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Prof. Dr. Çağatay Candan
Electrical and Electronics Engineering Dept., METU

Assoc. Prof. Dr. Süleyman Serdar Kozat
Electrical and Electronics Engineering Dept., Bilkent Uni.

Assoc. Prof. Dr. Umut Orguner
Electrical and Electronics Engineering Dept., METU

Assist. Prof. Dr. Gökhan Muzaffer Güvensen
Electrical and Electronics Engineering Dept., METU

Date:



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: NUSRET ÇELENK

Signature :

iv



ABSTRACT

METHODS FOR SOURCE LOCALIZATION FROM TIME DIFFERENCE
OF ARRIVAL MEASUREMENTS AND THEIR PERFORMANCE

IMPROVEMENT IN ILL-CONDITIONED CASES

Çelenk, Nusret

M.S., Department of Electrical and Electronics Engineering

Supervisor : Prof. Dr. Çağatay Candan

June 2018, 88 pages

Estimating the location of a radiating source is crucial in a wide variety of fields, such

as military applications, navigation systems and geophysics. In such fields, power

and cost limitations, requirement of remaining undetected or the nature of the prob-

lem may necessitate passive localization techniques. One of such techniques is time

difference of arrival (TDOA) based source localization.

In this thesis, TDOA based closed-form source localization methods are studied. An

extensive overview of the available methods is given. Some modifications are made

on the existing methods to solve some ambiguities, reduce computational cost and

increase estimation performance. Moreover, sensor and source distribution scenar-

ios causing the problem to be ill-conditioned are analyzed. A new method robust to

ill-conditioned cases, namely efficient constrained weighted least squares with coor-

dinate separation (ECWLS-CS) is proposed. Existing methods and the proposed one

are implemented in the same framework and compared under certain scenarios.
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ÖZ

VARIŞ ZAMAN FARKI ÖLÇÜMLERİ İLE KAYNAK KONUMLANDIRMA
YÖNTEMLERİ VE KÖTÜ KOŞULLANMIŞ DURUMLARDA

PERFORMANS İYİLEŞTİRMESİ

Çelenk, Nusret

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Çağatay Candan

Haziran 2018, 88 sayfa

Yayın yapan bir kaynağın konum kestirimi askeri uygulamalar, navigasyon sistemleri

ve jeofizik gibi birçok alanda önemli bir yere sahiptir. Bahsi geçen alanlarda; güç ve

maliyet limitleri, tespit edilmeme isteği ya da problemin doğası pasif konumlandırma

tekniklerinin kullanılmasını gerektirebilmektedir. Bu tekniklerden biri varış zaman

farkı (VZF) temelli konum kestirimidir.

Bu tezde, VZF temelli kapalı formdaki konum belirleme teknikleri incelenmiştir.

Mevcut yöntemler kapsamlı bir şekilde gözden geçirilmiş; yöntemlerde gözlenen bazı

belirsizliklerin giderilmesi, hesaplama karmaşıklığının düşürülmesi ve kestirim per-

formansının artırılmasına yönelik değişiklikler önerilmiştir. Ayrıca, problemin kötü

koşullanmış hale gelmesine sebep olan kaynak ve algılayıcı yerleşim senaryoları ana-

liz edilmiştir. Kötü koşullanmış durumlara dayanıklı yeni bir kestirim yöntemi, ko-

ordinat ayrımı ile verimli kısıtlı ağırlıklı en küçük kareler (VKAEKK-KA) adıyla

önerilmiştir. Önerilen yöntem ile literatürde hâlihazırda bulunan yöntemlerin başarım

seviyeleri aynı benzetim ortamında ve belirli senaryolarda karşılaştırılmıştır.
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CHAPTER 1

INTRODUCTION

Estimating the location of a radiating source is crucial in a wide variety of fields.

In military applications, location estimation of an intruder is one of the most impor-

tant parts of a successful defence system and a possible counterattack. In navigation

systems (GPS, eLORAN, etc.), the problem of self-positioning is equivalent to that

of radiating source localization. Performance of the guidance and autonomous driv-

ing systems in the land, sea and air vehicles strongly depend on the accuracy of the

self-positioning. In geophysics, estimating the location of seismic events is one of

the fundamental problems. In addition to these fields; speaker localization for speech

enhancement, mobile station positioning in emergency, sound source positioning in

search and rescue operations are some of the other areas in which radiating source

localization problem is encountered.

In military and seismic applications, cooperation of the source with the locator system

is impossible because of the nature of the problem. Although it is possible in naviga-

tion systems, cooperation is generally limited since it is quite costly and impractical

in some cases. Besides, remaining undetected is essential in warfare, which neces-

sitates the use of passive sensors. Since the systems using active sensors need more

power and costly equipments, passive systems may also be preferred in other appli-

cation areas. All of these limitations result in a need for the localization techniques

which use only passive sensors that do not require cooperation with the emitter.

In the literature, a variety of source localization methods exists that meet the restric-

tions mentioned. These methods use one or more properties of the signal coming

from the source; such as arrival time, direction, frequency and power. In one of these

methods, namely time difference of arrival (TDOA) based source localization, differ-

1



ences of the time instants at which the signal arrives to the sensors are used to estimate

the source location.

TDOA based source localization techniques are composed of two steps. In the first

step, TDOA values are estimated using the outputs of stationary omnidirectional sen-

sors. Then in the second step, the source position is estimated from the obtained

TDOA values and the sensor positions. Extended versions of the subspace methods

such as multiple signal classification (MUSIC) could also be used to estimate the

source position [1]. However, since these methods have been originally developed

for the angle of arrival estimation of far field sources emitting narrow-band signals,

wide-band applications generally needs significant computational resources. On the

other hand, bandwidth of the source signal affects only the first step of the TDOA

based source localization techniques, which results in a barely noticeable change in

the computational cost [2].

1.1 Literature Review

In the literature, there are various studies on TDOA based source localization algo-

rithms. In [3], it has been shown that because of the nonlinearity of the problem,

closed-form maximum likelihood estimator (MLE) does not exist. Then, an iterative

method which uses Taylor series expansion has been proposed to obtain the ML es-

timate. However, this method needs an initial source location estimate. Moreover,

convergence is not guaranteed [4].

Suboptimal closed-form methods have received a considerable interest in the litera-

ture concerning TDOA based source localization, since such methods are desirable

for real-time systems having low computational capability. Additionally, such meth-

ods are also required to obtain an initial estimate for the iterative ML methods. Spher-

ical interpolation [5]; subspace minimization [6]; spherical intersection [7], [8]; two

stage weighted least squares [9]; constrained weighted least squares [10], [11], [12]

are some of the closed-form TDOA based source localization methods, which we will

examine in the following chapters.

There are also hybrid methods which use angle of arrival (AOA) [13], [14] or fre-
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quency difference of arrival (FDOA) measurements [15], [16], [17] in addition to the

TDOA.

In [18], [19] and [20]; sensor position errors have also been taken into account in the

source localization.

Works focusing on the use of TDOA based source localization in non-line-of-sight

environments, such as mobile station positioning in a wireless network, also exist

[21], [22].

In [23], a closed-form method focused on the estimation of far field sources using the

triangulation of TDOA hyperbole asymptotes is available.

There are also studies which apply semidefinite programming to the TDOA based

source localization problem [24], [25].

Studies on bias reduction of certain available methods are given in [26] and [27].

1.2 Scope and Contributions of the Thesis

In this thesis, TDOA based closed-form source localization methods have been stud-

ied. An extensive overview of the available methods has been given with the com-

ments on their shortcomings and advantageous points. Besides, sensors and source

placement scenarios resulting in an ill-conditioned problem, and the methods resistant

to such scenarios have been investigated. Additionally, some modifications have been

made on the existing methods to solve some ambiguities, reduce computational cost

and increase estimation performance. Modified version of constrained weighted least

squares (CWLS) method proposed in Section 2.3.2.5, in particular, could be consid-

ered as a new algorithm, in part. Moreover, a novel algorithm, efficient constrained

weighted least squares with coordinate separation (ECWLS-CS), has been proposed;

which circumvent the ill-conditioning problem emerging in the available methods

when the sensor distribution is linear or hyperbolic in 2D plane (and planar or hy-

perboloidal in 3D). Existing methods and the proposed one have been implemented

in the same framework and compared under certain source and sensor distribution

scenarios.

3



1.3 Organization of the Thesis

Organization of the thesis is as follows:

In Chapter 2, firstly TDOA based source localization problem is clearly stated along

with the necessary formulation. Then TDOA estimation is briefly mentioned. Finally,

the estimation techniques available in the literature for TDOA based source localiza-

tion problem are explained in detail. Modifications made on the existing methods to

solve some ambiguities, reduce computational cost and increase estimation perfor-

mance are also provided.

In Chapter 3, sensor and source distribution scenarios causing the methods given in

Chapter 2 to face ill-conditioned problem, and the methods resistant to such scenarios

are investigated. A new method, ECWLS-CS, which is resistant to most of the ill-

conditioned cases is proposed.

In Chapter 4, MATLAB R© simulation results are provided. Performances of the pro-

posed and the available methods are compared under certain scenarios.

In Chapter 5, a summary and conclusions drawn from the study are provided.
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CHAPTER 2

TDOA BASED SOURCE LOCALIZATION

2.1 Problem Statement

One of the common ways of solving the problem of source localization is to use the

differences of the times at which the source signal arrives to the sensors. As stated in

the introduction chapter, this method is composed of two steps. In the first step, signal

arrival times of the sensors relative to that of a chosen reference sensor are estimated

using the sensor outputs. These estimated values are named as time difference of

arrival (TDOA) measurements. In the second step, the obtained TDOA values are

used to estimate the position of the source.

In the following section, the second step of the TDOA based source localization prob-

lem is formulated, assuming the first step is completed and TDOA values are ob-

tained. To ease the exposition, the formulation and the remaining parts of the thesis

consider the two-dimensional localization problem. Extending to three-dimensional

space causes nothing more than an increase in matrix dimensions and polynomial

degrees, and, in general, it is straightforward.

2.1.1 Formulation of TDOA Based Source Localization Problem

Consider a passive sensor array composed of N elements. Sensors are distributed in a

two-dimensional plane as shown in Figure 2.1. Let s = [x y]T be the radiating source

position and si = [xi yi]
T, i = 1, 2, ..., N be the position of the ith sensor. Note that

si are the known coordinates and s is the unknown to be estimated. Let di denote

the time of arrival (TOA) of the ith sensor, i.e., time it takes the signal travel from the

5
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s1 (x1, y1)
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sn (xN, yN)
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.  .  
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Figure 2.1: Sensor Placement

source to the ith sensor. Then, without loss of generality, if the 1st sensor is chosen as

the reference, TDOA between the ith and the 1st sensor is computed as follows:

di,1 = di − d1, i = 2, 3, ..., N. (2.1)

Let ri represent the distance between the source and the ith sensor, i.e.,

ri = ‖s− si‖, i = 1, 2, ..., N (2.2)

where ‖.‖ represents the Euclidean norm. Similar to the TDOA computation, range

differences are found from

ri,1 = ri − r1, i = 2, 3, ..., N. (2.3)

If the measurement and calibration noises are neglected, then the following equation

set could be written:

ri,1 = c di,1, i = 2, 3, ..., N, (2.4)

where c is the signal propagation speed of the medium. In (2.4), di,1 are the TDOA

values estimated previously using the sensor outputs; and ri,1 are the true range dif-

ferences, which are the nonlinear functions of the unknown source location s.
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Figure 2.2: TDOA Hyperbolas for Two Different Placement Scenarios

Equation 2.4 represents a set of the single-branch hyperbolas with the focal points si

and the reference sensor s1. In Figure 2.2, these hyperbola branches are drawn for

two different source and sensor placement scenarios,without adding any noise to the

true sensor positions and TDOA values.

In the placement scenario illustrated in the left hand side of Figure 2.2, it can be

seen that three sensors are enough to locate the radiating source (four sensors in a

3D space). However, in some cases such as the one given in the right hand side of

the Figure 2.2 , single-branch hyperbolas may intersect at two points. Therefore,

even though there is no need to have a higher estimation accuracy resulting from the

larger number of sensors, more than three sensors may be needed to locate the source

without ambiguity. On the other hand, if the estimation method used has the ability

to give both intersection points, then even a rough estimate obtained from another

method based on other properties of the signal may be enough to solve the ambiguity.

As previously mentioned, TDOA based source localization is composed of two main

7



steps:

1. Estimation of the TDOA values using the sensor outputs

2. Estimation of the source location using the obtained TDOA values

The scope of this thesis is the second step. Therefore, TDOA estimation methods

are not examined. Nevertheless, for the sake of completeness, some common TDOA

estimators are briefly mentioned in Section 2.2.

In Section 2.3, firstly maximum likelihood (ML) estimator for the TDOA based

source localization problem is explained. After showing that the ML estimator could

be solved only iteratively, closed-form suboptimum estimators in the literature are

investigated in detail. Advantages, weak points and computational costs of these

closed-form methods are explained.

2.2 TDOA Estimation

In TDOA based source localization, performance of the estimation result is strongly

dependent on the accuracy of the estimated TDOA values. Therefore, considering

the physical environment, sensor properties, characteristics of the radiating signal,

etc.; most convenient TDOA estimation technique should be chosen. Since this topic

is outside the scope of the thesis, only a brief explanation of some common TDOA

estimation methods are given in this section.

One of the simple methods for TDOA estimation is leading edge detection [28]. In

this method, the time instant at which the sensor output exceeds a certain threshold

value is taken as the signal arrival time. Then, by subtracting the arrival time of the

reference sensor from that of the others, TDOA values are obtained.

Another method for TDOA estimation is cross-correlation [29]. In this method, the

reference sensor output and that of other sensors are cross-correlated. The time index

of the peak point of a cross-correlation result gives the displacement of the source

signal in the corresponding sensor output relative to the reference sensor, i.e., the

TDOA value of the corresponding sensor. If the source signal and noise spectra are

8



known or could be estimated, then a prefiltering before the cross-correlation could be

applied to emphasize the signal at the frequencies where the SNR is high [29].

2.3 Source Location Estimation from TDOA Values

After the TDOA values are obtained, the final step of localization is to estimate the

source position using these values. In this section, estimators which could be used in

the second step, particularly the closed-form ones, are examined in detail.

Assume TDOA estimation results are in the form of

di,1 = d0
i,1 + ni,1, i = 2, 3, ..., N, (2.5)

where d0
i,1 represent the noise-free TDOA values and ni,1 represent zero mean additive

Gaussian noises. If TDOA vector is d = [d2,1 d3,1 ... dN,1]T, true range difference

vector is r = [r2,1 r3,1 ... rN,1]T, signal propogation speed is c, noise vector is n =

[n2,1 n3,1 ... nN,1]T and the covariance matrix of n is Q, then the PDF of d could be

written as

p(d; s) =
1

(2π)(N−1)/2|Q|1/2
exp{−1

2
(d− r/c)TQ−1(d− r/c)}. (2.6)

In (2.6), to emphasize that the PDF of d is related to the source position s, since r is

a nonlinear function of s, the notation p(d; s) is used rather than p(d).

Since the natural error criterion, minimum mean square error (MSE), generally re-

sults in estimators which are not realizable, which is the result of the bias term de-

pending on the unknown parameter to be estimated; constraining the estimator to be

unbiased and trying to find the one whose variance attains the Cramér–Rao Lower

Bound (CRLB) is an appropriate starting point [30]. To find out if there exists such

an estimator, the following theorem stated in [30] could be used:

Theorem 1. Let θ be the unknown vector to be estimated, x be the observation vector,

and p(x;θ) denote the probability density function (PDF) of x. Then, if the regularity

condition

E

[
∂ ln p(x;θ)

∂θ

]
= 0 (2.7)
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holds, then an unbiased estimator whose variance is equal to the CRLB could be

found if and only if
∂ ln p(x;θ)

∂θ
= I(θ)(g(x)− θ) (2.8)

where I and g are some functions. In (2.8), g(x) is the minimum variance unbiased

(MVU) estimator and [I−1(θ)]ii is the variance of the ith element of the estimator,

where [I−1(θ)]ii denotes the (i, i)th element of the inverse of I(θ), which is the Fisher

information matrix.

In Appendix A, CRLB for TDOA based source localization problem is obtained.

It is also shown that the regularity condition given in (2.7) is met. Furthermore,

∂ ln p(x;θ)/∂θ for this problem is calculated as

∂ ln p(d; s)

∂s
=

1

c

∂rT

∂s
Q−1(d− r/c). (2.9)

Since the true range difference vector r is a nonlinear function of the source position

vector s, (2.9) could not be put in the form of (2.8). Therefore, it can be said that

an unbiased estimator attaining the CRLB does not exist for the TDOA based source

localization problem.

2.3.1 Maximum Likelihood Estimator

In this section, the most well known approach for obtaining practical estimators [30],

the maximum likelihood estimator (MLE), is formulated for TDOA based source

localization problem.

MLE for the TDOA based source localization problem is the s vector maximizing

p(d; s) given in (2.6), for a TDOA set. Since the natural logarithm is a monotonically

increasing function, finding the s vector which maximizes the natural logarithm of

(2.6) gives the same result:

ŝMLE = arg max
s

{p(d; s)} = arg max
s

{ln(p(d; s))}. (2.10)

Taking the natural logarithm of (2.6) gives

ln(p(d; s)) = − ln((2π)(N−1)/2|Q|1/2) − 1

2
(d− r/c)TQ−1(d− r/c)}. (2.11)
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Since the first term of the right hand side of (2.11) does not depend on s:

ŝMLE = arg min
s

{(d− r/c)TQ−1(d− r/c)}. (2.12)

Note that even if the Gaussian assumption could not be made about the additive noise

in (2.5), the estimator criteria in (2.12) is still meaningful. In such case, the obtained

estimator is regarded as the least squares estimator and Q−1 becomes the weighting

matrix [3].

To find the s vector minimizing (2.12), taking the partial derivative of (2.11) with

respect to s and equating the result to zero gives

∂ ln p(d; s)

∂s
=

1

c

∂rT

∂s
Q−1(d− r/c) = 02x1. (2.13)

Since r is a nonlinear function of s, which can be seen explicitly in (2.16), there is

no closed form solution for MLE. Hence numerical methods should be employed.

In [4] and [3], an iterative method based on the Taylor series expansion is proposed

to obtain the ML estimate for the problems in which the observations are nonlinear

functions of the unknowns to be estimated. This method is explained for the TDOA

based source localization problem as follows:

Under the assumption given in (2.5), to show the relation between the source position

s and the TDOA vector d explicitly

d = r(s)/c+ n (2.14)

where

r(s) =


‖s− s2‖ − ‖s− s1‖
‖s− s3‖ − ‖s− s1‖

...

‖s− sN‖ − ‖s− s1‖

 (2.15)

=



(√
(x− x2)2 + (y − y2)2 −

√
(x− x1)2 + (y − y1)2

)(√
(x− x3)2 + (y − y3)2 −

√
(x− x1)2 + (y − y1)2

)
...(√

(x− xN)2 + (y − yN)2 −
√

(x− x1)2 + (y − y1)2
)

 (2.16)

could be written.
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Assuming that an initial estimate of the source position (ŝ0) is available, Taylor series

expansion around this initial guess could be written for the terms less than second

order as follows:

r(s) ' r(ŝ0) +Gŝ0 (s− ŝ0), (2.17)

where

Gŝ0
∆
=
∂r(s)

∂s

∣∣∣∣∣
s=ŝ0

=



∂r2,1/∂x
∣∣∣
s=ŝ0

∂r2,1/∂y
∣∣∣
s=ŝ0

∂r3,1/∂x
∣∣∣
s=ŝ0

∂r3,1/∂y
∣∣∣
s=ŝ0...

...

∂rN,1/∂x
∣∣∣
s=ŝ0

∂rN,1/∂y
∣∣∣
s=ŝ0


. (2.18)

Putting (2.17) into the MLE cost function given in (2.12) results in

CMLE(s) = (d′ŝ0 −Gŝ0s/c)
TQ−1(d′ŝ0 −Gŝ0s/c), (2.19)

d′ŝ0 = d− r(ŝ0)/c+Gŝ0 ŝ0/c.

Taking the gradient of (2.19) and equating zero

∇sCMLE(s)
∣∣∣
s=ŝ1

= 2GT
ŝ0
Q−1GT

ŝ0
ŝ1/c

2 − 2GT
ŝ0
Q−1d′ŝ0/c = 02x1, (2.20)

solving (2.20) for ŝ1 gives

ŝ1 = c(GT
ŝ0
Q−1GT

ŝ0
)−1GT

ŝ0
Q−1d′ŝ0 . (2.21)

In general form

ŝk+1 = c(GT
ŝk
Q−1GT

ŝk
)−1GT

ŝk
Q−1d′ŝk , k = 0, 1, 2, ... (2.22a)

d′ŝk = d− r(ŝk)/c+Gŝk ŝk/c, (2.22b)

Gŝk =
∂r(s)

∂s

∣∣∣∣∣
s=ŝk

. (2.22c)

Iterating (2.22) until ŝ converges gives the source location estimate.

Comments

In the literature [9], [31], [32]; iterative MLE procedures, such as the Taylor series

method, are regarded as the most successful estimation techniques for the TDOA

based source localization problem. However, they have some disadvantages:
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• An initial estimate of the source position is required. Performance of the result

is dependent on the accuracy of this estimation.

• Convergence is not guaranteed.

• Since it is an iterative method, computational complexity is generally high com-

pared to the closed-form methods.

2.3.2 Least Squares Estimators for Squared TDOA Measurements

Systems having low computational capacity and the requirement of real-time compu-

tation necessitate a closed-form location estimator. Furthermore, such an estimator

is also required to obtain an initial estimate for the iterative methods such as the

one mentioned in Section 2.3.1. In this section, closed form estimators for TDOA

based source localization problem are investigated in detail. These estimators are

least squares (LS) based and for a suboptimal cost function in the ML sense.

2.3.2.1 Unconstrained Least Squares

Without losing generality, just to make the exposition easier, let the origin of the

coordinate system be the location of the reference sensor, i.e.,

s1 = [0 0]T. (2.23)

Then, combining (2.2), (2.3) and (2.4), the following equation could be written:

‖si − s‖ = cdi,1 + ‖s1 − s‖

= cdi,1 + ‖s‖, i = 2, 3, ..., N. (2.24)

Squaring both sides of (2.24)

(‖si − s‖)2 = (cdi,1 + ‖s‖)2, i = 2, 3, ..., N, (2.25)

and then expanding the brackets gives

‖si‖2 − 2sT
i s+ ‖s‖2 = c2d2

i,1 + 2cdi,1‖s‖+ ‖s‖2, i = 2, 3, ..., N. (2.26)
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Finally, rearranging the terms results in

2sT
i s+ 2cdi,1r1 = ‖si‖2 − c2d2

i,1, i = 2, 3, ..., N. (2.27)

Equation set (2.27) could be put into matrix form as follows:

Aθ = b (2.28a)

where

A =


x2 y2 cd2,1

x3 y3 cd3,1

...
...

...

xN yN cdN,1

 (2.28b)

θ = [x y r1]T (2.28c)

b = 0.5


x2

2 + y2
2 − c2d2

2,1

x2
3 + y2

3 − c2d2
3,1

...

x2
N + y2

N − c2d2
N,1

 (2.28d)

In (2.28), A and b can be calculated using the sensor positions and noisy TDOA

measurements. θ is the unknown array to be estimated to obtain the source position

s. Because of the synchronization and measurement errors, equation (2.28) holds

approximately. Therefore, a least squares criteria based on this equation could be

used to obtain an estimate of the source position:

ŝLS-SC = arg min
s

{(Aθ − b)T(Aθ − b)}, (2.29)

where LS-SC (LS for suboptimum cost function) stands for the emphasis on the cost

function (Aθ−b)T(Aθ−b), which is suboptimum in the maximum likelihood sense

[11].

Note that the third element of θ is nonlinearly related to the first two elements. This

relation can be seen explicitly by writing (2.2) for i = 1:

r1 = ‖s− si‖ =
√
x2 + y2, (2.30)
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or equivalently

θTCθ = 0 (2.31a)

and

θ3 ≥ 0, (2.31b)

where

C =


1 0 0

0 1 0

0 0 −1


and θ3 represents the 3th element of θ. Throughout the thesis, (2.31a) and (2.31b)

will be called as "equality constraint" and "inequality constraint", respectively.

The nonlinear relation among the elements of θ makes the equation set (2.28) non-

linear. However, if the relation is ignored and r1 is considered as an independent

variable, then (2.28) becomes a linear equation. In this case, LS estimate of θ could

be found as

θ̂ULS = (ATA)−1ATb, (2.32)

and the source location estimate is the first two elements of the result:

ŝULS = [θ̂ULS-1 θ̂ULS-2]
T, (2.33)

where θ̂ULS−i represents the ith element of θ̂ULS. Since the constraints in (2.31) are ig-

nored, the estimate is named as ULS (Unconstrained LS). Although the cost function

is the same with the LS-SC, SC is dropped just to have a short abbreviation. Note

that, to have a nonsingular (ATA) matrix, at least 4 sensors are required in a two

dimensional space.

Spherical Interpolation

In [5], to find the source location in closed-from, a method named as Spherical Inter-

polation (SI) is proposed. In this method, r1 in (2.28) is assumed to be known and the

source coordinates x and y are computed in terms of r1 as follows:
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Rewriting (2.28a) as

A(N-1)x3 θ3x1 = b(N-1)x1

[S(N-1)x2 cd(N-1)x1] [sT
2x1 r1]T = b(N-1)x1

S(N-1)x2 s2x1 + r1cd(N-1)x1 = b(N-1)x1, (2.34)

where S is the matrix composed of the first two columns of A, and cd is the third

column ofA. Then, assuming r1 is known, LS estimate of the source location s could

be found as

ŝSI−r1 = (STS)−1ST(b− r1cd). (2.35)

Then, if (2.35) is inserted back to (2.34)

S(STS)−1ST(b− r1cd) + r1cd = b

r1c(I − S(STS)−1ST)d = (I − S(STS)−1ST)b. (2.36)

Define

P
∆
= I − S(STS)−1ST. (2.37)

Then LS estimate of r1 becomes

r̂1 =
dTP TPb

cdTP TPd
(2.38)

Inserting (2.38) into (2.35) gives the source location estimate:

ŝSI = (STS)−1ST(I − dd
TP TP

dTP TPd
)b. (2.39)

Since it solves the same equation set ignoring the constraints, this two stage cumber-

some process is mathematically equivalent to (2.32). Therefore, spherical interpola-

tion (SI) and unconstrained least squares methods (ULS) are identical [33].

Subspace Minimization

In [6], an alternative method for the TDOA based source localization problem, namely

subspace minimization (SM), is proposed. In this method, (2.34) is multiplied by a

projection matrix whose null-space contains d, i.e.,

Md = 0. (2.40)
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Such anM could be obtained as

Mk = (I −Zk)D, k = 1, 2, ... (2.41)

where

D =



d2,1

d3,1 0
. . .

0 d(N-1),1

dN,1



−1

(N-1)x(N-1)

,

Z =



0 1 0 . . . . . . 0

0 0 1 0 . . .
...

... . . .
. . . . . . . . . ...

... . . . . . . 0 1 0

0 . . . . . . . . . 0 1

1 0 . . . . . . . . . 0


(N-1)x(N-1)

.

For the sake of simplicity, let M1 be the projection matrix. Then, multiplying (2.34)

byM1 results

M1(Ss+ r1cd) = M1b

M1Ss = M1b. (2.42)

Finally, LS estimate of (2.42) could be found as

ŝSM = (STMT
1M1S)−1STMT

1M
T
1M1b. (2.43)

In general,

ŝSM = (STMT
kMkS)−1STMT

kM
T
kMkb. (2.44)

Since Mk is singular with N − 2 rank, number of rows of S should be higher than

that of columns to have a nonsingularMkS. This implies that N − 1 > n, where n is

the dimension of the space. Therefore, in a two dimensional space, at least 4 sensors

are required to use SM method.

Recall that Spherical Interpolation method is the LS solution of

Ss = (I − dd
TP TP

dTP TPd
)b. (2.45)
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Multiplying (2.45) byMk results

MkSs = Mkb−Mkd
dTP TP

dTP TPd
b

= Mkb (2.46)

which is the same equation as (2.42). This shows that subspace minimization method

is equivalent to spherical interpolation [6].

Comments

ULS, and equivalently SI and SM, give a closed form solution which is quite valuable

for computationally limited systems and iterative methods requiring an initial guess.

However, there are important points that should not be ignored:

• ULS method uses a cost function which is not optimum in the ML sense.

• ULS method ignores the constraints among the elements of θ, which is given in

(2.31). This may even results in a negative θ̂3, which is the range between the

source and the reference sensor. However, it will be shown in Section 2.3.2.4

that the estimator obtained by considering the constraints becomes approxi-

mately equal to the ULS estimator when the noise level is small.

As mentioned earlier, SI needs a two stage computationally cumbersome process.

SM is less cumbersome than SI; however it still needs unnecessarily complicated

calculations and gives the same result as ULS [33]. Because of this, it is seen in

the literature that among these three equivalent closed-form methods, ULS is usually

chosen as the base to work on for improvements [9], [11], [10], [34].

2.3.2.2 Spherical Intersection

Schau and Robinson have proposed an alternative TDOA based closed form source

localization method, namely spherical intersection (SX), in [7]. The proposed method

is for n+1 sensors, where n is the dimension of space. In [8], SX has been generalized

for N ≥ n + 1 sensors with a weighting matrix, and the conditions for a solution
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to exist are stated. In this section, we will represent the SX method as well as its

generalized version, and then examine whether SX gives the global minimum of the

problem (2.29) with the constraints (2.31). At the end, we will address the reasons of

weak performance of this method.

Recall that in SI method, A was divided into a sensor position matrix and TDOA

vector as (2.34):

A(N-1)x3 θ3x1 = b(N-1)x1

[S(N-1)x2 cd(N-1)x1] [sT
2x1 r1]T = b(N-1)x1

S(N-1)x2 s2x1 + r1cd(N-1)x1 = b(N-1)x1,

with the cost function

CSI(s, r1) = (b− Ss− r1cd)T(b− Ss− r1cd), (2.47)

and then a source location estimate was obtained as (2.35) by assuming r1 is known.

In SX method, same approach is used for N = 3:

ŝSX = ŝSI−r1 = S−1(b− r1cd). (2.48)

However, rather than inserting (2.48) back in (2.34), this time (2.48) is inserted in the

quadratic equality constraint (2.31a) as follows:

θTCθ = sTs− r2
1 = 0

(b− r1cd)TS−TS−1(b− r1cd)− r2
1 = 0 (2.49)

Rearranging terms, (2.49) becomes [7]

aSXr
2
1 + bSXr1 + cSX = 0, (2.50)

where

aSX = 1− c2dTS−TS−1d, (2.51a)

bSX = 2cdTS−TS−1b, (2.51b)

cSX = −bTS−TS−1b. (2.51c)

In [8], SX method has been generalized to utilize additional sensors and a weighting

matrix is inserted to the minimization problem. When N > 3, since S is no more a
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square matrix, S−1 in (2.48) is replaced by the pseudo-inverse (STS)−1ST to obtain

generalized SX (GSX) estimate:

ŝGSX = ŝSI−r1 = (STS)−1ST(b− r1cd). (2.52)

and weighting matrix W is inserted in to obtain generalized weighted SX (GWSX)

cost function

CGWSX(s, r1) = (b− Ss− r1cd)TW (b− Ss− r1cd), (2.53)

which results in [8]

ŝGWSX = ŝSI−r1 = (STWS)−1STW (b− r1cd). (2.54)

Inserting (2.54) in (2.31a) and then rearranging terms gives [8]

aGWSX r
2
1 + bGWSX r1 + cGWSX = 0, (2.55)

where

aGWSX = l21 + l22 + l23 − 1, (2.56a)

bGWSX = −2(k1l1 + k2l2 + k3l3), (2.56b)

cGWSX = (k2
1 + k2

2 + k2
3), (2.56c)

(STWS)−1STWb = [k1 k2 k3]T, (2.56d)

(STWS)−1STW cd = [l1 l2 l3]T. (2.56e)

To find the SX source location estimate, r1 is firstly obtained by solving (2.50). Then

the obtained value is substituted into (2.48). For the GWSX estimate, aforementioned

equations should be replaced by (2.55) and (2.54), respectively.

Since (2.50) and (2.55) are second order equations, it is possible to end up with two

positive roots, two negative roots or even imaginary roots. For the first case, [7]

has stated that the r1 candidates are generally far from each other, which allows to

eliminate one of them by considering the region of interest. However, it is possible

to have an interest region including both candidates. As an alternative approach, the

one resulting smaller cost function could be chosen as the estimate. Moreover, for the

latter case, there is no solution proposed in either of [7] and [8]. Therefore, it could
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be stated that SX method does not guarantee a solution to the TDOA based source

localization problem.

Apart from the solution existence problem, it should also be questioned that whether

it is the global minimizer of the problem (2.29) with the constraints (2.31), when an

estimate is obtained from the SX method. At the first step of the SX method, the set of

position vectors which minimizes the cost function (2.53) for any r1 ∈ IR are assigned

as the set of possible solutions. Then in this set, the one satisfying the constraints

(2.31) is chosen as the source location estimate. However, it is quite possible that the

global minimizer is not in the obtained set in the SX method, i.e.,

∃(S,d) s.t.

arg min
s

{‖b− Ss− r1cd‖2 : sTs = r2
1 , r1 ≥ 0}

/∈
{
s ∈ IR2 : (∃r′1 ∈ IR)

[
s = arg min

s

{
‖b− Ss− r′1cd‖2

}] }
. (2.57)

Therefore, SX estimate is not the global minimizer, i.e.,

(sGM, r1−GM) = arg min
(s,r1)

{‖b− Ss− r1cd‖2 : s ∈ Sc}

6=

(ŝSX, r̂1−SX) = arg min
(s,r1)

{‖b− Ss− r1cd‖2 : s ∈ Sc ∩ Ssx}

where ŝGM is the global minimizer of (2.29) with the constraints (2.31),

r1−GM =
√
sT

GMsGM,

Sc = {(s, r1) ∈ (IR2, IR) : sTs = r2
1 , r1 ≥ 0},

Ssx =
{

(s, r1) ∈ (IR2, IR) : s = arg min
s

{‖b− Ss− r1cd‖2}
}
.

Comments

SX method starts with the same equation set used in the SI method, and then takes

into account the equality constraint; which is ignored in SI, and equivalently in ULS

methods. Because of this, at first glance, it could be seen as superior to the ULS.

However, as we have explained in detail, SX does not guarantee to give a solution.

Moreover, even if the method gives an estimate, it is quite possible that the obtained
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estimate is not the global minimum of the cost function. On the other hand, as we

will show in Section 2.3.2.4, the LS estimator obtained by considering the constraints

becomes approximately equal to the ULS estimator when the noise level is small. In

[5], although the problems of the SX method has not been mentioned, some simula-

tion results comparing the performance of SX and SI methods have been presented.

The given results show that SI gives a better performance.

2.3.2.3 Two Stage Weighted Least Squares

Chan and Ho proposed an improved version of the LS based source localization

method in [9]. In this method, a weighting matrix is added to the cost function in

(2.29) to approximate the maximum likelihood estimator (2.12). Then, similar to the

ULS method, an UWLS (unconstrained weighted LS) estimator is obtained by ig-

noring the constraints among the elements of θ, which is given in (2.31). Finally,

a second LS computation is done to improve the UWLS estimation result by con-

sidering the previously ignored constraints. Because of this two stage process, the

method given in [9] is named as TSWLS (two stage weighted least squares). Details

of obtaining the weighting matrix and the two step LS computation are as follows:

For the equation set given in (2.28), error vector could be defined as

e
∆
= b−Aθ. (2.58)

Considering the noise assumption given in (2.5); ei, the ith element of e, is written as

ei = 0.5(x2
i + y2

i − c2d2
i,1)− xix− yiy − r1cdi,1, i = 2, 3, ..., N.

= 0.5(x2
i + y2

i − c2(d0
i,1 + ni,1)2)− xix− yiy − cr1(d0

i,1 + ni,1). (2.59)

Expanding the brackets gives

ei = 0.5(x2
i + y2

i )− 0.5c2(d0
i,1)2 − c2d0

i,1ni,1 − 0.5c2n2
i,1

− xix− yiy − cr1d
0
i,1 − cr1ni,1. (2.60)
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Since di,1 = di − d1 and cd0
i = ri, equation (2.60) could be written as

ei = 0.5(x2
i + y2

i )− 0.5c2(d0
i,1)2 − xix− yiy − cr1d

0
i,1

− crini,1 − 0.5c2n2
i,1

= 0.5((xi − x)2 + (yi − y)2)− 0.5r2
i − crini,1 − 0.5c2n2

i,1

= − crini,1 − 0.5c2n2
i,1 (2.61)

Then, covariance matrix of the error vector becomes

Ψ
∆
= cov(e) = cov(cRn+ 0.5c2n� n) (2.62)

where n = [n2,1, n3,1, ..., nN,1]T, R ∆
= diag{r2, r3, ..., rN} and � is the Hadamard

product.

If ri � cni,1 for i = 2, 3, ..., N , which is usually the case in practice [9], the second

term of (2.62) could be ignored. Then, the covariance matrix of the error vector

becomes

Ψ ≈ cov(cRn) = c2RQR. (2.63)

Inserting Ψ into the LS-SC cost function (2.29) as a weighting matrix results in a cost

function as follows:

CWLS = (b−Aθ)TΨ−1(b−Aθ). (2.64)

Note that, e could be written as

e = b−Aθ ≈ cRn = cR(d− r/c). (2.65)

Inserting (2.63) and (2.65) into (2.64) gives

CWLS ≈ [cR(d− r/c)]T(c2RQR)−1[cR(d− r/c)]

≈ (d− r/c)TQ−1(d− r/c), (2.66)

which is the same cost function obtained for the MLE in (2.12). This means that a

source position estimate minimizing (2.64) is an approximation of the MLE. It is an

approximation since:

1. Noise-squared term of the equation (2.62) is ignored,

23



2. R is composed of the true range values between the source and the sensors,

therefore it is not available in practice. An approximate R matrix have to be

used in the calculation of the weighting matrix Ψ−1.

Using the same approach as in the ULS method, a closed form estimator could be

obtained by ignoring the relation among the elements of θ as follows:

θ̂UWLS = arg min
θ

{(Aθ − b)TΨ−1(Aθ − b)}.

= (ATΨ−1A)−1ATΨ−1b, (2.67)

and the source location estimate is the first two elements of the result:

ŝUWLS = [θ̂UWLS-1 θ̂UWLS-2]
T, (2.68)

where θ̂UWLS−i represents the ith element of θ̂UWLS. Since the constraints in (2.31) are

ignored, the estimate is named as UWLS (unconstrained WLS).

Note that, to have a nonsingular (ATΨ−1A) matrix, at least 4 sensors are required in

a two dimensional space. In the case of 4 sensors, A becomes a 3x3 full rank matrix

(except some special cases such as zero valued TDOAs or linear sensor distribution).

Then the inverse ofA exists, i.e., a location estimate equating the cost function (2.64)

to zero could be obtained. In such case, the result is not affected by the weighting and

it is identical to the ULS estimate. Therefore, at least 5 sensors are needed to see the

effect of the weighting matrix.

In practice, Ψ could not be known exactly, since R includes the true range values

between the sensors and the source. In [9], a method to obtain Ψ approximately is

proposed. In this approach, by assuming that the source is far from the area in which

the sensors are distributed, ri, i = 2, 3, ..., N , values are considered nearly equal to

r1, and therefore

R ≈ r1I, (2.69)

where I is (N − 1)x(N − 1) identity matrix. Then the weighting matrix could be

calculated as

Ψ ≈ r2
1c

2Q. (2.70)

Finally, (2.67) becomes
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v = (ATΨ−1A)−1ATΨ−1b

≈ (AT(r2
1c

2Q)−1A)−1AT(r2
1c

2Q)−1b

≈ (ATQ−1A)−1ATQ−1b. (2.71)

If the source is close to the sensors, (2.71) is used to obtain an initial estimate of the

source position to calculate R approximately. Then, using (2.63) and (2.67) UWLS

estimate of the source location could be obtained [9].

If θ̂UWLS is written as the sum of the true source location and range vector θ and a

noise term, i.e.,

θ̂UWLS = θ + eUWLS, (2.72)

then multiplying both side of (2.67) withATΨ−1A and inserting (2.72)

ATΨ−1A(θ + eUWLS) = ATΨ−1b (2.73)

is obtained. Expanding the brackets and rearranging the terms gives

eUWLS = (ATΨ−1A)−1ATΨ−1(b−Aθ)

= (ATΨ−1A)−1ATΨ−1e. (2.74)

Remember that Ψ
∆
= cov(e). If the noise squared terms of e in (2.62) are ignored,

E[e] becomes zero vector. Then the expected value and covariance of θ̂UWLS could be

approximated as

E[θ̂UWLS] = θ + E[eUWLS] ≈ θ, (2.75)

cov(θ̂UWLS) ≈ E[eUWLS e
T
UWLS]

≈ (ATΨ−1A)−1ATΨ−1ΨΨ−1A(ATΨ−1A)−1

≈ (ATΨ−1A)−1. (2.76)

Equations (2.75) and (2.76) show that when the bias resulting from the noise squared

terms are negligible, θ̂UWLS could be considered as a random vector whose expected

value is the true value. Then θ̂UWLS could be written as

θ̂UWLS
∆
=


θUWLS-1

θUWLS-2

θUWLS-3

 =


x+ ex

y + ey

r1 + er

 , (2.77)
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where ei, i = 1, 2, 3 are the estimation errors. Considering the previously ignored

constraint (2.31a), an equation set could be written as follows [9]:

e′ = b′ −A′s′ (2.78)

where

b′ =


(θUWLS-1)

2

(θUWLS-2)
2

(θUWLS-3)
2

 , A′ =


1 0

0 1

1 1

 , s′ =

x2

y2

 .
From (2.77) and (2.78), e′ is obtained as

e′ =


2xex + e2

x

2yey + e2
y

2r1er

 ≈


2xex

2yey

2r1er

 , (2.79)

and

Ψ′
∆
= cov(e′) = 4R′cov(θ̂UWLS)R′ (2.80)

whereR′ = diag(x, y, r1). Then, the WLS estimate of s′ is obtained as

ŝ′ = arg min
s′

{(A′s′ − b′)TΨ′−1(A′s′ − b′)}.

= (A′ TΨ′−1A′)−1A′ TΨ′−1b′. (2.81)

R and R′ could be estimated using θ̂UWLS, hence an approximate Ψ′ is obtained.

Then, s′ is estimated as

ŝ′ ≈ (A′ TR′−1ATΨ−1AR′−1A′)−1(A′ TR′−1ATΨ−1AR′−1)b′. (2.82)

If the source is far from the sensor array, then the covariance of θ̂UWLS becomes

cov(θ̂UWLS) ≈ c2r2
1(ATQ−1A)−1 (2.83)

and (2.81) becomes

ŝ′ ≈ (A′ TR′−1ATQ−1AR′−1A′)−1(A′ TR′−1ATQ−1AR′−1)b′. (2.84)

Finally, TSWLS position estimate is obtained as

ŝTSWLS =

±√s′1

±
√
s′2

 (2.85)

26



where s′1 and s′2 are the first and the second elements of ŝ′, respectively. Because of

the sign ambiguity, there are four different source position candidate. In [9], choosing

the one which is in the search area is proposed. However, it is possible that more than

one solution candidate lies in the search area. We propose an alternative method to

solve the sign ambiguity. Among the four TSWLS estimate candidate found in (2.85),

the one closest to the UWLS estimate is chosen as the final estimate. In other words,

ŝTSWLS = arg min
ŝTSWLS−i

{‖ŝTSWLS−i − ŝUWLS‖}, i = 1, 2, 3, 4, (2.86)

where

ŝTSWLS−1
∆
= [+

√
s′1 +

√
s′2]T,

ŝTSWLS−2
∆
= [−

√
s′1 +

√
s′2]T,

ŝTSWLS−3
∆
= [+

√
s′1 −

√
s′2]T,

ŝTSWLS−4
∆
= [−

√
s′1 −

√
s′2]T,

ŝUWLS
∆
= [θUWLS−1 θUWLS−2]T.

Depending on the noise level and the source position, it is possible to have imaginary

roots in (2.85). In these cases, as an empirical method, it is proposed in [9] to set the

imaginary part zero.

In summary, TSWLS source localization method steps are as follows:

1. A and b are obtained using the sensor locations and TDOA values.

2. Initial source position estimate is calculated using (2.71).

3. If the initial estimate shows that source is far from the sensor array, it is jumped

to step 7.

4. Using the initial estimate,R is found approximately.

5. Ψ is calculated usingR and the TDOA covariance matrixQ.

6. Initial source position estimate is updated with (2.67).

7. R′ is approximated using the initial estimate.

8. ŝ′ in (2.82) is calculated.

9. TSWLS source location estimate is obtained using (2.85) and (2.86).
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Comments

TSWLS source localization method [9] is based on ULS with two main improve-

ments. The first one is the use of covariance matrix of TDOA values. Since the

TDOA value for each sensor is obtained with respect to a common reference sen-

sor, there is a nonzero correlation between TDOA values. Utilizing this relation is

expected to improve the estimation result. The second improvement is to take into

account the ignored constraint among the elements of θ via a second LS. However,

there are important points that should not be ignored:

• To see the affect of weighting in the estimation result, more than 4 sensors (in

general, more than N+2 for N-dimensional space) should be used.

• Note that in the derivation of TSWLS, noise squared terms are ignored in (2.63)

and (2.79). Moreover, an estimate of the true range matrix R is used to obtain

the weighting matrix Ψ. Therefore, under low SNR condition, TSWLS esti-

mate may even worse than ULS.

• There is a sign ambiguity in the TSWLS result, as seen in (2.85). To solve the

ambiguity, we have proposed a solution in (2.86).

2.3.2.4 Constrained Least Squares

In section 2.3.2.1, nonlinear equation set given in (2.28) is linearized by considering

the source range r1 as a new variable, despite the fact that it is a function of the source

coordinates [x y]T, which is given in (2.30). In section 2.3.2.3, this ignored relation is

used via a second LS to improve the estimate. To take into account the relation from

the beginning, it is proposed in [10] to impose the relation (2.30) on the minimization

problem via Lagrange multiplier technique:

Our problem is to minimize the cost function

(Aθ − b)T(Aθ − b) (2.87)

subject to the constraint

θTCθ = 0, (2.88)
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where C = diag(1, 1,−1). Therefore, corresponding Lagrange function becomes

L(θ, λ) = (Aθ − b)T(Aθ − b) + λθTCθ, (2.89)

where λ is the Lagrange multiplier. Expanding (2.89) results in

L(θ, λ) = (θTAT − bT)(Aθ − b) + λθTCθ

= θTATAθ − 2bTAθ + bTb+ λθTCθ

= θT(ATA+ λC)θ − 2bTAθ + bTb. (2.90)

In order to obtain the θ value minimizing (2.90), gradient of the Lagrange function is

taken with respect to θ and then the result is equated to zero:

∂L(θ, λ)

∂θ
= 2(ATA+ λC)θ − 2ATb = 0. (2.91)

If (2.91) is solved for θ, constrained least squares (CLS) estimate is obtained as

θ̂CLS
∆
= arg min

θ
{L(θ, λ)}

= (ATA+ λC)−1ATb. (2.92)

Once λ is obtained, CLS estimate of the source location could be obtained using

(2.92). To find λ, substituting (2.92) into (2.88) results in

bTA(ATA+ λC)−1C(ATA+ λC)−1ATb = 0. (2.93)

Note that C−1 = C, therefore

(ATA+ λC)−1 = C(ATAC + λCC)−1

= C(ATAC + λI)−1. (2.94)

Hence (2.93) could be rewritten as

bTAC(ATAC + λI)−1(ATAC + λI)−1ATb = 0. (2.95)

Let D represent a 3x3 diagonal matrix whose diagonal elements are the eigenvalues

of ATAC, i.e., D ∆
= diag(ζ1, ζ2, ζ3), where ζi, i = 1, 2, 3 is the ith eigenvalue of

ATAC (ordered decreasingly); and S represent a 3x3 matrix whose columns are the

corresponding eigenvectors of ATAC. Then, by using eigendecomposition, ATAC

could be diagonalized as

ATAC = SDS−1. (2.96)
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Inserting (2.96) into (2.95) results in

gT(D + λI)−2h = 0 (2.97)

where

g = STCATb = [α1 α2 α3]T

h = S−1ATb = [β1 β2 β3]T.

Rewriting (2.97) in terms of the elements of the vectors gives

3∑
i=1

αiβi
(λ+ ζi)2

= 0. (2.98)

Multiplying (2.98) with
∏3

i=1 (λ+ ζi)
2 gives a fourth degree polynomial of λ as be-

low:
3∑

i=1

αiβi

3∏
j=1,j 6=i

(λ+ ζj)
2 = 0. (2.99)

Since there are four roots of (2.99) corresponding to local extrema; a method to find

the λ value for global minimum, λGM, is needed. In [10], it has been proposed to

find the Lagrange multiplier using secant method around λ = 0 by claiming that the

polynomial is smooth near λ = 0 and λ is expected to be small. However, there is no

guarantee that the found root is λGM. It is even possible to end up with an estimate θ̂

having negative third element. In [34] and [35], choosing the root which makes the

cost function (2.87) minimum is proposed. However, finding all real roots of (2.99),

since the Lagrange multiplier of a real optimization problem is real [34]; obtaining

the source location estimates; and then calculating the cost functions for the estimates

satisfying the constraint θ̂3 ≥ 0 is a computationally expensive process. Moreover,

in a three dimensional space, (2.99) becomes a sixth degree polynomial of λ and

therefore iterative methods have to be used to find the roots [33], which makes the

process even more complicated.

In [11], it has been shown that λGMS, the Lagrange multiplier of the minimization

problem (2.87) with the single constraint (2.88), lies in a certain interval. Even though

the second constraint, θ3 ≥ 0, is not taken into account; the λ value lying in the de-

fined interval generally corresponds to the global minimum, i.e. λGMS = λGM, unless

the noise level is high [11]. Additionally, it has been proven in [36] that (2.99) is
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strictly decreasing in the defined interval, which makes it possible to find λGMS using

a simple bisection algorithm. λGMS finding approach proposed in [11] is explained in

detail as follows:

Recall our minimization problem:

min
θ
{‖Aθ − b‖2 : θTCθ = 0, θ3 ≥ 0}. (2.100)

Note that (2.100) is a non-convex quadratic function minimization problem with two

quadratic constraints (since a linear constraint is a member of general quadratic con-

straints). For such problems, there is no known way to obtain a general character-

ization of the global minimizer efficiently [11]. However, if the second constraint,

θ3 ≥ 0, is ignored; then the problem becomes the minimization of a quadratic func-

tion subject to a single quadratic constraint. Such problems are called as generalized

trust region subproblems (GTRS) [11]. GTRS problems have necessary and suffi-

cient optimality conditions, which make it possible to establish efficient closed form

solution techniques [11], [36].

Trust region methods are a class of iterative solution approaches used to solve the

unconstrained optimization problems. In such methods, a new trial step is obtained

by solving the following subproblem

min
x∈IRn
{mk(x)} (2.101a)

s.t. ‖Dx‖ ≤ ∆k, (2.101b)

wheremk(x) is a quadratic model function which is an approximation of the objective

function, and (2.101b) is the trust region in which the model function is valid [37].

The minimization problem (2.101) is called as trust region subproblem (TRS). In [36],

a generalized version of TRS (GTRS) is considered by extending (2.101) as

min
x∈IRn
{f(x)} (2.102a)

s.t. c(x) ≤ 0, (2.102b)

where both f(x) and c(x) are IRn → IR quadratic functions. In [36], global mini-

mizer of (2.102) is characterized by first considering the equality constraint

c(x) = 0. (2.103)
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Recall the TDOA based source localization problem:

min
θ
{(Aθ − b)T(Aθ − b)} (2.104a)

s.t. θTCθ = 0 and θ3 ≥ 0. (2.104b)

Ignoring the second constraint θ3 ≥ 0, (2.104) could be considered as a GTRS with

the equality constraint, where

f(θ) = (Aθ − b)T(Aθ − b), (2.105)

c(θ) = θTCθ. (2.106)

Therefore, in [11], the results of [36] related to GTRS has been taken as the base to

develop a closed form efficient solution algorithm. One of the most valuable theorems

given in [36] and its significance for our source localization problem are stated below:

Theorem 2. For a problem in the form of

min
x∈IRn
{f(x) : c(x) = 0}, (2.107)

where f(x) and c(x) are IRn → IR quadratic functions defined on IRn; assume that

min{c(x) : x ∈ IRn} < 0 < max{c(x) : x ∈ IRn} (2.108)

and the Hessian of c(x) satisfies

∇2
xxc(x) 6= 0. (2.109)

Then, a vector xGMS is a global minimizer of (2.107) if and only if the constraint is

satisfied, i.e.,

c(xGMS) = 0 (2.110)

and there exist a λGMS ∈ IR such that

∇xf(xGMS) + λGMS∇xc(xGMS) = 0 (2.111)

and

∇2
xxf(xGMS) + λGMS∇2

xxc(xGMS) ≥ 0. (2.112)

A detailed proof of Theorem 2 could be seen in [36]. To examine whether this theo-

rem is applicable to (2.104), taking the Hessian of (2.106) results in

∇2
θθc(θ) = ∇2

θθ(θ
TCθ) = C. (2.113)
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Moreover, since C = diag{1, 1,−1} is indefinite, both (2.108) and (2.109) are satis-

fied. Therefore, a vector θGMS is a global minimizer if and only if

c(θGMS) = θT
GMSCθGMS = 0 (2.114)

and there is a λGMS ∈ IR satisfying

∇θf(θGMS) +λGMS∇θc(θGMS) = 2(ATAθGMS−ATb+λGMSCθGMS) = 0 (2.115)

and

∇2
θθf(θGMS) + λGMS∇2

θθc(θGMS) = 2(ATA+ λGMSC) ≥ 0. (2.116)

From (2.115), θGMS could be obtained as

θGMS = (ATA+ λC)−1ATb. (2.117)

Note that the equations (2.114), (2.115) and (2.117) have been already obtained by

applying the Lagrange multiplier method and given as (2.91), (2.88) and (2.92), re-

spectively. Additionally, it has been derived using these equations a four degree poly-

nomial whose one of the roots gives λGMS. What the Theorem (2) gives us additional

about λGMS is thatATA+ λGMSC should be positive semidefinite.

Note that

ATA+ λC = (ATA)1/2(I + λ(ATA)−1/2C(ATA)−1/2)(ATA)1/2. (2.118)

So, the numbers of the eigenvalues with the same signs are equal forATA+ λC and

I + λ(ATA)−1/2C(ATA)−1/2.

If the generalized eigenvalues of the matrix pair (C,ATA) are defined as

λi(C,A
TA)

∆
= λi[(A

TA)−1/2C(ATA)], i = 0, 1, 2 (2.119)

with the order

λ0(C,ATA) ≤ λ1(C,ATA) ≤ λ2(C,ATA), (2.120)

and

γi
∆
= −1/λi(C,A

TA), i = 0, 1, 2, (2.121)

then the eigenvalues of I + λ(ATA)−1/2C(ATA)−1/2 could be written as

λi(I + λ(ATA)−1/2C(ATA)−1/2) = 1− λ/γi, i = 0, 1, 2. (2.122)
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Note thatATA is positive definite and C has two positive eigenvalues and one nega-

tive eigenvalue,therefore

γ2 ≤ γ1 < 0 < γ0. (2.123)

Let define four interval as

Ia = (γ0,∞), Ib = (γ1, γ0), Ic = (γ2, γ1), Id = (−∞, γ2). (2.124)

• If λ ∈ Ia, then 1− λ/γi > 0 for i = 1, 2 and 1− λ/γ0 < 0. HenceATA+ λC

has two positive eigenvalues and one negative eigenvalue.

• If λ ∈ Ib, then 1 − λ/γi > 0 for i = 0, 1, 2. Therefore ATA + λC is positive

definite.

• If λ ∈ Ic, then 1− λ/γi > 0 for i = 0, 2 and 1− λ/γ1 < 0. HenceATA+ λC

has two positive eigenvalues and one negative eigenvalue.

• If λ ∈ Id, then 1− λ/γ0 > 0 and 1− λ/γi < 0 for i = 1, 2. HenceATA+ λC

has one positive eigenvalue and two negative eigenvalues.

From Theorem 2, Lagrange multiplier corresponding the the global minimizer, i.e.

λGMS, should satisfy (2.116), which is equivalent to the equation set

1− λGMS/γi > 0, i = 0, 1, 2. (2.125)

For (2.125) to hold true, λGMS should lie in Ib = IGMS [11].

Note that the inequalities in (2.125) are strict. This removes the case in whichATA+

λGMSC = 0. Since the equality case is considered as the "hard-case" in GTRS, and to

face such a case in TDOA based source localization problems is extremely unlikely

[11]; it is assumed thatATA+ λGMSC is positive definite for simplicity.

Using Theorem 2, the interval in which λGMS lies is obtained. The following theorem

given in [36] will make it easer to obtain λGMS in this interval:

Theorem 3. Let f(x) and c(x) are IRn → IR quadratic functions defined on IRn, and

assume IGMS
∆
= {λ : ATA+ λC positive definite} 6= ∅. If the solution of

∇xf [(x(λ)] + λ∇xc[x(λ)] = 0
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is denoted by x(λ) ∈ IRn, then c[x(λ)] is a strictly decreasing function on IGMS unless

x(λ) is constant on the same interval with

∇xf [(x(λ)] = 0, ∇xc[x(λ)] = 0, λ ∈ IGMS.

A complete proof of Theorem 3 is available in [36]. For the TDOA based source

localization problem, this theorem could be proven as follows:

From (2.92) and (2.106)

d

dλ
θ(λ) =

d

dλ
[(ATA+ λC)−1ATb]

= −(ATA+ λC)−1Cθ(λ)

= −1

2
(ATA+ λC)−1∇θc[θ(λ)]. (2.126)

is obtained. Putting (2.126) into the following equation

d

dλ
c[θ(λ)] = ∇θc[θ(λ)]T

d

dλ
θ(λ), (2.127)

it is obtained that

d

dλ
c[θ(λ)] = − d

dλ
θ(λ)T(ATA+ λC)

d

dλ
θ(λ). (2.128)

Since ATA + λC is positive definite in IGMS = (γ1, γ0), (2.128) is negative in the

same interval. This shows that c[θ(λ)] is a strictly decreasing function in IGMS. Hence,

λGMS could be easily found by applying a bisection algorithm to (2.98) in the interval

IGMS.

To show that λGMS is close to zero in high SNR, (2.117) could be written as [35]

[(A0 +∆A)T(A0 +∆A) + λC](θ0 +∆θ) = (A0 +∆A)T(b0 +∆b), (2.129)

where A = A0 + ∆A, θ = θ0 + ∆θ, b = b0 + ∆b, {∗}0 is the noise-free term and

∆{∗} is the noise. Assuming sufficiently low noise conditions, the error terms other

than the first-order ones could be ignored. Then (2.129) becomes

λC(θ0 +∆θ)

≈ A0T
∆b+∆ATb0 −A0T

∆Aθ0 −∆ATA0θ0 −A0T
A0∆θ. (2.130)
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Since E[A] = A0, E[b] ≈ b0 and E[θ] = θ0 [34], taking the expectation of (2.130)

results in

E[λ] = 0. (2.131)

Therefore, under low noise conditions, it could be expected that the Lagrange multi-

plier is close to zero.

Note that λGMS is the Lagrange multiplier corresponding to the global minimizer of

the problem (2.100) as long as the second constraint, θ3 ≥ 0, is ignored. Therefore, it

is possible to end up with a negative θ3(λGMS), especially under low SNR [11].

The minimization problem given in (2.100) has also been considered by taking into

account all constraints in [11], with the help of the following proposition [38]:

Proposition 1 (Karush-Kuhn-Tucker Necessary Conditions). Let xLM is a local min-

imum of

min
x∈IRn
{f(x) : ci(x) = 0, dj(x) ≤ 0, i = 1, 2, ..., k, j = 1, 2, ..., l} (2.132)

where f(x), ci(x) and dj(x) are IRn → IR continuously differentiable functions,

and assume that the gradients of the active constraints among ci(x) and dj(x) are

independent at x = xLM . Then, there are unique Lagrange multipliers vectorized as

λLM = [λLM−1, λLM−2, ..., λLM−k]T,

µLM = [µLM−1, λLM−2, ..., µLM−l]
T,

which satisfy

∇xL(xLM ,λLM ,µLM) = 0, (2.133)

µLM−j ≥ 0, j = 1, 2, ..., l, (2.134)

µLM−j = 0, ∀j /∈ P (xLM), (2.135)

where P (xLM) is the set of active constraints among dj(x) j = 1, 2, ..., l, i.e. the

ones which satisfy dj(xLM) = 0. Moreover, if f(x), ci(x) and dj(x) are twice

continuously differentiable, then

wT∇2
xxL(xLM ,λLM ,µLM)w ≥ 0, (2.136)
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for any w ∈ IRn satisfying

∇ci(xLM)Tw = 0, i = 1, 2, ..., k, (2.137)

∇di(xLM)Tw = 0, ∀j ∈ P (xLM). (2.138)

For TDOA based source localization problem:

f(θ) = (Aθ − b)T(Aθ − b), (2.139)

c1(θ) = c(θ) = θTCθ, k = 1, (2.140)

d1(θ) = d(θ) = −θ3, l = 1. (2.141)

For the nonzero solution, i.e. θGM 6= 0, d(θGM) is not active. Additionally, both

constraints are twice continuously differentiable. Therefore

∇f(θGM) + λGM∇c(θGM) + µGM∇d(θGM) = 0, (2.142)

c(θGM) = 0, d(θGM) < 0, (2.143)

µGM = 0. (2.144)

From (2.142) and (2.144), θGM is obtained as

θGM = (ATA+ λGMC)−1ATb. (2.145)

Furthermore,

wT∇2
θθL(θGM ,λGM ,µGM)w = wT(ATA+ λGMC)w ≥ 0, (2.146)

for all w ∈ IR3 such that

∇c(θGM)Tw = 2θT
GMCw = 0. (2.147)

In addition, using Courant-Fischer-Weyl min-max theorem, the second smallest eigen-

value ofATA+ λC could be obtained as

λSS(ATA+ λGMC) = max
v 6=0

min
wTv=0

wT(ATA+ λGMC)w

wTw
, (2.148)

where v ∈ IR3. Using (2.146) and (2.147), the following inequality could be written:

λSS(ATA+ λGMC) = max
v 6=0

min
wTv=0

wT(ATA+ λGMC)w

wTw
,

≥ min
θT
GMCw=0

wT(ATA+ λGMC)w

wTw
≥ 0, (2.149)
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which implies that at most one of the eigenvalues ofATA+ λGMC is negative.

Recall that IR space was divided into four interval in (2.124) and then signs of the

eigenvalues of ATA + λC were examined in these intervals. It was stated that the

matrix is positive definite in the interval Ib and it has one negative eigenvalue in

(Ia ∪ Ic). As a result, it could be said that λGM ∈ (Ia ∪ Ib ∪ Ic). Additionally, since

Ib = IGMS, if λGM ∈ Ib then λGM = λGMS.

Using the obtained results, an algorithm to find the global optimal solution of the

problem stated in (2.104) could defined as follows [11]:

1. Using the TDOA values and the sensor positions, obtain A and b given in

(2.28).

2. In the polynomial given in (2.99), calculate unknowns except λ. Then find λGMS

in the interval Ib. Since the polynomial is strictly decreasing in this interval, a

simple bisection method could be utilized.

3. Calculate θGMS using (2.117) and λGMS. If θGMS-3 is not negative, then θGM =

θGMS and the first two elements of θGM, i.e. [θGM-1 θGM-2]
T, is the source coor-

dinate estimate. There is no need to continue with the following steps.

4. If θGMS-3 is negative, find all real roots λLM-1, λLM-2, ..., λLM−t, t ≤ 3 of (2.99)

in the interval (Ia∪Ic), and then calculate the corresponding θ estimates, which

could be represented as θ(λLM−i), i = 1, 2, ..., t.

5. Calculate the objective function (2.87) for θ(λLM−i) values satisfying

[0 0 1] θ̂(λLM−i) ≥ 0 and for θ0 = [0 0 0]T. The one with the smallest objective

function is θGM.

6. Source location estimate ŝCLS is the first two elements of θGM.

Comments

CLS is a ULS based source localization method with a significant improvement. In

this method, constraints (2.104b) ignored in ULS are taken into account, while solv-

ing the minimization problem (2.104a). The equality constraint is added to the min-
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imization problem via Lagrange multiplier method, and the inequality constraint is

taken into consideration while choosing the global solution among the candidates.

Finding the Lagrange multiplier corresponding to the global minimizer is a computa-

tionally cumbersome process. However; Bech, Stoica and Li made a valuable analysis

in [11] about the interval in which the Lagrange multiplier lies. Their results reduce

the computational cost significantly, especially when the noise level is low. More-

over, by taking into account the all zero solution, they have proposed a procedure

which guarantees to obtain the global minimum of the unweighted cost function with

both constraints. We will call the CLS method using the Lagrange multiplier finding

approach given in [11] as efficient CLS (ECLS).

Unlike the TSWLS method, CLS considers the constraints from the beginning of the

minimization process, therefore it could be considered as a better approach. However,

it should be noted that the correlation among the TDOA values is not taken into

consideration in CLS, while it is utilized in TSWLS.

Note that the only difference between the ULS estimate (2.32) and the CLS estimate

(2.92) is the term λC. Since it has shown in (2.131) that the expected value of λ is zero

when the noise level is small, it could be said that the ULS method approximates the

global minimum of the TDOA based source localization problem under high SNR.

2.3.2.5 Constrained Weighted Least Squares

In order to increase the estimation performance of the CLS method, correlation among

the TDOA estimates could be exploited via a weighting matrix, which is the same ap-

proach used in the TSWLS method. Such a method has been proposed in [39] as

a combination of CLS [10] and TSWLS [9]. Throughout the remaining parts, the

proposed method will be called as CWLS (constrained weighted least squares).

As in the case of the TSWLS method, the weighting matrix includes unknown range

vector, which requires the estimation procedure to be repeated once more. However,

unlike TSWLS, CWLS needs significant computational cost, since it requires to find

the Lagrange multiplier for the global minimum. Doubling such computations are not

desirable for the real-time systems with limited resources.
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In this section, we will explain in detail the CWLS method which was firstly proposed

in [39] and then a slightly changed version of which was restated in [34]. Moreover,

we will show that it is possible to apply the Lagrange multiplier finding approach

proposed in [11] for CLS to the CWLS method. Then, using this approach, we will

propose a modified version of the algorithm given in [34], namely efficient CWLS

(ECWLS), which has significantly lower computational cost.

Recall that in Section 2.3.2.3, it has been shown that for the error defined as

e
∆
= b−Aθ, (2.150)

covariance matrix of the error vector is approximately

Ψ
∆
= cov(e) ≈ cov(cRn) = c2RQR, (2.151)

where n = [n2,1, n3,1, ..., nN,1]T, R ∆
= diag{r2, r3, ..., rN} and Q is the covariance

matrix of n, or equivalently the TDOA vector.

Inserting Ψ into the LS-SC cost function (2.29) as a weighting matrix results in

CWLS = (b−Aθ)TΨ−1(b−Aθ), (2.152)

and the minimization problem could be defined as

min
θ
{(b−Aθ)TΨ−1(b−Aθ) : θTCθ = 0, θ3 ≥ 0}. (2.153)

Ignoring the inequality constraint, corresponding Lagrange function becomes

LW(θ, λW) = (Aθ − b)TΨ−1(Aθ − b) + λWθ
TCθ. (2.154)

Recall that in (2.66), we have shown that (2.152) is approximately the same cost

function obtained for the MLE in (2.12).

Equation (2.154) could be expanded as

LW(θ, λW) = (θTAT − bT)Ψ−1(Aθ − b) + λWθ
TCθ

= θTATΨ−1Aθ − 2bTΨ−1Aθ + bTΨ−1b+ λWθ
TCθ

= θT(ATΨ−1A+ λWC)θ − 2bTΨ−1Aθ + bTΨ−1b. (2.155)

To find the θ value minimizing (2.155), gradient of the Lagrange function is taken

with respect to θ and then the result is equated to zero:

∂LW(θ, λW)

∂θ
= 2(ATΨ−1A+ λWC)θ − 2ATΨ−1b = 0. (2.156)
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Solving (2.156) for θ gives [39]

θ̂CWLS
∆
= arg min

θ
{LW(θ, λW)}

= (ATΨ−1A+ λWC)−1ATΨ−1b. (2.157)

After obtaining λW, CWLS estimate of the source location could be obtained via

(2.157). To find λW, substituting (2.157) into the quadratic equality constraint (2.88)

results in

bTΨ−1A(ATΨ−1A+ λWC)−1C(ATΨ−1A+ λWC)−1ATΨ−1b = 0. (2.158)

Since C−1 = C

(ATΨ−1A+ λWC)−1 = C(ATΨ−1AC + λWCC)−1

= C(ATΨ−1AC + λWI)−1. (2.159)

Hence (2.158) could be rewritten as

bTΨ−1AC(ATΨ−1AC + λWI)−1(ATΨ−1AC + λWI)−1ATΨ−1b = 0. (2.160)

LetDW represent a 3x3 diagonal matrix whose diagonal elements are the eigenvalues

of ATΨ−1AC, i.e., DW
∆
= diag(ζ

′
1, ζ

′
2, ζ

′
3), where ζ ′i , i = 1, 2, 3 is the ith eigenvalue

ofATΨ−1AC (ordered decreasingly); andSW represent a 3x3 matrix whose columns

are the corresponding eigenvectors of ATΨ−1AC. Then, by using eigendecomposi-

tion,ATΨ−1AC could be diagonalized as

ATΨ−1AC = SWDWS
−1
W . (2.161)

Inserting (2.161) into (2.160) gives

gT
W(DW + λWI)−2hW = 0 (2.162)

where

gW = ST
WCATΨ−1b = [α

′

1 α
′

2 α
′

3]T

hW = S−1
W ATΨ−1b = [β

′

1 β
′

2 β
′

3]T.

Rewriting (2.162) in terms of the elements of the vectors gives

3∑
i=1

α
′
iβ
′
i

(λW + ζ
′
i)

2
= 0. (2.163)
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Multiplying (2.163) with
∏3

i=1 (λW + ζ
′
i)

2 results in a fourth degree polynomial of

λW as below:
3∑

i=1

α
′

iβ
′

i

3∏
j=1,j 6=i

(λW + ζ
′

j)
2 = 0. (2.164)

H. C. So and S. P. Hui has proposed in [39] the following steps to find the CWLS

estimate:

1. Set Ψ = I .

2. Using Newton–Raphson method with the initial guess λ0 = 0, find the root of

(2.164) closest to zero. Then use (2.157) to obtain the corresponding θ̂.

3. Calculate R̂ using the obtained θ̂. Then update Ψ using (2.151).

4. Repeat Step 2 to obtain the final CWLS estimate.

It could be expected that the λW value corresponding to the global minimum, λW-GM,

is close to zero, particularly when the noise level is low. However, it has not been

guaranteed. It is possible to end up with a local extremum, even the one having a

negative third element. Therefore, the proposed algorithm in [39] does not guarantee

to find the global minimizer of the cost function (2.152) with the constraints (2.104b).

In [34], a slightly changed version of the CWLS algorithm in [39] has been restated

as below:

1. Set Ψ = I .

2. Find the all roots of (2.164).

3. Using the real valued roots of (2.164) and the equation (2.157), find the corre-

sponding θ̂ candidates. Then choose the one making the cost function (2.152)

minimum.

4. Calculate R̂ using the chosen θ̂. Then update Ψ using (2.151).

5. Repeat steps (2), (3) and (4) until θ̂ converges.
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Inequality constraint, i.e. θ3 ≥ 0, has been ignored in the proposed algorithm; how-

ever, it could be easily taken into account in the step 3. Then, since the CWLS

algorithm given in [34] examines all real roots of (2.164), it could be said that the

proposed algorithm finds the global minimizer of the cost function (2.152) with the

constraints (2.104b), assuming the weighting matrix Ψ is constant. Moreover, by

iterating the procedure, we can increase the accuracy of the weighting matrix and

hence the estimate. However, finding all roots of (2.164), obtaining the source loca-

tion estimates, and then calculating the cost functions for the estimates satisfying the

constraint θ̂3 ≥ 0 for each iteration increase computational cost significantly.

To decrease the computational complexity, we propose to apply the Lagrange multi-

plier finding approach proposed in [11] for CLS to the CWLS method. Firstly, we

will show that it is applicable to the CWLS. Then, using this approach, we will pro-

pose a computationally more efficient version of the algorithm given in [34], namely

ECWLS.

Recall Theorem 2, which has been used in [11] to obtain an efficient CLS algorithm.

Since the constraint function c(θ) = θTCθ remains the same for the CWLS mini-

mization problem, this theorem is still applicable. Therefore, it follows from Theo-

rem 2 that a vector θW-GMS is a global minimizer of the minimization problem whose

objective function is (2.152) and single constraint is (2.88), if and only if

c(θW-GMS) = θT
W-GMSCθW-GMS = 0 (2.165)

and there is a λW-GMS ∈ IR satisfying

∇θfW(θW-GMS) + λW-GMS∇θc(θW-GMS)

= 2(ATΨ−1AθW-GMS −ATΨ−1b+ λW-GMSCθW-GMS) = 0 (2.166)

and

∇2
θθfW(θW-GMS) + λW-GMS∇2

θθc(θW-GMS)

= 2(ATΨ−1A+ λW-GMSC) ≥ 0. (2.167)

Equation (2.166) gives (2.157), and the inequality (2.167) gives the requirement of

positive semidefiniteness ofATΨ−1A+ λW-GMSC, which will be exploited to obtain

an interval in which λW-GMS lies.
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Note that

ATΨ−1A+ λWC

= (ATΨ−1A)1/2(I + λW(ATΨ−1A)−1/2C(ATΨ−1A)−1/2)(ATΨ−1A)1/2.

(2.168)

Therefore, the numbers of zero, positive and negative eigenvalues ofATΨ−1A+λWC

are same as the ones of I + λW(ATΨ−1A)−1/2C(ATΨ−1A)−1/2.

Let define the generalized eigenvalues of the matrix pair (C,ATΨ−1A) as

λi(C,A
TΨ−1A)

∆
= λi[(A

TΨ−1A)−1/2C(ATΨ−1A)], i = 0, 1, 2 (2.169)

with the following order

λ0(C,ATΨ−1A) ≤ λ1(C,ATΨ−1A) ≤ λ2(C,ATΨ−1A). (2.170)

If

γ′i
∆
= −1/λi(C,A

TΨ−1A), i = 0, 1, 2, (2.171)

then the eigenvalues of I + λW(ATΨ−1A)−1/2C(ATΨ−1A)−1/2 could be written as

λi(I + λW(ATΨ−1A)−1/2C(ATΨ−1A)−1/2) = 1− λW/γ
′
i, i = 0, 1, 2. (2.172)

Note that Ψ is a covariance matrix and therefore it is positive semidefinite. If the

approximation given in (2.151) is used to obtain an approximate Ψ, the obtained

matrix is still positive semidefinite sinceQ is a covariance matrix andR is a diagonal

matrix. Hence ATΨ−1A is positive semidefinite. Additionally, C has two positive

eigenvalues and one negative eigenvalue,therefore

γ′2 ≤ γ′1 < 0 < γ′0. (2.173)

Let define four interval as

I ′a = (γ′0,∞), I ′b = (γ′1, γ
′
0), I ′c = (γ′2, γ

′
1), I ′d = (−∞, γ′2). (2.174)

• If λ ∈ I ′a, then 1 − λ/γ′i > 0 for i = 1, 2 and 1 − λ/γ′0 < 0. Therefore

ATΨ−1A+ λWC has two positive eigenvalues and one negative eigenvalue.

• If λ ∈ I ′b, then 1 − λ/γ′i > 0 for i = 0, 1, 2. Therefore ATΨ−1A + λWC is

positive definite.
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• If λ ∈ I ′c, then 1 − λ/γ′i > 0 for i = 0, 2 and 1 − λ/γ′1 < 0. Therefore

ATΨ−1A+ λWC has two positive eigenvalues and one negative eigenvalue.

• If λW ∈ I ′d, then 1 − λ/γ′0 > 0 and 1 − λ/γ′i < 0 for i = 1, 2. Therefore

ATΨ−1A+ λWC has one positive eigenvalue and two negative eigenvalues.

From Theorem 2, Lagrange multiplier corresponding the global minimizer, i.e. λW-GMS,

should satisfy (2.167), which is equivalent to the equation set

1− λW-GMS/γ
′
i > 0, i = 0, 1, 2. (2.175)

ForATΨ−1A to be positive definite, λW-GMS should lie in I ′b = IW-GMS.

Moreover, from (2.157) and (2.106)

d

dλW
θ(λW) =

d

dλW
[(ATΨ−1A+ λWC)−1ATΨ−1b]

= −(ATΨ−1A+ λWC)−1Cθ(λW)

= −1

2
(ATΨ−1A+ λWC)−1∇θc[θ(λW)]. (2.176)

is obtained. Inserting (2.176) into the following equation

d

dλW
c[θ(λW)] = ∇θc[θ(λW)]T

d

dλW
θ(λW), (2.177)

results in

d

dλW
c[θ(λW)] = − d

dλW
θ(λW)T(ATΨ−1A+ λWC)

d

dλW
θ(λW). (2.178)

Since ATΨ−1A + λWC is positive definite in IW-GMS = (γ′1, γ
′
0), (2.178) is negative

in the same interval. This implies that c[θ(λW)] is a strictly decreasing function in

IW-GMS. Therefore, λW-GMS could be easily found by applying a bisection algorithm to

(2.164) in the interval IW-GMS.

Note that λW-GMS is the Lagrange multiplier corresponding to the global minimizer of

the problem (2.153) as long as the second constraint, θ3 ≥ 0, is ignored. Therefore, it

is possible to end up with a negative θ3(λW-GMS).

Similar to the CLS minimization problem, (2.153) could also been considered by

taking into account all constraints, with the help of Proposition 1, since the weighted
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cost function (2.152) is twice continuously differentiable. the Proposition 1 gives that

if θW-GM is the global minimizer of (2.153), then

∇fW(θW-GM) + λW-GM∇c(θW-GM) + µW-GM∇d(θW-GM) = 0, (2.179)

c(θW-GM) = 0, d(θW-GM) < 0, (2.180)

µW-GM = 0, (2.181)

for the nonzero solution, i.e. θW-GM 6= 0. fW(θ) represents the cost function (2.152).

Constraint functions c(θ) and d(θ) have been defined in (2.140) and (2.141), respec-

tively.

From (2.179) and (2.181), θW-GM is obtained as

θW-GM = (ATΨ−1A+ λW-GMC)−1ATΨ−1b. (2.182)

Furthermore,

wT∇2
θθL(θW-GM,λW-GM,µW-GM)w = wT(ATA+ λW-GMC)w ≥ 0, (2.183)

for all w ∈ IR3 such that

∇c(θW-GM)Tw = 2θT
W-GMCw = 0. (2.184)

In addition, using Courant-Fischer-Weyl min-max theorem, the second smallest eigen-

value ofATΨ−1A+ λC could be obtained as

λSS(ATΨ−1A+ λW-GMC) = max
v 6=0

min
wTv=0

wT(ATΨ−1A+ λW-GMC)w

wTw
, (2.185)

where v ∈ IR3. Using (2.183) and (2.184), the following inequality could be written:

λSS(ATΨ−1A+ λW-GMC) = max
v 6=0

min
wTv=0

wT(ATΨ−1A+ λW-GMC)w

wTw
,

≥ min
θT

W-GMCw=0

wT(ATΨ−1A+ λW-GMC)w

wTw
≥ 0, (2.186)

which implies that at most one of the eigenvalues ofATΨ−1A+λW-GMC is negative.

Recall that IR space was divided into four interval in (2.174) and then signs of the

eigenvalues of ATΨ−1A+ λWC were examined in these intervals. It was stated that

the matrix is positive definite in the interval I ′b and it has one negative eigenvalue in

(I ′a ∪ I ′c). As a result, it could be said that λW-GM ∈ (I ′a ∪ I ′b ∪ I ′c). Additionally, since

I ′b = IW-GMS, if λW-GM ∈ I ′b then λW-GM = λW-GMS.
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Using the obtained results, we propose an algorithm, namely ECWLS, for the prob-

lem stated in (2.153) as follows:

1. Using the TDOA values and the sensor positions, obtain A and b given in

(2.28).

2. SetR = I , i.e. Ψ = Q.

3. In the polynomial given in (2.164), calculate unknowns except λW. Then find

λW-GMS in the interval I ′b. Since the polynomial is strictly decreasing in this

interval, a simple bisection method could be utilized.

4. Calculate θW-GMS using (2.157) and λW-GMS. If θW-GMS-3 is not negative, then

θW-GM = θW-GMS and the first two elements of θW-GM, i.e. sW-GM = [θW-GM-1

θW-GM-2]
T, is the current source coordinate estimate. Jump to step 7. Otherwise,

continue with the following step.

5. If θW-GMS-3 is negative, find all real roots λW-LM-1, λW-LM-2, ..., λW-LM-t, t ≤ 3 of

(2.164) in the interval (I ′a ∪ I ′c), and then calculate the corresponding θ esti-

mates, which could be represented as θ(λW-LM-i), i = 1, 2, ..., t.

6. Calculate the objective function (2.152) for θ(λW-LM-i) values satisfying

[0 0 1] θ̂(λW-LM-i) ≥ 0 and for θ0 = [0 0 0]T. The one with the smallest

objective function is θW-GM, and the first two elements of θW-GM, i.e. sW-GM =

[θW-GM-1 θW-GM-2]
T, is the current source coordinate estimate..

7. Using sW-GM, update R and hence Ψ. Repeat steps 3, 4, 5 and 6 until sW-GM

converges. The resultant estimate is ŝECWLS.

Simulation results suggest that single iteration is generally enough unless the sensor

geometry is poor. However, even in such cases, it is seen that the estimate converges

in three iterations. Therefore, for a given sensor distribution scenario, a constant

number of iteration steps could be safely defined.
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Comments

Recall that in Section 2.3.2.4, we explained that the CLS method proposed in [11]

is an exact solution which obtains the global optimum of the problem (2.104). In

the CWLS method; the weighting matrix Ψ is imposed to the cost function of the

problem to approximate the ML estimator. Ψ includes the unknown range matrixR;

therefore, an estimated R matrix is used in the algorithm. Because of this, CWLS

method is not an exact but an approximate solution of (2.153). For this reason, it is

expected that the performance of CWLS degrades faster than that of the CLS as the

noise level increases.
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CHAPTER 3

TDOA BASED SOURCE LOCALIZATION IN ILL-CONDITIONED CASES

In certain source and sensor placement scenarios, least squares based methods stated

in Section 2.3.2 suffer from the rank deficient or ill-conditioned matrix problem;

which cause that the estimate could not be obtained, or obtained with an increased

MSE, respectively. In this chapter, such scenarios and the methods resistant to them

will be investigated.

Recall the estimators given in Section 2.3.2:

θ̂ULS = (ATA)−1ATb,

θ̂UWLS = (ATΨ−1A)−1ATΨ−1b,

θ̂CLS = (ATA+ λC)−1ATb,

θ̂CWLS = (ATΨ−1A+ λWC)−1ATΨ−1b.

When the matrix A is rank deficient; estimators named as ULS and TSWLS, whose

first step estimator is UWLS, could not be calculated. When it is ill-conditioned;

rounding errors due to finite precision arithmetic become significant in the calcula-

tions of ULS and TSWLS. In addition, if the noise level of the TDOA measurements

are low, expected values of the Lagrange multipliers λ and λW become zero, as given

in (2.131). Then CLS and CWLS methods also suffer from the same problem.

As defined in (2.28b),A is composed of the sensor positions and TDOA values. Three

different sensor and source distribution scenarios causeA to become ill-conditioned;

namely circular, hyperbolic and linear distributions.

Firstly; we will explain a robust method proposed in [35], namely CWLS with range

difference separation (CWLS-RDS). This method is suitable for circular sensor dis-

tributions with the source located near the center. Then, we will reduce the computa-
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tional cost of this method by using the approach we have used for CWLS method.

Secondly; another distribution scenario, hyperbolic sensor distribution with the source

near one of the foci, is investigated. After showing that such distributions cause ill-

conditioned problem, we will propose a modified version of the CWLS-RDS method

to overcome the problem.

Lastly; yet another scenario, linear sensor distribution, will be studied. Close-to-

linear distributions cause the first two columns of A to become almost linearly de-

pendent, resulting an ill-conditioned matrix problem. We will propose a new method

to circumvent this issue. The proposed method is also applicable for the exact lin-

ear sensor distributions, where none of the methods given in Section 2.3.2 could be

applied.

3.1 Constrained Weighted Least Squares with Range Difference Separation

When the sensor array is circular and the source is located near the array center,

TDOA values become close to zero. Additionally, if the noise level of the TDOA

values are low, then the matrix inverted to obtain the CWLS estimate becomes ill-

conditioned. To overcome this problem; a new CWLS method, which we will call as

CWLS with range difference separation (CWLS-RDS), is proposed in [35]. In this

section, CWLS-RDS method will be explained in detail. Then, a computationally

more efficient version of this method, namely efficient CWLS-RDS (ECWLS-RDS),

will be presented by using the approach which has been used for CWLS method. At

the end, some comments will be presented.

The main strategy of CWLS-RDS method is to separate A into a matrix containing

the sensor positions and a vector composed of the TDOA values. In this way, the

matrix to be inverted does not contain TDOA values. It should be noted that this is

the same approach used in spherical interpolation method stated in Section 2.3.2.1.
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To show explicitly, recall (2.34):

A(N-1)x3 θ3x1 = b(N-1)x1

[S(N-1)x2 cd(N-1)x1] [sT
2x1 r1]T = b(N-1)x1

S(N-1)x2 s2x1 + r1cd(N-1)x1 = b(N-1)x1, (3.1)

where

A =


x2 y2 cd2,1

x3 y3 cd3,1

...
...

...

xN yN cdN,1

 ,

S is the matrix composed of the first two columns of A, and cd is the third column

ofA. Then the cost function of CWLS (2.152) could be rewritten as

CCWLS-RDS(s, r1) = (b− Ss− r1cd)TΨ−1(b− Ss− r1cd), (3.2)

and the CWLS minimization problem (2.153) is equivalent to

min
s
{(b− Ss− r1cd)TΨ−1(b− Ss− r1cd) : sTs = r2

1, r1 ≥ 0}. (3.3)

Ignoring the inequality constraint, corresponding Lagrange function becomes

LW-RDS(s, r1, λW-RDS) = (b−Ss−r1cd)TΨ−1(b−Ss−r1cd) + λW-RDS(sTs−r2
1).

(3.4)

Differentiating (3.4) with respect to s and then equating the result to zero gives

∂LW-RDS(s, r1, λW-RDS)

∂s
= 2STΨ−1(Ss+ r1cd− b) + 2λW-RDSs = 0. (3.5)

If (3.5) is solved for s, CWLS-RDS estimate is obtained as

ŝCWLS-RDS
∆
= arg min

s
{LW-RDS(s, r1, λW-RDS)}

= (STΨ−1S + λW-RDSI)−1(STΨ−1b− STΨ−1dcr1). (3.6)

To obtain ŝCWLS-RDS, λW-RDS and r1 are required.

Moreover, differentiating (3.4) with respect to r1 and then equating the result to zero

gives

r1 = (λW-RDS − c2dTΨ−1d)−1(cdTΨ−1Ss− cdTΨ−1b). (3.7)
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Substituting (3.6) into the constraint sTs = r2
1 gives

ar2
1 + br1 + c = 0, (3.8)

where

a = c2(STΨ−1d)T(STΨ−1S + λW-RDSI)−2STΨ−1d− 1,

b = −2c(STΨ−1b)T(STΨ−1S + λW-RDSI)−2SΨ−1d,

c = (STΨ−1b)T(STΨ−1S + λW-RDSI)−2SΨ−1b.

Once λW-RDS is obtained, r1 could be found using (3.8), and then ŝCWLS-RDS is obtained

from (3.6). One way to obtain λW-RDS is to express r1 in terms of λW-RDS using (3.6)

and (3.7), then substituting the resultant equation in (3.8), which is a computationally

complex process. However, if the minimization problems (3.3) and (2.153) are com-

pared, it is seen that the objective functions and the constraints are the same, therefore

they are equivalent [35]. Hence, λW-RDS is equal to λW and it could be obtained using

(2.164).

After obtaining λW-RDS values from (2.164), corresponding r1 values should be found

using (3.8). Since (3.8) is a second degree equation, a root selection procedure is

needed. Such a procedure is stated in [35] as follows:

a. If the roots of (3.8) are real, then

i if one of them is nonnegative and the other one is negative, choose the non-

negative one.

ii if both of the roots are negative, set r1 = 0.

iii if both of the roots are positive, calculate the cost function using (3.6) and

(3.2), respectively for both roots. Choose the one making the cost function

minimum.

b. If the roots of (3.8) are complex, then

i. if real part of the roots is positive, then assign this value to r1.

ii. if real part of the roots is negative, then r1 = 0.

In [35], it has been stated that the cases apart from (a) are abnormal which occur

under very high noise levels.
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Note that the root selection procedure given in [35] takes into account the inequality

constraint, r1 ≥ 0, while choosing the r1 value corresponding to a λW-RDS-GMS candi-

date. However, this constraint was ignored while the Lagrange multiplier method was

being applied. Therefore, it is possible to have a negative r1 value for a λW-RDS-GMS

candidate. In such cases, if one of the roots of (3.8) is positive and the other one is neg-

ative, then it does not cause an error to pair the aforementioned λW-RDS-GMS candidate

with the positive root, since the resulting estimate satisfies the equality constraint. In

this case, the obtained pair is not an extremum. On the other hand; if both of the roots

are negative, then the proposed root selection procedure sets r1 = 0. This results in

an estimate candidate which most probably does not satisfy the equality constraint. If

the obtained estimate candidate makes the cost function smaller than the global min-

imizer of the problem with both of the constraints, i.e. (3.3), the proposed algorithm

chooses the wrong candidate as the estimate. To overcome this problem, we propose

the following updated root selection procedure:

a. If the roots of (3.8) are real, then

i. if the magnitudes of the roots are equal, choose the positive one.

ii. if the magnitudes of the roots are not equal, obtain the corresponding source

position estimates using (3.6). Then calculate the resulting r1 values from

(3.7). The right r1 root should match the resulting one obtained from (3.7);

therefore, choose the matching one. Note that (3.7) has been ignored in the

root selection procedure given in [35].

b. If the roots of (3.8) are complex, then assign the real part to r1.

In [35], to find λW-RDS-GM, it has been proposed to consider all real roots of (2.164).

However, as mentioned in Section 2.3.2.5; finding all real roots of (2.164), obtaining

the source location estimates, and then calculating the cost functions for the estimates

satisfying the constraint r̂1 ≥ 0 is a computationally expensive process. Moreover,

since the weighting matrix Ψ includes the range vector which is constructed from ŝ;

an iterative procedure is required to update Ψ, which necessitates the repetition of this

process. Additionally, in a three dimensional space, (2.164) becomes a sixth degree

polynomial of λ and therefore iterative methods have to be used to find the roots [33],
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which makes the process even more complicated. To reduce the computational bur-

den, the Lagrange multiplier founding approach we have proposed in Section 2.3.2.5

could be also used in here, since λW-RDS-GMS = λW-GMS and λW-RDS-GM = λW-GM.

If the global minimizer of (3.3), sW-RDS-GMS, is [0 0]T; it could not be found by the

CWLS-RDS algorithm unless θ = [0 0 0]T is an extremum of (3.3) with the inequality

constraint is ignored, since [0 0 0]T is the boundary point in which the inequality

constraint is active. Therefore, all zero solution should also be taken into account.

By imposing the Lagrange multiplier founding approach we have proposed in Section

2.3.2.5, changing the root selection procedure with the updated one, and taking into

consideration the all zero solution; a complete and computationally more efficient

version of the CWLS-RDS method, namely ECWLS-RDS, can be stated as follows:

1. Set Ψ = Q.

2. In the polynomial given in (2.164), calculate unknowns except λW. Then find

λW-GMS in the interval I ′b. Since the polynomial is strictly decreasing in this

interval, a simple bisection method could be utilized.

3. Calculate the roots of (3.8) using λW-GMS, then use the updated root selection

procedure. If the selected root is real nonnegative, then λW-RDS-GM = λW-GMS.

Obtain the CWLS-RDS estimate from (3.6), and then jump to step 6. Other-

wise, continue with the following step.

4. Find all real roots λW-LM-1, λW-LM-2, ..., λW-LM-t, t ≤ 3 of (2.164) in the interval

(I ′a ∪ I ′c), and then calculate r1−i = r1(λW-LM-i) and si = s(r1(λW-LM-i)), i =

1, 2, ..., t.

5. Calculate the objective function (3.2) only for the sets {λW-LM-i, r1−i, si}, i =

1, 2, ..., t with nonnegative r1 value and for θ0 = [0 0 0]T. The one with the

smallest objective function is {λW-RDS-GM, r1-GM, sGM}.

6. Using sW-GM, calculate the new range vector estimate R̂ and then update Ψ

using (2.151). Repeat steps 2, 3,...6 until converges to obtain ŝCWLS-RDS.

As mentioned at the end of Section 2.3.2.5, simulation results suggest that single

iteration is generally enough unless the sensor geometry is poor. However, even in
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such cases, it is seen that the estimate converges in three iterations. Therefore, for a

given sensor distribution scenario, a constant number of iteration steps could be safely

defined.

In [35], the proposed algorithm starts with Ψ = I. In simulations, we see that al-

though starting with Ψ = Q gives a better initial estimate unless the noise level is

quite high, there is no significant difference between the estimated values after first

iteration.

In simulations, it is seen that when the sensor array is circular, source is placed to the

array center and the noise level is extremely low; Lagrange multiplier corresponding

to the global minimum may become complex valued due to the finite precision arith-

metic. In such cases, Lagrange multiplier is close to zero, and the complex part is less

than 5% of the real part. It is seen that ignoring the complex part in such cases does

not affect the general performance of the method.

Comments

In [35], some simulation results of the CWLS-RDS and the CWLS methods have been

given for the circular placement scenarios. The results show that as variance of the

Gaussian noise added to the TDOA values decreasing, MSE of the CWLS estimate

gets much higher than the CRLB, while MSE of CWLS-RDS estimate attains it.

As mentioned in Section 2.3.2.5, the CWLS method given in [39] does not considers

the inequality constraint in the selection procedure among the estimate candidates.

This may reduce the estimation accuracy especially in the circular distribution. On

the other hand, the modified CWLS method proposed in Section 2.3.2.5 and named as

ECWLS considers the constraints. Besides, the CWLS-RDS method had originally

aforementioned problems, which have been solved in the modified version proposed

by us (ECWLS-RDS). In Section 4.3.1, simulation results of ECWLS and ECWLS-

RDS methods will be compared to examine whether the relative performances are as

given in [35].
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Figure 3.1: Hyperbolic Placement Scenario

3.2 Constrained Weighted Least Squares with Range Difference Separation for

Hyperbolic Distribution

Consider a placement scenario in which the sensors are located on one of the branches

of an hyperbola, and the source is located on one of the focal points of the same

hyperbola. Such a placement scenario is illustrated for a two-element array in Figure

3.1. In the figure; s1 and s2 are the sensors, s is the source, and s′ is the other

focal point of the hyperbola where the source is not located. Similar to the previous

sections, location of the reference sensor s1 is taken as the origin of the coordinate

system. To make the transverse axis of the hyperbola parallel to the x-axis, let the

sensor array and the source are rotated around the origin. This process will make the

exposition simpler. At the end, original coordinates can be obtained via an inverse

rotation matrix. The result of the rotation process is given in Figure 3.2. Subscript "r"

is used to indicate the rotated positions.

Considering Figure 3.2, the following equations can be written from Pythagorean
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Figure 3.2: Rotated Hyperbolic Placement Scenario

theorem;

a2
2 + b2 = r2

1, (3.9)

a2
1 + b2 = r′

2
1, (3.10)

(y2,r − b)2 + (x2,r + a2)2 = r2
2, (3.11)

(y2,r − b)2 + (x2,r + a1)2 = r′
2
2. (3.12)

Subtracting (3.10) form (3.9), and (3.12) form (3.11) gives

r2
1 − r′

2
1 = a2

2 − a2
1, (3.13)

r2
2 − r′

2
2 = a2

2 − a2
1 + 2x2,r(a2 − a1). (3.14)

Besides; since s1 and s2,r are on the same hyperbola branch, and s′r and sr are the

foci;

r2 − r′2 = r1 − r′1. (3.15)

Therefore,

r2
2 − r′

2
2 = (r1 − r′1)(r2 + r′2)

= (r1 − r′1)(r1 + r′1 + 2(r2 − r1))

= r2
1 − r′

2
1 + 2(r1 − r′1)(r2 − r1). (3.16)
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Inserting (3.13) and (3.16) into (3.14) results in

r2
1 − r′

2
1 + 2(r1 − r′1)(r2 − r1) = r2

1 − r′
2
1 + 2x2,r(a2 − a1)

(r1 − r′1)(r2 − r1) = x2,r(a2 − a1). (3.17)

From (3.17), range difference value is obtained as

r2,1 = r2 − r1 =
x2,r(a2 − a1)

(r1 − r′1)
. (3.18)

If the angle between the transverse axis of the hyperbola and the x-axis is β, then the

rotation matrix becomes

R
∆
=

 cos(β) sin(β)

−sin(β) cos(β)

 , (3.19)

and x2,r can be expressed as

x2,r = x2cos(β) + y2sin(β). (3.20)

Inserting (3.20) into (3.18) gives

r2,1 = x2

[
cos(β)(a2 − a1)

(r1 − r′1)

]
+ y2

[
sin(β)(a2 − a1)

(r1 − r′1)

]
. (3.21)

Note that (3.21) shows that the range difference value, r2,1, is a linear combination

of s2 coordinates. This means that if TDOA values are noiseless, i.e., range dif-

ference values are equal to the TDOA values times the propagation speed; then the

third column of A, which is defined in (2.28b), is a linear combination of the first

two column. Therefore, hyperbolic source and sensors distributions result in an ill-

conditioned A matrix under low noise conditions. Moreover, it has been shown in

(2.131) that the expected value of the Lagrange multiplier is zero, i.e. E[λ] = 0, for

low noise conditions. Hence, the matrix to be inverted to obtain the CWLS estimate,

(ATΨ−1A + λWC), becomes ill-conditioned. To circumvent this issue, we propose

a modified version of the ECWLS-RDS method given in Section 3.1.

Recall that in Section 3.1, the strategy was to separate A into a matrix containing

the sensor positions and a vector composed of the TDOA values. In this way, the

matrix to be inverted did not contain TDOA values, which are close to zero when

the distribution is close to circular. In hyperbolic distribution, TDOA values are not

close to zero, but they are close to a linear combination of the first two columns ofA.
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Therefore, separatingA should also solve the ill-conditioned problem resulting from

the hyperbolic distributions.

Although both of the distribution scenarios cause the ill-conditioned problem which

could be circumvented using the same matrix separation approach, it should not be

ignored that there is a significant difference between them. In the exact circular sen-

sor distribution with the source is located at the center, the single branch hyperbolas

corresponding to the noiseless TDOA values intersect in a single point. This results

in a cost function with a unique global minimum. When the inequality constraint is

ignored, then the new cost function have two global minimum points; one is the true

source coordinates and the true range, and the other one is the true source coordinates

and the negative of the true range. On the other hand, in the exact hyperbolic distri-

bution scenario, the single branch hyperbolas corresponding to the noiseless TDOA

values intersect in two points, which are the foci of the hyperbola on which the sen-

sors are distributed. Therefore, the original cost function, i.e., the cost function with

both of the constraints are taken into account, have two global minimum points. As

a result of this, applying ECWLS-RDS method in a hyperbolic distribution scenario

may results in a source location estimate close to s′, i.e., the other focal point of the

hyperbola where the source is not located.

To solve the aforementioned problem, another property of the signal radiating from

the source should be utilized. Received signal strength (RSS) is one of such properties

which could be used. The RSS path loss model is [40]:

Pi = Ps − 10µlog10ri + np,i, i = 1, 2, ..., N, (3.22)

where Pi is the average received signal power in dB of the ith sensor, Ps is the un-

known transmit power in dB of the source, µ is the known path loss factor of the

medium, and np,i is the additive noise term. Subtracting RSS of the reference sensor,

P1, from Pi gives

Pi, 1
∆
= Pi − P1 = −10µlog10

( ri
r1

)
+ np,i,1, i = 2, ..., N. (3.23)

For an r1 estimate, ri, i = 2, 3, ..., N values could be estimated using the TDOA

values. Then from (3.23), corresponding RSS differences could be estimated. Com-

paring the measured RSS values with the estimated ones, whether the obtained r1 es-

timate corresponds to the right focal point or not could be seen. Using this approach,
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we propose a modified version of the ECWLS-RDS method, namely ECWLS-RDS

for hyperbolic distributions (ECWLS-RDSH), as follows:

1. Set Ψ = Q.

2. In the polynomial given in (2.164), calculate unknowns except λW. Then find

λW-GMS in the interval I ′b. Since the polynomial is strictly decreasing in this

interval, a simple bisection method could be utilized.

3. Calculate the roots of (3.8) using λW-GMS, then use the updated root selection

procedure (RSP) to obtain r1 estimate. If the selected root is real nonnega-

tive, then λSW-GM = λW-GMS. Calculate ri, i = 2, 3, ..., N estimates using the

RSP result and the TDOA values. After that, estimate the RSS differences us-

ing (3.23). If the difference between the estimated values and measured RSS

values are within a predefined "closeness" level, then obtain the ECWLS-RDS

estimate from (3.6), and then jump to step 6. Otherwise, continue with the

following step. If "closeness" between the estimated and the measured RSS

difference values could not be defined mathematically, skip part 2 and 3.

4. Find all real roots λW-LM-1, λW-LM-2, ..., λW-LM-t, t ≤ 3 of (2.164) in the interval

(I ′a ∪ I ′c), and then calculate r̂1−i = r̂1(λW-LM-i) and ŝi = ŝ(r1(λW-LM-i)), i =

1, 2, ..., t.

5. Calculate the objective function (3.2) only for the sets {λW-LM-i, r̂1−i, ŝi}, i =

1, 2, ..., t with nonnegative r1 value and for θ0 = [0 0 0]T. Call the smallest ob-

jective function value as f1, the second smallest one as f2, and the third smallest

one as f3. If |f1 − f2| << |f2 − f3|, then using (3.23) obtain the RSS differ-

ence estimates for the sets corresponding to the f1 and f2. The one giving the

closest RSS difference estimate to the measured ones is {λSW-GM, r̂1-GM, ŝGM}.
If |f1− f2| is not much less than |f2− f3|, then one with the smallest objective

function is {λSW-GM, r̂1-GM, ŝGM}.

6. Using sW-GM, calculate the new range vector estimate R̂ and then update Ψ

using (2.151). Repeat steps 2, 3,...6 until converges to obtain ŝECWLS-RDSH.

As mentioned at the end of Section 2.3.2.5, simulation results suggest that single

iteration is generally enough unless the sensor geometry is poor. However, even in
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such cases, it is seen that the estimate converges in three iterations. Therefore, for a

given sensor distribution scenario, a constant number of iteration steps could be safely

defined.

Comments

In a circular sensor distribution with the source located at the center of the circle,

noiseless TDOA values gives a single point for the source location. Reason of the

ill-conditioning problem faced in the methods given in Section 2.3.2 is to ignore the

inequality constraint. However, this is not the case in an hyperbolic distribution.

When the sensors are located on one of the branches of an hyperbola, and the source

is located on one of the focal points of the same hyperbola; then the noiseless TDOA

values gives two possible points for the source location. Regardless of the method

used, a decision between these two points could not be made without having addi-

tional information other than the TDOA values.

Note that to have an estimate from TDOA measurements, at least three sensors are

required. Considering that three points in a plane uniquely define a circle, the ill-

conditioned problem CWLS-RDS solves can be seen as a rare distribution case. On

the other hand, to uniquely define a hyperbola, at least five points are required. There-

fore, if three or four sensors are used, the required position of the source to have

ill-conditioned problem is not a single point, but a certain area in the plane. This

increases the probability of facing the ill-conditioned problem.

3.3 Constrained Weighted Least Squares with Coordinate Separation

When the sensor distribution is linear or close to linear, A and hence the matrices

inverted in the calculation of the estimators given in Section 2.3.2 become rank defi-

cient or ill-conditioned, respectively. To overcome this problem; we propose a new

CWLS method, namely ECWLS with coordinate separation (ECWLS-CS), motivated

by the approach used in [35] for circular sensor arrays. In this section, ECWLS-CS

method is explained in detail with some comments at the end.
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The main strategy of ECWLS-CS method is to separate the first two columns of A,

which are linearly dependent in the case of linear sensor array. Without losing gener-

ality, let the reference sensor be placed at [0 0]T and the close-to-linear sensor array

be placed along the x-axis. Then the second column of A becomes almost all zero

vector. If we separate this column, (2.28a) becomes

A(N-1)x3 θ3x1 = b(N-1)x1

K(N-1)x2 l2x1 + yk(N-1)x1 = b(N-1)x1, (3.24)

where

A =


x2 y2 cd2,1

x3 y3 cd3,1

...
...

...

xN yN cdN,1

 , K =


x2 cd2,1

x3 cd3,1

...
...

xN cdN,1

 ,

k = [y2 y3 . . . yN ]T , θ = [x y r1]T , l = [x r1]T .

Then the cost function of CWLS (2.152) could be rewritten as

CECWLS-CS(l, y) = (b−Kl− yk)TΨ−1(b−Kl− yk), (3.25)

and the CWLS minimization problem (2.153) is equivalent to

min
l,y
{(b−Kl− yk)TΨ−1(b−Kl− yk) : lTC2l = −y2, r1 ≥ 0}, (3.26)

where C2 = diag(1,−1). Ignoring the inequality constraint, corresponding Lagrange

function becomes

LW-CS(l, y, λW-CS) = (b−Kl−yk)TΨ−1(b−Kl−yk) + λW-CS(lTC2l+y
2). (3.27)

Differentiating (3.27) with respect to l and then equating the result to zero gives

∂LW-CS(l, y, λW-CS)

∂l
= 2KTΨ−1(Kl + yk − b) + 2λW-CSC2l = 0. (3.28)

If (3.28) is solved for l, ECWLS-CS estimate is obtained as

l̂ECWLS-CS
∆
= arg min

l
{LW-CS(l, y, λW-CS)}

= (KTΨ−1K + λW-CSC2)−1(KTΨ−1b−KTΨ−1ky). (3.29)

To obtain l̂CWLS-CS, λW-CS and y are required.
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Moreover, differentiating (3.27) with respect to y and then equating the result to zero

gives

y = (kTΨ−1k + λW-CS)−1(kTΨ−1b− kTΨ−1Kl). (3.30)

Substituting (3.29) into the constraint lTC2l = −y2 gives

a2y
2 + a1y + a0 = 0, (3.31)

where

a2 = (KTΨ−1k)TT (KTΨ−1k) + 1,

a1 = −2(KTΨ−1b)TT (KΨ−1k),

a0 = (KTΨ−1b)TT (KΨ−1b)

T
∆
= (KTΨ−1K + λW-CSC2)−1C2(KTΨ−1K + λW-CSC2)−1.

Once λW-CS is obtained, y could be found using (3.31), and then l̂ECWLS-CS is obtained

from (3.29). One way to obtain λW-CS is to express y in terms of λW-CS using (3.29)

and (3.30), then substituting the resultant equation in (3.31), which is a computa-

tionally complex process. However, if the minimization problems (3.26) and (2.153)

are compared, it is seen that the objective functions and the constraints are the same,

therefore they are equivalent. Hence, λW-CS is equal to λW and it could be obtained

using (2.164).

Note that when the sensor array is placed along the x-axis, second element of the

gradient of the cost function (2.152) becomes zero. On the other hand, second element

of the gradient of the equality constraint does not become zero, unless the source is

located on the same line with the sensor array. Therefore, the Lagrange multiplier

values corresponding to the point where the source is positioned and its symmetric

point with respect to the sensor array are zero. Hence, among the methods given in

Section 2.3.2, the ones using Lagrange multiplier method also face the rank deficient

matrix problem, regardless of the noise level.

After obtaining λW-CS-GM candidates from (2.164), corresponding y values should be

found using (3.31). Since (3.31) is a second degree equation, the following root

selection procedure should be used:

a. If the roots of (3.31) are real, obtain corresponding l̂ estimates using (3.29). Then
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calculate the resulting y values from (3.30). The right y root should match the

resulting one obtained from (3.30); therefore, choose the matching one. Note

that in the case of perfect linear array, k becomes all zero vector, which makes

a1 zero. In such cases, roots of (3.31) have the same magnitude but opposite

signs. Therefore a priori information clarifying the side on which the source placed

relative to the linear array axis, is required to choose the right root.

b. If the roots of (3.31) are complex, then take the real part as y.

Note that case (b) is abnormal, which occur when the noise level is quite high.

Since λW-CS-GMS = λW-GMS and λW-CS-GM = λW-GM, the Lagrange multiplier founding

approach we have proposed in Section 2.3.2.5 could be used in here, too. As a result,

CWLS-CS method could be itemized as follows:

1. Set Ψ = Q.

2. In the polynomial given in (2.164), calculate unknowns except λW. Then find

λW-GMS in the interval I ′b. Since the polynomial is strictly decreasing in this

interval, a simple bisection method could be utilized.

3. Calculate the roots of (3.31) using λW-GMS. If the roots are real, use the root

selection procedure (RSP). Then, obtain l̂ from (3.29). If l̂2 = r̂1 ≥ |l̂1| =

|x̂| , then λW-CS-GM = λW-GMS. Since the global minimizer of the problem is

obtained, jump to step 6. If one of the following cases occurs, continue with

the next step:

• The roots are complex valued.

• r̂1 < |x̂|.

• There is a priori information clarifying the side on which the source placed,

and the RSP result violates it.

4. Find all real roots λW-LM-1, λW-LM-2, ..., λW-LM-t, t ≤ 3 of (2.164) in the in-

terval (I ′a ∪ I ′c), and then calculate ŷi = ŷ(λW-LM-i) and l̂i = l̂(y(λW-LM-i)),

i = 1, 2, ..., t.
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5. Calculate the objective function (3.25) only for the sets {λW-LM-i, ŷi, l̂i}, i =

1, 2, ..., t satisfying r̂1 ≥ |x̂| and for θ0 = [0 0 0]T. If a priori information about

the source position is available, eliminate the sets incompatible with it. The one

with the smallest objective function is {λW-CS-GM, yW-CS-GM, l̂W-CS-GM}.

6. Using yW-CS-GM and l̂W-CS-GM-1 = x̂W-CS-GM, calculate the new range vector esti-

mate R̂ and then update Ψ using (2.151). Repeat steps 2, 3,...6 until converges

to obtain the source location estimate ŝECWLS-CS.

As mentioned at the end of Section 2.3.2.5, simulation results suggest that single

iteration is generally enough unless the sensor geometry is poor. However, even in

such cases, it is seen that the estimate converges in three iterations. Therefore, for a

given sensor distribution scenario, a constant number of iteration steps could be safely

defined.

Comments

Similar to the hyperbolic distribution, linear sensor distribution also causes the single

branch hyperbolas corresponding to the noiseless TDOA values to intersect in two

points. Therefore, some additional information is need. However, since these two

points are symmetrical with respect to the sensor array axis; the RSS based approach

used in ECWLS-RDSH, or the AOA method does not solve the direction ambiguity.

As a result, if the linear sensor distribution is inevitable, the search area should be

restricted to one of the sides of the sensor array.

Note that in the linear distribution, there is no requirement on the source position,

unlike the circular and hyperbolic distributions.

Linear sensor distribution causes the methods given in Section 2.3.2 to face rank

deficient matrix problem, regardless of the TDOA noise level. On the other hand,

circular and hyperbolic distributions cause ill-conditioned problem only when the

noise level is below a certain threshold.

Recall that it is shown in Section 3.2 that the hyperbolic distribution causes the third

column of A to be a linear combination of the first two columns. In ECWLS-RDSH
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method, the third column is separated to circumvent the ill-conditioned problem. An-

other approach to circumvent the problem is to separate one of the first two columns

ofA, which is done in ECWLS-CS. Therefore, ECWLS-CS method can also be used

in hyperbolic distributions with the help of the RSS based approach used in ECWLS-

RDSH.
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CHAPTER 4

SIMULATION RESULTS

In this chapter, simulation results of the estimators given in Section 2.3.2 and Chapter

3 are presented. Firstly, performance of the LS based methods explained in Section

2.3.2 are analyzed and compared under the same framework. Then, performance of

the each method given Chapter 3 are analyzed for the corresponding sensor and source

placement scenarios. Unless otherwise stated, assumptions and the other details of the

simulation process are as follows:

• Exact positions of the sensors are known.

• Multipath affect problem is not seen, or seen and solved in TDOA estimation

step.

• For the sake of simplicity, simulations are made for 2D Space.

• Performance measure is RMSE. For m Monte Carlo trials, RMSE of an esti-

mator is calculated as

RMSE =

√∑m
k=1 ‖ŝ(k)− s‖2

m
.

• TDOA vector d is constructed from the range vector r whose elements are cor-

rupted by zero mean, independent and identically distributed Gaussian noise,

i.e.,

di,1 = di − d1, i = 2, 3, ..., N,

di = ri/c+ ni, i = 1, 2, ..., N, (4.1)

where di,1 is the TDOA value of ith sensor, di is the TOA value of the ith

sensor, ri is the true range between the ith sensor and the source, ni is zero
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mean Gaussian random variable with variance σ2
n, and c is the propagation

speed of the medium. As a result of the noise assumption, covariance matrix of

d is taken as

Q = σ2
n


2 1 . . . 1

1 2
. . . ...

... . . . . . . 1

1 . . . 1 2


(N-1)x(N-1)

.

• MATLAB R© R2014a is used as simulation software.

4.1 Case 1: Random Distribution Scenario

In this simulation, the aim is to assess the relative performances of the methods given

in Section 2.3.2 and Chapter 3. Details are as follows:

• Number of sensors: 5

• Number of Monte Carlo trials for each noise level: 4x106

• Sensor and source positions: Randomly generated from a uniform distribution

over [0, 10]x[0, 10] in each run

• 20log10(c σn) dB range: Between -40dB and 10dB with 5dB steps

• For the methods using weighting matrix:

– Initial value of Ψ: Q

– Number of iterations: 3

• In order not to take into account ill-conditioned cases, only the distributions

resulting in a noise free A matrix with a condition number less than 107 are

used.

Simulation results, which are given in Figure 4.1, shows that the weighting matrix Ψ

does not have a significant effect on the ULS method. On the other hand, it decreases

the RMSE of the ECLS. As the noise variance increases, the effect gradually dimin-

ish since the range vector estimate used to construct Ψ becomes more erroneous.
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Besides, RMSE levels of TSWLS show that taking into account the constraints with

a second LS causes significant performance improvement, although not as much as

ECLS and ECWLS which consider the constraints throughout the estimation process.

Lastly, it is seen that ECWLS, ECWLS-RDS and ECWLS-CS methods give the same

performance when the problem is not ill-conditioned, as expected since their cost

functions and the approaches in taking into account the constraints are identical.

In Table 4.1, intervals the Lagrange multiplier corresponding to the global minimizer

is found are given as the percentage of the Monte Carlo trials of each noise level.

In the table, "zero" stands for the all-zero solution. Note that as the noise level is

increased, the percentage of Ib reduces.

In Table 4.2, average computational time of each method is given. t represents the av-

erage computational time of the ULS method. Note that the computational time of the

methods using the Lagrange multiplier finding approach given in [11] are increased

as the noise level increases. This is because the efficient Lagrange Multiplier finding

method given in [11] is effective only when the Lagrange multiplier corresponding to

the global minimizer lies in the interval Ib.

In section 2.3.2.2, it has been stated that the GSX method does not guarantee to give

a solution. Therefore, simulation results of this method is not given in Figure 4.1.

In Table 4.3, solution rate of the GSX method is given as a percentage of the Monte

Carlo trials in each noise level.

4.2 Case 2: Passive Sonobuoy

In this simulation, the aim is to assess the performances of the methods given in

Section 2.3.2 and Chapter 3 relative to the CRLB for a certain distribution scenario.

A sonobuoy is an expendable buoy having components to be a part of an active or

passive SONAR system. It can be dropped from ships or aircrafts to use in underwater

warfare or acoustic researches. The most inexpensive sonobuoy model is the one with

a single omni-directional hydrophone. In the simulated scenario, it is assumed that

an aircraft has ejected five passive omni-directional sonobuoys to an area where an
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Table 4.1: λ Intervals

20log10(cσn) dB

Method Interval -40 dB -30 dB -20 dB -10 dB 0 dB 10 dB

ECLS

Ia 0.04% 0.16% 0.96% 6.52% 22.66% 26.66%

Ib 99.96% 99.84% 99.00% 93.00% 73.82% 52.34%

Ic 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

zero 0.00% 0.00% 0.04% 0.48% 3.52% 21.00%

ECWLS

Ia 0.04% 0.21% 1.03% 6.97% 24.40% 19.85%

Ib 99.96% 99.79% 98.98% 92.71% 71.70% 52.56%

Ic 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

zero 0.00% 0.00% 0.00% 0.33% 3.91% 27.60%

ECWLS-RDS

Ia 0.04% 0.22% 0.92% 6.45% 21.68% 17.49%

Ib 99.96% 99.79% 98.97% 92.61% 71.63% 52.56%

Ic 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

zero 0.00% 0.00% 0.12% 0.95% 6.70% 29.96%

ECWLS-CS

Ia 0.04% 0.22% 0.92% 6.45% 21.68% 17.49%

Ib 99.96% 99.79% 98.97% 92.61% 71.63% 52.56%

Ic 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

zero 0.00% 0.00% 0.12% 0.95% 6.70% 29.96%
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Figure 4.1: RMSE vs. (cσn) for Randomly Distributed Source and Sensors

Table 4.2: Average Computational Time

20log10(cσn) dB

Method -40 dB -30 dB -20 dB -10 dB 0 dB 10 dB

ULS 1 t 1 t 1 t 1 t 1 t 1 t

UWLS 2.62 t 2.45 t 2.43 t 2.49 t 2.58 t 2.46 t

TSWLS 3.10 t 3.05 t 2.90 t 2.92 t 2.99 t 2.90 t

ECLS 12.03 t 11.74 t 12.18 t 18.34 t 40.65 t 59.92 t

ECWLS 32.57 t 31.30 t 33.12 t 59.00 t 151.26 t 221.89 t

ECWLS-RDS 35.98 t 34.62 t 36.42 t 62.71 t 156.04 t 227.93 t

ECWLS-CS 34.84 t 33.45 t 35.31 t 61.39 t 154.20 t 226.26 t

Table 4.3: Solution Rate of GSX Method

20log10(cσn) dB

-40 dB -30 dB -20 dB -10 dB 0 dB 10 dB

76.97% 76.94% 76.74% 75.20% 66.63% 40.61%

enemy submarine is located. Active SONAR signals or the propeller sound of the

submarine is assumed to be detected by the sonobuoys. The scenario is illustrated in
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Figure 4.2: Sonobuoy Distribution Scenario

Figure 4.2.

Details are as follows:

• Number of sensors: 5

• Number of Monte Carlo trials for each noise level: 104

• Sensor positions are

s1 = [0, 0]T,

s2 = [10, 0]T,

s3 = [20, 10]T,

s4 = [10, 20]T,

s4 = [0, 20]T.

• Source position is

s = [7, 5]T.

• 20log10(c σn) dB range: Between -20 dB and 70 dB with 5 dB steps
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Figure 4.3: RMSE vs. (cσn) for Passive Sonobuoy Scenario

• For the methods using weighting matrix:

– Initial value of Ψ: Q

– Number of iterations: 3

• Sensor and source positions are assumed to be in kilometers.

Simulation results are given Figure 4.3. Relative performances of the methods are

similar to that of the random distribution scenario, except the TSWLS method. In this

simulation, it is seen that TSWLS and ECLS methods give the same performance up

to 55 dB noise standard deviation level. Besides, results show that ECWLS, ECWLS-

RDS and ECWLS-CS attain the CRLB.

4.3 Case 3: Ill-Conditioned Distribution Scenarios

In Section 4.1, it is seen that the methods with the lowest RMSE levels among the

compared ones are ECWLS, ECWLS-RDS and ECWLS-CS. Moreover, it is also

seen that these methods attain the CRLB in a scenario given in Section 4.2. In this

section, these methods are compared in the ill-conditioned cases analyzed in Section

3.
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4.3.1 Circular Distribution Scenario

In Section 3.1, ill-conditioning problem resulting from the circular source and sensor

placement has been examined. A method robust to such distributions, namely CWLS-

RDS, is explained; then a modified version of CWLS-RDS, namely ECWLS-RDS,

has been proposed. In this section, simulation results of CWLS-RDS and ECWLS-

RDS methods are compared with the ones of the ECWLS and ECWLS-CS methods

in two examples.

Example 1:

In [35], simulation results of CWLS-RDS and CWLS methods have been given for

certain scenarios. Details of one of these scenarios is as follows:

• There are four sensors placed on a circle with the center [5, 5]T. Their positions

are [0, 0]T, [0, 10]T, [10, 0]T and [10, 10]T.

• Source position is [5.1, 4.9]T.

• Standard deviation of the noise term added to the true range values, i.e.,

20log10(cσn) dB; is swept from -30 dB to 10 dB with steps of 2 dB.

• MSE values of the estimators for each noise level are computed using 1000

independent Monte Carlo trials.

• Initial value of Ψ is taken as identity matrix. 3 iterations are made to update Ψ.

To assess the relative performances of ECWLS-RDS, ECWLS-CS and ECWLS; the

parameters given above are used in our simulation without any change except the

number of Monte Carlo trials, which is increased to 104. Results are given in Fig-

ure 4.4. As seen from the figure, ECWLS method does not suffer from the ill-

conditioning problem under the simulated noise levels. This result shows that the

reason of the increase in MSE of CWLS method is not the ill-conditioning prob-

lem, but the disregard of the inequality constraint in the Lagrange multiplier selec-

tion procedure, as explained in Section 2.3.2.5. Moreover, it has been seen that the

74



−30 −25 −20 −15 −10 −5 0 5 10

−30

−25

−20

−15

−10

−5

0

5

10

15

20log
10
(cσ

n
)(dB)

20
lo
g 1
0
(R
M
S
E
)(
dB
)

CWLS
ECWLS
ECWLS−CS
CWLS−RDS
ECWLS−RDS
CRLB

Figure 4.4: RMSE vs. (cσn) for Circular Sensor Distribution, s = [5.1, 4.9]T

CWLS-RDS and ECWLS-RDS methods give the same performance for the simu-

lated scenario, which shows that the problems of the RSP of CWLS-RDS mentioned

in Section 3.1 are not faced.

Example 2:

To see the effect of the ill-conditioning problem, the source is relocated to the sensor

array center; [5, 5]T. Moreover, to simulate the systems having working precision

lower than that of the MATLAB R© numeric calculations, "vpa" function is used with

8 digits. Although "vpa" uses more digits than the specified one, and some functions

such as "eig" does not support "vpa" and uses MATLAB R© defaults; effect of reduced

working precision is still observable in Figure 4.5.

Simulation results show that although the ill-conditioned problem is not seen in the

ECWLS and ECWLS-CS methods for the source position and noise levels given in

[35], it arises when the source is positioned to the array center and the noise variance

and working precision decrease. The reason of that ECWLS-CS is slightly more

robust than ECWLS is the RSP of ECWLS-CS and the reduced condition number of

the matrix to be inverted [35]. On the other hand, ECWLS-RDS still attains CRLB
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Figure 4.5: RMSE vs (cσn) for Circular Sensor Distribution with a Reduced Compu-

tational Precision, s = [5, 5]T

under the same circumstances. Moreover, it is seen in Section 4.1 that ECWLS-RDS,

ECWLS and ECWLS-CS methods become equivalent when the distribution is not

ill-conditioned.

4.3.2 Hyperbolic Distribution Scenario

In Section 3.2, ill-conditioning problem resulting from the hyperbolic source and

sensor placement has been examined, and a modified version of the ECWLS-RDS

method, namely ECWLS-RDS for hyperbolic distribution (ECWLS-RDSH), has been

proposed to overcome the problem. In this section, simulation results of ECWLS,

ECWLS-CS and ECWLS-RDSH methods are compared in a hyperbolic distribution

scenario. To solve the ambiguity resulting from the hyperbolic distribution, RSS

based approach used in ECWLS-RDSH is also applied to ECWLS and ECWLS-CS,

and named as ECWLS-H and ECWLS-CSH, respectively. Simulation details are as

follows:

• Number of sensors: 4
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• Number of Monte Carlo trials for each noise level: 104

• Four sensors are located on a single branch hyperbola with the following pa-

rameters:

f1 = [−10, 50]T,

f2 = [80, 100]T,

‖f2 − si‖ − ‖f1 − si‖ = 77, i = 1, 2, 3, 4,

where f1 and f2 are the focal points. Sensor positions are

s1 = [0, 0]T,

s2 = [−3,−11.66]T,

s3 = [−6,−22.45]T,

s4 = [−9,−32.72]T,

and source is located at f2:

s = [80, 100]T.

• 20log10(c σn) dB range: Between -75 dB and -40 dB with 5 dB steps

• For the methods using weighting matrix:

– Initial value of Ψ: Q

– Number of iterations: 3

• Sensor and source positions are assumed to be in meters.

Results are given Figure 4.6. It is seen that as the standard deviation of the addi-

tive noise is decreased, ill-conditioned problem causes an increase in the RMSE of

ECWLS-H method, while ECWLS-RDSH and ECWLS-CSH are not affected.

Computational precision of the simulation is reduced from 16 digits to 8 digits us-

ing MATLAB R© "vpa" function, whose details are explained in Example 2 of Sec-

tion 4.3.1. Then, without changing any parameters, simulation is repeated. Results

are given in Figure 4.7. As a result of the increased rounding errors, it is seen that

ECWLS-H starts to suffer from ill-conditioned in a higher noise level, as expected.
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Figure 4.6: RMSE vs. (cσn) for Hyperbolic Distribution
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78



4.3.3 Linear Distribution Scenario

In Section 3.3, ill-conditioning problem resulting from the linear sensor distribution

has been examined. A new method robust to such distributions, namely ECWLS-CS,

has been proposed. In this section, simulation results of ECWLS-CS is compared

with the CRLB.

Note that when the sensor distribution is linear, A becomes rank deficient regard-

less of the noise level, which is not the case in circular and hyperbolic distributions.

Moreover, Lagrange multiplier corresponding to the global minimizer becomes zero,

as explained in Section 3.3. Therefore, none of the methods given in Section 2.3.2

could be used in linear distribution scenarios.

Simulation details are as follows:

• Number of sensors: 4

• Number of Monte Carlo trials for each noise level: 104

• Sensor positions: [0, 0]T, [10, 0]T, [20, 0]T and [30, 0]T.

• Source position: [15, 50]T.

• It is assumed that a priori information clarifying the side on which the source

is placed relative to the linear array axis is available

• 20log10(c σn) dB range: Between -30 dB and 10 dB with 2 dB steps.

• For the methods using weighting matrix:

– Initial value of Ψ: Q

– Number of iterations: 3

• Sensor and source positions are assumed to be in meters.

Simulation results are given in Figure 4.8. It is seen that ECWLS-CS method at-

tains CRLB up to -15 dB noise standard deviation level. After this point, bias of the

estimator becomes to increase, as can be seen in Figure 4.9.
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CHAPTER 5

CONCLUSIONS

In this thesis, TDOA based closed-form source localization methods have been stud-

ied. An extensive overview of the available methods has been given with the com-

ments on their shortcomings and advantageous points. Besides, sensors and source

placement scenarios resulting in an ill-conditioned problem, and the methods resistant

to such scenarios have been investigated. Additionally, some modifications have been

made on the existing methods to solve some ambiguities, reduce computational cost

and increase estimation performance. Moreover, a novel algorithm, efficient con-

strained weighted least squares with coordinate separation (ECWLS-CS), has been

proposed; which circumvent the ill-conditioning problem emerging in the available

methods when the sensor distribution is linear or hyperbolic in 2D plane (and planar

or hyperboloidal in 3D). Existing methods and the proposed one have been imple-

mented in the same framework and compared under certain source and sensor distri-

bution scenarios.

Simulation results in Section 4 show that ECWLS, and equivalently ECWLS-RDS

and ECWLS-CS, give the best performance among the compared methods, in gen-

eral. However, computational times given in Table 4.2 show that their computational

costs are much higher than that of the ULS, UWLS and TSWLS methods, especially

in the high noise levels. The reason of this difference is the Lagrange multiplier

finding routine. In these methods, we utilize the efficient Lagrange multiplier find-

ing approach given in [11]. However, although it significantly reduces computational

time in low noise levels, the effect of this approach gradually diminish as the noise

level increases. To reduce the computational cost further, number of iterations to up-

date the weighting matrix could be reduced with the expense of a small performance
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decrease (see RSME levels of the CLS method in figures 4.1 and 4.3).

If the constrained methods; i.e. CLS, ECWLS, ECWLS-RDS and ECWLS-CS; are

not feasible for an application because of their computational costs, TSWLS could be

considered. In TSWLS, utilizing the equality constraint with a second LS results in

a significant RSME decrease, according to the simulation results given in figures 4.1

and 4.3. However, performance improvement of this method over UWLS is highly

dependent on the distribution scenario and the noise level. Furthermore, it should not

be ignored that it is much more sensitive to the ill-conditioned distributions than the

constrained methods.

In Chapter 3, we considered the ill-conditioned distributions; namely circular, hy-

perbolic and linear; in which the methods given in Section 2.3.2 suffer from the ill-

conditioned matrix problem. Then we proposed two methods robust to such cases.

The first one is ECWLS-RDS, which is a slightly changed version of the method

given in[35]. This method is robust to circular and hyperbolic distributions. The

second one is a new method, namely ECWLS-CS, which is robust to hyperbolic and

linear distributions. In the circular distribution, ill-conditioned problem emerges only

when the source is at the center of the circular sensor array. In the hyperbolic distri-

bution, when the sensor number is less than five, the required position of the source to

have the ill-conditioned problem is not a single point, but a certain area in the plane.

In the linear distribution, there is no requirement on the source position. Therefore,

when the sensor positions are not controllable, ECWLS-CS should be preferred over

ECWLS-RDS to circumvent most of the possible ill-conditioned cases.

As a future work, the proposed method and the existing ones could be compared using

real-world TDOA measurements. Furthermore, sensor position and synchronization

errors in TDOA based source localization could also be studied. Finally, TDOA esti-

mation methods could be investigated for a possible performance improvement.
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APPENDIX A

CRAMÉR–RAO LOWER BOUND FOR SOURCE LOCATION

ESTIMATION FROM TDOA MEASUREMENTS

In [30], Cramér–Rao Lower Bound Theorem is stated as follows:

Theorem 4. Let θ be the unkonwn vector to be estimated, x be the observation vector,

and p(x;θ) denote the probability density function (PDF) of x. Then, if the regularity

condition

E

[
∂ ln p(x;θ)

∂θ

]
= 0 (A.1)

holds, then the variance of any unbiased estimator θ̂ satisfy

var(θ̂i) ≥ [I−1(θ)]ii, (A.2)

where θ̂i denotes the ith element of θ and [I−1(θ)]ii denotes the (i, i)th element of the

inverse of the Fisher information matrix, which can be calculated as

I(θ) = −E

[
∂2 ln p(x;θ)

∂θ2

]
= E

[(
∂ ln p(x;θ)

∂θ

)2
]
, (A.3)

where the expectations are taken with respect to p(x;θ), and the derivative is calcu-

lated for the true value of θ.

In (2.6), the PDF of the TDOA values is given as

p(d; s) =
1

(2π)(N−1)/2|Q|1/2
exp{−1

2
(d− r/c)TQ−1(d− r/c)}, (A.4)

where r is the true range difference vector, c is the signal propagation speed, n is the

noise vector, d = r/c + n is the TDOA vector and Q is the covariance matrix of n.

Calculating the partial derivative of the natural logarithm of (A.4) with respect to s,

and then taking the expectation results in

E

[
∂ ln p(d; s)

∂s

]
= E

[
1

c

∂rT

∂s
Q−1(d− r/c)

]
= 02x1. (A.5)
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Equation (A.5) shows that the regularity condition given in Theorem 4 is satisfied

for (2.6). Therefore, by applying Theorem 4, a lower bound for the variance of any

unbiased TDOA based source localization estimator can be obtained. Calculating

(A.3) for (2.6) gives

I(s) = E

[(
∂ ln p(d; s)

∂s

)2
]

=
1

c2

∂rT

∂s
Q−1 E[(d− r/c)(d− r/c)T]Q−1∂r

∂s

=
1

c2

(
∂rT

∂s
Q−1∂r

∂s

) ∣∣∣∣
s=s0

, (A.6)

where s0 is the true source location. ∂rT/∂s could be calculated as

∂rT

∂s
=


{

x−x2

r2
− x−x1

r1

}
. . .

{
x−xN

rN
− x−x1

r1

}
{

y−y2
r2
− y−y1

r1

}
. . .

{
y−yN
rN
− y−y1

r1

}


2x(N−1)

, (A.7)

since

∂ ri,1
∂s

=



{
∂
(√

(x−xi)2+(y−yi)2−
√

(x−x1)2+(y−y1)2
)

∂x

}
{

∂
(√

(x−xi)2+(y−yi)2−
√

(x−x1)2+(y−y1)2
)

∂y

}
 (A.8)

=


{

x−xi

ri
− x−x1

r1

}
{

y−yi
ri
− y−y1

r1

}
 . (A.9)

Fisher information matrix I(s) in (A.6) has been also given in [9].
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