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ABSTRACT

INVESTIGATION OF DECOUPLING TECHNIQUES FOR LINEAR AND
NONLINEAR SYSTEMS

Kalaycioglu, Taner
Ph.D., Department of Mechanical Engineering

Supervisor: Prof. Dr. H. Nevzat Ozgiiven

March 2018, 189 Pages

Structural coupling methods are widely used in predicting dynamics of coupled
systems. In this study, the reverse problem, i.e. predicting the dynamic behavior of a
particular subsystem from the knowledge of the dynamics of the overall system and of
all the other subsystems, is studied. This problem arises when a substructure cannot be
measured separately, but only when coupled to neighboring substructures. The
dynamic decoupling problem of coupled linear structures is well investigated in
literature. However, decoupling of coupled structures that include a nonlinear element

such as clearance, friction and nonlinear stiffness still remains untouched.

In this thesis, firstly, decoupling techniques for coupled linear structures are
investigated. Two new methods for decoupling of coupled linear systems are
introduced and their performances were compared to those of the best decoupling
methods known in literature. Then, the dynamic decoupling problem of coupled
nonlinear structures is considered for the first time. A method is developed for
calculating FRFs of a substructure decoupled from a coupled nonlinear structure



involving any type of nonlinearity that can be modelled as a single nonlinear element.
Depending on where the nonlinear element is, i.e., either in the known or unknown
substructure, or at the connection, the formulation differs. Firstly, applications of the
method are demonstrated on nonlinear lumped parameter systems using simulated
experimental data. Then, real-life applicability of the proposed method is shown
through two nonlinear experimental test structures. Finally, the method is applied on a

real-life engineering problem in order to demonstrate its performance.

Keywords: Nonlinear decoupling, Nonlinear uncoupling, Nonlinear subsystem
identification, Nonlinear substructure decoupling
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0z

DOGRUSAL VE DOGRUSAL OLMAYAN SiSTEMLER iCiN AYRISTIRMA
TEKNIKLERININ INCELENMESI

Kalaycioglu, Taner
Doktora, Makine Miihendisligi Boliimii

Tez Yoneticisi: Prof. Dr. H. Nevzat Ozgiiven

Mart 2018, 189 Sayfa

Yapisal birlestirme yontemleri, birlesmis sistemlerin dinamiginin kestirilmesinde
yaygin olarak kullanmilmaktadir. Bu caligmada ters problem, yani bir alt yapinin
dinamik davraniginin birlesmis yapinin ve tiim diger alt yapilarin dinamik davranig
bilgileri kullanilarak hesaplanmasi incelenmistir. Bu problem, bir alt yapmin ayr
olarak olciilemedigi fakat komsulugundaki bir alt yapiya birlestirildigi takdirde
Olctilebildigi durumlarda ortaya ¢ikmaktadir. Birlesmis dogrusal yapilarin dinamik
olarak ayristirilmast problemi literatiirde oldukga fazla incelenmistir. Fakat bosluk,
stirtlinme ve dogrusal olmayan direngenlik gibi dogrusal olmayan eleman iceren

birlesmis yapilarin ayrigtiritlmasi problemi hala ¢oziilememistir.

Bu tezde, ilk olarak, birlesmis dogrusal yapilar i¢in ayristirma teknikleri incelenmistir.
Birlesmis dogrusal sistemlerin ayristirilmasi amaciyla iki yeni yontem Onerilmis ve
bunlarin performanslari literatiirde bilinen en iyl ayristirma yontemlerinin
performanslar ile kiyaslanmigtir. Daha sonra, birlesmis dogrusal olmayan yapilarin

dinamik olarak ayristiritlmasi problemi ilk defa ele alinmistir. Herhangi bir tiirde

vii



dogrusalsizlik igeren ve icerdigi dogrusalsizlik tek bir dogrusal olmayan eleman ile
modellenebilen birlesmis dogrusal olmayan bir yapidan ayristirilan alt yapinin frekans
tepki fonksiyonlarini hesaplamak i¢in yeni bir yontem gelistirilmistir. Dogrusal
olmayan elemanin nerede bulunduguna, yani bilinen alt yapida ya da bilinmeyen alt
yapida veya bu iki alt yapinin baglantisinda olup olmadigina bagli olarak formiilasyon
degisiklik gostermektedir. ilk olarak, yéntemin uygulamalar1 dogrusal olmayan toplu
parametreli sistemler iizerinde teorik olarak hesaplanmis veriler kullanilarak
gosterilmistir. Sonra, Onerilen yontemin gercek hayatta uygulanabilirligi dogrusal
olmayan dinamik davranisa sahip iki farkli deneysel test diizenegi {iizerinde
gosterilmistir. Son olarak, yontemin performanst gercek bir mithendislik problemine

uygulanarak sergilenmistir.

Anahtar Kelimeler: Dogrusal olmayan ayristirma, Dogrusal olmayan alt sistem

tanilama, Dogrusal olmayan alt yap1 ayrigtirma
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CHAPTER 1

INTRODUCTION

1.1. Structural Decoupling

Most mechanical systems are appeared as an assembly of components and the modal
analysis is widely being used to analyze the dynamics of such systems or their
components [1]. Considerable effort has been devoted to structural coupling methods
that predict the total dynamic behavior of a complex machine from those of its

components.

Conversely, the dynamics of a whole system may be known, but that of its component
cannot be measured separately. If measurement can be made only when it is coupled
to neighboring substructures, then a decoupling problem arises. It can be briefly
defined as the identification of the dynamics of a structural subsystem that is part of a
larger system. In other words, decoupling studies focus on predicting the response of
an unknown subsystem from the known responses of the complete system and the
remaining subsystem (Figure 1).
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Figure 1. Common concept of decoupling technique

For example, it is not possible to measure the dynamics of the tire alone easily in a
tire-suspension of an automobile (Figure 2). Therefore, the tire should be supported by
the wheel, suspension and so on, which brings additional dynamics on the

measurement.

Another example can be given using the same figure (Figure 2). Here, it is aimed to
obtain pure bearing dynamics in order to use it in design simulations of rotating
machinery. However, a special fixture has to be used in order to excite the bearing in
practice that results in the implicit measurement of the bearing dynamics. So, the result
of this measurement with the fixture will also involve the dynamics of the fixture in
addition to that of the bearing, which may have resonances, mass-additive effect and

SO on.
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Figure 2. Sample applications of decoupling [2]

Another area of application can be encountered in the train industry for car-bogie
assemblies [3]. Structure-borne vibrations due to the contact between rail and wheel
flange are transmitted into the car body through the wheel suspending bogie system.
So, an adequate mathematical model of the bogie is essential to analyze this
phenomenon. Since the stand-alone testing of bogie system does not represent its
operating conditions, it should be tested as a sub-component of the fully assembled
coach.



Decoupling techniques are also used in design improvement of subsystems to identify
their individual contribution to the total system. Another common application of
decoupling is mass cancellation to eliminate mass loading effect of accelerometers in
FRF measurements [1,4]. Other practices of structural decoupling include subsystem
identification in damage detection, identification of joints and structural health
monitoring [5-8]. Despite such promising applications, decoupling problem is still one

of the most challenging subjects in structural dynamics.

1.2. Motivation

Decoupling techniques can also be used in the solution of several problems
encountered in defense industry. The motivation of this thesis work is a problem
encountered in fighter aircrafts. Fighter aircrafts are required to carry a large variety

of external stores mounted at various locations on their wings (Figure 3).

Figure 3. Wing stores carried by fighter/attack aircraft.



Pylons are the suspension devices used to mount those external stores on an aircraft
(Figure 4).

Figure 4. A F-16 jet fighter full of stores mounted under its wings via pylons

In some cases, the dynamics of an aircraft may be needed when a different store or a
different combination of stores are mounted on it. This requires performing ground
vibration tests for each different store or store combination on an aircraft. This can also
be achieved by coupling each store to the aircraft theoretically if an adequate
mathematical model of the aircraft-pylon structure including pylon connection
dynamics is available. In order to construct this mathematical model, aircraft-pylon
structure should be tested while the pylon is preloaded with a large load corresponding
to the weight of the store. Then, a subsystem identification method would provide a
solution to decouple the aircraft-pylon structure including pylon connection dynamics
from the aircraft-pylon-store assembly. Furthermore, it is a well-known fact that
store/pylon connection exhibits friction and hardening nonlinearities [9-12]. A pylon
model and a typical pylon nonlinearity are given in Figure 5. Thus, the decoupling



method, which is going to be used to identify the aircraft-pylon structure dynamics,

should have the capability to handle nonlinear connections between pylon and store.
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Figure 5. System model and pylon nonlinearity [13]

As one of Turkey's leading defense industry company, ASELSAN Inc. designs,
develops and manufactures targeting systems (Figure 6), guided bombs (Figure 7), and
integrates these systems to different aircraft platforms. Integration of such subsystems
is very crucial since it can drastically change the dynamic characteristics of the target

platform, misestimation of which prior to integration may result in catastrophic
failures.



Figure 6. Integration of ASELPOD to a fighter aircraft

e

Figure 7. Integration of LGK (Laser Guidance Kit) to a fighter aircraft

The initial objective of this thesis was to examine all available decoupling techniques

in detail and to develop alternative techniques that can be used for decoupling of linear



coupled structures. It was also aimed to extend the linear decoupling methods for
decoupling of nonlinear structures. Several attempts are made to develop a new
decoupling theory one of which results in two different linear decoupling formulations.
However, studies on these proposed formulations are terminated due to their
performance concerns. Then, it is totally focused on developing a method that can
decouple nonlinear structures which is the ultimate purpose of this thesis. To the best
of author’s knowledge, this work presents the first applicable method to uncouple

nonlinear structures.

1.3. Literature Survey

Since engineering structures are generally designed as an assembly of several
components, it is computationally expensive and time consuming to constitute a FEM
each time particularly when various design alternatives are going to be evaluated.
Therefore, several structural coupling methods have been developed in order to reduce

the effort necessary for dynamic reanalysis of such systems [14-32].

Even though several different coupling methods are available in literature based on the
linearity assumption, most of the engineering structures are intrinsically nonlinear.
During the past three decades, structural coupling of nonlinear subsystems has been
investigated and led to several coupling methods considering the nonlinear effect [33-
41].

Several studies have also been carried on structural decoupling of linear systems,
which becomes an important problem when the dynamic behavior of a system is
known, but it is not easy to measure the dynamic characteristics of one of its
components due to geometric limitations (i.e., due to difficulty in measuring and/or

exciting a subsystem separately).

Investigation on decoupling problem dates back to three decades ago, when the first

attempt to extract objective component’s dynamics in an assembly was performed by



Okubo and Miyazaki [2]. They have proposed an uncoupling method and applied it in
order to extract the dynamics of a bearing. Since it is not practical to excite a bearing
without a special fixture, dynamics of the fixture should be extracted to obtain the pure

bearing dynamics.

Gray and Starkey [42] proposed a method for substructure uncoupling use of which is
especially suggested for the cases where modeling the connection elements between
substructures is challenging. The method is shown to work on lumped parameter

structures and it is further applied to a Ford Ranger light truck.

Gontier and Bensaibi [43] presented a theoretical method in time domain for in situ
identification of the mechanical parameters of a joint via modal analysis of the known
greater structure. In this study, the interface compatibility and equilibrium equations
are formulated in terms of the polynomial coefficients of the discrete time transfer
functions. They verified the technique by applying it to lumped parameter systems, as
well as to a real beam structure supported by an elastic device of unknown

characteristics.

Silva et al. [44] presented a decoupling methodology as a means of modeling the
dynamic behavior of structural elements, more specifically, for the dynamic
characterization of joints. They regenerate FRFs from a mathematical model using the
modal parameters identified from the experimental data as to avoid the direct use of
data with experimental errors during decoupling calculations involving three matrix
inversions. They also emphasized the difficulties during experimental measurement of
the FRFs relating all the connection coordinates. Maia et al. [45] proposed a different
uncoupling technique for joint identification. In this technique, they used coupling
formulation of Jetmundsen et al. [18] and obtained a better formulation in terms of the
number of matrix inversions. In this formulation, only internal DOFs of the known
substructure are used to obtain joint’s frequency response.

Kalling et al. [46] also studied the decoupling problem by performing state-space



model identification including a sensitivity analysis showing possible ill conditioning

due to inertia ratios at the interface.

Zhen et al. [47] proposed an inverse substructuring formulation that differs from the
classical approach in that the FRFs of individual substructures and dynamic
characteristics of the coupling elements were predicted directly from the coupled
system FRFs. Although this technique is advantageous since no substructure level
spectra response is needed, it requires whole coupled system spectra response and it is
sensitive to measurement errors and/or and inconsistencies. The proposed technique
was applied to study the dynamics of motor vehicle and product transport system
[48,49], showing its applicability in industry. Then, it was further developed for multi-

coordinate coupled multi-substructure product transport system [50,51].

D’Ambrogio and Fregolent [52] proposed two FRF based decoupling techniques;
namely, impedance and mobility based decoupling approaches, which show ill-
conditioning troubles due to the internal resonances of the known subsystem with fixed
interface. As to circumvent ill-conditioning, they used FRFs at some internal DOFs of
the known subsystem.

Cloutier and Avitabile [53] proposed the Constraint Force-based decoupling approach
which is proved to be promising with a single connection but not as efficient for
multiple connections. They compared their approach with impedance and mobility-
based approaches [52] and concluded that the impedance and mobility-based
approaches can produce more accurate results when appropriate internal DOFs are

used.

Sjovall and Abrahamsson [3] presented a subsystem identification method based on
reconstruction of the interface forces acting between the unknown subsystem and its
neighbor. It is shown in this study that the subsystem identification is sensitive to the

existence of general anti-resonances in the frequency domain of interest due to ill-
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conditioned matrix inversion. In order to overcome this ill-conditioning problem, they
suggested the use of proper non-interface response DOFs from the test of the coupled

system, but this requires extensive pretest analyses.

A general framework for dynamic substructuring is presented in [28] and [29] in which
the so-called dual domain decomposition technique that allows retaining the full set of
global DOFs by enforcing equilibrium at the connection of substructures is introduced.
The substructuring problem using the dual domain decomposition can be directly
formulated from [29], whereas a similar formulation for the decoupling problem is
derived and discussed in [54] for collocated approach where DOFs used to ensure
equilibrium are the same as DOFs used to enforce compatibility, and in [55] and [56]
for non-collocated approach where DOFs used to ensure equilibrium are not the same

as DOFs used to enforce compatibility.

Batista and Maia [57] suggested three different formulations based on the classical
decoupling procedure of Jetmundsen et al. [18] taking the effects of including different
sets of DOFs into account on the coupled system: (i) exclusion of connection DOFs,
(i1) inclusion of connection DOFs only and (iii) inclusion of connection DOFs and
internal DOFs of the known subsystem. They concluded that the formulation that

performs best requires measurements at the connection points of the substructures.

D’Ambrogio and Fregolent [58] proposed the so-called hybrid assembly approach.
They compared dual [54] and hybrid assembly approaches by applying them to an
experimental test bed and end up with similar results in terms of predicted FRFs of the
unknown subsystem. In subsequent applications, the dual assembly approach [54] was
successfully used to estimate the subsystem dynamics in machine tools [59,60], wind
turbines [61] and flexible space payloads [62].

Dynamic decoupling of linear structures is well investigated in literature despite some

accuracy problems. Even so, the dynamic decoupling problem of nonlinear structures
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still remains intact. Additional challenge in nonlinear decoupling problem is that the
presence of a nonlinearity in a coupled system results in different system FRFs
depending on the level of excitation. Thus, application of linear decoupling approaches
will also end up with different FRFs of an unknown substructure at each time. In order
to overcome this challenge, firstly the nonlinear system identification techniques are
investigated. Detailed reviews of these work are given by Kerschen et al. [9] and Noél
etal. [63].

1.4. Scope of the Thesis

The scope of the thesis is given as follows:

In Chapter 2, the theories of the two new methods for decoupling of linear systems are
given in detail both of which are based on the inverse application of a structural
coupling method developed in a previous work. Applications of the proposed linear
decoupling approaches are given in order to show their applicability and accuracy.
Then, the same case study is studied by using some well-known linear decoupling
methods available in literature. Finally, an assessment of the proposed approaches in
comparison to those recently given in the literature is made in terms of correlation

between the predicted FRFs and the true FRFs of the unknown subsystem.

In Chapter 3, first, the theory of response calculation for nonlinear systems, which is
frequently used in the succeeding chapter, is given here for the sake of completeness.
Then, the theory of the parametric modal identification technique for nonlinear
systems and that of the linear decoupling technique adopted in this thesis are
summarized. Finally, the theory of the proposed FRF Decoupling Method for
Nonlinear Systems (FDM-NS) is given in detail.
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In Chapter 4, applications of FDM-NS are demonstrated on nonlinear lumped
parameter systems through numerical case studies which vary in terms of the location
of the nonlinear element. While a cubic stiffness type of nonlinear element exists in
the unknown subsystem in the first case, it is located in the known subsystem in the
second case. In the third and the last case, a piecewise stiffness type of nonlinear

element is used which connects both subsystems to each other.

In Chapter 5, FDM-NS is applied to experimental test systems in order to verify the
method on real nonlinear systems. In the first experiment, decoupling of a nonlinear
T-beam assembly is examined where the subsystem with a nonlinear element is taken
as the known substructure. In the second experiment, decoupling of a nonlinear test
structure composed of two cantilever beams connected at their tips with an unknown
nonlinear element is studied. This problem is handled by including the unknown

nonlinear connection element in the unknown subsystem.

In Chapter 6, application of FDM-NS to a real engineering problem is illustrated. The
engineering system is composed of an Inertial Measurement Unit (IMU) and its
mechanical interface plate which are placed on a tray grounded with rubber isolators.
The rubber isolators introduce nonlinearity to the overall system due to their
displacement dependent stiffness characteristics. In this application, point FRFs of the
tray grounded with rubber isolators at its connection interface are predicted by
decoupling IMU and its mechanical interface plate from the whole nonlinear system
via FDM-NS. Then, the results obtained are compared with those measured

experimentally.

In Chapter 7, a brief summary and conclusions are given.
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CHAPTER 2

ON DECOUPLING OF LINEAR SYSTEMS

In this chapter, two new decoupling formulations are proposed after a detailed
investigation of existing methods for decoupling of linear systems. Then, their
performances are evaluated and compared with the best of those given in literature
using a case study with a lumped parameter system. By using simulated test data, the
effects of using limited number of measurement coordinates in the known subsystem

on predicted FRFs of the unknown subsystem are examined in detail.

2.1. Proposed Linear Decoupling Formulations

In this section, the theories of two new methods proposed for decoupling of linear
systems are given in detail. These approaches are based on the inverse application of
a structural modification method suggested by Tahtali and Ozgiiven [64] such that
resulting equations of this the so called “Coupling Force Method” are reorganized to
be used for substructure decoupling for linear systems. Here, the derivation of both
formulations proposed is presented after introducing a brief theory of the “Coupling

Force Method”.

2.1.1. Theory of the Coupling Force Method

In this section, the underlying theory of the Coupling Force Method is given for
completeness. It should be noted that the notation used here and hereafter for all

systems/subsystems and the coordinate sets are given in Figure 8.
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COUPLED SYSTEM

Figure 8. Notation used for the coupled system, its subsystems and their coordinate

sets

As can be seen from Figure 8, superscripts U and K refer to the unknown and known
subsystems, respectively, whereas superscript KU represents the coupled system.
Subscript i denotes the coordinates that belong to the unknown subsystem only,
subscript j refers to the connection coordinates (connection may be rigid or elastic)
between the unknown and known subsystems, and finally subscript k represents the
coordinates that belong to the known subsystem only.

Considering the free body diagram of each subsystem as shown in Figure 9, the

following equations can be written for the unknown and the known subsystems,

respectively:
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Figure 9. Freebody diagram of each subsystem itself
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Here, H represents receptance matrix whereas X, Fint and F correspond to amplitude
vectors of generalized displacement, coupling reaction force and external force,

respectively. Expansion of Eq. (1) and Eq. (2) yields the following relations:

X =H{ F+H (F+F,) 3)
XY =HS F+HJ (F +F,) )
X§ =-Hj Ry +Hj F (5)
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X =—Hgf+Hg R, (6)

When two subsystems are rigidly coupled, one can equate the displacement vectors of

both subsystems at the coupling coordinates to each other, i.e. XJF’ :X;(. Thus,

coupling reaction force can be obtained as given below by equating the right hand
sides of Eg. (4) and Eq. (5):

-1

Em=ﬁﬁ+H;][Hﬁa—Hgﬁ—Hgﬁ] 7)

So, the response of the coupled system can be rewritten by substituting Eq. (7) into
Egs. (3), (5) and (6) as follows:

-1
X =Y F+HY (R [HY o+ HE T [HE R - HY R -HY R ) (8)
-1
X ==H (M Hy T[S R MY R - F e HF, ©
-1
X =—HE[HY +HS | [HE R —HY F—HJ F [+ HE R (10)

Furthermore, the response of the coupled system can also be expressed as the

multiplication of the FRF matrix and the external forcing vector:

XKUY (HEY HSY HEYY (R

X = HE Y H R (11)

J

KU KU KU KU
Xk H ki H kj H kk Fk

Equations (8), (9), (10) and (11) are the resulting formulations of the Coupling Force
Method proposed by Tahtali and Ozgiiven [64].
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In the following sections, derivation of the proposed linear decoupling formulations
using Equations (9), (10) and (11) will be presented.

2.1.2. Derivation of First Decoupling Formulation Proposed (Formulation 1)

Here, derivation of the first Decoupling Formulation Proposed, which is abbreviated

as Formulation 1 for simplicity, is explained in detail.

Let us consider Eq. (9) and assume that only the k™ coordinates of the coupled system
are harmonically excited, whereas the rest of external force vector is equal to zero,
such that;

l:i Oi><1
Fj = ijl (12)
Fk Fkxl

By using Eq. (11) and Eq. (12), Eqg. (9) can be rewritten as

HWF,, = —HY (HY + HY) “HEF, + HEF (13)
Multiplying both sides of Eq. (13) by (F,., )_1 from right hand side, one can obtain
Hi —Hy = Hj (Hy + H) " H (14)

Pre and post multiplication of both sides of Eq. (14) by (H*f)_1 and (H} )_1,

I}

respectively, results in

(H )" (Hy —H ) (R )" =(Hy +HE) " (15)

i

19



Taking reciprocal of both sides of Eq. (15), one can come up with the following

expression:
K K ku\l, Kk u K
Hi (ij —Hj ) Hj =Hj+Hj (16)

Rearrangement of Eq. (16) provides the Formulation 1 which gives the connection
point FRFs of an unknown subsystem in terms of those of the coupled system and

known subsystem:
— K K ku\? Kk K
Hj = Hj (Hik —Hj ) Hj —Hj (17)

Remarkably, if it is assumed that only the j" coordinates of the coupled system are

harmonically excited while the rest of the external force vector is zero, that is,

I:i Oi><1
F |=| Fiu (18)
I:k kal

Eq. (9) can be reduced into the decoupling formulation previously proposed by Batista
and Maia [57]:

a -1
Hy = H ((H5) " H - ) (19)
2.1.3. Derivation of Second Decoupling Formulation Proposed (Formulation 2)

Here, derivation of the second Decoupling Formulation Proposed, which is

abbreviated as Formulation 2 for simplicity, is explained in detail.
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Let us consider Eqg. (10) this time and assume that only the j™ coordinates of the
coupled system are harmonically excited and the rest of the external force vector is
zero as given in Eq. (18). Then by using Eq. (11) and Eq. (18), one can rewrite Eq.

(10) as follows:

KU K (U K1, u
ij Fjlekj(Hjj+Hii) Hy F

ioix

(20)

X

Multiplying both sides of Eq. (20) by (ijl)_l from right hand side, one can obtain:
KU K (14U K\ U
Hi = H (H} +H} ) Hj (21)

Pre and post multiplication of both sides of Eq. (21) by (H,*fj)fl and (H}j.)fl,

respectively, results in

(HS) HE (Hy) " =(Hy +HE)” (22)

i

Taking reciprocal of both sides of Eq. (22), one can come up with the following

expression:

-1
Hi (Hi') Hg =Hj +H} (23)
Rearrangement of Eq. (23) provides the Formulation 2 which gives the connection
point FRFs of an unknown subsystem in terms of those of the coupled system and

known subsystem:

-1 -1
i = H ((HE) " HE -1, (24)
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Again, it just so happens that if only the k™ coordinates of the coupled system are
harmonically excited as shown in Eq. (12), Eq. (10) can likewise be reduced to the

formulation previously proposed by Maia et al. [45]:
-1
H = HY (HE —HE ) HE -H (25)

2.2. Applications and Performances of Decoupling Formulations Proposed

In this section, applications of the proposed decoupling formulations to a lumped
parameter system are presented and their performances are compared with those of
some well-known techniques using a case study. Finally, the linear decoupling method
to be used in the upcoming decoupling studies for nonlinear systems is decided.

2.2.1. A Case Study — Decoupling of a Linear Lumped Parameter System

The coupled system to be decoupled in this application is composed of rigidly

connected two linear lumped parameter subsystems as shown in Figure 22.

K A N ke B
COUPLED SYSTEM
5 Lk ke — 4 A s K
UNKNOWN SUBSYSTEM | KNOWN SUBSYSTEM

Figure 10. Decoupling of a linear lumped parameter system
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Note that k, m and c represent stiffness, mass and viscous damping parameters,
respectively. Physical parameters of the known and the unknown subsystems are given
in Table 1.

Table 1. Physical parameters of the lumped parameter system

Nilri?:rngi) mi[kg] | ki [N/m] | ci[Ns/m]
1 2.5 1500 015
2 3 2000 0.20
3 2 2100 021
4 3 1900 0.19
5 2.5 2200 022

Here, it is assumed that FRFs of the coupled system at the known subsystem
coordinates are experimentally measured and the physical model of the known
subsystem is available. The aim is to obtain FRFs of the unknown subsystem at its

connection DOF. In order to simulate the measured FRFs of the coupled system, exact

FRFs of the coupled system (H) are initially calculated by using the physical
parameters given in Table 1 and then polluted by simply adding complex random

variables as shown below:
HaKbU (wk): H;)U (a)k)+mab,k +inab,k (26)

Here, mapx and nap k are independent random variables with Gaussian distribution, zero
mean and a standard deviation of 5e-5 m/N which bring a noticeable pollution on
calculated FRFs. The effect of such a pollution on the point FRFs at the 2" DOF (the
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coupling DOF) of the coupled system is illustrated in Figure 11 together with the FRF

obtained after curve fitting.

10 T T T T T T T T T
=
'g' 2
— 10
£
+N
£
EC“)
+. 4
£ 10
T
% Exact
9 = Polluted
6 ====FRF curve fitted
»]D' T T I 1 ] 1 ] 1 ]
1 2 3 4 5 B T 3 9

Frequency [Hz]

Figure 11. Point FRFs at the 2nd DOF of the coupled system: exact (—, black),
polluted (*, blue) and FRF curve fitted (- -, red)

Then, point FRFs at the coupling DOF of the unknown subsystem is calculated by
using the proposed formulations employing the FRF curves fitted to the polluted FRFs
of the coupled structure. Predicted FRFs using Formulation 1 and Formulation 2 are

given in Figure 12 and Figure 13, respectively, along with the exact ones.
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Figure 12. Point FRFs at the 2nd DOF of the unknown subsystem: exact (—, black),
predicted using Formulation 1 (*, magenta)

FRAC = 0.99731

Exact

+  Formulation 2
10' I I 1 1 1 1 1 1 1

1 2 3 4 5 B 7 g 9
Frequency [Hz]

Figure 13. Point FRFs at the 2nd DOF of the unknown subsystem: exact (—, black),
predicted using Formulation 2 (*, blue)
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Figure 12 and Figure 13 show that both approaches predict the unknown subsystem
FRFs satisfactorily. However, predicted FRFs via Formulation 2 seem to fit better to

the exact FRFs by visual inspection, especially around 2" resonance.

In order to make a sound comparison, rather than visual inspection, the Frequency
Response Assurance Criterion (FRAC) [65] is used. FRAC identifies the degree of
similarity between a measured and analytical FRF, so that its low values indicate little
correlation whereas high values indicate better correlation. FRAC values for the
predicted FRFs by using Formulation 1 and Formulation 2 are calculated as 0.99708
and 0.99791, respectively. This result, once again shows that both equations can
successfully be used for decoupling at least for the case study given here and

Formulation 2 gives slightly better results compared to Formulation 1.

2.2.2. Comparison of Proposed Approaches with well-known Existing Methods

In this section, performances of the proposed formulations are compared with those of
well-known recent decoupling methods. The final equations for these methods and the

input data required for each of them are summarized in Table 2.
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Table 2. List of most recent linear decoupling methods

Requires which

Requires which

Ref. | Decoupling Formulation elements of elements of Eq.
HK HKU
u K gK K K KU K\ K K K HE H:'(k KU
[57] Hjj =ijij(ij<Hkk-Hkk )ij) ijij-Hjj HK HK Hkk (27)
i kk
U K (14K ku \1 K K KU
[57] Hii:(Hii(HiJ"Hii ) _'jj)Hn‘ Hj Hj (28)
u K K K K KU K7L K K K Hﬁ H;(k HKU
[57] Hjj:Hjojj(ij(ij'ij )HJJ) HiHy - Hj HE  HK K (29)
i kk
- HX HX
[45] | HY =H (HE -HE ) HE -HY Lok i (30)
ij Hkk
1\1
@ | HY=(1-H[HET) Hy i (31)




8¢

KU —K KU —K
I Hjj ZJ'J' ij ij

T (HKY z5 - KU KU
[52] HJLJI :( KU K KU K ] ( IJiU ( |Ji H:iU HIJ(kU (32)
_ij ij _Hkk ij ij ij - ij Hkk
KU\T + * K K KU KU
52] Hyz(HﬂJ ¢ Ok)_(H;j (HEU Hj’ —H, Hi ij} [Hn Hy 33)
KU K K KU
g ij g : HL(,' HL(,'U HEE—HEk ij Hkk ij kau
K K
HY g HY (BKU)T Hj  Hi Hi” Hy
HY = - HE  HE HKY  HRY
0 -—HX 0 —HKX (BK)T kj kk ki kk
54 _
[54] . 0T 1 N or or (34)
(BKU BK) H 0 ( ) (BKU BK) H 0 at least at least
0 —HK (BK)T O _HK
H HE




Among the first three formulations given in Table 2, Eq. (28) has been proved to be
the one that yields the least error throughout the frequency range [57]. Likewise, Eq.
(34) was confirmed as the best performer among the last three formulations given in
the table [54]. Note also that, Eq. (31) is a particular case of the Eq. (32) as mentioned
in reference [52]. As a result, it is decided to compare the performances of formulations
given by Eq. (28), Eg. (30) and Eqg. (34) in Table 2.

So, the problem given in section 2.2.1 is reinvestigated using Eq. (28), Eqg. (30) and
Eqg. (34) in addition to the proposed decoupling formulations. It is assumed that FRFs
of the coupled system and the known subsystem are available only at known subsystem
coordinates, i.e., at and between coordinates j and k. Furthermore, five different sets
of simulated coupled system FRFs are generated in order to examine the effects of
gradually increased noise level on the performance of each decoupling method. Thus,
exact coupled system FRFs are polluted by five different sets of random variables, i.e.,
Mabk and napk in Eq. (26), with Gaussian distribution, zero mean and standard
deviations ranging from 5e-5 m/N to 25e-5 m/N. Results obtained for 15e-5 m/N
standard deviation (SD) of pollution are given in Figure 14 for illustration.

During calculations it is observed that different pollution sets with the same standard
deviation may give slightly different results at each time. So, calculations via each
method are repeated 100 times for each standard deviation of pollution, and the
averages of the FRAC values are compared in Table 3.
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Figure 14. Point FRFs at the 2nd DOF of the unknown subsystem: exact (—, black),

predicted via proposed formulations using data polluted with SD of 15e-5:

Formulation 2 (*, blue), Formulation 1 (*, magenta) and via formulations given in

literature: Eq. (28) (*, ), Eq. (30) (*, green), Eq. (34) (*, red)
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varying pollution level

Table 3. Mean and Standard Deviation (SD) of FRAC values for each method wrt

FRAC Values (Mean + SD values after 100 runs)
Method SD of SD of SD of SD of SD of
5e-5 10e-5 15e-5 20e-5 25e-5
m/N m/N m/N m/N m/N
Formulation 2 0.9979 + | 0.9970 £ | 0.9900 + | 0.9869 + | 0.9792 +
0.0019 0.0024 | 0.0234 0.0107 0.0184
Formulation 1 0.9948 £ | 0.9947+ | 0.9912+ | 0.9796 = | 0.9744 +
0.0218 0.0077 0.0096 0.0189 0.0238
Eq. (28) 0.9971 £+ | 09759« | 0.9701 £ | 0.9601 = | 0.9522 +
0.0215 0.0274 | 0.0307 0.0404 0.0639
Eq. (34) 0.9928 £ | 09794+ | 0.9767 £ | 0.9615+ | 0.9778 £
0.0192 0.0358 0.0529 0.1067 0.0340
Eq. (30) 0.9921 £ | 0.9859+ | 0.9822+ | 0.9736 = | 0.9696 +
0.0050 0.0183 0.0211 0.0435 0.0562

Table 3 shows that the overall performances of the proposed decoupling formulations
are found to be better in terms of mean FRAC values. Particularly, Formulation 2
distinguishes itself as the statistically best performer among all formulations with
higher FRAC values for the most of the different pollution levels. As mentioned
previously, the comparison made here is for the case where one has FRFs of the
coupled system and the known subsystem at and between all DOFs of the known
subsystem, i.e., at and between coordinates j and k. However, this is not always the
case in real life applications, since the number of DOFs of a system/subsystem is
always limited to the number of measurement points and/or sensors in real-life
engineering structures. Therefore, it is very important to investigate the performances
of linear decoupling methods under the availability of limited number of internal

measurement DOFs in the known subsystem.
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For this purpose, the same calculation given above is repeated for the cases where one
has the FRFs of the coupled system and the known subsystem at the following internal

known subsystem coordinates:
1) mgand ms
2) only at ms
3) onlyat ms
4) none

The results obtained are tabulated in Figure 15. Each grid of the plot is painted with
the color of the linear decoupling method that gives the maximum mean FRAC value

for a given pollution level — measured internal DOFs combination.

Figure 15 reveals that proposed decoupling formulations, particularly Formulation 2,
seem to be the most successful ones for all levels of pollution, when FRFs of the
coupled system and known subsystem at and between all the internal DOFs of the
known subsystem are available. However, Eq. (34), the so-called Dual Formulation
[54], performs better for almost all the cases when some or all the FRFs of the coupled
system and known subsystem at and between the internal DOFs of the known

subsystem are not available, irrespective of the pollution level.

Note also that, for the case where none of the FRFs of the coupled system and known
subsystem at and between the internal DOFs of the known subsystem are available
Formulation 1 and Formulation 2 cannot predict the unknown subsystem FRFs since
these formulations are based on the transfer FRFs between connection coordinates j
and internal coordinates k of the known subsystem. For this case, only Eq. (34) and
Eg. (28) can predict the unknown subsystem FRFs with the same accuracy as can be

observed from the double-colored last grid column in Figure 15.
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Figure 15. Maximum mean FRAC values obtained with the associated linear
decoupling method for a given pollution level — measured internal known subsystem
DOFs combination (Cell color indicates the method which gives the maximum
FRAC value)

Being the prominent formulations, as concluded from Figure 15, only Eg. (34) and
Formulation 2 are compared with each other in Figure 16. Again, each grid of the plot
is painted with the color of linear decoupling method that gives the maximum mean
FRAC value for a given pollution level — measured internal DOFs combination. This
time, mean FRAC values obtained via both methods are given together at each grid of

Figure 16 where the greater FRAC value is always given at the top.
As a final remark, in consideration of the results of this case study, use of Eq. (34), the

so-called Dual Formulation [54], is employed in this study for decoupling of

equivalent linear systems in this thesis.
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Figure 16. Mean FRAC values obtained via Eq. (34) and Formulation 2 for a given
pollution level — measured internal known subsystem DOFs combination — greater
FRAC value is always given on top of other at each grid (Cell color indicates the
method which gives higher FRAC value)
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CHAPTER 3

DECOUPLING OF NONLINEAR SYSTEMS - THEORY

In this chapter, firstly, Describing Function Method used for harmonic response
calculation in nonlinear structures and measurement of FRFs in nonlinear systems are
presented. Then, the parametric modal identification technique for nonlinear systems
[66] which serves as one of the basis of this study is given. Finally, the theory of FRF
Decoupling Method for Nonlinear Systems (FDM-NS) proposed for obtaining FRFs
of a substructure decoupled from a coupled nonlinear structure is explained in detail.

3.1. Harmonic Response Analysis in Nonlinear Systems

After a brief explanation of modelling nonlinearities, the theory of the Describing
Function Method (DFM) used to calculate the harmonic response of a nonlinear system

is given in this section.

3.1.1. Dynamic Modeling of Systems with Nonlinear Elements

The equation of motion for a nonlinear MDOF system can be written as;

M(t) + CX(t) +i DX(t) + Kx(t) + N(x, X) = (t) (35)

where M, C, D and K represent mass, viscous damping, structural damping and

stiffness matrices of the system, respectively. Here, X(t) represents generalized
displacement vector while f(t) stands for the harmonic external forcing vector, and i

and dot represent the unit imaginary number and derivation with respect to time,

respectively. All nonlinear restoring forces are represented by N(X, X) vector which
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can be a function of displacement and velocity. The r'" element of the nonlinear

restoring forcing vector, N, , can be expressed as

N, =>n, r=123..n (36)

where n,; represents the nonlinear restoring force between the coordinates r and j.
Note that n; can be represented as a function of displacement x; and/or velocity x,

as
NG =N, (X, %;) (37)
where x; represents the relative displacement between coordinates r and
X;=%—-X; for r=]j (38)
and it corresponds to the displacement of grounded coordinates

X =X for r=j (39)
The external forcing vector, f(t), can be expressed in complex vector form as

f(t) =Fe” (40)

where generic angle @ can be defined as the product of angular frequency @ and time
t whereas F represents the external forcing amplitude vector. Assuming that the
nonlinear response to the external harmonic forcing is not essentially sinusoidal but

composed of several harmonics, it can be written as a Fourier series in the form of
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X(t) = éox(t)m = ZXe (41)

where m represents the number of harmonics included and X_ is the complex

displacement response amplitude of the m" harmonic. Then, the complex displacement

response amplitude at coordinate r for the m" harmonic can be defined as
(X ) = (X 2w,), =[X ] (42)

where |Xr|m is the magnitude and (://r)m is the phase of the complex displacement

response. If we consider the Fourier series representation of the response given in
Equation (42) by just considering the first p harmonics, the truncated (approximate)

response can be written as
p p imo
X(t) = X x(t)y = X Xy e (43)

3.1.2. Calculation of Nonlinear Response by Using DFM

In this section, the theory of determining harmonic response in nonlinear systems by

using DFM [67] is presented. Considering n,., which is defined in Equation (37) as

!

the nonlinear internal force between the coordinates r and j, and assuming for the sake

of simplicity that n; is only displacement dependent, one can represent it in terms of

Fourier series as

0

I"]rj = nrj (er) = mz‘to(nrj (er))meimg (44)

The term (nrj(x”.))m can be determined by using the following Fourier integral [67]
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(ng () J' n, (x,)dé for m=0 (45)

(ng (). j n;(x;)e ™de  for m=0 (46)

The terms (nrj(x”.))m for even values of subscript m are due to nonlinearities with

asymmetrical characteristics. In this study, interest is restricted to symmetrical
nonlinearities only and higher harmonic terms are neglected assuming that they are
much smaller compared to the fundamental harmonic. Considering only the

fundamental harmonic, Equation (45) and (46) can be written as
i %F : .

N, (X5) = (_ _[ Ny (er)e_ledé’}e'a (47)
4 0

Similarly, Equation (43) reduces to

X(t) = Xe'" (48)

The nonlinear internal forces, n,(x;), can also be expressed in terms of describing

functions, v, , as follows
ng (%) =vy (er ) X e (49)

where v, , which can also be considered as an equivalent linear complex stiffness, is

rj?

a function of the amplitude of complex displacement response. The following equation
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can be derived from the nonlinear force representations given in the Equation (47) and
(49) as

X

v (

ri

)= ”‘;X ! ng(x;)e 7o (50)

]

Budak and Ozgiiven [68] suggested that nonlinear internal forces can be expressed as
a multiplication of so called "nonlinearity matrix" by displacement vector. So, the

internal nonlinear forces can be written as a matrix multiplication in the following form
N(X, X) = A(X, X) Xe'”* (51)
Here, A(X,X) is the response dependent “nonlinearity matrix” which was first

introduced by Budak and Ozgiiven [68] for particular types of nonlinearities. Later, it
was extended by Tanrikulu et al. [69] for any type of nonlinearity in terms of DFs as

given below

A, =v,+) Vv, r=,23..,n
2% 52
j=r

A, =-v;, r=j, r=123..,n (53)

When Equations (40), (51) and (48) are substituted into Equation (35), nonlinear
internal forces can be introduced into the system as an additional equivalent stiffness
matrix which is a function of unknown response amplitudes. Then, receptance matrix

of the nonlinear system can be written in the following form:

-1

HY =(-&’M+ioC+iD+K +A(X)) (54)

39



where the response of the nonlinear system can be expressed as
X=H""F (55)

It should be noted that H™" is a function of unknown displacement amplitude. Thus,
solution of Equation (55) requires iterative methods. In this thesis, Fixed Point
Iteration Method is used. The linear response of the system at a starting frequency
which is calculated by omitting nonlinear terms in a nonlinear sub/system is taken as
the initial guess for the displacement vector X at that frequency. However, the solution
obtained at a previous frequency step is taken as the initial guess at the following
frequency steps. Iterations are to be repeated until the percentage displacement error
drops below a specified value. Convergence is checked by calculating the maximum

relative percentage error between two successive solutions which is given below:

€= max(

As to avoid divergence due to numerical instability, and also to obtain fast

Xi+l — Xi
X D (56)

convergence, fixed point iteration is applied with the following relaxation [70]:

*

Xy =(A) X, +(1-2)X;, 0<a<1 (57)
where 1 is the relaxation coefficient employed to force a non-converging system to
converge or improve convergence by damping out oscillations. Although FDM-NS
uses experimental measurements, simulated experimental results which are calculated
using the solution method described above are used in the case studies given in Chapter
4. In these case studies cubic stiffness and piecewise linear stiffness type of nonlinear
elements are used, force-displacement characteristics of which are shown in Figure 17

and Figure 18, respectively.
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Force

Displacement

Figure 17. Force-displacement characteristic of cubic stiffness type of nonlinear

element

Single harmonic DF representing the cubic stiffness type of nonlinearity having a

force-displacement characteristic as given in Figure 17 can be expressed as:

3, 2
=—k X 58
v=sk (58)
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Force

Displacement

Figure 18. Force-displacement characteristic of piecewise linear stiffness type of

nonlinear element

On the other hand, single harmonic DF representing the piecewise linear stiffness type
of nonlinearity having a force-displacement characteristic as given in Figure 18 can be

expressed as:

v=k1 for X <6

(59)

v:M arcsin(§j+(£) 1-(éj2 +k, for X>¢6

T X X

3.2. Measurement of FRFs in Nonlinear Structures

An FRF is simply a transfer function expressing the frequency domain relationship
between the response of a system and the force applied on it. Furthermore, an FRF is
invariant of both applied force and the response level for a linear system. However, it

IS not the case for a nonlinear system such that an FRF measured in a nonlinear system
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is valid only for a specific force or response level maintained during the test. In the
following subsections, two different measurement techniques are introduced

depending on the control parameter.

3.2.1. Controlled Force Amplitude Test

This test is mainly based on application of a constant amplitude harmonic excitation
to a nonlinear system at each frequency step throughout a frequency span. As it is well-
known, FRFs resulting from such a measurement is invariant of the force amplitude in
a linear system. In other words, vibration measurements performed under different
excitation levels yield the same FRF curve in linear systems. However, this is not the
case for nonlinear systems. In case of a nonlinear system, vibration measurements
performed under different excitation levels ends up with different FRF curves. When
a constant amplitude harmonic excitation is applied to a nonlinear system over a
frequency span, the equivalent damping and/or stiffness values introduced by the
nonlinear elements into the structure varies as its response level changes with the
changing frequency of constant amplitude harmonic excitation. This variation leads to
the distortion of the FRF curve obtained which implies the presence of nonlinearity
and thus can be used for nonlinearity detection. This can be observed in Figure 19
which gives FRFs of a nonlinear structure under constant harmonic excitation of

different magnitudes.
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Figure 19. Measured FRFs of a nonlinear structure under constant harmonic

excitation of different magnitudes

It should be noted that linear modal identification techniques are not applicable to
FRFs obtained from such tests.

3.2.2. Controlled Displacement Amplitude Test

The idea behind this test is to keep the relative harmonic displacement between end
coordinates of the nonlinear element constant at a given value throughout the
frequency range of the test, as discussed in [71] and applied in practice in [72], so that
the nonlinear element behaves linearly. In other words, controlled displacement
amplitude test yields linear FRFs each corresponding to a different response level of
the nonlinear element as illustrated in Figure 20. This can be mathematically seen from
Equation (54): By controlling the response level of the single nonlinear element that

exist in the system, the nonlinearity matrix (A) in this equation is transformed into an
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additional equivalent stiffness matrix as long as the describing function for this

nonlinearity is a function of the response amplitude only.
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Figure 20. Measured FRFs of a nonlinear structure for different response levels of

the nonlinear element involved

3.3. Theory of Parametric ldentification Approach using Modal Model for

Nonlinear Systems

Arslan et al. [66] suggested that if FRFs of a system having nonlinearity that can be
modeled as a single nonlinear element are measured by keeping the response level of
this single nonlinear element constant at a certain amplitude and this test is repeated
for various different response levels, linear identification methods can be used and sets

of modal parameters can be obtained, each set corresponding to a different response
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level. As the identified modal parameters, natural frequencies (, ), loss factors (7,)
and modal constants (, A, ) vary with the response amplitude, they can be expressed as

a function of the amplitude of the relative harmonic displacement between the end

coordinates p and g of the nonlinear element ( X ) as follows [66]:

o, :a)r(qu) (60)
nf:nf(qu) (61)
rAkI:rAkl(qu) (62)

So, obtained modal parameter variations can be used to write the pseudo receptance

expression of the system as a modal summation at any given frequency as:

2 A (X)
Ha(@ X;0) 2((a,r(qu))z—w2+i(wr(qu))z’7r(qu))

(63)

Note that, Eq. (63) can be used in harmonic response prediction of the nonlinear system
iteratively, as well as in decoupling analyses. Further details regarding the theory of
this method can be found in [66].

3.4. Theory of FDM-NS

In this section, the underlying theory of the FDM-NS is given in detail, which is first
presented and later experimentally verified in papers [73,74] written based on the work
done in thesis study. The proposed method can predict FRFs of an unknown
subsystem, whether linear or nonlinear, from the measured FRFs of the coupled

nonlinear system and the measured or calculated FRFs of the remaining known
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subsystem. Note that FDM-NS can decouple any coupled nonlinear structure provided
that existing nonlinearity can be modelled as a single nonlinear element and its location

is known.

The theory of FDM-NS is presented under three main headings, since it requires
different approaches depending on the location of the nonlinear element in the coupled
system: The nonlinearity can be either in the unknown subsystem or in the known
subsystem, or it can connect these subsystems. Remind that the notation used
throughout this thesis for all systems/subsystems and the coordinate sets are given in
Figure 8 in section 2.1.1.

3.4.1. Nonlinearity in the Unknown Subsystem

This is the case where the single nonlinear element is at a certain location in the
unknown subsystem. Note that, the number of measurement points on the coupled
system reduces depending on the location of the nonlinear element. When the
nonlinear element is located between internal DOFs (i), complete FRF matrix of the
coupled system for the coordinates of interest should be obtained through experimental
measurements. However, if the nonlinear element is between an internal DOF (i) and

a coupling DOF (j) of the unknown subsystem, it is not necessary to measure FRFs at

and between internal DOFs (i) of the coupled system (i.e., H:") anymore. If the
nonlinear element is located between coupling DOFs (j) of the unknown subsystem,
Hi

only FRFs of the coupled system at and between coordinates j and k (i.e., H;“ :

and HY) should be measured.

The solution of this subproblem basically requires the sequential application of the

following techniques:

e Controlled displacement amplitude vibration test at several different

amplitudes.

47



e Application of a decoupling technique for linear systems (the dual assembly
approach [54] is used in this thesis).

e Application of the parametric modal identification technique for nonlinear

systems [66] discussed in Section 3.3.

The complete FRF matrix of the known subsystem for the coordinates of interest can
be calculated by using its available system parameters or it can be obtained
experimentally. On the other hand, the required FRFs of the coupled nonlinear system
can be measured by conducting controlled displacement amplitude tests where the
amplitude of the relative displacement between the end coordinates of the nonlinear
element is kept constant at a different value for each FRF curve. This results in various
different linear FRF curves for the coupled nonlinear system where each set
corresponds to different response level of the nonlinear element. Then, one can come
up with different FRF curves for the nonlinear unknown subsystem each of which
represents a different equivalent linear system by performing linear decoupling. Here,
the dual assembly approach [54] is used as the linear decoupling method, which results

in the following equation:
HU=|:HKU 0 }{HKU 0 }[BEUT
_HK _HK T
0 H 0 H BE |
HKU 0 BKU' '
GRS A b ©

BK'
KU
X[BEU B?]{HO —IE)IK}

where B, =[Bt” B | and B, =[BfY Bf ] represent signed Boolean matrices

used to enforce compatibility and equilibrium at interface DOFs, and the symbol *
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stands for the generalized inverse. Note here that, each FRF curve obtained for the
unknown subsystem is valid only for a different level of the nonlinear element. So, one
can use each FRF curve in order to parametrically identify the corresponding
equivalent linear system and thus obtain the variation of modal parameters with respect
to the response level of the nonlinear element [66]. Then, response dependent FRFs of
the unknown nonlinear subsystem can be computed iteratively for any excitation level

by using these modal parameter variations.

3.4.2. Nonlinearity in the Known Subsystem

This is the case where a single nonlinear element exists at any given location in the

known subsystem. (i.e., at coordinates j, k or between coordinates j and k). In this case,

the FRFs of the coupled system at and between coordinates j and Kk (i.e., H;“, ka“

and H} ) are necessary, and the following techniques should be used sequentially for

the solution of this subproblem:
o Controlled displacement amplitude vibration test at a specific amplitude.

e Application of a decoupling technique for linear systems (the dual assembly
approach [54] is used in this thesis).

First of all, point and transfer FRFs of the coupled system along with those of the
known subsystem at all coordinates j and k should be measured by keeping the
amplitude of the relative harmonic displacement between the end coordinates of the
nonlinear element at a certain value at each frequency step across a frequency range
of interest. This will result in linear FRF curves for the coupled system and the known
subsystem for a specific relative displacement amplitude. Moreover, it leads to the
same nonlinearity matrix to be introduced into the dynamic stiffness matrices of the
coupled system and the known subsystem at each frequency of measurement which

can be expressed as follows, respectively:
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ZK=K" -’ M" +iwC" +A (65)

0 00

ZY =K —* M"Y +iC +| 0 A (66)
0

A, A,
where A=| ¥ K.
Akj Ay

Note that, addition of a fixed valued nonlinearity matrix into the dynamic stiffness

matrices of the coupled system and the known subsystem throughout a frequency span

is equivalent to modifying the stiffness matrix (K*) of the known subsystem. Such a
modification will not affect the unknown subsystem characteristics as well as the
results of the decoupling process. So, the problem reduces to decoupling of linear
systems. Consequently, FRFs of the unknown subsystem at its connection coordinates
(j) can be obtained by just applying the dual assembly approach [54], for which the
resulting formulation is given by Equation (64).

3.4.3. Nonlinearity at the Connection of Two Subsystems

When the nonlinear element connects two subsystems, the approach to be used for the
solution differs depending on the availability of its parameters. If the parameters of the
nonlinear connection element are not available, it can be included into the unknown
subsystem. Then, a massless node can be considered at the free end of the nonlinear
connection element which is rigidly connected to the known subsystem when coupled
(Figure 21a). Note that, this approach has also been used in [38] previously. Thus, the
system reduces to the one considered in section 3.4.1.
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a)

Figure 21. Inclusion of the connecting nonlinear element, a) in the unknown

subsystem, b) in the known subsystem

Similarly, if the parameters of the nonlinear connection element are available, the
nonlinear element can be included into the known subsystem. Again, a massless node
can be considered at the free end of the nonlinear connection element which is rigidly
connected to the unknown subsystem when coupled (Figure 21b). Then, the problem

reduces to the one defined in section 3.4.2.

o1
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CHAPTER 4

APPLICATIONS OF FDM-NS TO NONLINEAR LUMPED PARAMETER
MDOF SYSTEMS

In this chapter, applications of FDM-NS to nonlinear lumped parameter MDOF
systems are given in order to demonstrate the validity and the performance of the
proposed method on theoretical bases. The case studies are categorized depending on
the location of the nonlinear element in the coupled nonlinear system. In other words,
the same MDOF system with identical physical parameters is studied in each case
study except the location and the type of the nonlinear element involved. Moreover,
theoretically calculated data is not used directly, but polluted in each case study in

order to simulate the experimental measurements more realistically.

4.1. Case Study 1 - Nonlinearity in the Unknown Subsystem

In this case study, a 2 DOF nonlinear unknown subsystem is to be decoupled from a 3
DOF lumped parameter coupled nonlinear system via FDM-NS. Coupled nonlinear
system consists of two subsystems connected to each other rigidly as illustrated in

Figure 22. Physical parameters of the coupled system are given in Table 4.

Table 4. Physical parameters of the coupled system

Element Number (i) m; [kg] ki[N/m] | ci [Ns/m]
1 0.20 2000 0.50
2 0.10 1000 0.20
3 0.15 1000 0.30
4 0.20 1500 0.60
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Figure 22. Decoupling of a nonlinear coupled system — nonlinearity is at the
coupling DOF of the unknown subsystem

The existing nonlinearity in the unknown subsystem is of cubic stiffness type.
Furthermore, its ends are connected to the coupling DOF of the unknown subsystem
and the ground. The nonlinear internal force expression and related parameters for this

nonlinear element are defined as follows:
n(x)=k.x* where k, =2x10°N/m? (67)

As the first step of FDM-NS, complete FRF matrix of the known subsystem is
theoretically calculated from the known system parameters for the DOFs of interest
(ms and m4). Secondly, point and transfer FRF sets of the coupled system at the known
subsystem DOFs (mx+m3 and ms) are obtained by performing a set of controlled
displacement amplitude experiments for different displacement levels of the nonlinear
element. Thereby, exact FRF sets of the coupled system are obtained for 20 different

harmonic displacement amplitudes of its second DOF (m2+m3) ranging from 3 mm to
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60 mm with 3 mm increment. A complex random number is added to each calculated

FRF set in order to simulate measurement errors as follows:
KU “1KU :
Hy (o) =Hy (o) +m,, +in, (68)

In Equation (68), mak and nak are independent random variables with Gaussian
distribution having a zero mean and a standard deviation of 4x10® m/N which brings
a noticeable pollution on calculated FRFs. Now, one can obtain point FRFs of the
unknown subsystem at its coupling DOF (m;) as given in Figure 23 by performing
linear decoupling via dual assembly approach [54] for 20 different FRF sets of the
coupled system. Since the calculated unknown subsystem FRFs still have the effect of
measurement errors, curves in the form of an FRF are fitted to each of them as shown

in Figure 23.
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Figure 23. Point FRFs of the unknown subsystem at m> (colored points) and fitted

FRF curves (black lines)
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From now on, parametric modal identification technique [66] can be applied step by
step. First, modal parameters of each fitted FRF curve are extracted using the linear
modal identification technique developed by Richardson and Formenti [75]. Then,
their variations as a function of the amplitude of relative harmonic displacement
between end coordinates of the nonlinear element are obtained as shown in Figure 24
and Figure 25 for the first and second modes, respectively. Note that, fitted curves to
the obtained modal parameters are polynomials of third order. As a result, point
response of the unknown nonlinear subsystem can easily be calculated for any forcing

level using these modal parameter variations.

0.018

Qmsjﬁ*¥¥**¥*&* .
FRET **
0.014 e S

*
loss factor

e 0.012
*

natural frequency [Hz]

0.01
0 0.02 0.04 0.06 0 0.02 0.04 0.06

response amplitude [m] response amplitude [m]

//-F
»

0.02 0.04 0.06 0.02 0.04 0.06
response amplitude [m] response amplitude [m]

.
@

=l

F i S,

I

.*__*_*-*

=]

[4)]
4l
=
-

¥

g rEEE

~
o
oo

modal constant (magnitude)
#

modal constant (phase) [deg]
2]

=]
=]

Figure 24. Modal parameter variations for the 1st mode wrt response amplitude of
the nonlinear element (*, identified parameters & —, fitted curves)
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Figure 25. Modal parameter variations for the 2nd mode wrt response amplitude of

the nonlinear element (*, identified parameters & —, fitted curves)

In order to validate the results of FDM-NS, point response of the unknown subsystem
at m is calculated for a harmonic excitation of magnitude 1 N, both by performing
modal synthesis using the modal parameter variations given in Figure 24 and Figure
25 (as a function of response amplitude), and by applying DFM using all of the actual
parameters of this subsystem. A frequency step size of 0.02 Hz is employed during
numerical calculations. Note that both approaches are based on the basic assumption
that harmonic excitation results in harmonic response at the same frequency. Obtained
results are illustrated for both forward and backward frequency sweeps in Figure 26
and Figure 27. Agreement of the predicted and directly calculated responses proves
the validity of the proposed method for this case where nonlinearity is in the unknown

subsystem.
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4.2. Case Study 2 - Nonlinearity in the Known Subsystem

In this case study, a 2 DOF linear unknown subsystem is to be decoupled from a 3
DOF lumped parameter coupled nonlinear system using FDM-NS. Coupled nonlinear
system consists of two subsystems connected to each other rigidly as illustrated in
Figure 28. Physical parameters of the coupled system are identical to those given in
Table 4. The nonlinearity in the known subsystem is again assumed to be of cubic
stiffness type. The nonlinear internal force expression and the related parameters of
the nonlinear element are the same as those given in Equation (67). But this time, its

ends are connected to the internal DOF (m4) of the known subsystem and the ground.

: k; k> ks &
§ @ mj [E ma+ms; [E my E
C

C> C3 Cy

COUPLED SYSTEM

/N o

> /\‘/ /\': /\'3 ks
mj m2 msz my
C; (& C3 Gy
UNKNOWN SUBSYSTEM KNOWN SUBSYSTEM

Figure 28. Decoupling of a nonlinear coupled system — nonlinearity is in the known

subsystem

As the first step of FDM-MS, point and transfer FRFs of the coupled system and the
known subsystem at and between known subsystem coordinates are obtained by

carrying out a controlled displacement amplitude test throughout the desired frequency
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span. For this application, exact FRFs of the coupled system (H*V) and of the known

subsystem (H) are calculated by using the physical parameters given in Table 4. In
these calculations, the magnitude of the harmonic force is taken such that response
level of the cubic nonlinearity remains constant (20 mm for both systems) at each
frequency step. Note that a frequency step size of 0.01 Hz is employed during
numerical calculations. Calculated FRFs are polluted by adding a complex random

number in order to simulate measurement errors as follows:

HaKbU(a)k): |:laKbU(a)k)"'mab,k"’inab,k (69)

HaKb(a’k):ﬂ:b(wk)Jr pab,k+iqab,k (70)

In Equations (69) and (70), Mabk, Nabk, Pabk and Qan k are independent random variables
with Gaussian distribution having zero mean and a standard deviation of 3x10° m/N
which brings a noticeable pollution on calculated FRFs. Effects of such a pollution on
point receptances of the coupled system and of the known subsystem at ms are
illustrated in Figure 29 together with FRF curves obtained just after curve fitting. Note
that FRFs given in the figure show linear behavior since they are obtained via
controlled displacement amplitude test. Otherwise, the responses of the coupled
system and the known subsystem would behave nonlinearly as illustrated in Figure 30
which shows FRF curves obtained for both systems when a constant amplitude

harmonic excitation of magnitude 4 N is applied to ma.
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As of now, point receptances of the unknown subsystem at m; are obtained via dual
assembly approach [54] by employing FRF curves fitted to the calculated point and
transfer receptances of the coupled system at mo+ms and ms, along with those of the
known subsystem at mz and m4. Exact and predicted point FRFs of the unknown

subsystem at my are presented in Figure 31.
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Figure 31. Exact and decoupled point receptances of the unknown subsystem at m;

One can observe from the Figure 31 that FRFs predicted by using FDM-NS shows
almost perfect agreement with the exact ones. Consequently, the decoupling method
developed is proved to yield satisfactory results in the case where nonlinearity is in the

known subsystem.
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4.3. Case Study 3 - Nonlinearity at the Connection of Subsystems

This case study is about decoupling of a coupled nonlinear MDOF system composed
of two subsystems having 2 DOFs and coupled to each other via linear and nonlinear

elastic elements as illustrated in Figure 32.
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UNKNOWN SUBSYSTEM . KNOWN SUBSYSTEM

Figure 32. Decoupling of a nonlinear coupled system — nonlinearity is at the

connection of subsystems

Physical parameters of the coupled system are identical to those given in Table 4
except the connection elements. Parameters of the linear elastic stiffness and viscous
damping elements connecting two subsystems are taken as 800 N/m and 0.02 N/ms,
respectively. The nonlinear connection element is assumed to be of gap type
nonlinearity where the relation between nonlinear internal force and displacement can

be expressed as:
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n(x,x) =0 for |x/<&
n(x,x) =k™ (x-5) for x>6 (71)
n(x,x) =k" (x+J) for x<-68

Note that in Equation (71) k™ represents the stiffness at specified elongation intervals
and ¢ is the elongation corresponding to the point of transition from the gap to the
stiffness k™. Their values are set as 600 N/m and 1 mm, respectively. A graphical

representation showing the force-displacement characteristic of this nonlinear element

is given in Figure 33.

Force

Displacement

Figure 33. Force-displacement characteristic of gap nonlinearity

In this case study, it is assumed that coupled nonlinear system can only be excited from
known subsystem coordinates (ms and ma4) and only responses of the mz, ms and m4 are
measurable. Moreover, it is assumed that the parameters of the linear and nonlinear

connection elements are not available. Therefore, they are included in the unknown
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subsystem as illustrated in Figure 32 such that a third node having zero mass, which is
called mo, is defined at the free end of the connection elements. As the first step of
FDM-NS, the complete FRF matrix of the known subsystem is theoretically calculated
from the known system parameters for the DOFs of interest (ms and ms). Secondly,
point and transfer FRFs of the coupled system at and between m2, mz and m4 except
point FRFs of m, are obtained by performing a set of controlled displacement
amplitude experiments for different displacement levels of the nonlinear element.
Thereby, exact FRF sets of the coupled system are obtained for 30 different harmonic
relative displacement amplitudes between m; and ms ranging from 0 mm to 3 mm with
0.2 mm increment. A complex random number is added to exact FRFs in order to

reflect the effect of measurement errors as follows:
H:bu (o) = H;JU (@) +my, +ing, (72)

In Equation (72), mapk and nak are independent random variables with Gaussian
distribution having a zero mean and a standard deviation of 8x10° m/N which brings
a noticeable pollution on calculated FRFs. Since calculated coupled system FRFs
include simulated measurement errors, curves in the form of an FRF curve are fitted
to each set. As an example, FRF curves fitted to the measured point FRF values at m3
are given in Figure 34. Moreover, point FRFs of the known subsystem at mz are also

illustrated in Figure 35 which is a single FRF curve since this subsystem is linear.

65



* X =0mm

+  X=0.2mm
X =0.4mm
X =0.6mm
X =0.8mm
X=1mm

X =1.2mm
X =1.4mm
X =1.6mm
X =1.8mm
X=2mm

X =2.2mm
X =2.4mm
X =2.6mm
X =2.8mm
X =3mm

* 0k ok % # ¥ %

5 10 15 20 25 30 35
Frequency [Hz]

Figure 34. Point FRFs of the coupled system at mz (colored points) and fitted FRF
curves (black lines)
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Figure 35. Point FRFs of the known subsystem at m3
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Using all the available data obtained up to now, point FRFs of the unknown subsystem
at mo and also transfer FRFs between mo and mz can be calculated by performing linear
decoupling via dual assembly approach [54] for 15 different displacement level of the

gap nonlinearity. The results are given in Figure 36.
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Figure 36. Point FRFs of the unknown subsystem at mo (above) along with its

transfer FRFs between mo and m> (below)
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After this stage, parametric modal identification technique [66] can be applied step by
step. First, modal parameters of each FRF curve are extracted using the linear modal
identification technique developed by Richardson and Formenti [75]. Then, their
variations as a function of the amplitude of relative harmonic displacement between
end coordinates of the nonlinear element are obtained as shown in Figure 37 to Figure
42. Note that, fitted curves to the obtained modal parameters are smoothing splines of
MATLAB® [81] with a smoothing parameter of 0.99999999998. So, one can calculate
the response of the unknown nonlinear subsystem for any forcing level using these

modal parameter variations.
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Figure 37. Modal parameter variations for the 1st mode of the transfer FRFs of the
unknown subsystem between mo and mz wrt response amplitude of the nonlinear

element (*, identified parameters & —, fitted curves)
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Figure 42. Modal parameter variations for the 3rd mode of the point FRFs of the
unknown subsystem at mo wrt response amplitude of the nonlinear element (*,
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In order to verify the results and thus validate the method, the decoupled subsystem is
recoupled to a linear SDOF subsystem whose system parameters are given in Table 5.
Construction of the new coupled system is shown in Figure 43. The response of this
new coupled system is obtained first by performing FRF coupling [76] where FRFs of
the unknown subsystem are resynthesized using the modal parameters given in Figure
37 to Figure 42. Then, they are also calculated directly via DFM using actual system
parameters. Note that both approaches are based on the basic assumption that harmonic

excitation results in harmonic response at the same frequency.

Table 5. Physical parameters of the known SDOF subsystem

Element Number (i)

mi [kg]

ki [N/m]

Ci [Ns/m]

5

0.15

800

0.60
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Figure 43. Construction of a new nonlinear coupled system - nonlinearity at the

connection of two subsystems again

The response of the new coupled system at ms is calculated when a harmonic excitation
of amplitude 0.4 N is applied to ms. Note that a frequency step size of 0.05 Hz is
employed during numerical calculations. The results are given in Figure 44 and Figure
45 for both forward and backward frequency sweeps. In addition, linear response of
the new coupled system is also given in these figures in order to show the distortion of
calculated FRFs due to nonlinearity. It can be observed that predicted results after FRF
coupling using results of FDM-NS closely match with those obtained directly through
DFM. Small discrepancies at the frequency of jump phenomenon at the 2" resonance
are believed to be due to inaccurate modal parameters due to noise in the primary data.
However, the general agreement between the predicted and directly calculated results
proves the validity of the proposed decoupling approach for a system composed of two

linear subsystems coupled through a nonlinear element.

72



1072 E

Log( | X<Vnew | [m])

DFM - FWD sweep

w=m = = FRF coupling - FWD sweep

10®

5 10 15 20 25 30 35
Frequency [Hz]
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Figure 45. Predicted and directly calculated responses of the new coupled system at
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CHAPTER 5

EXPERIMENTAL VERIFICATION OF FDM-NS

In this chapter, the proposed decoupling approach for nonlinear systems is applied to
experimental test systems. The first experiment is conducted on a nonlinear T-beam
which is similar to the test structure developed by Ferreira [76] and later used by Siller
[77], and also used by Arslan et al. [66] for identification purposes. In this
experimental case study, dynamics of a linear unknown substructure (a cantilever
beam) is to be obtained by decoupling dynamics of a known nonlinear substructure
from those of the complete T-beam structure. Whereas in the second experiment,
decoupling of two cantilever beams, free ends of which are held between two thin
identical beams is considered. In this application, dynamics of a nonlinear unknown
substructure is obtained by decoupling the dynamics of a known linear substructure
from those of the coupled structure composed of two cantilever beams connected each

other with a nonlinear element.

5.1. Application of FDM-NS to a Nonlinear T-Beam

In this section, FDM-NS is applied to an experimental test system which involves a
cantilever beam connected to a relatively thin fixed-fixed beam which together forms
a T-beam assembly as shown in Figure 46. The thin fixed-fixed beam introduces
nonlinearity into the system such that the center line of the beam elongates as it deflects
and gets longer than its original length. This yields axial forces and thus increases the
stiffness of the beam [78]. Firstly, FRFs of the T-beam assembly are measured via
controlled displacement amplitude test for a particular displacement value at the
connection point of two beams. As the system shows linear behavior for a constant

displacement of the nonlinear element, the linear parameters of the thin fixed-fixed
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beam are calculated analytically while its nonlinear parameters are separately
identified. Using obtained data, FRFs of the linear cantilever beam are obtained first
by using FDM-NS and then by conducting a modal test. In order to verify the real-life
applicability and accuracy of FDM-NS, predicted and measured FRFs of the unknown

subsystem are compared.

5.1.1. Experimental Setup

The test setup is composed of a linear cantilever beam, considered as the unknown
subsystem, with its free end attached to the midpoint of a thin beam having fixed-fixed
boundary conditions. The thin beam is referred to as the known nonlinear subsystem.

Physical dimensions of the test setup are given in Figure 46.
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Figure 46. Physical dimensions of the test setup
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Both beams are made of St37 steel. They are manufactured long enough that ends of
the beams are sandwiched between steel blocks so as to maintain fixed boundary

conditions. A picture of the test setup used in the experiment is given in Figure 47.

Figure 47. Picture of the test setup used in the experiment

B&K Type 4808 vibration exciter via a push-rod attached to the connection point of
the beams is used to harmonically excite the test system. Due to the low level of voltage
supplied from the signal generator, excitation force level of the vibration exciter is
manually increased by using a B&K Type 2712 power amplifier. Acceleration
response is measured using a B&K Type 4507B uniaxial accelerometer whereas
externally applied harmonic forces are measured via B&K Type 8230-002 force
transducer which is attached to the tip of the push-rod. Throughout all measurements,
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B&K Type 3560C frontend system is used as a data acquisition system which also
includes output channels that can be used as signal generators with a frequency range
from 0 to 25.6 kHz. The equipment used in the experiment is graphically shown in

Figure 48.

Figure 48. View of the equipment used in the experiment

5.1.2. Preliminary Analyses

Prior to experiment, preliminary modal analyses are performed by using a commercial
FEA software called ANSYS R15.0® in order to decide the frequency range of interest
we can use during the experiment. In this experiment, the fundamental resonance
frequency of the coupled T-beam assembly is taken as the frequency around which the
measurements are going to be carried out. It should also be noted that the modal
analyses are performed under the linearity assumption where large deflections

triggering nonlinearities are not allowed.
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In order to minimize the modeling errors in the FEM of the test structure (Figure 49),
the accelerometer and the force transducer used in the experiment are modeled as rigid
masses such that modulus of elasticity for the accelerometer and force transducer are
taken 10 times larger than that of the beams. Effective mass values, which is the overall
mass for the accelerometer while it is the mass above the piezo element for the force

transducer, are obtained from the datasheets of each transducer [79,80]. These values

are given in Table 6.

o~ Accelerometer

\ X
Force transducer A
Y: z

0,100 0,200 ()
0,050 0,150

Figure 49. FEM of the test structure

Table 6. Mass of the accelerometer and force transducer

Effective Mass
Transducer Type [grams]
Accelerometer Briiel&Kjaer Type 4507B 4.8
Force Transducer Briiel&Kjaer Type 8230-002 9.5
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First, by performing modal analysis in ANSYS R15.0® for the whole test setup, the
first natural frequency of the T-beam assembly is calculated as 36 Hz results of which

are also illustrated in Figure 50 together with the corresponding mode shape.
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Figure 50. Modal analysis results of the T-beam assembly — its fundamental

resonance

Since it is intended to obtain the FRFs of the linear cantilever beam, the frequency
range of interest is taken such that it also covers the first natural frequency of the linear
cantilever beam, which is obtained as 31.3 Hz by performing modal analysis in
ANSYS R15.0%. These results are also illustrated in Figure 51 together with the

corresponding mode shape.
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Figure 51. Modal analysis results of the cantilever beam by itself — its fundamental

resonance

Consequently, the frequency range of interest throughout this experiment is
determined as 20 - 55 Hz, considering the pre-estimated fundamental resonances of
the coupled T-beam system and unknown subsystem.

5.1.3. Experimental Work and Application of FDM-NS

As the initial step, point FRFs of the T-beam assembly at the attachment point of the
linear cantilever beam and of the thin fixed-fixed beam in transverse direction are
measured experimentally. An adaptive frequency resolution is adopted such that the
frequency resolution is increased in the close neighborhood of the resonance. Point
FRFs at the connection point of two beams are measured as given in Figure 52 by
conducting a controlled displacement amplitude test for the constant harmonic

displacement amplitude of 1 mm.
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Figure 52. Point FRFs of the T-beam assembly at the connection point j under

transverse loading for constant harmonic displacement amplitude of 1 mm

In Figure 52, experimentally obtained FRFs are illustrated together with the FRF curve
fitted to these measured data points by using a code mainly based on a built-in function
of MATLAB®, called “invfreqs” [81]. Note that fitted FRF curve with high frequency
resolution is used hereafter in the calculations in lieu of the measured point FRFs of

the coupled system at the connection point of two subsystems ( Hﬁ“ ).

As the next step, the fixed-fixed thin beam is modeled as grounded linear and nonlinear
transverse springs with their free ends attached to a concentrated equivalent mass as

shown in Figure 53.
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Figure 53. Model of the test rig

By using the material and geometric properties of the fixed-fixed thin beam, the
equivalent linear spring stiffness and the equivalent mass values are calculated as
2558.7 N/mand 21.52 g, respectively. In addition, nonlinear stiffness of the thin fixed-
fixed beam is identified through a nonlinear identification approach, called Direct
Nonlinearity by Describing Functions (DDF) method, proposed by Aykan and
Ozgiiven [82,83]. Initially, the nonlinear T-beam assembly is examined under two
different constant amplitude harmonic excitations according to DDF method. In these
tests, harmonic forces of magnitudes 0.25 N and 0.5 N is applied to the attachment
point of two subsystems and point FRFs of the T-beam structure are measured at
several frequencies as illustrated in Figure 54. The behaviors of the FRFs given in this
figure indicates presence of a stiffening nonlinearity in the system. As expected, the
jump phenomenon observed in both FRF curves occurs at higher frequencies for the
higher excitation force level which is the characteristic of a stiffening nonlinearity.
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Figure 54. Point FRFs of the T-beam assembly at the connection point j under

harmonic loading of constant magnitudes 0.25 N and 0.5 N in transverse direction

Using the measurement results given in Figure 54, DF values representing the
grounded nonlinear element attached to the tip of the cantilever beam are obtained by
applying DDF method [82,83] which can perform nonlinear identification directly
from a series of measured nonlinear FRFs. By using DDF method, the DFs
representing the nonlinear element are calculated from the experimental FRFs given
in Figure 54 with respect to the displacement amplitude of point j. The real and
imaginary parts of the DF values obtained, which respectively correspond to stiffness
and damping nonlinearities, are illustrated in Figure 55. Note that, DF curves shown
in Figure 55 are obtained via polynomial curve fitting up to third degree. The

polynomial coefficients of DF curves are also listed in Table 7.
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Figure 55. DF values obtained via DDF Method [82,83] for stiffness (left) and

damping (right) nonlinearities

Table 7. Identified parameters for the nonlinear element

Linear Quadratic Cubic
Coefficient (k;) | Coefficient (k,) | Coefficient (k,)
Real part of DF -8.2898e+05 3.6177e+08 2.3771e+11
Imaginary part of DF 1.0504e+05 -1.3231e+08 6.8055e+10

Using the parameters identified in Table 7, DF representing the nonlinear element can

be formulated as follows:

v=k X +k,X*+k,X° (73)

where X represents the harmonic displacement amplitude of the nonlinear element.

Now, all necessary data is available in order to obtain FRFs of the known nonlinear

subsystem. By employing FDM-NS using the FRFs measured from the coupled T-
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beam assembly and those calculated for the fixed-fixed beam at a constant harmonic

displacement amplitude of 1 mm, point FRFs of the linear cantilever beam alone at its

tip point ( Hﬁ ) are obtained. Results found are compared with those obtained via modal

testing of the cantilever beam itself in Figure 56.
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Figure 56. Point FRFs of the cantilever beam alone at its tip point j in transverse

direction

It can be observed from Figure 56 that the FRF curve obtained through FDM-NS and
the FRFs directly measured through modal testing of the linear cantilever beam itself
shows a very good agreement. So, it can be verified that FDM-NS is a practical tool to

decouple a nonlinear subsystem from a given nonlinear coupled system.
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5.2. Application of FDM-NS to a Coupled Cantilever Beam System with a

Nonlinear Element

In this section, application of the FDM-NS to another nonlinear experimental test
system is presented to demonstrate real life applicability and validity of FDM-NS. This
experimental test system consists of cantilever beams connected to each other from
their tip by two thin beams which yields nonlinearity to the coupled system. Note that,
this test is a real-life application of the theory given for the case where nonlinearity is

in the unknown subsystem.

5.2.1. Experimental Setup

The setup is composed of a cantilever beam coupled to a shorter cantilever beam by
connecting their free ends to each other with two thin identical beams which yield
nonlinear stiffness effect. The cantilever beams are manufactured from St37 alloy steel
whereas the thin beams are made of 6061-T3 aluminum alloy. Furthermore, fixed
joints between each cantilever beam and two thin identical beams are obtained by
riveting. A picture of the setup used in this experiment is given in Figure 57. The

dimensions and technical details of the test system are also given in Figure 58.
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Figure 57. Setup used in the experiment

All dimensions are in mm.

Figure 58. Dimensions and technical details of the test system
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Maintaining perfect fixed boundary conditions are very difficult in real life
applications. In order to maintain the fixed boundary conditions in the experimental
setup, dimensions of the beams are longer than their effective lengths of 353.5 mm and
244 mm, so that adequate parts of the beams are clamped between fixture blocks.

Equipment used in the experiment is listed in Table 8.

Table 8. Equipment used in the modal testing

Data Acquisition System Briiel&Kjaer Type 3560 C Frontend
Shaker Briiel&Kjaer Type 4808

Force Transducer Briiel&Kjaer Type 8230-002

Power Amplifier Briiel&Kjaer Type 2712
Accelerometer Briiel&Kjaer 4507B

5.2.2. Preliminary Analyses

Prior to the experiment for decoupling, preliminary modal analyses are performed by
using a commercial FEA software ANSYS R15.0® in order to decide a suitable
frequency range of interest to be used in the experiment. In this experiment, the
fundamental resonance of the coupled cantilever beams assembly is taken as the
frequency around which the measurements are going to be carried out. It should again
be noted that the modal analyses are performed under the linearity assumption where
large deflections triggering nonlinearities are not allowed during the analyses with
ANSYS R15.0%.

In order to minimize the modeling errors in the FEM of the test structure (Figure 59),

accelerometer and force transducer used in the experiment are modeled as rigid masses

so that modulus of elasticity for the accelerometer and force transducer are taken 10
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times larger than that of the beams. Effective mass values given in Table 6 are used in

the analyses.

Accelerometers
'

Force transducer

0,200 (rn) fa X
L S—
0,100

Figure 59. FEM of the test structure

First, by performing modal analysis with ANSYS R15.0® for the whole test setup, the
first natural frequency of the cantilever beams assembly is calculated as 72.2 Hz results

of which are also illustrated in Figure 60 together with the corresponding mode shape.
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Figure 60. Fundamental mode of the coupled cantilever beams assembly

Since the long cantilever beam is to be decoupled from the assembly as the known
subsystem, it is intended to arrange the frequency range of interest such that it also
covers the first natural frequency of the long cantilever beam alone. So, its
fundamental natural frequency is calculated as 52.9 Hz by performing modal analysis
with ANSYS R15.0® results of which are also illustrated in Figure 61 together with
the corresponding mode shape.

Consequently, the frequency range of interest to be used throughout this experiment is

determined as 35 - 91 Hz considering the natural frequencies obtained for the coupled
cantilever beams system and of the known subsystem.
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Figure 61. Fundamental mode of the long cantilever beam alone

5.2.3. Experimental Work and Application of FDM-NS

In this experiment, the long cantilever beam is considered as the linear known
substructure. Two thin identical beams, which introduces nonlinearity into the test
structure, are the connection elements between long and short cantilever beams. Since
the type and parameters of the nonlinear connection elements are not available, short
cantilever beam together with the two thin identical beams are considered as the
unknown substructure. So, this unknown substructure is to be decoupled from the
coupled nonlinear structure. It should be additionally noted that an adaptive frequency
resolution is used in the measurements which is further decreased in the immediate

vicinity of the fundamental resonance.

First of all, point (H}") and transfer (H}" ) FRFs of the coupled nonlinear system in

transverse direction are measured experimentally employing the controlled

displacement amplitude test procedure given in Figure 62.
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Figure 62. Experimental procedure followed during controlled displacement

amplitude test

Note that additional measurement from the tip of the short cantilever beam is required
in order to obtain the relative deformation between the two ends of the nonlinear
connection element. Modal tests are performed for the relative displacement

amplitudes of 0.1 mm, 0.3 mm, 0.5 mm, 0.7 mm and 1.0 mm between two ends of the

nonlinear element (‘Xj - X, ‘). Results of the tests are given in Figure 63 and Figure 64.

In these figures, FRF curves fitted to the experimental data are given as well.
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Figure 63. Measured transfer FRFs (symbols) and fitted FRF curves (lines) of the

coupled system between internal point (i) and con

nection point (j) in transverse

direction for various response levels of the nonlinear element
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Figure 64. Measured point FRFs (symbols) and fitted FRF curves (lines) of the

coupled system at connection point (j) in transverse direction for various response

levels of the nonlinear element
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At this stage, tip point FRFs of the long cantilever beam as the known linear
substructure can be obtained through modal tests using modal hammer. Results are

shown in Figure 65.
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Figure 65. Measured point FRFs of the known subsystem alone at its coupling DOF

(j) in transverse direction

Note that in Figure 65, the FRF curve fitted to the experimental data is given. So, by
using all available FRFs obtained up to here, one can obtain the response of unknown
substructure at its coupling DOF by applying FDM-NS. During decoupling
calculations via FDM-NS, dual assembly approach [54] is used as the linear

decoupling tool. Results are given in Figure 66.
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Figure 66. Calculated point (above) and transfer (below) FRFs of unknown

subsystem (lines) and those measured for coupled system (dots) in transverse

direction when excited from connection point (j)

In Figure 66, point (H}") and transfer (H}") FRFs of the coupled nonlinear system

are given together with obtained point (H}') and transfer (H}) FRFs of the unknown

nonlinear subsystem. As expected, decoupling of a linear FRF curve that belongs to



the long cantilever beam from each of the linear FRF curves that belong to the
nonlinear coupled structure results in several FRF curves again each corresponding to
a different displacement level of the nonlinear connection element. Note also that,
decoupled FRF curves of the unknown subsystem includes the nonlinear connection
dynamics due to two thin identical beams.

As explained in section 3.3, decoupled FRF curves in Figure 66 are to be used to
identify the modal properties of each equivalent linear system in order to obtain the
modal model of the unknown nonlinear subsystem. Modal parameters corresponding
to each FRF curve are extracted using modal identification. As mentioned earlier,
linear identification can be easily used with these FRFs since they show linear
behavior. Identification of the modal parameters is performed by the formulation
presented by Richardson and Formenti [75]. Natural frequencies, damping ratios and
modal constants of the system are obtained using this technique. Magnitudes and
phases of modal constants are identified as two separate parameters, as a modal
constant is a complex quantity for a damped system. Identified modal parameters

corresponding to the first modes of the unknown nonlinear subsystem are given for

: U U . . . .
point (Hj) and transfer (H;;) FRFs in Figure 67 and Figure 68 as a function of

displacement level of the nonlinear element. Note that, fitted curves to the obtained

modal parameters are polynomials of third order.
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5.2.4. Verification of FDM-NS Results

Here, decoupling results obtained via FDM-NS in section 5.2.3 are compared with
those obtained directly via experimentation. Since stand-alone modal testing of the
unknown subsystem by exciting it from the free tip of the two thin identical beams
does not simulate the exact dynamics of this subsystem, the test system is modified as
illustrated in Figure 69.
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Figure 69. Dimensions and technical details of the modified test system

In this modified test system, the unknown subsystem is again coupled to a modified
long cantilever beam whose length is increased to 378 mm this time. A step by step

procedure for the verification process can be given as follows:

o First, measure stand-alone FRFs of the 378 mm long modified cantilever beam

at its coupling point (tip point of the beam).

e Apply coupling theory by using the modal parameters of the unknown
subsystem obtained in section 5.2.3 and FRFs of the 378 mm long modified
cantilever beam. Note that an iterative solution will be required as the modal

parameters are calculated as a function of displacement of the nonlinear
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element. Thus, calculate response of the modified test system for harmonic
excitation of magnitude 0.4 N applied at its coupling DOF.

Measure the response of the modified test system for harmonic excitation of
magnitude 0.4 N applied at its coupling DOF.

Finally, compare the obtained results with each other. Agreement of the results
will verify the method developed (FDM-NS) in this thesis.

As the first step, stand-alone FRFs of the 378 mm long modified cantilever beam are

measured at its tip by carrying out a modal test with a modal hammer. The results

obtained are given in Figure 70 together with those obtained for 353.5 mm long

cantilever beam used in section 5.2.3.
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Figure 70. Measured point FRFs of the modified known subsystem by itself at its

coupling DOF (j) in transverse direction
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Since the modified test system is again nonlinear, its FRF will vary with the harmonic
excitation level. Therefore, the modal test is performed using constant harmonic
excitation of amplitude 0.4 N. During experiment, a similar procedure to the one given
in Figure 62 for controlled force displacement testing is followed. But this time,
harmonic forcing level is controlled manually by adjusting the voltage level through

power amplifier at each frequency step. Measured and numerically calculated

responses of the modified test system at its coupling DOF (X;(”md) for harmonic

excitation of amplitude 0.4 N in transverse direction are given in Figure 71 and Figure
72.
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Figure 71. Measured and calculated responses of the modified test system at its

coupling DOF (j) for harmonic excitation of amplitude 0.4 N in transverse direction
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Figure 72. Measured and calculated responses of the modified test system at its
coupling DOF (j) for harmonic excitation of amplitude 0.4 N in transverse direction

— zoomed around resonance

It can be seen from Figure 71 and Figure 72 that obtained response shows nonlinear
behavior which is typical when a system has softening stiffness type of nonlinearity.
It is also observed that a good agreement is obtained between measured response and
numerically calculated responses through forward and backward sweeping, especially
at frequencies where the jump phenomenon occurs. A small difference can be observed
between the amplitudes of the resonances. This may be due to misestimating the loss
factors while extracting modal parameters from unknown subsystem FRFs. Recall that
unknown subsystem FRFs are obtained by using experimental FRFs of the coupled
system and the known subsystem. Unlike the modal testing of linear systems, limited
number of frequency points can be used during controlled force amplitude testing of
nonlinear systems. Although number of frequency points are increased in the

immediate vicinity of the resonance, the resolution may not be sufficient to catch the
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frequency where the peak amplitude occurs. Therefore, the unknown subsystem FRFs
obtained via decoupling using these measured FRFs may have some errors which may

result in some error in identified damping values.
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CHAPTER 6

APPLICATION OF FDM-NS ON A REAL ENGINEERING SYSTEM

In this chapter, the proposed decoupling approach for nonlinear systems is applied to
a real engineering system. This system is composed of an Inertial Measurement Unit
(IMU) and its mechanical interface plate placed upon a tray grounded with elastomer
isolators which has been used as such in several aerospace platforms in defense
industry. Since elastomer isolators behave nonlinearly as they deflect, they introduce
nonlinearity to the overall engineering system. In this application, point FRFs at the
connection interface between mechanical interface plate of IMU and the tray are
predicted by decoupling the FRFs of IMU from those of the overall nonlinear system
via FDM-NS.

6.1. Coupled Nonlinear System, its Subsystems and the Test Setup

In this application, FDM-NS is used in decoupling of a real engineering structure in
order to observe the efficiency of the method on an industrial case. This engineering
structure consists of an IMU rigidly connected to an interface plate which is connected

to the ground via elastomer isolators as shown in Figure 73.

IMUs are frequently utilized on aerospace applications [84]. They provide reliable
position and motion discernment for stabilization and navigation applications. They
measure linear acceleration, angular position and angular velocity in six DOFs by
using a combination of accelerometers and gyroscopes. However, these sensors can
adversely be affected by mitigating effects of transferred disturbances due to the
environmental vibrations and noise. Excessive vibration energy may reveal itself as

measurement errors in the inertial data. Therefore, IMUs must be protected from high
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level excitations, especially from those transmitted through mounting base. Moreover,
the data collected by IMU sensors allow a computer in a navigation system to calculate
its current position based on velocity and time. Therefore, it is crucial to predict
transmissibility characteristics of the vibration isolated IMU, since the computer
corrects the data measured by IMU using this transmissibility information and thus

calculates current acceleration, angular position and angular velocity of the platform.

Figure 73. Coupled engineering structure — passive isolated IMU system

106



In this system, the IMU is isolated from the base excitations by use of a rigid tray on
top of elastomer vibration isolators. Note that these elastomer isolators have been
proved to show softening behavior as they deflect [85], thus introduces nonlinearity to
the overall system. This nonlinear behavior should be taken into consideration for
precise estimate of the transmissibility characteristics of the vibration isolated IMU.

The mounting tray is manufactured from St37 alloy steel whereas the mechanical
interface plate of the IMU is made of 6061-T3 aluminum alloy. In this study, the
assembly of IMU with its mechanical interface plate shown in Figure 74 is considered
as the known linear subsystem whose FRFs at and between the connection point j and
the internal point i are to be calculated through FEA and to be used in decoupling

calculations directly.

\internal point " i " connection point " j "

Figure 74. Known linear subsystem — IMU and its mechanical interface plate
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On the other hand, the tray grounded with elastomer isolators shown in Figure 75 is
taken as the unknown nonlinear subsystem whose point FRFs at the its connection
interface, which is referred to as point j, are to be predicted via proposed decoupling

method for nonlinear systems.

Figure 75. Unknown nonlinear subsystem — tray grounded with elastomer isolators

Furthermore, fixed connection between the tray and the mechanical interface plate of
IMU is achieved by use of 4 bolted joints as illustrated in Figure 76.
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Figure 76. View of the fixed connection between two subsystems

A picture of the test setup is also given in Figure 77. It can be observed from this figure
that the overall coupled test system is mounted on a rigid base with fixed-fixed
boundary conditions. In other words, the overall coupled test system is grounded as it
is the case in the aerospace platforms in which it is being used.
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Figure 77. Coupled nonlinear system under testing

B&K Type 4808 vibration exciter is used to harmonically excite the coupled system
via a push-rod attached to point j as shown in Figure 77. Due to the low level of voltage
supplied from the signal generator, excitation force level of the vibration exciter is
increased by using a B&K Type 2712 power amplifier. Frequency responses are
measured using B&K Type 4507B uniaxial accelerometers. One of the accelerometers

is located at point j of two subsystems in order to measure point FRFs of the connection
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interface in the direction of harmonic excitation. The second accelerometer is attached
to the point i, which is in line with the axis of excitation, in order to measure transfer
FRFs at an internal coordinate of the known linear subsystem. On the other hand,
externally applied harmonic forces are measured via a B&K Type 8230-002 force
transducer which is attached to the tip of the push-rod. Throughout all measurements,
B&K Type 3560C frontend system is used as a data acquisition system which also
includes output channels that can be used as signal generators with a frequency range
from 0 to 25.6 kHz.

6.2. Preliminary FEA and Test on the Coupled System

In this application, the center of gravity of overall coupled system and all its
subsystems are on the axis of excitation in order not to have rotational and transverse
vibrations. In order to check the validity of the assumption of rigid tray, a preliminary
harmonic analysis is carried out on the coupled system. In this analysis, a FEM of the
coupled system (Figure 78) is constructed where elastomer isolators are modeled as
grounded identical springs. Then, responses at point j and q are calculated for a

constant amplitude harmonic forcing from point j.
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Figure 78. Linear FEM of the coupled system

Responses of point j and q (X{” and X;") are calculated and compared with each

other in Figure 79. Results show that the responses of each isolator located at each
corner of the tray are almost the same as that of the point of excitation throughout the

frequency span of interest which ranges from 30 to 112 Hz.
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Figure 79. Comparison of harmonic responses at point j and q of the linear FEM of

the coupled system

As a preliminary experiment, the coupled system which is expected to behave
nonlinearly is tested under harmonic excitations with different constant amplitudes in
order to observe its nonlinear dynamic behavior. Three sets of controlled force

amplitude tests are performed. Measured point FRFs of the coupled system at point j

(H}") are given in Figure 80 for harmonic excitations of amplitude 5 N, 7.5 N and 10

N. It can be observed from the figure that fundamental resonance of the coupled system
shifts to the left-hand side as the amplitude of harmonic excitation increases. This
behavior is a sign of a softening stiffness type nonlinearity, which is due to the

elastomer isolators in the system.
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Figure 80. Measured point FRFs of the coupled system at point j via controlled force

amplitude test

6.3. Application of FDM-NS

Firstly, a controlled displacement amplitude test is performed on the coupled nonlinear
system. The measured FRFs are later used in decoupling calculations. Secondly, FRFs
of the known linear subsystem are obtained through FEA. As the last step of FDM-

NS, the FRFs of the unknown nonlinear subsystem are obtained via FRF decoupling.

For verification, however, it is not possible to measure the FRFs of the unknown
subsystem directly, since the unknown subsystem includes nonlinear elastomer
isolators whose stiffness changes depending on the static load on it. In order to
overcome this problem a dummy mass is placed on the unknown subsystem while
measuring its FRFs, and mass cancellation is applied. As it is not convenient to apply
mass cancellation to measured FRFs showing nonlinear behavior [86] when force
controlled FRFs are measured, comparison is made for FRFs measured with controlled
displacement amplitude testing. Therefore, a single set of coupled system FRFs is

measured for a specific harmonic displacement level of its nonlinear element, as this
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will be sufficient to predict the unknown subsystem FRFs only for a specific

displacement level of its nonlinear element for verification purposes.

6.3.1. Experimental Measurements on the Coupled System

In this experiment, point FRFs of the coupled nonlinear system at point j (H;U)

together with its transfer FRFs between point i and j (H}") are measured by

performing a controlled displacement amplitude test. During the test, harmonic
displacement amplitude of point j is kept constant at 0.05 mm for each frequency point
of measurement which is almost the same as the displacement amplitude of each

elastomer isolator as demonstrated in Figure 79. Measured point and transfer FRFs of

the coupled nonlinear system (H'"” and H}") are respectively given in Figure 81 and

Figure 82 together with the FRF curves fitted to obtained data by mainly using
“invfreqs” command of MATLAB® [81].
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Figure 81. Measured point FRFs and the fitted FRF curve of the coupled nonlinear

system at point j for 0.05 mm displacement amplitude of elastomer isolators
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Figure 82. Measured transfer FRFs and the fitted FRF curve of the coupled
nonlinear system between point i and j for 0.05 mm displacement amplitude of

elastomer isolators

6.3.2. Harmonic Analyses on the Known Linear Subsystem

In order to obtain FRFs of the known linear subsystem, its FEM is constructed. Firstly,

constructed FEM is verified by performing a modal test on the known subsystem under

free-free boundary condition using a modal hammer. Figure 83 shows the measured

known subsystem FRFs (H; ) along with those numerically obtained via harmonic

analysis in FE environment.
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Figure 83. Point FRFs of the known linear subsystem at point j calculated via FEA

and measured via hammer test

In Figure 83, constructed FEM of the known subsystem is verified for a wide
frequency range that covers its first natural frequency. However, the frequency range
of interest in this study is 30 Hz to 110 Hz. Then, a harmonic analysis is conducted
using this verified FEM in order to obtain point and transfer FRFs of the known linear

K

subsystem at and between point i and j (Hj;, H;‘i and H) under free-free boundary

condition via ANSYS R15.0%°. Results are given in Figure 84 in the form of

receptances.
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Figure 84. Point and transfer FRFs of the known linear subsystem at and between

point i and j calculated via FEA

Now one can decouple known subsystems FRFs from coupled nonlinear system FRFs

in order to predict unknown nonlinear subsystem FRFs at point j (H}j) for 0.05 mm

constant displacement amplitude of elastomer isolators.
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6.3.3. Implementation of FRF Decoupling

In this section, unknown nonlinear subsystem FRFs are going to be predicted by
applying the dual assembly approach [54] as the last step of FDM-NS. Decoupling

calculations are performed using two sets of data:

« Standard interface (i.e., by using only H" and Hf ).

KU H KU

: : ; Hj ji Hﬁ HE
e Extended interface (i.e., by using HKU KU and )

ij ii

Here, the use of extended interface is expected to improve the results predicted via

standard interface, as suggested in reference [54].

6.3.3.1. FRF Decoupling using Standard Interface

Here, point FRFs of the unknown nonlinear system at point j (Hﬁ) are calculated via

dual assembly approach [54] using standard interface. Predicted FRFs are given in
Figure 85. It can be observed from the figure that predicted FRFs are ill-conditioned

and noise is greatly amplified around the frequency of 66.7 Hz.
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Figure 85. Predicted point FRFs of the unknown subsystem at point j by using
standard interface for 0.05 mm displacement amplitude of elastomer isolators

6.3.3.2. FRF Decoupling using Extended Interface

To circumvent ill-conditioning around the frequency of 66.7 Hz, D’ Ambrogio et al.
suggest [54] the use of FRFs at some internal DOFs of the known subsystem.
Therefore, point FRFs of the unknown nonlinear system are recalculated via dual
assembly approach [54] using extended interface. In this approach, the point FRFs of
the coupled system and the known subsystem at point i (H" and H) and their

transfer FRFs between pointiand j (H” and H) are also included in the decoupling

calculations in addition to the standard interface.

Even though all the required FRFs are obtained for the known linear subsystem as

given in Figure 84, point FRFs of the coupled nonlinear system at point i (H'") are
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not available. So, H*V is generated via FRF synthesis using the modal parameters

extracted from H" and HY", which are illustrated in Figure 86 altogether.
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Figure 86. FRFs of the coupled nonlinear system at and between point i and j for

0.05 mm displacement amplitude of elastomer isolators

So, one can perform decoupling using all the available data at the extended interface.

Predicted FRFs of the unknown nonlinear subsystem at point j (H}) are given in

Figure 87. It is observed that amplification of the noise due to the ill-conditioning

around the frequency of 66.7 Hz is quite reduced.

Note that the rate of improvement in this ill-conditioning problem depends on the
number and choice of the measurement points at the internal DOFs of the known
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subsystem [54]. So, further improvement may be obtained by taking additional

measurements on internal DOFs of the known subsystem.
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Figure 87. Predicted point FRFs of the unknown subsystem at point j by using

extended interface for 0.05 mm displacement amplitude of elastomer isolators

6.4. Verification of FDM-NS Results

Here, point FRFs of the “unknown” nonlinear subsystem at point j ( H;; ) are obtained

via controlled displacement amplitude testing for the purpose of comparison with the

results of decoupling calculations. It should be recalled that the resonant frequency,

and thus linear stiffness of the elastomer isolator being used (825-GS-55) varies

depending on the static load carried by itself (Figure 88). Therefore, unknown

subsystem FRFs obtained after decoupling will not be the same as those directly

measured from the unknown nonlinear subsystem given in the Figure 75. In other
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words, decoupling calculations will result in the unknown nonlinear subsystem
response while the elastomer isolators are in the strained condition, which cannot be

measured directly.

Load range under +/-1,5mm

20

Resonance frequency in Fz

NN

01 1 Iy

i NN\
| NN
| N

Load in kg
§25-35-35 —815-G5-45

825-055-20 815-G5-556 ====H25-G5-60 ====(15-G5-7%

Figure 88. Variation of resonance frequency wrt load carried by an elastomer
isolator (825-GS-55) [87]

Therefore, verification of the decoupling results should be made by comparing them
with the values measured by preloading them. This is achieved by loading isolators by
using a dummy mass; however, then the mass effect of the dummy mass is cancelled
from the measured response of the unknown nonlinear subsystem. For this purpose, a
rigid block which is made up of tungsten and has the same mass as the known linear

subsystem is manufactured and mounted on the unknown nonlinear system during
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testing (Figure 89). In this test, the harmonic displacement amplitude of the elastomer

isolators is kept constant again at 0.05 mm.

Figure 89. Unknown nonlinear subsystem under testing

In order to eliminate the mass loading effect of this dummy block from the measured

point FRFs of the unknown subsystem at point j (H}j), the well-known formula for

mass cancellation is used [1]:

m AU
u _ Aﬂ

i T _m .maAU 74
1] 1—md'mA;}l ( )
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where mAJFj and Aﬁ represent the measured and corrected point accelerances at point

J, respectively, whereas m, corresponds to mass of the rigid dummy block.

Measured point FRFs and the FRF curve fitted to this data using MATLAB® [81] are
given in Figure 90 together with the FRF curve obtained after cancellation of the mass
effect of the dummy mass.

- - HJ.LJ.‘l {(measured)

Log( | Receptance | [m/N] )

—HJ.LJ.’ (FRF fitted)

— — HJ.LJ.‘I (mass cancelled)
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Figure 90. Measured point FRFs, fitted FRF curve and FRF curve obtained after
mass cancellation of the unknown nonlinear subsystem at point j for 0.05 mm

displacement amplitude of elastomer isolators

Now, one can compare the predicted point FRFs of the unknown nonlinear subsystem

at point j (H}j) given in Figure 85 and Figure 87 with those obtained in Figure 90
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through mass cancellation just after measurement. The comparison is depicted in

Figure 91.
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Figure 91. Predicted (using standard and extended interfaces) and measured point
FRFs of the unknown nonlinear subsystem at point j by for 0.05 mm displacement

amplitude of elastomer isolators

Figure 91 gives a clear view of the amplification of noise due to the ill-conditioning
around the frequency of 66.7 Hz. As expected, FRF decoupling using extended
interface provides more correlated results with those measured. Furthermore, a slight
frequency shift around the resonance occurs which is believed to be due to the
cumulative effect of the errors in experimental measurements and curve fitting
processes of the coupled system FRFs along with the modeling errors of the known
subsystem in FE environment. Eventually, the acceptable results obtained using FDM-

NS shows the applicability of the method on a real engineering system.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

In this thesis, the decoupling problem, i.e., predicting dynamic behavior of a particular
substructure from the knowledge of the dynamics of the coupled structure and those
of the other substructures, is considered. FRFs of the whole structure are assumed to
be known from experiments, along with the measured or theoretically calculated FRFs
of the known substructure. Both sets of FRFs are assumed to be known at only known
subsystem coordinates. Although the decoupling of linear systems has been well
investigated for three decades and led to several decoupling methods, the decoupling
of nonlinear systems yet seems to remain untouched. So, this study focuses mainly on
the decoupling of nonlinear systems, even though some work on decoupling of linear

systems is also presented.

Firstly, two different formulations for decoupling of linear systems are proposed. Both
methods give exact results, as it is the case in most of the decoupling methods, when
exact FRFs are used in all equations. However, the problem in all of such methods is
the sensitivity of the formulations to even very slight errors which are inevitable due
to the use of measured data. All formulations usually include matrix inversions, and
depending on the nature of the equations, some methods are more sensitive to
measurement errors and therefore do not perform well. Hence, it is important to test
the performance of any new decoupling technique and compare its performance with
existing best ones. Application of the proposed decoupling formulations is presented
on a lumped parameter system. In this case study simulated experimental results are
used, and in order to simulate experimentally measured FRFs of the coupled system,
theoretically calculated exact FRFs are polluted. In studying the performances of the
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proposed methods, Frequency Response Assurance Criteria are used which show the

correlation between the predicted and the true FRFs of the unknown subsystem.

Furthermore, performances of the proposed formulations together with some of those
available in the literature are evaluated on the same case study. Also, effect of noise
on the performance of the decoupling methods is examined by polluting the exact
FRFs of the coupled system using different sets of independent random variables with
the same mean and gradually increased standard deviations. However, decoupling
methods under investigation yield FRAC values that show an uneven trend with the
increasing level of noise. In order to make a sound comparison, results are calculated
for 100 runs for each method with a different pollution set with the same mean and
standard deviation at each time. Result of this statistical comparison shows that
proposed methods come up with the most correlated results for each of the five-
different standard deviation of pollution. Thus far, all the FRF information of the
coupled system and the known subsystem at the internal coordinates of the known
subsystem are used during calculations. Since this is not the case for decoupling of real
life structures whose number of DOFs is limited to the number of coordinates that can
practically be measured, the former statistical comparison is expanded for the cases
where only some or none of the FRFs at the internal coordinates of the known
subsystem are available. It is observed from the results that the so-called Dual
Formulation [54] performs best in case of unavailability of FRFs at some or all internal
coordinates of the known subsystem.

Later, the dynamic decoupling problem for nonlinear structures is addressed. A
method is developed to decouple a nonlinear or linear substructure from a given
coupled nonlinear structure. The so-called “FRF Decoupling Method for Nonlinear
Systems (FDM-NS)” is believed to be the first method proposed for nonlinear
decoupling. It is capable of decoupling nonlinear systems having a nonlinearity of any
type that can be modeled as a single element. Yet, the method is flexible as far as the
location of the nonlinear element is concerned. That is, the nonlinearity can be either
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in the known or unknown subsystem, or it can connect both subsystems. Depending
on the location of the nonlinearity, whether in the known or unknown substructure,
two different formulations are suggested. For the case where the nonlinear element is
at the connection of two subsystems, it is shown how to reduce this problem to that
where the nonlinear element is connected to the internal DOFs of the known or

unknown subsystems.

Firstly, FDM-NS is tested on simulated case studies. Three different case studies are
presented using a MDOF lumped parameter system and simulated experimental data.
The same MDOF system with identical physical parameters is used in each case study
by changing the location and the type of the nonlinear element. In the first numerical
case study, FDM-NS is applied to a MDOF nonlinear system where the unknown
subsystem includes a cubic stiffness type of nonlinear element. By using the FRFs
measured through displacement controlled experiments, sets of modal parameters are
identified for the unknown subsystem through linear modal identification, each set
corresponding to a different response level of the cubic stiffness element. Then,
harmonic response of the unknown subsystem can be calculated for any given forcing
level iteratively using the modal parameter sets obtained. It is shown that the nonlinear
response predicted by using FDM-NS is almost the same as the one obtained directly

by employing DFM.

In the second simulated case study, FDM-NS is applied to the same MDOF lumped
parameter nonlinear system where the nonlinear element is in the known subsystem
this time. In this study, FRFs of the coupled nonlinear system, as well as the known
nonlinear subsystem are obtained at a chosen specific relative displacement level of
the two ends of the nonlinear cubic stiffness element. Again, simulated experimental
data is used for the coupled system FRFs. Then, the unknown subsystem FRFs are
obtained by applying linear decoupling. Results obtained show perfect agreement with

the exact ones.
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As the last simulated case study, FDM-NS is applied to the same MDOF lumped
parameter nonlinear system where the nonlinear element connects two subsystems this
time. In this study, the unknown gap type of nonlinear connection element is included
in the unknown subsystem by adding a massless node to the free end of the nonlinear
connection element. Thereby, the problem is reduced to the case where the nonlinear
element is in the unknown subsystem. Predicted results closely match with those
obtained directly through DFM except small discrepancies at the frequency where
jump phenomenon is observed. This is believed to be due to inaccurately estimated

modal parameters due to noise in the primary data.

Later, FDM-NS is applied to structural test systems in order to demonstrate its real-
life applicability. In the first experimental case study, a linear cantilever beam is
decoupled from the nonlinear T-beam assembly composed of a linear cantilever beam
attached to the mid-point of a thin beam of which both ends are fixed and therefore
introduces a nonlinear stiffness. The transverse dynamic response of the coupled
system is measured experimentally for a specific relative displacement amplitude of
the nonlinear element through controlled displacement amplitude testing. Then, the
fixed-fixed thin beam is taken as the known nonlinear substructure and it is modeled
as a concentrated nonlinear stiffness in transverse direction with a concentrated
equivalent mass and linear stiffness. Linear parameters of this single DOF model of
the fixed-fixed thin beam are theoretically calculated whereas its nonlinear parameters
are experimentally identified. After obtaining the known substructure FRFs for the
same specific relative displacement level of the nonlinear element, linear decoupling
is performed to obtain the unknown tip point FRFs of the linear cantilever beam. A
very good agreement is observed between the predicted FRFs by using FDM-NS and
those obtained from the shaker test of the cantilever beam alone, even though fixed-

fixed thin beam is modeled as a single DOF mass-nonlinear spring system.

FDM-NS is also applied to another experimental test system composed of two
cantilever beams coupled with two thin identical beams. In this test case, FDM-NS is
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verified for a case where the unknown nonlinear element couples two linear structures
such that the nonlinear subsystem cannot be tested alone. In that respect, this is a
typical real-life case where there is no alternative to using nonlinear decoupling
method if one would like to measure the dynamics of the nonlinear subsystem. In this
application, firstly, FRFs of the coupled system are measured through controlled
displacement amplitude testing, while those of the known cantilever beam are obtained
via classical modal testing. Then, modal parameter variations of the unknown
subsystem are obtained as a function of the displacement level of the nonlinear
connection beams by applying FDM-NS. In order to verify these results, the
experimental test system is modified such that the length of the known subsystem is
increased. Then first FRFs of the new cantilever beam are obtained via classical modal
testing. Finally, FRFs of the new coupled nonlinear system are calculated for a
constant amplitude harmonic force by using the modal parameter variations obtained
for the unknown nonlinear subsystem along with FRFs of the new cantilever beam.
From the comparison of the calculated values with those measured directly, it is
concluded that the overall agreement is quite well although slight deviations were

observed around resonance.

Lastly, the decoupling method developed is applied on a real engineering system. The
engineering system used is an IMU placed upon a tray grounded with rubber isolators
having nonlinear characteristics. In this study, point FRFs at the connection point of
two subsystems are predicted by decoupling the dynamics of IMU from the dynamics
of the overall nonlinear system via FDM-NS. The satisfactory results obtained show

the applicability of FDM-NS on real engineering systems.

To conclude, first of all, two new formulations are proposed for decoupling of linear
systems in this thesis. Although these methods perform best only when complete
dynamics of the coupled system and the known subsystem are available at all DOFs
of the known subsystem, they can remain as alternative methods for decoupling of

linear systems.
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This thesis, to the best of author’s knowledge, represents the first attempt to decouple
a nonlinear or linear substructure from a given coupled nonlinear structure. A method,
called FRF Decoupling Method for Nonlinear Systems (FDM-NS), is proposed in
order to obtain substructure dynamics of a nonlinear structure, starting from
experimentally measured FRFs of the coupled nonlinear structure and experimentally
measured or theoretically calculated dynamic response of its known substructure. It is
assumed in this method that the nonlinearity in the coupled system can be modeled as
a single nonlinear element and its location is available. Note that, FDM-NS
distinguishes itself as the only alternative to obtain the dynamics of a nonlinear
subsystem that cannot be measured separately but only when coupled to neighboring
structure(s). In this study, FDM-NS is first employed through some numerical case
studies using simulated experimental data. Then, its real-life applicability is
demonstrated through some experimental cases performed on test rigs involving
nonlinearity. Finally, the method is successfully applied to decouple a real engineering
system which consists of an IMU and its passive vibration isolation system usually

used in aerospace applications.

As a future work, this study may be extended for decoupling of nonlinear systems
involving multiple nonlinear elements. This seems to be possible only if the controlled
displacement amplitude test procedure may be improved so that displacement levels

of the multiple nonlinear elements can be controlled at the same time.

132



[1]

[2]

[3]

[4]

[5]

[6]

[7]

REFERENCES

D.J. Ewins, Modal Testing: Theory and Practice, John Willey & Sons, London,
England, 1984.

N. Okubo, M. Miyazaki, Development of Uncoupling Technique and Its
Application, Proceedings of 4th International Modal Analysis Conference, 1986.

P. Sjovall, T. Abrahamsson, Substructure System Identification from Coupled
System Test Data, Mechanical Systems and Signal Processing, 22 (1) (2008) 15-
33.

N.M.M. Maia, JM.M. Silva, AM.R. Ribeiro, Some Applications of
Coupling/Uncoupling Techniques in Structural Dynamics - Part 1: Solving the
Mass Cancellation Problem, in: Proceeding of the 15th International Modal

Analysis Conference, 1997.
C.G. Koh, L.M. See, T. Balendra, Estimation of Structural Parameters in Time
Domain: A Substructure Approach, Earthquake Engineering and Structural

Dynamics, 20 (1991) 787-801.

T.R. Kim, K.F. Ehmann, S.M. Wu, Identification of Joint Structural Parameters
between Substructures, Journal of Engineering for Industry, 113 (1991) 419-424.

T. Yang, S.H. Fan, C.S. Lin, Joint Stiffness Identification Using FRF
Measurements, Computers and Structures, 81 (2003) 2549-2556.

133



[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

C.G. Koh, K. Shankar, Substructural Identification Method without Interface
Measurement, Journal of Engineering Mechanics, 129 (7) (2003) 769-776.

G. Kerschen, K. Worden, A.F. Vakakis, J.C. Golinval, Past, Present and Future
of Nonlinear System Identification in Structural Dynamics, Mechanical Systems
and Signal Processing, 20 (3) (2006) 505-592.

D.M. Storer, Dynamic Analysis of Non-Linear Structures Using Higher Order
Frequency Response Functions, Ph.D. Thesis, Department of Engineering,
University of Manchester, October 1991.

J. Cattarius, Numerical Wing/Store Interaction Analysis of a Parametric F16
Wing, Ph.D. Thesis, Department of Engineering Science and Mechanics,
Virginia Polytechnic Institute and State University, September 1999.

Y. R. Yang, KBM Method of Analyzing Limit Cycle Flutter of a Wing with an
External Store and Comparison with a Wind-Tunnel Test, Journal of Sound and

Vibration, 187 (2) (1995) 271-280.

R.N. Desmarais, W.H. Reed, Wing Store Flutter with Nonlinear Pylon Stiffness,
Journal of Aircraft, 18 (11) (1981) 984-987.

R. Craig, M. Bampton, Coupling of Substructures for Dynamic Analysis, AIAA
Journal, 6 (7) (1968) 1313-13109.

J. Hallquist, V.W. Snyder, Synthesis of Two Discrete Vibratory Systems Using
Eigenvalue Maodification, AIAA Journal, 11 (2) (1973) 247-249.

134



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

J.H. Crowley, G.T. Rocklin, A.L. Klosterman, H. Vold, Direct Structural
Modification Using Frequency Response Functions, in: Proceedings of the 2nd

International Modal Analysis Conference, Orlando, Florida, 1984, pp.58-65.

M. Imregiin, D.A. Robb, D.J. Ewins, Structural Modification and Coupling
Dynamic Analysis Using FRF Data, in: Proceedings of the 5th International
Modal Analysis Conference, London, UK, 1987.

B. Jetmundsen, R.L. Bielawa, W.G. Flannelly, Generalized Frequency Domain
Substructure Synthesis, Journal of the American Helicopter Society, 33 (1)
(1988) 55-64.

A.P.V. Urgueira, Dynamic Analysis of Coupled Structures Using Experimental
Data, Ph.D. Thesis, Department of Mechanical Engineering, Imperial College

London, London, England, 1989 (http://www.imperial.ac.uk/dynamics/phd-

theses/).

A. Sestieri, W. D’Ambrogio, A Modification Method for Vibration Control of
Structures, Mechanical Systems and Signal Processing, 3 (3) (1989) 229-253.

H.N. Ozgiiven, Structural Modifications Using Frequency Response Functions,
Mechanical Systems and Signal Processing, 4 (1) (1990) 53-63.

Y. Ren, C.F. Beards, On Substructure Synthesis with FRF Data, Journal of
Sound and Vibration, 185 (5) (1995) 845-866.

Y.H. Park, Y.S. Park, Structural Modification Based on Measured Frequency

Response Functions: An Exact Eigenproperties Reallocation, Journal of Sound
and Vibration, 237 (2000) 411-426.

135


http://www.imperial.ac.uk/dynamics/phd-theses/
http://www.imperial.ac.uk/dynamics/phd-theses/

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J.E. Mottershead, C. Mares, M.l. Friswell, An Inverse Method for the
Assignment of Vibration Nodes, Mechanical Systems and Signal Processing, 15
(2001) 87-100.

W. Liu, D.J. Ewins, Substructure Synthesis via Elastic Media, Journal of Sound
and Vibration, 257 (2) (2002) 361-379.

W. D’Ambrogio, A. Sestieri, A Unified Approach to Substructuring and
Structural Modification Problems, Shock and Vibration, 11 (3-4) (2004) 295-
310.

A. Kyprianou, J.E. Mottershead, H. Ouyang, Assignment of Natural Frequencies
by an Added Mass and One or More Springs, Mechanical Systems and Signal
Processing, 18 (2) (2004) 263-289.

D. De Klerk, D.J. Rixen, J. de Jong, Frequency Based Substructuring (FBS)
Method Reformulated According to the Dual Domain Decomposition Method,
in: Proceedings of the 24th International Modal Analysis Conference, 2006.

D. De Klerk, D.J. Rixen, S.N. Voormeeren, General Framework for Dynamic
Substructuring: History, Review, and Classification of Techniques, AIAA
Journal, 46 (5) (2008) 1169-1181.

H. Hang, K. Shankar, J.C.S. Lai, Prediction of the Effects on Dynamic Response
due to Distributed Structural Modification with Additional Degrees of Freedom,
Mechanical Systems and Signal Processing, 22 (8) (2008) 1809-1825.

R.L. Mayes, Tutorial on Experimental Dynamic Substructuring Using the

Transmission Simulator Method, in: Proceedings of the 30th International Modal
Analysis Conference, 2012.

136



[32]

[33]

[34]

[35]

[36]

[37]

[38]

B. Saymn, E. Cigeroglu, A New Structural Modification Method with Additional
Degrees of Freedom for Dynamic Analysis of Large Systems, in: Proceedings of

the 31st International Modal Analysis Conference, 2013.

K. Watanabe, H. Sato, A Modal Analysis Approach to Nonlinear Multi-Degrees-
of Freedom System, ASME Journal of Vibration, Acoustics, Stress and
Reliability in Design, 110 (1988) 410-411.

J.V. Ferreira, D.J. Ewins, Nonlinear Receptance Coupling Approach Based on
Describing Functions, in: Proceedings of the 14th International Modal Analysis
Conference, Dearborn, Michigan, USA, 1996, pp.1034-1040.

Y.H. Chong, M. Imregiin, Coupling of Non-Linear Substructures Using Variable
Modal Parameters, Mechanical Systems and Signal Processing, 14 (2000) 731-
746.

S. Huang, Dynamic Analysis of Assembled Structures with Nonlinearity, Ph.D.
Thesis, Department of Mechanical Engineering, Imperial College London,
London, England, 2007 (http://www.imperial.ac.uk/dynamics/phd-theses/).

R.J. Kuether, M.S. Allen, Structural Modification of Nonlinear FEA
Subcomponents Using Nonlinear Normal Modes, in: Proceedings of the 31st
International Modal Analysis Conference, Garden Grove, California, USA,
2013.

T. Kalaycioglu, H.N. Ozgiiven, Nonlinear Structural Modification and
Nonlinear Coupling, Mechanical Systems and Signal Processing, 46 (2) (2014)
289-306, https://doi.org/10.1016/j.ymssp.2014.01.016.

137


http://www.imperial.ac.uk/dynamics/phd-theses/
https://doi.org/10.1016/j.ymssp.2014.01.016

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

F. Wenneker, P. Tiso, A Substructuring Method for Geometrically Nonlinear
Structures, in: Proceedings of the 32nd International Modal Analysis
Conference, Orlando, Florida, USA, 2014.

C. Tepe, E. Cigeroglu, Structural Coupling of Two-Nonlinear Structures, in:
Proceedings of the 33rd International Modal Analysis Conference, Orlando,
Florida, USA, 2015.

R.J. Kuether, M.S. Allen, Modal Substructuring of Geometrically Nonlinear
Finite-Element Models, AIAA Journal, 54 (2) (2016) 691-702.

S. Gray, J. Starkey, Dynamic Substructure Separation Using Physical and Modal
Models, in: Proceedings of the 6th International Modal Analysis Conference,
Kissimmee, Florida, 1988.

C. Gontier, M. Bensaibi, Time Domain Identification of a Substructure from in
situ Analysis of the Whole Structure, Mechanical Systems and Signal
Processing, 9 (4) (1995) 379-396.

J.M.M. Silva, N.M.M. Maia, P.M.L. Ribeiro, Dynamic Modeling: Application
of Uncoupling Techniques, in: Proceedings of the 14th International Modal
Analysis Conference, 1996.

N.M.M. Maia, J.M.M. Silva, A.M.R. Ribeiro, P.L.C. Silva, On the Dynamic
Characterization of Joints Using Uncoupling Techniques, in: Proceedings of the

16th International Modal Analysis Conference, 1998.

P. Kalling, T. Abrahamsson, T. McKelvey, Subsystem State-Space Model
Identification and its Sensitivity to Test Variability, in: P. Sas, M. De Munck

138



[47]

[48]

[49]

[50]

[51]

[52]

[53]

(Eds.), Proceedings of ISMA 2004 - International Conference on Noise and
Vibration Engineering, Leuven, Belgium, 2004, pp. 2729-2744.

J. Zhen, T.C. Lim, G. Lu, Determination of System Vibratory Response
Characteristics Applying a Spectral-Based Inverse Sub-Structuring Approach.
Part I: Analytical Formulation, International Journal of Vehicle Noise and
Vibration, 1 (2004) 1-30.

ZW. Wang, J. Wang, Y.B. Zhang, C.Y. Hu, Y. Zhu, Application of the Inverse
Substructure Method in the Investigation of Dynamic Characteristics of Product
Transport System, Packaging Technology and Science, 25 (6) (2012) 351-362.

J. Wang, L. Lu, Z. Wang, Modeling the Complex Interaction between Packaged
Product and Vehicle, Advanced Science Letters, 4 (6-7) (2011) 2207-2212.

Z.\W. Wang, J. Wang, Inverse Substructure Method of Three Substructures
Coupled System and its Application in Product Transport-System, Journal of
Vibration and Control, 17 (6) (2011) 943-952.

J. Wang, X. Hong, Y. Qian, ZW. Wang, L.X. Lu, Inverse Sub-Structuring
Method for Multi-Coordinate Coupled Product Transport System, Packaging
Technology and Science, 27 (5) (2014) 385-408.

W. D’ Ambrogio, A. Fregolent, Promises and Pitfalls of Decoupling Procedures,

in: Proceedings of the 26th International Modal Analysis Conference, 2008.
D. Cloutier, P. Avitabile, Investigation on the Use of Various Decoupling

Approaches, in: Proceedings of the 28th International Modal Analysis
Conference, 2010.

139



[54]

[55]

[56]

[57]

[58]

[59]

[60]

W. D’Ambrogio, A. Fregolent, The Role of Interface DOFs in Decoupling of
Substructures Based on the Dual Domain Decomposition, Mechanical Systems
and Signal Processing, 24 (7) (2010) 2035-2048.

S.N. Voormeeren, D.J. Rixen, A Dual Approach to Substructure Decoupling
Techniques, in: Proceedings of the 28th International Modal Analysis
Conference, 2010.

W. D’Ambrogio, A. Fregolent, Direct Decoupling of Substructures Using Primal
and Dual Formulation, in: Proceedings of the 29th International Modal Analysis
Conference, 2011.

F.C. Batista, N.M.M. Maia, Uncoupling Techniques for the Dynamic
Characterization of Sub-Structures, in: Proceedings of the 29th International
Modal Analysis Conference, 2011.

W. D’Ambrogio, A. Fregolent, Inverse Dynamic Substructuring Using Direct
Hybrid Assembly in the Frequency Domain, Mechanical Systems and Signal
Processing, 45 (2) (2014) 360-377.

M. Law, H. Rentzsch, S. lhlenfeldt, M. Putz, Application of Substructure
Decoupling Techniques to Predict Mobile Machine Tool Dynamics: Numerical
Investigations, Procedia CIRP, 46 (2016) 537-540.

M. Law, H. Rentzsch, S. Ihlenfeldt, Predicting Mobile Machine Tool Dynamics

by Experimental Dynamic Substructuring, International Journal of Machine
Tools and Manufacture, 108 (2016) 127-134.

140



[61]

[62]

[63]

[64]

[65]

[66]

[67]

J. Brunetti, A. Culla, W. D’Ambrogio, A. Fregolent, Experimental Dynamic
Substructuring of the Ampair Wind Turbine Test Bed, in: Proceedings of the
32nd International Modal Analysis Conference, 2014.

W. D’Ambrogio, A. Fregolent, Predicting the Dynamics of Flexible Space
Payloads under Different Boundary Conditions through Substructure
Decoupling, in: Proceedings of the 35th International Modal Analysis
Conference, 2017.

J.P. Noél, G. Kerschen, 10 Years of Advances in Nonlinear System
Identification in Structural Dynamics: A Review, in: Proceedings of ISMA 2016
- International Conference on Noise and Vibration Engineering, Leuven,
Belgium, 2016.

M. Tahtali, H.N. Ozgiiven, Vibration Analysis of Dynamic Structures Using a
New Structural Modification Method, in: Proceedings of the 6th International
Machine Design and Production Conference, METU, Ankara, pp. 511-520,
September 21-23, 1994.

W. Heylen, S. Lammens, FRAC: A Consistent Way of Comparing Frequency
Response Functions, in: Proceedings of the International Conference on
Identification in Engineering, Swansea, pp. 48-57, 1996.

O. Arslan, M. Aykan, HN. Ozgiiven, Parametric Identification of Structural
Nonlinearities from Measured Frequency Response Data, Mechanical Systems

and Signal Processing, 25 (4) (2011) 1112-1125.

A. Gelb, W.E. Van der Velde, Multiple-Input Describing Functions and
Nonlinear System Design, McGraw Hill, New York, 1968.

141



[68]

[69]

[70]

[71]

[72]

[73]

[74]

E. Budak, HN. Ozgiiven, Iterative Receptance Method for Determining
Harmonic Response of Structures with Symmetrical Non-linearities, Mechanical
Systems and Signal Processing, 7 (1) (1993) 75-87.

O. Tanrikulu, B. Kuran, H.N. Ozgiiven, M. Imregiin, Forced Harmonic
Response Analysis of Non-Linear Structures Using Describing Functions, AIAA
Journal, 31 (7) (1993) 1313-1320.

E. Cigeroglu, H.N. Ozgiiven, Non-linear Vibration Analysis of Bladed Disks
with Dry Friction Dampers, Journal of Sound and Vibration, 295 (2006) 1028-
1043.

J. He, D. J. Ewins, A Simple Method of Interpretation for the Modal Analysis of
Nonlinear Systems, 5th International Modal Analysis Conference, London,
England, 626-634, 1987.

S. Perinpanayagam, D. Robb, D.J. Ewins, J.M. Barragan, Nonlinearities in an
Aero-engine Structure: From Test to Design, 2004 International Conference on
Modal Analysis Noise and Vibration Engineering, Leuven, Belgium, 3167—
3182, 2004.

T. Kalaycioglu, H.N. Ozgiiven, Dynamic Decoupling of Nonlinear Systems, in:
Dynamics of Coupled Structures, vol. 4, Proceedings of the 35th IMAC, A
Conference on Structural Dynamics, Springer, New York, 2017, pp 199-203,
https://doi.org/10.1007/978-3-319-54930-9_17.

T. Kalaycioglu, H.N. Ozgiiven, FRF Decoupling of Nonlinear Systems,
Mechanical Systems and Signal Processing, 102 (2018) 230-244,
https://doi.org/10.1016/j.ymssp.2017.09.029.

142


https://doi.org/10.1007/978-3-319-54930-9_17
https://doi.org/10.1016/j.ymssp.2017.09.029

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

M.N. Richardson, D.L. Formenti, Parameter Estimation from Frequency
Response Measurements Using Rational Fraction Polynomials, in: Proceedings

of the 1st International Modal Analysis Conference, 1982.

J.V. Ferreira, Dynamic Response Analysis of Structures with Nonlinear
Components, Ph.D. Thesis, Department of Mechanical Engineering, Imperial
College London, 1998.

H.R.E. Siller, Non-linear Modal Analysis Methods for Engineering Structures,
Ph.D. Thesis, Department of Mechanical Engineering, Imperial College London,
2004.

Q. Jing, T. Mukherjee, G. K. Fedder, Large-Deflection Beam Model for
Schematic-Based Behavioral Simulation in NODAS, in Nanotech: Technical
Proceedings of the 5th International Conference on Modeling and Simulation of
Microsystems (MSM -02), vol. 1. San Juan, Puerto Rico: NSTI, Apr. 22-25
2002, pp. 136-139.

https://www.bksv.com/-/media/literature/Product-Data/bp1841.ashx, visited on
August 2017.

https://www.bksv.com/-/media/literature/Product-Data/bp2080.ashx, visited on
August 2017.

MATLAB R2013a Help Manual.
M. Aykan, Identification of Localized Nonlinearity for Dynamic Analysis of

Structures, Ph.D. Thesis, Department of Mechanical Engineering, Middle East
Technical University, 2013.

143


https://www.bksv.com/-/media/literature/Product-Data/bp1841.ashx
https://www.bksv.com/-/media/literature/Product-Data/bp2080.ashx

[83]

[84]

[85]

[86]

[87]

M. Aykan, H.N. Ozgiiven, Parametric Identification of Nonlinearity in Structural
Systems Using Describing Function Inversion, Mechanical Systems and Signal
Processing, 40 (1) (2013) 356-376.

G.D. Pasquale, A. Soma, Reliability Testing Procedure for MEMS IMUs
Applied to Vibrating Environments, Department of Mechanics, Politecnico di

Torino, Torino, Italy, 2010.

A.K. Mallik, V. Kher, M. Puri, H. Hatwal, On the Modelling of Non-Linear
Elastomeric Vibration Isolators, Journal of Sound and Vibration 219 (2) (1999)
239-253.

M.R. Ashory, High Quality Modal Testing Methods, Ph.D. Thesis, Department
of Mechanical Engineering, Imperial College London, London, England, 1999

(http://www.imperial.ac.uk/dynamics/phd-theses/).

http://sdsolutions.ru/d/546908/d/fiche technique 825.pdf, visited on March
2018.

144


http://www.imperial.ac.uk/dynamics/phd-theses/
http://sdsolutions.ru/d/546908/d/fiche_technique_825.pdf

APPENDICES

A. PUBLISHED PAPERS DURING PHD

New FRF Based Methods for Substructure Decoupling

Taner Knlaycmglul‘z, H. Nevzat (")zgiivenl
chpartmcnt of Mechanical Enginecring, Middle East Technical University, 06800 Ankara, TURKEY
'MGEO Sector, ASELSAN Inc.. 06011 Ankara, TURKEY
c-mail: tkalayei@aselsan.com.tr, ozguven/‘@metu.cdutr

ABSTRACT

Substructuring methods are well known and are widely used in predicting dynamics of coupled structures. In theory, there is
no reason why the same techmques could not be used m a reverse problem of predicting the dynamic behavior ol a particular
substructure from the knowledge of the dynamics of the coupled structure and of all the other substructures. I[lowever, the
reverse problem, known as decoupling, usually requires matrix inversions, and therefore even small measurement errors may
easily aftect the accuracy of such methods In this study two new FRF based approaches are presented for decoupling. The
methods proposed require coupled system FRFs at coordinates that belong to the known subsystem as well as the measured
or caloulated FREs of the known subsystem alone. Formulations are based on the reverse application of the siructural
coupling method proposed in a previous publication co-authored by one of the authors of this paper. The performances of the
proposed methods are demonstrated and then compared with those ol some well-known recent methods in the hierature

through a case study.

Keywords: Decoupling, uncoupling, inverse substructuring, subsystem identification, subsystem subtraction

1 INTRODUCTION

The modal analysis and testing 1s widely used to analyze the dynamic characteristics o a whole machine or 1ts components
[1]. Since engineering structures are generally designed as an assembly of several components, a lot of effort has been
devoted to structural coupling methods that predict the total dynamic behavior of a complex machine from those of s
components in recent decades. Conversely, in some cases. the dynamic characteristics of a whole system may be known but
that of Its component may be hard to measure because of the difficulty of performing measurements or excitation on a
subsysten individually under its normal operating conditions.

In this study. the decoupling problem, the idennfication of the dynamic behavior of a structural subsystem that 13 part of 2
larger system is addressed. One of the earliest studies on the substructure decoupling is performed by Okubo and Miyazaki
[2] m 1986, In thewr solution, FREFs of the complete system and the known subsystem 15 used 1o obtamn FRE of the unknown
subsystem. After a long break, Gontier and Bensaibi [3] presented a decoupling technique based on time domain approach
which still remains as the only technigue in time domain. Silva et al. [4] presented a study regarding joint identification. They
used decoupling methodology in order to eliminate difficulties in measurement and experimenting for joint identification
Later, they proposed a different technique for joint identification [5]. In this technique, they used coupling formulation of
Jetmundsen et al. [6] and obtamed a better formulation 1n terms of the number of matrix mversions. In this formulation, jomt
fi.e. connection) degrees of freedom (Dol's) are not taken into account. Ind and Twins [7] presented an approach similar to
that of Silva et al [5]. Kalling et al. [8] studied the decoupling problem by performing state-space model 1dentification
D’ Ambrogio and Fregolent [9] presented a modal based approach for decoupling analyses which suffers from modal
truncation problems.

D’ Ambrogio and Fregolent [10] presented an FRF based decoupling technique similar to that of Ckubo and Miyazaki [2]. In
this work, they pomted out the problems due to unmeasured rotational DoFs as well. Afterwards, D" Ambrogio and Fregolent
[11] proposed two decoupling procedures;, naniely, impedance based and mobility based approaches, which calculate the
FREs ol the connection Dol on an unknown subsystem by using the FREFs ol the coupled system and the residual subsystem

* T. Kalaycioglu, H.N. Ozgiiven, New FRF Based Methods for Substructure Decoupling, in: Dynamics
of Coupled Structures, vol. 4, Proceedings of the 34th IMAC, A Conference on Structural Dynamics,
Springer, New York, 2016, pp. 463-472, https://doi.org/10.1007/978-3-319-29763-7_46.
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at residual subsystem DoFs The latter is equivalent to the approach presented by Sjovall and Abrahamsson [12]. A general
framework for dynamic substructuring is provided in [13] and [14] in which the so called dual domain decomposition
technique that allows retaining the full set of global DoFs by ensuring equilibrium at the interface between substructures is
introduced. When performing substructuring by using the dual domain decomposition, the coupling problem can be directly
formulated from [14], whereas a similar formulation for the decoupling problem is developed and discussed in [15] for
collocated approach where DoFs used to enforce equilibrium are the same as DoFs used to enforce compatibility, and in [16]
and [17] for non-collocated approach where DoFs used to enforce equilibrium are not the same as DoFs used to enforce
compatibility.

Batista and Maia [18] proposed three different decoupling formulations based on the classical decoupling procedure of
Jetmundsen et al. [6]. They consider the effects of including different sets of DoF of the coupled system: (i) exclusion of
connection DoFs, (ii) inclusion of connection DoFs only and (iii) inclusion of connection DoFs and internal DoFs of the
residual subsystem. Cloutier and Avwitabile [19] presented inverse frequency based substructuring approach that recuires
measurements on the unknown substructure. Later, D°Ambrogio and Fregolent [20] proposed the so called hybrid assembly
approach. They compared dual [15] and hybrid assembly approaches through an experimental case study and ended up with
very similar results in terms of predicted FRFs of the unknown subsystem.

In this paper, two new FRF bazed decoupling approaches are developed which are based on the structural modification
method suggested by Tahtali and Ozgilven [21] two decades ago. The approaches developed can predict the FRFs of an
unknown subsystem from the measured FRFs of the coupled system and the measured or calculated FRFs of the other
subsystem. The methods are tested on a simple lumped parameter system by using simulated experimental data. Results are
compared with those obtained through some well-known decoupling methods.

2 THEORY

In this section, the theory of the decoupling approaches propozed is given. In this approach, the structural modification
method suggested by Tahtal: and Ozgiiven [21] is revisited and modified to be used for substructure decoupling. The notation
uszed throughout the paper for all systems/subsystems and the coordinate zets are given in Fig. 1.

FRFs at COUPLING DOFs (j) +
RESIDUAL SUBSYSTEM DOFs (k) +
NOISE

COUPLED SYSTEM

[u]

| r —_— RESIDUAL
UNKNOWN SUBSYSTEM i SUBSYSTEM
e * . — s o

k

Fig. 1 Notation used for systems and sets of coordinates

Here, first, the basic equations of the Coupling Force Method suggested by Tahtali and Ozgiiven [21] will be given. The
displacement vectors for the unknown and the residual subsystems can be written, respectively, as:

X I[U HU
{ U}[ : ; }{ F1U } w
U u I 1

R R R

x| [Hj Hi {r} @
- R

xF) |lmp mE ) F
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where superscripts U and R refer to the vectors related to the unknown and the residual subsystems, respectively. Subscript 1
refers to the coordinates of the unknown subsystem only, subscript j refers to the coordinates that are common to the
unknown and residual subsystem, and finally subscript k reters to the coordinates of the residual subsystem only (Fig. 17.
Here. f. F and H represent coupling reaction torce vector, external force vector and the FRF matrix, respectively. Expanding
Eq. (1) and (2} leads 1o following equations:

X7 =B K w1 1) @
xV-HYE' 1 HY (FjU | f) (4)
XY =—Hj f+H]), EF (%)
XQ = -H A+ B ()

Notle thatl, when two subsystems are ngidly coupled, XJU = XE{, which represents the displacement vector at the coupling
coordinates. Therefore Eq. (4) and Eq. (5) are equal to each other. Thus. by equating the right hand sides of these equations
coupling reaction force can be written as follows:

- . -
. U R R R U, U U .U i
f-[ujoljj T Tl TR R TR )

After having obtained the coupling reaction force £, the response of the coupled system can be obtained by substituting f in
cquations (3), (5) and (6) as follows:

¢ i .
- U u u U u 18 R R R U U U U
X =Hy By Fo [Hu : Hfu} [ij Fo Hp E° Hy F M (&)
. -1 -
X} --H§ HJj- HEJ [ka Ff -H F -H] ¥ J +H} Ff (9)
R R [ 14U R [yR wR U U U U R R N
XP = H} [H_U +H_ii] [H_ik FF-H]E'-HY F }+Hkk K (10)

Note that the response of the coupled system can also be written as follows:

1T ; S Uy
X Hy My Hy | F
‘R u )
Xp | By Hy My || F an
YE ). \Hii Hy Hi Flf‘ ]
The above formulation gives the basic equations of the Coupling Force Method proposed by Tahtal and Ozgiiven [21]. From
now on, formulation to be given will be about the derivation of decoupling formulations. In the following section the use of
these equations for decoupling will be given.
2.1  Formulation Using Equation (9)

Let us assume that exlernal forcing is applied only to the k™ coordinates of the coupled system and the rest of the external
forcing is equal to zero;

I ‘Lv\

K UM\

L o~
E -] 0, (1)
‘FE ) K

By using Eq. (11) and Eq. {12), Eq. (9) can be rewritten as follows:
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-1
Hy, e, = B0 (H 4B HE Fy + B By (13)
By multiplying both sides of Eq. (13) with (F,, )_1 from right hand side, one can obtain
R R{igU , gRY 4R
HE —H; —HY (Hh +Hjj) HE (14)

Premultiplying all terms of g (14) by (Hi )_1 and post multiplying them by (H?\k )_1 yields

(R R R\ _fqU  RY? .
(H;”) (Hik —Hlk)(Hlk) = (=Y +H“) (15
Taking inverse of the both sides of Eq. (15), the following equation can be written:
-1
R {11k R U, R
(1 - ey ) nf - nf uf (16)

Rearranging Eq. (16) vields the final equation which gives the FRF matrix of the unknown subsystems in terms of those of
coupled system and residual subsystem:

. -1
HY = HY, (M -Hy ) Hf -H] an

It is interesting to note that if it is assumed that extemal forcing is applied enly to the ® coordinates of the coupled system
while the rest of the external [orces are zero, that 1s

ey
K 0.,
I8 ,
Fi' 7| Fu (18)
LR W0k
one will end up with the decoupling formulation given by Batista and Maia [18]:

-1 A1
Hy - H | (H,) B -1 (19)

2.2 Formulation Using Equation (10)

Let us assume again that external forcing is applied only to the ™ coordinates of the coupled system and the rest of the
external forces are zero as given in Hq. (18), and let us use Eq. (10) rather than Eq. (9). Then by using Eq. (11) and Eq. (18),
one can rewrite Bq. (10) as follows:

. . ,1
Hy F;,; = H (Hj +Hj ) H{F,, (20)

By multiplying both sides of Eq. (20) with (FJ” )_l trom right hand side, one can obtain:
R (U, Ry U ;
H,; - H (H] +Hjj) H 1)

Premultiplying all terms of Eg. (21) by (Hﬁ )71 and post multiplying them by (H'I; )71 gives

(HkRj )71 H, (H}j )71 = (H}j' 3 )71 (22)

Taking inverse of both sides of Lq. (22), the following equation can be obtaned
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Then, the final equation which gives the FRF matrix of the unknown subsystemns in terms of those of coupled system and
residual subsystern can be obtained as follows:

-1
U _ R -1 R
Hy =Hj ((ij) ij‘Im'j @

Again it is interesting to note that 1f it is assumed that external forcing is applied only to the k™ coordinates of the coupled
systemn as shown in Eq. (12), the forrmulation given by Maia et al [5] can be easily obtained:

-1
u R R R R
HJJ = HJk [Hkk —H] ) H] : _HJ] (25)

3 CASESTUDIES

In this section, application of the proposed decoupling forrmulations to a lumped parameter systemn is presented. Furthermore,
performances of the proposed formulations are compared with those of some well-known techniques by using the same case
study.

31  Application of the Approaches to a Lumped Parameter System

The coupled systemn considered in this application is composed of two subsystems rigidly connected to each cther as shown
in Fig. 2. Physical parameters of the residual and the unknown subsystem are given in Table 1. Note that &, m and ¢ represent
stiffhess, mass and viscous damping parameters, respectively.

|

LLT'/L /iy

my Mz + Mz my ms

« (&) C3

COUPLED SYSTEM

3 k;
=

UNKNOWN SUBSYSTEM (U) RESIDUAL SUBSYSTEM (R)

mj ms

Fig. 2 Lumped parameter systern model

Table 1 Physical parameters

Element Number (i) | m;[kg] | & [N/m] | ¢ [[Ns/m]
1 2.5 1500 0.15
2 3 2000 0.20
3 2100 0.21
4 3 1900 0.19
5 2.5 2200 0.22

Here, it 15 assumed that the FRFs of the coupled system are experimentally measured and the physical model of the residual
subsystemn is available. It 15 aimed to determine the FRF of the unknown subsystern at its connection coordinate In order to
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simulate the measured FRFs of the coupled system, first the exact FRFs of the coupled system ( H ) are calculated by using
the physical parameters given in Table 1 and then they are polluted by simply adding complex random variables as shown
below:

Hjj(a) = ﬁ(%)+pij,k+j9U,k (26)

Here, pjjy and gjjy are independent random variables with Gaussian distribution, zero mean and a standard deviation of

5x10° m/N. The effect of such a pollution on the driving point FRF at the 2™ DoF (the coupling DoF) of the coupled system
is shown in Fig. 3 together with the FRF obtained after curve fitting.

§ | | ; T T T
z 10’
£
&
T .
“3; 10 m— Eyact
- Palluted
......... Curve Fitted -
m-a I ‘ | | L 1 1 | 1
1 . . i 5 5 7 g 9

Freguency [Hz]

Fig. 3 Driving point FRF of the coupled system at the 2° DoF: true (—, black), polluted (s, blue) and curve fitted (- - -,
red)

Then, by using the curves fitted to the polluted FRFs of the coupled structure, driving point FRF at the coupling DoF of the
unknown subsystem is calculated using the proposed formulations, and the results are given in Fig. 4 and Fig. 5.
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Fig. 4 Driving point FRF at the 2* DoF of the unknown subsystem: true (—, black), predicted using Eq. (17) (+++, magenta)
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Fig. 5 Driving point FRF at the 2* DoF of the unknown subsystem: true (—, black), predicted using Eq. (24) (v, blue)
Fig. 4 and Fig. 5 show that both approaches predict the unknown subsystem FRF satisfactorily. If the performances of both

approaches are compared with each other around resonances, the predicted FRF via Eq. (24) seem to fit better to the true FRF
by visual inspection.
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However, in order to make a reliable and sound comparison, it is required to use a metric rather than making visual
mspection. For that purpose, the Frequency Response Assurance Criterion (FRAC) [22] 13 used The FRAC values calculated
for FRFs calculated by using Hq. (17) and Bq. (24) are 1.99708 and N.99791, respectively. So, it can be said again that, at
least for the example case given here, both equations can successfully be used for decoupling, and Eq. (24) gives slightly
better results compared to Eq. (17).

3.2 A Comparison of the Approaches with well-known Existing Methods

In this section. the performances of proposed methods are compared with those of well-known recent methods. The final
equations for these methods, therr references and the mput data required for each of them are summarized in Table 2.

Table 2 List of most recent decoupling methods

" . Needs Needs .
Ref. | Final Equation (Residual) (Coupled) Equation
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Among the first three formulations given in the table. Eq. (28) was shown to be the one that produces the smallest error
throughout the frequency range [18]. Moreover, among the last three formulations given in the table, Eq. (34) was shown to
give better results [15]. Note also that Eq. (31) is a special case of the Eq. (32) as also mentioned 1n reference [11].
Consequently, it will be more 1o the point to compare the proposed formulations with Eq. (28), Eq. (30) and Eq. (34) in Table
N

Z.

So, the problem given in Section 3.1 is also solved by using Eq. (28). Eq. (30) and Eq. (34) in addition to employing the
proposed formulations, 1.e., Eq. (23) and Eq. (24). Moreover in order to see the effect of increasing noise level in measured
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FRFs on the performances of different methods, coupled system FRFs are polluted by five different sets of random variables,
Pik and gy in Eq. (26), with Gaussian distribution, zero mean and standard deviations ranging from 5%10% m/N to

25x10"° m/N. Results obtained for the standard deviation of 1510 m/N are given in Fig. 6.
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Fig. 6 Driving point FRF at the 2™ DoF of the unknown subsystem: true (—, black), predicted using standard deviation of
15x10° via proposed formulations: Eq. (24) (++, blue), Bq. (17) (++-, magenta) and via formulations given in
literature: Eq. (28) (.., ), Eq. (30) (o, green), Eq. (34) (e, red)
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It 15 observed that using different pollution sets with the same standard deviation may give shightly different results.
Therefore, in order to compare the performances of ditferent formulations and to study the eftect of increasing measurement
crrors (increasing standard deviation of pollution), calculations with cach method are repeated 100 times for cach standard

deviation of pollution, and the averages of the FRAC values are compared in Table 3.

Table 3 Mean (M) and Standard Deviation (SD) of FRAC values obtained for each method

FRAC Values (M + SD values calculated for 100 runs)
Method | gy or5x10° | SDor1x10® | SDof15x10° [ SDef2x10* | SDof25x10°
m/N m/N m/N m/N m/N
Eq. 24) | 0.9979 + 0.0019 [ 0.9970 ~ 0,0024 | 0.9900 + 0.0234 | 0.9869 + 0.0107 | 0.9792 + 0.0184
Eq. (17) | 0.9948 £ 0.0218 | 09947 = 0.0077 | 0.9912£0.0096 | 0.9796 £ 0.0189 | 0.9744 £ 0.0238
Eq. (28) | 0.9971 £ 0.0215 [ 09759 = 0.0274 | 09701 £ 0.0307 | 0.9601 £ 0.0404 | 0.9522 + 0.0639
Fq. (34) | 09928+ 0.0192 | 09794 = 0.0358 | 09767 +0.0529 | 0.9615+0.1067 | 0.9778 + 0.0340
Eq. (30) | 0.9921+0.0050 | 0.9859=0.0183 | 09822 +0.0211 | 0.9736+ 0.0435 | 0.9696¢ + 0.0562

When mean FRAC values given in the Table 3 are compared to each other, the overall performances of the proposed
formulations (i.e., Eq. (24) and Eq. {17)) are found to be better. Especially, Eq. (24) proved to be statistically the best
performer among all formulations.

4  DISCUSSION AND CONCLUSIONS

In this paper the decoupling problem, ie. the prediction of the dynamic behavior of a structural subsystem, starting from
information about the remaining subsystems (residual subsystems) and from the known dynamic behavier of the complete
system, 1s considered. The dynamic behavior of the whole structure is assumed to be known from experiments, together with
the experimentally measured or theoretically calculated dynamics of the residual substructure.

In this work., two diflerent decoupling formulations derived from the werk of Tahtah and Ozglven [21] are presented and
thus two new methods are proposed. Both methods give exact results, as 1t 1s the case in most of the decoupling methods,
when exact FRI's are used in all equations. Ilowever, the problem in all of such metheds 1s the sensitivity of the tormulations
to even very slight errors which are inevitable due to the use of measured data. All formulations usually include matrix
inversions, and depending on the nature of the equations, some methods are more sensitive to measurement errors and
therefore do not perform well. Hence, it is important to test the performance of any new decoupling technique. and compare
its performance with existing best ones. Application of the proposed decoupling formulations 1s presented on a lumped
parameter system. In this case study simulated experimental results are used, and in order to simulate experimentally
measured FRFs of the coupled system, theoretically calculated exact FRTs are pelluted. In studying the performances of the
proposed methods, Frequency Response Assurance Criteria, which shows the correlation between the predicted FRFs and the
true FRFs of the unknown subsystem, are used.

Furthermore, performances of the proposed fonmulations together with some of those available in the literature are
investigated through the same case study. Also, effect of noise on the performance of the decoupling methods is examined by
polluting the true I'REs of the coupled system using different sets of independent random variables with same mean but
gradually increased standard deviations. However, decoupling methods in question do not vield FRAC values in regular trend
to the increasing level of noise. Thus, an appropriate statistical comparison becomes essential to establish comparability
between the decoupling methods investigated. Tt 1s observed [rom the results of the statistical comparison that proposed
methods come up with the most correlated results for each of five standard deviation of pollution.

Consequently, 1t can be said that proposed methods can be used as alternative approaches results of which should be taken

into consideration during decoupling studies. The applicability and accuracy of the methods proposed are demonstrated only
on a simple lumped parameter system and additionally they need to be tested on real structures.
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ABSTRACT

Structural decoupling problem has been well investigated for three decades and led to several decoupling methods. In spite of
the inherent nonlincaritics in a structural system in various forms all decoupling studies are for lincar systems. In this study,
decoupling problem for nonlinear systems is addressed tor the first time and a method 1s proposed for calculating the trequency
response {unctions ol a substructure decoupled [rom a coupled nonlinear structure where nonlinearily can be modelled as a
single nonlinear element. The method proposed 1s validated through simulated case studies.

Keywords: Nonlinear decoupling, nonlinear uncoupling, nonlinear inverse substructuring, nonlinear subsystem identification,
nonlinear substructure decoupling

1 INTRODUCTION

Since engineering structures are generally designed as an assembly of several components, considerable effort has been devoted
to structural decoupling of linear systems, some of those worth mentioning 1s listed in references [1-3]. However, the problem
where system to be decoupled mcludes a nonlinear element such as clearance, friction and nonlinear stitfness remains
untouched. In this paper, a method 1s developed for the decoupling problem of nonlinear systems. The method is tested on
simple lumped parameter systems by using simulated experimental data.

2 THEORY

The uncoupling problem is studied as three separate problems. depending on the location of the nonlinear element in the coupled
syster: The nenlinearity can be either in the unknown subsystem or in the known subsystem, or it can connect two subsystems.
The method proposed tor the solution of this problem 1s mainly based on the application of the following techniques:

¥ The controlled displacement amplitude testing technique proposed by Arslan ot al. [4] for nonlinear systems.
¥ The decoupling technique proposed by D" Ambrogio et al. [1] for linear systems.
¥ The parametric modsl 1dentification technique proposed by Arslan et al, [4] for nonlinear systems.

The method proposed is applicable 1o systems where the nonlinearity can be modelled as a single nonlinear element. Tt 1s also
assumed that the location of this nonlinear element is known.

2.1  Nonlinearity in the Unknown Subsystem

In this case, it is assumed that known subsystem 1s lincar whereas unknown subsystem 1s nonlincar and the location of the
nonlinear element is known. Firstly, the complete FRF matrix of the known subsystem for the coordinates we are interested in
1s obtamed by using the known system parameters. Then, various different sets of linear FRFs of the coupled system for the
coordinates we are interested in are oblained by keeping the amplitude of the relative harmonic displacement between the end
coordinates of the nonlinear element constant at a different value for each set of FRFs [4] Note that. depending on the location
of the nonlinearity, the number of coordinates at which FRT's should be measured in the coupled system can be reduced. Using
available FRFEs, sets of linear FRF curves for the unknown subsystem can be obtained by applying the decoupling formulation
proposed by D*Ambrogio et al. [1] for linear systems, each set corresponding to a different response level. Then. by applying
the modal 1dentification technique developed by Richardson and Formenti [3], a set of modal parameters will be obtained from
each FRF curve. As the identified modal parameters vary with the response amplitude, they can be expressed as a function of

* T. Kalaycioglu, H.N. Ozgiiven, Dynamic Decoupling of Nonlinear Systems, in: Dynamics of Coupled
Structures, vol. 4, Proceedings of the 35th IMAC, A Conference on Structural Dynamics, Springer,
New York, 2017, pp. 199-203, https://doi.org/10.1007/978-3-319-54930-9_17.
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the amplitude of the relative harmonic displacement between the end coordinates of the nonlinear element [4]. Then, the FRFs
of the unknown subsystem can be calculated at different response levels by using the modal parameter variations obtained.

2.2 Nonlinearity in the Known Subsystem

In this case, it is assumed that known subsystem is nonlinear whereas unknown subsystem is linear. Nonlinear element may be
located at any place in the known subsystem. Firstly, the point and transfer FRFs of the coupled system as well as of the known
subsystem at coordinates that belong to the known subsystem should be obtained by keeping the amplitude of the relative
harmonic displacement between the end coordinates of the nonlinear element at a specific value throughout the desired
frequency range [4]. FRFs of the known system will be calculated whereas those of the coupled system should be measured by
making controlled displacement amplitude testing. This will yield a set of linear FRF curves for the coupled system, as well as
for the known subsystem. Note that the nonlinearity matrices, first introduced by Tanrikulu et al. [7] and then used in many
applications, added to the dynamic stiffness matrices of the coupled system and the known subsystem will have the same values
at each frequency throughout the desired frequency range. Hence, the existence of nonlinearity will be the same as adding a
linear stiffness matrix to the known part of the system, and thus the problem will be reduced into decoupling of linear systems.
Consequently, the FRFs of the unknown subsystem at its coupling DOFs can be calculated using the FRFs of the known and
coupled systems obtained above by applying the decoupling formulation proposed by D’ Ambrogio etal. [1].

2.3 Nonlinearity in the Connection of Two Subsystems

When the nonlinear element connects two subsystems, the problem can be reduced into the one of those defined in section 2.1
or section 2.2, depending on the availability of the properties of the nonlinear element. If the parameters of the nonlinear
connection element are not known, it should be taken as a part of the unknown subsystem with a massless node at the other
end, which is rigidly connected to the connection node of the known subsystem. A similar approach has been followed by the
authors in [6]. Thus, the system will be reduced into the system considered in section 2.1. In case where the parameters of the
nonlinear element are known, the system can be reduced into the system considered in section 2.2 in the same vein.

3 SIMULATED CASE STUDIES

In this section, applications of the proposed decoupling method to a lumped parameter system are presented in order to
demonstrate the validity and the efficiency of the method developed.

3.1  Decoupling of a Lumped Parameter Nonlinear System — Nonlinearity at the Unknown Subsystem

In this case study, decoupling of a 2 DOF nonlinear subsystem from a 3 DOF lumped parameter system is demonstrated by
applying the decoupling method proposed. The nonlinear element is assumed to be a grounded cubic stiffness connected to the
coupling DOF of the unknown subsystem. Firstly, the complete FRF matrix (for the DOFs we are interested in) of the known
subsystem are theoretically obtained from the known subsystem parameters. Secondly, we need to obtain point and transfer
FRFs of the coupled system at coordinates that belong to the known subsystem experimentally through a controlled
displacement amplitude test in the frequency range of interest for different constant harmonic displacement amplitudes of the
second DOF of the coupled system. These values are theoretically obtained, but in order to include the effect of experimental
errors, they are polluted by adding a complex random number. Then the decoupling formulation proposed by D* Ambrogio et
al. [1] for linear systems is applied for each 20 different sets of point and transfer FRF curves of the coupled subsystem at
coordinates that belong to the known subsystem in order to obtain the point FRF of the unknown subsystem at its coupling
DOF. The results are given in Fig. 1.
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Fig. 1. Point FRFs of the unknown subsystem at its coupling DOF (colored points) and fitted FRF curves (—, black)
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Note in Fig. 1 that, each FRF curve shows linear behavior, as it is obtained for a constant harmonic displacement amplitude of
the nonlinear element. Firstly, the variation of modal parameters with respect to the amplitude of the relative harmonic
displacement between the end coordinates of the nonlinear element is obtained by first fitting FRF curves to the calculated FRF
values and then identifying modal parameters for each FRF curve by applying linear modal identification. Then, harmonic
response of the unknown subsystem at its coupling DOF 1is calculated for a harmonic excitation of magnitude 1 N applied at
the same point, by employing the approach proposed by Arslan et al. [4] and using the modal parameters calculated above (as
a function of response amplitude). The same calculation is also performed through the application of the Harmonic Balance
Method (HBM) by using the actual data for the unknown subsystem. These results are compared in Fig. 2. An excellent
agreement of two response curves for both forward and backward sweeps in the whole frequency range demonstrates the
validity of the method proposed.
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Fig. 2. Forward (FWD) and backward (BWD) frequency sweep responses of the unknown subsystem at its coupling DOF

3.2 Decoupling of a Lumped Parameter Nonlinear System — Nonlinearity at the Known Subsystem

In this case study, decoupling of a 2 DOF linear subsystem from a 3 DOF lumped parameter nonlinear system is demonstrated
by applying the decoupling method proposed. The nonlinear element is again assumed to be a grounded cubic stiffness
connected to the internal DOF of the known subsystem. Then, the exact point and transfer FRFs of the coupled system and the
known subsystem at coordinates that belong to the known subsystem are calculated by keeping the amplitude of the relative
harmonic displacement between end coordinates of the cubic nonlinearity at a specific constant value (20 mm for both systems).
In order to include the effect of noise in real testing, a complex random perturbation is added to the calculated FRFs. Finally,
the decoupling formulation proposed by D’ Ambrogio et al. [1] for linear systems is applied to obtain the point receptance of
the unknown subsystem at its coupling DOF by using the FRF curves fitted to the point and transfer receptances of the coupled
system obtained through simulated experiment, and receptances of the known subsystem. The results are given in Fig. 3.
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Fig. 3. Exact and decoupled point receptances of the unknown subsystem at its coupling DOF

Fig. 3 shows that the FRF obtained using the decoupling method proposed almost the same as the exact FRE. Then it can be
concluded that the decoupling method developed yields very good results for the case where the nonlinearity is in the known
subsystem.

157



4

DISCUSSION AND CONCLUSIONS

Although there are some accuracy problems, the dynamic decoupling problem of linear structures 1s well addressed in literature.
However, there has been almost no effort to tackle the dynamic decoupling problem ot nonlinear structures. This paper presents
the first attempt to solve this problem by suggesting a method that can be applied when the nonlinearity can be modelled as a
single element. Tt is also assumed in this method that the location of nonlinearity is known. The approach proposed can be
applied for all possible cases as far as the location of the nonlinear element is concerned, L.e. nonlinearity can be either in the
known or unknown subsystem, or 1t can be at the connection. The method proposed is validated through simulated case studies.
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unknown subsystem even when the nonlinear element is in that subsystem. The validation
of FDM-NS is demonstrated with two different case studies using nonlinear lumped
parameter systems, Finally, a nonlinear experimental test structure is used in order to
show the real-life application and accuracy of FDM NS,

@ 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Since engineering structures are generally designed as an assembly of several components, it is expensive and time con-
suming to constitute FE model each time especially when several design alternatives are to be studied. Therefore, various
structural coupling methods have been developed in order to reduce the effort involved in the dynamic reanalysis of such
systems [1-19], Although there are several different coupling methods based on the linearity assumption in the literature,
most of the engineering structures are inherently nonlinear, During the past three decades, structural coupling of nonlinear
subsystems has been investigated and led to several coupling methods taking the nonlinear effect into account [20-28],

Several studies have also been carried out for structural decoupling of linear systems, which becomes an important prob-
lem when the dynamic behavior of a system is known, but it is difficult to measure the dynamic characteristics of one of its
components due to geometric constraints {i.e., due to difficulty in measuring andjor exciting a subsystem individually). The
investigation on decoupling problem dates back to three decades ago, when the first attempt to extract objective
component’s dynamics in an assembly was performed by Okubo and Miyazaki [29]. Afterwards, Gontier and Bensaibi [30]
presented a time domain method for in situ identification of a substructure that is part of a known greater structure. Maia
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et al. [31] presented a decoupling methodology as a means of modeling the dynamic behavior of structural elements, more
specifically, for the dynamic characterization of joints. Kalling et al. [32] also studied the decoupling problem by performing
state-space model identification including a sensitivity analysis to uncertainties in the known models. D’Ambrogio and Fre-
golent [33] proposed two decoupling procedures; namely, impedance based and mobility based approaches that suffers from
ill-conditioning problems. Sjévall and Abrahamsson [34] presented a frequency-based subsystem identification method that
utilizes responses away from the connection point, A general framework for dynamic substructuring is provided in [15,16] in
which the so called dual domain decomposition technique that allows retaining the full set of global degrees of freedom
(DOFs) by ensuring equilibrium at the interface between substructures is introduced. When performing substructuring by
using the dual domain decomposition, the coupling problem can be directly formulated from [ 1G], whereas a similar formu-
lation for the decoupling problem is developed and discussed in [35] for collocated approach where DOFs used to enforce
equilibrium are the same as DOFs used to enforce compatibility, and in [36,37] for non-collocated approach where DOFs used
to enforce equilibrium are not the same as DOFs used to enforce compatibility. Batista and Maia 38| proposed three different
formulations based on the classical decoupling procedure of Jetmundsen et al. |5] considering the effects of including differ-
ent sets of DOFs on the coupled system: (i) exclusion of connection DOFs, (ii) inclusion of connection DOFs only and (iii)
inclusion of connection DOFs and internal DOFs of the known subsystem. The inverse substructuring approach presented
by Cloutier and Avitabile [39] needs measurements from the unknown substructure. Later, I’Ambrogio and Fregolent
|40] proposed the so-called hybrid assembly approach. They compared dual |35] and hybrid assembly approaches by apply-
ing them to an experimental test bed and come up with similar results regarding predicted FRFs of the unknown subsystem.
In later applications, the dual assembly approach [35] was successfully used to predict the subsystem dynamics in machine
tools [41,42], wind turbines [43] and flexible space payloads [44].

Even though there are some accuracy problems, the dynamic decoupling problem of linear structures is well investigated
in literature. However, the dynamic decoupling problem of nonlinear structures still remains untouched. The further chal-
lenge in nonlinear decoupling problem is that the existence of a nonlinearity in a coupled system leads to different system
FRFs depending on the level of excitation, So, application of linear decoupling approaches will also result in different FRFs for
an unknown substructure at each time, In order to overcome this challenge, nonlinear system identification techniques are
consulted where reviews of those are given by Kerschen et al. [45] and Noél et al. [46].

In this paper, a method, named as FDM-NS (FRF Decoupling Method for Nonlinear Systems), is developed for the dynamic
decoupling problem of nonlinear structures for the first time. This method can predict the FRFs of an unknown subsystem,
whether linear or nonlinear, from the measured FRFs of the coupled nonlinear system and the measured or calculated FRFs of
the remaining known subsystem. Note that this approach can be applied to decouple nonlinear structures, only if the non-
linearity can be modeled as a single nonlinear element and its location is known. However, there is no limitation in the type
of nonlinear element in the system. The validity of FDM-NS is demonstrated on lumped multi degrees of freedom (MDOF)
systems by using simulated experimental data. For the case where the unknown subsystem is linear, the results obtained are
compared with the exact ones. On the other hand, for the case where the unknown subsystem is nonlinear, the results
obtained via FDM-NS are again compared with the exact ones which are obtained by calculating FRFs of the nonlinear sub-
system by using harmonic balance approach. Finally, a nonlinear experimental test rig is used in order to demonstrate the
applicability and accuracy of FDM-NS when applied to real systems,

2. Theory

In this section, the theory of FDM-NS is given in detail. The uncoupling problem is studied as three separate problems
depending on the location of the nonlinear element in the coupled system under consideration: The nonlinearity can be
either in the unknown subsystem or in the known subsystem, or it can connect these subsystems. The notation used
throughout the paper for all systems/subsystems and the coordinate sets are given in Fig. 1.

As can be seen from Fig. 1, superscripts U and K refer to unknown and known subsystems, respectively whereas super-
script KU represents coupled system. Subscript i denotes the coordinates that belong to the unknown subsystem only, sub-
script j refers to the connection coordinates (connection may be rigid or elastic) between the unknown and known

COUPLED SYSTEM

Fig. 1. Notation used for coupled system, subsystems and the coordinate sets.
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subsystems, and finally subscript k represents the coordinates that belong to the known subsystem only. Furthermore, H
represents a FRF matrix in the following formulation. It should finally be stated for the following formulation that only a sin-
gle nonlinear element is assumed to be included in the coupled system and its location is known.

2.1. Nonlinearity in the unknown subsystem

In this case, it is assumed that known subsystem is linear whereas unknown subsystem is nonlinear and the location of
the nonlinear element is known. Here, depending on the location of the nonlinear element, the number of coordinates at
which FRFs should be measured in the coupled system will change. When the nonlinear element is located between internal
DOFs (i), complete FRF matrix of the coupled system for the coordinates being interested in should be obtained through
experimental measurements. However, in case where the nonlinear element is located between internal DOFs {i) and cou-
pling DOFs (j) of the unknown subsysterm, it is not required to measure FRFs between internal DOFs (1) of the coupled system
(i.e. HY). Nonlinear element can also be located between coupling DOFs (j) of the unknown subsystem. When this is the
case, only the FRFs of the coupled system at and between coordinates j and k, (i.e., H{", HiYY and H[{) are required to be mea-
sured experimentally.

This subprohlem can be handled through successive applications of the following techniques:

« Controlled displacement amplitude vibration testing.
e A decoupling technique for linear systems (the dual assembly approach [35] is used in this paper).
¢ The parametric modal identification technique proposed by Arslan et al. [47] for nonlinear systems.

The complete FRF matrix of the known subsystem for the coordinates being interested in can be obtained by using its
known system parameters. All the required FRFs of a coupled system can be obtained via experimental measurements. How-
ever, since the coupled system is nonlinear, various different linear FRF curves will be obtained via testing by keeping the
amplitude of the relative harmonic displacement between end ceordinates of the nonlinear element constant at a different
value for each FRF curve. By applying a linear decoupling methed using all available FRFs, cne can obtain different FRF curves
for the nonlinear unknown subsystem, each of which represents a linear system. Here, the dual assembly approach [35] is
used as the linear decoupling method, resulting formulation of which is given below:

xuT cu? +
HU = HKU 0 _ HKU 0 B{E % [BKU BK } HKU 0 B{E < [BICU BK] HKU 0 (1)
0 _H¢ 0 _HX BIE(T C <o _HX BET c <o _H

KU pk
where B¢ = [BEU Bg] and Bg = [BE BE] are signed Boolean matrices used to enforce compatibility and equilibrium at

interface DOFs, and the symbol ™ refers to the generalized inverse.

Each FRF curve obtained via linear decoupling will correspond to a different harmonic displacement amplitude of the
nonlinear element. Then, sets of modal parameters will be obtained through the application of the modal identification tech-
nique developed by Richardson and Formenti [48] successively to each FRF curve. As the identified modal parameters - nat-
ural frequencies {,), damping ratios {#,) and modal constants (,A,) - vary with response amplitude, they can be expressed
as a function of the amplitude of the relative harmonic displacement between end coordinates of the nonlinear element (X,,)
by fitting curves to these calculated data points. Fitted curves can be in the form of continuous or discontinuous functions
depending on the type of nonlinearity. Resulting expressions are given below [47]

Wy = wr(xpr) (2)
= nr(qu) (3)
rAkI = rAk!(qu) (4)

Then, FRFs of the unknown subsystem can be computed at any response level by using the modal parameters at this level.
2.2. Nonlinearity in the known subsystem

In this case, it is assumed that known subsystem is nonlinear whereas unknown subsystem is linear. Nonlinear element

may be located at any place on the known subsystem (i.e., at coordinates j, k or between coordinates j and k). Note here that,
it is required to measure FRFs of the coupled system at and between coordinates j and k (ie., Hjj”, HJKkU and H{f}fj experimen-
tally. This subproblem can be handled through successive applications of the following techniques:

« Controlled displacement amplitude vibration testing
¢ A decoupling technique for linear systems (the dual assembly approach [35] is used in this paper).
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Firstly, point and transfer FRFs of the coupled system as well as the known subsystem at coordinates j and k should be
experimentally obtained by keeping the amplitude of the relative harmonic displacement between end coordinates of the
nonlinear element at a specific value throughout the desired frequency range. Thereby, FRF curves for the coupled system
and for the known subsystem will show linear behaviors. Furthermore, since displacement level of the nonlinear element
is the same for both systems at every frequency all through one set of experiments, the Nonlinearity Matrices introduced
to their dynamic stiffness matrices, Z, will be the same at each frequency throughout the desired frequency range. So,
dynamic stiffness matrices of the known subsystem and the coupled system can be written as follows, respectively:

7' — K — o*M* it + A (5)
00 0

Y9 — K" — oMY+ i 4+ 0 A (6)
0

3 Aji Aje
where A = (Auj Akk).
Here, K, M and C correspond to mass, stiffness and damping matrices whereas A is the Nonlinearity Matrix introduced by
Tanrikulu et al. [49] and once again, it has the same constant value at each frequency in this case. So, the existence of non-
linearity, under these circumstances, will be the same as adding a linear stiffness matrix to the known part of the system, and
therefore the problem will be reduced into decoupling of linear systems. Consequently, the FRFs of the unknown subsystem
at its coupling DOFs {j) can be calculated by using the FRFs of the known subsystem and the coupled system obtained above

and applying the dual assembly approach [35], formulation of which is given by Eq. (1).
2.3. Nonlinearity in the connection of two subsystems

When the nonlinear element connects two subsystems, the solution depends on whether or not the properties of this
nonlinear elastic element is known. If the parameters of the nonlinear connection element are not known, it should be taken
as a part of the unknown subsystem. Then it can be taken as an elastic element with a massless node at the other end, which
is rigidly connected to the connection node of the known subsystem as depicted in Fig. 2. A similar approach has been used
by the authors in [25]. Thus, the system will be reduced into the system considered in Section 2.1.

If the parameters of the nonlinear connection element are known, the nonlinear element can be taken as a part of the
known subsystem with a massless node at its other end, which is rigidly connected to the unknown subsystem {Fig. 2). Then,
the problem will be reduced into the one defined in Section 2.2.

3. Simulated case studies

In this section, applications of FDM-NS to lumped parameter systems are presented in order to demonstrate the validity
and the efficiency of the method.

3.1. Decoupling of a lumped parameter noniinear system - noniinearity in the unknown subsystem

In this case study, decoupling of a 2 DOF nonlinear system from a 3 DOF lumped parameter nonlinear system will be
demonstrated by applying FDM-NS, The coupled system is composed of two subsystems: A 2 DOF linear subsystem (known)
and another 2 DOF nonlinear subsystem (unknown). These subsystems are rigidly connected to each other as shown in Fig, 3.
Physical parameters of the coupled system are given in Table 1.

The type of nonlinearity in the system is assumed to be cubic stiffness. The grounded cubic stiffness nonlinearity con-
nected to the coupling DOF of the unknown subsystem is defined as follows:

n(x)y = kx> where k. =2 x 10° N/m* (7)

a)

Fig. 2. Inclusion of the connecting nonlinear element, {a) in the unknown subsystem, (b} in the known subsystem.
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Fig. 3. Decoupling of a nonlinear coupled system - nonlinearity at the coupling DOF of the unknown subsystem.

Table 1
Physical parameters of the coupled system.

Element number (i) m; [kg| ki [Njm] ¢; [Ns/m]
1 0.20 2000 0.50
2 010 1000 0.20
3 015 1000 0.30
4 0.20 1500 0.60

The first step in the application of FDM-NS is to obtain the complete FRF matrix (for the DOFs being interested in) of the
known subsystem theoretically from the known system parameters. Secondly, point and transfer FRF sets of the coupled sys-
tem at coordinates j and k should be obtained by conducting controlled displacement amplitude experiments for different
relative displacement levels of the nonlinear element. Here, exact FRF sets are obtained for 20 different harmonic displace-
ment amplitudes of the second DOF {my + n1;) of the coupled system. The values of the constant harmonic displacement
amplitudes, \X§|, start from 3 mm and continue with 3 mm increment up to 60 mm. In order to include the effect of exper-
imental errors, the calculated FRF sets are polluted by adding a complex random number as follows:

HY (o) = HE' (o) + Map e + iNap (8)

In Eq. (8), Mapx and ny, are independent random variables with Gaussian distribution having a zero mean and a standard
deviation of 4 x 10 ® m/N.

At this stage, the dual assembly approach [35] for decoupling of linear systems is applied for each 20 different point and
transfer FRF sets of the coupled system at its second (mz + m3) and the third (m4) DOFs in order to obtain point FRFs of the
unknown subsystem at its coupling DOF, The results are given in Fig. 4. Note that, FRF curves of the unknown nonlinear sub-
system show linear behavior, as each is obtained for a constant harmonic displacement amplitude of the nonlinear element.

Now, first fitting FRF curves to the calculated FRF values and then identifying linear modal parameters for each FRF curve,
the variation of modal parameters can be obtained as a function of the amplitude of the relative harmonic displacement
between end coordinates of the nonlinear element. The results are shown in Figs. 5 and 6 for the first and second modes,
respectively. Modal parameters are extracted from FRF curves by using the modal identification technique developed by
Richardson and Formenti [48]. Once the modal properties of the unknown subsystem are obtained, then the point receptance
of the unknown nonlinear subsystem can easily be calculated for any forcing level by using the approach proposed by Arslan
et al. [47].

In order to show the accuracy of the results obtained by using FDM-NS, driving point response of the unknown subsystem
at second mass is calculated for a harmonic forcing with an amplitude of 1 N, first by performing modal synthesis using the
modal parameter variations given in Figs. 5 and 6 (as a function of response amplitude), and then by applying Harmonic Bal-
ance Method (HBM) using the actual data for the subsystem. Note that both approaches are based on the basic assumption
that harmonic excitation results in harmonic response at the same frequency. The comparisons of the results are presented
in Figs. 7 and 8. An excellent agreement of two response curves for both forward and backward sweeps in the whole fre-
quency range demonstrates the validity of the method proposed.
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Fig. 4. Point FRFs of the unknown subsystem at its coupling DOF (colored points) and fitted FRF curves (-, black). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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3.2. Decoupling of a lumped parameter nonlinear system - noniinearity in the known subsystem

In this case study, decoupling of a 2 DOF linear system from a 3 DOF lumped parameter nonlinear system will be demon-
strated by applying FDM-NS. The coupled system is composed of two subsystems: A 2 DOF nonlinear subsystem (known)
and another 2 DOF linear subsystem (unknown), These subsystems are rigidly connected to each other as shown in Fig, 9,
Physical parameters of the coupled system are given in Table 1.

The type of nonlinearity in the known subsystem is again assumed to be cubic stiffness and described as given in Eq. (7).

Firstly, point and transfer FRFs of the coupled system and the known subsystem at coordinates j and k should be obtained
experimentally by conducting a controlled displacement amplitude test in the frequency range of interest. In this
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Fig. 7. Forward frequency sweep response of the unknown subsystem at m..

application, exact FRFs of the coupled system {H¥) and of the known subsystem (H¥) are calculated by using the physical
parameters given in Table 1, For each excitation frequency, the force amplitude is adjusted such that the amplitude of the
relative harmonic displacement between end coordinates of the cubic nonlinearity is kept constant {20 mm for both sys-
tems). In order to include the effect of experimental errors in real testing, a complex random perturbation is added to the
calculated FRFs in the following form:

HE (o) = HE (o) + Mg+ i 9)

Hyp () = HE, (606) + Pay e + ik (10)

In Eq. (9) and (10), Map g, Nabgs Papy and g are independent random variables with Gaussian distribution having zero
mean and a standard deviation of 3 x 10~ m/N. The effect of such perturbation on the point receptances of the coupled sys-
tem and of the known subsystem at 1, is shown in Fig. 10 along with the FRFs obtained after curve fitting.
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Fig. 9. Decoupling of a nonlinear coupled system - nonlinearity in the known subsystem.

Note that the FRFs given in Fig. 10 show linear behavior since they represent FRFs obtained through a controlled displace-
ment amplitude test at which the nonlinear element will behave linearly. Otherwise, that is for a constant amplitude har-
monic forcing of 4 N, the responses of the coupled system and the known subsystem would show nonlinear behavior as
shown in Fig. 11.

Hereafter the dual assembly approach [35] for decoupling of linear systems can be applied in order to obtain the point
receptance of the unknown subsystem at m, by using fitted FRF curves to the calculated point and transfer receptances of
the coupled system at m» + m3 and my, along with those of the known subsystem at m3 and my. The results are given in
Fig. 12.

As can be seen from Fig. 12, the FRF obtained using FDM-NS is almost the same as the exact FRF. It can be concluded that
the decoupling method developed yields very good results for the case where the nonlinearity is in the known subsystem. It
should be noted that if the amplitude of the relative harmonic displacement between end coordinates of the cubic nonlin-
carity is kept constant at a different value, the equivalent linear systems for nonlinear subsystem and nonlinear coupled sys-
tem will be different, but application of the linear decoupling theory will give the same FRF curve for the unknown linear
subsystem.
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Fig. 11. Frequency responses of the coupled system and the known subsystem at niy under constant amplitude harmonic excitation.

4. Experimental case study

In this section, the method developed is applied to a real experimental test system which consists of a cantilever beam
connected to another thin beam forming a T-beam configuration. The thin beam introduces nonlinear stiffness. First, linear
FRFs of the coupled nonlinear test system are measured through controlled displacement amplitude testing, and the nonlin-
ear part of the system is separately identified. Then, FRFs of the linear unknown subsystem are obtained first by using the
method developed and then by performing a shaker test. Finally, predicted and measured FRFs of the unknown subsystem
are compared in order to demonstrate the real-life applicability and accuracy of FDM-NS.

4.1. Experimental setup

The setup consists of a linear cantilever beam, which is referred to as the unknown subsystem, with its free end connected
to the midpoint of a thin beam having fixed-fixed boundary conditions. The thin beam introduces nonlinear stiffness to the
cantilever beam, and it is treated as the known subsystem. The dimensions of the test beams are given in Fig. 13.

Both beams are made of St37 steel. In order to ensure fixed boundary conditions, beams are manufactured sufficiently
long and the ends of the beams are squeezed between steel blocks, A picture of the test setup is shown in Fig. 14,
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Fig. 13. The dimensions of the test setup.

The structure is excited with B&K Type 4808 shaker via a push-rod connected to the connection point of two beams. Exci-
tation level of the shaker is manually adjusted by using B&K Type 2712 power amplifier. Acceleration responses are mea-
sured by using B&K Type 4507B uniaxial accelerometer, and the force applied is measured with B&K Type 8230-002 force
transducer which is at the tip of the push-rod. B&K Type 3560C frontend system is used as a data acquisition system in
all measurements.

4.2. Experimental results and application of FDM-NS

In this experiment, point FRFs of the T-beam assembly at the connection point of the cantilever beam and the thin fixed-
fixed beam are measured in transverse direction. In order to determine the frequency range of interest, a quick test with a
random excitation is performed. The frequency range of interest is selected as 20-55 Hz which covers the first mode of the
coupled structure. An adaptive frequency resolution is used in the final measurements. After performing a controlled
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Fig. 14. Picture of the test setup.

displacement amplitude vibration measurement for the constant displacement amplitude of 1 mm, point FRFs at the connec-
tion point of two beams are obtained as shown in Fig. 15, It should be noted here that displacement data is obtained by inte-
grating the measured acceleration data without using a filter.

In Fig. 15, experimentally measured FRFs are given together with the FRF curve fitted to these points. Note that fitted FRF
curve is henceforth used in the calculations as the point FRF of the coupled system at the connection point of two subsystems
(H").

The thin fixed-fixed beam is modeled as a discrete nonlinear spring in transverse direction with a concentrated equivalent
mass. From the material and geometric properties of this beam, the linear part of its equivalent spring stiffness and the
equivalent mass values are analytically calculated as 2558.7 N/m and 21.52 g, respectively. In order to identify nonlinear
stiffness of the thin fixed-fixed beam, the nonlinear identification approach, called Direct Nonlinearity by Describing Func-
tions (DDF) method, proposed by Aykan and Ozgiiven is used [50]. As the first step of DDF method, the nonlinear T-beam
assembly is tested at two different excitation levels. In these tests, the connection point of two beams is excited with forces
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Fig. 15. Point FRFs at the connection point of two beams in transverse direction for the constant.
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of magnitudes 0.25 N and 0.5 N, in turn, and point FRFs of the T-beam assembly are measured at various frequencies as
shown in Fig. 16.

By applying DDF method [50] and using the experimental results given in Fig. 16, the Describing Function (DF) values
representing the nonlinear element connected to the tip of the cantilever beam are calculated. The nonlinearity coefficients
for the real and imaginary parts of DF are found by curve fitting, using polynomials up to the third order. The real and imag-
inary parts of DF which correspond to stiffness and damping nonlinearities, respectively, are plotted in Fig. 17. The coeffi-
cients of DF curves are given in Table 2.

The describing function representing the nonlinear element whose parameters are identified in Table 2 can be formulated
as given below:

-2
10 T T T T T T

Log( | Receptance [m/N] | )
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.4 | [—®— 0.25N - Constant Forcing y
10 T T T L 1 1
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Fig. 16. Point FRFs at the connection point of two beams in transverse direction for excitations of constant magnitudes 0.25 N and 0.5 N.
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Fig. 17. Calculated DF values by DDF Methaod |50, (a) stiffness, (b) damping.

Table 2
Parametric identification results for the nonlinear element.
Linear coelficient (k1) Quadratic coefficient (ka) Cubic coeflficient (ks)
Real part of DF —8.2898e + 05 3.6177¢+08 23771e+11
Imaginary part of DF 1.0504e + 05 ~1.3231e +08 6.8055e + 10
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Fig. 18. Point FRFs at the Lip of the cantilever beam in transverse direction.

eXX) =k X+ ky X2 kg XB (11

where X represents the relative displacement amplitude between end coordinates of the nonlinear element. After identifying
nonlinear parameters of the nonlinear subsystem as given in Table 2, FRFs of the known subsystem are calculated for the
constant displacement amplitude of 1 mm. Then, FDM-NS is used to obtain point FRFs at the tip of the cantilever beam which
is taken as the unknown subsystem. Results are compared with those obtained through shaker test of the cantilever beam
alone in Fig. 18.

As can be seen from Fig. 18, a very good agreement is obtained between the FRF curve obtained via decoupling method
proposed and FRFs directly measured through shaker test of the linear cantilever beam. It can be concluded that FDM-NS can
be successfully and efficiently used for decoupling of a nonlinear subsystem from a given nonlinear coupled system.

5. Discussion and conclusions

In this study, dynamic decoupling problem for nonlinear structures is addressed. To the best of authors' knowledge, this
paper represents the first attempt to decouple a nonlinear or linear substructure from a given coupled nonlinear structure.
The method developed, “FRF Decoupling Method for Nonlinear Systems (FDM-NS)”, can be applied when the nonlinearity in
a system can be modeled as a single element. It is also assumed in this method that the location of nonlinearity is known.

FDM-NS can be applied to all possible cases regardless of the location of the nonlinear element, i.e. nonlinearity can be
either in the known or unknown subsystem, or it can be at the connection. Depending on the location of nonlinearity,
whether in the known or unknown substructure, two different formulations are used. For the case where the nonlinear ele-
ment is at the connection of two subsystems, it is shown how to reduce this problem to that where the nonlinear element is
connected to internal DOFs of the known or unknown subsystem.

FDM-NS is validated through simulated and real experimental case studies, Firstly, two different case studies using
lumped parameter systems and simulated experimental data are presented. In the first numerical case study, FDM-NS is
applied to a MDOF nonlinear system where nonlinearity is in the unknown subsystem. The FRF matrix of the known subsys-
tem is calculated theoretically from known system parameters. Then, sets of linear FRFs are obtained for the coupled system.
Each FRF set corresponds to a case where the relative displacement amplitude of two ends of the nonlinear element is kept at
a specific value. Performing linear decoupling for each FRF set separately yields a different FRF curve for the unknown sub-
system each time. As a result, sets of modal parameters are identified for the unknown subsystem through linear modal
identification, each set corresponding to a different response level of the nonlinear element. By using these sets of modal
parameters, harmonic response of the unknown subsystem is calculated for a given forcing level iteratively. It is shown
in this numerical case study that the nonlinear response predicted by using the decoupling method suggested is almost
the same as the one obtained directly by employing HBM.

In the second numerical case study, FDM-NS is applied to a similar MDOF nonlinear system where this time nonlinearity
is in the known subsystem. In this case, linear FRFs of the coupled nonlinear system, as well as the known nonlinear subsys-
tem are obtained at a chosen specific displacement level of the nonlinear element. Again, simulated experimental data is
used in this study. Then, the unknown subsystem FRFs are obtained by applying linear decoupling. Results obtained show
perfect agreement with the exact ones,
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Finally, an experimental case study is presented in order to show the real-life application of FDM-NS to structural sys-
tems. In this study, a linear cantilever beam is decoupled from the nonlinear T-beam assembly composed of a linear can-
tilever beam attached to the mid-point of a thin beam of which both ends are fixed and therefore introduces a nonlinear
stiffness. The transverse dynamic response of the coupled system is measured experimentally for a specific displacement
level of the nonlinear element through controlled displacement amplitude testing. Then, the fixed-fixed thin beam is taken
as the known nonlinear substructure and it is modeled as a concentrated nonlinear stiffness in transverse direction with a
concentrated equivalent mass and linear stiffness. Linear parameters of this single DOF model of the fixed-fixed thin beam
are theoretically calculated whereas its nonlinear parameters are experimentally identified. After obtaining the known sub-
structure FRFs for the same specific displacement level of the nonlinear element, linear decoupling is performed to obtain tip
point FRFs of the linear cantilever beam. A very good agreement is observed between the predicted FRFs by using the method
developed in this study and those obtained from the shaker test of the cantilever beam alone, even though fixed-fixed thin
beam is modeled as a single DOF mass-nonlinear spring system. Consequently, it can be said that the method proposed is a
powerful tool for nonlinear structural decoupling problems of similar nature.

It is concluded in this study that, although it has some limitations, considering that it is a first attempt for decoupling a
nonlinear structure, FDM-NS may be regarded as a promising tool in chtaining substructure dynamics of a nonlinear struc-
ture, starting from experimentally measured FRFs of the coupled nonlinear structure and experimentally measured or the-
oretically calculated dynamic respense of its known substructure.
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ABSTRACT

The FRF Decoupling Method tor Nonlinear Systems (FDM-NS), recently proposed by the authors of this paper, is a technique
based on predicting the dynamic behavior of a particular substructure of a coupled nonlinear structure from the knowledge of
the measured FRFs of the coupled nonlinear structure and calculated or measured FRFs of the other substructure. The uncoupled
substructure can be linear or nonlinear. The method 13 applicable to systems where the nonlinearity can be represented as a
single nonlmear element. The method has been experimentally verified for a structure having a grounded nonlinear element. In
this work, the applicability of the method to a structure having an internal nonlinearity is demonstrated. The test system used
in this study 1s composed of two cantilever beams where their free ends are connected to each other with two 1dentical thin
beams which introduce an internal nonlincarity to the coupled structure. Tn this test, the FRFs of the coupled nonlinear assembly
are measured in a frequency range for various different constant displacement levels of the nonlinear connection element. Tip
pomt transverse FRFs of one of the cantilever beam, which 1s taken as the known subsystem, are also measured. By using the
decoupling method proposed the modal parameters of the unknown nonlinear subsystem are calculated as a function of the
relative displacement amplitude between ends of the nonlinear cormection element, from which the dvnamic response of the
decoupled subsystem can be caleulated for any harmonic exeitation. In order to demonstrate the accuracy of the method. the
decoupled system 1s connected to a cantilever beam with a different length, and firstly, the FRFs of the coupled new system are
calculated tor constant amplitude harmonic forcing. Then, the calculated FRF curves are compared with those which are directly
measured.

Keywords: Nonlinear decoupling, nonlinear uncoupling, nonlinear inverse substructuring, nonlinear subsystem identification,
nonlinear substructure decoupling

1 INTRODUCTION

Most of the engineering structures are designed as an assembly of several parts and usuzally various alternatives are studied
within design period. It 1s computationally expensive to perform FE analysis each time while reviewing these design
alternatives. Hence, several structural coupling methods have been developed in order to reduce the computational effort in
dynamic reanalysis of such systems [1-19]. Although there are several different coupling methods based on the lincarity
assumption in literature, engineering structures are usually nonlinear by nature. In the past three decades, structural coupling
of nonlinear subsystems has been well investigated and various coupling methods have been developed considering the
nonlinear etfect [20-28].

Likewise, considerable effort has also been devoted to the reverse probleny, Le. struetural decoupling of linear systems. This
problem anses when the dynamic behavior of a subsystem cannot be measured due to ditficulty in measuring and/or exciting
it individually, yet it is possible to test the whole system as well as the other subsystems. The first investigation on decoupling
problem was made by Okubo and Miyazaki [29] where they have proposed an uncoupling method to extract the dvnamics of a
bearing itsell Later, Gontier and Bensaibi [30] presented a time domain method for in situ identification of joints through
modal analysis of their assembled structure. Maia et al. [31] presented a decoupling methodology particularly for the dynamic

# T. Kalaycioglu, H.N. Ozgiiven, FRF Decoupling Method for Nonlinear Systems — An Experimental
Application, in: Proceedings of the 36th IMAC, A Conference on Structural Dynamics, Orlando,
Florida, USA, 2018.
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characterization of joints without making any FRF measurement at the joints. Kalling et al. |32] also worked on the decoupling
problem by performing state-space model identification along with a sensitivity analysis showing possible ill-conditioning due
to inertia ratios at the interface. D° Ambrogio and Fregolent [33] proposed impedance and mobility based approaches that sufters
from ill-conditioning problems due to the internal resonances of the known subsystem with fixed interface. Sjovall and
Abrahamsson [34] proposed a subsystem 1dentification method that is based on reconstruction of the interface forces acting
belween the unknown subsystem and its neighbor. A general {ramework [or dynamic substructuring is provided in [15] and
|16] n which the so called dual domain decomposition technique that allows retaining the full set of global degrees of freedom
{DOI's) by ensuring equilibrium at the interface between substructures is introduced. When perform ing substructuring by using
the dual domain decomposition, the coupling prablem can be directly formulated from [16], whereas a similar formulation for
the decoupling problem is developed and discussed in [35] for collocated appreach where DOFs used to enforce equilibrium
are the same as DOFs used to enforce compatibility, and in [36] and [37] for non-collocated approach where DOFs used to
enlorce equilibrium are not the same as DOFs used 1o enforce compatibihity. Batista and Maia [38] proposed three dafferent
formulations based on the classical decoupling procedure of Jetmundsen et al. | 5] considering the effects of including ditferent
sets of DOFs on the coupled system. They concluded that the formulation that needs measurements at the connection point of
substructures gives the best results. 1D’Ambrogio and Fregolent [39] also proposed the so-called hybrid assembly approach
which gives similar results as dual assembly approach [35] in terms of the predicted FRFs of an unknown subsystem when
applied to an experimental test bed. Dual assembly approach [35] was afterwards used to predict the subsystem dynamics in
machine tools [40, 41], wind turbines [42] and flexible space payloads [43].

Although the dynamic decoupling problem of linear structures 1s well investigated n literature, the first study on dynamic
decoupling problem of nonlinear structures was given quite recently by the authors of this paper [44] The present study is
based on a real-life application of this recently developed method, which 15 called FIIM-NS (FRE Decoupling Method for
Nonlinear Systems). The method can predict the FRFs aof an unknown subsystem, whether lincar or nonlinear, from the
measured FRFs of the coupled nonlinear system and the measured or calculated FRFs of the remaming known subsystem. This
method can be used for any type of nonlinearity provided that nonlinearity can be modeled as a single nonlinear element and
its location is known. In this paper, a nonlinear experimental test rig 1s used in order to demonstrate the validity of FDM-NS in
real hife practice. Note that the experimental Lest system used in this paper differs mainly [rom the one given in [44] in terms ol
the location of the nonlinear element and availability of its parameters.

2 THEORY

In this section. the approaches used in FDM-INS are briefly summarized. The details of the theory of the method can be found
in [44]. The decoupling problem can be studied in three different categores, based on the location of nonlinear element in the
coupled system: The nonlinearity can be either in the unknown or in the known subsystem. or it can connect two subsystems.

2.1  Nonlinearity in the Unknown Subsystem

This is the case where the nonlinearity which can be modelled as a single nonlinear element is in the unknown subsystem and
therefore its parameters are not available. The following approach 1s developed for this case after examining evailable nonlinear
system identification techniques in literature, detailed reviews of which are presented by Kerschen et al. [45] and Noel et al.
[46]. Firstly, the complete FRF matrix of the linear known subsystem for the coordinates of interest can be obtained either by
using its available system parameters or experimentally. Also, sets of linear FRFs of the coupled system for the coordinates of
interest can be measured via controlled response amplitude testing each set of which carresponds to a ditferent displacement
level of the nonlinear element. Then, sets of linear FRE curves for the unknown subsystem can be calculated by applying a
decoupling method for linear systems (dual assembly approach [35] is used in this paper) to each set of coupled system FRT's
measured. Finally, each FRF curve set can be identified through the medal identification technique developed by Richardson
and Formenti [47]. Since each set of coupled svstem FRFEs corresponds to a different displacement level of the nonlinear
element, identified modal parameters of the unknown subsystem FRFs can be expressed as a function of the magnitude of the
relative harmonic displacement between end coordinates of the nonlinear element [48]. As a resull, unknown subsystem FRFs
can be calculated for any level of excitation using the obtained modal parameter variations.

2.2 Nonlinearity in the Known Subsystem

This 1s the case where the nonlinearity which can be modelled as a single nonlinear element is in the known subsystem and
therefore its parameters are available. Firstly, the point and transfer FRFs of the coupled system as well as of the known
subsystem at coordinates that belong to the known subsystem should be obtained for a specific displacement level of the
nonlinear element throughout the frequency range of interest [48]. This will ensure that the nonlinearity matrices [49]. which
are involved in the dynamic stiffness matrices of the coupled system and the known subsystem, will have the same values at
each frequency pont throughout the desired frequency range. While FRFs of the known subsystem can be calculated using its
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available parameters, those of the coupled system have to be measured by performing controlled displacement amplitude
testing. Note that including the same nonlinearity matrix into the dynamic stiffness matrices of the coupled system and the
known subsystem mathematically corresponds to adding an additional stiffhess matrix to the known parts of both systems.
Thus, the problem can be reduced into decoupling of linear systems. So, FRFs of the unknown subsystem at its connection
DOFs can be calculated via direct application of a linear decoupling, approach.

2.3  Nonlinearity at the Connection of Two Subsystems

This is the case where a nonlinear element connects two subsystems. Based on the existence of the nonlinear element
parameters, this problem can be transformed into one of those defined in section 2.1 or section 2.2. If the parameters of the
nonlinear connection element are not available, the nonlinear element will be a part of the unknown subsystem. Then a massless
node can be defined at the end coordinate of the nonlinear element which will be rigidly comnected to the known subsystem
when coupled. So, the problem transforms into the one considered in section 2.1. If the parameters of the nonlinear connection
element are available, the problem can likewise be transformed into the one given in section 2.2.

3  EXPERIMENTAL APPLICATION

In this section, FDM-NS is applied to a nonlinear experimental test system in order to validate it through a real-life application.
This experiment is a practical implementation of the case where nonlinearity is at the connection of two subsystems. Firstly,
FRFs of the coupled system are measured at several different constant harmonic displacement levels of the nonlinear connection
element. Then, FRFs of the known subsystem are also measured via modal testing and FDM-NS is applied. Thus, the modal
parameters of the nonlinear unknown subsystem are calculated as a fanction of the magnitude of the relative harmonic
displacement between end coordinates of the nonlinear element. Afterwards, in order to study the validity of the dynamic
properties of the uncoupled nonlinear subsystem, the nonlinear subsystem is coupled to another bean which is longer than the
previous one, and its FRFs are measured again through modal testing. Finally, measured FRFs of the new subsystem are coupled
with those of the decoupled subsystem by using the modal parameter variations obtained. Calculated FRFs of the coupled new
system are compared with those obtained performing controlled force amplitude testing on it.

3.1.1 Experimental Setup

The setup consists of a long cantilever beam and a shorter one connected tip to tip with each other by means of two thin identical
beams which introduce nonlinear stiffness to the overall system. Both cantilever beams are of St37 steel alloy while the thin
connection beams are of 6061-T3 aluminum alloy. Each cantilever beam is riveted to two thin identical beams in order to have
fixed connections. A view of the experimental setup is given in Fig. 1. The dimensions and technical details of the test system
are also illustrated in the same figure.

\ All dimensions are in mm.

Fig. 1. View of the experimental setup (left) with its dimensions and technical details (right)

It is very difficult to achieve perfect fixed boundary conditions in physical applications. Therefore, both cantilever beams were
manufactured longer than their effective lengths 0£353.5 and 244 mum, respectively, o that the excess lengths could be squeezed
between fixture blocks. A list of equipment used in the experiment is given in Table 1.
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Table 1. List of modal test equipment

Data Acquisition System

Britel&Kjaer Type 3560 C Frontend

Shaker Britel&Kjaer Type 4808
Force Transducer Britel&Kjaer Type 8230-002
Power Amplifier Britel&Kjaer Type 2712
Accelerometer Britel&Kjaer 4507B

3.1.2 The Preliminary Analyses

As explained in previous section, the experimental test system is mainly composed of two cantilever beams with different
lengths. The longer one is taken as the linear known substructure. Two thin identical beams connect two cantilever beams to
each other from their free ends and thus introduce nonlinearity into the coupled system. Due to unavailability of the type and
parameter information regarding the nonlinear connection elements, short cantilever beam together with the two thin identical
beams is considered as the unknown substructure. The aim in this application is to decouple this unknown substructure from
the coupled cantilever beams. Preliminary modal analysis is performed in advance using a commercial FEA software to
determine a proper frequency range for the FRF measurements, so that it includes the fundamental natural frequencies of the
coupled structure and the known substructure. Modeling errors in the FEM of the analyzed structures are minimized by
including the mass loading effects of the sensors in the analyses. The first natural frequency of the coupled cantilever beams is
calculated as 72.2 Hz by performing modal analysis with ANSYS R15.0%. Results are illustrated in Fig. 2 along with the

corresponding mode shape.

B: Modal
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Fig. 2. Fundamental mode of the coupled cantilever beams

On the other hand, the fundamental natural frequency of the longer cantilever beam alone is obtained as 52.9 Hz by performing

modal analysis with ANSYS R15.0%. The ANSYS result is presented in Fig. 3.
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B: Modal
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Fig. 3. Fundamental mode of the long cantilever beam alone

As a consequence, the frequency span to be used in the experiments is determined as 35 to 91 Hz which covers the wide
neighborhood of pre-estimated fundamental resonances of the coupled cantilever beams and the long cantilever beam itself

3.1.3 Experimental Work and Application of FDM-NS

As the initial step, point and transfer FRFs of the coupled cantilever beams in transverse direction (HiU and Hﬁ” , respectively)

are experimentally obtained by employing constant displacement amplitude test procedure given in Fig. 4. An adaptive
frequency resolution is employed during measurements so that the frequency resolution iz further improved in the close

neighborhood of the fundamental rezonance.
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o]

Manual Closed Loop
Displacement Cantral

System
A
NG
S
Forece Transducer and A \i °
Acceleromelars —
A
N 5
, |
o N
Input

Signal
Generator

v—b{ Amplifier H Shaker |

Fig. 4. Experimental procedure followed during constant displacement/force amplitude test

In order to obtain relative transverse displacement between two ends of the thin identical beams, an additional measurement is
taken firom the tip of the short cantilever beam. A number of modal tests are conducted for different amplitudes of the relative

harmonic displacement (0.1, 0.3, 0.5, 0.7 and 1.0 mm) between two ends of the nonlinear element. Measured data points are
given along with FRF curves fitted to them in Fig. 5.
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Fig. 5. Measured transfer FRFs (symbolg) and fitted FRF curves (lines) of the coupled system at internal point (i) and at
connection point (j) in transverse direction for various response levels of the nonlinear element

Asthe next step, tip point FRFs of the long cantilever beam are measured by conducting a modal test under transverse excitation.

Results are shown in Fig. 6 in the form of a fitted FRF curve to experimental data.

Lag( | H 1 1mm))

T T

| = cantilever beam - 353.5 mm long

10°

Fig. 6. FRF curve fitted to measured point FRFz of the known subsystem alone at its coupling DOF (j) in transverse direction
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FRFs of the unknaown substructure at its coupling DOF are obtained for various different harmonic displacement amplitudes of
the nonlinear element by applying FDM-NS. Dual assembly approach [35] is used during decoupling calculations. Calculated
unknown substructure FRFs are shown in Fig. 7 together with those of the coupled structure given in Fig. 5.
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03mem -H Y
0.3mm -
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07mm -H Y
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Log(Receptance [m/N])

e 1 Omm - H Y

1.0mm -

40 50 60 70 80 90
Frequency [Hz)

Fig. 7. Calculated point (above) and transfer (helow) FRFs of the unknown subsystem (lines) and those of the coupled system
(dots) under transverse excitation at connection point (j)

Not surprisingly, decoupling of the nonlinear subsystem from coupled nonlinear system by using a single linear FRF curve for
long cantilever beam and several equivalent linear FRF curves for the coupled nonlinear structure, leads to several FRF curves
each of which again corresponds to different displacement levels of the nonlinear connection element. It should be emphasized
that FRF curves obtained for the unknown subsystem includes the nonlinear connection dynamics which could not be directly
measured.

Each FRF curve obtained for the unknown subsystem is identified in order to construct the modal model of it as explained in
section 2.1. Modal parameters corresponding to each FRF curve are extracted using a linear modal identification as they show
linear behavior. Modal parameters in the form of natural frequencies, modal loss factors and modal constants of the unknown
subsystem are identified by using the formulation suggested by Richardson and Formenti [47]. Since a modal constant is a
complex quantity for a damped system, its magnitudes and phases are identified separately. Modal parameters related to the

first mode of the unknown nonlinear subsystem are identified for point (H;I ) and transfer (Hﬂ ) FRFs. Identified values for

various values of the relative harmonic displacement amplitude of the nonlinear element are shown in Fig. 8 and Fig. 9.
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3.1.4 Verification of FDM-NS

In this section, it is aimed to verify the decoupling results obtained via FDM-NS in section 3.1.3. However, as the nonlinearity
is due to the tension in thin beams, modal testing of the unknown subsystem itself will not give the correct dynamics of this
subsystem. Therefore, the identified nonlinear subsystem is coupled to a longer cantilever beam and a coupled new systern is
obtained as shown in Fig. 10, and its dynamic response is predicted by using the decoupled subsystemn dynarmics, so that it can
be compared with measured values for the verification of FDM-NS.

N7
~
\V All dimensions are in mm.

Fig. 10. Dimensions and technical details of the new test system

In this new test systern, the decoupled subsystem is coupled to a longer cantilever beam of length 378 mm. Firstly, FRFs of 378
mm long cantilever beam alone are measured at its free tip by performing modal testing. The results obtained are given in Fig.
11 along with those obtained for 353.5 mm long cantilever beam used in section 3.1.3.
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Fig. 11. FRF curves fitted to measured point FRFs of the known subsystems (both original and new) at their coupling DOF
(j) in transverse direction

As the next step, FRFs of the decoupled subsystem and those of the 378 mm long cantilever beam are coupled in order to obtain
the response of the coupled new system. It should be noted that an iterative solution is required for the computation, as the
modal parameters of the decoupled subsy stem obtained in section 3.1.3 are dependent on the displacement level of the nonlinear
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element. Thus, the response of the coupled new systemn is numerically obtained for a harmonic excitation of magnitude 0.4 N,
applied transversely to the connection point j.

Finally, point FRFs of the new test system are measured again for a harmonic excitation of amplitude 0.4 N applied to the
connection point j in transverse direction. In this test, the same procedure given in Fig. 4 is followed where harmonic forcing
level is controlled by manually regulating the voltage output of the power amplifier at each frequency step this time. Measured
and numerically calculated point FRFs of the coupled new system at its coupling DOF are compared in Fig. 12. A zoomed
comparison around resonance is given in Fig. 13.
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Fig. 12. Measured and calculated point FRFs of the coupled new system at its coupling DOF for harmonic forcing amplitude
of 0.4 N in transverse direction
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Fig. 13. Measured and calculated point FRFs of the coupled new system at its coupling DOF for harmonic forcing amplitude
of 0.4 N in transverse direction — zoomed in the frequency range of 60-67 Hz

It can be observed from Fig. 12 and Fig. 13 that nonlinearity introduces softening stiftness, and measured response agrees quite
well with those calculated through forward and backward frequency sweeping, particularly around frequency that jump occurs.
Small discrepancy observed between the magnitudes of the resonances is believed to be due to the inaccuracies in extracting
the loss factors from experimental FRFs. Because, unlike the case in linear systems, several controlled displacement amplitude
tests are performed on the coupled nonlinear system, and therefore quite less number of frequency points had to be used in
measuring FRFs, due to technical issues. Although frequency resolution is further increased in the immediate vicinity of the
resonance, it may nat be good enough to catch the frequency where the peak amplitude occurs. As a result, the unknown
subsystem FRFs obtained through decoupling using these measured FRFs may involve some errors which may be due to the
misidentified loss factor values.
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4  DISCUSSION AND CONCLUSIONS

In this work, the FRF Decoupling Method for Nonlinear Systems (FDM-NS) proposed recently [44] is applied to a test system
in order to show its real-life applicability and validity. This method, which is believed to be the first method proposed for
nonlinear decoupling, is capable of decoupling nonlinear systems having a nonlinearity of any type that can be modeled as a
single element. Yet, the method allows the nonlinearity be either in the known or unknown subsystem, or connect both
subsystems.

The proposed technique is applied to an experimental test system composed of two cantilever beams coupled with two thin
identical beams. This study is an implementation of the case where two linear subsystems are coupled with an unknown
nonlinear connection element. First, FRFs of the coupled system are measured through controlled displacement amplitude
testing, while those of the known cantilever beam are obtained via classical modal testing. Then, modal parameter variations
of the unknown subsystem are obtained as a function of the displacement level of the nonlinear element by applying FDM-NS.
In order to verify these results, the experimental test system is modified such that the length of the known subsystem is increased
whose FRFs are again obtained via classical modal testing. Then, the FRF's of the new system are calculated for a constant
amplitude harmonic force by using the modal parameter variations of the unknown subsystem along with FRFs of the modified
known subsystem. Finally, they are compared with those directly measured. Although the calculated results show slight
deviations from the measured values around resonance, it is concluded that the agreement is quite well.

In this study, FDM-NS is verified for a practical case, where the nonlinear element couples two linear structures such that the
unknown nonlinear subsystem cannot be tested alone. Tt can be concluded that FDM-NS proves itself as a promising tool in
obtaining substructure dynamics of a nonlinear structure.
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