
ESTIMATING NET PRIMARY PRODUCTIVITY OF FOREST ECOSYSTEMS
OVER TURKEY USING REMOTE SENSING APPROACH

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

Önder GÜLBEYAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

GEODETIC AND GEOGRAPHICAL INFORMATION TECHNOLOGIES

MARCH 2018





Approval of the thesis:

ESTIMATING NET PRIMARY PRODUCTIVITY OF FOREST
ECOSYSTEMS OVER TURKEY USING REMOTE SENSING APPROACH

submitted by Önder GÜLBEYAZ in partial fulfillment of the requirements for the
degree of Doctor of Philosophy in Geodetic and Geographical Information Tech-
nologies Department, Middle East Technical University by,

Prof. Dr. Halil KALIPÇILAR
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. S. Zuhal AKYÜREK
Head of Department, Geodetic and Geographical Information
Technologies

Prof. Dr. S. Zuhal AKYÜREK
Supervisor, Geodetic and Geographical Information
Technologies Department, METU

Examining Committee Members:

Prof. Dr. Ayşen YILMAZ
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ABSTRACT

ESTIMATING NET PRIMARY PRODUCTIVITY OF FOREST
ECOSYSTEMS OVER TURKEY USING REMOTE SENSING APPROACH

GÜLBEYAZ, Önder
Ph.D., Department of Geodetic and Geographical Information Technologies

Supervisor : Prof. Dr. S. Zuhal AKYÜREK

March 2018, 96 pages

Understanding the fluctuations in carbon balance and global warming with respect

to the global climate change and creating solutions, has become one of the most im-

portant topics in ecological studies especially during last decades. These changes,

in particular for the terrestrial ecosystems, can be monitored using gross primary

productivity (GPP), its derivative net primary productivity (NPP) (the subtraction of

autotrophic respiration from GPP) and net ecosystem productivity (NEP) (subtraction

of both plant respiration and autotrophic use from GPP) as key components, which

are directly affected from climate change. Despite their importance for the ecologi-

cal researches, the difficulties in field measurements forced the scientists to find new

methods such as statistical methods and process based modelling techniques to esti-

mate these quantities. The aims of this study are (i) to evaluate a widely used global

model’s outputs for Turkey’s forest ecosystems using field measurements, (ii) to im-

prove the accuracy of a global model using local datasets and (iii) to create a new

modelling approach to increase the accuracy of NPP estimation over forest ecosys-

tems. Results show that the global model has a significant correlation with field data
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of Turkey (R2 = 0.34). However, it still lacks reflecting actual conditions over the

area. The usage of local data slightly improves the accuracy of the model (R2 = 0.35).

In this study, a new modelling approach for the optimum temperature was also imple-

mented. The results show that, the distribution of the optimum temperature values is

more meaningful (the value of each pixel with respect to its neighbours). Moreover,

the model accuracy was increased from 35% to 43% and from 39% to 43% for two

different APAR (Absorbed Photosynthetically Active Radiation) estimation methods

which are discussed in the thesis. The analysis showed that only 51% accuracy can

be achieved using the field data. The potential reasons are discussed in the study.

Keywords: Net Primary Productivity, Remote Sensing, Modelling
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ÖZ

TÜRKİYE ÜZERİNDEKİ ORMAN EKOSİSTEMLERİNİN NET BİRİNCİL
VERİMLİLİĞİNİN UZAKTAN ALGILAMA YAKLAŞIMI İLE

BELİRLENMESİ

GÜLBEYAZ, Önder
Doktora, Jeodezi ve Coğrafi Bilgi Teknolojileri Bölümü

Tez Yöneticisi : Prof. Dr. S. Zuhal AKYÜREK

Mart 2018 , 96 sayfa

Küresel iklim değişikliği çerçevesinde, küresel ısınma ve karbon dengesindeki de-

ğişimlerini anlamak ve çözüm üretmek, özellikle son yıllarda ekoloji çalışan bilim

insanları için en önemli başlıklardan birisi olmuştur. Bu değişimler, özellikle karasal

ekosistemlerin anahtar bileşenleri olan ve iklim değişikliğinden doğrudan etkilenen

Bürüt Birincil Verimlilik (BBV), bunun türevi olan Net Birincil Verimlilik (NBV),

BBV’den bitki solunumu çıkarıldıktan sonra kalan kısım, ve Net Ekosistem Verimli-

liği (NEV), BBV’den bitki solunumu ve ototrofik solonum çıkarıldıktan sonra kalan

kısım, kullanılarak gözlenebilmektedir. Bu değişkenlerin ekolojik araştırmalardaki

önemlerine karşın, arazi ölçümleri ile ilgili zorluklar bilim insanlarını istatistiksel

ve süreç temelli modeller gibi yeni yaklaşımlar geliştirmeye zorlamıştır. Bu çalış-

manın amacı (i) yaygın bir şekilde kullanılan bir küresel modelin çıktılarını Türkiye

ormanlarından alınan arazi ölçümleri ile doğrulanması, (ii) küresel bir modelin yerel

verilerle geliştirilmesi, ve (iii) modellerin doğruluğunun arttırılması için yeni bir mo-

delleme yaklaşımının oluşturulmasıdır. Bulgular, kullanılan küresel modelin Türkiye
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ormanları ile kayda değer bir ilişkisi olduğunu (R2 = 0.34) göstermiştir. Ancak, bu du-

rum hala çalışma alanı üzerindeki gerçek durumu yansıtmamaktadır. Yerel verilerin

kullanılmasının ise modelin başarısını bir miktar arttırdığı (R2 = 0.35) gözlenmiş-

tir. Bu çalışmada, optimum sıcaklık değerlerinin hesaplanması için yeni bir yaklaşım

uygulanmıştır. Sonuçlar, optimum sıcaklık değerlerinin dağılımlarının daha anlamlı

(herhangi bir pikselin, komşu piksel değerleri ile ilişkisi) olduğunu göstermiştir. Bu-

nunla beraber, modellerin açıklayıcılığı ileriki bölümlerde tartışılan iki farklı APAR

(Absorbed Photosynthetically Active Radiation, fotosentetik olarak aktif radyasyo-

nun soğuran kısmı) hesabına göre %35’ten %43’e ve %39’ten %43’e yükselmiştir.

Ayrıca analizler, kullanılan arazi verisi ile yapılan çalışmaların açıklayıcığılının en

fazla %51’e ulaşabileceğini göstermiştir. Bununla ilgili potansiyel nedenler çalışma

içerisinde tartışılmıştır.

Anahtar Kelimeler: Net Birincil Verimlilik, Uzaktan Algılama, Modelleme
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from him about basic physics and logic of the Earth and near Earth systems and their

equivalents on maps and map projections.

As a visitor researcher, studying at The Joint Global Change Research Institute was

a great experience for me. I would like to thank Dr. Tristram O. West and Dr. Ben

Bond-Lamberty for inviting and supporting me all the time.

I would like to thank Prof. Dr. Can Bilgin for everything I learned from him about

ecology and ecological processes. I also would like to thank Prof. Dr. Süha Berberoğlu

from Çukurova University who inspired me to start studying remote sensing and GIS.

There are many people who supported me during this thesis by means of moral and

technical difficulties. Thanks to Hüsnü Yıldız, Balkar Erdoğan, Amir Yeganehsahab
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to Ali Şahin, Münevver Gün, Ece Hocaoğlu (from Graduate School of Natural and
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CHAPTER 1

INTRODUCTION

Primary productivity of the natural ecosystems, specifically the forest ecosystems,

has had great importance during last decades due to their roles in carbon cycle and

their response to climate change. GPP, the total amount of carbon fixed during pho-

tosynthesis, NPP, the amount of stored carbon after plant respiration and NEP, the

amount of carbon in a certain terrestrial ecosystem after plants respiration and other

heterotrophic usages, can be thought of three basic types of primary productivity

(Rast, 2004 [56]; Hilker,2008 [25]). Among these three quantities, NPP is the most

basic parameter due to its response to the environmental variations such as change

in climate, water and nutrient constraint in soil due to natural changes or human im-

pacts (Field et al., 1995 [12]). To understand the effects of environmental change on

NPP many global models were created (Ruimy et al., 1999 [58]). However, despite

their success on global scale, these models lack reflecting country scale conditions

and changes. Turkey has extreme topographical, and climatic variations and many

different ecosystems. Due to these properties, it is not easy to explain the natural

conditions over Turkey using global models. Modelling net primary productivity for

Turkey’s forest ecosystem may help the scientists to understand and create solutions

to these environmental variations. Ruimy et al. (1994) [59] and Yu et al. (2009) [77]

stated that field measurement (direct measurement of NPP), statistical approaches

and the models based on the photosynthetic process are the three methods used to

estimate/calculate NPP.
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1.1 Methods Used to Estimate/Calculate NPP

1.1.1 Field Measurements

The basic idea of the field measurement is to learn the weight of all plants in the

predetermined area. This was firstly done by cutting all the plant and weigh them

after drying process. Despite the fact that, this is the most certain method, it makes a

great damage on the ecosystems. Nowadays, because of this damage, species-based

coefficients are used to calculate NPP which is mostly calculated using the amount

of carbon stored by the plant. Each country (climate zone/ecosystem) has its own

calculation coefficients depending on the ecosystem types. The Ministry of the Forest

and Water Affairs (MFWA) calculates these coefficients for the forest ecosystems over

Turkey depending on the land cover classification created by the ministry (Figure 1.1).

McCallum et al. (2009) [37] stated the difficulties of the field measurements of NPP

as follows;

a. Spatio-temporal dynamics of environmental differences over large areas.

b. Limits on accuracy of the measured and calculated quantities with respect to

the real size and/or weight of the plants.

1.1.2 Statistical Models

Statistical estimation (or calculation) of NPP is a curve fitting issue by means of

regression models. The collected field data are tried to explain using the explanatory

(independent) variables (Equation 1.1). Environmental variable such as precipitation,

temperature, water vapour pressure deficit (VPD) and remotely sensed data (such as

satellite/airborne images of the study area) can be used as explanatory variables.

y = β0 + β1x1 + β2x2 + β3x3 + ε (1.1)

where y is the response (dependent) variable, xi is the explanatory variables, β are

the coefficients and ε is the error.
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Wang et al. (2005) [73], studied Geographically-Weighted Regression (GWR) method

to estimate NPP for 17 forest types over China using data from 1248 sites from 29

regions. Their results show that GWR technique can be used to estimate NPP, better

than Ordinary Least Square, if there are enough data distributed across the study area.

The basic problem faced with the statistical methods is that they are being data driven

methods and due to this reason the models are time and space dependent. These fac-

tors limit the models feasibility to be applied to another time/spaces to predict new

conditions. Another issue for the statistical models is the selection of the explanatory

variables, since the model tries to fit a curve to every parameters determined before.

1.1.3 Process-Based Models

This approach is in the basis of modelling the whole process that resulted with the

final product i.e. photosynthesis in this case. It works, when there is a state variable

to be calculated, and the driving variables affecting this stock directly or indirectly.

For instance, the photosynthesis process is directly related to the sunlight (explanatory

variables) in terms of wavelength (relation). Temperature, on the other hand, affects

this process as a stress factor. Although it is not related to the process directly, as a

stress factor it slows the process down or stops. Since it is known that photosynthesis

is a process of turning the inorganic material into organic material using the sunlight,

it is a concern of determining the basic variable ruling the process. In remote sensing,

for example, light use efficiency, (LUE) and photosynthetically active radiation (PAR)

and its derivatives such as fraction of photosynthetically active radiation (FPAR) or

absorbed photosynthetically active radiation (APAR) (Figure 1.2) can be the basic

input parameters (Equation 1.2).

NPP = APAR× LUE (1.2)

where NPP is the Net Primary Productivity, APAR and LUE are absorbed photosyn-

thetically active radiation and light use efficiency, respectively.

LUE is defined as the ratio of the NPP to APAR, so it becomes a constant within the

ecosystem despite it changes with respect to the environmental conditions (Haxeltine
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and Prentice, 1996 [20]; Landsberg et al, 1997 [33]). Moreover, not only the envi-

ronmental conditions but also the canopy structure and the angle of the leaves affect

LUE.

Figure 1.2: Basic modelling chart for CASA NPP model (Potter et al., 1993 [51]).

1.2 Previous Related Studies

Due to its importance, many studies have been conducted to model not only NPP

but also its component such as light use efficiency (LUE), land cover and photo-

synthetically active radiation (PAR). Global NPP models were divided into three cat-

egories, models that are using remotely sensed data; biogeochemical fluxes-based

models; and models including functional and structural components of the canopy

(Cramer et al., 1999 [7]). However, according to Ruimy et al (1999) [58], these mod-

els can be classified into two categories: production efficiency models (PEM) includ-

ing remote sensing approach and canopy photosynthesis models (CPM) including

other two approaches (Table 1.1). Production efficiency models are based on light

absorbed by the vegetation. First, fraction of photosynthetic radiation is calculated
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using remote sensing data (i.e. NDVI). Using a conversion constant, total amount of

absorbed radiation is converted into dry matter. CPM on the other hand, is the first

leaf level GPP calculated using mechanistic models (e.g. CO2 exchange). Cramer et

al. (1999) [7] compared seventeen NPP models (CASA, GLO-PEM, SDBM, SIB2,

TURC, BIOMEBGC, CARAIB 2.1, CENTURY 4.0, FBM 2.2, HRBM 3.0, KGBM,

PLAI 0.2, SILVAN 2,2., TEM 4.0, BIOME3, DOLY and HYBRID 3.0) and Ruimy et

al. (1999) [58] compared twelve NPP models (CASA, GLO-PEM, SDBM, SIB2,

TURC, CARAIB, FBM, KGBM, PLAI, SILVAN, BIOME3, and HYBRID) NPP

models. Since most of the fluxes occur on leaf level, small homogeneous ecosystems

are the keys to the wider and more complex ecosystems and scaling from regional to

global level is key to understanding the interrelations of the global ecosystems, these

two topics are claimed to have important implications for water and carbon fluxes

(Cramer et al., 1999 [7]). Potter et al. (1993) [51] developed a process based model

named as The Carnegie-Ames-Stanford approach (CASA), using Advance Very High

Resolution Radiometer (AVHRR) sensor on board of The National Oceanic and At-

mospheric Administration (NOAA) satellite. The remotely sensed data were used to

model APAR and LUE. It was claimed that model estimated the global NPP as 48

PgCyear−1 with maximum LUE of 0.39 g C MJ−1 PAR. Yu et al. (2009) [77] im-

proved CASA model and applied it to eastern region of Asia. Original CASA model

calculates water stress value using complex calculation with detailed soil data. How-

ever, this improved model uses Thornthwaite (1948) [68] evapotranspiration mod-

elling approach to estimate water stress.

Ogutu and Dash (2013) [46] compared three production efficiency models (CASA

model (Potter et al., 1993 [51]), C-Fix model (Veroustraete et al, 2002 [71]; Ver-

straeten et al., 2006 [72]), MOD17 (Running et al., 2000 [63]) model and their ca-

pacity. They claimed that all three models failed to estimate (underestimate) crop

sites (agricultural areas), which was explained as the change of the crop types. How-

ever, for the natural areas (especially for the broadleaf) models work well. Apart

from the models described above, GLO-PEM (Prince 1991 [52]; Prince and Goward,

1995 [53]), SDPM (Knorr and Heimann, 1995 [30]); SIB2 (Sellers et al., 1996a [65];

Sellers et al., 1996b [66]; Randall et al., 1996 [55]), and TURC (Ruimy et al.,

1996 [57]) are the remote sensing based models to estimate the NPP. Cramer et al.,
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1999 [7], stated that satellite based models estimate the NPP higher like GLO-PEM

or TURC or lower like CASA and SIB2. However, they all estimate the APAR lower

than actual. Since LUE and PAR are the basic components to model NPP, many stud-

ies were conducted on these two variables. Ahl et al. (2004) [3] studied the change

(heterogenic structure) of LUE from the land cover types and considering the tem-

poral changes with respect to the climate variables such as temperature. Nowadays,

using eddy covariance towers is another common method for measuring LUE (and

PAR). This method uses optical measurement techniques during day and night con-

tinuously, and it measure both down-welling and up-taking fluxes.

1.3 Objectives

During last decades scientist have created many global models including the land-

cover and NPP models. Despite their success in global scale, the models are not

reflecting the reality in regional scale due to the lack of data or averaging the existing

data by means of scale. Moreover, up-scaling and/or downscaling of the created mod-

els (maps) is another problem to understand the relation between country scale and the

global scale conditions. Overcoming this problem may help scientist to understand

the nature of the climate change and its effects, not only on the certain ecosystems

but also globally. Therefore, the objectives of this study are,

i. To understand how well a global model can reflect reality over a regional (coun-

try) scale (Chapter 2) (Figure 1.3).

ii. To create a new approach to improve the accuracy of a NPP model (Chapter 3)

(Figure 1.4).

iii. To understand the spatio-temporal changes in net primary productivity over

Turkey between 2000 and 2015 (Chapter 4).

The description of the study area and the used data sets are summarized in the follow-

ing sections. Detailed informations are given in the related chapters.
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1.4 Description of The Study Area

The study area covers all natural forest ecosystems in Turkey. The area lays between

36 and 42 North latitudes and 27 and 45 East longitudes. Turkey’s basic forest types

include mixed, broadleaf and needleleaf forest in the north and needleleaf forest in

the west and south (Evrendilek and Gulbeyaz, 2011 [10]). According to CORINE

(Coordination of Information on the Environment) land cover classification, total for-

est cover of Turkey is approximately 16% of its total area (approximately 780 000

km2). 31 percent of total forest cover is deciduous broadleaf, 37 percent is needleleaf

and 32 percent is mixed forest. Dominant tree species are eastern beech (Fagus orien-

talis), chestnut (Castanea sative), Cappadocia maple (Acer cappadocicum), eastern

hornbeam (Carpinus orientalis), Turkish Sweetgum (Liquidambar orientalis), olive

tree (Olea europea), oriental plane(Platanus orientalis) for deciduous forest, Turk-

ish fir (Abies bornmuelleriana - endemic), Caucasian fir (Abies nordmanniana - en-

demic), Taurus fir (Abies cilicica), Lebanon cedar (Cedrus libani), common juniper

(Juniperus communis) oriental spruce (Picea orientalis), Turkish pine (Pinus brutia)

for needleleaf forest. Moreover, mostly fir, hornbeam, spruce and beech are dominant

in mixed forest especially in Black Sea region of Turkey. It should be noted here that

according to MFWA, the total coverage of Turkey’s forests is 28.6% (22342.935 ha)

of total area (MFWA, 2015 [45]). However, this value includes not only forest areas,

but also areas without forest cover under jurisdiction of MFWA.

1.5 Field Data

All field data were obtained from MFWA. The data consist of two basic tables: (i)

an "installation" table, which contains data about each plot and (ii) "measurements"

tables. Originally installation tables have 1511 selected plot areas. However, due

to security issues 613 and 470 plot measurements were obtained for 2008 and 2013

respectively. Moreover, after the combination of 2008 and 2013 measurements, total

number of the plots decreases to 461 (Table 1.2.). These data are not publicly avail-

able, but can be obtained from the Ministry for scientific research purposes. MFWA

plot determination protocol is based on the International Co-operative Program on

11



Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forest) Level 1

protocol (ICP, 2016 [27] (ICP Forest Manual)). To determine the plots, first a grid

with 16 km × 16 km spacing was created over all forest ecosystems of Turkey. The

intersection points of the grids were selected as the centre points of the 50 m × 50

m plots. Four different points were determined having 25 m from each other, follow-

ing cardinal compass directions, (i.e. north, south, east and west). At each of these

4 points, MFWA field crews measured the diameter of six representative or domi-

nant trees in 2008 and 2013. The Ministry of Forest and Water Affairs measurements

cover only dominant trees in each plot area. Unfortunately, forestry is mostly related

to dominant trees in Turkey, not to the understorey. This leads underestimation of the

primary production of other plant species in the area. Calculation protocol of NPP

in a plot area includes, aboveground tree carbon, belowground tree carbon, litter fall,

dead woods and soil carbon. Since there was not any information about understorey

vegetation, it was not possible to include them to the calculations. It is also important

to note that in some cases, it was not possible to record the same trees due to tree

mortality in five-year period between two measurements.

1.6 Climate Data

All meteorological measurements are obtained from Turkish State Meteorological

Service (TSMS). Data cover daily and monthly measurements between the years 2000

and 2015. The TSMS has over 1100 measurement points over Turkey (Figure 1.5).

However, not all climate variables are measured at all stations. Moreover, there are

missing data among measurements. The climate variables were used to create stress

coefficients, as a mitigation factor for the LUE of each ecosystem. Three variables

were used for the study, monthly mean temperature, monthly total solar radiation

and monthly total precipitation. Surface maps of all three variables are created for

each month between 2008 and 2013 using "IDW" (Inverse Distance Weighting) in-

terpolation techniques in ArcGIS. IDW is used to acknowledge the importance of the

original measured values at the meteorological stations.
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Figure 1.5: Climate variables measurement stations over Turkey (TSMS, 2016 [2],

https://www.mgm.gov.tr/).

1.7 Satellite Data

In this study three different MODIS data sets with 1km spatial resolution were used

as remote sensing data. MODIS MOD17A3 NPP product was used to evaluate the

success of a global model with respect to field measurements and MOD13Q1 16 days

vegetation indices product was used to create NDVI ratios between land cover types.

Finally, MOD13A3 (Figure 1.6) product NDVI (Normalized Difference Vegetation

Index) was used as an input to CASA model. MODIS NDVI data is provided as

integers which ranges between -3000 to +10000. This data is multiplied by 0.0001 to

scale the data between -3 to +1.
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Figure 1.6: MODIS MOD13A3 Vegetation indices product (2008 May NDVI map).

1.8 Land Cover Data

The European Union’s European Environment Agency (EEA) land cover (LC) data

CORINE (Coordination of Information on the Environment) with a resolution of 250

m× 250 m is used for this study (Figure 1.7). The CORINE data represents the Earth

surface using five different land cover classes, (i) artificial areas, (ii) agricultural areas,

(iii) forest and semi-natural areas, (iv) wetlands, (v) water bodies. However, since the

field data only covers forest ecosystems and the aim of the study is to calculate the

NPP of forest ecosystems only, CORINE class of "forest and semi-natural areas" was

divided into forest areas and semi natural areas. As a result, all calculations were

done based on 6 (six) different land cover types.
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CHAPTER 2

EVALUATION OF A GLOBAL NPP MODEL RESULTS: A CASE STUDY OF

MODIS MOD17A3 NPP PRODUCT OVER TURKEY’S FOREST

ECOSYSTEMS USING FIELD DATA

2.1 Introduction

Remotely sensed imagery can be used to model current and future conditions of nat-

ural (i.e. forest) and man-made (i.e. agricultural lands) vegetated areas, using prod-

ucts such as vegetation index (VI) and fraction of photosynthetically active radiation

(FPAR), thereby enabling estimations of net primary productivity (NPP) (Zeng et

al., 2007 [80]; Goetz et al., 1999 [15]; Potter et al., 1993 [51]). Although MODIS

(MODerate resolution Imaging Spectroradiometer) sensors have coarser spatial res-

olution compared to other sensors (e.g. Landsat (Land Remote Sensing Satellite),

SPOT (Satellite Pour l’Observation de la Terre – Satellite for Observation of Earth),

etc.), it has high temporal (daily, 8-days, 16-days, monthly and yearly products)

and spectral resolutions (2 bands for 250 m, 5 bands for 500 m and 29 bands for

1 km). These properties of MODIS allow scientists to create finer scale products

such as NPP products with 500 m resolution. (https://modis.gsfc.nasa.gov). In this

aspect, MODIS provides many data and modelling opportunities for the analysis

of natural ecosystems (Zeng et al., 2007 [80]; Running et al., 1999b [62]; Prince

and Goward,1995 [53]) including marine ecosystems. Currently, the near real time

MODIS GPP/NPP (gross/net primary productivity) is one of the most used products

for global and regional studies (Pachavo and Murwira, 2014 [47]; Heinsch et al.,

2006 [24]; Zhao et al., 2005 [78]). Its algorithm relies on basic light use efficiency

(LUE) models (Ahl et al., 2004 [3]; Heinsch et al., 2003 [23]; Gower et al., 1999 [17];

Monteith and Moss,1977 [40]; Monteith, 1972 [39]), which state under optimum con-
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ditions the productivity of a plant is proportional to the quantity of absorbed light. The

algorithm is known to under-estimate NPP in areas with high productivity, and over-

estimate NPP in areas with low productivity (Turner et al., 2006 [70]). MODIS NPP

uses globally modelled climate data from NASA (National Aeronautics and Space

Administration) (Zhao et al., 2005 [78]; Heinsch et al., 2003 [23]). The resolution of

the climate data is 1.00o × 1.25o. It may be used with acceptable results at the global

scale, but it can show poor results with local data (Zhao et al., 2005 [78]). Although

this can be mitigated with spatially enhanced coarse resolution climate data o work

with 1 km× 1 km MODIS images, the results can be misleading for predicting coun-

try and local scale temporal and spatial differences (Neumann et al., 2016 [42]; Zhao

et al., 2005 [78]). To quantify and decrease these errors, evaluation of the product

is required for multiple biome and climate types (Turner et al., 2006 [70]; Ahl et al.,

2004 [3]). This is a challenging issue due to uncertainties in scaling plot level data to

1 km × 1 km MODIS pixel as well as the heterogeneity of land cover types within a

pixel (Heinsch et al., 2006 [24]; Turner et al., 2006 [70]; Turner et al., 2004 [69]; Zhao

et al., 2005 [78]). Turner et al. (2006) [70] performed the most comprehensive eval-

uation for the MODIS GPP/NPP product mostly in North America. They used tower

measurements to model flux tower measurements of GPP and NPP, which were then

scaled to 5 km × 5 km area using Landsat images to match better with the MODIS

footprint. Turner et al. (2006) [70] found that, the MODIS NPP estimate was related

to FPAR estimate, and suggested that the largest errors were due to estimated error in

plant respiration. Evaluation of coarse resolution NPP product is generally done using

one of the following methods. The first one is creating a new NPP model (based on

flux tower data, long term inventory data, etc.) for the study area using finer resolution

images to decrease uncertainties between coarse resolution pixels and field data (Pot-

ter et al., 2012 [50]; Gebremichael and Barros, 2006 [14]; Turner et al., 2006 [70];

Turner et al., 2004 [69]; Kimbell et al., 2000 [29]; Running and Hunt 1993 [61]). The

new model is then compared with global models such as the MODIS NPP product.

The second method aims to improve the global model (i.e. MODIS NPP product) by

using local data sets such as climate and land cover data (Yu et al., 2009 [77]) and

then the improved model is compared with the global model. In both cases, the mod-

els must reflect the study area with a high accuracy and its accuracy can be measured

using field data sets. The process is complicated by the fact that NPP cannot be mea-
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sured directly in the field, as it is the difference between two large carbon fluxes of

GPP and autotrophic respiration (Clark et al., 2001 [6]). Instead biomass is measured

at two points in time, combined with species-and-area specific allometric coefficients

(Jenkins et al., 2003 [28]) to estimate NPP. For this reason, creating a reliable forest

database, using tree and plot level measurements help in improving estimates of for-

est NPP (Clark et al., 2001 [6]); in turn improving the evaluation of remote sensing

based NPP products. The main goal of this chapter is to upscale forest measurement

data obtained from the Ministry of Forest and Water Affair (MFWA) of Turkey, and

to evaluate the MODIS NPP product for the forest ecosystems in Turkey. In this

study, a new approach was used to find the contribution of each land cover type to

respective MODIS pixels for evaluation of the NPP product. Turner et al.(2004) [69]

applied a similar approach to extrapolate plot measurements to a larger scale but their

extrapolation was done within homogeneous area. Here, the most challenging part

of the evaluation process is to determine the NPP contribution of the forest areas to

each MODIS pixel, which is the result of different land cover (LC) types. This is

the first effort to evaluate the MODIS NPP for Turkey. This is important as the flux

towers and filed biomass data used for model evaluation are typically either located

in developed countries (e.g. Western Europe or USA (The United States of America))

or in particular ecosystem of interest (e.g. tropical forests), potentially introducing a

bias into the NPP estimates for other regions.

2.2 Materials and Methods

2.2.1 Field Data

All field data were obtained from MFWA (Ministry of Forest and Water Affairs).

MFWA plot determination protocol is based on the International Co-operative Pro-

gram on Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forest)

Level 1 protocol (ICP, 2016 [27] (ICP Forest Manual)). Each sampling point covers

50 m by 50 m area having 16 km between each others. Four different points were

determined at a distance of 25 m from the centre point following cardinal compass

directions (i.e. north, south, east and west) (Figure 2.1).
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Figure 2.1: Schematic diagram of the field plot sampling design (MFWA, 2013).

In this study three different methods were used to calculate aboveground NPP from

the raw field measurements: (i) ministry (MFWA) provided coefficients (MC) from

Asan (1995) [4], (ii) published allometric coefficients from Jenkins et al. (2003) [28]

(JC), a widely cited compendium of North American tree growth equations, and (iii)

annual expected increment (AEI). The first two methods (MC and JC) derive NPP

using two different years’ measurements (2008 and 2013) whereas the AEI method

uses the MFWA-provided "expected increment" under optimum conditions by diam-

eter class. In our analysis, for the MC and JC methods, the same trees within the same

plot were always selected, i.e. trees those died between 2008 and 2013 inventories

were excluded from the calculations. Firstly, total amount of NPP was calculated for

the years 2008 and 2013 for the same trees in the same plot. Secondly, total NPP of

each plot area was calculated for 2008 and 2013 by using number of trees per ha for

each plot. Finally, NPP values of 2013 and 2008 were subtracted to get total NPP
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produced during that 5 years.

i. Ministry Coefficients (MC) NPP Calculation

After the selection of the same trees, all DBH (Diameter at Breast Height) val-

ues were converted into above ground bole volume (V) using a DBH-volume

table (Table 2.1). This table was generated by MFWA by considering species,

age, location and closeness of the forest. This table shows the corresponding

volume of each tree species with respect to their DBH values. It also gives the

growth expectance of each tree species under optimum conditions according to

the given DBH values. In this table "Tree species" is the species codes used

by the MFWA. Average DBH is the mid-point of the minimum and maximum

DBH. V is aboveground bole volume. In DBH-volume table Annual Expected

Increment (AEI) shows the increment to be expected for each tree species ac-

cording to its DBH range under optimum conditions. It was driven from min-

istry DBH-volume table (Table 2.1). These bole volume values were then used

to estimate total above ground biomass using equation (2.1) and (2.2) (Asan,

1995 [4]). The DBH-volume relation was also modelled using a linear regres-

sion method to avoid stair-step effect. However, this model did not change the

results significantly.

ABL = V(m3)× 0.541× 1.310× 1000 (2.1)

ANL = V(m3)× 0.446× 1.212× 1000 (2.2)

where ABL and ANL are total aboveground biomass (kg) for broadleaf and

needleleaf trees respectively; V (m3) is above-ground bole volume calculated

for each tree using DBH-volume table; 0.541 and 0.446 are conversion coeffi-

cients from above-ground bole volume to aboveground bole biomass and 1.310

and 1.212 are coefficients to expand the aboveground bole biomass into total

aboveground biomass (ton (t)) including branches for broadleaf and needleleaf

trees respectively. The multiplier ‘1000’ is used for conversion to kg. These

coefficients were calculated by the MFWA (Asan, 1995 [4]), considering the
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basic structures and conditions of the forest types and tree species of Turkey’s

forest ecosystems.

ii. Jenkins Coefficients (JC) NPP Calculation

Jenkins et al. (2003) [28] derived allometric equations, the relation between

growth in biomass and body parts (root, bole) of an individual plant (Niklas,

2004 [43]), for hardwood and softwood tree species in the United States. Each

major group was also divided into sub-groups according to tree structures. Co-

efficients for allometric equations were created for each sub-group. Since tree

species in Turkey differ from those in USA, coefficients from the same tree

genera were instead used. Aboveground biomass was then computed based on

these genus-specific coefficients.

iii. Annual Expected Increment (AEI) Approach

Coarse resolution climate data may reflect the climate averages of a study area

but do less well at capturing local seasonal extremes. This may cause the model

to predict close to the expected production under optimum conditions, but not

seasonal extreme conditions. For this reason, annual expected increment for

each tree species for a given area was also calculated using field data (Table

2.1). AEI shows the expected increment of each tree under optimum climate

condition for a year, based on its current DBH. These values were calculated

by the MFWA, considering the geographical location, closeness of the forest

areas, climate conditions of the area and basic properties of the tree species

(i.e. age, structure). Table 2.1 is an example for ministry DBH-volume tables,

where DBH is Diameter at Breast Height, V is the Above Ground Bole Volume

and AEI is Annual Expected Volume Increment for the given tree species.
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2.2.2 Calculation of Total Above Ground Carbon and Mean Plot Carbon

Calculated TAGB (kg), using all three methods, was converted to above ground car-

bon (AGC) (kgC). Although, a universal coefficient can be applied for most plant

types (FAO, 2015 [11]; Ahl et al., 2004 [3]; Gower etal., 1997 [16]; Landsberg et

al.,1997 [33]), different coefficients (0.48 for broadleaf trees and, 0.51 for needleleaf

trees) were used here, as both the MC and JC approaches consider the trees according

to their leaf structures and wood types. After calculating the carbon in each measured

tree, using each method, the average carbon pool within respective plot areas was

calculated by equation 2.3.

Cmean =

∑n
k=1

n
(2.3)

where Cmean is the mean carbon among the measured trees (kgC), T is the tree and

n is the total number of measured trees within a plot. The aim to calculate mean tree

carbon among measured trees is to find average carbon production of any tree in a

given plot. Then, total carbon produces by living trees in each plot can be calcu-

lated by multiplying this value with number of trees per ha (kgC ha−1) obtained from

MFWA. These values then can be converted to kg carbon per m2 after adding other

carbon pools in a forest. MODIS NPP product includes three basic carbon stocks,

(i) carbon fixed by living tissues (steams, branches, leaves, roots), (ii) carbon in dead

parts (dead foliage (above ground litter fall), dead wood), and (iii) soil carbon (He et

al., 2012 [21]; Heinsch et al., 2003 [23]). After calculation of above ground biomass

using three different methods (MC, JC and AEI), dead foliage and soil carbon were

added using pre-determined ministry coefficients. Malhi et al., 2011 [36] give the

relation between NPP and the carbon pools stated above for many accepted NPP

models. CASA (Carnegie-Ames-Stanford Approach) model, for example, accepts

each pool as 0.33 of NPP. However, ministry coefficients were based on the structure

of the tree and the closeness of the forest (Table 2.2), and they were considered as

more suitable for the study. Moreover, it is stated that these coefficients include all

carbon pool including fine root turnover. It is important to use area specific coeffi-

cients to increase the accuracy. Finér et al., 2011 [13] and Liu et al., 2004 [35] showed

the difference in production in different ecosystem in fine root production and above
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ground litter fall, respectively. Dead wood carbon, on the other hand, was calculated

using one coefficient (0.01) for all types of ecosystems. This coefficient was used

to consider the dead wood biomass (mortality) as one of the carbon pool (He et al.,

2012 [21]; Asan et al., 1995 [4]).

2.2.3 MODIS Data

MODIS MOD17A3 NPP product is an annual 1 km × 1 km spatial resolution data

product. It uses monthly intervals to calculate total annual production. Basic inputs

for the product, other than the satellite images, are climate data sets from NASA

Data Assimilation Office (DAO-NASA) and MODIS land cover product (Zhao et al.,

2005 [78]; Heinsch et al., 2003 [23]). For this study, the MODIS NPP product was

downloaded from the University of Montana database system (ftp://ftp.ntsg.umt.edu).

These data are rectified for cloud contamination, climate grid consistency with the

original MODIS images, improved biome parameters look-up table and quality as-

sessment control (Zhao et al., 2005 [78]). MODIS NDVI (Normalized Difference

Vegetation Index) products were downloaded from NASA-EODIS (http://reverb.echo.-

nasa.gov/reverb/redirect/wist). All images were converted into the standard geo-

graphic coordinate system, Geographic Latitude/Longitude, WGS84 (World Geodetic

System 1984) datum, using the MODIS Reprojection Tool (MRT) to have a common

coordinate system with the MFWA filed data.
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2.2.4 Determining the Contribution of Forest NPP to Each MODIS Pixel

Previous studies have found that image spatial resolution, land cover type (Heinsch et

al., 2003 [23]; Thomlinson et al., 1999 [67]) within a pixel, and algorithm uncertainty

associated with LUE, and FPAR are significant source of uncertainty in the calcula-

tion of MODIS NPP (Turner et al., 2006 [70]). These three components are also con-

sidered to drive differences between ground-based/flux towers, NPP measurements,

and satellite based estimations (Donmez et al., 2011 [8]; Running et al., 1999a [60]).

For the evaluation of the MODIS data using ground-based measurements performed

here, the first two of these components, spatial resolution and heterogeneous land

cover, were carefully considered to decrease the uncertainties during the upscaling.

A key problem in upscaling the field NPP measurements to the scale of a MODIS

pixel was to determine the mix of nearby land-cover types. As a result, the calculated

NPP is the function of those land cover types. Thus, first, each CORINE land cover

type in a 1 km × 1 km MODIS NPP pixel was recorded to its corresponding min-

istry plot point to determine the total contribution of each land cover to MODIS NPP.

Net primary productivity (NPP) of each pixel was calculated monthly, and summed

to an annual product (Zhao et al., 2005 [78]; Heinsch et al., 2003 [23]). For a given

MODIS pixel, for example, the NPP contribution will be zero from the agricultural

areas but nonzero from forested areas. However, for the growing season, the agricul-

tural contribution might be more than that from any other land cover type. Because of

this effect, it is important to understand the changes of the NPP contribution of each

land cover types during the year. Although NDVI was used to estimate the satellite

based NPP (Zhao et al., 2005 [78]; Turner et al., 2004 [69]), inter-annual variations

may affect the relation between NDVI and NPP (Zhao et al., 2005 [78]; Briggs et al.,

1998 [5]). However, to decrease the heterogeneity within a pixel area and be con-

sistent with the CORINE data, 250 m × 250 m (Figure 2.2) 16 day MODIS NDVI

dataset (MOD13Q1) was used to create a ratio among the LC types. In order to calcu-

late these ratios, first MODIS NDVI values were summed up to calculate total annual

NDVI, and then 10000 random points were selected within Turkey’s geographical

area. Because the seasonal and geographical variations may alter the annually calcu-

lated NDVI-NPP relationships (Zhao et al., 2005 [78]; Briggs et al., 1998 [5]), the

study area was divided into 4 different zones according to the climatological prop-
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erties (i.e. mean annual temperature (MAT), mean annual precipitation (MAP)), and

natural vegetated areas using Evrendilek and Berberoglu (2008) [9] (Figure 2.3). An

NDVI ratio for each land cover type during each year was then calculated for each

zone using random points. Next, the total effect of the forest in that particular pixel

was calculated as a function of LC and NDVI ratio using equation 2.4.

PF = (PM/((RU × NU) + (RA × NA) + (RF × NF )+

(RS × NS) + (RL × NL) + (RW × NW )))×NF
(2.4)

where PF is the forest net primary productivity within a pixel, PM is NPP from

MODIS product, RU ,RA,RF ,RS,RL,RW are the NDVI ratios of artificial, agricul-

tural, forest, semi-natural, wetland and water areas, respectively. NU ,NA,NF ,NS,NL,

NW are the number of the pixels of artificial, agricultural, forest, semi-natural, wet-

land and water areas, respectively in one MODIS pixel according to CORINE LC

data. As the main goal of the study is to validate MODIS forest NPP estimation, the

forest ratio was defined as "1" and other land cover types were calculated relative

to this constant value. The calculated forest NPP values were then used to evaluate

MODIS product using field data.

2.2.5 Statistical Analysis

After calculation of the forest NPP contribution to each MODIS pixel, a simple linear

regression (SLR) model was applied using the R statistical software (Version 3.3.2) to

find the correlation between MODIS forest NPP and field forest NPP. The contribu-

tion of forest in a MODIS pixel was considered as equivalent to the forest field NPP.

Because, after the calculation, the contribution is found in kgCm−2, which refers to

its productivity to a square meter, regardless of where the forest is in that pixel. Fur-

thermore, the ministry plots are assumed to be exactly in a forest area. TheR2, RMSE

(Root Mean Square Error) and intersection of the model with respect to a hypothetical

perfect (1:1) model were evaluated.

28



Figure 2.2: The CORINE Land Cover Map for Turkey (EEA, 2006 [1]).

Figure 2.3: Regions of the study area used to calculate the NDVI ratios described in

the text. Altered from original according to Evrendilek and Berberoglu (2008) [9].
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2.3 Results

2.3.1 NDVI Ratio

All calculated NDVI values for each year and for the period of 2008-2013 were com-

pared with respect to the regions in order to evaluate the regional differences. The

results do not show any significant change for temporal variation; no significant dif-

ference were observed between individual years. However, differences between the

regions (Figure 2.4) are statistically significant and therefore they are considered dur-

ing the evaluation process (Table 2.3).

Figure 2.4: Regional NDVI ratio vs. Turkey’s overall NDVI ratio. AEG-MED,

CANA, Mid-EBS and WBS-MAR is; Aegean and Mediterranean, Central and east-

ern Anatolia, Mid and eastern Black Sea and West Black Sea and Marmara regions,

respectively.
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2.3.2 Comparison of MODIS NPP with Field NPP

i. Ministry Coefficient (MC) Method

Average MODIS forest NPP was calculated as 0.74 kgCm−2 (5years)−1 (0.148

kgC m−2 year−1) for the region of Aegean and Mediterranean,1.07 kgC m−2

(5years)−1 (0.214 kgCm−2 year−1) for Central and Eastern Anatolia, 0.8 kgC

m−2 (5years)−1 (0.16 kgC m−2 year−1) for the region of Middle and Eastern

Black Sea and 1.2 kgC m−2 (5years)−1 (0.24 kgC m−2 year−1) for the re-

gion of West Black Sea and Marmara. Aegean and Mediterranean region and

Central and Eastern Anatolia regions showed the best and the least agreements

between MODIS and field forest NPP respectively (50%, 15%). The low cor-

relation between MODIS NPP and field forest NPP for Central and Eastern

Anatolia region might be the result of having less number of measurements

over this area. It should be noted here that, the lack of measurements is not

only due to the number of the plot measured by the ministry, but also due to

the selection process explained in section 2.2.1. MODIS forest NPP showed

34% agreement with field forest NPP over the entire study area. However, as it

can be seen in Figure 2.5, there is significant variability in the relation (RMSE

= 1.51 kgC m−2 (5years)−1), suggesting a high potential for estimation er-

ror of MODIS NPP values over areas with high geographical and inter-annual

changes (Zhao et al., 2005 [78]). On the other hand, there is a clear relation

(R2 = 0.34) between field data and MODIS NPP estimation, although average

MODIS NPP values are twice as large as field values (Figure 2.5), which can

be the result of the bias in model and/or parameters used to estimate MODIS

NPP.
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ii. Jenkins Coefficient (JC) Method

Jenkins method (Jenkins et al., 2003 [28]) used in this study was developed for

the tree species of Northern America. Although the genus is the same, the dif-

ference in species may create errors. JC based NPP was tested with MC based

NPP to understand how well the coefficients can reflect the reality over Turkey’s

forest ecosystems. The NPP based on the JC coefficients method showed good

agreement (R2 =0.76, RMSE = 0.39 kgCm−2 (5years)−1) with ministry based

NPP (Figure 2.6). JC based calculated NPP compared with MODIS forest NPP

(Figure 2.7), resulted in relatively lower correlation (R2 = 0.31). The root mean

square error (RMSE) of this regression (JC vs MODIS) shows a variation close

to the MC based calculation with respect to the regression line (RMSE =1.77

kgC m−2 (5years)−1).
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iii. Annual Expected Increment (AEI) Method

Many studies indicate that, MODIS NPP product can be used to understand

general conditions of the globe (Zhao and Running, 2010 [79]; Zhao et al.,

2005 [78]; Heinsch et al., 2003 [23]). However, it cannot reflect the actual

conditions at the country and local scale, especially for the areas having abrupt

geographical and climatic changes (Neumann et al., 2016 [42]; Zhao et al.,

2005 [78]). Due to this reason, MODIS NPP product has a higher correlation

with AEI compared to the actual conditions (Figure 2.8). Moreover, it has

relatively low residual error (RMSE = 0.26 m−2 year−1) with respect to the

actual NPP values.

Figure 2.8: MODIS 2009 NPP vs. AEI 2009. A best-fit regression line (R2 = 0.48,

RMSE = 0.26 m−2 year−1, Regression Function = 0.08995 + 0.58542(AEI NPP)) is

shown with a shaded error region. AEG-MED, CANA, Mid-EBS and WBS-MAR is;

Aegean and Mediterranean, Central and eastern Anatolia, Mid and eastern Black Sea

and West Black Sea and Marmara regions respectively.
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2.4 Discussion for the results

In this chapter, MODIS NPP product was evaluated for the forest ecosystems in

Turkey. The analysis showed that MODIS NPP has a higher correlation with AEI

(R2 =0.48, slope = 0.58). However, it reaches a certain saturation point (Figure 2.8).

This saturation might be the result of the climate data used to create BPLUT (Biome

Parameters Look-Up Table) as a model input (Zhao et al., 2005 [78]). MODIS uses a

BPLUT table as a scalar to mitigate certain input variables such as LUE, specific leaf

area, leaf longevity (Heinsch et al., 2003 [23]). This scalar changes within a range

from 0 to 1 and it may cause the final product to reach a saturation point for certain

areas. The saturation effect might also be related to differences in stand density. In a

closed stand the dominant trees assessed by the field crews probably well cover forests

NPP. In an open stand with shrubs, grass and young trees, the mismatch between field

NPP and MOD17 NPP is probably larger (Neumann et al., 2016 [42]). Although there

are many saturation point in all parts of the study area, this is mostly common in re-

gions with relatively less vegetative variability such as Northwest Turkey and Central

and eastern Anatolia. Northwest Turkey is richly covered by the dense forested area

but with relatively less diversity. The BPLUT may be the most significant reason for

the saturation of MODIS NPP in this area. However, Central and eastern Anatolia

has less forest areas and most of them are not closed stands. Since ministry does

not measure the understorey plants in a forest area, this may result in the saturation

of MODIS NPP mentioned in this section. In most cases, MODIS has higher NPP

values than the field NPP calculations. These differences may be the results of (i) the

errors in the field data, and (ii) regional accuracy of input data used in the MODIS

algorithm and (iii) mismatching of actual conditions of the area with remotely sensed

data used in the evaluation process such as land cover data and (iv) effects of coarse

resolution climate data. In this study, forest field data from the Ministry of Forest

and Water Affairs of Turkey were used. Field data includes DBH measurements of

two different years (2008 and 2013). First, the ministry measurement protocol is not

well known, (i.e. which side is the ground level for a tree on a hill, which compass

direction the tree is measured) and both measurements and recordings are subject to

human error. Second, the quality and the quantity of the field data as model input, has

a great effect on the result, and selection of the same trees decreases not only number
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of the measured trees but also number of the sampled plots. Finally, the ministry only

measures dominant trees within a plot. Understorey vegetation is not included to any

of the plot measurements. This may result in estimating NPP less than actual amount.

One of the basic inputs for the NPP products is land cover data. MODIS MOD17A3

NPP product uses global land cover data MOD12Q1 (500 m× 500 m) (Heinsch et al.,

2003 [23]). The MODIS land cover product shows high (65-80%) accuracy especially

in large homogeneous areas (Heinsch et al., 2006 [24]; Hansen et al., 2000 [19]). Al-

though this might be correct for global studies, MODIS products may not have the

same accuracy at regional scales. For example, the land cover product of MODIS

(MOD12Q1), an input to the NPP algorithm has certain misclassification errors over

Turkey (e.g. deciduous needleleaf forest and savannahs) (Evrendilek and Gulbeyaz,

2011 [10]), which can affect LUE directly as well. The CORINE land cover data was

used for the study, to minimize the errors due to the land cover changes in a 1 km× 1

km MODIS pixel. However, not all ministry forest plot points are classified as forest

areas in the CORINE data, and these points were excluded from the data set. This

situation was found when comparing the MODIS land cover product and field data,

even for higher number of plots. This situation causes a misestimation of MODIS for-

est NPP for Turkey, and thus error in calculating the forest NPP contribution for each

MODIS pixel. CORINE is a European Union based data set, and thus its model has

a smaller region with respect to the MODIS land cover product (a global model). As

stated above, global models tend to misestimate local properties especially in areas

with abrupt physical changes; a prime example of this is the MODIS’s misclassifica-

tion of deciduous needleleaf trees in Turkey. Thus many mismatching properties and

estimation were identified over Turkey, not only with respect to MODIS data set but

also with respect to actual on-the-ground data. The other obvious mismatch with the

CORINE data is related to the NDVI ratio. As can be seen from Table 2.3, Middle

and Eastern Black Sea region’s NDVI ratio for water surfaces and wetlands are higher

than expected. It was thought that three main reasons might cause this problem. First

of all, misclassification of the CORINE land cover product. Second, the spatial res-

olution of the land cover product. If a pixel was mostly covered by water, it would

be assigned as a water surface although the rest is forest or any other land cover type.

Since the closeness of the forested areas in this region is higher than the other (>75%)

this may affect the NDVI values of these areas. Third and most probable reason is
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the high density of the green vegetation over the water surfaces during the vegetative

period.

Finally, the coarse resolution climate data (1.00o × 1.25o) may create bias since each

pixel is the average of covered area. For instance, if a pixel covers a sea and a moun-

tain area together, the condition in both areas would be altered from both sites con-

dition. Moreover, it is important to emphasize that all climate data, used in MODIS

NPP product, are assimilated data not measured (Zhao et al., 2005 [78]; Heinsch et

al., 2003 [23]).
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CHAPTER 3

UNDERSTANDING AND MODELLING NET PRIMARY PRODUCTIVITY

(NPP) OVER SEMI-NATURAL AREAS:

A CASE STUDY OF CASA MODEL FOR TURKEY’S FOREST

ECOSYSTEMS

3.1 Introduction

One of the basic accuracy problem of the global NPP models, such as MODIS MOD17-

A3 NPP product, is the accuracy of the input data. Global models mostly use global

data sets as input parameter (i.e. land cover maps). Moreover, the input data used to

estimate NPP might be assimilated datasets, not the measurements, such as climate

data used in providing MOD17A3. Turkey is one of the countries, having many dif-

ferent eco-regions. These regions are the results of abrupt geographical and climatic

changes. Because of this richness in ecosystem, global models mostly have low ac-

curacy over Turkey such as MODIS land cover and NPP (Net Primary Productivity)

product. MODIS land cover product have 85% consistence only over large homo-

geneous areas (Heinsch et al., 2006 [24]; Heinsch et al., 2003 [23]). For example,

MODIS land cover product misclassified some areas as deciduous needleleaf forest

and savannahs over Turkey. In addition, MODIS NPP product also has low accuracy

(R2 = 0.34) over Turkey’s forest ecosystem. Using local data, such as meteorological

measurements, to improve the accuracy of a model is a widely used approach. In this

part of the study, CASA (Carnegie Ames Stanford Approach) NPP model was used to

estimate net primary productivity over Turkey. CASA NPP model uses basic princi-

ple presented by Monteith (1972) [39]. This approach suggests that, the productivity

of a well irrigated cropland is linearly related to the quantity of incoming solar radi-

ation. However, this approach is valid only for optimum conditions. To reflect the
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actual conditions, stress coefficients are added to the equation as mitigation factors

(Equation 3.1).

NPP = APAR× LUE × Tε1 × Tε2 ×Wε (3.1)

where NPP is Net Primary Productivity, APAR is Absorbed Photosynthetically Active

Radiation and LUE is the Light Use Efficiency. Tε1, Tε2 and Wε are temperature ef-

fects at very high and low temperatures, temperature stress above and under optimum

temperature, and water stress factor respectively (Potter et al., 1993 [51]).

In this part of the study;

i. NPP of Turkey’s forest ecosystems was tried to be explained using local data

as input variable to CASA NPP model.

ii. The accuracy of the CASA model was tried to be improved based on the basic

adaptation process of the plants.

It should be noted here that, no-changes on the formulation of the model was made.

However, a new approach was tried for the calculation by means of data usage. In this

study, CASA (Carnegie Ames Stanford Approach) was used as the base NPP model

and two different APAR calculation methods (based on Potter et al., 1993 [51]; and Yu

et al., 2009 [77]). Previously, in many studies scientist tried to estimate NPP of differ-

ent land cover types (especially natural areas) using different modelling approaches

(Yu et al., 2009 [77]; Zhao et al., 2005 [78]; Haxeltine and Prentice, 1996 [20]; Run-

ning and Hunt, 1993 [61]; Potter et al., 1993 [51]; Parton et al., 1993 [48]; Ruimy et

al., 1996 [57]). Most of these studies created new models to explain NPP, and their

findings are close to each other’s (Cramer et al., 1999 [7]). Yu et al. (2009) [77],

on the other hand presented a new calculation approach implemented to CASA NPP

model to improve the accuracy. The ideas behind their modelling are (i) to calculate

APAR (Absorbed Photosynthetically Active Radiation) directly from NDVI (Norma-

lized Difference Vegetation Index), not from pre-determined aggregated ecosystem

groups and their coefficient (Potter et al., 1993 [51]; Sellers et al., 1996a [65]; Sellers

et al., 1996b [66]). This study presents a new calculation approach to improve the

accuracy of CASA NPP model. It should be noted here that, the contribution of the
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study is not changing the equations but the understanding of natural process and by

that means, changing the selection of the suitable data sets for the model.

3.2 Materials and Methods

3.2.1 Remote Sensing Data

MODerate resolution Imaging Spectroradiometer (MODIS), MOD13A3 MODIS/Terra

Vegetation Indices 16-Day L3 Global 1 km SIN Grid V006, images were used for the

study (Figure 3.1). 1 km resolution was used because (i) the study covers all forest

area of Turkey, (ii) 1 km resolution is compatible with MODIS global NPP product

(MOD17A3). The MODIS data uses an integerized coordinate structure and Hierar-

chical Data Format (HDF) extensions. All data were converted into geotiff file format

and latitude/longitude coordinate system with WGS84 datum, using MODIS repro-

jection tool (MRT). The latitude/longitude coordinate system was selected to have a

common format with the ministry data.

3.2.2 Meteorological Data

The meteorological data used for the study were obtained from Ministry of Forest

and Water Affairs (MFWA) Turkish State Meteorological Service (TSMS) division.

TSMS in average has over 300 and 200 measurement points for temperature and

precipitation, respectively (Figure 3.2 - 3.3) data and between 65 and 80 points for the

solar radiation data. All meteorological measurements are in monthly intervals and

cover the years between 2008 and 2013. We used IDW (Inverse Distance Weighted)

interpolation method to create surface maps for the meteorological data. IDW was

chosen to acknowledge the importance of the measurements.

3.2.3 Calculation of Field NPP

Field NPP values were calculated using ministry measurements for each plot. First of

all DBH values were converted into volume values using ministry DBH-volume table.
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Figure 3.1: An example to MODIS MOD13A3 image. 2009 January NDVI image of

the area (https://www.nasa.gov/).

Then using these volume, biomass of each tree was calculated based on ministry

coefficients. Finally, carbon content of each tree was calculated. After calculation of

the NPP of each tree, these values were averaged to find the average carbon stock of

any tree within a plot area.

Ministry of Forest and Water Affairs of Turkey general administration structure has

many sub-sections such as regional managements and chieftaincies. Each chieftaincy

has the information about number of trees per hectares. Using this information, total

NPP over a hectare was calculated in the units of tones carbon. Then these results

were converted into kilogram carbon per square meter (kgCm−2). It should be noted

here that, it is not possible to measure NPP directly (Clark et al., 2001 [6]). All the

calculations are based on hypothetical approximations using measured quantities.

The calculation of field NPP only covers the forested areas. The MODIS pixels,

on the other hand are the composition of many land cover types. To overcome this

mixed pixel problem, an NDVI based ratio was used to calculate the NPP contribution

of forested areas to each pixel. More information about calculation forest NPP can be

found in Gulbeyaz et al., 2018 [18].
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Figure 3.2: Distribution of temperature measurement stations in Turkey (TSMS).

Figure 3.3: Distribution of precipitation measurement stations in Turkey (TSMS).
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3.2.4 Calculation of APAR (Absorbed Photosynthetically Active Radiation)

APAR is calculated by the function of solar radiation (SOL) and FPAR (Equation 3.2)

(Yu et al., 2009 [77]; Potter et al., 1993 [51]). Since the solar radiation is a measured

quantity, it is important to estimate FPAR with a high accuracy.

APAR = SOL× FPAR× 0.5 (3.2)

where APAR is absorbed photosynthetically active radiation, SOL is solar radiation

and FPAR is the fraction of photosynthetically active radiation (Yu et al., 2009 [77];

Potter et al., 1993 [51]). In this study, CASA (Carnegie-Ames-Stanford Approach)

NPP model was used. Original article (Potter et al., 1993 [51]) suggest an FPAR

calculation (Equation 3.3) based on Simple Ratio (SR) (function of NDVI) and max-

imum possible values of simple ratio with respect to aggregated land cover types

classified by Sellers et al. (1996a) [65] and Sellers et al. (1996b) [66]. Same max-

imum FPAR values presented in Potter et al. (1993) [51] were used. However, the

land cover types do not exactly overlap with Turkey’s land cover. It was needed to

exclude or modify some of the LC types according to corresponding LC types over

Turkey (Table 3.1).

FPAR = min{SR/[SRmax − SRmin]− SRmin/[SRmax − SRmin], 0.95} (3.3)

where SR is simple ratio (Equation 3.4), SRmax and SRmin are minimum and maxi-

mum simple ratio, respectively. Possible minimum simple ratio is set to 1.08. 0.95 is

the upper limit value for the FPAR (Potter et al., 1993 [51]).

SR = (1 +NDV I)/(1−NDV I) (3.4)

Yu et al. (2009) [77] suggested another approach to estimate FPAR using NDVI.

According to their approach, instead of calculation of simple ratio, they calculated the

probability distribution function of NDVI values with respect to the LC types. The

statistical minimum (0.5) and maximum (0.95) of the function gives the minimum

and maximum of each LC types FPAR values. They also set a possible minimum

(0.001) and maximum (0.95) FPAR values independent of land cover types (Equation
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3.5). Finally, calculation of APAR takes place using equation 3.2.

FPAR = {[(NDV I −NDV Imin)× (FPARmax − FPARmin)]/

[NDV Imax −NDV Imin]}+ FPARmin)
(3.5)

Both methods were used to estimate/calculate APAR values of each pixel for the

study. Possible reasons of the results with respect to APAR differences were also

discussed in section 3.4.

3.2.5 Selection of Light Use Efficiency (LUE) values

Light use efficiency (LUE) (gC/MJ) is the ability to turn inorganic matter into organic

using incoming solar radiation. Previously some studies used single LUE value for

all LC types (Heimann and Keeling, 1989 [22]). However, recent studies showed

that, each plant functional types (vegetation types) has its unique LUE value related

with the tree species, climatic and edaphic conditions (Potter et al., 1993 [51]). LUE

coefficients were selected based on literature survey (Table 3.2) although it is possible

to calculate LUE values of each forest types over Turkey using ministry field data.

Calculated LUE values were not used because (i) the field data only covers forest

area and there is no information about other land cover types and (ii) the calculation

of forest NPP contribution is an approximation based on NDVI values, and it might

create uncertainties.

3.2.6 Calculation of Stress Coefficients

i. Water Stress

The water stress depresses the LUE values with respect to the aridity condi-

tion around the vegetation and it changes from 0.5 (very dry conditions) to 1

(wet conditions) (Potter et al., 1993 [51])(Equation 3.6). The calculation pro-

cess presented by Potter et al. (1993) [51], requires too many detailed input

data such as relative drying rate of the soil. Yu et al. (2009) [77], suggested

a new approach to calculate water stress (Figure 3.4) based on Thornthwaite

(1948) [68], (Equation 3.7), potential evapotranspiration (PET) model (Yu et
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al, 2009 [77]; Pereira and Pruit, 2004 [49]; Thornthwaite, 1948 [68]). How-

ever, it should be noted that, Thornthwaite PET model is valid only between

0 and 26oC and calculated for 12 hours of sunshine for a month with 30 days

(Pereira and Pruit, 2004 [49]; Thornthwaite, 1948 [68]). A regression model is

applied for the temperature values above 26oC (Equation 3.10), and for the days

with sunshine hour above or below 12 hours for the month with total numbers

of days less or more than 30, an adjustment factor must be applied (Equation

3.11).

Figure 3.4: An example of water stress (May 2009) conditions. Higher values states

less water stress.

Ws = 0.5 + 0.5× (EET/PET ) (3.6)

where Ws is Water Stress, EET is Estimated Evapotranspiration and PET is the

Potential Evapotranspiration, calculated by using Thornthwaite equations.

PET = 16× (10× T/I)α 0oC <= T <= 26oC (3.7)
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where PET is Potential Evapotranspiration, T is the temperature and I is thermal

heat index. α is a function of I (Pereira and Pruit, 2004 [49]). I and α are

calculated as shown (Equation 3.8 and 3.9) below;

I =
12∑
k=1

(0.2× Tn)1.514, Tn > 0 (3.8)

α = 6.75× 107× I3− 7.71× 10−5× I2+1.7912× 10−2× I+0.49239 (3.9)

where T is the temperature and n is the number of the month. Temperature

below 0oC is set to 0.

If the temperature becomes more than 26oC, Willmott et al. (1985) [75] equa-

tion (Equation 3.10) is used (Pereira and Pruit, 2004 [49]).

PET = −415.85 + 32.24× T − 0.43× T 2, T > 26oC (3.10)

where PET is Potential Evapotranspiration and T is the temperature. An ad-

justment factor (AF) is also added to the original equation for the days with

different than 12 hours of sunshine duration and for the months with number of

days different than 30 days (Equation 3.11).

AF = (SH ×DM)/(12× 30) (3.11)

where AF is the adjustment factor, SH is sunshine hours in a day, DM is number

of days in a month (Yu et al., 2009 [77]; Pereira and Pruit, 2004 [49]).

According to the approach presented by Yu et al. (2009) [77], EET is a function

of net solar radiation and precipitation (Equation 3.12).

EET = (PPT×SOLnet×[P 2+(R2+P+R)])/([P+R]×[P 2+R2]) (3.12)

where EET is estimated evapotranspiration, PPT is monthly total precipitation

and SOLnet is monthly net solar radiation. However, if monthly total precip-

itation is higher than the calculated PET, then EET is set to the same value as

PET (Yu et al., 2009 [77]).
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ii. Estimation of Optimum Temperature

The main goal of this study is to improve NPP estimation using CASA model.

The main structure of the modelling is the Monteith’s solar radiation based ap-

proach proposed in 1972. (Monteith (1972) [39]; Monteith and Moss (1977)

[40]) suggest that under optimum condition (a well irrigated and fertilized area),

productivity of a cropland is linearly related to the incoming solar radiation.

However, since the stress factors are more likely to occur over natural ecosys-

tems, it is important to calculate them precisely. In this study, a new approach

has been used to improve the accuracy of the temperature stress calculation.

Calculation of temperature stress for CASA NPP model is referred to the opti-

mum temperature (Topt) of the area. Optimum temperature is the function of an-

nual temperature and annual NDVI values. The temperature of the month with

the maximum NDVI values during the year is set as the optimum temperature of

the area (Yu et al., 2009 [77]; Potter et al., 1993 [51]). However, many studies

showed that (Holdridge, 1967 [26]), adaptation of a plant to temperature condi-

tions is not an annually changing process. It is a result of long term temperature

regime and adaptation of the tree to the given conditions instead. The optimum

temperature of a given area was estimated using long term monthly average

temperature values. Original model estimated different optimum temperature

for each year for a given area. The approach used in this part of the study, on

the other hand, estimates single optimum temperature value for a given area for

the study period. Here the annual temperature based on optimum temperature

was compared with long term temperature based optimum temperature. CASA

model uses two different temperature stress coefficients calculated using opti-

mum temperature of the area. The first temperature stress (Tε1) shows the effect

of extreme temperature (very high or low) on light use efficiency (LUE), and

the second temperature stress factor (Tε2) depicts LUE when the temperature is

around the optimum conditions. After estimation of the optimum temperature,

the same equations proposed in Potter et al. (1993) [51] were used, because

(i), it was a proven, widely used equation (Yu et al., 2009 [77]; Potter et al.,

1993 [51]), and (ii), in this part of the study, only the effect of the optimum

temperature estimation on the model was evaluated.
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3.2.7 Statistical Analysis

Evaluation process of the NPP estimation result of all models were compared using R

statistical computing software (Version 3.3.2). The correlation coefficients between

the models were considered for the evaluation process using linear regression mod-

els. RMSE (Root Mean Square Error), R2 were assessed for the model accuracy. A

sensitivity analysis was also used to assess the accuracy of the model with respect to

the best possible result.
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Table 3.1: Maximum Simple Ratio (SRmax) coefficients for Turkey modified from

Sellers et al. (1996a) [65] according to CORINE Land Cover Classification (2006).

CORINE Class Name
CORINE

Class Code

SRmax

Values

None Vegetated Urban

Areas
1 to 9 1.08

Vegetated Urban Areas

and Agricultural Areas
10 to 22 5.13

Deciduous Broadleaf

Forests and Mixed Forest
23 and 25 6.17

Evergreen Needleleaf

Forests
24 5.43

Grasslands and Shrubs 26 to 29 4.14

Dunes – Sands - Beaches

and Bare Rocks
30 and 31 1.08

Sparsely Vegetated

Areas
32 5.13

Burnt Areas - Glacier

and Perpetual Snow
33 and 34 1.08

Inland Marshes – Peat

Bogs – Salt Marshes
35 to 37 5.13

Salines – Intertidal

Flats
38 and 39 1.08

Water Bodies 40 to 45 9999
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Table 3.2: LUE values for the study area (Wei et al., 2017 [74]; Running and Zhao,

2015 [64]; Ogutu and Dash, 2013 [46]; Yu et al., 2009 [77]; Ruimy et al., 1999 [58];

Medlyn, 1998 [38]; Nayak et al., 2010 [41])

Vegetation Type
Light Use Efficiency

(LUE) gC/MJ

Artificial Areas 0.110

Non-Irrigated Arable Lands 0.498

Permanently Irrigated Lands 0.770

Lands Principally Occupied by Agriculture with

Significant Areas of Natural Vegetation
0.452

Agro-Forestry Areas 0.376

Other Agricultural Areas 0.573

Broadleaf Forests 0.620

Needelleaf Forests 0.506

Mixed Forest 0.563

Natural Grasslands 0.234

Moors and Heatlands and Sclerophyllous Vegetation 0.272

Transitional Woodland – Shrub 0.345

Other Semi-Natural Areas 0.210

Wetlands 0.41

Water Bodies 0.100

Minimum 0.100

Maximum 0.770
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3.3 Results

3.3.1 Calculation of APAR (Absorbed Photosynthetically Active Radiation)

APAR values of the study area were calculated based on two different approaches.

For the first approach simple ratio (SR) values were calculated in monthly intervals,

based on NDVI ratio (Equation 3.4). Calculated SRs were used to estimate FPAR

of given pixel for the given month (Equation 3.5). Modified maximum simple ratio

values proposed in Potter et al. (1993) [51] (Sellers et al., 1996a [65]) were modified

for the study (Table 3.1). The second method was proposed by Yu et al. (2009) [77],

based on probability distribution function of NDVI. This method does not require

any fixed land cover type based coefficients since all data are obtained from NDVI

values based on given land cover properties. It makes the model more suitable to

areas having various land cover. The comparisons of two models, based on more

than 3700 random points, showed that, although they have high correlation (R2 =

0.88, RMSE = 75) (Figure 3.5), Potter et al. (1993) [51] proposed model shows

better result according to the NPP calculations, if the aggregated land properties are

to define accurately. Yu et al. (2009) [77] proposed model, on the other hand, shows

higher amount of APAR values in most cases over the study area, except dense forest

cover areas. it is believed that, this might be the result of backscattering properties of

the NDVI.

3.3.2 Calculation of Stress Coefficients

i. Water Stress

Thornthwaite [68] PET equation based water stress coefficients offers a unique

calculation opportunity if the available data set is limited with the meteorologi-

cal measurements. However, it is believed that, this method underestimates the

water stress conditions especially over arid and semi-arid areas such as Turkey.

To understand the relation between water stress coefficients proposed by Yu

et al. (2009) and actual condition over the study area, a potential evapotran-

spiration (PET) and precipitation (PPT) based aridity ratio was created. First,

PET values for all meteorological stations were calculated using Thornthwaite

54



Figure 3.5: APAR calculation based on Potter et al. (1993) [51] (APARPotter) vs.

Yu et al. (2009) [77] (APARY u). R2 = 0.88, RMSE = 75 MJ/m2/month. Blue line

shows the regression line between two quantities and black line is 1:1 line. Regression

function: APARPotter = -66.478 + 0.994 × APARY u

PET equation using long term and monthly data. Second, a ratio between PET

values and precipitation values were calculated. In this point, long term and

monthly aridity ratio was obtained. However, for both conditions, it was not

possible to understand whether the aridity conditions are in plants’ toleration

range. Finally, to understand this, a ratio between long term aridity index val-

ues and monthly values were created. The results were expected to show the

deviation from the normal condition of the ecosystem (Figure 3.6).

As it can be seen in Figure 3.6, the aridity ratio shows more changes during

6 years’ period, than Yu et al. (2009) [77] proposed water stress values (mo-

delled).

ii. Temperature Stress

The main contribution of this study is to improve the accuracy of CASA NPP

model, using a new approach to estimate optimum temperature for a given area.
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Figure 3.6: CASA model (proposed by Yu et al. (2009) [77]) water stress coefficients

(modelled) vs. Precipitation and PET (Potential Evapotranspiration) ratio based arid-

ity index.

Original study (Potter et al., 1993 [51]) suggests an annual based temperature

and NDVI relation. However, adaptation of a tree (plant) to the climatic con-

dition of its environment is a long term process. The adaptation process is

not affected by the annual fluctuations. Under this assumption, long term me-

teorological measurements (temperature), and NDVI values were used for the

calculation. It was observed that, long term measurements based optimum tem-

perature estimation (Figure 3.7) has more precise result when comparing each

pixel with the neighbourhood pixels, especially for the open areas. For the

forested areas, on the other hand, the correlation between two estimations is

higher. The basic problem with the annual estimations is that, due to properties

of NDVI, the optimum conditions may occur during the cold seasons. Which

results in very low optimum temperature estimations such as minus (-) degrees

(Figure 3.8).
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Figure 3.7: Optimum temperature conditions of the area based on long term temper-

ature measurements.

3.3.3 Comparisons of NPP Results

The ability of a global model (MODIS MOD17A3 NPP product) to estimate forest

production over Turkey is 34% (Gulbeyaz et al., 2018 [18]). It was suggested that,

this result is mostly due to the input data sets such as land cover and meteorological

data (Zhao et al., 2005 [78]). In this study, first, this accuracy was tried to be im-

proved using local data sets. CASA model was chosen because of its application of

simplicity, and its wide usage.

Four different models (i) original CASA model optimum temperature approach with

APAR estimation proposed by Potter et al. (1993) [51], (ii) original CASA model

optimum temperature approach with APAR estimation proposed by Yu et al. (2009)

[77], (iii) long term optimum temperature approach with APAR estimation proposed

by Potter et al. (1993) [51], and (vi) long term optimum temperature approach with

APAR estimation proposed by Yu et al. (2009) [77] outputs were compared. All four

models use locally measured meteorological data.
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Figure 3.8: Optimum temperature conditions of the area based on annual temperature

measurements.

i. Annual based Temperature Stress

CASA NPP model was originally proposed by Potter et al. (1993) [51]. This

model is based on Monteith light use efficiency and solar radiation related ap-

proach. The key point in Monteith’s model is to understand and estimate the

factors that cause reduction effect on maximum light use efficiency (LUEm) of

the plant. LUEm is the maximum possible ability of the plant to turn the light

into organic matter. These reduction factors are mainly depending on water

availability and temperature stress. One of the assumptions of this study were

to improve accuracy of the model using local data. Results show that, usage of

local data such as meteorological variables explains the NPP over the area 35%

and 39% for APARY u and APARPotter, respectively (Figure 3.9 and 3.10).

Results state that, APARPotter based NPP estimation can explain the area with

a higher accuracy with respect to APARY u.

ii. Long Term based Temperature Stress

The main goal of this part of study is to create a new approach to improve
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Figure 3.9: NPP calculation based on annual optimum temperature using APARY u.

R2 = 0.35, RMSE = 1.92. Blue line is the regression line and black line is 1:1 regres-

sion line.

the accuracy of a NPP model. As it was stated previously, the adaptation of

a plant to an environment is a long term based process. Under this assump-

tion, optimum temperature values of the study area was estimated using long

term monthly mean temperature. Results show that, usage of long term data

improves the model accuracy from 35% to 43% for APARY u, and from 39%

to 43% for APARPotter (Figure 3.11 and 3.12).
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Figure 3.10: NPP calculation based on annual optimum temperature using

APARPotter. R2 = 0.39, RMSE = 1.4. Blue line is the regression line and black

line is 1:1 regression line.

Figure 3.11: NPP calculation based on long term optimum temperature using

APARY u. R2 = 0.43, RMSE = 1.7. Blue line is the regression line and black line is

1:1 regression line.
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Figure 3.12: NPP calculation based on annual optimum temperature using

APARPotter. R2 = 0.43, RMSE = 1.5. Blue line is the regression line and black

line is 1:1 regression line.
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3.4 Discussion for the results

This study intended to (i) improve the accuracy of a NPP model with respect to the

global model using local data and (ii) improve the overall model accuracy using a

new approach. The results prove that; the usage of local data has a significant effect

on the accuracy of the model (Table 3.3) especially for APARPotter with respect to

global models such as MODIS NPP product (MOD17A3). It is acknowledged here

that, the improvement using APARY u is not as significant as APARPotter. However,

it is believed that, this is caused by the main properties of NDVI (i.e. back scattering),

since all variables are obtained from vegetation index in this approach. Moreover, it

is believed that the main reason for the model cannot to be improved to a higher ac-

curacy is due to the mathematical formulation used to calculate stress factor (section

3.2.6). The formulas used for the stress factors are general approaches to simulate

the conditions over the globe (study area). However, they may not be suitable for

the local conditions especially for arid and semi-arid areas. Finally, the quality of

the measurements also affects the accuracy. The ministry field measurement protocol

is not known. Thus the quality and the accuracy of the measurements are in ques-

tion. To check the explainibility of the measurements, a sensitivity analysis was run.

The basic principle behind this analysis was to change some variables between their

minimum and maximum values. In this part, APAR is considered as calculated cor-

rectly. However, LUE, water stress, temperature stress (1 and 2) were changed. It

is believed that, this analysis would help to understand how much it is possible to

explain all measurements using an NPP model. The results show that; best model can

explain the field measurements with 0.51 R2 and 0.34 RMSE. Moreover, some of the

measurement points cannot be explained at all (Figure 3.13).
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Table 3.3: Accuracy of different modelling approaches.

NPP calculation R2 RMSE (kgCm2/years)

APARY u annual temperature stress 0.35 1.92

APARPotter annual temperature stress 0.39 1.4

APARY u long-term temperature stress 0.43 1.7

APARPotter long-term temperature stress 0.43 1.5

Figure 3.13: Different model coefficients to explain field measurements. Dashed

purple line shows the best fit line for the model with respect to the observations.
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CHAPTER 4

UNDERSTANDING THE SPATIO-TEMPORAL CHANGES IN NET

PRIMARY PRODUCTIVITY OVER TURKEY BETWEEN 2000 AND 2015

4.1 Introduction

Climate change has become one of the major concepts and concerns among environ-

mental scientists since last decades. The effect of climate change, especially global

warming, has a great impact on natural ecosystems. Primary productivity (PP) is

one of the key components of natural cycles to understand and create solutions to

these conditions in particular for the terrestrial ecosystems. Net Primary Productivity

(NPP), total amount of stored carbon (C) after plant respiration, can be used to mon-

itor changes in climate and their effects. It is important to understand that; such short

period is not enough to understand the effect of the climate change on the ecosystems.

However, these datasets (meteorological, land cover, NPP models) can help scientist

to understand the relation between these quantities. Many institutions such as NASA

(National Aeronautics and Space Administration) and World Meteorological Organi-

zation (WMO), reported that the last decade (2000 to 2010) was the warmest decade

since meteorological variables started to be measured instrumentally (Zhao and Run-

ning, 2010 [79]). Although it affects the productivity of ecosystems, it is also an

opportunity to understand the direct effects of global warming on the globe. Zhao

and Running (2010) [79] estimated that, there is 0.55 petagrams of decrease in total

amount of produced NPP during this period. The effects of changing climate are not

only limited factor by itself but the combination of different factors and their indirect

relations. The relation between water availability and energy determines the evapo-

ration over an area (Ragab and Prudhomme, 2002 [54]). Evaporation may decrease

with respect to decreasing energy although there is enough water in the system, or
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vice versa. Lavee et al. (1998) [34], studied the change in geomorphological pattern

and desertification on Mediterranean arid zones. The climate classification used in

the study was Köppen (1984) [31]; [32] climate model, according to which, Mediter-

ranean area considered as semi-arid zone with rainfall 450 mm to 700 mm per year.

Their results show, if climate change causes a reduction in water availability, the area

will lose its tree composition and most of the shrub cover. Another study states that,

Turkish pine tree will be shift to northern areas where the areas are normally covered

by oriental beech (Yalcin, 2012 [76]). This conclusion is a result of climatic change

scenarios until the year 2080. In this study, the change in net primary productivity

over Turkey’s forest ecosystem with respect to change in precipitation and tempera-

ture regime was studied. Moreover, the spatial distribution of the NPP is analysed.

This is the first study for Turkey to understand the relation between climate variable

and NPP. This is also the first study to analyse spatial distribution of net primary

productivity over Turkey.

4.2 Materials and Methods

4.2.1 Calculation of Net Primary Productivity

The Carnegie-Ames-Stanford approach (CASA) Net Primary model suggested by

Potter et al. (1993) [51] was used for the study. The model has 4 basic calcula-

tion parameters, (i) Absorbed (incident) Photoseynthetically Active Radiation, (ii)

Light Use Efficiency (LUE), (iii) Water Stress, (iv) temperature stress. Temperature

stress is composed of two different parameters. The first temperature stress shows

the effect of very high and very low temperature on LUE. The second temperature

stress factor mitigates the LUE when the temperature is around the optimum temper-

ature. The same formulation as described in the original paper for the temperature

stress was used. However, to estimate the optimum temperature for an area, Potter et

al. (1993) [51], suggested to use annual temperature measurements related to annual

NDVI values. In this study, long term monthly temperature averages related with long

term monthly NDVI composites were used to estimate optimum temperature values

of each pixel location (Figure 3.7). Another different calculation method relative to
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original paper was applied to estimate water stress factor by Yu et al. (2009) [77].

The estimation method for water stress used in Potter et al. (1993) [51] requires

complex calculations and detailed soil data. To overcome this problem, Yu et al.

(2009) [77] suggested to use Thornthwaite (1948) [68] Potential Evapotranspiration

(PET) method. According to Yu et al. (2009) [77], water stress can be estimated as

the function of temperature, precipitation and net solar radiation (section 3.2.6). Cal-

culation of APAR was done using the same method and equations stated in Potter et

al. (1993) [51]. The only difference is the adaptation of aggregated land cover types

to Turkey (Sellers et al., 1996a [65]). All calculations were done in ArcGIS version

10 ArcMap environment licensed to Middle East Technical University, using ArcGIS

Python programming interface ArcPy.

4.2.2 Statistical Analysis

The relation between NPP (16 years - 2000-2015) and meteorological variables and

spatial conditions were evaluated. The meteorological variables used here were pre-

cipitation and temperature data since they are considered as basic significant variables

for NPP, according to Monteith (1972) [39] modelling algorithm. Results of the NPP

calculation were evaluated also with respect to the climatic regions. To analyse the

results, 1000 random points were created over study area. The points were grouped

and yearly averaged according to the climatic regions with respect to related data set.

4.3 Results

i. Net Primary Productivity

The analysis showed that, there is a significant increment for each region be-

tween 2007 and 2008 (Figure 4.1). Moreover, through 2007 to 2014, estimated

NPP values of each region is more than previous years. As it can be seen from

Figure 4.1, West Black Sea and Marmara region is the most productive and

Central and eastern Anatolia is the least productive regions relative to others.

The same results were obtained for monthly median values of NPP as well

(Figure 4.2). It should be noted here that, due to the pixel resolution and the
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Figure 4.1: Total Annual NPP with respect to climatic regions between 2000 and

2015. The vertical error bars show the deviation of the NPP value of the point among

the data set. The horizontal bars show the deviation of the point among the years

projection of the image, the total area of the study area and forested areas can

change with respect to other sources. The monthly change in NPP was also

evaluated. Starting from 2000 to 2015, median values of each month were cal-

culated (Figure 4.2).

The climatic regions used in this study was created by using results from Evren-

dilek and Berberoglu (2008) [9]. Their results show that Turkey basically has 7

different bio-climatic zones. However, due to forest cover, east Anatolia region,

southeast Anatolia region and central Anatolia region were considered as one

region.

This classification is similar to phytogeographical regions of Turkey. These

three regions are together called Irano-Turanian zone. Due to the climatic and

ecological similarities, Aegean and Mediterranean regions were also merged.

Karadeniz region was first divided into two main parts, west Black Sea and

mid and eastern Black Sea regions due to the climatic and phytological proper-
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Figure 4.2: Monthly median values of NPP from 2000 to 2015. The vertical error bars

show the deviation of the NPP value of the point among the data set. The horizontal

bars show the deviation of the point among the years

ties. However, because as they are transition zones, west Black Sea region and

Marmara region were merged. According to 1 km resolution CORINE classi-

fication, the highest amount of forest exists over Marmara region (Table 4.1).

The ratio of the forest to the total area is also higher in the region with respect

to the others.

According to the Figure 4.2, the most productive months are May for West

Black Sea and Marmara, Aegean and Mediterranean, Central and eastern Ana-

tolian regions and June for Mid and eastern Black Sea region. The monthly

median precipitation (PPT) values (Figure 4.3) and monthly median poten-

tial evapotranspiration (PET) values (Figure 4.4) were also evaluated. The re-

sults shows a decreasing rate in PPT values between the months January and

July. The PET values, on the other hand, show an increasing rate between

same months. This might be the result of temperature increment between these

months.

ii. Bioclimatic Regions of the Study Area

Here, each region was evaluated with its total area, forest cover, and meteoro-

logical variable. As stated previously, Marmara region has the highest amount
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Figure 4.3: Monthly median precipitation (PPT) values according to the climatic re-

gions.

Figure 4.4: Monthly median Potential Evapotranspiration (PET) values according to

the climatic regions.
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of NPP production (Figure 4.5). The amount of forest, or ratio of forest to the

total area is higher in Marmara than the other region (Table 4.1).

Table 4.1: Total area of each regions and their forest covers according to CORINE

2006 (converted to 1 km resolution).

Regions
Total

Area (km2)

Forest

Areas (km2)
Ratio

West Black Sea and Marmara 101402 38896 0.383

Aegean and Mediterranean 154198 30778 0.200

Central and eastern Anatolia 359640 18147 0.050

Mid and eastern Black Sea 68844 19600 0.285

Total 684084 107421 0.157

West black Sea and Marmara region’s annual average NPP production is 440

gC/m2/year. Minimum production occurred in 2003 with 318 gC/m2/year, and

maximum production is in 2009 with 554 gC/m2/year.

Aegean and Mediterranean region covers the west and south cost of Turkey.

The area is described as semi-arid. The main forest cover of the area is red

pine, Lebanese cedar and oak. Area has 30778 km2 of forest cover (Figure

4.6(a)). The region was most productive in 2011 (329 gC/m2/year) and least

productive in 2007 (185 gC/m2/year). The average production of the area is

243 gC/m2/year (Figure 4.6(b)).

Central and eastern Anatolia region is the region with least amount of forest

coverage (18147 km2) according to CORINE map used in this study (Figure

4.7(a)). Moreover, due to the security issues, not all forest covers of the region

was studied. The region is mostly covered by agricultural areas. The regions

highest and lowest productivities are in 2011 (208 gC/m2/year) and in 2000

(108 gC/m2/year) respectively (Figure 4.7(b)).

Mid and west Black Sea region lays on the north-east of the study area. The

region is well known with its dense forest ecosystems (Figure 4.8(a)). How-

ever, its total forest coverage is less than of Marmara region. Region’s av-

erage production is 344 gC/m2/year. 2011 was the most productive year (443
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Figure 4.5: Land cover (a) and total NPP (gC/m2/year)(b) between 2000-2015 of

West Black Sea and Marmara region according to CORINE 2006.

gC/m2/year) for the area, and 2003 was the least productive (270 gC/m2/year)(Figure

4.8(b)).
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Figure 4.6: Land cover (a) and total NPP (gC/m2/year)(b) between 2000-2015 of

Aegean and Mediterranean region according to CORINE 2006.
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Figure 4.7: Land cover (a) and total NPP (gC/m2/year)(b) between 2000-2015 of

Central and Eastern Anatolia region according to CORINE 2006.

74



Figure 4.8: Land cover (a) and total NPP (gC/m2/year)(b) between 2000-2015 of Mid

and Eastern Black Sea region according to CORINE 2006.
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4.4 Discussion for the Results

Estimated NPP values using remotely sensed data were evaluated by field measure-

ments from Ministry of Forest and Water Affairs. Due to lack of forest ecosystems

and security issues, some regions had less number of field data. Moreover, the dis-

tance between the meteorological stations affects the interpolation results. These con-

ditions might affect overall results of the final NPP maps. It should also be noted here

that, all the evaluations in this section were done on pixel scale. The forest areas

were not considered individually. As a result, the productivity of the forest areas for

each region may be higher or lower. The study was carried out on pixel scale, be-

cause number of the field data points were too few to make a comparison only for

the forested areas. Moreover, although it was possible to calculate forest NPP using a

finer resolution image (i.e. CORINE 250 m), it was not possible to calculate the tem-

perature difference, for example, of the forest from its surrounding. The CORINE

land cover classification map which is a vector based data, is converted into raster

format with 100 m and 250 m resolution which may alter the land cover composition

of the area. Despite some misclassifications, the data reflect the general conditions

over Turkey. However, since there is no CORINE data with 1 km resolution, the ex-

isting maps were scaled up to create such data. This scale change may have affected

the land cover classes over the area and this change results in changing the number of

pixels (or area coverage) of any land cover classes. The meteorological data were in-

terpolated using IDW method. Due to the distance between each measurement point

the interpolation may alter the actual conditions. However, the general trend of the

study area for each region reflects expected results. In this part of the study, a trend

analysis was also performed. Mann-Kendal trend analysis was performed for all data

sets. According to this analysis "p" value is calculated. If the calculated p values are

less then theoretical value (p < 0.005), the null hypothesis is rejected. As a result, it is

accepted that there is a trend in the data set. The results show that, although there is

a certain increasing trend (Figure 4.9) in forest NPP values between 2000 and 2015,

there is no related trend in temperature (Figure 4.10) and precipitation (Figure 4.11).

Zhao and Running (2010) [79] stated that, last decade (2000-2010) was the most
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Figure 4.9: Trend analysis of forest NPP values for West Black Sea and Marmara

region (p-values = 0.0246).

drought decade since the instrumental measurements has begun. There is no decreas-

ing trend in NPP values over Turkey, although the precipitation values have fluctua-

tions between this period especially showing a significant decrease in 2008 (Figure

4.12). These results show that, a single meteorological value does not affect overall

process. Holdridge (1967) [26] stated that, the ratio between meteorological parame-

ters are more important for the ecosystem than the value of single parameter. Another

reason for increasing NPP might be the pixel resolution of the study. The study uses 1

km pixel resolution. Each pixel may consist of many different land cover types. Even

the forest areas’ productivity remains the same, the productivity of the surrounding

land cover types (such as agricultural areas) may increase the modelled NPP of the

pixel.
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Figure 4.10: Temperature trend analysis for West Black Sea and Marmara region

(p-values = 0.047).
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Figure 4.11: Precipitation trend analysis for West Black Sea and Marmara region

(p-values = 0.05).

Figure 4.12: Annual average precipitation between 2000 and 2015.
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CHAPTER 5

CONCLUSIONS

In the first part of the study (Chapter 2), a global NPP product was evaluated using

field data from Turkey’s forest ecosystems. The MODIS NPP product is important for

the understanding of the global carbon cycle and has been shown to have good global

accuracy. However, its accuracy at regional scales, especially in areas with high het-

erogeneity is less certain. It is important to create a country scale database compatible

with the global data. Moreover, these datasets can help scientists to understand and

model global conditions. The Ministry of Forest and Water Affairs of Turkey started

to measure the DBH values of the trees in predetermined plot, in 2008. According to

this protocol, ministry will run measurements in the same plots with the same trees

every 5 years. This study is the first effort to create a remote sensing based reli-

able national forest NPP database for Turkey using ministry forest inventory, which,

in return, can be used to increase the accuracy of the global products. Finally, the

approach used in this study can be used for other areas, and aimed to decrease the

uncertainties over heterogeneous areas and strengthen evaluation efforts of remote

sensing products. The results of evaluation process showed that, although MODIS

has a good accuracy over large homogeneous areas, it is lack of reflecting the actual

condition on regional/country scale, especially for the areas with high topographical

and climatic changes. To overcome this situation, (i) more evaluation/validation sites

should be established around the world representing different ecosystem types, (ii)

the importance of the local measured data sets should be acknowledged and used,

(iii) basic coefficients, such as light use efficiency, values should be researched for

different ecosystems around the world.

In the second part of the study (chapter 3), a new approach was developed to im-

prove the accuracy of the NPP model. This improvement was carried out using (i)
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local data and (ii) a new optimum temperature approach. The analysis showed that,

usage of the long term based optimum temperature can increase the accuracy of the

model with respect to annual optimum temperature approach. However, the temporal

resolution of the satellite data (MODIS images are available starting from February

2000) is a limitation factor to estimate optimum temperature. It is highly suggested to

use satellite images with finer temporal resolution such as Landsat. For longer period

temperature measurements, especially NDVI relation may reveal more precise opti-

mum temperature values for the areas.

It is important to state that, this study is not only the first effort to estimate net pri-

mary productivity of Turkey’s forest ecosystems, but also it is the first in the world

to present a new calculation approach for the temperature stresses. The last part of

the study (chapter 4) covers 16 years (2000-2015) of NPP calculation and its spatio-

temporal variations. The analysis show that, there is a significant trend (increment) in

NPP during the period. However, the same trend could not be found in meteorologi-

cal data. It is important to acknowledge that, it is not possible to understand the effect

of the climate change in such short period. However, it is important to understand the

relation between each meteorological variable and NPP. Moreover, last decade was

reported as the most drought decade since the instrumental measurements (Zhao and

Running, 2010) [79]), this period can help to understand this relation (the effect of

meteorological variables on NPP). Although Zhao and Running (2010) [79] reported

a decrease in the global NPP, the analysis in the last section of the study show that,

total annual NPP has an increasing rate over the study area (Figure 4.1). There can

be two basic explanation for this result. First reason might be the resolution of used

land cover data. If for a given area, due to the spatial resolution, forest areas might

be merged with other land cover types such as agriculture although it is classified as

forest. This may increase the estimated NPP value of the pixel. Second, the areas un-

der the jurisdiction of the Ministry of Forest and Water Affairs include none forested

areas. Most of these areas might be converted into agricultural lands by the locals.

This may lead to increase the estimated NPP values.

Overall, this study confirms (i) importance of the local data as model input, (ii) usage

of long term temperature values to improve the modelling approach, (iii) this study

presents a new approach to scale up local data to evaluate/validate global models.

Moreover, monitoring and managing natural areas (i.e. forest areas) may help sci-
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entists and decision makers to create rapid solutions to the problems. Estimation of

country scale productivity for the forest is not only time and money consuming job

but also resulting data mostly face with out-of-date problems. This approach offers

researchers an opportunity to analyse data in near-real time scale with less time and

money consumption.
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