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ABSTRACT 

 

 

INVESTIGATION OF DECOUPLING TECHNIQUES FOR LINEAR AND 

NONLINEAR SYSTEMS 

 

 

 

Kalaycıoğlu, Taner 

Ph.D., Department of Mechanical Engineering 

Supervisor: Prof. Dr. H. Nevzat Özgüven 

 

March 2018, 189 Pages 

 

 

Structural coupling methods are widely used in predicting dynamics of coupled 

systems. In this study, the reverse problem, i.e. predicting the dynamic behavior of a 

particular subsystem from the knowledge of the dynamics of the overall system and of 

all the other subsystems, is studied. This problem arises when a substructure cannot be 

measured separately, but only when coupled to neighboring substructures. The 

dynamic decoupling problem of coupled linear structures is well investigated in 

literature. However, decoupling of coupled structures that include a nonlinear element 

such as clearance, friction and nonlinear stiffness still remains untouched. 

 

In this thesis, firstly, decoupling techniques for coupled linear structures are 

investigated. Two new methods for decoupling of coupled linear systems are 

introduced and their performances were compared to those of the best decoupling 

methods known in literature. Then, the dynamic decoupling problem of coupled 

nonlinear structures is considered for the first time. A method is developed for 

calculating FRFs of a substructure decoupled from a coupled nonlinear structure 



vi 

involving any type of nonlinearity that can be modelled as a single nonlinear element. 

Depending on where the nonlinear element is, i.e., either in the known or unknown 

substructure, or at the connection, the formulation differs. Firstly, applications of the 

method are demonstrated on nonlinear lumped parameter systems using simulated 

experimental data. Then, real-life applicability of the proposed method is shown 

through two nonlinear experimental test structures. Finally, the method is applied on a 

real-life engineering problem in order to demonstrate its performance. 

 

Keywords: Nonlinear decoupling, Nonlinear uncoupling, Nonlinear subsystem 

identification, Nonlinear substructure decoupling 
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ÖZ 

 

 

DOĞRUSAL VE DOĞRUSAL OLMAYAN SİSTEMLER İÇİN AYRIŞTIRMA 

TEKNİKLERİNİN İNCELENMESİ 

 

 

 

Kalaycıoğlu, Taner 

Doktora, Makine Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. H. Nevzat Özgüven 

 

Mart 2018, 189 Sayfa 

 

 

Yapısal birleştirme yöntemleri, birleşmiş sistemlerin dinamiğinin kestirilmesinde 

yaygın olarak kullanılmaktadır. Bu çalışmada ters problem, yani bir alt yapının 

dinamik davranışının birleşmiş yapının ve tüm diğer alt yapıların dinamik davranış 

bilgileri kullanılarak hesaplanması incelenmiştir. Bu problem, bir alt yapının ayrı 

olarak ölçülemediği fakat komşuluğundaki bir alt yapıya birleştirildiği takdirde 

ölçülebildiği durumlarda ortaya çıkmaktadır. Birleşmiş doğrusal yapıların dinamik 

olarak ayrıştırılması problemi literatürde oldukça fazla incelenmiştir. Fakat boşluk, 

sürtünme ve doğrusal olmayan direngenlik gibi doğrusal olmayan eleman içeren 

birleşmiş yapıların ayrıştırılması problemi hala çözülememiştir. 

 

Bu tezde, ilk olarak, birleşmiş doğrusal yapılar için ayrıştırma teknikleri incelenmiştir. 

Birleşmiş doğrusal sistemlerin ayrıştırılması amacıyla iki yeni yöntem önerilmiş ve 

bunların performansları literatürde bilinen en iyi ayrıştırma yöntemlerinin 

performansları ile kıyaslanmıştır. Daha sonra, birleşmiş doğrusal olmayan yapıların 

dinamik olarak ayrıştırılması problemi ilk defa ele alınmıştır. Herhangi bir türde 
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doğrusalsızlık içeren ve içerdiği doğrusalsızlık tek bir doğrusal olmayan eleman ile 

modellenebilen birleşmiş doğrusal olmayan bir yapıdan ayrıştırılan alt yapının frekans 

tepki fonksiyonlarını hesaplamak için yeni bir yöntem geliştirilmiştir. Doğrusal 

olmayan elemanın nerede bulunduğuna, yani bilinen alt yapıda ya da bilinmeyen alt 

yapıda veya bu iki alt yapının bağlantısında olup olmadığına bağlı olarak formülasyon 

değişiklik göstermektedir. İlk olarak, yöntemin uygulamaları doğrusal olmayan toplu 

parametreli sistemler üzerinde teorik olarak hesaplanmış veriler kullanılarak 

gösterilmiştir. Sonra, önerilen yöntemin gerçek hayatta uygulanabilirliği doğrusal 

olmayan dinamik davranışa sahip iki farklı deneysel test düzeneği üzerinde 

gösterilmiştir. Son olarak, yöntemin performansı gerçek bir mühendislik problemine 

uygulanarak sergilenmiştir. 

 

Anahtar Kelimeler: Doğrusal olmayan ayrıştırma, Doğrusal olmayan alt sistem 

tanılama, Doğrusal olmayan alt yapı ayrıştırma 
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

1.1. Structural Decoupling 

Most mechanical systems are appeared as an assembly of components and the modal 

analysis is widely being used to analyze the dynamics of such systems or their 

components [1]. Considerable effort has been devoted to structural coupling methods 

that predict the total dynamic behavior of a complex machine from those of its 

components.  

 

Conversely, the dynamics of a whole system may be known, but that of its component 

cannot be measured separately. If measurement can be made only when it is coupled 

to neighboring substructures, then a decoupling problem arises. It can be briefly 

defined as the identification of the dynamics of a structural subsystem that is part of a 

larger system. In other words, decoupling studies focus on predicting the response of 

an unknown subsystem from the known responses of the complete system and the 

remaining subsystem (Figure 1).  
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Figure 1. Common concept of decoupling technique 

For example, it is not possible to measure the dynamics of the tire alone easily in a 

tire-suspension of an automobile (Figure 2). Therefore, the tire should be supported by 

the wheel, suspension and so on, which brings additional dynamics on the 

measurement. 

 

Another example can be given using the same figure (Figure 2). Here, it is aimed to 

obtain pure bearing dynamics in order to use it in design simulations of rotating 

machinery. However, a special fixture has to be used in order to excite the bearing in 

practice that results in the implicit measurement of the bearing dynamics. So, the result 

of this measurement with the fixture will also involve the dynamics of the fixture in 

addition to that of the bearing, which may have resonances, mass-additive effect and 

so on.  
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Figure 2. Sample applications of decoupling [2] 

Another area of application can be encountered in the train industry for car-bogie 

assemblies [3]. Structure-borne vibrations due to the contact between rail and wheel 

flange are transmitted into the car body through the wheel suspending bogie system. 

So, an adequate mathematical model of the bogie is essential to analyze this 

phenomenon. Since the stand-alone testing of bogie system does not represent its 

operating conditions, it should be tested as a sub-component of the fully assembled 

coach. 
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Decoupling techniques are also used in design improvement of subsystems to identify 

their individual contribution to the total system. Another common application of 

decoupling is mass cancellation to eliminate mass loading effect of accelerometers in 

FRF measurements [1,4]. Other practices of structural decoupling include subsystem 

identification in damage detection, identification of joints and structural health 

monitoring [5-8]. Despite such promising applications, decoupling problem is still one 

of the most challenging subjects in structural dynamics.  

1.2. Motivation 

Decoupling techniques can also be used in the solution of several problems 

encountered in defense industry. The motivation of this thesis work is a problem 

encountered in fighter aircrafts. Fighter aircrafts are required to carry a large variety 

of external stores mounted at various locations on their wings (Figure 3). 

 

Figure 3. Wing stores carried by fighter/attack aircraft. 
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Pylons are the suspension devices used to mount those external stores on an aircraft 

(Figure 4). 

 

Figure 4. A F-16 jet fighter full of stores mounted under its wings via pylons 

In some cases, the dynamics of an aircraft may be needed when a different store or a 

different combination of stores are mounted on it. This requires performing ground 

vibration tests for each different store or store combination on an aircraft. This can also 

be achieved by coupling each store to the aircraft theoretically if an adequate 

mathematical model of the aircraft-pylon structure including pylon connection 

dynamics is available. In order to construct this mathematical model, aircraft-pylon 

structure should be tested while the pylon is preloaded with a large load corresponding 

to the weight of the store. Then, a subsystem identification method would provide a 

solution to decouple the aircraft-pylon structure including pylon connection dynamics 

from the aircraft-pylon-store assembly. Furthermore, it is a well-known fact that 

store/pylon connection exhibits friction and hardening nonlinearities [9-12]. A pylon 

model and a typical pylon nonlinearity are given in Figure 5. Thus, the decoupling 
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method, which is going to be used to identify the aircraft-pylon structure dynamics, 

should have the capability to handle nonlinear connections between pylon and store. 

 

Figure 5. System model and pylon nonlinearity [13] 

As one of Turkey's leading defense industry company, ASELSAN Inc. designs, 

develops and manufactures targeting systems (Figure 6), guided bombs (Figure 7), and 

integrates these systems to different aircraft platforms. Integration of such subsystems 

is very crucial since it can drastically change the dynamic characteristics of the target 

platform, misestimation of which prior to integration may result in catastrophic 

failures. 
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Figure 6. Integration of ASELPOD to a fighter aircraft 

 

Figure 7. Integration of LGK (Laser Guidance Kit) to a fighter aircraft 

The initial objective of this thesis was to examine all available decoupling techniques 

in detail and to develop alternative techniques that can be used for decoupling of linear 
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coupled structures. It was also aimed to extend the linear decoupling methods for 

decoupling of nonlinear structures. Several attempts are made to develop a new 

decoupling theory one of which results in two different linear decoupling formulations. 

However, studies on these proposed formulations are terminated due to their 

performance concerns. Then, it is totally focused on developing a method that can 

decouple nonlinear structures which is the ultimate purpose of this thesis. To the best 

of author’s knowledge, this work presents the first applicable method to uncouple 

nonlinear structures. 

1.3. Literature Survey 

Since engineering structures are generally designed as an assembly of several 

components, it is computationally expensive and time consuming to constitute a FEM 

each time particularly when various design alternatives are going to be evaluated. 

Therefore, several structural coupling methods have been developed in order to reduce 

the effort necessary for dynamic reanalysis of such systems [14-32]. 

 

Even though several different coupling methods are available in literature based on the 

linearity assumption, most of the engineering structures are intrinsically nonlinear. 

During the past three decades, structural coupling of nonlinear subsystems has been 

investigated and led to several coupling methods considering the nonlinear effect [33-

41]. 

 

Several studies have also been carried on structural decoupling of linear systems, 

which becomes an important problem when the dynamic behavior of a system is 

known, but it is not easy to measure the dynamic characteristics of one of its 

components due to geometric limitations (i.e., due to difficulty in measuring and/or 

exciting a subsystem separately).  

 

Investigation on decoupling problem dates back to three decades ago, when the first 

attempt to extract objective component’s dynamics in an assembly was performed by 



9 

Okubo and Miyazaki [2]. They have proposed an uncoupling method and applied it in 

order to extract the dynamics of a bearing. Since it is not practical to excite a bearing 

without a special fixture, dynamics of the fixture should be extracted to obtain the pure 

bearing dynamics.  

 

Gray and Starkey [42] proposed a method for substructure uncoupling use of which is 

especially suggested for the cases where modeling the connection elements between 

substructures is challenging. The method is shown to work on lumped parameter 

structures and it is further applied to a Ford Ranger light truck. 

 

Gontier and Bensaibi [43] presented a theoretical method in time domain for in situ 

identification of the mechanical parameters of a joint via modal analysis of the known 

greater structure. In this study, the interface compatibility and equilibrium equations 

are formulated in terms of the polynomial coefficients of the discrete time transfer 

functions. They verified the technique by applying it to lumped parameter systems, as 

well as to a real beam structure supported by an elastic device of unknown 

characteristics. 

 

Silva et al. [44] presented a decoupling methodology as a means of modeling the 

dynamic behavior of structural elements, more specifically, for the dynamic 

characterization of joints. They regenerate FRFs from a mathematical model using the 

modal parameters identified from the experimental data as to avoid the direct use of 

data with experimental errors during decoupling calculations involving three matrix 

inversions. They also emphasized the difficulties during experimental measurement of 

the FRFs relating all the connection coordinates. Maia et al. [45] proposed a different 

uncoupling technique for joint identification. In this technique, they used coupling 

formulation of Jetmundsen et al. [18] and obtained a better formulation in terms of the 

number of matrix inversions. In this formulation, only internal DOFs of the known 

substructure are used to obtain joint’s frequency response. 

Kalling et al. [46] also studied the decoupling problem by performing state-space 
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model identification including a sensitivity analysis showing possible ill conditioning 

due to inertia ratios at the interface. 

 

Zhen et al. [47] proposed an inverse substructuring formulation that differs from the 

classical approach in that the FRFs of individual substructures and dynamic 

characteristics of the coupling elements were predicted directly from the coupled 

system FRFs. Although this technique is advantageous since no substructure level 

spectra response is needed, it requires whole coupled system spectra response and it is 

sensitive to measurement errors and/or and inconsistencies. The proposed technique 

was applied to study the dynamics of motor vehicle and product transport system 

[48,49], showing its applicability in industry. Then, it was further developed for multi-

coordinate coupled multi-substructure product transport system [50,51]. 

 

D’Ambrogio and Fregolent [52] proposed two FRF based decoupling techniques; 

namely, impedance and mobility based decoupling approaches, which show ill-

conditioning troubles due to the internal resonances of the known subsystem with fixed 

interface. As to circumvent ill-conditioning, they used FRFs at some internal DOFs of 

the known subsystem. 

 

Cloutier and Avitabile [53] proposed the Constraint Force-based decoupling approach 

which is proved to be promising with a single connection but not as efficient for 

multiple connections. They compared their approach with impedance and mobility-

based approaches [52] and concluded that the impedance and mobility-based 

approaches can produce more accurate results when appropriate internal DOFs are 

used. 

 

Sjövall and Abrahamsson [3] presented a subsystem identification method based on 

reconstruction of the interface forces acting between the unknown subsystem and its 

neighbor. It is shown in this study that the subsystem identification is sensitive to the 

existence of general anti-resonances in the frequency domain of interest due to ill-
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conditioned matrix inversion. In order to overcome this ill-conditioning problem, they 

suggested the use of proper non-interface response DOFs from the test of the coupled 

system, but this requires extensive pretest analyses. 

 

A general framework for dynamic substructuring is presented in [28] and [29] in which 

the so-called dual domain decomposition technique that allows retaining the full set of 

global DOFs by enforcing equilibrium at the connection of substructures is introduced. 

The substructuring problem using the dual domain decomposition can be directly 

formulated from [29], whereas a similar formulation for the decoupling problem is 

derived and discussed in [54] for collocated approach where DOFs used to ensure 

equilibrium are the same as DOFs used to enforce compatibility, and in [55] and [56] 

for non-collocated approach where DOFs used to ensure equilibrium are not the same 

as DOFs used to enforce compatibility.  

 

Batista and Maia [57] suggested three different formulations based on the classical 

decoupling procedure of Jetmundsen et al. [18] taking the effects of including different 

sets of DOFs into account on the coupled system: (i) exclusion of connection DOFs, 

(ii) inclusion of connection DOFs only and (iii) inclusion of connection DOFs and 

internal DOFs of the known subsystem. They concluded that the formulation that 

performs best requires measurements at the connection points of the substructures. 

 

D’Ambrogio and Fregolent [58] proposed the so-called hybrid assembly approach. 

They compared dual [54] and hybrid assembly approaches by applying them to an 

experimental test bed and end up with similar results in terms of predicted FRFs of the 

unknown subsystem. In subsequent applications, the dual assembly approach [54] was 

successfully used to estimate the subsystem dynamics in machine tools [59,60], wind 

turbines [61] and flexible space payloads [62]. 

 

Dynamic decoupling of linear structures is well investigated in literature despite some 

accuracy problems. Even so, the dynamic decoupling problem of nonlinear structures 
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still remains intact. Additional challenge in nonlinear decoupling problem is that the 

presence of a nonlinearity in a coupled system results in different system FRFs 

depending on the level of excitation. Thus, application of linear decoupling approaches 

will also end up with different FRFs of an unknown substructure at each time. In order 

to overcome this challenge, firstly the nonlinear system identification techniques are 

investigated. Detailed reviews of these work are given by Kerschen et al. [9] and Noël 

et al. [63]. 

1.4. Scope of the Thesis 

The scope of the thesis is given as follows: 

 

In Chapter 2, the theories of the two new methods for decoupling of linear systems are 

given in detail both of which are based on the inverse application of a structural 

coupling method developed in a previous work. Applications of the proposed linear 

decoupling approaches are given in order to show their applicability and accuracy. 

Then, the same case study is studied by using some well-known linear decoupling 

methods available in literature. Finally, an assessment of the proposed approaches in 

comparison to those recently given in the literature is made in terms of correlation 

between the predicted FRFs and the true FRFs of the unknown subsystem. 

 

In Chapter 3, first, the theory of response calculation for nonlinear systems, which is 

frequently used in the succeeding chapter, is given here for the sake of completeness. 

Then, the theory of the parametric modal identification technique for nonlinear 

systems and that of the linear decoupling technique adopted in this thesis are 

summarized. Finally, the theory of the proposed FRF Decoupling Method for 

Nonlinear Systems (FDM-NS) is given in detail. 
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In Chapter 4, applications of FDM-NS are demonstrated on nonlinear lumped 

parameter systems through numerical case studies which vary in terms of the location 

of the nonlinear element. While a cubic stiffness type of nonlinear element exists in 

the unknown subsystem in the first case, it is located in the known subsystem in the 

second case. In the third and the last case, a piecewise stiffness type of nonlinear 

element is used which connects both subsystems to each other. 

 

In Chapter 5, FDM-NS is applied to experimental test systems in order to verify the 

method on real nonlinear systems. In the first experiment, decoupling of a nonlinear 

T-beam assembly is examined where the subsystem with a nonlinear element is taken 

as the known substructure. In the second experiment, decoupling of a nonlinear test 

structure composed of two cantilever beams connected at their tips with an unknown 

nonlinear element is studied. This problem is handled by including the unknown 

nonlinear connection element in the unknown subsystem. 

 

In Chapter 6, application of FDM-NS to a real engineering problem is illustrated. The 

engineering system is composed of an Inertial Measurement Unit (IMU) and its 

mechanical interface plate which are placed on a tray grounded with rubber isolators. 

The rubber isolators introduce nonlinearity to the overall system due to their 

displacement dependent stiffness characteristics. In this application, point FRFs of the 

tray grounded with rubber isolators at its connection interface are predicted by 

decoupling IMU and its mechanical interface plate from the whole nonlinear system 

via FDM-NS. Then, the results obtained are compared with those measured 

experimentally. 

 

In Chapter 7, a brief summary and conclusions are given. 
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CHAPTER 2 

 

 

2. ON DECOUPLING OF LINEAR SYSTEMS 

 

 

 

In this chapter, two new decoupling formulations are proposed after a detailed 

investigation of existing methods for decoupling of linear systems. Then, their 

performances are evaluated and compared with the best of those given in literature 

using a case study with a lumped parameter system. By using simulated test data, the 

effects of using limited number of measurement coordinates in the known subsystem 

on predicted FRFs of the unknown subsystem are examined in detail.  

2.1. Proposed Linear Decoupling Formulations 

In this section, the theories of two new methods proposed for decoupling of linear 

systems are given in detail. These approaches are based on the inverse application of 

a structural modification method suggested by Tahtalı and Özgüven [64] such that 

resulting equations of this the so called “Coupling Force Method” are reorganized to 

be used for substructure decoupling for linear systems. Here, the derivation of both 

formulations proposed is presented after introducing a brief theory of the “Coupling 

Force Method”. 

2.1.1. Theory of the Coupling Force Method 

In this section, the underlying theory of the Coupling Force Method is given for 

completeness. It should be noted that the notation used here and hereafter for all 

systems/subsystems and the coordinate sets are given in Figure 8. 
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Figure 8. Notation used for the coupled system, its subsystems and their coordinate 

sets 

As can be seen from Figure 8, superscripts U and K refer to the unknown and known 

subsystems, respectively, whereas superscript KU represents the coupled system. 

Subscript i denotes the coordinates that belong to the unknown subsystem only, 

subscript j refers to the connection coordinates (connection may be rigid or elastic) 

between the unknown and known subsystems, and finally subscript k represents the 

coordinates that belong to the known subsystem only. 

 

Considering the free body diagram of each subsystem as shown in Figure 9, the 

following equations can be written for the unknown and the known subsystems, 

respectively: 
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Figure 9. Freebody diagram of each subsystem itself 

U U U
ii ii ij

U U U
j intj ji jj

     
             

FX H H

F FX H H
 (1)  

 

K KK
jj jk intj

K KK
kj kk kk

    
      

    

H H -FX

H H FX
 (2)  

 

Here, H represents receptance matrix whereas X, Fint and F correspond to amplitude 

vectors of generalized displacement, coupling reaction force and external force, 

respectively. Expansion of Eq. (1) and Eq. (2) yields the following relations: 

 

 U U U

i ii i ij j int  X H  F H F F  (3)  

 

 U U U

j ji i jj j int  X H  F H F F  (4)  

 

K K K

j jj int jk k X H  F + H  F  (5)  
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K K K

k kj kk k X H  f + H  F   (6)  

 

When two subsystems are rigidly coupled, one can equate the displacement vectors of 

both subsystems at the coupling coordinates to each other, i.e. U K

j jX X . Thus, 

coupling reaction force can be obtained as given below by equating the right hand 

sides of Eq. (4) and Eq. (5): 

 

1
U K K U U

int jj jj jk k ji i jj j



        F = H H H  F H  F H  F  (7)  

 

So, the response of the coupled system can be rewritten by substituting Eq. (7) into 

Eqs. (3), (5) and (6) as follows: 

 

 1
KU U U U K K U U

i ii i ij j jj jj jk k ji i jj j



           X H  F H F H H H  F H  F H  F  (8)  

 

1
KU K U K K U U K

j jj jj jj jk k ji i jj j jk k



          X H  H H H  F H  F H  F + H  F  (9)  

 

1
KU K U K K U U K

k kj jj jj jk k ji i jj j kk k



          X H H H H  F H  F H  F + H  F  (10) 

 

Furthermore, the response of the coupled system can also be expressed as the 

multiplication of the FRF matrix and the external forcing vector: 

 

KU KU KU KU

i ii ij ik i

KU KU KU KU

j ji jj jk j

KU KU KU KU

k ki kj kk k

    
    

    
    
    

X H H H F

X H H H F

X H H H F

 (11) 

 

Equations (8), (9), (10) and (11) are the resulting formulations of the Coupling Force 

Method proposed by Tahtalı and Özgüven [64].  
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In the following sections, derivation of the proposed linear decoupling formulations 

using Equations (9), (10) and (11) will be presented. 

2.1.2. Derivation of First Decoupling Formulation Proposed (Formulation 1) 

Here, derivation of the first Decoupling Formulation Proposed, which is abbreviated 

as Formulation 1 for simplicity, is explained in detail.  

 

Let us consider Eq. (9) and assume that only the kth coordinates of the coupled system 

are harmonically excited, whereas the rest of external force vector is equal to zero, 

such that; 

 

i

j

k

i 1

j 1

k 1







   
   

   
   
   

F 0

F 0

F F

 (12) 

 

By using Eq. (11) and Eq. (12), Eq. (9) can be rewritten as 

 

 
1

KU K U K K K

jk jj jj jj jk jk k 1 k 1 k 1



     H F H H H H F H F  (13) 

 

Multiplying both sides of Eq. (13) by  
1

k 1



F  from right hand side, one can obtain 

 

 
1

K K U K K

jk jk jj jj jj jk 



  H H H H H H  (14) 

 

Pre and post multiplication of both sides of Eq. (14) by  
1

K

jj



H  and  
1

K

jk 



H , 

respectively, results in 

 

      
1 1 1

K K KU K U K

jj jk jk jk jj jj

  

  H H H H H H  (15) 
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Taking reciprocal of both sides of Eq. (15), one can come up with the following 

expression: 

 

 
1

K K KU K U K

jk jk jk jj jj jj



  H H H H H H  (16) 

 

Rearrangement of Eq. (16) provides the Formulation 1 which gives the connection 

point FRFs of an unknown subsystem in terms of those of the coupled system and 

known subsystem: 

 

 
1

U K K KU K K

jj jk jk jk jj jj



 H = H H H H H  (17) 

 

Remarkably, if it is assumed that only the jth coordinates of the coupled system are 

harmonically excited while the rest of the external force vector is zero, that is, 

 

i

j

k

i 1

j 1

k 1







   
   

   
   
   

F 0

F F

F 0

 (18) 

 

Eq. (9) can be reduced into the decoupling formulation previously proposed by Batista 

and Maia [57]: 

 

  
1

1
U K KU K

jj jj jj jj j j




 H H H H I  (19) 

2.1.3. Derivation of Second Decoupling Formulation Proposed (Formulation 2) 

Here, derivation of the second Decoupling Formulation Proposed, which is 

abbreviated as Formulation 2 for simplicity, is explained in detail.  

 



21 

Let us consider Eq. (10) this time and assume that only the jth coordinates of the 

coupled system are harmonically excited and the rest of the external force vector is 

zero as given in Eq. (18). Then by using Eq. (11) and Eq. (18), one can rewrite Eq. 

(10) as follows: 

 

 
1

KU K U K U

kj kj jj jj jjj 1 j 1



  H  F H H H H  F  (20) 

 

Multiplying both sides of Eq. (20) by  
1

j 1



F  from right hand side, one can obtain: 

 

 
1

KU K U K U

kj kj jj jj jj



 H  H H H H   (21) 

 

Pre and post multiplication of both sides of Eq. (21) by  
1

K

kj



H  and  
1

U

jj 



H , 

respectively, results in 

 

     
1 1 1

K KU U U K

kj kj jj jj jj

  

 H H H H H  (22) 

 

Taking reciprocal of both sides of Eq. (22), one can come up with the following 

expression: 

 

 
1

U KU K U K

jj kj kj jj jj



 H H H H H  (23) 

 

Rearrangement of Eq. (23) provides the Formulation 2 which gives the connection 

point FRFs of an unknown subsystem in terms of those of the coupled system and 

known subsystem: 

 

  
1

1
U K KU K

jj jj kj kj j j




H = H H H I  (24) 
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Again, it just so happens that if only the kth coordinates of the coupled system are 

harmonically excited as shown in Eq. (12), Eq. (10) can likewise be reduced to the 

formulation previously proposed by Maia et al. [45]: 

 

 
1

U K K KU K K

jj jk kk kk kj jj



  H H H H H H  (25) 

2.2. Applications and Performances of Decoupling Formulations Proposed 

In this section, applications of the proposed decoupling formulations to a lumped 

parameter system are presented and their performances are compared with those of 

some well-known techniques using a case study. Finally, the linear decoupling method 

to be used in the upcoming decoupling studies for nonlinear systems is decided. 

2.2.1. A Case Study – Decoupling of a Linear Lumped Parameter System 

The coupled system to be decoupled in this application is composed of rigidly 

connected two linear lumped parameter subsystems as shown in Figure 22.  

 

Figure 10. Decoupling of a linear lumped parameter system  
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Note that k, m and c represent stiffness, mass and viscous damping parameters, 

respectively. Physical parameters of the known and the unknown subsystems are given 

in Table 1. 

Table 1. Physical parameters of the lumped parameter system 

Element 

Number (i) 
mi [kg] ki [N/m] ci [Ns/m] 

1 2.5 1500 0.15 

2 3 2000 0.20 

3 2 2100 0.21 

4 3 1900 0.19 

5 2.5 2200 0.22 

 

 

 

Here, it is assumed that FRFs of the coupled system at the known subsystem 

coordinates are experimentally measured and the physical model of the known 

subsystem is available. The aim is to obtain FRFs of the unknown subsystem at its 

connection DOF. In order to simulate the measured FRFs of the coupled system, exact 

FRFs of the coupled system ( Ĥ ) are initially calculated by using the physical 

parameters given in Table 1 and then polluted by simply adding complex random 

variables as shown below: 

 

KU KU

ab k ab k ab,k ab,k
ˆ( ) ( ) m i n   H H   (26) 

 

Here, mab,k and nab,k are independent random variables with Gaussian distribution, zero 

mean and a standard deviation of 5e-5 m/N which bring a noticeable pollution on 

calculated FRFs. The effect of such a pollution on the point FRFs at the 2nd DOF (the 
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coupling DOF) of the coupled system is illustrated in Figure 11 together with the FRF 

obtained after curve fitting.  

 

Figure 11. Point FRFs at the 2nd DOF of the coupled system: exact (―, black), 

polluted (*, blue) and FRF curve fitted (- -, red) 

Then, point FRFs at the coupling DOF of the unknown subsystem is calculated by 

using the proposed formulations employing the FRF curves fitted to the polluted FRFs 

of the coupled structure. Predicted FRFs using Formulation 1 and Formulation 2 are 

given in Figure 12 and Figure 13, respectively, along with the exact ones. 
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Figure 12. Point FRFs at the 2nd DOF of the unknown subsystem: exact (―, black), 

predicted using Formulation 1 (*, magenta) 

 

Figure 13. Point FRFs at the 2nd DOF of the unknown subsystem: exact (―, black), 

predicted using Formulation 2 (*, blue) 
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Figure 12 and Figure 13 show that both approaches predict the unknown subsystem 

FRFs satisfactorily. However, predicted FRFs via Formulation 2 seem to fit better to 

the exact FRFs by visual inspection, especially around 2nd resonance. 

 

In order to make a sound comparison, rather than visual inspection, the Frequency 

Response Assurance Criterion (FRAC) [65] is used. FRAC identifies the degree of 

similarity between a measured and analytical FRF, so that its low values indicate little 

correlation whereas high values indicate better correlation. FRAC values for the 

predicted FRFs by using Formulation 1 and Formulation 2 are calculated as 0.99708 

and 0.99791, respectively. This result, once again shows that both equations can 

successfully be used for decoupling at least for the case study given here and 

Formulation 2 gives slightly better results compared to Formulation 1. 

2.2.2. Comparison of Proposed Approaches with well-known Existing Methods 

In this section, performances of the proposed formulations are compared with those of 

well-known recent decoupling methods. The final equations for these methods and the 

input data required for each of them are summarized in Table 2. 
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Table 2. List of most recent linear decoupling methods 

Ref. Decoupling Formulation 

Requires which 

elements of 
K

H  

Requires which 

elements of   
KU

H  
Eq. 

[57]   
1

U K K K K KU K K K K

jj jk kj jk kk kk kj jk kj jj



H H H H H - H H H H - H  

K K

jj jk

K K

kj kk

 
  
 

H H

H H
 KU

kkH   (27) 

[57]   1
U K K KU K

jj jj jj jj jj jj



 H H H - H I H  
K

jjH  KU

jjH  (28) 

[57]   
1

U K K K K KU K K K K

jj jj jj jk kj kj jj jk kj jj



H H H H H - H H H H - H  

K K

jj jk

K K

kj kk

 
  
 

H H

H H
 KU

kjH  (29) 

[45]  
1

U K K KU K K

jj jk kk kk kj jj



H H H - H H - H   

K K

jj jk

K K

kj kk

 
  
 

H H

H H
 KU

kkH  (30) 

[2]  
1

1
U KU K KU

jj jj jj jj




   H I - H H H  
K

jjH  
KU

jjH  (31) 
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[52] 

+
KU K KU K KU

jj jj jk kj jjU

jj KU K KU K KU

kj jj kk kj kj

    
           

I H  Z H  Z H
H

H  Z H  Z H
 

K

jj

K

kj

 
   

Z

Z
 

KU KU

jj jk

KU KU

kj kk

 
  
 

H H

H H
 (32) 

[52]  

+
T

KU K KU KU K

jj jj jj jk jkU

jj jj jkKU K KU KU K

jk kj kj kk kk

      
                   

H H H H H
H I 0

H H H H H
 

K K

jj jk

K K

kj kk

 
  
 

H H

H H
 

KU KU

jj jk

KU KU

kj kk

 
  
 

H H

H H
 (33) 

[54] 

 

 

 
 

 
 

T
KU

KU KU

U

K K T
K

1
T

KU
KU KU

KU K KU K

K KT
K

...



 
               

 

  
     
           

  

BH 0 H 0
H

0 H 0 H B

BH 0 H 0
B B B B

0 H 0 HB

 

K K

jj jk

K K

kj kk

 
  
 

H H

H H
  

 

or 

at least 

 
K

jjH  

KU KU

jj jk

KU KU

kj kk

 
  
 

H H

H H
 

 

or 

at least 

 
KU

jjH  

(34) 
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Among the first three formulations given in Table 2, Eq. (28) has been proved to be 

the one that yields the least error throughout the frequency range [57]. Likewise, Eq. 

(34) was confirmed as the best performer among the last three formulations given in 

the table [54]. Note also that, Eq. (31) is a particular case of the Eq. (32) as mentioned 

in reference [52]. As a result, it is decided to compare the performances of formulations 

given by Eq. (28), Eq. (30) and Eq. (34) in Table 2. 

 

So, the problem given in section 2.2.1 is reinvestigated using Eq. (28), Eq. (30) and 

Eq. (34) in addition to the proposed decoupling formulations. It is assumed that FRFs 

of the coupled system and the known subsystem are available only at known subsystem 

coordinates, i.e., at and between coordinates j and k. Furthermore, five different sets 

of simulated coupled system FRFs are generated in order to examine the effects of 

gradually increased noise level on the performance of each decoupling method. Thus, 

exact coupled system FRFs are polluted by five different sets of random variables, i.e., 

mab,k and nab,k in Eq. (26), with Gaussian distribution, zero mean and standard 

deviations ranging from 5e-5 m/N to 25e-5 m/N. Results obtained for 15e-5 m/N 

standard deviation (SD) of pollution are given in Figure 14 for illustration. 

 

During calculations it is observed that different pollution sets with the same standard 

deviation may give slightly different results at each time. So, calculations via each 

method are repeated 100 times for each standard deviation of pollution, and the 

averages of the FRAC values are compared in Table 3. 
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Figure 14. Point FRFs at the 2nd DOF of the unknown subsystem: exact (―, black), 

predicted via proposed formulations using data polluted with SD of 15e-5: 

Formulation 2 (*, blue), Formulation 1 (*, magenta) and via formulations given in 

literature: Eq. (28) (*, cyan), Eq. (30) (*, green), Eq. (34) (*, red) 
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Table 3. Mean and Standard Deviation (SD) of FRAC values for each method wrt 

varying pollution level 

Method 

FRAC Values (Mean ± SD values after 100 runs) 

SD of  

5e-5  

m/N  

SD of 

10e-5 

m/N 

SD of 

15e-5 

m/N 

SD of 

20e-5 

m/N 

SD of 

25e-5 

m/N 

Formulation 2 
0.9979 ± 

0.0019 

0.9970 ± 

0.0024 

0.9900 ± 

0.0234 

0.9869 ± 

0.0107 

0.9792 ± 

0.0184 

Formulation 1 
0.9948 ± 

0.0218 

0.9947 ± 

0.0077 

0.9912 ± 

0.0096 

0.9796 ± 

0.0189 

0.9744 ± 

0.0238 

Eq. (28) 
0.9971 ± 

0.0215 

0.9759 ± 

0.0274 

0.9701 ± 

0.0307 

0.9601 ± 

0.0404 

0.9522 ± 

0.0639 

Eq. (34) 
0.9928 ± 

0.0192 

0.9794 ± 

0.0358 

0.9767 ± 

0.0529 

0.9615 ± 

0.1067 

0.9778 ± 

0.0340 

Eq. (30) 
0.9921 ± 

0.0050 

0.9859 ± 

0.0183 

0.9822 ± 

0.0211 

0.9736 ± 

0.0435 

0.9696 ± 

0.0562 

 

 

 

Table 3 shows that the overall performances of the proposed decoupling formulations 

are found to be better in terms of mean FRAC values. Particularly, Formulation 2 

distinguishes itself as the statistically best performer among all formulations with 

higher FRAC values for the most of the different pollution levels. As mentioned 

previously, the comparison made here is for the case where one has FRFs of the 

coupled system and the known subsystem at and between all DOFs of the known 

subsystem, i.e., at and between coordinates j and k. However, this is not always the 

case in real life applications, since the number of DOFs of a system/subsystem is 

always limited to the number of measurement points and/or sensors in real-life 

engineering structures. Therefore, it is very important to investigate the performances 

of linear decoupling methods under the availability of limited number of internal 

measurement DOFs in the known subsystem. 

 



32 

For this purpose, the same calculation given above is repeated for the cases where one 

has the FRFs of the coupled system and the known subsystem at the following internal 

known subsystem coordinates: 

1) m4 and m5 

2) only at m4 

3) only at m5 

4) none 

The results obtained are tabulated in Figure 15. Each grid of the plot is painted with 

the color of the linear decoupling method that gives the maximum mean FRAC value 

for a given pollution level – measured internal DOFs combination. 

 

Figure 15 reveals that proposed decoupling formulations, particularly Formulation 2, 

seem to be the most successful ones for all levels of pollution, when FRFs of the 

coupled system and known subsystem at and between all the internal DOFs of the 

known subsystem are available. However, Eq. (34), the so-called Dual Formulation 

[54], performs better for almost all the cases when some or all the FRFs of the coupled 

system and known subsystem at and between the internal DOFs of the known 

subsystem are not available, irrespective of the pollution level. 

 

Note also that, for the case where none of the FRFs of the coupled system and known 

subsystem at and between the internal DOFs of the known subsystem are available 

Formulation 1 and Formulation 2 cannot predict the unknown subsystem FRFs since 

these formulations are based on the transfer FRFs between connection coordinates j 

and internal coordinates k of the known subsystem. For this case, only Eq. (34) and 

Eq. (28) can predict the unknown subsystem FRFs with the same accuracy as can be 

observed from the double-colored last grid column in Figure 15. 
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Figure 15. Maximum mean FRAC values obtained with the associated linear 

decoupling method for a given pollution level – measured internal known subsystem 

DOFs combination (Cell color indicates the method which gives the maximum 

FRAC value)  

Being the prominent formulations, as concluded from Figure 15, only Eq. (34) and 

Formulation 2 are compared with each other in Figure 16. Again, each grid of the plot 

is painted with the color of linear decoupling method that gives the maximum mean 

FRAC value for a given pollution level – measured internal DOFs combination. This 

time, mean FRAC values obtained via both methods are given together at each grid of 

Figure 16 where the greater FRAC value is always given at the top. 

 

As a final remark, in consideration of the results of this case study, use of Eq. (34), the 

so-called Dual Formulation [54], is employed in this study for decoupling of 

equivalent linear systems in this thesis. 
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Figure 16. Mean FRAC values obtained via Eq. (34) and Formulation 2 for a given 

pollution level – measured internal known subsystem DOFs combination – greater 

FRAC value is always given on top of other at each grid (Cell color indicates the 

method which gives higher FRAC value) 
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CHAPTER 3 

 

 

3. DECOUPLING OF NONLINEAR SYSTEMS - THEORY 

 

 

 

In this chapter, firstly, Describing Function Method used for harmonic response 

calculation in nonlinear structures and measurement of FRFs in nonlinear systems are 

presented. Then, the parametric modal identification technique for nonlinear systems 

[66] which serves as one of the basis of this study is given. Finally, the theory of FRF 

Decoupling Method for Nonlinear Systems (FDM-NS) proposed for obtaining FRFs 

of a substructure decoupled from a coupled nonlinear structure is explained in detail.  

3.1. Harmonic Response Analysis in Nonlinear Systems 

After a brief explanation of modelling nonlinearities, the theory of the Describing 

Function Method (DFM) used to calculate the harmonic response of a nonlinear system 

is given in this section. 

3.1.1. Dynamic Modeling of Systems with Nonlinear Elements 

The equation of motion for a nonlinear MDOF system can be written as; 

 

( ) ( ) ( ) ( ) ( , ) ( )t t i t t x x t    Mx Cx Dx Kx N f   (35) 

  

where M , C , D  and K  represent mass, viscous damping, structural damping and 

stiffness matrices of the system, respectively. Here, ( )tx  represents generalized 

displacement vector while ( )tf  stands for the harmonic external forcing vector, and i 

and dot represent the unit imaginary number and derivation with respect to time, 

respectively. All nonlinear restoring forces are represented by ( , )x xN  vector which 
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can be a function of displacement and velocity. The rth element of the nonlinear 

restoring forcing vector, rN , can be expressed as 

 

1

1, 2,3, ...,
n

r rj

j

n r n


 N   (36) 

 

where rjn  represents the nonlinear restoring force between the coordinates r and j. 

Note that rjn  can be represented as a function of displacement rjx  and/or velocity rjx  

as 

 

( , )rj rj rj rjn n x x  (37) 

 

where rjx  represents the relative displacement between coordinates r and j  

 

forrj r jx x x r j     (38) 

 

and it corresponds to the displacement of grounded coordinates  

 

forrj rx x r j    (39) 

 

The external forcing vector, ( )tf , can be expressed in complex vector form as 

 

( ) it e f F  (40) 

 

where generic angle   can be defined as the product of angular frequency   and time 

t  whereas F  represents the external forcing amplitude vector. Assuming that the 

nonlinear response to the external harmonic forcing is not essentially sinusoidal but 

composed of several harmonics, it can be written as a Fourier series in the form of 
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0 0

( ) ( ) im

m m
m m

t t e 
 

 

  x x X   (41) 

 

where m represents the number of harmonics included and 
mX  is the complex 

displacement response amplitude of the mth harmonic. Then, the complex displacement 

response amplitude at coordinate r for the mth harmonic can be defined as 

 

    ( )r mi

r r r r mm m
X X X e

     (42) 

 

where r m
X  is the magnitude and  r m

  is the phase of the complex displacement 

response. If we consider the Fourier series representation of the response given in 

Equation (42) by just considering the first p harmonics, the truncated (approximate) 

response can be written as 

 

0 0

( ) ( )
p p

im

m m
m m

t t e 

 

  x x X   (43) 

3.1.2. Calculation of Nonlinear Response by Using DFM 

In this section, the theory of determining harmonic response in nonlinear systems by 

using DFM [67] is presented. Considering rjn , which is defined in Equation (37) as 

the nonlinear internal force between the coordinates r and j, and assuming for the sake 

of simplicity that rjn  is only displacement dependent, one can represent it in terms of 

Fourier series as 

 

 
0

( ) ( ) im

rj rj rj rj rj mm

n n x n x e 




    (44) 

 

The term  ( )rj rj m
n x  can be determined by using the following Fourier integral [67]  
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 
2

0

1
( ) ( ) for 0

2
rj rj rj rjm

n x n x d m






   (45) 

 

 
2

0

( ) ( ) for 0im

rj rj rj rjm

i
n x n x e d m


 



   (46) 

 

The terms  ( )rj rj m
n x  for even values of subscript m are due to nonlinearities with 

asymmetrical characteristics. In this study, interest is restricted to symmetrical 

nonlinearities only and higher harmonic terms are neglected assuming that they are 

much smaller compared to the fundamental harmonic. Considering only the 

fundamental harmonic, Equation (45) and (46) can be written as 

 

2

0

( ) ( ) i i

rj rj rj rj

i
n x n x e d e



 



 

  
 
   (47) 

 

Similarly, Equation (43) reduces to  

 

( ) i tt e x X   (48) 

 

The nonlinear internal forces, ( )rj rjn x , can also be expressed in terms of describing 

functions, rj , as follows 

  

 ( ) i

rj rj rj rj rjn x X X e   (49) 

 

where rj , which can also be considered as an equivalent linear complex stiffness, is 

a function of the amplitude of complex displacement response. The following equation 
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can be derived from the nonlinear force representations given in the Equation (47) and 

(49) as 

 

 
2

0

( )rj rj rj

i
rj

rj

i
X n x e d

X



 


   (50) 

 

Budak and Özgüven [68] suggested that nonlinear internal forces can be expressed as 

a multiplication of so called "nonlinearity matrix" by displacement vector. So, the 

internal nonlinear forces can be written as a matrix multiplication in the following form 

 

( , ) ( , ) i tx x x x e N X  (51) 

 

Here, ( , )x x  is the response dependent “nonlinearity matrix” which was first 

introduced by Budak and Özgüven [68] for particular types of nonlinearities. Later, it 

was extended by Tanrıkulu et al. [69] for any type of nonlinearity in terms of DFs as 

given below 

 

1

1, 2, 3,...,
n

rr rr rj

j

j r

r n 




     
(52) 

 

, , 1, 2,3, ...,rj rj r j r n      (53) 

 

When Equations (40), (51) and (48) are substituted into Equation (35), nonlinear 

internal forces can be introduced into the system as an additional equivalent stiffness 

matrix which is a function of unknown response amplitudes. Then, receptance matrix 

of the nonlinear system can be written in the following form: 

 

 
1

NL 2 ( )i i 


     H M C D K X  (54) 
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where the response of the nonlinear system can be expressed as  

 

NLX H F  (55) 

 

It should be noted that NL
H  is a function of unknown displacement amplitude. Thus, 

solution of Equation (55) requires iterative methods. In this thesis, Fixed Point 

Iteration Method is used. The linear response of the system at a starting frequency 

which is calculated by omitting nonlinear terms in a nonlinear sub/system is taken as 

the initial guess for the displacement vector X  at that frequency. However, the solution 

obtained at a previous frequency step is taken as the initial guess at the following 

frequency steps. Iterations are to be repeated until the percentage displacement error 

drops below a specified value. Convergence is checked by calculating the maximum 

relative percentage error between two successive solutions which is given below: 

 

1max i i

i

e 
 

   
 

X X

X
 (56) 

 

As to avoid divergence due to numerical instability, and also to obtain fast 

convergence, fixed point iteration is applied with the following relaxation [70]:  

 

   *

1 1 1 , 0 1i i i       X X X  (57) 

 

where λ is the relaxation coefficient employed to force a non-converging system to 

converge or improve convergence by damping out oscillations. Although FDM-NS 

uses experimental measurements, simulated experimental results which are calculated 

using the solution method described above are used in the case studies given in Chapter 

4. In these case studies cubic stiffness and piecewise linear stiffness type of nonlinear 

elements are used, force-displacement characteristics of which are shown in Figure 17 

and Figure 18, respectively. 
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Figure 17. Force-displacement characteristic of cubic stiffness type of nonlinear 

element 

Single harmonic DF representing the cubic stiffness type of nonlinearity having a 

force-displacement characteristic as given in Figure 17 can be expressed as: 

 

23

4
ck X   (58) 
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Figure 18. Force-displacement characteristic of piecewise linear stiffness type of 

nonlinear element 

On the other hand, single harmonic DF representing the piecewise linear stiffness type 

of nonlinearity having a force-displacement characteristic as given in Figure 18 can be 

expressed as: 

 

1

2
1 2

2

for

2( - )
arcsin 1- for

k X

k k
k X

X X X

 

  
 



 

 
              

       
 

  

(59) 

3.2. Measurement of FRFs in Nonlinear Structures 

An FRF is simply a transfer function expressing the frequency domain relationship 

between the response of a system and the force applied on it. Furthermore, an FRF is 

invariant of both applied force and the response level for a linear system. However, it 

is not the case for a nonlinear system such that an FRF measured in a nonlinear system 
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is valid only for a specific force or response level maintained during the test. In the 

following subsections, two different measurement techniques are introduced 

depending on the control parameter. 

3.2.1. Controlled Force Amplitude Test 

This test is mainly based on application of a constant amplitude harmonic excitation 

to a nonlinear system at each frequency step throughout a frequency span. As it is well-

known, FRFs resulting from such a measurement is invariant of the force amplitude in 

a linear system. In other words, vibration measurements performed under different 

excitation levels yield the same FRF curve in linear systems. However, this is not the 

case for nonlinear systems. In case of a nonlinear system, vibration measurements 

performed under different excitation levels ends up with different FRF curves. When 

a constant amplitude harmonic excitation is applied to a nonlinear system over a 

frequency span, the equivalent damping and/or stiffness values introduced by the 

nonlinear elements into the structure varies as its response level changes with the 

changing frequency of constant amplitude harmonic excitation. This variation leads to 

the distortion of the FRF curve obtained which implies the presence of nonlinearity 

and thus can be used for nonlinearity detection. This can be observed in Figure 19 

which gives FRFs of a nonlinear structure under constant harmonic excitation of 

different magnitudes. 
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Figure 19. Measured FRFs of a nonlinear structure under constant harmonic 

excitation of different magnitudes 

It should be noted that linear modal identification techniques are not applicable to 

FRFs obtained from such tests. 

3.2.2. Controlled Displacement Amplitude Test 

The idea behind this test is to keep the relative harmonic displacement between end 

coordinates of the nonlinear element constant at a given value throughout the 

frequency range of the test, as discussed in [71] and applied in practice in [72], so that 

the nonlinear element behaves linearly. In other words, controlled displacement 

amplitude test yields linear FRFs each corresponding to a different response level of 

the nonlinear element as illustrated in Figure 20. This can be mathematically seen from 

Equation (54): By controlling the response level of the single nonlinear element that 

exist in the system, the nonlinearity matrix (Δ) in this equation is transformed into an 
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additional equivalent stiffness matrix as long as the describing function for this 

nonlinearity is a function of the response amplitude only. 

 

Figure 20. Measured FRFs of a nonlinear structure for different response levels of 

the nonlinear element involved 

3.3. Theory of Parametric Identification Approach using Modal Model for 

Nonlinear Systems 

Arslan et al. [66] suggested that if FRFs of a system having nonlinearity that can be 

modeled as a single nonlinear element are measured by keeping the response level of 

this single nonlinear element constant at a certain amplitude and this test is repeated 

for various different response levels, linear identification methods can be used and sets 

of modal parameters can be obtained, each set corresponding to a different response 
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level. As the identified modal parameters, natural frequencies (
r ), loss factors ( r ) 

and modal constants ( r klA ) vary with the response amplitude, they can be expressed as 

a function of the amplitude of the relative harmonic displacement between the end 

coordinates p and q of the nonlinear element (
pqX ) as follows [66]: 

 

 r r pqX    (60) 

 

 r r pqX   (61) 

 

 r kl r kl pqA A X  (62) 

 

So, obtained modal parameter variations can be used to write the pseudo receptance 

expression of the system as a modal summation at any given frequency as:  
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

 
   (63) 

 

Note that, Eq. (63) can be used in harmonic response prediction of the nonlinear system 

iteratively, as well as in decoupling analyses. Further details regarding the theory of 

this method can be found in [66]. 

3.4. Theory of FDM-NS 

In this section, the underlying theory of the FDM-NS is given in detail, which is first 

presented and later experimentally verified in papers [73,74] written based on the work 

done in thesis study. The proposed method can predict FRFs of an unknown 

subsystem, whether linear or nonlinear, from the measured FRFs of the coupled 

nonlinear system and the measured or calculated FRFs of the remaining known 
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subsystem. Note that FDM-NS can decouple any coupled nonlinear structure provided 

that existing nonlinearity can be modelled as a single nonlinear element and its location 

is known.  

 

The theory of FDM-NS is presented under three main headings, since it requires 

different approaches depending on the location of the nonlinear element in the coupled 

system: The nonlinearity can be either in the unknown subsystem or in the known 

subsystem, or it can connect these subsystems. Remind that the notation used 

throughout this thesis for all systems/subsystems and the coordinate sets are given in 

Figure 8 in section 2.1.1. 

3.4.1. Nonlinearity in the Unknown Subsystem 

This is the case where the single nonlinear element is at a certain location in the 

unknown subsystem. Note that, the number of measurement points on the coupled 

system reduces depending on the location of the nonlinear element. When the 

nonlinear element is located between internal DOFs (i), complete FRF matrix of the 

coupled system for the coordinates of interest should be obtained through experimental 

measurements. However, if the nonlinear element is between an internal DOF (i) and 

a coupling DOF (j) of the unknown subsystem, it is not necessary to measure FRFs at 

and between internal DOFs (i) of the coupled system (i.e., KU

iiH ) anymore. If the 

nonlinear element is located between coupling DOFs (j) of the unknown subsystem, 

only FRFs of the coupled system at and between coordinates j and k (i.e., 
KU

jjH , 
KU

jkH  

and KU

kkH ) should be measured. 

 

The solution of this subproblem basically requires the sequential application of the 

following techniques: 

 

• Controlled displacement amplitude vibration test at several different 

amplitudes. 
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• Application of a decoupling technique for linear systems (the dual assembly 

approach [54] is used in this thesis). 

 

• Application of the parametric modal identification technique for nonlinear 

systems [66] discussed in Section 3.3. 

  

The complete FRF matrix of the known subsystem for the coordinates of interest can 

be calculated by using its available system parameters or it can be obtained 

experimentally. On the other hand, the required FRFs of the coupled nonlinear system 

can be measured by conducting controlled displacement amplitude tests where the 

amplitude of the relative displacement between the end coordinates of the nonlinear 

element is kept constant at a different value for each FRF curve. This results in various 

different linear FRF curves for the coupled nonlinear system where each set 

corresponds to different response level of the nonlinear element. Then, one can come 

up with different FRF curves for the nonlinear unknown subsystem each of which 

represents a different equivalent linear system by performing linear decoupling. Here, 

the dual assembly approach [54] is used as the linear decoupling method, which results 

in the following equation: 
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 (64) 

 

where 
KU K

C C C
   B B B  and 

KU K

E E E
   B B B  represent signed Boolean matrices 

used to enforce compatibility and equilibrium at interface DOFs, and the symbol + 
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stands for the generalized inverse. Note here that, each FRF curve obtained for the 

unknown subsystem is valid only for a different level of the nonlinear element. So, one 

can use each FRF curve in order to parametrically identify the corresponding 

equivalent linear system and thus obtain the variation of modal parameters with respect 

to the response level of the nonlinear element [66]. Then, response dependent FRFs of 

the unknown nonlinear subsystem can be computed iteratively for any excitation level 

by using these modal parameter variations. 

3.4.2. Nonlinearity in the Known Subsystem 

This is the case where a single nonlinear element exists at any given location in the 

known subsystem. (i.e., at coordinates j, k or between coordinates j and k). In this case, 

the FRFs of the coupled system at and between coordinates j and k (i.e., KU

jjH , KU

jkH  

and KU

kkH ) are necessary, and the following techniques should be used sequentially for 

the solution of this subproblem: 

 

• Controlled displacement amplitude vibration test at a specific amplitude.  

 

• Application of a decoupling technique for linear systems (the dual assembly 

approach [54] is used in this thesis). 

 

First of all, point and transfer FRFs of the coupled system along with those of the 

known subsystem at all coordinates j and k should be measured by keeping the 

amplitude of the relative harmonic displacement between the end coordinates of the 

nonlinear element at a certain value at each frequency step across a frequency range 

of interest. This will result in linear FRF curves for the coupled system and the known 

subsystem for a specific relative displacement amplitude. Moreover, it leads to the 

same nonlinearity matrix to be introduced into the dynamic stiffness matrices of the 

coupled system and the known subsystem at each frequency of measurement which 

can be expressed as follows, respectively:  
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K K 2 K Ki    Z K M C    (65) 
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  (66) 

 

where 
jj jk

kj kk

 
  
 

 


 
.  

 

Note that, addition of a fixed valued nonlinearity matrix into the dynamic stiffness 

matrices of the coupled system and the known subsystem throughout a frequency span 

is equivalent to modifying the stiffness matrix ( K
K ) of the known subsystem. Such a 

modification will not affect the unknown subsystem characteristics as well as the 

results of the decoupling process. So, the problem reduces to decoupling of linear 

systems. Consequently, FRFs of the unknown subsystem at its connection coordinates 

(j) can be obtained by just applying the dual assembly approach [54], for which the 

resulting formulation is given by Equation (64). 

3.4.3. Nonlinearity at the Connection of Two Subsystems 

When the nonlinear element connects two subsystems, the approach to be used for the 

solution differs depending on the availability of its parameters. If the parameters of the 

nonlinear connection element are not available, it can be included into the unknown 

subsystem. Then, a massless node can be considered at the free end of the nonlinear 

connection element which is rigidly connected to the known subsystem when coupled 

(Figure 21a). Note that, this approach has also been used in [38] previously. Thus, the 

system reduces to the one considered in section 3.4.1.  
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Figure 21. Inclusion of the connecting nonlinear element, a) in the unknown 

subsystem, b) in the known subsystem 

Similarly, if the parameters of the nonlinear connection element are available, the 

nonlinear element can be included into the known subsystem. Again, a massless node 

can be considered at the free end of the nonlinear connection element which is rigidly 

connected to the unknown subsystem when coupled (Figure 21b). Then, the problem 

reduces to the one defined in section 3.4.2. 
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CHAPTER 4 

 

 

4. APPLICATIONS OF FDM-NS TO NONLINEAR LUMPED PARAMETER 

MDOF SYSTEMS 

 

 

 

In this chapter, applications of FDM-NS to nonlinear lumped parameter MDOF 

systems are given in order to demonstrate the validity and the performance of the 

proposed method on theoretical bases. The case studies are categorized depending on 

the location of the nonlinear element in the coupled nonlinear system. In other words, 

the same MDOF system with identical physical parameters is studied in each case 

study except the location and the type of the nonlinear element involved. Moreover, 

theoretically calculated data is not used directly, but polluted in each case study in 

order to simulate the experimental measurements more realistically. 

4.1. Case Study 1 - Nonlinearity in the Unknown Subsystem 

In this case study, a 2 DOF nonlinear unknown subsystem is to be decoupled from a 3 

DOF lumped parameter coupled nonlinear system via FDM-NS. Coupled nonlinear 

system consists of two subsystems connected to each other rigidly as illustrated in 

Figure 22. Physical parameters of the coupled system are given in Table 4. 

Table 4. Physical parameters of the coupled system 

Element Number (i) mi [kg] ki [N/m] ci [Ns/m] 

1 0.20 2000 0.50 

2 0.10 1000 0.20 

3 0.15 1000 0.30 

4 0.20 1500 0.60 
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Figure 22. Decoupling of a nonlinear coupled system – nonlinearity is at the 

coupling DOF of the unknown subsystem 

The existing nonlinearity in the unknown subsystem is of cubic stiffness type. 

Furthermore, its ends are connected to the coupling DOF of the unknown subsystem 

and the ground. The nonlinear internal force expression and related parameters for this 

nonlinear element are defined as follows:  

 

3 5 3( ) where 2 10 N / mc cn x k x k       (67) 

 

As the first step of FDM-NS, complete FRF matrix of the known subsystem is 

theoretically calculated from the known system parameters for the DOFs of interest 

(m3 and m4). Secondly, point and transfer FRF sets of the coupled system at the known 

subsystem DOFs (m2+m3 and m4) are obtained by performing a set of controlled 

displacement amplitude experiments for different displacement levels of the nonlinear 

element. Thereby, exact FRF sets of the coupled system are obtained for 20 different 

harmonic displacement amplitudes of its second DOF (m2+m3) ranging from 3 mm to 
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60 mm with 3 mm increment. A complex random number is added to each calculated 

FRF set in order to simulate measurement errors as follows:  

 

KU KU

ab k ab k ab,k ab,k
ˆ( ) ( ) m i n   H H  (68) 

 

In Equation (68), mab,k and nab,k are independent random variables with Gaussian 

distribution having a zero mean and a standard deviation of 4×10-6 m/N which brings 

a noticeable pollution on calculated FRFs. Now, one can obtain point FRFs of the 

unknown subsystem at its coupling DOF (m2) as given in Figure 23 by performing 

linear decoupling via dual assembly approach [54] for 20 different FRF sets of the 

coupled system. Since the calculated unknown subsystem FRFs still have the effect of 

measurement errors, curves in the form of an FRF are fitted to each of them as shown 

in Figure 23. 

 

Figure 23.  Point FRFs of the unknown subsystem at m2 (colored points) and fitted 

FRF curves (black lines) 
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From now on, parametric modal identification technique [66] can be applied step by 

step. First, modal parameters of each fitted FRF curve are extracted using the linear 

modal identification technique developed by Richardson and Formenti [75]. Then, 

their variations as a function of the amplitude of relative harmonic displacement 

between end coordinates of the nonlinear element are obtained as shown in Figure 24 

and Figure 25 for the first and second modes, respectively. Note that, fitted curves to 

the obtained modal parameters are polynomials of third order. As a result, point 

response of the unknown nonlinear subsystem can easily be calculated for any forcing 

level using these modal parameter variations. 

 

Figure 24. Modal parameter variations for the 1st mode wrt response amplitude of 

the nonlinear element (*, identified parameters & —, fitted curves) 
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Figure 25. Modal parameter variations for the 2nd mode wrt response amplitude of 

the nonlinear element (*, identified parameters & —, fitted curves) 

In order to validate the results of FDM-NS, point response of the unknown subsystem 

at m2 is calculated for a harmonic excitation of magnitude 1 N, both by performing 

modal synthesis using the modal parameter variations given in Figure 24 and Figure 

25 (as a function of response amplitude), and by applying DFM using all of the actual 

parameters of this subsystem. A frequency step size of 0.02 Hz is employed during 

numerical calculations. Note that both approaches are based on the basic assumption 

that harmonic excitation results in harmonic response at the same frequency. Obtained 

results are illustrated for both forward and backward frequency sweeps in Figure 26 

and Figure 27. Agreement of the predicted and directly calculated responses proves 

the validity of the proposed method for this case where nonlinearity is in the unknown 

subsystem. 



58 

 

Figure 26. Forward frequency sweep response of the unknown subsystem at m2 

 

Figure 27. Backward frequency sweep response of the unknown subsystem at m2 
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4.2. Case Study 2 - Nonlinearity in the Known Subsystem 

In this case study, a 2 DOF linear unknown subsystem is to be decoupled from a 3 

DOF lumped parameter coupled nonlinear system using FDM-NS. Coupled nonlinear 

system consists of two subsystems connected to each other rigidly as illustrated in 

Figure 28. Physical parameters of the coupled system are identical to those given in 

Table 4. The nonlinearity in the known subsystem is again assumed to be of cubic 

stiffness type. The nonlinear internal force expression and the related parameters of 

the nonlinear element are the same as those given in Equation (67). But this time, its 

ends are connected to the internal DOF (m4) of the known subsystem and the ground. 

 

Figure 28. Decoupling of a nonlinear coupled system – nonlinearity is in the known 

subsystem 

As the first step of FDM-MS, point and transfer FRFs of the coupled system and the 

known subsystem at and between known subsystem coordinates are obtained by 

carrying out a controlled displacement amplitude test throughout the desired frequency 
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span. For this application, exact FRFs of the coupled system ( KU
Ĥ ) and of the known 

subsystem ( K
Ĥ ) are calculated by using the physical parameters given in Table 4. In 

these calculations, the magnitude of the harmonic force is taken such that response 

level of the cubic nonlinearity remains constant (20 mm for both systems) at each 

frequency step. Note that a frequency step size of 0.01 Hz is employed during 

numerical calculations. Calculated FRFs are polluted by adding a complex random 

number in order to simulate measurement errors as follows: 

 

KU KU

ab k ab k ab,k ab,k
ˆ( ) ( ) m i n   H H   (69) 

 

K K

ab k ab k ab,k ab,k
ˆ( ) ( ) p i q   H H   (70) 

 

In Equations (69) and (70), mab,k , nab,k , pab,k and qab,k are independent random variables 

with Gaussian distribution having zero mean and a standard deviation of 3×10-5 m/N 

which brings a noticeable pollution on calculated FRFs. Effects of such a pollution on 

point receptances of the coupled system and of the known subsystem at m4 are 

illustrated in Figure 29 together with FRF curves obtained just after curve fitting. Note 

that FRFs given in the figure show linear behavior since they are obtained via 

controlled displacement amplitude test. Otherwise, the responses of the coupled 

system and the known subsystem would behave nonlinearly as illustrated in Figure 30 

which shows FRF curves obtained for both systems when a constant amplitude 

harmonic excitation of magnitude 4 N is applied to m4. 
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Figure 29. Polluted and curve fitted point receptances of the coupled system and the 

known subsystem at m4 

 

Figure 30. Frequency responses of the coupled system and the known subsystem at 

m4 under constant amplitude harmonic excitation 
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As of now, point receptances of the unknown subsystem at m2 are obtained via dual 

assembly approach [54] by employing FRF curves fitted to the calculated point and 

transfer receptances of the coupled system at m2+m3 and m4, along with those of the 

known subsystem at m3 and m4. Exact and predicted point FRFs of the unknown 

subsystem at m2 are presented in Figure 31. 

 

Figure 31. Exact and decoupled point receptances of the unknown subsystem at m2 

One can observe from the Figure 31 that FRFs predicted by using FDM-NS shows 

almost perfect agreement with the exact ones. Consequently, the decoupling method 

developed is proved to yield satisfactory results in the case where nonlinearity is in the 

known subsystem. 
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4.3. Case Study 3 - Nonlinearity at the Connection of Subsystems 

This case study is about decoupling of a coupled nonlinear MDOF system composed 

of two subsystems having 2 DOFs and coupled to each other via linear and nonlinear 

elastic elements as illustrated in Figure 32.  

 

Figure 32. Decoupling of a nonlinear coupled system – nonlinearity is at the 

connection of subsystems 

Physical parameters of the coupled system are identical to those given in Table 4 

except the connection elements. Parameters of the linear elastic stiffness and viscous 

damping elements connecting two subsystems are taken as 800 N/m and 0.02 N/ms, 

respectively. The nonlinear connection element is assumed to be of gap type 

nonlinearity where the relation between nonlinear internal force and displacement can 

be expressed as: 
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Note that in Equation (71) k* represents the stiffness at specified elongation intervals 

and δ is the elongation corresponding to the point of transition from the gap to the 

stiffness k*. Their values are set as 600 N/m and 1 mm, respectively. A graphical 

representation showing the force-displacement characteristic of this nonlinear element 

is given in Figure 33. 

 

Figure 33. Force-displacement characteristic of gap nonlinearity 

In this case study, it is assumed that coupled nonlinear system can only be excited from 

known subsystem coordinates (m3 and m4) and only responses of the m2, m3 and m4 are 

measurable. Moreover, it is assumed that the parameters of the linear and nonlinear 

connection elements are not available. Therefore, they are included in the unknown 
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subsystem as illustrated in Figure 32 such that a third node having zero mass, which is 

called m0, is defined at the free end of the connection elements. As the first step of 

FDM-NS, the complete FRF matrix of the known subsystem is theoretically calculated 

from the known system parameters for the DOFs of interest (m3 and m4). Secondly, 

point and transfer FRFs of the coupled system at and between m2, m3 and m4 except 

point FRFs of m2 are obtained by performing a set of controlled displacement 

amplitude experiments for different displacement levels of the nonlinear element. 

Thereby, exact FRF sets of the coupled system are obtained for 30 different harmonic 

relative displacement amplitudes between m2 and m3 ranging from 0 mm to 3 mm with 

0.2 mm increment. A complex random number is added to exact FRFs in order to 

reflect the effect of measurement errors as follows:  

 

KU KU

ab k ab k ab,k ab,k
ˆ( ) ( ) m i n   H H   (72) 

 

In Equation (72), mab,k and nab,k are independent random variables with Gaussian 

distribution having a zero mean and a standard deviation of 8×10-6 m/N which brings 

a noticeable pollution on calculated FRFs. Since calculated coupled system FRFs 

include simulated measurement errors, curves in the form of an FRF curve are fitted 

to each set. As an example, FRF curves fitted to the measured point FRF values at m3 

are given in Figure 34. Moreover, point FRFs of the known subsystem at m3 are also 

illustrated in Figure 35 which is a single FRF curve since this subsystem is linear. 
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Figure 34.  Point FRFs of the coupled system at m3 (colored points) and fitted FRF 

curves (black lines) 

 

Figure 35.  Point FRFs of the known subsystem at m3 
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Using all the available data obtained up to now, point FRFs of the unknown subsystem 

at m0 and also transfer FRFs between m0 and m2 can be calculated by performing linear 

decoupling via dual assembly approach [54] for 15 different displacement level of the 

gap nonlinearity. The results are given in Figure 36. 

 

Figure 36.  Point FRFs of the unknown subsystem at m0 (above) along with its 

transfer FRFs between m0 and m2 (below) 
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After this stage, parametric modal identification technique [66] can be applied step by 

step. First, modal parameters of each FRF curve are extracted using the linear modal 

identification technique developed by Richardson and Formenti [75]. Then, their 

variations as a function of the amplitude of relative harmonic displacement between 

end coordinates of the nonlinear element are obtained as shown in Figure 37 to Figure 

42. Note that, fitted curves to the obtained modal parameters are smoothing splines of 

MATLAB® [81] with a smoothing parameter of 0.99999999998. So, one can calculate 

the response of the unknown nonlinear subsystem for any forcing level using these 

modal parameter variations. 

 

Figure 37. Modal parameter variations for the 1st mode of the transfer FRFs of the 

unknown subsystem between m0 and m2 wrt response amplitude of the nonlinear 

element (*, identified parameters & —, fitted curves)  
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Figure 38. Modal parameter variations for the 2nd mode of the transfer FRFs of the 

unknown subsystem between m0 and m2 wrt response amplitude of the nonlinear 

element (*, identified parameters & —, fitted curves)  

 

Figure 39. Modal parameter variations for the 3rd mode of the transfer FRFs of the 

unknown subsystem between m0 and m2 wrt response amplitude of the nonlinear 

element (*, identified parameters & —, fitted curves)  
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Figure 40. Modal parameter variations for the 1st mode of the point FRFs of the 

unknown subsystem at m0 wrt response amplitude of the nonlinear element (*, 

identified parameters & —, fitted curves)  

 

Figure 41. Modal parameter variations for the 2nd mode of the point FRFs of the 

unknown subsystem at m0 wrt response amplitude of the nonlinear element (*, 

identified parameters & —, fitted curves)  
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Figure 42. Modal parameter variations for the 3rd mode of the point FRFs of the 

unknown subsystem at m0 wrt response amplitude of the nonlinear element (*, 

identified parameters & —, fitted curves) 

In order to verify the results and thus validate the method, the decoupled subsystem is 

recoupled to a linear SDOF subsystem whose system parameters are given in Table 5. 

Construction of the new coupled system is shown in Figure 43. The response of this 

new coupled system is obtained first by performing FRF coupling [76] where FRFs of 

the unknown subsystem are resynthesized using the modal parameters given in Figure 

37 to Figure 42. Then, they are also calculated directly via DFM using actual system 

parameters. Note that both approaches are based on the basic assumption that harmonic 

excitation results in harmonic response at the same frequency. 

Table 5. Physical parameters of the known SDOF subsystem 

Element Number (i) mi [kg] ki [N/m] ci [Ns/m] 

5 0.15 800 0.60 
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Figure 43. Construction of a new nonlinear coupled system - nonlinearity at the 

connection of two subsystems again 

The response of the new coupled system at m5 is calculated when a harmonic excitation 

of amplitude 0.4 N is applied to m5. Note that a frequency step size of 0.05 Hz is 

employed during numerical calculations. The results are given in Figure 44 and Figure 

45 for both forward and backward frequency sweeps. In addition, linear response of 

the new coupled system is also given in these figures in order to show the distortion of 

calculated FRFs due to nonlinearity. It can be observed that predicted results after FRF 

coupling using results of FDM-NS closely match with those obtained directly through 

DFM. Small discrepancies at the frequency of jump phenomenon at the 2nd resonance 

are believed to be due to inaccurate modal parameters due to noise in the primary data. 

However, the general agreement between the predicted and directly calculated results 

proves the validity of the proposed decoupling approach for a system composed of two 

linear subsystems coupled through a nonlinear element. 
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Figure 44. Predicted and directly calculated responses of the new coupled system at 

m5 obtained via forward frequency sweeping 

 

Figure 45. Predicted and directly calculated responses of the new coupled system at 

m5 obtained via backward frequency sweeping 
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CHAPTER 5 

 

 

5. EXPERIMENTAL VERIFICATION OF FDM-NS 

 

 

 

In this chapter, the proposed decoupling approach for nonlinear systems is applied to 

experimental test systems. The first experiment is conducted on a nonlinear T-beam 

which is similar to the test structure developed by Ferreira [76] and later used by Siller 

[77], and also used by Arslan et al. [66] for identification purposes. In this 

experimental case study, dynamics of a linear unknown substructure (a cantilever 

beam) is to be obtained by decoupling dynamics of a known nonlinear substructure 

from those of the complete T-beam structure. Whereas in the second experiment, 

decoupling of two cantilever beams, free ends of which are held between two thin 

identical beams is considered. In this application, dynamics of a nonlinear unknown 

substructure is obtained by decoupling the dynamics of a known linear substructure 

from those of the coupled structure composed of two cantilever beams connected each 

other with a nonlinear element. 

5.1. Application of FDM-NS to a Nonlinear T-Beam 

In this section, FDM-NS is applied to an experimental test system which involves a 

cantilever beam connected to a relatively thin fixed-fixed beam which together forms 

a T-beam assembly as shown in Figure 46. The thin fixed-fixed beam introduces 

nonlinearity into the system such that the center line of the beam elongates as it deflects 

and gets longer than its original length. This yields axial forces and thus increases the 

stiffness of the beam [78]. Firstly, FRFs of the T-beam assembly are measured via 

controlled displacement amplitude test for a particular displacement value at the 

connection point of two beams. As the system shows linear behavior for a constant 

displacement of the nonlinear element, the linear parameters of the thin fixed-fixed 
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beam are calculated analytically while its nonlinear parameters are separately 

identified. Using obtained data, FRFs of the linear cantilever beam are obtained first 

by using FDM-NS and then by conducting a modal test. In order to verify the real-life 

applicability and accuracy of FDM-NS, predicted and measured FRFs of the unknown 

subsystem are compared. 

5.1.1. Experimental Setup 

The test setup is composed of a linear cantilever beam, considered as the unknown 

subsystem, with its free end attached to the midpoint of a thin beam having fixed-fixed 

boundary conditions. The thin beam is referred to as the known nonlinear subsystem. 

Physical dimensions of the test setup are given in Figure 46. 

 

Figure 46. Physical dimensions of the test setup 
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Both beams are made of St37 steel. They are manufactured long enough that ends of 

the beams are sandwiched between steel blocks so as to maintain fixed boundary 

conditions. A picture of the test setup used in the experiment is given in Figure 47. 

 

Figure 47. Picture of the test setup used in the experiment 

B&K Type 4808 vibration exciter via a push-rod attached to the connection point of 

the beams is used to harmonically excite the test system. Due to the low level of voltage 

supplied from the signal generator, excitation force level of the vibration exciter is 

manually increased by using a B&K Type 2712 power amplifier. Acceleration 

response is measured using a B&K Type 4507B uniaxial accelerometer whereas 

externally applied harmonic forces are measured via B&K Type 8230-002 force 

transducer which is attached to the tip of the push-rod. Throughout all measurements, 
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B&K Type 3560C frontend system is used as a data acquisition system which also 

includes output channels that can be used as signal generators with a frequency range 

from 0 to 25.6 kHz. The equipment used in the experiment is graphically shown in 

Figure 48. 

 

Figure 48. View of the equipment used in the experiment 

5.1.2. Preliminary Analyses 

Prior to experiment, preliminary modal analyses are performed by using a commercial 

FEA software called ANSYS R15.0® in order to decide the frequency range of interest 

we can use during the experiment. In this experiment, the fundamental resonance 

frequency of the coupled T-beam assembly is taken as the frequency around which the 

measurements are going to be carried out. It should also be noted that the modal 

analyses are performed under the linearity assumption where large deflections 

triggering nonlinearities are not allowed.  
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In order to minimize the modeling errors in the FEM of the test structure (Figure 49), 

the accelerometer and the force transducer used in the experiment are modeled as rigid 

masses such that modulus of elasticity for the accelerometer and force transducer are 

taken 10 times larger than that of the beams. Effective mass values, which is the overall 

mass for the accelerometer while it is the mass above the piezo element for the force 

transducer, are obtained from the datasheets of each transducer [79,80]. These values 

are given in Table 6. 

 

Figure 49. FEM of the test structure 

Table 6. Mass of the accelerometer and force transducer 

Transducer Type 
Effective Mass 

[grams] 

Accelerometer Brüel&Kjaer Type 4507B 4.8 

Force Transducer Brüel&Kjaer Type 8230-002 9.5 
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First, by performing modal analysis in ANSYS R15.0® for the whole test setup, the 

first natural frequency of the T-beam assembly is calculated as 36 Hz results of which 

are also illustrated in Figure 50 together with the corresponding mode shape.  

 

Figure 50. Modal analysis results of the T-beam assembly – its fundamental 

resonance 

Since it is intended to obtain the FRFs of the linear cantilever beam, the frequency 

range of interest is taken such that it also covers the first natural frequency of the linear 

cantilever beam, which is obtained as 31.3 Hz by performing modal analysis in 

ANSYS R15.0®. These results are also illustrated in Figure 51 together with the 

corresponding mode shape. 
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Figure 51. Modal analysis results of the cantilever beam by itself – its fundamental 

resonance 

Consequently, the frequency range of interest throughout this experiment is 

determined as 20 - 55 Hz, considering the pre-estimated fundamental resonances of 

the coupled T-beam system and unknown subsystem. 

5.1.3. Experimental Work and Application of FDM-NS 

As the initial step, point FRFs of the T-beam assembly at the attachment point of the 

linear cantilever beam and of the thin fixed-fixed beam in transverse direction are 

measured experimentally. An adaptive frequency resolution is adopted such that the 

frequency resolution is increased in the close neighborhood of the resonance. Point 

FRFs at the connection point of two beams are measured as given in Figure 52 by 

conducting a controlled displacement amplitude test for the constant harmonic 

displacement amplitude of 1 mm. 
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Figure 52. Point FRFs of the T-beam assembly at the connection point j under 

transverse loading for constant harmonic displacement amplitude of 1 mm 

In Figure 52, experimentally obtained FRFs are illustrated together with the FRF curve 

fitted to these measured data points by using a code mainly based on a built-in function 

of MATLAB®, called “invfreqs” [81]. Note that fitted FRF curve with high frequency 

resolution is used hereafter in the calculations in lieu of the measured point FRFs of 

the coupled system at the connection point of two subsystems ( KU

jjH ). 

 

As the next step, the fixed-fixed thin beam is modeled as grounded linear and nonlinear 

transverse springs with their free ends attached to a concentrated equivalent mass as 

shown in Figure 53. 
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Figure 53. Model of the test rig 

By using the material and geometric properties of the fixed-fixed thin beam, the 

equivalent linear spring stiffness and the equivalent mass values are calculated as 

2558.7 N/m and 21.52 g, respectively. In addition, nonlinear stiffness of the thin fixed-

fixed beam is identified through a nonlinear identification approach, called Direct 

Nonlinearity by Describing Functions (DDF) method, proposed by Aykan and 

Özgüven [82,83]. Initially, the nonlinear T-beam assembly is examined under two 

different constant amplitude harmonic excitations according to DDF method. In these 

tests, harmonic forces of magnitudes 0.25 N and 0.5 N is applied to the attachment 

point of two subsystems and point FRFs of the T-beam structure are measured at 

several frequencies as illustrated in Figure 54. The behaviors of the FRFs given in this 

figure indicates presence of a stiffening nonlinearity in the system. As expected, the 

jump phenomenon observed in both FRF curves occurs at higher frequencies for the 

higher excitation force level which is the characteristic of a stiffening nonlinearity. 
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Figure 54. Point FRFs of the T-beam assembly at the connection point j under 

harmonic loading of constant magnitudes 0.25 N and 0.5 N in transverse direction 

Using the measurement results given in Figure 54, DF values representing the 

grounded nonlinear element attached to the tip of the cantilever beam are obtained by 

applying DDF method [82,83] which can perform nonlinear identification directly 

from a series of measured nonlinear FRFs. By using DDF method, the DFs 

representing the nonlinear element are calculated from the experimental FRFs given 

in Figure 54 with respect to the displacement amplitude of point j. The real and 

imaginary parts of the DF values obtained, which respectively correspond to stiffness 

and damping nonlinearities, are illustrated in Figure 55. Note that, DF curves shown 

in Figure 55 are obtained via polynomial curve fitting up to third degree. The 

polynomial coefficients of DF curves are also listed in Table 7. 
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Figure 55. DF values obtained via DDF Method [82,83] for stiffness (left) and 

damping (right) nonlinearities 

Table 7. Identified parameters for the nonlinear element 

 
Linear 

Coefficient ( 1k ) 

Quadratic 

Coefficient ( 2k ) 

Cubic 

Coefficient ( 3k ) 

Real part of DF -8.2898e+05 3.6177e+08 2.3771e+11 

Imaginary part of DF 1.0504e+05 -1.3231e+08 6.8055e+10 

 

 

 

Using the parameters identified in Table 7, DF representing the nonlinear element can 

be formulated as follows: 

 

2 3

1 2 3k X k X k X      (73) 

 

where X represents the harmonic displacement amplitude of the nonlinear element.  

 

Now, all necessary data is available in order to obtain FRFs of the known nonlinear 

subsystem. By employing FDM-NS using the FRFs measured from the coupled T-
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beam assembly and those calculated for the fixed-fixed beam at a constant harmonic 

displacement amplitude of 1 mm, point FRFs of the linear cantilever beam alone at its 

tip point ( U

jjH ) are obtained. Results found are compared with those obtained via modal 

testing of the cantilever beam itself in Figure 56. 

 

Figure 56. Point FRFs of the cantilever beam alone at its tip point j in transverse 

direction 

It can be observed from Figure 56 that the FRF curve obtained through FDM-NS and 

the FRFs directly measured through modal testing of the linear cantilever beam itself 

shows a very good agreement. So, it can be verified that FDM-NS is a practical tool to 

decouple a nonlinear subsystem from a given nonlinear coupled system. 
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5.2. Application of FDM-NS to a Coupled Cantilever Beam System with a 

Nonlinear Element 

In this section, application of the FDM-NS to another nonlinear experimental test 

system is presented to demonstrate real life applicability and validity of FDM-NS. This 

experimental test system consists of cantilever beams connected to each other from 

their tip by two thin beams which yields nonlinearity to the coupled system. Note that, 

this test is a real-life application of the theory given for the case where nonlinearity is 

in the unknown subsystem. 

5.2.1. Experimental Setup 

The setup is composed of a cantilever beam coupled to a shorter cantilever beam by 

connecting their free ends to each other with two thin identical beams which yield 

nonlinear stiffness effect. The cantilever beams are manufactured from St37 alloy steel 

whereas the thin beams are made of 6061-T3 aluminum alloy. Furthermore, fixed 

joints between each cantilever beam and two thin identical beams are obtained by 

riveting. A picture of the setup used in this experiment is given in Figure 57. The 

dimensions and technical details of the test system are also given in Figure 58. 
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Figure 57. Setup used in the experiment 

 

Figure 58. Dimensions and technical details of the test system 
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Maintaining perfect fixed boundary conditions are very difficult in real life 

applications. In order to maintain the fixed boundary conditions in the experimental 

setup, dimensions of the beams are longer than their effective lengths of 353.5 mm and 

244 mm, so that adequate parts of the beams are clamped between fixture blocks. 

Equipment used in the experiment is listed in Table 8. 

Table 8. Equipment used in the modal testing 

Data Acquisition System  Brüel&Kjaer Type 3560 C Frontend  

Shaker  Brüel&Kjaer Type 4808  

Force Transducer  Brüel&Kjaer Type 8230-002  

Power Amplifier  Brüel&Kjaer Type 2712  

Accelerometer  Brüel&Kjaer 4507B  

 

 

5.2.2. Preliminary Analyses 

Prior to the experiment for decoupling, preliminary modal analyses are performed by 

using a commercial FEA software ANSYS R15.0® in order to decide a suitable 

frequency range of interest to be used in the experiment. In this experiment, the 

fundamental resonance of the coupled cantilever beams assembly is taken as the 

frequency around which the measurements are going to be carried out. It should again 

be noted that the modal analyses are performed under the linearity assumption where 

large deflections triggering nonlinearities are not allowed during the analyses with 

ANSYS R15.0®.  

 

In order to minimize the modeling errors in the FEM of the test structure (Figure 59), 

accelerometer and force transducer used in the experiment are modeled as rigid masses 

so that modulus of elasticity for the accelerometer and force transducer are taken 10 
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times larger than that of the beams. Effective mass values given in Table 6 are used in 

the analyses. 

 

Figure 59. FEM of the test structure 

First, by performing modal analysis with ANSYS R15.0® for the whole test setup, the 

first natural frequency of the cantilever beams assembly is calculated as 72.2 Hz results 

of which are also illustrated in Figure 60 together with the corresponding mode shape. 
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Figure 60. Fundamental mode of the coupled cantilever beams assembly 

Since the long cantilever beam is to be decoupled from the assembly as the known 

subsystem, it is intended to arrange the frequency range of interest such that it also 

covers the first natural frequency of the long cantilever beam alone. So, its 

fundamental natural frequency is calculated as 52.9 Hz by performing modal analysis 

with ANSYS R15.0® results of which are also illustrated in Figure 61 together with 

the corresponding mode shape. 

 

Consequently, the frequency range of interest to be used throughout this experiment is 

determined as 35 - 91 Hz considering the natural frequencies obtained for the coupled 

cantilever beams system and of the known subsystem. 
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Figure 61. Fundamental mode of the long cantilever beam alone 

5.2.3. Experimental Work and Application of FDM-NS 

In this experiment, the long cantilever beam is considered as the linear known 

substructure. Two thin identical beams, which introduces nonlinearity into the test 

structure, are the connection elements between long and short cantilever beams. Since 

the type and parameters of the nonlinear connection elements are not available, short 

cantilever beam together with the two thin identical beams are considered as the 

unknown substructure. So, this unknown substructure is to be decoupled from the 

coupled nonlinear structure. It should be additionally noted that an adaptive frequency 

resolution is used in the measurements which is further decreased in the immediate 

vicinity of the fundamental resonance. 

 

First of all, point (
KU

jjH ) and transfer (
KU

jiH ) FRFs of the coupled nonlinear system in 

transverse direction are measured experimentally employing the controlled 

displacement amplitude test procedure given in Figure 62. 
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Figure 62. Experimental procedure followed during controlled displacement 

amplitude test 

Note that additional measurement from the tip of the short cantilever beam is required 

in order to obtain the relative deformation between the two ends of the nonlinear 

connection element. Modal tests are performed for the relative displacement 

amplitudes of 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm and 1.0 mm between two ends of the 

nonlinear element ( j i-X X ). Results of the tests are given in Figure 63 and Figure 64. 

In these figures, FRF curves fitted to the experimental data are given as well.  
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Figure 63. Measured transfer FRFs (symbols) and fitted FRF curves (lines) of the 

coupled system between internal point (i) and connection point (j) in transverse 

direction for various response levels of the nonlinear element 

 

Figure 64. Measured point FRFs (symbols) and fitted FRF curves (lines) of the 

coupled system at connection point (j) in transverse direction for various response 

levels of the nonlinear element 
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At this stage, tip point FRFs of the long cantilever beam as the known linear 

substructure can be obtained through modal tests using modal hammer. Results are 

shown in Figure 65.  

 

Figure 65. Measured point FRFs of the known subsystem alone at its coupling DOF 

(j) in transverse direction 

Note that in Figure 65, the FRF curve fitted to the experimental data is given. So, by 

using all available FRFs obtained up to here, one can obtain the response of unknown 

substructure at its coupling DOF by applying FDM-NS. During decoupling 

calculations via FDM-NS, dual assembly approach [54] is used as the linear 

decoupling tool. Results are given in Figure 66. 
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Figure 66. Calculated point (above) and transfer (below) FRFs of unknown 

subsystem (lines) and those measured for coupled system (dots) in transverse 

direction when excited from connection point (j)  

In Figure 66, point (
KU

jjH ) and transfer (
KU

jiH ) FRFs of the coupled nonlinear system 

are given together with obtained point (
U

jjH ) and transfer (
U

jiH ) FRFs of the unknown 

nonlinear subsystem. As expected, decoupling of a linear FRF curve that belongs to 
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the long cantilever beam from each of the linear FRF curves that belong to the 

nonlinear coupled structure results in several FRF curves again each corresponding to 

a different displacement level of the nonlinear connection element. Note also that, 

decoupled FRF curves of the unknown subsystem includes the nonlinear connection 

dynamics due to two thin identical beams. 

 

As explained in section 3.3, decoupled FRF curves in Figure 66 are to be used to 

identify the modal properties of each equivalent linear system in order to obtain the 

modal model of the unknown nonlinear subsystem. Modal parameters corresponding 

to each FRF curve are extracted using modal identification. As mentioned earlier, 

linear identification can be easily used with these FRFs since they show linear 

behavior. Identification of the modal parameters is performed by the formulation 

presented by Richardson and Formenti [75]. Natural frequencies, damping ratios and 

modal constants of the system are obtained using this technique. Magnitudes and 

phases of modal constants are identified as two separate parameters, as a modal 

constant is a complex quantity for a damped system. Identified modal parameters 

corresponding to the first modes of the unknown nonlinear subsystem are given for 

point ( U

jjH ) and transfer ( U

jiH ) FRFs in Figure 67 and Figure 68 as a function of 

displacement level of the nonlinear element. Note that, fitted curves to the obtained 

modal parameters are polynomials of third order. 
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Figure 67. Variation of the modal parameters of the first mode of the unknown 

nonlinear subsystem for 
U

jjH  wrt relative response amplitude, j i-X X  (*, identified 

parameters & —, fitted curves) 
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Figure 68. Variation of the modal parameters of the first mode of the unknown 

nonlinear subsystem for 
U

jiH  wrt relative response amplitude, j i-X X  (*, identified 

parameters & —, fitted curves) 

5.2.4. Verification of FDM-NS Results 

Here, decoupling results obtained via FDM-NS in section 5.2.3 are compared with 

those obtained directly via experimentation. Since stand-alone modal testing of the 

unknown subsystem by exciting it from the free tip of the two thin identical beams 

does not simulate the exact dynamics of this subsystem, the test system is modified as 

illustrated in Figure 69. 
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Figure 69. Dimensions and technical details of the modified test system 

In this modified test system, the unknown subsystem is again coupled to a modified 

long cantilever beam whose length is increased to 378 mm this time. A step by step 

procedure for the verification process can be given as follows: 

 

• First, measure stand-alone FRFs of the 378 mm long modified cantilever beam 

at its coupling point (tip point of the beam). 

 

• Apply coupling theory by using the modal parameters of the unknown 

subsystem obtained in section 5.2.3 and FRFs of the 378 mm long modified 

cantilever beam. Note that an iterative solution will be required as the modal 

parameters are calculated as a function of displacement of the nonlinear 
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element. Thus, calculate response of the modified test system for harmonic 

excitation of magnitude 0.4 N applied at its coupling DOF. 

 

• Measure the response of the modified test system for harmonic excitation of 

magnitude 0.4 N applied at its coupling DOF. 

 

• Finally, compare the obtained results with each other. Agreement of the results 

will verify the method developed (FDM-NS) in this thesis. 

 

As the first step, stand-alone FRFs of the 378 mm long modified cantilever beam are 

measured at its tip by carrying out a modal test with a modal hammer. The results 

obtained are given in Figure 70 together with those obtained for 353.5 mm long 

cantilever beam used in section 5.2.3. 

 

Figure 70. Measured point FRFs of the modified known subsystem by itself at its 

coupling DOF (j) in transverse direction 
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Since the modified test system is again nonlinear, its FRF will vary with the harmonic 

excitation level. Therefore, the modal test is performed using constant harmonic 

excitation of amplitude 0.4 N. During experiment, a similar procedure to the one given 

in Figure 62 for controlled force displacement testing is followed. But this time, 

harmonic forcing level is controlled manually by adjusting the voltage level through 

power amplifier at each frequency step. Measured and numerically calculated 

responses of the modified test system at its coupling DOF ( modKU

jX ) for harmonic 

excitation of amplitude 0.4 N in transverse direction are given in Figure 71 and Figure 

72. 

 

Figure 71. Measured and calculated responses of the modified test system at its 

coupling DOF (j) for harmonic excitation of amplitude 0.4 N in transverse direction  
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Figure 72. Measured and calculated responses of the modified test system at its 

coupling DOF (j) for harmonic excitation of amplitude 0.4 N in transverse direction 

– zoomed around resonance 

It can be seen from Figure 71 and Figure 72 that obtained response shows nonlinear 

behavior which is typical when a system has softening stiffness type of nonlinearity. 

It is also observed that a good agreement is obtained between measured response and 

numerically calculated responses through forward and backward sweeping, especially 

at frequencies where the jump phenomenon occurs. A small difference can be observed 

between the amplitudes of the resonances. This may be due to misestimating the loss 

factors while extracting modal parameters from unknown subsystem FRFs. Recall that 

unknown subsystem FRFs are obtained by using experimental FRFs of the coupled 

system and the known subsystem. Unlike the modal testing of linear systems, limited 

number of frequency points can be used during controlled force amplitude testing of 

nonlinear systems. Although number of frequency points are increased in the 

immediate vicinity of the resonance, the resolution may not be sufficient to catch the 
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frequency where the peak amplitude occurs. Therefore, the unknown subsystem FRFs 

obtained via decoupling using these measured FRFs may have some errors which may 

result in some error in identified damping values. 
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CHAPTER 6 

 

 

6. APPLICATION OF FDM-NS ON A REAL ENGINEERING SYSTEM 

 

 

 

In this chapter, the proposed decoupling approach for nonlinear systems is applied to 

a real engineering system. This system is composed of an Inertial Measurement Unit 

(IMU) and its mechanical interface plate placed upon a tray grounded with elastomer 

isolators which has been used as such in several aerospace platforms in defense 

industry. Since elastomer isolators behave nonlinearly as they deflect, they introduce 

nonlinearity to the overall engineering system. In this application, point FRFs at the 

connection interface between mechanical interface plate of IMU and the tray are 

predicted by decoupling the FRFs of IMU from those of the overall nonlinear system 

via FDM-NS. 

6.1. Coupled Nonlinear System, its Subsystems and the Test Setup 

In this application, FDM-NS is used in decoupling of a real engineering structure in 

order to observe the efficiency of the method on an industrial case. This engineering 

structure consists of an IMU rigidly connected to an interface plate which is connected 

to the ground via elastomer isolators as shown in Figure 73. 

 

IMUs are frequently utilized on aerospace applications [84]. They provide reliable 

position and motion discernment for stabilization and navigation applications. They 

measure linear acceleration, angular position and angular velocity in six DOFs by 

using a combination of accelerometers and gyroscopes. However, these sensors can 

adversely be affected by mitigating effects of transferred disturbances due to the 

environmental vibrations and noise. Excessive vibration energy may reveal itself as 

measurement errors in the inertial data. Therefore, IMUs must be protected from high 



106 

level excitations, especially from those transmitted through mounting base. Moreover, 

the data collected by IMU sensors allow a computer in a navigation system to calculate 

its current position based on velocity and time. Therefore, it is crucial to predict 

transmissibility characteristics of the vibration isolated IMU, since the computer 

corrects the data measured by IMU using this transmissibility information and thus 

calculates current acceleration, angular position and angular velocity of the platform. 

 

Figure 73. Coupled engineering structure – passive isolated IMU system 
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In this system, the IMU is isolated from the base excitations by use of a rigid tray on 

top of elastomer vibration isolators. Note that these elastomer isolators have been 

proved to show softening behavior as they deflect [85], thus introduces nonlinearity to 

the overall system. This nonlinear behavior should be taken into consideration for 

precise estimate of the transmissibility characteristics of the vibration isolated IMU. 

 

The mounting tray is manufactured from St37 alloy steel whereas the mechanical 

interface plate of the IMU is made of 6061-T3 aluminum alloy. In this study, the 

assembly of IMU with its mechanical interface plate shown in Figure 74 is considered 

as the known linear subsystem whose FRFs at and between the connection point j and 

the internal point i are to be calculated through FEA and to be used in decoupling 

calculations directly.  

 

Figure 74. Known linear subsystem – IMU and its mechanical interface plate 
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On the other hand, the tray grounded with elastomer isolators shown in Figure 75 is 

taken as the unknown nonlinear subsystem whose point FRFs at the its connection 

interface, which is referred to as point j, are to be predicted via proposed decoupling 

method for nonlinear systems. 

 

Figure 75. Unknown nonlinear subsystem – tray grounded with elastomer isolators 

Furthermore, fixed connection between the tray and the mechanical interface plate of 

IMU is achieved by use of 4 bolted joints as illustrated in Figure 76. 
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Figure 76. View of the fixed connection between two subsystems 

A picture of the test setup is also given in Figure 77. It can be observed from this figure 

that the overall coupled test system is mounted on a rigid base with fixed-fixed 

boundary conditions. In other words, the overall coupled test system is grounded as it 

is the case in the aerospace platforms in which it is being used.  
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Figure 77. Coupled nonlinear system under testing 

B&K Type 4808 vibration exciter is used to harmonically excite the coupled system 

via a push-rod attached to point j as shown in Figure 77. Due to the low level of voltage 

supplied from the signal generator, excitation force level of the vibration exciter is 

increased by using a B&K Type 2712 power amplifier. Frequency responses are 

measured using B&K Type 4507B uniaxial accelerometers. One of the accelerometers 

is located at point j of two subsystems in order to measure point FRFs of the connection 
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interface in the direction of harmonic excitation. The second accelerometer is attached 

to the point i, which is in line with the axis of excitation, in order to measure transfer 

FRFs at an internal coordinate of the known linear subsystem. On the other hand, 

externally applied harmonic forces are measured via a B&K Type 8230-002 force 

transducer which is attached to the tip of the push-rod. Throughout all measurements, 

B&K Type 3560C frontend system is used as a data acquisition system which also 

includes output channels that can be used as signal generators with a frequency range 

from 0 to 25.6 kHz. 

6.2. Preliminary FEA and Test on the Coupled System 

In this application, the center of gravity of overall coupled system and all its 

subsystems are on the axis of excitation in order not to have rotational and transverse 

vibrations. In order to check the validity of the assumption of rigid tray, a preliminary 

harmonic analysis is carried out on the coupled system. In this analysis, a FEM of the 

coupled system (Figure 78) is constructed where elastomer isolators are modeled as 

grounded identical springs. Then, responses at point j and q are calculated for a 

constant amplitude harmonic forcing from point j. 
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Figure 78. Linear FEM of the coupled system 

Responses of point j and q ( KU

jX  and KU

qX ) are calculated and compared with each 

other in Figure 79. Results show that the responses of each isolator located at each 

corner of the tray are almost the same as that of the point of excitation throughout the 

frequency span of interest which ranges from 30 to 112 Hz. 
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Figure 79. Comparison of harmonic responses at point j and q of the linear FEM of 

the coupled system 

As a preliminary experiment, the coupled system which is expected to behave 

nonlinearly is tested under harmonic excitations with different constant amplitudes in 

order to observe its nonlinear dynamic behavior. Three sets of controlled force 

amplitude tests are performed. Measured point FRFs of the coupled system at point j 

(
KU

jjH ) are given in Figure 80 for harmonic excitations of amplitude 5 N, 7.5 N and 10 

N. It can be observed from the figure that fundamental resonance of the coupled system 

shifts to the left-hand side as the amplitude of harmonic excitation increases. This 

behavior is a sign of a softening stiffness type nonlinearity, which is due to the 

elastomer isolators in the system. 
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Figure 80. Measured point FRFs of the coupled system at point j via controlled force 

amplitude test 

6.3. Application of FDM-NS 

Firstly, a controlled displacement amplitude test is performed on the coupled nonlinear 

system. The measured FRFs are later used in decoupling calculations. Secondly, FRFs 

of the known linear subsystem are obtained through FEA. As the last step of FDM-

NS, the FRFs of the unknown nonlinear subsystem are obtained via FRF decoupling. 

 

For verification, however, it is not possible to measure the FRFs of the unknown 

subsystem directly, since the unknown subsystem includes nonlinear elastomer 

isolators whose stiffness changes depending on the static load on it. In order to 

overcome this problem a dummy mass is placed on the unknown subsystem while 

measuring its FRFs, and mass cancellation is applied. As it is not convenient to apply 

mass cancellation to measured FRFs showing nonlinear behavior [86] when force 

controlled FRFs are measured, comparison is made for FRFs measured with controlled 

displacement amplitude testing. Therefore, a single set of coupled system FRFs is 

measured for a specific harmonic displacement level of its nonlinear element, as this 
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will be sufficient to predict the unknown subsystem FRFs only for a specific 

displacement level of its nonlinear element for verification purposes. 

6.3.1. Experimental Measurements on the Coupled System 

In this experiment, point FRFs of the coupled nonlinear system at point j ( KU

jjH ) 

together with its transfer FRFs between point i and j ( KU

jiH ) are measured by 

performing a controlled displacement amplitude test. During the test, harmonic 

displacement amplitude of point j is kept constant at 0.05 mm for each frequency point 

of measurement which is almost the same as the displacement amplitude of each 

elastomer isolator as demonstrated in Figure 79. Measured point and transfer FRFs of 

the coupled nonlinear system ( KU

jjH  and KU

jiH ) are respectively given in Figure 81 and 

Figure 82 together with the FRF curves fitted to obtained data by mainly using 

“invfreqs” command of MATLAB® [81]. 

 

Figure 81. Measured point FRFs and the fitted FRF curve of the coupled nonlinear 

system at point j for 0.05 mm displacement amplitude of elastomer isolators 
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Figure 82. Measured transfer FRFs and the fitted FRF curve of the coupled 

nonlinear system between point i and j for 0.05 mm displacement amplitude of 

elastomer isolators 

6.3.2. Harmonic Analyses on the Known Linear Subsystem 

In order to obtain FRFs of the known linear subsystem, its FEM is constructed. Firstly, 

constructed FEM is verified by performing a modal test on the known subsystem under 

free-free boundary condition using a modal hammer. Figure 83 shows the measured 

known subsystem FRFs ( K

jjH  ) along with those numerically obtained via harmonic 

analysis in FE environment. 
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Figure 83. Point FRFs of the known linear subsystem at point j calculated via FEA 

and measured via hammer test 

In Figure 83, constructed FEM of the known subsystem is verified for a wide 

frequency range that covers its first natural frequency. However, the frequency range 

of interest in this study is 30 Hz to 110 Hz. Then, a harmonic analysis is conducted 

using this verified FEM in order to obtain point and transfer FRFs of the known linear 

subsystem at and between point i and j ( K

jjH , K

jiH  and K

iiH ) under free-free boundary 

condition via ANSYS R15.0®. Results are given in Figure 84 in the form of 

receptances. 
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Figure 84. Point and transfer FRFs of the known linear subsystem at and between 

point i and j calculated via FEA 

Now one can decouple known subsystems FRFs from coupled nonlinear system FRFs 

in order to predict unknown nonlinear subsystem FRFs at point j (
U

jjH ) for 0.05 mm 

constant displacement amplitude of elastomer isolators. 
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6.3.3. Implementation of FRF Decoupling 

In this section, unknown nonlinear subsystem FRFs are going to be predicted by 

applying the dual assembly approach [54] as the last step of FDM-NS. Decoupling 

calculations are performed using two sets of data: 

 

• Standard interface (i.e., by using only KU

jjH  and K

jjH  ).  

 

• Extended interface (i.e., by using 

KU KU

jj ji

KU KU

ij ii

 
 
  

H H

H H
 and 

K K

jj ji

K K

ij ii

 
 
  

H H

H H
)  

 

Here, the use of extended interface is expected to improve the results predicted via 

standard interface, as suggested in reference [54]. 

6.3.3.1. FRF Decoupling using Standard Interface 

Here, point FRFs of the unknown nonlinear system at point j ( U

jjH ) are calculated via 

dual assembly approach [54] using standard interface. Predicted FRFs are given in 

Figure 85. It can be observed from the figure that predicted FRFs are ill-conditioned 

and noise is greatly amplified around the frequency of 66.7 Hz.  
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Figure 85. Predicted point FRFs of the unknown subsystem at point j by using 

standard interface for 0.05 mm displacement amplitude of elastomer isolators  

6.3.3.2. FRF Decoupling using Extended Interface 

To circumvent ill-conditioning around the frequency of 66.7 Hz, D’Ambrogio et al. 

suggest [54] the use of FRFs at some internal DOFs of the known subsystem. 

Therefore, point FRFs of the unknown nonlinear system are recalculated via dual 

assembly approach [54] using extended interface. In this approach, the point FRFs of 

the coupled system and the known subsystem at point i ( KU

iiH  and K

iiH ) and their 

transfer FRFs between point i and j ( KU

jiH  and K

jiH ) are also included in the decoupling 

calculations in addition to the standard interface.  

 

Even though all the required FRFs are obtained for the known linear subsystem as 

given in Figure 84, point FRFs of the coupled nonlinear system at point i ( KU

iiH ) are 
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not available. So, KU

iiH  is generated via FRF synthesis using the modal parameters 

extracted from KU

jjH  and KU

jiH , which are illustrated in Figure 86 altogether. 

 

Figure 86. FRFs of the coupled nonlinear system at and between point i and j for 

0.05 mm displacement amplitude of elastomer isolators  

So, one can perform decoupling using all the available data at the extended interface. 

Predicted FRFs of the unknown nonlinear subsystem at point j ( U

jjH ) are given in 

Figure 87. It is observed that amplification of the noise due to the ill-conditioning 

around the frequency of 66.7 Hz is quite reduced.  

 

Note that the rate of improvement in this ill-conditioning problem depends on the 

number and choice of the measurement points at the internal DOFs of the known 
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subsystem [54]. So, further improvement may be obtained by taking additional 

measurements on internal DOFs of the known subsystem.  

 

Figure 87. Predicted point FRFs of the unknown subsystem at point j by using 

extended interface for 0.05 mm displacement amplitude of elastomer isolators 

6.4. Verification of FDM-NS Results 

Here, point FRFs of the “unknown” nonlinear subsystem at point j ( U

jjH ) are obtained 

via controlled displacement amplitude testing for the purpose of comparison with the 

results of decoupling calculations. It should be recalled that the resonant frequency, 

and thus linear stiffness of the elastomer isolator being used (825-GS-55) varies 

depending on the static load carried by itself (Figure 88). Therefore, unknown 

subsystem FRFs obtained after decoupling will not be the same as those directly 

measured from the unknown nonlinear subsystem given in the Figure 75. In other 
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words, decoupling calculations will result in the unknown nonlinear subsystem 

response while the elastomer isolators are in the strained condition, which cannot be 

measured directly. 

 

Figure 88. Variation of resonance frequency wrt load carried by an elastomer 

isolator (825-GS-55) [87] 

Therefore, verification of the decoupling results should be made by comparing them 

with the values measured by preloading them. This is achieved by loading isolators by 

using a dummy mass; however, then the mass effect of the dummy mass is cancelled 

from the measured response of the unknown nonlinear subsystem. For this purpose, a 

rigid block which is made up of tungsten and has the same mass as the known linear 

subsystem is manufactured and mounted on the unknown nonlinear system during 
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testing (Figure 89). In this test, the harmonic displacement amplitude of the elastomer 

isolators is kept constant again at 0.05 mm. 

 

Figure 89. Unknown nonlinear subsystem under testing 

In order to eliminate the mass loading effect of this dummy block from the measured 

point FRFs of the unknown subsystem at point j (
U

jjH ), the well-known formula for 

mass cancellation is used [1]: 

 

U

jjU

jj U

jj1

m

m

dm


 

A
A

A
  (74) 
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where U

jj

m
A  and U

jjA  represent the measured and corrected point accelerances at point 

j, respectively, whereas dm  corresponds to mass of the rigid dummy block.  

Measured point FRFs and the FRF curve fitted to this data using MATLAB® [81] are 

given in Figure 90 together with the FRF curve obtained after cancellation of the mass 

effect of the dummy mass. 

 

Figure 90. Measured point FRFs, fitted FRF curve and FRF curve obtained after 

mass cancellation of the unknown nonlinear subsystem at point j for 0.05 mm 

displacement amplitude of elastomer isolators 

Now, one can compare the predicted point FRFs of the unknown nonlinear subsystem 

at point j (
U

jjH ) given in Figure 85 and Figure 87 with those obtained in Figure 90 
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through mass cancellation just after measurement. The comparison is depicted in 

Figure 91. 

 

Figure 91. Predicted (using standard and extended interfaces) and measured point 

FRFs of the unknown nonlinear subsystem at point j by for 0.05 mm displacement 

amplitude of elastomer isolators 

Figure 91 gives a clear view of the amplification of noise due to the ill-conditioning 

around the frequency of 66.7 Hz. As expected, FRF decoupling using extended 

interface provides more correlated results with those measured. Furthermore, a slight 

frequency shift around the resonance occurs which is believed to be due to the 

cumulative effect of the errors in experimental measurements and curve fitting 

processes of the coupled system FRFs along with the modeling errors of the known 

subsystem in FE environment. Eventually, the acceptable results obtained using FDM-

NS shows the applicability of the method on a real engineering system. 
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CHAPTER 7 

 

 

7. SUMMARY AND CONCLUSIONS 

 

 

 

In this thesis, the decoupling problem, i.e., predicting dynamic behavior of a particular 

substructure from the knowledge of the dynamics of the coupled structure and those 

of the other substructures, is considered. FRFs of the whole structure are assumed to 

be known from experiments, along with the measured or theoretically calculated FRFs 

of the known substructure. Both sets of FRFs are assumed to be known at only known 

subsystem coordinates. Although the decoupling of linear systems has been well 

investigated for three decades and led to several decoupling methods, the decoupling 

of nonlinear systems yet seems to remain untouched. So, this study focuses mainly on 

the decoupling of nonlinear systems, even though some work on decoupling of linear 

systems is also presented. 

 

Firstly, two different formulations for decoupling of linear systems are proposed. Both 

methods give exact results, as it is the case in most of the decoupling methods, when 

exact FRFs are used in all equations. However, the problem in all of such methods is 

the sensitivity of the formulations to even very slight errors which are inevitable due 

to the use of measured data. All formulations usually include matrix inversions, and 

depending on the nature of the equations, some methods are more sensitive to 

measurement errors and therefore do not perform well. Hence, it is important to test 

the performance of any new decoupling technique and compare its performance with 

existing best ones. Application of the proposed decoupling formulations is presented 

on a lumped parameter system. In this case study simulated experimental results are 

used, and in order to simulate experimentally measured FRFs of the coupled system, 

theoretically calculated exact FRFs are polluted. In studying the performances of the 
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proposed methods, Frequency Response Assurance Criteria are used which show the 

correlation between the predicted and the true FRFs of the unknown subsystem. 

 

Furthermore, performances of the proposed formulations together with some of those 

available in the literature are evaluated on the same case study. Also, effect of noise 

on the performance of the decoupling methods is examined by polluting the exact 

FRFs of the coupled system using different sets of independent random variables with 

the same mean and gradually increased standard deviations. However, decoupling 

methods under investigation yield FRAC values that show an uneven trend with the 

increasing level of noise. In order to make a sound comparison, results are calculated 

for 100 runs for each method with a different pollution set with the same mean and 

standard deviation at each time. Result of this statistical comparison shows that 

proposed methods come up with the most correlated results for each of the five-

different standard deviation of pollution. Thus far, all the FRF information of the 

coupled system and the known subsystem at the internal coordinates of the known 

subsystem are used during calculations. Since this is not the case for decoupling of real 

life structures whose number of DOFs is limited to the number of coordinates that can 

practically be measured, the former statistical comparison is expanded for the cases 

where only some or none of the FRFs at the internal coordinates of the known 

subsystem are available. It is observed from the results that the so-called Dual 

Formulation [54] performs best in case of unavailability of FRFs at some or all internal 

coordinates of the known subsystem. 

 

Later, the dynamic decoupling problem for nonlinear structures is addressed. A 

method is developed to decouple a nonlinear or linear substructure from a given 

coupled nonlinear structure. The so-called “FRF Decoupling Method for Nonlinear 

Systems (FDM-NS)” is believed to be the first method proposed for nonlinear 

decoupling. It is capable of decoupling nonlinear systems having a nonlinearity of any 

type that can be modeled as a single element. Yet, the method is flexible as far as the 

location of the nonlinear element is concerned. That is, the nonlinearity can be either 
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in the known or unknown subsystem, or it can connect both subsystems. Depending 

on the location of the nonlinearity, whether in the known or unknown substructure, 

two different formulations are suggested. For the case where the nonlinear element is 

at the connection of two subsystems, it is shown how to reduce this problem to that 

where the nonlinear element is connected to the internal DOFs of the known or 

unknown subsystems. 

 

Firstly, FDM-NS is tested on simulated case studies. Three different case studies are 

presented using a MDOF lumped parameter system and simulated experimental data. 

The same MDOF system with identical physical parameters is used in each case study 

by changing the location and the type of the nonlinear element. In the first numerical 

case study, FDM-NS is applied to a MDOF nonlinear system where the unknown 

subsystem includes a cubic stiffness type of nonlinear element. By using the FRFs 

measured through displacement controlled experiments, sets of modal parameters are 

identified for the unknown subsystem through linear modal identification, each set 

corresponding to a different response level of the cubic stiffness element. Then, 

harmonic response of the unknown subsystem can be calculated for any given forcing 

level iteratively using the modal parameter sets obtained. It is shown that the nonlinear 

response predicted by using FDM-NS is almost the same as the one obtained directly 

by employing DFM. 

 

In the second simulated case study, FDM-NS is applied to the same MDOF lumped 

parameter nonlinear system where the nonlinear element is in the known subsystem 

this time. In this study, FRFs of the coupled nonlinear system, as well as the known 

nonlinear subsystem are obtained at a chosen specific relative displacement level of 

the two ends of the nonlinear cubic stiffness element. Again, simulated experimental 

data is used for the coupled system FRFs. Then, the unknown subsystem FRFs are 

obtained by applying linear decoupling. Results obtained show perfect agreement with 

the exact ones. 
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As the last simulated case study, FDM-NS is applied to the same MDOF lumped 

parameter nonlinear system where the nonlinear element connects two subsystems this 

time. In this study, the unknown gap type of nonlinear connection element is included 

in the unknown subsystem by adding a massless node to the free end of the nonlinear 

connection element. Thereby, the problem is reduced to the case where the nonlinear 

element is in the unknown subsystem. Predicted results closely match with those 

obtained directly through DFM except small discrepancies at the frequency where 

jump phenomenon is observed. This is believed to be due to inaccurately estimated 

modal parameters due to noise in the primary data. 

 

Later, FDM-NS is applied to structural test systems in order to demonstrate its real-

life applicability. In the first experimental case study, a linear cantilever beam is 

decoupled from the nonlinear T-beam assembly composed of a linear cantilever beam 

attached to the mid-point of a thin beam of which both ends are fixed and therefore 

introduces a nonlinear stiffness. The transverse dynamic response of the coupled 

system is measured experimentally for a specific relative displacement amplitude of 

the nonlinear element through controlled displacement amplitude testing. Then, the 

fixed-fixed thin beam is taken as the known nonlinear substructure and it is modeled 

as a concentrated nonlinear stiffness in transverse direction with a concentrated 

equivalent mass and linear stiffness. Linear parameters of this single DOF model of 

the fixed-fixed thin beam are theoretically calculated whereas its nonlinear parameters 

are experimentally identified. After obtaining the known substructure FRFs for the 

same specific relative displacement level of the nonlinear element, linear decoupling 

is performed to obtain the unknown tip point FRFs of the linear cantilever beam. A 

very good agreement is observed between the predicted FRFs by using FDM-NS and 

those obtained from the shaker test of the cantilever beam alone, even though fixed-

fixed thin beam is modeled as a single DOF mass-nonlinear spring system. 

 

FDM-NS is also applied to another experimental test system composed of two 

cantilever beams coupled with two thin identical beams. In this test case, FDM-NS is 
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verified for a case where the unknown nonlinear element couples two linear structures 

such that the nonlinear subsystem cannot be tested alone. In that respect, this is a 

typical real-life case where there is no alternative to using nonlinear decoupling 

method if one would like to measure the dynamics of the nonlinear subsystem. In this 

application, firstly, FRFs of the coupled system are measured through controlled 

displacement amplitude testing, while those of the known cantilever beam are obtained 

via classical modal testing. Then, modal parameter variations of the unknown 

subsystem are obtained as a function of the displacement level of the nonlinear 

connection beams by applying FDM-NS. In order to verify these results, the 

experimental test system is modified such that the length of the known subsystem is 

increased. Then first FRFs of the new cantilever beam are obtained via classical modal 

testing. Finally, FRFs of the new coupled nonlinear system are calculated for a 

constant amplitude harmonic force by using the modal parameter variations obtained 

for the unknown nonlinear subsystem along with FRFs of the new cantilever beam. 

From the comparison of the calculated values with those measured directly, it is 

concluded that the overall agreement is quite well although slight deviations were 

observed around resonance. 

 

Lastly, the decoupling method developed is applied on a real engineering system. The 

engineering system used is an IMU placed upon a tray grounded with rubber isolators 

having nonlinear characteristics. In this study, point FRFs at the connection point of 

two subsystems are predicted by decoupling the dynamics of IMU from the dynamics 

of the overall nonlinear system via FDM-NS. The satisfactory results obtained show 

the applicability of FDM-NS on real engineering systems. 

 

To conclude, first of all, two new formulations are proposed for decoupling of linear 

systems in this thesis. Although these methods perform best only when complete 

dynamics of the coupled system and the known subsystem are available at all DOFs 

of the known subsystem, they can remain as alternative methods for decoupling of 

linear systems. 
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This thesis, to the best of author’s knowledge, represents the first attempt to decouple 

a nonlinear or linear substructure from a given coupled nonlinear structure. A method, 

called FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed in 

order to obtain substructure dynamics of a nonlinear structure, starting from 

experimentally measured FRFs of the coupled nonlinear structure and experimentally 

measured or theoretically calculated dynamic response of its known substructure. It is 

assumed in this method that the nonlinearity in the coupled system can be modeled as 

a single nonlinear element and its location is available. Note that, FDM-NS 

distinguishes itself as the only alternative to obtain the dynamics of a nonlinear 

subsystem that cannot be measured separately but only when coupled to neighboring 

structure(s). In this study, FDM-NS is first employed through some numerical case 

studies using simulated experimental data. Then, its real-life applicability is 

demonstrated through some experimental cases performed on test rigs involving 

nonlinearity. Finally, the method is successfully applied to decouple a real engineering 

system which consists of an IMU and its passive vibration isolation system usually 

used in aerospace applications. 

 

As a future work, this study may be extended for decoupling of nonlinear systems 

involving multiple nonlinear elements. This seems to be possible only if the controlled 

displacement amplitude test procedure may be improved so that displacement levels 

of the multiple nonlinear elements can be controlled at the same time.
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