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ABSTRACT

QUASI-INCOMPRESSIBLE AND QUASI-INEXTENSIBLE ELEMENT AND
MATERIAL FORMULATION FOR ANISOTROPIC MEDIUM

RODOPLU, Burak
M.S., Department of Mechanical Engineering

Supervisor : Assist. Prof. Dr. Hiisnii Dal

March 2018, [62] pages

The contribution presents a novel finite element formulation for quasi-inextensible
and quasi-incompressible finite hyperelastic behavior of transversely anisotropic ma-
terials and addresses its computational aspects. The formulation is presented in purely
Eulerian setting and based on the additive decomposition of the free energy function
into isotropic and anisotropic parts where the isotropic part is further decomposed
into isochoric and volumetric parts. For the quasi-incompressible response, the Q1P0
element formulation is outlined briefly where the pressure type Lagrange multiplier
and its conjugate enter the variational formulation as an extended set of variables. Us-
ing the similar argumentation, an extended Hu-Washizu type potential is introduced
where the average volume fiber stretch and fiber stress are additional field variables.
Within this context, the resulting Euler-Lagrange equations and the element formu-
lation resulting from the extended variational principle are derived. The numerical
implementation exploits the underlying variational structure leading to a canonical
symmetric structure. The efficiency of the proposed approached is demonstrated
through representative boundary value problems. The superiority of the proposed
element formulation over the standard Q- and Q1P0-element formulation is studied
through convergence analyses. The proposed finite element formulation is modular
and shows excellent performance for fiber reinforced materials in the inextensibility
limit. Moreover, performance of the proposed formulation is studied for representa-



tive boundary value problems applied to soft biological tissues such as human arterial
wall.

Keywords: anisotropy, hyperelasticity, quasi-incompressiblity, quasi-inextensibility,
mixed finite element design, mixed variational principles
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0z

ANIZOTROPIK MALZEMELER ICIiN YARI-SIKISTIRILAMAZ VE
YARI-UZATILAMAZ ELEMAN VE MALZEME FORMULASYONU

RODOPLU, Burak
Yiiksek Lisans, Makina Miihendisligi Boliimii

Tez Yoneticisi : Dr. Ogr. Uyesi Hiisnii Dal

Mart 2018, [62] sayfa

Bu tez anizotropik malzemelerin yari-sikistirtlamaz ve yari-uzatilamaz hiper elastik
davraniglar i¢in yeni sonlu elemanlar formiilasyonu sunmaktadir ve hesaba dayali
konularma girmektedir. Sunulan formiilasyon Euler formunda, malzemenin deforme
olmus halinde, verilmektedir ve serbest enerji fonksiyonunun anizotropik ve izotropik
olarak ayristirllmasina dayanmaktadir. Bunun yaninda serbest enerji fonksiyonunun
izotropik kismi hacimsel ve izokorik olarak ayristirilmistir. Q1P0 eleman formiilas-
yonu yari-sikistirilamaz davranist modellemek i¢in anlatilacaktir. Bu formiilasyonda
basing tipi Lagrange carpani ve onun cifti varyasyonel formiilasyona genisletilmis
degisken olarak girmektedir. Benzer yaklasim kullanilarak, genisletilmis Hu-Washizu
tipi potansiyel sunulmaktadir. Bu yaklasimda, ekstradan ortalama fiber uzamasi ve
fiber gerilimi alan degiskeni olarak eklenmistir. Bu anlamda ortaya c¢ikan Euler-La-
grange denklemleri ile birlikte genisletilmis varyasyonel prensipten olusan eleman
formiilasyonu tiiretilmigtir. Bu yaklagimin verimliligi ornek smir degerli problem-
ler tizerinde test edilmigtir. Bunun yaninda, onerilen formiilasyonla standart eleman
formiilasyonu, Q/, ve Q1P0 eleman formiilasyonu yakinsama ¢alismalar1 yapilarak
karsilastirilmigtir. Onerilen Q1POF0 eleman formiilasyonu anizotropik malzemeler
icin diger formiilasyonlara nazaran daha iyi performans gostermistir. Bunun yaninda
onerilen formiilasyonun performansi biyolojik dokular iizerinde ¢esitli 6rnekler kul-
lanilarak test edilmistir.
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Anahtar Kelimeler: anizotropi, hiper elastikiyet, yari-sikistirllamaz, yari-uzatilamaz,
karigik sonlu elemanlar, karisik varyasyonel prensipler
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CHAPTER 1

INTRODUCTION

Biological tissues and wood are some examples of naturebanpic materials. Arte-
rial wall is one of the example of anisotropic biologicattigs. Arterial wall consists
of mainly three layers as it can be seen in Figuré [1.1 [20].s€hbree layers are the
innermost layer, intima, middle layer, media, and outetneger, adventitia. They
contain fibers inside them and direction of the fibers aretbfiit for each layer. Be-
havior of each layer is studied by Holzapfel [22]. Arteriahfor soft biological
tissues shows exponential stiffening effect at high pnessalues, because, as the
pressure increases there becomes gradual straighterdrigrémer elongation of col-
lagen fibers[[20]. This behavior can be seen from Figure 12 @early. Figure
1.2 (a) shows the material behavior curve of the arterial wadler uniaxial loading
in fiber direction. As the axial stretch increases, axiasgrincreases sharply with

exponential behavior.

On the other hand, there are some man-made anisotropiciatsterg. fiber rein-

forced materials and composites. These manufacturedteopgomaterials are used
in various areas such as automotive and aerospace ingusfioe example, Figure
1.3 shows a Boeing 787 aircraft. Almdst’% of the aircraft is made from anisotropic

materials. The aircraft mostly contains carbon laminates.

1.1 Finite Element Formulation

Shear locking is the one of the problems that are encounieffedte element analy-
sis. Using linear elements is the main reason of this problénder bending loading,

linear elements introduce fictitious shear stress becdusearrect modelling of the
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Figure 1.1: Layers of the arterial wall as intima, media atideatitia [20].
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Figure 1.2: Material behavior curves of arterial wall foy &xial stress-axial stretch
under uniaxial loading and (b) out of plane shear stressuatraf shear under simple
shear loading.

curvature in an element. Therefore, the element comes ttilraum with smaller
bending displacements because of the shear stress. Than,be said that the lock-
ing problem causes the element to behave stiffer than aoéinavior.

Different type of the locking, named as volumetric lockimgcurs for some of the
anisotropic materials, such as biological tissues. Thedenals show very stiff volu-
metric response compared to bulk shear response which mearig incompressible
behavior. This incompressible behavior causeddbking phenomenarhe standard
displacement based finite element formulations show veoy performance in the

2



Figure 1.3: Boeing 787 Aircraft [10].

guasi-incompressible limit where bulk modulus is much bigthan shear modulus.
The main reason of this situation is that the volume remaonsi@nt at each integra-
tion point of the element and this overconstraints the dispinent field. Therefore,
the standard shape functions can include the incomprégsdanstraint by causing

artificial stiffening [27]28].

Moreover, some of these anisotropic materials, such asrefiorced composites
and biological tissues, exhibit much higher stiffness mdirection of the fiber com-
pared to transverse direction. This behavior can be seenfigure 1.2 (a-b). Figure
1.2 (a) shows the behavior of arterial wall in fiber directiomder uniaxial loading
while Figurel 1.2 (b) shows the behavior of arterial wall iartsverse direction under
simple shear. It is clearly seen that material exhibits mhigher stiffness in the di-
rection of fiber when stress results are compared. This sdhsesame mathematical
problem in the inextensibility limit. Also, inextensiliii limit region can be seen
from Figure[ 1.2 (a). Therefore building robust and efficignite element formula-
tion for such anisotropic materials in the quasi-incomgitde and quasi-inextensible

limits is an interesting topic.



Usingh- or p-refinement strategies can be one of the solutions to thégolsimply,
h-refinement means that number of the lower order elementgieased for better
solution, while higher order polynomials are used by kegpiomber of elements
constant imp-refinement technique. It is a fact that locking response @i to dis-
appear for higher order triangles> 4 [62] and computational cost is increased by
using lower order elements witikrefinement. Nevertheless, since lower order ele-
ments are more simple and robust than the higher order etenmecase of nonlinear
Lagrangian hyperelastic formulations, they still preseheir popularity([58]. There-
fore, performance of the standard lower order elements éas tried to be improved

for the last decades.

Moreover, locking problem can be solved by different methsdch aseduced in-
tegration stabilization mixed or hybrid element formulatioff®l]. Mixed or hybrid
element formulationare types of variational methods where an additional swess
strain type penalty term is defined as a Lagrange multiplige first hybrid formu-
lation of linear elasticity was offered by Pian et al. |[[43), 42]. The formulation
consists of Hellinger—Reissner variational principle lfoear elastic medium. Also,
this formulation enhances stress approximation of thedstahdisplacement formula-
tions under extreme deformation. Matrix inversion of thesétity tensor at element
level is required and is not easy in case of nonlinear elgastt finite strains([2].
Reduced integration schema®ng withstabilization techniques another strategy
to enhance the behavior of the linear pure displacementuiation against locking
problem[27] 32]. The assembly of the tangent and residuaktef polynomial shape
functions using less number of Gauss points than requirededollowed with the
research of Zienkiewicz et al. [66]. However, reduced iraign method can cause
hourglass modeser zero energy mode#dourglass modesr zero energy modesan
be explained such that element distortion does not genstrai@ energy because of
reduced number of integration points. This problem leadedaningless results, es-
pecially for coarse meshes. Therefasgurglass modesaused by the reduced inte-
gration should be stabilized![7,/48]. Hourglass stabilatmethods are computation-
ally applicable because they decrease the number of cotigngaat element level.
However, stabilization requires additional nonphysicalgmeters into formulation

which can affect the results under bending dominated caslss, enhanced strain



formulations(ESF) based on the introduction of auxiliary incompatitiais field
satisfying the material frame invariance and objectiviguirements were developed
[6, 54,53/ 55, 56] for finite strain elasticity and elastapieity problems. These for-
mulations are based on Hu—Washizu type variational priesigMoreover, extension
of them to the higher order gradient plasticity has beenistlith [37,[38/39]. En-
hanced strain formulations do not require the modificatibthe constitutive model
but nonlinear formulation create non-physical instaiediton element. These insta-
bilities cannot be eliminated by increasing the order ofdyature and modifying
the material model. Canceling terms at the element levelbeaimtroduced in or-
der to minimize these hour-glass type instabilitied [19, 2®ith the help of these
formulations, hourglass modes can be eliminated under san but numerical
stability cannot be guaranteed for irregular distorted meesand nonhomogeneous
stress states. This hourglass instabilities can be sotwedighly distorted meshes
with the separation of element tangent matrix into consdat hourglass parts, and

by introducing a control technique based on a modal and48i$%2].

Q1PO0element formulation was firstly mentioned by Nagtegaal ef4dl]. The for-
mulation is also named as timeean dilatation approachlt is worked in Brezzi &
Fortin [15] for small strain cases and enlarged to largersweoblems by Simé et
al. [58]. Simé & Taylor [57] used the formulation for hypeastic materials in the
quasi-incompressibility limit. Enforcing incompresdityiis achieved by introducing
an additional term into the potential functional which bedsmas constraintQ1P0
element formulation is studied in detail in literatufe [[#8d]]. The formulation is
improved to get better performance in bending dominatedlpros. Then, the for-
mulation is enlarged to the finite element implementatioelakto-plastic material

response [13] and transversely anisotropic materials aftdissues([60].

Ladyzhenskaya-Babuska-Brezi (LBB) condiktaown asnf-sup conditioris used to
justify the stability of mixed finite element methdd [3, 10]3Also, stability for in-
compressible condition in linear elasticity is worked[iih. [However,LBB condition
study is not trivial for finite strain condition becau®@dP0Oelement formulation fails
to fulfill the inf-sup condition61]. On the other hand, it is confirmed that formu-
lation is stable for a wide range of applications in quaseimpressibility condition
undergoing large deformatioris [36].



1.2 Constitutive Model

Three invariantd /1, I, I3} are used to model the free energy function for isotropic
materials. Moreover{I, I,} invariants are enough to define the incompressible
isotropic behavior. The invariants and constitutive folations will be defined in
Chaptef® in detail.

In order to describe transversely isotropic behavior, @afthl two invariantg Iy, 75},
generated by Cauchy Green tensor and reference unit vecemtroduced [9,18,
50]. In fiber reinforced materials, free energy functionsugereinforced base matrix
enlarged by the fourth invariar as an additional penalty function for stretching
in the fiber direction[[46]. Similar method is applied to sbiblogical tissues [23].
Standard reinforcing modés$ the name of the proposed functién|[46]. In this model
there are instabilities under simple shear, and uniaxiaipression when the fiber
stiffness increases. Then, the material instability as éd<llipticity of the standard
reinforcing model is studied in [47, B4,135]. Moreover, itensibility is worked for

transversely isotropic solid with unidirectional reinfement in[[1].

In literature, free energy function is divided into volumetisochoric and anisotropic
parts. Volumetric part is a function of = det F' and an isochoric part is a function
of the unimodular part of the deformation gradient whiclFis= J~'/3F [17]. For
the isotropic region, split of volumetric and isochoric tsdnas lots of advantages in
the incompressible region. For instance, the split leaé@asy implementation of the
mean dilatation approachto the finite element formulation. However, the split can
cause fictitious results in the compressible region [14kTh is described that split

of volumetric and isochoric parts should be applied oni\h®matrix part.

Moreover, a similar problem has been detected for the sipdihzotropic part of the
free energy. It is shown that use of the fourth invarignof the unimodular stretch
tensor creates similar fictitious results for uniaxial tengest in [21]. In the work,
uniaxial stress creates volume increase at small stretelussng negative Poisson ra-
tio v because exponential anisotropic free energy function evespwvith volumetric
free energy function in the quasi inextensibility limit gdrough the minimization of

the strain energy. This problem can be overcome by usingtiset@opic free energy

6



function,,,; = Y..i(14) in terms of the fourth invariant of the deformation tensor.

In recent times, Hu-Washizu type mixed variational pritesphave been examined
to develop the formulation for inextensibility limit in bimgical tissues and fiber re-
inforced elastomers in_[51, 68,164,165]. Therein, Zdunekl.ef@d, [65] propose a
model based on the kinematic split of the deformation gratidigo a purely spherical
part, a purely unimodular extensional part and an exterfsemnunimodular tensor.
The Lagrangian element formulation using scalar conjupates(p, ) and(p, \) for
pressure-dilatation and fiber stress-stretch is parallbld mean dilatational approach
[58] (MDA). Then a five fields variational formulation whichises where the consis-
tent linearization and static condensation at element taueses purely displacement
element matrix. Convergence and stability of the soluti@reot shown in the for-
mulation. However, the models of the Schrider etlal! [51] Ahdygers et al. [[63]
are mixed models combining mean dilatational approach dasgincompressibility
and enhanced strain formulation for quasi-inextensipilif using extra deformation
measure in variational formula. In the formulation basieeknatic approach is used

where strain energy consists of extra decomposed isotamgi@nisotropic parts.

Anisotropic part of the free energy functian,,; for the biological tissues, especially
arteries, is worked in[26, 18, P4, 125, 4]. They propose somdskof anisotropic
part of the free energy function. Firstly, one of the suggestnisotropic part of free
energy function consists of an exponential function byudeig a material param-
eter and a non-dimensional constait,and k5, respectively, given in the work of
Holzapfel et al.[[24]. Various kinds of fiber modelling fortaries are studied in the
review of Gasser et al._[18]. One of these models is fiber déspe model for the
anisotropic free energy function. They use a single streqparameter in the,,,,; to
represent the effects of collagen fiber distribution in dagnal sense. Also, Holzapfel
& Ogden [25] use similar modelling of the anisotropic freeemyy function for the
passive myocardium. Most of these references use an exj@afemction for the

anisotropic part of the free energy function for arteries.

Moreover, determination of these material and non-dinweradiparameters;; and
ks, is another important topic. This topic is examined in ddigi[22,[16,/59]. In

these works, constitutive parameters for the aortas aezrdeted for various age and



gender combinations of humans and average values for pteemage given. Studies
are also conducted for different regions of aortas such dsralmal and throacic.
Balzini & Holzapfel [4] offer constitutive constants forehmedia region of a human
carotid artery in the physiological loading domain, alsceLial. [31] offer material

constants for a human carotid artery. Moreover, materiedrpaters for the human
iliac arteries are given in the research of Qi etlal! [45].0Almaterial parameters for
the passive myocardium are given(in[[25]. Furthermore, ggdmparameters of the

layers of the aortas are examined in the work of the Holzaf@hden [26].

In this work, theoretical and computational settings fan@st incompressible and
inextensible material behavior depending on a saddle mointiple obtained from
a mixed potential will be presented. Also, a five-field Hu-Wias type extended
variational formulation will be studied in the work. To surarize, mixed finite ele-
ment formulation which is an extended versiorf@fPOformulation to inextensibility
limit will be proposed in this study. Free energy functiomlecomposed into purely
volumetric, isochoric and anisotropic parts. A similar erpntial function for the
anisotropic part will be used in the work. Also, deformatgnadient is divided into
two parts as unimodular and spherical. Moreover, anisatrophavior is given by
using the fourth invariant with the simplified approach. Alse kinematic variable,
A, and a Lagrange multiplies, are used to enforce quasi inextensibility. An eight-
noded brick element is represented in the finite elementdtation. However, it can
be combined with linear and higher order element formutetio a straightforward

manner.

After Chaptefdl, theory including equation of motion, casive modelling, mixed
variational formulation and finite element formulation Make examined in detail in
Chaptei 2. Then, the proposed model will be compared witlexiigting models on
a simple example in Chaptel 3. After validation, the propofeemulation will be

applied to a combined loading of the arterial wall which has@realistic geometry
and material parameters to see the behavior of the arteri€baptef 4. Finally, the

thesis will be concluded with the conclusion and future woekt in Chaptel]s.



CHAPTER 2

THEORY

2.1 Governing equations of motion

Field equations and corresponding state variables of avessely isotropic hypere-
lastic solid body are presented in this section. This seaiso contains the intro-
duction of the kinematics and integrity basis of the defdramaand the constitutive
equations based on a Neo-Hookean hyperelastic model. I¥itted model is ex-

tended to transverse anisotropy through standard reinfproodel.

2.1.1 Geometric mappings and the field variables

A bodyZ is a 3-D structure including material point8 € % and its motion as a

function of time is defined by using bijective mappings as

(Pt) B = B(P.t)eR xR, -
P = x=x(2)=x(Z1).

The pointz = x(Z,t) stands for the position of the particl#? at timet € R,.
Also, X = x(£,1t,) € R? can be defined as the location of material points at a
reference time, and x, () = x(Z,t) can be defined as the position map for a

frozen time frame. Moreoverp, = x, o x;,'(X) denotes deformation map such as

By — PBeR
p(X) =4 " (2.2)
X = xz=¢(X,1)

9
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Figure 2.1: Nonlinear deformation of a body [12].

maps the reference configuratioh € %4, of a material point on the spatial configu-

rationx € %. Thedeformation gradientan be defined as

F:Tx%By— 1,9, F :=Vyp,(X). (2.3)

The deformation gradient maps the unit tangent ofltagrangian(reference) con-
figuration which isTx onto its counterpart in th&ulerian (current) configuration
which isT,. The operator§/,[e] andV, [e] can be defined as the spatial derivatives
with respect to the referenc¥ and currente coordinates. Also the cofactor of the

deformation gradient and the Jacobian can be defined as

cof[F] = det[F]F~T and  J:=det[F]> 0. (2.4)

Note that the conditio/ := det[F] > 0 guarantees impenetrable deformatigpn
Then, the deformation gradient defines the deformation ahfamtesimal line, area

and volume element, respectively, as

dz = FdX, da=cof[FldA, dv=.JdV, (2.5)

whered X, dA anddV, respectively, can be defined as the infinitesimal line, area

10
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Figure 2.2: Definition ofight and left Cauchy Green tensor&) Current metricin
Lagrangian configuration. (leference metrim Eulerian configuration.

and volume element in the undeformed state. Figure 2.1 shwsvgeneral sketch
of the nonlinear deformation map. In the Figlrel 2.1, therezfee configuration is
P, € R? and the spatial configuration i& c R3. ¢ : Z x R ~ R3 is the nonlinear
deformation map which maps at tinhe= R, material point positionX € %4, onto

spatial positionc = (X, t) € #. The deformation gradiedf maps a Lagrangian

line element & onto its Eulerian counterpartd

Moreover, theright Cauchy Green tensand the inverse of thieft Cauchy Green

tensorscan be defined as

C=F"gF, (2.6)

c=FTGF', (2.7)

whereg andG are the current and reference metric tensors in the neigbbdseN x
of X andN, of x, respectively. These tensors are used for the mapping betthe

co- and contravariant objects in the refere@égand the spatialz manifolds [33].

Also, theleft Cauchy Green tensar theFinger tensorcan be defined as

b=c. (2.8)

Figure 2.2 (a-b) is useful for geometrical interpretatibthese tensors. Figure 2.2 (a)
interprets theight Cauchy Green tensafefined in[[2.6), and Figute 2.2 (b) interprets
theleft Cauchy Green tensatefined in[[2.17).

Then, the deformation gradient is divided into volumetna ainimodular parts in

11



order to impose the quasi-incompressible behavior of sofbgical tissues as

F,:=J7%1 and F:=J'3F, (2.9)

where

F=F,F. (2.10)

The Lagrangian unit vectof, is introduced to reflect anisotropic continuum. Under

the presence ap,, the Eulerian counterpart can be defined as

f=Ff,. (2.11)

Also, the boundaries of solid domain can be divided intodbilet and Neumann-type

boundaries such that

0B =0B° VOB and  OB?NOB = . (2.12)

2.1.1.1 Stress tensors

We define a part??, C %, extracted from the reference configuratiefy and its
spatial counterpar??; C %, with boundarie$. %2, andd ;. t can be defined as the
total stress vector and acts on the the surface eledwernt 042, on the deformed

state. The total stress vector can be introduced by usinglyaustress theorem as

t(x,t;n) =0 n, (2.13)

whereo is Cauchy stress tensor. Then the Lagrangian and Euleriarea elements

can be defined as

dA = NdA and da = nda, (2.14)

12



whereN andn are the surface normals of the undeformed and deformed coafig
tion. Then by using equalitf'd A = tda the nominal stress tensét can be defined

as

PdA =c0da where P=JoF T, (2.15)

2.1.2 Constitutive model: Transversely isotropic neoHoo&an model

As it is mentioned in the previous chapters, fiber reinfoncederials and biological
tissues exhibit nearly incompressible bulk response aextémsible behavior in the
fiber direction. Figuré 2]3 simply demonstrates a schenfati@a fiber reinforced
composites. Free energy function can be defined for thisddiimaaterials in the form

such as

w(ngv fO) = ¢vol(J) +wiso(g; F) +77Z)am(gv-F,7 f0)7 (216)

divided into three parts as volumetric, isochoric and anignc, respectivelyQ1POFO0
mixed-element formulation for biological tissues is geted by using a quasi-in-
compressible Neo-Hookean type hyperelastic formulatiadhé decoupled form (Z.11.6).
However, the proposed formulation can be used in combinati@any isotropic hy-
perelastic solid model because of the generality. The fresgy function for an

isotropic hyperelastic material is constructed by usingehnvariants as

I, =trC, (2.17)

1 2 2
L= (I} —tr(C?)], (2.18)
Iy =det C = J?, (2.19)

whereC is the right Cauchy Green tensor definedinl(2.6).
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Furthermore, the anisotropic response of the material iei@eed by introducing
additional invariants. Therefore, the two additional imaats are introduced in terms

of the reference unit vectof,

I,:=f,-Cf, Is = f, - C*f,, (2.20)

which is used to model the energy storage of the a single fdiafarced micro-

structure.

Then, the parts of the free energy function definedin {2.a6)ae modelled by using
these invariants. Firstly, the volumetric part of the freergy function is defined as;
Door(J) = g (J2=2InJ —1), (2.21)

which constrains the quasi-incompressible material ben§1]]. The isochoric part

of the free energy function is defined by using a Neo-Hookeadeh

wiso(g; F) - Cl(l_l - 3) . (222)

Note thac; = py is the initial shear modulus. The anisotropic part of the frrergy

function for the biological tissues can be defined as

Vni(g: F fy) = %<eXp[k2<]4 _1)2 - 1), (2.23)

which consists of an exponential function of the fourth nemat. The function is
suitable for the arteries taken from [18]. Also, the Macgeackets(e) filter out

the tensile deformations and it can be defined as

METIEEC) o2

If two families of fibers are used, there should be a new iawdris, which represents

other family of fibers with a new reference unit vecytj.

14



stiff fiber soft matrix soft layer

fo

stiff layer

@) (b)

Figure 2.3: Transverse anisotropy: (a) stiff fibers embdddesoft matrix, (b) com-
posite laminate consisting of stiff and soft layers

The isochoric part of free energy function is included intonfulation at Gauss
quadrature points while the volumetric and anisotropi¢pahich constrain quasi-
incompressible and quasi-inextensible behavior will tpket in the formulation at

element level.

Furthermore, the Kirchoff stress expression is divided three parts similar to the

free energy functiori(2.16) as

T =20, = 7ol piso 4 pant, (2.25)

which are isotropic parts (volumetric and isochoric paats)l anisotropic part.

The spatial elasticity moduli builds the relation betweea derivative or Oldroyd

rate of the Kirchhoff stresses and the Lie derivative of {hetisal metricg via

£,7=C: £,9/2, (2.26)

where £,g is equal to the symmetric rate of deformation tensor as

£,9= (gl +1"g). (2.27)

Note thatl = FF~! is the spatial velocity gradient.

15



After these definitions, the Eulerian moduli expressionloamlso divided into volu-

metric, isochoric and anisotropic parts, respectively.

C:=49,0(g; F, ) = C*" 4 C** + C™ (2.28)
Then, these volumetric, isochoric and anisotropic parth@fstress and the Eulerian

moduli will be defined, respectively. Firstly, the volumetfpart of the Kirchoff stress

expression is

T =20,y (J) = pg ", (2.29)

where

p=Julu(d) = 50 = 1). (2.30)

The Eulerian moduli term for the volumetric part can be defias

vol ,__ o A _ _
C*=40;,U(J) = (p+k)g ' ®g ' —2pl, (2.31)

where

k=% () = g(ﬂ +1). (2.32)

vol

The isochoric part of the Kirchoff stress can be defined as

7% = 20,1is0o(g: F) = T : P, (2.33)

where

T = 20,0is0(g: F) - (2.34)

16



Inserting [2.2R) into[(2.33) results

7% = idevb with [ = 265}80 =2(c1) . (2.35)
1

In equatiori 2.35b is the unimodular part of the Finger tensor which can be défine

as

b=J"2p. (2.36)
Isochoric part of the Eulerian moduli can be expressed as
Ciso = 48925]1/}2‘30(9; F)

(2.37)

_ 2
= P (C+§(~7-:g)1[—§(1‘-®g*1+g*1®1‘-) . PT,

whereP% is the fourth-order deviatoric projection tensor which banexpressed as

P = [696% + 626°] /2 — 6%6,4/3. (2.38)

Also,

T =20,1i0(g; F) and C:= 49 1is(g; F) (2.39)

are the Kirchoff stress and the Eulerian moduli related whi unimodular part of

the deformation gradient. Insertirig (2.22) ifto (2,3@nd [2.38) into (2.22), results

n

7=pb and C=4b®b with i =0. (2.40)

Finally, anisotropic part of the Kirchhoff stress can be wledi as

T = 20 0ani(g; F, fo) = 2k1(Is — 1) explka({ly — 1)’]f & f . (2.41)

17



Moreover, the anisotropic part of the Eulerian moduli canvbigten as

Cani — 4892gwam'(g; F7 fO)
(2.42)

= 4]{Z1(1 + 2]{?2<[4 — 1>2) exp[k;2<[4 — 1)2]f X f X f X f
2.2 Variational formulation for an anisotropic and incompr essible continuum

2.2.1 Variational formulation for finite elasticity

Potential functional fofinite elasticitycan be expressed in the form

(g, t) = I (p, t) — 11 (p, 1), (2.43)
where
(" (p,1) = [ v(g.F)av (2.44)
ﬂ
()= [ ppyav+ [ o Taa (2.45)
% 0%,

whereIl” () is the energy stored in the body while“!(y) is the work done by
external forces. Alsopy, 4, T and (g, F) are the density, prescribed body force,
surface traction and volume specific free energy, respaygtivihe boundary value
problem leading to finite elasticity is generated from thestt potential by therin-
ciple of minimum potential energy the variational form

P, = Arg{ inf TI(¢, t)} (2.46)
PV

restrained by Dirichlet-type boundary condition

W ={p |l €B N o, =¢ on 0%,}. (2.47)

18



The variation of[(2.416) along with localization theoremukésin theEuler—Lagrange

equationby using the stationary behavior of the potenf[z@lp, t)as

Jdiv[J '] + poy = 0, (2.48)

which is the balance of linear momentum for quasi-statidbf@ms in domainZ

along with Neumann-type boundary condition

P-N=17-n=T on 0%, (2.49)

where we have made use of the identity

JF™TN dA =n da, (2.50)

which is also known adlanson’s formula Therein,T" = Jt is the scaled traction

vector.

TheQ1 element formulatiois derived by applying the consistent linearization of the
weak form obtained as the first variation[of (2.46). The wemknfcan be alternatively

obtained from the momentum balance equation (2.48) by @alsiprocedure.

2.2.2 A mixed variational formulation for a quasi-incompressible and quasi-

inextensible continuum

Two penalty terms can be added to the minimization probledB)2o constrain the

guasi-incompressible and quasi-inextensible behavithr the decomposed represen-

tation (2.16).

fi(p.p.005.0) = [ 7 (op s NV —[p,0). (251

The mixed potential densityr{ (¢, p, 0, s, \)) introduced in equatiori (2.51) can be
defines as
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™(p,p,0,8,\) = Viso(g, F) +?(J —0)+ wvol(02+ s(ly — )+ @Z)am()\)J . (2.52)

(.

Vv vV
volumetric constraint inextensibility constraint

In equation[(Z.52)p ands are penalty parameters used with the kinematic quantities

0 and )\, respectively.

Then, the motion of the body restrained by incompressytalitd inextensibility con-

straints is defined by using tmeixed saddle point principle
{p,0,p,\, s} = Arg { inf inf inf sup sup f[(go, t)} (2.53)
GV 0 N, s

subjected to the boundary conditions

W ={p|lp€B N o=@ on 0%} (2.54)

After these definitions, variations df (2]51) with respexizt p, 6, s and\ are taken

and this results in the weak form;

~

. 1
0poll(p,p,0,5,\) = / {(‘l’”“erg_1 +2sf @ f) : 513&,,9} dv
P

— 5f[ext(go) =0,

5, 11(p.0,5,) — /5p<J—0>dV=o,
B

(2.55)

lllp 6.8 = [ 50 (W(6) - p)dV =0,
B

0. 01(p, p,0,5,\) = /53([4—)\)dV:0,
B

Bl 6,50 = [ O\ (W) —s)av =o.
B

By using these weak form equatiofis (2.55), mixed finite elgmeethod can be built.

In equation[(2.55.1)£5.g is the Lie derivative of the current metric along the vari-
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ationdep. Taking the variation of the potential density (2.52yler—Lagrange equa-

tionsof the mixed variational principle can be written as

1. Jdiv[J '] + poy =0
2. J—0 =0
3. vat(0) = p =0 (2.56)
4. I — A =0
5. fi(A) — s =0

throughout the Neumann-type boundary conditi#fis= {oc - n =t on 0%,}.

2.2.3 Consistent linearization of the mixed potential

The following identity can be proven

1
5 £e9 = sym(gV,de). (2.57)
Therefore, the terny £5,g can be replaced witkym (gV,d¢) in equation[(2.55.1).

Moreover, there is a nonlinearity in equatign (2.55.1) ime of . Also, equations
(2.55.2-5) behave as additional constraints[on (2.55.Gakon [2.55.1) can be lin-

earized consistently aroungas

~

DG,IL- A :l/g%%x{VﬂMﬂﬂw+pkfl+%f®fﬂdV
B

+ / gV,0p : {pJV+CiSO} gV Ap dV
2

(2.58)
+ / gV.ow : JApgtdV.
B
+ / gV.op : 2Asf @ fdV
B
with the following description
V=g '®g!'-201, (2.59)
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abed ;

wherell, - is the fourth-order symmetric identity map which is defined a

I _labcd _ (5ac(5bd + 5ad5bc)/2. (260)

g

Equation[(2.56.1) stands for the balance of linear momerndequations (2.55.2-
5) are the constraint equations driving incompressibleinaxtensible behavior for
quasi-static problems. The equations (2.55.2-5) will bieed weakly within sub-
domains#. such that#, ~ J.<, #. wheren. denotes the number of the subdo-

mains.

The kinematical variablé and the penalty parametecan be derived with equations
(2.58.2) and[(2.55.3) within the subdoma# as

- 1
= 2.61
I= [ T, (2.61)
1 / / 7)
p= %/ Vo (0) AV = 1, (0). (2.62)
Be

Equations[(2.81) and (2.62) result in a constant valueshi®#é andp which can be
explained as the mean dilatation and the mean pressuren@veleiment domain. The

incremental forms of the mean pressprand the mean dilatatichcan be derived as

Ap = ¢y (0) A, (2.63)
where
1
Al=— [ Jg':gVApdV. (2.64)
Ve g

By using the same discretization in the derivatio ahdp, the kinematical variable
A and the penalty parametercan be derived with (2.55.4) and (2155.5) within the
subdomainZ, as

S|
)\:—/ Ldv, (2.65)
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- 1 / o
5= o /ﬁ i) AV %) (2.66)

Equations[(2.85) and_(2.66) result in a constant values\fand s which can be
explained as the mean fiber stretch and the mean fiber stresthe\element domain.
The incremental forms of the mean fiber stretch and mean fitessscan be defined

as

>~

As =l (NAX, (2.67)

where
- 1
AN = Ve 2f @ f : gV, ApdV. (2.68)
Be

The stresses and the moduli equations can be rederived as
F =71 pJg ' +25f ® f, (2.69)

C = pJV + C™. (2.70)

Finally, by applying the symmetry af andC and substituting equatiorls (2163, 2.64,
[2.67,[2.68) and (2.69) into equatidn (2.58), final equatanrttie linearized term can

be written as

n

DéJII-Ap = A{/ gV.op : VoA 7 dV
Be

e=1
+ / gV.ow : C: gV A@dV
.

1
+ / Jng&o:gldeZoz(@)—/ JgV,Ap g7t dV
Be Ve )a.

- 1
v [ avseaf o a0 g [ avaeafefav
Be Be
(2.71)
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2.3 Finite element formulation

P 0 D A 5
Figure 2.4: QI1POFO mixed finite element formulation sketch for quasi-
incompressible and quasi-inextensible hyperelasticity.

2.3.1 Element discretization

In this section, spatial discretization of variables wil tonducted. The aim of this
step is to get algebraic correspondents of the residualtiequ@.55%.1) and to cre-
ate the element matrices from linearized equafion {2.71}hé element phase, the
introduced mean valugs 6, s and \ are kept constant whereas the trilinear interpo-
lation is applied for fieldp as it is shown in Figure2.4. Figuke 2.4 is given in two
dimensional form for clarity. After that, interpolation thfe field variables and the as-
sociated weight functions on each element domain is coeduwy defining discrete

nodal values an@"-continuous shape functions as

Nen

" =Y N, (2.72)
I=1
Nen

S = N'oa, (2.73)
I=1
Nen

Aph =S "N Az, (2.74)
I=1

wheren.,, means node number per element. The spatial gradient of tightfanc-

tion and incremental field can be derived by using discreétinan equations(2.73)

and [2.74) as
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Nen

V(6" =) o @ N, (2.75)

I=1

Nen

VAQ" =" Az; o VN (2.76)
I=1

By inserting equationd (2.2, 2173, 274 2.[[5, 2.76) ihi&qP, we can obtain the

residual vector in discrete form as

RW:KZ [V;BNI-?‘—NlpoﬂdV—Ki N'TdA=0. (2.77)

e=17-; JAL e=ly_1 /0%

In equation[(Z.7I7)A stands for an operator which is used for the assembly of eleme

contributions at the local element nodes- 1, . . ., ne, Over ny subdomains.

Then, linearization of the residual expression can be defise

OR?
LinRY =R¥Y + — AU 2.78
where
Ne|
U=Az". (2.79)

Stiffness matrix can be obtained by inserting (2[72, 4. 7842 .7%[2.76) intd (2.71)
as

ORY  na
K=—=AK,, 2.80
50 661 ! (2.80)

wherekK,, is the element stiffness matrix. It can be divided into mategeometric,

volumetric and anisotropic contributions as

Ko = KMo 4 KI% 4 KU+ Ko, (2.81)

el el el
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Also, elemental average quantities can be expressed as;

VN = / JVN av (2.82)
ﬂh

VI = UN': f® fav. (2.83)

7
el

Stiffness contributions can be derived by using elemenilage quantities as

Kmat 17 — [ TN . C- N dV | (2.84)
2",
vol IJ Tl vol(é) J
ey 1 = VN VN (2.85)
Koo ! / YN+ YN av | (2.86)
B
K(ezlni 1J VTH:I ,lvz)m‘z;( ) Vg:J (287)

(&

An 8 noded brick element will be used in the upcoming repregme examples.
Therefore, the shape functions and corresponding nodaésdbr this element can
be introduced as

N'(€) = S(1+ i) (1 + )1+ &), (288)

g=-1 +1 +1 -1 -1 +1 +1 —1]
g=[-1 -1 +1 +1 —1 —1 41 +1] (2.89)

g=-1 -1 -1 -1 +1 +1 +1 +1]
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Figure 2.5: Bi-unit cube in the parameter space. Local doatds are defined by
e A whered:={(cR¥| -1<&<+1;i=1,3}

This shape functions are for a cubic structure in the panamngpace as shown in
FigurelZ.b. Flowchart for the computation of the elemerfifress matrix can be seen

more clearly in Table2]1.
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Table 2.1: Calculation 0@ 1POFOelement stiffness matrix [12]

a) Volumetric and anisotropic contributions of stiffnesatrix:
Mean parameters, p, A ands, will be calculated.
{ LOOP [x =1,8]  Given: placement™ = @" + Xh, shape function®'(¢) := N7 (&)

Set:Veé =0 =0 A=0

1. Calculate shape function, derivative of the shape fondti parametric space and tran
formation map at(«)

N(E), VNE) and J=VNX' at £=¢g()
2. Calculate the material and spatial derivative of shapetfans, and deformation gradie
WN=VNJ ', F=W%Nz and UN=VNF"!

3. Calculate the initial and current element volume and titegirate the fiber stretcfi =

Ff
Ve <+ Ve +det Jw, v < v° + det J det Fw,

AN=Ff-gf XA + Adet Jw,

4. Calculatey N := VY NT andV,F := v I/
UN < UN +det Jdet Fwu,UN  VF <« VF +det Jwu,UN: f@ f }

5. Calculate), p, A ands

_ e _ _ by _
0=— p=u 00 I« =
e P=Yualf) “

6. CalculateK ,,; andK ,,,;

, , _ "0~
KUOl3(I_1)+l7 3(J—1)+j — (Nl)l vol (Nl)']
Ko S0-D40 80141 _ (5 )1 ani(A) 7.
b) Material and geometric part of the stiffness matrix:

{LOOP [ =1,8]

7. CalculateK ,,,; and K 4¢,

%

Koo 00 30080 = K4 (N 2)E(N,2)] 77 det Juwg,

K 7DH 3004k _ e (o )TEUR (N )] det Jwa}

[72]
1
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CHAPTER 3

VALIDATION OF THE MODEL

3.1 Model Description

This section contains comparison of the proposed fornariatith the standard linear
displacement elemen®(l) formulation and the mean dilatation approach denoted as
Q1P0Oformulation. For this purpose, the model similar to the ntioa example
recently studied by Schroder et al. [51] is analyzed. A sgudock is fixed at top

(y = 1) and bottom ¢ = 0) surfaces and left surface (= 0) is subjected to an
uniformly distributed loadingy, which can be clearly seen from Figure]3.1. Also,
the fibers are aligned = 60° from the horizontal plane. The square block has
unit dimensions ofl x 1. The original problem is two dimensional. The current
formulation is reduced to two dimensional setting by clamgpghe nodes against the
motion in z—direction by applying:, = 0 for all nodes. Therefore, this leads the

plane-strain problem as it is studied in the reference [51].

The fiber directionf, = [0.5,1/3/2,0] is kept constant and the loadingis varied
asq, = {50,100, 150,200} kPa in order to study the stability of the proposed for-
mulation towards inextensibility limit. The specimen is madonically loaded to via
q(t) = q.t. Initially, the time increment is taken ast = 1. If the global Newton-
Raphson algorithm does not converge within 15 time stemstithe increment is

decreased and the simulation is restarted ftomo.

In this set of analysis, material parameters, given in TBole are kept constant.
These parameters represent the media layer of the arteaiblaken from the work

of Holzapfel et al.[[24]. The material behavior can be seemfiFigure[3.2 (a-b).
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Figure 3.1: Description of the model.

Table 3.1: Material parameters.

Parameter Value Unit Parameter Value Unit

K 10* [kPa] p=2c 27 [kPa]
ki 0.64  [kPa] ko 354 [
50000 T T T T T T 45 T T T T
—_ : : : : : ‘ '
© : : : : : : o
£ 40000 i 36 [
o : : : : : g
0 ‘ : : : : ‘ 1)
o . . : : : \ =
& 30000 [ S SRR S T T W 27 [ ]
8 A &
z ! ! ! ! : ! &
>, 20000 - SRR AR ol P >\18 """"""""""""""""""""""
< ' : : : . . o
S : : : : : : S
S 10000 [---dreedeeeeiee st 2 S gfreiede A
0 — i 0 ; i i i
1 1.1 1.2 1.3 14 15 1.6 1.7 0 02 04 06 038 1
(@) Axial Stretch (b) Amount of Shear

Figure 3.2: Material behavior curves of arterial wall foy éxial stress-axial stretch
under uniaxial loading and (b) out of plane shear stressuatraf shear under simple
shear loading.

Figure[3.2 (a) shows the behavior of arterial wall in fiberediron under uniaxial
loading while Figuré 312 (b) shows the behavior of arteriallin transverse direction
under simple shear. When Cauchy stress results are comjgasedearly seen that
the material is much stiffer in the fiber direction with respi transverse direction.

Furthermore, Figure_3.2 (a) exhibits exponential stiffignbehavior of arterial wall
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in fiber direction. Material reaches inextensibility limith increasing axial stretch

values.

For the analysisp x n brick elements are used and six set of mesh densities are

applied where number of elements per edge are varied-ag2, 4, 8, 16, 32, 64}.

qo value is increased step by step to show the convergence pfépesed formula-
tion towards the inextensibility limit with respect to thiasdard linear displacement

element Q1) formulation and the mean dilatation approa@ipPo0.

3.2 Results

The results of the analyses can be seen in Figurés 313, 3,8.9. In these figures,
the left columns show the number of iteration and right calarshow the horizontal
displacementi(,) for the center of the left surface, see Figurd 3.1. Alsoizontal

axis shows the number of elements per square block edge. eAsuimber of the

elements increases, mesh size becomes finer.
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# elem / edge # elem / edge
’ Qle---- Q1P @------ eQ1POF0 eo—e

Figure 3.3: Comparison of th@1, Q1P0 and Q1POF0 element formulations for
pressure valug, = 50 kPa.

Figure[3.3 shows the results of the analyses conductegl at 50 kPa. As it can

be seen from Figurie_3.81 formulation is not convergent with the increased mesh
resolution. Moreover, mesh convergences of@i€0andQ1POFOformulations are
almost equal to each other. Also, Figlrel 3.4 shows the fibesstesults af, = 50

kPa for a mesh size of 32 elements per edge. Fiber stresstudgmare almost equal

31



T TT "’i' T
.ril 'll;!"llll’i rl"'i

l""i 7777
""" 7z

] B 8 T .
B 177 ]Il LTI T T
l”"""”l”"””’l"
LLZ T 7T 77T IFFTT LT AT T AT T
BT E DN TSI &S0

(b)

Aﬂl’ll”""‘""ﬂd‘
AT ETIITTE IS TSN T TTH
W T A
PTG TG 17 575 5 0 g
’!IIJ I 7 7
P

0

Figure 3.4: Fiber stress results for (@) (b) Q1,0 and (¢)Q1P0F0 element formu-
lations for pressure valug = 50 kPa with mesh size 32 elements per edge.

for the Q1POFQ Q1 andQ1P0Oformulations.
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Figure 3.5: Comparison of th@1, Q1P0 and Q1 POF0 element formulations for
pressure valug, = 100 kPa.
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Figure 3.6: Fiber stress results for () (b) Q1,0 and (¢)Q1P0F0 element formu-
lations for pressure valug = 100 kPa with mesh size 32 elements per edge.

Figure[3.b shows the results of the analyses conductegl at 100 kPa. As it is
shown in the figuré_315Q1 formulation is not convergent with the increased mesh
resolution. Moreover, mesh convergences of@i€0andQ1POFOformulations are
close to each other. Also, FigureB.6 shows the fiber strestdtseat;, = 100 kPa for

a mesh size of 32 elements per edge. Fiber stress magnitiedskghtly higher for
the Q1 andQ1P0formulations tharQ1POFOformulation.

Figure[3.7 shows the results of the analyses conductggd-atl 50 kPa. Q1 formula-
tion is not convergent with the increased mesh resolutioasiMconvergence of the
mid-displacement for increasing mesh density@dPOFOformulation is better than
Q1POformulation. Also, Figuré 318 shows the fiber stress resatlis = 150 kPa for
a mesh size of 32 elements per edge. Fiber stress valuesgher lfor theQ1 and
Q1POformulations tharQ1POFOformulation.
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Figure 3.8: Fiber stress results for (@) (b) Q1P0 and (c)Q1P0F0 element formu-
lations for pressure valug = 150 kPa with mesh size 32 elements per edge.
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Figure 3.10: Fiber stress results for (@) (b) Q1P0 and (c)Q1P0F0 element for-
mulations for pressure valug = 200 kPa with mesh size 32 elements per edge.
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Table 3.2: Comparison of CPU times fQr1, Q1PO0andQ1POFOformulations with
different mesh sizes gt = 200 kPa.

2x2 4x4 8x8 16x16 32x32 64x64
Q1 0.03s 0.16s 090s 6.44s 27.49s 165.57s

Q1PO 0.04s 0.19s 1.41s 7.26s 35.03s 229.38s
Q1POFO 0.04s 0.38s 2.09s 1445s 70.22s 403.37s

Figure[3.9 shows the results of the analyses conducted-at200 kPa.Q1 formula-

tion is not convergent with the increased mesh resolutioashiMconvergence of the
mid-displacement for increasing mesh density@irPOFOformulation is much bet-
ter thanQ1POformulation. For exampleQ1POFOformulation reaches convergence
at 16 elements per edge whE POformulation reaches convergence at 64 elements

per edge.

Moreover, Tablé 3]2 shows the comparison of CPU time€MrQ1P0andQ1P0F0
formulations with different mesh sizes@t= 200 kPa. Analysis 0fQ1POFOformu-
lation at 16 elements per edge takdst5 s while analysis oQ1P0formulation at 64
elements per edge take®9.38 s. Therefore, when the results of Fighrel 3.9 and Table
[3.2 are combined, it can be said ti@tPOFOformulation reaches mesh convergence

at 14.45 s while Q1P0formulation reaches mesh convergenc22at3s s.

Also, Figure[3.ID shows the fiber stress resultg,at 200 kPa for a mesh size of
32 elements per edge. Fiber stress magnitudes are much fogiiee Q1 andQ1P0

formulations tharQ1POFOformulation.

Moreover, Figuré 3.11 demonstrates displacement resultslirection atg, = 200

kPa for mesh sizes of 16 and 32 elements per edge. When tHaadispent distri-
bution for theQ1 formulation is analyzed, increasing number of elementscadfthe
displacement results, especially @i andQ1PO0formulations. MoreoverQ1PO0OFO0
has a better displacement distribution at less number ofeés with respect tQ1

andQ1PO0Oformulation.

When all figures are analyzed, it can be seen @formulation is not convergent.
There should be more number of elements for the mesh comargd theQ1 for-

mulation. Q1PO0andQ1POFOformulations have same convergence rate at low level
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Figure 3.11:u, results for (a)?1 (c) Q1 P0 and (e)Q1P0F0 element formulations
with mesh size 16 elements per edge and{b)d) Q1 P0 and (f)Q1POF O element
formulations with mesh size 32 elements per edge for pressalueg, = 200 kPa.

of pressure. Howeve@Q1POFOformulation converges to final displacement value at
less number of elements when the load is increased. Thigdéaceases computation
time by reducing number of the element needed for convesgenc
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Moreover, when the fiber stress results are analyzed fromr&$p3.4[ 3J6, 318 and
[3.10, it is seen that fiber stress is lower @tPOFOformulation compared to other
two formulations. This can be interpreted such aPOFOformulation can extend
much more compared tQ1 and Q1PO0formulations so fiber stress is much lower
for proposed formulation because artificial stiffeningeets occur foQ1l andQ1P0

formulations in inextensible region.

Therefore, the proposed formulation is the most robust anadiralternatives, show-
ing convergence with the less number of elements througheuwhole set of simu-

lations, especially at the limits of incompressibility andxtensibility.
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CHAPTER 4

IMPLEMENTATION OF THE MODEL

4.1 Model Description

In this chapteQ1POFOformulation will be applied to an example of biological tigs
which is arterial wall. Figuré4l1 shows the geometry andhmafshe arterial wall

model.
0, =—-7/3
U, = 2mm =
ﬁé =
& NN

N
0
8
] 1]
Vi
|

[Eh 1

Figure 4.1: Geometry and mesh of the artery.

As it is mentioned in the introduction chapter, arterial wansists of three main
layers as intima, media and adventitia. Fiduré 4.2 showktrezs of the arterial wall
in terms of mesh configuration. Green elements represernintinea layer, yellow
elements represent the media layer, and blue elementsegprthe adventitia layer
as shown in Figure4.2. In radial direction, intima layer teams 3 elements in a
total thickness 00.3 mm, media layer contairiselements in a total thickness 08
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Table 4.1: Geometrical parameters.

Parameter Value Unit Parameter Value Unit
ds 14.0  [mm] as 13.4  [mm]
dM 13.4  [mm] M 11.8  [mm]
d? 11.8  [mm] d! 11.2  [mm]

H 15.0 [mm]

mm and adventitia layer contaidslements in a total thickness 0f3 mm. Totally,
intima, media and adventitia layers haas0, 12250 and7350 elements, respectively.
The total number of elements used in the analys$$50.

adventitia

Figure 4.2: Layers of the artery as intima, media and adtranti

Geometrical parameters of the artery are given in Table 4:1and d#* represent
outer and inner diameters of the adventitia layiéf.andd? represent outer and inner
diameters of the media layer. Alsd#/, andd! represent the outer and inner diameters
of the intima layer. Moreovet{ stands for the height of the cylinder. Geometrical

parameters reflect an real artery geometry taken from [26].
Each layer of the artery behaves differently. Also, fibeeslacated in each layer with
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Figure 4.3: Fiber angle configuration.

Figure 4.4: Fiber angle configuration in the mesh.
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Table 4.2: Material parameters of intima layer.

Parameter Value Unit Parameter Value Unit

k! 10* [kPa] pu' =2¢ 33.86 [kPa]
ki 7.79  [kPa] kL 139.1  []
al 46.8° [

Table 4.3: Material parameters of media layer.

Parameter Value Unit Parameter  Value Unit

rM 10* kPa] p™M =27 16.08  [kPa]
kM 11.68  [kPal] k3" 718 [
aJVI 41° [_]

different angles. Angle is located in circumferential-axial plane of the cylindada

itis defined as angle between fiber direction and circumteaegxis as it can be seen
from Figure[4.B. Also, fiber angle configuration is given ie thesh of the artery in
Figurel4.4.

Material parameters of each layer are given in Tables[42 aAd[4.4. « is bulk
modulus: is shear modulus of each layer. Moreoverandk, are material constants
for anisotropic free energy function. Also, fiber angles given for each layer. These
parameters, which are taken from the work of Holzapfel [2fject behavior of the

human aortas.

Behavior of the arterial wall under the effects of multipdadlings will be analyzed in
this chapter. Loads to be applied are axial stretch, twigt@top surface and internal
pressure. In normal conditions, axial stretch expecteaitarial wall is almost 10
percent s& mm axial displacementu() is applied from the topA = H) surface
as it can be seen from Figure ¥.1. AlseG0° twist aroundz axis is given from the

top (z = H) surface of the cylinder. Finally, internal pressure isegivo reflect the

Table 4.4: Material parameters of adventitia layer.

Parameter Value Unit Parameter Value  Unit

kA 10* kPa] up” =2¢' 3.77  [kPa]
Ef 0.36  [kPa] k3 45.88 [
a’t 50.1° [
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Table 4.5: Applied loads and displacements.

Case Parameter Value Unit Parameter Value Unit Parametedue Va Unit

1 p 7.5 [kPa] Uz 2 [mm] 0. —7/3 [rad]
2 P 10 [kPa] Uy 2 [mm] 0. —7/3 [rad]
3 p 15 [kPa] Uz 2 [mm] 0. —7/3 [rad]

blood pressure of the artery. As a boundary condition, appldicements of the bottom

(z = 0) surface of the cylinder are restrained.

Blood pressure of human arteries can be altered. For a lgdaltihan artery, blood
pressure changes betwegn-15 kPa. Analyses will be conducted for different pres-
sure values by keeping twist and axial stretch constantderao analyze the effects
of blood pressure deeply. Therefore 3 different load castder applied by only
changing pressure and keeping other loads constant asliecseen from Table 4.5.

4.2 Results

In the following subsections, results of three differergesawill be presented, as sum-
marized in Tabl€ 4]5. Also, comparison of the three diffeedament formulations
(Q1, Q1PQ Q1POF(Q studied in Chaptedr 3 will be conducted for load cage show

the behavior of the formulations in real artery configunaiio the final subsection.

421 Casel

In this section, results for a relatively low pressyire: 7.5 kPa will be demonstrated
with the other applied displacements. Radial displacerardttangential stress re-

sults are given in order to demonstrate behavior of theiatteall.

Figure[4.5b represents the radial displacement resultséprténe increments.24¢,
0.48t, 0.72t and1.0¢. The load given in case 1 of Talile 4.5 is reached by increasing
from zero load tal00% load incrementally in a time of. For instance24% of the
load is applied at the instant 024¢. When the results are analyzed for the til#,

the maximum radial displacement of the outer surface of yieder is about3.15
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Figure 4.5: Radial displacement results (mm) for step tia)@.@4¢ (b) 0.48¢ and (c)
0.72¢ (d) 1.0¢ for loadingsp = 7.5 kPa,u, = 2 mm,0, = —x/3.

mm.

Also, Figure[4.6 shows the tangential stress results foidhds given in case 1 of
Tablel4.5. For demonstration purposes, half of the cylimglgiven to see the results
of the inner layer more clearly. As it can be seen from Figué the inner layer in-

tima has higher tangential stress with respect to otherdaytowever, the difference

between tangential stresses of the layers are comparabpeatively.

44



0 60

Figure 4.6: Tangential stress results (kPa)ifer 7.5 kPa,u, = 2 mm,0, = —x /3.

42.2 Case?2

In this section, results for a relatively medium pressire 10 kPa will be demon-
strated with the other applied displacements. Radial dtgrhent and tangential
stress results are given in order to demonstrate the betavioe arterial wall.

Figure[4.Y represents the radial displacement resultshiorstep time increments
0.24t, 0.48t, 0.72t and 1.0¢. When the results are analyzed for the tiinet, the
maximum radial displacement of the outer surface of thendgr is abou8.3 mm.

Also, Figure[4.8 shows the tangential stress results fotdhds given in case 2 of
Tablel4.5. For demonstration purposes, half of the cyliiglgiven to see the results
of the inner layer more clearly. As it can be seen from Figu& the inner layer
intima has much higher tangential stress with respect terddlyers.
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Figure 4.7: Radial displacement results (mm) for step tia)@.¢4¢ (b) 0.48¢ and (c)
0.72¢ (d) 1.0¢ for loadingsp = 10 kPa,u, = 2 mm,§, = —r /3.

423 Case3

In this section, results for a relatively high presspre 15 kPa will be demonstrated
with the other applied displacements. Radial displaceraadttangential stress re-
sults are given in order to demonstrate the behavior of tegiarwall.

Figure[4.9 represents the radial displacement resultshi@rstep time increments
0.24t, 0.48t, 0.72t and 1.0t. When the results are analyzed for the tiin@, maxi-
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Figure 4.8: Tangential stress results (kPa)fet 10 kPa,u, = 2 mm,d, = —x /3.

mum radial displacement of the outer surface of the cylimglabout3.5 mm.

Also, Figure[4.1D shows the tangential stress results ®itdhads given in case 3 of
Tablel4.5. For demonstration purposes, half of the cylimglgiven to see the results
of the inner layer more clearly. As it can be seen from the legul0, the inner layer
intima has much higher tangential stress with respect terddlyers.

When all three cases are compared, nonlinear behavior aftiey can be clearly ob-
served from Figure 415, Figure 4.7 and Figurd 4.9. The ialgsressure is increased
from 7.5 kPa up tol5 kPa while radial displacement is only increased fraid mm
to 3.5 mm at the outer surface of the cylinder. This fact shows esible behavior
of arterial wall when the load is increased.

Also, when the tangential stress results are analyzed feetbases, stress of the
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Figure 4.9: Radial displacement results (mm) for step tia)@.¢4¢ (b) 0.48¢ and (c)
0.72¢ (d) 1.0¢ for loadingsp = 15 kPa,u, = 2 mm,§, = —r /3.

inner layer, intima, has increased sharply with increagirggsure. Maximum tan-
gential stress is increased frof kPa to450 kPa by increasing internal pressure
from 7.5 kPa to15 kPa. However, middle layer media and outer layer adverdrga

not significantly affected by the pressure increase.

All stress and displacement results indicate that the behaf/the arterial wall is in
the limit of inextensibility with the increased load. Mokew, proposed formulation
achieved to converge for all load cases successfully.
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Figure 4.10: Tangential stress results (kPa)fer 15 kPa,u, = 2 kPa,f, = —x /3.

4.2.4 Comparison of the models for case 3

Comparison of the proposed formulatiQiPOFOwith the Q1, Q1POformulations,
studied in Chaptdrl 3, will also be conducted in this part ef¢hapter. The compar-
ison will be studied to see the behavior of the three fornnuhat for more realistic
configuration of the artery. Load ca3evill be applied to the model for all formula-
tions. Also, this comparison will be useful to see the betvawf the formulations for
combined loading.

Figure[4.11 shows the radial displacement map for three dtations. Although
minimum radial displacement 00 mm, minimum limit of the legend is given as
3.00 mm to analyze the region which has radial displacementsdst8/00 mm and
4.12 mm in detail and to compare results for inextensibility imiore clearly. When
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Figure 4.11: Radial displacement results (mm) for@a)(b) Q1 P0 and (c)Q1 POF0
for loadingsp = 15 kPa,u, = 2 kPa,f, = —7/3.

the results of th€1, Q1PQ Q1POFOelement formulations are compared from Figure
[4.11, itis seen that proposed formulati@iPOFQ gives higher radial displacement
results tharQ1, Q1P0element formulationsQ1, Q1P0element formulations give
maximum radial displacement abati®6 mm while maximum radial displacement
for Q1POFOelement formulation igd.12 mm. To analyze more clearly the difference
between results, it should be noted th&t6 mm radial displacement is almost equal
to the maximum radial displacement of inner surface of ddirforQ1POFOelement

formulation at load case % (= 10 kPa). Therefore, this means that the maximum
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radial displacement d@1, Q1P0element formulations at load caseB€ 15 kPa)
is equal to maximum radial displacement@iPOFOelement formulation at load
case 2 = 10 kPa). This shows how proposed formulation can extend biettie

inextensibility limit.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this study, a five field Hu-Washizu type variational pripieifor transversely aniso-
tropic materials in the quasi-incompressibility and gtiasitensibility limit is pre-
sented. The main advantage of the propa&&0FOformulation is the ease of ap-
plication at element level. The additional degrees of fomeslare condensed out with
numerical homogenization at element level. Also, matrisension is not needed for
the proposed formulation. Therefore, this fact enableskgand direct computation
of element stiffness matrix.

Moreover,Q1POFOformulation does not need any extra kinematic assumptions s
application of the standard reinforcing model is very appiaie. Also, it is easy
to extendQ1POformulation toQ1POFOelement formulation. A few additional al-
gebraic operations are needed to extend the formulatioeo, Aonstitutive model,
which is appropriate to human arteries, was used to showmeaince of the formu-

lation for biological tissues.

In Chaptei B, the propose@1POFQ element formulation was compared with the
standard linear displacement elemetl), formulation and the mean dilatation ap-
proach denoted a@1P0 element formulation. Simple model was constructed for
comparison. A square block is loaded from one side with aspires Also, material
properties which is belong to human arterial walls are usemulations are com-
pared for different mesh sizes 2s4, 8, 16,32 and64 elements per edge. Also, the

formulations are analyzed fdrdifferent loading magnitudes to show the behavior of
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formulations in inextensibility limit. When the resultseaanalyzed, it is clearly seen
that proposed formulation is more robust and shows bettdonpeance for coarse
meshes. Especially, the proposed formulation exhibitdisaatages strongly at high
level of the loads. High level of the loads means that the rhsdelosed to the

inextensibility limit.

After the validation of the proposed formulaticd 1POFOelement formulation was
implemented to more realistic artery structure in ChaptePdrformance of the for-
mulation was tested for multiple loadings of the human &tevall. These loadings
include internal pressure, axial stretch and torsion. &ldi#erent values of the pres-
sure were tested with the constant axial stretch and tarsigre aim of changing
pressure was that internal pressure of the artery can bedvaighly and its effects
are trending topic in the research of the mechanics of artEngrefore, three load
cases were investigated and when the results of all load easeanalyzed, the pro-

posed formulation achieved to converge for all three loagsauccessfully.

Moreover, as it is studied in the Chaplér 3, one example islected for three el-
ement formulations a1, Q1P0and Q1POFOfor load case 3 of Chaptét 4. The
reason of this comparison is to show advantages of the peddosmulation in more
realistic structure of biological tissues (human artewall). Realistic structure of
a human arterial wall contains different layers with diéfiet material properties and
fiber angles and different loading types. Load case 3 is ¢chtmethe comparison
because highest load levels are included in load case 3aRfisplacements results
were given for comparison for each element formulation. Wtie results of this
study are analyzed, propos€@d POFOformulation gives better results compared to
other two element formulations in terms of radial displaeats because the proposed
formulation can extend better in inextensibility limit Wwaut being affected from ar-

tificial stiffening.

Therefore, when all case studies of this thesis are investigQ1POFOelement for-
mulation exhibit very good performance in normal condig@s well as in incom-

pressibility and inextensibility limits.
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5.2 Future Work

Q1POFOelement formulation can also be used to model the damagerefbine,
future work of this study can be devoted to damage modellfibefiber reinforced

materials and biological tissues by usiQdPOFOelement formulation.
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