is that the data selection in 

terms of site of acquisition, quality and representativeness of data is implicitly referred 

in the applications and reasons for providing that particular dataset remains obscure. 

For this reason, it is not possible to trace the influence of data selection to the 

performance of the implementations.  
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Data design is introduced and discussed in depth as the major contribution of this thesis 

in Chapter 3. Data design aims to construct a frame for series of actions taken in the 

course of employing DL algorithms for custom problems. In that sense, data design is 

neither solely selection of data nor the task specific evaluation of the outcome but 

instead an end to end approach to process. For this purpose, the process is divided into 

three phases as pre DL, DL and post DL phases and decisions taken at each phase are 

determined together with the interrelations respectively. Study attaches utmost 

importance to pre and post DL phases as the relationship between DL algorithms and 

task is constructed in these phases by means of reformulating the task as a problem of 

learning from data and getting sensible inferences from the results DL algorithm 

outputs by means of using or devising task specific evaluation methods.  

Pre DL phase is composed of four tasks which are reformulation of the problem, 

determining the data representing the case and the solution, determining sutiable DL 

framework and crafting the data without altering the information with respect to the 

selected DL framework. The decisions taken at this phase directly effects DL and post 

DL phases in terms of configuring the DL structure, determining the DL parameters, 

determining evaluation method and case specific metrics. As illustrated and discussed 

in Chapter 3, the decisions taken at each phase are not in a linear order. Instead they 

are interrelated effecting each other and require holistic understanding of the data 

design process, field expertise and DL literacy. Chapter 3 also contributes to DL 

literacy by explaining the working principles of convolutional neural networks as an 

exemplary DL framework apt for applications in architecture. While scrutinizing 

mathematics and structure of CNN, the relevance of data design is also investigated. 

As data design is context sensitive for which the data and decisions are task specific, 

the discussion is pursued in Chapters 4 and 5 with the case of crack detection in 

buildings. 

Chapter 4 and Chapter 5 exemplifies data design process and demonstrates how DL 

algorithms can be utilized in architecture through crack detection in buildings. In 

addition, case study is used as a facilitator to investigate and identify the task 

specificity of data design in relation with its potentials and limitations. While Chapter 
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4 handles crack detection in image level, i.e. presence of crack in an image; Chapter 5 

focuses on pixel level predictions for the determination of crack region in an image.  

One of the contributions of this study is the comprehensive analysis of parameters 

effecting the performance of convolutional neural networks in crack detection task. 

For this purpose, 7 highly acknowledged pretrained networks are employed and a 

multidimensional analysis regarding training dataset size, number of training epochs, 

number of convolution layers and number of learnable parameters is conducted in 

Chapter 4. By this means, it is aimed to inspect how each of these parameters effect 

the training and testing performance so that further studies can employ this 

foreknowledge to start with wise guess for construction and/or implementation of 

CNN networks on crack detection. It is observed even though it is not possible to 

obtain a generic recipe for the data design process, it is possible to achieve optimal 

ranges specific to tasks.  

In the course of obtaining the most suitable network and parameters for crack 

detection, it is observed that pretrained networks converge rapidly and obtain high 

accuracy results. On the other hand, for crack detection task, confidence of the 

prediction is as valuable as the prediction itself revealing valuable information on how 

the algorithm behaves in the course of making predictions. For this purpose, 

confidence weighted accuracy (CwA) is proposed to differentiate between multiple 

networks having similar accuracies with respect to their confidences. Thus, 

introduction of CwA is regarded as a contribution to the field and an example of 

devising evaluation metrics for concerned task. 

Chapter 4 also demonstrates the power of CNN’s in the course of obtaining generic 

solutions. Even though the networks are only trained with images of crack on concrete 

surfaces, the resulting framework performed considerably successfully on brickwork 

and pavement images. Hence, it is possible to conclude that the trained networks 

obtained generic features defining the cracks and are applicable to other materials and 

cases even though they are not trained with the data of these materials.  

Similarly, Chapter 5 focuses on pixel level prediction of crack regions by means of 

semantic segmentation method. In that sense, the thesis constitutes the first study 
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which conducts the semantic segmentation of cracks on buildings as application area 

to be evaluated against semantic segmentation metrics. Even though semantic 

segmentation metrics provide valuable information based on pixel predictions, it is 

believed that each case require additional metrics in order to evaluate the compatibility 

of results with the desired outcome. For semantic segmentation of cracks, the outputs 

are expected to reveal crack properties for further analysis and inference on the 

severity of cracks. In that sense, conservation of crack connectedness and making 

predictions in correct orientation provide valuable information for the assessment of 

structural performance of buildings. For this purpose, case specific metrics (i.e. crack 

metrics) are proposed to evaluate the segmentation results besides semantic 

segmentation metrics. Similar to confidence weighted accuracy in Chapter 4, crack 

metrics are also contributions to the field and exemplifies of case specific metrics for 

the evaluation of the DL framework.  

In order to conduct crack segmentation, two highly acknowledged frameworks; 

namely Fully Convolutional Networks and SegNet, are utilized as well as QuadP 

framework which is proposed within the scope of this thesis. It is observed that both 

FCN and SegNet are prone to lose object connectivity even though obtaining high 

scores in segmentation metrics.  

One of the biggest contribution of the study can be evaluated as the introduction of a 

novel semantic segmentation method which combines quadtree algorithm and CNN. 

Proposed method is novel in terms of linking separate algorithms to benefit from their 

strong properties and by this way to develop a lightweight, flexible and yet precise and 

robust method for crack detection task. In that sense, QuadP embodies novel 

approaches to semantic segmentation. These approaches can be summarized as 

utilization of two meta axes for conservation of neighboring regions for quadtree 

division algorithms and handling probability distribution in 3D space to obtain a 

probability surface obtained from binary classification results. Achieving comparable 

results in semantic segmentation metrics and having better performance in crack based 

metrics without the requirement of ground truth images is a considerable success.  

Even though the study is proposed in consideration with crack detection, it is believed 
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that QuadP will have similar performance for semantic segmentation of subject which 

have only low level discriminative features such as blood veins or tree branches.  

In the light of the findings discussed above, it is confirmed that how the problem is 

reflected to deep learning algorithms and how the data is designated have an 

undeniable role in the success of the implementation. In order to get the best out of DL 

algorithms, the process of implementation must be perceived with a holistic view 

which is the core of data design.  

6.2 Recommendations for Future Work 

Data design, which is introduced within the scope of this thesis, is exemplified with a 

well-defined task in order to validate the postulate through quantifiable analysis. Yet, 

the importance of data design becomes more significant as the level of subjectivity 

involved in the task. For prospective studies, it is recommended to investigate the 

methods for evaluation of the results, especially for the tasks involving personal 

preferences. In that sense, documentation and publication of case specific DL 

evaluation metrics have utmost importance for guiding new researchers and for 

establishing a common ground for case specific implementations. Similarly, studies 

on case specific optimal ranges for parameters influencing the performance of DL 

algorithms are encouraged in order to provide foreknowledge to researchers.  

This study scratches the surface of possible implementations in architecture. Although 

handling highly complex and multidimensional architecture problems is not possible 

due to hardware limitations and lack of data, it is believed that each study focusing on 

partial implementations will provide priceless know-how and experience for future 

researchers. It is evident that hardware constraints will be resolved in near future. Yet, 

data acquisition for problems of architecture may not be possible for individual 

researcher which puts emphasis on publicly available data.  

In that sense, one of the challenges encountered in the process of conducting this study 

is the lack of standardized data. Absence of such data not only causes incompatibility 

of the studies, but also obliges researchers to spend invaluable time and effort for 

collection of data. It is evident that establishing standardized datasets targeting custom 
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tasks will accelerate the developments in deep learning and also increase effective use 

of DL algorithms in various fields. In addition, it will be possible to compare DL 

algorithms without the influence of data selection for specific cases.  

Within the scope of this thesis, operability of several algorithms in conjunction for 

precision enhancements is demonstrated with QuadP method. Yet, QuadP resides as 

an exemplary study among many possible algorithm combinations. As each case 

brings its own potentials and challenges, deliberate analysis is advised for searching 

for algorithms to fuse with ML or DL algorithms. In this respect, it would be possible 

to overcome the limitations of DL algorithms and achieve more precise or preferable 

results depending on the task.   
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PRETRAINED NETWORK ARCHITECTURES 

 

 

Table 16. AlexNet Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1 Convolution  x0 x1 11x11x3x96 96 

relu1 ReLu x1 x2     

norm1 
Local Response 

Normalization 
x2 x3     

pool1 Max Pooling x3 x4     

conv2 Convolution  x4 x5 5x5x48x255 256 

relu2 ReLu x5 x6     

norm2 
Local Response 

Normalization 
x6 x7     

pool2 Max Pooling x7 x8     

conv3 Convolution  x8 x9 3x3x256x384 384 

relu3 ReLu x9 x10     

conv4 Convolution  x10 x11 3x3x192x384 384 

relu4 ReLu x11 x12     

conv5 Convolution  x12 x13 3x3x192x256 256 

relu5 ReLu x13 x14     

pool5 Max Pooling x14 x15     

fc6 Convolution  x15 x16 6x6x256x4096 4096 

relu6 ReLu x16 x17     

fc7 Convolution  x17 x18 1x1x4096x4096 4096 

relu7 ReLu x18 x19     

fc8 Convolution  x19 x20 1x1x4096x1000 1000 

prob Softmax x20 x21     
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Table 17. VGG16 Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1_1 Convolution  x0 x1 3x3x3x64 64 

relu1_1 ReLu x1 x2     

conv1_2 Convolution  x2 x3 3x3x64x64 64 

relu1_2 ReLu x3 x4     

pool1 Max Pooling x4 x5     

conv2_1 Convolution  x5 x6 3x3x64x128 128 

relu2_1 ReLu x6 x7     

conv2_2 Convolution  x7 x8 3x3x128x128 128 

relu2_2 ReLu x8 x9     

pool2 Max Pooling x9 x10     

conv3_1 Convolution  x10 x11 3x3x128x256 256 

relu3_1 ReLu x11 x12     

conv3_2 Convolution  x12 x13 3x3x256x256 256 

relu3_2 ReLu x13 x14     

conv3_3 Convolution  x14 x15 3x3x256x256 256 

relu3_3 ReLu x15 x16     

pool3 Max Pooling x16 x17     

conv4_1 Convolution  x17 x18 3x3x256x512 512 

relu4_1 ReLu x18 x19     

conv4_2 Convolution  x19 x20 3x3x512x512 512 

relu4_2 ReLu x20 x21     

conv4_3 Convolution  x21 x22 3x3x512x512 512 

relu4_3 ReLu x22 x23     

pool4 Max Pooling x23 x24     

conv5_1 Convolution  x24 x25 3x3x512x512 512 

relu5_1 ReLu x25 x26     

conv5_2 Convolution  x26 x27 3x3x512x512 512 

relu5_2 ReLu x27 x28     

conv5_3 Convolution  x28 x29 3x3x512x512 512 

relu5_3 ReLu x29 x30     

pool5 Max Pooling x30 x31     

fc6 Convolution  x31 x32 7x7x512x4096 4096 

relu6 ReLu x32 x33     

fc7 Convolution  x33 x34 1x1x4096x4096 4096 

relu7 ReLu x34 x35     

fc8 Convolution  x35 x36 1x1x4096x1000 1000 

prob Softmax x36 x37     
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Table 18.VGG19 Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1_1 Convolution  x0 x1 3x3x3x64 64 

relu1_1 ReLu x1 x2     

conv1_2 Convolution  x2 x3 3x3x64x64 64 

relu1_2 ReLu x3 x4     

pool1 Max Pooling x4 x5     

conv2_1 Convolution  x5 x6 3x3x64x128 128 

relu2_1 ReLu x6 x7     

conv2_2 Convolution  x7 x8 3x3x128x128 128 

relu2_2 ReLu x8 x9     

pool2 Max Pooling x9 x10     

conv3_1 Convolution  x10 x11 3x3x128x256 256 

relu3_1 ReLu x11 x12     

conv3_2 Convolution  x12 x13 3x3x256x256 256 

relu3_2 ReLu x13 x14     

conv3_3 Convolution  x14 x15 3x3x256x256 256 

relu3_3 ReLu x15 x16     

conv3_4 Convolution  x16 x17 3x3x256x256 256 

relu3_4 ReLu x17 x18     

pool3 Max Pooling x18 x19     

conv4_1 Convolution  x19 x20 3x3x256x512 512 

relu4_1 ReLu x20 x21     

conv4_2 Convolution  x21 x22 3x3x512x512 512 

relu4_2 ReLu x22 x23     

conv4_3 Convolution  x23 x24 3x3x512x512 512 

relu4_3 ReLu x24 x25     

conv4_4 Convolution  x25 x26 3x3x512x512 512 

relu4_4 ReLu x26 x27     

pool4 Max Pooling x27 x28     

conv5_1 Convolution  x28 x29 3x3x512x512 512 

relu5_1 ReLu x29 x30     

conv5_2 Convolution  x30 x31 3x3x512x512 512 

relu5_2 ReLu x31 x32     

conv5_3 Convolution  x32 x33 3x3x512x512 512 

relu5_3 ReLu x33 x34     

conv5_4 Convolution  x34 x35 3x3x512x512 512 

relu5_4 ReLu x35 x36     

pool5 Max Pooling x36 x37     

fc6 Convolution  x37 x38 7x7x512x4096 4096 

relu6 ReLu x38 x39     

fc7 Convolution  x39 x40 1x1x4096x4096 4096 

relu7 ReLu x40 x41     

fc8 Convolution  x41 x42 1x1x4096x1000 1000 

prob Softmax x42 x43     
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Table 19. GoogleNet Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1 Convolution data conv1 7x7x3x64 64 

relu1 ReLu conv1 conv1x     

pool1 Max Pooling conv1x pool1     

norm1 
Local Response 

Normalization 
pool1 norm1     

reduction2 Convolution norm1 reduction2 1x1x64x64 64 

relu_reduction2 ReLu reduction2 reduction2x     

conv2 Convolution reduction2x conv2 3x3x64x192 192 

relu2 ReLu conv2 conv2x     

norm2 
Local Response 

Normalization 
conv2x norm2     

pool2 Max Pooling norm2 pool2     

icp1_reduction1 Convolution pool2 icp1_reduction1 1x1x192x96 96 

relu_icp1_reduction1 ReLu icp1_reduction1 icp1_reduction1x     

icp1_reduction2 Convolution pool2 icp1_reduction2 1x1x192x16 16 

relu_icp1_reduction2 ReLu icp1_reduction2 icp1_reduction2x     

icp1_pool Max Pooling pool2 icp1_pool     

icp1_out0 Convolution pool2 icp1_out0 1x1x192x64 64 

relu_icp1_out0 ReLu icp1_out0 icp1_out0x     

icp1_out1 Convolution icp1_reduction1x icp1_out1 3x3x96x128 128 

relu_icp1_out1 ReLu icp1_out1 icp1_out1x     

icp1_out2 Convolution icp1_reduction2x icp1_out2 5x5x16x32 32 

relu_icp1_out2 ReLu icp1_out2 icp1_out2x     

icp1_out3 Convolution icp1_pool icp1_out3 1x1x192x32 32 

relu_icp1_out3 ReLu icp1_out3 icp1_out3x     

icp2_in Concatenate 

icp1_out0x, 

icp1_out1x, 

icp1_out2x, 
icp1_out3x 

icp2_in     

icp2_reduction1 Convolution icp2_in icp2_reduction1 1x1x256x128 128 

relu_icp2_reduction1 ReLu icp2_reduction1 icp2_reduction1x     

icp2_reduction2 Convolution icp2_in icp2_reduction2 1x1x256x32 32 

relu_icp2_reduction2 ReLu icp2_reduction2 icp2_reduction2x     

icp2_pool Max Pooling icp2_in icp2_pool     

icp2_out0 Convolution icp2_in icp2_out0 1x1x256x128 128 

relu_icp2_out0 ReLu icp2_out0 icp2_out0x     

icp2_out1 Convolution icp2_reduction1x icp2_out1 3x3x128x192 192 

relu_icp2_out1 ReLu icp2_out1 icp2_out1x     

icp2_out2 Convolution icp2_reduction2x icp2_out2 5x5x32x96 96 

relu_icp2_out2 ReLu icp2_out2 icp2_out2x     

icp2_out3 Convolution icp2_pool icp2_out3 1x1x256x64 64 

relu_icp2_out3 ReLu icp2_out3 icp2_out3x     

icp2_out Concatenate 

icp2_out0x, 
icp2_out1x, 

icp2_out2x, 

icp2_out3x 

icp2_out     

icp3_in Max Pooling icp2_out icp3_in     

icp3_reduction1 Convolution icp3_in icp3_reduction1 1x1x480x96 96 

relu_icp3_reduction1 ReLu icp3_reduction1 icp3_reduction1x     

icp3_reduction2 Convolution icp3_in icp3_reduction2 1x1x480x16 16 

relu_icp3_reduction2 ReLu icp3_reduction2 icp3_reduction2x     

icp3_pool Max Pooling icp3_in icp3_pool     

icp3_out0 Convolution icp3_in icp3_out0 1x1x480x192 192 

relu_icp3_out0 ReLu icp3_out0 icp3_out0x     

icp3_out1 Convolution icp3_reduction1x icp3_out1 3x3x96x208 208 

relu_icp3_out1 ReLu icp3_out1 icp3_out1x     

icp3_out2 Convolution icp3_reduction2x icp3_out2 5x5x16x48 48 

relu_icp3_out2 ReLu icp3_out2 icp3_out2x     

icp3_out3 Convolution icp3_pool icp3_out3 1x1x480x64 64 

relu_icp3_out3 ReLu icp3_out3 icp3_out3x     
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Table 19. GoogleNet Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

icp3_out Concatenate 

icp3_out0x, 

icp3_out1x, 
icp3_out2x, 

icp3_out3x 

icp3_out     

cls1_pool Max Pooling icp3_out cls1_pool     

cls1_reduction Convolution cls1_pool cls1_reduction 1x1x512x128 128 

relu_cls1_reduction ReLu cls1_reduction cls1_reductionx     

cls1_fc1 Convolution cls1_reductionx cls1_fc1 4x4x128x1024 1024 

relu_cls1_fc1 ReLu cls1_fc1 cls1_fc1x     

cls1_fc2 Convolution cls1_fc1x cls1_fc2 1x1x1024x1000 1000 

icp4_reduction1 Convolution icp3_out icp4_reduction1 1x1x512x112 112 

relu_icp4_reduction1 ReLu icp4_reduction1 icp4_reduction1x     

icp4_reduction2 Convolution icp3_out icp4_reduction2 1x1x512x24 24 

relu_icp4_reduction2 ReLu icp4_reduction2 icp4_reduction2x     

icp4_pool Max Pooling icp3_out icp4_pool     

icp4_out0 Convolution icp3_out icp4_out0 1x1x512x160 160 

relu_icp4_out0 ReLu icp4_out0 icp4_out0x     

icp4_out1 Convolution icp4_reduction1x icp4_out1 3x3x112x224 224 

relu_icp4_out1 ReLu icp4_out1 icp4_out1x     

icp4_out2 Convolution icp4_reduction2x icp4_out2 5x5x24x64 64 

relu_icp4_out2 ReLu icp4_out2 icp4_out2x     

icp4_out3 Convolution icp4_pool icp4_out3 1x1x512x64 64 

relu_icp4_out3 ReLu icp4_out3 icp4_out3x     

icp4_out Concatenation 

icp4_out0x, 

icp4_out1x, 

icp4_out2x, 
icp4_out3x 

icp4_out     

icp5_reduction1 Convolution icp4_out icp5_reduction1 1x1x512x128 128 

relu_icp5_reduction1 ReLu icp5_reduction1 icp5_reduction1x     

icp5_reduction2 Convolution icp4_out icp5_reduction2 1x1x512x24 24 

relu_icp5_reduction2 ReLu icp5_reduction2 icp5_reduction2x     

icp5_pool Max Pooling icp4_out icp5_pool     

icp5_out0 Convolution icp4_out icp5_out0 1x1x512x128 128 

relu_icp5_out0 ReLu icp5_out0 icp5_out0x     

icp5_out1 Convolution icp5_reduction1x icp5_out1 3x3x128x256 256 

relu_icp5_out1 ReLu icp5_out1 icp5_out1x     

icp5_out2 Convolution icp5_reduction2x icp5_out2 5x5x24x64 64 

relu_icp5_out2 ReLu icp5_out2 icp5_out2x     

icp5_out3 Convolution icp5_pool icp5_out3 1x1x512x64 64 

relu_icp5_out3 ReLu icp5_out3 icp5_out3x     

icp5_out Concatenation 

icp5_out0x, 

icp5_out1x, 
icp5_out2x, 

icp5_out3x 

icp5_out     

icp6_reduction1 Convolution icp5_out icp6_reduction1 1x1x512x144 144 

relu_icp6_reduction1 ReLu icp6_reduction1 icp6_reduction1x     

icp6_reduction2 Convolution icp5_out icp6_reduction2 1x1x512x32 32 

relu_icp6_reduction2 ReLu icp6_reduction2 icp6_reduction2x     

icp6_pool Max Pooling icp5_out icp6_pool     

icp6_out0 Convolution icp5_out icp6_out0 1x1x512x112 112 

relu_icp6_out0 ReLu icp6_out0 icp6_out0x     

icp6_out1 Convolution icp6_reduction1x icp6_out1 3x3x144x288 288 

relu_icp6_out1 ReLu icp6_out1 icp6_out1x     

icp6_out2 Convolution icp6_reduction2x icp6_out2 5x5x32x64 64 

relu_icp6_out2 ReLu icp6_out2 icp6_out2x     

icp6_out3 Convolution icp6_pool icp6_out3 1x1x512x64 64 

relu_icp6_out3 ReLu icp6_out3 icp6_out3x     

icp6_out Concatenation 

icp6_out0x, 
icp6_out1x, 

icp6_out2x, 
icp6_out3x 

icp6_out     

cls2_pool Max Pooling icp6_out cls2_pool     
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Table 19. GoogleNet Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

cls2_reduction Convolution cls2_pool cls2_reduction 1x1x528x128 128 

relu_cls2_reduction ReLu cls2_reduction cls2_reductionx     

cls2_fc1 Convolution cls2_reductionx cls2_fc1 4x4x128x1024 1024 

relu_cls2_fc1 ReLu cls2_fc1 cls2_fc1x     

cls2_fc2 Convolution cls2_fc1x cls2_fc2 1x1x1024x1000 1000 

icp7_reduction1 Convolution icp6_out icp7_reduction1 1x1x528x160 160 

relu_icp7_reduction1 ReLu icp7_reduction1 icp7_reduction1x     

icp7_reduction2 Convolution icp6_out icp7_reduction2 1x1x528x32 32 

relu_icp7_reduction2 ReLu icp7_reduction2 icp7_reduction2x     

icp7_pool Max Pooling icp6_out icp7_pool     

icp7_out0 Convolution icp6_out icp7_out0 1x1x528x256 256 

relu_icp7_out0 ReLu icp7_out0 icp7_out0x     

icp7_out1 Convolution icp7_reduction1x icp7_out1 3x3x160x320 320 

relu_icp7_out1 ReLu icp7_out1 icp7_out1x     

icp7_out2 Convolution icp7_reduction2x icp7_out2 5x5x32x128 128 

relu_icp7_out2 ReLu icp7_out2 icp7_out2x     

icp7_out3 Convolution icp7_pool icp7_out3 1x1x528x128 128 

relu_icp7_out3 ReLu icp7_out3 icp7_out3x     

icp7_out Concatenation 

icp7_out0x, 
icp7_out1x, 

icp7_out2x, 

icp7_out3x 

icp7_out     

icp8_in Max Pooling icp7_out icp8_in     

icp8_reduction1 Convolution icp8_in icp8_reduction1 1x1x832x160 160 

relu_icp8_reduction1 ReLu icp8_reduction1 icp8_reduction1x     

icp8_reduction2 Convolution icp8_in icp8_reduction2 1x1x832x32 32 

relu_icp8_reduction2 ReLu icp8_reduction2 icp8_reduction2x     

icp8_pool Max Pooling icp8_in icp8_pool     

icp8_out0 Convolution icp8_in icp8_out0 1x1x832x256 256 

relu_icp8_out0 ReLu icp8_out0 icp8_out0x     

icp8_out1 Convolution icp8_reduction1x icp8_out1 3x3x160x320 320 

relu_icp8_out1 ReLu icp8_out1 icp8_out1x     

icp8_out2 Convolution icp8_reduction2x icp8_out2 5x5x32x128 128 

relu_icp8_out2 ReLu icp8_out2 icp8_out2x     

icp8_out3 Convolution icp8_pool icp8_out3 1x1x832x128 128 

relu_icp8_out3 ReLu icp8_out3 icp8_out3x     

icp8_out Concatenation 

icp8_out0x, 

icp8_out1x, 
icp8_out2x, 

icp8_out3x 

icp8_out     

icp9_reduction1 Convolution icp8_out icp9_reduction1 1x1x832x192 192 

relu_icp9_reduction1 ReLu icp9_reduction1 icp9_reduction1x     

icp9_reduction2 Convolution icp8_out icp9_reduction2 1x1x832x48 48 

relu_icp9_reduction2 ReLu icp9_reduction2 icp9_reduction2x     

icp9_pool Max Pooling icp8_out icp9_pool     

icp9_out0 Convolution icp8_out icp9_out0 1x1x832x384 384 

relu_icp9_out0 ReLu icp9_out0 icp9_out0x     

icp9_out1 Convolution icp9_reduction1x icp9_out1 3x3x192x384 384 

relu_icp9_out1 ReLu icp9_out1 icp9_out1x     

icp9_out2 Convolution icp9_reduction2x icp9_out2 5x5x48x128 128 

relu_icp9_out2 ReLu icp9_out2 icp9_out2x     

icp9_out3 Convolution icp9_pool icp9_out3 1x1x832x128 128 

relu_icp9_out3 ReLu icp9_out3 icp9_out3x     

icp9_out Concatenation 

icp9_out0x, 
icp9_out1x, 

icp9_out2x, 

icp9_out3x 

icp9_out     

cls3_pool Max Pooling icp9_out cls3_pool     

cls3_fc Convolution cls3_pool cls3_fc 1x1x1024x1000 1000 

softmax Softmax cls3_fc prob     
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Table 20.ResNet50 Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1 Convolution data conv1 7x7x3x64 64 

bn_conv1 
Batch 
Normalization 

conv1 conv1x     

conv1_relu ReLu conv1x conv1xxx     

pool1 Max Pooling conv1xxx pool1     

res2a_branch1 Convolution pool1 res2a_branch1 1x1x64x256 256 

bn2a_branch1 
Batch 
Normalization 

res2a_branch1 res2a_branch1x     

res2a_branch2a Convolution pool1 res2a_branch2a 1x1x64x64 64 

bn2a_branch2a 
Batch 

Normalization 
res2a_branch2a res2a_branch2ax     

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx     

res2a_branch2b Convolution res2a_branch2axxx res2a_branch2b 3x3x64x64 64 

bn2a_branch2b 
Batch 

Normalization 
res2a_branch2b res2a_branch2bx     

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx     

res2a_branch2c Convolution res2a_branch2bxxx res2a_branch2c 1x1x64x256 256 

bn2a_branch2c 
Batch 

Normalization 
res2a_branch2c res2a_branch2cx     

res2a Summation 
res2a_branch1x, 
res2a_branch2cx 

res2a     

res2a_relu ReLu res2a res2ax     

res2b_branch2a Convolution res2ax res2b_branch2a 1x1x256x64 64 

bn2b_branch2a 
Batch 

Normalization 
res2b_branch2a res2b_branch2ax     

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx     

res2b_branch2b Convolution res2b_branch2axxx res2b_branch2b 3x3x64x64 64 

bn2b_branch2b 
Batch 

Normalization 
res2b_branch2b res2b_branch2bx     

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx     

res2b_branch2c Convolution res2b_branch2bxxx res2b_branch2c 1x1x64x256 256 

bn2b_branch2c 
Batch 

Normalization 
res2b_branch2c res2b_branch2cx     

res2b Summation 
res2ax, 
res2b_branch2cx 

res2b     

res2b_relu ReLu res2b res2bx     

res2c_branch2a Convolution res2bx res2c_branch2a 1x1x256x64 64 

bn2c_branch2a 
Batch 
Normalization 

res2c_branch2a res2c_branch2ax     

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx     

res2c_branch2b Convolution res2c_branch2axxx res2c_branch2b 3x3x64x64 64 

bn2c_branch2b 
Batch 

Normalization 
res2c_branch2b res2c_branch2bx     

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx     

res2c_branch2c Convolution res2c_branch2bxxx res2c_branch2c 1x1x64x256 256 

bn2c_branch2c 
Batch 

Normalization 
res2c_branch2c res2c_branch2cx     

res2c Summation 
res2bx, 
res2c_branch2cx 

res2c     

res2c_relu ReLu res2c res2cx     

res3a_branch1 Convolution res2cx res3a_branch1 1x1x256x512 512 

bn3a_branch1 
Batch 
Normalization 

res3a_branch1 res3a_branch1x     

res3a_branch2a Convolution res2cx res3a_branch2a 1x1x256x128 128 

bn3a_branch2a 
Batch 

Normalization 
res3a_branch2a res3a_branch2ax     

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx     

res3a_branch2b Convolution res3a_branch2axxx res3a_branch2b 3x3x128x128 128 

bn3a_branch2b 
Batch 

Normalization 
res3a_branch2b res3a_branch2bx     

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx     

res3a_branch2c Convolution res3a_branch2bxxx res3a_branch2c 1x1x128x512 512 
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Table 20. ResNet50 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn3a_branch2c 
Batch 

Normalization 
res3a_branch2c res3a_branch2cx     

res3a Summation 
res3a_branch1x, 

res3a_branch2cx 
res3a     

res3a_relu ReLu res3a res3ax     

res3b_branch2a Convolution res3ax res3b_branch2a 1x1x512x128 128 

bn3b_branch2a 
Batch 
Normalization 

res3b_branch2a res3b_branch2ax     

res3b_branch2a_relu ReLu res3b_branch2ax res3b_branch2axxx     

res3b_branch2b Convolution res3b_branch2axxx res3b_branch2b 3x3x128x128 128 

bn3b_branch2b 
Batch 
Normalization 

res3b_branch2b res3b_branch2bx     

res3b_branch2b_relu ReLu res3b_branch2bx res3b_branch2bxxx     

res3b_branch2c Convolution res3b_branch2bxxx res3b_branch2c 1x1x128x512 512 

bn3b_branch2c 
Batch 
Normalization 

res3b_branch2c res3b_branch2cx     

res3b Summation 
res3ax, 

res3b_branch2cx 
res3b     

res3b_relu ReLu res3b res3bx     

res3c_branch2a Convolution res3bx res3c_branch2a 1x1x512x128 128 

bn3c_branch2a 
Batch 

Normalization 
res3c_branch2a res3c_branch2ax     

res3c_branch2a_relu ReLu res3c_branch2ax res3c_branch2axxx     

res3c_branch2b Convolution res3c_branch2axxx res3c_branch2b 3x3x128x128 128 

bn3c_branch2b 
Batch 
Normalization 

res3c_branch2b res3c_branch2bx     

res3c_branch2b_relu ReLu res3c_branch2bx res3c_branch2bxxx     

res3c_branch2c Convolution res3c_branch2bxxx res3c_branch2c 1x1x128x512 512 

bn3c_branch2c 
Batch 
Normalization 

res3c_branch2c res3c_branch2cx     

res3c Summation 
res3bx, 

res3c_branch2cx 
res3c     

res3c_relu ReLu res3c res3cx     

res3d_branch2a Convolution res3cx res3d_branch2a 1x1x512x128 128 

bn3d_branch2a 
Batch 

Normalization 
res3d_branch2a res3d_branch2ax     

res3d_branch2a_relu ReLu res3d_branch2ax res3d_branch2axxx     

res3d_branch2b Convolution res3d_branch2axxx res3d_branch2b 3x3x128x128 128 

bn3d_branch2b 
Batch 

Normalization 
res3d_branch2b res3d_branch2bx     

res3d_branch2b_relu ReLu res3d_branch2bx res3d_branch2bxxx     

res3d_branch2c Convolution res3d_branch2bxxx res3d_branch2c 1x1x128x512 512 

bn3d_branch2c 
Batch 
Normalization 

res3d_branch2c res3d_branch2cx     

res3d Summation 
res3cx, 

res3d_branch2cx 
res3d     

res3d_relu ReLu res3d res3dx     

res4a_branch1 Convolution res3dx res4a_branch1 1x1x512x1024 1024 

bn4a_branch1 
Batch 

Normalization 
res4a_branch1 res4a_branch1x     

res4a_branch2a Convolution res3dx res4a_branch2a 1x1x512x256 256 

bn4a_branch2a 
Batch 
Normalization 

res4a_branch2a res4a_branch2ax     

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx     

res4a_branch2b Convolution res4a_branch2axxx res4a_branch2b 3x3x256x256 256 

bn4a_branch2b 
Batch 
Normalization 

res4a_branch2b res4a_branch2bx     

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx     

res4a_branch2c Convolution res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024 

bn4a_branch2c 
Batch 
Normalization 

res4a_branch2c res4a_branch2cx     
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Table 20. ResNet50 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4a Summation 
res4a_branch1x, 

res4a_branch2cx 
res4a     

res4a_relu ReLu res4a res4ax     

res4b_branch2a Convolution res4ax res4b_branch2a 1x1x1024x256 256 

bn4b_branch2a 
Batch 

Normalization 
res4b_branch2a res4b_branch2ax     

res4b_branch2a_relu ReLu res4b_branch2ax res4b_branch2axxx     

res4b_branch2b Convolution res4b_branch2axxx res4b_branch2b 3x3x256x256 256 

bn4b_branch2b 
Batch 

Normalization 
res4b_branch2b res4b_branch2bx     

res4b_branch2b_relu ReLu res4b_branch2bx res4b_branch2bxxx     

res4b_branch2c Convolution res4b_branch2bxxx res4b_branch2c 1x1x256x1024 1024 

bn4b_branch2c 
Batch 

Normalization 
res4b_branch2c res4b_branch2cx     

res4b Summation 
res4ax, 
res4b_branch2cx 

res4b     

res4b_relu ReLu res4b res4bx     

res4c_branch2a Convolution res4bx res4c_branch2a 1x1x1024x256 256 

bn4c_branch2a 
Batch 

Normalization 
res4c_branch2a res4c_branch2ax     

res4c_branch2a_relu ReLu res4c_branch2ax res4c_branch2axxx     

res4c_branch2b Convolution res4c_branch2axxx res4c_branch2b 3x3x256x256 256 

bn4c_branch2b 
Batch 

Normalization 
res4c_branch2b res4c_branch2bx     

res4c_branch2b_relu ReLu res4c_branch2bx res4c_branch2bxxx     

res4c_branch2c Convolution res4c_branch2bxxx res4c_branch2c 1x1x256x1024 1024 

bn4c_branch2c 
Batch 

Normalization 
res4c_branch2c res4c_branch2cx     

res4c Summation 
res4bx, 
res4c_branch2cx 

res4c     

res4c_relu ReLu res4c res4cx     

res4d_branch2a Convolution res4cx res4d_branch2a 1x1x1024x256 256 

bn4d_branch2a 
Batch 

Normalization 
res4d_branch2a res4d_branch2ax     

res4d_branch2a_relu ReLu res4d_branch2ax res4d_branch2axxx     

res4d_branch2b Convolution res4d_branch2axxx res4d_branch2b 3x3x256x256 256 

bn4d_branch2b 
Batch 

Normalization 
res4d_branch2b res4d_branch2bx     

res4d_branch2b_relu ReLu res4d_branch2bx res4d_branch2bxxx     

res4d_branch2c Convolution res4d_branch2bxxx res4d_branch2c 1x1x256x1024 1024 

bn4d_branch2c 
Batch 

Normalization 
res4d_branch2c res4d_branch2cx     

res4d Summation 
res4cx, 
res4d_branch2cx 

res4d     

res4d_relu ReLu res4d res4dx     

res4e_branch2a Convolution res4dx res4e_branch2a 1x1x1024x256 256 

bn4e_branch2a 
Batch 
Normalization 

res4e_branch2a res4e_branch2ax     

res4e_branch2a_relu ReLu res4e_branch2ax res4e_branch2axxx     

res4e_branch2b Convolution res4e_branch2axxx res4e_branch2b 3x3x256x256 256 

bn4e_branch2b 
Batch 

Normalization 
res4e_branch2b res4e_branch2bx     

res4e_branch2b_relu ReLu res4e_branch2bx res4e_branch2bxxx     

res4e_branch2c Convolution res4e_branch2bxxx res4e_branch2c 1x1x256x1024 1024 

bn4e_branch2c 
Batch 

Normalization 
res4e_branch2c res4e_branch2cx     

res4e Summation 
res4dx, 
res4e_branch2cx 

res4e     

res4e_relu ReLu res4e res4ex     

res4f_branch2a Convolution res4ex res4f_branch2a 1x1x1024x256 256 

bn4f_branch2a 
Batch 
Normalization 

res4f_branch2a res4f_branch2ax     
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Table 20. ResNet50 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4f_branch2a_relu ReLu res4f_branch2ax res4f_branch2axxx     

res4f_branch2b Convolution res4f_branch2axxx res4f_branch2b 3x3x256x256 256 

bn4f_branch2b 
Batch 
Normalization 

res4f_branch2b res4f_branch2bx     

res4f_branch2b_relu ReLu res4f_branch2bx res4f_branch2bxxx     

res4f_branch2c Convolution res4f_branch2bxxx res4f_branch2c 1x1x256x1024 1024 

bn4f_branch2c 
Batch 
Normalization 

res4f_branch2c res4f_branch2cx     

res4f Summation 
res4ex, 

res4f_branch2cx 
res4f     

res4f_relu ReLu res4f res4fx     

res5a_branch1 Convolution res4fx res5a_branch1 1x1x1024x2048 2048 

bn5a_branch1 
Batch 

Normalization 
res5a_branch1 res5a_branch1x     

res5a_branch2a Convolution res4fx res5a_branch2a 1x1x1024x512 512 

bn5a_branch2a 
Batch 
Normalization 

res5a_branch2a res5a_branch2ax     

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx     

res5a_branch2b Convolution res5a_branch2axxx res5a_branch2b 3x3x512x512 512 

bn5a_branch2b 
Batch 
Normalization 

res5a_branch2b res5a_branch2bx     

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx     

res5a_branch2c Convolution res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048 

bn5a_branch2c 
Batch 

Normalization 
res5a_branch2c res5a_branch2cx     

res5a Summation 
res5a_branch1x, 

res5a_branch2cx 
res5a     

res5a_relu ReLu res5a res5ax     

res5b_branch2a Convolution res5ax res5b_branch2a 1x1x2048x512 512 

bn5b_branch2a 
Batch 
Normalization 

res5b_branch2a res5b_branch2ax     

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx     

res5b_branch2b Convolution res5b_branch2axxx res5b_branch2b 3x3x512x512 512 

bn5b_branch2b 
Batch 
Normalization 

res5b_branch2b res5b_branch2bx     

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx     

res5b_branch2c Convolution res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048 

bn5b_branch2c 
Batch 
Normalization 

res5b_branch2c res5b_branch2cx     

res5b Summation 
res5ax, 

res5b_branch2cx 
res5b     

res5b_relu ReLu res5b res5bx     

res5c_branch2a Convolution res5bx res5c_branch2a 1x1x2048x512 512 

bn5c_branch2a 
Batch 

Normalization 
res5c_branch2a res5c_branch2ax     

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx     

res5c_branch2b Convolution res5c_branch2axxx res5c_branch2b 3x3x512x512 512 

bn5c_branch2b 
Batch 
Normalization 

res5c_branch2b res5c_branch2bx     

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx     

res5c_branch2c Convolution res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048 

bn5c_branch2c 
Batch 
Normalization 

res5c_branch2c res5c_branch2cx     

res5c Summation 
res5bx, 

res5c_branch2cx 
res5c     

res5c_relu ReLu res5c res5cx     

pool5 
Average 
Pooling 

res5cx pool5     

fc1000 Convolution pool5 fc1000 1x1x2048x1000 1000 

prob SoftMax fc1000 prob     
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Table 21. ResNet101 Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1 Convolutional data conv1 7x7x3x64 64 

bn_conv1 
Batch 
Normalization 

conv1 conv1x     

conv1_relu ReLu conv1x conv1xxx     

pool1 Max Pooling conv1xxx pool1     

res2a_branch1 Convolutional pool1 res2a_branch1 1x1x64x256 256 

bn2a_branch1 
Batch 
Normalization 

res2a_branch1 res2a_branch1x     

res2a_branch2a Convolutional pool1 res2a_branch2a 1x1x64x64 64 

bn2a_branch2a 
Batch 

Normalization 
res2a_branch2a res2a_branch2ax     

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx     

res2a_branch2b Convolutional res2a_branch2axxx res2a_branch2b 3x3x64x64 64 

bn2a_branch2b 
Batch 

Normalization 
res2a_branch2b res2a_branch2bx     

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx     

res2a_branch2c Convolutional res2a_branch2bxxx res2a_branch2c 1x1x64x256 256 

bn2a_branch2c 
Batch 

Normalization 
res2a_branch2c res2a_branch2cx     

res2a Summation 
res2a_branch1x, 
res2a_branch2cx 

res2a     

res2a_relu ReLu res2a res2ax     

res2b_branch2a Convolutional res2ax res2b_branch2a 1x1x256x64 64 

bn2b_branch2a 
Batch 

Normalization 
res2b_branch2a res2b_branch2ax     

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx     

res2b_branch2b Convolutional res2b_branch2axxx res2b_branch2b 3x3x64x64 64 

bn2b_branch2b 
Batch 

Normalization 
res2b_branch2b res2b_branch2bx     

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx     

res2b_branch2c Convolutional res2b_branch2bxxx res2b_branch2c 1x1x64x256 256 

bn2b_branch2c 
Batch 

Normalization 
res2b_branch2c res2b_branch2cx     

res2b Summation 
res2ax, 
res2b_branch2cx 

res2b     

res2b_relu ReLu res2b res2bx     

res2c_branch2a Convolutional res2bx res2c_branch2a 1x1x256x64 64 

bn2c_branch2a 
Batch 
Normalization 

res2c_branch2a res2c_branch2ax     

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx     

res2c_branch2b Convolutional res2c_branch2axxx res2c_branch2b 3x3x64x64 64 

bn2c_branch2b 
Batch 

Normalization 
res2c_branch2b res2c_branch2bx     

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx     

res2c_branch2c Convolutional res2c_branch2bxxx res2c_branch2c 1x1x64x256 256 

bn2c_branch2c 
Batch 

Normalization 
res2c_branch2c res2c_branch2cx     

res2c Summation 
res2bx, 
res2c_branch2cx 

res2c     

res2c_relu ReLu res2c res2cx     

res3a_branch1 Convolutional res2cx res3a_branch1 1x1x256x512 512 

bn3a_branch1 
Batch 
Normalization 

res3a_branch1 res3a_branch1x     

res3a_branch2a Convolutional res2cx res3a_branch2a 1x1x256x128 128 

bn3a_branch2a 
Batch 

Normalization 
res3a_branch2a res3a_branch2ax     

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx     

res3a_branch2b Convolutional res3a_branch2axxx res3a_branch2b 3x3x128x128 128 

bn3a_branch2b 
Batch 

Normalization 
res3a_branch2b res3a_branch2bx     

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx     

res3a_branch2c Convolutional res3a_branch2bxxx res3a_branch2c 1x1x128x512 512 



 

 

128 

Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn3a_branch2c 
Batch 

Normalization 
res3a_branch2c res3a_branch2cx     

res3a Summation 
res3a_branch1x, 

res3a_branch2cx 
res3a     

res3a_relu ReLu res3a res3ax     

res3b1_branch2a Convolutional res3ax res3b1_branch2a 1x1x512x128 128 

bn3b1_branch2a 
Batch 
Normalization 

res3b1_branch2a res3b1_branch2ax     

res3b1_branch2a_relu ReLu res3b1_branch2ax res3b1_branch2axxx     

res3b1_branch2b Convolutional res3b1_branch2axxx res3b1_branch2b 3x3x128x128 128 

bn3b1_branch2b 
Batch 
Normalization 

res3b1_branch2b res3b1_branch2bx     

res3b1_branch2b_relu ReLu res3b1_branch2bx res3b1_branch2bxxx     

res3b1_branch2c Convolutional res3b1_branch2bxxx res3b1_branch2c 1x1x128x512 512 

bn3b1_branch2c 
Batch 
Normalization 

res3b1_branch2c res3b1_branch2cx     

res3b1 Summation 
res3ax, 

res3b1_branch2cx 
res3b1     

res3b1_relu ReLu res3b1 res3b1x     

res3b2_branch2a Convolutional res3b1x res3b2_branch2a 1x1x512x128 128 

bn3b2_branch2a 
Batch 

Normalization 
res3b2_branch2a res3b2_branch2ax     

res3b2_branch2a_relu ReLu res3b2_branch2ax res3b2_branch2axxx     

res3b2_branch2b Convolutional res3b2_branch2axxx res3b2_branch2b 3x3x128x128 128 

bn3b2_branch2b 
Batch 
Normalization 

res3b2_branch2b res3b2_branch2bx     

res3b2_branch2b_relu ReLu res3b2_branch2bx res3b2_branch2bxxx     

res3b2_branch2c Convolutional res3b2_branch2bxxx res3b2_branch2c 1x1x128x512 512 

bn3b2_branch2c 
Batch 
Normalization 

res3b2_branch2c res3b2_branch2cx     

res3b2 Summation 
res3b1x, 

res3b2_branch2cx 
res3b2     

res3b2_relu ReLu res3b2 res3b2x     

res3b3_branch2a Convolutional res3b2x res3b3_branch2a 1x1x512x128 128 

bn3b3_branch2a 
Batch 

Normalization 
res3b3_branch2a res3b3_branch2ax     

res3b3_branch2a_relu ReLu res3b3_branch2ax res3b3_branch2axxx     

res3b3_branch2b Convolutional res3b3_branch2axxx res3b3_branch2b 3x3x128x128 128 

bn3b3_branch2b 
Batch 

Normalization 
res3b3_branch2b res3b3_branch2bx     

res3b3_branch2b_relu ReLu res3b3_branch2bx res3b3_branch2bxxx     

res3b3_branch2c Convolutional res3b3_branch2bxxx res3b3_branch2c 1x1x128x512 512 

bn3b3_branch2c 
Batch 
Normalization 

res3b3_branch2c res3b3_branch2cx     

res3b3 Summation 
res3b2x, 

res3b3_branch2cx 
res3b3     

res3b3_relu ReLu res3b3 res3b3x     

res4a_branch1 Convolutional res3b3x res4a_branch1 1x1x512x1024 1024 

bn4a_branch1 
Batch 

Normalization 
res4a_branch1 res4a_branch1x     

res4a_branch2a Convolutional res3b3x res4a_branch2a 1x1x512x256 256 

bn4a_branch2a 
Batch 
Normalization 

res4a_branch2a res4a_branch2ax     

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx     

res4a_branch2b Convolutional res4a_branch2axxx res4a_branch2b 3x3x256x256 256 

bn4a_branch2b 
Batch 
Normalization 

res4a_branch2b res4a_branch2bx     

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx     

res4a_branch2c Convolutional res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024 

bn4a_branch2c 
Batch 
Normalization 

res4a_branch2c res4a_branch2cx     
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4a Summation 
res4a_branch1x, 

res4a_branch2cx 
res4a     

res4a_relu ReLu res4a res4ax     

res4b1_branch2a Convolutional res4ax res4b1_branch2a 1x1x1024x256 256 

bn4b1_branch2a 
Batch 

Normalization 
res4b1_branch2a res4b1_branch2ax     

res4b1_branch2a_relu ReLu res4b1_branch2ax res4b1_branch2axxx     

res4b1_branch2b Convolutional res4b1_branch2axxx res4b1_branch2b 3x3x256x256 256 

bn4b1_branch2b 
Batch 

Normalization 
res4b1_branch2b res4b1_branch2bx     

res4b1_branch2b_relu ReLu res4b1_branch2bx res4b1_branch2bxxx     

res4b1_branch2c Convolutional res4b1_branch2bxxx res4b1_branch2c 1x1x256x1024 1024 

bn4b1_branch2c 
Batch 

Normalization 
res4b1_branch2c res4b1_branch2cx     

res4b1 Summation 
res4ax, 
res4b1_branch2cx 

res4b1     

res4b1_relu ReLu res4b1 res4b1x     

res4b2_branch2a Convolutional res4b1x res4b2_branch2a 1x1x1024x256 256 

bn4b2_branch2a 
Batch 

Normalization 
res4b2_branch2a res4b2_branch2ax     

res4b2_branch2a_relu ReLu res4b2_branch2ax res4b2_branch2axxx     

res4b2_branch2b Convolutional res4b2_branch2axxx res4b2_branch2b 3x3x256x256 256 

bn4b2_branch2b 
Batch 

Normalization 
res4b2_branch2b res4b2_branch2bx     

res4b2_branch2b_relu ReLu res4b2_branch2bx res4b2_branch2bxxx     

res4b2_branch2c Convolutional res4b2_branch2bxxx res4b2_branch2c 1x1x256x1024 1024 

bn4b2_branch2c 
Batch 

Normalization 
res4b2_branch2c res4b2_branch2cx     

res4b2 Summation 
res4b1x, 
res4b2_branch2cx 

res4b2     

res4b2_relu ReLu res4b2 res4b2x     

res4b3_branch2a Convolutional res4b2x res4b3_branch2a 1x1x1024x256 256 

bn4b3_branch2a 
Batch 

Normalization 
res4b3_branch2a res4b3_branch2ax     

res4b3_branch2a_relu ReLu res4b3_branch2ax res4b3_branch2axxx     

res4b3_branch2b Convolutional res4b3_branch2axxx res4b3_branch2b 3x3x256x256 256 

bn4b3_branch2b 
Batch 

Normalization 
res4b3_branch2b res4b3_branch2bx     

res4b3_branch2b_relu ReLu res4b3_branch2bx res4b3_branch2bxxx     

res4b3_branch2c Convolutional res4b3_branch2bxxx res4b3_branch2c 1x1x256x1024 1024 

bn4b3_branch2c 
Batch 

Normalization 
res4b3_branch2c res4b3_branch2cx     

res4b3 Summation 
res4b2x, 
res4b3_branch2cx 

res4b3     

res4b3_relu ReLu res4b3 res4b3x     

res4b4_branch2a Convolutional res4b3x res4b4_branch2a 1x1x1024x256 256 

bn4b4_branch2a 
Batch 
Normalization 

res4b4_branch2a res4b4_branch2ax     

res4b4_branch2a_relu ReLu res4b4_branch2ax res4b4_branch2axxx     

res4b4_branch2b Convolutional res4b4_branch2axxx res4b4_branch2b 3x3x256x256 256 

bn4b4_branch2b 
Batch 

Normalization 
res4b4_branch2b res4b4_branch2bx     

res4b4_branch2b_relu ReLu res4b4_branch2bx res4b4_branch2bxxx     

res4b4_branch2c Convolutional res4b4_branch2bxxx res4b4_branch2c 1x1x256x1024 1024 

bn4b4_branch2c 
Batch 

Normalization 
res4b4_branch2c res4b4_branch2cx     

res4b4 Summation 
res4b3x, 
res4b4_branch2cx 

res4b4     

res4b4_relu ReLu res4b4 res4b4x     

res4b5_branch2a Convolutional res4b4x res4b5_branch2a 1x1x1024x256 256 

bn4b5_branch2a 
Batch 
Normalization 

res4b5_branch2a res4b5_branch2ax     
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b5_branch2a_relu ReLu res4b5_branch2ax res4b5_branch2axxx     

res4b5_branch2b Convolutional res4b5_branch2axxx res4b5_branch2b 3x3x256x256 256 

bn4b5_branch2b 
Batch 
Normalization 

res4b5_branch2b res4b5_branch2bx     

res4b5_branch2b_relu ReLu res4b5_branch2bx res4b5_branch2bxxx     

res4b5_branch2c Convolutional res4b5_branch2bxxx res4b5_branch2c 1x1x256x1024 1024 

bn4b5_branch2c 
Batch 
Normalization 

res4b5_branch2c res4b5_branch2cx     

res4b5 Summation 
res4b4x, 

res4b5_branch2cx 
res4b5     

res4b5_relu ReLu res4b5 res4b5x     

res4b6_branch2a Convolutional res4b5x res4b6_branch2a 1x1x1024x256 256 

bn4b6_branch2a 
Batch 

Normalization 
res4b6_branch2a res4b6_branch2ax     

res4b6_branch2a_relu ReLu res4b6_branch2ax res4b6_branch2axxx     

res4b6_branch2b Convolutional res4b6_branch2axxx res4b6_branch2b 3x3x256x256 256 

bn4b6_branch2b 
Batch 

Normalization 
res4b6_branch2b res4b6_branch2bx     

res4b6_branch2b_relu ReLu res4b6_branch2bx res4b6_branch2bxxx     

res4b6_branch2c Convolutional res4b6_branch2bxxx res4b6_branch2c 1x1x256x1024 1024 

bn4b6_branch2c 
Batch 
Normalization 

res4b6_branch2c res4b6_branch2cx     

res4b6 Summation 
res4b5x, 

res4b6_branch2cx 
res4b6     

res4b6_relu ReLu res4b6 res4b6x     

res4b7_branch2a Convolutional res4b6x res4b7_branch2a 1x1x1024x256 256 

bn4b7_branch2a 
Batch 

Normalization 
res4b7_branch2a res4b7_branch2ax     

res4b7_branch2a_relu ReLu res4b7_branch2ax res4b7_branch2axxx     

res4b7_branch2b Convolutional res4b7_branch2axxx res4b7_branch2b 3x3x256x256 256 

bn4b7_branch2b 
Batch 

Normalization 
res4b7_branch2b res4b7_branch2bx     

res4b7_branch2b_relu ReLu res4b7_branch2bx res4b7_branch2bxxx     

res4b7_branch2c Convolutional res4b7_branch2bxxx res4b7_branch2c 1x1x256x1024 1024 

bn4b7_branch2c 
Batch 
Normalization 

res4b7_branch2c res4b7_branch2cx     

res4b7 Summation 
res4b6x, 

res4b7_branch2cx 
res4b7     

res4b7_relu ReLu res4b7 res4b7x     

res4b8_branch2a Convolutional res4b7x res4b8_branch2a 1x1x1024x256 256 

bn4b8_branch2a 
Batch 

Normalization 
res4b8_branch2a res4b8_branch2ax     

res4b8_branch2a_relu ReLu res4b8_branch2ax res4b8_branch2axxx     

res4b8_branch2b Convolutional res4b8_branch2axxx res4b8_branch2b 3x3x256x256 256 

bn4b8_branch2b 
Batch 

Normalization 
res4b8_branch2b res4b8_branch2bx     

res4b8_branch2b_relu ReLu res4b8_branch2bx res4b8_branch2bxxx     

res4b8_branch2c Convolutional res4b8_branch2bxxx res4b8_branch2c 1x1x256x1024 1024 

bn4b8_branch2c 
Batch 

Normalization 
res4b8_branch2c res4b8_branch2cx     

res4b8 Summation 
res4b7x, 

res4b8_branch2cx 
res4b8     

res4b8_relu ReLu res4b8 res4b8x     

res4b9_branch2a Convolutional res4b8x res4b9_branch2a 1x1x1024x256 256 

bn4b9_branch2a 
Batch 

Normalization 
res4b9_branch2a res4b9_branch2ax     

res4b9_branch2a_relu ReLu res4b9_branch2ax res4b9_branch2axxx     

res4b9_branch2b Convolutional res4b9_branch2axxx res4b9_branch2b 3x3x256x256 256 

bn4b9_branch2b 
Batch 

Normalization 
res4b9_branch2b res4b9_branch2bx     

res4b9_branch2b_relu ReLu res4b9_branch2bx res4b9_branch2bxxx     

res4b9_branch2c Convolutional res4b9_branch2bxxx res4b9_branch2c 1x1x256x1024 1024 
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b9_branch2c 
Batch 

Normalization 
res4b9_branch2c res4b9_branch2cx     

res4b9 Summation 
res4b8x, 

res4b9_branch2cx 
res4b9     

res4b9_relu ReLu res4b9 res4b9x     

res4b10_branch2a Convolutional res4b9x res4b10_branch2a 1x1x1024x256 256 

bn4b10_branch2a 
Batch 
Normalization 

res4b10_branch2a res4b10_branch2ax     

res4b10_branch2a_relu ReLu res4b10_branch2ax res4b10_branch2axxx     

res4b10_branch2b Convolutional res4b10_branch2axxx res4b10_branch2b 3x3x256x256 256 

bn4b10_branch2b 
Batch 
Normalization 

res4b10_branch2b res4b10_branch2bx     

res4b10_branch2b_relu ReLu res4b10_branch2bx res4b10_branch2bxxx     

res4b10_branch2c Convolutional res4b10_branch2bxxx res4b10_branch2c 1x1x256x1024 1024 

bn4b10_branch2c 
Batch 
Normalization 

res4b10_branch2c res4b10_branch2cx     

res4b10 Summation 
res4b9x, 

res4b10_branch2cx 
res4b10     

res4b10_relu ReLu res4b10 res4b10x     

res4b11_branch2a Convolutional res4b10x res4b11_branch2a 1x1x1024x256 256 

bn4b11_branch2a 
Batch 

Normalization 
res4b11_branch2a res4b11_branch2ax     

res4b11_branch2a_relu ReLu res4b11_branch2ax res4b11_branch2axxx     

res4b11_branch2b Convolutional res4b11_branch2axxx res4b11_branch2b 3x3x256x256 256 

bn4b11_branch2b 
Batch 
Normalization 

res4b11_branch2b res4b11_branch2bx     

res4b11_branch2b_relu ReLu res4b11_branch2bx res4b11_branch2bxxx     

res4b11_branch2c Convolutional res4b11_branch2bxxx res4b11_branch2c 1x1x256x1024 1024 

bn4b11_branch2c 
Batch 
Normalization 

res4b11_branch2c res4b11_branch2cx     

res4b11 Summation 
res4b10x, 

res4b11_branch2cx 
res4b11     

res4b11_relu ReLu res4b11 res4b11x     

res4b12_branch2a Convolutional res4b11x res4b12_branch2a 1x1x1024x256 256 

bn4b12_branch2a 
Batch 

Normalization 
res4b12_branch2a res4b12_branch2ax     

res4b12_branch2a_relu ReLu res4b12_branch2ax res4b12_branch2axxx     

res4b12_branch2b Convolutional res4b12_branch2axxx res4b12_branch2b 3x3x256x256 256 

bn4b12_branch2b 
Batch 

Normalization 
res4b12_branch2b res4b12_branch2bx     

res4b12_branch2b_relu ReLu res4b12_branch2bx res4b12_branch2bxxx     

res4b12_branch2c Convolutional res4b12_branch2bxxx res4b12_branch2c 1x1x256x1024 1024 

bn4b12_branch2c 
Batch 
Normalization 

res4b12_branch2c res4b12_branch2cx     

res4b12 Summation 
res4b11x, 

res4b12_branch2cx 
res4b12     

res4b12_relu ReLu res4b12 res4b12x     

res4b13_branch2a Convolutional res4b12x res4b13_branch2a 1x1x1024x256 256 

bn4b13_branch2a 
Batch 

Normalization 
res4b13_branch2a res4b13_branch2ax     

res4b13_branch2a_relu ReLu res4b13_branch2ax res4b13_branch2axxx     

res4b13_branch2b Convolutional res4b13_branch2axxx res4b13_branch2b 3x3x256x256 256 

bn4b13_branch2b 
Batch 

Normalization 
res4b13_branch2b res4b13_branch2bx     

res4b13_branch2b_relu ReLu res4b13_branch2bx res4b13_branch2bxxx     

res4b13_branch2c Convolutional res4b13_branch2bxxx res4b13_branch2c 1x1x256x1024 1024 

bn4b13_branch2c 
Batch 
Normalization 

res4b13_branch2c res4b13_branch2cx     

res4b13 Summation 
res4b12x, 

res4b13_branch2cx 
res4b13     

res4b13_relu ReLu res4b13 res4b13x     

res4b14_branch2a Convolutional res4b13x res4b14_branch2a 1x1x1024x256 256 
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b14_branch2a 
Batch 

Normalization 
res4b14_branch2a res4b14_branch2ax     

res4b14_branch2a_relu ReLu res4b14_branch2ax res4b14_branch2axxx     

res4b14_branch2b Convolutional res4b14_branch2axxx res4b14_branch2b 3x3x256x256 256 

bn4b14_branch2b 
Batch 

Normalization 
res4b14_branch2b res4b14_branch2bx     

res4b14_branch2b_relu ReLu res4b14_branch2bx res4b14_branch2bxxx     

res4b14_branch2c Convolutional res4b14_branch2bxxx res4b14_branch2c 1x1x256x1024 1024 

bn4b14_branch2c 
Batch 

Normalization 
res4b14_branch2c res4b14_branch2cx     

res4b14 Summation 
res4b13x, 
res4b14_branch2cx 

res4b14     

res4b14_relu ReLu res4b14 res4b14x     

res4b15_branch2a Convolutional res4b14x res4b15_branch2a 1x1x1024x256 256 

bn4b15_branch2a 
Batch 
Normalization 

res4b15_branch2a res4b15_branch2ax     

res4b15_branch2a_relu ReLu res4b15_branch2ax res4b15_branch2axxx     

res4b15_branch2b Convolutional res4b15_branch2axxx res4b15_branch2b 3x3x256x256 256 

bn4b15_branch2b 
Batch 

Normalization 
res4b15_branch2b res4b15_branch2bx     

res4b15_branch2b_relu ReLu res4b15_branch2bx res4b15_branch2bxxx     

res4b15_branch2c Convolutional res4b15_branch2bxxx res4b15_branch2c 1x1x256x1024 1024 

bn4b15_branch2c 
Batch 

Normalization 
res4b15_branch2c res4b15_branch2cx     

res4b15 Summation 
res4b14x, 
res4b15_branch2cx 

res4b15     

res4b15_relu ReLu res4b15 res4b15x     

res4b16_branch2a Convolutional res4b15x res4b16_branch2a 1x1x1024x256 256 

bn4b16_branch2a 
Batch 
Normalization 

res4b16_branch2a res4b16_branch2ax     

res4b16_branch2a_relu ReLu res4b16_branch2ax res4b16_branch2axxx     

res4b16_branch2b Convolutional res4b16_branch2axxx res4b16_branch2b 3x3x256x256 256 

bn4b16_branch2b 
Batch 

Normalization 
res4b16_branch2b res4b16_branch2bx     

res4b16_branch2b_relu ReLu res4b16_branch2bx res4b16_branch2bxxx     

res4b16_branch2c Convolutional res4b16_branch2bxxx res4b16_branch2c 1x1x256x1024 1024 

bn4b16_branch2c 
Batch 

Normalization 
res4b16_branch2c res4b16_branch2cx     

res4b16 Summation 
res4b15x, 

res4b16_branch2cx 
res4b16     

res4b16_relu ReLu res4b16 res4b16x     

res4b17_branch2a Convolutional res4b16x res4b17_branch2a 1x1x1024x256 256 

bn4b17_branch2a 
Batch 
Normalization 

res4b17_branch2a res4b17_branch2ax     

res4b17_branch2a_relu ReLu res4b17_branch2ax res4b17_branch2axxx     

res4b17_branch2b Convolutional res4b17_branch2axxx res4b17_branch2b 3x3x256x256 256 

bn4b17_branch2b 
Batch 
Normalization 

res4b17_branch2b res4b17_branch2bx     

res4b17_branch2b_relu ReLu res4b17_branch2bx res4b17_branch2bxxx     

res4b17_branch2c Convolutional res4b17_branch2bxxx res4b17_branch2c 1x1x256x1024 1024 

bn4b17_branch2c 
Batch 

Normalization 
res4b17_branch2c res4b17_branch2cx     

res4b17 Summation 
res4b16x, 

res4b17_branch2cx 
res4b17     

res4b17_relu ReLu res4b17 res4b17x     

res4b18_branch2a Convolutional res4b17x res4b18_branch2a 1x1x1024x256 256 

bn4b18_branch2a 
Batch 
Normalization 

res4b18_branch2a res4b18_branch2ax     

res4b18_branch2a_relu ReLu res4b18_branch2ax res4b18_branch2axxx     

res4b18_branch2b Convolutional res4b18_branch2axxx res4b18_branch2b 3x3x256x256 256 

bn4b18_branch2b 
Batch 
Normalization 

res4b18_branch2b res4b18_branch2bx     
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b18_branch2b_relu ReLu res4b18_branch2bx res4b18_branch2bxxx     

res4b18_branch2c Convolutional res4b18_branch2bxxx res4b18_branch2c 1x1x256x1024 1024 

bn4b18_branch2c 
Batch 
Normalization 

res4b18_branch2c res4b18_branch2cx     

res4b18 Summation 
res4b17x, 

res4b18_branch2cx 
res4b18     

res4b18_relu ReLu res4b18 res4b18x     

res4b19_branch2a Convolutional res4b18x res4b19_branch2a 1x1x1024x256 256 

bn4b19_branch2a 
Batch 

Normalization 
res4b19_branch2a res4b19_branch2ax     

res4b19_branch2a_relu ReLu res4b19_branch2ax res4b19_branch2axxx     

res4b19_branch2b Convolutional res4b19_branch2axxx res4b19_branch2b 3x3x256x256 256 

bn4b19_branch2b 
Batch 

Normalization 
res4b19_branch2b res4b19_branch2bx     

res4b19_branch2b_relu ReLu res4b19_branch2bx res4b19_branch2bxxx     

res4b19_branch2c Convolutional res4b19_branch2bxxx res4b19_branch2c 1x1x256x1024 1024 

bn4b19_branch2c 
Batch 

Normalization 
res4b19_branch2c res4b19_branch2cx     

res4b19 Summation 
res4b18x, 

res4b19_branch2cx 
res4b19     

res4b19_relu ReLu res4b19 res4b19x     

res4b20_branch2a Convolutional res4b19x res4b20_branch2a 1x1x1024x256 256 

bn4b20_branch2a 
Batch 

Normalization 
res4b20_branch2a res4b20_branch2ax     

res4b20_branch2a_relu ReLu res4b20_branch2ax res4b20_branch2axxx     

res4b20_branch2b Convolutional res4b20_branch2axxx res4b20_branch2b 3x3x256x256 256 

bn4b20_branch2b 
Batch 

Normalization 
res4b20_branch2b res4b20_branch2bx     

res4b20_branch2b_relu ReLu res4b20_branch2bx res4b20_branch2bxxx     

res4b20_branch2c Convolutional res4b20_branch2bxxx res4b20_branch2c 1x1x256x1024 1024 

bn4b20_branch2c 
Batch 

Normalization 
res4b20_branch2c res4b20_branch2cx     

res4b20 Summation 
res4b19x, 

res4b20_branch2cx 
res4b20     

res4b20_relu ReLu res4b20 res4b20x     

res4b21_branch2a Convolutional res4b20x res4b21_branch2a 1x1x1024x256 256 

bn4b21_branch2a 
Batch 

Normalization 
res4b21_branch2a res4b21_branch2ax     

res4b21_branch2a_relu ReLu res4b21_branch2ax res4b21_branch2axxx     

res4b21_branch2b Convolutional res4b21_branch2axxx res4b21_branch2b 3x3x256x256 256 

bn4b21_branch2b 
Batch 

Normalization 
res4b21_branch2b res4b21_branch2bx     

res4b21_branch2b_relu ReLu res4b21_branch2bx res4b21_branch2bxxx     

res4b21_branch2c Convolutional res4b21_branch2bxxx res4b21_branch2c 1x1x256x1024 1024 

bn4b21_branch2c 
Batch 

Normalization 
res4b21_branch2c res4b21_branch2cx     

res4b21 Summation 
res4b20x, 
res4b21_branch2cx 

res4b21     

res4b21_relu ReLu res4b21 res4b21x     

res4b22_branch2a Convolutional res4b21x res4b22_branch2a 1x1x1024x256 256 

bn4b22_branch2a 
Batch 

Normalization 
res4b22_branch2a res4b22_branch2ax     

res4b22_branch2a_relu ReLu res4b22_branch2ax res4b22_branch2axxx     

res4b22_branch2b Convolutional res4b22_branch2axxx res4b22_branch2b 3x3x256x256 256 

bn4b22_branch2b 
Batch 

Normalization 
res4b22_branch2b res4b22_branch2bx     

res4b22_branch2b_relu ReLu res4b22_branch2bx res4b22_branch2bxxx     

res4b22_branch2c Convolutional res4b22_branch2bxxx res4b22_branch2c 1x1x256x1024 1024 

bn4b22_branch2c 
Batch 

Normalization 
res4b22_branch2c res4b22_branch2cx     

res4b22 Summation 
res4b21x, 
res4b22_branch2cx 

res4b22     
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Table 21. ResNet101 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b22_relu ReLu res4b22 res4b22x     

res5a_branch1 Convolutional res4b22x res5a_branch1 1x1x1024x2048 2048 

bn5a_branch1 
Batch 
Normalization 

res5a_branch1 res5a_branch1x     

res5a_branch2a Convolutional res4b22x res5a_branch2a 1x1x1024x512 512 

bn5a_branch2a 
Batch 

Normalization 
res5a_branch2a res5a_branch2ax     

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx     

res5a_branch2b Convolutional res5a_branch2axxx res5a_branch2b 3x3x512x512 512 

bn5a_branch2b 
Batch 

Normalization 
res5a_branch2b res5a_branch2bx     

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx     

res5a_branch2c Convolutional res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048 

bn5a_branch2c 
Batch 

Normalization 
res5a_branch2c res5a_branch2cx     

res5a Summation 
res5a_branch1x, 
res5a_branch2cx 

res5a     

res5a_relu ReLu res5a res5ax     

res5b_branch2a Convolutional res5ax res5b_branch2a 1x1x2048x512 512 

bn5b_branch2a 
Batch 
Normalization 

res5b_branch2a res5b_branch2ax     

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx     

res5b_branch2b Convolutional res5b_branch2axxx res5b_branch2b 3x3x512x512 512 

bn5b_branch2b 
Batch 

Normalization 
res5b_branch2b res5b_branch2bx     

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx     

res5b_branch2c Convolutional res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048 

bn5b_branch2c 
Batch 

Normalization 
res5b_branch2c res5b_branch2cx     

res5b Summation 
res5ax, 
res5b_branch2cx 

res5b     

res5b_relu ReLu res5b res5bx     

res5c_branch2a Convolutional res5bx res5c_branch2a 1x1x2048x512 512 

bn5c_branch2a 
Batch 
Normalization 

res5c_branch2a res5c_branch2ax     

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx     

res5c_branch2b Convolutional res5c_branch2axxx res5c_branch2b 3x3x512x512 512 

bn5c_branch2b 
Batch 
Normalization 

res5c_branch2b res5c_branch2bx     

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx     

res5c_branch2c Convolutional res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048 

bn5c_branch2c 
Batch 

Normalization 
res5c_branch2c res5c_branch2cx     

res5c Summation 
res5bx, 

res5c_branch2cx 
res5c     

res5c_relu ReLu res5c res5cx     

pool5 
Average 
Pooling 

res5cx pool5     

fc1000 Convolutional pool5 fc1000 1x1x2048x1000 1000 

prob SoftMax fc1000 prob     
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Table 22. ResNet152 Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1 Convolution data conv1 7x7x3x64 64 

bn_conv1 
Batch 
Normalization 

conv1 conv1x     

conv1_relu ReLu conv1x conv1xxx     

pool1 Max Pooling conv1xxx pool1     

res2a_branch1 Convolution pool1 res2a_branch1 1x1x64x256 256 

bn2a_branch1 
Batch 
Normalization 

res2a_branch1 res2a_branch1x     

res2a_branch2a Convolution pool1 res2a_branch2a 1x1x64x64 64 

bn2a_branch2a 
Batch 

Normalization 
res2a_branch2a res2a_branch2ax     

res2a_branch2a_relu ReLu res2a_branch2ax res2a_branch2axxx     

res2a_branch2b Convolution res2a_branch2axxx res2a_branch2b 3x3x64x64 64 

bn2a_branch2b 
Batch 

Normalization 
res2a_branch2b res2a_branch2bx     

res2a_branch2b_relu ReLu res2a_branch2bx res2a_branch2bxxx     

res2a_branch2c Convolution res2a_branch2bxxx res2a_branch2c 1x1x64x256 256 

bn2a_branch2c 
Batch 

Normalization 
res2a_branch2c res2a_branch2cx     

res2a Summation 
res2a_branch1x, 
res2a_branch2cx 

res2a     

res2a_relu ReLu res2a res2ax     

res2b_branch2a Convolution res2ax res2b_branch2a 1x1x256x64 64 

bn2b_branch2a 
Batch 

Normalization 
res2b_branch2a res2b_branch2ax     

res2b_branch2a_relu ReLu res2b_branch2ax res2b_branch2axxx     

res2b_branch2b Convolution res2b_branch2axxx res2b_branch2b 3x3x64x64 64 

bn2b_branch2b 
Batch 

Normalization 
res2b_branch2b res2b_branch2bx     

res2b_branch2b_relu ReLu res2b_branch2bx res2b_branch2bxxx     

res2b_branch2c Convolution res2b_branch2bxxx res2b_branch2c 1x1x64x256 256 

bn2b_branch2c 
Batch 

Normalization 
res2b_branch2c res2b_branch2cx     

res2b Summation 
res2ax, 
res2b_branch2cx 

res2b     

res2b_relu ReLu res2b res2bx     

res2c_branch2a Convolution res2bx res2c_branch2a 1x1x256x64 64 

bn2c_branch2a 
Batch 
Normalization 

res2c_branch2a res2c_branch2ax     

res2c_branch2a_relu ReLu res2c_branch2ax res2c_branch2axxx     

res2c_branch2b Convolution res2c_branch2axxx res2c_branch2b 3x3x64x64 64 

bn2c_branch2b 
Batch 

Normalization 
res2c_branch2b res2c_branch2bx     

res2c_branch2b_relu ReLu res2c_branch2bx res2c_branch2bxxx     

res2c_branch2c Convolution res2c_branch2bxxx res2c_branch2c 1x1x64x256 256 

bn2c_branch2c 
Batch 

Normalization 
res2c_branch2c res2c_branch2cx     

res2c Summation 
res2bx, 
res2c_branch2cx 

res2c     

res2c_relu ReLu res2c res2cx     

res3a_branch1 Convolution res2cx res3a_branch1 1x1x256x512 512 

bn3a_branch1 
Batch 
Normalization 

res3a_branch1 res3a_branch1x     

res3a_branch2a Convolution res2cx res3a_branch2a 1x1x256x128 128 

bn3a_branch2a 
Batch 

Normalization 
res3a_branch2a res3a_branch2ax     

res3a_branch2a_relu ReLu res3a_branch2ax res3a_branch2axxx     

res3a_branch2b Convolution res3a_branch2axxx res3a_branch2b 3x3x128x128 128 

bn3a_branch2b 
Batch 

Normalization 
res3a_branch2b res3a_branch2bx     

res3a_branch2b_relu ReLu res3a_branch2bx res3a_branch2bxxx     

res3a_branch2c Convolution res3a_branch2bxxx res3a_branch2c 1x1x128x512 512 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn3a_branch2c 
Batch 

Normalization 
res3a_branch2c res3a_branch2cx     

res3a Summation 
res3a_branch1x, 

res3a_branch2cx 
res3a     

res3a_relu ReLu res3a res3ax     

res3b1_branch2a Convolution res3ax res3b1_branch2a 1x1x512x128 128 

bn3b1_branch2a 
Batch 
Normalization 

res3b1_branch2a res3b1_branch2ax     

res3b1_branch2a_relu ReLu res3b1_branch2ax res3b1_branch2axxx     

res3b1_branch2b Convolution res3b1_branch2axxx res3b1_branch2b 3x3x128x128 128 

bn3b1_branch2b 
Batch 
Normalization 

res3b1_branch2b res3b1_branch2bx     

res3b1_branch2b_relu ReLu res3b1_branch2bx res3b1_branch2bxxx     

res3b1_branch2c Convolution res3b1_branch2bxxx res3b1_branch2c 1x1x128x512 512 

bn3b1_branch2c 
Batch 
Normalization 

res3b1_branch2c res3b1_branch2cx     

res3b1 Summation 
res3ax, 

res3b1_branch2cx 
res3b1     

res3b1_relu ReLu res3b1 res3b1x     

res3b2_branch2a Convolution res3b1x res3b2_branch2a 1x1x512x128 128 

bn3b2_branch2a 
Batch 

Normalization 
res3b2_branch2a res3b2_branch2ax     

res3b2_branch2a_relu ReLu res3b2_branch2ax res3b2_branch2axxx     

res3b2_branch2b Convolution res3b2_branch2axxx res3b2_branch2b 3x3x128x128 128 

bn3b2_branch2b 
Batch 
Normalization 

res3b2_branch2b res3b2_branch2bx     

res3b2_branch2b_relu ReLu res3b2_branch2bx res3b2_branch2bxxx     

res3b2_branch2c Convolution res3b2_branch2bxxx res3b2_branch2c 1x1x128x512 512 

bn3b2_branch2c 
Batch 
Normalization 

res3b2_branch2c res3b2_branch2cx     

res3b2 Summation 
res3b1x, 

res3b2_branch2cx 
res3b2     

res3b2_relu ReLu res3b2 res3b2x     

res3b3_branch2a Convolution res3b2x res3b3_branch2a 1x1x512x128 128 

bn3b3_branch2a 
Batch 

Normalization 
res3b3_branch2a res3b3_branch2ax     

res3b3_branch2a_relu ReLu res3b3_branch2ax res3b3_branch2axxx     

res3b3_branch2b Convolution res3b3_branch2axxx res3b3_branch2b 3x3x128x128 128 

bn3b3_branch2b 
Batch 

Normalization 
res3b3_branch2b res3b3_branch2bx     

res3b3_branch2b_relu ReLu res3b3_branch2bx res3b3_branch2bxxx     

res3b3_branch2c Convolution res3b3_branch2bxxx res3b3_branch2c 1x1x128x512 512 

bn3b3_branch2c 
Batch 
Normalization 

res3b3_branch2c res3b3_branch2cx     

res3b3 Summation 
res3b2x, 

res3b3_branch2cx 
res3b3     

res3b3_relu ReLu res3b3 res3b3x     

res3b4_branch2a Convolution res3b3x res3b4_branch2a 1x1x512x128 128 

bn3b4_branch2a 
Batch 

Normalization 
res3b4_branch2a res3b4_branch2ax     

res3b4_branch2a_relu ReLu res3b4_branch2ax res3b4_branch2axxx     

res3b4_branch2b Convolution res3b4_branch2axxx res3b4_branch2b 3x3x128x128 128 

bn3b4_branch2b 
Batch 

Normalization 
res3b4_branch2b res3b4_branch2bx     

res3b4_branch2b_relu ReLu res3b4_branch2bx res3b4_branch2bxxx     

res3b4_branch2c Convolution res3b4_branch2bxxx res3b4_branch2c 1x1x128x512 512 

bn3b4_branch2c 
Batch 
Normalization 

res3b4_branch2c res3b4_branch2cx     

res3b4 Summation 
res3b3x, 

res3b4_branch2cx 
res3b4     

res3b4_relu ReLu res3b4 res3b4x     

res3b5_branch2a Convolution res3b4x res3b5_branch2a 1x1x512x128 128 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn3b5_branch2a 
Batch 

Normalization 
res3b5_branch2a res3b5_branch2ax     

res3b5_branch2a_relu ReLu res3b5_branch2ax res3b5_branch2axxx     

res3b5_branch2b Convolution res3b5_branch2axxx res3b5_branch2b 3x3x128x128 128 

bn3b5_branch2b 
Batch 

Normalization 
res3b5_branch2b res3b5_branch2bx     

res3b5_branch2b_relu ReLu res3b5_branch2bx res3b5_branch2bxxx     

res3b5_branch2c Convolution res3b5_branch2bxxx res3b5_branch2c 1x1x128x512 512 

bn3b5_branch2c 
Batch 

Normalization 
res3b5_branch2c res3b5_branch2cx     

res3b5 Summation 
res3b4x, 
res3b5_branch2cx 

res3b5     

res3b5_relu ReLu res3b5 res3b5x     

res3b6_branch2a Convolution res3b5x res3b6_branch2a 1x1x512x128 128 

bn3b6_branch2a 
Batch 
Normalization 

res3b6_branch2a res3b6_branch2ax     

res3b6_branch2a_relu ReLu res3b6_branch2ax res3b6_branch2axxx     

res3b6_branch2b Convolution res3b6_branch2axxx res3b6_branch2b 3x3x128x128 128 

bn3b6_branch2b 
Batch 

Normalization 
res3b6_branch2b res3b6_branch2bx     

res3b6_branch2b_relu ReLu res3b6_branch2bx res3b6_branch2bxxx     

res3b6_branch2c Convolution res3b6_branch2bxxx res3b6_branch2c 1x1x128x512 512 

bn3b6_branch2c 
Batch 

Normalization 
res3b6_branch2c res3b6_branch2cx     

res3b6 Summation 
res3b5x, 
res3b6_branch2cx 

res3b6     

res3b6_relu ReLu res3b6 res3b6x     

res3b7_branch2a Convolution res3b6x res3b7_branch2a 1x1x512x128 128 

bn3b7_branch2a 
Batch 
Normalization 

res3b7_branch2a res3b7_branch2ax     

res3b7_branch2a_relu ReLu res3b7_branch2ax res3b7_branch2axxx     

res3b7_branch2b Convolution res3b7_branch2axxx res3b7_branch2b 3x3x128x128 128 

bn3b7_branch2b 
Batch 

Normalization 
res3b7_branch2b res3b7_branch2bx     

res3b7_branch2b_relu ReLu res3b7_branch2bx res3b7_branch2bxxx     

res3b7_branch2c Convolution res3b7_branch2bxxx res3b7_branch2c 1x1x128x512 512 

bn3b7_branch2c 
Batch 

Normalization 
res3b7_branch2c res3b7_branch2cx     

res3b7 Summation 
res3b6x, 

res3b7_branch2cx 
res3b7     

res3b7_relu ReLu res3b7 res3b7x     

res4a_branch1 Convolution res3b7x res4a_branch1 1x1x512x1024 1024 

bn4a_branch1 
Batch 
Normalization 

res4a_branch1 res4a_branch1x     

res4a_branch2a Convolution res3b7x res4a_branch2a 1x1x512x256 256 

bn4a_branch2a 
Batch 

Normalization 
res4a_branch2a res4a_branch2ax     

res4a_branch2a_relu ReLu res4a_branch2ax res4a_branch2axxx     

res4a_branch2b Convolution res4a_branch2axxx res4a_branch2b 3x3x256x256 256 

bn4a_branch2b 
Batch 

Normalization 
res4a_branch2b res4a_branch2bx     

res4a_branch2b_relu ReLu res4a_branch2bx res4a_branch2bxxx     

res4a_branch2c Convolution res4a_branch2bxxx res4a_branch2c 1x1x256x1024 1024 

bn4a_branch2c 
Batch 

Normalization 
res4a_branch2c res4a_branch2cx     

res4a Summation 
res4a_branch1x, 
res4a_branch2cx 

res4a     

res4a_relu ReLu res4a res4ax     

res4b1_branch2a Convolution res4ax res4b1_branch2a 1x1x1024x256 256 

bn4b1_branch2a 
Batch 
Normalization 

res4b1_branch2a res4b1_branch2ax     

res4b1_branch2a_relu ReLu res4b1_branch2ax res4b1_branch2axxx     
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b1_branch2b Convolution res4b1_branch2axxx res4b1_branch2b 3x3x256x256 256 

bn4b1_branch2b 
Batch 
Normalization 

res4b1_branch2b res4b1_branch2bx     

res4b1_branch2b_relu ReLu res4b1_branch2bx res4b1_branch2bxxx     

res4b1_branch2c Convolution res4b1_branch2bxxx res4b1_branch2c 1x1x256x1024 1024 

bn4b1_branch2c 
Batch 

Normalization 
res4b1_branch2c res4b1_branch2cx     

res4b1 Summation 
res4ax, 

res4b1_branch2cx 
res4b1     

res4b1_relu ReLu res4b1 res4b1x     

res4b2_branch2a Convolution res4b1x res4b2_branch2a 1x1x1024x256 256 

bn4b2_branch2a 
Batch 

Normalization 
res4b2_branch2a res4b2_branch2ax     

res4b2_branch2a_relu ReLu res4b2_branch2ax res4b2_branch2axxx     

res4b2_branch2b Convolution res4b2_branch2axxx res4b2_branch2b 3x3x256x256 256 

bn4b2_branch2b 
Batch 
Normalization 

res4b2_branch2b res4b2_branch2bx     

res4b2_branch2b_relu ReLu res4b2_branch2bx res4b2_branch2bxxx     

res4b2_branch2c Convolution res4b2_branch2bxxx res4b2_branch2c 1x1x256x1024 1024 

bn4b2_branch2c 
Batch 
Normalization 

res4b2_branch2c res4b2_branch2cx     

res4b2 Summation 
res4b1x, 

res4b2_branch2cx 
res4b2     

res4b2_relu ReLu res4b2 res4b2x     

res4b3_branch2a Convolution res4b2x res4b3_branch2a 1x1x1024x256 256 

bn4b3_branch2a 
Batch 

Normalization 
res4b3_branch2a res4b3_branch2ax     

res4b3_branch2a_relu ReLu res4b3_branch2ax res4b3_branch2axxx     

res4b3_branch2b Convolution res4b3_branch2axxx res4b3_branch2b 3x3x256x256 256 

bn4b3_branch2b 
Batch 
Normalization 

res4b3_branch2b res4b3_branch2bx     

res4b3_branch2b_relu ReLu res4b3_branch2bx res4b3_branch2bxxx     

res4b3_branch2c Convolution res4b3_branch2bxxx res4b3_branch2c 1x1x256x1024 1024 

bn4b3_branch2c 
Batch 
Normalization 

res4b3_branch2c res4b3_branch2cx     

res4b3 Summation 
res4b2x, 

res4b3_branch2cx 
res4b3     

res4b3_relu ReLu res4b3 res4b3x     

res4b4_branch2a Convolution res4b3x res4b4_branch2a 1x1x1024x256 256 

bn4b4_branch2a 
Batch 

Normalization 
res4b4_branch2a res4b4_branch2ax     

res4b4_branch2a_relu ReLu res4b4_branch2ax res4b4_branch2axxx     

res4b4_branch2b Convolution res4b4_branch2axxx res4b4_branch2b 3x3x256x256 256 

bn4b4_branch2b 
Batch 

Normalization 
res4b4_branch2b res4b4_branch2bx     

res4b4_branch2b_relu ReLu res4b4_branch2bx res4b4_branch2bxxx     

res4b4_branch2c Convolution res4b4_branch2bxxx res4b4_branch2c 1x1x256x1024 1024 

bn4b4_branch2c 
Batch 
Normalization 

res4b4_branch2c res4b4_branch2cx     

res4b4 Summation 
res4b3x, 

res4b4_branch2cx 
res4b4     

res4b4_relu ReLu res4b4 res4b4x     

res4b5_branch2a Convolution res4b4x res4b5_branch2a 1x1x1024x256 256 

bn4b5_branch2a 
Batch 

Normalization 
res4b5_branch2a res4b5_branch2ax     

res4b5_branch2a_relu ReLu res4b5_branch2ax res4b5_branch2axxx     

res4b5_branch2b Convolution res4b5_branch2axxx res4b5_branch2b 3x3x256x256 256 

bn4b5_branch2b 
Batch 

Normalization 
res4b5_branch2b res4b5_branch2bx     

res4b5_branch2b_relu ReLu res4b5_branch2bx res4b5_branch2bxxx     

res4b5_branch2c Convolution res4b5_branch2bxxx res4b5_branch2c 1x1x256x1024 1024 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b5_branch2c 
Batch 

Normalization 
res4b5_branch2c res4b5_branch2cx     

res4b5 Summation 
res4b4x, 

res4b5_branch2cx 
res4b5     

res4b5_relu ReLu res4b5 res4b5x     

res4b6_branch2a Convolution res4b5x res4b6_branch2a 1x1x1024x256 256 

bn4b6_branch2a 
Batch 
Normalization 

res4b6_branch2a res4b6_branch2ax     

res4b6_branch2a_relu ReLu res4b6_branch2ax res4b6_branch2axxx     

res4b6_branch2b Convolution res4b6_branch2axxx res4b6_branch2b 3x3x256x256 256 

bn4b6_branch2b 
Batch 
Normalization 

res4b6_branch2b res4b6_branch2bx     

res4b6_branch2b_relu ReLu res4b6_branch2bx res4b6_branch2bxxx     

res4b6_branch2c Convolution res4b6_branch2bxxx res4b6_branch2c 1x1x256x1024 1024 

bn4b6_branch2c 
Batch 
Normalization 

res4b6_branch2c res4b6_branch2cx     

res4b6 Summation 
res4b5x, 

res4b6_branch2cx 
res4b6     

res4b6_relu ReLu res4b6 res4b6x     

res4b7_branch2a Convolution res4b6x res4b7_branch2a 1x1x1024x256 256 

bn4b7_branch2a 
Batch 

Normalization 
res4b7_branch2a res4b7_branch2ax     

res4b7_branch2a_relu ReLu res4b7_branch2ax res4b7_branch2axxx     

res4b7_branch2b Convolution res4b7_branch2axxx res4b7_branch2b 3x3x256x256 256 

bn4b7_branch2b 
Batch 
Normalization 

res4b7_branch2b res4b7_branch2bx     

res4b7_branch2b_relu ReLu res4b7_branch2bx res4b7_branch2bxxx     

res4b7_branch2c Convolution res4b7_branch2bxxx res4b7_branch2c 1x1x256x1024 1024 

bn4b7_branch2c 
Batch 
Normalization 

res4b7_branch2c res4b7_branch2cx     

res4b7 Summation 
res4b6x, 

res4b7_branch2cx 
res4b7     

res4b7_relu ReLu res4b7 res4b7x     

res4b8_branch2a Convolution res4b7x res4b8_branch2a 1x1x1024x256 256 

bn4b8_branch2a 
Batch 

Normalization 
res4b8_branch2a res4b8_branch2ax     

res4b8_branch2a_relu ReLu res4b8_branch2ax res4b8_branch2axxx     

res4b8_branch2b Convolution res4b8_branch2axxx res4b8_branch2b 3x3x256x256 256 

bn4b8_branch2b 
Batch 

Normalization 
res4b8_branch2b res4b8_branch2bx     

res4b8_branch2b_relu ReLu res4b8_branch2bx res4b8_branch2bxxx     

res4b8_branch2c Convolution res4b8_branch2bxxx res4b8_branch2c 1x1x256x1024 1024 

bn4b8_branch2c 
Batch 
Normalization 

res4b8_branch2c res4b8_branch2cx     

res4b8 Summation 
res4b7x, 

res4b8_branch2cx 
res4b8     

res4b8_relu ReLu res4b8 res4b8x     

res4b9_branch2a Convolution res4b8x res4b9_branch2a 1x1x1024x256 256 

bn4b9_branch2a 
Batch 

Normalization 
res4b9_branch2a res4b9_branch2ax     

res4b9_branch2a_relu ReLu res4b9_branch2ax res4b9_branch2axxx     

res4b9_branch2b Convolution res4b9_branch2axxx res4b9_branch2b 3x3x256x256 256 

bn4b9_branch2b 
Batch 

Normalization 
res4b9_branch2b res4b9_branch2bx     

res4b9_branch2b_relu ReLu res4b9_branch2bx res4b9_branch2bxxx     

res4b9_branch2c Convolution res4b9_branch2bxxx res4b9_branch2c 1x1x256x1024 1024 

bn4b9_branch2c 
Batch 
Normalization 

res4b9_branch2c res4b9_branch2cx     

res4b9 Summation 
res4b8x, 

res4b9_branch2cx 
res4b9     

res4b9_relu ReLu res4b9 res4b9x     

res4b10_branch2a Convolution res4b9x res4b10_branch2a 1x1x1024x256 256 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b10_branch2a 
Batch 

Normalization 
res4b10_branch2a res4b10_branch2ax     

res4b10_branch2a_relu ReLu res4b10_branch2ax res4b10_branch2axxx     

res4b10_branch2b Convolution res4b10_branch2axxx res4b10_branch2b 3x3x256x256 256 

bn4b10_branch2b 
Batch 

Normalization 
res4b10_branch2b res4b10_branch2bx     

res4b10_branch2b_relu ReLu res4b10_branch2bx res4b10_branch2bxxx     

res4b10_branch2c Convolution res4b10_branch2bxxx res4b10_branch2c 1x1x256x1024 1024 

bn4b10_branch2c 
Batch 

Normalization 
res4b10_branch2c res4b10_branch2cx     

res4b10 Summation 
res4b9x, 
res4b10_branch2cx 

res4b10     

res4b10_relu ReLu res4b10 res4b10x     

res4b11_branch2a Convolution res4b10x res4b11_branch2a 1x1x1024x256 256 

bn4b11_branch2a 
Batch 
Normalization 

res4b11_branch2a res4b11_branch2ax     

res4b11_branch2a_relu ReLu res4b11_branch2ax res4b11_branch2axxx     

res4b11_branch2b Convolution res4b11_branch2axxx res4b11_branch2b 3x3x256x256 256 

bn4b11_branch2b 
Batch 

Normalization 
res4b11_branch2b res4b11_branch2bx     

res4b11_branch2b_relu ReLu res4b11_branch2bx res4b11_branch2bxxx     

res4b11_branch2c Convolution res4b11_branch2bxxx res4b11_branch2c 1x1x256x1024 1024 

bn4b11_branch2c 
Batch 

Normalization 
res4b11_branch2c res4b11_branch2cx     

res4b11 Summation 
res4b10x, 
res4b11_branch2cx 

res4b11     

res4b11_relu ReLu res4b11 res4b11x     

res4b12_branch2a Convolution res4b11x res4b12_branch2a 1x1x1024x256 256 

bn4b12_branch2a 
Batch 
Normalization 

res4b12_branch2a res4b12_branch2ax     

res4b12_branch2a_relu ReLu res4b12_branch2ax res4b12_branch2axxx     

res4b12_branch2b Convolution res4b12_branch2axxx res4b12_branch2b 3x3x256x256 256 

bn4b12_branch2b 
Batch 

Normalization 
res4b12_branch2b res4b12_branch2bx     

res4b12_branch2b_relu ReLu res4b12_branch2bx res4b12_branch2bxxx     

res4b12_branch2c Convolution res4b12_branch2bxxx res4b12_branch2c 1x1x256x1024 1024 

bn4b12_branch2c 
Batch 

Normalization 
res4b12_branch2c res4b12_branch2cx     

res4b12 Summation 
res4b11x, 

res4b12_branch2cx 
res4b12     

res4b12_relu ReLu res4b12 res4b12x     

res4b13_branch2a Convolution res4b12x res4b13_branch2a 1x1x1024x256 256 

bn4b13_branch2a 
Batch 
Normalization 

res4b13_branch2a res4b13_branch2ax     

res4b13_branch2a_relu ReLu res4b13_branch2ax res4b13_branch2axxx     

res4b13_branch2b Convolution res4b13_branch2axxx res4b13_branch2b 3x3x256x256 256 

bn4b13_branch2b 
Batch 
Normalization 

res4b13_branch2b res4b13_branch2bx     

res4b13_branch2b_relu ReLu res4b13_branch2bx res4b13_branch2bxxx     

res4b13_branch2c Convolution res4b13_branch2bxxx res4b13_branch2c 1x1x256x1024 1024 

bn4b13_branch2c 
Batch 

Normalization 
res4b13_branch2c res4b13_branch2cx     

res4b13 Summation 
res4b12x, 

res4b13_branch2cx 
res4b13     

res4b13_relu ReLu res4b13 res4b13x     

res4b14_branch2a Convolution res4b13x res4b14_branch2a 1x1x1024x256 256 

bn4b14_branch2a 
Batch 
Normalization 

res4b14_branch2a res4b14_branch2ax     

res4b14_branch2a_relu ReLu res4b14_branch2ax res4b14_branch2axxx     

res4b14_branch2b Convolution res4b14_branch2axxx res4b14_branch2b 3x3x256x256 256 

bn4b14_branch2b 
Batch 
Normalization 

res4b14_branch2b res4b14_branch2bx     
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b14_branch2b_relu ReLu res4b14_branch2bx res4b14_branch2bxxx     

res4b14_branch2c Convolution res4b14_branch2bxxx res4b14_branch2c 1x1x256x1024 1024 

bn4b14_branch2c 
Batch 
Normalization 

res4b14_branch2c res4b14_branch2cx     

res4b14 Summation 
res4b13x, 

res4b14_branch2cx 
res4b14     

res4b14_relu ReLu res4b14 res4b14x     

res4b15_branch2a Convolution res4b14x res4b15_branch2a 1x1x1024x256 256 

bn4b15_branch2a 
Batch 

Normalization 
res4b15_branch2a res4b15_branch2ax     

res4b15_branch2a_relu ReLu res4b15_branch2ax res4b15_branch2axxx     

res4b15_branch2b Convolution res4b15_branch2axxx res4b15_branch2b 3x3x256x256 256 

bn4b15_branch2b 
Batch 

Normalization 
res4b15_branch2b res4b15_branch2bx     

res4b15_branch2b_relu ReLu res4b15_branch2bx res4b15_branch2bxxx     

res4b15_branch2c Convolution res4b15_branch2bxxx res4b15_branch2c 1x1x256x1024 1024 

      

bn4b15_branch2c 
Batch 

Normalization 
res4b15_branch2c res4b15_branch2cx     

res4b15 Summation 
res4b14x, 
res4b15_branch2cx 

res4b15     

res4b15_relu ReLu res4b15 res4b15x     

res4b16_branch2a Convolution res4b15x res4b16_branch2a 1x1x1024x256 256 

bn4b16_branch2a 
Batch 

Normalization 
res4b16_branch2a res4b16_branch2ax     

res4b16_branch2a_relu ReLu res4b16_branch2ax res4b16_branch2axxx     

res4b16_branch2b Convolution res4b16_branch2axxx res4b16_branch2b 3x3x256x256 256 

bn4b16_branch2b 
Batch 

Normalization 
res4b16_branch2b res4b16_branch2bx     

res4b16_branch2b_relu ReLu res4b16_branch2bx res4b16_branch2bxxx     

res4b16_branch2c Convolution res4b16_branch2bxxx res4b16_branch2c 1x1x256x1024 1024 

bn4b16_branch2c 
Batch 

Normalization 
res4b16_branch2c res4b16_branch2cx     

res4b16 Summation 
res4b15x, 
res4b16_branch2cx 

res4b16     

res4b16_relu ReLu res4b16 res4b16x     

res4b17_branch2a Convolution res4b16x res4b17_branch2a 1x1x1024x256 256 

bn4b17_branch2a 
Batch 
Normalization 

res4b17_branch2a res4b17_branch2ax     

res4b17_branch2a_relu ReLu res4b17_branch2ax res4b17_branch2axxx     

res4b17_branch2b Convolution res4b17_branch2axxx res4b17_branch2b 3x3x256x256 256 

bn4b17_branch2b 
Batch 

Normalization 
res4b17_branch2b res4b17_branch2bx     

res4b17_branch2b_relu ReLu res4b17_branch2bx res4b17_branch2bxxx     

res4b17_branch2c Convolution res4b17_branch2bxxx res4b17_branch2c 1x1x256x1024 1024 

bn4b17_branch2c 
Batch 

Normalization 
res4b17_branch2c res4b17_branch2cx     

res4b17 Summation 
res4b16x, 
res4b17_branch2cx 

res4b17     

res4b17_relu ReLu res4b17 res4b17x     

res4b18_branch2a Convolution res4b17x res4b18_branch2a 1x1x1024x256 256 

bn4b18_branch2a 
Batch 
Normalization 

res4b18_branch2a res4b18_branch2ax     

res4b18_branch2a_relu ReLu res4b18_branch2ax res4b18_branch2axxx     

res4b18_branch2b Convolution res4b18_branch2axxx res4b18_branch2b 3x3x256x256 256 

bn4b18_branch2b 
Batch 

Normalization 
res4b18_branch2b res4b18_branch2bx     

res4b18_branch2b_relu ReLu res4b18_branch2bx res4b18_branch2bxxx     

res4b18_branch2c Convolution res4b18_branch2bxxx res4b18_branch2c 1x1x256x1024 1024 

bn4b18_branch2c 
Batch 

Normalization 
res4b18_branch2c res4b18_branch2cx     
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b18 Summation 
res4b17x, 

res4b18_branch2cx 
res4b18     

res4b18_relu ReLu res4b18 res4b18x     

res4b19_branch2a Convolution res4b18x res4b19_branch2a 1x1x1024x256 256 

bn4b19_branch2a 
Batch 

Normalization 
res4b19_branch2a res4b19_branch2ax     

res4b19_branch2a_relu ReLu res4b19_branch2ax res4b19_branch2axxx     

res4b19_branch2b Convolution res4b19_branch2axxx res4b19_branch2b 3x3x256x256 256 

bn4b19_branch2b 
Batch 

Normalization 
res4b19_branch2b res4b19_branch2bx     

res4b19_branch2b_relu ReLu res4b19_branch2bx res4b19_branch2bxxx     

res4b19_branch2c Convolution res4b19_branch2bxxx res4b19_branch2c 1x1x256x1024 1024 

bn4b19_branch2c 
Batch 

Normalization 
res4b19_branch2c res4b19_branch2cx     

res4b19 Summation 
res4b18x, 
res4b19_branch2cx 

res4b19     

res4b19_relu ReLu res4b19 res4b19x     

res4b20_branch2a Convolution res4b19x res4b20_branch2a 1x1x1024x256 256 

bn4b20_branch2a 
Batch 

Normalization 
res4b20_branch2a res4b20_branch2ax     

res4b20_branch2a_relu ReLu res4b20_branch2ax res4b20_branch2axxx     

res4b20_branch2b Convolution res4b20_branch2axxx res4b20_branch2b 3x3x256x256 256 

bn4b20_branch2b 
Batch 

Normalization 
res4b20_branch2b res4b20_branch2bx     

res4b20_branch2b_relu ReLu res4b20_branch2bx res4b20_branch2bxxx     

res4b20_branch2c Convolution res4b20_branch2bxxx res4b20_branch2c 1x1x256x1024 1024 

bn4b20_branch2c 
Batch 

Normalization 
res4b20_branch2c res4b20_branch2cx     

res4b20 Summation 
res4b19x, 
res4b20_branch2cx 

res4b20     

res4b20_relu ReLu res4b20 res4b20x     

res4b21_branch2a Convolution res4b20x res4b21_branch2a 1x1x1024x256 256 

bn4b21_branch2a 
Batch 

Normalization 
res4b21_branch2a res4b21_branch2ax     

res4b21_branch2a_relu ReLu res4b21_branch2ax res4b21_branch2axxx     

res4b21_branch2b Convolution res4b21_branch2axxx res4b21_branch2b 3x3x256x256 256 

bn4b21_branch2b 
Batch 

Normalization 
res4b21_branch2b res4b21_branch2bx     

res4b21_branch2b_relu ReLu res4b21_branch2bx res4b21_branch2bxxx     

res4b21_branch2c Convolution res4b21_branch2bxxx res4b21_branch2c 1x1x256x1024 1024 

bn4b21_branch2c 
Batch 

Normalization 
res4b21_branch2c res4b21_branch2cx     

res4b21 Summation 
res4b20x, 
res4b21_branch2cx 

res4b21     

res4b21_relu ReLu res4b21 res4b21x     

res4b22_branch2a Convolution res4b21x res4b22_branch2a 1x1x1024x256 256 

bn4b22_branch2a 
Batch 
Normalization 

res4b22_branch2a res4b22_branch2ax     

res4b22_branch2a_relu ReLu res4b22_branch2ax res4b22_branch2axxx     

res4b22_branch2b Convolution res4b22_branch2axxx res4b22_branch2b 3x3x256x256 256 

bn4b22_branch2b 
Batch 

Normalization 
res4b22_branch2b res4b22_branch2bx     

res4b22_branch2b_relu ReLu res4b22_branch2bx res4b22_branch2bxxx     

res4b22_branch2c Convolution res4b22_branch2bxxx res4b22_branch2c 1x1x256x1024 1024 

bn4b22_branch2c 
Batch 

Normalization 
res4b22_branch2c res4b22_branch2cx     

res4b22 Summation 
res4b21x, 
res4b22_branch2cx 

res4b22     

res4b22_relu ReLu res4b22 res4b22x     

res4b23_branch2a Convolution res4b22x res4b23_branch2a 1x1x1024x256 256 

bn4b23_branch2a 
Batch 
Normalization 

res4b23_branch2a res4b23_branch2ax     
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res4b23_branch2a_relu ReLu res4b23_branch2ax res4b23_branch2axxx     

res4b23_branch2b Convolution res4b23_branch2axxx res4b23_branch2b 3x3x256x256 256 

bn4b23_branch2b 
Batch 
Normalization 

res4b23_branch2b res4b23_branch2bx     

res4b23_branch2b_relu ReLu res4b23_branch2bx res4b23_branch2bxxx     

res4b23_branch2c Convolution res4b23_branch2bxxx res4b23_branch2c 1x1x256x1024 1024 

bn4b23_branch2c 
Batch 
Normalization 

res4b23_branch2c res4b23_branch2cx     

res4b23 Summation 
res4b22x, 

res4b23_branch2cx 
res4b23     

res4b23_relu ReLu res4b23 res4b23x     

res4b24_branch2a Convolution res4b23x res4b24_branch2a 1x1x1024x256 256 

bn4b24_branch2a 
Batch 

Normalization 
res4b24_branch2a res4b24_branch2ax     

res4b24_branch2a_relu ReLu res4b24_branch2ax res4b24_branch2axxx     

res4b24_branch2b Convolution res4b24_branch2axxx res4b24_branch2b 3x3x256x256 256 

bn4b24_branch2b 
Batch 

Normalization 
res4b24_branch2b res4b24_branch2bx     

res4b24_branch2b_relu ReLu res4b24_branch2bx res4b24_branch2bxxx     

res4b24_branch2c Convolution res4b24_branch2bxxx res4b24_branch2c 1x1x256x1024 1024 

bn4b24_branch2c 
Batch 
Normalization 

res4b24_branch2c res4b24_branch2cx     

res4b24 Summation 
res4b23x, 

res4b24_branch2cx 
res4b24     

res4b24_relu ReLu res4b24 res4b24x     

res4b25_branch2a Convolution res4b24x res4b25_branch2a 1x1x1024x256 256 

bn4b25_branch2a 
Batch 

Normalization 
res4b25_branch2a res4b25_branch2ax     

res4b25_branch2a_relu ReLu res4b25_branch2ax res4b25_branch2axxx     

res4b25_branch2b Convolution res4b25_branch2axxx res4b25_branch2b 3x3x256x256 256 

bn4b25_branch2b 
Batch 

Normalization 
res4b25_branch2b res4b25_branch2bx     

res4b25_branch2b_relu ReLu res4b25_branch2bx res4b25_branch2bxxx     

res4b25_branch2c Convolution res4b25_branch2bxxx res4b25_branch2c 1x1x256x1024 1024 

bn4b25_branch2c 
Batch 
Normalization 

res4b25_branch2c res4b25_branch2cx     

res4b25 Summation 
res4b24x, 

res4b25_branch2cx 
res4b25     

res4b25_relu ReLu res4b25 res4b25x     

res4b26_branch2a Convolution res4b25x res4b26_branch2a 1x1x1024x256 256 

bn4b26_branch2a 
Batch 

Normalization 
res4b26_branch2a res4b26_branch2ax     

res4b26_branch2a_relu ReLu res4b26_branch2ax res4b26_branch2axxx     

res4b26_branch2b Convolution res4b26_branch2axxx res4b26_branch2b 3x3x256x256 256 

bn4b26_branch2b 
Batch 

Normalization 
res4b26_branch2b res4b26_branch2bx     

res4b26_branch2b_relu ReLu res4b26_branch2bx res4b26_branch2bxxx     

res4b26_branch2c Convolution res4b26_branch2bxxx res4b26_branch2c 1x1x256x1024 1024 

bn4b26_branch2c 
Batch 

Normalization 
res4b26_branch2c res4b26_branch2cx     

res4b26 Summation 
res4b25x, 

res4b26_branch2cx 
res4b26     

res4b26_relu ReLu res4b26 res4b26x     

res4b27_branch2a Convolution res4b26x res4b27_branch2a 1x1x1024x256 256 

bn4b27_branch2a 
Batch 

Normalization 
res4b27_branch2a res4b27_branch2ax     

res4b27_branch2a_relu ReLu res4b27_branch2ax res4b27_branch2axxx     

res4b27_branch2b Convolution res4b27_branch2axxx res4b27_branch2b 3x3x256x256 256 

bn4b27_branch2b 
Batch 

Normalization 
res4b27_branch2b res4b27_branch2bx     

res4b27_branch2b_relu ReLu res4b27_branch2bx res4b27_branch2bxxx     

res4b27_branch2c Convolution res4b27_branch2bxxx res4b27_branch2c 1x1x256x1024 1024 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b27_branch2c 
Batch 

Normalization 
res4b27_branch2c res4b27_branch2cx     

res4b27 Summation 
res4b26x, 

res4b27_branch2cx 
res4b27     

res4b27_relu ReLu res4b27 res4b27x     

res4b28_branch2a Convolution res4b27x res4b28_branch2a 1x1x1024x256 256 

bn4b28_branch2a 
Batch 
Normalization 

res4b28_branch2a res4b28_branch2ax     

res4b28_branch2a_relu ReLu res4b28_branch2ax res4b28_branch2axxx     

res4b28_branch2b Convolution res4b28_branch2axxx res4b28_branch2b 3x3x256x256 256 

bn4b28_branch2b 
Batch 
Normalization 

res4b28_branch2b res4b28_branch2bx     

res4b28_branch2b_relu ReLu res4b28_branch2bx res4b28_branch2bxxx     

res4b28_branch2c Convolution res4b28_branch2bxxx res4b28_branch2c 1x1x256x1024 1024 

bn4b28_branch2c 
Batch 
Normalization 

res4b28_branch2c res4b28_branch2cx     

res4b28 Summation 
res4b27x, 

res4b28_branch2cx 
res4b28     

res4b28_relu ReLu res4b28 res4b28x     

res4b29_branch2a Convolution res4b28x res4b29_branch2a 1x1x1024x256 256 

bn4b29_branch2a 
Batch 

Normalization 
res4b29_branch2a res4b29_branch2ax     

res4b29_branch2a_relu ReLu res4b29_branch2ax res4b29_branch2axxx     

res4b29_branch2b Convolution res4b29_branch2axxx res4b29_branch2b 3x3x256x256 256 

bn4b29_branch2b 
Batch 
Normalization 

res4b29_branch2b res4b29_branch2bx     

res4b29_branch2b_relu ReLu res4b29_branch2bx res4b29_branch2bxxx     

res4b29_branch2c Convolution res4b29_branch2bxxx res4b29_branch2c 1x1x256x1024 1024 

bn4b29_branch2c 
Batch 
Normalization 

res4b29_branch2c res4b29_branch2cx     

res4b29 Summation 
res4b28x, 

res4b29_branch2cx 
res4b29     

res4b29_relu ReLu res4b29 res4b29x     

res4b30_branch2a Convolution res4b29x res4b30_branch2a 1x1x1024x256 256 

bn4b30_branch2a 
Batch 

Normalization 
res4b30_branch2a res4b30_branch2ax     

res4b30_branch2a_relu ReLu res4b30_branch2ax res4b30_branch2axxx     

res4b30_branch2b Convolution res4b30_branch2axxx res4b30_branch2b 3x3x256x256 256 

bn4b30_branch2b 
Batch 

Normalization 
res4b30_branch2b res4b30_branch2bx     

res4b30_branch2b_relu ReLu res4b30_branch2bx res4b30_branch2bxxx     

res4b30_branch2c Convolution res4b30_branch2bxxx res4b30_branch2c 1x1x256x1024 1024 

bn4b30_branch2c 
Batch 
Normalization 

res4b30_branch2c res4b30_branch2cx     

res4b30 Summation 
res4b29x, 

res4b30_branch2cx 
res4b30     

res4b30_relu ReLu res4b30 res4b30x     

res4b31_branch2a Convolution res4b30x res4b31_branch2a 1x1x1024x256 256 

bn4b31_branch2a 
Batch 

Normalization 
res4b31_branch2a res4b31_branch2ax     

res4b31_branch2a_relu ReLu res4b31_branch2ax res4b31_branch2axxx     

res4b31_branch2b Convolution res4b31_branch2axxx res4b31_branch2b 3x3x256x256 256 

bn4b31_branch2b 
Batch 

Normalization 
res4b31_branch2b res4b31_branch2bx     

res4b31_branch2b_relu ReLu res4b31_branch2bx res4b31_branch2bxxx     

res4b31_branch2c Convolution res4b31_branch2bxxx res4b31_branch2c 1x1x256x1024 1024 

bn4b31_branch2c 
Batch 
Normalization 

res4b31_branch2c res4b31_branch2cx     

res4b31 Summation 
res4b30x, 

res4b31_branch2cx 
res4b31     

res4b31_relu ReLu res4b31 res4b31x     

res4b32_branch2a Convolution res4b31x res4b32_branch2a 1x1x1024x256 256 
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

bn4b32_branch2a 
Batch 

Normalization 
res4b32_branch2a res4b32_branch2ax     

res4b32_branch2a_relu ReLu res4b32_branch2ax res4b32_branch2axxx     

res4b32_branch2b Convolution res4b32_branch2axxx res4b32_branch2b 3x3x256x256 256 

bn4b32_branch2b 
Batch 

Normalization 
res4b32_branch2b res4b32_branch2bx     

res4b32_branch2b_relu ReLu res4b32_branch2bx res4b32_branch2bxxx     

res4b32_branch2c Convolution res4b32_branch2bxxx res4b32_branch2c 1x1x256x1024 1024 

bn4b32_branch2c 
Batch 

Normalization 
res4b32_branch2c res4b32_branch2cx     

res4b32 Summation 
res4b31x, 
res4b32_branch2cx 

res4b32     

res4b32_relu ReLu res4b32 res4b32x     

res4b33_branch2a Convolution res4b32x res4b33_branch2a 1x1x1024x256 256 

bn4b33_branch2a 
Batch 
Normalization 

res4b33_branch2a res4b33_branch2ax     

res4b33_branch2a_relu ReLu res4b33_branch2ax res4b33_branch2axxx     

res4b33_branch2b Convolution res4b33_branch2axxx res4b33_branch2b 3x3x256x256 256 

bn4b33_branch2b 
Batch 

Normalization 
res4b33_branch2b res4b33_branch2bx     

res4b33_branch2b_relu ReLu res4b33_branch2bx res4b33_branch2bxxx     

res4b33_branch2c Convolution res4b33_branch2bxxx res4b33_branch2c 1x1x256x1024 1024 

bn4b33_branch2c 
Batch 

Normalization 
res4b33_branch2c res4b33_branch2cx     

res4b33 Summation 
res4b32x, 
res4b33_branch2cx 

res4b33     

res4b33_relu ReLu res4b33 res4b33x     

res4b34_branch2a Convolution res4b33x res4b34_branch2a 1x1x1024x256 256 

bn4b34_branch2a 
Batch 
Normalization 

res4b34_branch2a res4b34_branch2ax     

res4b34_branch2a_relu ReLu res4b34_branch2ax res4b34_branch2axxx     

res4b34_branch2b Convolution res4b34_branch2axxx res4b34_branch2b 3x3x256x256 256 

bn4b34_branch2b 
Batch 

Normalization 
res4b34_branch2b res4b34_branch2bx     

res4b34_branch2b_relu ReLu res4b34_branch2bx res4b34_branch2bxxx     

res4b34_branch2c Convolution res4b34_branch2bxxx res4b34_branch2c 1x1x256x1024 1024 

bn4b34_branch2c 
Batch 

Normalization 
res4b34_branch2c res4b34_branch2cx     

res4b34 Summation 
res4b33x, 

res4b34_branch2cx 
res4b34     

res4b34_relu ReLu res4b34 res4b34x     

res4b35_branch2a Convolution res4b34x res4b35_branch2a 1x1x1024x256 256 

bn4b35_branch2a 
Batch 
Normalization 

res4b35_branch2a res4b35_branch2ax     

res4b35_branch2a_relu ReLu res4b35_branch2ax res4b35_branch2axxx     

res4b35_branch2b Convolution res4b35_branch2axxx res4b35_branch2b 3x3x256x256 256 

bn4b35_branch2b 
Batch 
Normalization 

res4b35_branch2b res4b35_branch2bx     

res4b35_branch2b_relu ReLu res4b35_branch2bx res4b35_branch2bxxx     

res4b35_branch2c Convolution res4b35_branch2bxxx res4b35_branch2c 1x1x256x1024 1024 

bn4b35_branch2c 
Batch 

Normalization 
res4b35_branch2c res4b35_branch2cx     

res4b35 Summation 
res4b34x, 

res4b35_branch2cx 
res4b35     

res4b35_relu ReLu res4b35 res4b35x     

res5a_branch1 Convolution res4b35x res5a_branch1 1x1x1024x2048 2048 

bn5a_branch1 
Batch 
Normalization 

res5a_branch1 res5a_branch1x     

res5a_branch2a Convolution res4b35x res5a_branch2a 1x1x1024x512 512 

bn5a_branch2a 
Batch 
Normalization 

res5a_branch2a res5a_branch2ax     

res5a_branch2a_relu ReLu res5a_branch2ax res5a_branch2axxx     
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Table 22. ResNet152 Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

res5a_branch2b Convolution res5a_branch2axxx res5a_branch2b 3x3x512x512 512 

bn5a_branch2b 
Batch 
Normalization 

res5a_branch2b res5a_branch2bx     

res5a_branch2b_relu ReLu res5a_branch2bx res5a_branch2bxxx     

res5a_branch2c Convolution res5a_branch2bxxx res5a_branch2c 1x1x512x2048 2048 

bn5a_branch2c 
Batch 

Normalization 
res5a_branch2c res5a_branch2cx     

res5a Summation 
res5a_branch1x, 

res5a_branch2cx 
res5a     

res5a_relu ReLu res5a res5ax     

res5b_branch2a Convolution res5ax res5b_branch2a 1x1x2048x512 512 

bn5b_branch2a 
Batch 

Normalization 
res5b_branch2a res5b_branch2ax     

res5b_branch2a_relu ReLu res5b_branch2ax res5b_branch2axxx     

res5b_branch2b Convolution res5b_branch2axxx res5b_branch2b 3x3x512x512 512 

bn5b_branch2b 
Batch 
Normalization 

res5b_branch2b res5b_branch2bx     

res5b_branch2b_relu ReLu res5b_branch2bx res5b_branch2bxxx     

res5b_branch2c Convolution res5b_branch2bxxx res5b_branch2c 1x1x512x2048 2048 

bn5b_branch2c 
Batch 
Normalization 

res5b_branch2c res5b_branch2cx     

res5b Summation 
res5ax, 

res5b_branch2cx 
res5b     

res5b_relu ReLu res5b res5bx     

res5c_branch2a Convolution res5bx res5c_branch2a 1x1x2048x512 512 

bn5c_branch2a 
Batch 

Normalization 
res5c_branch2a res5c_branch2ax     

res5c_branch2a_relu ReLu res5c_branch2ax res5c_branch2axxx     

res5c_branch2b Convolution res5c_branch2axxx res5c_branch2b 3x3x512x512 512 

bn5c_branch2b 
Batch 
Normalization 

res5c_branch2b res5c_branch2bx     

res5c_branch2b_relu ReLu res5c_branch2bx res5c_branch2bxxx     

res5c_branch2c Convolution res5c_branch2bxxx res5c_branch2c 1x1x512x2048 2048 

bn5c_branch2c 
Batch 
Normalization 

res5c_branch2c res5c_branch2cx     

res5c Summation 
res5bx, 

res5c_branch2cx 
res5c     

res5c_relu ReLu res5c res5cx     

pool5 Average Pooling res5cx pool5     

fc1000 Convolution pool5 fc1000 1x1x2048x1000 1000 

prob SoftMax fc1000 prob     



 

 

147 

Table 23. Fully Convolutional Network Architecture 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1_1 Convolution  data conv1_1 3x3x3x64 64 

relu1_1 ReLu conv1_1 conv1_1x     

conv1_2 Convolution  conv1_1x conv1_2 3x3x64x64 64 

relu1_2 ReLu conv1_2 conv1_2x     

pool1 Max Pooling conv1_2x pool1     

conv2_1 Convolution  pool1 conv2_1 3x3x64x128 128 

relu2_1 ReLu conv2_1 conv2_1x     

conv2_2 Convolution  conv2_1x conv2_2 3x3x128x128 128 

relu2_2 ReLu conv2_2 conv2_2x     

pool2 Max Pooling conv2_2x pool2     

conv3_1 Convolution  pool2 conv3_1 3x3x128x256 256 

relu3_1 ReLu conv3_1 conv3_1x     

conv3_2 Convolution  conv3_1x conv3_2 3x3x256x256 256 

relu3_2 ReLu conv3_2 conv3_2x     

conv3_3 Convolution  conv3_2x conv3_3 3x3x256x256 256 

relu3_3 ReLu conv3_3 conv3_3x     

pool3 Max Pooling conv3_3x pool3     

conv4_1 Convolution  pool3 conv4_1 3x3x256x512 512 

relu4_1 ReLu conv4_1 conv4_1x     

conv4_2 Convolution  conv4_1x conv4_2 3x3x512x512 512 

relu4_2 ReLu conv4_2 conv4_2x     

conv4_3 Convolution  conv4_2x conv4_3 3x3x512x512 512 

relu4_3 ReLu conv4_3 conv4_3x     

pool4 Max Pooling conv4_3x pool4     

conv5_1 Convolution  pool4 conv5_1 3x3x512x512 512 

relu5_1 ReLu conv5_1 conv5_1x     

conv5_2 Convolution  conv5_1x conv5_2 3x3x512x512 512 

relu5_2 ReLu conv5_2 conv5_2x     

conv5_3 Convolution  conv5_2x conv5_3 3x3x512x512 512 

relu5_3 ReLu conv5_3 conv5_3x     

pool5 Max Pooling conv5_3x pool5     

fc6 Convolution  pool5 fc6 7x7x512x4096 4096 

relu6 ReLu fc6 fc6x     

fc7 Convolution  fc6x fc7 1x1x4096x4096 4096 

relu7 ReLu fc7 fc7x     

score_fr Convolution  fc7x score 1x1x4096x21 21 

score2 Convolution Transpose score score2 4x4x21x21 21 

score_pool4 Convolution pool4 score_pool4 1x1x512x21 21 

crop Crop 
score_pool4, 

score2 
score_pool4c     

fuse Summation 
score2, 
score_pool4c 

score_fused     

score4 Convolution Transpose score_fused score4 4x4x21x21 21 

score_pool3 Convolution pool3 score_pool3 1x1x256x21 21 

cropx Crop 
score_pool3, 

score4 
score_pool3c     

fusex Summation 
score4, 

score_pool3c 
score_final     

upsample Convolution Transpose score_final bigscore 16x16x21x21 21 

cropxx Crop bigscore, data upscore     
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Table 24. SegNet Architecture  

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

conv1_1 Convolution  data conv1_1 3x3x3x64 64 

bn_conv1_1 
Batch 
Normalization 

conv1_1 bn_conv1_1     

relu1_1 ReLu bn_conv1_1 relu1_1     

conv1_2 Convolution  relu1_1 conv1_2 3x3x64x64 64 

bn_conv1_2 
Batch 

Normalization 
conv1_2 bn_conv1_2     

relu1_2 ReLu bn_conv1_2 relu1_2     

pool1 Max Pooling relu1_2 pool1     

conv2_1 Convolution  pool1 conv2_1 3x3x64x128 128 

bn_conv2_1 
Batch 
Normalization 

conv2_1 bn_conv2_1     

relu2_1 ReLu bn_conv2_1 relu2_1     

conv2_2 Convolution  relu2_1 conv2_2 3x3x128x128 128 

bn_conv2_2 
Batch 

Normalization 
conv2_2 bn_conv2_2     

relu2_2 ReLu bn_conv2_2 relu2_2     

pool2 Max Pooling relu2_2 pool2     

conv3_1 Convolution  pool2 conv3_1 3x3x128x256 256 

bn_conv3_1 
Batch 

Normalization 
conv3_1 bn_conv3_1     

relu3_1 ReLu bn_conv3_1 relu3_1     

conv3_2 Convolution  relu3_1 conv3_2 3x3x256x256 256 

bn_conv3_2 
Batch 

Normalization 
conv3_2 bn_conv3_2     

relu3_2 ReLu bn_conv3_2 relu3_2     

conv3_3 Convolution  relu3_2 conv3_3 3x3x256x256 256 

bn_conv3_3 
Batch 

Normalization 
conv3_3 bn_conv3_3     

relu3_3 ReLu bn_conv3_3 relu3_3     

pool3 Max Pooling relu3_3 pool3     

conv4_1 Convolution  pool3 conv4_1 3x3x256x512 512 

bn_conv4_1 
Batch 

Normalization 
conv4_1 bn_conv4_1     

relu4_1 ReLu bn_conv4_1 relu4_1     

conv4_2 Convolution  relu4_1 conv4_2 3x3x512x512 512 

bn_conv4_2 
Batch 

Normalization 
conv4_2 bn_conv4_2     

relu4_2 ReLu bn_conv4_2 relu4_2     

conv4_3 Convolution  relu4_2 conv4_3 3x3x512x512 512 

bn_conv4_3 
Batch 

Normalization 
conv4_3 bn_conv4_3     

relu4_3 ReLu bn_conv4_3 relu4_3     

pool4 Max Pooling relu4_3 pool4     

conv5_1 Convolution  pool4 conv5_1 3x3x512x512 512 

bn_conv5_1 
Batch 

Normalization 
conv5_1 bn_conv5_1     

relu5_1 ReLu bn_conv5_1 relu5_1     

conv5_2 Convolution  relu5_1 conv5_2 3x3x512x512 512 

bn_conv5_2 
Batch 
Normalization 

conv5_2 bn_conv5_2     

relu5_2 ReLu bn_conv5_2 relu5_2     

conv5_3 Convolution  relu5_2 conv5_3 3x3x512x512 512 

bn_conv5_3 
Batch 
Normalization 

conv5_3 bn_conv5_3     

relu5_3 ReLu bn_conv5_3 relu5_3     

pool5 Max Pooling relu5_3 pool5     

decoder5_unpool Max Unpooling pool5 decoder5_unpool     

decoder5_conv3 Convolution  decoder5_unpool decoder5_conv3 3x3x512x512 512 

decoder5_bn_3 
Batch 
Normalization 

decoder5_conv3 decoder5_bn_3     

decoder5_relu_3 ReLu decoder5_bn_3 decoder5_relu_3     
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Table 24. SegNet Architecture (cont’d) 

Layer Name Block Type Input Output Filter Weights 
Bias 

Weights 

decoder5_conv2 Convolution  decoder5_relu_3 decoder5_conv2 3x3x512x512 512 

decoder5_bn_2 
Batch 
Normalization 

decoder5_conv2 decoder5_bn_2     

decoder5_relu_2 ReLu decoder5_bn_2 decoder5_relu_2     

decoder5_conv1 Convolution  decoder5_relu_2 decoder5_conv1 3x3x512x512 512 

decoder5_bn_1 
Batch 

Normalization 
decoder5_conv1 decoder5_bn_1     

decoder5_relu_1 ReLu decoder5_bn_1 decoder5_relu_1     

decoder4_unpool Max Unpooling 
decoder5_relu_1, 

pool4 
decoder4_unpool     

decoder4_conv3 Convolution  decoder4_unpool decoder4_conv3 3x3x512x512 512 

decoder4_bn_3 
Batch 

Normalization 
decoder4_conv3 decoder4_bn_3     

decoder4_relu_3 ReLu decoder4_bn_3 decoder4_relu_3     

decoder4_conv2 Convolution  decoder4_relu_3 decoder4_conv2 3x3x512x512 512 

decoder4_bn_2 
Batch 
Normalization 

decoder4_conv2 decoder4_bn_2     

decoder4_relu_2 ReLu decoder4_bn_2 decoder4_relu_2     

decoder4_conv1 Convolution  decoder4_relu_2 decoder4_conv1 3x3x512x256 256 

decoder4_bn_1 
Batch 
Normalization 

decoder4_conv1 decoder4_bn_1     

decoder4_relu_1 ReLu decoder4_bn_1 decoder4_relu_1     

decoder3_unpool Max Unpooling 
decoder4_relu_1, 

pool3 
decoder3_unpool     

decoder3_conv3 Convolution  decoder3_unpool decoder3_conv3 3x3x256x256 256 

decoder3_bn_3 
Batch 

Normalization 
decoder3_conv3 decoder3_bn_3     

decoder3_relu_3 ReLu decoder3_bn_3 decoder3_relu_3     

decoder3_conv2 Convolution  decoder3_relu_3 decoder3_conv2 3x3x256x256 256 

decoder3_bn_2 
Batch 
Normalization 

decoder3_conv2 decoder3_bn_2     

decoder3_relu_2 ReLu decoder3_bn_2 decoder3_relu_2     

decoder3_conv1 Convolution  decoder3_relu_2 decoder3_conv1 3x3x256x128 128 

decoder3_bn_1 
Batch 
Normalization 

decoder3_conv1 decoder3_bn_1     

decoder3_relu_1 ReLu decoder3_bn_1 decoder3_relu_1     

decoder2_unpool Max Unpooling 
decoder3_relu_1, 

pool2 
decoder2_unpool     

decoder2_conv2 Convolution  decoder2_unpool decoder2_conv2 3x3x128x128 128 

decoder2_bn_2 
Batch 

Normalization 
decoder2_conv2 decoder2_bn_2     

decoder2_relu_2 ReLu decoder2_bn_2 decoder2_relu_2     

decoder2_conv1 Convolution  decoder2_relu_2 decoder2_conv1 3x3x128x64 64 

decoder2_bn_1 
Batch 

Normalization 
decoder2_conv1 decoder2_bn_1     

decoder2_relu_1 ReLu decoder2_bn_1 decoder2_relu_1     

decoder1_unpool Max Unpooling 
decoder2_relu_1, 
pool1 

decoder1_unpool     

decoder1_conv2 Convolution  decoder1_unpool decoder1_conv2 3x3x64x64 64 

decoder1_bn_2 
Batch 

Normalization 
decoder1_conv2 decoder1_bn_2     

decoder1_relu_2 ReLu decoder1_bn_2 decoder1_relu_2     

decoder1_conv1 Convolution  decoder1_relu_2 decoder1_conv1 3x3x64x2 2 

decoder1_bn_1 
Batch 

Normalization 
decoder1_conv1 decoder1_bn_1     

decoder1_relu_1 ReLu decoder1_bn_1 decoder1_relu_1     

softmax Softmax decoder1_relu_1 softmax     

pixelLabels 
Cross Entropy 

Loss 
softmax pixelLabels     
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APPENDIX II 

 

 

 CLASSIFICATION TEST RESULTS 

 

 

 

Table 25. Test 1 Classification Accuracy Results 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,8800 0,9467 0,9800 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867

0.7K 0,9267 0,9933 0,9900 0,9900 0,9900 0,9933 0,9933 0,9933 0,9933 0,9933

1.75K 0,9907 0,9907 0,9933 0,9947 0,9933 0,9933 0,9933 0,9933 0,9947 0,9947

3.5K 0,9964 0,9972 0,9978 0,9981 0,9978 0,9979 0,9981 0,9981 0,9981 0,9983

7K 0,9967 0,9974 0,9972 0,9966 0,9969 0,9971 0,9969 0,9971 0,9971 0,9971

14K 0,9974 0,9974 0,9979 0,9981 0,9979 0,9979 0,9979 0,9979 0,9979 0,9979

21K 0,9971 0,9976 0,9978 0,9978 0,9976 0,9976 0,9976 0,9978 0,9978 0,9978

28K 0,9983 0,9988 0,9988 0,9988 0,9988 0,9988 0,9986 0,9988 0,9988 0,9988

AlexNet - Test 1
Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,9667 1,0000 0,9867 0,9800 0,9800 0,9867 0,9933 0,9933 0,9933 1,0000

0.7K 0,9933 0,9700 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900 0,9900

1.75K 0,9867 0,9893 0,9653 0,9920 0,9880 0,9880 0,9907 0,9907 0,9907 0,9907

3.5K 0,9993 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995

7K 0,9986 0,9983 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

14K 0,9991 0,9993 0,9995 0,9993 0,9993 0,9995 0,9993 0,9993 0,9993 0,9993

21K 0,9998 0,9998 0,9997 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

28K 0,9995 0,9986 0,9997 0,9990 0,9995 0,9997 0,9995 0,9995 0,9995 0,9997

VGG16 - Test1
Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8933 0,8267 0,9400 0,9133 1,0000 0,9733 0,9733 0,9733 0,9733 0,9733

0.7K 1,0000 0,9800 0,9933 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867 0,9867

1.75K 0,9907 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920 0,9920

3.5K 0,9988 0,9988 0,9988 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

7K 0,9986 0,9991 0,9991 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993 0,9993

14K 0,9967 0,9988 0,9991 0,9988 0,9988 0,9990 0,9990 0,9990 0,9990 0,9990

21K 0,9990 0,9995 0,9997 0,9995 0,9995 0,9997 0,9997 0,9995 0,9997 0,9997

28K 0,9988 0,9991 0,9990 0,9990 0,9993 0,9993 0,9993 0,9993 0,9993 0,9997

VGG19 - Test1
Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 25. Test 1 Classification Results (cont’d) 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,8667 0,9200 0,9333 0,9333 0,9333 0,9667 0,9667 0,9733 0,9733 0,9733

0.7K 0,9367 0,9633 0,9733 0,9800 0,9833 0,9867 0,9900 0,9900 0,9900 0,9933

1.75K 0,9560 0,9827 0,9893 0,9960 0,9973 0,9973 0,9973 0,9960 0,9960 0,9960

3.5K 0,9954 0,9978 0,9978 0,9974 0,9976 0,9981 0,9981 0,9981 0,9981 0,9983

7K 0,9972 0,9978 0,9979 0,9978 0,9978 0,9979 0,9978 0,9978 0,9978 0,9979

14K 0,9979 0,9974 0,9981 0,9981 0,9988 0,9985 0,9985 0,9985 0,9986 0,9985

21K 0,9976 0,9986 0,9986 0,9990 0,9990 0,9990 0,9990 0,9991 0,9993 0,9993

28K 0,9979 0,9985 0,9985 0,9986 0,9985 0,9986 0,9986 0,9985 0,9986 0,9986

GoogleNet - 

Test1

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,7367 0,9500 0,9667 0,9833 0,9867 0,9900 0,9917 0,9933 0,9933 0,9933

0.7K 0,8608 0,9700 0,9817 0,9858 0,9875 0,9883 0,9892 0,9900 0,9883 0,9900

1.75K 0,9857 0,9957 0,9960 0,9967 0,9973 0,9973 0,9967 0,9973 0,9973 0,9977

3.5K 0,9931 0,9955 0,9959 0,9957 0,9962 0,9960 0,9960 0,9969 0,9964 0,9960

7K 0,9966 0,9978 0,9976 0,9981 0,9978 0,9981 0,9988 0,9985 0,9983 0,9983

14K 0,9983 0,9991 0,9991 0,9991 0,9991 0,9990 0,9991 0,9990 0,9990 0,9990

21K 0,9972 0,9983 0,9983 0,9981 0,9988 0,9986 0,9988 0,9990 0,9991 0,9991

28K 0,9979 0,9988 0,9988 0,9990 0,9986 0,9988 0,9986 0,9988 0,9988 0,9991

ResNet50 - 

Test1

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8367 0,9750 0,9917 0,9900 0,9883 0,9883 0,9883 0,9883 0,9883 0,9883

0.7K 0,9350 0,9908 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933 0,9933

1.75K 0,9950 0,9983 0,9987 0,9970 0,9977 0,9973 0,9970 0,9983 0,9983 0,9977

3.5K 0,9954 0,9960 0,9966 0,9960 0,9969 0,9969 0,9974 0,9962 0,9969 0,9969

7K 0,9936 0,9952 0,9966 0,9971 0,9969 0,9971 0,9967 0,9974 0,9974 0,9971

14K 0,9971 0,9978 0,9983 0,9981 0,9978 0,9985 0,9986 0,9986 0,9986 0,9986

21K 0,9988 0,9979 0,9986 0,9983 0,9985 0,9990 0,9988 0,9986 0,9986 0,9986

28K 0,9967 0,9983 0,9979 0,9991 0,9990 0,9993 0,9991 0,9985 0,9978 0,9990

ResNet101 - 

Test1

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5733 0,9700 0,9750 0,9733 0,9750 0,9783 0,9783 0,9783 0,9817 0,9817

0.7K 0,9442 0,9867 0,9875 0,9892 0,9875 0,9892 0,9892 0,9908 0,9908 0,9883

1.75K 0,9917 0,9950 0,9947 0,9960 0,9977 0,9973 0,9977 0,9990 0,9990 0,9990

3.5K 0,9720 0,9740 0,9733 0,9768 0,9699 0,9745 0,9766 0,9720 0,9744 0,9775

7K 0,9929 0,9952 0,9957 0,9969 0,9971 0,9969 0,9972 0,9976 0,9974 0,9978

14K 0,9940 0,9947 0,9929 0,9897 0,9907 0,9921 0,9921 0,9912 0,9905 0,9921

21K 0,9921 0,9923 0,9914 0,9948 0,9943 0,9969 0,9954 0,9964 0,9959 0,9983

28K 0,9768 0,9813 0,9782 0,9773 0,9825 0,9831 0,9806 0,9830 0,9854 0,9826

ResNet152 - 

Test1

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 26. Test2 Classification Accuracy Results 

 

  

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6021 0,5694 0,5654 0,5648 0,5654 0,5648 0,5681 0,5681 0,5681 0,5694

0.7K 0,7847 0,5694 0,5452 0,5419 0,5510 0,5641 0,5681 0,5674 0,5674 0,5661

1.75K 0,5766 0,5864 0,6126 0,6165 0,6106 0,6099 0,6106 0,6106 0,6113 0,6113

3.5K 0,6963 0,6957 0,6872 0,6891 0,6819 0,6813 0,6793 0,6767 0,6760 0,6767

7K 0,7637 0,7219 0,7029 0,6819 0,6931 0,6924 0,6904 0,6813 0,6819 0,6800

14K 0,6859 0,6558 0,6571 0,6603 0,6453 0,6505 0,6518 0,6486 0,6479 0,6479

21K 0,6800 0,6708 0,6944 0,6872 0,6787 0,6715 0,6715 0,6649 0,6721 0,6728

28K 0,7736 0,7984 0,7893 0,7906 0,7834 0,7762 0,7742 0,7755 0,7644 0,7605

AlexNet - Test 

2

Number of Epoch
Tr

ai
n

in
g 

D
at

as
e

t 
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,9634 0,9666 0,9143 0,8802 0,8724 0,8809 0,8855 0,8914 0,8959 0,8979

0.7K 0,6970 0,9470 0,9025 0,8861 0,9018 0,9123 0,9149 0,9175 0,9175 0,9162

1.75K 0,6603 0,7055 0,6414 0,9045 0,8554 0,8554 0,8586 0,8586 0,8573 0,8567

3.5K 0,9332 0,9490 0,9463 0,9457 0,9470 0,9470 0,9470 0,9450 0,9463 0,9463

7K 0,7186 0,7821 0,6774 0,6721 0,6728 0,6728 0,6728 0,6708 0,6708 0,6708

14K 0,8213 0,8089 0,7788 0,8488 0,8298 0,8213 0,8318 0,8292 0,8312 0,8318

21K 0,9516 0,9673 0,8881 0,8750 0,8704 0,8868 0,9005 0,8815 0,8946 0,8855

28K 0,8750 0,8704 0,8370 0,8527 0,8586 0,8488 0,8580 0,8639 0,8632 0,8580

VGG16 - Test2
Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5903 0,4503 0,5831 0,5046 0,9071 0,7101 0,7349 0,7277 0,7199 0,7160

0.7K 0,7480 0,7304 0,7723 0,8259 0,8115 0,8069 0,8056 0,8010 0,8004 0,7978

1.75K 0,8259 0,8645 0,8514 0,8541 0,8547 0,8541 0,8527 0,8514 0,8508 0,8501

3.5K 0,9823 0,9548 0,9319 0,9516 0,9522 0,9522 0,9522 0,9522 0,9542 0,9542

7K 0,9771 0,9149 0,9202 0,9130 0,9123 0,9123 0,9123 0,9103 0,9103 0,9103

14K 0,7297 0,6414 0,5746 0,5982 0,5798 0,5602 0,5668 0,5654 0,5622 0,5654

21K 0,9090 0,8613 0,8495 0,8174 0,8168 0,8305 0,8298 0,8272 0,8390 0,8344

28K 0,5969 0,7029 0,7912 0,7657 0,7441 0,7467 0,7336 0,7389 0,7317 0,7297

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG19 - Test2

1 2 3 4 5 6 7 8 9 10

0.35K 0,9136 0,9483 0,9627 0,9647 0,9725 0,9810 0,9869 0,9863 0,9869 0,9869

0.7K 0,7232 0,7526 0,7899 0,8298 0,8599 0,8757 0,8861 0,8927 0,8959 0,8999

1.75K 0,9365 0,9555 0,9496 0,9516 0,9483 0,9431 0,9424 0,9431 0,9476 0,9470

3.5K 0,6315 0,5903 0,6165 0,6263 0,6355 0,6302 0,6224 0,6243 0,6276 0,6276

7K 0,8063 0,7513 0,7140 0,6865 0,7094 0,7173 0,7225 0,7094 0,7173 0,7120

14K 0,6623 0,6060 0,6152 0,6099 0,5792 0,5877 0,5864 0,5759 0,5733 0,5805

21K 0,6073 0,5955 0,5903 0,5766 0,5700 0,5504 0,5537 0,5373 0,5563 0,5537

28K 0,7343 0,6747 0,6675 0,6250 0,6374 0,6217 0,6027 0,6250 0,5923 0,5694

GoogleNet - 

Test2

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 26. Test 2 Classification Results (cont’d) 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,9025 0,6793 0,4974 0,4810 0,4908 0,4961 0,4980 0,4980 0,4980 0,4980

0.7K 0,6885 0,4921 0,5039 0,5033 0,5046 0,5007 0,5007 0,5020 0,5020 0,5007

1.75K 0,5000 0,4993 0,4993 0,4987 0,4987 0,4987 0,4980 0,4987 0,4987 0,4987

3.5K 0,5137 0,5118 0,4699 0,4234 0,4156 0,4077 0,4332 0,4025 0,3842 0,4077

7K 0,5687 0,5628 0,5393 0,5229 0,5386 0,5975 0,5445 0,5412 0,5412 0,5517

14K 0,4980 0,4967 0,4935 0,4941 0,4941 0,4882 0,5020 0,4849 0,4836 0,4882

21K 0,4836 0,4679 0,4483 0,4725 0,4254 0,4280 0,4679 0,4031 0,4352 0,4143

28K 0,4601 0,4313 0,4457 0,4522 0,3619 0,3220 0,3874 0,3920 0,4228 0,4071

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet50 - 

Test2

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5065 0,5177 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5105 0,5000 0,5007 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

1.75K 0,7363 0,7232 0,7349 0,7395 0,7467 0,7330 0,7552 0,7624 0,7637 0,7441

3.5K 0,5223 0,5347 0,5524 0,5798 0,5753 0,5720 0,6027 0,6374 0,6342 0,5753

7K 0,7160 0,7565 0,7277 0,7402 0,7565 0,7349 0,7291 0,7258 0,7709 0,7382

14K 0,6178 0,6139 0,6152 0,6047 0,5838 0,5609 0,5550 0,5687 0,5497 0,5563

21K 0,6584 0,6643 0,6446 0,6918 0,7173 0,6760 0,6616 0,6433 0,6204 0,6302

28K 0,6008 0,7160 0,6839 0,6996 0,7212 0,7363 0,7343 0,7251 0,7402 0,7258

ResNet101 - 

Test2

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,4791 0,5020 0,4961 0,4954 0,4974 0,4967 0,4974 0,4961 0,4967 0,4961

0.7K 0,5000 0,5000 0,5020 0,5039 0,5033 0,5020 0,5033 0,5020 0,5020 0,5013

1.75K 0,5039 0,5033 0,5046 0,5033 0,5033 0,5033 0,5007 0,5046 0,5026 0,5026

3.5K 0,5000 0,5000 0,5000 0,5000 0,5000 0,4987 0,4993 0,4993 0,5000 0,5000

7K 0,6171 0,5694 0,5864 0,5641 0,5465 0,5589 0,5425 0,5419 0,5497 0,5491

14K 0,4725 0,4732 0,4771 0,4758 0,4791 0,4745 0,4797 0,4692 0,4712 0,4699

21K 0,5177 0,5065 0,5046 0,5295 0,5079 0,5380 0,5301 0,5321 0,5223 0,5596

28K 0,5079 0,5124 0,5065 0,5020 0,5065 0,5033 0,5065 0,5098 0,5124 0,5000

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet152 - 

Test2

Number of Epoch
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Table 27. Test 3 Classification Accuracy Results 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6124 0,5964 0,6064 0,6185 0,6145 0,6185 0,6205 0,6225 0,6325 0,6345

0.7K 0,8574 0,6365 0,5863 0,5863 0,5984 0,6225 0,6325 0,6305 0,6265 0,6265

1.75K 0,6827 0,6807 0,7369 0,7430 0,7390 0,7390 0,7390 0,7390 0,7369 0,7369

3.5K 0,6767 0,6747 0,6546 0,6506 0,6446 0,6426 0,6365 0,6365 0,6345 0,6345

7K 0,8193 0,7711 0,7088 0,6827 0,6888 0,6948 0,6968 0,6867 0,6888 0,6888

14K 0,7751 0,7309 0,7269 0,7390 0,7088 0,7149 0,7229 0,7048 0,7088 0,7068

21K 0,6627 0,6345 0,6707 0,6667 0,6466 0,6345 0,6446 0,6325 0,6486 0,6526

28K 0,7410 0,7530 0,7450 0,7470 0,7530 0,7490 0,7490 0,7490 0,7470 0,7450

AlexNet - 

Test 3

Number of Epoch
Tr

ai
n

in
g 

D
at

as
e

t 
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8373 0,8695 0,7731 0,7590 0,7550 0,7590 0,7631 0,7651 0,7731 0,7731

0.7K 0,8153 0,7992 0,8153 0,8173 0,8133 0,8173 0,8133 0,8133 0,8133 0,8133

1.75K 0,8655 0,8594 0,6948 0,9779 0,9699 0,9719 0,9719 0,9719 0,9719 0,9719

3.5K 0,8614 0,8474 0,8474 0,8474 0,8494 0,8494 0,8494 0,8474 0,8494 0,8494

7K 0,7088 0,7691 0,7008 0,6928 0,6928 0,6908 0,6888 0,6847 0,6847 0,6847

14K 0,7309 0,7229 0,7390 0,7771 0,7691 0,7570 0,7731 0,7731 0,7771 0,7811

21K 0,9518 0,9458 0,8092 0,8313 0,8293 0,8434 0,8755 0,8494 0,8614 0,8534

28K 0,8434 0,8614 0,8273 0,8594 0,8715 0,8755 0,8815 0,8896 0,8896 0,8896

VGG16 - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6265 0,6024 0,6024 0,5201 0,8976 0,8213 0,8434 0,8353 0,8313 0,8293

0.7K 0,6928 0,6566 0,7008 0,7470 0,7369 0,7309 0,7289 0,7229 0,7229 0,7229

1.75K 0,8554 0,9116 0,9056 0,9076 0,9116 0,9116 0,9116 0,9116 0,9116 0,9116

3.5K 0,9639 0,8896 0,8715 0,8855 0,8876 0,8876 0,8876 0,8876 0,8876 0,8896

7K 0,7932 0,7751 0,7851 0,7811 0,7811 0,7811 0,7831 0,7831 0,7871 0,7871

14K 0,7369 0,6486 0,6165 0,6305 0,6225 0,6124 0,6225 0,6185 0,6124 0,6185

21K 0,9498 0,9317 0,9157 0,9036 0,9036 0,9197 0,9197 0,9157 0,9197 0,9197

28K 0,7108 0,8333 0,8956 0,8855 0,8815 0,8835 0,8815 0,8835 0,8795 0,8815

VGG19 - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6667 0,6908 0,7008 0,7149 0,7289 0,7329 0,7390 0,7309 0,7229 0,7149

0.7K 0,8213 0,8193 0,8233 0,8112 0,8133 0,8112 0,8112 0,8133 0,8153 0,8112

1.75K 0,8936 0,8996 0,8896 0,9056 0,9036 0,9076 0,9116 0,9137 0,9217 0,9217

3.5K 0,6707 0,6667 0,6867 0,6968 0,7028 0,7048 0,7048 0,7068 0,7068 0,7108

7K 0,7892 0,7731 0,7430 0,7390 0,7450 0,7470 0,7470 0,7470 0,7470 0,7470

14K 0,7309 0,6827 0,6968 0,6928 0,6606 0,6747 0,6747 0,6667 0,6667 0,6727

21K 0,6486 0,6325 0,6285 0,6285 0,6185 0,5964 0,6024 0,5843 0,6004 0,5984

28K 0,8112 0,7871 0,7811 0,7590 0,7671 0,7590 0,7530 0,7691 0,7510 0,7329

GoogleNet - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 27. Test 3 Classification Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6446 0,5683 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5382 0,5803 0,5803 0,5904 0,5984 0,5924 0,6024 0,6004 0,6004 0,5884

1.75K 0,5060 0,5060 0,5100 0,5060 0,5040 0,5020 0,5000 0,5040 0,5000 0,5080

3.5K 0,4859 0,4859 0,4900 0,4779 0,4759 0,4659 0,4699 0,4719 0,4920 0,4779

7K 0,4719 0,4679 0,4578 0,4699 0,4719 0,4739 0,4679 0,4618 0,4739 0,4719

14K 0,5000 0,5060 0,5100 0,5020 0,5100 0,5100 0,5181 0,5141 0,5060 0,5100

21K 0,4900 0,4880 0,4880 0,4920 0,4679 0,4639 0,4779 0,4538 0,4558 0,4699

28K 0,4960 0,4940 0,4980 0,5000 0,4940 0,4859 0,4940 0,4940 0,4980 0,4940

ResNet50 - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6968 0,6446 0,5221 0,5020 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,7430 0,5161 0,5321 0,5402 0,5422 0,5321 0,5382 0,5502 0,5502 0,5502

1.75K 0,5341 0,5321 0,5301 0,5261 0,5261 0,5321 0,5261 0,5341 0,5261 0,5341

3.5K 0,5884 0,5863 0,5863 0,6225 0,5984 0,5904 0,6325 0,6466 0,6486 0,6285

7K 0,6325 0,6225 0,6165 0,6305 0,6265 0,6285 0,6104 0,6325 0,6225 0,6265

14K 0,5502 0,5301 0,5221 0,5241 0,5221 0,5221 0,5201 0,4960 0,5141 0,5241

21K 0,5984 0,5924 0,5884 0,6104 0,5884 0,5743 0,5904 0,5984 0,5743 0,5843

28K 0,5402 0,5803 0,5683 0,5904 0,5843 0,5823 0,6104 0,6225 0,6064 0,5944

ResNet101 - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5201 0,5120 0,5080 0,4940 0,4940 0,4980 0,4960 0,5000 0,4960 0,4960

0.7K 0,5020 0,5020 0,5100 0,5281 0,5321 0,5321 0,5321 0,5321 0,5241 0,5321

1.75K 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

3.5K 0,5020 0,5040 0,5020 0,5020 0,5040 0,5000 0,5060 0,5040 0,5040 0,5060

7K 0,5141 0,5141 0,5060 0,5060 0,5040 0,5100 0,5040 0,5040 0,5060 0,5020

14K 0,5201 0,5141 0,5080 0,5040 0,5161 0,5422 0,5040 0,5100 0,5060 0,5141

21K 0,5181 0,5141 0,5020 0,5201 0,5060 0,5281 0,5261 0,5241 0,5221 0,5402

28K 0,4940 0,4880 0,5020 0,5020 0,4980 0,5060 0,5020 0,4900 0,5040 0,5100

ResNet152 - 

Test3

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 28. Test 4 Classification Accuracy Results 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,5741 0,5684 0,5722 0,5760 0,5798 0,5875 0,5913 0,5970 0,6008 0,5989

0.7K 0,7624 0,5779 0,5475 0,5456 0,5513 0,5589 0,5608 0,5589 0,5589 0,5589

1.75K 0,7757 0,7947 0,8365 0,8460 0,8327 0,8289 0,8232 0,8232 0,8251 0,8232

3.5K 0,7015 0,6977 0,6787 0,6768 0,6673 0,6635 0,6616 0,6616 0,6578 0,6578

7K 0,8669 0,8232 0,7871 0,7738 0,7776 0,7776 0,7776 0,7757 0,7738 0,7719

14K 0,7567 0,6920 0,6920 0,7015 0,6654 0,6711 0,6768 0,6692 0,6654 0,6692

21K 0,8346 0,8232 0,8479 0,8460 0,8384 0,8384 0,8384 0,8365 0,8403 0,8422

28K 0,7757 0,7890 0,7757 0,7700 0,7738 0,7700 0,7719 0,7776 0,7757 0,7738

AlexNet - 

Test 4

Number of Epoch
Tr

ai
n

in
g 

D
at

as
e

t 
Si

ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,6711 0,5342 0,5608 0,5019 0,8707 0,8308 0,8441 0,8403 0,8384 0,8384

0.7K 0,6768 0,7186 0,7433 0,7586 0,7567 0,7605 0,7662 0,7605 0,7605 0,7643

1.75K 0,7738 0,8213 0,8194 0,8175 0,8175 0,8194 0,8194 0,8194 0,8194 0,8194

3.5K 0,8460 0,8764 0,8745 0,8821 0,8840 0,8821 0,8821 0,8821 0,8783 0,8783

7K 0,7243 0,7985 0,8023 0,8042 0,8042 0,8061 0,8080 0,8099 0,8118 0,8156

14K 0,7833 0,7795 0,7338 0,7833 0,7529 0,7281 0,7395 0,7376 0,7376 0,7414

21K 0,7700 0,8251 0,8156 0,8232 0,8289 0,8232 0,8232 0,8213 0,8232 0,8213

28K 0,8384 0,8308 0,8346 0,8441 0,8384 0,8422 0,8441 0,8422 0,8460 0,8460

VGG19 - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8042 0,8479 0,8821 0,8726 0,8745 0,8745 0,8764 0,8745 0,8783 0,8764

0.7K 0,6768 0,8346 0,8137 0,8004 0,8004 0,8118 0,8156 0,8156 0,8156 0,8156

1.75K 0,7719 0,8688 0,7643 0,9563 0,9392 0,9373 0,9392 0,9392 0,9411 0,9373

3.5K 0,8232 0,8118 0,8137 0,8080 0,8061 0,8099 0,8099 0,8061 0,8118 0,8080

7K 0,8175 0,8384 0,8365 0,8308 0,8289 0,8289 0,8289 0,8289 0,8270 0,8270

14K 0,8080 0,7909 0,8232 0,8669 0,8460 0,8403 0,8593 0,8593 0,8612 0,8631

21K 0,8612 0,8593 0,8726 0,8726 0,8707 0,8745 0,8669 0,8688 0,8650 0,8650

28K 0,8289 0,7947 0,8004 0,8099 0,8175 0,8175 0,8137 0,8099 0,8099 0,8080

VGG16 - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5323 0,5627 0,5837 0,6331 0,6711 0,6882 0,6996 0,7186 0,7338 0,7414

0.7K 0,8175 0,8346 0,8707 0,8859 0,8973 0,8992 0,9011 0,9011 0,9049 0,9049

1.75K 0,7529 0,8327 0,8536 0,8726 0,8821 0,8897 0,9030 0,9049 0,9068 0,9068

3.5K 0,8517 0,8593 0,8935 0,9049 0,8992 0,9030 0,9030 0,9030 0,9030 0,8992

7K 0,8745 0,8707 0,8593 0,8555 0,8631 0,8688 0,8783 0,8669 0,8802 0,8840

14K 0,7662 0,7015 0,7072 0,7034 0,6654 0,6825 0,6806 0,6616 0,6578 0,6673

21K 0,7053 0,6901 0,6863 0,6787 0,6730 0,6445 0,6578 0,6426 0,6635 0,6654

28K 0,8973 0,8631 0,8745 0,8498 0,8783 0,8726 0,8574 0,8783 0,8669 0,8403

GoogleNet - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze
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Table 28. Test 4 Classification Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6901 0,6806 0,5494 0,5057 0,5076 0,5000 0,5000 0,5019 0,5019 0,5038

0.7K 0,6274 0,5989 0,5551 0,5418 0,5475 0,5323 0,5342 0,5418 0,5475 0,5399

1.75K 0,5266 0,5171 0,5209 0,5684 0,5285 0,5456 0,5171 0,5342 0,5171 0,5513

3.5K 0,5209 0,5342 0,5057 0,4981 0,4905 0,4867 0,4943 0,5038 0,4981 0,5095

7K 0,4563 0,4449 0,4297 0,4411 0,4392 0,4544 0,4468 0,4240 0,4392 0,4354

14K 0,5266 0,5380 0,5418 0,5304 0,5437 0,5323 0,5741 0,5494 0,5494 0,5532

21K 0,5399 0,5304 0,5190 0,5304 0,5380 0,5570 0,5418 0,5894 0,5266 0,5684

28K 0,5038 0,4981 0,5057 0,5038 0,4962 0,4981 0,5019 0,5038 0,5038 0,4962

ResNet50 - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,5494 0,5913 0,5627 0,5380 0,5095 0,5133 0,5152 0,5190 0,5133 0,5133

0.7K 0,5570 0,5418 0,5722 0,5837 0,5741 0,5589 0,5646 0,5703 0,5760 0,6008

1.75K 0,6388 0,6407 0,6559 0,6616 0,6464 0,6806 0,6445 0,6787 0,6407 0,6692

3.5K 0,6141 0,6103 0,6331 0,6578 0,6350 0,6464 0,6540 0,6521 0,6502 0,6445

7K 0,6179 0,6521 0,6445 0,6350 0,6464 0,6654 0,6654 0,6844 0,6711 0,6711

14K 0,5779 0,5989 0,5703 0,5722 0,5760 0,5722 0,5665 0,5703 0,5513 0,5703

21K 0,6502 0,6692 0,6464 0,6901 0,6730 0,6635 0,6749 0,7091 0,6977 0,7243

28K 0,5722 0,5684 0,5722 0,5837 0,5894 0,6065 0,6027 0,6046 0,5875 0,6046

ResNet101 - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,4924 0,5437 0,5285 0,5114 0,5171 0,5095 0,5076 0,5000 0,5114 0,5057

0.7K 0,5190 0,5076 0,5114 0,5342 0,5285 0,5266 0,5285 0,5228 0,5323 0,5342

1.75K 0,5076 0,5095 0,5114 0,5076 0,5095 0,5057 0,5114 0,5114 0,5114 0,5114

3.5K 0,5114 0,5076 0,5076 0,5095 0,5095 0,5095 0,5114 0,5114 0,5095 0,5114

7K 0,5266 0,5209 0,5247 0,5247 0,5209 0,5247 0,5228 0,5228 0,5171 0,5247

14K 0,5760 0,5741 0,5475 0,5209 0,5513 0,5817 0,5513 0,5380 0,5266 0,5532

21K 0,5570 0,5418 0,5228 0,5532 0,5399 0,5665 0,5589 0,5665 0,5532 0,6198

28K 0,5190 0,5399 0,5342 0,5190 0,5285 0,5171 0,5228 0,5418 0,5627 0,5551

ResNet152 - 

Test4

Number of Epoch

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze



 

 

159 

Table 29. Test 1 Classification confidence weighted Accuracy Results 

 

 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,8965 0,9737 0,9886 0,9914 0,9924 0,9936 0,9935 0,9938 0,9942 0,9943

0.7K 0,9413 0,9936 0,9890 0,9912 0,9948 0,9964 0,9969 0,9969 0,9969 0,9969

1.75K 0,9948 0,9950 0,9964 0,9966 0,9966 0,9964 0,9964 0,9964 0,9966 0,9966

3.5K 0,9973 0,9979 0,9982 0,9984 0,9982 0,9983 0,9984 0,9984 0,9984 0,9985

7K 0,9974 0,9979 0,9979 0,9974 0,9977 0,9978 0,9978 0,9978 0,9978 0,9978

14K 0,9979 0,9979 0,9982 0,9984 0,9982 0,9983 0,9983 0,9983 0,9983 0,9983

21K 0,9976 0,9979 0,9980 0,9981 0,9980 0,9980 0,9980 0,9981 0,9982 0,9982

28K 0,9985 0,9989 0,9990 0,9990 0,9990 0,9991 0,9990 0,9991 0,9991 0,9991

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

AlexNet - Test 1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9957 0,9957 0,9981 0,9985 0,9981 0,9979 0,9978 0,9979 0,9979 0,9979

0.7K 0,9964 0,9979 0,9986 0,9986 0,9986 0,9986 0,9986 0,9985 0,9985 0,9985

1.75K 0,9981 0,9983 0,9931 0,9981 0,9986 0,9986 0,9986 0,9986 0,9986 0,9986

3.5K 0,9994 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995 0,9995

7K 0,9989 0,9985 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

14K 0,9992 0,9994 0,9995 0,9994 0,9994 0,9995 0,9994 0,9994 0,9994 0,9994

21K 0,9998 0,9998 0,9997 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998 0,9998

28K 0,9996 0,9990 0,9997 0,9993 0,9996 0,9997 0,9996 0,9996 0,9996 0,9997

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG16 - Test1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9905 0,9759 0,9847 0,9733 0,9943 0,9967 0,9967 0,9967 0,9967 0,9967

0.7K 0,9945 0,9948 0,9979 0,9969 0,9969 0,9966 0,9971 0,9974 0,9974 0,9974

1.75K 0,9969 0,9985 0,9986 0,9988 0,9988 0,9988 0,9988 0,9988 0,9988 0,9988

3.5K 0,9990 0,9990 0,9990 0,9993 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

7K 0,9989 0,9992 0,9992 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994 0,9994

14K 0,9972 0,9989 0,9992 0,9989 0,9990 0,9991 0,9990 0,9991 0,9991 0,9990

21K 0,9991 0,9996 0,9997 0,9996 0,9996 0,9997 0,9997 0,9996 0,9997 0,9997

28K 0,9991 0,9994 0,9993 0,9993 0,9995 0,9995 0,9995 0,9995 0,9995 0,9997

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG19 - Test1
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8968 0,9229 0,9374 0,9512 0,9572 0,9637 0,9692 0,9749 0,9776 0,9799

0.7K 0,9155 0,9443 0,9656 0,9768 0,9814 0,9856 0,9880 0,9893 0,9912 0,9923

1.75K 0,9596 0,9830 0,9892 0,9928 0,9950 0,9954 0,9955 0,9960 0,9966 0,9962

3.5K 0,9964 0,9982 0,9982 0,9981 0,9982 0,9985 0,9985 0,9985 0,9986 0,9987

7K 0,9975 0,9980 0,9981 0,9979 0,9979 0,9980 0,9980 0,9979 0,9979 0,9980

14K 0,9981 0,9979 0,9984 0,9984 0,9989 0,9987 0,9987 0,9987 0,9988 0,9987

21K 0,9982 0,9989 0,9990 0,9992 0,9992 0,9991 0,9992 0,9993 0,9994 0,9994

28K 0,9982 0,9987 0,9987 0,9988 0,9987 0,9988 0,9988 0,9987 0,9988 0,9989

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

GoogleNet - 

Test1

Number of Epoch
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Table 29. Test 1 Classification confidence weighted Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,8099 0,9451 0,9723 0,9799 0,9813 0,9821 0,9830 0,9831 0,9833 0,9838

0.7K 0,8535 0,9675 0,9868 0,9892 0,9911 0,9912 0,9917 0,9919 0,9921 0,9923

1.75K 0,9673 0,9911 0,9909 0,9938 0,9945 0,9954 0,9954 0,9955 0,9955 0,9962

3.5K 0,9947 0,9965 0,9968 0,9968 0,9970 0,9971 0,9971 0,9977 0,9973 0,9969

7K 0,9975 0,9984 0,9983 0,9987 0,9983 0,9986 0,9991 0,9989 0,9986 0,9987

14K 0,9988 0,9994 0,9993 0,9993 0,9994 0,9991 0,9993 0,9991 0,9991 0,9991

21K 0,9979 0,9986 0,9987 0,9985 0,9990 0,9990 0,9991 0,9991 0,9992 0,9992

28K 0,9985 0,9990 0,9991 0,9992 0,9990 0,9991 0,9990 0,9991 0,9991 0,9994

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet50 - 

Test1

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8584 0,9283 0,9584 0,9723 0,9754 0,9756 0,9766 0,9776 0,9778 0,9780

0.7K 0,8619 0,9579 0,9818 0,9861 0,9866 0,9880 0,9881 0,9900 0,9886 0,9893

1.75K 0,9811 0,9916 0,9926 0,9948 0,9936 0,9952 0,9950 0,9957 0,9952 0,9952

3.5K 0,9966 0,9970 0,9974 0,9972 0,9976 0,9977 0,9979 0,9973 0,9977 0,9975

7K 0,9953 0,9966 0,9974 0,9977 0,9976 0,9977 0,9974 0,9979 0,9979 0,9977

14K 0,9978 0,9983 0,9987 0,9986 0,9984 0,9988 0,9988 0,9988 0,9988 0,9989

21K 0,9991 0,9985 0,9990 0,9987 0,9987 0,9991 0,9989 0,9989 0,9990 0,9989

28K 0,9977 0,9986 0,9984 0,9992 0,9991 0,9994 0,9993 0,9988 0,9982 0,9992

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet101 - 

Test1

Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6063 0,9257 0,9714 0,9778 0,9799 0,9814 0,9816 0,9802 0,9809 0,9819

0.7K 0,8464 0,9630 0,9819 0,9864 0,9866 0,9862 0,9866 0,9864 0,9868 0,9857

1.75K 0,9739 0,9861 0,9874 0,9923 0,9909 0,9926 0,9926 0,9933 0,9931 0,9931

3.5K 0,9760 0,9768 0,9765 0,9797 0,9723 0,9778 0,9793 0,9752 0,9769 0,9799

7K 0,9949 0,9966 0,9970 0,9976 0,9977 0,9977 0,9979 0,9981 0,9980 0,9982

14K 0,9952 0,9957 0,9939 0,9909 0,9921 0,9933 0,9929 0,9923 0,9916 0,9931

21K 0,9937 0,9936 0,9924 0,9959 0,9951 0,9975 0,9961 0,9971 0,9967 0,9986

28K 0,9783 0,9827 0,9794 0,9785 0,9837 0,9844 0,9817 0,9842 0,9863 0,9838

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet152 - 

Test1

Number of Epoch
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Table 30. Test 2 Classification confidence weighted Accuracy Results 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6107 0,5800 0,5746 0,5726 0,5719 0,5714 0,5729 0,5731 0,5734 0,5744

0.7K 0,8060 0,5760 0,5474 0,5458 0,5562 0,5682 0,5730 0,5724 0,5719 0,5708

1.75K 0,5842 0,5917 0,6210 0,6251 0,6185 0,6177 0,6179 0,6182 0,6186 0,6188

3.5K 0,7142 0,7144 0,7041 0,7050 0,6977 0,6973 0,6944 0,6922 0,6913 0,6916

7K 0,7825 0,7428 0,7204 0,6980 0,7084 0,7086 0,7067 0,6976 0,6985 0,6964

14K 0,7017 0,6663 0,6686 0,6749 0,6548 0,6610 0,6626 0,6582 0,6577 0,6579

21K 0,6883 0,6802 0,7059 0,6995 0,6894 0,6811 0,6818 0,6739 0,6832 0,6843

28K 0,7951 0,8201 0,8078 0,8094 0,8024 0,7962 0,7950 0,7958 0,7839 0,7796

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

AlexNet - Test 2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9697 0,9724 0,9233 0,8896 0,8825 0,8901 0,8956 0,9008 0,9048 0,9067

0.7K 0,7160 0,9583 0,9169 0,9016 0,9169 0,9269 0,9296 0,9320 0,9319 0,9313

1.75K 0,6643 0,7128 0,6453 0,9136 0,8631 0,8628 0,8660 0,8660 0,8652 0,8641

3.5K 0,9446 0,9566 0,9549 0,9541 0,9550 0,9551 0,9551 0,9536 0,9547 0,9547

7K 0,7305 0,7941 0,6883 0,6812 0,6827 0,6826 0,6821 0,6803 0,6804 0,6804

14K 0,8370 0,8245 0,7955 0,8620 0,8440 0,8337 0,8455 0,8429 0,8442 0,8456

21K 0,9600 0,9734 0,9009 0,8881 0,8827 0,8986 0,9116 0,8931 0,9062 0,8970

28K 0,8895 0,8824 0,8509 0,8653 0,8695 0,8601 0,8688 0,8753 0,8738 0,8681

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG16 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5928 0,4461 0,5957 0,5065 0,9209 0,7264 0,7515 0,7438 0,7363 0,7318

0.7K 0,7602 0,7389 0,7838 0,8372 0,8249 0,8197 0,8175 0,8133 0,8118 0,8094

1.75K 0,8476 0,8808 0,8688 0,8713 0,8720 0,8716 0,8702 0,8694 0,8688 0,8684

3.5K 0,9859 0,9619 0,9422 0,9589 0,9594 0,9597 0,9598 0,9598 0,9612 0,9613

7K 0,9823 0,9256 0,9302 0,9244 0,9239 0,9240 0,9237 0,9223 0,9226 0,9225

14K 0,7424 0,6481 0,5781 0,6030 0,5830 0,5640 0,5700 0,5680 0,5644 0,5673

21K 0,9246 0,8797 0,8699 0,8361 0,8348 0,8481 0,8471 0,8449 0,8553 0,8515

28K 0,6140 0,7211 0,8107 0,7867 0,7636 0,7661 0,7536 0,7584 0,7512 0,7477

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG19 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9313 0,9602 0,9719 0,9749 0,9809 0,9866 0,9904 0,9903 0,9907 0,9906

0.7K 0,7421 0,7764 0,8167 0,8551 0,8820 0,8968 0,9063 0,9123 0,9158 0,9189

1.75K 0,9500 0,9658 0,9611 0,9622 0,9599 0,9566 0,9563 0,9566 0,9598 0,9591

3.5K 0,6556 0,6079 0,6387 0,6481 0,6585 0,6485 0,6404 0,6421 0,6438 0,6441

7K 0,8265 0,7689 0,7313 0,7044 0,7257 0,7321 0,7376 0,7239 0,7327 0,7275

14K 0,6745 0,6145 0,6247 0,6193 0,5862 0,5968 0,5951 0,5827 0,5800 0,5877

21K 0,6316 0,6177 0,6085 0,5923 0,5838 0,5618 0,5661 0,5474 0,5673 0,5650

28K 0,7593 0,7006 0,6932 0,6419 0,6561 0,6387 0,6176 0,6424 0,6067 0,5830

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

GoogleNet - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,9219 0,6937 0,4953 0,4803 0,4898 0,4954 0,4972 0,4974 0,4976 0,4981

0.7K 0,7047 0,4941 0,5075 0,5063 0,5076 0,5030 0,5028 0,5047 0,5043 0,5037

1.75K 0,4988 0,4988 0,4990 0,4980 0,4984 0,4982 0,4976 0,4977 0,4980 0,4975

3.5K 0,5131 0,5137 0,4695 0,4197 0,4141 0,4059 0,4289 0,4011 0,3814 0,4061

7K 0,5720 0,5657 0,5425 0,5252 0,5419 0,6007 0,5443 0,5458 0,5444 0,5547

14K 0,4977 0,4955 0,4928 0,4914 0,4921 0,4870 0,4991 0,4843 0,4830 0,4868

21K 0,4855 0,4681 0,4447 0,4691 0,4209 0,4221 0,4643 0,4011 0,4282 0,4075

28K 0,4594 0,4301 0,4454 0,4533 0,3586 0,3223 0,3851 0,3903 0,4197 0,4045

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet50 - Test2
Number of Epoch
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Table 30. Test 2 Classification confidence weighted Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,5229 0,5270 0,5088 0,5015 0,5004 0,5002 0,5002 0,5002 0,5002 0,5002

0.7K 0,5338 0,5005 0,5011 0,5007 0,5006 0,5004 0,5004 0,5006 0,5006 0,5007

1.75K 0,7585 0,7446 0,7577 0,7666 0,7701 0,7594 0,7758 0,7951 0,7845 0,7744

3.5K 0,5515 0,5643 0,5816 0,6085 0,6030 0,6009 0,6288 0,6646 0,6599 0,6057

7K 0,7346 0,7768 0,7488 0,7616 0,7770 0,7553 0,7507 0,7489 0,7894 0,7622

14K 0,6287 0,6265 0,6287 0,6188 0,5944 0,5658 0,5640 0,5732 0,5550 0,5636

21K 0,6762 0,6850 0,6618 0,7094 0,7307 0,6868 0,6783 0,6547 0,6316 0,6407

28K 0,6185 0,7315 0,7012 0,7106 0,7328 0,7459 0,7456 0,7393 0,7547 0,7374

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet101 - Test2
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,4679 0,4964 0,4957 0,4943 0,4950 0,4948 0,4954 0,4939 0,4955 0,4950

0.7K 0,5003 0,5001 0,5027 0,5049 0,5038 0,5023 0,5037 0,5022 0,5024 0,5015

1.75K 0,5060 0,5070 0,5094 0,5087 0,5079 0,5084 0,5024 0,5092 0,5062 0,5061

3.5K 0,4996 0,4996 0,4996 0,4991 0,4999 0,4976 0,4986 0,4989 0,4996 0,4992

7K 0,6349 0,5805 0,5942 0,5761 0,5545 0,5714 0,5545 0,5532 0,5588 0,5573

14K 0,4739 0,4784 0,4756 0,4755 0,4772 0,4732 0,4781 0,4693 0,4709 0,4702

21K 0,5192 0,5085 0,5047 0,5294 0,5103 0,5381 0,5297 0,5328 0,5245 0,5602

28K 0,5077 0,5104 0,5061 0,5012 0,5059 0,5022 0,5063 0,5085 0,5119 0,4998

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet152 - Test2
Number of Epoch
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Table 31. Test 3 Classification confidence weighted Accuracy Results 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,6209 0,6080 0,6193 0,6293 0,6290 0,6334 0,6364 0,6394 0,6465 0,6491

0.7K 0,8812 0,6536 0,5961 0,5969 0,6137 0,6371 0,6476 0,6457 0,6423 0,6414

1.75K 0,6960 0,6938 0,7433 0,7489 0,7434 0,7431 0,7432 0,7437 0,7429 0,7431

3.5K 0,6895 0,6880 0,6673 0,6624 0,6550 0,6526 0,6472 0,6467 0,6446 0,6445

7K 0,8355 0,7863 0,7342 0,7044 0,7126 0,7172 0,7169 0,7058 0,7076 0,7065

14K 0,7843 0,7395 0,7381 0,7495 0,7198 0,7263 0,7322 0,7188 0,7205 0,7194

21K 0,6681 0,6427 0,6774 0,6729 0,6555 0,6433 0,6511 0,6405 0,6552 0,6581

28K 0,7524 0,7657 0,7585 0,7595 0,7648 0,7611 0,7606 0,7620 0,7565 0,7552

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

AlexNet - Test 3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,8532 0,8822 0,7837 0,7649 0,7618 0,7668 0,7715 0,7744 0,7799 0,7807

0.7K 0,8358 0,8060 0,8260 0,8295 0,8259 0,8270 0,8247 0,8247 0,8250 0,8252

1.75K 0,8709 0,8627 0,7001 0,9818 0,9731 0,9741 0,9744 0,9744 0,9744 0,9742

3.5K 0,8700 0,8556 0,8565 0,8561 0,8582 0,8588 0,8593 0,8575 0,8598 0,8601

7K 0,7157 0,7755 0,7043 0,6960 0,6959 0,6942 0,6925 0,6894 0,6893 0,6890

14K 0,7320 0,7306 0,7439 0,7861 0,7768 0,7668 0,7809 0,7808 0,7835 0,7871

21K 0,9575 0,9544 0,8260 0,8418 0,8407 0,8585 0,8865 0,8625 0,8767 0,8671

28K 0,8539 0,8650 0,8405 0,8688 0,8804 0,8830 0,8911 0,8988 0,8986 0,8974

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG16 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6285 0,6191 0,6049 0,5253 0,9048 0,8336 0,8543 0,8481 0,8441 0,8418

0.7K 0,6987 0,6637 0,7079 0,7539 0,7443 0,7386 0,7363 0,7315 0,7304 0,7295

1.75K 0,8742 0,9280 0,9195 0,9215 0,9239 0,9239 0,9236 0,9235 0,9234 0,9235

3.5K 0,9700 0,8983 0,8817 0,8977 0,8987 0,8988 0,8989 0,8987 0,8991 0,9003

7K 0,7982 0,7816 0,7899 0,7866 0,7870 0,7874 0,7886 0,7883 0,7908 0,7908

14K 0,7423 0,6512 0,6193 0,6347 0,6252 0,6140 0,6216 0,6185 0,6143 0,6186

21K 0,9551 0,9416 0,9239 0,9108 0,9121 0,9245 0,9245 0,9218 0,9258 0,9255

28K 0,7306 0,8513 0,9109 0,9008 0,8951 0,8978 0,8944 0,8969 0,8934 0,8935

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

VGG19 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6729 0,6989 0,7122 0,7254 0,7366 0,7404 0,7437 0,7382 0,7322 0,7261

0.7K 0,8377 0,8377 0,8405 0,8340 0,8332 0,8303 0,8290 0,8291 0,8293 0,8263

1.75K 0,9124 0,9143 0,9036 0,9144 0,9150 0,9186 0,9224 0,9247 0,9305 0,9308

3.5K 0,6821 0,6717 0,6945 0,7068 0,7165 0,7156 0,7144 0,7171 0,7183 0,7216

7K 0,7974 0,7796 0,7522 0,7440 0,7531 0,7559 0,7579 0,7537 0,7568 0,7549

14K 0,7375 0,6918 0,7055 0,7012 0,6679 0,6842 0,6851 0,6728 0,6723 0,6810

21K 0,6577 0,6452 0,6390 0,6347 0,6239 0,6010 0,6095 0,5901 0,6068 0,6060

28K 0,8331 0,8044 0,8015 0,7731 0,7853 0,7751 0,7664 0,7876 0,7659 0,7451

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

GoogleNet - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,6673 0,5645 0,5012 0,4996 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000

0.7K 0,5412 0,5830 0,5866 0,5948 0,6012 0,5943 0,6014 0,6070 0,6055 0,5921

1.75K 0,5056 0,5055 0,5086 0,5082 0,5040 0,5041 0,5014 0,5034 0,5007 0,5087

3.5K 0,4864 0,4862 0,4888 0,4774 0,4761 0,4675 0,4718 0,4755 0,4935 0,4816

7K 0,4715 0,4684 0,4586 0,4694 0,4680 0,4734 0,4678 0,4613 0,4737 0,4719

14K 0,5010 0,5053 0,5106 0,5021 0,5092 0,5084 0,5167 0,5101 0,5048 0,5080

21K 0,4894 0,4865 0,4865 0,4906 0,4678 0,4612 0,4738 0,4542 0,4551 0,4667

28K 0,4963 0,4947 0,4975 0,4996 0,4938 0,4868 0,4947 0,4942 0,4971 0,4948

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet50 - Test3
Number of Epoch
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Table 31. Test 3 Classification confidence weighted Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,7208 0,6424 0,5244 0,5020 0,4991 0,4991 0,4991 0,4988 0,4989 0,4997

0.7K 0,7606 0,5245 0,5330 0,5380 0,5407 0,5307 0,5372 0,5462 0,5486 0,5461

1.75K 0,5403 0,5359 0,5365 0,5335 0,5329 0,5389 0,5325 0,5412 0,5329 0,5398

3.5K 0,6071 0,6049 0,6099 0,6402 0,6204 0,6141 0,6530 0,6609 0,6606 0,6433

7K 0,6249 0,6213 0,6165 0,6292 0,6295 0,6292 0,6167 0,6280 0,6259 0,6287

14K 0,5506 0,5354 0,5275 0,5276 0,5226 0,5218 0,5265 0,5024 0,5245 0,5269

21K 0,6100 0,6070 0,5977 0,6178 0,5962 0,5850 0,6013 0,6075 0,5859 0,5962

28K 0,5478 0,5806 0,5753 0,6011 0,5862 0,5922 0,6159 0,6257 0,6094 0,6044

Tr
ai

n
in

g 
D

at
as

e
t 

Si
ze

ResNet101 - Test3
Number of Epoch

1 2 3 4 5 6 7 8 9 10

0.35K 0,5487 0,5132 0,5079 0,4964 0,4968 0,5000 0,4984 0,4997 0,4975 0,4979

0.7K 0,5046 0,5030 0,5150 0,5337 0,5349 0,5338 0,5331 0,5309 0,5268 0,5400

1.75K 0,5006 0,5007 0,5007 0,5007 0,5007 0,5008 0,5004 0,5008 0,5007 0,5006

3.5K 0,5022 0,5033 0,5018 0,5032 0,5030 0,5011 0,5057 0,5035 0,5029 0,5071

7K 0,5259 0,5237 0,5148 0,5145 0,5101 0,5176 0,5124 0,5111 0,5123 0,5098

14K 0,5233 0,5189 0,5107 0,5051 0,5175 0,5497 0,5090 0,5132 0,5093 0,5167

21K 0,5188 0,5134 0,5026 0,5212 0,5077 0,5296 0,5239 0,5237 0,5213 0,5424

28K 0,4931 0,4900 0,5029 0,5019 0,4977 0,5070 0,5026 0,4914 0,5068 0,5134
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ResNet152 - Test3
Number of Epoch
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Table 32. Test 4 Classification confidence weighted Accuracy Results 

 

 

 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,5841 0,5759 0,5799 0,5840 0,5883 0,5950 0,5991 0,6040 0,6076 0,6079

0.7K 0,7754 0,5882 0,5526 0,5508 0,5583 0,5666 0,5696 0,5678 0,5669 0,5663

1.75K 0,7949 0,8091 0,8506 0,8585 0,8486 0,8461 0,8429 0,8431 0,8440 0,8430

3.5K 0,7190 0,7156 0,6958 0,6916 0,6822 0,6788 0,6755 0,6745 0,6715 0,6713

7K 0,8821 0,8449 0,8130 0,7952 0,7998 0,7998 0,7983 0,7935 0,7925 0,7904

14K 0,7755 0,7104 0,7095 0,7196 0,6829 0,6901 0,6950 0,6866 0,6842 0,6870

21K 0,8501 0,8388 0,8630 0,8615 0,8543 0,8517 0,8524 0,8483 0,8541 0,8559

28K 0,7984 0,8128 0,8001 0,7965 0,8015 0,7980 0,7991 0,8041 0,7984 0,7973

AlexNet - Test 4
Number of Epoch
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e
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ze

1 2 3 4 5 6 7 8 9 10

0.35K 0,8261 0,8680 0,8936 0,8846 0,8850 0,8863 0,8881 0,8873 0,8893 0,8882

0.7K 0,6813 0,8553 0,8294 0,8150 0,8183 0,8273 0,8301 0,8305 0,8301 0,8300

1.75K 0,7835 0,8816 0,7823 0,9633 0,9476 0,9465 0,9484 0,9485 0,9494 0,9471

3.5K 0,8412 0,8252 0,8282 0,8250 0,8233 0,8250 0,8249 0,8232 0,8258 0,8236

7K 0,8372 0,8487 0,8517 0,8466 0,8444 0,8437 0,8430 0,8425 0,8411 0,8407

14K 0,8298 0,8069 0,8397 0,8819 0,8655 0,8589 0,8738 0,8734 0,8748 0,8766

21K 0,8769 0,8725 0,8941 0,8933 0,8911 0,8935 0,8870 0,8887 0,8854 0,8854

28K 0,8400 0,8081 0,8212 0,8214 0,8302 0,8294 0,8256 0,8212 0,8214 0,8210

VGG16 - Test4
Number of Epoch
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1 2 3 4 5 6 7 8 9 10

0.35K 0,6900 0,5467 0,5678 0,5059 0,8962 0,8474 0,8606 0,8570 0,8546 0,8537

0.7K 0,6853 0,7273 0,7587 0,7721 0,7711 0,7733 0,7764 0,7735 0,7735 0,7756

1.75K 0,7914 0,8323 0,8299 0,8282 0,8278 0,8286 0,8287 0,8287 0,8286 0,8284

3.5K 0,8547 0,8949 0,8926 0,8976 0,8987 0,8976 0,8975 0,8975 0,8953 0,8952

7K 0,7374 0,8147 0,8171 0,8200 0,8207 0,8221 0,8237 0,8251 0,8262 0,8285

14K 0,7975 0,7940 0,7499 0,7918 0,7664 0,7410 0,7534 0,7514 0,7494 0,7548

21K 0,7764 0,8345 0,8256 0,8364 0,8391 0,8348 0,8340 0,8327 0,8316 0,8309

28K 0,8551 0,8473 0,8540 0,8614 0,8580 0,8619 0,8620 0,8615 0,8634 0,8633

VGG19 - Test4
Number of Epoch
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1 2 3 4 5 6 7 8 9 10

0.35K 0,5415 0,5789 0,6088 0,6543 0,6893 0,7091 0,7238 0,7414 0,7552 0,7633

0.7K 0,8419 0,8646 0,8944 0,9078 0,9158 0,9181 0,9200 0,9207 0,9231 0,9233

1.75K 0,7745 0,8572 0,8762 0,8896 0,8968 0,9028 0,9108 0,9122 0,9131 0,9134

3.5K 0,8757 0,8809 0,9106 0,9184 0,9167 0,9167 0,9154 0,9153 0,9150 0,9131

7K 0,8898 0,8854 0,8739 0,8661 0,8766 0,8840 0,8914 0,8823 0,8922 0,8933

14K 0,7836 0,7169 0,7252 0,7188 0,6762 0,6941 0,6928 0,6717 0,6677 0,6793

21K 0,7173 0,7024 0,7011 0,6923 0,6860 0,6537 0,6713 0,6492 0,6762 0,6790

28K 0,9106 0,8830 0,8896 0,8659 0,8885 0,8820 0,8701 0,8899 0,8768 0,8548

GoogleNet - Test4
Number of Epoch
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1 2 3 4 5 6 7 8 9 10

0.35K 0,7066 0,6834 0,5475 0,5053 0,5056 0,4991 0,4994 0,5007 0,5009 0,5019

0.7K 0,6446 0,6089 0,5603 0,5451 0,5498 0,5383 0,5396 0,5471 0,5499 0,5435

1.75K 0,5291 0,5227 0,5239 0,5684 0,5335 0,5485 0,5186 0,5392 0,5203 0,5540

3.5K 0,5182 0,5298 0,5127 0,5038 0,4956 0,4944 0,5010 0,5113 0,5046 0,5177

7K 0,4566 0,4470 0,4314 0,4381 0,4394 0,4573 0,4450 0,4297 0,4406 0,4390

14K 0,5257 0,5384 0,5412 0,5317 0,5414 0,5318 0,5677 0,5476 0,5480 0,5486

21K 0,5379 0,5282 0,5189 0,5279 0,5372 0,5594 0,5381 0,5914 0,5285 0,5685

28K 0,5047 0,5007 0,5058 0,5044 0,4989 0,4989 0,5022 0,5033 0,5045 0,4983

ResNet50 - Test4
Number of Epoch
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Table 32. Test 4 Classification confidence weighted Accuracy Results (cont’d) 

 

 

1 2 3 4 5 6 7 8 9 10

0.35K 0,5611 0,6078 0,5737 0,5401 0,5151 0,5141 0,5143 0,5162 0,5126 0,5124

0.7K 0,5770 0,5504 0,5825 0,5938 0,5874 0,5691 0,5786 0,5847 0,5948 0,6119

1.75K 0,6494 0,6539 0,6700 0,6707 0,6588 0,6944 0,6590 0,6960 0,6566 0,6819

3.5K 0,6198 0,6182 0,6354 0,6659 0,6440 0,6546 0,6612 0,6660 0,6642 0,6558

7K 0,6308 0,6677 0,6632 0,6559 0,6704 0,6807 0,6849 0,7002 0,6865 0,6916

14K 0,5903 0,6046 0,5788 0,5803 0,5844 0,5735 0,5741 0,5771 0,5596 0,5731

21K 0,6618 0,6816 0,6573 0,7027 0,6845 0,6751 0,6888 0,7244 0,7103 0,7403

28K 0,5691 0,5745 0,5786 0,5951 0,5954 0,6153 0,6124 0,6171 0,5987 0,6145

ResNet101 - Test4
Number of Epoch
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1 2 3 4 5 6 7 8 9 10

0.35K 0,5024 0,5481 0,5301 0,5127 0,5156 0,5124 0,5105 0,5032 0,5115 0,5088

0.7K 0,5296 0,5095 0,5184 0,5411 0,5381 0,5363 0,5389 0,5330 0,5381 0,5357

1.75K 0,5086 0,5116 0,5162 0,5133 0,5129 0,5117 0,5130 0,5152 0,5141 0,5137

3.5K 0,5096 0,5071 0,5073 0,5096 0,5075 0,5089 0,5104 0,5101 0,5083 0,5112

7K 0,5377 0,5308 0,5317 0,5306 0,5256 0,5332 0,5298 0,5291 0,5228 0,5299

14K 0,5810 0,5818 0,5513 0,5205 0,5516 0,5880 0,5524 0,5405 0,5306 0,5541

21K 0,5553 0,5433 0,5232 0,5602 0,5421 0,5719 0,5619 0,5701 0,5567 0,6212

28K 0,5222 0,5413 0,5361 0,5185 0,5333 0,5221 0,5268 0,5426 0,5646 0,5581

ResNet152 - Test4
Number of Epoch
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APPENDIX III 

 

 

CRACK BASED SEMANTIC SEGMENTATION METRIC RESULTS 

 

 

 

Table 33. Crack based semantic segmentation metric results (per sample) 

Number of Objects   Mean Orientation (Degrees) 

Test 1 - Building - Concrete   Test 1 - Building - Concrete  

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

1 6 5 55 4060   1 61,00 -72,01 -1,06 10,81 

2 1 1 18 628   2 -32,55 -32,53 -29,73 -28,40 

3 3 4 105 1197   3 -78,51 -78,98 -30,48 -43,45 

4 3 2 59 883   4 -61,49 44,52 -17,62 -34,33 

5 2 1 20 639   5 -72,80 -73,15 -73,23 -17,05 

6 1 10 39 805   6 -48,17 -45,36 -50,07 -44,24 

7 2 1 25 720   7 -62,16 -65,12 -29,99 -53,47 

8 3 3 92 1154   8 -9,39 -12,03 -8,18 -6,35 

9 2 4 61 830   9 -7,39 -12,49 -15,25 -12,30 

10 2 2 46 705   10 -12,33 -12,35 -14,11 -9,22 

11 2 3 53 756   11 -11,10 -11,05 -10,83 -6,55 

12 1 1 73 727   12 -19,77 -20,13 -11,82 -14,78 

13 1 5 78 793   13 -14,79 -8,41 -2,93 -9,62 

14 3 2 52 734   14 -5,91 -3,73 -1,01 -4,32 

15 4 4 76 580   15 -6,80 -7,64 -6,55 -10,00 

16 5 1 92 775   16 1,75 -4,38 -6,75 -1,14 

17 2 1 70 877   17 -54,44 -56,31 -43,91 -41,39 

18 2 6 26 598   18 -51,88 -55,00 -51,19 -48,62 

19 2 1 50 728   19 -53,44 -46,00 -42,06 -43,39 

20 2 3 33 814   20 -21,80 -23,21 -20,95 -19,05 

21 1 2 45 711   21 -11,08 -11,06 -9,33 -11,55 

22 6 5 69 816   22 -28,43 -25,55 -21,73 -23,80 

23 5 9 54 895   23 6,88 3,57 11,52 10,12 

24 2 5 69 1280   24 10,00 18,56 9,87 7,31 

25 4 34 126 1464   25 -17,60 -14,52 -16,79 -10,10 

26 3 8 34 820   26 -14,38 -15,60 -16,35 -12,86 

27 6 12 55 1013   27 9,14 16,46 3,37 4,92 

28 4 6 53 910   28 -25,13 -23,09 -27,39 -21,64 

29 8 6 68 1027   29 -20,60 -19,32 -9,88 -10,43 

30 2 3 73 1000   30 -8,64 -9,14 -10,06 -9,89 

31 8 6 58 898   31 -14,45 -3,74 -8,99 -9,91 

32 3 5 45 787   32 -15,95 -5,47 -8,58 -9,11 

33 4 12 60 1767   33 -41,56 -57,68 7,24 -4,55 

34 4 97 75 1494   34 54,10 51,19 47,74 39,34 

35 1 7 35 773   35 -75,55 -82,47 -2,99 0,80 

36 2 3 33 844   36 -38,93 -39,81 -38,65 -34,89 

37 3 9 43 1112   37 -46,64 -50,88 -42,71 -40,68 

38 2 15 46 936   38 -25,88 -26,36 -33,09 -28,08 

39 1 9 35 891   39 -32,65 -30,92 -34,81 -35,18 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

40 1 4 28 734   40 -19,53 -18,75 -19,93 -20,38 

41 1 28 49 1161   41 -44,21 -43,14 -43,42 -37,94 

42 4 8 44 1062   42 -45,08 -45,23 -44,05 -39,67 

43 2 2 34 1094   43 -43,64 -43,14 -42,54 -33,25 

44 1 79 42 777   44 -16,36 -16,23 -12,44 -13,12 

45 2 8 53 1154   45 -39,52 -40,22 -36,20 -35,81 

46 1 5 68 1645   46 -88,67 -86,90 27,86 -12,10 

47 2 8 48 1166   47 61,71 61,46 63,66 62,05 

48 3 7 50 1117   48 39,10 41,96 42,35 39,77 

49 2 11 79 1188   49 27,60 24,00 25,64 27,23 

50 1 4 33 921   50 9,38 9,20 12,81 17,43 

51 1 5 31 798   51 31,71 31,11 25,78 29,94 

52 2 31 24 927   52 0,56 -0,55 0,04 -0,93 

53 2 7 28 1457   53 -7,22 -7,01 -8,36 -7,45 

54 6 5 116 1243   54 -3,96 -19,54 -6,93 -7,41 

55 5 61 118 1745   55 9,84 13,94 -0,98 3,73 

56 1 40 57 1223   56 -23,78 -28,28 -21,18 -19,41 

57 2 12 49 1244   57 -10,14 -7,56 -13,83 -10,98 

58 2 68 35 857   58 2,88 0,15 2,86 2,73 

59 2 10 42 976   59 -0,38 1,24 -0,09 -4,93 

60 1 9 33 961   60 -15,31 -13,45 -13,73 -17,88 

61 1 13 130 1903   61 -24,93 -32,52 -12,61 -7,21 

62 1 12 179 1905   62 -1,37 6,31 -8,14 -9,24 

63 2 10 51 875   63 39,86 39,88 34,86 36,35 

64 1 3 28 845   64 65,00 64,07 50,49 33,29 

65 2 17 40 1145   65 53,86 64,73 54,95 29,15 

66 1 23 24 938   66 86,31 85,86 -12,03 15,14 

67 1 7 33 1016   67 85,06 85,19 21,59 17,44 

68 2 2 34 794   68 -71,66 87,93 -55,68 -2,25 

69 1 9 42 728   69 -75,67 -74,63 -17,66 -37,24 

70 3 7 56 984   70 -74,43 -76,55 -63,49 -60,20 

71 1 7 33 875   71 85,79 78,07 25,06 1,03 

72 4 24 104 1598   72 -70,70 -74,83 -49,88 -32,98 

73 1 47 38 1135   73 72,51 62,41 18,42 38,15 

74 2 14 51 1304   74 72,68 70,30 72,63 54,52 

75 3 39 60 1703   75 69,78 59,65 42,15 47,48 

76 3 13 40 1441   76 68,71 67,62 51,86 53,82 

77 2 20 68 1617   77 36,44 33,31 33,20 31,97 

78 1 23 66 1214   78 20,38 16,11 17,55 22,88 

79 4 6 38 988   79 16,20 20,60 15,75 14,42 

80 2 16 38 948   80 18,88 23,22 21,86 19,19 

81 2 10 108 1242   81 -7,40 -10,75 -0,74 -1,26 

82 4 3 150 1205   82 -9,51 -32,92 -12,49 -5,29 

83 2 14 42 870   83 13,31 12,90 9,88 8,56 

84 1 7 98 1508   84 -18,25 -20,88 -11,84 -12,86 

85 3 10 39 683   85 1,19 6,95 3,74 2,77 

86 2 9 27 530   86 5,33 6,81 5,03 3,68 

87 1 5 36 1638   87 -78,64 -66,29 -53,64 -43,37 

88 5 7 41 837   88 -5,29 -5,88 -9,78 -8,92 

89 3 6 84 2280   89 4,06 1,25 -5,36 -5,93 

90 1 3 8 663   90 1,43 2,77 -1,42 -3,63 

91 2 5 18 674   91 0,12 2,78 1,13 -0,02 

92 2 6 23 844   92 6,07 7,37 6,43 7,58 

93 3 8 37 836   93 -3,07 -1,06 -7,62 -8,30 

94 6 9 44 948   94 -2,64 -6,73 -4,57 -5,95 

95 3 23 61 1122   95 9,52 9,11 -1,17 2,88 

96 4 5 74 1094   96 -23,14 -28,02 -21,72 -14,68 

97 3 8 67 1050   97 4,08 -9,44 -9,81 -6,50 

98 2 20 65 1560   98 -12,11 -9,16 -9,55 -6,58 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

99 2 2 21 3814   99 56,03 62,25 17,73 11,47 

100 3 2 27 4816   100 -70,21 -88,14 -84,98 1,51 

101 3 5 28 1115   101 -63,04 -58,54 -62,78 -59,21 

102 1 9 22 2514   102 -34,81 -35,29 -34,46 -30,61 

103 2 27 74 3707   103 -34,20 -32,86 -30,96 -28,19 

104 2 4 29 1065   104 -6,58 -9,30 -6,30 -5,80 

105 1 2 23 911   105 -0,12 0,03 -2,11 -5,37 

106 1 3 28 1120   106 61,97 61,91 61,72 32,48 

107 2 8 29 3299   107 -2,22 -0,11 3,81 -1,88 

108 2 17 54 1444   108 2,67 8,61 5,56 1,93 

109 2 4 21 5369   109 77,51 77,08 25,44 7,91 

110 2 4 64 1793   110 -77,19 -76,05 -63,16 -7,54 

111 4 8 101 2838   111 -47,58 -48,03 -29,98 -21,44 

112 2 19 16 660   112 -58,24 -58,23 -50,17 -40,77 

113 3 8 61 1081   113 -39,16 -35,13 -30,21 -28,65 

114 1 7 95 3358   114 -13,24 -5,49 -8,38 10,74 

115 1 4 56 1400   115 -22,65 -23,04 -16,37 -18,80 

116 3 9 38 1005   116 -11,35 -10,60 -18,46 -17,71 

117 1 2 25 8812   117 85,77 84,69 23,90 18,17 

118 3 32 49 2429   118 -20,24 -20,64 -16,26 -5,33 

119 2 35 144 3059   119 -15,60 -16,99 -11,25 5,09 

120 2 46 193 6160   120 -68,87 -37,04 -47,22 -7,05 

121 3 32 65 1104   121 -50,26 -50,35 -55,14 -43,88 

122 1 2 32 734   122 87,11 88,05 22,65 12,70 

123 2 5 31 855   123 74,74 74,81 68,89 34,31 

124 3 10 54 1042   124 37,21 38,03 36,98 37,56 

125 3 5 69 11570   125 20,35 24,42 17,29 8,17 

126 1 2 44 4387   126 12,89 13,48 22,30 10,26 

127 6 11 76 8953   127 2,80 5,92 7,53 3,61 

128 2 6 24 1043   128 60,06 52,93 58,69 55,29 

129 1 11 29 998   129 83,04 73,39 75,10 19,62 

130 2 4 17 810   130 -7,97 -9,95 -7,31 -10,82 

131 4 12 45 1066   131 -8,94 -9,43 -11,03 -9,59 

132 1 8 10 790   132 -19,30 -18,76 -18,25 -18,96 

133 2 2 33 942   133 -11,56 -18,66 -11,09 -9,11 

134 2 1 7 626   134 -26,13 -19,82 -26,28 -18,49 

135 2 2 16 706   135 8,27 8,63 9,38 8,08 

136 1 1 14 598   136 16,21 17,03 10,02 10,73 

137 1 1 14 709   137 9,34 9,87 13,46 2,42 

138 2 3 15 646   138 1,40 4,78 0,98 -0,87 

139 1 1 11 490   139 -3,17 -2,75 1,08 -0,12 

140 1 1 11 495   140 -6,76 -6,25 -1,20 -4,83 

141 2 5 22 866   141 1,48 -0,84 3,69 -1,15 

142 2 8 29 816   142 1,66 0,10 4,62 4,39 

143 5 15 70 1249   143 3,80 -0,11 6,02 2,90 

144 1 9 24 770   144 -5,69 -7,54 -7,43 0,64 

145 1 9 40 1128   145 -35,06 -37,03 -34,01 -26,26 

146 2 4 27 848   146 -24,21 -23,40 -20,16 -21,13 

147 1 8 28 902   147 -18,04 -18,64 -13,64 -17,05 

148 2 9 64 1061   148 23,54 23,53 20,57 22,81 

149 3 7 24 887   149 30,52 28,74 30,43 27,56 

150 2 3 50 842   150 29,17 29,32 31,19 26,29 

151 2 13 28 684   151 -39,85 -40,81 -38,73 -40,82 

152 2 3 36 691   152 -29,92 -26,55 -24,37 -27,97 

153 1 3 21 681   153 3,03 2,37 -2,29 3,70 

154 2 13 28 1026   154 -7,64 -7,60 -9,48 -4,56 

155 3 44 27 700   155 -28,29 -28,55 -28,20 -24,18 

156 6 64 43 875   156 -15,97 -15,43 -11,82 -10,27 

157 3 3 8 506   157 -8,29 -5,26 -8,49 -9,10 



 

 

170 

Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

158 1 1 32 856   158 16,87 15,92 13,07 14,57 

159 3 14 74 1108   159 33,69 26,32 28,44 27,16 

160 3 16 40 813   160 30,52 39,16 36,56 39,35 

161 1 7 68 1039   161 21,40 4,65 11,97 3,21 

162 4 31 84 1128   162 -23,75 -22,66 -24,16 -14,46 

163 1 4 52 826   163 -1,70 -2,07 5,00 0,40 

164 1 15 26 584   164 -33,77 -31,37 -24,22 -22,53 

165 4 1 32 930   165 -26,31 -34,34 -33,82 -26,29 

166 2 5 60 1255   166 55,01 56,00 39,95 36,22 

167 1 8 34 2253   167 75,73 69,60 51,41 47,98 

168 1 3 18 804   168 78,51 80,20 45,28 44,40 

169 1 7 30 769   169 30,18 29,71 32,09 25,37 

170 2 6 14 685   170 34,84 30,34 29,59 30,04 

171 1 5 17 744   171 34,33 33,43 33,05 29,62 

172 1 6 18 814   172 -5,93 -13,48 -12,76 -16,90 

173 1 4 45 967   173 2,30 -0,02 3,55 3,30 

174 2 3 27 595   174 6,44 6,43 3,37 5,36 

175 2 12 41 872   175 -2,32 10,21 -2,60 -6,01 

176 3 4 23 723   176 14,46 9,53 5,83 5,98 

177 2 1 21 706   177 -11,91 -11,71 -8,84 -9,59 

178 3 7 57 945   178 -14,49 -6,64 -9,35 -4,25 

179 1 9 16 516   179 -13,09 -13,68 -11,16 -13,26 

180 2 2 37 576   180 -14,51 -13,43 -10,25 -11,65 

181 2 3 30 714   181 -7,34 -1,99 -12,08 -6,98 

182 2 4 46 746   182 -21,28 -32,08 -27,52 -19,99 

183 2 5 20 600   183 -2,40 0,64 -4,10 -2,55 

184 3 17 19 742   184 -12,24 -12,34 -9,70 -10,42 

185 2 35 144 2330   185 76,21 -11,08 -1,29 -3,11 

186 4 5 72 1281   186 -54,71 -45,06 -43,39 -37,66 

187 2 5 63 1183   187 -19,41 -17,04 -29,67 -33,35 

188 4 5 61 978   188 -24,66 -23,97 -27,35 -23,25 

189 2 17 45 862   189 -34,97 -39,28 -29,01 -28,63 

190 2 39 56 898   190 -16,62 -18,13 -18,98 -10,67 

191 5 17 87 1536   191 -19,32 -22,84 -17,59 -15,54 

192 4 9 78 1001   192 -25,62 -23,40 -25,69 -20,02 

193 2 9 56 1163   193 4,64 9,44 -3,19 1,82 

194 1 1 47 693   194 -7,34 -6,60 -7,34 -4,03 

195 2 8 58 980   195 -14,50 -9,66 -7,24 -6,59 

196 2 6 41 947   196 -39,90 -40,65 -39,84 -38,34 

197 1 5 29 835   197 -26,83 -37,65 -32,18 -22,90 

198 2 5 39 732   198 -23,74 -26,20 -32,05 -28,94 

199 1 3 56 815   199 -33,97 -33,51 -30,58 -37,51 

200 1 1 34 729   200 -34,42 -34,18 -38,18 -35,69 

201 3 4 92 1252   201 16,51 20,92 21,63 19,29 

202 1 1 31 984   202 -42,23 -42,20 -42,48 -37,75 

203 2 9 53 892   203 -33,81 -39,51 -32,79 -32,33 

204 2 9 43 1117   204 -11,82 -14,62 -11,14 -10,18 

205 1 6 31 674   205 0,44 1,18 -1,91 1,60 

206 2 45 57 1032   206 -28,36 -27,84 -21,04 -18,21 

207 1 1 24 583   207 -11,24 -11,19 -10,94 -7,89 

208 1 9 55 965   208 -14,45 -7,01 -24,30 -18,68 

209 1 4 23 542   209 -25,21 -28,03 -27,12 -27,86 

210 3 5 86 903   210 6,31 -0,23 9,46 20,89 

211 2 3 28 1270   211 68,21 66,77 59,25 22,04 

212 4 4 42 855   212 -4,07 -4,81 -4,65 -3,85 

213 4 2 31 771   213 -0,78 -4,05 -5,22 -2,04 

214 1 1 26 622   214 -20,29 -20,95 -18,60 -16,59 

215 3 2 32 716   215 -16,78 -18,55 -17,64 -17,01 

216 2 5 49 730   216 27,38 26,99 24,19 23,02 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

217 2 3 39 820   217 33,09 30,84 27,01 26,27 

218 1 3 47 1887   218 2,96 4,28 1,65 1,39 

219 2 4 39 785   219 -9,38 -11,72 -6,71 -4,23 

220 2 4 36 786   220 -26,39 -27,98 -23,95 -17,37 

221 2 2 22 876   221 -19,54 -20,08 -12,75 -14,22 

222 3 6 39 982   222 16,14 18,22 17,44 14,93 

223 2 6 26 717   223 -28,16 -31,45 -30,35 -27,80 

224 3 6 37 916   224 -27,35 -23,43 -29,23 -22,50 

225 3 17 27 669   225 -19,39 -23,46 -16,67 -17,85 

226 2 5 18 916   226 -32,28 -31,54 -28,70 -25,71 

227 3 7 37 712   227 -19,75 -19,83 -14,76 -15,60 

228 2 8 52 1787   228 -4,47 1,79 -6,65 32,98 

229 1 8 48 1236   229 -8,57 -10,27 -6,71 -5,67 

230 5 8 33 758   230 -7,98 -4,70 -9,84 -11,09 

231 3 21 39 834   231 38,00 37,70 36,49 39,47 

232 4 27 86 1486   232 27,49 29,23 26,90 23,49 

233 1 6 46 660   233 14,36 13,99 6,28 8,30 

234 1 8 38 651   234 5,62 5,69 8,60 6,88 

235 6 6 84 1083   235 4,10 -15,21 -11,67 -6,07 

236 3 3 36 681   236 -1,05 -0,41 -3,69 -1,66 

237 2 8 42 714   237 5,14 7,69 11,85 7,76 

238 5 5 115 1577   238 14,12 -7,32 6,26 0,56 

239 2 22 71 1851   239 11,14 59,33 11,91 15,38 

240 3 8 22 692   240 -11,60 -12,11 -9,30 -10,28 

241 5 7 70 4851   241 -0,97 2,13 -2,67 -0,71 

242 1 4 31 788   242 1,64 0,78 1,74 3,17 

243 1 3 27 727   243 -1,10 -1,09 -1,18 1,72 

244 1 8 32 567   244 -4,95 -4,53 -7,20 -6,06 

245 3 12 126 2005   245 -0,05 3,65 -9,46 -3,44 

246 1 6 80 3268   246 -74,27 28,48 -38,35 -13,83 

247 1 7 31 3062   247 15,10 15,17 24,39 16,40 

248 2 4 55 2153   248 71,97 49,69 2,41 26,66 

249 5 7 83 1763   249 56,95 59,60 52,79 54,70 

250 4 12 82 2195   250 26,27 25,50 23,38 23,53 

251 1 3 47 4857   251 7,04 6,64 6,00 3,25 

252 1 5 42 5437   252 87,74 36,17 -35,31 -11,55 

253 2 2 39 4175   253 47,30 44,43 45,70 32,60 

254 3 3 44 3012   254 39,88 37,08 35,84 27,07 

255 1 31 32 7871   255 -43,32 -49,86 -37,58 -24,11 

256 2 3 36 5812   256 9,44 4,86 4,56 3,96 

257 1 2 52 5463   257 -89,72 89,68 -17,29 -11,75 

258 5 3 27 4033   258 -6,25 1,80 4,82 2,91 

259 2 5 35 1174   259 27,28 30,04 26,98 26,20 

260 1 6 26 2642   260 55,45 50,99 54,86 44,10 

261 3 19 81 4309   261 49,34 49,81 54,78 38,37 

262 2 7 24 1350   262 83,34 59,42 28,77 16,53 

263 1 2 20 927   263 89,88 89,91 -24,49 26,94 

264 1 3 19 1147   264 -28,15 -27,00 -26,43 -16,35 

265 2 6 25 4903   265 -86,90 -84,24 -71,71 0,93 

266 5 10 59 1520   266 -47,47 -73,31 -66,60 -11,65 

267 1 3 26 6654   267 -13,41 -12,92 -12,53 5,62 

268 6 4 66 2433   268 12,84 13,62 9,47 10,01 

269 5 6 100 3024   269 36,52 42,52 39,54 34,47 

270 2 3 14 752   270 31,76 30,58 34,90 27,02 

271 1 9 59 1105   271 48,98 42,98 56,31 48,89 

272 3 7 98 3488   272 73,20 68,28 13,39 -22,96 

273 1 4 62 1601   273 67,31 66,91 69,98 43,00 

274 4 8 33 1136   274 77,98 76,75 76,67 31,53 

275 3 50 46 2785   275 66,52 69,23 72,10 7,93 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet  

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet 

276 5 76 137 2843   276 72,99 69,86 28,39 -25,12 

277 2 39 177 6928   277 10,64 1,36 13,38 -9,93 

278 2 18 65 1154   278 20,16 15,67 17,56 16,68 

279 2 2 31 820   279 -5,22 -1,93 1,54 -3,27 

280 2 5 24 881   280 -15,56 -15,00 -18,58 -16,87 

281 6 12 53 1210   281 -44,85 -46,00 -51,86 -45,66 

282 3 5 59 12494   282 -68,85 -64,88 -60,33 -14,46 

283 3 3 49 3855   283 -74,71 -67,11 -45,99 -17,80 

284 5 9 70 9359   284 27,47 -77,81 -19,05 -8,68 

285 2 8 23 1158   285 -30,11 -35,75 -27,63 -27,48 

286 1 11 28 1131   286 -7,06 -11,35 -3,28 -13,50 

287 2 4 19 893   287 82,11 72,88 81,04 57,82 

288 6 7 50 1174   288 59,76 78,76 70,22 43,94 

289 1 4 9 941   289 70,58 71,08 70,86 65,38 

290 3 4 28 993   290 79,76 71,77 48,80 34,29 

291 2 3 6 642   291 63,81 70,21 63,73 70,15 

292 3 2 20 687   292 -80,95 -80,67 -74,10 -16,35 

293 3 1 12 773   293 -70,65 -73,20 -70,51 -1,26 

294 1 1 12 762   294 -80,90 -80,12 -77,16 -6,91 

295 2 7 18 720   295 68,84 -84,49 54,74 -24,01 

296 1 1 8 501   296 83,28 84,03 -39,84 -18,19 

297 3 2 22 819   297 -61,04 89,27 -36,62 -8,24 

298 3 13 28 833   298 -83,55 -89,37 20,89 -31,45 

299 8 8 72 1372   299 -43,19 -83,26 -55,23 -18,59 

300 1 13 29 814   300 84,44 82,58 44,99 4,51 

301 1 13 50 1388   301 55,49 50,54 51,61 50,23 

302 1 6 47 1151   302 55,15 53,09 52,21 51,45 

303 2 16 20 888   303 63,51 67,25 64,57 64,88 

304 1 10 25 966   304 72,06 69,81 14,17 31,74 

305 2 10 68 1075   305 -65,99 -65,62 -60,14 -59,27 

306 3 8 33 856   306 -59,61 -61,03 -59,36 -61,38 

307 3 6 44 872   307 -60,85 -60,89 -57,40 -64,79 

308 2 1 27 646   308 50,15 49,21 52,20 49,01 

309 2 2 36 670   309 59,98 64,31 64,79 57,44 

310 3 4 24 664   310 -84,68 -87,52 -22,71 -40,28 

311 1 6 30 1130   311 81,91 82,18 51,72 26,14 

312 3 17 29 720   312 61,66 56,32 56,19 42,93 

313 5 11 44 924   313 70,29 40,40 63,96 44,66 

314 6 3 7 550   314 44,69 82,46 46,58 33,08 

315 5 7 35 868   315 -70,39 -73,96 -72,16 -61,17 

316 5 9 65 1222   316 -60,13 -58,78 -60,18 -61,57 

317 2 24 41 814   317 -46,83 -50,12 -45,88 -45,40 

318 8 30 84 1148   318 12,82 16,38 17,10 14,45 

319 1 7 53 878   319 88,94 84,66 -17,66 -11,92 

320 4 11 30 578   320 52,75 28,87 54,55 45,85 

321 6 1 32 925   321 62,05 55,81 57,10 58,13 

322 6 8 55 1256   322 -25,02 -20,35 -25,92 -17,80 

323 3 4 20 754   323 -7,49 -9,78 -7,40 -6,47 

324 1 7 27 830   324 -59,79 -60,25 -58,10 -63,76 

325 2 1 15 696   325 -53,87 -54,79 -59,53 -43,72 

326 2 21 22 831   326 -54,25 -52,68 -54,13 -53,65 

327 1 4 19 867   327 84,48 78,68 76,64 -15,02 

328 1 2 45 998   328 -87,95 -89,87 -71,96 1,19 

329 2 2 30 614   329 -83,14 -65,46 -75,17 -29,10 

330 3 15 37 893   330 80,13 -30,93 -8,90 0,16 

331 5 6 24 749   331 -78,22 -78,90 -14,36 -27,13 

332 3 1 25 744   332 76,71 78,27 57,67 25,78 

333 2 4 52 972   333 74,42 72,95 5,84 4,68 

334 3 8 15 572   334 80,90 71,24 77,29 57,05 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet  

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet 

335 1 7 36 659   335 75,87 76,71 28,80 20,41 

336 2 4 29 730   336 82,32 -18,78 -8,41 -10,28 

337 2 7 42 765   337 67,95 65,02 51,89 69,43 

338 2 6 22 627   338 87,49 -89,25 23,54 5,94 

339 4 15 17 681   339 77,53 77,20 78,01 49,65 

340 3 6 68 1332   340 34,98 44,80 36,45 33,37 

341 3 15 65 1246   341 65,21 69,43 58,41 54,30 

342 3 4 57 978   342 64,86 57,55 52,28 33,80 

343 2 13 42 914   343 54,90 43,95 44,29 22,36 

344 1 38 49 984   344 73,33 71,02 67,24 47,57 

345 4 21 70 1015   345 62,15 55,45 62,97 68,54 

346 2 22 59 1139   346 -85,55 -79,08 67,20 26,24 

347 1 2 46 658   347 82,58 83,20 19,75 39,43 

348 1 8 60 1058   348 80,24 80,43 2,86 -2,89 

349 1 6 43 1019   349 50,31 49,30 49,62 46,59 

350 1 8 28 893   350 63,15 50,80 49,92 51,13 

351 1 2 57 882   351 55,96 55,26 59,31 50,70 

352 1 1 41 712   352 55,55 55,80 50,49 53,17 

353 2 1 95 1239   353 -73,84 -74,18 -54,52 -61,72 

354 1 2 30 1081   354 47,77 47,86 46,84 51,23 

355 1 7 55 875   355 50,23 49,74 48,72 57,65 

356 2 11 43 1077   356 77,12 75,72 59,93 47,82 

357 1 52 26 670   357 -89,58 15,05 54,66 30,92 

358 1 40 60 1124   358 62,24 60,56 66,00 29,40 

359 1 1 24 661   359 78,76 78,95 78,71 52,26 

360 3 4 25 604   360 60,28 65,09 60,19 61,49 

361 2 7 28 1209   361 -22,51 -23,63 -25,76 -18,36 

362 5 5 42 877   362 -6,39 -3,46 -4,67 -4,21 

363 3 3 27 800   363 -0,50 -4,17 -4,66 -2,06 

364 3 1 30 744   364 -18,96 -20,95 -18,69 -15,53 

365 2 2 33 775   365 -17,32 -18,50 -17,21 -17,04 

366 1 5 48 828   366 27,29 27,13 24,40 22,84 

367 3 2 40 841   367 -9,38 -11,87 -10,55 -3,75 

368 2 3 35 853   368 -26,49 -27,53 -23,57 -16,67 

369 7 11 124 1572   369 17,83 74,41 18,47 -2,18 

370 2 3 38 986   370 16,20 16,37 17,59 14,55 

371 2 5 29 765   371 -27,85 -31,67 -30,32 -28,05 

372 3 8 40 985   372 -27,37 -24,83 -28,90 -26,12 

373 2 16 28 751   373 -18,53 -23,68 -17,14 -17,55 

374 1 6 19 907   374 -32,39 -31,72 -29,81 -26,71 

375 3 9 38 784   375 -19,74 -19,70 -14,26 -16,78 

376 3 3 53 1905   376 -5,94 1,71 -4,94 32,23 

377 3 14 33 737   377 -8,08 -4,75 -9,88 -11,28 

378 2 10 44 813   378 37,92 38,19 36,59 39,26 

379 3 61 78 1506   379 27,42 28,49 27,35 21,90 

380 2 9 32 822   380 75,38 73,53 57,39 41,90 

381 1 5 48 685   381 14,44 13,95 6,29 8,59 

382 1 15 39 718   382 5,60 7,01 7,35 6,94 

383 6 5 92 1191   383 -1,99 -15,12 -10,37 -6,40 

384 2 3 38 732   384 -0,94 -0,87 -3,52 -1,71 

385 2 8 44 789   385 5,17 7,13 12,07 8,94 

386 3 7 27 753   386 78,44 77,54 54,64 41,78 

387 5 2 64 6233   387 82,35 -87,94 -22,63 7,23 

388 1 3 32 879   388 -88,51 -88,39 61,95 -8,16 

389 5 12 51 1030   389 -4,26 -70,12 -34,69 -14,27 

390 1 7 29 730   390 88,90 88,89 56,34 1,50 

391 1 6 28 572   391 85,04 85,69 80,93 12,50 

392 7 3 55 980   392 57,75 62,86 59,83 38,34 

393 9 5 71 1115   393 71,03 59,60 56,66 35,40 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet  

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet 

394 2 26 67 1077   394 80,62 80,72 15,97 46,83 

395 3 3 58 896   395 11,68 -19,71 6,89 8,01 

396 3 5 67 989   396 72,78 78,83 46,51 15,08 

397 3 3 46 953   397 30,50 82,68 39,36 10,26 

398 1 8 32 819   398 17,89 7,38 12,08 4,91 

399 1 7 30 929   399 50,66 50,21 50,55 49,15 

400 4 15 48 1159   400 43,11 39,03 45,56 46,77 

401 2 12 49 1232   401 64,13 63,48 52,40 60,06 

402 1 11 35 976   402 57,34 55,80 55,20 53,27 

403 1 3 21 703   403 17,19 16,79 16,74 24,24 

404 1 35 51 1222   404 46,19 45,78 43,58 48,50 

405 4 8 51 1096   405 45,20 44,91 43,44 46,77 

406 1 2 37 1224   406 46,65 46,49 46,72 52,25 

407 1 66 47 855   407 73,63 77,90 68,50 52,84 

408 3 9 57 1147   408 50,09 50,22 47,02 51,13 

409 3 6 64 1624   409 0,85 6,60 -2,73 1,98 

410 2 8 43 1140   410 -24,11 -24,70 -22,35 -23,14 

411 3 6 49 1176   411 -51,04 -52,45 -46,74 -44,34 

412 2 12 81 1317   412 -62,10 -53,37 -56,33 -39,03 

413 1 7 38 989   413 -80,57 -80,38 28,98 -17,87 

414 1 3 31 814   414 -58,28 -58,56 -60,85 -47,64 

415 2 8 25 994   415 88,35 -84,55 -49,01 -11,47 

416 3 14 32 1422   416 80,00 67,66 80,33 20,67 

417 5 7 108 1414   417 74,14 68,46 69,87 18,86 

418 9 60 121 1859   418 -79,51 -74,57 -18,91 -19,96 

419 1 9 60 1493   419 66,18 61,45 67,98 53,30 

420 2 15 44 1424   420 79,58 73,13 74,12 17,75 

421 6 66 36 897   421 -77,29 -82,39 -82,12 20,40 

422 3 11 43 1141   422 -85,12 -88,50 -88,05 17,27 

423 1 16 35 936   423 74,57 57,76 56,56 46,01 

424 6 2 23 835   424 21,39 24,89 25,19 33,96 

425 4 8 55 882   425 -48,68 -49,98 -53,19 -47,45 

426 1 8 26 835   426 -24,96 -24,18 -22,14 -23,93 

427 2 38 37 1434   427 -8,83 -9,57 -0,89 0,03 

428 2 14 24 1053   428 -3,53 -5,27 -7,86 -10,95 

429 1 8 36 1032   429 -4,61 -4,63 -13,32 -8,48 

430 3 2 36 838   430 0,30 -2,21 8,00 -2,89 

431 4 3 50 874   431 16,43 10,05 8,78 10,29 

432 1 14 55 1041   432 13,18 12,68 20,21 19,36 

433 2 2 82 1294   433 65,37 77,82 34,80 28,32 

434 2 9 35 1005   434 -4,67 -4,88 4,98 8,42 

435 7 62 109 1892   435 9,70 14,86 12,16 10,40 

436 1 60 39 1309   436 -17,35 -14,52 -12,46 -14,93 

437 4 21 58 1427   437 -16,09 -15,87 -16,25 -24,56 

438 4 44 59 1729   438 -20,16 -21,92 -20,75 -19,90 

439 1 28 41 1499   439 -19,53 -20,98 -22,06 -19,16 

440 6 21 78 1604   440 -51,44 -52,80 -52,55 -49,99 

441 4 51 71 1257   441 -66,22 -60,72 -68,41 -47,79 

442 6 11 41 1075   442 -72,14 -69,02 -36,51 -8,88 

443 3 19 42 1049   443 -71,12 -65,47 -67,50 -25,86 

444 3 4 66 832   444 74,29 78,33 43,15 28,28 

445 7 10 110 1300   445 -28,65 78,05 36,37 15,05 

446 3 14 41 881   446 -74,80 -77,40 -75,21 -43,31 

447 1 12 47 773   447 -84,08 -80,87 -35,57 -4,88 

448 1 15 31 510   448 -82,80 -82,36 -61,24 -7,16 

449 3 8 99 3011   449 -24,77 -88,04 -15,44 16,37 

450 3 3 9 641   450 -75,57 -87,50 -58,70 38,54 

451 1 7 22 777   451 -82,44 -82,68 19,54 5,58 

452 1 8 23 878   452 -82,81 -82,75 -71,50 -11,10 
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Table 33. Crack based semantic segmentation metric results (per sample) (cont’d) 

Number of Objects  Mean Orientation (Degrees) 

Test 1 - Building - Concrete  Test 1 - Building - Concrete 

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet  

Image 

Number 

Ground 

Truth 
QuadP FCN SegNet 

453 3 35 40 872   453 78,08 74,18 -27,50 34,55 

454 6 9 49 923   454 46,64 77,09 56,17 19,91 

455 4 38 65 1278   455 64,89 -80,79 29,56 -11,35 

456 7 11 76 1204   456 53,87 62,38 46,86 39,42 

457 5 8 67 1102   457 -20,59 80,40 23,14 29,70 

458 6 28 69 1591   458 76,02 73,64 34,86 34,33 

Test 2 - Pavement - Concrete   Test 2 - Pavement - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

1 7 89 2811 68764   1 -0,02 -22,06 2,58 -18,13 

2 14 21 906 38776   2 -82,97 -82,10 -27,26 -41,86 

3 13 20 1130 35694   3 -82,26 -78,32 -55,79 -44,97 

4 7 28 1245 29537   4 -89,48 -77,05 -59,52 -49,29 

5 6 131 737 22984   5 83,41 5,82 53,46 61,38 

6 16 44 1469 53109   6 -79,84 -69,28 -53,41 -41,88 

7 20 17 1509 33522   7 89,12 70,70 -64,63 58,08 

8 6 99 1741 37914   8 84,89 69,57 24,04 55,18 

9 14 35 1349 64007   9 84,00 71,96 -10,92 50,87 

10 19 47 1678 43158   10 -72,58 -4,41 -17,16 -33,07 

11 4 89 4054 78870   11 33,46 18,86 -10,93 4,16 

12 8 134 3490 65867   12 -61,60 -45,45 -9,17 -18,11 

13 10 46 3115 75428   13 36,89 30,53 -0,87 6,45 

14 8 176 3766 89222   14 4,68 -28,92 4,42 -7,10 

15 12 37 1785 55651   15 -89,93 21,10 -10,70 -47,49 

16 7 51 1228 46590   16 82,83 -12,59 -11,72 60,93 

Test 3 - Building - Concrete   Test 3 - Building  - Concrete 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

1 3 7 154 2290   1 -21,41 -60,83 14,22 -45,68 

2 3 31 268 3679   2 -45,73 -73,73 -10,58 -30,37 

3 10 6 189 3108   3 43,91 43,81 34,79 35,63 

4 4 11 246 6147   4 -8,65 7,90 2,91 1,27 

5 8 4 10 26386   5 22,14 24,35 21,34 14,20 

6 4 5 38 2509   6 -77,71 -60,45 -68,37 -54,81 

7 8 25 158 4472   7 -77,55 -59,29 -55,03 -32,53 

8 27 43 999 97998   8 78,14 68,72 46,54 52,55 

9 4 156 1428 35960   9 63,67 42,42 39,48 13,56 

Test 4 - Building - Brickwork   Test 4 - Building Brickwork 

Image 

Number 

Ground 

Truth QuadP FCN SegNet   
Image 

Number 

Ground 

Truth QuadP FCN SegNet 

1 15 73 787 14846   1 9,28 15,74 45,39 83,75 

2 1 23 698 16156   2 -86,95 -69,95 -41,46 24,39 

3 8 32 743 22193   3 -80,05 -55,54 -46,16 16,45 

4 7 28 592 35660   4 -0,98 -22,35 -20,24 -84,95 

5 4 21 454 40490   5 -81,05 10,27 0,34 -86,34 

6 31 39 804 43550   6 -54,22 -53,40 -0,95 83,55 

7 9 32 669 51982   7 -86,36 -32,31 7,47 70,27 

8 2 18 638 42375   8 -85,78 -69,09 -0,92 81,53 
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