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ABSTRACT

DICTIONARY LEARNING FOR EFFICIENT CLASSIFICATION WITH
1-SPARSE REPRESENTATIONS

Engin, Ege
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Elif Vural

May 2018, [79] pages

Sparse representations have the goal of expressing a given signal as a linear combination
of a small number of signals that capture well its characteristics. Dictionary models
allowing sparse representations have proven to be quite useful for the treatment and
analysis of data in recent years. In particular, the learning of dictionaries in a manner
adapted to the characteristics of each data class in a supervised learning problem and
representing the data with the learned dictionaries significantly improve the accuracy
of classifiers. However, large dictionary sizes and the complexity of the computation
of sparse representations may limit the applicability of these methods especially over
platforms with limited storage and computational resources. In this thesis, we study
the problem of supervised dictionary learning for fast and efficient classification of
test samples. In order to achieve low computational complexity and efficient usage of
memory, our method learns analytically represented supervised dictionaries that allow
an accurate classification of test samples based on 1-sparse representations. We adopt
a representation of dictionary atoms in a two-dimensional analytical basis, where the

atoms are learned with respect to an objective involving their distance to the samples



from the same class and different classes, as well as an incoherence term encouraging
the variability between dictionary atoms. The performance of the proposed method
is evaluated with experiments on different image datasets. The comparison of the
method to reference supervised and unsupervised dictionary learning methods suggests

that it provides satisfactory classification performance under 1-sparse signal representations.

Keywords: Supervised Dictionary Learning, Classification, Sparse Coding, Incoherence,

Analytical Dictionaries, 1-Sparse Representations
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0z

TEK KATSAYILI SEYREK GOSTERIMLERLE HIZLI SINIFLANDIRMA
ICIN SOZLUK OGRENME

Engin, Ege
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi : Dr. Ogr. Uyesi Elif Vural

Mayis 2018 ,[79]sayfa

Seyrek gosterimler, bir sinyalin, kendi 6zelliklerini tasiyan az sayida sinyalin lineer
kombinasyonu olarak gosterilmesini hedefler. Sozlilk modellemesi sayesinde seyrek
gosterimlerin verilerin analizinde ve igslenmesinde faydali oldugu gectigimiz yillarda
gozlemlenmistir. Siniflandirma problemlerinde denetimli sozliiklerin her siniftaki verilerin
yapisina uygun bir sekilde 6grenilmesi ve daha sonra verilerin bu denetimli sozliikte
gosterilmesi siniflandiricilarin performansini nemli 6lciide arttirmaktadir. Fakat, yiiksek
sozliik boyutlar1 ve seyrek gosterim hesaplama isleminin karmagikligi 6zellikle sinirlt
hafiza ve hesaplama kaynaklarina sahip platformlarda bahsedilen yontemlerin kullanimini
zorlastirmaktadir. Bu tezde test numunelerinde hizli ve verimli siniflandirma hedefleyen
bir denetimli sozliik 6grenme yontemi Onerilmistir. Yontemimiz diisiik hesaplama
karmagiklig1 ve hafiza kullanimi elde edebilmek amaciyla seyrekligi 1 olan gosterimlerle
test numunelerinin dogru siniflandirilmasina imkan saglayan analitik gosterimli denetimli
sozliikler 6grenmektedir. Calismamizda hem sozliik atomlarinin kendi sinifindaki ve
diger siniflardaki numunelerle arasindaki uzakliklarini, hem de atomlar arasinda cesitlilik

saglayan bir uyumsuzluk terimini iceren bir optimizasyon problemi vasitasiyla analitik

vii



fonksiyonlar tiiriinden ifade edilen atomlar 6grenilmistir. Onerilen yontemin performansi
farkl1 veri kiimeleri ile 6lciildii. Onerilen yontemin referans denetimli ve denetimsiz
sozliikk 6grenmesi yontemleriyle karsilagtirilmas: yonetimimizin bagarili siniflandirma

sonuclarina ulagtigini gostermistir.

Anahtar Kelimeler: Denetimli Sozliik Ogrenmesi, Simflandirma, Seyrek Gosterim,

Uyumsuzluk, Analitik Sozliikler, Tek Katsayil1 Gosterimler
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CHAPTER 1

INTRODUCTION

In recent years, dictionary learning has emerged as a new field of machine learning,
which has the purpose of learning overcomplete signal models that are well-fit to the

characteristics of the type of data at hand.

Nowadays, large volumes of high dimensional information are produced with different
kinds of sensors. The rapid and large increase in the upload of high-resolution images
on the Internet is only one example related to it. These huge amounts of data have
to be processed efficiently with respect to time and memory. In this context, we
focus on dictionary learning for the classification problem which is one of the most
challenging tasks in machine learning and computer vision. Dictionary learning has

broad application areas, some examples of which are as follows:
e Object recognition [4], [49], [64]

e Face recognition [11]], [55], [60]

e Video processing [15], [21], [39]

e Medical diagnosis [[17], [54], [61]]

In dictionary learning, an overcomplete set of signals are to be learned, so that the
signals of interest in an application have a sparse representation over the learned
dictionary model. Sparse representations have the goal of expressing a given signal
as a linear combination of a small number of signals. Leading examples of these
types of algorithms are basis pursuit de-noising [9]], [[10], least absolute shrinkage and
selection operator (LASSO) [44]], sparse Bayesian learning [50] and FOCal Underdetermined
System Solver (FOCUSS) [24]]. In sparse representation problems, the signals used



for sparsely representing the input data are called atoms. The collection of atoms used
for the sparse decomposition of an input signal is called as a dictionary. To create such
a model, either predefined dictionaries are used or a special dictionary can be learned
for each specific purpose. Fourier bases [26], discrete cosine bases [42] and wavelets
[36]] are very common examples of predefined dictionaries. However, Rodriguez and
Sapiro [43] mention the odds of learned dictionaries over predefined ones in terms of

classification.

Many unsupervised and supervised dictionary learning algorithms have been proposed
in the recent years. The purpose of unsupervised dictionary learning is mostly to learn
models with high signal approximation capabilities, whereas supervised dictionary
learning usually refers to the learning of dictionary models well-adapted to a data
classification problem. The leading examples of unsupervised dictionary learning
are K-SVD [1] and Method of Optimal Directions (MOD) [20]. Such algorithms
aim to create over-complete dictionaries consisting of atoms that capture well the
characteristics of the input signals. Unsupervised dictionary learning methods have a

wide application area in image processing tasks, such as:

De-noising [1]] , [18]] , [63]

Restoration [32]]

Super-resolution [56]]

Compression [S]

Since training data is unlabeled in unsupervised dictionary learning, these algorithms
are usually not as powerful in classification applications as they are in data reconstruction
and compression applications. This is because the information of the class labels of
training images is typically needed to learn models with high discrimination power.
Hence, supervised dictionary learning algorithms are more likely to be used for this
aim. For example, Discriminative K-SVD [62] and Label Consistent K-SVD [29] add
discriminate power to K-SVD [1]] with the help of class labels. Besides, the Fisher
criterion is used in supervised methods such as those of Zhou et. al[l65] and Zhang
et. al [S7)]. Moreover, there are many examples of supervised dictionary learning

methods [34], [41] which have better classification performance than unsupervised



ones.

The time complexity is an important point for the design of real-time or time critical
applications. Moreover, the platform where an algorithm is running may have limited
memory resources in some problems. Object detection in images [48] and web page
ranking [8]] are some examples of dictionary learning applications where computational
and time optimization is necessary. In this thesis, we aim to develop a supervised
dictionary learning algorithm having good classification ability in a fast and computationally
efficient way. We build on the recently proposed Transformation Invariant Dictionary
Learning (TIDL) [59] method. Yuzuguler, Vural and Frossard aim to learn supervised
dictionaries using an analytical basis in TIDL [59]]. The representation of the dictionary
atoms over an analytical basis allows the dictionary atoms to be stored with fewer
coefficients than storing itself. The TIDL method is based on an objective function
that includes an approximative and a discriminative term. For each atom, TIDL
method define an index set having a predetermined number of images and calculate
the representation error and discrimination power of an atom over the training images

within this index set rather than using all of the training images for all atoms.

In this thesis, we aim to increase the discrimination power of TIDL considering the
time and memory costs. For this reason, we introduce two main changes. Firstly, we
remove the index sets from the learning algorithm and let all atoms be affected by
all training images. In this new setting, the effect of each training image is not the
same when calculating an atom. Secondly and more importantly, the TIDL algorithm
has been observed to suffer from a lack of diversity between the atoms of the same
class, which affects the classification performance. In order to increase the diversity
between different atoms of the same class, we propose to introduce an incoherence
term to the objective of the TIDL method. By the help of this term, the similarity

between the dictionary atoms is reduced.

The classification and representation power of different algorithms are compared
experimentally with that of the proposed method in the MNIST data set and the Yale
Face data set. proposed method is compared to the K-SVD [1], LC-KSVD [29] and
TIDL [59] methods as K-SVD [1] is one of the most leading algorithms, LC-KSVD

[29] is a popular supervised extension of K-SVD with discrimination term and our



method has some inspirational ideas from TIDL [59].

1.1 Thesis Outline

The purpose of this study is to develop a fast and computationally efficient supervised
dictionary learning algorithm with good classification ability. The rest of the thesis is

organized as follows.

In Chapter 2, we give a brief overview of sparse representations and dictionary learning
algorithms. We also review the literature by presenting some leading examples of

sparse representation methods, unsupervised and supervised dictionary learning algorithms.

In Chapter 3, we formulate the supervised dictionary learning problem and present

the proposed algorithm in detail.

In Chapter 4, we evaluate our method with experiments on several data sets with
respect to the classification and representation performance. Also, the performance

changes with respect to the optimization parameters are discussed.

Finally in Chapter 5, the thesis is concluded with a summary of the study and discussions

on the experimental findings.



CHAPTER 2

RELATED WORK

Dictionary learning is a learning process of an overcomplete set of signals with sparse
representations. For this reason, we will give the definition of sparse signal representations
and some leading examples of it: matching pursuit [37] and orthogonal matching
pursuit [46], basis pursuit denoising [9]], [10] and least absolute shrinkage and selection
operator (LASSO). Later, two widely used unsupervised dictionary learning algorithms,
namely the Method of Optimal Directions (MOD) [20] and K-SVD [1] are discussed
with their definitions, application areas and leading examples in detail. We also
mention the K-means clustering algorithm because it is relevant to the 1-sparse signal
representations studied in this thesis. Lastly, we describe the supervised dictionary
learning algorithms and discuss two widely used algorithms of it, namely Discriminative
K-SVD [62]] and Label Consistent K-SVD [29]].

2.1 Sparse Signal Representations

Sparse signal representations are widely used for collecting, compressing and reproducing

high-dimensional signals. Some application areas are listed below:

e Face recognition [52]]

Image super-resolution [S6]

Clustering [19]

Image and video restoration [335]]

Background subtraction [7]]



e Image classification [33]

Before discussing sparse signal representations, it is useful to start with the [, norm

definition and the sparse matrix definition by the help of the [/, norm.

Let ¢ € R" be a row vector. To define the /, norm of this vector, the following

equations are used:

" 1
pnorm, el = (O [eif)r @2.1)

i=1

Likewise;

lonorm, ||c|lo = #(i|c; # 0)

= number of non-zero element of ¢

hnorm, lefly =) e
=1
(2.2)

ly norm, |c|2 =

loo norm,  ||¢||loo = max |c;
1

Please note that the [y norm is not a norm because it does not satisfy the homogeneity,
llac|lo = |a|||c|lo in general. Thus, it can be called as quasi-norm. The [, norm is a

norm for p > 1 and quasi-norm for 0 < p < 1.

The mathematician James H. Wilkinson [16] created the widely used definition of
a sparse matrix as “A sparse matrix is a matrix with enough zeros that it is worth
taking advantage of them." Using sparse matrices has the advantage of reducing the
complexity of some computations. To clarify, calculations with zero entries take
relatively much less time. Also, there are many algorithms helping to save memory on

sparse matrix storage because this kind of algorithms do not store the zero elements
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but only store the actual values in the matrix.

Let the X,,, € R*>*! be an example for a sparse vector:

Xexp =

o O O O W

The sparsity of X, is calculated as follows:

Sparsity of Xepp = || Xeapllo = 1

In other words, the sparsity of any vector can be calculated by counting the number

of non-zero elements in it. Hence, X, is a 1-sparse vector.

Sparse representations have the goal of expressing a given signal as a linear combination
of a small number of signals belonging to the data group. For this reason, the following
sparse representation problem is often encountered where the vector y represents the
input signal, c is the coefficient vector to represent y over the dictionary D, which is

an overcomplete matrix each column of which is called an atom.

min |[c||o : y = Dc (2.3)

or more commonly

min ||c||o : ||y — De||l, <6 forsomed >0 (2.4)

where the [y norm is used as a sparsity constraint and p is often used as 2, but it could
be 1 or oo as well. Also, in some cases, the [, norm sparsity constraint may be relaxed

to higher-order norm constraints such as /; and .
While the calculation of the representation in equation (2.3)) poses an NP-hard problem

7



[38]], greedy algorithms can be used to solve these types of problems. Matching
pursuit [37] and orthogonal matching pursuit [46] are leading and widely used algorithms
to approximately solve this problem. Another approach to solve such problems is to
relax the [y norm sparsity constraint to /; norm so that the problem statement changes

as follows:

min ||¢||y :y =D cor min|lc||; : |ly—=D¢|l, <é forsomed >0  (2.5)

Basis pursuit denoising [9]], [10] and least absolute shrinkage and selection operator
(LASSO) [44] are well-known examples of convex relaxation algorithms for solving
problems as in eq. (2.5). Moreover, there are many different approaches trying to
solve sparsity problem such as sparse Bayesian learning [S0] and FOCal Underdetermined
System Solver (FOCUSS) [24]. A review of the sparse recovery algorithms can be
found in [47]].

2.1.1 Matching Pursuit (MP)

Greedy algorithms aim to heuristically solve an optimization problem in an iterative
way, by taking a locally optimal but often globally suboptimal step in each iteration.
They are widely used in sparse approximation problems where a small number of

non-zero coefficients are desired in the representation of a signal.

Matching pursuit [37] is an iterative greedy algorithm of pursuing the sparse approximation

of a signal by selecting a single atom at each iteration.

The MP algorithm includes two steps in each iteration. The first step of each iteration
has an aim of finding the atom having the highest correlation with the current residual
error. The measure of this correlation is the norm of the orthogonal projection of the
residual over the candidate atoms. At the second and the last step of each iteration,
the residual error is updated by subtracting from the residual its projection onto the
selected atom. The termination of the algorithm is done by halting conditions. The

algorithm steps are stated below assuming the atoms are normalized:

8



1. Atom selection step

dj:arg%aid <r’7tdy>|for1 <i< N (2.6)

7

where < . > denotes the inner-product, N is the dictionary size, 7/~ is the residual
at the (j — 1) iteration and d; shows the i** column of the dictionary D. Please note
thatr® = yand ¢/ =< r7=1, d’ > is the coefficient of the atom @’ in the representation

of the signal y.

2. Residual update step

rl =7t - @ (2.7)

After the j' operation, the approximation ¢’ of y can be found as:

J
Y = Z & d* (2.8)
k=1

The main advantage of the matching pursuit algorithm is its simplicity. However, it

has drawbacks related to its convergence rate [37].

2.1.2 Orthogonal Matching Pursuit (OMP)

As an improvement over MP, the orthogonal matching pursuit algorithm is suggested
by Tropp and Gilbert [46]. It is also a greedy and iterative algorithm. Although using
the same procedure with MP, in each iteration OMP projects the input signal to the
subspace spanned by all the atoms selected until that iteration. The approximation

can be gathered by the following equation:

y’ = D7 ¢ where ¢ = (D) y (2.9)

Please note that the pseudo-inverse of D7 is denoted by (D’)f. Moreover, D’/ =
[D7=1 7] where & is the same as in eq. (2.6) because the atom selection step remains

9



the same. Also, multiple solutions can be obtained from the atom selection step at
(2.6) if the matrix D has duplicated columns. For this case, transformations must be

performed to make the matrix D full-rank.

Hence, the one and only difference of OMP from MP occurs in the residual update

step as follows:

P =y— D (2.10)

Orthogonal matching pursuit algorithm introduces orthogonalization. By the help of
orthogonality, any selected atom cannot be used again as in MP. Thus, the convergence

rate increases although it does not guarantee the convergence [46].

2.1.3 Sparse Signal Representations by /; Minimization
2.1.3.1 Basis Pursuit (BP)

Basis Pursuit published by Chen and Donoho [9] suggests the /; norm relaxation on
eq. By the help of this change, the equation becomes a convex optimization
problem and it may become solvable by linear programming algorithms. Thus, it
is possible to say that the Basis Pursuit method makes the global optimization of
a relaxed version of the original problem. The Basis Pursuit algorithm solves the

following sparse representation problem with convex relaxation:

min ||c|]; : y = De (2.11)

For noisy conditions (§ > 0 at (2.5), Chen and Donoho, in their Basis Pursuit
Denoising paper [[10], also proposed the following problem, where the A\ coefficient

adjusts the sparsity of the representation:

argmcin||y—DcH§—|—)\ IEIR (2.12)

10



2.1.3.2 Least Absolute Shrinkage and Selection Operator (LASSO)

Tibshirani proposed the method LASSO [44]]; i.e, Least Absolute Shrinkage and

Selection Operator, to find a sparse solution where the parameter s adjusts the sparsity.:

argmin ||y — Dc||5 subject to ||c||; < s (2.13)

It can also be represented as in eq (2.12).

The Basis Pursuit and LASSO problems can be handled by interior point methods.
The in-crowd algorithm (The In-Crowd Algorithm for Fast Basis Pursuit Denoising
[23]]) and fixed-point continuation [25]] can be leading examples of solution approaches

to BP.

2.2 Dictionary Learning

In the sparse signal representations discussed in Section (2.1)), the approximation of
the input y as y = D c1is covered with the sparsest possible coefficient vector ¢, which
uses the least number of columns from a given dictionary DD. Some examples of these
fixed dictionaries can be the Fourier bases [26]], discrete cosine bases [42]] or wavelets
[36]. Also, these dictionaries can be designed with tuning with respect to input
signals. Some examples of these, still fixed, dictionaries are wavelet packets [12],
curvelets [27] or bandelets [40]. Although these fixed dictionaries give good results
in some applications, the learning of D instead of using a fixed one may be necessary
for most applications. Dictionary learning algorithms have been proposed for this
purpose. Given the input signal y and a sparse approximation problem as in eq. (2.4),
the general procedure of the dictionary learning algorithms can be summarized as

follows:

After initializing the dictionary (most of the applications use normalized atoms), do

the following until reaching the stopping criterion:

e Fix the dictionary D and compute the sparse coefficient vector ¢
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e Fix the sparse coefficients c and optimize the dictionary D

The optimization of the atoms in the dictionary can be done sequentially or concurrently,
depending on the algorithm. If the optimization is done with sequential updates,
each atom d; V7 is updated consecutively after fixing the sparse coefficients. This
type of dictionary optimization can be called as an atom-based optimization. If the
optimization is done concurrently, the dictionary matrix D is optimized so that each

atom d; Vi is optimized concurrently.
Most of the dictionary learning algorithms use one or more of these stopping criteria:
e There is no significant change in D and c.

e Desired approximation level is reached. In other words, the minimization of the

residual is fair enough.

e The maximum iteration number is reached.

2.2.1 Unsupervised Dictionary Learning

Unsupervised dictionary learning can be described as the computation of a dictionary
that gives the sparsest possible approximations of a set of unlabeled training signals.
In other words, no classification or grouping of the training signals is involved in the
algorithm. Unsupervised dictionary learning algorithms try to create such dictionaries
discovering and presenting the interesting and common structures in the training data.
Hence, unsupervised dictionary learning algorithms are widely used in application
areas like image denoising [1] , [18] , [63], compression [3], restoration [32] and

super-resolution[356].

In the following, we give an overview of two widely used unsupervised dictionary
learning algorithms, namely the Method of Optimal Directions (MOD) [20] and K-
SVD [1]]. We also discuss the K-means clustering algorithm due to its relevance to

the 1-sparse signal representations studied in this thesis.
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2.2.1.1 Method of Optimal Directions (MOD)

Engan et. al. [20] introduced the Method of Optimal Directions (MOD) in 1999
and it is one of the pioneer examples of dictionary learning methods. Like many
dictionary learning algorithms, MOD has alternating two steps to solve the following

optimization problem:

arg rgig |Y — D C||3 such that Vi, ||c;]|o < s (2.14)

where Y denotes the input data set consisting of ;s which are the input data samples
Vi, F' denotes the Frobenius norm, D is the dictionary and C' is the sparse coefficient

matrix consisting of the columns ¢;s which are the sparse coefficient vectors V4.

1. Sparse Coding Step

min ||C||o subject to [|[Y — D C|% < e for small ¢ (2.15)

This step can be done with fixing D at eq. (2.14)) and calculating sparse coefficients.
The sparse coding problem is given in (2.15)) and it can be solved by any matching
pursuit algorithm like MP or OMP (2.1.2)). The solution of the minimization
in eq. (2.13) is given by its Moore-Penrose pseudo-inverse in eq. (2.16).

ct=c"(cch! (2.16)
The computationally efficient way of calculating Moore-Penrose pseudo-inverse of C

can be done by using singular value decomposition of C' where C' = U S VT shown

as follows:

ot — v g1 yT 2.17)

2. Dictionary Update Step
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The dictionary update step can be done by fixing C' and calculating the dictionary in

the problem at eq. (2.14). The analytical solution of that problem gives the result as:

D =Y C" where C' is a Moore-Penrose pseudo inverse (2.18)

If the input is low-dimensional, using MOD to learn a dictionary is efficient due to
fast convergence. However, the MOD algorithm is not practical for high dimensional
data. Because of the fact that finding the pseudo-inverse of high dimensional matrices
is a striving process, MOD is not widely used nowadays with the need for high

dimensional processing.

2.2.1.2 K-means

K-means [31] is a heuristic and iterative clustering algorithm. Although K-Means
is a clustering algorithm, it will be discussed under unsupervised dictionary learning
algorithms. It is commonly used in signal processing and data mining applications.
It aims to separate the input data set into a pre-defined number of clusters. Let’s say
there are k clusters desired. First of all, the algorithm selects a cluster center for each
cluster. The initialization step is done by taking all of the input samples and assigning
each sample to the cluster corresponding to the nearest centroid. Then, all k centroids
are updated as well as the assignments of the signals to the clusters, by minimizing

the following objective function:

k M;
min Y Y iyl — ;| (2.19)

j=1 i=1

where y/ is the data point of index 4 assigned to cluster j , d; is the centroid of the
cluster j, M; is the number of data points belonging to the cluster j and ||y} — d;/|?
is the distance measure. Please note that the eq. (2.3)) with 1 sparsity approaches the
K-means clustering problem in eq. (2.19). In other words, the K-means algorithm
can be called as an extreme sparse representation algorithm, where only one atom is

allowed in the signal decomposition.
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This algorithm has two iterating steps to minimize its objective function:
1. Data Assignment Step

Each data point y; Vi be labeled with the nearest centroid to itself. Let the nearest
centroid is labeled with cluster 7. The data assignment step can be formulated as

follows:

I(y;) = argmin ||y; — dez V1 (2.20)
J

where [ (y;) is the cluster index of the data sample y;, 7 is the index of the data point
and d; € D is the j' cluster center as initialized with some initialization rule for the

first iteration.
2. Centroid Update Step

The new mean of the data points belonging to each cluster gives the new centroid of

that cluster as follows:

|
di=<r D v 2.21)

T il (y)=j

where ) is the number of data points belonging to cluster j.

The algorithm iterates between these two steps and is stopped with respect to a

stopping criterion such as:

eThere is no change in clusters after some iterations.

eThe distances to the cluster centers are sufficiently minimized.
eThe maximum number of iterations is reached.

Being a heuristic method, the K-means algorithm does not ensure the convergence.
However, initialization with random centroids and allowing a sufficient number of

iterations may be helpful for a better outcome.

15



2.2.13 K-SVD

Aharon et al. [1]] proposed the K-SVD algorithm. It can also be called as generalized
K-means. To solve the sparse coding problem with the dictionary D, the coefficient
matrix C and the sparsity s below, the algorithm suggests two main steps; namely,

the sparse approximation and the dictionary update step.

arg min |Y — D CJj% subjectto Vi, ||cillo < s (2.22)

1. Sparse Approximation Step

The sparse approximation step is done by fixing D in the previous equation and
proceeding with orthogonal matching pursuit algorithm as discussed in Section (2.1.2).
Any pursuit algorithm like Basis Pursuit (BP) [9] or Focal Under-determined System
Solver (FOCUSS) [24] can be replaced with OMP.

arg min |Y — D C||% suchthat Vi, |lci]lo < s (2.23)

2. Dictionary Update Step

Dictionary update step is done sequentially by processing each column of input signal
Y using the singular value decomposition (SVD). As in K-means, numerous atoms
represent each input signal with various weights. That is the reason why this algorithm
is called as generalized K-means. To clarify, the algorithm updates one column of D
at a time by fixing all columns in D except one, d; and update d; by optimizing the

target function as follows:
o F.=Y — Zj 2k ¢ d; where cj is the j' row vector in the coefficient matrix C
e Apply SVD decomposition as E, = UAVT

e Update: d;, = uy and x, = Ay v; where u; and v; are the first column vectors

of U and V matrices, accordingly. /A ; is the first element of /A matrix.

Although the convergence of K-SVD is not guaranteed, it gives good results in most

applications.
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2.2.2 Supervised Dictionary Learning

Unlike unsupervised dictionary learning, supervised dictionary learning needs a supervision
from a user, data scientist or expert. The supervision involves the assignment of a

class label to each training signal by the help of its characteristics.

The road-map for supervised dictionary learning for a given classification application

is listed below:
1. Obtain a suitable training set for the classification problem at hand.

2. Transform each input signal into a feature vector to include only its representative

characteristics
3. Apply the dictionary learning algorithm to create representative dictionaries

4. If the algorithm includes some control parameters, make sure to adjust them for

optimized results

5. Test the algorithm with test sets using them as input signals and measure the

success rate

Supervised dictionary learning methods often have objective functions including discriminative
terms in addition to reconstructive terms; in other words, the objective function ensures
different data representations for different classes. The discrimination can be achieved
by altering the sparse coding step in dictionary learning algorithms considering the

following needs:
e The sparsest possible representation of an input signal and also

e The most different representation of an input signal from signals belonging to other

classes

The learning problem underlying supervised dictionary learning algorithms can be

generalized with the following formula suggested by I. Tosic and P. Frossard [45]]:

argmin [ [[Y = D C[; + » [Clly + 72 Q(C.D,0)] (2.24)
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where Q(C, D, ) is the discrimination function depending on the coefficient matrix

C, the dictionary D and optional parameters 6 of the classification model.

It can be easily said that the algorithm is dependent on the classification function and
in most applications it may be non-convex. Still, fixed-point continuation methods
can solve the problem efficiently when logistic loss function is used as a classification

term [34].

The formula in eq. (2.24) uses the [; norm, the convex relaxation as a sparsity

constraint. It can also be formulated in terms of the /; norm as:

argmin [[|Y' =D Cl5 + 2 [Cllo + 72 Q(C. D,0)] (2.25)

Rodriguez and Sapiro [43] propose a method of supervised OMP using singular value
decomposition at its dictionary update stage. They aim the discrimination of classes
and reconstruction of the input signals at the same time on the image data. Zhang
and Li propose Discriminative K-SVD for Dictionary Learning in Face Recognition
[62] which combines the representation objective of K-SVD with the discrimination
of a linear classifier. LC-KSVD [29] is an extended version of D-KSVD due to newly
represented discriminative sparse-code error. Moreover, Yankelevsky and Elad [58]
add a graph regularization term to the formula of D-KSVD. Additionally, the sparse
reconstruction term is moved from the objective function to the constraints of the
problem by Zhou et. al [65]. The Fisher criterion is another term used on sparse

coefficients by some supervised dictionary learning algorithms like [28] and [S7].

The recently proposed TIDL method [59] is a supervised dictionary learning algorithm,
which, moreover, aims to learn analytically represented atoms. The analytical representation
of dictionaries is frequently done using analytical bases. The Transformation Invariant

Dictionary Learning (TIDL) method is discussed in more detail in Section [3.1]

2.2.2.1 Discriminative K-SVD (D-KSVD)

Zhang and Li’s Discriminative K-SVD (D-KSVD) [62] adds a discrimination term
into the K-SVD algorithm discussed in Section Labeling of training data
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is used in order to learn a linear classifier with the help of a discrimination term.
Moreover, [, norm is used for regularization. D-KSVD proposes the following problem

to optimize:

arggn‘}/nc Y =D Cll2 + n [|[H=W Clla + 72 ||W]|2 such that [|Cl|p < T (2.26)

where the classifier parameters are represented by W . The matrix / has columns
h; = [0,...,1,...,0], where the class labels are indicated by positions of the non-
zero entries. Thus, |[H — W C/|, shows the classification error and ||V |5 is the

regularization penalty. v; and v, are positive weight parameters.

2.2.2.2 Label Consistent K-SVD (LC-KSVD)

Jiang et. al [29] have proposed the Label Consistent K-SVD (LC-KSVD) method
by introducing additional discrimination power to the dictionary learning objective.

They define two methods in their study; namely, LC-KSVD1 and LC-KSVD2.

e LC-KSVDI

argmin [|[Y — D C|l2 + 71 ||Q — A C|2 such that ||C|lp < s (2.27)

where || — A C/|3 is an additional discriminative term proposed as an improvement
over the traditional dictionary learning objective. This term encourages the sparse
codes to better capture the label information. A is a linear transformation matrix.
Q=|q, ¢, ..., qv] € RN and ¢; € R* are the discriminative sparse codes of
the input signals y; which are the columns of Y. The non-zero values of ¢; indicate the
indexes where y; and the atom dj, hold the same class label. ~; is the control parameter
of this term. For example, let D = [dy, do, . .., dg, Y = [y1, y2, - . ., ye] and Q

be defined as follows:
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o O = o= O O
o O = o= O O
= = O o O O
_ = O O O O

o O o O = =
o O o O = =

This () matrix is used to indicate that v, -, d; and d» are from class 1, y3, y4, d3 and

d, are from class 2 and likewise ¥s, ys, d5 and dg are from class 3.

e LC-KSVD2

argmin Y — D Clls + n |Q —AClla + 72 ||[H — W C||2 such that |C|lo < s
(2.28)

where ||[H — W (| is an additional term to the objective in eq. ([@2.27). The
classification error is represented by this term. W is a linear predictive classifier
matrix denoting the classifier parameter. H = [hy, ha, ..., hy] € R™ whose i"
column i; = [0, 0, ...,1, 0, ..., hy]T € R™ is the label vector corresponding to
the input signal y; which is the i** column of Y. The non-zero value of h; indicates

the class of y; and ~, is the control parameter of this term.
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CHAPTER 3

SUPERVISED DICTIONARY LEARNING WITH 1-SPARSE
REPRESENTATIONS

In this chapter, we present the proposed method for supervised dictionary learning.
We first give an overview of the motivation of our work and then describe our supervised

dictionary learning method for fast classification with 1-sparse representations.

Recently supervised dictionary learning algorithms have shown promising results in
classification applications but how to achieve good classification performance in a
time-efficient manner is still an important open question. The computational constraints
of classifying an input signal may be as important as the classification performance
in some applications. Real-time object detection in images [48], web page ranking

[8] are well-known examples where computational constraints have important roles.

In order to achieve fast and computationally efficient classification, we propose a
supervised dictionary learning algorithm in this chapter. Our method builds on the
recently proposed Transformation Invariant Dictionary Learning (TIDL) [59] method,
which aims to learn supervised dictionaries for fast classification by using 1-sparsity.
It also further decreases the memory requirements for storing the learnt atoms by
representing them in an analytical basis. These are the main goals we share with
TIDL. However, we further would like to improve the discrimination power of the
learnt dictionaries considering computational needs and speed. Hence, we start with
the TIDL algorithm and improve its performance by introducing suitable modifications

in its objective function.
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3.1 Transformation Invariant Dictionary Learning (TIDL)

Yuzuguler, Vural and Frossard designed the transformation invariant dictionary learning
(TIDL) algorithm [59]. TIDL is a supervised dictionary learning method where
analytically represented dictionaries are learnt using the Hermite basis. The representation
of the dictionary atoms over an analytical basis permits the handling of geometric
transformations more easily, thus, facilitates the learning of transformation-invariant
dictionaries, which is one of the purposes of the TIDL method. The objective function

of TIDL includes representation and discrimination terms. An index set having a
predetermined number of images and the representation error are defined for each
atom and the discrimination power of an atom is calculated over the training images

within this index set rather than using all of the training images for all atoms.

Let Y = {Y™}M_, be a training set consisting of M classes. For example, class m

has M, labeled training images y/* € R" where m € {1,2,..., M }.

TIDL method aims to learn a specific dictionary for each class instead of a global
dictionary. These class-specific dictionaries are represented as D™ = {d"} Y | consisting
of N atoms for class m € {1,2,..., M }. By the help of these dictionaries, the class
label of a given test image y can be estimated as m* with respect to class-specific

reconstruction errors computed by the following formula:

N
m*=arg min |y — E cd'| st ||¢™|lo =1soc™is 1-sparse.  (3.1)
m=1,2,...M —
1=

where d" is the i'" atom in the dictionary of class m, ¢™ = [¢* ¢§* . . . %] is
the coefficient vector and NN is the dictionary size which is equal for all classes m
,m € {1,2,..., M}. Moreover, the coefficient vector ¢, m € {1,2,..., M} has a
constraint of 1-sparsity by ||¢™||o = 1 for fast classification. To clarify, the estimated
class label m* is the class label that yields the minimum residual between the test

image and its 1-sparse approximation.

The classification success rate is measured by the percentage of test images whose

estimated class label m* is accurate with the label assignment in eq. (3.1]).
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TIDL satisfies the fast classification purpose using 1-sparsity as a sparsity constraint
in the algorithm. In addition to this, each atom is learnt as a discretized version
of a two-dimensional analytical function over an analytical basis. This decreases the
memory need for storing the dictionary atoms because each atom can be approximated
with a relatively small number of coefficients in the analytical basis. The analytical
representation is done over the Hermite 2D basis [51]. The Hermite basis forms an
orthonormal basis for the square-integrable functions. Any atom can be represented

as d with a pre-determined number s of the Hermite basis elements as follows:

i=1

where «; are the coefficients of the basis vectors for ¢ € {1,2,...,s} and {h;}3°,
denotes the Hermite 2D basis with increasing degrees of Hermite polynomials used

in their construction [51].

In TIDL, the atoms are analytically represented using the Hermite basis as follows:

d=H « (3.3)

where H € R is the Hermite 2D matrix and « is the coefficient vector R**! whose
it" entry is «;. Figure [3.1/shows the visualizations of Hermite 2D basis vectors. The
numbers written on the upper left corners of each image in Figure [3.1] denote the

degrees of the basis vectors h; to hio in the Hermite 2D matrix H.

Figure 3.1: Hermite 2D Basis Visualizations
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TIDL has the purpose of achieving invariance to geometric transformations. Training
images are assumed to be geometrically transformed with respect to a transformation
parameter vector A € A in transformation parameter domain A. The parameter vector
A can be any combination of geometric transformations such as rotation, scaling and
affine transformation. Please note that the geometric transformations are assumed to

constitute a linear operator on the images.

In order to counterbalance the effect of the geometric transformation on training
image y, using a geometrically transformed form of H is enough due to the property
of being linear. H) is the Hermite 2D basis [31]] which is the geometrically transformed
version of [/ by A. The geometrically transformed atom d can be represented over

the basis A, with the same coefficient vector o with following formula:

d/\ = H)\ « (34)

As already stated, Yuzuguler, Vural and Frossard use || ||o = 1 as a sparsity constraint
in TIDL. Due to this constraint, each image is represented by only one atom. Then,
due to the usage of 1-sparsity, no constraints on the coefficient vector c are needed.
The objective function of TIDL given in eq. is used for learning an atom from
the class m, dj* € D™. The optimization problem is a function of o which is the

coefficient vector representing the learnt atom d;" in the Hermite basis.

fla) = Z Hy,m — Hym aH2 -7 Z Z Hyf —H)\,g OzHQ (3.5)

ierm JE{L s MP\{m} i 3

Here,

o [" 7 and I ;™ are the index sets that identify a predetermined number of images

from ;' and m™ classes respectively, having the highest correlation with d;".

e )\ € Aisageometric transformation parameter vector and represents a combination
of rotation, scaling, affine transformation parameters. The transformation parameter
vector A" in eq. (3.5) represents the transformation applied to the training sample

y;". The transformation parameter of each training sample is assumed to be estimated
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before the optimization of .

e [, is the Hermite 2D basis [S1] which is geometrically transformed by the parameter

vector \.

e 1 is the parameter which encourages the learnt atom to be different from the

samples from other classes.

The objective in eq. (3.5]) aims to learn dictionaries whose atoms are similar to the
training samples from the same class but dissimilar from the training samples from
other classes. The diversity among the atoms in the dictionary of the same class can
be enhanced by the help of random initialization and re-selecting index sets at each

iteration.

If there is no transformation applied to the training image, the objective function to

learn an atom d in the Hermite basis as a function of « can be simplified as follows:

Fa)y=S Iy —HalP~n Y S |lW-Ho| 36

e JE{l , MP\{m} jem

where [/ and 1] are the same index sets as in eq. (3.5)).

After some operations, the following formula is obtained:

fla)=am Aa—-2b"a+c 3.7)

where

A=Y H'H-—n Y > H'H

iermm FE{L s MIN{m} e
‘ (3.8)
=Y e Y Y Ty
iemm Je{l,. . MIN{m} e

In order to minimize the objective in eq. (3.7), the coefficients o are optimized by
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solving 7 f = 0 as follows:

a*=A"1p (3.9)

When the matrix A is positive definite, the objective function f(«) is strictly convex
and the solution in eq. (3.9) finds the global minimum of the objective. In order to
ensure the positive definiteness of A, 1 is chosen as % of the smallest 7 value making

the smallest eigenvalue of A vanish.
The TIDL algorithm can be summarized as follows:

e Given the training set Y = {Y™}M_ the centroid of each set {Y™} is calculated

m=1>
Vm e {1,2,... M} .

e The atoms of class m are initialized with the training images labeled with class
J # m Vj which are the most distant ones from the centroids of class m. This gives
the advantage of taking the problematic regions close to class boundaries into account

in order to decrease the misclassification rate.

e The selection of dictionary size N of each class j is important due to a trade-off
between complexity and accuracy. The correct selection of N is achieved when the
dictionaries of all classes cover the necessary information for classification within

tolerable complexity.

e The sizes of index sets /, lmj and I must be selected carefully. If they are over
selected, this will increase the similarity between the atoms in the same dictionary. If
they are under selected, some useful information in training images may be discarded.

Both of these improper selections may reduce the correct classification rate.

e TIDL determines the index sets ;" Jand I ;™ for atom d}" by selecting a predetermined
number of training images from each class having the highest correlation with the
atom d;". In other words, [ lmj is the set of indices of the training images from class j

which are the most correlated ones with the /! atom of the dictionary of class m.

e Transformation parameters )\g’s are determined by the estimation of geometric

transformations applied on the training images. This estimation can be done in several
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ways. TIDL suggests the alignment of yf with a reference image of each class for
finding \]. This step is only required if the training images have undergone geometric
transformations. Otherwise, it is not needed. In our experiments with TIDL, this step

is skipped because we assumed that all images are geometrically aligned.
e TIDL iterates between the following steps VI € {1,2,..., N}:
e Minimize the eq. (3.7) to find the Hermite coefficients « for d;"

e Update atom d* = H «

3.2 Our Method

Our method has the aim of attaining good classification performance with low computational
cost. In order to reach this purpose, we build on some ideas from the TIDL method.

These are as follows:

e Using an analytical basis

e Using I-sparsity as a sparsity constraint

e Using the idea of a discrimination term in the dictionary learning objective

If the test signals have high sizes, the computational power and storage capability of
a device (computer or any embedded platform) have to be high enough to overcome
the load of large matrix computations. To face this difficulty, memory consumption
for the signal storage can be restricted by representing them over an analytical basis
because oversized signals can be approximated with relatively fewer coefficients by

using analytical basis representations without losing their characteristics.

In addition, using 1-sparsity reduces the computations thanks to reducing the number
of coefficients in the coefficient vector ¢ in eq. (3.1). Therefore, it is effective to use
1-sparsity to speed up the tests and thanks to that reach wide application areas where
users want to get immediate classification results. In particular, the computational
complexity of calculating a 1-sparse representation of a test signal in a dictionary of N

atoms is only of O(/N'), which can be easily found in any platform. Robust Real-Time
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Face Detection [48]], object detection [53] and image segmentation using dictionary
learning [6] are just three of the numerous application areas where the speed and
memory optimization are as crucial as the classification performance. To summarize,
because of the fact that the computational and time complexity are important purposes

of our method, it is useful to use an analytical basis and 1-sparsity.

The usage of a discrimination term improves the discriminative characteristics of

atom, and consequently, the classification performance.

Although our method has some similar points with TIDL with the following modifications,

which sketches the main features of our algorithm:

e Using all training images in the optimization of each atom, however, by including

them with different weights in the objective (rather than using index sets as in TIDL)

e Addition of an incoherence term in the objective in order to enhance the variability

between the atoms

In many applications, there is a limited number of training data or limited time for
training. Due to such constraints, it is important to use all characteristic information
from each training sample. Rather than defining index sets in the discrimination and
representation terms as in TIDL, we use all training images for each step of dictionary

learning in order to avoid any loss of characteristic information.

The usage of all training images can be useful. However, each of them carries
information with different significance. For example, the training images labeled
with the same class as the atom to be learnt are more important than others when
the focus of a dictionary learning algorithm is accurate representation. For good
classification, the training images belonging to other classes should also be taken into

account according to their significance for the learnt atom in our algorithm.

With the weighted usage of all training images in the proposed method, the learnt
atoms in the class-representative dictionaries tend to become similar. In order to
avoid limited variability between atoms from the same class, we propose to introduce
an incoherence term in the objective. The incoherence term is a term that measures the

mutual coherence of the atoms labeled with the same class and thanks to it, the atoms
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are encouraged to be different from each other. By reducing the similarity between
the atoms in the dictionary, the contents of the class-representative dictionaries are

enriched, and thus, the classification rate increases.

Our method aims to learn a specific dictionary for each class rather than learning a
global dictionary. These class-specific dictionaries are represented as D™ = {d"*} ¥,
consisting of NV atoms for classes m € {1,2, ..., M }. The atoms are represented over
the 2D Hermite basis as in eq. (3.2) and eq. (3.3) where a € R**! is the coefficient
vector whose i'" entry is «;. In other words, the representation of each atom is as

follows:

d:Ha:Zai h; (3.10)
=1

Since the atoms can be written as a function of « due to their representation in an
analytical basis, the proposed dictionary learning method for learning an atom d = d}"

from the m!" class has the following objective function of « as follows:

M,
fla)y=>Y " |y - H of®
=1

M;
-0 X u -l o

+ Bl HT H @
where
o a=[of ay . ..o 0,1 oty Aty ... oy

e a" € R¥*!is coefficient vector representing the i*" atom of the dictionary belonging

to class m in the Hermite basis.
e 0, is the zero vector in R**!.
e s is the number of Hermite basis vectors.

e [ is the incoherence coefficient.
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e N is the dictionary size.
e /" and /Lf are the weights of the training samples.

e M,, and M, are the number of training images labeled with class m and with class

J, correspondingly.

The first term " > ), [y — H al” gives the total weighted distance of the
learnt atom to the training samples labeled with same class. It can be called as an
approximative term because it gathers information from training images from the

same class with that atom.

The second term 3 ,c(y  1rp\ my 2uien, 1! ||y} — H al|? enforces discrimination
between the atom and the training images labeled with different classes. Hence, this

term can be called as a discriminative term.

The learnt atom needs to be a good representative of the training images from its
class due to the first term. Moreover, it has the ability to discriminate itself from the
other classes due to the second term. The effect of discriminative and representative

properties are adjusted by the factor of 7.

We set the weight parameters of the training samples using the Gaussian Kernel as

follows:

i ol —dl? /o

(3.12)

P T
— o vl +dTd—2y] d)/o®

In TIDL, index sets are selected to determine which samples affects the learnt atoms.
However in our method, the weight parameters of the training samples with the use
of the Gaussian Kernel are selected with respect to the distances between the learnt
atoms and the samples. Samples closer to the learnt atom affect it affects the atom

more than the distant ones.

The last term is the incoherence term which increases the in-class variability. Thanks
to this term, the atoms of the same class do not mimic each other anymore. Bao

et. al [2], Barchiesi and Plumbley [3] use the mutual coherence term as the maximum
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absolute inner product of dictionary atoms as m£x| < d;,d; > | where d; and d; are
i#]

the atoms with index ¢ and index j, respectively. Ramirez uses the incoherence term

as |DTD — I||3 where I is the identity matrix and F' denotes the Frobenius norm.

Our incoherence term is given in (3.13).

o™ HT H al|’ (3.13)

The weight of the incoherence term in the overall objective is adjusted by the parameter

f3. The effect of § will be discussed in Chapter [4]

Note that the objective in (3.11])) is directly based on the pairwise distances between
the atom and each training sample. This can be interpreted in the way that the 1-

sparsity constraint ||¢||o = 1 is inherently included in the learning objective.

We set the weight parameters of the training samples using the following equation by

replacing 4 and ;i with their values in the eq. (3.14):

M,
—||y™ — 2 o2 m
flay=>"ellw=dl™/o* ym — g o)

=1
M;
— 7 Z Ze*Hyg‘ —d||?/o? ||y2] _H OCHZ (3.14)
je(l,... MW\ {m} i=1

+ 6 o B

where
_gT 7=
e B=H" Ha
-~ — m m m m m m
o a=of" a3 ... oy Os1 0}y afffy . . O]

e o € R is the coefficient vector representing the i'* atom of the dictionary

belonging to class m in the Hermite basis.
e 0, is the zero vector in R**!.
e s is the number of Hermite basis vectors.

e (3 is the weight of the incoherence term.
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e N is the dictionary size.
e [ denotes the Hermite Basis.

After some operations, the following formula is obtained:

fla)=a" Aa—2b"a+c (3.15)

where
S M o—llyl—d|?/o* [T py_
M _j? —d||2 /o2
A=4q1n D je{l MY\ fm} i1 € li=dl/o" g™ H+
3B BT (3.16)
M M '
b=D H'y'—m ) ) H'y
i—1 je{l,.,MP\{m} i=1
where B = H" Haanda = [of" af' ... o 051 oLy alfy ..ol

Solving 7 f = 0 yields the solution of the objective function in eq. (3.15) :

o =A1h (3.17)

The objective function has a unique global minimum given by the solution (3.17)
when the matrix A is positive-definite. As in TIDL method, in order to ensure the
positive definiteness of A, 7 is chosen as }l of the smallest 7 value making the smallest

eigenvalue of A vanish.

Our dictionary learning method is sequential because it optimizes the dictionary as
atom by atom. Also, there must be a well-designed initialization step before starting

the iterations to achieve the best results. The algorithm is described as follows:

e Given the training set Y = {Y™}M_ the centroids of each set {Y™} Vm €

m=1°
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{1,2,..., M } is calculated as follows:

Sy

M. (3.18)

centroid of class m =

where M, is the number of images in training set belonging to class m.

e The atoms of class m are initialized with the training images labeled with class

j # m V4 which are the most distant ones from the centroids of class m.

The initialization of an atom with the most distant samples from the other classes
gives the advantage of taking the problematic regions near class boundaries into

account in order to decrease the misclassification rate.

Figure gives a simple illustration of the initialization procedure where each class
has a dictionary consisting of only one atom of dimension 2 with coordinates (X,y)

and the training data, centers and atoms are not normalized.

4.5 T T T lI’ T T
* %  Training data of class 1
4 X Training data of class 2 |
® Centroid of class 1
35+ O Centroid of class 2 1
i\( Initialized atom of class 1
* <> Initialized atom of class 2
3r * 1
X
*
25 ]
> ® * X
2r * .
*
1.5 X 7
*x *

® o

1 - -
x x
0.5 % X 1
X

0 1 1 1 1 1 1

1 2 3 4 5 6 7 8

Figure 3.2: Illustration of Initialization Procedure
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The outline of the proposed algorithm is as follows:
e Iterate between the following steps Vi € 1,2, ..., N:

e Minimize the eq. (3.14) to find the Hermite basis coefficients « of d}* by
solving 57 f = 0 as discussed.

e Update atom d]" = H o.

The residual is the distance between the test image y and its best 1-sparse approximation

within all class-representative dictionaries given in eq. (3.19).

N
Residual = min - ot d” 1. ]|c™]]o = 1soc™is 1-sparse. (3.1
min Ay = e dr | s fle o ¢" is I-sparse. (3.19)
i=1
where d!" is the i’ atom in the dictionary of class m, ¢™ = [¢[* ¢§* . . . c¢}] is the

coefficient vector and N is the dictionary size , m € {1,2,..., M} and ||c"|p = 1

denotes the 1-sparsity constraint.

The class-representative dictionaries learnt with our algorithm can be used for the

estimation of the class label m™* of a given test image y as follows:

N

y—y rdt

=1

m* = arg min s.t.||[c™|lo =1soc™is 1-sparse. (3.20)

m=1,2,...M

Using the class estimation in eq. (3.20)), the residual can be formulated as follows:

N
Residual = ||y — Z A st |le™ o =1 (3.21)
i=1
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we present the performance evaluation of the proposed supervised

dictionary learning method.

We first discuss the two data sets used; namely, MNIST Data Set [30] and Yale
Face Data Set [22]. The MNIST data set consists of handwritten digit images. The
Yale Face Data Set contains face images from different subjects with different light

settings.

Secondly, we show how the algorithm parameters affect the classification performance
and the residual measurement. The classification performance is measured by the
misclassification rate, which is the mislabeling percentage of test images. Mislabeling
is assigning a different class label to the test image rather than its true class label
which is assigned with eq. The residual of a test signal is the difference
between its best 1-sparse approximation using a class specific dictionary and signal

itself in accordance with eq. (3.19).

Finally, we compare our algorithm with the K-SVD [1]], LC-KSVD [29] and TIDL
[S9] methods in terms of classification performance and residual measurement. K-
SVD is a popular dictionary learning algorithm, which is known to provide accurate
sparse representations. LC-KSVD is a supervised dictionary learning algorithm with
discriminative properties proposed by Jiang et. al based on K-SVD. TIDL is the
analytical dictionary learning method, which we have aimed to improve in this thesis.
Hence, comparisons with these algorithms are helpful for evaluating the performance

of our method.
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4.1 Data Sets and Experimentation Settings

4.1.1 MNIST Data Set

The MNIST [30] data set contains handwritten digit images. It has a training set
of 60,000 examples and a test set of 10,000 examples. The digits have been size-

normalized and centered in a fixed-size image frame.

In our experiments, we use 200 randomly selected training images and 200 randomly
selected test images and resize them to a resolution of 141 x 141 pixels. We use all
10 classes in all experiments conducted with the MNIST data set. The experiments

are repeated for 100 Monte Carlo trials and the average is reported.

Some examples from different classes of the MNIST data set are shown in Figure d.1]

Class 0 Class 3 Class 5 Class 9

Figure 4.1: Mnist Data Set Samples
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4.1.2 Yale Face Data Set

The data set consists of face images of 38 different people, where each person has 58

images with some variations on lighting angles and intensities from a single viewpoint

[22]].

In the Yale Face data set experiments, we randomly select 40 training images and 18
test images. We repeat this selection for 100 times (Monte Carlo trials) and report
the average of the obtained results. Experiments are conducted with 3 and 5 classes

which are randomly selected for each Monte Carlo trial.

Some examples from different classes of the Yale Face data set are shown in Figure

4.2

Figure 4.2: Yale Face Data Set Samples



4.2 Variation of the Performance with the Algorithm Parameters

4.2.1 Selection of the Weights of Training Samples

In TIDL, training images are either used or unused with regard to their selection in
the index sets. Thus, the selection of the training images when learning an atom can
be called as "hard". In our method, all training images are used in accordance with
the selection of their weight parameters which can be called as a "soft" selection. To
better understand the effect of the "hard" or "soft" selections, we consider a simplified

version of our algorithm without the incoherence term in our experiments as follows:

Mm M,
)=y —Hal? —n > S uly-Haof @D
=1

je{l,...M}\{m} i=1

where 7" and u{ are the weights of the training images. Training images for class
m are y;" and for class j are yf Vi =1,2,..., M; where M; is the count of training

images. H is the matrix representing the Hermite Basis.

The solution can be found as follows after making A positive definite with a suitable

selection of 7:

fla)=am Aa—2b"a+c=a*=A"b where

M

M;
A=) ptH'H =9 Y > i H'H
1=1

je{l,.. ., MP\{m} =1

M, M; . .
b=> urH yr = > > H' Y]
=1

je{l,.. . MP\{m} i=1

4.2)

The following kernels are examined for the choice of the training sample weight

parameters:

e Kernel 1: Gaussian Kernel

. gl 2 i G g o T 2
’ug = Y; d|| /U —e (yi y¢+d d 2yi d)/U (4.3)
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The Gaussian Kernel is related to the distance between the training sample and the
learnt atom. With the selection of the Gaussian Kernel as weight parameters, the

distant training images have a smaller effect on the learnt atom than the closer ones.

e Kernel 2: Correlation Kernel

. T
pl =2 Dl (4.4)
In contrast to the Gaussian Kernel, the Correlation Kernel increases with the distance
between the training sample and the learnt atom. With this selection, the atoms are

affected more by the distant training images than closer ones.

The aim of this experiment examining the selection of the weight parameters is to
determine the effect of the "soft" selection of weights and the effect of the distance
between the training image and the atom on the classification performance. To conduct
this experiment, 100 Monte Carlo runs are done with randomly selected 200 training
and 200 test images of the MNIST data set. Then, Figures 4.3 and 4.4 are obtained

from the above two kernels for dictionaries respectively of 10 and 1 atoms.

40 T 1 1
o -lly - dliPe®
,\335_ Kernel 1: e .jT .|
< — — Kernel 2: g2 /e
Q
© N i
T 30
S
=Rl .
O
2920} i
o
O
9
2 15 [~ —_— . —— —
10 1
0 0.5 1 1.5 2

Figure 4.3: Misclassification Rate vs Kernel Scale o for Dictionary Size 10 in MNIST
Data Set
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In Figures {.3]and 4.4} the algorithm using the Gaussian Kernel in setting the weight
parameter shows better classification performance than the one using the Correlation
Kernel for both experiments conducted with different dictionary sizes. Thus, it can
be concluded that the selection of the Gaussian Kernel is more appropriate for the

classification purposes in the objective in eq. (4.2)).

The atoms learnt by weight selection with the Correlation Kernel lose class-representative
characteristics more than the atoms learnt by weight selection with the Gaussian
Kernel because they are highly affected by the training images belonging to other

classes. Thus, the above conclusions drawn from Figures .3|and [4.4] are as expected.

70 T

j 2, 2
Kernel 1: g “lly; -dil'/e
-2yt d)/o

(o]
o
T

— — Kernel 2: ef

(8)]
o
T

Misclassification Rate (%)
w B
o o

N
o
T

—_
o

o
o
o
—
—
o
no

Figure 4.4: Misclassification Rate vs Kernal Scale o for Dictionary Size 1 in MNIST
Data Set

For a special and unusual dictionary consisting only one atom, we expect the misclassification
rate to decrease with the increase in the kernel scale o because consisting of only one
atom, each dictionary needs to be affected by all training images. Figure 4.4] also
confirms our expectations. However, for usual dictionaries consisting of sufficiently
many atoms, the kernel scale o has to be selected with respect to the dictionary size

for creating a more comprehensive dictionary with number of atoms in the dictionary.
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If o is over selected, all training images affect all of the learnt atoms in the dictionary
which decreases the variation in the dictionary. If ¢ is under selected, fewer training
images have an effect on the learnt atoms so the class-representativeness of the dictionary

decreases.

Also, the effect of "hard" or "soft" selection of the weights is also questioned with
this experiment. The following table shows the optimized results of TIDL and the

simplified version of our method for dictionary sizes of 1 and 10.

Table 4.1: Misclassification Rate (%) of Algorithms

Number of Atoms | 1 10
TIDL | 194 | 12,65
Simplified Method | 18,8 | 11

The "soft" selection of weight parameters of training images creates a more informative
dictionary so yields better classification performance than the "hard" one as used in

TIDL as shown in Table 4.1l

4.2.2 Effect of the Number of Iterations

The effect of the number of iterations is studied in our dictionary learning approach
in this section. The number of Monte Carlo runs and the number of training and test
images are the same as those of Section [4.2.1]in this experiment. Number of atoms

in each class specific dictionary is 10 and the residual definition in eq. (3.19). The
results are shown in Figures {.5] 4.6 and

In our dictionary learning algorithm, the atoms are sequentially learnt, where each
atom is optimized by fixing all the others. In several dictionary learning algorithms
such as K-SVD, once all atoms are optimized, the algorithm comes back to the
beginning to have another pass over all atoms and these iterations are continued until
convergence. We thus study in this experiment whether it is useful to employ our
algorithm in an iterative manner, i.e., by re-optimizing all atoms sequentially several

times in the learning. Figures {.5 and {.6] show the misclassification rate and the
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residual respectively with the change on the number of iterations, i.e. the number of

times the whole dictionary is re-optimized in the learning.

18 T T 1

16 | i

14 | )

12 L )

Misclassification Rate (%)

8 1 1 1 1 1
0 10 20 30 40 50 60

Number of lterations

Figure 4.5: Misclassification Rate (%) vs Number of Iterations in MNIST Data Set
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10.5 .

10 F i

95} i

Residual

85} i
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0 10 20 30 40 50 60

Number of lterations

Figure 4.6: Residual vs Number of Iterations in MNIST Data Set

It is seen in Figure [4.7] that as the number of iterations increases, atoms lose their

classification characteristics and atoms within the same class also tend to get more
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similar to each other. This visual inspection of the atoms is in line with the observation
drawn from Figure [4.5] and [4.6] that terminating the algorithm after a single iteration

gives better classification and representation performance.

[teration 1 [teration 2 teration 3 Iteration 4 Tteration 5

-

Figure 4.7: Atoms vs Number of Iterations in MNIST Data Set

4.2.3 Optimization of

In this section, we examine the effect of the parameter 5 which weights the incoherence
term. With the increase of (3, the mutual coherence of atoms is decreased. This leads

to an increase in the diversity of the atoms from the same class.

4.2.3.1 Optimization of J in MNIST Data Set

The experiments are conducted with the setup described in Sectiond.1.1| where the o

values are fixed in the objective function in eq. (3.14). Figure[4.8|shows the variation

43




of the classification performance with respect to 3 in the MNIST data set.
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Figure 4.8: Misclassification Rate (%) vs [ in MNIST Data Set

Since the estimation of the class labels is done by eq. [3.20] the increase in the number
of atoms in the dictionary increases the chances of the selection of a suitable class-
representative atom for each test sample. Thus, higher dictionary sizes perform better

in classification. The results in Figure 4.8]are in line with these expectations.

Table[.2|shows the 3 values optimizing the classification performance for the MNIST
data set:

Table 4.2: Selection of 3 for Different Dictionary Sizes in MNIST Data Set

Number of Atoms 1 5 10 | 20 | 50 | 100 | 200

15} 1 07 |25 |20 |20 |25 |45
Misclassification Rate (%) | 18,6 | 13,3 19,5 9.4 | 89 | 8,3 | 6,55

Figure shows the residual change with respect to 5 in the MNIST data set and it
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suggests that there is an optimal [ value around 10 that minimizes the residual for
all dictionary sizes. If the 3 is under-selected, the atoms used in the representation
of the test image have limited diversity. If 5 is over selected, the incoherence term
becomes the most dominant term in the objective function in eq. (3.14). Thus, the
approximation capability of the atoms degrade when /3 is increased too much beyond

the optimum £.

The selection of the 8 value with respect to the residual has some differences with
the one with respect to the misclassification performance in Figure This can be
explained by the fact that the residual is only related to the representation so only the
atoms from the dictionary of the same class, whereas the classification performance
is related to all dictionaries from different classes. Consequently, when the size of
the dictionary increases, the similarity between atoms should be decreased for better
correct classification rates unlike finding the optimum [ for better residuals. Since
we aim the best correct classification rate, we select 3 values as in Table 4.2] for the

experiments conducted for the MNIST data set.

-4
10.5 210 : : : :
Dictionary with 5 atoms
10 — — Dictionary with 10 atoms | 1
-------- Dictionary with 20 atoms
9.5 Dictionary with 50 atoms |
== == Dictionary with 100 atoms
9 ==x=uuaa Dictionary with 200 atoms | -

Residual

. —

0 20 40 60 80 100

Figure 4.9: Residual vs 3 in MNIST Data Set
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4.2.3.2 Optimization of j in Yale Data Set

For the Yale data set, we conduct two main experiments, by choosing respectively 3
and 5 classes from the data set. The classes are randomly chosen in each Monte Carlo

trial and the setup in Section is used to study the effect of 5 on the performance

of our method.
e Experiments on 3 different classes:

Figures 4.10] and 4.TT| show the results obtained by experimenting on 3 classes from
the data set. It is observed in Figure[4.10|that the classification performance increases
with the size of the dictionaries. Also, Figure shows that larger dictionaries

produce more accurate representations by reducing the residual as expected.

35 T T T T
/\/\_ Dictionary with 5 atoms
D — — Dictionary with 10 atoms
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(_U \ p / --------- T e .
B 5 b \ i
=
10 1 1 1 1
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g

Figure 4.10: Misclassification Rate (%) vs (3 in Yale Face Data Set for 3 Classes
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Figure 4.11: Residual vs g in Yale Face Data Set for 3 Classes

From Figure [@.10] it is difficult to draw the conclusion about the relationship of
incoherence term and the increase in the size of the dictionaries like the one from
the experiments conducted with the MNIST data set where increasing /3 for larger
dictionaries resulted in better correct classification rates. The training images belonging
to the same class have larger variability in the Yale Face data set than the ones in the
MNIST data set. Hence, the dissimilarity between the atoms has a natural tendency to
increase when there are more atoms in the dictionary in the Yale Face data set unlike
in the MNIST data set. In other words, the atoms learnt in the Yale Face data set are
not similar by the nature of the training images so the need for the incoherence term

decreases by the increase in the size of the dictionaries.

The residual increases with respect to the increase in 3 as shown in Figure With
the increase in [, the atoms become as dissimilar from each other as they become
dissimilar from the training images labeled with same class as the atoms. This causes

an increase in the residual so a decrease in the representation power.

The optimized results for 3 classes in the Yale data set are obtained with the 3 values

given in Table 4.3}
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Table 4.3: Selection of [ for Different Dictionary Sizes on 3 Classes in Yale Face
Data Set

Number of Atoms 1 5 10 15
5 05 ({09 (03 |02
Misclassification Rate (%) | 32,8 | 25,9 | 15,2 | 12,14

e Experiments on 5 different classes:

Figure and Figure show the results obtained on 5 different classes from the
Yale data set.

The same conclusion with the experiments on 3 classes in the same data set is drawn
about the variation of the misclassification rate and the residual change with respect
to the size of the dictionary. The misclassification rate and the residual decrease with

when the size of the dictionary increases as shown in Figure d.12]and Figure 4.13]

45 T T T T
o Dictionary with 5 atoms
Q — — Dictionary with 10 atoms [ |
s40 Dictionary with 15 atoms | 7
0}
&
= 35 - - — — — }
= ——m——— _ - \
= 30 | A
‘B N\
B e N
S| L . .
D o5 L -
20 1 1 1 1
0 0.2 0.4 0.6 0.8 1

)

Figure 4.12: Misclassification Rate (%) vs /3 in Yale Face Data Set for 5 Classes
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Figure 4.13: Residual vs § in Yale Face Data Set for 5 Classes

The mutual coherence of the atoms from the same dictionary should decrease to
increase the discriminative power of the dictionaries, as a result of the increase in
the number of classes. For this reason, the experiments with 5 classes reported in
Figure 4.12|suggest that the increase in (5 reduces the misclassification rate unlike the
experiments with 3 classes. Also, the misclassification rate and the residual increase
with the increase in the classified classes as expected. As in Figure Figure .13
also confirms the expectation that if 5 increases the residual also increases because of

the increase in the atom dissimilarity causing a decrease in representation power.

The optimal beta values for different dictionary sizes with 5 classes are reported in
Table 4.4l

Table 4.4: Selection of [ for Different Dictionary Sizes on 5 Classes in Yale Face
Data Set for 5 Classes

Number of Atoms 1 5 10 15
5 08 |08 |1 0,9
Misclassification Rate (%) | 59,84 | 38,8 | 27,33 | 22,37
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The visualizations of dictionaries in Figure show the effect of 3 under with the

experiments for 5 classes.

p=1 g di.d | L i
' - TR ! ' 3 7

Figure 4.14: Atoms with the change of 3 in Yale Face Data Set

Figure[d.14] shows the decrease in the mutual coherence of atoms with the increase in
£ value which increases the power of incoherence term on the objective function in

eq. (3.14) and confirms the conclusion arrived from Figure and4.13]

4.3 Comparison with Other Algorithms

After these optimizations of parameters in our algorithm, the proposed method is
compared with reference supervised and unsupervised dictionary learning methods;
namely, K-SVD [1]], LC-KSVD [29] and TIDL [59] , with respect to the following

performance measures:

e The classification performance is measured with the percentage of test samples
misclassified with 1-sparse representations in the learnt dictionaries. The test sample

is assigned the label of the atom which gives the minimum residual as in eq. (3.20).

e The representation performance is measured with the norm of the residual vector,
which is the difference between the test signal and its best 1-sparse representation as
formulated in eq. (3.19).

To summarize, the comparisons show the classification and representation performances

of compared algorithms with 1-sparsity constraint. Using 1-sparsity reduces the
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computational complexity and increases the speed of all algorithms so it helps to

achieve the aim of our method which is fast and memory efficient classification.

The experiments are done with the setup described in Section .1 For the proposed
method, we use the optimized values of 3 and o given in the Section to solve
the eq. (3.14). In the training of the K-SVD, we set the number of iterations as 50,
the sparsity of K-SVD, s as 40 in the eq. (2.22) which gives the optimum results for
the data sets. An individual dictionary is computed for each class with K-SVD, by
learning the dictionary with the training samples of that class. In training step of LC-
KSVDI1, we use 7 as 0.002 and sparsity s as 40 for optimum results in eq. (2.27).
Likewise for LC-KSVD2, we set v, as 0.002, v, as 0.004 and sparsity s as 40 for
optimum results in eq. (2.28)). For both LC-KSVD methods, the number of iterations
is set to 50. To learn dictionaries with the TIDL method, we use the optimized o
value as used in the proposed method which gives the optimum results in eq. (3.6).
As stated above, 1-sparsity is used as given in eq. (3.20) in all tests to measure the

performance differences among these methods.

Please note that in all experiments in this section similar results are obtained from
LC-KSVDI and LC-KSVD2 so the plots in this section legends LC-KSVDI1 as LC-
KSVD for the simplicity of the plots.

4.3.1 Results in MNIST Data Set

The setup described in Section [.1.1]is used with the optimized parameters for each
method given in Section 4.3 for the experiments in this section. Figure 4.15]shows

the classification performance of compared methods.
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Figure 4.15: Misclassification Error (%) Comparisons of Algorithms in MNIST Data
Set

The representation performance of compared methods is shown in Figure

-4
12 x10 : T '
Proposed Method
1l — — K-8VD ]
‘\ - TIDL
ol U —-—- LC-KSVD -
\
S 9l _
i
8 8 | S \ .......... i
8 B T
7t - -
6 - —~ — .\':. .
5 ' ' I
h 50 100 U2t .

Dictionary Size

Figure 4.16: Residual Comparisons of Algorithms in MNIST Data Set
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It is observed in Figures and that the classification performance and the
representation accuracy increase with the size of the dictionaries in all compared
algorithms. The proposed method and its preceding version TIDL have the lowest

misclassification rate and residual for dictionaries having up to 20 atoms. Moreover,

the proposed method continues the leading performance of classification and representation

for larger dictionaries having up to 100 atoms. This leading performance of our
method demonstrates the success of the ideas of training using different weighted

training images and the incoherence term added to the objective of the TIDL method
as observed in Figures 4.15|and 4.16]

The results of these experiments are given in Tables 4.5 and 4.6]in more detail.

Table 4.5: Misclassification Rate (%) Comparisons of Algorithms in MNIST Data
Set

Dictionary Size | 1 5 10 20 50 100 200
Proposed Method | 20,50 | 13,30 | 9,50 | 9,40 | 8,90 | 8,30 | 6,55
K-SVD | 20,10 | 20,20 | 16,30 | 15,50 | 9,95 | 7,90 | 6,00
TIDL | 18,6 | 14,05 | 12,65 | 11,95 | 10,90 | 10,55 | 10,10
LC-KSVDI1 | 29,15 | 15,58 | 13,47 | 11,66 | 10,49 | 11,85 | 6,4
LC-KSVD2 | 29,15 | 15,49 | 13,56 | 11,92 | 10,28 | 9,4 6,35

Table 4.6: Residual Comparisons of Algorithms in MNIST Data Set

Dictionary Size | 1 5 10 20 50 100

200

Proposed Method | 0,00147 | 0,00085 | 0,00078 | 0,00072 | 0,00067 | 0,00062

0,00059

K-SVD | 0,00111 | 0,00111 | 0,00111 | 0,00095 | 0,00073 | 0,00069

0,00057

TIDL | 0,00108 | 0,00089 | 0,00086 | 0,00081 | 0,00081 | 0,00078

0,00076

LC-KSVDI1 | 0,00112 | 0,00111 | 0,00095 | 0,00087 | 0,00074 | 0,00074

0,00059

LC-KSVDI | 0,00112 | 0,00111 | 0,00095 | 0,00084 | 0,00075 | 0,00072

0,00057

The leading classification performance of our algorithm stands for the lower dictionary

sizes in the MNIST data set as seen in Table [4.5] This may help our algorithm to
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be used in platforms with low storage capability because for dictionary sizes up to
100 for the MNIST data set, our algorithm outperforms the compared algorithms.
However, for large dictionaries, the K-SVD method captures the lead and is followed
by LC-KSVD, the proposed method and TIDL. This result can be explained by the
visualization of some example atoms in Figures [4.17] and .19 which are taken from
dictionaries of size 200. The K-SVD method learns more comprehensive dictionaries
than our method and the advantage of these comprehensive dictionaries are observed

more for larger dictionaries.

For the representation performance, all methods end with similar residual errors for
large dictionaries but when the dictionary size is small, the LC-KSVDI1 and LC-
KSVD2 have the most accurate representations followed by the proposed algorithm,

TIDL and K-SVD as seen in the Table

10 sample atoms selected from 3 classes are shown in Figures§.17]-|.21] respectively
for the proposed method, TIDL, K-SVD, LC-KSVD1 and LC-KSVD2.

slels|s|s|s|ss|s|s

Figure 4.17: Dictionaries Learnt with Proposed Method in MNIST Data Set for 3

Classes
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Figure 4.18: Dictionaries Learnt with TIDL in MNIST Data Set for 3 Classes
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Figure 4.19: Dictionaries Learnt with K-SVD in MNIST Data Set for 3 Classes
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Figure 4.20: Dictionaries Learnt with LC-KSVD1 in MNIST Data Set for 3 Classes
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Figure 4.21: Dictionaries Learnt with LC-KSVD2 in MNIST Data Set for 3 Classes

Figure {.19] shows that the K-SVD method learns a representative dictionary with
atoms that rather look like the training images belonging to the same class. It can be
observed in Figures and.21] that LC-KSVD1 and LC-KSVD2 learn atoms that
also have dissimilarities from the training images belonging to other classes. This
causes the LC-KSVD methods to have better classification performance than K-SVD
as shown in Table d.5] The TIDL method learns dictionaries having atoms different
from each other which also bear dissimilarities from the training images of the other
classes. This causes the TIDL method to have better classification performance
than K-SVD. Although the proposed method learns atoms that looks similar to each
other, these atoms are particularly adapted to the setting of 1-sparse representations
with the help strategies such as including all training images in the learning of each
atom. Consequently, the proposed algorithm outperforms the others in most settings
when 1-sparse representations are used as observed in Table 4.6 It also yields the
best classification performance over the compared algorithms until the size of the
dictionary exceeds about 100 atoms. The LC-KSVD1 and LC-KSVD2 methods have
the lowest misclassification rates for larger dictionary sizes due to the dissimilarities

of the atoms in the dictionaries.
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4.3.2 Results in Yale Face Data Set

We experiment with the setup in Section for 3 and 5 randomly selected classes,
correspondingly. For each experiment, 100 Monte Carlo trials are done with the
random selection of classes and the training images of corresponding classes. Each

method uses their optimized parameters given in Section (4.3

e Experiments on 3 different classes:

Figure [4.22] shows the misclassification results of all methods for 3 different classes

in the Yale Face data set.
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Figure 4.22: Misclassification Error (%) Comparisons of Algorithms in Yale Face

Data Set for 3 Classes

For the experiments on 3 classes from Yale data set, Table@ shows that the classification
performance of the proposed algorithm leads the compared algorithms. The KSVD,
LC-KSVD2, LC-KSVDI, and TIDL methods follow our algorithm, respectively.
Consequently, the aim of fast and efficient classification of our algorithm is achieved
for this experiment. K-SVD has the second lowest misclassification rate because it

performs well when the number of classes is low.
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Figure 4.23] shows the residual results of all methods for 3 different classes in the
Yale Face data set. In terms of the accuracy of 1-sparse representations, K-SVD is the
leading algorithm followed by LC-KSVD1, LC-KSVD2, the proposed algorithm and
TIDL, respectively as seen in Figure [d.23] It is an expected result because the K-SVD
method owes its popularity to its representation power and LC-KSVD is a supervised
and extended version of K-SVD. The proposed method performs better than the
TIDL method for all dictionary sizes because it incorporates more information in
the learning of the atoms by using all training images with different weights, unlike

the TIDL method.
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Figure 4.23: Residual Comparisons of Algorithms in Yale Face Data Set for 3 Classes

The experimental results of this section are also given in Tables 4.7] and [4.8]

As seen in Table the proposed algorithm outperforms the compared algorithms
in terms of classification performance. The experiments done for dictionaries having
10 atoms, the proposed method is 4% better than the KSVD which is the runner-
up algorithm with respect to the misclassification rate. However, this big difference
among the algorithms is not valid for the experiments with dictionaries having 15
atoms. For this experiment, all of the algorithms except the TIDL method performs

similarly in terms of classification. The TIDL method is powerful for the experiments
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conducted with dictionary sizes of 5. As stated in [39], the TIDL method shows its

classification ability for lower dictionary sizes which is also seen in Table

Table 4.7: Misclassification Rates (%) on 3 Classes in Yale Face Data Set

Dictionary Size | 1 5 10 15
Proposed Method | 32,78 | 25,93 | 15,23 | 12,14
KSVD | 26,62 | 34,50 | 19,72 | 12,71
TIDL | 50,11 | 26,25 | 32,63 | 27,22
LC-KSVDI1 | 62,70 | 35,69 | 22,41 | 15,04
LC-KSVD2 | 62,70 | 35,63 | 22,43 | 14,41

Table 4.8: Residual Error on 3 Classes in Yale Face Data Set

Dictionary Size | 1 5 10 15
Proposed Method | 0,317 | 0,205 | 0,172 | 0,161
KSVD | 0,319 | 0,142 | 0,110 | 0,095
TIDL | 0,333 | 0,239 | 0,193 | 0,180
LC-KSVDI1 | 0,255 | 0,150 | 0,117 | 0,101
LC-KSVD2 | 0,254 | 0,150 | 0,118 | 0,101

Being one of the most powerful dictionary learning algorithms in terms of sparse
representation, the K-SVD method takes the lead when the 1-sparse representation
accuracies are studied as seen in Table 4.8] K-SVD is followed by LC-KSVD, the

proposed method and TIDL, respectively in terms of approximation accuracy.

Here we display some atoms from the dictionaries having 10 atoms learnt from 3

classes of the Yale Face data set.

59



FAFFEEFEEE
FEEECEEEEEREE
EEEEEEIEEE

Figure 4.24: Dictionaries Learnt with Our Method in Yale Face Data Set for 3 Classes
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Figure 4.25: Dictionaries Learnt with TIDL in Yale Face Data Set for 3 Classes
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Figure 4.26: Dictionaries Learnt with K-SVD in Yale Face Data Set for 3 Classes
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Figure 4.27: Dictionaries Learnt with LC-KSVDI in Yale Face Data Set for 3 Classes
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Figure 4.28: Dictionaries Learnt with LC-KSVD2 in Yale Face Data Set for 3 Classes

It is surprising that K-SVD outperforms the LC-KSVD methods which are the extended
and supervised version of K-SVD in classification. The cause of this unexpected
result is related to the learnt atoms of these method seen in Figures [4.26] and
M.27] The visual examination of the dictionaries shows that the atoms learnt by the
K-SVD method have more class-specific characteristics than the ones learnt by the
LC-KSVDI and LC-KSVD2 methods. The atoms learnt with the proposed method
also have the same characteristic information as seen in Figure #.24] Atoms learnt
by the proposed method also have some features from the other classes which results
in the increase in the classification performance but the decrease in the accuracy of

representation. Although the TIDL method learns some atoms having both characteristics

61



from the training images labeled with the same class and the other classes, some
atoms learnt by TIDL seem disrupted that may be caused by unsuccessful atom

initialization and finding index sets corresponding to this initialization.
e Experiments on 5 different classes:

The 1-sparse classification and representation performances of the compared methods

for randomly selected 5 different classes in the Yale Face data set can be seen in

Figures and 4.30| respectively.
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Figure 4.29: Misclassification Error (%) Comparisons of Algorithms in Yale Face

Data Set for 5 Classes
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Figure 4.30: Residual Comparisons of Algorithms in Yale Face Data Set for 5 Classes

There are some differences among Figure #.22] and Figure 4.29] First of all, the
misclassification rates are higher in this setup because of the increase in the number
of classes. This is an expected result because the difficulty of classifying more classes
is directly proportional to the number of classes which can be inferred from eq. (3.20).
Secondly, the proposed method is observed not to outperform the others in this setup
with 5 classes. Although it has better results than its preceding version TIDL for all
dictionary sizes, this result shows that the improvement of its performance for more
classes can be a future work. Thirdly, the K-SVD method outperforms all compared

methods including the proposed method.

Figure .30] presents similar results to those of Figure 4.23]so it can be concluded that
the change in the number of classes does not change the representation performance.
Also, the same conclusions related to the residual drawn from the experiments with 3

classes on Yale Face data set are valid for this experiment.
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Table 4.9: Misclassification Rates (%) on 5 Classes in Yale Face Data Set

Dictionary Size | 1 5 10 15
Proposed Method | 59,84 | 38,80 | 27,33 | 22,37
K-SVD | 35,84 | 43,38 | 25,53 | 17,64
TIDL | 62,69 | 50,40 | 39,73 | 33,51
LC-KSVDI | 72,90 | 47,81 | 30,03 | 22,30
LC-KSVD2 | 73,06 | 47,50 | 30,06 | 22,37

Table 4.10: Residual Error on 5 Classes in Yale Face Data Set

Dictionary Size | 1 5 10 15
Proposed Method | 0,317 | 0,207 | 0,160 | 0,153
K-SvD | 0,319 | 0,146 | 0,109 | 0,094
TIDL | 0,392 | 0,274 | 0,235 | 0,212
LC-KSVDI | 0,244 | 0,153 | 0,125 | 0,107
LC-KSVD2 | 0,244 | 0,152 | 0,125 | 0,108

In terms of 1-sparse representations, it can be inferred from Table @.10| that K-SVD
has the best performance as in Table[d.8] K-SVD owes the success behind its classification
performance to its representation power. The proposed method cannot outperform
K-SVD in this experiment. The proposed method cannot maintain its success with

increasing class number due to the usage of all training images in the training step.

The dictionaries having 10 atoms learnt with 5 classes from the Yale Face data set are
displayed in Figures -
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Figure 4.31: Dictionaries Learnt with Proposed Method in Yale Face Data Set for 5

Classes

EEEEEEEERE
EEEEFEFEEEE
EEEEEEEEELE
FEEFEFERRE
EFEREFEFER

Figure 4.32: Dictionaries Learnt with TIDL in Yale Face Data Set for 5 Classes
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Figure 4.33: Dictionaries Learnt with K-SVD in Yale Face Data Set for 5 Classes
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Figure 4.34: Dictionaries Learnt with LC-KSVDI in Yale Face Data Set for 5 Classes
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Figure 4.35: Dictionaries Learnt with LC-KSVD2 in Yale Face Data Set for 5 Classes

From Figures [4.31] - F.35] it is inferred that the K-SVD method learns the most
comprehensive dictionary among all methods so that it takes the lead in both the
classification and the representation performance for this experiment. The LC-KSVD1

and LC-KSVD2 methods learn similar dictionaries so they result in similar misclassification
rates. The proposed method outperforms the TIDL method in terms of the classification

performance and the accuracy of representations as it learns more diverse dictionaries.
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CHAPTER 5

CONCLUSION

In this thesis, we proposed a supervised dictionary learning method for fast and
efficient classification of test samples. Particularly focusing on applications over
platforms with limited memory and computation resources, we have aimed to develop

a dictionary learning algorithm that minimizes the computational complexity of the
classification of test images. We have adopted an analytical representation of supervised
dictionaries over a two-dimensional Hermite basis in order to decrease the computational
complexity and the need for memory. In order to speed up the classification of test
samples, we have learnt the dictionaries in a way to allow an accurate classification of
test samples with 1-sparse representations. Also, when learning each atom, we use all
of the training images with different coefficients based on their distances to the learnt
dictionary atom to increase the variability between the atoms. We have also used an
incoherence term in our learning objective that discourages the similarity between the

dictionary atoms from the same classes.

This thesis starts with a brief review of sparse representations and dictionary learning
concepts. In Chapter 2, we have given an overview of the literature with some
examples of related supervised and unsupervised dictionary learning algorithms and
also on some sparse representation methods. In Chapter 3, the proposed method
has been explained in detail. We have started this chapter with a review of the TIDL
algorithm that has inspired our method, with the description of the proposed algorithm
by specifying its common and different points with respect to TIDL. Modifications
on the training sample selection and weighting strategies and the addition of an
incoherence term for atom variability have also been widely discussed in the same

chapter. In Chapter 4, we have given the results of the experiments conducted on
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several data sets in order to measure the classification and representation performance
of the proposed method. We have compared our method with the K-SVD [1], LC-
KSVD [29] and TIDL [59] methods for classification with 1-sparse signal representations.

The experiments on a simplified version of our method without the incoherence term
show that training with all training images with different weights performs better
than the hard selection of training images via index sets as done in the TIDL method.
Also, the comparison of the results obtained with and without the incoherence term
in our method shows the effectiveness of the incoherence term. For example, the
experiments conducted in the MNIST data set with the dictionaries having 10 atoms
shows that TIDL has 12.65%, the simplified method has 11% and finally the proposed
method has 9.5% misclassification rates which are inferred from Tables and
Please note that the experiments for the proposed method use the optimized weights

of the incoherence term which is also needed for these successful results.

Table 5.1: Computational Complexities of Classification Algorithms

Algorithm | Complexity
Proposed Method | O(MN)
Nearest Neighbor | O(K)
Support Vector Machine | O(M)

The computational complexities of classification algorithms when calculating a 1-
sparse representation of a test signal in M class-specific dictionaries of each having
N atoms and the number of training samples of all classes K is given in Table [5.1]
The proposed method estimates the class label of a given test image y with the eq.
(3.20). Thus, the computational complexity of the proposed method on test step can
be expressed with O(M N) where M is the class number and each class-specific
dictionary have IV atoms. The Nearest Neighbor [[14] approach searches the minimum
distance between the test image y and the training sample y;, Vi € {1,2, ..., K}. NN
estimates the class-label of test image with the label of the training image satisfying
argmin ||y — y;|| Vi € {1,2,..., K}. For this reason, NN computes every distance
between test image and all training samples. Thus, it has a test time complexity

of O(K) where K is the number of all training samples. Support Vector Machine
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[13]] defines boundaries for each class m to separate it from the other classes. SVM
estimates the class label of test image y with w’ y + b,,,Vm € {1,2,..., M} where
M is the class number and w,, and b,, define the boundary of class m. Thus, the
computational complexity of SVM is O(M). The Support Vector Machine method
only depends on the class number. For small dictionaries, the proposed method
has complexity getting closer to the complexity of SVM. The design aim of the
proposed algorithm which 1s applicability over the platforms having critical resources
is supported with this conclusion. Moreover, training with large training sets limits

the usage of Nearest Neighbor unlike the proposed method.

Experiments are conducted with the comparison of classification and representation
performances of our method with different algorithms using the 1-sparsity constraint.
1-sparsity speeds up the test stage of all algorithms and reduces their memory need.
Thus, the experiments show the performance of compared algorithms for the applications

where memory and computational resources are limited.

The experiments with large dictionary sizes can be conducted with the MNIST data
set. The results of these experiments show that the proposed method has considerably
better classification results at small dictionary sizes. Consequently, the proposed
method has benefits for applications with particular restrictions on the dictionary size

and demands for fast classification of test images.

The classification experiments with different number of classes in the Yale Face data
set shows that the classification performance of all algorithms decreases with the
increase in the number of classes. However, these experiments also show that the
representation performance of the algorithms is not as affected as the classification

performance.

The training images are more similar to each other in the MNIST data set compared
to the Yale Face data set. This causes the learnt atoms to be more similar atoms in the
MNIST data set. Hence, the need for an incoherence term is smaller in the Yale Face
data set because of having more diverse training images. Since our method brings an
innovation to the TIDL method through the incoherence term whose success is shown
by the experiments, our method is more favorable among the compared methods in

the MNIST data set than the Yale data set due to the need of atom incoherence.
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In the proposed method, some weight parameters are set experimentally. To begin
with, the Gaussian Kernel is used for setting the weight parameters of training images
in the training step of our algorithm. An important parameter to tune for setting
the weights is then the kernel scale. We tuned the kernel scale empirically. The
tuning of the kernel scale with more developed strategies might be the first of future
works. Also, the incoherence parameter is optimized experimentally in our work.
The second future work can be the automatic selection of the incoherence parameter.
The incoherence parameter should be optimized in accordance with the dictionary
size, the number of classes and the data set. In addition to the automatic optimization
of the weight parameters, there are is still some room for improving this work like
enhancing its performance for a large number of classes, the addition of some terms
to increase the classification rate in large dictionaries. Also, using an analytical basis
would facilitate the extension of our algorithm to be transformation-invariant like
TIDL. However, the transformation invariance of our algorithm is not examined in
this work. Thus, improvements for the geometric invariance can be another future
work. Moreover, basis selection can be optimized to increase speed and efficiency of
the algorithm because with an optimized selection of basis, signals of interest can be
represented with fewer coefficients which reduces the complexity and run time of the
algorithm. Also, it may increase the classification rate. Lastly, comparisons with the
baseline classification algorithms like Support Vector Machine and Nearest Neighbor

might be another future work.

To conclude, the experimental results show that, in comparison with the TIDL algorithm,
the proposed modifications over the selection of the training sample weights and the
introduction of the incoherence term have allowed the proposed method to achieve
successful classification performance. The comparisons with reference methods also
show that our method achieves its fast and efficient classification purpose as it often
gives more accurate results than the other methods in comparison, especially at small
dictionary sizes with 1-sparse representations. Consequently, the potential of our
algorithm for usage on platforms with low storage and computational capability is

demonstrated.
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