
PRIVACY PRESERVING DATABASE EXTERNAL LAYER CONSTRUCTION
ALGORITHM VIA SECURE DECOMPOSITION FOR ATTRIBUTE-BASED

SECURITY POLICIES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

Uğur Turan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

COMPUTER ENGINEERING

MARCH 2018

Approval of the thesis:

PRIVACY PRESERVING DATABASE EXTERNAL LAYER
CONSTRUCTION ALGORITHM VIA SECURE DECOMPOSITION FOR

ATTRIBUTE-BASED SECURITY POLICIES

submitted by Uğur Turan in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Prof. Dr. İsmail Hakkı Toroslu
Supervisor, Computer Engineering Department, METU

Prof. Dr. Murat Kantarcıoğlu
Co-supervisor, Computer Science Dept., University of Texas at
Dallas

Examining Committee Members:

Prof. Dr. Özgür Ulusoy
Computer Engineering Department, Bilkent University

Prof. Dr. İsmail Hakkı Toroslu
Computer Engineering Department, METU

Prof. Dr. Pınar Karagöz
Computer Engineering Department, METU

Assoc. Prof. Dr. Osman Abul
Computer Engineering Department, TOBB ETÜ

Assoc. Prof. Dr. İsmail Sengör Altıngövde
Computer Engineering Department, METU

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: Uğur Turan

Signature :

iv

ABSTRACT

PRIVACY PRESERVING DATABASE EXTERNAL LAYER
CONSTRUCTION ALGORITHM VIA SECURE DECOMPOSITION FOR

ATTRIBUTE-BASED SECURITY POLICIES

Turan, Uğur

Ph.D., Department of Computer Engineering

Supervisor : Prof. Dr. İsmail Hakkı Toroslu

Co-Supervisor : Prof. Dr. Murat Kantarcıoğlu

March 2018, 88 pages

Relational DBMS’s continue to dominate the market and inference problem on exter-

nal schema has preserved its importance in terms of data privacy. Especially for the

last 10 years, external schema construction for application-specific database usage

has increased its independency from the conceptual schema, as the definitions and

implementations of views and procedures have been optimized. After defining all

mathematical background, this work offers an optimized decomposition strategy for

the external schema, which concentrates on the privacy policy and required associa-

tions of attributes for the intended user role. The method given in this article performs

a proactive decomposition for the external schema, which satisfies the inhibited and

required associations of attributes. The idea is represented by using graph theory (us-

ing attribute-sets as vertices and dependencies as edges) and we redefine the problem

of inference like a shared root tree finding process in between related attributes, using

complete schema functional dependency graph. The optimization of decomposition

aims to result in an external schema, which prevents inference of inhibited attribute

sets and satisfies association of required attribute sets with minimal loss of associa-

v

tion between other attributes. Our technique is purely proactive like a normalization

stage and owing to the usage independency of external schema construction tools, it

can be easily applied to any ongoing systems without rewriting data access layer of

applications. Our extensive experimental analysis shows the usage of this optimized

proactive strategy offers applicable timing costs, even being proactive, for a wide

portion of logical schema volumes. Additionally, we shared a real-life case study to

emphasize the importance of using this strategy for privacy policy preservation dur-

ing external schema definition and the observed benefits after getting this technique

in production.

Keywords: Privacy Preserving Decomposition, Inference on Relational Databases,

Attribute-Based Access Control

vi

ÖZ

ALAN BAZLI GÜVENLİK İÇEREN VERİTABANLARI İÇİN GİZLİLİĞİ
KORUYAN GÜVENLİ PARÇALAMA YÖNTEMİ İLE KULLANICI DIŞ

KATMANININ OLUŞTURULMASI

Turan, Uğur

Doktora, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi : Prof. Dr. İsmail Hakkı Toroslu

Ortak Tez Yöneticisi : Prof. Dr. Murat Kantarcıoğlu

Mart 2018 , 88 sayfa

Günümüzde kullanımı giderek artan bağıntısal veritabanı mekanizmalarında, kullanı-

cıya sunulan şemadaki veri gizliliği ve güvenliği önem taşımaktadır. Son 10 yıl içeri-

sinde, kullanıcı katmanı seviyesinde geliştirilen araçlar sayesinde, bu katman diğer alt

katmanlardan çok daha bağımsız hale gelmiştir ve gizliliği arttırmak adına alan bazlı

bir yaklaşım gerekli olmuştur. Bu çalışmada sunulan mekanizma ile veri tabanı kul-

lanıcı katmanı güvenli biçimde parçalanmıştır. Bu parçalama esnasında en az sayıda

mantıksal bağ kaybedilmesi ve kullanıcının ihtiyacı olan erişim kümeleri de dikkate

alınmıştır. Yapılan deneyler sayesinde, bu yöntemin veri tabanının oluşturulması es-

nasında çalışması sayesinde, dinamik çalışan mekanizmalara göre çok daha etkili ve

kolay kullanıma sahip olduğu kanıtlanmıştır. Çalışma içerisinde, bu yöntemin uygu-

lanması gerekliliğini vurgulayan ve uygulama sonrası durumun da gözlemlendiği bir

gerçek hayat örneği paylaşılmıştır.

vii

Anahtar Kelimeler: Gizliliği Koruyarak Parçalama, Bağıntısal Veritabanlarında Man-

tıksal Çıkarım, Sütun Bazlı Erişim Kontrol

viii

For My Beautiful Mother...

ix

ACKNOWLEDGEMENTS

I would like to thank my supervisor İsmail Hakkı Toroslu, my co-supervisor Murat

Kantarcıoğlu and all thesis committee members for all their support and guidance

during this work. It was a great honor for me to work with them.

Nothing would be so beatiful and honorful in my life, if my wife Pelin Turan did not

love me.

I hereby welcome my new handsome man, Emin Kaya Turan.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGEMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xvi

CHAPTERS

1 INTRODUCTION . 1

2 A REAL-LIFE CASE . 9

3 BACKGROUND RELATED WORK 13

3.1 Statistical Usage . 15

3.2 Application Usage . 16

4 PROBLEM DEFINITION AND SOLUTION WITH STRONG-CUT
ALGORITHM . 19

4.1 Preliminaries and Problem Definition 19

4.2 Decomposition Algorithm 27

4.3 Discussions . 32

xi

5 OPTIMIZED DECOMPOSITION WITH RELAXED-CUT 35

5.1 Motivation . 35

5.2 Modelling the Problem with Graph-Theory 38

5.3 Relaxed Cut Decomposition Algorithm 43

6 EXTENDING THE PROBLEM WITH REQUIRED SETS 49

7 EXPERIMENTS . 55

7.1 Experiments for Strong-Cut Approach 55

7.1.1 Sample User Definition with Secure Logical Schema 56

7.1.2 Implementation Alternatives of Reactive Strategy . 58

7.1.3 Experiments on TPC-H Schema 59

7.1.4 Experiments on Generated Schema 61

7.1.5 Experiment on TPC-H Queries 62

7.2 Experiments for the Relaxed-Cut Approach with Required Sets 64

8 CONCLUSION AND FUTURE WORK 67

REFERENCES . 69

APPENDICES

A PROOFS AND SCHEMAS . 75

CURRICULUM VITAE . 87

xii

LIST OF TABLES

TABLES

Table 6.1 Greedy Edge Selection Phase . 53

Table 7.1 Single Table Query and Overhead Duration(sec) #Entries in Table

vs #Attributes in Query . 60

Table 7.2 Overhead Percentage w.r.t. Single Table Query Processing Dura-

tion(%) #Entries in Table vs #Attributes in Query 61

Table 7.3 Overhead Percentage w.r.t. Equijoin Query Processing Duration(%)

#Entries in Joined Tables vs #Attributes in Query 62

Table 7.4 The Effect of Attribute Count on Overhead Duration(sec) #Attributes

in Schema vs #Attributes in Query . 63

Table 7.5 Timing Analysis of TPC-H Queries(sec) 64

Table 7.6 Timings for Implementation Strategy-I 66

Table 7.7 Timings for Implementation Strategy-II 66

Table A.1 Sample Entries for the Set of Security Dependent Sets in TPC-H

Schema . 85

Table A.2 Sample Entries for the Precomputed Chains 85

xiii

LIST OF FIGURES

FIGURES

Figure 5.1 Dependency Graph . 36

Figure 5.2 Dependency Graph After Strong-Cut 36

Figure 5.3 Dependency Graph After Weak-Cut 37

Figure 5.4 FDG of Example-1 . 39

Figure 5.5 FDG of Example-3 . 45

xiv

LIST OF ABBREVIATIONS

DBMS Database Management System

NA Not Applicable

xv

xvi

CHAPTER 1

INTRODUCTION

The evolution of technology in business applications has increased the importance

of protecting sensitive data, that needs to be accessed by many different users with

different access privileges. Fine grained inference control has increasingly become

crucial to prevent unwanted sensitive information inferences from the data disclosed

to legitimate users. In relational database management systems, usually views have

been used for this purpose. In order to satisfy the given privacy policies, in view based

solutions, basically direct inferences of sensitive data is prevented without consider-

ing existence of the functional and probabilistic relationships among the attributes in

the database schema. These approaches have very simple purpose; that is, to deter-

mine whether to grant or deny the access, based on the predefined constraints related

to the role of the user. Especially, for the attribute based access control, essentially the

attributes that are going to be related with each other in a query are used in making the

grant or deny decision of the query. However, using functional and/or probabilistic

dependencies, it might be possible to obtain sensitive relationships among attributes

indirectly. The aim of this document is to propose a formal model to address this kind

of sensitivity problem and describe a decomposition based solution to it.

In order to illustrate the problem of indirect inference of the relationships among se-

curity dependent attributes 1 through functional and probabilistic dependencies, con-

sider a simple database application with an EMPLOYEE relation. Assume that the

company would like to adjust the salaries of its employees based on their departments,

positions and years of experiences according to market standards. The EMPLOYEE

relation has the following schema:

1 i.e., a set of attributes in which the association among corresponding values are sensitive and should not be
obtained

1

EMPLOYEE = (id, phoneNumber, name, gender, salary,

department, position, yearsOfExperience)

In order to eliminate the discriminative effect of the gender of employees in determin-

ing the salaries, we would like to create an external view layer to the person who is

responsible from this task, and, prevent this person to obtain salary and gender

relationship. Also, assume that in this relation id and phoneNumber fields are two

keys, and id is selected as the primary key. Therefore, probable join queries should

be checked in order to guarantee that salary and gender fields cannot be related

with each other by the help of these keys. In addition, we have assumed that there is

no functional dependency other than the ones which make id and phoneNumber

candidate keys for the EMPLOYEE relation.

A natural solution to this problem is basically decomposing the EMPLOYEE relation

into two views as follows:

EMPLOYEE1 = (id, name, gender, department, position,

phoneNumber, yearsOfExperience)

EMPLOYEE2 = (id, name, salary, department, position,

phoneNumber, yearsOfExperience)

However, this decomposition is incorrect since salary and gender relationship

can be generated using the following query:

SELECT e1.gender, e2.salary

FROM EMPLOYEE1 e1, EMPLOYEE2 e2

WHERE e1.id = e2.id

2

To prevent this kind of join queries on keys, a further decomposition can be done:

EMPLOYEE1 = (id, name, department, position,

phoneNumber, yearsOfExperience)

EMPLOYEE2 = (name, salary, department, position,

yearsOfExperience)

EMPLOYEE3 = (name, gender, department, position,

yearsOfExperience)

This decomposition may initially seem to be correct as it is not possible to join

EMPLOYEE2 and EMPLOYEE2 using the given keys in order to relate salary and

gender fields. However, name and salary fields appear together in EMPLOYEE2

relation, and it is possible to infer gender from the name of an employee with high

probability. Thus, in a correct solution, the possibility of relating salarywith name

should also be prevented as in the following decomposition:

EMPLOYEE1 = (id, name, department, position,phoneNumber,

yearsOfExperience)

EMPLOYEE2 = (salary, department, position,

yearsOfExperience)

EMPLOYEE3 = (name, gender, department, position,

yearsOfExperience)

One of the most important subject for this example is, breaking the dependencies of

3

gender and salary attributes to the keys. Although, it looks like this decompo-

sition may not be needed to satisfy the desired privacy policy, consider the following

situation:

EMPLOYEE1 = (id, name, department, position,phoneNumber,

yearsOfExperience)

EMPLOYEE2 = (id, salary, department, position,

yearsOfExperience)

EMPLOYEE3 = (name, gender, department, position,

yearsOfExperience, phoneNumber)

Notice that in the above decomposition, the dependencies of gender and salary

attributes from all the keys are broken since, if the id attribute was not removed

from EMPLOYEE2 relation, an equijoin operation on the key id field can be used

to relate salary and gender attributes. Although for this example having keys

in EMPLOYEE2 and in EMPLOYEE3 relations will always violate the given privacy

policy, in general, some other key distribution alternatives may be possible for the

decomposed relations, and this issue will be discussed later in the document.

By using the schema obtained with the last decomposition, it is not possible to define

any query which relates salary and gender attributes neither through equijoins

on keys, nor through using the given probabilistic dependencies. Therefore, this de-

composition satisfies the given security policy. Also note that there may be keyless

relations obtained after the decomposition, as it is usual in views, and this issue will

also be discussed in the following sections of the document.

As in this example, a view based solution can be generated to satisfy a given privacy

policy. There can be several policy rules, and views should be constructed in order

to satisfy all constraints of these policies. The need for defining different external

layers for different inference control policies has increased by web based data sharing

4

trend [1]. Therefore, a formal approach is needed to build a secure external layer by

decomposing the relations into sub relations according to privacy policy rules and to

generate relevant secure logical schema. These sub-relations can be used to generate

accessible views for the user. Notice that, if any attribute other than candidate keys,

such as position in the example, can be used as a key due to data distribution; then,

this attribute should be stated as a candidate key or should be perturbed. Most likely,

this pseudo-key situation may happen either at the beginning or may occur after data

is inserted to the schema. In order to solve this issue, pseudo-key can easily be added

as a key to the system, and decomposition can be processed again as the external layer

is consisting of views only.

Most of the research addressing inference control problem is mainly focused on dy-

namic mechanisms employing query investigation or modification methods, and by

also tracking the query history [2, 3, 4, 5, 6, 7]. On the other hand, our strategy in

this document is to decompose the relation into views in advance, for preventing the

time spent by costly query modification or history tracking operations [8]. To the

best of our knowledge, this is the first attempt in the literature to handle privacy for

context dependent attribute based inference control using a proactive approach. The

approach is labeled as ”proactive”, since it does not need to perform costly for query

history investigation, query modification, or row/attribute based joins or calculations

as in a reactive strategy. Another disadvantage of a reactive strategy is about the user

satisfaction in the system. Basically, in a reactive strategy, the queries that can be

issued by the user will dynamically change based on their usage history. Therefore,

two users with the same job titles may not be able to issue the same queries if their

query history is different. This could create usability problems from a regular user

point of view. In addition to those, our method can be easily adapted for validating

existing external schema against given attribute based policy rules. The proactive de-

composition method described in this document can easily be combined with other

constraints such as row based policy rules during implementation.

Moreover, as the demand towards automated systems and processes have increased,

the evolution of technology in business applications have focused on to two differ-

ent usages: application usage and statistical analysis. In each usage, inference based

privacy preserving techniques, in terms of databases, have been an important topic to

5

protect the sensitive data. Modern approaches like differential privacy[9] preserving

techniques[10] or intentionally deception mechanisms provide secure ways to repre-

sent statistical results without revealing sensitive data, however their usage cannot be

applied on traditional applications [11]. Many business applications aim to monitor

and update single entity data, a brief example can be given as a call center module

of a bank. Let a customer wishes to apply for a campaign and the operator should

check her transaction history for prerequisites. Transactions are sensitive data, but

they cannot be altered by adding noise or any hypothetical rows cannot be added for

deception, the financial transactions should be viewed as they are. If the domain were

a statistical analysis on transactions, then both techniques could be applied to protect

inference mechanisms on sensitive data, but these kinds of usages are mainly based on

a single entity row business procedure, named application usage. From this perspec-

tive, the call center user should access to a set of sensitive data according to assigned

user role and the point is, external layer of database presented to this user role should

not reveal any more information other than required. This objective needs three dif-

ferent perspectives. Firstly, the schema of external layer should be decomposed with

a fine-grained attribute-based approach which preserves required associations for the

user role and prevents any other inferences. This objective is the focus of this arti-

cle, as necessary theorems and algorithms is proposed in this document. The second

perspective deals with inferences based on dynamic data distribution and the last is

about collaboration attacks [12, 13], in order to satisfy privacy of sensitive data. The

mechanisms for the last two inference channels, can be applied as important add-ons

to the strategy given in this document, however the main and first objective should be

arranging the external layer for a specific user to prevent unwanted inference chan-

nels. This step is proactive, and it should be viewed as a policy-based normalization

stage in terms of privacy. This document focuses on this subject and gives a complete

mechanism to satisfy the goal. The given algorithms are based on Functional Depen-

dency Graph representation of database schema, which is constructed by arranging

attribute-sets as vertices and dependencies as edges. The aim is to find an external

layer decomposition which strictly allows the required attribute associations and pre-

vents inhibited associations, both in compliance with the privacy policy for a specific

user role. Owing to the nature of domain, the mechanism is based on attribute based

granularity and the advantage of rearranging external layer without making a change

6

on other layers, by the help of views, is used.

There may be different approaches for this kind of secure decomposition, intended

in this document. The decomposition may be based on prevented attribute sets or

required attributes sets for the user role may be focused and no other information

may be leaked [14]. The strategy given in this document is an optimized combination

of these two approaches and the most crucial step proposed in this document, is to

check the required sets with prevented sets. This control step assures a fully compliant

policy proactively. Moreover, the decomposition should not be much more lossy then

needed. This fact is a critical optimization problem and to the best of our knowledge,

this is the first attempt in literature to construct a secure decomposition satisfying the

policy, by minimizing the dependency loss afterwards.

It should be stated that, if the external layer will allow only the required queries of

user roles, then set of stored procedures may be adequate and there will be no need

for a decomposition. However, the set of stored procedures should be checked for the

forbidden sets for verification and there is again a need for a formal mechanism, at

least for this control.

In this document, the first problem is stated as decomposing the logical schema ac-

cording to the given constraints. Secondly, the solution is optimized as the number

of lost dependencies after the decomposition is minimized up to a degree. Lastly,

the problem is extended by defining required attribute sets and decomposition is per-

formed accordingly. The first part of the document uses first-order predicate logic,

where as graph-based modelling is selected for the other two parts as it is more suit-

able for this kind of optimization.

7

8

CHAPTER 2

A REAL-LIFE CASE

In this section, a real-life case study of the idea is given with the requirements, the

situation, the solution and its results. The overall story is simplified for a better un-

derstanding. The project is about recycling in a municipality of Antalya, Turkey,

completed by a software company. The product is about a web and point-of-sale ap-

plication in which all citizens have smart cards and they give their recycling waste

to the waste-collector companies and these companies load credits to their card ac-

cording to the current expected market value of waste, grouped by type of waste. The

product has been used since August 2015 and the web application has different mod-

ules for the collector companies, citizens and town management. In 2016, a citizen

proceeded against the system and declared that she has been individually identified

by other roles, as she is always getting messages in consistent with her consumption

within specific periods of the year. It may be claimed that many citizens may have

nearly same consumption and thoroughly, waste statistics distributed within a year,

but the case is different as the claimant owns a hand-made gift company and has

much more glass waste in November during preparation of gifts for new-year’s day.

Afterwards, the system has been checked for the information leak to the collector

companies and town management. Collector companies should only query the time-

based collection statistics of the cars and the town management should only view the

usage statistics of the system with totals. Additionally, collector’s views are defined

only as a subset of the town management external view set.

For a simplified description, the views can be simplified as:

[Available for the Collector and Town Management]

9

View1 = (CarId, DateTime, GPSCoordinates, TotalWasteWeight,

WasteWeight, WasteType)

[Available for only Town Management]

View2 = (CitizenId, Name, Surname, Address, PhoneNumber)

The problem is that, a malicious worker in town management can use GPSCoordi-

nates attribute in association with the Address attribute and find a small subset of

citizens which have given glass waste so much in a period of year. This malicious

worker has shared this knowledge with an advertisement company and they used this

information in favor of their glass-producer clients. It is not surprising to get messages

from other glass-producer clients while you are managing a company which always

purchases glass for gifts, but surprisingly this small gift company (the claimant) are a

part of a charity association and they use glasses they have collected from their mem-

bers all year. As a result, the privacy of the citizen has been violated. The main reason

behind the problem is the lack of security policy while creating views and the attribute

association based cross-control in between views, which should be made proactively.

This point is the focus of this article and if the system designer’s have used the strat-

egy proposed in this document, they will not face with such a problem, caused by

external layer structure. As a solution, all security dependent sets have been formed

for the original database schema and the algorithms proposed in this work have been

applied. It should be noted that the relationship between GPSCoordinates and Ad-

dress attributes are a kind of probabilistic dependency and as a result these views are

generated:

New View1 = (CarId, DateTime, TotalWasteWeight, WasteWeight,

WasteType)

New View2 = (CarId, GPSCoordinates)

New View3 = (CitizenId, Name, Surname, Address, PhoneNumber)

(Any join between New View1 and New View2 is not a meaningful join as CarId

10

is only foreign key, not a primary or candidate key, in these relations)

The structural external layer schema problem has been omitted by this way. The

problem may only occur according to the data distribution, which is out of scope of

this work and different strategies (discussed in Introduction) may be used additionally.

It should be noted that, there exist many tested and deployed systems in production

when this solution is applied. Because of this reason, a new view is created by using

New View1 and New View2 to generate View1 for the users. By this strategy, any

code change is not necessary for adaption as everything is solved on database layer.

As materialized views are used in the database, the performance degradation may be

neglected (Nearly 10K rows for a single table in a year, only less than a second change

in report query duration)

As a result, the strategy of developing privacy preserving relational database external

schema, given in this thesis is very useful and easy-to-operate, not to experience such

surprising privacy deficiencies.

11

12

CHAPTER 3

BACKGROUND RELATED WORK

The field of database security is very popular, and several works in this field have

influenced the idea proposed in this document [2, 15, 3, 16, 4, 5, 17, 18, 6, 7, 19, 20,

21, 22, 12, 23, 24, 25, 26, 27, 13, 28, 29, 30, 31, 32, 33, 34, 35, 36]. The approach

of updating the query dynamically depending on the context and the policy has been

studied for a long time in the literature [4]. In this method, the query can be modified

by adding predicates and the main purpose is the row based security. Adding more

predicates to where clause can only restrict the rows extracted by the query [4]. Ac-

tually the security mechanism in [4] gives user a set of views which are permitted to

be queried and then performs row based elimination by adding predicates whose idea

can be treated as an additional functionality for the work in this document. However

another work, [5], states that the former algorithm is not maximal and limits some

permitted answers. In [5] some flexibility has been added as the query may depend

on any view or sub view or meta-relations. That means extra work should be con-

ducted in order to find which permitted views are involved. These two approaches

may have performance problems and modifying the query can be costly [8], never-

theless it should be noted that their query modification strategies are done mainly for

row filtering, whereas this document focuses on context dependent attribute based

inference control in a proactive manner.

In addition to this, Oracle introduces Virtual Private Database [7] and performs the

security totally by query modification on original relations. The modification can be

as row based by adding predicates or column based by making null of the unwanted

attributes. Bertino [18] calls this type of query modification approaches as “Truman

Models” [17], since they answer each time, nevertheless the answer may not be max-

13

imal because of restrictions. These models have simple attribute based policy rules

as just checking the existence of attributes in the query result. Beside this, data per-

turbation [22] is another run-time consuming method and may be used for Truman

Models. In addition to that, “k-anonymity” [3] has been proposed to divide the re-

lation to views which are targeted not to extract "id"s. Moreover the security policy

does not have to satisfy the anonymity only. For instance, one can define a policy rule

as gender and address should not be obtained together even though neither of them is

adequate for identification [21].

Furthermore, Purpose Oriented Access Control scheme [15] offers role - purpose -

column mapping, however two purposes may serve to another unwanted purpose.

For instance let a, b, c to be attributes and purpose-1 needs a, b; purpose-2 needs

a, c and non-existing and unwanted purpose-3 needs b, c. In this example first two

purposes can serve to the unwanted third purpose. That example presents the notion

of query history [12] whose deep investigation makes the computation costly. To get

rid of these, attribute mutability term [16] provides a mechanism as Chinese-Wall

method [19] with historical data, but performance requirements may be critical.

Beside this, “Non-Truman” models have been proposed [17] which reject the unau-

thorized query according to the authorized views. Hippocratic databases [6] combine

many security issues stated in this section, however the addressed problem in this

document is a bit different. In all these works, the main problem is to maintain secu-

rity and privacy; nevertheless, dynamic security modeling with query modification,

attribute mutation, historical query tracking or grant/reject mechanism may have per-

formance problems because of their run time executions. These performance prob-

lems may become vital for generally used simple queries. This document constructs

a proactive security mechanism as building an external layer with a secure logical

schema to user by a decomposition algorithm in which user is free to query anything

on decomposed relations. The term “Attribute-Based” in this document is used for

the ability of defining the inference control rules on the attributes of relations. The

same term has been used differently in [25] to build the access control with the help

of dedicated attributes. It is important to note that the notion of modeling access

control rules on attributes according to the application semantics is another important

work discussed in [11] which is not in the scope of this document. The discussion in

14

[11] can be used for defining security dependent sets which is used by decomposition

process in this document.

A relevant study, targeted a similar problem with this work, is reducing inference

control to access control [2]. However their solution labels the normalized schema

relations and the solution is not proactive, only more efficient than query controlling.

Furthermore, another highly relevant work can be given as [37], as the method in

that document can be used to store decomposed relations in different parties while

preserving privacy of sensitive data against those parties. The document [37] aims

to reconstruct original database from decomposed relations while preserving privacy,

whereas our document aims to decompose external layer to views in such a way that,

the user has access to all views in related external schema but is not able to reconstruct

the database in order to access the protected sensitive data.

Database security and inference problem has been very popular as several works in

this field have helped to construct the strategy given in this document. Inference

problem has been discussed in many documents [16, 4, 18, 6, 26] but most of them

are about reactive solutions. The approaches should be classified into two groups for

different usage scenarios.

3.1 Statistical Usage

This kind of usage includes query rewriting mechanisms [17], data perturbation meth-

ods [7, 22], deception strategies[38] and decomposition-based approaches[39, 40] for

satisfying privacy. The basis of main data perturbation methods is “Differential Pri-

vacy” and main researches on this field try to build a noise which prevents identifi-

cation but outputs meaningful data. The strategy is a big step in literature to prevent

inference attacks, however its usage is limited to the statistical analysis. Another ap-

proach “deception” mechanisms aims to corrupt the data by inserting anonymous data

or structures, however the resulting behavior applicability is not much more different

from the “Differential Privacy”. K-anonymity [3] is a leading research on this field

but differential privacy has proven the hardness of satisfying “non-identifiability”

problem[41] according to dynamic data distribution.

15

All these techniques aim to prevent the identifiability of the individuals. The target

user is assumed to query the database to infer the statistical information about the

data, therefore any mechanism which changes real data can be used if the resulting

statistics reflect the natural distribution of the original set. However, these kind of

approaches cannot be used for application usage. This restriction can be illustrated

with a simple example:

Let a clerk in a hotel reservation system checks if a customer is above 18 years old

or not. If differential privacy is applied here with a sample noise, then the age of the

customer can be outputted as 10 or 40, which is a useless result for the user.

Beside this, the nature of the problem is different for statistical databases. Applica-

tion usage tends to query the database upon the single row identification, which is

the opposite of statistical approach. Therefore, these techniques cannot be used in

application usage. This thesis concentrates only on application usage.

3.2 Application Usage

Application usage of database strictly needs single-row identification with real val-

ues (as described in Introduction). For this usage, the method can be divided as

being reactive or proactive. Reactive methods tend to behave dynamically accord-

ing to the policy or data distribution. Query rewriting techniques (as in Truman and

Non-Truman Models called by Elisa Bertino) are reactive solutions to the inference

problem. Query history tracking mechanisms and Chinese-Wall method [9] like ap-

proaches are subject to performance issues, because of being reactive. It is a major

step to check purpose [15] of the user during privacy protection. During these checks,

attribute-based granularity [8] should be used to preserve precise privacy. The idea

proposed in this document is totally proactive, such a normalization process, and

ready to welcome any reactive method to construct a complete mechanism. Database

security policy should be checked against visibility [5] requirements and the external

layer should be constructed accordingly.

This document states a complete, optimized and applicable decomposition strategy

compared to [39] and [40]. The aim of this document is to perform the decomposi-

16

tion with policy check, minimal loss of dependencies and by taking care of indirect

dependencies. The related works propose an effective way of decomposition database

in a somehow similar manner, nevertheless this document combines maximal avail-

ability, intended privacy, policy check and indirect dependencies to carry out a definite

decomposition for the external layer.

17

18

CHAPTER 4

PROBLEM DEFINITION AND SOLUTION WITH STRONG-CUT

ALGORITHM

4.1 Preliminaries and Problem Definition

In this section, we give the basic terms and concepts used in the chapter. This chapter

has two main objectives, namely, formally defining a secure logical schema which

is in compliance with the given security constraints (security dependent sets), and

developing a decomposition algorithm which divides relations into sub-relations to

be able to satisfy the security constraints. The main reason for decomposition is

to prevent obtaining securely dependent attributes together directly in a relation or

through a join.

Therefore, first, the definition of the logical schema is given in terms of three sets

as relational schema, probabilistic, and (non-reflexive and non-partial) functional de-

pendencies. After that, the closures of relations and functional dependencies with the

given rules, are defined. The closure of relation schema is very important, since it

describes how new relations can be generated using only equijoins on foreign keys.

Moreover, the closure of functional dependencies is used to define identifiers for at-

tributes, how they can be inferred, and how two or more attributes can be associated

with each other. Combining these definitions, we then define a secure logical schema,

which simply prevents obtaining the attributes of each given security dependent set

together by joins. We also prove that secure logical schema guarantees that it is not

possible to obtain any association among the set of attributes of security dependent

set.

Following these, we define a decomposition operation which decomposes a logical

19

schema according to a given secure dependent sets in order to form a secure logical

schema. Afterwards, we prove that the new schema obtained by employing the de-

composition operation is a secure logical schema, which means that it is not possible

to associate attributes of secure dependent sets by joins using the relations constructed

after the decomposition. By this way, the inference of association of the attributes to-

gether in each security dependent set can be prevented.

Definition 1. Relational Schema A relation schema is defined a set of attribute names

concatenated with relation name (using underscore) in order to prevent the vagueness

caused by having same attribute name in different relations. For the sake of simplicity,

relation schema is referred as relation and the concatenation on attribute names will

not be shown unless needed.

For example a relation

USERS={id_users,name_users,surname_users,email_users}

is defined as a set of concatenated attribute names. Using this definition, it is guar-

anteed that all attribute names in a database will be unique owing to unique relation

names by default.

Definition 2. Logical Schema A logical schema for a database is defined as a 3-tuple

L = (R,F ,P) such as;

• R is defined as set of all relation schemas in a database.

• F is defined as set of functional dependencies among attributes in all relation

schemas in R excluding reflexive and partial functional dependencies. It is

important to note that there exists a functional dependency between a key and

its occurence in another relation as foreign key owing to the reflexive property.

• P is defined as probabilistic dependencies (shown as 7→) which includes the

attribute pairs as guessing the value of the dependent attribute is possible by the

help of determining attribute. Reflexive probabilistic dependencies are trivial

and omitted.

20

Since a foreign and relevant key in two different relations have different names ac-

cording to the definition of relational schema, the functional dependency in between

them is not treated as reflexive and should be in F as given in the example below.

It should be noted that this kind of functional dependencies have a special impor-

tance since they are used to perfom equijoins on keys while inference, which will be

discussed below.

For example,

R = {USERS,LOGS} as

USERS = {id_users, name_users, gender_users, surname_users}

LOGS = {userid_logs, action_logs, date_logs}

userid_logs is a foreign key referencing USERS(id_users).

F =



(userid_logs → id_users),

(id_users → userid_logs),

(id_users→ name_users),

(id_users→ surname_users),

(userid_logs→ action_logs),

(userid_logs→ date_logs)


P =

{
(name_users 7→ gender_users)

}
The functional dependencies given in bold expresses the dependency between original

key and a foreign key. In addition to that, the probabilistic dependency is given for

the gender to the name, as it is likely to guess the gender of a user by knowing

the value of name attribute.

Using the join operation, the new relations can be obtained from the relations of

logical schema. Similarly, the properties of functional dependencies can be used to

generate new functional dependencies from the existing ones. Below, we define two

21

closures for these two.

Definition 3. F+: Closure of F Closure set of given F that can be obtained by

using the transition, union and decomposition properties of functional dependencies

[42], excluding reflexive and partial functional dependencies.

Definition 4. R+: Closure of R Closure of R is defined as R+, composing all

probable relation schemas obtained by performing any database query over R for

which join operations used in the query should only be equijoins on keys and related

foreign keys (named meaningful join thereafter) in order not to produce spurious

tuples.

For example, by using the sample decomposed relations given in introduction section:

EMPLOYEE1 = (id, name, department, position, phoneNumber,

yearsOfExperience)

EMPLOYEE2 = (salary, department, position, yearsOfExperience)

the query which produces spurious tuples can be given as:

SELECT *

FROM EMPLOYEE1 e1, EMPLOYEE2 e2

WHERE e1.department = e2.department

The join operation is an equijoin but not on keys, therefore spurious tuples are gener-

ated by associating different employees working on the same department.

Let UR be union of all attributes existing in all relations ofR (i.e., UR =
⋃

Ri∈R { x | x ∈ Ri }).
Rather than defining which relations can be constructed fromR as subsets of UR, we

can specify the set of attributes that cannot be obtained together inR+ as follows:

Property of R+: An attribute set A cannot be subset of any derived relation schema

in R+, if and only if, A cannot be a subset of existing relation schema and cannot

be functionally dependent to any set of attributes in UR so it becomes impossible to

relate with equijoins on foreign keys by the definition ofR+. Note that, according to

22

Definition 2 if there is a foreign key relationship, then it is represented as functional

dependency as ((Ai → Aj) ∈ F). Since all meaningful joins can only be executed

using this kind of functional dependencies, the following logical formula expresses

that a set of attributesA cannot be a subset of any relation inR+ if and only if, there is

no functional dependency relationship to A in F+ and there is no relation containing

A.

∀Rk ∈ R+,∀A ⊆ UR[A 6⊆ Rk ⇔ ∀Rj ∈ R(A 6⊆ Rj) ∧ ∀Ai ⊆ UR((Ai → A) /∈ F+)]

(4.1)

As it can be seen from above definitions, there is a strong condition which says that in

order not to be able to obtain a subset of attributes from a logical schema it should not

be possible to perform a meaningful join. In order to perform meaningful join; keys

and related foreign keys are used, and they correspond to functional dependencies.

Therefore, we need the following definitions to represent these relationships.

Definition 5. Set of Identifier Sets The set of identifier set of an attribute α for a

given F , as iFα , is defined as follows:

iFα =
{
x
∣∣ x 6⊇ {α} ∧ (x→ α) ∈ F+

}
(4.2)

Each element of iFα is also called as identifier set of attibute α.

For example,

α = name

F+ =



id→ name,

id→ surname,

id→ age,

id→ email,

email→ name,

email→ surname


iFα = {{id}, {email}}

23

The definition could be simply extended for an attribute set A as follows:

IFA =
{
x
∣∣ x 6⊇ A ∧ (x→ A) ∈ F+

}
(4.3)

These two definitions can be related as for an attribute set A, as IFA contains the

shared elements in iFα for all α which are attributes in A.

IFA =
{
x
∣∣ ∀α ∈ A(x ∈ iFα) } (4.4)

Identifiable Property: Each attribute of an identifiable set (i.e, (IFA 6= ∅)), should be

in the same relational schema with at least one of its identifier set. In other words, for

a L = (R,F ,P);

∀A ⊆ UR(IFA 6= ∅ ⇔ ∀α ∈ A, ∃Ri ∈ R, ∃D ∈ iFα ((α ∪ D) ⊆ Ri)) (4.5)

The same property can be thought as it is impossible to identify an attribute in a

logical schema if the attribute does not have any identifier set in its relation schema,

which makes it impossible to discover other identifier sets by using meaningful joins.

This issue is also a matter of database normalization however in this document, it is

assumed that the relational schema is given as relations up to 3NF.

Definition 6. Inferability A set of attributes A1 ⊆ UR can be inferable from a set

of attributes A2 ⊆ UR for a given L = (R,F ,P), shown as A1

F
⇒ A2, as defined

below.

∀A1∀A2((A1

F
⇒ A2)⇔ ((A1 → A2) ∈ F+)) (4.6)

The definition of inferability is given by using closure set of functional dependencies

since relation based key constraints may not be adequate as there may be functional

dependencies among non-prime attributes in a schema which is not normalized.

Definition 7. Inference of Association among a Set of Attributes For a givenL = (R,F ,P),
the inference of association among a set of attributes A ⊆ UR ,shown as XL(A),

means that either A should be inferable from a subset of UR or be subset of any

existing relation schema in order to be associated. More formally:

XL(A)⇔ ∃Ai ⊆ UR(Ai
F
⇒ A) ∨ ∃Ri ∈ R(A ⊆ Ri) (4.7)

24

In this chapter, the set of attributes are defined as to have security dependency among

them if the inference of association among them should be prevented. In addition to

that, the purpose of this chapter is to inhibit the inference of association a subset of

UR with at least two attributes (each named a security dependent set thereafter) for

a logical schema L = (R,F ,P) by building a secure logical schema. It should be

noted that security dependency sets cannot include the attributes which have proba-

bilistic dependency together. If there is a probabilistic dependency asA1 7→ A2, then

all security dependent sets containing A2(such as {A2, A3}), will have an additional

version which has A1 instead of A2(as {A1, A3}). This step of inserting additional

security dependent sets according to the probabilistic dependencies will be given later

in the algorithm.

Definition 8. Secure Logical Schema A secure logical schema is a logical schema

LsecS = (R,F ,P) such that for a set of security dependent sets S , there should not be

any relation inR+, containing the attributes of any set in S. Formally:

LsecS ⇔ ∀Si ∈ S,@Ri ∈ R+(Si ⊆ Ri) (4.8)

It should be emphasized that by the definition ofR+, only meaningful joins are taken

into consideration as queries should only have equijoins on keys and related foreign

keys and by this way spurious tuples cannot be generated.

By the definition of secure logical schema, it can be stated that the inference of as-

sociation among attributes of each security dependent set is impossible with a secure

logical schema since the attributes of any security dependent sets cannot be function-

ally dependent to any subset of attributes in logical schema (excluding reflexive and

partial dependencies as given in Definition 2) or in the same relation as given as a

theorem below.

Theorem 4.1.1. The inference of association among attributes of each security de-

pendent set cannot be performed in secure logical schemas; that is,

∀Si ∈ S(¬XLsec
S
(Si)) (4.9)

Proof. The formal proof given in Appendix briefly states that in order to perform the

disallowed inference, either the attributes should be in the same relation or a mean-

25

ingful join should be done for an inter relation inference as both cases are impossible

because of secure logical schema definition.

The next step is to define transformation of a logical schema to a secure logical

schema for given security dependency sets.

Definition 9. Secure Decomposition A secure decomposition is decomposition of

L = (R,F ,P) according to the set of security dependency sets S to a new logical

schema L′
S = (R′,F ′,P) , having the following features:

1. Any attribute should not be lost after decomposition. In other words:

UR = UR′ (4.10)

2. The new set of functional dependencies should be subset of existing set of func-

tional dependencies as there can’t be any new functional dependency moreover

a loss in existing functional dependencies is expected to inhibit the inference of

associations among the elements of security dependent sets.

(F ′ ⊆ F) ∧ (F ′+ ⊆ F+) (4.11)

3. Any of the decomposed relations should not be a superset of any security de-

pendent set.

∀Si ∈ S, @Ri ∈ R′(Si ⊆ Ri) (4.12)

4. Any of the attributes in a security dependent set should not coexist in the same

decomposed relation with any of its identifier set.

∀Si ∈ S,∀Ri ∈ R′,∀σ ∈ Si,@τ ∈ iFσ (({σ} ∪ τ) ⊆ Ri) (4.13)

The fourth property of secure decomposition is a strong requirement since it makes

all the attributes in any security dependent set, uninferrable after the decomposition.

It should be noted that this property is a requirement for a totally proactive solution.

If any mechanism intends to have proactive and run time components together, then

this requirement can be relaxed.

26

The aim of the secure decomposition is to transform a logical schema to a secure

logical schema by the help of security dependency sets, which is given as a theorem

below.

Theorem 4.1.2. If L′
S = (R′,F ′,P) is the logical schema obtained after performing

secure decomposition to L = (R,F ,P) with the set of security dependency sets S,

then L′
S is a LsecS .

Proof. The formal proof given in Appendix briefly states that in order not to be a

secure logical schema, a security dependent set should be inferable or should be a

part of an original relation. The former is impossible as the attributes of security

dependent sets can not be in the same relation with any of their identifier sets by the

fourth property of the definition of secure decomposition. It is also impossible for the

latter due to the third property of secure decomposition.

4.2 Decomposition Algorithm

The main purpose of the decomposition algorithm is to achieve the secure decompo-

sition (Definition 9) which is defined as resulting in a secure logical schema. In order

to satisfy the goal, it is clear that the elements of each security dependent set should

not be in the same sub-relation obtained after the decomposition of original relations.

Furthermore, it should not be possible to meaningfully join sub-relations containing

securely dependent attributes separately. Below we define an algorithm which ex-

haustively generates all the subsets of the attributes of all relations and eliminates the

ones that do not satisfy the conditions mentioned above. After that, it also eliminates

redundant sub-relations.

27

Algorithm 1 Decomposition Algorithm
Require:
L: logical schema as (R,F ,P),
S: set of security dependent sets for L

Ensure:
MR: set of maximal subsets ofR according to S

1: begin
2: isSChanged = true //Step-1: Handle Probabilistic Dependencies
3: while isSChanged do
4: isSChanged = false
5: for each Ai 7→ Aj in P do
6: for each Si in S do
7: if Aj ∈ Si then
8: add (Si \ {Aj}) ∪ {Ai} to S
9: isSChanged = true

10: end if
11: end for
12: end for
13: end while
14: MR = ∅ //Step-2: Decomposition Phase
15: for eachRx inR do
16: MRx = Power Set ofRx

17: for each Si in S do
18: for each Zi inMRx do
19: if Si ⊆ Zi then
20: remove Zi fromMRx
21: end if
22: for each α in Si do
23: for each λ in iFα do
24: if ({α} ∪ λ) ⊆ Zi then
25: remove Zi fromMRx
26: end if
27: end for
28: end for
29: end for
30: end for
31: for each Vi inMRx do
32: for eachWi inMRx do
33: if Vi ⊆ Wi then
34: remove Vi fromMRx
35: end if
36: end for
37: end for
38: MR =MR ∪MRx
39: end for
40: returnMR
41: end

28

Secure decomposition algorithm for the L = (R,F ,P) with the given security de-

pendencies set S is given in Algorithm 1. The secure decomposing algorithm works

as follows:

• Step-1: Until there is no change in S, for all probabilistic dependencies in

P , each element of S is checked whether to include the right hand side of a

probabilistic dependency. If included, a new security dependent set is produced

containing the left hand side, in order to preserve privacy against probabilistic

attacks.(lines 3-14)

• Step-2: For all relational schemas inR,

1. Firstly, power set of the a relational schema is generated, which is called

asMRx in the algorithm (line (18)).

2. Then, for each security dependency set in S (line (19)) each element of

MRx (line (20)) is processed. The set is eliminated if:

– it contains all attributes of that security dependent set together (lines

(21-23)), or,

– it contains one of the attributes of the security dependent set with the

attribute’s any identifier set together (lines (24-30))

3. After that, among the remaining subsets; redundant ones (used for unnec-

essary sub-relations composed by other sub-relations) are also eliminated

(lines (33-39)).

The elimination strategy is aimed to create a secure logical schema. It is important

to note that all of the work in this chapter of document is concentrated on security

dependent sets. Actually there may be some basic policy rules as a single attribute

should not be accessed in any context and these basic cases can be easily handled

with simple extensions to the algorithm. However it is left as a future work to define

a complete attribute based inference control mechanism.

Theorem 4.2.1. Decomposition algorithm performs secure decomposition on given

L = (R,F ,P) for a given S.

29

Proof. For the proof, we should revisit the properties of secure decomposition given

in Definition 9. Before that it is important to notice that the algorithm modifies the set

of the security dependent sets by introducing new ones according to the probabilistic

dependencies at the beginning.

1. Any attribute cannot be lost after decomposition algorithm as the algorithm

cannot remove one element subsets of each relation since;

• Security dependency sets should have at least two elements by its defini-

tion and cannot be included by a one element subset.

• An attribute in a security dependent set cannot be its identifier as reflexive

functional dependencies are excluded in the definition of F+ and the set

of identifier set thereby. So again, at least two element set (attribute and

its identifier which has one attribute minimally) cannot be subset of one

element subset.

2. Any new functional dependencies cannot be introduced besides some existing

ones may be lost because some subsets of each relation schema are eliminated.

3. Subsets containing security dependent sets are eliminated (lines (19-21)).

4. All subsets containing an attribute from a security dependent set and it’s any

identifier set are eliminated (lines (22-28)).

The following parameters of L = (R,F ,P) and S affect the performance of decom-

position algorithm.

• ρ : #probabilistic dependencies ∈ P

• π : #relations ∈ R

• ψ : #security dependency sets ∈ S

• ε : maxRi∈R{|Ri|}

30

• η : maxSi∈S{|Si|}

• µ : maxα∈Si(Si∈S){
∣∣iFα ∣∣}

The decomposition algorithm works at a cost ofO(ψ ·ρ+π ·ψ ·2ε ·η ·µ). The decom-

position problem is a more complicated version of maximal independent sets problem

[43] in an undirected graph, in which attributes can be thought as vertices and secu-

rity dependencies as edges. Our algorithm is more complex since, the algorithm takes

the functional dependencies into account while performing decomposition and gen-

erating new dependency sets(edges) accordingly, which makes maximal independent

sets finding algorithms unusable for this problem. In [43] it is shown that generating

maximal independent sets is an NP-Hard optimization problem.

We have concentrated on building a lossy decomposion as the aim is to inhibit the

possibility of relating the attributes in a security dependent set. The best solution for

this problem can be losing minimum number of functional dependencies to achieve

the goal. For that purpose, each algorithmic solution should discard the relations in

which the attributes in a security dependent set resides together, as our proposed algo-

rithm does in lines [21-23]. The next step is breaking the transitive connection among

the attributes through joins, to prevent their inference. There can be two different ap-

proaches; as the first may cut all transitive join chain probabilities from all connection

centers of the chain, and the second may prefer to make it impossible starting from

the starts of the chain as given in following example schema.

Entity1 = (id1, att1)

Entity2 = (id2, att2)

Relation1 = (id1, idi)

Relation2 = (idi, idj)

Relation3 = (idj, idk)

Relation4 = (id2, idk)

31

Relation5 = (id1, id2)

Assume that idi, idj , idk are the keys of different entities and there is a security

dependent set as {att1, att2}.

First approach will try to cut the chain by performaing decomposition on Relation3

and Relation5 and the second will carry out decomposition on Entity1 and

Entity2. Both approaches destroy the transitive join chain among the attributes of

the security dependent set and both satisfies the optimal solution. The first approach

has a drawback as breaking the join chain for all attributes using the same chain for

joins, whereas second makes the securely dependent attributes unidentifiable. We

prefer to use the second approach since there can be many different join chain cen-

ters(as in Relation3 and Relation5) in the logical schema so first approach can

lead to many decomposed relations while preventing lots of legal queries.

It is important to note that being a proactive solution, the exponential complexity of

decomposition algorithm is not a critical problem since it is only executed once as

preprocessing phase.

Another point for the decomposition is that, this may lead to relations with no key and

because of that reason, duplicate rows may occur in views. Handling mechanism for

duplicate rows can change up to the implementation strategy, and keyless relations

are not a problem since they are a fact of anonymity.

4.3 Discussions

The aim of this chapter is to construct proactive context dependent attribute based

security mechanism for relational database system using given security dependent

sets. Formal model of the system and the decomposition algorithm is given together

with the proofs that the algorithm produces a schema that is in compliance with the

given security dependencies.

The main objective in this work is to prevent inference of association of the attributes

in each security dependent set, and this is accomplished by performing a secure de-

32

composition which transforms the relevant logical schema to a secure logical schema.

We have formally proven that, on the secure logical schema it is impossible to infer

association among the attributes of any security dependent set. Furthermore, we have

also proven that the decomposition algorithm produces secure logical schema.

In order to show the advantages of this proactive strategy several experiments are con-

ducted. We have used TPC-H schema and artificially generated databases in order to

show the effectiveness of our proactive approach over the best reactive solution. Our

experiments show that proactive approach is always preferable over reactive alterna-

tives.

It should also be noted that all work in this paper are about building an external

schema of the database according to the given logical schema (including relational

schemas, functional dependencies, probabilistic dependencies and even given pseudo-

keys) and security dependent sets, and therefore, it can be implemented independently

from logical and physical model. As a result, different external schemas for all dif-

ferent roles of users in database can be achieved, and each user can access to the

database through a different view from the point of security.

33

34

CHAPTER 5

OPTIMIZED DECOMPOSITION WITH RELAXED-CUT

5.1 Motivation

Secure decomposition of the external schema to prevent unwanted inferences has been

covered firstly in literature by [39] and [40]. These works concantrate on the required

attribute sets (visibility constraints) and produce minimal sized fragments according

to the dependencies and constraints. We have improved this process in chapter 4 and

we have defined, security dependency set concept and secure decomposition problem

formally and we have proposed a decomposition algorithm. The algorithm aims to

have maximal fragments (minimal dependency loss) according to forbidden set of

attributes.

In chapter 4, a decomposition algorithm is defined to construct a decomposition which

prevents to associate any security dependent set. This chapter intoduces a relaxation

phase to the decomposition mechanism as the algorithm given in chapter 4 breaks all

dependencies to the attributes of secure dependent sets with their identifiers. This will

restrict more than wanted, as illustrated with an example below.

Let the relation Rk = {A,B,C,D} and A is the primary key, single identifier for all

other attributes, as the dependencies are illustrated in Figure 5.1. Additionally, there

is a single security dependent set as {B,C}.

Therefore, the subsets containing both B and C needs to be eliminated in order to

prevent the association between B and C. Moreover, the subsets containing {A,B}
and {A,C} will be eliminated as well, since A is the identifier. After the elimination

of trivial subsets, secure deposition of Rk can be given as:

35

ABCD

B

C
A

D

Figure 5.1: Dependency Graph

AD BD CD

B CA D

Figure 5.2: Dependency Graph After Strong-Cut

Rk1 = {A,D} Rk2 = {B,D} Rk3 = {C,D}

As it can be seen from the new decomposed schema, there is no way to perform a

meaningful join between decomposed sets to associate B and C. As a graph notation

(details will be discussed later) Figure 5.2 shows the dependecnies formed after the

decomposition and according to this figure, there is no way to associate B and C

together, starting from a vertex in this graph. In other words, if the ways of associate

secure dependent sets attributes are defined as a chain of functional dependencies

through meaningful joins, the algorithm breaks these chains from both sides for both

attributes. It is obvious that the relations containing the security dependent set should

be removed, but the algorithm in chapter 4, breaks association of each attribute in

security dependent set with its identifiers to prevent all meaningful joins. In this

work, we call this strategy as a strong − cut approach.

However, this strong − cut approach can be relaxed by cutting the chains only at a

single point by producing:

Rk1 = {A,C,D} Rk2 = {B,D}

36

ACD BD

B

C

A D

Figure 5.3: Dependency Graph After Weak-Cut

The dependencies of this schema is depicted in Figure 5.3. There is also another

possible schema as:

Rk1 = {A,B,D} Rk2 = {C,D}

Both of these schemas are consistent with the privacy constraint defined by security

dependency set. The aim of this work is to develop a relaxed − cut algorithm that

decomposes the original schema with a minimum loss of functional dependencies

while satisfying the security constraints.

The motivation of this work can be described as developing a decomposition that

should not be much lossier than needed. This requirement defines an optimization

problem and to the best of our knowledge, this is the first attempt in literature to

construct an optimized secure decomposition satisfying the policy, while minimizing

the dependency loss.

Directed graph representation is selected as the most suitable mathematical model to

represent the problem, since a functional dependency can be easily demonstrated as a

directed edge and by this way, all algorithmic background in the graph theory can be

used for further enhancements of the concept and algorithm. As a result, a new algo-

rithm will be proposed for secure decomposition concept, which aims to decompose

the original schema minimally by preserving the idea of prohibiting decomposed rela-

tions to be used in meaningful joins to associate the attributes in a security dependent

set.

The problem is basically building a decomposition of the original schema, as any set

of securely dependent attributes cannot be associated by joins on keys.

37

5.2 Modelling the Problem with Graph-Theory

We firstly give the basic definitions by using graph notation.

Definition 10. Functional Dependency Graph (denoted as FDG hereafter, for a

schema) The given functional dependency set (F) of a logical schema (where F is

decomposed - i.e., there is a single element on the right hand side - and thus for each

functional dependency Fi such as Ai → Aj , Ai is an attribute set and Aj is a single

attribute) can be represented as a directed graph G = (V,E) as follows:

• In a normalized schema, all attributes are expected to exist in Aj , but the

schema may not be normalized, so each attribute should also be element of

V individually.

• Each one of Ai and Aj is a single node in V

• Each relation (attribute sets) is an individual node in V .

• Each dependencies of F+
i is an edge in E, if both sides of the dependency exist

as a different node in V .

Example-1: Assume that the logical schema S consists of four relations R1, R2, R3

and R4:

R1 = {A,B,C,D}

FR1 = {A→ B,A→ C,A→ D,

D → A,D → B,D → C}

R2 = {E,F,G,H}

FR2 = {E → F,E → G,E → H,

H → E,H → F,H → G}

R3 = {A,E} where A and E are foreign keys.

38

EFGH

F

G
E

H

ABCD

B

C
A

D

AE HD

Figure 5.4: FDG of Example-1

R4 = {H,D} where H and D are foreign keys.

Then, the graph (FDG) constructed for this schema is given in Figure 5.4.

The steps of the FDG construction algorithm is as follows:

1. Decompose all functional dependencies in F , such that each functional depen-

dency will have a single element in the right-hand side.

2. Create an individual vertex for all attributes in schema and add to V .

3. Create vertices for the attribute sets with more than one element, which exist in

left-hand side of any functional dependency and does not exist in V .

4. Create additional vertices, which include the attributes of a relation in R and

does not exist in V .

5. Generate F+

6. For each X → Y in F+, add an edge to E if X and Y are different vertices in

V .

39

Algorithm 2 Constructing Functional Dependency Graph (FDG)
Require:

S: logical schema as (R,F),
Ensure:

FGDS = (V,E): functional dependency graph of S
1: begin
2: V ← {}
3: E ← {}
4: //Step-1
5: for each Fi(Xi → Yi) ∈ F do
6: if |Yi| > 1 then
7: remove Fi from F
8: for each Yj ∈ Yi do
9: add Xi → Yj to F

10: end for
11: end if
12: end for
13: //Step-2
14: for each Ri ∈ R do
15: for each Aj ∈ Ri do
16: add Aj to V
17: end for
18: end for
19: //Step-3
20: for each Fi(Xi → Yi) ∈ F do
21: if |Xi| > 1 and Xi /∈ V then
22: add Xi to V
23: end if
24: end for
25: //Step-4
26: for each Ri ∈ R do
27: if Ri /∈ V then
28: add Ri to V
29: end if
30: end for
31: //Step-5
32: F+ ← Closure set of F
33: //Step-6
34: for each Fi(Xi → Yi) ∈ F+ do
35: if Xi 6= Yi and Xi ∈ V and Yi ∈ V then
36: add Xi → Yi to E
37: end if
38: end for
39: end

The graph in Figure 5.4 is obtained by the above algorithm for example-1.

40

Lemma 1. The edges of transitive closure of FDG is equal to F+

Proof. (SKETCH) It can be easily seen that the transitive definition is same for func-

tional dependencies and its corresponding graph. The equivalency is based on the

transitive property on the graphs and functional dependencies.

Definition 11. Common Ancestor of an Attribute Set is a vertex in FDG, from which

there exist simple paths to each element of attribute set.

In Figure 5.4, AE is one of the Common Ancestors for the set of vertices {F,B}.

Definition 12. Join Chain of an Attribute Set (Denoted as JC hereafter) is the set of

edges of simple paths in FDG, from a common ancestor to the attribute set.

The attribute sets may be a forbidden set (i.e. Secure Dependent Set) or a required set

(which will be defined later). Let the relational schema is as given in Figure 5.4. Let

the forbidden set is {F,B}, and the functional dependency graph is constructed as in

Figure 5.4. The join chain sets according to the forbidden set is given as below. The

first join chain is emphasized with red colour and bold for an ilustrative example.

JC1 = {AE → E,E → F,AE → A,A→ B}

JC2 = {HD → H,H → F,HD → D,D → B}

JC3 = {AE → E,E → H,H → F,

AE → A,A→ D,D → B}

JC4 = {AE → E,E → H,H → F,AE → A,A→ B}

JC5 = {AE → E,E → F,AE → A,A→ D,D → B}

JC6 = {HD → H,H → E,E → F,

HD → D,D → A,A→ B}

41

JC7 = {HD → H,H → F,HD → D,D → A,A→ B}

JC8 = {HD → H,H → E,E → F,HD → D,D → B}

Algorithm 3 Generating Join Chain Set Algorithm
Require:

FDG: functional dependency graph(V,E) of schema
A: attribute set

Ensure:
JC: join chain set

1: //Step-1
2: begin
3: JC ← {}
4: for each (Xi → Yi) ∈ E do
5: remove Xi → Yi from E
6: add Yi → Xi to E
7: end for
8: //Step-2
9: Initialize TargetArr as array of array of vertices

10: Initialize PathArr as array of array of set of edges
11: for each Ai ∈ A do
12: CAi

← empty set of connected vertices
13: PAi

← empty set of path edge sets
14: CAi

, PAi
← apply DFS to FDG with starting vertex Ai

15: j ← 0
16: for each Cj in CAi

do
17: TargetArr[i][j]← Cj
18: PathArr[i][j]← simple path to Cj in PAi

19: j ← j + 1
20: end for
21: end for
22: //Step-3
23: SharedArr ← array of shared vertices by all TargetArr rows
24: for each Si ∈ SharedArr do
25: add

⋃
(PathArr[k][l] as TargetArr[k][l] = Si) to JC

26: end for
27: //Step-4
28: for each JCi ∈ JC do
29: for each JCj ∈ JC do
30: if JCi ⊇ JCj then
31: remove JCi from JC
32: end if
33: end for
34: end for
35: end

42

The steps of the Join Chain Construction algorithm is as follows:

1. All edges are reversed.

2. Taking each element of attribute set (A) as starting vertex, apply DFS up to all

connected vertices and all possible simple paths are determined for each end

vertex.

3. If there exist simple paths to the same end vertex, which are common (com-

mon ancestors in original FDG) for all set attributes (assumed to be starting

vertices), all combinations of constructed simple paths, starting from different

set attribute and ending in the same vertex is a join chain.

4. If a chain composes another chain, it is discarded.

In example-1,HD andAE are determined as common ancestors and all combinations

of simple paths as AE → B (2 alternatives) & AE → F (2 alternatives) and HD →
B (2 alternatives) and HD → F (2 alternatives) are given as different join chains.

5.3 Relaxed Cut Decomposition Algorithm

Definition 13. Minimum-Cut Secure Decomposition: Decomposing the relational

schema by removing the minimum number of functional dependencies (i.e., not allow-

ing the attributes of the lost functional dependency Ai → Aj in the same relation) to

satisfy all security requirements.

Minimized-Cut Secure Decomposition Problem is equivalent to Minimum Hitting Set

Problem [44, 45] and thus it is NP-Complete. We propose a simple greedy heuristic

algorithm to solve Relaxed-Cut Secure Decomposition problem (which is defined be-

low), and due to the structure of our problem, we observed that this greedy approach

mostly determines the optimal solution.

Definition 14. Relaxed-Cut Secure Decomposition: Decomposing the relational

schema by greedly removing the functional dependencies in ordet to cut the depen-

dencies of secure dependent attributes at least through one of the join chains.

43

Unlike strong cut which cuts the identifiers of all attributes of the secure dependent

sets, relaxed cut aims to remove the functional dependencies as little as possible. The

steps of the Relaxed-Cut Secure Decomposition algorithm are as follows:

1. Calculate all join chains(JCi) for each security dependent set (Algorithm-2).

2. For each edge in the FDG, determine the number of times (SecurityCount) it

appears in join chains.

3. Sort the edges first according to their SecurityCount in descending order, then,

the number of attributes on the nodes at both sides of the edge, in ascending

order (in order to cut lower chains first).

4. Traverse the sorted list and mark each join chain as cut, if the edge is contained.

These edges are selected ones and to be a selected one, an edge should be an

element of at least one unmarked join chain. Set of selected edges are named

as new security dependent sets.

5. All subsets of the attributes of the relational schema are generated, which is

called as PSRx in the algorithm. Then, for each new security dependency set,

each element of PSRx is processed. The element set is eliminated if it contains

all attributes of that security dependency set together.

6. After that, among the remaining subsets redundant ones (used for unnecessary

sub-relations composed by other sub-relations) are also eliminated.

The steps 1 through 4 can be named as “Relaxation Stage” and steps 5 and 6 as “De-

composition Stage”. Decomposition stage is a subpart of the secure decomposition

algorithm proposed in chapter 4 except the identifier elimination stage.

Example-2: Consider the following schema and the forbidden sets.

R1 = {A,B,C,D}

R2 = {E,F,G}

R3 = {A,E,M}

44

MHRJ

H R

J
M

e22

e19 e21

e20

e23 e24

e25

K
L

JKL

e26
e27e28

e29e30

ABCD

B

CA

D

e4

e6
e7

e5
e10
e11

e8 e12

e13
e9

AEM

EFG

F G

E

e17
e16 e18

e3
e1

e2

e14 e15

Figure 5.5: FDG of Example-3

R4 = {J,K, L}

R5 = {M,H,R, J}

Forbidden Sets = {A,D}, {D,F}, {K,H}

Functional dependency graph is constructed as in Figure 5.5. Join chains are deter-

mine for this example as follows:

For {A,D}:

JC1 = {e8} JC2 = {e10, e12}

JC3 = {e4, e5} JC4 = {e6, e12, e4}

JC5 = {e5, e6, e9} JC6 = {e9, e12}

For {D,F}:

JC7 = {e1, e2, e8, e14} JC8 = {e1, e2, e10, e12, e14}

For {K,H}:

JC9 = {e23, e25, e29} JC10 = {e19, e22, e29}

JC11 = {e20, e22, e23, e29}

45

Algorithm 4 Relaxed-Cut Secure Decomposition Algorithm
Require:

LS: logical schema as (R,F), SD: set of security dependent sets for LS
Ensure:

PSR: a subset of maximal subsets of R satisfying security decomposition
1: begin
2: JC ← empty array of join chain sets //Step-1
3: for each SDi ∈ SD do
4: JCi ← join chain set for SDi (Algorithm-2) and add JCi to JC
5: end for
6: FDG(V,E)← FDG of LS and SecurityCount← array of 0, size |E|
7: for each Ei ∈ E do //Step-2
8: for each JCk ∈ JC do
9: for each JCki ∈ JCk do

10: if Ei ∈ JCki then SecurityCount[i] + +
11: end if
12: end for
13: end for
14: end for
15: E ← sort edges in descending order (uses SecurityCount) //Step-3
16: Selection← empty set of edges
17: for each Ei ∈ E do //Step-4
18: for each JCk ∈ JC do
19: for each JCki ∈ JCk do
20: if Ei ∈ JCki and JCki is unmarked then
21: mark JCki and add E to Selection
22: end if
23: end for
24: end for
25: end for
26: SDnew ← empty set of attribute sets
27: for each (Xi → Yi) ∈ Selection do add (Xi ∪ Yi) to SDnew

28: end for
29: for each Rx ∈ R do //Step-5
30: PSRx ← Power Set of Rx

31: for each Di ∈ SDnew do
32: for each Sj ∈ PSRx do
33: if Di ⊆ Sj then remove Sj from PSRx

34: end if
35: end for
36: end for
37: for each SSi ∈ PSRx do //Step-6
38: for each Sj ∈ SSi do
39: if Sj ⊆ SSi then remove Sj from PSRx

40: end if
41: end for
42: end for
43: end for
44: end

46

Finally, relaxed cut secure dependency algorithm is executed using Security Counts.

The edges are shown up to all marked ones in Table-1. Plus (+) sign in a row indicates

that this edge is selected and the join chain on the column is marked. Minus (-) sign

is used for already marked join chains and the edges without plus (+) sign in the row

is not selected.

As a result, the following edges are selected:

{B → D,A→ D, J → K,B → A,ABCD → A}

Output of Algorithm in chapter 4 with the Security Dependent Set {A,D}, {D,F}, {K,H}
would be as (i.e. with strong-cut):

R11 = {A,C} R12 = {B,C} R13 = {C,D}

R21 = {E,G} R22 = {F,G}

R3 = {A,E,M}

R41 = {J, L} R42 = {K,L}

R51 = {M,R, J} R52 = {J,R,H}

On the other hand the output of Algorithm-3 with Security Dependent Sets

{B,D}, {A,D}, {J,K}, {A,B,C,D} will be as follows:

R11 = {A,C} R12 = {B,C} R13 = {C,D}

R2 = {E,F,G}

R3 = {A,E,M}

R41 = {J, L} R42 = {K,L}

47

R5 = {M,H,R, J}

The algorithm can be improved by defining a total participation count to all edges

for all possible join chains of combination of attributes but it will result in a high

time-cost.

Theorem 5.3.1. Algorithm-3 generates a secure logical schema.

Proof. Assume that the resulting decomposed relations can be joined by foreign keys

to associate securely dependent attributes. Then the functional dependency graph of

new schema should contain a join chain for the attributes of this security dependent

set. However, this cannot happen since each join chain has been cut at least by an

edge and the attributes of these cut edges are given as new security dependent sets,

which means their coexistence is prevented.

Therefore, resulting decomposed relations form a secure logical schema and the new

forbidden sets, serve for the same privacy degree with respect to secure decomposition

in chapter 4 by using original forbidden sets.

48

CHAPTER 6

EXTENDING THE PROBLEM WITH REQUIRED SETS

In this chapter, the problem and the solution is extended with the notion of required

sets. Traditionally, the user roles and their use-cases are defined during design phase.

Therefore, a verification strategy is needed for the privacy preserving decomposition

of external layer.

Definition 15. Required Attribute Set (Denoted asRS hereafter) is a set of attributes

in the relational schema, which should be associated with a series of meaningful joins

to satisfy a functionality of the applicational usage.

It is important to note that, each functionality of a user role should be mapped to a set

of RS.

Required and forbidden sets must be consistent, and the decompostion algorithm must

satisfy both requirements.

Definition 16. Consistency Check Between Required Sets and Forbidden Sets: Re-

quired and Forbidden Sets are consistent with each other if there is a "cut set" that

contains at least one element from each one of the join chains for each forbidden

set (each forbidden set forms a set of join chains) and there is at least one set in

join chains corresponding to each required set (each required set forms a set of join

chains) that do not contain any element from the cut set.

In the case of any inconsistency discovered, security policy and association set needs

should be revised by the designer.

Consistency check (CC) problem can be simplified as follows: the edges are mapped

to letters, and thus join chains become set of letters. The consistency check problem

49

can be defined as to determine a set of letters (cut set) such that at least one letter from

each set of the forbidden sets and none of the letters in at least one of the sets of each

required set must be in the cut set.

Consider the following CC problem instance:

Join ChainsFS =



{e, f, g}

{a, b, c, d}

{a, e, c, d}

{b, f, g}



Join ChainsRS =



{a, b, f, g}{b, c, f}

{d, e}{c, g}




Cut-Set = {a, g}

Preserved Required Words = {{d, e}, {b, c, f}}

The above CC instance is consistents since at least one element of the cut set {a, g}

is in each forbidden set, and one set for each set of required sets (as {d, e} and {b, c,

f}) do not contain any element of the cut set.

On the other hand, the following CC instance is inconsistent since no cut set satisfying

the requirements exists.

Join ChainsFS =



{e, f, g}

{a, b, c, d}

{a, e, c, d}

{b, f, g}



50

Join ChainsRS =



{a, b, f, g}{b, f}

{d, g}{c, g}




Found = Inconsistency

Theorem 6.0.1. Consistency Check (CC) Problem is NP-Complete.

Proof. Input: Set of sets A and set of sets of sets B as follows:

A = {{a11 , a12 , ...} , {a21 , ...} , ...}

B =
{{{

b111 , b112 , ...
}
,
{
b121 , ...

}
, ...
}
,
{{
b211 , ...

}
, ...
}
, ...
}

Problem: Given A and B as above determine (i.e. it is consistent), if there is a set of

aij for each i in A, there is at least one r for each k inB such that bkr does not include

any of aij .

More formally;

Given (A,B) sets, the system is consistent

if there exists C = {aij |∀i∃j(aij ∈ A)}

such that ∀k∃r(bkr ∈ B ∧ bkr ∩ C = ∅)

NPC Proof: Given 3SAT instance constuct an instance of CC as follows:

3SAT instance: INS3SAT = (p11 ∨ p12 ∨ p13)∧ (p21 ∨ p22 ∨ p23)∧ ...(ps1 ..) such that

each pij is either qk or ¬qk and there are exactly k different propositional variables

q1,...qk

Construct instance INSCC as follows:

Generate A = {{q1,¬q1} , ..., {qk,¬qk}}

51

Generate B = {{{p11} , {p12} , {p13}} , ...}

INS3SAT is satisfiable if and only if INSCC is consistent.

INS3SAT is satisfiable if there is a truth assignment for each literal to make all clauses

as true. This is equivalent to INSCC , such that for each literal one element from each

{qi,¬qi} is selected to be in set C (that is equivalent to false in INS3SAT or an

edge to be cut in original consistency check problem). If each clause in satisfiable in

INS3SAT , then, at least 1 literal of pi1 or pi2 or pi3 must be true. That means either

{pi1} ∩ C = ∅ or {pi2} ∩ C = ∅ or {pi3} ∩ C = ∅.

The following algorithm checks for inconsistency for given required sets RS and

forbidden sets SD. The initial iterations are the same to find a suitable decomposition,

if exists.

The steps of the Algorithm-4 is as follows:

1. Calculate all join chains(JCx) for each security dependent set SD (Algorithm-

2).

2. Calculate all join chains(JCy) for each required attribute setRS (Algorithm-2).

3. For each different edge combination set, in which each single edge is chosen

from a single join chain in all JCy’s, check if these selected edges are unbroken

while breaking all forbidden sets’s join chains, then there is a disjoint edge set

which breaks all join chains in JCx. If such an edge combination cannot be

found then inconsistency exists.

The process will continue with decomposition stage of Algorithm-3 with CutSet

output to find a secure decomposition.

52

Table 6.1: Greedy Edge Selection Phase

EDGE ID SC 1 2 3 4 5 6 7 8 9 10 11

B → D e12 4 + + + +

J → K e29 3 + + +

A→ D e8 2 + +

B → A e9 2 + -

- e10 2 - -

- e14 2 - -

- e23 2 - -

- e1 2 - -

- e2 2 - -

ABCD → A e4 2 + -

Algorithm 5 Consistency Check and Determining Cut Set Algorithm
Require:

RS: set of required sets for logical schema, SD: set of security dependent sets
Ensure:

Inconsistent: true or false, CutSet: possible forbidden sets for decomposition
1: begin
2: JCx ← set of join chain sets, JCy ← array of set of join chain sets
3: for each SDi ∈ SD do //Step-1
4: Frbi ← join chain sets for SDi (Algorithm-2)
5: add Frbi to JCx
6: end for
7: j ← 0
8: for each RSi ∈ RS do //Step-2
9: Reqi ← join chain sets for ASi (Algorithm-2)

10: add Reqi to JCy[j] and j ← j + 1
11: end for
12: for each possible edge set CutSet, as one edge is selected from an
13: element of all JCy members do //Step-3
14: found← true
15: for each JCxk ∈ JCx do
16: if JCxk ∩ CutSet 6= ∅ then found← false and break
17: end if
18: end for
19: if found then break
20: end if
21: end for
22: end

53

54

CHAPTER 7

EXPERIMENTS

7.1 Experiments for Strong-Cut Approach

In this chapter, comparison between proactive and reactive strategies for context de-

pendent attribute based inference control mechanisms is presented through experi-

ments. In these experiments, TPC-H schema [46] and related, artificially populated

data sets are used. TPC-H schema is a well-known benchmark, which is used for

query evaluation and its original schema is given in Appendix. In our experiments

we have mainly concentrated on the overhead duration of the reactive algorithm since

proactive strategy does not have any overhead while processing the query. We have

determined both the absolute overhead time and the percentage of overhead ratio to

the query running time.

Firstly, for a sample application on TPC-H schema, set of security dependencies and

probabilistic dependencies will be given in this section. Afterwards, the new schema

generated by the decomposition algorithm of our approach will be presented. Then,

the implementation alternatives of the reactive strategy will be discussed and the over-

head duration and percentage ratios will be investigated for different dimensions. In

addition to that, new and larger sample database schemas are generated using the

characteristics of TPC-H schema and further analysis of the overhead duration will

be discussed for these schemas. Next, we will move on TPC-H queries given in [46]

and present timing analysis for these queries. Lastly, the comments and discussions

about the experiment results will be given with a comparative perspective among

proactive and reactive strategies.

55

7.1.1 Sample User Definition with Secure Logical Schema

Assume that a company using TPC-H schema for its database and there is an appli-

cation on this schema in the company in which inference of association between the

financial details of the orders of customers and the individual details of the related

customer needs to be prevented. The set of attributes for the financial details of the

orders can be given as follows:

{L_EXTENDEDPRICE,L_TAX,L_DISCOUNT,O_TOTALPRICE}

Additionally, the set of the attributes containing individual details of the customers

are as follows:

{C_NAME,C_ADDRESS,C_PHONE}

The prevention of inference among the attributes of these two sets can be achieved

through defining following security dependent sets:

S =



{C_NAME,L_EXTENDEDPRICE}

{C_ADDRESS,L_EXTENDEDPRICE}

{C_PHONE,L_EXTENDEDPRICE}

{C_NAME,L_TAX}

{C_ADDRESS,L_TAX}

{C_PHONE,L_TAX}

{C_NAME,L_DISCOUNT}

{C_ADDRESS,L_DISCOUNT}

{C_PHONE,L_DISCOUNT}

{C_NAME,O_TOTALPRICE}

{C_ADDRESS,O_TOTALPRICE}

{C_PHONE,O_TOTALPRICE}


In addition to these security dependent sets, the attributes such as date, comment,

and account balance potentially can behave as a key according to the data distribu-

tion. These attributes having key-like behaviors should be introduced to the system

56

as functional dependencies and as they become identifiers for securely dependent at-

tributes. These attributes are:

{C_ACCTBAL,C_COMMENT,L_SHIPDATE,L_COMMITDATE,

L_RECEIPTDATE,L_COMMENT,O_COMMENT,O_ORDERDATE}

Assume that according to company regulation, the customers are mapped to the dis-

count rates based on the quantity of their orders. It should be noted that, this behavior

is not a key-like behavior as key-like behavior should use the stored data in order to

identify the attribute. However in this case, it is possible to determine the discount

rates when quantity is known. This behavior is not related to the data distribution, and

there is no need to access to the rest of the data in order to find out such probabilistic

dependency. Therefore, in this schema, the quantity attribute may form a probabilistic

dependency for the discount as defined below:

P =
{
(L_QUANTITY 7→ L_DISCOUNT)

}
As given in decomposition algorithm, this probabilistic dependency will lead to new

security dependent sets.



{C_NAME,L_QUANTITY }

{C_ADDRESS,L_QUANTITY }

{C_PHONE,L_QUANTITY }

{L_SHIPDATE,L_QUANTITY }

{L_COMMITDATE,L_QUANTITY }

{L_RECEIPTDATE,L_QUANTITY }

{L_COMMENT,L_QUANTITY }


The resulting secure logical schema obtained after the decomposition algorithm and

original TPC-H schema [46] are given in Appendix.

57

7.1.2 Implementation Alternatives of Reactive Strategy

In proactive method, the original schema is converted to a secure schema by using

the decomposition algorithm, and secure schema satisfies all the security dependency

constraints. That means, on the secure schema all kinds of queries that can be written

are valid from the security point of view, and therefore, there is no need to do any

kind of verification. However, in reactive method, each query should be checked if it

will violate any of the security constraints. Therefore, we have tried to find out the

most efficient reactive implementation that will spend minimum time for checking the

applicability of each query under the given security and probabilistic dependencies.

The first remarkable reactive implementation attempt in literature was given in [14],

as the nature of the algorithm depends on checking the whole query history repeatedly

for each request. In that solution, the overhead time will increase with respect to

growing history of the system for each user, and is expected to be intolerable for

the users after some period of time. A major improvement to that strategy has been

proposed in [47], as all conditions creating a security leak are precomputed, and, the

satisfied ones during each query are marked. That is, if the query is rejected, then,

there is no need to change the status of any entry, whereas, if the query is permitted to

be executed, then, the status changes should be done permanent in order to remember

the previous attempts on that entry. In this method, the number of entries will be

proportional to the number of the security rules and will not grow with increasing

number of queries in history.

In order to apply this strategy into our problem, namely to the context dependent at-

tribute based inference control problem, two database relations must be defined for

storing the related security conditions. The first table should store the attributes for

each security dependent set as given in Appendix for the sample TPC-H schema.

Only the entries for just three security dependent sets are shown in this table. As the

number of security dependent sets depends only on the characteristics of the logical

schema, the table size will be constant during the whole query history. Consequently,

the first check of the reactive strategy is defined to check whether the query includes

an association among the attributes of a security dependent set by checking this re-

lation. There is no need to store any status variable for this relation since accessing

58

any proper subset of a security dependent set (or any set of attributes participating in

some security dependent set) should be taken into account in a different relation. The

second relation in Appendix stores all chains of associations, which may be formed

by executing different queries in to be able to relate the attributes of the security

dependent sets. For the sake of performance in reactive strategy, all chains are as-

sumed to be precomputed as in the table in Appendix. It is important to note that

these chains should be precomputed by the help of functional dependencies in logical

schema. Therefore, the second step of reactive strategy will include the checking of

any sub-pair in the relation according to the attribute association of the query. The

associated ones should be marked as accessed by storing a status column in the table

in Appendix or by using an extra relation. If the query forms all rules of a chain, then

it should be rejected, and all status changes should be roll backed. If this condition

has not been reached, then, the changes should be committed in order to remember

which chain parts have been generated in query history.

The above defined most efficient reactive control method has been implemented and

all experiments are carried out by using this implementation. During the experiments,

MySQL Server 5.6 is used with originally populated TPC-H data as described in [46].

The experiments are carried out on a system using Microsoft Windows 7 with12 GB

RAM and Intel i7 2630QM CPU.

7.1.3 Experiments on TPC-H Schema

First set of experiment are on single table queries, and for these queries the running

times with related overheads on TPC-H schema, is given in Table-1. In this table,

NA means there is no relation with the specified number of attributes and the number

of rows in the schema, therefore the experiment cannot be conducted. In addition to

actual running times, the percentage ratios of overhead times to the query processing

times are also given in Table-2. The dominancy of the overhead can be seen especially

in less dense relations. Remarkable effect of overhead can be easily seen from the

experiment. Notice that during the experiments, views are not used even for the most

crowded tables. The query running times longer than 1 second is usually not tolerable

in typical applications. Thus, usually developers are generally using materialized

59

Table 7.1: Single Table Query and Overhead Duration(sec) #Entries in Table vs #At-

tributes in Query

2 Attributes 4 Attributes 8 Attributes

25 rows 0,0043 0,0044 NA

10K rows 0,0158 0,0223 NA

150K rows 0,153 0,2346 0,4397

200K rows 0,2137 0,3025 0,6062

800K rows 0,5583 1,0338 NA

1.5M rows 1,4836 2,6557 NA

6M rows 17,935 20,224 24,278

Overhead 0,0106 0,0197 0,0297

views in order to improve the performance. In such cases, since the query execution

times will drop, the percentage of overhead rations will grow even for crowded tables.

Next set of experiment are carried out by performing equijoin on tables in order to de-

termine the overheads. In TPC-H schema, the following equijoins can be performed

(the number of rows of the relations are also given):

NATION(25) on REGION(5)

NATION(25) on SUPPLIER(10K)

NATION(25) on CUSTOMER(150K)

SUPPLIER(10K) on PARTSUPP (800K)

PART(200K) on PARTSUPP(800K)

60

Table 7.2: Overhead Percentage w.r.t. Single Table Query Processing Duration(%)

#Entries in Table vs #Attributes in Query

2 Attributes 4 Attributes 8 Attributes

25 rows 246,51% 447,73% NA

10K rows 67,09% 88,34% NA

150K rows 6,93% 8,40% 6,75%

200K rows 4,96% 6,51% 4,90%

800K rows 1,90% 1,91% NA

1.5M rows 0,71% 0,74% NA

6M rows 0,06% 0,10% 0,12%

Few joins are not used during experiments because of joined table sizes, as they need

a better system configuration in order to achieve realistic results.

It can be easily seen that equijoins are slightly faster than single table queries with

comparable sizes. This occurs since specially during returning results, equijoins elim-

inate many rows while processing.

7.1.4 Experiments on Generated Schema

TPC-H schema contains some large relations, but, it is moderately small schema in

terms of the number of attributes. In order to be able to measure the effect of larger

schemas (in terms of the number of attributes) we have generated artificial schema by

using the characteristics of TPC-H. The original TPC-H schema contains 61 attributes

only. We have generated larger schemas consisting of 100 to 6400 attributes. For

the number of security dependency sets and chains, we used the statistics in TPC-H

schema.

61

Table 7.3: Overhead Percentage w.r.t. Equijoin Query Processing Duration(%) #En-

tries in Joined Tables vs #Attributes in Query

2 Attributes 4 Attributes 8 Attributes

25on5 87,60% 162,81% 245,45%

25on10K 23,82% 44,27% 66,74%

25on150K 1,48% 2,75% 4,14%

10Kon800K 0,67% 1,25% 1,88%

200Kon800K 0,25% 0,47% 0,71%

As expected, due to the increase in the security dependency sets and the identifier

chains, the overhead of the reactive algorithm has increased considerably in order to

be able to verify the applicability of queries.

As it is observed from this set of experiments; the overhead duration increases linearly

with the increase in the number of attributes. Obviously this behavior results a linear

increase in overhead percentage ratio to the query timings as well since the execution

times of queries are not directly affected from the database total attribute count.

7.1.5 Experiment on TPC-H Queries

Our final set of experiments is conducted by using TPC-H queries in [46]. There are

22 queries; however some of them cannot be applied due to the security dependencies

defined in the beginning of this section. On the other hand, reactive strategy will

always spend some time for checking the applicability of these queries.

The overhead durations and query processing times for both reactive and proactive

strategy are listed on Table-5.

It is seen that reactive strategy always spends some time for checking the query

62

Table 7.4: The Effect of Attribute Count on Overhead Duration(sec) #Attributes in

Schema vs #Attributes in Query

2 Att.s 4 Att.s 8 Att.s 16 Att.s

100 att.s 0,0109 0,0205 0,0304 0,039

200 att.s 0,0111 0,0214 0,0319 0,0392

400 att.s 0,0116 0,0228 0,0342 0,0456

800 att.s 0,0171 0,0342 0,0512 0,0684

1600 att.s 0,0348 0,0655 0,0959 0,1258

3200 att.s 0,0705 0,1411 0,2124 0,2848

6400 att.s 0,2518 0,5178 0,7917 1,0759

whereas this duration is zero for proactive strategy. Moreover, reactive overhead of

the prevented queries is more than the performed ones in general as they deal with

more number of attributes. Additionally, the decomposed tables may cause a slight

decrease on query duration especially because of having less number of attributes,

compared to the original relations.

During these experiments, we have used materialized views for the proactive decom-

posed relations. This choice increases the storage usage but obviously improves the

query performance. Unmaterialized view usage makes no sense while defining dif-

ferent external layers to each security role with sufficient performance. In addition to

that, reactive overhead percentages may seem negligible at first for some queries, but

it is important to note that TPC-H queries are produced for benchmarking for query

execution and they are much more complex than a common standard interactive ap-

plication queries. An interactive application, which spends more than 1 second for

a query is not acceptable. If such queries are needed, usually materialized views are

used to overcome this performance problem.

63

Table 7.5: Timing Analysis of TPC-H Queries(sec)

Query Reactive Reactive Proactive Reactive

No Overhead Query Dur. Query Dur. Ov. Perc.

1 0,066 NA NA NA

2 0,174 NA NA NA

3 0,102 NA NA NA

4 0,055 NA NA NA

5 0,147 NA NA NA

6 0,036 NA NA NA

7 0,139 NA NA NA

8 0,165 NA NA NA

9 0,145 NA NA NA

10 0,150 NA NA NA

11 0,065 18,29 18,29 0,36%

12 0,066 20,39 15,99 0,32%

13 0,046 NA NA NA

14 0,055 NA NA NA

15 0,075 NA NA NA

16 0,065 1,358 1,299 4,78%

17 0,056 0,481 0,378 11,6%

18 0,084 NA NA NA

19 0,093 14,37 6,855 0,64%

20 0,139 NA NA NA

21 0,095 38,37 35,66 0,24%

22 0,035 NA NA NA

7.2 Experiments for the Relaxed-Cut Approach with Required Sets

The next step is to extend the experiemants for Relaxed-Cut approach. According to

its nature, finding functional dependency graph of a given schema is a straightforward

algorithm and its time complexity is O(|F+|) which can be ignored for such a proac-

64

tive process. Additionally, the time complexity of finding join chains stage for given

“Required” or “Forbidden” sets of the process, should be investigated by depending

to the base algorithm “all simple paths” [48]. Hence the overall algorithm is related

to time complexity of DFS which is negligible for a proactive solution. The main step

of the process is the Algorithm-4 as it is the most exhaustive stage. The algorithm can

be implemented in both directions:

• Checking each “Allowed” set according to a brute-force selection on “Inhib-

ited” set (Implementation Strategy-I).

• Checking each “Inhibited” set according to a brute-force selection on “Al-

lowed” set (Implementation Strategy-II).

Many heuristics can be added to the algorithm, but these cannot be proven to optimize

a particular portion of the input space. The problem is NP-Complete, but the examples

are based on logical volumes of databases. It is important to note that, any logical

database can be divided into sub-schemas in terms of join chains, so the algorithm

can be repeated at each sub-schema easily. The timings are gathered on a i7, 16 GB

RAM machine and heuristics are used during implementation for a better result, such

as checking the forbidden against allowed, or vice versa up to their counts.

Table-2 refers to the timings of the algorithm when each “Allowed” set is checked

according to a brute-force selection on “Inhibited” set and respectively Table-3 for

implementation strategy-II.

These experiments have been conducted on TPC-H schema and all results are gath-

ered as lower than 1 ms, as the schema size (in terms of number of edges in FDG) is

so small.

These benchmarks show that the algorithm is scalable for widely used database vol-

umes. The algorithm is exponential for both strategies but the more optimal strategy

can be chosen according to the brute-force selection set size.

65

Table 7.6: Timings for Implementation Strategy-I

Criteria E1 E2 E3 E4 E5 E6 E7 E8 E9 E10

#edges in FDG 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

#edges in Forbidden Join

Chains 10 10 10 10 10 10 20 30 40 50

#Forbidden Join Chains 20 40 60 80 100 100 100 100 100 100

#Required Attribute Sets 50 50 50 50 50 50 50 50 50 50

#Join Chains per

Required Attribute Set 10 10 10 10 10 10 10 10 10 10

#edge per Join Chain for

Required Attribute Set 10 10 10 10 10 10 10 10 10 10

#Duration 2 ms 2 ms 3 ms 3 ms 4 ms 3 ms 3 ms 4 ms 4 ms 6 ms

Table 7.7: Timings for Implementation Strategy-II

Criteria E11 E12 E13 E14 E15 E16 E17 E18 E19 E20

#edges in FDG 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000

#edges in Forbidden Join

Chains 10 10 10 10 10 10 10 10 10 10

#Forbidden Join Chains 100 80 60 40 20 100 100 100 100 100

#Required Attribute Sets 50 50 50 50 50 50 50 50 50 50

#Join Chains per

Required Attribute Set 10 10 10 10 10 10 10 10 10 10

#edge per Join Chain for

Required Attribute Set 10 10 10 10 10 10 20 30 40 50

#Duration 2 ms 2 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms 1 ms

66

CHAPTER 8

CONCLUSION AND FUTURE WORK

The approach given in this document assures a proactive cross-control of the required

and inhibited attribute sets and a secure decomposition with maximal availability with

minimal loss of dependencies on external schema. The verification of privacy for the

data should be checked during design phase of an application as all user roles and

according use-cases are stated. This work introduces a proactive approach for this

problem and the main aim to prevent security leaks prior to production. These leaks

generally have their root causes owing to the design of the system. The main point to

check the security schema of the system is database and its usages. There is a clear

distinction between the traditional approach and the mechanism given in this thesis.

Traditional design approach concentrates on the requirements of the system and user

roles. Each user role is assigned to the intended requirement set and external database

layer for this user role is defined accordingly. This approach can be stated as a

”whitelist” approach. Major design problems for security and privacy leaks have

their root cause of contradictive whitelist. A simple example can be given as a user

role, who should not view identification number of customers, but allowed the reprint

the invoices of them. This is actually a granularity problem, since the allowed action

contains the forbidden one. As the applications may have many different graphical

user interface platforms (as web, mobile, etc.), database-centric policy enforcement

and verification with more granular attribute-based control becomes a critical solution

to this problem.

The design approach introduced in this thesis, offers a proactive control and decompo-

sition according to both ”whitelist” and ”blacklist”. By this way, blacklisted actions

should be defined upon attributes of data, therefore a complete verification mecha-

67

nism is satisfied. This approach can also be combined with existing normalization

procedures of database schema, which only checks for database integrity. As a result,

many supplementary seucrity mechanisms need not to be applied during production.

A designer may claim that all user roles should be authorized by only permitted set of

queries, therefore there is no need for a decomposition. This idea does not contradict

with the approach given in this thesis, as there should be a control mechanism for the

permitted set and forbidden set. Decomposition is based on building external layer,

which can be built by this way as it does not cancel the fact that it should be verified

upon blacklisted actions on data.

As a future work, this optimization should be improved according to the query statis-

tics of user and applicable reactive controls may be integrated. Even the method in

this approach is proactive, experiments show that the timings are acceptable for a

reactive-like behavior in future. We have experienced the benefits of this approach

as given in real-life example section. Additionally, reactive meachnims can be in-

tegrated to the mechanism in order to prevent attacks based on unexpected key-like

behaviour according to data distribution. To sum up, for the application usage of

databases, the algorithms given in this thesis should be used for a proactive control

and the given mathematical representation approach may lead to easy-to-build and

integrate mechanisms for fine-grained database privacy problem.

68

REFERENCES

[1] E. Ferrari and B. Thuraisingham, “Security and privacy for web databases and

services,” in Advances in Database Technology - EDBT 2004, vol. 2992 of Lec-

ture Notes in Computer Science, pp. 17–28, Springer Berlin Heidelberg, 2004.

[2] J. Biskup, D. W. Embley, and J.-H. Lochner, “Reducing inference control to

access control for normalized database schemas,” Inf. Process. Lett., vol. 106,

pp. 8–12, Mar. 2008.

[3] L. Sweeney, “K-anonymity: A model for protecting privacy,” Int. J. Uncertain.

Fuzziness Knowl.-Based Syst., vol. 10, pp. 557–570, Oct. 2002.

[4] M. Stonebraker and E. Wong, “Access control in a relational data base man-

agement system by query modification,” in Proceedings of the 1974 Annual

Conference - Volume 1, ACM ’74, (New York, NY, USA), pp. 180–186, ACM,

1974.

[5] A. Motro, “An access authorization model for relational databases based on al-

gebraic manipulation of view definitions,” in Proceedings of the Fifth Interna-

tional Conference on Data Engineering, (Washington, DC, USA), pp. 339–347,

IEEE Computer Society, 1989.

[6] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Hippocratic databases,” in Pro-

ceedings of the 28th International Conference on Very Large Data Bases, VLDB

’02, pp. 143–154, VLDB Endowment, 2002.

[7] O. Cooperation, “Oracle database: Security guide.” b14266.pdf, July 2012.

[8] J. Shi, H. Zhu, G. Fu, and T. Jiang, “On the soundness property for sql queries

of fine-grained access control in dbmss,” in Computer and Information Science,

2009. ICIS 2009. Eighth IEEE/ACIS International Conference on, pp. 469–474,

June 2009.

69

[9] C. Dwork, Differential Privacy: A Survey of Results. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2008.

[10] F. McSherry and K. Talwar, “Mechanism design via differential privacy,” pp. 94

– 103, 2007.

[11] G. Smith, “The semantic data model for security: representing the security se-

mantics of an application,” in Data Engineering, 1990. Proceedings. Sixth In-

ternational Conference on, pp. 322–329, Feb 1990.

[12] Y. Chen and W. Chu, “Protection of database security via collaborative inference

detection,” in Intelligence and Security Informatics (H. Chen and C. Yang, eds.),

vol. 135 of Studies in Computational Intelligence, pp. 275–303, Springer Berlin

Heidelberg, 2008.

[13] T. H. Hinke, “Inference aggregation detection in database management sys-

tems,” in Proceedings of the 1988 IEEE Conference on Security and Privacy,

SP’88, (Washington, DC, USA), pp. 96–106, IEEE Computer Society, 1988.

[14] A. Brodsky, C. Farkas, and S. Jajodia, “Secure databases: constraints, inference

channels, and monitoring disclosures,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 12, pp. 900–919, Nov 2000.

[15] J.-W. Byun and N. Li, “Purpose based access control for privacy protection in

relational database systems,” The VLDB Journal, vol. 17, pp. 603–619, July

2008.

[16] J. Park, X. Zhang, and R. S, “Attribute mutability in usage control,” in In Pro-

ceedings of the Proceedings of 18th Annual IFIP WG 11.3 Working Conference

on Data and Applications Security, pp. 15–29, Kluwer, 2004.

[17] S. Rizvi, A. Mendelzon, S. Sudarshan, and P. Roy, “Extending query rewriting

techniques for fine-grained access control,” in Proceedings of the 2004 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’04,

(New York, NY, USA), pp. 551–562, ACM, 2004.

[18] E. Bertino, J.-W. Byun, and N. Li, “Foundations of security analysis and design

iii,” ch. Privacy-Preserving Database Systems, pp. 178–206, Berlin, Heidelberg:

Springer-Verlag, 2005.

70

[19] D. Brewer and M. Nash, “The chinese wall security policy,” in Security and Pri-

vacy, 1989. Proceedings., 1989 IEEE Symposium on, pp. 206–214, May 1989.

[20] E. Bertino, S. Jajodia, and P. Samarati, “Database security: Research and prac-

tice,” Information Systems, vol. 20, no. 7, pp. 537 – 556, 1995.

[21] A. Kumar, N. Karnik, and G. Chafle, “Context sensitivity in role-based access

control,” SIGOPS Oper. Syst. Rev., vol. 36, pp. 53–66, July 2002.

[22] K. Muralidhar, R. Parsa, and R. Sarathy, “A general additive data perturbation

method for database security,” Management Science, vol. 45, no. 10, pp. pp.

1399–1415, 1999.

[23] S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian, “Flexible sup-

port for multiple access control policies,” ACM Trans. Database Syst., vol. 26,

pp. 214–260, June 2001.

[24] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and K. Shim, “Optimizing

queries with materialized views,” in Data Engineering, 1995. Proceedings of

the Eleventh International Conference on, pp. 190–200, Mar 1995.

[25] X. Jin, R. Sandhu, and R. Krishnan, “Rabac: Role-centric attribute-based ac-

cess control,” in Computer Network Security (I. Kotenko and V. Skormin, eds.),

vol. 7531 of Lecture Notes in Computer Science, pp. 84–96, Springer Berlin

Heidelberg, 2012.

[26] L. J. Buczkowski and E. Perry, “Database inference controller.,” in DBSec,

pp. 311–322, 1989.

[27] J. A. Goguen and J. Meseguer, “Unwinding and inference control,” in 2012

IEEE Symposium on Security and Privacy, pp. 75–75, IEEE Computer Society,

1984.

[28] S. Dawson, S. De Capitani di Vimercati, P. Lincoln, and P. Samarati, “Minimal

data upgrading to prevent inference and association attacks,” in Proceedings of

the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of

Database Systems, PODS ’99, (New York, NY, USA), pp. 114–125, 1999.

71

[29] S. Dawson, S. De Capitani Di Vimercati, and P. Samarati, “Specification and en-

forcement of classification and inference constraints,” in Security and Privacy,

1999. Proceedings of the 1999 IEEE Symposium on, pp. 181–195, 1999.

[30] D. E. Denning, “Commutative filters for reducing inference threats in multilevel

database systems,” in Security and Privacy, 1985 IEEE Symposium on, pp. 134–

134, April 1985.

[31] D. G. Marks, “Inference in mls database systems,” IEEE Trans. on Knowl. and

Data Eng., vol. 8, pp. 46–55, Feb. 1996.

[32] C. Meadows, “Extending the brewer-nash model to a multilevel context,” in

Research in Security and Privacy, 1990. Proceedings., 1990 IEEE Computer

Society Symposium on, pp. 95–102, May 1990.

[33] M. Morgenstern, “Controlling logical inference in multilevel database sys-

tems,” in Security and Privacy, 1988. Proceedings., 1988 IEEE Symposium on,

pp. 245–255, Apr 1988.

[34] P. Stachour and B. Thuraisingham, “Design of ldv: a multilevel secure rela-

tional database management system,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 2, pp. 190–209, Jun 1990.

[35] T.-A. Su and G. Ozsoyoglu, “Data dependencies and inference control in mul-

tilevel relational database systems,” in 2012 IEEE Symposium on Security and

Privacy, pp. 202–202, IEEE Computer Society, 1987.

[36] M. Thuraisingham, “Security checking in relational database management sys-

tems augmented with inference engines,” Computers & Security, vol. 6, no. 6,

pp. 479–492, 1987.

[37] G. Aggarwal, M. Bawa, P. Ganesan, H. Garcia-molina, K. Kenthapadi, R. Mot-

wani, U. Srivastava, D. Thomas, and Y. Xu, “Two can keep a secret: A dis-

tributed architecture for secure database services,” in In Proc. CIDR, 2005.

[38] W. Luo, Q. Xie, and U. Hengartner, “Facecloak: An architecture for user privacy

on social networking sites,” in 2009 International Conference on Computational

Science and Engineering, vol. 3, pp. 26–33, Aug 2009.

72

[39] S. D. C. di Vimercati, S. Foresti, S. Jajodia, G. Livraga, S. Paraboschi, and

P. Samarati, “Fragmentation in presence of data dependencies,” IEEE Transac-

tions on Dependable and Secure Computing, vol. 11, pp. 510–523, Nov 2014.

[40] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and P. Sama-

rati, “Fragments and loose associations: Respecting privacy in data publishing,”

Proc. VLDB Endow., vol. 3, pp. 1370–1381, Sept. 2010.

[41] J. Lee and C. Clifton, “Differential identifiability,” in Proceedings of the 18th

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD ’12, (New York, NY, USA), pp. 1041–1049, ACM, 2012.

[42] W. W. Armstrong and C. Delobel, “Decomposition and functional dependencies

in relations,” ACM Trans. Database Syst., vol. 5, no. 4, pp. 404–430, 1980.

[43] E. Lawler, J. Lenstra, and A. Rinnooy Kan, “Generating all maximal inde-

pendent sets: Np-hardness and polynomial-time algorithms,” SIAM Journal on

Computing, vol. 9, no. 3, pp. 558–565, 1980.

[44] J. Bailey and P. J. Stuckey, “Discovery of minimal unsatisfiable subsets of

constraints using hitting set dualization,” in Practical Aspects of Declarative

Languages (M. V. Hermenegildo and D. Cabeza, eds.), (Berlin, Heidelberg),

pp. 174–186, Springer Berlin Heidelberg, 2005.

[45] A. Gainer-Dewar and P. Vera-Licona, “The minimal hitting set generation prob-

lem: algorithms and computation,” CoRR, vol. abs/1601.02939, 2016.

[46] “Tpc benchmark h (decision support) standard specification revision 2.17.1.”

Accessed: 2014-12-15.

[47] T. Toland, C. Farkas, and C. Eastman, “Dynamic disclosure monitor (d2mon):

An improved query processing solution,” in Secure Data Management

(W. Jonker and M. Petković, eds.), vol. 3674 of Lecture Notes in Computer

Science, pp. 124–142, Springer Berlin Heidelberg, 2005.

[48] F. Rubin, “Enumerating all simple paths in a graph,” IEEE Transactions on Cir-

cuits and Systems, vol. 25, pp. 641–642, August 1978.

73

74

APPENDIX A

PROOFS AND SCHEMAS

1) Proof For Theorem-1

Proof. Step by step proof is given below with a brief description of each step.

1. Assuming L as a secure logical schema, the formula given in (8) should be

satisfied.

∀Si((Si ∈ S)⇒ ∀Rj(Rj ∈ R+ ⇒ Si 6⊆ Rj))

2. Let Si be a security dependent set for L.

Si ∈ S

3. Line (1) can be instantiated by using Si.

(Si ∈ S)⇒ ∀Rj(Rj ∈ R+ ⇒ Si 6⊆ Rj)

4. When modus ponens is applied using lines (2) and (3).

∀Rj(Rj ∈ R+ ⇒ Si 6⊆ Rj)

5. Bu using the formula (1) of the property of R+, Si should not be element of

any existing relation R and there should not exist any attibute set to which Si
is functionally dependent since according to line (4), Si is not a part of any

relation in R+ so any new relation composing Si should not be produced by

meaningful joins.

75

∀Rk(Rk ∈ R ⇒ Si 6⊆ Rk) ∧ ∀Al(Al ⊆ UR ⇒ (Al → Si) 6∈ F+)

6. Assume that the inference of association among the attributes in Si can be done.

This assumption is the negation of the theorem 1, so proof by contradiction

starts here.

XL(Si)

7. According to line (6), the formula (7) states that Si should be inferable or subset

of any existing relation inR.

∃An(An
F
⇒ Si ∧ An ⊆ UR) ∨ ∃Ro(Ro ∈ R ∧ Si ⊆ Ro)

8. In order to contradict the ∨ expression in line (7), both sides of ∨ should be

contradicted. Accordingly, the first assumption is given below as Si should be

inferable.

∃An(An
F
⇒ Si ∧ An ⊆ UR)

9. Let the expression in line (8) be instantiated using bound variable An denoting

a attribute set which infers Si.

An
F
⇒ Si ∧ An ⊆ UR

10. First ∧ instantiation using line (9).

An
F
⇒ Si

11. Second ∧ instantiation using line (5).

∀Al(Al ⊆ UR ⇒ (Al → Si) 6∈ F+)

12. The universal quantifier in line (11) is instantiated using An

An ⊆ UR ⇒ (An → Si) 6∈ F+

13. Second ∧ instantiation using line (9).

An ⊆ UR

76

14. When modus ponens is applied using lines (12) and (13).

(An → Si) 6∈ F+

15. Line (14) can be used to perform modus ponens to the contrapositive of formula

(6).

¬(An
F
⇒ Si), (14) using formula 6

16. Lines (10) and (15) are leading to a contradiction.

⊥

17. First assumption of ∨ expression in line (7) in line (8) has been contradicted.

Next, the second assumption is given below as Si should be a part of an existing

relation.

∃Ro(Ro ∈ R ∧ Si ⊆ Ro)

18. First ∧ instantiation using line (5).

∀Rk(Rk ∈ R ⇒ Si 6⊆ Rk)

19. The existential quantifier in line (17) is instantiated using bounded variableRo.

Ro ∈ R ∧ Si ⊆ Ro, letRo be a bound variable forRo

20. Line (18) can be instatiated again by usingRo.

Ro ∈ R ⇒ Si 6⊆ Ro

21. First ∧ instantiation using line (19).

Ro ∈ R

22. Second ∧ instantiation using line (19).

Si ⊆ Ro

77

23. When modus ponens is applied using lines (20) and (21).

Si 6⊆ Ro, (20, 21)

24. Lines (22) and (23) are leading to a contradiction for line (17).

⊥

25. Lines (16) and (24) are leading to a contradiction for line (7) which means that

it is impossible to make an inference of association among the attributes in Si.

⊥

26. End of proof by contradiction is reached, hence the theorem holds.

¬XL(Si)

2) Proof For Theorem-2

Proof. Step by step proof is given below with a brief description of each step.

1. Assume that L′ is a secure logical schema, then it should satisfy the following

property given in formula (9).

∀Si(Si ∈ S)⇒ ¬XL′(Si)

2. Let Si be a security dependent set for L′.

Si ∈ S

3. Line (1) can be instantiated by using Si.

(Si ∈ S)⇒ ¬XL′(Si)

78

4. When modus ponens is applied using lines (2) and (3).

¬XL′(Si)

5. Proof by contradiction begins by assuming negation of line (4) as if L′ is not a

secure logical schema, then inference of association among the attributes of a

security dependent set (Si) should be possible according to theorem (1).

XL′(Si)

6. According to line (5), the formula (7) states that Si should be inferable or subset

of any existing relation inR.

∃An(An
F ′

⇒ Si ∧ An ⊆ UR′) ∨ ∃Ro(Ro ∈ R′ ∧ Si ⊆ Ro)

7. Let the expression in line (6) be instantiated using bound variable An denoting

a attribute set which infers Si andRo denoting the relation which contains Si.

(An
F ′

⇒ Si ∧ An ⊆ UR′) ∨ (Ro ∈ R′ ∧ Si ⊆ Ro)

8. In order to contradict the ∨ expression in line (7), both sides of ∨ should be

contradicted. Accordingly, the first assumption is given below.

(An
F ′

⇒ Si ∧ An ⊆ UR′)

9. First ∧ instantiation using line (8).

An
F ′

⇒ Si, (8)

10. Formula (6) states that Si should be functionally dependent to an attribute set

when the statement in line (9) exists.

(An → Si) ∈ F ′+

11. Using formula (11), the dependency in line (10) can be transformed as below.

(An → Si) ∈ F+

79

12. Si in line (11) cannot be contained byAn as partial functional dependencies are

excluded in definition of F+ in Definition (3).

An 6⊇ Si

13. Using lines (11) and (12), it can be stated that An is an identifier set for Si
according to formula (3).

An ∈ IFSi

14. If L′ is a secure logical schema, then formula (13) should be satisfied.

∀Si ∈ S,∀Ri ∈ R′,∀σ ∈ Si,@τ ∈ iFσ (({σ} ∪ τ) ⊆ Ri)

15. There should not be any identifier for Si according to the contrpositive of Iden-

tifiable Property’s formula (5) and line (14) since it is prevented for any attribute

in Si to be in the same relation with an identifier.

IFSi
= ∅

16. An cannot be an identifier according to line (15).

An 6∈ IFSi

17. Lines (13) and (16) are leading to a contradiction.

⊥

18. First assumption of ∨ expression in line (7) in line (8) has been contradicted.

Next, the second assumption is given below as Si should be a part of an existing

relation.

(Ro ∈ R′ ∧ Si ⊆ Ro)

19. Second ∧ instantiation using line (18).

Si ⊆ Ro

80

20. First ∧ instantiation using line (18).

Ro ∈ R′

21. Si cannot be part of any relation according to formula (12).

Si 6⊆ Ro

22. Lines (19) and (21) are leading to a contradiction.

⊥

23. Lines (17) and (22) are leading to a contradiction for line (5) which means that

it is impossible to make an inference of association among the attributes in Si.

⊥

24. End of proof by contradiction is reached, hence the theorem holds.

¬XL′(Si)

3) Original TPC-H 2.17.1 Database Schema

As defined in version 2.17.1:

PART = (P_PARTKEY, P_NAME, P_MFGR, P_BRAND, P_TYPE,

P_SIZE, P_CONTAINER, P_RETAILPRICE, P_COMMENT)

SUPPLIER = (S_SUPPKEY, S_NAME, S_ADDRESS,

S_NATIONKEY(N_NATIONKEY), S_PHONE, S_ACCTBAL,

S_COMMENT)

81

REGION = (R_REGIONKEY, R_NAME, R_COMMENT)

NATION = (N_NATIONKEY, N_NAME, N_COMMENT,

N_REGIONKEY(R_REGIONKEY))

CUSTOMER = (C_CUSTKEY, C_NAME, C_ADDRESS,

C_NATIONKEY(N_NATIONKEY), C_PHONE, C_ACCTBAL,

C_COMMENT, C_MKTSEGMENT)

PARTSUPP = (PS_PARTKEY(P_PARTKEY), PS_SUPPKEY(S_SUPPKEY),

PS_AVAILQTY, PS_SUPPLYCOST, PS_COMMENT)

LINEITEM = (L_ORDERKEY(O_ORDERKEY), L_LINENUMBER, L_QUANTITY,

L_TAX, L_PARTKEY(PS_PARTKEY), L_COMMENT,

L_SUPPKEY(PS_SUPPKEY), L_DISCOUNT, L_EXTENDEDPRICE,

L_RETURNFLAG, L_LINESTATUS, L_SHIPDATE, L_COMMITDATE,

L_RECEIPTDATE, L_SHIPINSTRUCT, L_SHIPMODE)

ORDERS = (O_ORDERKEY, O_ORDERSTATUS, O_CLERK,

O_CUSTKEY(C_CUSTKEY), O_TOTALPRICE, O_ORDERDATE,

O_ORDERPRIORITY, O_SHIPPRIORITY, O_COMMENT)

4) Proactive Secure Decomposition of TPC-H Schema

The output of the Secure Decomposition Algorithm:

PART = (P_PARTKEY, P_NAME, P_MFGR, P_BRAND, P_TYPE, P_SIZE,

P_CONTAINER, P_RETAILPRICE, P_COMMENT)

82

SUPPLIER = (S_SUPPKEY, S_NAME, S_ADDRESS, S_NATIONKEY,

S_PHONE, S_ACCTBAL, S_COMMENT)

REGION = (R_REGIONKEY, R_NAME, R_COMMENT)

NATION = (N_NATIONKEY, N_NAME, N_COMMENT, N_REGIONKEY)

CUSTOMER1 = (C_CUSTKEY, C_NATIONKEY, C_MKTSEGMENT)

CUSTOMER2 = (C_ACCTBAL, C_COMMENT, C_NATIONKEY, C_MKTSEGMENT)

CUSTOMER3 = (C_NAME, C_ADDRESS, C_PHONE, C_NATIONKEY,

C_MKTSEGMENT)

PARTSUPP = (PS_PARTKEY, PS_SUPPKEY, PS_AVAILQTY,

PS_SUPPLYCOST, PS_COMMENT)

LINEITEM1 = (L_ORDERKEY,L_LINENUMBER, L_PARTKEY, L_SUPPKEY,

L_RETURNFLAG, L_LINESTATUS, L_SHIPINSTRUCT,

L_SHIPMODE)

LINEITEM2 = (L_ORDERKEY, L_RECEIPTDATE, L_COMMITDATE,

L_PARTKEY, L_SUPPKEY, L_RETURNFLAG, L_LINESTATUS,

L_SHIPINSTRUCT, L_SHIPMODE, L_SHIPDATE, L_COMMENT)

LINEITEM3 = (L_LINENUMBER, L_RECEIPTDATE, L_COMMITDATE,

L_SUPPKEY, L_RETURNFLAG, L_LINESTATUS, L_SHIPINSTRUCT,

L_COMMENT, L_SHIPMODE, L_PARTKEY, L_SHIPDATE)

LINEITEM4 = (L_ORDERKEY, L_EXTENDEDPRICE, L_DISCOUNT,

L_PARTKEY, L_SUPPKEY, L_TAX, L_RETURNFLAG,

83

L_LINESTATUS, L_QUANTITY, L_SHIPINSTRUCT, L_SHIPMODE)

LINEITEM5 = (L_LINENUMBER, L_EXTENDEDPRICE, L_DISCOUNT,

L_PARTKEY, L_SUPPKEY, L_TAX, L_RETURNFLAG, L_LINESTATUS,

L_QUANTITY, L_SHIPINSTRUCT, L_SHIPMODE)

ORDERS1 = (O_ORDERKEY, O_ORDERSTATUS,

O_ORDERPRIORITY, O_SHIPPRIORITY, O_CLERK, O_CUSTKEY)

ORDERS2 = (O_COMMENT, O_ORDERDATE, O_ORDERPRIORITY,

O_SHIPPRIORITY, O_CLERK, O_ORDERSTATUS, O_CUSTKEY)

ORDERS3 = (O_TOTALPRICE, O_ORDERSTATUS, O_ORDERPRIORITY,

O_SHIPPRIORITY, O_CLERK, O_CUSTKEY)

84

Table A.1: Sample Entries for the Set of Security Dependent Sets in TPC-H Schema

Dependency Id Attribute

1 C_NAME

1 L_EXTENDEDPRICE

2 C_ADDRESS

2 L_EXTENDEDPRICE

3 C_PHONE

3 L_EXTENDEDPRICE

... ...

5) Security Dependent Sets and Precomputed Chains for TPC-H 2.17.1 Database

Schema

Table A.2: Sample Entries for the Precomputed Chains

Dep. Id Chain Id Rule Id Attribute-1 Attribute-2

1 1 1 C_NAME C_CUSTKEY

1 1 2 C_CUSTKEY O_CUSTKEY

1 1 3 O_CUSTKEY O_ORDERKEY

1 1 4 O_ORDERKEY L_ORDERKEY

1 1 5 L_ORDERKEY L_LINENUM.

...

85

86

CURRICULUM VITAE

PERSONAL INFORMATION

Surname, Name: Turan,Uğur

Nationality: Turkish (TC)

Date and Place of Birth:07.06.1984, Ankara-Turkey

Marital Status: Married (Pelin Turan, 2016)

Phone: 0 312 2357036

EDUCATION

Degree Institution Year of Graduation

M.S. Department of Computer Engineering, METU 2009

B.S. Department of Computer Engineering, METU 2006

PROFESSIONAL EXPERIENCE

Year Place Enrollment

2005-2009 TURKTRUST Corp. Project Engineer/Manager

2009-2010 INVICTA Ltd. Research Engineer/Manager

2010-2011 STIGMA Ltd. Research Manager

2011-2014 TILYA Ltd. CTO

2014-... TETA-TEK Electronics Corp. CTO

87

PUBLICATIONS

International Conference Publications

Uğur Turan, İsmail Hakkı Toroslu, Murat Kantarcıoğlu, Secure logical schema and

decomposition algorithm for proactive context dependent attribute based inference

control, Data & Knowledge Engineering, Volume 111, 2017, Pages 1-21, ISSN 0169-

023X

88

	ABSTRACT
	ÖZ
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Introduction
	A Real-Life Case
	Background Related Work
	Statistical Usage
	Application Usage

	Problem Definition and Solution with Strong-Cut Algorithm
	Preliminaries and Problem Definition
	Decomposition Algorithm
	Discussions

	Optimized Decomposition with Relaxed-Cut
	Motivation
	Modelling the Problem with Graph-Theory
	Relaxed Cut Decomposition Algorithm

	Extending The Problem with Required Sets
	Experiments
	Experiments for Strong-Cut Approach
	Sample User Definition with Secure Logical Schema
	Implementation Alternatives of Reactive Strategy
	Experiments on TPC-H Schema
	Experiments on Generated Schema
	Experiment on TPC-H Queries

	Experiments for the Relaxed-Cut Approach with Required Sets

	Conclusion and Future Work
	REFERENCES
	Proofs and Schemas
	CURRICULUM VITAE

