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ABSTRACT

DICTIONARY LEARNING FOR EFFICIENT CLASSIFICATION WITH
1-SPARSE REPRESENTATIONS

Engin, Ege

M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Elif Vural

May 2018, 79 pages

Sparse representations have the goal of expressing a given signal as a linear combination

of a small number of signals that capture well its characteristics. Dictionary models

allowing sparse representations have proven to be quite useful for the treatment and

analysis of data in recent years. In particular, the learning of dictionaries in a manner

adapted to the characteristics of each data class in a supervised learning problem and

representing the data with the learned dictionaries significantly improve the accuracy

of classifiers. However, large dictionary sizes and the complexity of the computation

of sparse representations may limit the applicability of these methods especially over

platforms with limited storage and computational resources. In this thesis, we study

the problem of supervised dictionary learning for fast and efficient classification of

test samples. In order to achieve low computational complexity and efficient usage of

memory, our method learns analytically represented supervised dictionaries that allow

an accurate classification of test samples based on 1-sparse representations. We adopt

a representation of dictionary atoms in a two-dimensional analytical basis, where the

atoms are learned with respect to an objective involving their distance to the samples
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from the same class and different classes, as well as an incoherence term encouraging

the variability between dictionary atoms. The performance of the proposed method

is evaluated with experiments on different image datasets. The comparison of the

method to reference supervised and unsupervised dictionary learning methods suggests

that it provides satisfactory classification performance under 1-sparse signal representations.

Keywords: Supervised Dictionary Learning, Classification, Sparse Coding, Incoherence,

Analytical Dictionaries, 1-Sparse Representations
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ÖZ

TEK KATSAYILI SEYREK GÖSTERİMLERLE HIZLI SINIFLANDIRMA
İÇİN SÖZLÜK ÖĞRENME

Engin, Ege

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Dr. Öğr. Üyesi Elif Vural

Mayıs 2018 , 79 sayfa

Seyrek gösterimler, bir sinyalin, kendi özelliklerini taşıyan az sayıda sinyalin lineer

kombinasyonu olarak gösterilmesini hedefler. Sözlük modellemesi sayesinde seyrek

gösterimlerin verilerin analizinde ve işlenmesinde faydalı olduğu geçtiğimiz yıllarda

gözlemlenmiştir. Sınıflandırma problemlerinde denetimli sözlüklerin her sınıftaki verilerin

yapısına uygun bir şekilde öğrenilmesi ve daha sonra verilerin bu denetimli sözlükte

gösterilmesi sınıflandırıcıların performansını önemli ölçüde arttırmaktadır. Fakat, yüksek

sözlük boyutları ve seyrek gösterim hesaplama işleminin karmaşıklığı özellikle sınırlı

hafıza ve hesaplama kaynaklarına sahip platformlarda bahsedilen yöntemlerin kullanımını

zorlaştırmaktadır. Bu tezde test numunelerinde hızlı ve verimli sınıflandırma hedefleyen

bir denetimli sözlük öğrenme yöntemi önerilmiştir. Yöntemimiz düşük hesaplama

karmaşıklığı ve hafıza kullanımı elde edebilmek amacıyla seyrekliği 1 olan gösterimlerle

test numunelerinin doğru sınıflandırılmasına imkan sağlayan analitik gösterimli denetimli

sözlükler öğrenmektedir. Çalışmamızda hem sözlük atomlarının kendi sınıfındaki ve

diğer sınıflardaki numunelerle arasındaki uzaklıklarını, hem de atomlar arasında çeşitlilik

sağlayan bir uyumsuzluk terimini içeren bir optimizasyon problemi vasıtasıyla analitik
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fonksiyonlar türünden ifade edilen atomlar öğrenilmiştir. Önerilen yöntemin performansı

farklı veri kümeleri ile ölçüldü. Önerilen yöntemin referans denetimli ve denetimsiz

sözlük öğrenmesi yöntemleriyle karşılaştırılması yönetimimizin başarılı sınıflandırma

sonuçlarına ulaştığını göstermiştir.

Anahtar Kelimeler: Denetimli Sözlük Öğrenmesi, Sınıflandırma, Seyrek Gösterim,

Uyumsuzluk, Analitik Sözlükler, Tek Katsayılı Gösterimler
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CHAPTER 1

INTRODUCTION

In recent years, dictionary learning has emerged as a new field of machine learning,

which has the purpose of learning overcomplete signal models that are well-fit to the

characteristics of the type of data at hand.

Nowadays, large volumes of high dimensional information are produced with different

kinds of sensors. The rapid and large increase in the upload of high-resolution images

on the Internet is only one example related to it. These huge amounts of data have

to be processed efficiently with respect to time and memory. In this context, we

focus on dictionary learning for the classification problem which is one of the most

challenging tasks in machine learning and computer vision. Dictionary learning has

broad application areas, some examples of which are as follows:

• Object recognition [4], [49], [64]

• Face recognition [11], [55], [60]

• Video processing [15], [21], [39]

• Medical diagnosis [17], [54], [61]

In dictionary learning, an overcomplete set of signals are to be learned, so that the

signals of interest in an application have a sparse representation over the learned

dictionary model. Sparse representations have the goal of expressing a given signal

as a linear combination of a small number of signals. Leading examples of these

types of algorithms are basis pursuit de-noising [9], [10], least absolute shrinkage and

selection operator (LASSO) [44], sparse Bayesian learning [50] and FOCal Underdetermined

System Solver (FOCUSS) [24]. In sparse representation problems, the signals used
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for sparsely representing the input data are called atoms. The collection of atoms used

for the sparse decomposition of an input signal is called as a dictionary. To create such

a model, either predefined dictionaries are used or a special dictionary can be learned

for each specific purpose. Fourier bases [26], discrete cosine bases [42] and wavelets

[36] are very common examples of predefined dictionaries. However, Rodriguez and

Sapiro [43] mention the odds of learned dictionaries over predefined ones in terms of

classification.

Many unsupervised and supervised dictionary learning algorithms have been proposed

in the recent years. The purpose of unsupervised dictionary learning is mostly to learn

models with high signal approximation capabilities, whereas supervised dictionary

learning usually refers to the learning of dictionary models well-adapted to a data

classification problem. The leading examples of unsupervised dictionary learning

are K-SVD [1] and Method of Optimal Directions (MOD) [20]. Such algorithms

aim to create over-complete dictionaries consisting of atoms that capture well the

characteristics of the input signals. Unsupervised dictionary learning methods have a

wide application area in image processing tasks, such as:

• De-noising [1] , [18] , [63]

• Restoration [32]

• Super-resolution [56]

• Compression [5]

Since training data is unlabeled in unsupervised dictionary learning, these algorithms

are usually not as powerful in classification applications as they are in data reconstruction

and compression applications. This is because the information of the class labels of

training images is typically needed to learn models with high discrimination power.

Hence, supervised dictionary learning algorithms are more likely to be used for this

aim. For example, Discriminative K-SVD [62] and Label Consistent K-SVD [29] add

discriminate power to K-SVD [1] with the help of class labels. Besides, the Fisher

criterion is used in supervised methods such as those of Zhou et. al[65] and Zhang

et. al [57]. Moreover, there are many examples of supervised dictionary learning

methods [34], [41] which have better classification performance than unsupervised
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ones.

The time complexity is an important point for the design of real-time or time critical

applications. Moreover, the platform where an algorithm is running may have limited

memory resources in some problems. Object detection in images [48] and web page

ranking [8] are some examples of dictionary learning applications where computational

and time optimization is necessary. In this thesis, we aim to develop a supervised

dictionary learning algorithm having good classification ability in a fast and computationally

efficient way. We build on the recently proposed Transformation Invariant Dictionary

Learning (TIDL) [59] method. Yuzuguler, Vural and Frossard aim to learn supervised

dictionaries using an analytical basis in TIDL [59]. The representation of the dictionary

atoms over an analytical basis allows the dictionary atoms to be stored with fewer

coefficients than storing itself. The TIDL method is based on an objective function

that includes an approximative and a discriminative term. For each atom, TIDL

method define an index set having a predetermined number of images and calculate

the representation error and discrimination power of an atom over the training images

within this index set rather than using all of the training images for all atoms.

In this thesis, we aim to increase the discrimination power of TIDL considering the

time and memory costs. For this reason, we introduce two main changes. Firstly, we

remove the index sets from the learning algorithm and let all atoms be affected by

all training images. In this new setting, the effect of each training image is not the

same when calculating an atom. Secondly and more importantly, the TIDL algorithm

has been observed to suffer from a lack of diversity between the atoms of the same

class, which affects the classification performance. In order to increase the diversity

between different atoms of the same class, we propose to introduce an incoherence

term to the objective of the TIDL method. By the help of this term, the similarity

between the dictionary atoms is reduced.

The classification and representation power of different algorithms are compared

experimentally with that of the proposed method in the MNIST data set and the Yale

Face data set. proposed method is compared to the K-SVD [1], LC-KSVD [29] and

TIDL [59] methods as K-SVD [1] is one of the most leading algorithms, LC-KSVD

[29] is a popular supervised extension of K-SVD with discrimination term and our

3



method has some inspirational ideas from TIDL [59].

1.1 Thesis Outline

The purpose of this study is to develop a fast and computationally efficient supervised

dictionary learning algorithm with good classification ability. The rest of the thesis is

organized as follows.

In Chapter 2, we give a brief overview of sparse representations and dictionary learning

algorithms. We also review the literature by presenting some leading examples of

sparse representation methods, unsupervised and supervised dictionary learning algorithms.

In Chapter 3, we formulate the supervised dictionary learning problem and present

the proposed algorithm in detail.

In Chapter 4, we evaluate our method with experiments on several data sets with

respect to the classification and representation performance. Also, the performance

changes with respect to the optimization parameters are discussed.

Finally in Chapter 5, the thesis is concluded with a summary of the study and discussions

on the experimental findings.
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CHAPTER 2

RELATED WORK

Dictionary learning is a learning process of an overcomplete set of signals with sparse

representations. For this reason, we will give the definition of sparse signal representations

and some leading examples of it: matching pursuit [37] and orthogonal matching

pursuit [46], basis pursuit denoising [9], [10] and least absolute shrinkage and selection

operator (LASSO). Later, two widely used unsupervised dictionary learning algorithms,

namely the Method of Optimal Directions (MOD) [20] and K-SVD [1] are discussed

with their definitions, application areas and leading examples in detail. We also

mention the K-means clustering algorithm because it is relevant to the 1-sparse signal

representations studied in this thesis. Lastly, we describe the supervised dictionary

learning algorithms and discuss two widely used algorithms of it, namely Discriminative

K-SVD [62] and Label Consistent K-SVD [29].

2.1 Sparse Signal Representations

Sparse signal representations are widely used for collecting, compressing and reproducing

high-dimensional signals. Some application areas are listed below:

• Face recognition [52]

• Image super-resolution [56]

• Clustering [19]

• Image and video restoration [35]

• Background subtraction [7]
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• Image classification [33]

Before discussing sparse signal representations, it is useful to start with the lp norm

definition and the sparse matrix definition by the help of the l0 norm.

Let c ∈ Rn be a row vector. To define the lp norm of this vector, the following

equations are used:

lp norm, ‖c‖p := (
n∑
i=1

|ci|p)
1
p (2.1)

Likewise;

l0 norm, ‖c‖0 = #(i|ci 6= 0)

= number of non-zero element of c

l1 norm, ‖c‖1 =
n∑
i=1

|ci|

l2 norm, ‖c‖2 =

√√√√ n∑
i=1

|ci|2



l∞ norm, ‖c‖∞ = max
i
|ci|

(2.2)

Please note that the l0 norm is not a norm because it does not satisfy the homogeneity,

‖ac‖0 = |a|‖c‖0 in general. Thus, it can be called as quasi-norm. The lp norm is a

norm for p > 1 and quasi-norm for 0 < p < 1.

The mathematician James H. Wilkinson [16] created the widely used definition of

a sparse matrix as “A sparse matrix is a matrix with enough zeros that it is worth

taking advantage of them." Using sparse matrices has the advantage of reducing the

complexity of some computations. To clarify, calculations with zero entries take

relatively much less time. Also, there are many algorithms helping to save memory on

sparse matrix storage because this kind of algorithms do not store the zero elements
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but only store the actual values in the matrix.

Let the Xexp ∈ R5×1 be an example for a sparse vector:

Xexp =



3

0

0

0

0


The sparsity of Xexp is calculated as follows:

Sparsity of Xexp = ‖Xexp‖0 = 1

In other words, the sparsity of any vector can be calculated by counting the number

of non-zero elements in it. Hence, Xexp is a 1-sparse vector.

Sparse representations have the goal of expressing a given signal as a linear combination

of a small number of signals belonging to the data group. For this reason, the following

sparse representation problem is often encountered where the vector y represents the

input signal, c is the coefficient vector to represent y over the dictionary D, which is

an overcomplete matrix each column of which is called an atom.

min ||c||0 : y = Dc (2.3)

or more commonly

min ||c||0 : ||y −Dc||p ≤ δ for some δ > 0 (2.4)

where the l0 norm is used as a sparsity constraint and p is often used as 2, but it could

be 1 or∞ as well. Also, in some cases, the l0 norm sparsity constraint may be relaxed

to higher-order norm constraints such as l1 and l2.

While the calculation of the representation in equation (2.3) poses an NP-hard problem
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[38], greedy algorithms can be used to solve these types of problems. Matching

pursuit [37] and orthogonal matching pursuit [46] are leading and widely used algorithms

to approximately solve this problem. Another approach to solve such problems is to

relax the l0 norm sparsity constraint to l1 norm so that the problem statement changes

as follows:

min ||c||1 : y = D c or min ||c||1 : ||y −D c||p ≤ δ for some δ > 0 (2.5)

Basis pursuit denoising [9], [10] and least absolute shrinkage and selection operator

(LASSO) [44] are well-known examples of convex relaxation algorithms for solving

problems as in eq. (2.5). Moreover, there are many different approaches trying to

solve sparsity problem such as sparse Bayesian learning [50] and FOCal Underdetermined

System Solver (FOCUSS) [24]. A review of the sparse recovery algorithms can be

found in [47].

2.1.1 Matching Pursuit (MP)

Greedy algorithms aim to heuristically solve an optimization problem in an iterative

way, by taking a locally optimal but often globally suboptimal step in each iteration.

They are widely used in sparse approximation problems where a small number of

non-zero coefficients are desired in the representation of a signal.

Matching pursuit [37] is an iterative greedy algorithm of pursuing the sparse approximation

of a signal by selecting a single atom at each iteration.

The MP algorithm includes two steps in each iteration. The first step of each iteration

has an aim of finding the atom having the highest correlation with the current residual

error. The measure of this correlation is the norm of the orthogonal projection of the

residual over the candidate atoms. At the second and the last step of each iteration,

the residual error is updated by subtracting from the residual its projection onto the

selected atom. The termination of the algorithm is done by halting conditions. The

algorithm steps are stated below assuming the atoms are normalized:
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1. Atom selection step

dj = arg max
{di}
| < rj−1, di > | for 1 ≤ i ≤ N (2.6)

where < . > denotes the inner-product, N is the dictionary size, rj−1 is the residual

at the (j− 1)th iteration and di shows the ith column of the dictionary D. Please note

that r0 = y and cj =< rj−1, dj > is the coefficient of the atom dj in the representation

of the signal y.

2. Residual update step

rj = rj−1 − cj dj (2.7)

After the jth operation, the approximation yj of y can be found as:

yj =

j∑
k=1

ck dk (2.8)

The main advantage of the matching pursuit algorithm is its simplicity. However, it

has drawbacks related to its convergence rate [37].

2.1.2 Orthogonal Matching Pursuit (OMP)

As an improvement over MP, the orthogonal matching pursuit algorithm is suggested

by Tropp and Gilbert [46]. It is also a greedy and iterative algorithm. Although using

the same procedure with MP, in each iteration OMP projects the input signal to the

subspace spanned by all the atoms selected until that iteration. The approximation

can be gathered by the following equation:

yj = Dj cj where cj = (Dj)† y (2.9)

Please note that the pseudo-inverse of Dj is denoted by (Dj)†. Moreover, Dj =

[Dj−1 dj] where dj is the same as in eq. (2.6) because the atom selection step remains
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the same. Also, multiple solutions can be obtained from the atom selection step at

(2.6) if the matrix D has duplicated columns. For this case, transformations must be

performed to make the matrix D full-rank.

Hence, the one and only difference of OMP from MP occurs in the residual update

step as follows:

rj = y −Djcj (2.10)

Orthogonal matching pursuit algorithm introduces orthogonalization. By the help of

orthogonality, any selected atom cannot be used again as in MP. Thus, the convergence

rate increases although it does not guarantee the convergence [46].

2.1.3 Sparse Signal Representations by l1 Minimization

2.1.3.1 Basis Pursuit (BP)

Basis Pursuit published by Chen and Donoho [9] suggests the l1 norm relaxation on

eq. 2.4. By the help of this change, the equation becomes a convex optimization

problem and it may become solvable by linear programming algorithms. Thus, it

is possible to say that the Basis Pursuit method makes the global optimization of

a relaxed version of the original problem. The Basis Pursuit algorithm solves the

following sparse representation problem with convex relaxation:

min ||c||1 : y = Dc (2.11)

For noisy conditions (δ > 0 at (2.5), Chen and Donoho, in their Basis Pursuit

Denoising paper [10], also proposed the following problem, where the λ coefficient

adjusts the sparsity of the representation:

arg min
c
||y −Dc||22 + λ ||c||1 (2.12)
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2.1.3.2 Least Absolute Shrinkage and Selection Operator (LASSO)

Tibshirani proposed the method LASSO [44]; i.e, Least Absolute Shrinkage and

Selection Operator, to find a sparse solution where the parameter s adjusts the sparsity.:

arg min
c
||y −Dc||22 subject to ||c||1 ≤ s (2.13)

It can also be represented as in eq (2.12).

The Basis Pursuit and LASSO problems can be handled by interior point methods.

The in-crowd algorithm (The In-Crowd Algorithm for Fast Basis Pursuit Denoising

[23]) and fixed-point continuation [25] can be leading examples of solution approaches

to BP.

2.2 Dictionary Learning

In the sparse signal representations discussed in Section (2.1), the approximation of

the input y as y = D c is covered with the sparsest possible coefficient vector c, which

uses the least number of columns from a given dictionary D. Some examples of these

fixed dictionaries can be the Fourier bases [26], discrete cosine bases [42] or wavelets

[36]. Also, these dictionaries can be designed with tuning with respect to input

signals. Some examples of these, still fixed, dictionaries are wavelet packets [12],

curvelets [27] or bandelets [40]. Although these fixed dictionaries give good results

in some applications, the learning of D instead of using a fixed one may be necessary

for most applications. Dictionary learning algorithms have been proposed for this

purpose. Given the input signal y and a sparse approximation problem as in eq. (2.4),

the general procedure of the dictionary learning algorithms can be summarized as

follows:

After initializing the dictionary (most of the applications use normalized atoms), do

the following until reaching the stopping criterion:

• Fix the dictionary D and compute the sparse coefficient vector c
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• Fix the sparse coefficients c and optimize the dictionary D

The optimization of the atoms in the dictionary can be done sequentially or concurrently,

depending on the algorithm. If the optimization is done with sequential updates,

each atom di ∀i is updated consecutively after fixing the sparse coefficients. This

type of dictionary optimization can be called as an atom-based optimization. If the

optimization is done concurrently, the dictionary matrix D is optimized so that each

atom di ∀i is optimized concurrently.

Most of the dictionary learning algorithms use one or more of these stopping criteria:

• There is no significant change in D and c.

• Desired approximation level is reached. In other words, the minimization of the

residual is fair enough.

• The maximum iteration number is reached.

2.2.1 Unsupervised Dictionary Learning

Unsupervised dictionary learning can be described as the computation of a dictionary

that gives the sparsest possible approximations of a set of unlabeled training signals.

In other words, no classification or grouping of the training signals is involved in the

algorithm. Unsupervised dictionary learning algorithms try to create such dictionaries

discovering and presenting the interesting and common structures in the training data.

Hence, unsupervised dictionary learning algorithms are widely used in application

areas like image denoising [1] , [18] , [63], compression [5], restoration [32] and

super-resolution[56].

In the following, we give an overview of two widely used unsupervised dictionary

learning algorithms, namely the Method of Optimal Directions (MOD) [20] and K-

SVD [1]. We also discuss the K-means clustering algorithm due to its relevance to

the 1-sparse signal representations studied in this thesis.
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2.2.1.1 Method of Optimal Directions (MOD)

Engan et. al. [20] introduced the Method of Optimal Directions (MOD) in 1999

and it is one of the pioneer examples of dictionary learning methods. Like many

dictionary learning algorithms, MOD has alternating two steps to solve the following

optimization problem:

arg min
D,C
‖Y −D C‖2F such that ∀i, ‖ci‖0 < s (2.14)

where Y denotes the input data set consisting of yis which are the input data samples

∀i, F denotes the Frobenius norm, D is the dictionary and C is the sparse coefficient

matrix consisting of the columns cis which are the sparse coefficient vectors ∀i.

1. Sparse Coding Step

min ‖C‖0 subject to ‖Y −D C‖2F < ε for small ε (2.15)

This step can be done with fixing D at eq. (2.14) and calculating sparse coefficients.

The sparse coding problem is given in (2.15) and it can be solved by any matching

pursuit algorithm like MP (2.1.1) or OMP (2.1.2). The solution of the minimization

in eq. (2.15) is given by its Moore-Penrose pseudo-inverse in eq. (2.16).

C† = CT (C CT )−1 (2.16)

The computationally efficient way of calculating Moore-Penrose pseudo-inverse of C

can be done by using singular value decomposition of C where C = U S V T shown

as follows:

C† = V S−1 UT (2.17)

2. Dictionary Update Step
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The dictionary update step can be done by fixing C and calculating the dictionary in

the problem at eq. (2.14). The analytical solution of that problem gives the result as:

D = Y C† where C† is a Moore-Penrose pseudo inverse (2.18)

If the input is low-dimensional, using MOD to learn a dictionary is efficient due to

fast convergence. However, the MOD algorithm is not practical for high dimensional

data. Because of the fact that finding the pseudo-inverse of high dimensional matrices

is a striving process, MOD is not widely used nowadays with the need for high

dimensional processing.

2.2.1.2 K-means

K-means [31] is a heuristic and iterative clustering algorithm. Although K-Means

is a clustering algorithm, it will be discussed under unsupervised dictionary learning

algorithms. It is commonly used in signal processing and data mining applications.

It aims to separate the input data set into a pre-defined number of clusters. Let’s say

there are k clusters desired. First of all, the algorithm selects a cluster center for each

cluster. The initialization step is done by taking all of the input samples and assigning

each sample to the cluster corresponding to the nearest centroid. Then, all k centroids

are updated as well as the assignments of the signals to the clusters, by minimizing

the following objective function:

min
k∑
j=1

Mj∑
i=1

‖yji − dj‖2 (2.19)

where yji is the data point of index i assigned to cluster j , dj is the centroid of the

cluster j, Mj is the number of data points belonging to the cluster j and ‖yji − dj‖2

is the distance measure. Please note that the eq. (2.3) with 1 sparsity approaches the

K-means clustering problem in eq. (2.19). In other words, the K-means algorithm

can be called as an extreme sparse representation algorithm, where only one atom is

allowed in the signal decomposition.
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This algorithm has two iterating steps to minimize its objective function:

1. Data Assignment Step

Each data point yi ∀i be labeled with the nearest centroid to itself. Let the nearest

centroid is labeled with cluster j. The data assignment step can be formulated as

follows:

I(yi) = arg min
j

‖yi − dj‖2 ∀i (2.20)

where I(yi) is the cluster index of the data sample yi, i is the index of the data point

and dj ∈ D is the jth cluster center as initialized with some initialization rule for the

first iteration.

2. Centroid Update Step

The new mean of the data points belonging to each cluster gives the new centroid of

that cluster as follows:

dj =
1

Mj

∑
i:I(yi)=j

yi (2.21)

where Mj is the number of data points belonging to cluster j.

The algorithm iterates between these two steps and is stopped with respect to a

stopping criterion such as:

•There is no change in clusters after some iterations.

•The distances to the cluster centers are sufficiently minimized.

•The maximum number of iterations is reached.

Being a heuristic method, the K-means algorithm does not ensure the convergence.

However, initialization with random centroids and allowing a sufficient number of

iterations may be helpful for a better outcome.
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2.2.1.3 K-SVD

Aharon et al. [1] proposed the K-SVD algorithm. It can also be called as generalized

K-means. To solve the sparse coding problem with the dictionary D, the coefficient

matrix C and the sparsity s below, the algorithm suggests two main steps; namely,

the sparse approximation and the dictionary update step.

arg min
D,C
‖Y −D C‖2F subject to ∀i, ‖ci‖0 < s (2.22)

1. Sparse Approximation Step

The sparse approximation step is done by fixing D in the previous equation and

proceeding with orthogonal matching pursuit algorithm as discussed in Section (2.1.2).

Any pursuit algorithm like Basis Pursuit (BP) [9] or Focal Under-determined System

Solver (FOCUSS) [24] can be replaced with OMP.

arg min
C
‖Y −D C‖2F such that ∀i, ‖ci‖0 < s (2.23)

2. Dictionary Update Step

Dictionary update step is done sequentially by processing each column of input signal

Y using the singular value decomposition (SVD). As in K-means, numerous atoms

represent each input signal with various weights. That is the reason why this algorithm

is called as generalized K-means. To clarify, the algorithm updates one column of D

at a time by fixing all columns in D except one, dk and update dk by optimizing the

target function as follows:

• Ek = Y −
∑

j 6=k c
j dj where cj is the jth row vector in the coefficient matrix C

• Apply SVD decomposition as Ek = U4V T

• Update: dk = u1 and xk = 41,1 v1 where u1 and v1 are the first column vectors

of U and V matrices, accordingly. 41,1 is the first element of4 matrix.

Although the convergence of K-SVD is not guaranteed, it gives good results in most

applications.
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2.2.2 Supervised Dictionary Learning

Unlike unsupervised dictionary learning, supervised dictionary learning needs a supervision

from a user, data scientist or expert. The supervision involves the assignment of a

class label to each training signal by the help of its characteristics.

The road-map for supervised dictionary learning for a given classification application

is listed below:

1. Obtain a suitable training set for the classification problem at hand.

2. Transform each input signal into a feature vector to include only its representative

characteristics

3. Apply the dictionary learning algorithm to create representative dictionaries

4. If the algorithm includes some control parameters, make sure to adjust them for

optimized results

5. Test the algorithm with test sets using them as input signals and measure the

success rate

Supervised dictionary learning methods often have objective functions including discriminative

terms in addition to reconstructive terms; in other words, the objective function ensures

different data representations for different classes. The discrimination can be achieved

by altering the sparse coding step in dictionary learning algorithms considering the

following needs:

• The sparsest possible representation of an input signal and also

• The most different representation of an input signal from signals belonging to other

classes

The learning problem underlying supervised dictionary learning algorithms can be

generalized with the following formula suggested by I. Tosic and P. Frossard [45]:

arg min
D,C

[ ‖Y −D C‖22 + γ1 ‖C‖1 + γ2 Ω(C,D, θ) ] (2.24)
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where Ω(C,D, θ) is the discrimination function depending on the coefficient matrix

C, the dictionary D and optional parameters θ of the classification model.

It can be easily said that the algorithm is dependent on the classification function and

in most applications it may be non-convex. Still, fixed-point continuation methods

can solve the problem efficiently when logistic loss function is used as a classification

term [34].

The formula in eq. (2.24) uses the l1 norm, the convex relaxation as a sparsity

constraint. It can also be formulated in terms of the l0 norm as:

arg min
D,C

[ ‖Y −D C‖22 + γ1 ‖C‖0 + γ2 Ω(C,D, θ) ] (2.25)

Rodriguez and Sapiro [43] propose a method of supervised OMP using singular value

decomposition at its dictionary update stage. They aim the discrimination of classes

and reconstruction of the input signals at the same time on the image data. Zhang

and Li propose Discriminative K-SVD for Dictionary Learning in Face Recognition

[62] which combines the representation objective of K-SVD with the discrimination

of a linear classifier. LC-KSVD [29] is an extended version of D-KSVD due to newly

represented discriminative sparse-code error. Moreover, Yankelevsky and Elad [58]

add a graph regularization term to the formula of D-KSVD. Additionally, the sparse

reconstruction term is moved from the objective function to the constraints of the

problem by Zhou et. al [65]. The Fisher criterion is another term used on sparse

coefficients by some supervised dictionary learning algorithms like [28] and [57].

The recently proposed TIDL method [59] is a supervised dictionary learning algorithm,

which, moreover, aims to learn analytically represented atoms. The analytical representation

of dictionaries is frequently done using analytical bases. The Transformation Invariant

Dictionary Learning (TIDL) method is discussed in more detail in Section 3.1.

2.2.2.1 Discriminative K-SVD (D-KSVD)

Zhang and Li’s Discriminative K-SVD (D-KSVD) [62] adds a discrimination term

into the K-SVD algorithm discussed in Section 2.2.1.3. Labeling of training data
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is used in order to learn a linear classifier with the help of a discrimination term.

Moreover, l2 norm is used for regularization. D-KSVD proposes the following problem

to optimize:

arg min
D,W,C

‖Y −D C‖2 + γ1 ‖H−W C‖2 + γ2 ‖W‖2 such that ‖C‖0 ≤ T (2.26)

where the classifier parameters are represented by W . The matrix H has columns

hi = [0, ..., 1, ..., 0], where the class labels are indicated by positions of the non-

zero entries. Thus, ‖H − W C‖2 shows the classification error and ‖W‖2 is the

regularization penalty. γ1 and γ2 are positive weight parameters.

2.2.2.2 Label Consistent K-SVD (LC-KSVD)

Jiang et. al [29] have proposed the Label Consistent K-SVD (LC-KSVD) method

by introducing additional discrimination power to the dictionary learning objective.

They define two methods in their study; namely, LC-KSVD1 and LC-KSVD2.

• LC-KSVD1

arg min ‖Y −D C‖2 + γ1 ‖Q− A C‖2 such that ‖C‖0 ≤ s (2.27)

where ‖Q−A C‖2 is an additional discriminative term proposed as an improvement

over the traditional dictionary learning objective. This term encourages the sparse

codes to better capture the label information. A is a linear transformation matrix.

Q = [q1, q2, . . . , qN ] ∈ Rk×N and qi ∈ Rk are the discriminative sparse codes of

the input signals yi which are the columns of Y . The non-zero values of qi indicate the

indexes where yi and the atom dk hold the same class label. γ1 is the control parameter

of this term. For example, let D = [d1, d2, . . . , d6], Y = [y1, y2, . . . , y6] and Q

be defined as follows:
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Q =



1 1 0 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 1 1

0 0 0 0 1 1


This Q matrix is used to indicate that y1, y2, d1 and d2 are from class 1, y3, y4, d3 and

d4 are from class 2 and likewise y5, y6, d5 and d6 are from class 3.

• LC-KSVD2

arg min ‖Y −D C‖2 + γ1 ‖Q− A C‖2 + γ2 ‖H −W C‖2 such that ‖C‖0 ≤ s

(2.28)

where ‖H − W C‖2 is an additional term to the objective in eq. (2.27). The

classification error is represented by this term. W is a linear predictive classifier

matrix denoting the classifier parameter. H = [h1, h2, . . . , hN ] ∈ Rm×N whose ith

column hi = [0, 0, . . . , 1, 0, . . . , hN ]T ∈ Rm is the label vector corresponding to

the input signal yi which is the ith column of Y . The non-zero value of hi indicates

the class of yi and γ2 is the control parameter of this term.
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CHAPTER 3

SUPERVISED DICTIONARY LEARNING WITH 1-SPARSE

REPRESENTATIONS

In this chapter, we present the proposed method for supervised dictionary learning.

We first give an overview of the motivation of our work and then describe our supervised

dictionary learning method for fast classification with 1-sparse representations.

Recently supervised dictionary learning algorithms have shown promising results in

classification applications but how to achieve good classification performance in a

time-efficient manner is still an important open question. The computational constraints

of classifying an input signal may be as important as the classification performance

in some applications. Real-time object detection in images [48], web page ranking

[8] are well-known examples where computational constraints have important roles.

In order to achieve fast and computationally efficient classification, we propose a

supervised dictionary learning algorithm in this chapter. Our method builds on the

recently proposed Transformation Invariant Dictionary Learning (TIDL) [59] method,

which aims to learn supervised dictionaries for fast classification by using 1-sparsity.

It also further decreases the memory requirements for storing the learnt atoms by

representing them in an analytical basis. These are the main goals we share with

TIDL. However, we further would like to improve the discrimination power of the

learnt dictionaries considering computational needs and speed. Hence, we start with

the TIDL algorithm and improve its performance by introducing suitable modifications

in its objective function.
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3.1 Transformation Invariant Dictionary Learning (TIDL)

Yuzuguler, Vural and Frossard designed the transformation invariant dictionary learning

(TIDL) algorithm [59]. TIDL is a supervised dictionary learning method where

analytically represented dictionaries are learnt using the Hermite basis. The representation

of the dictionary atoms over an analytical basis permits the handling of geometric

transformations more easily, thus, facilitates the learning of transformation-invariant

dictionaries, which is one of the purposes of the TIDL method. The objective function

of TIDL includes representation and discrimination terms. An index set having a

predetermined number of images and the representation error are defined for each

atom and the discrimination power of an atom is calculated over the training images

within this index set rather than using all of the training images for all atoms.

Let Y = {Y m}Mm=1 be a training set consisting of M classes. For example, class m

has Mm labeled training images ymi ∈ Rn where m ∈ {1, 2, ...,M}.

TIDL method aims to learn a specific dictionary for each class instead of a global

dictionary. These class-specific dictionaries are represented asDm = {dmi }Ni=1 consisting

of N atoms for class m ∈ {1, 2, ...,M}. By the help of these dictionaries, the class

label of a given test image y can be estimated as m? with respect to class-specific

reconstruction errors computed by the following formula:

m? = arg min
m=1,2,...M

∥∥∥∥∥y −
N∑
i=1

cmi dmi

∥∥∥∥∥ s.t. ‖cm‖0 = 1 so cm is 1-sparse. (3.1)

where dmi is the ith atom in the dictionary of class m, cm = [cm1 cm2 . . . cmN ] is

the coefficient vector and N is the dictionary size which is equal for all classes m

, m ∈ {1, 2, ...,M}. Moreover, the coefficient vector cm, m ∈ {1, 2, ...,M} has a

constraint of 1-sparsity by ‖cm‖0 = 1 for fast classification. To clarify, the estimated

class label m? is the class label that yields the minimum residual between the test

image and its 1-sparse approximation.

The classification success rate is measured by the percentage of test images whose

estimated class label m? is accurate with the label assignment in eq. (3.1).
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TIDL satisfies the fast classification purpose using 1-sparsity as a sparsity constraint

in the algorithm. In addition to this, each atom is learnt as a discretized version

of a two-dimensional analytical function over an analytical basis. This decreases the

memory need for storing the dictionary atoms because each atom can be approximated

with a relatively small number of coefficients in the analytical basis. The analytical

representation is done over the Hermite 2D basis [51]. The Hermite basis forms an

orthonormal basis for the square-integrable functions. Any atom can be represented

as d with a pre-determined number s of the Hermite basis elements as follows:

d =
s∑
i=1

αi hi (3.2)

where αi are the coefficients of the basis vectors for i ∈ {1, 2, ..., s} and {hi}∞i=1

denotes the Hermite 2D basis with increasing degrees of Hermite polynomials used

in their construction [51].

In TIDL, the atoms are analytically represented using the Hermite basis as follows:

d = H α (3.3)

where H ∈ Rnxs is the Hermite 2D matrix and α is the coefficient vector Rsx1 whose

ith entry is αi. Figure 3.1 shows the visualizations of Hermite 2D basis vectors. The

numbers written on the upper left corners of each image in Figure 3.1 denote the

degrees of the basis vectors h1 to h10 in the Hermite 2D matrix H .

Figure 3.1: Hermite 2D Basis Visualizations
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TIDL has the purpose of achieving invariance to geometric transformations. Training

images are assumed to be geometrically transformed with respect to a transformation

parameter vector λ ∈ Λ in transformation parameter domain Λ. The parameter vector

λ can be any combination of geometric transformations such as rotation, scaling and

affine transformation. Please note that the geometric transformations are assumed to

constitute a linear operator on the images.

In order to counterbalance the effect of the geometric transformation on training

image y, using a geometrically transformed form of H is enough due to the property

of being linear. Hλ is the Hermite 2D basis [51] which is the geometrically transformed

version of H by λ. The geometrically transformed atom dλ can be represented over

the basis Hλ with the same coefficient vector α with following formula:

dλ = Hλ α (3.4)

As already stated, Yuzuguler, Vural and Frossard use ‖cm‖0 = 1 as a sparsity constraint

in TIDL. Due to this constraint, each image is represented by only one atom. Then,

due to the usage of 1-sparsity, no constraints on the coefficient vector c are needed.

The objective function of TIDL given in eq. (3.5) is used for learning an atom from

the class m, dml ∈ Dm. The optimization problem is a function of α which is the

coefficient vector representing the learnt atom dml in the Hermite basis.

f(α) =
∑
i∈Imm

l

∥∥ymi −Hλmi
α
∥∥2 − η

∑
j∈{1,...,M}\{m}

∑
i∈Imj

l

∥∥∥yji −Hλji
α
∥∥∥2 (3.5)

Here,

• Imjl and Imml are the index sets that identify a predetermined number of images

from jth and mth classes respectively, having the highest correlation with dml .

• λ ∈ Λ is a geometric transformation parameter vector and represents a combination

of rotation, scaling, affine transformation parameters. The transformation parameter

vector λmi in eq. (3.5) represents the transformation applied to the training sample

ymi . The transformation parameter of each training sample is assumed to be estimated
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before the optimization of α.

• Hλ is the Hermite 2D basis [51] which is geometrically transformed by the parameter

vector λ.

• η is the parameter which encourages the learnt atom to be different from the

samples from other classes.

The objective in eq. (3.5) aims to learn dictionaries whose atoms are similar to the

training samples from the same class but dissimilar from the training samples from

other classes. The diversity among the atoms in the dictionary of the same class can

be enhanced by the help of random initialization and re-selecting index sets at each

iteration.

If there is no transformation applied to the training image, the objective function to

learn an atom d in the Hermite basis as a function of α can be simplified as follows:

f(α) =
∑
i∈Imm

l

‖ymi −H α‖2 − η
∑

j∈{1,...,M}\{m}

∑
i∈Imj

l

∥∥yji −H α
∥∥2 (3.6)

where Imjl and Imml are the same index sets as in eq. (3.5).

After some operations, the following formula is obtained:

f(α) = αT A α− 2 bT α + c (3.7)

where

A =
∑
i∈Imm

l

HT H − η
∑

j∈{1,...,M}\{m}

∑
i∈Imj

l

HT H

b =
∑
i∈Imm

l

HT ymi − η
∑

j∈{1,...,M}\{m}

∑
i∈Imj

l

HT yji

(3.8)

In order to minimize the objective in eq. (3.7), the coefficients α are optimized by
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solving5f = 0 as follows:

α? = A−1 b (3.9)

When the matrix A is positive definite, the objective function f(α) is strictly convex

and the solution in eq. (3.9) finds the global minimum of the objective. In order to

ensure the positive definiteness of A, η is chosen as 1
4

of the smallest η value making

the smallest eigenvalue of A vanish.

The TIDL algorithm can be summarized as follows:

• Given the training set Y = {Y m}Mm=1, the centroid of each set {Y m} is calculated

∀m ∈ {1, 2, ...,M} .

• The atoms of class m are initialized with the training images labeled with class

j 6= m ∀j which are the most distant ones from the centroids of class m. This gives

the advantage of taking the problematic regions close to class boundaries into account

in order to decrease the misclassification rate.

• The selection of dictionary size N of each class j is important due to a trade-off

between complexity and accuracy. The correct selection of N is achieved when the

dictionaries of all classes cover the necessary information for classification within

tolerable complexity.

• The sizes of index sets Imjl and Imml must be selected carefully. If they are over

selected, this will increase the similarity between the atoms in the same dictionary. If

they are under selected, some useful information in training images may be discarded.

Both of these improper selections may reduce the correct classification rate.

• TIDL determines the index sets Imjl and Imml for atom dml by selecting a predetermined

number of training images from each class having the highest correlation with the

atom dml . In other words, Imjl is the set of indices of the training images from class j

which are the most correlated ones with the lth atom of the dictionary of class m.

• Transformation parameters λji ’s are determined by the estimation of geometric

transformations applied on the training images. This estimation can be done in several
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ways. TIDL suggests the alignment of yji with a reference image of each class for

finding λji . This step is only required if the training images have undergone geometric

transformations. Otherwise, it is not needed. In our experiments with TIDL, this step

is skipped because we assumed that all images are geometrically aligned.

• TIDL iterates between the following steps ∀l ∈ {1, 2, ..., N}:

• Minimize the eq. (3.7) to find the Hermite coefficients α for dml

• Update atom dml = H α

3.2 Our Method

Our method has the aim of attaining good classification performance with low computational

cost. In order to reach this purpose, we build on some ideas from the TIDL method.

These are as follows:

• Using an analytical basis

• Using 1-sparsity as a sparsity constraint

• Using the idea of a discrimination term in the dictionary learning objective

If the test signals have high sizes, the computational power and storage capability of

a device (computer or any embedded platform) have to be high enough to overcome

the load of large matrix computations. To face this difficulty, memory consumption

for the signal storage can be restricted by representing them over an analytical basis

because oversized signals can be approximated with relatively fewer coefficients by

using analytical basis representations without losing their characteristics.

In addition, using 1-sparsity reduces the computations thanks to reducing the number

of coefficients in the coefficient vector c in eq. (3.1). Therefore, it is effective to use

1-sparsity to speed up the tests and thanks to that reach wide application areas where

users want to get immediate classification results. In particular, the computational

complexity of calculating a 1-sparse representation of a test signal in a dictionary ofN

atoms is only ofO(N), which can be easily found in any platform. Robust Real-Time
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Face Detection [48], object detection [53] and image segmentation using dictionary

learning [6] are just three of the numerous application areas where the speed and

memory optimization are as crucial as the classification performance. To summarize,

because of the fact that the computational and time complexity are important purposes

of our method, it is useful to use an analytical basis and 1-sparsity.

The usage of a discrimination term improves the discriminative characteristics of

atom, and consequently, the classification performance.

Although our method has some similar points with TIDL with the following modifications,

which sketches the main features of our algorithm:

• Using all training images in the optimization of each atom, however, by including

them with different weights in the objective (rather than using index sets as in TIDL)

• Addition of an incoherence term in the objective in order to enhance the variability

between the atoms

In many applications, there is a limited number of training data or limited time for

training. Due to such constraints, it is important to use all characteristic information

from each training sample. Rather than defining index sets in the discrimination and

representation terms as in TIDL, we use all training images for each step of dictionary

learning in order to avoid any loss of characteristic information.

The usage of all training images can be useful. However, each of them carries

information with different significance. For example, the training images labeled

with the same class as the atom to be learnt are more important than others when

the focus of a dictionary learning algorithm is accurate representation. For good

classification, the training images belonging to other classes should also be taken into

account according to their significance for the learnt atom in our algorithm.

With the weighted usage of all training images in the proposed method, the learnt

atoms in the class-representative dictionaries tend to become similar. In order to

avoid limited variability between atoms from the same class, we propose to introduce

an incoherence term in the objective. The incoherence term is a term that measures the

mutual coherence of the atoms labeled with the same class and thanks to it, the atoms

28



are encouraged to be different from each other. By reducing the similarity between

the atoms in the dictionary, the contents of the class-representative dictionaries are

enriched, and thus, the classification rate increases.

Our method aims to learn a specific dictionary for each class rather than learning a

global dictionary. These class-specific dictionaries are represented as Dm = {dmi }Ni=1

consisting of N atoms for classes m ∈ {1, 2, ...,M}. The atoms are represented over

the 2D Hermite basis as in eq. (3.2) and eq. (3.3) where α ∈ Rs x 1 is the coefficient

vector whose ith entry is αi. In other words, the representation of each atom is as

follows:

d = H α =
s∑
i=1

αi hi (3.10)

Since the atoms can be written as a function of α due to their representation in an

analytical basis, the proposed dictionary learning method for learning an atom d = dml

from the mth class has the following objective function of α as follows:

f(α) =
Mm∑
i=1

µmi ‖ymi −H α‖2

− η
∑

j∈{1,...,M}\{m}

Mj∑
i=1

µji
∥∥yji −H α

∥∥2
+ β ‖αT HT H α‖2

(3.11)

where

• α = [αm1 αm2 . . . αmi−1 0s,1 α
m
i+1 α

m
i+2 . . . α

m
N ]

• αmi ∈ Rs×1 is coefficient vector representing the ith atom of the dictionary belonging

to class m in the Hermite basis.

• 0s,1 is the zero vector in Rs×1.

• s is the number of Hermite basis vectors.

• β is the incoherence coefficient.

29



• N is the dictionary size.

• µmi and µji are the weights of the training samples.

• Mm and Mj are the number of training images labeled with class m and with class

j, correspondingly.

The first term µmi
∑

i∈Mm
‖ymi −H α‖2 gives the total weighted distance of the

learnt atom to the training samples labeled with same class. It can be called as an

approximative term because it gathers information from training images from the

same class with that atom.

The second term
∑

j∈{1,...,M}\{m}
∑

i∈Mj
µji ‖y

j
i − H α‖2 enforces discrimination

between the atom and the training images labeled with different classes. Hence, this

term can be called as a discriminative term.

The learnt atom needs to be a good representative of the training images from its

class due to the first term. Moreover, it has the ability to discriminate itself from the

other classes due to the second term. The effect of discriminative and representative

properties are adjusted by the factor of η.

We set the weight parameters of the training samples using the Gaussian Kernel as

follows:

µji = e−‖y
j
i − d‖

2 / σ2

= e−(y
j
i

T
yji + dT d − 2 yji

T
d) / σ2

(3.12)

In TIDL, index sets are selected to determine which samples affects the learnt atoms.

However in our method, the weight parameters of the training samples with the use

of the Gaussian Kernel are selected with respect to the distances between the learnt

atoms and the samples. Samples closer to the learnt atom affect it affects the atom

more than the distant ones.

The last term is the incoherence term which increases the in-class variability. Thanks

to this term, the atoms of the same class do not mimic each other anymore. Bao

et. al [2], Barchiesi and Plumbley [3] use the mutual coherence term as the maximum
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absolute inner product of dictionary atoms as max
i 6=j
| < di, dj > | where di and dj are

the atoms with index i and index j, respectively. Ramirez uses the incoherence term

as ‖DTD − I‖2F where I is the identity matrix and F denotes the Frobenius norm.

Our incoherence term is given in (3.13).

∥∥αT HT H α
∥∥2 (3.13)

The weight of the incoherence term in the overall objective is adjusted by the parameter

β. The effect of β will be discussed in Chapter 4.

Note that the objective in (3.11) is directly based on the pairwise distances between

the atom and each training sample. This can be interpreted in the way that the 1-

sparsity constraint ‖cm‖0 = 1 is inherently included in the learning objective.

We set the weight parameters of the training samples using the following equation by

replacing µji and µmi with their values in the eq. (3.14):

f(α) =
Mm∑
i=1

e−‖ymi − d‖
2
/ σ2 ‖ymi −H α‖2

− η
∑

j∈{1,...,M}\{m}

Mj∑
i=1

e−‖y
j
i − d‖

2/σ2 ∥∥yji −H α
∥∥2

+ β
∥∥αT B∥∥2

(3.14)

where

• B = HT H α

• α = [αm1 αm2 . . . αmi−1 0s,1 α
m
i+1 α

m
i+2 . . . α

m
N ]

• αmi ∈ Rs×1 is the coefficient vector representing the ith atom of the dictionary

belonging to class m in the Hermite basis.

• 0s,1 is the zero vector in Rs×1.

• s is the number of Hermite basis vectors.

• β is the weight of the incoherence term.
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• N is the dictionary size.

• H denotes the Hermite Basis.

After some operations, the following formula is obtained:

f(α) = αT A α− 2 bT α + c (3.15)

where

A =


∑Mm

i=1 e
−‖yji−d‖

2/σ2
HT H−

η
∑

j∈{1,...,M}\{m}
∑Mj

i=1 e
−‖yji−d‖

2/σ2
HT H+

β B BT

b =
M∑
i=1

HT ymi − η
∑

j∈{1,...,M}\{m}

M∑
i=1

HT yji

(3.16)

where B = HT H α and α = [αm1 αm2 . . . αmi−1 0s,1 α
m
i+1 α

m
i+2 . . . α

m
N ]

Solving5f = 0 yields the solution of the objective function in eq. (3.15) :

α? = A−1 b (3.17)

The objective function has a unique global minimum given by the solution (3.17)

when the matrix A is positive-definite. As in TIDL method, in order to ensure the

positive definiteness ofA, η is chosen as 1
4

of the smallest η value making the smallest

eigenvalue of A vanish.

Our dictionary learning method is sequential because it optimizes the dictionary as

atom by atom. Also, there must be a well-designed initialization step before starting

the iterations to achieve the best results. The algorithm is described as follows:

• Given the training set Y = {Y m}Mm=1, the centroids of each set {Y m} ∀m ∈
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{1, 2, ...,M} is calculated as follows:

centroid of class m =

∑Mm

i=1 y
m
i

Mm

(3.18)

where Mm is the number of images in training set belonging to class m.

• The atoms of class m are initialized with the training images labeled with class

j 6= m ∀j which are the most distant ones from the centroids of class m.

The initialization of an atom with the most distant samples from the other classes

gives the advantage of taking the problematic regions near class boundaries into

account in order to decrease the misclassification rate.

Figure 3.2 gives a simple illustration of the initialization procedure where each class

has a dictionary consisting of only one atom of dimension 2 with coordinates (x,y)

and the training data, centers and atoms are not normalized.

1 2 3 4 5 6 7 8
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y

Illustration of Dictionary Initialization

Training data of class 1

Training data of class 2

Centroid of class 1

Centroid of class 2

Initialized atom of class 1

Initialized atom of class 2

Figure 3.2: Illustration of Initialization Procedure
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The outline of the proposed algorithm is as follows:

• Iterate between the following steps ∀i ∈ 1, 2, ..., N :

• Minimize the eq. (3.14) to find the Hermite basis coefficients α of dmi by

solving5f = 0 as discussed.

• Update atom dmi = H α.

The residual is the distance between the test image y and its best 1-sparse approximation

within all class-representative dictionaries given in eq. (3.19).

Residual = min
m=1,2,...M

∥∥∥∥∥y −
N∑
i=1

cmi dmi

∥∥∥∥∥ s.t. ‖cm‖0 = 1 so cm is 1-sparse. (3.19)

where dmi is the ith atom in the dictionary of class m, cm = [cm1 cm2 . . . cmN ] is the

coefficient vector and N is the dictionary size , m ∈ {1, 2, ...,M} and ‖cm‖0 = 1

denotes the 1-sparsity constraint.

The class-representative dictionaries learnt with our algorithm can be used for the

estimation of the class label m? of a given test image y as follows:

m? = arg min
m=1,2,...M

∥∥∥∥∥y −
N∑
i=1

cmi dmi

∥∥∥∥∥ s.t. ‖cm‖0 = 1 so cm is 1-sparse. (3.20)

Using the class estimation in eq. (3.20), the residual can be formulated as follows:

Residual =

∥∥∥∥∥y −
N∑
i=1

cm
?

i dm
?

i

∥∥∥∥∥ s.t. ‖cm?‖0 = 1 (3.21)
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we present the performance evaluation of the proposed supervised

dictionary learning method.

We first discuss the two data sets used; namely, MNIST Data Set [30] and Yale

Face Data Set [22]. The MNIST data set consists of handwritten digit images. The

Yale Face Data Set contains face images from different subjects with different light

settings.

Secondly, we show how the algorithm parameters affect the classification performance

and the residual measurement. The classification performance is measured by the

misclassification rate, which is the mislabeling percentage of test images. Mislabeling

is assigning a different class label to the test image rather than its true class label

which is assigned with eq. (3.20) The residual of a test signal is the difference

between its best 1-sparse approximation using a class specific dictionary and signal

itself in accordance with eq. (3.19).

Finally, we compare our algorithm with the K-SVD [1], LC-KSVD [29] and TIDL

[59] methods in terms of classification performance and residual measurement. K-

SVD is a popular dictionary learning algorithm, which is known to provide accurate

sparse representations. LC-KSVD is a supervised dictionary learning algorithm with

discriminative properties proposed by Jiang et. al based on K-SVD. TIDL is the

analytical dictionary learning method, which we have aimed to improve in this thesis.

Hence, comparisons with these algorithms are helpful for evaluating the performance

of our method.
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4.1 Data Sets and Experimentation Settings

4.1.1 MNIST Data Set

The MNIST [30] data set contains handwritten digit images. It has a training set

of 60,000 examples and a test set of 10,000 examples. The digits have been size-

normalized and centered in a fixed-size image frame.

In our experiments, we use 200 randomly selected training images and 200 randomly

selected test images and resize them to a resolution of 141 × 141 pixels. We use all

10 classes in all experiments conducted with the MNIST data set. The experiments

are repeated for 100 Monte Carlo trials and the average is reported.

Some examples from different classes of the MNIST data set are shown in Figure 4.1.

Class 0 Class 2 Class 3 Class 5 Class 9

Figure 4.1: Mnist Data Set Samples
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4.1.2 Yale Face Data Set

The data set consists of face images of 38 different people, where each person has 58

images with some variations on lighting angles and intensities from a single viewpoint

[22].

In the Yale Face data set experiments, we randomly select 40 training images and 18

test images. We repeat this selection for 100 times (Monte Carlo trials) and report

the average of the obtained results. Experiments are conducted with 3 and 5 classes

which are randomly selected for each Monte Carlo trial.

Some examples from different classes of the Yale Face data set are shown in Figure

4.2.

Class 1 Class 2 Class 3 Class 4 Class 5

Figure 4.2: Yale Face Data Set Samples
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4.2 Variation of the Performance with the Algorithm Parameters

4.2.1 Selection of the Weights of Training Samples

In TIDL, training images are either used or unused with regard to their selection in

the index sets. Thus, the selection of the training images when learning an atom can

be called as "hard". In our method, all training images are used in accordance with

the selection of their weight parameters which can be called as a "soft" selection. To

better understand the effect of the "hard" or "soft" selections, we consider a simplified

version of our algorithm without the incoherence term in our experiments as follows:

f(α) =
Mm∑
i=1

µmi ‖ymi −H α‖2 − η
∑

j∈{1,...,M}\{m}

Mj∑
i=1

µji
∥∥yji −H α

∥∥2 (4.1)

where µmi and µji are the weights of the training images. Training images for class

m are ymi and for class j are yji ∀i = 1, 2, ...,Mj where Mj is the count of training

images. H is the matrix representing the Hermite Basis.

The solution can be found as follows after making A positive definite with a suitable

selection of η:

f(α) = αT A α− 2 bT α + c⇒ α? = A−1 b where

A =
Mm∑
i=1

µmi HT H − η
∑

j∈{1,...,M}\{m}

Mj∑
i=1

µji H
T H

b =
Mm∑
i=1

µmi HT ymi − η
∑

j∈{1,...,M}\{m}

Mj∑
i=1

µji H
T yji

(4.2)

The following kernels are examined for the choice of the training sample weight

parameters:

• Kernel 1: Gaussian Kernel

µji = e−‖y
j
i−d‖2/σ2

= e−(y
j
i

T
yji+d

T d−2 yji
T
d)/σ2

(4.3)
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The Gaussian Kernel is related to the distance between the training sample and the

learnt atom. With the selection of the Gaussian Kernel as weight parameters, the

distant training images have a smaller effect on the learnt atom than the closer ones.

• Kernel 2: Correlation Kernel

µji = e(−2 y
j
i

T
d)/σ2

(4.4)

In contrast to the Gaussian Kernel, the Correlation Kernel increases with the distance

between the training sample and the learnt atom. With this selection, the atoms are

affected more by the distant training images than closer ones.

The aim of this experiment examining the selection of the weight parameters is to

determine the effect of the "soft" selection of weights and the effect of the distance

between the training image and the atom on the classification performance. To conduct

this experiment, 100 Monte Carlo runs are done with randomly selected 200 training

and 200 test images of the MNIST data set. Then, Figures 4.3 and 4.4 are obtained

from the above two kernels for dictionaries respectively of 10 and 1 atoms.
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Figure 4.3: Misclassification Rate vs Kernel Scale σ for Dictionary Size 10 in MNIST

Data Set
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In Figures 4.3 and 4.4, the algorithm using the Gaussian Kernel in setting the weight

parameter shows better classification performance than the one using the Correlation

Kernel for both experiments conducted with different dictionary sizes. Thus, it can

be concluded that the selection of the Gaussian Kernel is more appropriate for the

classification purposes in the objective in eq. (4.2).

The atoms learnt by weight selection with the Correlation Kernel lose class-representative

characteristics more than the atoms learnt by weight selection with the Gaussian

Kernel because they are highly affected by the training images belonging to other

classes. Thus, the above conclusions drawn from Figures 4.3 and 4.4 are as expected.
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Figure 4.4: Misclassification Rate vs Kernal Scale σ for Dictionary Size 1 in MNIST

Data Set

For a special and unusual dictionary consisting only one atom, we expect the misclassification

rate to decrease with the increase in the kernel scale σ because consisting of only one

atom, each dictionary needs to be affected by all training images. Figure 4.4 also

confirms our expectations. However, for usual dictionaries consisting of sufficiently

many atoms, the kernel scale σ has to be selected with respect to the dictionary size

for creating a more comprehensive dictionary with number of atoms in the dictionary.
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If σ is over selected, all training images affect all of the learnt atoms in the dictionary

which decreases the variation in the dictionary. If σ is under selected, fewer training

images have an effect on the learnt atoms so the class-representativeness of the dictionary

decreases.

Also, the effect of "hard" or "soft" selection of the weights is also questioned with

this experiment. The following table shows the optimized results of TIDL and the

simplified version of our method for dictionary sizes of 1 and 10.

Table 4.1: Misclassification Rate (%) of Algorithms

Number of Atoms 1 10

TIDL 19,4 12,65

Simplified Method 18,8 11

The "soft" selection of weight parameters of training images creates a more informative

dictionary so yields better classification performance than the "hard" one as used in

TIDL as shown in Table 4.1.

4.2.2 Effect of the Number of Iterations

The effect of the number of iterations is studied in our dictionary learning approach

in this section. The number of Monte Carlo runs and the number of training and test

images are the same as those of Section 4.2.1 in this experiment. Number of atoms

in each class specific dictionary is 10 and the residual definition in eq. (3.19). The

results are shown in Figures 4.5, 4.6 and 4.7.

In our dictionary learning algorithm, the atoms are sequentially learnt, where each

atom is optimized by fixing all the others. In several dictionary learning algorithms

such as K-SVD, once all atoms are optimized, the algorithm comes back to the

beginning to have another pass over all atoms and these iterations are continued until

convergence. We thus study in this experiment whether it is useful to employ our

algorithm in an iterative manner, i.e., by re-optimizing all atoms sequentially several

times in the learning. Figures 4.5 and 4.6 show the misclassification rate and the
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residual respectively with the change on the number of iterations, i.e. the number of

times the whole dictionary is re-optimized in the learning.
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Figure 4.5: Misclassification Rate (%) vs Number of Iterations in MNIST Data Set
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Figure 4.6: Residual vs Number of Iterations in MNIST Data Set

It is seen in Figure 4.7 that as the number of iterations increases, atoms lose their

classification characteristics and atoms within the same class also tend to get more
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similar to each other. This visual inspection of the atoms is in line with the observation

drawn from Figure 4.5 and 4.6 that terminating the algorithm after a single iteration

gives better classification and representation performance.

Figure 4.7: Atoms vs Number of Iterations in MNIST Data Set

4.2.3 Optimization of β

In this section, we examine the effect of the parameter β which weights the incoherence

term. With the increase of β, the mutual coherence of atoms is decreased. This leads

to an increase in the diversity of the atoms from the same class.

4.2.3.1 Optimization of β in MNIST Data Set

The experiments are conducted with the setup described in Section 4.1.1 where the σ

values are fixed in the objective function in eq. (3.14). Figure 4.8 shows the variation
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of the classification performance with respect to β in the MNIST data set.
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Figure 4.8: Misclassification Rate (%) vs β in MNIST Data Set

Since the estimation of the class labels is done by eq. 3.20, the increase in the number

of atoms in the dictionary increases the chances of the selection of a suitable class-

representative atom for each test sample. Thus, higher dictionary sizes perform better

in classification. The results in Figure 4.8 are in line with these expectations.

Table 4.2 shows the β values optimizing the classification performance for the MNIST

data set:

Table 4.2: Selection of β for Different Dictionary Sizes in MNIST Data Set

Number of Atoms 1 5 10 20 50 100 200

β 1 0,7 25 20 20 25 45

Misclassification Rate (%) 18,6 13,3 9,5 9,4 8,9 8,3 6,55

Figure 4.9 shows the residual change with respect to β in the MNIST data set and it
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suggests that there is an optimal β value around 10 that minimizes the residual for

all dictionary sizes. If the β is under-selected, the atoms used in the representation

of the test image have limited diversity. If β is over selected, the incoherence term

becomes the most dominant term in the objective function in eq. (3.14). Thus, the

approximation capability of the atoms degrade when β is increased too much beyond

the optimum β.

The selection of the β value with respect to the residual has some differences with

the one with respect to the misclassification performance in Figure 4.8. This can be

explained by the fact that the residual is only related to the representation so only the

atoms from the dictionary of the same class, whereas the classification performance

is related to all dictionaries from different classes. Consequently, when the size of

the dictionary increases, the similarity between atoms should be decreased for better

correct classification rates unlike finding the optimum β for better residuals. Since

we aim the best correct classification rate, we select β values as in Table 4.2 for the

experiments conducted for the MNIST data set.
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Figure 4.9: Residual vs β in MNIST Data Set
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4.2.3.2 Optimization of β in Yale Data Set

For the Yale data set, we conduct two main experiments, by choosing respectively 3

and 5 classes from the data set. The classes are randomly chosen in each Monte Carlo

trial and the setup in Section 4.1.1 is used to study the effect of β on the performance

of our method.

• Experiments on 3 different classes:

Figures 4.10 and 4.11 show the results obtained by experimenting on 3 classes from

the data set. It is observed in Figure 4.10 that the classification performance increases

with the size of the dictionaries. Also, Figure 4.11 shows that larger dictionaries

produce more accurate representations by reducing the residual as expected.
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Figure 4.10: Misclassification Rate (%) vs β in Yale Face Data Set for 3 Classes
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Figure 4.11: Residual vs β in Yale Face Data Set for 3 Classes

From Figure 4.10, it is difficult to draw the conclusion about the relationship of

incoherence term and the increase in the size of the dictionaries like the one from

the experiments conducted with the MNIST data set where increasing β for larger

dictionaries resulted in better correct classification rates. The training images belonging

to the same class have larger variability in the Yale Face data set than the ones in the

MNIST data set. Hence, the dissimilarity between the atoms has a natural tendency to

increase when there are more atoms in the dictionary in the Yale Face data set unlike

in the MNIST data set. In other words, the atoms learnt in the Yale Face data set are

not similar by the nature of the training images so the need for the incoherence term

decreases by the increase in the size of the dictionaries.

The residual increases with respect to the increase in β as shown in Figure 4.11. With

the increase in β, the atoms become as dissimilar from each other as they become

dissimilar from the training images labeled with same class as the atoms. This causes

an increase in the residual so a decrease in the representation power.

The optimized results for 3 classes in the Yale data set are obtained with the β values

given in Table 4.3:
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Table 4.3: Selection of β for Different Dictionary Sizes on 3 Classes in Yale Face

Data Set

Number of Atoms 1 5 10 15

β 0,5 0,9 0,3 0,2

Misclassification Rate (%) 32,8 25,9 15,2 12,14

• Experiments on 5 different classes:

Figure 4.12 and Figure 4.13 show the results obtained on 5 different classes from the

Yale data set.

The same conclusion with the experiments on 3 classes in the same data set is drawn

about the variation of the misclassification rate and the residual change with respect

to the size of the dictionary. The misclassification rate and the residual decrease with

when the size of the dictionary increases as shown in Figure 4.12 and Figure 4.13.
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Figure 4.12: Misclassification Rate (%) vs β in Yale Face Data Set for 5 Classes
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Figure 4.13: Residual vs β in Yale Face Data Set for 5 Classes

The mutual coherence of the atoms from the same dictionary should decrease to

increase the discriminative power of the dictionaries, as a result of the increase in

the number of classes. For this reason, the experiments with 5 classes reported in

Figure 4.12 suggest that the increase in β reduces the misclassification rate unlike the

experiments with 3 classes. Also, the misclassification rate and the residual increase

with the increase in the classified classes as expected. As in Figure 4.11, Figure 4.13

also confirms the expectation that if β increases the residual also increases because of

the increase in the atom dissimilarity causing a decrease in representation power.

The optimal beta values for different dictionary sizes with 5 classes are reported in

Table 4.4.

Table 4.4: Selection of β for Different Dictionary Sizes on 5 Classes in Yale Face

Data Set for 5 Classes

Number of Atoms 1 5 10 15

β 0,8 0,8 1 0,9

Misclassification Rate (%) 59,84 38,8 27,33 22,37
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The visualizations of dictionaries in Figure 4.14 show the effect of β under with the

experiments for 5 classes.

Figure 4.14: Atoms with the change of β in Yale Face Data Set

Figure 4.14 shows the decrease in the mutual coherence of atoms with the increase in

β value which increases the power of incoherence term on the objective function in

eq. (3.14) and confirms the conclusion arrived from Figure 4.12 and 4.13.

4.3 Comparison with Other Algorithms

After these optimizations of parameters in our algorithm, the proposed method is

compared with reference supervised and unsupervised dictionary learning methods;

namely, K-SVD [1], LC-KSVD [29] and TIDL [59] , with respect to the following

performance measures:

• The classification performance is measured with the percentage of test samples

misclassified with 1-sparse representations in the learnt dictionaries. The test sample

is assigned the label of the atom which gives the minimum residual as in eq. (3.20).

• The representation performance is measured with the norm of the residual vector,

which is the difference between the test signal and its best 1-sparse representation as

formulated in eq. (3.19).

To summarize, the comparisons show the classification and representation performances

of compared algorithms with 1-sparsity constraint. Using 1-sparsity reduces the
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computational complexity and increases the speed of all algorithms so it helps to

achieve the aim of our method which is fast and memory efficient classification.

The experiments are done with the setup described in Section 4.1. For the proposed

method, we use the optimized values of β and σ given in the Section 4.2 to solve

the eq. (3.14). In the training of the K-SVD, we set the number of iterations as 50,

the sparsity of K-SVD, s as 40 in the eq. (2.22) which gives the optimum results for

the data sets. An individual dictionary is computed for each class with K-SVD, by

learning the dictionary with the training samples of that class. In training step of LC-

KSVD1, we use γ1 as 0.002 and sparsity s as 40 for optimum results in eq. (2.27).

Likewise for LC-KSVD2, we set γ1 as 0.002, γ2 as 0.004 and sparsity s as 40 for

optimum results in eq. (2.28). For both LC-KSVD methods, the number of iterations

is set to 50. To learn dictionaries with the TIDL method, we use the optimized σ

value as used in the proposed method which gives the optimum results in eq. (3.6).

As stated above, 1-sparsity is used as given in eq. (3.20) in all tests to measure the

performance differences among these methods.

Please note that in all experiments in this section similar results are obtained from

LC-KSVD1 and LC-KSVD2 so the plots in this section legends LC-KSVD1 as LC-

KSVD for the simplicity of the plots.

4.3.1 Results in MNIST Data Set

The setup described in Section 4.1.1 is used with the optimized parameters for each

method given in Section 4.3 for the experiments in this section. Figure 4.15 shows

the classification performance of compared methods.
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Figure 4.15: Misclassification Error (%) Comparisons of Algorithms in MNIST Data

Set

The representation performance of compared methods is shown in Figure 4.16.
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Figure 4.16: Residual Comparisons of Algorithms in MNIST Data Set
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It is observed in Figures 4.15 and 4.16 that the classification performance and the

representation accuracy increase with the size of the dictionaries in all compared

algorithms. The proposed method and its preceding version TIDL have the lowest

misclassification rate and residual for dictionaries having up to 20 atoms. Moreover,

the proposed method continues the leading performance of classification and representation

for larger dictionaries having up to 100 atoms. This leading performance of our

method demonstrates the success of the ideas of training using different weighted

training images and the incoherence term added to the objective of the TIDL method

as observed in Figures 4.15 and 4.16.

The results of these experiments are given in Tables 4.5 and 4.6 in more detail.

Table 4.5: Misclassification Rate (%) Comparisons of Algorithms in MNIST Data

Set

Dictionary Size 1 5 10 20 50 100 200

Proposed Method 20,50 13,30 9,50 9,40 8,90 8,30 6,55

K-SVD 20,10 20,20 16,30 15,50 9,95 7,90 6,00

TIDL 18,6 14,05 12,65 11,95 10,90 10,55 10,10

LC-KSVD1 29,15 15,58 13,47 11,66 10,49 11,85 6,4

LC-KSVD2 29,15 15,49 13,56 11,92 10,28 9,4 6,35

Table 4.6: Residual Comparisons of Algorithms in MNIST Data Set

Dictionary Size 1 5 10 20 50 100 200

Proposed Method 0,00147 0,00085 0,00078 0,00072 0,00067 0,00062 0,00059

K-SVD 0,00111 0,00111 0,00111 0,00095 0,00073 0,00069 0,00057

TIDL 0,00108 0,00089 0,00086 0,00081 0,00081 0,00078 0,00076

LC-KSVD1 0,00112 0,00111 0,00095 0,00087 0,00074 0,00074 0,00059

LC-KSVD1 0,00112 0,00111 0,00095 0,00084 0,00075 0,00072 0,00057

The leading classification performance of our algorithm stands for the lower dictionary

sizes in the MNIST data set as seen in Table 4.5. This may help our algorithm to
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be used in platforms with low storage capability because for dictionary sizes up to

100 for the MNIST data set, our algorithm outperforms the compared algorithms.

However, for large dictionaries, the K-SVD method captures the lead and is followed

by LC-KSVD, the proposed method and TIDL. This result can be explained by the

visualization of some example atoms in Figures 4.17 and 4.19 which are taken from

dictionaries of size 200. The K-SVD method learns more comprehensive dictionaries

than our method and the advantage of these comprehensive dictionaries are observed

more for larger dictionaries.

For the representation performance, all methods end with similar residual errors for

large dictionaries but when the dictionary size is small, the LC-KSVD1 and LC-

KSVD2 have the most accurate representations followed by the proposed algorithm,

TIDL and K-SVD as seen in the Table 4.6.

10 sample atoms selected from 3 classes are shown in Figures 4.17 - 4.21, respectively

for the proposed method, TIDL, K-SVD, LC-KSVD1 and LC-KSVD2.

Our Method

Figure 4.17: Dictionaries Learnt with Proposed Method in MNIST Data Set for 3

Classes
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TIDL

Figure 4.18: Dictionaries Learnt with TIDL in MNIST Data Set for 3 Classes

KSVD

Figure 4.19: Dictionaries Learnt with K-SVD in MNIST Data Set for 3 Classes

LCKSVD1

Figure 4.20: Dictionaries Learnt with LC-KSVD1 in MNIST Data Set for 3 Classes
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LCKSVD2

Figure 4.21: Dictionaries Learnt with LC-KSVD2 in MNIST Data Set for 3 Classes

Figure 4.19 shows that the K-SVD method learns a representative dictionary with

atoms that rather look like the training images belonging to the same class. It can be

observed in Figures 4.20 and 4.21, that LC-KSVD1 and LC-KSVD2 learn atoms that

also have dissimilarities from the training images belonging to other classes. This

causes the LC-KSVD methods to have better classification performance than K-SVD

as shown in Table 4.5. The TIDL method learns dictionaries having atoms different

from each other which also bear dissimilarities from the training images of the other

classes. This causes the TIDL method to have better classification performance

than K-SVD. Although the proposed method learns atoms that looks similar to each

other, these atoms are particularly adapted to the setting of 1-sparse representations

with the help strategies such as including all training images in the learning of each

atom. Consequently, the proposed algorithm outperforms the others in most settings

when 1-sparse representations are used as observed in Table 4.6. It also yields the

best classification performance over the compared algorithms until the size of the

dictionary exceeds about 100 atoms. The LC-KSVD1 and LC-KSVD2 methods have

the lowest misclassification rates for larger dictionary sizes due to the dissimilarities

of the atoms in the dictionaries.

56



4.3.2 Results in Yale Face Data Set

We experiment with the setup in Section 4.1.2 for 3 and 5 randomly selected classes,

correspondingly. For each experiment, 100 Monte Carlo trials are done with the

random selection of classes and the training images of corresponding classes. Each

method uses their optimized parameters given in Section 4.3.

• Experiments on 3 different classes:

Figure 4.22 shows the misclassification results of all methods for 3 different classes

in the Yale Face data set.
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Figure 4.22: Misclassification Error (%) Comparisons of Algorithms in Yale Face

Data Set for 3 Classes

For the experiments on 3 classes from Yale data set, Table 4.22 shows that the classification

performance of the proposed algorithm leads the compared algorithms. The KSVD,

LC-KSVD2, LC-KSVD1, and TIDL methods follow our algorithm, respectively.

Consequently, the aim of fast and efficient classification of our algorithm is achieved

for this experiment. K-SVD has the second lowest misclassification rate because it

performs well when the number of classes is low.
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Figure 4.23 shows the residual results of all methods for 3 different classes in the

Yale Face data set. In terms of the accuracy of 1-sparse representations, K-SVD is the

leading algorithm followed by LC-KSVD1, LC-KSVD2, the proposed algorithm and

TIDL, respectively as seen in Figure 4.23. It is an expected result because the K-SVD

method owes its popularity to its representation power and LC-KSVD is a supervised

and extended version of K-SVD. The proposed method performs better than the

TIDL method for all dictionary sizes because it incorporates more information in

the learning of the atoms by using all training images with different weights, unlike

the TIDL method.
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Figure 4.23: Residual Comparisons of Algorithms in Yale Face Data Set for 3 Classes

The experimental results of this section are also given in Tables 4.7 and 4.8.

As seen in Table 4.7, the proposed algorithm outperforms the compared algorithms

in terms of classification performance. The experiments done for dictionaries having

10 atoms, the proposed method is 4% better than the KSVD which is the runner-

up algorithm with respect to the misclassification rate. However, this big difference

among the algorithms is not valid for the experiments with dictionaries having 15

atoms. For this experiment, all of the algorithms except the TIDL method performs

similarly in terms of classification. The TIDL method is powerful for the experiments
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conducted with dictionary sizes of 5. As stated in [59], the TIDL method shows its

classification ability for lower dictionary sizes which is also seen in Table 4.7.

Table 4.7: Misclassification Rates (%) on 3 Classes in Yale Face Data Set

Dictionary Size 1 5 10 15

Proposed Method 32,78 25,93 15,23 12,14

KSVD 26,62 34,50 19,72 12,71

TIDL 50,11 26,25 32,63 27,22

LC-KSVD1 62,70 35,69 22,41 15,04

LC-KSVD2 62,70 35,63 22,43 14,41

Table 4.8: Residual Error on 3 Classes in Yale Face Data Set

Dictionary Size 1 5 10 15

Proposed Method 0,317 0,205 0,172 0,161

KSVD 0,319 0,142 0,110 0,095

TIDL 0,333 0,239 0,193 0,180

LC-KSVD1 0,255 0,150 0,117 0,101

LC-KSVD2 0,254 0,150 0,118 0,101

Being one of the most powerful dictionary learning algorithms in terms of sparse

representation, the K-SVD method takes the lead when the 1-sparse representation

accuracies are studied as seen in Table 4.8. K-SVD is followed by LC-KSVD, the

proposed method and TIDL, respectively in terms of approximation accuracy.

Here we display some atoms from the dictionaries having 10 atoms learnt from 3

classes of the Yale Face data set.
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Our Method

Figure 4.24: Dictionaries Learnt with Our Method in Yale Face Data Set for 3 Classes

TIDL

Figure 4.25: Dictionaries Learnt with TIDL in Yale Face Data Set for 3 Classes

KSVD

Figure 4.26: Dictionaries Learnt with K-SVD in Yale Face Data Set for 3 Classes
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LCKSVD1

Figure 4.27: Dictionaries Learnt with LC-KSVD1 in Yale Face Data Set for 3 Classes

LCKSVD2

Figure 4.28: Dictionaries Learnt with LC-KSVD2 in Yale Face Data Set for 3 Classes

It is surprising that K-SVD outperforms the LC-KSVD methods which are the extended

and supervised version of K-SVD in classification. The cause of this unexpected

result is related to the learnt atoms of these method seen in Figures 4.26, 4.27 and

4.27. The visual examination of the dictionaries shows that the atoms learnt by the

K-SVD method have more class-specific characteristics than the ones learnt by the

LC-KSVD1 and LC-KSVD2 methods. The atoms learnt with the proposed method

also have the same characteristic information as seen in Figure 4.24. Atoms learnt

by the proposed method also have some features from the other classes which results

in the increase in the classification performance but the decrease in the accuracy of

representation. Although the TIDL method learns some atoms having both characteristics
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from the training images labeled with the same class and the other classes, some

atoms learnt by TIDL seem disrupted that may be caused by unsuccessful atom

initialization and finding index sets corresponding to this initialization.

• Experiments on 5 different classes:

The 1-sparse classification and representation performances of the compared methods

for randomly selected 5 different classes in the Yale Face data set can be seen in

Figures 4.29 and 4.30, respectively.
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Data Set for 5 Classes
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Figure 4.30: Residual Comparisons of Algorithms in Yale Face Data Set for 5 Classes

There are some differences among Figure 4.22 and Figure 4.29. First of all, the

misclassification rates are higher in this setup because of the increase in the number

of classes. This is an expected result because the difficulty of classifying more classes

is directly proportional to the number of classes which can be inferred from eq. (3.20).

Secondly, the proposed method is observed not to outperform the others in this setup

with 5 classes. Although it has better results than its preceding version TIDL for all

dictionary sizes, this result shows that the improvement of its performance for more

classes can be a future work. Thirdly, the K-SVD method outperforms all compared

methods including the proposed method.

Figure 4.30 presents similar results to those of Figure 4.23 so it can be concluded that

the change in the number of classes does not change the representation performance.

Also, the same conclusions related to the residual drawn from the experiments with 3

classes on Yale Face data set are valid for this experiment.
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Table 4.9: Misclassification Rates (%) on 5 Classes in Yale Face Data Set

Dictionary Size 1 5 10 15

Proposed Method 59,84 38,80 27,33 22,37

K-SVD 35,84 43,38 25,53 17,64

TIDL 62,69 50,40 39,73 33,51

LC-KSVD1 72,90 47,81 30,03 22,30

LC-KSVD2 73,06 47,50 30,06 22,37

Table 4.10: Residual Error on 5 Classes in Yale Face Data Set

Dictionary Size 1 5 10 15

Proposed Method 0,317 0,207 0,160 0,153

K-SVD 0,319 0,146 0,109 0,094

TIDL 0,392 0,274 0,235 0,212

LC-KSVD1 0,244 0,153 0,125 0,107

LC-KSVD2 0,244 0,152 0,125 0,108

In terms of 1-sparse representations, it can be inferred from Table 4.10 that K-SVD

has the best performance as in Table 4.8. K-SVD owes the success behind its classification

performance to its representation power. The proposed method cannot outperform

K-SVD in this experiment. The proposed method cannot maintain its success with

increasing class number due to the usage of all training images in the training step.

The dictionaries having 10 atoms learnt with 5 classes from the Yale Face data set are

displayed in Figures 4.31 - 4.35.
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Our Method

Figure 4.31: Dictionaries Learnt with Proposed Method in Yale Face Data Set for 5

Classes

TIDL

Figure 4.32: Dictionaries Learnt with TIDL in Yale Face Data Set for 5 Classes
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KSVD

Figure 4.33: Dictionaries Learnt with K-SVD in Yale Face Data Set for 5 Classes

LCKSVD1

Figure 4.34: Dictionaries Learnt with LC-KSVD1 in Yale Face Data Set for 5 Classes
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LCKSVD2

Figure 4.35: Dictionaries Learnt with LC-KSVD2 in Yale Face Data Set for 5 Classes

From Figures 4.31 - 4.35, it is inferred that the K-SVD method learns the most

comprehensive dictionary among all methods so that it takes the lead in both the

classification and the representation performance for this experiment. The LC-KSVD1

and LC-KSVD2 methods learn similar dictionaries so they result in similar misclassification

rates. The proposed method outperforms the TIDL method in terms of the classification

performance and the accuracy of representations as it learns more diverse dictionaries.
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CHAPTER 5

CONCLUSION

In this thesis, we proposed a supervised dictionary learning method for fast and

efficient classification of test samples. Particularly focusing on applications over

platforms with limited memory and computation resources, we have aimed to develop

a dictionary learning algorithm that minimizes the computational complexity of the

classification of test images. We have adopted an analytical representation of supervised

dictionaries over a two-dimensional Hermite basis in order to decrease the computational

complexity and the need for memory. In order to speed up the classification of test

samples, we have learnt the dictionaries in a way to allow an accurate classification of

test samples with 1-sparse representations. Also, when learning each atom, we use all

of the training images with different coefficients based on their distances to the learnt

dictionary atom to increase the variability between the atoms. We have also used an

incoherence term in our learning objective that discourages the similarity between the

dictionary atoms from the same classes.

This thesis starts with a brief review of sparse representations and dictionary learning

concepts. In Chapter 2, we have given an overview of the literature with some

examples of related supervised and unsupervised dictionary learning algorithms and

also on some sparse representation methods. In Chapter 3, the proposed method

has been explained in detail. We have started this chapter with a review of the TIDL

algorithm that has inspired our method, with the description of the proposed algorithm

by specifying its common and different points with respect to TIDL. Modifications

on the training sample selection and weighting strategies and the addition of an

incoherence term for atom variability have also been widely discussed in the same

chapter. In Chapter 4, we have given the results of the experiments conducted on
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several data sets in order to measure the classification and representation performance

of the proposed method. We have compared our method with the K-SVD [1], LC-

KSVD [29] and TIDL [59] methods for classification with 1-sparse signal representations.

The experiments on a simplified version of our method without the incoherence term

show that training with all training images with different weights performs better

than the hard selection of training images via index sets as done in the TIDL method.

Also, the comparison of the results obtained with and without the incoherence term

in our method shows the effectiveness of the incoherence term. For example, the

experiments conducted in the MNIST data set with the dictionaries having 10 atoms

shows that TIDL has 12.65%, the simplified method has 11% and finally the proposed

method has 9.5% misclassification rates which are inferred from Tables 4.1 and 4.5.

Please note that the experiments for the proposed method use the optimized weights

of the incoherence term which is also needed for these successful results.

Table 5.1: Computational Complexities of Classification Algorithms

Algorithm Complexity

Proposed Method O(MN)

Nearest Neighbor O(K)

Support Vector Machine O(M)

The computational complexities of classification algorithms when calculating a 1-

sparse representation of a test signal in M class-specific dictionaries of each having

N atoms and the number of training samples of all classes K is given in Table 5.1.

The proposed method estimates the class label of a given test image y with the eq.

(3.20). Thus, the computational complexity of the proposed method on test step can

be expressed with O(MN) where M is the class number and each class-specific

dictionary haveN atoms. The Nearest Neighbor [14] approach searches the minimum

distance between the test image y and the training sample yi,∀i ∈ {1, 2, ..., K}. NN

estimates the class-label of test image with the label of the training image satisfying

arg min ‖y − yi‖ ∀i ∈ {1, 2, ..., K}. For this reason, NN computes every distance

between test image and all training samples. Thus, it has a test time complexity

of O(K) where K is the number of all training samples. Support Vector Machine
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[13] defines boundaries for each class m to separate it from the other classes. SVM

estimates the class label of test image y with wTm y + bm,∀m ∈ {1, 2, ...,M} where

M is the class number and wm and bm define the boundary of class m. Thus, the

computational complexity of SVM is O(M). The Support Vector Machine method

only depends on the class number. For small dictionaries, the proposed method

has complexity getting closer to the complexity of SVM. The design aim of the

proposed algorithm which is applicability over the platforms having critical resources

is supported with this conclusion. Moreover, training with large training sets limits

the usage of Nearest Neighbor unlike the proposed method.

Experiments are conducted with the comparison of classification and representation

performances of our method with different algorithms using the 1-sparsity constraint.

1-sparsity speeds up the test stage of all algorithms and reduces their memory need.

Thus, the experiments show the performance of compared algorithms for the applications

where memory and computational resources are limited.

The experiments with large dictionary sizes can be conducted with the MNIST data

set. The results of these experiments show that the proposed method has considerably

better classification results at small dictionary sizes. Consequently, the proposed

method has benefits for applications with particular restrictions on the dictionary size

and demands for fast classification of test images.

The classification experiments with different number of classes in the Yale Face data

set shows that the classification performance of all algorithms decreases with the

increase in the number of classes. However, these experiments also show that the

representation performance of the algorithms is not as affected as the classification

performance.

The training images are more similar to each other in the MNIST data set compared

to the Yale Face data set. This causes the learnt atoms to be more similar atoms in the

MNIST data set. Hence, the need for an incoherence term is smaller in the Yale Face

data set because of having more diverse training images. Since our method brings an

innovation to the TIDL method through the incoherence term whose success is shown

by the experiments, our method is more favorable among the compared methods in

the MNIST data set than the Yale data set due to the need of atom incoherence.
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In the proposed method, some weight parameters are set experimentally. To begin

with, the Gaussian Kernel is used for setting the weight parameters of training images

in the training step of our algorithm. An important parameter to tune for setting

the weights is then the kernel scale. We tuned the kernel scale empirically. The

tuning of the kernel scale with more developed strategies might be the first of future

works. Also, the incoherence parameter is optimized experimentally in our work.

The second future work can be the automatic selection of the incoherence parameter.

The incoherence parameter should be optimized in accordance with the dictionary

size, the number of classes and the data set. In addition to the automatic optimization

of the weight parameters, there are is still some room for improving this work like

enhancing its performance for a large number of classes, the addition of some terms

to increase the classification rate in large dictionaries. Also, using an analytical basis

would facilitate the extension of our algorithm to be transformation-invariant like

TIDL. However, the transformation invariance of our algorithm is not examined in

this work. Thus, improvements for the geometric invariance can be another future

work. Moreover, basis selection can be optimized to increase speed and efficiency of

the algorithm because with an optimized selection of basis, signals of interest can be

represented with fewer coefficients which reduces the complexity and run time of the

algorithm. Also, it may increase the classification rate. Lastly, comparisons with the

baseline classification algorithms like Support Vector Machine and Nearest Neighbor

might be another future work.

To conclude, the experimental results show that, in comparison with the TIDL algorithm,

the proposed modifications over the selection of the training sample weights and the

introduction of the incoherence term have allowed the proposed method to achieve

successful classification performance. The comparisons with reference methods also

show that our method achieves its fast and efficient classification purpose as it often

gives more accurate results than the other methods in comparison, especially at small

dictionary sizes with 1-sparse representations. Consequently, the potential of our

algorithm for usage on platforms with low storage and computational capability is

demonstrated.
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