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ABSTRACT

USE OF DETACHED EDDY SIMULATION FOR AERODYNAMICS AND
AEROACOUSTICS OF BLADE SECTIONS

Cengı̇z, Kenan

Ph.D., Department of Aerospace Engineering

Supervisor : Prof. Dr. Yusuf Özyörük

March 2018, 119 pages

Investigation of noise generation mechanisms due to turbulence necessitates reso-

lution of eddies in space and time. Among the broad-band noise simulation tools,

direct numerical simulation (DNS) is the most comprehensive one. However, it is

prohibitively expensive. At the other extreme, unsteady Reynolds-averaged Navier-

Stokes (URANS) based solvers, which are widely used in industry, can merely be

reliable for attached flows. Besides, the inherent time-averaging procedure destroys

the unsteadiness of eddies in most of the scales. Moreover, large-eddy simulation

(LES) is still expensive in Reynolds numbers of industrial interest. At that point, use

of hybrid RANS/LES approaches come to aid for capturing broad range of spectrum

at acceptable costs. As a non-zonal variant, detached-eddy simulation (DES) has in-

creasingly become useful in determination of noise generation mechanisms. There

are commercial codes with DES modules. However, because of highly dissipative

and dispersive low-order schemes of such codes, direct simulation of noise requires

extremely fine meshes. Therefore, the aim of this thesis is to develop a low-dissipative

low-dispersive high-order finite volume code to solve the compressible Navier-Stokes
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equations with DES capability, which will enable resolving eddies that are responsi-

ble for aeroacoustic noise generation around bodies.

Thanks to an enhancement over DES, the model becomes more viable in attached

flow problems, with a swifter switch to LES mode towards the outer boundary layer.

Several validation studies reveal the solver’s low-dissipation qualities. Finally, noise

from a wing section is investigated. This is an important step towards design of qui-

eter wind turbine blades. Ffowcs Williams and Hawkings acoustic analogy is utilized

for prediction of the noise at far locations. Both the aerodynamic and aeroacoustic

results show good agreements with the benchmark data, for markedly less computa-

tional cost than an LES study.

Keywords: airfoil noise, detached-eddy simulation, low dispersion, low dissipation,

acoustic analogy
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ÖZ

KANAT KESİTLERİNİN AERODİNAMİK VE AEROAKUSTİK
INCELENMESİNDE AYRIK ÇEVRİNTİ BENZETİMİ

Cengı̇z, Kenan

Doktora, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. Yusuf Özyörük

Mart 2018 , 119 sayfa

Türbülans kaynaklı gürültünün incelenmesi zamansal ve uzaysal bağlamda yüksek

çözünürlük gerektirir. Geniş bantlı gürültü benzetimi araçlarından biri olan doğrudan

sayısal benzetim (DNS) en kapsayıcı olandır. Ancak, yüksek çözünürlük gereksini-

minden ötürü mühendislik problemlerinde kullanılamaz. Diğer uçta ise sanayi tara-

fından yaygınca kullanılmakta olan Reynolds ortalamalı Navier-Stokes (RANS) yak-

laşımı vardır. Onun kullanımı ise tutunan akış problemleriyle sınırlı olmakla birlikte,

zaman-ortalamalı yaklaşımı türbülans içeriğindeki salınımları yok eder. Büyük çev-

rinti benzetimi (LES) ise daha mühendislik problemleri için pahalı olmayı sürdür-

mektedir. Bu noktada yardıma melez RANS/LES yetişir. Bu yöntem, sınır tabakayı

RANS ile çözmek yoluyla, geniş bantlı bir gürültü benzetimini daha ucuza sağlaya-

bilir. Bir melez RANS/LES yöntemi olarak ayrık çevrinti benzetimi (DES), yapılan

geliştirmelerle gürültü benzetimi alanında giderek daha çok kullanılmaya başlamış-

tır. DES yetisi tecimsel kodlarda bulunsa da, bu kodlardaki düşük mertebeli yüksek

yitimli sayısal ayrıklaştırmalar çok ağ noktası gerektirmektedir. İşte bu yüzden bu

çalışmanın amacı, düşük yitimli düşük dağılmalı yüksek mertebeli ve DES destekli
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bir akış çözücüsü geliştirmektir. Böylece, bir nesne üzerindeki gürültü kaynaklarını

oluşturan çevrintiler çözümlenebilecektir.

DES için yeni önerilmiş bir geliştirme, modeli tutunan akışlarda bile işlevsel kılmak-

tadır. Yapılan doğrulama çalışmaları göstermektedir ki çözücü gerçekten de düşük yi-

timli bir davranıştadır. Ayrıca bir kanat kesidi gürültüsü problemi de çözülmüştür. Bu

gibi problemlerin çözümü, rüzgar türbini kanat tasarımı çalışmalarına yönelik önemli

adımlardır. Hesaplanan akış üzerinden uzaktaki gürültüyü kestirmek için Ffowcs Wil-

liams & Hawkings akustik anoloji yöntemi kullanılmıştır. Elde edilen aerodinamik ve

aeroakustik sonuçlar literatürdeki deney ve benzetim verileriyle örtüşmektedir. Üste-

lik bu, LES yaklaşımına kıyasla çok daha ucuza getirilmektedir.

Anahtar Kelimeler: kanat gürültüsü, ayrık çevrinti benzetimi, yüksek mertebeli ayrık-

laştırma, akustik anoloji
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my thesis defense committee. Their comments and suggestions improved my thesis

further to this final state.

Computational resources granted by RÜZGEM (METUWiND) is gratefully acknowl-

edged. Without them, this thesis would not be possible. Financial support by TÜBİTAK
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x
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tüm sevgili arkadaşlara ve Yalçın’a da çok teşekkürler.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

A more extensive public acceptance of wind turbines necessitates less noise emis-

sions, which has been an issue for nearby residents since wind farms and residential

areas happened to coincide because of the rapid enlargement of both such that some

residents in the neighborhood complain about noise. They report that particularly un-

der nocturnal conditions, it sounds like a never-arriving train ruining night-sleeps of

the people living up to 1.5 km [1]. Evidently, the first solution to this problem that

springs to mind is controlling the noise emission from the turbines. Determination

of the noise sources, and designs lowering them have been a hot topic [1], particu-

larly the aerodynamic-related noise sources are more intensely focused due to their

significance. Numerical simulation using the first principles is an indispensable tool

to investigate the aerodynamic noise sources around a wind turbine blade, despite the

inevitable challenge of resolving complex unsteady flow structures accurately in an

acceptable computation time span [2]. The turbulent character of the flow is the basis

of the broadband noise [3], usually being the dominant source over blade-thickness

noise, trailing-edge bluntness noise etc., particularly for larger wind turbines [4].

Broad-band noise has been simulated in three main approaches: Reynolds-averaged

Navier-Stokes (RANS) based turbulence modeling [5], large/detached eddy simula-

tion (LES/DES), and direct numerical simulation (DNS). DNS is the most general

one among these, involving no turbulence model at all. However, it is impracticable

for general problems due to the need for tremendous number of cells and too small

time steps to resolve the whole spectrum and time scales. Nevertheless, in literature,

applications of DNS appear, but usually limited to simple geometry and low Reynolds
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number flows such as channel flow (for a prominent exception to this, see [6]). On the

other hand, RANS based solvers can be very versatile particularly in fully-attached

or shallowly-separated flow cases. They are widely used in industrial applications

for a reason, indeed. Nonetheless, the inherent time-averaging procedure eliminates

the unsteadiness in small scales of turbulence, which most of the time renders it in-

appropriate for simulation of flow noise generation. LES is a natural choice for free

shear layers, with successful applications to airfoils and wind turbines [2, 7, 8]. How-

ever, feasibility of LES for mid-to-high Reynolds number boundary layer flows is still

troublesome, even since the classical paper by Spalart et al. [9]. At that point, use of

hybrid RANS/LES methods serves well both for capturing broad range of spectrum

at an acceptable cost. In particular, a wall-modeled large eddy simulation (WMLES)

[10] and DES in its WMLES mode [11, 12] have been the most cost-effective and

user-friendly approaches towards noise simulation using first principles. In fact, they

have a promising prospect towards resolving turbulent boundary layer flows for the

next 20-30 years [13].

There are commercial codes like Fluent [14] which include LES/DES and RANS

modules. However, because of low-order discretization approach of such codes, di-

rect simulation of noise requires either very fine meshes or the range of the predicted

noise frequency must be limited to low values because of numerical dispersion and

dissipation of the waves. When high-order methods are used, such errors are low-

ered, and the need for very fine meshes can be relaxed. Therefore, the aim in this

dissertation is to develop a high-order finite volume code to solve the Navier-Stokes

equations with DES capability which will enable us to obtain turbulent vortical struc-

tures that are responsible for aeroacoustic noise generation around wind turbine blade

sections. The acoustic emission due to the unsteady flow around blade sections will

then be computed at observer locations using acoustic analogies.

1.2 Airfoil Self-noise

Airfoil noise is mainly due to interactions of boundary layers with the trailing edge,

inflow turbulence and the resulting wake. Airfoil self-noise however, is defined as the

noise without inflow turbulence or unsteadiness. That is, it is the noise the airfoil in
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a smooth flow emits by itself only. Brooks et al. [15] identifies five flow conditions

that are responsible for airfoil self-noise in subsonic regime (see Figure 1.1):

(a) Turbulent boundary layer—trailing edge noise,

(b) laminar boundary layer—vortex shedding noise,

(c) separation—stall noise,

(d) trailing edge bluntness—vortex shedding noise,

(e) tip vortex formation noise.

(a) (b)

(c) (d)

(e)

Figure 1.1: Self-noise noise sources of an airfoil in subsonic flow (reproduced from

[15])

All these sources of noise are known to contribute to the broadband noise from a

wing or blade. Some of the sources could be responsible for tonal noise as well (such
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as (b),(d)). Prediction and control of noise from these sources are significant for

airframe, fan, turbofan, helicopter rotor, and wind turbine blade designs. Conditions

(a) & (b) are related to trailing edge noise, which can be described as scattering of

pressure fluctuations as the unsteady boundary layers pass through the trailing edge.

In fact, trailing edge noise is the primary noise source from a modern wind turbine

[3].

The report by Brooks et al. [15], as well as more recent measurements regarding wind

turbine airfoils [16, 17], documents a large set of airfoil self-noise measurements for

use in development of a semi-empirical prediction model. Despite the abundance of

such measurement-based models, they must be supported by numerical prediction

databases to provide more detailed information of the flow. Moreover, numerical

prediction is indispensable tool for understanding of the flow mechanisms behind

noise control devices such as trailing-edge serrations.

Wind turbine flows are nearly incompressible, and determining the noise sources by

incompressible flow equations requires special care since sound speed is infinite in

such formulations. Thus, phase information throughout the scattering body is not

available for non-compact sources despite its significance. In such situations, a spe-

cially tailored Green’s function becomes crucial [18, 19] when describing the noise

in terms of surface integral. For example in trailing-edge noise applications, solution

of Ffowcs Williams-Hawkings equations necessitate the Green’s function for infinite

thin half-plane instead of the free-space Green’s function [20, 21, 22, 23]. In the

current study, however, the compressible flow equations are used, and such special

treatments are not needed (see [24] as a similar approach). That is, the free-space

Green’s function is used in surface integral formulations.

1.3 Detached-eddy Simulation and Its Use in Aeroacoustics

Detached Eddy Simulation (DES [9]) is considered as a hybrid method such that tur-

bulent boundary layer part of the flow (i.e. fully modeled part) is simulated with

a common RANS model, and the region of interest (i.e. resolved region) with a

LES-like mode of the RANS model. In fact, the RANS model equation behaves
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like a Smagorinsky LES model [25] in LES mode of the DES. This behavior is ob-

served when the production and destruction terms of the model equation are in equi-

librium [26], occurring when the model length scale gets close to a LES-like grid

filter. Thanks to the special length scale definition, DES smoothly switches between

RANS and LES length scales. This is an automated process as opposed to other hy-

brid methods where a user decision is necessary to determine the RANS and LES

zones. A single seamless model equation formulation between the two zones is an-

other advantage over other hybrid RANS-LES approaches.

DES has been evolving since its introduction in 1997 [9]. Initially, it was limited

to strongly separated flows, not being safe at all for use in other type of flows. The

reasons for the strict limitation may be listed as below:

1. Modeled stress depletion (or grid induced separation, consequently),

2. unphysical damping of eddy viscosity in LES mode,

3. log-layer mismatch,

4. gray area problem (i.e. delay of transition to LES mode in shear layers)

Most of these shortcomings are discussed in detail by Mockett [26], and summarized

by U.Michel et al., P.R. Spalart and Strelets et al. [27, 28, 29] in their reviews.

Delayed Detached Eddy Simulation (DDES) was a significant improvement for sim-

ulation of attached flows, where boundary layers are shielded by a function to prevent

early transitions caused by “ambiguous grid densities”. The shield cures the modeled

stress depletion, or being an unphysical outcome, grid-induced separation is over-

come as demonstrated in the work by Spalart et al. [30]. In the same work addition-

ally, use of a correction function (Ψ) prevented unphysical damping by eddy viscosity

caused by the low-Re functions of the RANS model being erroneously active in the

LES mode. Transition to from RANS to the LES mode in the DDES framework, nev-

ertheless, had been merely dependent on mesh because of the length scale definition

∆max [30, 31], resulting in a “gray area” between the RANS and the LES region.

This was remedied by the zonal hybrid RANS/LES approaches, such as [32, 33]. In

these approaches, RANS and LES regions are determined a priori, and induction of
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synthetic turbulence at the interface is crucial to start instabilities, i.e. to trigger LES

content. Despite its success, decision burden on the interface determination (namely,

the zonal approach) and quality concerns on the synthetic turbulence has been signif-

icant drawbacks [33]. Thus, they are far from being generally applicable to complex

geometries, rather being “channel-friendly” [11].

Log-layer mismatch has been remedied by the improved DDES (IDDES)[11] which

also handles the aforementioned issues. It features some blending functions to correct

the mismatch effectively. The gray area problem is cured in the wall-modeled LES

(WMLES) mode while overcoming issues (1) & (2) in the DDES mode in a blended

fashion. Note that the wall modeled LES mode is active only when there is a turbulent

content in the inflow, and as long as the mesh resolution in the region is close to the

requirements of a LES. Despite the fact that IDDES might be considered as an overall

solution to most of the listed issues, the complexity is a disadvantage. Besides, the

last issue in the list remains to be solved more effectively.

A cure to the last shortcoming, delay of transition to the LES mode in shear layers, has

been proposed recently by Shur et al. [34], and tested on several benchmark problems

successfully. It merely consists of an upgrade to the vorticity aligned length scale def-

inition ∆ω [35, 31], combined with a function to properly reduce it locally, to obtain

a shear layer adapted length scale. The new length scale definition is perceived as a

reduction to eddy viscosity in regions where a purely 2-D shear is supposed to incite

Kelvin-Helmholtz instabilities. Consequently the instabilities are not hampered, and

LES content can arise rapidly thanks to implicit LES (ILES) nature of the model in

the regions in question. The delayed detached-eddy simulation approach employing

this shear layer adapted length scale definition is denoted throughout this dissertation

as SLADDES for convenience. In the present study, the WMLES mode is intended

to be unleashed without inlet turbulence forcing, through combining the virtues of

SLADDES with minimized numerical discretization error.

Wall-modeled Large-eddy Simulation (WMLES) has been a promising research area

in recent years, heralding affordable resolution of turbulence in Reynolds number

ranges of engineering interests. It was estimated by Choi and Moin [36] that sim-

ulation of a high Reynolds number boundary layer flow requires a grid point num-
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ber of N ∼ Rex for WMLES whereas, N ∼ Re
13/7
x for wall-resolved LES, and

N ∼ Re
37/14
x for resolving Kolmogorov length scale, i.e. DNS. WMLES can be

considered in two categories: hybrid RANS/LES, LES with wall stress models. DES

approach belongs to the former category. In the present study, only nonzonal DES ap-

proaches are considered. In the latter category, LES is solved throughout the domain

without solution of any sort of RANS model equations, where the effects of walls

are accounted through boundary conditions. Despite many successful applications,

the robustness of the latter approach is yet to be improved in several flow complexi-

ties such as separation due to a mild adverse pressure gradient, transition, boundary

layer—shock interaction, wall heat transfer. See the recent reviews [37, 38, 39] for

insight into the topic, progress made and future directions.

Detached-eddy simulation methods have been increasingly employed in various noise

prediction problems [40, 41, 42, 43, 44, 45], although not as common as LES methods

probably because of the fact that it is not the original application area. Nevertheless,

DES may well be viable in noise prediction problems as long as the shortcomings

explained above are overcome to some extent. Essentially, the trait to prefer DES

over LES in such problems is that DES grants the freedom to choose the range of

scales that are to be resolved, unlike LES methods where the maximum grid spacing

is strictly determined by standard LES requirements. In addition to the freedom in

range of the scales to be resolved, DES methods also allow the user to determine

the region to be resolved. For example, in mixed-type problems such as cavity noise

problems, where the dominant noise sources are undoubtedly in the separated flow

over the cavity, the attached flow over the wall in the upstream can conveniently

be simulated in RANS mode using quite coarse meshes. All in all, DES methods

enable the user to lessen computational requirements of a particular noise problem

considerably, as long as the location of the noise sources and the range of the scales

of the important sources are known in advance.

The main challenge for a DES user, provided the above shortcomings are remedied,

is to design the grid [40]. In its LES mode, It must be fine enough to resolve small

scale instabilities in shear layers. When a permeable surface is used for acoustic pre-

dictions, the grid spacing must also be sufficiently small inside the integration surface

so that sound propagation is captured in all directions inside the surface. The former,
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which is related with resolution and modeling of aeroacoustic sources, depends on

both the turbulence modeling and the numerical scheme, whereas the latter is only

related with the dissipation and dispersion characteristics of the numerical scheme.

All these topics will be discussed in the next chapter.

1.4 High-order Methods and Their Benefits on Resolving Turbulence and Noise

Prediction

High-order methods are not mostly available in commercial flow solvers. In indus-

trial applications, second-order methods have been considered well-established and

practical in terms of robustness, compactness, and ease of implementation. On the

other hand, high-order methods, referred here to third or higher order methods, are

known to be stiff, and require more floating point operations per degree of freedom as

well as larger memory [46]. Nevertheless, it was reported in ADIGMA project [47]

that for a given accuracy, high-order methods involved 5-10 folds fewer grid points

for certain aerodynamic tests. Following the ADIGMA project, IDIHOM project [48]

scrutinized industrialization of high-order methods, where highly efficient strong al-

gorithms were considered crucial to support the cost reductions by loosened grid re-

quirements. Despite computational cost reductions for a given accuracy, it was con-

cluded that such methods and algorithms were not mature enough for efficient use in

industrial codes.

The computational gains by using high-order methods are particularly significant in

aeroacoustic noise generation and propagation studies. This may be conveniently

shown by a simple Fourier analysis of a first derivative centrally discretized by finite

difference method. Note that first derivative terms are common in flow equations,

being mostly seen in convective terms. Figure 1.2 shows results of a Fourier analy-

sis of centrally discretized first derivative for second, fourth, and a low-dispersion-

optimized (based on DRP, explained in the next paragraph) fourth order spatial accu-

racy. The first impression is that, as the number of points representing one wave is

reduced, the accuracy of wavenumber decreases for all of the methods. Observe that

higher-order schemes have a slower decay of accuracy towards lower points per wave

(NPPW), such that a selected error percentage requires more points for the second-
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order spatial scheme.

Figure 1.2: Ratio of effective (i.e. numerical) wavenumber k to true wavenumber k

vs. number of points per wave (NPPW = 2π/k∆x)

Table 1.1 compares the computational costs of the spatial schemes used for discretiza-

tion of first derivative. The costs are shown only for 1% wave error, where corre-

sponding number of points per wave values are extracted from Figure 1.2. The bene-

fit of the fourth-order DRP is particularly immense on 3-D. Notice that a lower error

percentage would emphasize the cost benefit of the higher order schemes even more.

Table 1.1: Comparison of floating point operations for discretization of a first deriva-

tive with 1% error of k∆x/k∆x

2nd order 4th order 4th order DRP

NPPW required in 1-D for 1% error 25.63 8.349 4.915

FLOPS on 1-D for one point 3 5 7

FLOPS on 2-D for one point 5 9 13

FLOPS on 3-D for one point 7 13 19

FLOPS on 1-D, with 1% error 2.24C1D 1.21C1D C1D

FLOPS on 2-D, with 1% error 10.5C2D 1.20C2D C2D

FLOPS on 3-D, with 1% error 52.2C3D 3.35C3D C3D

In LES applications, numerical discretization errors can be at the same magnitude or-

der with the subgrid-scale model stresses [49], ruining the work of the subgrid model.
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Classically, central schemes have been recommended for LES to overcome this pit-

fall, instead of upwinding and flux-splitting methods. Still, sufficiency of standard

second-order central scheme for LES is doubtful [50, 49]. In fact, since the standard

scheme might produce spurious kinetic energy on grid non-uniformities, use of artifi-

cial diffusion is essential to ensure numerical stability, inducing some extra diffusion,

which could also interfere with subgrid-scale model. In order to prevent this, one

remarkable approach is to utilize the numerical dissipation error as a substitute to the

subgrid scale model stresses [51, 52], hence no subgrid modeling is required. Another

approach, which is adopted in the current study, is to minimize the numerical errors

to eliminate the interference with the subgrid-scale models.

In standard finite volume and finite difference discretizations, local conservation of

mass, momentum and total energy is ensured, while kinetic energy and internal en-

ergy (i.e. sound velocity) are not conserved by convection locally. This situation

stems from the fact that the discretization operators do not retain the symmetry prop-

erties of the differential operators they are based upon [53]. In particular, from a

mathematical perspective, the convective operator is skew-symmetric, and diffusive

operator is positive-definite symmetric. Accordingly, to preserve the symmetry in the

discrete system, the corresponding discrete operators must represent skew-symmetric

and positive-definite symmetric coefficient matrices, respectively. This situation is

elegantly explained by Verstappen and Veldman [53]. In inviscid cases where no

change of total enthalpy is expected, unphysical generation of kinetic energy due to

lack of discrete symmetry disrupts numerical stability. Besides, in viscous cases, the

unphysical production or dissipation of kinetic energy could interfere with turbulent

subgrid-scale stresses [54], ruining huge amount of cpu-time spent for LES. In liter-

ature, skew-symmetric forms of convective terms have been implemented for com-

pressible or incompressible flows via finite difference formulations [55, 53, 56, 57].

They enhance stability and accuracy such that need for artificial dissipation can some-

times be eliminated unlike conventional central discretizations [57]. This is a valu-

able merit because of computational overhead, and possibly induced inaccuracies by

the artificial dissipation. For compressible flows, Kok [54] developed a high-order

scheme which locally conserves (by convection) mass, momentum and total energy

without sacrificing conservation of kinetic energy, internal energy and sound velocity
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locally on structured curvilinear grids with fourth-order accuracy and low-dispersive

discretization. Modesti and Pirozzoli [58] developed a low-diffusion finite volume

scheme for use on unstructured meshes that conserves kinetic energy on smooth flow

regions and switches to AUSM flux scheme in flow discontinuities to ensure stability.

Rozema et al. [59] developed Kok’s [54] symmetry preserving high-order method

even further such that temporal discretization preserves symmetry as well as the spa-

tial discretization. They used a new form of compressible flow equations to realize

this goal. Nevertheless, the symmetry-preserving time-stepping involves solution of

an implicit system, which was reported to be expensive [59]. Instead, for LES use,

they made use of a regular explicit low-storage Runge-Kutta time stepping because

taking small time steps keeps the error insignificant.

In this dissertation, the spatial discretization method employed is based on the fourth-

order finite volume approach by Kok [54] with low dissipation and low dispersion

benefits. The low-dissipation feature is based on symmetry-preserving central dis-

cretization, where skew symmetry of convective terms are preserved such that the

scheme becomes energy-preserving. The low-dispersion feature comes from dispersion-

relation-preserving optimization (DRP) by Tam and Webb [60], where extra points on

the stencil are used for low-dispersion optimization. In fact, for large eddy simula-

tions, and theoretically in LES regions of RANS/LES hybrid models, both features

reduce numerical errors which may interfere with the subgrid-scale model [54, 49].

Note that the figures in Table 1.1 are mostly related with dispersion of waves. Avoid-

ance from non-physical dissipation of waves is also crucial, not only because the dis-

sipation errors may interfere with subgrid-scale models, but also because they might

hinder triggering of flow instabilities [61]. Dissipation of waves by the current nu-

merical method is scrutinized in Section 2.5.

1.5 Acoustic Analogies and Prediction of the Far-field Noise

Despite the ability to compute sound at near-field directly [8, 62], prediction of sound

radiation up to an observer at a far distance directly from unsteady flow field is gener-

ally unfeasible, because propagation of sound requires impractically fine meshes (see

Figure 1.2). Instead, acoustic analogies are devised and employed for sound propa-
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gation simulations to far distances. Most acoustic analogies are based on Lighthill’s

equation [63], which is derived from Navier-Stokes equations without any special

assumptions. In fact, Lighthill’s equation is an inhomogeneous wave equation form

of the equations of gas dynamics, in other words, an acoustic analogy is constructed

from the equations of gas dynamics. Thus, a complex aeroacoustic problem is re-

stated as a linear acoustics problem in a uniform medium, involving acoustic sources

throughout the medium that would induce the same sound on the observer. Conse-

quently, the difficulty of solving gas dynamics equations is transferred to comput-

ing of the sources. Nonetheless, clever assumptions made on the sources consider-

ing the characteristics of the flow problem have clearly paved the way for feasible

far field sound prediction methodologies in industrial applications (see the reviews

[64, 65, 66, 67]). The acoustic analogies are widely utilized in framework of the

hybrid methods, where the acoustic sources are described by CFD, and major part

of the propagation is simulated through acoustic analogies or CAA methods. In this

dissertation, only Ffowcs Williams-Hawkings (FWH) acoustic analogy [68] is con-

sidered, leaving CAA tools (linearized Euler equations, acoustic splitting etc.) and

other acoustic analogies out of focus. The hybrid method in focus is commonly ab-

breviated as CFD-FWH.

In the present work, Ffowcs Williams-Hawkings acoustic analogy is used for far field

sound radiation from the turbulent flow around wing sections. It is a generalization

of Lighthill’s equation, exactly formulating the aeroacoustic noise due to flow around

solid bodies in arbitrary motion, taking into account all sorts of sound sources. A

reformulation even allows use of permeable integration surfaces [69, 70]. Proper

assumptions made owing to characteristics of the flow simplifies the use of FWH

equation. For example, in low-Mach constant wind speed applications, neglecting

volume sources becomes handy such that sound radiation from a wing section to a

far observer can be computed efficiently. In fact, volume sources are quadrupoles,

and they are inefficient radiators at low speeds. This simplification is investigated by

Wolf [71] extensively with two Mach numbers, through comparisons of results by

computations of the volume sources included and excluded.

Figure 1.3 illustrates common use of the permeable surface encompassing the noise

sources around a body. Theoretically, using the well-defined solid body surface is also
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possible. However, in most cases, it is impracticable to compute volume sources (i.e.

quadrupoles) in the entire 3-D flow region [72]. The permeable integration surface

must enclose all the flow-acoustic interactions and flow non-uniformities for reliable

aerodynamic noise computations, if such volume sources and refraction effects are

non-negligible. This need was demonstrated by Singer et al. [73, 74] in their early

work through use of various integration surfaces. Moreover, placing the surface in the

surrounding uniform flow requires resolution of the acoustic waves in the frequency

range of interest up to the surface [75], which could be costly in some cases, par-

ticularly those involving strong wakes. The permeable FWH formulations, without

volume sources but using integration surfaces that cover all the significant sources,

are considered the most efficient in general applications, such as wind turbines [2, 5],

helicopter rotor noise [64], landing gear noise [76, 77], cavity noise [78], etc.

Solid body in a 
turbulent field

FWH integration 
surface

CFD DOMAIN

Figure 1.3: Permeable surface around an aerodynamic body

In low-Mach flows around solid bodies, neglecting the volume sources is an effi-

cient approach because quadrupole sources are usually weak compared to loading

noise sources (i.e. dipoles) [79, 66]. Nevertheless, the wakes (i.e. non-acoustic dis-

turbances) passing through the integration surface might cause spurious noise that

contaminates broadband noise computation on the far observer [75]. This is naturally

expected to be canceled by the incorporation of the volume sources, which could

be costly as previously discussed. In order to obviate the need for incorporation of

the volume sources, several correction methods are proposed in the literature (e.g.
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[72, 80]). All in all, use of acoustic analogies necessitate rigorous consideration of

many issues depending on the problem characteristics.

1.6 Overview and Accomplishments

The essence of the current work is to develop from scratch a compressible flow solver

called METUDES. It is designed for aeroacoustic purposes, being based on a set of

advanced features and models. The set of features brought together in the framework

of METUDES are listed below:

• Fourth-order low-dissipation low-dispersion spatial discretization proposed by

Kok [54] on curvilinear grids,

• Dual-time strategy in time discretization combined with both low-Mach and

Jacobi preconditioners (called “preconditioning squared”) by Turkel [81],

• A blended matrix dissipation form by Potsdam et al. [82] devised for proper

scaling of artificial dissipation,

• Implicit residual smoothing for convergence acceleration,

• A positive-value-restricting modification to the Spalart-Allmaras turbulence model

proposed by Crivellini et al. [83, 84], which is expected not only to aid in tran-

sition to turbulence, but also enhance stability of the turbulence model.

• An upgrade to the delayed detached eddy model, known as the ZDES in imode =

2 [31], is implemented.

• A recently proposed enhanced version of the DDES [34] is implemented which

involves a smart modification to the subgrid length scale of delayed detached

eddy simulation (DDES). Originally, it is referred as “shear layer adapted length

scale”. In this dissertation, the model is denoted as SLADDES for convenience.

• Subgrid length scale is corrected by a factor Ψ to avoid misbehavior in the LES

zone [85].

• A subroutine that generates synthetic turbulence for use as initial flow whenever

necessary, due to Davidson [86, 87].
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• Development of a Ffowcs-Hawkings equation solver. The efficient frequency

domain formulation by Lockard [88] is implemented for 3-D surfaces, and par-

allelized effectively via shared memory model of OpenMP [89].

All these features are expected to aid in aeroacoustic simulations using first principles.

In this study, the enhanced version of the DDES proposed by Shur et al. [34] (refered

in the present work as SLADDES, i.e. shear layer adapted DDES) is tested and

compared with the zonal DES (ZDES) by Deck [31] in its second mode, i.e. its

nonzonal mode. Then, aeroacoustic investigation of an untripped airfoil is conducted

using SLADDES approach. The main objective is to assess the combined effect of the

high-order low-dissipation low-dispersion solver with some of the most recent DES

approaches. In particular, the main contribution of this dissertation is encouragement

of transition to LES mode by the non-dissipative numerical scheme and the shear

layer adapted DDES model collaboratively, in order to obtain sound sources around

airfoils in mid-to-high Reynolds number ranges in an affordable way.

In Chapter 2, the governing equations are presented, the numerical scheme is ex-

plained and assessed in terms of dissipation and dispersion characteristics. In Chap-

ter 3, the methodology is validated via benchmark flow cases with simple 2-D flow

configurations. Then, an intense verification of the code is made using the method

of manufactured solutions. In Chapter 4, the flow solver is tested with unsteady 3-D

turbulence problems, where the benefits of the numerical scheme and the turbulence

closure are demonstrated. In Chapter 5, firstly, an efficient implementation of perme-

able Ffowcs Williams-Hawkings equation is explained and validated with analytical

sources. Then, the signal processing procedure adopted is described. Lastly, flow and

noise around a mid-Re airfoil is investigated using the tools gathered.

Finally, Chapter 6 summarizes and concludes the dissertation.
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CHAPTER 2

METHODOLOGY

This chapter presents the theoretical background of the flow solver and implementa-

tion of the various numerical methods and models that are involved. Firstly, the gov-

erning equations are presented. Then, the spatial discretization scheme is explained

briefly, followed by dispersion and dissipation characteristics of the scheme. After

that, the time-integration method is constructed in a stepwise manner. Lastly, parallel

implementation of the solver is described.

2.1 The Favre-averaged Navier-Stokes Equations

Since the full set of Navier-Stokes equations cannot be solved directly for engi-

neering flow applications, contribution of small scales are filtered out to be mod-

eled. This is done by time averaging of the flow variables, resulting in an updated

set of equations with some extra terms to be modeled. For incompressible flows,

Reynolds-averaged (time-averaged) Navier-Stokes equations (RANS) emerge in such

an approach, whereas for compressible flow applications, Favre-averaged (density-

weighted time averaged) Navier-Stokes equations are more convenient. The govern-

ing Favre-averaged equations for the fluid motion in a Cartesian coordinate system

are given as

∂Q

∂t
+
∂(E− Ev)

∂x
+
∂(F− Fv)

∂y
+
∂(G−Gv)

∂z
= 0 (2.1)

where Q is the vector of the conserved variables; whereas (E,F,G) and (E,F,G)v

represents the convective and viscous flux terms, respectively. The terms are ex-
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pressed in Favre-averaged form as

Q =



ρ̄

ρ̄ũ

ρ̄ṽ

ρ̄w̃

ρ̄Ẽ


,E =



ρ̄ũ

ρ̄ũ2 + p̄

ρ̄ũṽ

ρ̄ũw̃

(ρ̄Ẽ + p̄)ũ


,Ev =



0

τ̄xx

τ̄xy

τ̄xz

τ̄xxũ+ τ̄xyṽ + τ̄xzw̃ − q̄x


,

F =



ρ̄ṽ

ρ̄ṽũ

ρ̄ṽ2 + p̄

ρ̄ṽw̃

(ρ̄Ẽ + p̄)v


,Fv =



0

τ̄yx

τ̄yy

τ̄yz

τ̄yxũ+ τ̄yyṽ + τ̄yzw̃ − q̄y


,

G =



ρ̄w̃

ρ̄w̃ũ

ρ̄w̃ṽ

ρ̄w̃2 + p̄

(ρ̄Ẽ + p̄)w̃


,Gv =



0

τ̄zx

τ̄zy

τ̄zz

τ̄zxũ+ τ̄zyṽ + τ̄zzw̃ − q̄z



(2.2)

where the tilde and the overbar represents Favre filtering and regular filtering of a

variable, respectively. In addition, the state equation may be used to define the total

energy per unit mass in terms of primitive variables

Ẽ =
p̄

ρ̄(γ − 1)
+

1

2
(ũ2 + ṽ2 + w̃2) (2.3)

Finally, the shear stress tensor and the heat flux vector is calculated as

τ̄ik = (µdyn + µturb)

[(
∂ũi
∂xk

+
∂ũk
∂xi

)
− 2

3
δik
∂ũj
∂xj

]
(2.4a)

q̄k = −
(

µdyn
Pr(γ − 1)

+
µturb

Prt(γ − 1)

)
∂T̃

∂xk
(2.4b)

Note here that the term (µturb) apparently is an additional term when compared with

the laminar Navier-Stokes equations. In fact, it represents the effect of smaller-than-

filter turbulent fluctuations. In Favre-averaged Navier-Stokes equations after neces-

sary simplifications, it emerges as −ρu′iu′j which is to be modeled to enclose the

system of equations. By the Boussinesq eddy viscosity hypothesis, it is interpreted as

an extra stress τ̃ turbij = −ρu′′i u′′j ≈ µturb

[(
∂ũi
∂xk

+ ∂ũk
∂xi

)
− 2

3
δik

∂ũj
∂xj

]
, as appears in the

total stress equation (Eq.2.4).
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2.2 Fourth-order accurate low-dissipation low-dispersion finite volume method

The discretization of the governing equations (Eq.2.2) is performed using finite vol-

ume method on curvilinear grids. Following Kok’s methodology (see [54] for deriva-

tions and insight), the Euler equations can be defined in a special form,

DiΦ =
dρiΦi

dt
+∇iF = 0, (2.5)

where Φi =



1

ui

vi

wi

Ei


, F =



ρU

ρUū+ p̄~i

ρUv̄ + p̄~j

ρUw̄ + p̄~k

ρUẼ + p̃U


.

Here, the following averagings applied on faces of cells are essentially used in the

derivation of the skew-symmetric forms on structured meshes,

ūf =
1

2
(ui,j,k + ui+1,j,k) (2.6a)

ũvf =
1

2
(ui,j,kvi+1,j,k + ui+1,j,kvi,j,k) (2.6b)

defined on the face between cells Vi,j,k and Vi+1,j,k without loss of generality. Here,

the overbar and tilde has nothing to do with filtering notations used in the previous

section. Notice in the averaged flux that for the sake of symmetry preservation, den-

sity goes with the convection velocity instead of φ in face average calculations.

Fourth-order accuracy can be achieved through use of a larger cell. Flux computations

are simply done in the same manner on the grid, but with 3h cell size. Afterwards,

the leading error term of the second-order scheme is canceled via Richardson extrap-

olation [53]. Eventually, the fourth-order accurate gradient operator is nothing but

a linear combination of the two second-order operators. Thus, the flux balance and

volume discretization can be found as,

B4th
i =

9

8
Bh
i −

1

8 · 3d
B3h
i (2.7a)

V 4th
i =

9

8
V h
i −

1

8 · 3d
V 3h
i (2.7b)

This procedure is applied to the viscous flux term as well.
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Dispersion-relation preserving methodology can be devised in the same manner. An-

other larger cell would act as an extra degree of freedom resembling the extra points

for DRP in finite difference stencils [60]. Here, since the finite volume description

is cell-centered, a cell with 2h size has corners falling on neighboring cell centers

(see Figure 2.1). Note that to maintain the fourth-order accuracy, a fourth-order accu-

rate approximation is necessary for the metrics on the cell-centers. The fourth-order

DRP discretization turns out to be a linear combination of h, 2h and 3h cell-sized

second-order discretizations of volume and flux,

BDRP
i = β

(
4

3
Bh
i −

1

3 · 2d
B2h
i

)
+ (1− β)

(
9

8
Bh
i −

1

8 · 3d
B3h
i

)
(2.8a)

V DRP
i = β

(
4

3
V h
i −

1

3 · 2d
V 2h
i

)
+ (1− β)

(
9

8
V h
i −

1

8 · 3d
V 3h
i

)
(2.8b)

where d is the dimension of the problem. Here, taking β = 0 brings back the ba-

sic fourth-order discretization. In fact, it is the reserved parameter for optimization

to achieve Tam and Webb’s DRP discretization for finite difference methods. On

uniform Cartesian grid, since FVM and central FDM discretizations turns out to be

equivalent discrete equations, a choice of β = 2.00047085298 matches the FVM to

low-dispersion optimized scheme of Tam and Webb.

V i
2h

(a) Control volume with 2h size for use in DRP.

V i
3h

(b) Control volume with 3h size for fourth-order ac-

curacy.

Figure 2.1: Control volumes used apart from regular cell-based V h
i

Unless otherwise is stated, time marching procedure is chosen to be the low-storage

four-stage Runge-Kutta scheme [90] with fourth-order accuracy (for linear prob-
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lems) and good stability behavior. Time integration lacks symmetry preserving and

dispersion-relation preserving features unlike the spatial scheme. However, for an

unsteady turbulent flow, the time step required already relieves the accuracy concerns

when explicit time integration techniques are used.

2.3 Scalar Artificial Dissipation

The high-order scheme needs some artificial dissipation to damp spurious high-frequency

waves. The classical JST dissipation model [91] , which is designed for second-order

cell-based finite volume schemes, is adapted here to the fourth-order scheme

LADWi,j,k = (D2
ξ +D2

η +D2
ζ +D6

ξ +D6
η +D6

ζ)Wi,j,k (2.9)

where ξ, η and ζ are the curvilinear directions. This is subtracted from the flux balance

(Eq.2.8a). Notice that second-order differences (D2
ξ , etc.) are blended in the model

for transonic flows, which is the essence of the JST scheme. In the present study, a

non-dissipative discretization is used (see [92] for proof), which involves a cell-based

discretization with symmetric operators. In ξ direction it reads,

D4
ξWi,j,k =

∂2

∂ξ2

[
λi,j,kε

(4)
i,j,k

∂2

∂ξ2

]
Wi,j,k (2.10)

which can be adapted to the sixth difference as

D6
ξWi,j,k =

∂2

∂ξ2

[
λi,j,kε

(6)
i,j,k

∂4

∂ξ4

]
Wi,j,k (2.11)

Here the derivatives are discretized by central finite difference approximations. ε(6)

and ε(4) are constant scaling factors. λ is the eigenvalue scaling, computed from the

spectral radii in all directions:

λξ = |V ·Ah
ξ |+ c‖Ah

ξ ‖ (2.12a)

λη = |V ·Ah
η |+ c‖Ah

η‖ (2.12b)

λζ = |V ·Ah
ζ |+ c‖Ah

ζ ‖ (2.12c)

where V is the velocity vector, c is sound speed and Ah
ξ is the local area vector in

ξ direction. An eigenvalue scaling adaptive to the mesh anisotropy is proposed by
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Martinelli [93],

(λ̄ξ)i,j,k = φi,j,k(rη, rζ)(λξ)i,j,k (2.13a)

φi,j,k(rη, rζ) = 1 + (rη)
ψ
i,j,k + (rζ)

ψ
i,j,k (2.13b)

where rη = λη/λξ and rζ = λζ/λξ. The constant ψ is taken as 1/2.

The second difference operator is useful for supplying entropy condition in shock

regions and ensuring stability in stagnation points,

D2
ξQi,j,k =

∂

∂ξ

[
λi,j,kε

(2)
i,j,k

∂

∂ξ

]
Wi,j,k (2.14)

where the inner derivative is discretized using first-order accurate forward difference

and the outer using backward difference. The determination of the coefficient ε(2)
i,j,k

differs from the classical JST scheme [91]. The classical JST pressure sensor is given

as,

sJST =
|pi+1,j,k − 2pi,j,k + pi−1,j,k|
pi+1,j,k + 2pi,j,k + pi−1,j,k

(2.15)

which activates the second difference operator at high gradient regions such as shocks.

In continuous regions however, since the classical JST scheme [91] does not com-

pletely switch off the second difference (with O(∆x3) order of error), it might cause

a slight interference with the high-order scheme. Instead, the following switch, pro-

posed by Kok [94], is used

ε
(2)
i,j,k = min(20s2

JST , sJST ) (2.16)

This was shown to preserve the order of accuracy for the fourth-order scheme.

The scalar artificial dissipation formulation described here is used only when the ex-

plicit time integration is employed. On the other hand, a matrix dissipation is used

with the backward implicit time integration (in the dual time framework, see Section

2.6).

2.4 Spalart-Allmaras turbulence modeling and Delayed Detached Eddy Simu-

lation (DDES)

The closure to the Favre-averaged Navier-Stokes equations is handled using a one-

equation turbulence model. The discretization of the model equation is performed via
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simple second-order accurate central discretization, because it is known that high-

order methods are not as robust in non-smooth regions, which is very common in

turbulence model equations [46]. The non-smoothness in turbulence equation might

reduce convergence speed of the entire set of flow equations. Besides, accuracy of

eddy viscosity in the flow equations are not considered important, compared to the

main variables in flow equations themselves.

Below, the construction of the detached-eddy model is presented stepwise.

2.4.1 Standard form of the S-A model

The one-equation turbulence model developed by Spalart and Allmaras [95] is chosen

for DES purposes. The turbulence working variable transport equation is given below,

Dν̃

Dt
= Ψ + Π− Φ + Θ (2.17)

where the diffusion, production, destruction and trip terms in standard form are de-

fined respectively as,

Ψ = ∇ ·
(
ν + ν̃

σ
∇ν̃
)
, Π = cb1(1− ft2)S̃ν̃ +

cb2
σ
|∇ν̃|2

Φ = (cw1fw −
cb1
κ2
ft2)

[
ν̃

dw

]2

, Θ = ft1(∆u)2

(2.18)

In this study, the trip term Θ is not used and the function ft2 is taken to be zero.

After solving this transport equation, one can compute the turbulent viscosity through

the turbulence working variable ν̃, to obtain total viscosity assuming the Boussinesq

hypothesis:

µturb = ρfv1ν̃, fv1 =
χ3

χ3 + c3
v1

, χ =
ν̃

ν
, ν =

µdyn
ρ

(2.19a)

µtot = µdyn + µturb (2.19b)

The production term follows from the modified vorticity S̃ = S + ν̃
κ2d2w

fv2 and the

vorticity is S = ∇ × ~V . dw is defined as the distance to the nearest wall. The

remaining function is calculated as fv2 = 1− χ
1+χfv1

. The function fw in destruction

term is found from

fw = g

[
1 + c6

w3

g6 + c6
w3

]1/6

, g = r + cw2(r6 − r), r = min

(
ν̃

S̃κ2d2
w

, rmax

)
(2.20)
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The related constants are fixed as below:

σ = 2/3, cb1 = 0.1355, cb2 = 0.622, κ = 0.41, cw1 =
cb1
κ2

+
1 + cb2
σ

,

cw2 = 0.3, cw3 = 2, cv1 = 7.1, rmax = 10

(2.21)

On the wall, since there can not be turbulence, one should take ν̃ = 0. In fully turbu-

lent free stream boundary, it is common to take ν̃ in the order of ν∞ to continuously

supply turbulent flow, whereas ν̃ � 0.1ν∞ is necessary under tripped conditions.

Eventually, the model equation is closed. Hence, total shear stress and total heat flux

in filtered form are computed as,

τ̄ik = (µdyn + µturb)

[(
∂ũi
∂xk

+
∂ũk
∂xi

)
− 2

3
δik
∂ũj
∂xj

]
(2.22a)

q̄k = −
(

µdyn
Pr(γ − 1)

+
µturb

Prt(γ − 1)

)
∂T̃

∂xk
(2.22b)

In most cases, turbulent heat transfer corresponds to a turbulent Prandtl number of

Prt = 0.9.

2.4.2 A modification to S-A turbulence model

The above form is designated as the standard form [96]. A recent modification by

[83, 84] is designed as a cure for negative ν̃ values through simply avoiding negative-

valued computations and withcoming numerical difficulties. The source term, Π−Φ

of the convection equation is rearranged and redefined as,

Π− Φ =


[
(1− ft2)

cb1
κ2r
− cw1fw + ft2

cb1
κ2

]( ν̃

dw

)2

+
cb2
σ
|∇ν̃|2 ν̃ ≥ 0

0 ν̃ < 0

(2.23)

and the diffusion term is modified to be

Ψ = ∇ ·
(
ν + max[ν̃, 0]

σ
∇ν̃
)

(2.24)

In addition, the function r is redefined as

r∗ =

(
Sκ2d2

w

ν̃
+ fv2

)−1

(2.25a)

r =

rmax r∗ < 0

min (r∗, rmax) r∗ ≥ 0
(2.25b)
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Last but not the least, the evaluation of turbulent viscosity is limited to positive values

as well,

µturb = ρfv1 max(ν̃, 0) (2.26)

all the remaining functions and constants being kept as they are. It was reported [84]

that this modification has an apparent transition behavior, essentially in case of flows

with laminar separation. For attached flows however, transition must be induced in

other ways. In this study, transition is expected to be realized via DDES and triggered

through induction of synthetic turbulence upon the initial or inlet conditions. Note

also that the laminar suppression term ft2 is ignored.

The DES approaches in the following sections are both based on this modified form

of SA equation.

2.4.3 Zonal Detached-eddy Simulation (imode = 2) and Some Improvements

Detached-eddy Simulation, in a crude explanation, is switching from RANS mode to

LES mode away from a wall boundary, and keeping in RANS mode near the wall.

Thanks to implicit filtering of the Navier-Stokes equations, implementation of the

model solely necessitates the switch for the model length scale, where RANS model

acts like a LES subgrid model away from the wall surface. In the original detached-

eddy simulation (known as DES97), the switch is defined by [9],

lDES97 = min(lRANS, lLES) (2.27)

where the length scales of the SA-RANS and LES modes are defined as lRANS = dw,

lLES = CDES∆, respectively. Here, ∆ can be perceived as a LES filter width with

the conventional DES definition being maximum grid distance in three directions, i.e.

∆ = max(∆1, ∆2, ∆3). CDES is a coefficient to be calibrated.

Delayed Detached Eddy Simulation is a modification to the regular DES which tunes

RANS-LES switching [85], by forcing to keep in RANS mode inside boundary lay-

ers. In fact, for many cases it overcomes the modeled stress depletion and the grid

induced separation problems of DES97 [85, 97]. The implementation is done by
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simply replacing the RANS length scale (dw in the case of SA-DDES) with

lDDES = lRANS − fd max(0, lRANS − lLES) (2.28)

where

lRANS = dw (2.29)

lLES = CDES∆ (2.30)

fd = 1− tanh([8rd]
3) (2.31)

rd =
νt + ν

(Ui,jUi,j)0.5κ2d2
w

(2.32)

The coefficientCDES = 0.65 has been set as a calibration based on decaying isotropic

turbulence. Here, the classical DDES takes the subgrid length-scale as ∆ = ∆max =

max(∆1, ∆2, ∆3). A known weakness of DDES is that development of instabilities

are delayed because of damping effects of the RANS model, such that transition to

LES mode is not quick enough [98]. This phenomenon, named as the gray area prob-

lem, is overcome in zonal DES (ZDES in imode = 2) approach [98, 31] through as-

signing LES-like grid spacing function,∆vol = (∆1∆2∆3)1/3 above a pre-determined

fd0 = 0.8, which roughly marks the edge of the boundary layer. Furthermore, the sub-

grid length-scale function in this region can be replaced with an improvement defined

by [35],

∆ω =
√
N2

1∆2∆3 +N2
2∆1∆3 +N2

3∆1∆2 (2.33)

where N = ~ω
||~ω|| is the unit vector aligned with the vorticity vector. Such a formulation

does not only depend on the mesh, but also on the flow variables.

Another improvement to the DDES model is “the extended” DDES (EDDES), which

mainly follows ZDES approach. It is designed to combine best features of DDES

and ZDES. The sole improvement on ZDES (imode = 2) is assigning the near-wall

functions of the S-A model to their asymptotic values in the LES zone,

fv1 = 1, fv2 = 0, fw = 1 (2.34)

in an attempt to ease the transition to LES mode and to cure the gray area prob-

lem. Equating the near-wall functions (i.e. the low-Re terms) in LES mode to their

asymptotic values disables the low-Re influences on the subgrid model. However,

this causes a discontinuity of the turbulence viscosity on the LES-RANS interface. It
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is reported that this modification may corrupt the boundary layer [31] despite all the

reports demonstrating its success [99, 100, 101, 102]. In this study, a correction to the

subgrid length-scale lLES = CDESΨ∆ (see Eq. (2.28), (2.30)), proposed by Spalart

et al. [85], is used instead. The function Ψ is derived as,

Ψ 2 = min

[
102,

1− cb1
cw1κ2f∗w

[ft2 + (1− ft2)fv2]

fv1 max(10−10, 1− ft2)

]
(2.35)

This procedure is applied to DDES by Travin et al. within the concept of hybrid

modeling [103]; and by Shur et al. in “improved DDES” (IDDES) approach [11]. It

is shown that the modification eliminates the low-Re terms of the RANS model in the

LES zone, and unlike EDDES approach, it provides a smooth transition for the terms

in the interface.

Note that in the current study, zonal DES is not fully utilized because zonal features

are not used at all. In fact, only imode = 2 is employed throughout all domains.

Determining various zones and assigning proper model modes would require an extra

decisive making burden for the user, which is not desired most of the time, owing

mostly to the fact that an improper or mistaken assignment may mislead the solver to

undesired results.

2.4.4 Shear Layer Adapted Length Scale for the DDES (SLADDES)

A recently proposed remedy by Shur et al. [34] to delay of transition from RANS

to LES mode is implemented as well. It consists of redefinition of the length scale

not only depending on the vorticity but also three-dimensionality of the local flow.

Firstly, the vorticity dependent length scale definition given in Eq. 2.33 is improved

further:

∆̃ω =
1√
3

max
n,m=1,8

|In − Im| (2.36)

where In = nω × rn and nω is the unit vorticity vector. rn is the position vector for

the vertices of the cell (n = 1, ..8 for hexahedral cells). This formulation removes

dependency of subgrid viscosity on cell length (mostly ∆max = ∆z for a shear layer

in xy plane) in vorticity direction, which had been a problem in shear layers where

the planar shear is expected to initiate transition to the LES mode. Instead, the sub-

grid viscosity is based on the maximum dimension on the shear plane in a quasi-2D

27



region. Still, the resulting reduction of the subgrid viscosity is not sufficient to initiate

the transition in quasi-2D regions. An ILES-like behavior is desired in such regions

to allow Kelvin-Helmholtz instabilities to take over. The so-called “Vortex Tilting

Measure” is defined to detect such regions,

V TM =

√
6|(Ŝ · ω)× ω|

ω2

√
3tr(Ŝ2)−

[
tr(Ŝ)

]2
(2.37)

It yields zero when the vorticity is aligned with any eigenvectors of the strain; nonzero

when the deformation tensor tilts the vorticity vector. V TM is facilitated in the func-

tion

FKH(〈V TM〉) =

max

[
Fmin
KH ,min

{
Fmax
KH , Fmin

KH +
Fmax
KH − Fmin

KH

a2 − a1

(〈V TM〉 − a1)

}] (2.38)

where the angle brackets, 〈·〉, means the value is averaged among neighboring cells.

Averaging is necessary for smoothing the distribution since it is reported that V TM

may have downward excursions locally. FKH function is a simplistic function de-

pending on VTM with the sole purpose of reducing the subgrid viscosity properly.

Fmax
KH = 1 recovers the original length scale while Fmin

KH = 0.1, and a1 = 0.15,

a2 = 0.3 are constants adjusted through numerical experiments. Accordingly, FKH

varies linearly between 〈V TM〉 = 0.15 and 〈V TM〉 = 0.3 yielding values ranging

from 0.1 to 1. Hence, the ultimate subgrid length scale is calculated by

∆SLA = ∆̃ωFKH(〈V TM〉) (2.39)

The resulting length scale serves as a reduction to the vorticity-oriented length scale,

∆̃ω, by up to one order in regions where Kelvin-Helmholtz instabilities are expected

to occur, thus leaving ground to transition to resolved 3-D turbulent mode. However,

for wall bounded flows, this reduction should be inactivated to keep the boundary

layer shielded as done in standard DDES with ∆max. The following limitation to

FKH is proposed for that purpose,

F lim
KH =

1.0 fd < 0.99

FKH fd ≥ 0.99
(2.40)
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As a result, this version of DDES has proven success (by Shur et al. [34]) not only in

free shear layers, but also in wall bounded flows, jet flows, decaying turbulence and

backward facing step flows.

The set of features brought together in this work from the aforementioned DES modes

are listed below:

• A stabilizing modification to the Spalart-Allmaras turbulence equation,

• An upgrade to the delayed detached eddy simulation model, known as the

ZDES in imode = 2 [31], is implemented. Moreover, roughly outside the

boundary layer (fd > 0.8), a vorticity aligned subgrid length scale, denoted as

∆ω (see Eq. (2.33)), is chosen instead of ∆vol of the original ZDES(imode =

2).

• A recently proposed enhanced version of the DDES [34] is implemented, de-

noted here as SLADDES.

• Subgrid length scale is corrected by a factor Ψ to avoid misbehavior in the LES

zone.

2.5 Dissipation, Dispersion and Stability Of The Numerical Scheme

Dispersion and dissipation characteristic can be examined using the 1-D linear advec-

tion equation as a model equation,

∂u

∂t
+ a

∂u

∂x
= 0 (2.41)

where a is a constant wave speed. Since (fourth-order) central differencing schemes

will be used, to stabilize when necessary, an artificial dissipation term is included for

filtering spurious short waves,

∂u

∂t
+ a

∂u

∂x
− ε6

a

∆x

∂6u

∂ξ6
= 0 (2.42)

where the dissipation coefficient is a constant, commonly taken as ε6 = 1/512 for a

fourth-order accurate scheme. ξ is the correspondence to x in computational domain

such that ∆ξ = 1. In wavenumber space, spatial derivative transfer functions of the
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standard second, fourth-order, fourth-order DRP and the artificial dissipation terms

are found by taking u(n)
j = ũ exp

[
i(kxj − kat(n))

]
,

D2nd = u
(n)
j (− exp(−ik∆x) + exp(ik∆x))/(2∆x) (2.43a)

D4th = u
(n)
j (− exp(2ik∆x)

+ 8 exp(ik∆x)− 8 exp(−ik∆x) + exp(−2ik∆x))/(12∆x) (2.43b)

DDRP = u
(n)
j (c−3 exp(−3ik∆x) + c−2 exp(−2ik∆x) + c−1 exp(−ik∆x)

+ c+1 exp(ik∆x) + c+2 exp(2ik∆x) + c+3 exp(3ik∆x))/∆x (2.43c)

DAD =
ε6a

∆x
u

(n)
j (exp(−3ik∆x)− 6 exp(−2ik∆x) + 15 exp(−ik∆x)

− 20 + 15 exp(ik∆x)− 6 exp(2ik∆x) + exp(3ik∆x))/∆ξ6 (2.43d)

where the optimizing coefficients c−3, c−2,... are calculated by Tam [104]. Figure

2.2a shows the deviation of the effective wavenumber k∆x of the spatial scheme from

the true wavenumber in Fourier space, whereas Figure 2.2b shows the group velocity

(concept used by Tam et al. [105]) of the three spatial schemes considered. Thus, it

is obvious that the fourth-order DRP scheme for the first derivative outperforms.

Applying a compact m-stage Runge-Kutta time integration, in wavenumber space the

solution in next time level is found as,

ũ(0) = ũ(n)

ũ(s) = ũ(n) − α(s)σ(DDRP (ũ(s−1))−DAD(ũ(0)))∆x; s = 1,m

ũ(n+1) = ũ(m)

where σ = a∆t/∆x is the CFL number. Effect of spatial discretization scheme to-

gether with the time integration can be monitored by changing the discrete differential

operator (DDRP , D4th or D2nd) and the m-stage low-storage Runge-Kutta constants

(α(s); s = 1,m). For the linear advection equation advects waves as they are, all the

magnitudes and speeds of the waves are expected to be preserved. Hence, the dissi-

pation and phase error after one time step can be computed using this exact solution

in wave space. For a fixed CFL = 1.5, the resulting dissipation and dispersion error

can be seen from Figure 2.3. Despite the fact that the discrete derivative using the
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DRP scheme surpasses the standard one (see Figure 2.2), it only thrives when used

with a low-dispersion low-dissipation time integration method (LDDRK6 [106]), and

vice versa. For instance, observe that the second-order scheme performs similarly

with both time integration methods under the present conditions.

(a) (b)

Figure 2.2: Comparison of the three spatial schemes: (a) effective wavenumber vs.

physical wave number (b) group velocity vs. wavenumber

(a) (b)

Figure 2.3: Visualizations of (a) dissipation and (b) dispersion error for combinations

of different spatial and time schemes (CFL = 1.5 ).

Figure 2.4 illustrates dissipation impact of the DRP scheme using two time integration

methods, with a small amount of artificial dissipation ε6 = 1/1024 to damp spurious

short waves. Observe that instabilities arise approximately above CFL = 1.7 and

CFL = 1.2 for the case of RK4 and LDDRK6, respectively. For a given CFL,

LDDRK6 scheme causes much less dissipation when used with the fourth-order DRP

scheme, as expected. However, care must be taken to select the time integration to be
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Figure 2.4: Stability analysis and wave dissipation of the DRP scheme using RK4

and LDDRK6 (ε6 = 1/1024).

used, because both time step limit and computational burden per step are aspects that

need attention. In fact, when wall-bounded unsteady flows are solved with explicit

methods, time step limit is the prime concern owing to the fact that smallest cells limit

the time step too harshly. Therefore, dispersion and dissipation may not be a problem,

as most of the wave spectrum is conserved throughout larger convection-dominated

cells. A time integration with a good (stability limit)/(computational cost) balance

should be the choice to reduce the computation time. In boundary layers, where

the smallest cell is naturally found, a time integration scheme with largest stability

limit for the diffusion term should be the best choice. LDDRK5 [106] is a good

choice for such efficiency, or even Martinelli-Jameson RK5 is the utmost scheme

[107, 93]. Still, the explicit method is inefficient when solving compressible Navier-

Stokes equations on wall-bounded flows due to strict time step restriction imposed by

CFL condition, whereas an implicit method has no such restrictions. Thus, an implicit

method combined with dual time stepping approach is crucial, allowing feasible time

step sizes. Note that the step size should be bounded above by the time scale of flow

unsteadiness of interest, instead of being strictly limited by stability limit in explicit

time integration methods.

In the next section, a dual time stepping method is constructed for more efficient time

integration in viscous flows. Let us first investigate the dispersion and dissipation

characteristics of the second-order backward Euler method, which is the most com-
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mon time integration scheme in implementations of dual time stepping approaches.

Consider, once more, the linear advection equation (Eq. 2.41) as the model equation.

An implicit backward Euler discretization with second order accuracy would read

3u
(n+1)
j − 4u

(n)
j + u

(n−1)
j

2∆t
+ aD(u

(n+1)
j ) = 0 (2.44)

where D is the discretization of the convection term that will be selected from Eq.’s

2.43. Generally speaking, let

D(u
(n)
j ) =

u
(n)
j

∆x

r∑
m=−p

amexp(mik∆x)

Through taking u(n)
j = ũ exp

[
i(kxj − kat(n))

]
as before, dividing both sides of Eq.

2.44 with u(n)
j yields the amplification definition G = u(n+1)/u(n) = u(n)/u(n−1),

3G− 4 + 1/G

2∆t
+
aG

∆x

r∑
m=−p

amexp(mik∆x) = 0

and making use of the definition of Courant number σ = a∆t/∆x, the amplification

equation yields, (
3

2
+ σ

r∑
m=−p

amexp(mik∆x)

)
G2 − 2G+

1

2
= 0

One root of the quadratic equation seems to give physically meaningful results:

G =
2 +

√
4− (3 + 2A)

3 + 2A
(2.45)

where A = σ
∑r

m=−p amexp(mik∆x). The amplification |G| and phase deviation
∠G
−σk∆x

of the 2nd order accurate implicit backward Euler method, combined with

the fourth-order DRP spatial discretization, is demonstrated in Figure 2.5 for several

CFL numbers. Because the method strongly dissipates waves in high CFL values, the

convection-dominated region should be handled with a local CFL number of order

one. Besides, the viscous regions, i.e. deep inside boundary layers, dispersion and

dissipation of waves is irrelevant unless DNS or LES is being considered. To put it

simply, upper limit of time step in a wall-bounded unsteady flow simulation should

correspond to a local CFL number of order one in the region where convection starts

to dominate. In hybrid RANS/LES terms, local CFL should be small enough in re-

gions where the solution switches to LES mode.
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(a) (b)

Figure 2.5: Implicit backward Euler temporal scheme with fourth-order DRP spatial

scheme (a) dissipation, (b) phase error.

2.6 Dual-time Stepping Strategy

Explicit time-stepping schemes can be very restricting since dimensions of the small-

est cell determines the largest possible time step that gives a CFL number of the order

of unity. In viscous wall-bounded flows the time step restriction is quite trouble-

some. In such cases, implicit schemes are preferred. Dual time-stepping method,

proposed by Jameson [108], is based on an implicit second-order backward differ-

encing scheme which can be shown as

3W (n+1) − 4W (n) +W (n−1)

2∆t
= −R(n+1) (2.46)

where R is the residual, which is equal to flux balance divided by volume of the cell

in a finite volume perception. This equation can be solved iteratively in an explicit

manner by introducing a pseudo-time (denoted by τ ) integration

∂W (n+1)

∂τ
+

3W (n+1) − 4W (n) +W (n−1)

2∆t
+R(n+1) = 0 (2.47)

where the new residualR∗ = 3W (n+1)−4W (n)+W (n−1)

2∆t
+R(n+1) is supposed to go zero as

the iterations converge, satisfying the main unsteady equation (Eq. 2.46). The semi-

discrete form above can be solved iteratively in a multistage Runge-Kutta framework

with m stages,

W (k+1) = W (0) − αk∆τ
(
R(k) +

ctW
(k+1) − E (W (n), ..)

∆t

)
(2.48)
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in a similar fashion with the explicit time integration algorithm (see Section ?). Su-

perscript k stands for the pseudo-time iteration index whereas n is the physical time

iteration index. Note here that the backward time scheme is generalized for conve-

nience (accordingly, ct = 3
2
, E = 2W (n) − 1

2
W (n−1) currently). As the iteration

is converged, R(k+1) ≈ R(n+1) and W (k+1) ≈ W (n+1). The residual term can be

linearized as R(k+1) ≈ R(k) + ∂R(k)

∂τ
∆τ where the derivative tends to zero during

convergence. Therefore, in the above equation, R(k) may be taken instead.

One important thing to note is that the order of time accuracy is determined only by

the backward differencing formula (Eq. 2.46) thanks to the fact that the accuracy issue

of the pseudo-time integration is eliminated when the residual sufficiently converges

to zero. The difficulty in the above formulation is that W (k+1) on the right-hand side

is not known. One can simply assume it to be W (k) (as done for R(k+1)) relying on

the convergence of the subiterations. However it is reported that convergence can be

troublesome when the pseudo time step locally happens to be in the same order with

the physical time [109]. Instead, replacing n+ 1 by k+ 1 on the left-hand side allows

implicit treatment of the term such that

W (k+1) = W (0) − αk∆τ
(
R(k) +

ctW
(k) − E (W (n), ..)

∆t

)
− αkct∆τ

W (k+1) −W (k)

∆t
(2.49)

as suggested by Melson and Sanetrik [110]. Hence, restrictions on pseudo-time step

are banished. Note that the last term vanishes under convergence together with the

second term. Arranging the terms and defining the modified residual as (R∗)(k) =

R(k) + ctW (k)−E(W (n),..)
∆t

gives

(1 + αkct
∆τ

∆t
)W (k+1) = W (0) − αk∆τ(R∗)(k) + αkct

∆τ

∆t
W (k) (2.50)

Solving the above equation iteratively is performed through a 5-stage Runge-Kutta

with Martinelli-Jameson coefficients [107, 93] α = {1/4, 1/6, 3/8, 1/2, 1} and β =

{1, 0, 0.56, 0, 0.44} designed for larger stability for diffusion terms and high damping

efficiency for multigrid. Upon splitting the flux balance into convective and diffusive

flux balances, R = Rc +Rd, a stage in a general case is given as,

W (k+1) = W (0) − αk∆τ
[
R(k)
c + βkR

(k)
d + (1− βk)R(k−1)

d

]
(2.51)

Accordingly, the diffusive fluxes are only computed on the odd stages and combined
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with their previous evaluations with weighting coefficients. Application of the above

formulation to Eq. 2.50 is straightforward.

2.7 Local Preconditioning for the Dual Time Algorithm

Particularly in low Mach number flows, the acoustic speeds are far higher than con-

vective speeds. Hence, for an explicit time scheme with a Courant number in the

order of one, the time step is severely restricted by the acoustic speed, resulting in

dramatically slow convergence of the solution. Apart from that, condition number

of the system increases abruptly in the incompressible limit which results in very

poor convergence. These problems are the major shortcomings of compressible flow

solvers intended for solution of domains with a low speed region (e.g. turbomachin-

ery flows, wind turbine rotor flows, vertical landing simulations). Preconditioning

the equation system is a crucial way to accelerate convergence to a steady solution by

minimizing the discrepancy between acoustic and convective speeds, i.e. gathering

the eigenvalues together on the complex plane. Hence the stiffness of the problem is

reduced and convergence is accelerated, and in some cases convergence is ensured.

The diagram in Figure 2.6 due to Pierce [111] clearly describes the convergence is-

sues particularly in multigrid methods. Mesh-aligned artificial dissipation, matrix

dissipation, residual smoothing, low speed preconditioning and Jacobi precondition-

ing are several numerical solutions addressed to overcome such convergence slowing

or breaking obstacles.

Another benefit of preconditioning an unsteady problem is accuracy. In fact, rescal-

ing of the eigenvalues provides proper scaling of the artificial dissipation for all the

equations [112], whereas the traditional dissipation schemes are over-dissipative in

low-Mach regimes.

Last but not the least, preconditioning also enhances high wave frequency damping

ability of the smoother, which is an essential element in multigrid algorithms. It was

shown by Darmofal et al. [112] through Fourier footprint analysis of the discrete

spatial operator that the eigenvalues are clustered around highly damping regions on

the complex plane, improving damping of high frequency error modes.

36



Figure 2.6: Sources of convergence breakdown for Euler and Navier-Stokes equations

[111]

The benefits of local preconditioning are valid as well for time dependent problems in

a dual time stepping context [113, 114]. Except, an additional condition is necessary

for the preconditioning parameter.

Two types of preconditioners are considered in this study: low speed preconditioning

and Jacobi preconditioning. These two types are then conveniently combined under

the name “squared preconditioning” [81, 114].

2.7.1 Low Speed Preconditioning

At low Mach numbers, propagation speeds of convective and acoustic waves become

disparate. This results in a very stiff behavior of the Euler equations. The stiffness is

usually measured with the condition number, which is simply defined as the ratio of

the largest possible to the smallest possible absolute eigenvalues of the system. It can

be shown that

K (A) =
max(|λ)|
min(|λ|)

=


M+1
M

, M ≤ 0.5

M+1
|M−1| , M ≥ 0.5

(2.52)

for a Jacobian matrix A [112]. It is apparently large at low Mach numbers, even

it diverges in the Mach numbers close to zero and one. Hence the equations are

ill-conditioned around M = 0 and M = 1 . The main purpose of low-Mach precon-
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ditioners is to reduce the condition number ideally towards 1, i.e. to minimize the gap

between the eigenvalues of the system.

All preconditioners have robustness issues to some extent. They perform poorly

around stagnation points and flow irregularities. They necessitate proper restrictions

on their parameters. Turkel preconditioner [115] proved to be somewhat robust at the

expense of optimality. A variant of this preconditioner, Weiss-Smith preconditioner

[116], is considered in this study due to its simplicity, having only one parameter. It

is conveniently defined in entropy variables as,

Pe =



ε 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(2.53)

where ε = O(M2) is the preconditioning parameter which will be defined later. Note

that the variable sets can be converted from one another through transformation ma-

trices (see Appendix A).

Starting from the unpreconditioned discrete Euler equations in differential form with

dual time stepping strategy, and sticking to the central dissipation scheme discussed

in Sec. 2.3,

W (k+1) −W (k) + ∆τ

[
ctW − E (W (n), ..)

∆t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z

−µa
{
∂2

∂x2

(
|Ax|

∂4W

∂x4

)
+

∂2

∂y2

(
|Ay|

∂4W

∂y4

)
+

∂2

∂z2

(
|Az|

∂4W

∂z4

)}](k)

= 0

(2.54)

where the spatial derivatives are shown in continuous form for compactness. The

spectral radii (ρ(Ax), ..) in the artificial viscosity have been replaced with cut-off ab-

solute value matrix, in the framework of matrix dissipation model of the JST scheme

(see Sec.2.3). The second derivative terms can be added as well for shock captur-

ing. Following the interpretation of Hosseini [117], preconditioning is applied as a

modification to the characteristics of the equations as follows
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W (k+1) −W (k) + ∆τP

[
ctW − E

∆t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z

−µa
{
∂2

∂x2

(
P−1|PAx|

∂4W

∂x4

)
+

∂2

∂y2

(
P−1|PAy|

∂4W

∂y4

)
+
∂2

∂z2

(
P−1|PAz|

∂4W

∂z4

)}](k)

= 0 (2.55)

Since the characteristics of the equation has been altered, the time step is calculated

by

∆τ =

[
1

σ

(
ρ(PZ) +

ρ(PAx)

∆x
+
ρ(PAy)

∆y
+
ρ(PAz)

∆z

)]−1

(2.56)

where Z = ct
∆t

, and σ is the pseudo-time CFL number.

2.7.2 Determination of preconditioning parameter (ε)

The preconditioning parameter is ideally ε ∼ M2 for clustering the eigenvalues to-

gether. However, it should be limited for consistency and robustness in most cases. It

is turned off in supersonic flow regions by limiting with ε = 1 above. It must limited

from below as well, to prevent from going to zero. Thus, initially it is defined as

ε = min
[
1,max(M2

lim,M
2)
]

(2.57)

where Mlim = 10−5 is set to curb singularities. Numerically it was shown that these

limiters are not sufficient to ensure robustness [118]. Further measures have been

proposed to reduce preconditioning where necessary. First of all, the local cutoff

value for robustness around stagnation points is defined as σpgr
|∆p|
ρc2

, where |∆p| is the

maximum pressure variation in the vicinity, σpgr is a case dependent parameter taken

equal to 2 unless stated, and c is the sound speed. Moreover, preconditioning must

be limited in low Reynolds number regions where diffusive fluxes dominate, since

preconditioners are designed for convective fluxes. Isentropic Mach number Mis is a

good measure for such regions. Thus, the preconditioner definition for viscous steady

flows is

εs = min

[
1,max

(
M2

lim,M
2, σpgr

|∆p|
ρc2

,M2
is

)]
with M2

is =
2

γ − 1

[(
pt∞
p

) γ−1
γ

− 1

] (2.58)
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where pt∞ is the free stream total pressure. Lastly, in time accurate computations,

preconditioning should also be limited by unsteadiness of the flow. The unsteady

Mach number scale [82]

Mu =
Lu
π∆tc

(2.59)

is a good measure for resolution of the largest time scale, where Lu is the largest pos-

sible wavelength allowed by the domain or geometry. The final form of the parameter

is thus given by [82, 119],

εu = min

[
1,max

(
M2

lim,M
2, σpgr

|∆p|
ρc2

,M2
is,M

2
u

)]
(2.60)

Observe that a small time step or large wave length may turn off low speed precondi-

tioning totally, leaving the user only with other means of convergence acceleration.

2.7.3 Jacobi Preconditioning

Proposed by Allmaras [120] and Pierce and Giles [121] for steady state flows, it is

straightforward to implement in dual time stepping approaches. Jacobi precondition-

ing is commonly perceived as replacing the scalar time step with a matrix time step

and adding a matrix-based artificial viscosity [92] instead of scalar viscosity. Hence,

the usual “scalar” time step,

∆τ =

[
1

σ

(
Z +

ρ(Ax)

∆x
+
ρ(Ay)

∆y
+
ρ(Az)

∆z

)]−1

(2.61)

is replaced with the “matrix time step”,

∆τ =

[
1

σ

(
ZI +

|Ax|
∆x

+
|Ay|
∆y

+
|Az|
∆z

)]−1

(2.62)

Ideally, it should cover the diffusive Jacobian matrices as well.

It is designed to accelerate convergence to a steady state by facilitating individual

time step for each transport equation and most importantly, by effectively damping

high frequency error components. Therefore, it shows its greatest value in a multigrid

scheme serving as a good smoother [122].
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2.7.4 Preconditioning Squared

Jacobi preconditioner merely serves as a good smoother during convergence to a

steady state. It does not optimize the condition number of the system, nor it cor-

rects the scaling of the artificial viscosity, which are crucial in low Mach regions.

Jacobi and low-Mach preconditioners were combined by Turkel [81] for better accu-

racy and higher convergence rates in low Mach steady state flows. The combination

of is straightforward in the above interpretation: replace the scalar time step definition

with a matrix time step definition (Eq.2.62), and the scalar artificial dissipation with

a matrix dissipation for a low-Mach preconditioned case. For a dual time scheme, it

is formulated as

W (k+1) −W (k) +

[
1

σ

(
PZI +

|PAx|
∆x

+
|PAy|

∆y
+
|PAz|

∆z

)]−1

P

[
ctW − E

∆t

+Ax
∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z
− µa

{
∂2

∂x2

(
P−1|PAx|

∂4W

∂x4

)
+
∂2

∂y2

(
P−1|PAy|

∂4W

∂y4

)
+

∂2

∂z2

(
P−1|PAz|

∂4W

∂z4

)}](k)

= 0 (2.63)

The P factor of the residual vector can be embedded into the matrix time step [117]:

W (k+1)−W (k)+

[
1

σ

(
ZI +

P−1|PAx|
∆x

+
P−1|PAy|

∆y
+
P−1|PAz|

∆z

)]−1 [
ctW − E

∆t

+Ax
∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z
− µa

{
∂2

∂x2

(
P−1|PAx|

∂4W

∂x4

)
+
∂2

∂y2

(
P−1|PAy|

∂4W

∂y4

)
+

∂2

∂z2

(
P−1|PAz|

∂4W

∂z4

)}](k)

= 0 (2.64)

This form is more preferable because the matrices P−1|PAx|, .. are found to be

symmetric, appearing both in the time step and artificial viscosity terms.

This method can be applied to Navier-Stokes equations including the Jacobian ma-

trices of the viscous terms in the matrix time step. A 2-D analysis is performed and

tested by Hosseini [117]. However, it is doubted that the advantages are worth both-

ering because of additional complexity and computational burden stemming from the

3-D versions of the viscous Jacobians. Instead, spectral radius for the viscous terms

can be added crudely to the diagonal of the inverse matrix time step as a stability

safeguard in boundary layers.
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2.7.5 Implementation of Preconditioning Squared

In entropy variables dWe =
[
dp
ρc
, du, dv, dw, dS

]
, it is convenient to construct the

squared preconditioner matrices thanks to relatively simple eigenvalues and eigen-

vectors. Following notation of Hosseini [117],

P−1
e |PeAe|∗ =



c(s+|λ2|∗)−qnr(1−ε)
cε

rnx rny rnz 0

rnx sn2
x + |λ2|∗ snxny snxnz 0

rny snxny sn2
y + |λ2|∗ snynz 0

rnz snxnz snynz sn2
z + |λ2|∗ 0

0 0 0 0 |λ2|∗


(2.65)

which is a formulation in any grid-aligned unit direction ~n = nxı̂ + ny ̂ + nzk̂. The

superscript asterisk denotes that the eigenvalues are cut off for robustness, since they

can get close to zero otherwise. Other definitions are as follows

qn = unx + vny + wnz (2.66)

δ =
√

(1− ε)2q2
n + 4εc2 (2.67)

λ1 =
1

2
[(1 + ε)qn − δ] (2.68)

λ2,3,4 = qn (2.69)

λ5 =
1

2
[(1 + ε)qn + δ] (2.70)

r =
c(|λ5|∗ − |λ1|∗)

δ
(2.71)

s =
|λ1|∗ − 2|λ2|∗ + |λ5|∗

2
+
qn(1− ε)r

2c
(2.72)

The eigenvalues are cut off as a fraction of the maximum possible. Following Turkel

and Vatsa [114],

λmax =
1

2
[(1 + ε)|qn|+ δ] (2.73)

|λ1,5|∗ = max(|λ1,5|, εnλmax), |λ2|∗ = max(|λ2|, εlλmax) (2.74)

where εn and εl are coefficients typically taken as εn = 0.3, εl = 0.1 within the

matrix artificial dissipation; εn = εl = 0.3 within the matrix time step.

Remember that above formulations are in entropy variables. Hence transformation

matrices are used with ease (see Appendix A) to obtain the final form for implemen-
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tation

W (k+1) −W (k)+

∂W

∂We

[
1

σ

(
ZI +

P−1
e |PeAx,e|

∆x
+
P−1
e |PeAy,e|

∆y
+
P−1
e |PeAz,e|

∆z

)]−1
∂We

∂W[
ctW − E

∆t
+ Ax

∂W

∂x
+ Ay

∂W

∂y
+ Az

∂W

∂z

−µa
{

∆x5 ∂
2

∂x2

(
∂W

∂We

P−1
e |PeAx,e|

∂We

∂Wp

∂4Wp

∂x4

)
+∆y5 ∂

2

∂y2

(
∂W

∂We

P−1
e |PeAy,e|

∂We

∂Wp

∂4Wp

∂y4

)
+∆z5 ∂

2

∂z2

(
∂W

∂We

P−1
e |PeAz,e|

∂We

∂Wp

∂4Wp

∂z4

)}](k)

= 0 (2.75)

Notice that the difference formulas within artificial dissipation terms are constructed

in primitive variables, Wp = [p, u, v, w, T ], which was reported to perform better

in low Mach limit [114]. Additionally, residual norms may be computed in primitive

variables as well, due to the fact that density variable does not stand as a good measure

of convergence in low Mach numbers, because in that limit, change in density is

trivial.

The implementation is formulated for the finite volume (with flux balance AξSξ ∂W∂ξ +

.., etc.) in a low-storage Runge-Kutta stage as

W (k+1) = W (k)−

α(s)σ
∂W

∂We

[
ZI +

P−1
e |PeAξ,e|Sξ

∆ξ
+
P−1
e |PeAη,e|Sη

∆η
+
P−1
e |PeAζ,e|Sζ

∆ζ

]−1
∂We

∂W[
ctW − E

∆t
+ AξSξ

∂W

∂ξ
+ AηSη

∂W

∂η
+ AζSζ

∂W

∂ζ

−µa
{

∆ξ5 ∂
2

∂ξ2

(
∂W

∂We

P−1
e |PeAξ,e|Sξ

∂We

∂Wp

∂4Wp

∂ξ4

)
+∆η5 ∂

2

∂η2

(
∂W

∂We

P−1
e |PeAη,e|Sη

∂We

∂Wp

∂4Wp

∂η4

)
+∆ζ5 ∂

2

∂ζ2

(
∂W

∂We

P−1
e |PeAζ,e|Sζ

∂We

∂Wp

∂4Wp

∂ζ4

)}](k)

(2.76)

where α(s) is the Runge-Kutta constant for the stage s, and Sξ,η,ζ are the area values

in grid-aligned directions.
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2.7.6 Blended Matrix Dissipation Form

Matrix artificial dissipation may be computed either with the use of preconditioner

parameter for steady flows or that for unsteady flows defined in equations 2.58 and

2.60. Naturally, the preconditioner for unsteady flows is used in dissipation scaling

when the problem is time accurate, as used in the convective terms of the equations.

Nevertheless, the velocity and temperature variables are highly damped in the nat-

ural approach. Use of steady preconditioner instead properly scales dissipation in

steady limit (Mu << 1), although pressure variable is not treated well in unsteady

flows, causing convergence issues. Potsdam et al. [82] implemented blending of both

scalings, which is adapted for ξ-direction to the current formulation as follows

Dξ = µa∆ξ
5 ∂

2

∂ξ2

(
∂W

∂We

(P−1
e |PeAξ,e|)u

∂We

∂Wp

Lp
∂4Wp

∂ξ4

+
∂W

∂We

(P−1
e |PeAξ,e|)s

∂We

∂Wp

LvT
∂4Wp

∂ξ4

)
(2.77)

where subscripts u & s refers use of unsteady and steady preconditioners, respectively,

and the matrices

Lp =



1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


LvT =



0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(2.78)

help treat the variables separately. This definition of scaling is referred as blended

matrix dissipation. Formulations in the other grid-aligned directions are similar.

2.7.7 Performance of Preconditioning Squared

An infinitely long wing case with M = 0.1 with a largest possible wavelength of 0.1

chords (i.e. span length) is chosen for performance assessment of the implemented

preconditioning squared algorithm. Since the main motivation for the preconditioned

dual time algorithm has been to subdue infeasible computation time required in vis-

cous cases because of time step restrictions, the first comparison should be made with
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the explicit method. The case was run 1000 steps using the explicit method with max-

imum allowed time step, taking 0.24L/c∞ in total. Then it is compared with dual time

stepping simulations that are run for one physical time step which is 1000 times as

large as the one used in the former. A fixed diffusion constant κ6 = 1/256 is chosen

for all simulations. Table 2.1 compares the CPU time required for each simulation. It

is seen that dual time stepping combined with Jacobi and low-Mach preconditioning

folds the explicit method by 20 to 30 in speed for this benchmark problem where both

high aspect ratio and small cells exist. A better speedup would be expected in lower

Mach values, since the difference between convective and acoustic speeds becomes

larger, i.e. the system becomes more stiff. Moreover, it was shown that both types

of preconditioners considered perform even better when used with multigrid, because

they boost damping of high frequency error components [122].

Table 2.1: CPU time comparison for 0.24L/c time advancement

CPU time (s)

−2 residual drop −3 residual drop

precond. (dual time) 196 379

no precond. (dual time) 654 2615

explicit (LDDRK5 [106]) 7330

Convergence acceleration by the preconditioning methods with dual time stepping

can be observed in Figure 2.7. The same infinite wing benchmark case is run for sev-

eral time steps with and without the preconditioners. Low speed preconditioner alone

cannot be shown here because modifications required on code for the implementation

is not straightforward, whereas simply ε = 1 is taken to obtain Jacobi preconditioner

alone. Nevertheless, it is obvious that both preconditioners perform splendidly and

they perform best when they cooperate. Remember that low speed preconditioner

scales artificial viscosity as well, which is crucial for accurate results particularly in

low Mach flows.
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Figure 2.7: Performance comparison for a 0.1c span transient viscous calculation of

NACA0012 case under a free stream of M = 0.1, CFL = 3000

2.8 Implicit Residual Smoothing

Physically, residual smoothing can be interpreted as smoothing out the residual with

a form of diffusion operator as the name infers, so that the maximum allowable CFL

number of the time integration scheme can be extended. It was introduced by Lerat

[123] and adapted to multistage Runge-Kutta scheme by Jameson [124]. In 1-D it is

simply formulated as

R̄i −Ri = εi∂
2
ξ R̄i (2.79)

where residualRi is smoothed to obtain R̄i. The smoothing coefficient εi behaves like

a Von Neumann number (µ∆t/∆x2) in a diffusion process. Accordingly, the high fre-

quency components of Ri are damped after one time step. The Laplace operator ∂2
ξ is

usually discretized by second-order central differencing. In 3-D, the Laplace operator

is simply factored in each direction to reduce computational effort. Consequently in

3-D, implicit residual smoothing is formulated as follows,

−εiR̄i−1,j,k + (1 + 2εi)R̄i,j,k − εiR̄i+1,j,k = Ri,j,k

−εj ¯̄Ri,j−1,k + (1 + 2εj)
¯̄Ri,j,k − εj ¯̄Ri,j+1,k = R̄i,j,k (2.80)

−εk ¯̄̄
Ri,j,k−1 + (1 + 2εk)

¯̄̄
Ri,j,k − εk ¯̄̄

Ri,j,k+1 = ¯̄Ri,j,k
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It is practical to solve the equations in each direction consecutively to reduce the

computational burden. Hence, the resulting tridiagonal systems are to be solved in

each direction, which should not be troublesome computationally. The smoothing

coefficients are given as [125]

εi = max

1

4

( σ̄
σ

1

1 + Ψ(
Λc,j
Λc,i

+
Λc,k
Λc,i

)

)2

− 1

 , 0


εj = max

1

4

( σ̄
σ

1

1 + Ψ(
Λc,i
Λc,j

+
Λc,k
Λc,j

)

)2

− 1

 , 0
 (2.81)

εk = max

1

4

( σ̄
σ

1

1 + Ψ(
Λc,i
Λc,k

+
Λc,j
Λc,k

)

)2

− 1

 , 0


where Λc are spectral radius specific to convection terms in each direction, and Ψ =

0.0625 typically. Theoretically, one can take the smoothed CFL to unsmoothed CFL

number ratio σ̄/σ infinitely large. However, it is not practical because high wave

number smoothing of the Runge-Kutta scheme is disrupted. It is common practice to

take σ̄/σ ≈ 2.

In viscosity dominated regions, smoothing coefficients based on viscous spectral radii

should be used,

εi = C
σ̄

σ

Λv,i

Λc,i + Λv,j + Λv,k

εj = C
σ̄

σ

Λv,j

Λc,i + Λv,j + Λv,k

(2.82)

εk = C
σ̄

σ

Λv,k

Λc,i + Λv,j + Λv,k

where C = 5/4 typically. As a result, the maximum of the local coefficients in Eqs.

2.81 and 2.82 is chosen. Remember that formulation of the convective spectral radii

differs when the system is preconditioned (Eq. 2.73).

2.9 Parallelization

It is essential to parallelize a solver if large problems are intended to be solved, not

only due to the fact that parallelization harnesses more computing power, but also
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supplies more memory thanks to distributed memory systems such as MPI (Message

Passing Interface).

In the first step, the mesh decomposer simply reads the mesh by the master process

and assigns partitions to the processes equally. Each process reads the corresponding

mesh independently and solves their part with necessary communications done in the

interfaces. The passing of information between the processes is performed through

three levels of ghost cells as sketched in Figure 2.8. Likewise, the grid points in

the interfaces are communicated for once, to ensure continuity of the domain. The

communication is essentially performed at the end of each stage of the Runge-Kutta

iteration. It is sure that this much of ghosts cells would result in considerable commu-

nication and consequently, loss of efficiency. However, three levels of cells are essen-

tial to ensure fourth order of accuracy of the numerical method seamlessly. In order to

maximize the efficiency of the parallel solution, the partitions must be equally large to

keep the collaboration among the processes well-balanced. An unbalanced workload

among processes would cause waiting periods for some, reducing efficiency. Another

tip to increase efficiency is to keep surface to volume ratio of the partitions as low as

possible (ideally, equal number of cells in each direction of the partition).

interface

process 1

process 2

1 2 3 4

iendiend-1iend-2iend-3

0-1-2

iend+1 iend+2 iend+3

Figure 2.8: Communication between two partitions through ghost cells.

Some benchmark tests are performed on the manufactured flow case mentioned in

Section 3.2. The problem is defined with 41× 41× 41 nodes, which is decomposed

into two partitions in each dimension as shown in Figure 2.9. Decomposition is per-

formed in all directions equally, to enhance parallel efficiency. The results exactly

match the serial ones as expected.
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Figure 2.9: Sample block decomposition.

An important test towards benchmarking parallel efficiency is the parallel speed-up

curve (see Figure 2.10). The same manufactured solution problem is reproduced on a

block with 88×88×88 cells employing a single computing node with 64 cores and a

shared memory of 256 GBs. The block is decomposed into 2 and 4 in each direction,

resulting in 8 and 64 partitions, respectively. Likewise, equal decomposition in 2-D

and 1-D is examined. As stated above, a 3-D decomposition of a problem enhances

parallel performance, through minimizing total interface area. Note here that 1-D

decomposition fails after some point due to the excess of ratio of communication

work for each partition and unequal extent of the partitions.
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Figure 2.10: Parallel speed-up curves for 1-D, 2-D and 3-D decomposition of a block

with 883 cells.
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CHAPTER 3

VERIFICATION AND VALIDATION OF THE FLOW SOLVER THROUGH

BENCHMARK CASES

In this chapter, some test cases are presented to validate the solver’s accuracy order

and demonstrate competency for inviscid, viscous flows, and turbulence. First, valida-

tions are achieved in 2-D cases to justify the extension of the solver to 3-D. In the last

section, verification of the 3-D solver is performed on a manufactured case. All tests

are conducted using explicit low-storage four-stage Runge-Kutta time integration.

3.1 Preliminary 2-D Cases

3.1.1 Isentropic Vortex Convection

The inherent spatial discretizations are intended to be validated via an isentropic vor-

tex convection test problem, whose analytical solution is simply transport of the initial

vortex as it is. Cartesian mesh sizes of 100× 100, 200× 200 and 400× 400 are gen-

erated with some non-uniformity (Figure 3.1). The mesh is generated via smooth

transformation of uniform mesh. A strong vortex (uA/V∞ = 0.8) is convected un-

der M∞ = 0.5 for a time period of V∞t/L = 30, and periodic conditions on the

boundaries. The initial form of the solution is given by,

V =


V∞

0

0

+ uAe
(1−(r/b)2)/2


(y − y0)/b

−(x− x0)/b

0

 (3.1)

for a 2-D vortex defined on [−25L, 25L]2. r is the distance from the vortex center
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Figure 3.1: Non-uniform Cartesian mesh

(x0, y0). A representative length scale for the vortex can be defined from e−(r/b)2 = 1
2

at r = L. The primitive variables can be found using isentropic relations,

T

T∞
=

(
p

p∞

)(γ−1)/γ

=

(
ρ

ρ∞

)γ−1

= 1− γ − 1

2

u2
A

c2
∞
e1−(r/b)2 (3.2)

A fourth-order efficient four-stage Runge-Kutta time integration is used. Since the

compact RK4 is second-order accurate for nonlinear equations, a non-dimensional

time step size of order spatial step-size squared in transformed coordinates (u∞∆t/L ∼
∆x2) or one order higher than that when instability shows up (u∞∆t/L ∼ ∆x3), is

chosen to prevent the time integration error from overshadowing the spatial discretiza-

tion error. The vortex is convected a distance from −15L to 15L in the x-direction.

The temperature contours are shown in Figure 3.2, of the vortex on the 100 × 100

mesh. Observe the loss of vortex shape and position with some of the schemes. Using

central schemes with symmetry preservation is known to lower numerical dissipation,

hence reduces peak amplitude loss. It can be observed that the non-symmetric form

of divergence does not preserve the peak of the vortex as compared to symmetric

form with same accuracy order. Moreover, since dispersion causes waves to travel
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at different speeds, loss of position and shape of the vortex is minimized with low-

dispersion DRP scheme (Figure 3.2e). As expected, position and shape of the vortex

are most immensely preserved with fourth-order DRP scheme on 400 × 400 mesh

(Figure 3.2f).

The symmetry-preserving scheme proved to be stable without any means of artificial

dissipation for this problem. The skew-symmetric form owes this to local and global

conservation of total energy by convection, avoiding spurious generation of kinetic

and internal energies. However, for compressible flows, where density can drop to

some extent, unbounded increase of velocity is not avoided in global conservation

of total energy. Still, stability is dramatically enhanced, even though, to eliminate

small-amplitude oscillations, a minimal artificial diffusion may be required in other

problems such as problems with submerged bodies. In contrast, a standard scheme

(F = ρVφ) without artificial diffusion would be unstable giving no results at all.

Hence, results of the standard scheme are obtained by help of an artificial diffusion,

whereas the Jameson-type averaging [90] (F = ρV ρφ/ρ), which slightly differs from

the skew-symmetric form [54], did not require one for this test problem.

An error analysis is also performed in order to validate the accuracy orders of the

schemes. Figure 3.3 shows logarithmic plots of the root-mean-squared error values

with respect to doubling mesh sizes. The skew-symmetric fourth-order DRP scheme

exhibits the lowest error for all variables. The promised order of accuracies of the

schemes seem to be maintained. As to u, v and T , the non-symmetric schemes proved

to be almost equally accurate with their symmetric counter-parts, except the standard

scheme has little more error due to the influence of artificial diffusion. However,

entropy generation levels (Figure 3.3d) plot another story: All schemes demonstrate

their success with different levels of error. Entropy generation has to be solely related

to numerical dissipation for this inviscid problem (no heat generation/conduction, no

shocks). Hence, it can be taken as a measure of numerical dissipation. The skew-

symmetric scheme proved to cause less dissipation error, in fact, one order and two

order less than corresponding Jameson-type and standard schemes, respectively. The

standard scheme has the largest error, due to the fact that an extra dissipation (artificial

diffusion) is essentially added. Observe the entropy error results of fourth-order DRP

schemes, where minimization of dispersion error for each case provides one order
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(a) Second-order scheme conserving skew-symmetry

on 100× 100 grid
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(b) Second-order scheme (Jameson-type scheme) on

100× 100 grid

x/L

y
/L

9 12 15 18

­3

0

3

6
T/T

∞
Temperature

0.995

0.99

0.985

0.98

0.975

0.97

0.965

0.96

0.955

0.95

0.945

0.94

0.935

0.93

0.925

0.92

0.915

(c) Fourth-order scheme conserving skew-symmetry

on 100× 100 grid
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(d) Fourth-order scheme (Jameson-type scheme) on

100× 100 grid
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(e) Fourth-order DRP scheme conserving skew-

symmetry on 100× 100 grid
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Figure 3.2: Temperature contour of the isentropic vortex using symmetry-preserving

and Jameson-type schemes
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less error. Eventually, Figure 3.3d can be deemed a splendid illustration of merits of

skew-symmetry as well as DRP feature of discretizations.
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Figure 3.3: Step-size vs. root-mean-square of differences of isentropic vortex convec-

tion solutions from analytical values of dimensionless velocities u and v, temperature,

entropy.

Essentially, the skew-symmetric discretization of convection term requires additional

computations (see Section 2) to obtain averaged flux on cell faces. This results in
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more CPU time for a simulation of same accuracy order on the same mesh. For in-

stance, the standard scheme costs 1.3 multiple of the Jameson-type scheme, whereas

the skew-symmetric scheme costs 1.8 times what the Jameson-type scheme costs. It is

not a big trouble as the profit made from mesh size is considered. In fact, it is observed

from the results of the aforementioned vortex problem that the low-dispersion fourth-

order skew-symmetric scheme on 200× 200 mesh attains the accuracy obtained with

the low-dispersion Jameson-type basic scheme on 400× 400 mesh. Accordingly, the

skew-symmetric form performs around 2.7 times faster than the basic form to achieve

the same accuracy, thanks to the mesh-size related cost reduction. The performance

gap further extends as second-order basic scheme is compared, and even further on

3-D domains.

3.1.2 Inviscid transonic flow over RAE2822 airfoil

Inviscid flow simulation of an airfoil case can be seen in Figure 3.4. The domain is

around 6-chords-length wide having 193 × 94 grid points and the Mach number is

0.725. The low-dissipation, low-dispersion (DRP) fourth-order scheme is used for

the solution. In order to increase the sharpness of the shock as well as reduce oscil-

lations, the artificial dissipation method explained in Section 2.3 is utilized, where

a pressure-gradient sensor is employed to switch the dissipation between shock and

smooth regions. As the results are compared with the experiment data [126], it can

be concluded that there is some difference indeed, particularly, the location of shock

differs considerably. A reason for this occasion might be the wall interference of

the wind tunnel. More importantly, the experiment definitely reflects a viscous flow,

which could result in difference with inviscid transonic flow solutions. After all, the

results obtained in another simulation by Özyörük [127], using standard fourth-order

accurate finite-difference scheme, compare with the current results quite closely.

3.1.3 Couette flow

A Couette flow case is chosen as the first viscous test case, where an upper plate

moves with U = 75.4m/s velocity and a temperature difference of 1K between the
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Figure 3.4: Transonic flow simulation on RAE2822 airfoil (M = 0.725, α = 2.92◦)

plates is set. The temperature distribution is shown in Figure 3.5 (Re = 4000,Pr =

0.708). Firstly, 17 grid points between the plates is chosen (see Figure 3.5a). Ap-

parently for the current test problem, the low-dissipation scheme does not necessitate

artificial dissipation to produce a converged solution, whence the analytical solution

can be reproduced perfectly. Note here that the analytical solution is a quadratic equa-

tion which can be obtained perfectly with a fourth-order discretization. Nevertheless,

addition of the artificial dissipation induces some error, dependent on its intensity fac-

tors (K4, K6). This observation should be expected because in low Reynolds number

flows, diffusion process, which is altered by the artificial diffusion, is dominant on

resulting flow behavior. Figure 3.5b demonstrates the case where 9 grid points are

used between the plates. Thanks to the fact that without artificial dissipation a per-

fect match is achieved using both second and fourth-order discretizations, the impact

of artificial dissipation reveals. As can be observed, the error order of the artificial

dissipation for the fourth-order discretization is higher than that of the second-order

discretization, consequently more accurate results are obtained. Note here that post-

processing involves linear interpolation between cell centers and boundary conditions

are applied using linear extrapolation towards the ghost cells, which conflicts with

fourth-order discretization’s quadratic predictions. Horizontal velocity distribution is

not shown here, which is merely a linear function on y and perfectly obtained using

both discretizations.
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Figure 3.5: Couette flow simulations

3.1.4 Laminar flow over a flat plate

Another notable viscous flow test case is laminar flow over a flat plate. Mach number

is selected to be low enough (M = 0.2) to use the compressible solver as though

incompressible results are obtained. The test setup consists of a flat plate is shown in

Figure 3.6 (69 × 49 grid points totally), where boundary layer at x = 1.0549m lo-

cation under ReL = 100000 with L = 2m is investigated. The results are compared

with Blasius solution in Figure 3.7. Both the horizontal velocity profile and the fric-

tion coefficient agree well using fourth-order discretization. Since, the vertical veloc-

ity naturally has lower order compared to the horizontal velocity, error level becomes

more visible. The fourth-order discretization has slightly more accuracy compared

to the second-order discretization. Lowering the intensity of artificial dissipation and

using matrix dissipation method instead could reduce the error even more.

3.1.5 Symmetric airfoil in laminar flow

A NACA0012 airfoil with blunt trailing edge is tested under a flow of M = 0.5 and

Re = 5000 with no angle of incidence. The mesh is in O-grid topology with an

extent of 170 chords consisting of 157 × 112 grid points. Success of convergence to

a solution seems to be equally good for both fourth and second order discretizations
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Figure 3.6: Flat plate simulation setup
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Figure 3.7: Blasius velocity profiles (a,b) and shear coefficient distribution (c)
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(see Figure 3.8c). In Figure 3.8b, pressure coefficient is compared with another result

from literature [128] where a high-order upwind residual distributive scheme (over

P 2 elements) used with 8564 grid points (200 of which being on the airfoil). The

fourth-order DRP scheme proves to be closer to the reference solution, despite the

deviation in the trailing edge due to its bluntness. A C-grid topology would be the

approach to overcome this issue.
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Figure 3.8: Grid (a), pressure coefficient (b) and residual drop (c) on NACA0012

airfoil (M = 0.5, Re = 5000)

3.1.6 Lid-driven cavity flow

A classical cavity problem is simulated as well, atRe = 100 andRe = 1000. The top

plate moves with a velocity of 1m/swhile the other walls are stationary imposing no-

slip boundary condition. The 25×25 and 49×49 grids are clustered near the walls to
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be able to resolve higher gradients. The centerline u-velocity and v-velocity plots are

compared in Figure 3.9 with the well-known fine-grid solutions (129× 129) of Ghia

[129]. The accuracy of fourth-order method is obvious, particularly near the high-

gradient regions close to the walls. Even a higher Reynolds number case would reveal

the difference more profoundly, owing to the fact that secondary vortices come into

existence or become stronger. The artificial dissipation intensity factors are chosen to

be K4 = K6 = 1/2048 to minimize the impact on the solutions.
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Figure 3.9: Geometric centerline (a), u-velocity (b) v-velocity comparison at Re =

100 (25 × 25 grid points) and (c,d) at Re = 1000 (49 × 49 grid points) with Ghia’s

data ([129])
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3.1.7 Turbulent flow on flat plate

Testing of Spalart-Allmaras one-equation model explained in section 2.4.2 is per-

formed on flat plate with L = 1 m and ReL = 5× 106. The mesh used is exactly the

same with the one used in the laminar case (see Figure 3.6). The Figure 3.10a com-

pares the friction coefficient with the results of the NASA CFL3D code [130] and

a fine mesh solution with the current code, whereas Figure 3.10b depicts the com-

parison of the boundary layer velocities in dimensionless units with the law of wall

(κ = 0.41, B = 5.0. See [131]) at two locations (x = 0.2 and x = 0.97 m). Both

graphs prove that satisfying agreement is achieved even with a comparably coarse

mesh thanks to use of fourth-order accuracy. Furthermore, grid convergence seems

to be achieved even on the coarse (69 × 49) mesh. At the leading edge of the plate,

the abrupt oscillations on the friction coefficient is due to the underresolved boundary

layer at those locations, obviously. The extremely fine mesh solution of CFL3D to-

gether with the fine mesh of the current solver however, captures the curve decently.

The velocity profiles also reveal that close to the leading edge the accuracy decreases.
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Figure 3.10: (a) Friction coefficient results of fine-mesh CFL3D (545× 385) and the

current code (69× 49), (b) dimensionless boundary layer velocity and the law of the

wall at x = 0.97008 m location
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3.2 Code Verification in 3-D using Method of Manufactured Solutions

It is not an easy task to validate compressible Navier-Stokes equations in 3-D since

there is hardly an exact solution to the governing equations, if at all. The only way

known is to make simplifications such as incompressibility at low Mach numbers,

and study simple flows as done in the previous sections (which are in the literature

referred as “validation” rather than verification[132]). Nevertheless, the simple flows

usually have zero first and second derivatives of velocity in some directions, over-

looking the validation of some aspects of the whole discretization. At this point,

one can “manufacture” an exact solution, which necessitates some modifications to

the equations, instead of trying desperately to find an exact solution to a physical

problem governed by the original system of partial differential equations. Method of

Manufactured Solutions (MMS) is a versatile tool to verify the solution of a given

code, such that any aspect of a solver can be evaluated separately to identify possible

mistakes in the code. More importantly, it is quite convenient to perform an order

of accuracy analysis, since the exact solution is already known (or determined) from

the beginning. Verification of the observed order of accuracy on a smoothly-mapped

non-uniform mesh would verify the discretization methods and the code comprehen-

sively. In fact, it is the recommended acceptance test for code verification, since it is

the most sensitive test to coding mistakes [133]. In this section, MMS is intended to

be utilized to verify the order of accuracy of the code being developed. The procedure

of MMS is summarized as follows [132]:

• Choose a -preferably smooth- solution a priori

• Operate the solution on the governing equations to obtain some source terms

• Modify the code to include the source terms, initial solution and boundary con-

ditions

• Solve the modified equations on several levels of refinement

• Perform discretization error analysis by taking second norm of the error glob-

ally
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• Calculate observed order of accuracy and compare with the formal order of

accuracy and check if they match.

A solution similar to that proposed by Veluri et.al.[134] is chosen and implemented

as stationary boundary condition:

φ(x, y, z) = φ0 + φxfs(
aφxπx

L
) + φyfs(

aφyπy

L
) + φzfs(

aφzπz

L
) (3.3)

with the coefficients and the sinusoidal functions (fs) chosen as tabulated in the arti-

cle by Veluri et.al.[134]. In this report, the ultimate aim is to obtain the formal order

of accuracy on non-uniform grid using the full-feature 3-D equations, i.e. compress-

ible Navier-Stokes equations. It will verify all aspects of the targeted solver simul-

taneously: convective flux, viscous flux, artificial dissipation, compressibility, third

dimension effects, and even boundary conditions. Verification of the time-accurate

solutions is left as a future work.

Figure 3.11 depicts the verification results of the 3-D code using a manufactured

solution.The code proved to work perfectly with all features active (DRP, artificial

dissipation,viscosity), achieving fourth-order accuracy on the nonuniform set of grids

(see Figure 3.11a). Solely verifying the solver in full-feature mode automatically

verifies all aspects of the code, thus nullifies separate tests. In fact, there had been an

error in the 3-D code, detected and corrected in the results shown (see Figure 3.11b).
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Figure 3.11: Full Navier-Stokes fourth-order DRP solution of the manufactured case

(b) on non-uniform grid (a)
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CHAPTER 4

UNSTEADY TURBULENT FLOW BENCHMARK PROBLEMS

This chapter covers validation and evaluation of the unsteady flow solver through

several turbulent benchmark problems, as to influence of the turbulence models and

the numerical scheme. Firstly, a highly detached flow around an airfoil is considered,

where detached-eddy simulation is inherently competent. Then, decaying isotropic

homogeneous turbulence case is considered to assess the low dispersion and low dis-

sipation merits of the solver combined with the subgrid model. Lastly, a turbulent

channel flow benchmark case is solved to test resulting shear and velocity profile

obtained by turbulence model in wall-bounded flows.

4.1 NACA0012 airfoil at α = 45◦

A highly separated airfoil case, which is a great challenge for a turbulence model, has

been tested to inspect the DES model at its best. For this case, only ZDES model is

tested because ZDES and SLADDES models are expected to behave similar for such

a highly separated flow. An O-type mesh of 193× 101× 31 grid points, respectively

in wall-tangent, wall-normal, and spanwise directions are used with a span of one

chord length (See Fig.4.1). Periodic conditions are set in the span limits. A time

step of ∆t = 0.005c/U∞ is chosen for the dual-time algorithm and the residuals

are allowed to drop around three orders, using a fixed number of 40 subiterations.

Figure 4.2 shows streamlines and isosurface plots ofQ-criterion= 0. In the isosurface

plot, highly 3-D nature of the flow is evident. In Figure 4.3, change of lift and drag

coefficients are shown with respect to dimensionless time. The averaged values of CL

and CD are compared with measurements as well as with another DES result from
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literature in Table 4.1. Note that the prescribed Reynolds number of the experimental

results [135, 136] and the current results slightly differ from that of the DDES and

URANS results by Im&Zha [136]: Re = 2 × 106 and Re = 1.3 × 106, respectively.

Nevertheless, Reynolds number effect is known to be trivial at strongly separated high

Reynolds number flows (Re > 105).

Figure 4.1: Mesh around NACA0012 airfoil (193× 101× 31 points, first cell height

y+ ≈ 1)

(a) Streamlines and pressure contour (b) Isosurface view of Q-criterion (Q = 0)

Figure 4.2: Instantaneous views from the NACA0012 airfoil simulation (at α = 45◦,

Re = 2× 106, M = 0.5)
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Table 4.1: Lift and drag coefficients of NACA0012, M = 0.5, Re = 2×106, α = 45◦

CL CD

experiment [135, 136] 1.168 1.109

current (ZDES) 1.151 1.169

DDES [136] 1.087 1.076

DES [136] 1.086 1.075

URANS [136] 1.432 1.421
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Figure 4.3: Lift and drag coefficients of NACA0012 vs. time (M = 0.5,Re = 2×106,

α = 45◦)

4.2 Decaying homogeneous-isotropic turbulence

Decaying isotropic turbulence benchmark case is widely accepted for turbulence model

calibration purposes and examining dissipation impact of numerical schemes. It pro-

vides a fundamental test ground for turbulence validation at a minimal computational

cost. An unpublished set of data is available freely which is commonly known as

Wray1997 DNS data [137, 138]. It provides well-resolved DNS simulation results

on a 5123 grid of cubic box of 2π length on a side, having been verified by former
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Figure 4.4: Velocity vector field by the DNS of Wray [137]

empirical findings [139].
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Figure 4.5: Energy spectra of an initially isotropic turbulence at three time levels: a)

++; DNS results on 5123 grid (known as Wray1997 unpublished data set), –; current

solution on 323 grid, -·-; current solution on 643 grid, b) inviscid solution

Figure 4.5a demonstrates the success of the current solver in both DES approaches

as compared with the Wray1997 DNS data. The two grids employed in the present

test consist of 323 and 643 cells, respectively. The initial flow field is mined from the

available data with 1283 cells [137] (see Figure 4.4), through sharp truncation into
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323 cells. At three different times, energy spectra are compared with the DNS results.

A fixed time step is used for both grids which corresponds to a Courant number of

0.1 for the coarse grid. The turbulence models appear to benefit even on a coarse

mesh greatly from low numerical dissipation and dispersion characteristics of solver.

Note that for all the cases, the standard value of the DES model constant is adopted

(CDES = 0.65). In fact, further calibration might be necessary for the new length

scale definition ∆SLA.

Figure 4.5b demonstrates an evaluation of dissipation error of the scheme for the

323 grid. A low dissipative scheme obeys the κ2 rule on higher wavenumbers [26].

Indeed, both low dissipation and dispersion nature and proper modeling of the subgrid

turbulence are crucial in calculation of broadband noise levels where turbulent scales

and accurately capturing of the energy cascade play an important role.

4.3 Turbulent flow in a channel (Reτ = 395)

In this section, the ZDES(imode = 2) and the SLADDES turbulence model is tested

through a channel flow case which is considered as a challenging unsteady test case.

For such a case in fact, instead of finite volume methods, very high accurate spectral

methods are widely employed [140] in DNS framework because numerical dissipa-

tion usually overcomes the initiation and growth of turbulence in the channel. For

such a case, DES is mostly considered incompetent because it enables use of coarser

grids, which comes with higher numerical dissipation preventing initiation of insta-

bilities. Nevertheless, the low dissipation nature together with fourth-order accuracy

of the current method should handle these problems. Apart from numerical dissipa-

tion concerns, modeling of the boundary layer might delay growth of fluctuations in

a pure DES (DES97) or DDES because of the dissipation by the eddy viscosity.

The case is setup with a friction velocity Reynolds number ofReτ = 395, in a domain

2πH × 2H × πH composed of 32× 64× 32 cells by taking the channel half-height

H = 1 m. The flow is initialized with a laminar Poiseuille flow corresponding to a

bulk Mach number of Mb = 0.2, and bulk Reynolds number of Reb = 6875. Driving

the flow to give a constant mass flux (i.e. constant Reb) necessitates application of
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a constant body force in x-direction as a function of Reτ and Reb. Some synthetic

turbulence, composed of Fourier composition of many wave numbers in a coherent

fashion [86, 87], is induced on the initial flow field to stimulate transition. A time

step of ∆t = 0.0145H/a∞, where a∞ is the freestream acoustic speed, is used for

all the simulations. LDDRK5 [106], which is an optimized explicit Runge-Kutta time

stepping, is employed. The computations are advanced from the initial state until wall

shear values are settled around a mean. Afterwards, data is collected for about 900

dimensionless time to compute statistics of turbulence. Note here that no artificial

dissipation is used in the no-model simulation, whereas a tiny amount is included in

the ZDES and SLADDES (k6 = 1/1024).

Table 4.2 shows computed friction Reynolds number values of several approaches.

SLADDES and ZDES approaches implemented in the high-order solver prove suc-

cess with quite close Reτ to the nominal value, even on such a coarse mesh. Interest-

ingly, Reτ is predicted more accurately without use of any model, even more accurate

than what a LES approach with a regularization model could achieve. What’s more,

simulation without a model happened to give a better prediction of friction Reynolds

number than a DNS solution [140]. This, however, does not make sense simply be-

cause, the no-model simulation solely represents effects of the resolved scale fluctu-

ations, whereas the DNS aims to resolve them all. This situation can be explained

through an error trade-off mechanism, which is also observed in some other under-

resolved simulations using symmetry-preserving schemes [141, 59]. Note also that

the numerical dissipation may work as a sub-grid eddy viscosity in a crude manner,

literally deeming the simulation an implicit large-eddy simulation. Alas, the numer-

ical dissipation is not an easily controllable term most of the time, despite recent

efforts towards controlling it for LES by making use of various numerical methods

(see the review “monotonically implicit LES” (MILES) [52]).

In the framework of ZDES, the switching between LES and RANS modes at an in-

stant in the channel is visualized in Figure 4.6. As expected, employment of RANS

is ensured in the attached boundary layer and LES zone is activated in the outer flow.

The dark region in the contour plot solely represents the LES zone with LES-type sub-

grid length-scale (∆vol or ∆ω), whereas the light region corresponds to both RANS

mode (using dwall) and DDES mode (using ∆max). The same visualization could be

70



Table 4.2: Computed friction Reynolds number Reτ with several approaches. Chan-

nel dimensions are Lx = 2πH; Ly = 2H; Lz = πH . The nominal value dictated by

body force is Reτ = 395

∆x+ ∆y+
min ∆y+

max ∆z+ Nx ×Ny ×Nz Reτ

DNS [140] 10.0 – 6.5 6.5 256× 193× 192 392.2

LES [59] 38.5 2.6 40.7 19.3 64× 64× 64 386.0

SLADDES (current,fine) 38.5 2.6 40.7 19.3 64× 64× 64 395.5

SLADDES (current) 77.0 2.6 40.7 38.6 32× 64× 32 396.1

ZDES (current) 77.0 2.6 40.7 38.6 32× 64× 32 399.9

ZDES (current, no Ψ) 77.0 2.6 40.7 38.6 32× 64× 32 400.6

no model (current) 77.0 2.6 40.7 38.6 32× 64× 32 395.1

performed in a backward facing step case as well, since it is a more challenging case

for a hybrid method [31].

Figure 4.6: Visualization of LES (dark region, fd ≥ 0.8) and RANS (light region,

fd ≤ 0.8) zones of ZDES (imode = 2) at an instant at z = 0

Sample visualization of turbulent structures obtained via SLADDES at an instant in

the channel is shown in Figure 4.7. It is interesting to observe that turbulent fluctua-

tions are sustained even on such a coarse mesh. Figure 4.8 shows the contour of the

function FKH (see Eq. 2.38,2.40). In the dark regions, due to existence of purely

2-D shear, the function reduces by one order of magnitude so that eddy viscosity is

reduced dramatically to enable Kelvin-Helmholtz instabilities.
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(a)

(b)

Figure 4.7: Using SLADDES on grid 32 × 64 × 32 (a) Instantaneous x-momentum

field, (b) an iso-surface of Q-criterion

Figure 4.8: Visualization of subgrid length scale reduction in SLADDES approach

on grid 32× 64× 32
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Figure 4.9a compares the dimensionless velocity profile and Reynolds stress diagonal

components with the reference DNS solution. As seen, the velocity profiles both by

ZDES and SLADDES suffer a slight log-layer mismatch. SLADDES with a finer

mesh (see Table 4.2) is also assessed, where mismatch occurs to a lesser extent. This

misalignment of the log-layer and viscous layer, which stems from insufficient turbu-

lent kinetic energy feed from the modeled layer to the resolved layer, has also been

observed in wall modeled LES approaches [142], and hybrid LES/RANS approaches

[143, 32]. In WMLES approaches with wall-stress models, the solution to the mis-

match problem is simply grid convergence of the LES region [37]. However, in hybrid

LES/RANS approaches where grid convergence is not easy to speak of, other cares

must be taken. For example in zonal approaches, a proper small-scale forcing is ap-

plied at the interface [33] through either synthetic turbulence or imported DNS data.

As to the seamless (i.e. nonzonal) hybrid LES/RANS approaches, improved DDES

(IDDES) solves this issue [103, 11] proposing some empirical functions to tailor the

eddy viscosity in the buffer layer between the RANS and LES regions. Another no-

table fix for the mismatch is alteration of the LES model constant, specifically in the

wall vicinity, so that eddy viscosity is modified and the mismatch is subdued [144].

Note that in this study, a fix for the log-layer mismatch is out of the scope.

In Figure 4.9b-d, it can be seen that the Reynolds stress terms are under-predicted

considerably as compared with the DNS profiles, except for the no-model simulation

and the ZDES (without Ψ ). Clearly, smaller Reynolds stress terms are expected due

to the fact that part of the Reynolds stresses are represented by the calculated eddy

viscosity rather than fluctuations directly. In fact, there is a balance between modeled

and resolved Reynolds stresses depending on grid refinement and Reynolds number

[145]. The no-model simulation naturally lacks the eddy viscosity, whereas the ex-

ception by ZDES (without Ψ ) probably is related with the severe log-layer mismatch.
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Figure 4.9: Dimensionless mean velocity profile (a) and Reynolds stress terms (b,c,d)
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CHAPTER 5

AEROACOUSTIC COMPUTATIONS AROUND AIRFOILS

This chapter covers the acoustic noise prediction around airfoils. Firstly, development

and validation of the acoustic analogy tool is presented. Then, airfoil self-noise of

NACA0012 in a flow with Re = 416000, M = 0.116 and attack angle of 5.4◦ is

investigated. Although this case neither corresponds to a typical wind turbine foil nor

to wind turbine typical range of Reynolds numbers, it is considered as an affordable

and accessible benchmark for such simulations, involving both laminar and turbulent

boundary layers at the same time. A more realistic wind turbine blade section in a

high-Re flow case is left as the next step for such simulations.

Generation and propagation of noise is based on the flow solver described in Chapter

2 and the acoustic solver presented in this chapter, respectively. In fact, this is a DES-

FWH hybrid noise prediction approach which is practical for prediction at distant

microphone locations.

5.1 Development of the Frequency-domain Ffowcs Williams-Hawkings Solver

In differential form, the FW-H equation is given as follows [68](
∂2

∂t2
− c2

0

∂2

∂xi∂xi

)
(H(f)ρ′) =

∂2

∂xi∂xj
(TijH(f))− ∂

∂xi
(Fiδ(f)) +

∂

∂t
(Qδ(f))

(5.1)

where f = 0 defines the surface, outside of which a solution is sought for. The primed

variables are perturbed values around the free-stream conditions, and the subscript 0

represents free stream values. H is Heaviside; and δ is Dirac delta function. Ti,j , Fi

and Q represent quadrupole, dipole and monopole source terms, respectively. The
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source terms are given as,

Tij = ρuiuj + pδij − τij − c2
0ρ
′δij (5.2a)

Fi = (pδij − τij + ρui(uj − vj))
∂f

∂xj
(5.2b)

Q = (ρ0vi + ρ(ui − vi))
∂f

∂xi
(5.2c)

In the above equations, while ui is the local flow velocity, vi represents FW-H surface

velocity, δij is Kronecker delta, and τij is the viscous stress tensor which is generally

neglected. The derivative ∂f/∂xi is nothing but the surface normal vector.

The solution to the Equation 5.1 can be obtained through Green function of the wave

equation. 3-D time-domain solution was formulated efficiently by Farassat [146],

whereas 2-D and 3-D frequency-domain solutions were demonstrated in Lockard’s

studies [88, 72]. Comparison of both approaches showed that the frequency-domain

solution proves to be more efficient [147]. Another charming aspect of the frequency-

domain approach is that the derivatives in the formulation can be obtained analytically

rather than numerically. Alas, the frequency-domain formulation might require large

amount of memory since all the time period needs to be stored before performing

a FFT. In the absence of the volumetric term however, the memory requirements

should not make a trouble. Therefore, in this study, the frequency-domain approach

is adopted.

Assuming rectilinear motion of the surface in constant speed (f = f(x + Ut) =

0), performing Galilean transformation from (x, t) to (y, t̄) where yi = xi + Uit;

t̄ = t and transforming to frequency domain, and lastly, performing Prandtl-Glauert

transformation, the ultimate form of the equation for a permeable moving surface

yields density perturbation at an observer location for a given frequency [72]:

H(f)c2
0ρ
′(y, ω) =−

∫
f>0

Tij(ξ, ω)H(f)
∂2G(y; ξ)

∂ξi∂ξj
dξ

−
∮
f=0

Fi(ξ, ω)
∂G(y; ξ)

∂ξi
ds

−
∮
f=0

iωQ(ξ, ω)G(y; ξ)ds

(5.3)

where y and ξ denote the observer and source coordinates, respectively. As the den-

sity perturbation ρ′ is computed, the acoustic pressure p′ at the observer location y can
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be found by p′(y, ω) = c2
0ρ
′(y, ω). Note that flow velocity on the surface Ui = −vi is

used instead of the surface velocity vi. The transformed source terms in perturbation

velocity form are found as

Fi = (pδij + ρ(ui − Ui)(uj + Uj) + ρ0UiUj)
∂f

∂yj
(5.4a)

Q = (ρ(ui + Ui)− ρ0Ui))
∂f

∂yi
(5.4b)

The quadrupole term Tij does not change in the transformations.

In Prandtl-Glauert transformed coordinates (x̄, ȳ, z̄), Green function for wave equa-

tion for M < 1 is conveniently given by,

G(y; ξ) =
−1

4πd
e−ik(d−Mx̄)/β2

(5.5)

where the transformations can be derived as,

x̄ = (x− ξ) cosα cosφ+ (y − η) sinα + (z − ζ) cosα sinφ

ȳ = −(x− ξ) sinα cosφ+ (y − η) cosα + (z − ζ) sinα sinφ

z̄ = −(x− ξ) sinφ+ (z − ζ) cosφ

d =
√
x̄2 + β2(ȳ2 + z̄2)

where i =
√
−1, M is Mach number, k is wavenumber (ω/co), and β is Prandtl-

Glauert factor (
√

1−M2). The angles are defined such that sinα = U2/
√
U2

1 + U2
2 + U2

3 ,

tanφ = U3/U1.

Equation 5.3 requires integration of the sources over the surface and the entire volume

outside the surface, which is prohibitively expensive. Fortunately, the quadrupole

source (or, the Lighthill stress tensor, Tij) can be neglected because it is not signifi-

cant in most low-Mach cases [79]. In flows like jets, however, where shear layers and

wakes could cause refraction of waves, the quadrupole source term becomes domi-

nant. Still, the need to bother the costly volume integration can be evaded, provided

the integration surface encompasses all the important quadrupole sources. Note that

propagation of the relevant waves up to the surface must be allowed by the mesh res-

olution. Another caution should be given to the fact that the eddies passing through

the integration surface cause spurious noise, some remedies to which are proposed in

the literature [79, 72].
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Integrations in Equation 5.3 are performed simply by midpoint approximation, that

is, the surface is approximated with panels, and the integrands are computed numer-

ically through multiplication of midpoint value of the integrands with the area of the

panels. Computation of the sources on the panels and integration of Equation 5.3 are

parallelized via shared memory model of OpenMP [89], with respect to panel indices

and frequency indices, respectively.

5.2 Validation of the Ffowcs Williams-Hawkings Solver

In this section, a basic setup used by Lockard [147] for testing of the monopole and

another similar setup for dipole computations are chosen to validate the current im-

plementation. The implementation is efficiently parallelized using shared-memory

principles.

5.2.1 A Moving Monopole Source

A monopole moving in −x direction, or equivalently placed in a uniform flow in +x

direction, is described by complex velocity potential as

φ = A
1

4πd
exp

[
i(ωt− k(d−Mx)/β2)

]
. (5.6)

The field variables can be calculated from the complex potential through formula-

tions, p′ = −ρ0(∂φ/∂t + U0∂φ/∂x), u′i = ∂φ/∂xi, and ρ′ = p′/c2
0, taking only the

real parts. The analytic definition of the sound field will be used for both the required

field on the FW-H surface and the sound at the observer position. Suppose a monopole

fluctuating in a single tone with ωl/c0 = 4π/46 placed in a flow with M = 0.5. The

source amplitude is taken as A/(l2c0) = 0.01. The FW-H integration surface is cho-

sen to be a sphere of radius 5l created with 97×49 points in equally spaced azimuthal

and polar angles (see Figure 5.1). 64 time samples are generated for two periods of

the wave. Since the quadrupole term is neglected, mean values must be subtracted

from the monopole and dipole sources (Q, Fi), even though windowing is not rele-

vant in this problem. Unless the mean values are subtracted, the computed pressure

signal will falsely fluctuate around a nonzero mean, i.e. in frequency domain, ω = 0

solution of the sound pressure (p′(0)) will turn out to be nonzero.
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Figure 5.2 compares the analytic solution of sound pressure signal and root-mean-

square with the computed solution by the FW-H implementation at an observer lo-

cated at radial location R = 50l and a polar angle of θ = 0. The agreement validates

the implementation at least for monopole problems in uniform flow.

X
Y

Z

Figure 5.1: Ffowcs Williams-Hawkings solver integration surface for the moving

dipole and monopole source tests
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Figure 5.2: (a) Pressure signal at R = 50l, θ = 0◦ and (b) directivity comparison of a

monopole solution in a mean flow with M = 0.5.
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5.2.2 A Moving Dipole Source

Similar to the monopole source, a moving dipole source located on the origin can be

defined by the velocity potential function,

φ =
∂

∂y

{
A

1

4πd
exp

[
i(ωt− k(d−Mx)/β2)

]}
(5.7)

The uniform flow is in the +x direction whereas the dipole axis lies in y direction.

Magnitude, frequency, integration surface and observer location are all taken equal to

those of the monopole source in Section 5.2.1. The integration surface is chosen to

be exactly the same sphere as in the monopole case (Figure 5.1), but with an observer

at a polar angle θ = 90◦ instead. The signal and directivity computations (Figure

5.3) prove almost identical results with the analytical solution, which validates the

implementation for the dipoles as well. Remember that the quadrupole term in the

formulation is ignored throughout this study.
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Figure 5.3: (a) Pressure signal at R = 50l, θ = 100◦ and (b) directivity comparison

of a dipole solution in a mean flow with M = 0.5.

5.3 Signal Processing Framework

In real applications, source fluctuations are not necessarily fully periodic, because

data from CFD computations is usually of limited time due to computational restric-
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tions. Besides, sources, especially those due to turbulence, are necessarily quite com-

plex consisting of many frequencies of different origins such that a continuity between

the beginning and end points of any record segment can not be possible. Hence, the

source signals must be filtered before the FFT for reliable Fourier transformations. A

regular Hanning filter (a.k.a. Hanning window), or a modified one that is adjusted to

keep the signal on the mid-period intact [88], should be appropriate for the purpose

of making the signals periodic. The weighting of the regular Hanning filter on a given

sample n on the discrete signal is given as

wn = 0.5

[
1− cos

(
2π
n− 1

N

)]
; n = 1, N (5.8)

where N is the total number of samples in the window. Hanning windows have less

impact on frequency resolution and accuracy of amplitudes on the spectrum than other

window types.

An energy correction should also be made, through simply dividing the FFT output

by
√

(1/N)
∑
w2
n, i.e. scaling the weightings by the root-mean-square. The window

must be applied after subtracting the mean values from each segment. Afterwards, the

mean values could be restored if necessary. Nonetheless, subtracting the mean values

solely modifies the zero frequency component, which is not relevant if the spectrum

is the desired output. In this study, only the regular Hanning filter is considered for

use on segments with 1/2 overlap (see Figure 5.4 for a demonstration). Resulting

power spectra from all the segments are then averaged to get an estimate of the power

spectrum. This procedure is called the Welch’s method [148], also known as the

periodogram method.
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Figure 5.4: a) a sinusoidal signal (solid curve) and 1/2 overlapping Hanning windows

(dashed curves); b) corresponding filtered signal
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The signal processing procedure is summarized below:

1. Arrange the time record in 1/2 overlapping segments and compute the sources

via Equations 5.4,

2. If needed, remove the trend in each segment by subtracting the linear least

squares fit,

3. Subtract the mean values of each segment from themselves to obtain pure per-

turbations,

4. Filter the segments via Hanning filter,

5. FFT of the signals in the segments,

6. Integrate the FWH equation in frequency domain (Equation 5.3) for each seg-

ment separately to obtain pressure spectra on the observer location,

7. Take average of the power spectra to get an estimate of pressure spectrum on

the observer,

8. If desired, perform an octave band transformation of the spectrum.

Note that detrending the signal is only necessary when there is an undesirable trend on

the signal, in order to prevent possible bias on the low frequency end of the spectrum.

Ideally, a statistical convergence of the variables should be achieved, which would

obviate the need for detrending. Note again that an octave band transformation is

necessary when comparisons are to be made with some other results or measurements

that have different frequency resolution. That is, the results or measurements must be

of the same band representation (e.g. one-third octave band) for the comparison to be

meaningful.

5.4 Seo and Moon’s Long Span Correction to Sound Pressure Levels

In most of the RANS/LES applications, simulation of full span of an airfoil or body

is not usually affordable. It is common to take only a section of the body’s span as the

simulation domain. Then, far-field sound pressure level of the full span is estimated
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from the radiation contribution of the simulated section. The most common approach

is the Kato correction [149], which is based on pressure coherence based on space-

time cross-correlation of a selected point on the body surface, on the premise that the

sources radiate sound independently if the coherence length is smaller than the simu-

lated span. On the contrary, they radiate sound together if the coherence is immense,

i.e. they radiate nearly-cylindrical waves. However, this method partly lacks justifica-

tion, because frequencies with intermediate coherence lengths are treated somewhat

ad-hoc. Moreover, there is not a well-defined way to estimate the coherence length

from the coherence function.

Seo and Moon [150] proposed an improvement over the Kato et al.’s [149] box-car

function. The improvement is mainly on frequencies with the intermediate coherence

lengths, while the asymptotic values are equal to those of the Kato correction. In a

simplified form, the correction to sound pressure level (SPL) is given as,

SPLcorr. =


10log10(N), Lc/Ls ≤ 1/

√
π

10log10(Lc/Ls) + 10log10(
√
πN), 1/

√
π < Lc/Ls < N/

√
π

20log10(N), Lc/Ls ≥ N/
√
π

(5.9)

where Lc is the coherence length, Ls is the simulated span, and L = NLs is the full

span of the body. The derivation of the above formulation (see [150]) is based on a

special definition of coherence. That is,

γij(ω) =
<(p̂′ip̂

′∗
j )

|p̂′i||p̂′j|
(5.10)

where p̂′i is the Fourier transform of the radiated acoustic pressure by subsection i

on an observer, (·)∗ stands for conjugate, and <(·) denotes real part of a complex

input. This definition directly reflects phase differences between the two subsections

for a given angular frequency (ω) so that it can be termed as “acoustic spanwise

coherence function”. The overline denotes ensemble average over all computed phase

differences with equal span distance (∆zij). The radiated acoustic pressures by the

subsections (p̂′i, p̂
′
j) can be obtained by Curle’s analogy using the surface pressure

signal on the body [151]. The coherence length Lc is estimated from a Gaussian fit to
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the coherence function, that is,

γ(∆zij) ≈ exp

(
−

∆z2
ij

L2
c

)
(5.11)

In fact, the derivation of the correction in Eq. 5.9 is based on this approximation.

Details of the methodology are given in the Seo & Moon’s work [150]. It is also

successfully applied on a trailing edge noise simulation case in their following work

[152].

5.5 Noise Prediction from NACA0012 (α = 5.4◦, Re = 416000, M = 0.116)

A low-Mach airfoil case is investigated for direct noise computation using SLAD-

DES. The parameters of the flow setup is imported from one of the untripped exper-

iments by Brooks et al. [15], with a chord length of 15.24 cm., and a span of 45.72

cm. (run no. 159, see figure 55(c) in [15]). In the simulations, the span is taken as one

tenth of the chord length. Three mesh configurations with O-topology, listed in Table

5.1, are considered. The grid G1 only served the purpose of a preliminary trial mesh

to qualitatively observe difference between ZDES (imode = 2) and SLADDES. G2

is an intermediate trial mesh for turbulence stimulation. The grid G3 (see Figure 5.5)

on the other hand, being the finest grid, is designed for noise computation. The trail-

ing edge is rounded with radius r/c = 2.6× 10−3, while in the Brooks’ experiments,

the trailing edges are reported to be sharpened not less than r/c ≈ 0.2× 10−3, and in

Wolf and Lele’s wall-resolved LES study [24], it is rounded with r/c ≈ 1.5 × 10−3.

The LES results [24] will be used as a benchmark as well as the Brooks’ measure-

ments. In the LES [24] study, maximum grid spacings on the airfoil in wall units are

given as ∆x+ ≈ 60, ∆y+ ≈ 0.5 and ∆z+ ≈ 20 with a total number of around 45

million grid points.

Firstly, simulations are started with a large time step to eliminate initial large tran-

sients quickly. Afterwards, the time step is reduced to ∆t = 4 × 10−3 c/a∞, cor-

responding to 1.8 × 10−6 s. Crudely, this corresponds to the stability limit –for an

explicit time stepping scheme– of a cell located towards the edge of the boundary

layer over the trailing edge suction side (approximately at δ/2.5), such that any un-

steadiness around that cell level can be resolved with a Courant number of around
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Table 5.1: Grid configurations considered

Grid Span extent Far field Nx ×Ny ×Nz S.S. ∆x+
max ∆y+

min ∆z+

G1 0.1c 26c 257× 97× 49 450 1 42

G2 0.1c 42c 281× 169× 49 250 1 42

G3 0.1c 120c 641× 201× 41 106 0.7 50

1.6. Specifically, the trailing edge boundary layer thickness on suction side was mea-

sured in the experiment [15] as δ/c ≈ 0.045 , while the mentioned cell layer is at

y/c ≈ 0.018. Thus, WMLES mode is expected to take over towards the trailing edge

with proper time resolution about that cell layer. It is useful to note again in this sim-

ulation that a dual time stepping strategy with preconditioning and matrix artificial

dissipation is employed for time integration so that the numerical difficulties of scale

disparity between acoustics and flow is subdued on this low-Mach-number flow, and

dissipation is properly scaled.

r/c=2.6E­3

Figure 5.5: left: asymmetric mesh setup G3 (every 2nd point shown); right: Rounded

trailing edge of NACA0012 (all points shown)

Figure 5.6 demonstrates how ZDES (imode = 2) approach on the preliminary mesh

(G1) fails to support the synthetically generated turbulent structures, while SLAD-

DES approach sustains the fluctuations to some extent, in particular, those emanating

from the vicinity of the trailing edge. Hence, only SLADDES results will be pre-

sented hereafter.

Figure 5.7 visualizes the coherent structures around the airfoil obtained on the fine
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(a) (b)

Figure 5.6: A preliminary study on coarse mesh (G1): Q-criterion (Q = 0) isosurface

around the trailing edge using: a) ZDES, b) SLADDES

mesh (G3). For such structures to occur, synthetically generated initial turbulence (as

mentioned in Section 4.3) might be necessary for triggering the fluctuations. Other-

wise, they might only emanate from a restricted region. In fact, it was the case on

the intermediate mesh (G2), while there was no such necessity on the fine mesh (G3).

Another idea developed for triggering the fluctuations was temporarily disabling the

boundary layer shield (described in Eq. 2.40). This also has proven success in the

intermediate mesh(G2), and may be used where stimulation by synthetic turbulence

turns out to be inaccessible or inadequate. Note that all the results presented hereafter

are only obtained on the G3 grid, which is designed for noise computation.

Figure 5.7: Isosurface of λ2 colored by velocity magnitude (grid G3)

Figure 5.8a compares the pressure coefficient distributions obtained over the airfoil
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surface by the SLADDES approach, an LES study [24] and the XFOIL code. SLAD-

DES approach agrees particularly well with XFOIL where natural transition is al-

lowed as well. In the LES results however, the boundary layer is tripped on the

suction side through suction/blowing (see the kinks). Transition phenomenon can be

more clearly observed in the skin friction plot (see the steepness in Figure 5.8b). Once

again, the results compare fairly well, except for the transition region on the suction

side. Still, natural transition may be deemed successful despite the lack of a transition

model. Notice in Figure 5.8b that data on the pressure side is not available from the

LES results.
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Figure 5.8: −Cp (a) and Cf (b) around the airfoil

In Figure 5.9, the dimensionless velocity profiles on the suction side are shown at var-

ious locations. Comparisons indicate a logarithmic layer mismatch over the turbulent

boundary layer on the suction side. Actually, an agreement with the law of the wall

with a Von Kármán constant of κ = 0.41 is not expected due to the adverse pressure

gradient. Nevertheless, any other law is not observed as well. In fact, κ = 0.35 law

is reported by Wolf [71] in his comprehensive wall-resolved LES study, which appar-

ently does not match with the current DES results. Note that the viscous sublayer is

resolved by approximately 6 points, while up to y+ = 200, by around 25 points in to-

tal. As pointed out earlier, log-layer mismatch is a problem that remains to be solved

for most of the DES methods. A direct solution to this problem should be to ensure an

LES level of resolution in the boundary layer, since the problem mainly stems from
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lack of energy transfer between the resolved turbulence in the outer layers and the

modeled turbulence in the sublayers. Instead, IDDES method [11] in recent years,

powered by blending functions between resolved and modeled regions, has proven a

sound and affordable solution to the mismatch problem.
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Figure 5.9: Dimensionless velocity profile on the suction side (grid G3)

Figure 5.10 is a demonstration of the acoustic field computed directly from the flow

field around the airfoil. A dominant tone is observed to get emitted from the trailing

edge, which is due to the vortex shedding from the pressure side laminar boundary

layer (see Figure 5.11a). In fact, obtaining that laminar vortex was not straightfor-

ward with a DES approach. In an initial attempt, S-A turbulence model in the DES

approach produced spurious eddy viscosity on the pressure-side, which disrupted the

laminar boundary layer. Hence, the laminar recirculation bubble was not seen in that

attempt. In a second attempt, a special approach was devised, where an initial eddy

viscosity variable of ν̃/ν∞ = 0 was assigned throughout the domain such that the S-A

model can not produce spurious eddy viscosity (any eddy viscosity, indeed). When it

came to switch to a small time step as explained above, a very small amount of eddy

viscosity distribution (ν̃/ν∞ = 10−14, for example) in a small region close to the

leading edge on the suction side, is released artificially for once. Consequently, the

S-A model was enabled to produce eddy viscosity in the instabilities of the shear layer

on the suction side, resulting in transition to turbulence. Figure 5.11a illustrates the

resulting eddy viscosity around the laminar shear layer (or absence thereof) towards
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the trailing edge. In addition, Figure 5.11a,b compares the corresponding vortices

shedding on the trailing edge with those of the LES study. The resemblance is close.

Notice that the trailing edge shapes of the current simulation and the LES study does

not perfectly conform to each other.

Figure 5.10: Contour of ∂p/∂t around the airfoil (G3 grid)

(a) (b)

Figure 5.11: a) Mean eddy viscosity contour and streamlines in the vicinity of the

trailing edge, b) streamlines of the recirculation bubble obtained via LES [24] ap-

pearing on the trailing edge

For far-field noise predictions, the time accurate data from the SLADDES on three

selected surfaces (see Figure 5.12a) are collected as 20 frames of 64 samples with 1/2

overlap and processed using Hanning window. The far field sound level is computed

by a frequency domain 3-D Ffowcs Williams-Hawkings solver following Lockard

[88], as explained in Section 5.1. Recall that the FW-H implementation explained in

Section 5.1 neglects volumetric terms pertaining to quadrupole sources, calculation
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of which is usually impractical in realistic 3-D applications. Instead of computing

all the volumetric sources, the common approach is to select a surface encompass-

ing significant quadrupole sources effectively. However, the passage of vortices and

other non-acoustic entities through the permeable surface induces some error. In fact,

error of this kind is canceled by the volumetric sources in the original formulation

[72]. For low-Mach flow problems with dominant dipole sources such as the present

case however, quadrupole sources are often negligible, as also proven by Wolf for

the same case [71]. Therefore, use of the airfoil surface should be the natural choice

(surface with j = 1 in Figure 5.12a). Still for completeness, results by three differ-

ent integration surfaces are examined prior to comparing the far-field noise with the

measurements. Figure 5.12b compares the noise predictions on an observer location

by the sound radiated from the simulated span, based on flow data on the surfaces

around the airfoil with various distances. The results considerably differ, particu-

larly at high frequencies. Besides, the hydrodynamic disturbances related with the

error at high frequencies are not seemingly resolved up to j = 90 surface, where the

grid stretching is intense. Avoidance of both the error due to neglecting volumetric

sources and under-resolution of the acoustic waves at the same time is not straightfor-

ward [72], requiring ad-hoc remedies. As pointed out earlier, a good compromise for

such flows with low Mach number and dominant non-quadrupole sources is to choose

the body’s surface as the FW-H integration surface. Hence, only the airfoil surface

will be considered as the FW-H integration surface hereafter.

The SPL from the simulated span (Ls = 0.1c) was scaled to the experimental span

(L = 3c) according to the Seo&Moon correction [150], which is based on spanwise

coherence lengths of frequency components (see Section 5.4). In the current sim-

ulation however, obtaining a reliable coherence length information was quite trou-

blesome, probably due to shortness of the simulated span. As Figure 5.13a implies,

fitting some of the coherence functions, particularly those around the vortex tone, to a

Gaussian distribution for coherence length estimation was not seemingly possible. At

those frequencies, it may be well said that the coherence lengths are larger than the

simulated span Ls, which greatly affects the SPL correction value. Therefore, another

approach was adopted for estimating coherence lengths around the vortex tone. Ac-

cording to Roger et al. [153], coherence length distribution over the frequencies for a

90



j=1

j=55

j=90

(a)

Frequency (Hz)

L
p
 (

d
B

)

10
3

10
4

0

10

20

30

40

50

j=1
j=55
j=90

(b)

Figure 5.12: a) Surfaces used in FW-H acoustic analogy, b) SPL predictions on the

surfaces with ∆f = 439.3 Hz by an observer at (c, 8c) at midspan

vortex-shedding noise can be fit to a function Lc = L0 exp(−A|f−f0|). L0 and f0 are

the coherence length and frequency of the vortex shedding, A is an adjustable coeffi-

cient usually around A = 0.012. L0 is measured as 7h for a flat plate with thickness h

and zero angle of attack [153]. In the current study, considering the nonzero angle of

attack and thickness of the airfoil, L0 = 5h andA = 0.003 are taken roughly, where h

is the airfoil thickness. The vortex sound frequency is naturally taken as the frequency

of the noise peak emitted by one simulated span Ls, that is f0 = 2636 Hz. The result-

ing coherence length estimates and corresponding SPL correction values are shown

in Figure 5.13b. Figure 5.14 compares SPLs (Lp) obtained by LES [24], SLADDES

(using fourth-order DRP on the grid G3, and additionally second-order scheme on the

same grid), and the NASA experiment by Brooks et al. [15]. The observer is located

at the simulated midspan at (c, 8c), the origin being the leading edge. The agree-

ment is good with the selected values except for discrepancies in the low-frequency

end. Most probably, it is related with difficulties in the coherence length estimation.

Another reason might be the shortness of the simulated span, which could also be a

reason for the former reason. On the other hand, the high frequency noise emission

predictions agree with the measurements, which shows that the resolution and the

numerical approach can sustain generation and propagation of such short waves. The

second-order scheme, however, overpredicts the SPL. Both the amplitude of the main
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tone and the broadband noise show discrepancies between the experimental measure-

ments. At the current mesh resolution with the second-order scheme, the acoustics

sources might be under-resolved. In fact, under-resolution of sources are reported to

cause over-prediction of the wall pressure fluctuation intensities , resulting in higher

noise levels [154].
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Figure 5.13: a) Spanwise coherence for several frequencies; b) —: coherence length

by Lc = L0 exp(−A(|f − f0|)) formula, - -: corresponding SPL correction
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NASA experiments [15] and Wolf’s LES+FWH results [24]

Figure 5.15 illustrates the directivity pattern of several noise frequencies, at a distance

of r = 8c. Notice that the directivity computations are done only for the simulated

span, that is, no long-span corrections are considered for this plot. The first impres-
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sion is that all the patterns are that of dipole sources. The lowest frequency, with

a Helmholtz number of kc = 2.45, shows a typical dipole directivity of free-space

Green’s function since kc < 2π, i.e. a compact source. In contrast, higher frequen-

cies with kc > 2π behave like non-compact sources as expected, showing the typical

cardioid pattern of a semi-infinite flat plate, i.e. the pattern of half-space Green’s

function [18]. Basically, non-compact source patterns imply that the phase varia-

tion along the acoustic scattering body is significant, whereas it is not, for compact

sources. Note that the pattern with Helmholtz number kc = 7.36 corresponds to the

noise peak for the full span wing in the experiment.
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Figure 5.15: Directivity at r = 1.22 m (8c) distance to the trailing edge. −−: 879 Hz
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CHAPTER 6

CONCLUSIONS

In this thesis, a compressible flow solver, named METUDES, is developed for use

in aeroacoustic simulations. The solver is validated through several unsteady turbu-

lent flow cases before being used in investigation of an airfoil trailing-edge noise.

This chapter concludes the thesis and proposes some possible directions for further

research.

6.1 The Development and Validation of the Flow Solver: METUDES

A 3-D compressible unsteady flow solver has been developed from scratch, for use

in noise simulations in METU Department of Aerospace Engineering. Determining

noise sources using first principles, i.e. compressible Navier-Stokes equations, re-

quires resolution of turbulence spatially and temporally. Rather than resolving most

(or all) of the turbulence, as is the case in LES or DNS approaches, the inner boundary

layer is modeled using a RANS method in the framework of DES (i.e. wall-modeled

LES mode of DES). This approach is supported by many numerical properties of the

solver and turbulence modeling features that allow flow instabilities to occur more

easily. In summary, the combined application of

• low-dissipation and low-dispersion fourth-order spatial scheme,

• a low-Mach preconditioned dual-time strategy

• accompanied by matrix dissipation in a blended form,

• a modified Spalart-Allmaras turbulence model rendering the DES model appli-

cable in laminar regions,
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• and an enhanced version of DES that improves the subgrid length scale defi-

nition such that grid dependency is reduced and Kelvin-Helmholtz instabilities

are fostered,

• Erroneous activation of near-wall functions of the SA model in the LES region

is prevented using a correction (Ψ) to the subgrid length scale

has been considered promising for turbulence resolving and aeroacoustic purposes

even in low-Mach regime. In fact, the major contribution of this thesis is the coales-

cence of all these features on a flow solver being primarily designed for aeroacoustic

purposes.

Two DES improvements, called ZDES and SLADDES, were implemented, and tested

in decaying turbulence and channel flow benchmark cases. The solver showed merit

in the two cases even on coarse mesh thanks to the low-dissipation and low-dispersion

features of the spatial discretization. Specifically in the channel flow case, low dis-

sipation discretization allowed use of very little (or no at all) artificial dissipation so

that the no-model simulation without any artificial dissipation behaved like an im-

plicit large-eddy simulation with outstandingly close results to the reference DNS

data. In the decaying turbulence case, the energy spectrum matched the DNS results

even on the coarse mesh. Nevertheless, the DES model constant appears to be in need

of recalibration for the new length scale definition.

The present DES models have two drawbacks: log-layer mismatch, and spurious

eddy viscosity production in the laminar region of the boundary layers. Although

not tackled in this study, the former was effectively solved by Shur et al. [11] in the

framework of improved detached-eddy simulation (IDDES). The latter is currently

cleared thanks to the modified version of the Spalart-Allmaras model, through as-

signing an initial eddy viscosity of zero in the laminar side of the airfoil and instantly

injecting a small amount on the side where transition is expected, as demonstrated in

Section 5.5. Ideally, this should be handled automatically by coupling the turbulence

model with a transition model. Even without a transition model, it is shown in the air-

foil problem in Section 5.5 that the location of transition to turbulence agree with the

XFOIL prediction, which might be considered as another contribution of this thesis.
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6.2 Noise Simulation around NACA0012 Airfoil Section

A frequency-domain Ffowcs Williams-Hawkings solver, that permits permeable in-

tegration surfaces, is developed for noise prediction on an observer position. Then, a

low-Mach airfoil trailing-edge noise prediction with a Reynolds number of 416,000

is attempted. As a matter of fact, this is a challenging task involving resolution of

turbulent boundary layer. Nonetheless, both the aerodynamic and noise predictions

are in agreement with measurements and benchmark simulations. Yet, scaling of the

resulting noise levels on the observer to the full-span wing is somewhat ambiguous.

Despite the fact that the benchmark LES study [24] claims the sufficiency of a span

of 0.1 chords, the current study does not. The same simulation with a doubled span-

length is in progress to illuminate this issue.

6.3 Recommendations For Future Research

The present solver needs further development for better use in aerodynamic and

aeroacoustic problems. The immediate developments are recommended as

• A correction to log-layer mismatch is needed. Among others, implementation

of IDDES [11] would be the most popular choice.

• Overset grid blocks will enhance the use of the solver, paving the way to simu-

lation of more complex problems with less grid points.

• Incorporation of advanced convergence acceleration techniques could lower

computational effort in the dual-time evolution.

• For minimal reflections from far boundaries, implementation of Navier-Stokes

characteristic boundary conditions, or definition of an effective sponge zone

will enhance acoustic results.

• For this specific couple of numerical setup and subgrid length scale definition,

a recalibration of the subgrid-scale constant (CDES) on the decaying turbulence

benchmark might be valuable.
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As a future investigation that makes a good use of the present methodology, simula-

tion of a rotating wind turbine blade will be tempting. Accurate prediction of both

flow and noise around the blade will be a supportive contribution to wind energy

science.

Countless future research starting from this methodology can be contemplated. Since

the recent progress in hybrid RANS/LES models looks promising towards prospects

of affordable and accurate prediction of complex flows in industrial range of Reynolds

numbers, mitigating certain deficiencies of the DES models demands further under-

standing and research. The remedies proposed to mitigate the deficiencies usually

complicate the model even further, bringing forth more ad-hoc coefficients and tun-

able variables. For example, IDDES [11] is a major complexity over DDES, despite

the effectiveness on log-layers. The author believes that some alternative remedies

to the log-layer mismatch issue should be proposed. For instance, development of a

variable DES coefficient (CDES) could address the issue with less complexity. An-

other future research might be on coupling the current DES model with a transition

model. The current configuration is a convenient testbed for such purposes because

the turbulence model equation permits zero eddy viscosity.
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APPENDIX A

VARIABLE TRANSFORMATIONS

In most of the compressible flow formulations, conservative variables are used in the

governing equations. For example in derivation and implementation of precondition-

ing, use of some other variable set might be a great convenience. In those cases,

transformations of variables back and forth is necessary. The following variable sets

are considered currently,

dW =



dρ

d(ρu)

d(ρv)

d(ρw)

d(ρE)


, dWp =



dp

du

dv

dw

dT


, dWe =



dp/ρc

du

dv

dw

dp− c2dρ


(A.1)

, i.e. conservative, primitive and entropy variables in differential form, respectively.

Note that the conservative variables W = [ρ, ρu, ρv, ρw, ρE] in the governing equa-

tions are nondimensionalized, with respect to ρ∞, ρ∞u, ρ∞v, ρ∞w and ρ∞c2
∞.

Transformation of a vector V from one variable set to another, say a to b is simply,

Vb =
∂Wb

∂Wa

Va (A.2)

Likewise, b to a will be

Va =
∂Wa

∂Wb

Vb (A.3)

where
∂Wa

∂Wb

=

(
∂Wb

∂Wa

)−1

(A.4)

It can also be shown that transformation of a matrix M is performed as [117]

Mb =
∂Wb

∂Wa

Ma
∂Wa

∂Wb

(A.5)
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In dimensionless form of variables of the current work, following transformations are

used:

∂W

∂We

=

(
∂We

∂W

)−1

=



ρ
c

0 0 0 − 1
c2

ρu
c

ρ 0 0 − u
c2

ρv
c

0 ρ 0 − v
c2

ρw
c

0 0 ρ − w
c2

ρ
c

(
q2

2
+ c2

γ−1

)
ρu ρv ρw −q2

2c2


(A.6)

∂Wp

∂We

=

(
∂We

∂Wp

)−1

=



ρc 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

c(γ − 1) 0 0 0 1
ρ


(A.7)

where q2 = u2 + v2 + w2. In dimensionless form, square of sound speed becomes

c2 = T = γ
p

ρ
(A.8)
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