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ABSTRACT 

 

POST-BUCKLING BEHAVIOUR OF METALLIC SKIN-STRINGER 

ASSEMBLIES AND BUCKLING OF COMPOSITE FLAT PANELS 

 

 

Aydın, Enes 

M.S., Department of Aerospace Engineering 

Supervisor: Prof. Dr. Altan Kayran 

 

March 2018, 246 pages 

 

Stiffened thin panels are very common and important structural elements in aerospace 

structures because of the weight and stiffness advantages they provide. The stiffener 

section is important to determine the support condition that the stiffener provides on 

the unloaded edges of the panel. In the first phase of the thesis study, the effect of the 

boundary conditions on the buckling coefficients of stiffened metal flat panels is 

investigated utilizing finite element and empirical approaches. Empirical approaches 

are limited for panels with classical boundary conditions. On contrary, finite element 

analysis is more accurate however costly. A database is prepared for the buckling 

coefficients of the selected skin-stringer combinations by finite element analysis to set 

up an artificial neural network and response surface for fast calculation of the buckling 

coefficients of stiffened panels. In the second phase of the study, a comparative study 

is presented on the post-buckling load redistribution in stiffened panels modeled with 

and without material nonlinearity. The effective widths of the panel are calculated right 

before the collapse of the panel using the load distributions determined by the finite 

element analyses of the panel models with and without material nonlinearity and 

comparisons are made with the effective width calculated by the classical effective
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width formulation. In the final phase of the study, composite flat plate buckling is 

investigated utilizing finite element and analytical approach. A comparison study is 

done for composite buckling coefficients using various geometric properties of flat 

panels, boundary conditions, ply thicknesses and orientations. At the end, buckling 

charts for each ply orientation and boundary conditions are generated utilizing finite 

element analysis results. 

 

Keywords: Metal Buckling, Stiffened Panels, Composite Buckling, Effective Width, 

Artificial Neural Network, Finite Element Analysis 
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ÖZ 

 

 KİRİŞLE GÜÇLENDİRİLMİŞ METAL YAPILARIN BURKULMA 

SONRASI DAVRANIŞI VE KOMPOZİT DÜZ PANELLERİN 

BURKULMASI 

 

 

Aydın, Enes 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Altan Kayran 

 

Mart 2018, 246 sayfa 

 

Kirişle güçlendirilmiş ince paneller, sağladıkları ağırlık ve sağlamlık avantajlarından 

dolayı havacılık yapılarında çok yaygın ve önemli yapısal öğelerdir. Kirişin şekli, yük 

uygulanmayan kenarlarda bulunan kirişlerin sağladığı desteğin belirlenmesi için 

önemlidir. Tez çalışmasının ilk aşamasında, ampirik ve sonlu elemanlar yaklaşımı 

kullanılarak, sınır koşullarının kirişli metal panellerin burkulma katsayıları üzerindeki 

etkisi incelenmiştir. Ampirik yaklaşımlar, panellerin klasik sınır koşulları ile 

sınırlandırılmıştır. Aksine, sonlu elamanlar analizi daha doğru fakat zaman 

bakımından maliyetlidir. Sonlu elemanlar analizi ile kurulacak olan yapay sinir ağı ve 

yüzey tepki yöntemi kullanılarak, seçilen kabuk-kiriş kombinasyonlarının burkulma 

katsayılarını hızlı bir şekilde hesaplamak için bir veri tabanı hazırlanmıştır. Çalışmanın 

ikinci aşamasında, kirişli panellerde burkulma sonrası yükün yeniden dağılması 

karşılaştırmalı bir çalışma sunulmuştur. Yapılan çalışma da yapı doğrusal ve doğrusal 

olmayan malzeme kullanılarak modellenmiştir. Panelin etkin genişliği, modelin sonlu 

elemanların analiziyle belirlenen yük dağıtımını kullanarak, malzemenin doğrusal olan 

ve olmayan yapının burkulmasından hemen önce hesaplanmıştır. Ek olarak sonlu
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elemanların analizi ile hesaplanan etkin genişlik, klasik etkin genişlik formülüyle 

karşılaştırılmıştır. Çalışmanın son aşamasında, sonlu elemanlar yaklaşımı ve analitik 

yaklaşım kullanılarak kompozit düz plakaların burkulması incelenmiştir. Kompozit 

düz panellerin burkulma katsayıları çeşitli geometrik özellikleri, sınır koşulları, tabaka 

kalınlıkları ve dizilişi kullanılarak karşılaştırılmalı bir çalışma yapılmıştır. Çalışmanın 

sonunda, her tabaka dizilişi ve sınır koşulları için burkulma grafikleri, sonlu elemanlar 

analiz sonuçları kullanılarak üretilmiştir. 

Anahtar Sözcükler: Metal Burkulma, Güçlendirilmiş Paneller, Kompozit Burkulma, 

Etkin genişlik, Yapay Sinir Ağı, Sonlu Elemanlar Analizi  
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CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

1.1. Motivation of the Study 

Stiffened thin panels are very common and vital structural elements in aerospace 

structures because of the weight and stiffness advantages that they provide. Stiffened 

panels, as shown in Figure 1.1, are built by thin walled panels supported by stiffeners. 

Up to 1980s, stiffened panels are only made from Aluminum material. The reason is 

the construction of aluminum based structure is feasible by verified design methods, 

validated analysis tools with an enormous measure of test outputs. In addition, 

aluminum based structures’ strength properties and failure scenarios are studied since 

the end of the eighteenth century. However, in recent decades, advanced materials like 

fibrous carbon composites have attracted great interest for use in aerospace industry 

owing to their favorable properties, such as high specific strength and stiffness. For 

the last thirty years, through the onset of composite materials, many studies have been 

performed to replace the conventional aluminum based shell structure with composite 

materials.  

 



2 

 

Figure 1.1: Thin fuselage stiffened panel 

However, independent of the material strength, stiffened panel configurations in the 

aviation industry tends to buckle because of the thin panels. The main reason of panel 

buckling is the compressive stresses in the stiffened thin panels. Due to the 

compressive stresses, thin panels may buckle long before the limit load of the panel. 

Therefore, local buckling is usually allowed in the design of the aerospace structures. 

Once the critical buckling load is reached, the panel is incapable of supporting any 

further load, and stiffeners carry the additional loads which the buckled panel cannot 

resist. Hence in the aerospace industry, stiffeners are designed to support panels when 

panel buckling is encountered. Therefore, determination of buckling load of panels and 

the post-buckling behaviour of skin-stringer assemblies have become important topics 

to design an aircraft vehicle. 

The stiffener section is also important to determine the support condition that the 

stiffener provides on the unloaded edges of the panel. Even though, a lot of similar 

studies about linear metal buckling have been performed in aircraft industry, this 

research is done because of the lack of the investigation about the stringer section 

effect on the linear metal buckling. In the literature, analytical solutions obtained using 

classical boundary conditions allowed for the preparation of buckling coefficient 

charts with various loading conditions. However, in reality, neither simply supported 

nor clamped conditions are sufficient to describe the behavior of the true edge 

condition of stiffened panels, because the actual stiffener provides a condition which 

is in between these two. Therefore, buckling coefficient graphs provided in the 
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literature are not sufficient to use effectively in aerospace structures which 

predominantly have stiffened thin walled panels. To have an optimum skin-stringer 

assembly design, the structure must be modelled with the correct boundary conditions. 

Post buckling behaviour of skin-stringer assemblies is also very crucial in aerospace 

structures since local buckling of panels may be allowed in some design practices. As 

mentioned before, once the critical buckling load is reached, the skin of a stiffened 

panel loses its load carrying capacity and stiffeners carry the additional loads which 

the buckled skin cannot carry. Besides the stiffeners, the effective section of the skin 

panel also carries small proportion of the load applied, but depending on the skin-

stringer assembly the load carried by the skin varies. Load carrying capacity of a 

stiffened panel is significantly affected by the design of the skin-stringer assembly. 

Until the local buckling of the skin, both middle portion of skin and skin part at the 

stringer location have the same stress level. After the local buckling of the skin panel, 

which is referred to as the post-buckling stage, stress distribution over the skin panel 

is nonlinear. Because of the buckled skin, that is no longer effective to carry the 

additional compressive load, the additional load is redistributed to the adjacent stiffer 

structural members which are stringers and frames in semi-monocoque structures. 

Figure 1.2 shows the actual load distribution over the panel before, after buckling and 

equivalent load distribution over the panel after buckling. In the classical approach, in 

order to handle the non-uniform load over the skin panel after buckling, equivalent 

width concept has been used commonly. Equivalent width pertains to the part of the 

skin that is assumed to carry the uniform load. However, in this method, effect of 

material nonlinearity is not taken into consideration. Same as the linear buckling 

method, classical boundary condition assumption is made in the literature in 

conjunction with the effective width method. However, in reality, classical boundary 

conditions are not sufficient to describe the behavior of the true edge condition of 

stiffened panels, because the actual stiffener provides a condition which is in between 

these two. Therefore, effective width formulation provided in the literature is not 

sufficient to use effectively in aerospace structures. To measure the true load capacity 

of the skin-stringer assembly design, the structure must be modelled with the correct 

boundary conditions in the post-buckling stage. 
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Figure 1.2: Load distribution in the skin-stringer assembly before and after buckling [1] 

Furthermore, for composite panels, buckling charts are required to for faster evaluation 

of buckling response of composite panels. To save the time in the aviation industry, 

parametric studies has to be done for specific configurations which are commonly used 

in this industry.  
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1.2. Scope of the Study 

In this study, the two parts of this research focuses on the buckling and post-buckling 

behaviour of the unstiffened and stiffened panels applied to uniaxial compressive 

loadings. In the first part of the research, a database is prepared for the buckling 

coefficients of the selected skin-stringer combinations. Then, the differences between 

the buckling coefficients of the real skin-stringer geometries and the analytically 

determined buckling coefficients which rely on classical boundary conditions are 

identified. Created database is processed with the ANN and RS methods to reach the 

result quickly compare to finite element analysis. In the second part of the research, 

load distribution of the skin-stringer assembly in the post-buckling stage is 

investigated. Stringer section effect on the load distribution and load capacity of the 

skin-stringer assembly is the main objective of the second part of the thesis study. In 

the third part of the thesis, buckling coefficient charts for unstiffened composite panels 

are obtained. To restrict the panel edges, classical boundary conditions are used in the 

modelling of the unstiffened panel. In this part, each chart has a specific laminate 

orientation. These charts are obtained with 3 different methods. These methods are the 

classical laminate plate theory (CLPT), first order shear deformation theory (FSDT) 

and finite element analysis. Analytical methods’ results are compared with the finite 

element results in this part. 
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1.3. Content of the Study 

• In Chapter 2, brief information about buckling formulation and buckling 

procedure in finite element analysis are given. Buckling phenomenon for 

unstiffened panels is explained and the buckling coefficient graphs are 

described. Determination of buckling coefficients of unstiffened panels with 

classical boundary conditions by finite element analysis is described. After the 

verification of unstiffened panel boundary conditions with analytical solution, 

stiffened panel modelling is explained. Using this modelling technique, 2000 

analysis are done for each stringer section type. At the end of the chapter, 

artificial neural network and response surface for fast determination of 

buckling coefficients are constructed. 

• In Chapter 3, firstly, brief information about post-buckling stage is given. In 

addition, determination of the baseline skin-stringer assembly is explained. 

Then, post-buckling analysis of skin-stringer assemblies using linear and 

nonlinear material models is studied. Methodology of effective width 

calculation by the finite element solution and empirical solution is presented. 

At the end of the chapter, results for different stringer section types are 

presented.  

• In the Chapter 4, firstly, brief information and formulation about the classical 

laminated plate theory (CLPT) and the first order shear deformation theory 

(FSDT) is given. Buckling analysis of specially orthotropic plates under the 

compressive load using CLPT and FSDT is explained. Finite element model of 

the composite plates is described. Using the finite element model results, 

buckling coefficient charts are obtained for each ply orientation and thickness 

of composite plates.  Finally, buckling results obtained by the CLPT and FSDT 

theories are presented and comparisons are made with finite element results. 

• In the Chapter 5, the results are discussed. In addition, summary and the future 

work of the study are given in this part. 
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1.4. Literature Survey 

Stiffened thin panel configuration is considered to be very efficient way to carry the 

loads in aerospace structures because of the weight and stiffness advantages they 

provide. Accurate analysis of buckling and post-buckling behaviour of skin-stringer 

assemblies used in aerospace structures is very crucial, because local buckling is 

permitted in some designs practices of aerospace structures.  

In the first and second phases of the thesis study, buckling and post buckling behaviour 

of the stiffened thin panel with metallic material properties are investigated. In the 

literature, there are many studies about buckling and post buckling phenomena. A few 

of them are mentioned in this sub-chapter. 

In theory, buckling refers to the loss of stability of a component and it is commonly 

independent from the material strength. In practically, due to compressive stresses in 

the stiffened thin panel, thin panel may be buckled long before the limit load of the 

panel. Therefore, local panel buckling is usually allowed in the design of the aerospace 

structures. 

Study about the plate buckling started in the early of the 19th century. Claude-Louis 

Navier derived the stability equation for a rectangular thin plate. This derivation is 

based on Gustav Robert Kirchhoff assumptions in 1822 [2]. In 1891, the critical 

buckling stress equation for a rectangular thin plate with simply supported edge 

condition under uniaxial compression load is formulated by Bryan [2]. In his study, 

energy method is used to determine the critical load. One of the known detailed study 

about the buckling is written in the NACA Handbook of Structural Stability document 

[3]. This handbook presents a rather comprehensive review and compilation of theories 

and experimental data relating to the buckling phenomena. The various factors 

governing the buckling of flat plates are reviewed and results are summarized in 

comprehensive series of charts and tables in this handbook. In 1925, Timoshenko [4] 

also solved the same problem using another method. He assumed the plate to be 

buckled into several sinusoidal half waves in the direction of compression. He also 

explored the buckling of uniformly compressed rectangular plates that are simply 
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supported along the edges perpendicular to the direction of applied load and other two 

edges subjected to various end conditions. Results have been reported in standard texts 

[4, 5, 6]. 

In the aerospace industry, stiffeners are designed to support panels when panel 

buckling is encountered. The stiffener section is important to determine the support 

condition that the stiffener provides on the unloaded edges of the panel. In the 

literature, analytical solutions obtained using classical boundary conditions allowed 

for the preparation of buckling coefficient charts with various loading conditions [1]. 

These charts also show the change in buckled shape as the boundary conditions are 

altered on the unloaded edges from free to fully restraint condition. Classical boundary 

conditions are commonly known as free, simply supported and clamped. In reality, 

neither simply supported nor clamped conditions are sufficient to describe the behavior 

of the true edge condition of stiffened panels, because the actual stiffener provides a 

condition which is in between these two. 

In airframe structural design data book [6], various wing design loads are given as 

shears, bending moments and torsion which results from air pressures and inertia 

loadings. In addition to these types of loads, buckling coefficients are given for each 

boundary conditions and geometric panel description.   

In the study of the Paul et al. [2], a standard transport aircraft wing is considered and 

buckling analysis is carried out. The initial design is found to buckle. So, several 

design modifications were made to make the design safe against buckling. In this 

study, FE analysis and theoretical study are performed to get realistic results in the 

wing buckling analysis. Yu [7] has studied the buckling behavior of rectangular plates 

subjected to intermediate and end loads. He considered both elastic buckling and 

plastic buckling behavior of plates. Plate considered is simply supported along two 

opposite edges that are parallel to the direction of applied loads. The two edges may 

take any other combination of clamped, simply supported and free edge boundary 

conditions. Study also investigates the effect of various plate aspect ratios, 

intermediate load positions, boundary conditions on buckling factors [7]. In the study 

of the Muameleci [8], linear and nonlinear buckling analyses of plates with and without 



9 

cut-out using finite element method are investigated. Various classical boundary 

conditions and loading conditions are used to model the shear web beam structures. 

The main point of this study is the investigate the buckling behaviour of plates but also 

the capabilities of the MSC Nastran and ABAQUS finite element tools for performing 

linear and nonlinear buckling analyses. Riks [9] has applied finite strip method for the 

calculation of the buckling load of stiffened panels in wing box structures. This article 

describes the implementation of the finite strip method. The finite strip method extends 

the scope of the analysis of the determination of the post buckling stiffness of the 

panels. Finite strip model (one dimensional) is the simplification of finite element 

model (two dimensional). Some of the computer implementations of the finite strip 

method are BUCLASP [10] and VIPASA [11]. In the study of Riks, the method used 

for the analysis of the finite strip model is PANBUCK which has the ability to analyze 

the initial post buckling behavior too.  

In the literature, there have been many studies on the post-buckling behaviour of skin-

stringer assemblies. The paper of Murphy [12] reports on the development of a 

modeling approach to increase the accuracy of the global model, accounting variations 

in stiffness due to nonlinear structure behavior. In the study of Lync and Sterling [13], 

a finite element methodology has been presented for the compressive post-buckling. 

In this study, test data are compared to results of four different finite element modelling 

approaches for the skin-stringer assembly. Moreover, in the study of Weimin et al. 

[14], experimental and analytical study results of post buckling simulation of an 

integral aluminum fuselage stiffened panel have been presented. In this study, load is 

applied as axial compression load and the panel is a curved panel. Rhodes [15] 

examined some of the research on the elastic and plastic post-buckling behaviour of 

plates and plate like structures. In this study, post buckling behaviour of individual 

thin plates is governed by non-linear differential equations set up by Von Karman. In 

the study of the Eirik Byklum et al. [16], a computational model for the analysis of 

global buckling and post-buckling of stiffened panels has been derived. The model 

was developed as part of a tool for buckling phenomenon of stiffened panels. It is 

formulated using large deflection plate theory and energy principles. Deflections are 

assumed in the form of trigonometric function series. In addition, the principle of 
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stationary potential energy is used for deriving the equilibrium equations. For the 

loading case, lateral pressure is accounted for by taking the deflection as a combination 

of a clamped and a simply supported deflection mode. The global buckling model is 

based on Marguerre’s nonlinear plate theory, by deriving a set of anisotropic stiffness 

coefficients to account for the plate stiffening. Local buckling is treated in a separate 

local model developed. The anisotropic stiffness coefficients used in the global model 

are derived from the local analysis. Together, the two models provide a tool for 

buckling phenomena of stiffened panels. Any combination of biaxial in-plane 

compression or tension, shear, and lateral pressure are analyzed in this study. The 

procedure is semi-analytical in the sense that all energy formulations are derived 

analytically, while a numerical method is used for solving the resulting set of 

equations, and for incrementing the solution. The load deflection curves produced by 

the proposed model are compared with results from nonlinear FEM. In the study of the 

Kopecki et al. [17], the results of experiments and numerical analyses of thin-walled 

shells used as components of aircraft structures are presented. In this study, integral 

rigs are used to stiffened the structure. A comparative analysis has been carried out 

between the suggested design solution and the reference structure. In the experimental 

part of the study, an optical scanner with digital image correlation has been used. 

Nonlinear numerical analyses have been carried out with the use of software based on 

the finite element method. The suggested method for verifying the results of non-linear 

numerical analysis by applying the principle of equivalent solutions seems to be 

effective, and the obtained results are sufficiently credible. This constituted the 

foundation for carrying out an initial comparative analysis of the physical properties 

of the load-bearing structures in question. In the light of this analysis, the solution 

based on the use of integral ribs seems to be very promising from the point of view of 

its application in load-bearing aircraft structures. 

The study of the Graciano et al. [18] is aimed at studying the influence of initial 

geometric imperfections on the post-buckling behavior of longitudinally stiffened 

plate girder webs subjected to patch loading. A sensitivity analysis is conducted herein 

using two approaches (deterministic and probabilistic) in order to investigate the effect 

of imperfection shape and amplitude on both, the post-buckling response and ultimate 
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strength of plate girders under patch loading. According to the results from the 

deterministic approach, the amplitude of the imperfections in most cases leads to a 

reduction in patch loading resistance. This sensitivity analysis is performed by means 

of nonlinear finite element analysis. At first, the initial shape imperfections are 

modeled using the buckling mode shapes resulting from an eigenvalue buckling 

analysis. Afterwards, the amplitude of the buckling shapes for the various modes is 

varied, and then introduced in the nonlinear analysis. The results also showed a more 

complex interaction between the imperfection shapes and the computed resistances. 

Nevertheless, the shape of the initial imperfection that results in the lowest strength 

for a girder differs for each size of imperfection and stiffener location. It is also 

important to point out that initial imperfection for patch loaded girder webs can be 

modeled using a shape resembling either the first eigen mode or a sinus-wave. 

Load carrying capacity of a stiffened panel is vital topic and significantly affected by 

the design of the skin-stringer assembly. Until the local buckling of the skin, both skin 

and stringers have the same stress level. After the local buckling of the skin panel, 

which is referred to as the post-buckling stage, stress distribution over the stiffened 

panel is nonlinear. Because of the buckled skin, that is no longer effective to carry the 

additional compressive load, the additional load is redistributed to the adjacent stiffer 

structural members which are the stringers and frames in semi-monocoque structures. 

Figure 1.3 shows the top view of skin-stringer assembly under compressive loading. 

Figure 1.4 and Figure 1.5 show the load distribution over the panel before and after 

buckling, respectively. As shown in Figure 1.5, the section of skin panels, at the 

stiffener attachment lines, do not buckle. This means that the stiffener and skin still 

have the same strain level at the attachment line. However, at the mid-panel, skin panel 

can no longer carry the additional load after the panel buckling [19]. In the classical 

approach, in order to handle the non-uniform load over the skin panel after buckling, 

equivalent width concept has been used commonly [1]. Equivalent width pertains to 

the part of the skin that is assumed to carry uniform load. In the classical approach, 

effective width concept has been widely used in the post-buckling analysis of skin-

stringer assemblies [1, 6].  
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Figure 1.3: Top view of compressive loaded skin-stringer assembly 

 

Figure 1.4: Load distribution before the panel buckling [1] 

 

Figure 1.5: Load distribution after the panel buckling [1] 

Mert [19] has offered a methodology to calculate the effective width of skin panels 

and internal loads through the iterative application of the linear static finite element 

analysis. In the study of the Bedair [20], the effective width concept has been 
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investigated since it is widely used in engineering practice for the computation of 

ultimate strength of slender members. The paper of Osama [20] presents analytical 

closed form expressions for the computation of effective width of thin plates under 

non-homogeneous in-plane loading. The longitudinal edges are assumed to be straight 

and free to translate in the plane of the plate. In this study, it is considered that the 

proposed expressions are very useful for limit state design of slender I-sections of 

beam columns or channel sections under this general type of loading. The unloaded 

edges were assumed to be straight and free to translate in the plane of the plate. The 

compatibility differential equation is first solved analytically to obtain a closed form 

solution for the stress function. The equilibrium differential equation is then solved 

approximately using the Galerkin method. Based on the characteristics of the post-

buckling stress field, analytical expressions for the effective width were proposed. The 

sensitivity and mechanics of the effective width to the stress gradient parameter was 

shown. The resulting analytical expressions have simple forms, suitable for hand-

calculation and avoid the cost and effort that any numerical non-linear analysis may 

require. In the study of the Dannemann [21], the author presents a complementary 

criterion for effective width which is based on tests performed on thin trapezoidal 

sheets, when flanges buckle in the elastic range. This method compares well with the 

observed behavior and ultimate strength of test specimens. The author's suggestion is 

that for inelastic buckling the AISI and correlated design codes are valid but when 

sheets are very slender and they buckle elastically, a modified effective width criterion 

has to be applied. This proposed method not only shows excellent correlation with 

tests, but also facilitates a rational agreement between stiffened and unstiffened flange 

behavior when plates are very thin, fulfilling physical requirements not accomplished 

by the classical effective width method. In addition, this method allows the calculation 

of the post buckling strength of flanges and webs by using physically measurable 

values instead of empirical parameters. The effective width concept is a classical 

resource for representing local buckling effects on stiffened flat flanges. There has 

been a great deal of testing and investigations on this matter. The most important 

contribution to the adoption of this method was proposed in Winter [22] included by 

AISI in their Specification of Light Gage Structural Members of·1946. As known, the 
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effective width concept is based on Von Karman's proposition of 1932 where the 

uneven stress distribution of buckled flanges was replaced by evenly stressed fictitious 

strips along the corners of the flanges. This structural artifice has shown excellent 

results in design practice of metal structures. A great number of tests in different 

countries confirm the accuracy of this method mainly in plates buckling in the inelastic 

range, but from time to time some discrepancies have been detected and published for 

flanges buckling elastically. 

Finite element modelling and analysis of the actual skin-stringer assembly takes very 

long time in the design optimization process. One of the efficient method to optimize 

the structure is the artificial neural network (ANN). In the literature, there are a few 

studies about the prediction of the failure modes using ANN.  

A study of optimization of a compression member conducted by Sheidaii and 

Bahraminejad [23] is an example of the use of ANN in optimization. In the study, load-

displacement relation of different types of columns was obtained using analytical 

methods. The results were utilized to form a data set to train an ANN. Similar to the 

study of Sheidaii et al., ANN is used to predict bolt reaction force and average 

equivalent flange stress without using finite element model in the study of Yıldırım 

[24]. In this study, a bolted flange design tool is created by using ANN. As the general 

sense, a data set was created with finite element model parameters and corresponding 

analysis results. The data set was used in training, validating and testing of ANN. At 

the end, the ANN results were compared with FEA and analytical methods. 

Comparison results are sufficient to use the ANN tool in the further design of bolted 

flanges. Another optimization study which is written by Gomes et al. [25] was 

conducted on anisotropic laminated composites. In this study a genetic algorithm and 

two ANNs were used to optimize the design of a laminated composite. It was stated 

that the use of these methods leads to accurate enough solutions and decrease the time 

required for the design process. Gajewski et al. [26] studied the use of the ANN for 

the optimization of a thin-walled structure. FEA results of the structure were used to 

train the ANN. This study is another example that the ANN is an appropriate tool in 

design and analysis of airframe structures.  
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Buckling and collapse loads of panels have also been studied to create analysis tools 

based on ANN. Sadovský and Soares [27] obtained post-buckling strength of a thin 

rectangular plate by creating an ANN as a function of initial imperfections. The created 

ANN was found to be able to provide reasonable collapse load results. The post-

buckling optimization by using ANN was utilized for stiffened panels in a study of 

Lanzi and Giavotto [28]. The study used different optimization methods including 

ANN to optimize composite stiffened panels subjected to axial compression. The 

results were verified by tests and it was seen that accurate results can be obtained for 

both the buckling load and the collapse load. Mallela and Upadhyay [29] also used the 

ANN to calculate the buckling load. The study was focused on buckling load 

prediction of composite stiffened panels working under shear loads. FEA results for 

different composite structures were collected in a database to train an ANN tool. An 

efficient tool that can be used in optimization was created in the study. In the study of 

Cankur [30], an ANN based structural analysis tool to predict the buckling and collapse 

loads of the stiffened panels is created. The ANN is trained by using a database created 

with the input parameters and the FEA results of 1440 metallic skin-stringer 

assemblies subjected to uniaxial compression. The first buckling load and the collapse 

load are extracted from the nonlinear FEA results of the assembly. Using the results of 

the same analysis for the buckling and the collapse load, the time required for the 

generation of the training database is significantly reduced. Also, the first buckling 

load is obtained with an enhanced accuracy by using nonlinear analysis instead of 

linear buckling analysis. 

In the final phase of the thesis study, buckling behaviour of the unstiffened thin 

composite panels is studied. In the last three decades, there have been many studies 

performed on composite buckling. Same as the metallic part, some of the studies about 

the composite buckling in the literature are presented in this sub-chapter. 

In the study of the Yang [31], CLPT and FSDT analysis methods are investigated for 

composite plate buckling. These methods are developed for plates subjected to uniaxial 

compression loading and both simply supported and clamped edge plates have been 

studied. Analysis methods for plates subjected to biaxial compression loading, in-
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plane shear loading and combined loading, with simply supported edges have been 

studied. To validate the analysis methods, FE analyses is performed using ANSYS. 

The methods based on FSDT give a better estimation than CLPT. According to Qiao, 

these methods are suitable for thin and moderately thick plates. Furthermore, in this 

study, the considered methods are limited to linear case. In the study of the Masood et 

al. [32], a composite skin-stringer panel was designed for compression testing under 

axial compression loads beyond initial skin buckling. The panel was fabricated using 

Carbon/Epoxy prepreg through autoclave moulding process.  A finite element model 

was developed to predict the buckling and post-buckling response of the panel. Digital 

Image Correlation captured the onset of skin buckling and deformations/mode shapes 

in the post-buckled regime. Experimental observations were then correlated with 

numerical simulations. In the post buckled regime, severe bending and twisting of the 

skin and stringers were observed, resulting in complete loss of global axial stiffness of 

the panel. It is investigated that stress at the post buckled regime in the panel could 

lead to delamination, debonding or fiber failures. Local skin buckling is also confirmed 

through strain measurements using a number of strain gages bonded on the panel skin. 

In the study of the Abramovich and Weller [33], an extensive test series on circular 

cylindrical laminated composite stringer-stiffened panels subjected to axial 

compression, shear loading. The test program was an essential part of an ongoing effort 

undertaken aiming at the design of low cost, low weight airborne structures that was 

initiated. Test results on curved composite panels stiffened by J-stringers were 

presented and discussed. Test results were compared with predictions obtained by an 

in-house developed code and the commercial FE code ABAQUS. Accompanying 

supporting calculations were presented as well; they were performed with a fast 

calculation tool developed and based on the effective width method modified to handle 

laminated circular cylindrical stringer-stiffened composite panels. In the study of 

Möcker et al. [34], it is shown how the finite element code ABAQUS can be used for 

an accurate and reliable prediction of the post-buckling behaviour. When performing 

finite element simulations, a large amount of time is often needed to build up the finite 

element model, in particular if the model consists of several parts with complex 

geometries. For this reason, the preprocessing tool ABAQUS/CAE provides an 
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interface which allows the user to automate repetitive tasks. The main focus of this 

paper is on discussing several modelling techniques that are used to enable a realistic 

idealization of the physical problem and on presenting simulation results for an 

exemplary structure. Based on this example, the influence of modelling details like 

mesh density and geometric imperfections on the prediction of the failure load is 

discussed. 
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CHAPTER 2 

 

 

2. BUCKLING OF STIFFENED METALLIC FLAT PANELS 

 

 

 

Buckling load highly depends on the boundary condition, loading type, material 

property and geometric properties of the panel. In the literature, calculation of the 

buckling load is limited with the classical boundary conditions [1, 6]. However, in 

realistic cases, boundary conditions of the panel are provided by stiffeners on the 

loaded and unloaded edge of the panel. To get realistic value of the buckling load, 

finite element analyses (FEA) of the stiffened panel is necessary, but finite element 

analysis is time consuming considering the preparation time required for the analysis 

model and the analysis time required. ABAQUS is chosen in the finite element 

modelling of the structures. ABAQUS is the commercial finite element software which 

is commonly used in the aerospace industry. In this study, ABAQUS up to date version 

6.14 is used in the finite element modelling. To find the buckling load in this study, 

ABAQUS “buckling” step for the linear buckling analysis is utilized. In FEA, the 

procedure of obtaining buckling eigenvalue is described in Appendix A. 

In this chapter, it is aimed to prepare databases for the buckling coefficients of selected 

metallic skin-stringer assemblies by means of parametric modeling approach via the 

script language followed by automated finite element analysis. With this approach, 

databases of buckling coefficients for skin-stringer assemblies can to be generated 

similar to the available buckling coefficient charts for the panels which have classical
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boundary conditions along the edges. Skin-stringer assemblies are established for T, Z 

and J type stringers. For each skin-stringer type, a database is created. Using these 

databases, the buckling load and the compression buckling coefficient of the skin-

stringer assembly can be obtained much faster than modeling and analyzing the skin-

stringer assembly by the finite element method. Thus, skin-stringer optimizations can 

be performed very quickly. To construct the databases, numerous skin-stringer 

assemblies are modeled with different sizes and types in ABAQUS 6.14. Database is 

created by writing a script in Python 2.7 which is then used in ABAQUS to generate 

the parametric models of the skin-stringer assemblies followed by automated finite 

element analysis controlled by the Python script. 

2.1. Buckling Analysis of Unstiffened Panels 

In the first phase of the study performed in this chapter, buckling coefficients of flat 

panels with classical boundary conditions are determined by finite element analysis 

and comparisons are made with the analytical solutions of the buckling coefficients 

provided in the literature. This study is performed to gain confidence in the finite 

element analysis results. The geometry and the coordinate of the flat panel are 

presented in Figure 2.1. For a panel which is simply supported at 4 edges, boundary 

conditions at the edges are given in Table 2.1 [8]. 

 

Figure 2.1: Definition of different geometrical parameters of the flat panels and the coordinate system 
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In Table 2.1, U1, U2 and U3 represent the translational degrees of freedom of the nodes 

around the x, y and z axes, respectively Similarly in Table 2.2, R1, R2 and R3 represent 

the rotational degrees of freedom of nodes around the x, y and z axes, respectively.  

Table 2.1: Definition of the constraints for the simply supported panel 

Locations U1 U2 U3 R1 R2 R3 

Edge A to B   X    

Edge B to C   X    

Edge C to D   X    

Edge D to A   X    

Point A X X X    

Point B       

Point C  X     

Point D       

 

Table 2.2 presents the boundary conditions for a panel which is clamped at four edges. 

Table 2.2: Definition of the constraints for the clamped panel 

Locations U1 U2 U3 R1 R2 R3 

Edge A to B   X  X  

Edge B to C   X X   

Edge C to D   X  X  

Edge D to A   X X   

Point A X X X    

Point B       

Point C  X     

Point D       

For flat panels with different boundary conditions, a script is written in Python to 

model numerous panels with different sizes subject to different loading conditions 

such as compression or shear loading. Lowest eigenvalues obtained in the buckling 

analysis are used to calculate the buckling coefficients. In this script, Aluminum 2024 

T3 Clad sheet material is used. Material properties are seen in the Table 2.3 [36]. 𝐹𝑐𝑦 

is the yield compressive allowable stress of panel. 𝐹𝑡𝑢 is the tensile ultimate allowable 
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stress. 𝐸 is the elastic modulus of the panel material and 𝐸𝑐 is the compression elastic 

modulus of the panel material. In addition, 𝑣  is the poisson ratio and 𝑛𝑐  is the 

Ramberg-Osgood factor of plasticity in compression. Panel dimensions used in the 

script is shown in the Table 2.4. Step size of plate length x is chosen as 5 mm. 

Table 2.3: Material Properties of Aluminum 2024-T3 Clad Sheet 

𝑭𝒄𝒚,𝑴𝑷𝒂 269 𝑭𝒕𝒖,𝑴𝑷𝒂 441 

𝑬,𝑴𝑷𝒂 72395 𝑬𝒄,𝑴𝑷𝒂 73774 

𝒗 0.33 𝒏𝒄 15 

Table 2.4: Input parameters of the skin panels used in script 

Skin panel material Aluminum 2024 T3 Clad Sheet 

Skin panel thickness (mm) 2.0 

Skin panel length x (mm) 100:5:500 

Skin panel length y (mm) 100 

Critical buckling stress calculation formula is given by Equation (2.1) [1], 

𝜎𝑐𝑟 =
𝜋2 ∗ 𝑘 ∗ 𝐸𝑐
12(1 − 𝑣2)

(
𝑡

𝑙𝑦
)

2

 (2.1) 

where 𝑡 is the thickness of the panel, 𝐸𝑐  is the compression elastic modulus of the 

panel material and factor 𝑘 is the buckling coefficient which depends on the boundary 

conditions, geometric characteristic (𝑙𝑥 𝑙𝑦⁄ 𝑟𝑎𝑡𝑖𝑜)  and the loading condition 

(compression or shear). Compressive and shear buckling coefficient curves are given 

in Bruhn [1]. 

In the finite element analyses, according to Figure 2.1, loading is applied in the x 

direction along edges AB and DC and the unloaded edges of the panel are AD and BC. 

The critical buckling stress is calculated using the lowest eigenvalue obtained in the 

buckling analysis performed in ABAQUS as shown in Equation (2.2), 
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𝜎𝑐𝑟 =
𝑁𝑎𝑝𝑝

t
∗ 𝜆𝐹𝐸  (2.2) 

where 𝑁𝑎𝑝𝑝 is the compressive or shear shell edge load which is given as 1 N/mm as 

seen in Figure 2.2 and Figure 2.3, respectively. In addition, 𝜆𝐹𝐸 is the first eigenvalue 

obtained from finite element analysis. 

For the normal load case, load is applied as compression load on both sides of the 

panel, as shown in Figure 2.2. For the shear load case, load is applied parallel to the 

edges as shear on the all edges of the panel, as shown in Figure 2.3. 

 

Figure 2.2: Compressive load demonstration for the single panel case 

 

Figure 2.3: Shear load demonstration for the single panel case 

By substituting Equation (2.1) into Equation (2.2), compression buckling coefficient 

is calculated as, 

𝑘 =
𝑁𝑎𝑝𝑝

t
∗ 𝜆𝐹𝐸 ∗

12(1 − 𝑣2)

𝜋2 ∗ 𝐸𝑐
∗ (
𝑙𝑦

𝑡
)

2

 (2.3) 
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To construct the finite element model, ABAQUS, is used in the analyses of unstiffened 

panel models [35]. As in all commercial FEA programs, the modelling process starts 

with creating the geometry, then with meshing is performed and material properties 

are assigned to the unstiffened panel. The modelling process finishes by defining load 

and boundary conditions.  Scope of the study is limited to flat thin panels under 

unidirectional compression and shear loads which are applied separately. Loads are 

given as edge unit load and boundary conditions are used as described in Table 2.1 and 

Table 2.2. Thin panel is modelled as a shell structure in the FE model as seen in Figure 

2.4. In the meshing part, S4R elements (4-node element with one integration point), 

with hourglass control and membrane strain is chosen. This type element is 

recommended by ABAQUS in modelling of shell structures [35].  For the unstiffened 

panel models, “Buckle” step of ABAQUS [35] is used to obtain the lowest buckling 

eigenvalue. Subspace solver is chosen in order to avoid divergence problem. In the 

Subspace solver, there are 3 input parameters can be defined by users in the ABAQUS. 

These are the number of intended eigenvalues, vectors used per iteration and maximum 

number of iteration. In this study, three eigenvalues, ten vectors used per iteration and 

3000 maximum number of iterations are chosen to avoid divergence. These values are 

recommended by the ABAQUS manuel for the buckling analysis [35].  

 

Figure 2.4: View of sample single panel model with all edges simply supported under compressive 

loading 
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Before the verification of finite element model’s boundary conditions, element sizes 

used in the rest of study is determined by the mesh convergence study. To get fast and 

accurate result, nine different mesh sizes is chosen (course mesh, fine mesh and regular 

mesh). In the convergence study, example panel dimensions are chosen as 100 mm 

length x and 200 mm length y. Thickness of panel is decided as 1 mm. Material of the 

panel is also decided as Aluminum 2024 T3 Clad sheet [36]. Detailed material 

properties can be seen in Appendix B, Figure B.1. Boundary condition of the panel is 

chosen as simply supported boundary condition defined in Table 2.1 and load is given 

as unit shell edge load in the x direction along the edges AB and DC shown in Figure 

2.1. Figure 2.5 shows the critical buckling stress with respect to element number used 

in the finite element mesh in the panel. In addition, element sizes used in this 

convergence study and the corresponding critical buckling stress results are given in 

Table 2.5. As seen in Table 2.5, as the element size is decreased, the critical buckling 

stress converges to approximately 27.1 MPa. After the element size become 5 mm and 

less, critical buckling stress does not significantly change. Hence, to minimize the 

computation time and not to lose accuracy, element size is taken as 5 mm. 

 

Figure 2.5: The critical buckling stress with respect to element number of flat panel 
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Table 2.5: Critical buckling stress results for various element sizes 

Element Size (mm) Number of Elements Critical Buckling Stress (MPa) 

1 20000 27.068 

2 5000 27.112 

3 2211 27.162 

4 1250 27.212 

5 800 27.267 

6 561 27.321 

7 406 27.405 

8 325 27.448 

9 242 27.563 

10 200 27.648 

After the convergence study, to compare the finite element analysis results for the 

compression buckling coefficient with those provided by Bruhn [1], figures of 

buckling coefficients given by Bruhn are digitized to compare with the FEA results. 

Interval of the panel length x is chosen as the 100 mm to 500 mm with 5 mm step size. 

In addition, panel length y is chosen as constant 100 mm and the panel thickness is 

decided as constant 2 mm.  

Comparison of buckling coefficient versus plate aspect ratio curves are given in Figure 

2.6-Figure 2.9, for different loading and boundary conditions. 
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Figure 2.6: Comparison of compressive buckling charts for flat rectangular panels with simply 

supported loaded and unloaded edges  

 

Figure 2.7: Comparison of compressive buckling charts for flat rectangular panels with clamped 

loaded and unloaded edges 
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Figure 2.8: Comparison of shear buckling charts for flat rectangular panels with simple supported 

loaded and unloaded edges 

 

Figure 2.9: Comparison of shear buckling charts for flat rectangular panels with clamped loaded and 

unloaded edges 

It should be noted that average of the differences between the buckling coefficients 

obtained by the finite element analysis and analytically determined buckling 

coefficients provided by Bruhn are around %1-2 in Figure 2.6-Figure 2.9. It is also 

noted that differences are mainly due to digitizing the plots given by Bruhn [1].  
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2.2. Buckling Analysis of Stiffened Panels 

2.2.1. Determination of buckling coefficients of skin-stringer assemblies by finite 

element analysis  

Following the verification of the boundary conditions of a single panel by the finite 

element analysis, stiffened panel modelling is performed using the verified boundary 

conditions along the loaded edges of the panel. However, for the stiffened panels, 

restraint along the unloaded edges is provided by the stiffeners on the panel. The 

boundary condition of the loaded edges of skin-stringer assembly is considered as 

clamped edge condition. 

The first skin-stringer assembly considered consists of three flat skin panels and two 

stringers with I cross section. Skin-stringer assembly and the skin panel numbering are 

demonstrated in Figure 2.10.In addition, cross section view of skin-stringer assembly 

is seen in Figure 2.12. Compression load is applied on the three skin panels from one 

of the edges along the y-axis as 1 N/mm edge load in the -x direction. Figure 2.11 

demonstrates the restraints applied to the loaded and the opposite edges of the panel. 

The degrees of freedom restrained along the loaded edge are U3 and R2. Along the 

other edge of the three skin panels, degrees of freedom U1, U3 and R2 are restrained. 

In addition, the middle edge of panel 2 is not allowed move in the y direction to avoid 

rigid body motion of the assembly, as shown in Figure 2.11. Moreover, unloaded side 

edges of the panels 1 and 3 are restrained in z-translation (U3 degree of freedom) and 

x-rotation (R1 degree of freedom). 
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Figure 2.10: Isometric view of skin-stringer assembly analyzed 

 

Figure 2.11: Constraint configuration of the skin-stringer assembly 
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Figure 2.12: Cross section view of skin-stringer assembly analyzed 

In the finite element model of the skin-stringer assembly, all stringers and skin panels 

are modelled as 2D shell elements with Aluminum 2024 T3 sheet material properties 

as shown in Figure 2.13 same as the unstiffened panel model. Element type used is 

shell element, S4R type which is a 4-node element with one integration point. Material 

properties of Aluminum 2024 T3 sheet is given in Table 2.3 [36]. Stringers element 

size is chosen as 2 mm and skin element size is chosen as 5 mm same as the unstiffened 

panel model. Stringer mesh density is chosen higher than skin mesh density because 

the dimension of stringer cross section is smaller than skin dimensions. Stringers are 

connected to the skins by 3.2 mm diameter fasteners in double row arrangement. 

Fastener spacing is taken as 5 times the fastener diameter and fastener edge distance 

is the 2 times the fastener diameter plus 1 mm as shown in Figure 2.14. These figures 

are commonly used in the aerospace industry. 

 

Figure 2.13: Isometric view of skin-stringer assembly with mesh 
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Since it is too costly to model each fastener using its real geometry with a 3D model, 

fastener idealization is made. For this purpose, mesh-independent fastener is 

considered as a convenient method to define a point-to-point connection between two 

or more surfaces such as in a fastener connection. Thus, in the finite element model of 

the skin-stringer assembly, fasteners are modelled with the mesh-independent fastener 

module in ABAQUS [35]. 

 

Figure 2.14: Fastener pattern configuration on the stringer 

For the skin-stringer assembly, “Buckle” step of ABAQUS is used to obtain the lowest 

buckling eigenvalue [35]. Lowest eigenvalue obtained by finite element analysis is 

used in Equation (2.3) to calculate the compression buckling coefficient pertaining to 

the local buckling of the skin supported by the side stiffeners.  

A case study is performed for a panel with the loaded edges which are considered as 

clamped edge conditions and the unloaded edges closely simulating the clamped edge 

conditions with the help of stringer stiffness. Compression buckling coefficients 

calculated by the finite element solution are compared with the analytically determined 

compression buckling coefficient for panel 2 (mid panel) in the skin-stringer assembly 

as shown in Figure 2.10. Input parameters of this example assembly are shown in Table 

2.6. The parameters given in Table 2.6 are decided iteratively such that with these 

parameters the unloaded edges simulate the clamped condition closely. The skin-
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stringer model is solved by using “Buckle” step of ABAQUS for the lowest buckling 

eigenvalue as described previously [35]. 

Table 2.6: Input parameters of the skin-stringer assembly used in the finite element model 

Skin panel material Aluminum 2024 T3 Clad Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450.0 

Skin panel length y (mm) 150.0 

Stringer material Aluminum 2024 T3 Clad Sheet 

Stringer thickness (mm) 1.016 

Stringer height (mm) 14.0 

Stringer upper flange width (mm) 9.0 

Stringer lower flange width (mm) 11.5 

𝑁𝑎𝑝𝑝 is compressive shell edge load applied on the three skin panels from one of the 

edges along the y-axis which is given as 1 N/mm in the -x direction. For the skin-

stringer assembly specified in Table 2.6, the lowest eigenvalue is obtained as, 

𝜆𝐹𝐸 = 12.006 (2.4) 

Using this eigenvalue, the corresponding compressive stress and the compressive 

buckling coefficient are calculated as, 

𝜎𝑐𝑟 = 14.768 𝑁/𝑚𝑚
2 (2.5) 

𝑘 = 7.383 (2.6) 

If the skin panel 2 in Figure 2.10 is modeled with the same input parameters but 

classical clamped edge condition is assigned to the unloaded edges, for the panel aspect 

ratio of 3, compressive buckling coefficient is obtained as: 
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𝑘 = 7.382 (2.7) 

In this example, it is seen that for the skin-stringer assembly defined in Table 2.6, the 

unloaded edge of panel 2 closely simulates the clamped edge condition. However, 

depending on the stringer type and how the stringer is connected to the skin, buckling 

coefficients obtained from the finite element analysis may or may not agree with the 

buckling coefficients obtained from pure analytical study utilizing the classical 

boundary conditions. 

According to the model description made, a script is written Python 2.7 in order to 

create an ABAQUS finite element model, run the model and collect the lowest 

eigenvalue from the analysis results. The purpose of this process is the preparing 

databases for the buckling coefficients of selected metallic skin-stringer assemblies by 

means of parametric modelling approach via the script language. With this approach, 

databases of buckling coefficients for skin-stringer assemblies can to be generated 

similar to the available buckling coefficient charts for the panels which have classical 

boundary conditions along the edges.  

In this chapter, most commonly used stringer sections Z, J and T are investigated. 

Stringer section types’ geometric descriptions are shown in Figure 2.15. As seen in 

Figure 2.15, T and J stringer section types use the double row joint configuration at 

the connection of skin and the lower flange of the stringer. In contrast, in the Z type 

stringer section, the single row joint configuration is used the finite element models. 

The scripts are written for each skin-stringer assembly and the following parameters 

are specified; 

• Skin panel thickness 

• Skin panel length y 

• Stringer thickness 

• Stinger height  
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• Stringer lower flange length 

• Stringer upper flange length (In stringer section type T, there is no upper 

flange) 

 

Figure 2.15: Stringer section types used in skin-stringer assemblies 

To minimize the time and sources, some of the parameters of the skin-stringer 

assemblies are fixed to certain values as, 

• Skin panel length x = 450 mm 

• Fastener diameter = 3.2 mm 

• Material: Aluminum 2024 T3 Clad Sheet 

Discrete values of the design parameters of the skin-stringer assemblies are specified 

in a range. Upper and lower limits of the design parameters are decided based on the 

commonly used values in the industry.  

For the skin-stringer assemblies with Z and J type stringers, the following parameters 

are specified between the upper and lower limits, and in total 2160 finite element 

analyses are performed to form a database for the buckling coefficients. 

• Skin panel thickness = [0.813, 1.016, 1.27] mm 

• Skin panel length y = [150.0, 225.0, 300.0, 375.0, 450.0] mm 
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• Stringer thickness = [0.813, 1.016, 1.27] mm 

• Stinger height = [10.0, 17.0, 24.0, 30.0] mm 

• Stringer lower flange length = [10.0, 14.0, 18.0, 22.0] mm 

• Stringer upper flange length = [10.0, 14.0, 18.0] mm 

For the skin-stringer assembly with the T section stringer, the following parameters 

are specified between the upper and lower limits, and in total 2100 finite element 

analyses are performed to form a database for the buckling coefficients. 

• Skin panel thickness = [0.813, 1.016, 1.10, 1.27] mm 

• Skin panel length y = [150.0, 225.0, 300.0, 375.0, 450.0] mm 

• Stringer thickness = [0.813, 1.016, 1.10, 1.27] mm 

• Stinger height = [10.0, 15.0, 20.0, 25.0, 30.0] mm 

• Stringer lower flange length = [10.0, 13.0, 16.0, 19.0, 22.0] mm 

To minimize the number of finite element analysis, for each parameter minimum 

number of discrete values are selected within the upper-lower limits of each parameter.  

Skin length y has a remarkable effect on the buckling phenomena. Hence, for the skin 

length y, more number of discrete analysis points is used in the finite element analyses. 

However, for Z and J stringer section types, inner flange length is restricted to three 

values in order to minimize the number of analyses.  
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2.2.2. Setting up of Artifitial Neural Network and Response Surface for fast 

determination of buckling coefficients  

For fast determination of the buckling coefficients of skin-stringer assemblies with 

different stringer types, in this chapter, artificial neural network and response surface 

are set up utilizing the finite element analysis results for the buckling coefficients. The 

output parameter, buckling coefficient, obtained from finite element analyses and input 

parameters of the skin-stringer assemblies are collected in an Excel file for the 

generation of the ANN and the RS for fast and accurate determination of buckling 

coefficients without resorting to finite element analysis. For the generation of the 

response surface, inputs and outputs are processed in MATLAB RSTOOL [37]. 

Response surface model is chosen as “Full Quadratic”. Full quadratic response surface 

consists of constant term, the linear terms, the interaction terms and the squared terms. 

As the second fast and accurate analysis tool, an artificial neural network is chosen. 

Artificial neural networks (ANNs) are computational modeling tools to model linear 

and nonlinear complex systems with most traditional statistical approaches. ANNs 

have characteristic advantages such as being suitable for nonlinear problems and 

ANNs have parallel working ability. Furthermore, ANNs can process imprecise and 

fuzzy information. Thus, they can provide accurate solutions for uncertain data. These 

capabilities deliver important benefits of excellent data fitting, adaptability and 

modeling of unlearned data [38]. 

ANN consists of multiple numbers of individual artificial neurons. These individual 

artificial neurons are grouped to create a layer in an artificial neural network. Neurons 

of each layer are connected to the neurons of the next layer. The ANN is composed of 

three layers which are input layer, hidden layer and output layer. The number of 

neurons in the input and the output layers are determined by the number of the input 

and the output parameters. Each neuron is associated with one input or output 

parameter. Thus, computational ability of an ANN is determined by the number and 

the content of hidden layers [37, 38]. Number of neurons in hidden layers is determined 

by trial and error to adjust the ANN with desired capabilities. Example of an artificial 

neural network configuration is shown in Figure 2.16. In this configuration, three 



38 

neurons input layer that is used to take three input parameters to the system, one neuron 

output layer that returns an output as result of the computation process, and two 

neurons for hidden layers.  

 

Figure 2.16: Configuration of artificial neural network  

In this study, an artificial neural network is established for each skin-stringer assembly 

by using the input parameters and the output parameter which is the buckling 

coefficient. Buckling coefficients are in the range of 6-8 for the skin-stringer 

assemblies with J, Z and T type stringers. Inputs and output of numerous analyses are 

processed in MATLAB NNTOOL to create an artificial neural network (ANN) [24, 

37, 38]. In the ANN, total layer number is chosen as 2, one for output layer and the 

other one for hidden layer. Number of neuron number in the ANN is decided by trial 

and error method for each type of stringer section. Levenberg-Marquardt 

backpropagation is chosen for training method of ANN. One of the termination criteria 

of neural network training process are decided as maximum “mu” which is known as 

the momentum term to slow the speed of the descent so that the search value does not 

fly back and forth across the minimum without stopping sufficiently near it. Another 

termination criterion is the minimum performance gradient which is gradient of the 

square of the error function with respect to the unknown weights and biases. As the 
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third and fourth termination criteria, maximum number of iteration, which is the 

number of iterations without any improvement and the epoch limit which is defined as 

the limit of the iteration number are used. In this study, these criteria are chosen as 

1e10 for maximum “mu”, 1e-7 for minimum performance gradient, 500 for maximum 

number of iteration without any improvement and 1500 for epoch limit. For each type 

of stringer section, different ANN parameters are chosen to obtain accurate results. 

These parameters are neuron number, percentage of data sets used in the training set, 

percentage of data sets used in the validation set and percentage of data sets used in 

the test set. According to these parameters, performance of network is measured based 

on the mean squared error calculated using difference of ANN and FEA results. 

The best network performance is obtained for the skin-stringer assembly with J type 

stringer section for the following set of parameters: 

• 1 Neuron number 

• % 70 of the data set used in the training of the ANN 

• % 15 of the data set used in the validation of the ANN 

• % 15 of the data set used in the test of the ANN 

Using these parameters in ANN, for the skin-stringer assemblies with J type stringer 

section, mean square error is calculated as 5.12 ∗ 10−4 as seen in Figure 2.17.  
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Figure 2.17: Performance plot of the ANN for skin-J type stringer assembly 

The best network performance is obtained for Z type stringer section for the following 

set of parameters: 

• 10 Neuron number 

• % 70 of the data set used in the training of the ANN 

• % 15 of the data set used in the validation of the ANN 

• % 15 of the data set used in the test of the ANN 

Using these parameters in ANN, for the skin-stringer assemblies with Z type stringer 

section, mean square error is calculated as 4.92 ∗ 10−4 as seen in Figure 2.18. 
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Figure 2.18: Performance plot of the ANN for skin-Z type stringer assembly 

The best network performance is obtained for T type stinger section for the following 

set of parameters: 

• 10 Neuron number 

• % 75 of data set used in the training of the ANN 

• % 15 of data set used in the validation of the ANN 

• % 10 of data set used in the test of the ANN 

Using these parameters in the ANN, for skin-stringer assemblies with T type stringer 

section, mean square error is calculated as 5.64 ∗ 10−4 as seen in Figure 2.19. 
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Figure 2.19: Performance plot of the ANN for skin-T type stringer assembly 

ANN performance can also be shown with the regression lines given in Figure 2.20, 

Figure 2.21 and Figure 2.22 for the J, Z and T type of stringers, respectively. In the 

plots, vertical axis shows the ANN outputs which are obtained by using input database 

and the horizontal axis shows the FEA results that are used in training of the ANN. 

The dashed lines in the figures represent the perfect fit and the colorful lines are the 

fits that are created by training process. It is seen that colorful lines are very close to 

the dashed lines in each figures.  
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Figure 2.20: Overall, training, validation and testing regression plots of the ANN for skin-J type 

stringer assembly 
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Figure 2.21: Overall, training, validation and testing regression plots of the ANN for skin-Z type 

stringer assembly 
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Figure 2.22: Overall, training, validation and testing regression plots of the ANN for skin-T type 

stringer assembly 

In addition, Figure 2.23, Figure 2.24 and Figure 2.25 show the cause for termination 

of the training for the skin-stringer assemblies with J, Z and T type of stringers, 

respectively. It is seen that the ANN performance for the skin-stringer assemblies with 

J type of stringer does not increase after 254 iteration as shown in Figure 2.23. Thus, 

the validation fails 500th times at the iteration 754. As seen in the Figure 2.23, gradient 

of ANN for the skin-stringer assemblies with J type of stringer is obtained as 2.436e-

5 which is higher than minimum gradient value. In addition, “mu” value of this ANN 

is obtained as 1e-7 which is lower than maximum “mu” value at the iteration 754. For 
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skin-stringer assembly with Z type of stringer, the ANN performance does not increase 

after 458 iteration as seen in Figure 2.24. Moreover, for skin-stringer assembly with T 

type of stringer, the ANN performance does not increase after 977 iteration as seen in 

Figure 2.25. 

 

Figure 2.23: Number of validation fails, mu and gradient with respect to number of training iterations 

of ANN for skin-J type stringer assembly 
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Figure 2.24: Number of validation fails, mu and gradient with respect to number of training iterations 

of ANN for skin-Z type stringer assembly 
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Figure 2.25: Number of validation fails, mu and gradient with respect to number of training iterations 

of ANN for skin-T type stringer assembly 
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2.2.3. Comparison of buckling coefficients of skin-stringer assemblies 

determined by FEA, Response Surface and Artificial Network 

2.2.3.1. BUCKLING COEFFICIENTS OF SKIN-STRINGER ASSEMBLIES WITH J 

TYPE STRINGERS 

Table 2.7 shows the input parameters of 10 additional analyses for the determination 

of buckling coefficients of skin-stringer assemblies. Parameters given in Table 2.7 are 

selected in between the parameters used in the finite element analyses used for the 

setup of the finite element database. Table 2.8 gives the finite element analysis (FEA), 

response surface (RS) and the artificial neural network (ANN) results. 

Table 2.7: FEA input parameters for additional analyses for skin-stringer assemblies with ‘J' type 

stringer 

FEA 1 2 3 4 5 6 7 8 9 10 

Skin panel 

thickness 

(mm) 

1.05 0.85 1.2 1.2 1.15 1.05 1 0.9 1.1 1.15 

Skin panel 

length x 

(mm) 

450 450 450 450 450 450 450 450 450 450 

Skin panel 

length y 

(mm) 

350 200 325 320 400 275 200 175 235 325 

Stringer 

thickness 

(mm) 

1.1 1 1.2 1.25 1.2 1.07 1.03 1 1.15 1.2 

Stringer 

height (mm) 
18 13 28 25.5 17.5 16 19 18 22 23 

Stringer 

upper 

flange width 

(mm) 

15 12 17 16 15.5 11 13.5 10.5 15.5 16.5 

Stringer 

lower flange 

width (mm) 

16.5 15 17.5 17 15.5 12.5 14.75 11 15.75 17.75 
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Table 2.8: Buckling coefficients of skin-stringer assemblies with J type stringers / FEA results/ RS 

results / ANN results 

# 
FEA 

Results 

RS 

Results 

% Absolute 

Difference (RS) 

ANN 

Results 

% Absolute 

Difference (ANN) 

1 7.83 7.963 1.69 7.842 0.15 

2 7.59 7.628 0.51 7.559 0.41 

3 8.08 7.958 1.50 8.049 0.39 

4 8.07 7.959 1.37 8.058 0.15 

5 7.9 8.118 2.76 7.901 0.02 

6 7.27 7.330 0.83 7.394 1.70 

7 7.47 7.489 0.25 7.444 0.34 

8 7.26 7.320 0.82 7.326 0.91 

9 7.52 7.675 2.06 7.517 0.04 

10 7.88 7.994 1.45 8.068 2.38 

For the skin-stringer assembly with J type stringer, Table 2.8 shows that the established 

ANN performs better than the RS. For the randomly selected 10 set of design 

parameters, root mean square (RMS) error with respect to the finite element results is 

0.0760 for the ANN and 0.1176 for the RS. 
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2.2.3.2. BUCKLING COEFFICIENTS OF SKIN-STRINGER ASSEMBLIES WITH Z 

TYPE STRINGERS 

Table 2.9 shows the input parameters of 10 additional analyses for the determination 

of buckling coefficients of skin-stringer assemblies. Parameters given in Table 2.9 are 

selected in between the parameters used in the finite element used for the setup of the 

finite element database. Table 2.10 gives the finite element analysis (FEA), response 

surface (RS) and the artificial neural network (ANN) results. 

Table 2.9: FEA input parameters for additional analyses for skin-stringer assemblies with ‘Z' type 

stringer 

FEA 1 2 3 4 5 6 7 8 9 10 

Skin panel 

thickness 

(mm) 

1.05 0.85 1.2 1.2 1.15 1.05 1 0.9 1.1 1.15 

Skin panel 

length x 

(mm) 

450 450 450 450 450 450 450 450 450 450 

Skin panel 

length y 

(mm) 

350 200 325 320 400 275 200 175 235 325 

Stringer 

thickness 

(mm) 

1.1 1 1.2 1.25 1.2 1.07 1.03 1 1.15 1.2 

Stringer 

height (mm) 
18 13 28 25.5 17.5 16 19 18 22 23 

Stringer 

upper 

flange width 

(mm) 

15 12 17 16 15.5 11 13.5 10.5 15.5 16.5 

Stringer 

lower flange 

width (mm) 

16.5 15 17.5 17 15.5 12.5 14.75 11 15.75 17.75 
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Table 2.10: Buckling coefficients of skin-stringer assemblies with Z type stringers / FEA results/ RS 

results / ANN results 

# 
FEA 

Results 

RS 

Results 

% Absolute 

Difference (RS) 

ANN 

Results 

% Absolute 

Difference (ANN) 

1 7.46 7.601 1.88 7.475 0.20 

2 7.01 7.096 1.23 7.014 0.06 

3 7.63 7.547 1.09 7.593 0.49 

4 7.64 7.552 1.15 7.612 0.37 

5 7.61 7.812 2.66 7.593 0.22 

6 6.98 7.019 0.55 7.108 1.83 

7 6.92 6.958 0.55 6.888 0.46 

8 6.83 6.918 1.29 6.932 1.50 

9 6.97 7.174 2.93 6.919 0.74 

10 7.46 7.575 1.54 7.600 1.88 

For the skin-stringer assembly with Z type stringer, Table 2.10 shows that the 

established ANN performs better than the RS. For the randomly selected 10 set of 

design parameters, root mean square (RMS) error with respect to the finite element 

results is 0.0726 for the ANN and 0.1219 for the RS.  
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2.2.3.3. BUCKLING COEFFICIENTS OF SKIN-STRINGER ASSEMBLIES WITH T 

TYPE STRINGERS 

Table 2.11 shows the input parameters of 10 additional analyses for the determination 

of buckling coefficients of skin-stringer assemblies. Parameters given in Table 2.11 

are selected in between the parameters used in the finite element analyses used for the 

setup of the finite element database. Table 2.12 gives the finite element analysis (FEA), 

response surface (RS) and the artificial neural network (ANN) results. 

Table 2.11: FEA input parameters for additional analyses for skin-stringer assemblies with ‘T' type 

stringer 

FEA 1 2 3 4 5 6 7 8 9 10 

Skin panel 

thickness 

(mm) 

1.05 0.85 1.2 1.2 1.15 1.05 1 0.9 1.1 1.15 

Skin panel 

length x 

(mm) 

450 450 450 450 450 450 450 450 450 450 

Skin panel 

length y 

(mm) 

350 200 325 320 400 275 200 175 235 325 

Stringer 

thickness 

(mm) 

1.1 1 1.2 1.25 1.2 1.07 1.03 1 1.15 1.2 

Stringer 

height (mm) 
18 13 28 25.5 17.5 16 19 18 22 23 

Stringer 

lower flange 

width (mm) 

16.5 15 17.5 17 15.5 12.5 14.75 11 15.75 17.75 
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Table 2.12: Buckling coefficients of skin-stringer assemblies with T type stringers / FEA results/ RS 

results / ANN results 

# 
FEA 

Results 

RS 

Results 

% Absolute 

Difference (RS) 

ANN 

Results 

% Absolute 

Difference (ANN) 

1 7.39 7.591 2.73 7.300 1.22 

2 6.91 6.932 0.32 6.878 0.46 

3 7.46 7.575 1.55 7.475 0.20 

4 7.49 7.604 1.52 7.500 0.13 

5 7.55 7.805 3.37 7.619 0.91 

6 6.9 6.863 0.53 7.020 1.74 

7 6.71 6.893 2.73 6.697 0.19 

8 6.56 6.758 3.02 6.569 0.14 

9 6.82 7.164 5.04 6.824 0.06 

10 7.36 7.614 3.45 7.337 0.32 

For the skin-stringer assembly with T type stringer, Table 2.12 shows that the 

established ANN performs better than the RS. For the randomly selected 10 set of 

design parameters, root mean square (RMS) error with respect to the finite element 

results is 0.0542 for the ANN and 0.1972 for the RS. 
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2.2.3.4. DISCUSSION OF RESULTS OBTAINED BY FEA, ANN AND RS FOR J, Z 

AND T TYPE OF STRINGER 

In these additional 10 analyses, it is seen that for the skin-stringer assemblies defined 

in Table 2.7, Table 2.9 and Table 2.11 for ‘J’, ‘Z’ and ‘T’ type of stringer sections, 

absolute difference between RS results and FEA results is not greater than 5%. RS 

gives fast convergence but this method does not give accurate results as the ANN. 

Absolute difference between the ANN results and FEA results is not greater than 2.5%. 

However, ANN also has a problem with convergence. If the neuron number is 

increased too much, for instance over 10 for the buckling problem, over fitting occurs. 

It should be noted that when over fitting occurs, error of the training set is driven to a 

very small value, but for the new data in between the data points used to generate the 

database,  the error is large.  Moreover, to get an accurate ANN result, many data sets 

are required. For the determination of the buckling coefficients, at least 2000 data sets 

are required to obtain reasonable results which are close to the finite element results 

with acceptable difference. Nevertheless, the established ANN can be used very 

effectively to determine the buckling coefficients of skin-stringer assemblies with 

common J, Z and T type stiffeners. If desired ANN can be utilized to construct 

buckling coefficients charts similar to the buckling coefficient charts available for 

panel buckling with classical boundary conditions.  
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CHAPTER 3 

 

 

3. POST BUCKLING LOAD DISTRIBUTION OF METAL STIFFENED 

PANELS 

 

 

 

In this chapter, post buckling load distribution and the effect of material nonlinearity 

on the load redistribution in the post-buckled stage is investigated using linear and 

nonlinear material models with different stringer types of skin-stringer assemblies by 

ABAQUS finite element analysis. For this purpose, in the first part of the study, a 

baseline stiffened panel is generated for further investigation of the material 

nonlinearity on the post-buckling behavior and on the effective width of the stiffened 

panel. To make a direct comparison with the classical approach for the determination 

of the effective width of the skin panel, a stiffener section which provides classical 

clamped edge condition is designed such that the compression buckling coefficient 

determined by the finite element analysis agreed closely with the analytically 

determined buckling coefficient of the clamped edge panel.  

In the second part of the chapter, post-buckling analysis of the stiffened panel is 

performed utilizing linear and nonlinear material models with three different stringer 

types (I, J and Z) in the finite element analysis and the effect of material plasticity on 

the post-buckling behavior of the panel is studied. The effective width of the panel is 

calculated before the collapse load of the panel using the load distributions obtained 

by finite element analysis with linear and nonlinear material models and comparisons
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are with the effective width calculated using the classical effective width formulation. 

At the end of the chapter, finite element model analysis results are obtained for 

combination of each stringer types and material models. Its means that totally 6 finite 

element model is created and effective width results are compared to each other. 

3.1. Buckling Analysis of the Baseline Skin-Stringer Assembly 

Baseline stiffened panel is designed in an iterative fashion to decide on the dimensions 

of the side stiffeners such that side stiffeners provided nearly clamped edge condition. 

For this purpose, compressive buckling coefficient of the stiffened flat panel is 

calculated by the finite element analysis until a close agreement is reached with the 

determined compressive buckling coefficient by the finite element analysis of clamped 

edge unstiffened panel. 

Before the decision of the proper stiffener cross-section, buckling analysis of the flat 

panel with the classical clamped edge conditions is performed and the compression 

buckling coefficient is also obtained via finite element analysis before the addition of 

the side stiffeners. As previously defined in Figure 2.1, the geometry and the 

coordinate system of the panel is used in the construction of the unstiffened panel. 

Boundary condition of the unstiffened panel is defined as all edges clamped defined 

in Table 2.2. 

However, in this case, load is applied from the DC edge along the y-axis of the single 

panel as 2.0 mm displacement in the “-x” direction (compression) and the reaction 

edge of the panel is taken as AB edge. Thus, in this case, in addition to boundary 

conditions defined in Table 2.2, AB edge is also restricted in translational degree of 

freedom in the x direction. Although, this additional boundary condition has no effect 

on the buckling coefficient result, it is necessary to fix the edge AB in order to be able 

to read reaction forces from the nodes along the edge AB in post-buckling analyses 

presented in this chapter. 

After the determination of the boundary condition and the input displacement, input 

parameters of the unstiffened skin panel studied are decided as given in Table 3.1. The 
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unstiffened panel model without any side stiffeners is solved by using “Buckle” step 

of ABAQUS in linear buckling analysis for the lowest buckling eigenvalue [35]. 

Table 3.1: Input parameters of the unstiffened skin panel used to verify stiffened panel edge condition 

Skin panel material Aluminum 2024 T3 Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450 

Skin panel length y (mm) 150 

For the unstiffened panel model described in Table 3.1, lowest eigenvalue is obtained 

as, 

𝜆𝐹𝐸 = 0.0450 (3.1) 

Using this eigenvalue, the corresponding compressive stress and the compressive 

buckling coefficient are calculated as, 

𝑢𝑐𝑟 = 𝑢𝐹𝐸 ∗ 𝜆𝐹𝐸 = 0.090 𝑚𝑚 (3.2) 

𝜎𝑐𝑟 =
𝑢𝑐𝑟
𝑙𝑥
𝐸𝑐 = 14.77 𝑀𝑃𝑎 (3.3) 

𝑘 = 𝜎𝑐𝑟
12(1 − 𝑣2)

𝜋2𝐸𝑐
(
𝑙𝑦

𝑡
)

2

= 7.38 
(3.4) 

After calculation of the buckling coefficient of the unstiffened panel with all edges 

clamped boundary conditions by the finite element analysis, stiffened panel modeling 

is performed using the clamped boundary conditions along the loaded edges of the 

panel. For the stiffened panels, side stiffeners provide constraint along the unloaded 

edges of the panel. To generate the clamped edge condition along the unloaded edges 

of the stiffened panel, an iterative procedure is used to decide on the dimensions of the 

stiffener. To study the post-buckling behavior of the stiffened panel, the considered 

skin-stringer assembly consists of three flat skin panels and two stringers with I cross 

section. Mesh-independent fasteners available in ABAQUS are used in the skin-
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stringer connection [35]. Skin-stringer assembly and the skin panel numbering are 

demonstrated in Figure 3.1. For the skin-stringer assembly, a compression load is 

applied in the -x direction as prescribed displacement on one of the edges along the y-

direction. 

 

Figure 3.1: Baseline skin-stringer assembly   

Figure 3.2 shows the restraints applied to the loaded and the opposite edges of the skin-

stringer assembly. To simulate the clamped edge condition, the degrees of freedom 

restrained along the loaded edges are U3 (z-direction displacement) and R2 (rotation 

about the y-axis). Along the opposite edge of the loading edge of the skin-stringer 

assembly, degrees of freedom U1, U3 and R2 are restrained. In addition, the mid-point 

of panel 2 is not allowed move in the y-direction to avoid rigid body motion of the 

assembly, as shown in Figure 3.2. Moreover, unloaded side edges of the panels 1 and 

3 are restrained in z-translation (U3 degree of freedom) and x-rotation (R1 degree of 

freedom). 
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Figure 3.2: Constraints applied to the baseline skin-stringer assembly 

In the finite element model of the baseline skin-stringer assembly, all stringers and 

skin panels are modeled as 2D shell elements with Aluminum 2024 T3 sheet material 

properties [36]. Same fastener configurations and modelling technics written in 

chapter 2.2 are used in the finite element model of baseline skin-stringer assembly. 

Fastener configurations used in baseline skin-stringer assembly is shown in Figure 

2.14. 

For the skin-stringer assembly, “Buckle” step of ABAQUS is used in linear buckling 

analysis to obtain the lowest buckling eigenvalue [35]. The lowest buckling eigenvalue 

is used in Equation (3.4) to calculate the compression buckling coefficient pertaining 

to the local buckling of the skin supported by the side stiffeners. By comparing the 

compression buckling coefficient calculated by the finite element solution with the 

determined compression buckling coefficient by finite element model of unstiffened 

panel defined in Table 3.1, clamped edge condition provided by the side stiffeners is 

verified. 

Stringer dimensions are changed until the compression buckling coefficient obtained 

by the finite element analysis agreed closely with the finite element result of 7.38 given 
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by Equation (3.1). For this purpose, parametric modeling of the skin-stringer assembly 

is performed via the script language followed by automated finite element analysis by 

ABAQUS [35]. I type of stringer dimensions which simulate the clamped edge 

boundary condition closely are given in Table 3.2 together with the overall dimensions 

of the skin-stringer assembly. 

For the buckling analysis, a compression load is applied on one of the edges of the 

skin-stringer assembly with the I type of stringer section along the y-axis as 2.0 mm 

prescribed displacement in the “-x” direction. For the skin-stringer assembly described 

in Table 3.2, lowest eigenvalue is obtained as, 

𝜆𝐹𝐸 = 0.0450 (3.5) 

Table 3.2: Parameters of the skin-stringer assembly used in the finite element model with I section 

stringer 

Skin panel material Aluminum 2024 T3 Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450 

Single skin panel length y (mm) 150 

Stringer material Aluminum 2024 T3 Sheet 

Stringer thickness (mm) 1.016 

Stringer height (mm) 25 

Stringer upper flange width (mm) 15 

Stringer lower flange width (mm) 20 

Using this eigenvalue, the corresponding compressive stress and the compressive 

buckling coefficient of skin-stringer assembly with I stringer section type are 

calculated as, 

𝑢𝑐𝑟 = 𝑢𝐹𝐸 ∗ 𝜆𝐹𝐸 = 0.090 𝑚𝑚 (3.6) 
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𝜎𝑐𝑟 =
𝑢𝑐𝑟
𝑙𝑥
𝐸𝑐 = 14.77 𝑀𝑃𝑎 (3.7) 

𝑘 = 𝜎𝑐𝑟
12(1 − 𝑣2)

𝜋2𝐸𝑐
(
𝑙𝑦

𝑡
)

2

= 7.38 
(3.8) 

Comparing the results given by Equation (3.4) and Equation (3.8), it is concluded that 

the properties of the I section stringer given in Table 3.2 provides the clamped edge 

condition along the unloaded edges of the skin-stringer assembly. 

3.2. Post-Buckling Analysis of Skin-Stringer Assembly using Linear and Non-

linear Material Models  

Following the verification of the compression buckling coefficient of the stiffened 

panel with finite element model, the post-buckling behavior of the skin-stringer 

assembly is investigated with two different models; with linear and nonlinear material 

models. In both models, “Non-linear Geometric Static Analysis” step of ABAQUS is 

used to observe the post-buckling behavior of the stiffened panel [35].  For both 

models, load carrying capacity of the assembly and the effective width of the skin 

panel are calculated using the finite element results. Moreover, effective width 

calculation is also done utilizing the empirical relation following Bruhn [1].   

For the analysis of the post-buckling load distribution, nodal forces in the x-direction 

of the restrained edge of the skin panel are summed up to calculate load capacity of 

assembly. Additionally, one of the nodes in the loaded edge is used to trace the 

displacement of skin-stringer assembly. Restrained and loaded edges are shown in 

Figure 3.3 with red and green lines, respectively. 
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Figure 3.3: Edge descriptions of the skin-stringer assembly 

To investigate the post-buckling behavior of the skin-stringer assembly, geometrically 

nonlinear analysis of the skin-stringer assembly with I section stringer is conducted by 

the “Non-linear Static Analysis” step of ABAQUS [35]. As in the previous analyses, 

a compression load is applied on one of the edges of the skin-stringer assembly along 

the y-axis as 2.0 mm prescribed displacement in the “-x” direction. Material and 

geometric description of the previous assembly which is used for verification of the 

clamped edge condition in chapter 3.1, is used for the both material models created in 

this chapter.  In addition to the linear material model, nonlinear stress-strain data given 

in Appendix B is used in the ABAQUS material description. Defining material 

plasticity in ABAQUS is presented in the research report by Rasmussen [39]. Material 

properties of the aluminum 2024-T3 sheet are given in Figure B.1 [36]. For aluminum 

2024-T3, stress-strain curve including the plastic region is given in Figure B.2. For the 

nonlinear material model, the stress-strain data given in Table B.1 is used in the post-

buckling analysis. 

Firstly, using the linear material model for the skin-stringer assembly, load-

displacement curve is obtained by ABAQUS analysis as shown in Figure 3.4. 
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Figure 3.4: Load displacement curve of the skin-stringer assembly with linear material model (I 

section stringer) 

As shown in Figure 3.4, the first break in the load-displacement curve represents the 

initiation of the local buckling. Local buckling starts when the applied displacement is 

0.107 mm. This result is different than the critical displacement determined in linear 

buckling analysis (𝑢𝑐𝑟 = 0.090 𝑚𝑚). The reason of this difference is attributed to 

including the geometric non-linearity in the post-buckling model.  Beyond the 

initiation of the local buckling, post-buckling stage of the skin-stringer assembly starts. 

It should be noted that because of the geometric non-linearity, load displacement curve 

is nonlinear beyond the initiation of the local buckling of the skin. However, the 

collapse of the skin-stringer assembly is not seen in Figure 3.4 because of the use of 

linear material properties.  

Secondly, Figure 3.5 shows the load-displacement curve obtained by using the 

nonlinear material model in the finite element analysis. As shown in Figure 3.5, local 

buckling of the skin starts at a displacement of 0.104 mm and this value is almost same 

as the local buckling displacement (0.107 mm) of the skin-stringer assembly with the 

linear material model. Beyond the initiation of the local skin buckling, load-

displacement curve again becomes nonlinear and when the displacement reaches 1.736 

mm collapse of the skin-stringer assembly occurs. 
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Figure 3.5: Load displacement curve of the skin-stringer assembly with nonlinear material model (I 

section stringer) 

Figure 3.6 and Figure 3.7 show the finite element view of skin-stringer assembly with 

nonlinear material model at the local buckling starting point and collapse point, 

respectively. 

 

Figure 3.6: FE view of skin-stringer assembly with nonlinear material model (I section stringer) at 

local buckling starting point 



67 

 

Figure 3.7: FE view of skin-stringer assembly with nonlinear material model (I section stringer) at 

collapse point 

Figure 3.8 compares the load displacement curves obtained by the linear and nonlinear 

material models. The effect of material nonlinearity on the post-buckling behavior of 

the skin-stringer assembly is clearly seen in Figure 3.8. After the local buckling of the 

skin, when the applied displacement reaches 1 mm or so, material nonlinearity effect 

becomes dominant. It should be noted that the collapse of the assembly with the 

nonlinear material model is merely due to the nonlinear material property since no 

damage model exists in the finite element models. 

 

Figure 3.8: Comparison of load displacement curves of models with linear and nonlinear material 

properties (I section stringer section) 
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3.3. Calculation of Effective Width by Finite Element Solution and Empirical 

Solution 

To calculate the effective width of the skin panel using the finite element results, for 

each node on the restrained edge of the skin panel, forces in the x-direction are 

obtained separately to see how the load is distributed along the y-direction. Effective 

width at the location of the restrained edge of the skin panel as seen in Figure 3.9 is 

then calculated with the idealization of the actual nonlinear load distribution in the 

post-buckled stage. Using the x-direction nodal forces, load distribution is pictured, as 

shown in Figure 3.10. This idealization is made by equating the area under the 

nonlinear load distribution to the idealized rectangular load distribution, as shown in 

Figure 3.11. To find the effective width of the buckled panel, the area under the 

nonlinear load distribution curve is divided by the peak load [1], as shown in Equation 

(3.9). 

𝑤𝑒𝑓𝑓 =
𝐴𝑒𝑓𝑓

𝐹𝑚𝑎𝑥
 (3.9) 

 

Figure 3.9 Top view of skin-stringer assembly under compressive loading 
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Figure 3.10: Actual load distribution in the post-buckled stage [1] 

 

Figure 3.11: Equivalent load distribution using the concept of effective width [1] 

Same as previous sub-chapter, the first finite element model of the skin-stringer 

assembly is constructed using the linear material properties of the aluminum 2024-T3 

sheet in the finite element, and load distribution in the post-buckled stage and the 

effective width are calculated accordingly. The second finite element model of the 

skin-stringer assembly is constructed with nonlinear material properties of the 

aluminum 2024-T3 sheet and material plasticity is accounted for. Again, for the skin-

stringer assembly with the nonlinear material model, load distribution in the post-

buckled stage and the effective width are calculated and comparisons are made with 

the results obtained with the linear material model. Finally, effective widths calculated 



70 

by both models are compared with the effective width calculated by the classical 

effective width formulation provided by Bruhn [1]. 

In order to calculate the effective widths, load distributions along the y-axis at the 

restrained edge of the skin-stringer assembly with I stringer cross section are extracted 

from the finite element analysis results of the skin-stringer assemblies with linear and 

the nonlinear material models. In Figure 3.12, load distribution of the skin-stringer 

assembly with the linear material property is presented just before the local buckling 

of the skin panel. It is seen that skin carries the same load on each element of the 

restrained edge along the y-axis before the local skin buckling, as expected. The two 

peaks correspond to the location of the fasteners in the finite element model. 

 

Figure 3.12: Load distribution in the skin-stringer assembly with the linear material model just before 

the skin buckling (I section stringer) 

In Figure 3.13, load distribution is presented for the skin-stringer assembly with linear 

material model at the compressive displacement of 1.736 mm, which is the collapse 

displacement obtained by the nonlinear material model. In addition, Figure 3.13 shows 

the location of stringers and edges which are restrained by classical boundary 

conditions. First and last skin panels are located between the restrained edge and the 

stringer. Second skin panel is located between two stringers. In this study, load 

distribution is calculated at the only second skin panel location. In the post-buckled 
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stage, as expected, load distribution after the local buckling of the skin is highly 

different from the load distribution given in Figure 3.12. Skin sections at the stringer 

locations carry more loads compared to the skin part at the middle of skin sections. 

Figure 3.13 also shows the idealized load distribution with red dash line, known as the 

effective width. For the skin-stringer assembly with the linear material model, 

effective width is calculated as 49.20 mm using actual load distribution area scanned 

by the green lines seen in Figure 3.14. 

 

Figure 3.13: Load distribution in the skin-stringer assembly with the linear material model at the 

collapse displacement (1.736 mm) of the nonlinear material model case (I section stringer) 

 

Figure 3.14: Closed view of load distribution in the skin-stringer assembly with the linear material 

model at the collapse displacement (1.736 mm) of the nonlinear material model case (I section 

stringer) 
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In Figure 3.15, load distribution is presented for the model with the nonlinear material 

property just before the local buckling of the skin panel. Before the local buckling of 

the skin, load distribution given in Figure 3.15 is exactly same as the load distribution 

(Figure 3.12) obtained using the linear material model, as expected. 

 

Figure 3.15: Load distribution in the skin-stringer assembly with the nonlinear material property just 

before the skin buckling (I section stringer) 

In Figure 3.16, load distribution is presented for the model with the nonlinear material 

property at the collapse displacement of 1.736 mm. As expected, load distribution in 

the post-buckled stage is highly different from the load distribution in the pre-buckled 

configuration. For the skin-stringer assembly with the nonlinear material model, 

effective width is calculated as 60.67 mm. It should be noted that since the peak load 

for the skin-stringer assembly with the nonlinear material model is lower than the peak 

load for the assembly with the linear material model, effective width is higher. 
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Figure 3.16: Load distribution in the skin-stringer assembly with nonlinear material property at the 

collapse displacement of 1.736 mm (I section stringer) 

Figure 3.17 shows the load distribution obtained by the linear and nonlinear material 

models in the finite element analysis in the same plot. It is seen that the main effect of 

including material nonlinearity is on the peak load level which drops significantly for 

the skin-stringer assembly with the nonlinear material model. Moreover, equivalent 

width calculated based on finite element analysis using nonlinear material model is 

higher than the equivalent width calculated using linear material model. For the skin-

I section stringer assembly, ratio of the equivalent widths calculated using the linear 

and the nonlinear material models is 0.81. 

 

Figure 3.17: Comparison of the load distribution in the skin-stringer assemblies with linear and 

nonlinear material properties (I section stringer) 

In this study, effective width is also calculated using the empirical relation given by 

Bruhn [1], Equation (3.10). In Equation (3.10), stringer stress (𝐹𝑠𝑡𝑟) is taken as the 

minimum of the stringer local buckling stress (𝐹𝑙𝑏), stringer crippling failure stress 

(𝐹𝑐𝑟𝑖𝑝)  and the material yield stress of the stringer (𝐹𝑐𝑦) . For the skin-stringer 
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assembly, local buckling stress 𝐹𝑙𝑏 is calculated as 280.98 MPa [1], and the crippling 

stress of the stringer is calculated as 282.61 MPa [40]. Calculation methodology of 

local buckling stress of the stringer is given Appendix C. For Aluminum 2024 T3, 

material yield stress is 269 MPa [36]. Therefore, stringer stress (𝐹𝑠𝑡𝑟)  is taken as the 

minimum of the three as 269 MPa. Moreover, half of the lower flange width (𝑙𝑙𝑓) is 

added to the effective width formula because of the double row fastener configuration 

for the I-section stringer. For the clamped edge condition, effective width constant 

𝑘𝑒𝑓𝑓 is specified as 2.52 in Bruhn [1]. Thus, for the skin-stringer assembly effective 

width is calculated as 43.61 mm. 

In addition, effective width is also calculated using the stringer stress in the lower 

flange obtained from finite element analysis at the collapse point and the empirical 

relation given by Bruhn [1], Equation (3.10). In the model with the linear material 

property, absolute maximum stringer stress (𝐹𝑠𝑡𝑟)  is obtained as 263.9 MPa (Equation 

(3.12)). Thus, for the skin-stringer assembly effective width is calculated as 43.93 mm. 

Moreover, in the model with nonlinear material property, absolute maximum stringer 

stress (𝐹𝑠𝑡𝑟) is obtained as 248.6 MPa (Equation (3.13)). Thus, for the skin-stringer 

assembly effective width is calculated as 44.96 mm. 

𝑤𝑒𝑓𝑓 = 𝑘𝑒𝑓𝑓 ∗ 𝑡𝑠𝑘 ∗ √𝐸/𝐹𝑠𝑡𝑟 + 0.5 ∗ 𝑙𝑙𝑓 (3.10) 

(𝐹𝑠𝑡𝑟)𝐵𝑟𝑢ℎ𝑛 = min(𝐹𝑐𝑟𝑖𝑝 , 𝐹𝑙𝑏 , 𝐹𝑐𝑦) = 269 𝑀𝑃𝑎 (3.11) 

(𝐹𝑠𝑡𝑟)𝐿𝑖𝑛𝑒𝑎𝑟−𝐹𝑒𝑚 = 263.9 𝑀𝑃𝑎 (3.12) 

(𝐹𝑠𝑡𝑟)𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟−𝐹𝑒𝑚 = 248.6 𝑀𝑃𝑎 (3.13) 

Table 3.3 compares the effective widths calculated by the finite element analysis 

utilizing linear and nonlinear material models with the effective width calculated by 

the classical empirical approach and the effective width calculated by a combination 

of the classical approach and the stringer stress determined by the finite element 

analysis at the collapse point determined by the finite element analysis using linear 

and nonlinear material property. It is seen that the effective width calculated by the 

classical method is close to the effective width calculated by the finite element analysis 
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performed utilizing the linear material model. When the nonlinear material model is 

used in the finite element analysis, a higher effective width is calculated. The classical 

approach gives smallest effective width compared to finite element analysis results. It 

is also noticed that effective widths calculated by using the stringer stresses determined 

at the collapse point by the finite element analysis with the linear and the nonlinear 

material models are strikingly close to the effective width calculated by the classical 

empirical relation given by Bruhn [1]. 

Table 3.3: Comparison of the effective widths (I-section stringer) 

 

Finite 

element 

(Linear 

material 

model) 

Finite 

element 

(Nonlinear 

material 

model) 

Equation 

(3.10) 

Equation 

(3.10) with 

Stringer 

Stress 

from FE 

Analysis 

(Linear 

material 

model) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE 

Analysis 

(Nonlinear 

material 

model) 

Effective 

width 

(mm) 

49.20 60.67 43.61 43.93 44.96 

3.4. Effect of Stringer Section Types on the Post-Buckling Stage 

To see the effect of different section stringers on the buckling load, collapse load and 

the effective width, the stringer dimensions of the I stringer are used for the skin-

stringer assemblies with J and Z type stringers. Geometric descriptions of the stringers 

with different sections are shown in Figure 3.18. As seen in Figure 3.18, I and J section 

stringers use double row joints at the connection of skin and the lower flange of the 

stringer. On the other hand, in the Z section stringer, double and single row joint 

configurations are used in the finite element model. Figure 3.18 shows the single row 

joint configuration of Z section stringer. 
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Figure 3.18: Stringer section types used in this study 

Same procedure for the skin-stringer assembly with the I stringer section is also 

applied to the skin-stringer assemblies with the J and Z type of stringer sections. To 

make direct comparisons between the different stringer types, the dimensions of the I 

section stringer, which provides clamped edge condition, are directly used for the J 

and Z section stringers. Dimensions of the J and Z section stringers are given in Table 

3.5 and Table 3.6 together with the overall dimensions of the skin-stringer assembly, 

respectively. 

3.4.1. Skin-Stringer Assembly with J Section Stringer 

Same as the skin-I section stringer assembly, first linear buckling analysis has been 

performed. In this analysis, a compression load is applied on one of the edges of the 

skin-stringer assembly with the J type of stringer section along the y-axis as 2.0 mm 

prescribed displacement in the “-x” direction. For the skin-stringer assembly with the 

J type of stringer section described in Table 3.4 lowest eigenvalue is obtained as, 

𝜆𝐹𝐸 = 0.0451 (3.14) 

Using this eigenvalue, the compressive buckling coefficient of skin-stringer assembly 

with the J stringer section type is calculated as, 

𝑘 = 𝜎𝑐𝑟
12(1 − 𝑣2)

𝜋2𝐸𝑐
(
𝑙𝑦

𝑡
)

2

= 7.40 
(3.15) 
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Table 3.4: Parameters of the skin-stringer assembly used in the finite element model with J section 

stringer 

Skin panel material Aluminum 2024 T3 Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450 

Single skin panel length y (mm) 150 

Stringer material Aluminum 2024 T3 Sheet 

Stringer thickness (mm) 1.016 

Stringer height (mm) 25 

Stringer upper flange width (mm) 15 

Stringer lower flange width (mm) 20 

Based on the compression buckling coefficients determined from the linear buckling 

analysis of the skin-stringer assemblies with J stringer section, it is confirmed that the 

restraints provided by the J section stringers are appropriate to simulate the classical 

clamped edge condition as the I section stringer case. The reason of this similarity, 

both stringer types uses same double row fastener configuration as seen in Figure 3.18. 

The upper flange connection has a small  effect on the buckling behaviour of the skin-

stringer assembly. Hence, buckling coefficients of these two skin-stringer assembly 

are close to each other.  

After the calculation of the buckling coefficient of skin-J stringer section assembly, 

geometrically nonlinear static analysis has been conducted for the skin-stringer 

assembly with J type stringer.  For the skin-stringer assembly with the linear material 

model, load-displacement curve that is obtained by ABAQUS analysis is shown in 

Figure 3.19. 
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Figure 3.19: Load displacement curve of the skin-stringer assembly with linear material model (J 

section stringer) 

As shown in Figure 3.19, load displacement curve for the skin-stringer assembly with 

the J type stringer is similar to the I section stringer case. For the skin-stringer assembly 

with the J section stringer, local buckling displacement is same as the skin-stringer 

assembly with the I section stringer.  

Figure 3.20 shows the load-displacement curve obtained by using the nonlinear 

material model in the finite element analysis. As shown in Figure 3.20, local buckling 

of the skin starts at the same displacement of 0.104 mm which is same as the local 

buckling displacement of the skin-stringer assembly with the linear material model. 

Beyond the initiation of the local skin buckling, load-displacement curve again 

becomes nonlinear and when the displacement reaches 1.726 mm collapse of the skin-

stringer assembly occurs. For the skin-stringer assembly with the J section stringer, 

collapse load is reached at a slightly lower displacement than the skin-stringer 

assembly with the I section stringer. 
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Figure 3.20: Load displacement curve of the skin-stringer assembly with nonlinear material model (J 

section stringer) 

For the skin-stringer assembly with the J section stringer, Figure 3.21 shows the load 

distribution in the skin-J stringer assembly with the linear material model just before 

the local buckling of the skin panel. Comparing Figure 3.12with Figure 3.21, one can 

see that the load distributions in the skin-stringer assemblies with I and J section 

stringer are almost the same. 

 

Figure 3.21: Load distribution in the skin-stringer assembly with the linear material model just before 

the skin buckling (J section stringer) 

In Figure 3.22, load distribution is presented for skin-stringer assembly model with J 

section stringer with the linear material model at the compressive displacement of 



80 

1.726 mm which is the collapse displacement obtained by the nonlinear material 

model. Figure 3.22 also shows that idealized load distribution with red dash line, 

known as the effective width. For the skin-stringer assembly with the linear material 

model and J section stringer, effective width is calculated as 47.59 mm using area 

under the actual load distribution given by the blue line. It should be noted that for the 

J stringer case, skin-stringer assembly is not symmetric with respect to the center of 

the middle panel, therefore load distribution in the assembly is also not symmetric with 

respect to the center of the middle panel. 

 

Figure 3.22: Load distribution in the skin-stringer assembly with the linear material model the 

collapse displacement (1.726 mm) of the nonlinear material model case (J section stringer) 

In Figure 3.23, load distribution is presented for the skin-J section stringer assembly 

with the nonlinear material model just before the local buckling of the skin panel. It is 

again noted that before the local buckling of the skin, load distribution given in Figure 

3.23 is almost same as the load distribution (Figure 3.21) obtained using the linear 

material model, as expected. 
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Figure 3.23: Load distribution in the skin-stringer assembly with the nonlinear material model just 

before the skin buckling (J section stringer) 

In Figure 3.24, load distribution is presented for the skin-J section stringer assembly 

with the nonlinear material model at the collapse displacement of 1.726 mm. For the 

skin-stringer assembly with the nonlinear material model, effective width is calculated 

as 57.48 mm. 

 

Figure 3.24: Load distribution in the skin-stringer assembly with the nonlinear material model at the 

collapse displacement of 1.726 mm (J section stringer) 

Figure 3.25 compares the load distributions in the skin-J section stringer assemblies 

obtained by the linear and nonlinear material models in the finite element analysis in 

the same plot. It is seen that as in the I-section stringer case, the main effect of 

including material nonlinearity is on the peak load level which drops significantly for 
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the skin-stringer assembly with the nonlinear material model. Moreover, equivalent 

width calculated based on finite element analysis using nonlinear material model again 

is higher than the equivalent width calculated using linear material model. For the skin 

J-section stringer assembly, ratio of the equivalent widths calculated using the linear 

and nonlinear material models is 0.83. It is also noted that skin J-section stringer 

assembly has lower equivalent width than the skin-I section stringer assembly. 

 

Figure 3.25: Comparison of the load distribution of skin-stringer assemblies with linear and nonlinear 

material properties (J-section stringer) 

Following the same analysis procedure applied for the skin I-section stringer assembly, 

effective widths for the skin J-section stringer assembly are calculated by the classical 

empirical approach of Bruhn [1] and also utilizing the combination of the classical 

approach and the stringer stress determined by the finite element analysis. For the skin 

J-section stringer assembly, local buckling stress (𝐹𝑙𝑏) is calculated as 233.65 MPa 

[1], and crippling stress of the stringer is calculated as 248.66 MPa [40]. For 

Aluminum 2024 T3, material yield stress is 269 MPa [36]. Therefore, stringer stress 

(𝐹𝑠𝑡𝑟) is taken as the minimum of the three as 233.65 MPa.  Thus, for the skin J-section 

stringer assembly, effective width is calculated as 46.06 mm from Equation (3.10). 

Table 3.5 compares the effective widths calculated by different approaches. Again, for 

the skin J-section stringer assembly, equivalent widths calculated by the linear finite 

element analysis and by the classical empirical approach of Bruhn agree considerably 

well. Similar to the I-section stringer case, equivalent width calculated by the finite 

element analysis with the nonlinear material property is the highest for the skin J-

section stringer assembly. 
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Table 3.5: Comparison of the effective widths (J-section stringer) 

 

Finite 

element 

(Linear 

material 

model) 

Finite 

element 

(Nonlinear 

material 

model) 

Equation 

(3.10) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Linear 

material 

model) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Nonlinear 

material 

model) 

Effective 

width 

(mm) 

47.59 57.48 46.06 44.11 45.48 

3.4.2. Skin-Stringer Assembly with Z Section Stringer 

In this chapter, to see the effect of fastener configuration on the buckling load, collapse 

load and the effective width, two skin-stringer assemblies with single row fastener Z 

section stringer and with double row fastener Z section stringer are modelled with 

ABAQUS as seen in Figure 3.26. After that point, Z section stringer with double row 

fastener configuration is defined as Z2. 

 

Figure 3.26: Single and double fastener configurations with Z section stringer 

  



84 

3.4.2.1. SINGLE ROW FASTENER CONFIGURATION 

Skin-stringer assembly with Z section stringer which has a single row fastener 

configuration is obtained using same geometric and material properties of skin- 

stringer assembly as the I stringer section as mentioned before. Firstly, linear buckling 

analysis is performed for the skin-stringer assembly. For the buckling analysis of the 

skin-stringer assembly with Z section stringer, a compression load is applied on one 

of the edges of the skin-stringer assembly with the Z type of stringer section along the 

y-axis as 2.0 mm prescribed displacement in the “-x” direction. For the skin-stringer 

assembly with the Z type of stringer section described in Table 3.6, lowest eigenvalue 

is obtained as, 

𝜆𝐹𝐸 = 0.0408 (3.16) 

Using this eigenvalue, the corresponding compressive buckling coefficient of skin-

stringer assembly with Z stringer section type are calculated as, 

𝑘 = 𝜎𝑐𝑟
12(1 − 𝑣2)

𝜋2𝐸𝑐
(
𝑙𝑦

𝑡
)

2

= 6.69 
(3.17) 

Table 3.6: Parameters of the skin-stringer assembly used in the finite element model with Z section 

stringer 

Skin panel material Aluminum 2024 T3 Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450 

Single skin panel length y (mm) 150 

Stringer material Aluminum 2024 T3 Sheet 

Stringer thickness (mm) 1.016 

Stringer height (mm) 25 

Stringer upper flange width (mm) 15 

Stringer lower flange width (mm) 20 
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Buckling coefficient calculated shows that Z stringer section is not sufficient to 

provide the clamped edge condition as the I and J stringer sections. The main reason 

for this is the rivet configurations of the skin-stringer assemblies. In the models with I 

and J types of stringer sections, double fastener configuration is used to connect the 

skin to the lower flange of the stringer. On the contrary, in the model with the Z type 

of stringer section, single fastener configuration is used to connect the skin to lower 

flange of the stringer. However, in this study the main geometric properties of the Z 

section stringer are kept same as the I section stringer and no attempt has been made 

to provide the clamped edge condition as the I and J section stringer types.  

For the skin-stringer assembly with the Z section stringer and the linear material 

model, load-displacement curve that is obtained by ABAQUS analysis by 

incorporating geometric nonlinearity is given in Figure 3.27. 

 

Figure 3.27: Load-displacement curve of the skin-stringer assembly with linear material model (Z 

section stringer) 

As shown in Figure 3.27, the first break in the load-displacement curve represents the 

initiation of the local buckling. Local buckling starts when the applied displacement is 

0.0951 mm. Beyond the initiation of the local buckling, post-buckling stage of the 
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skin-stringer assembly starts. In Figure 3.27, there is a second load drop followed by 

again an increase in the load. As seen in Figure 3.28, this second drop occurs due to 

the sudden increase in the wavelength of the buckled mid panel which is non-existent 

in the skin-stringer assemblies with I and J section stringers. The reason of this increase 

is the distance between free edge of lower flange and fastener location of  Z type of 

stringer  is twice of distance in the skin-stringer assemblies with double row fasteners. 

This difference makes the strength of Z type stringer is lower than the strength of 

stringer with double row fasteners.  It is deemed that in the skin-stringer assemblies 

with I and J section stringers, there are two fastener connections in the lower flange-

skin connection which does not allow the sudden jump in the buckled wavelength of 

the middle panel as is the case for the assembly with Z section stringer. For the skin-

stringer assembly with the Z section stringer, local buckling displacement is slightly 

lower than the corresponding displacement for the skin-stringer assemblies with I and 

J section stringers. This is an expected behaviour since the single row joint 

configuration of the Z section stringer cannot provide the clamped edge condition as 

the I section and J section stringers.  

 

Figure 3.28: Buckled shape of mid panel before and after views of second drop point 

Figure 3.29 shows the load-displacement curve obtained by using the nonlinear 

material model in the finite element analysis. As shown in Figure 3.29, local buckling 

of the skin starts at a displacement of 0.0997 mm which is very close to the local 

buckling displacement of the skin-stringer assembly with the linear material model. 

Beyond the initiation of the local skin buckling, load-displacement curve again 

becomes nonlinear and when the displacement reaches 0.823 mm, collapse of the skin-

stringer assembly occurs. Collapse load for this case occurs at a displacement of 0.823 
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mm which is significantly again lower than the collapse loads of the skin-stringer 

assemblies with I and J section stringers. 

 

Figure 3.29: Load displacement curve of the skin-stringer assembly with nonlinear material model (Z 

section stringer) 

The effect of material nonlinearity on the post-buckling behavior of the skin-stringer 

assembly is clearly seen in Figure 3.30. As shown in Figure 3.30, after the local 

buckling of the skin, when the applied displacement reaches 0.8 mm or so, material 

nonlinearity effect becomes dominant. 

 

Figure 3.30: Comparison of load displacement curves of models with linear and nonlinear material 

properties (Z section stringer) 
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For the skin-stringer assembly with the Z-section stringer, Figure 3.31 shows the load 

distribution with the linear material model just before the local buckling of the skin 

panel. It is noticed that the load distribution in the skin Z-section stringer assembly is 

slightly lower than the load distribution in the skin-stringer assemblies with I or J 

section stringers.   

 

Figure 3.31: Load distribution in the skin-stringer assembly with the linear material model just before 

the skin buckling (Z-section stringer) 

In Figure 3.32, load distribution is presented for skin-stringer assembly model with Z-

section stringer with the linear material model at the compressive displacement of 

0.823 mm which is the collapse displacement obtained by the nonlinear material 

model. Figure 3.32 also shows that idealized load distribution with red dash line, 

known as the effective width. For the skin-stringer assembly with the linear material 

model and Z section stringer, effective width is calculated as 54.01 mm using area 

under the actual load distribution given by the blue line. 
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Figure 3.32: Load distribution in the panel with the linear material model at the compressive collapse 

displacement of 0.823 mm (Z- section stringer) 

In Figure 3.33, load distribution is presented for the model with the nonlinear material 

property just before the local buckling of the skin panel. Before the local buckling of 

the skin, load distribution given in Figure 3.33 is almost same as the load distribution 

(Figure 3.31) obtained using the linear material model, as expected. 

 

Figure 3.33: Load distribution of the model with nonlinear material property just before the skin 

buckling (Z-section stringer) 

In Figure 3.34, load distribution is presented for the model with the nonlinear material 

property at the compressive collapse displacement of 0.823 mm. As expected, load 

distribution in the post-buckled stage is highly different from the load distribution in 

the pre-buckled configuration. For the skin-stringer assembly with the nonlinear 

material model, effective width is calculated as 58.61 mm. It is again noted that since 
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the peak load for the skin-stringer assembly with the nonlinear material model is lower 

than the peak load for the assembly with the linear material model, effective width is 

higher. Similar to the skin J-section stringer assembly, load distribution is not 

symmetric since the Z section destroys the symmetry of the skin-stringer assembly 

with respect to the center of the middle panel. 

 

Figure 3.34: Load distribution of the model with nonlinear material property at the compressive 

displacement of 0.823 mm (Z stringer section type) 

Figure 3.35 compares the load distributions in the skin Z-section stringer assemblies 

obtained by the linear and nonlinear material models in the finite element analysis in 

the same plot. It is seen that as in the I and J section stringer cases, the main effect of 

including material nonlinearity is on the peak load level which drops for the skin-

stringer assembly with the nonlinear material model. Moreover, equivalent width 

calculated based on finite element analysis using nonlinear material model is again 

higher than the equivalent width calculated using linear material model. For the skin 

Z-section stringer assembly, ratio of the equivalent widths calculated using the linear 

and nonlinear material models is 0.92. 
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Figure 3.35: Comparison of load distribution of models with linear and nonlinear material properties 

(Z-section stringer) 

Following the same analysis procedure applied for J and I section stringer-skin 

assemblies, effective widths for the skin-Z section stringer assembly are also 

calculated by the classical empirical approach of Bruhn [1] and also utilizing the 

combination of the classical approach and the stringer stress determined by the finite 

element analysis. For the skin Z-section stringer assembly, local buckling stress (𝐹𝑙𝑏) 

is calculated as 138.25 MPa [1] and crippling stress of the stringer is calculated as 

208.86 MPa [40]. For Aluminum 2024 T3, material yield stress is 269 MPa [36]. 

Therefore, stringer stress (𝐹𝑠𝑡𝑟) is taken as the minimum of the three as 138.25 MPa. 

It should be noted that for the Z-section stringer, because of the single row fastener 

arrangement half of the lower flange length is not added to the effective width. Thus, 

for the skin Z-section stringer assembly effective width is calculated as 46.88 mm. 

Table 3.7 compares the effective widths calculated by different approaches. It is seen 

that the classical approach gives smallest effective width compared to the finite 

element based analysis results. 
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Table 3.7: Comparison of the effective widths (Z-section stringer) 

 

Finite 

element 

(Linear 

material 

model) 

Finite 

element 

(Nonlinear 

material 

model) 

Equation 

(3.10) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Linear 

material 

model) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Nonlinear 

material 

model) 

Effective 

width 

(mm) 

54.01 58.61 46.88 58.22 61.62 

3.4.2.2. DOUBLE ROW FASTENER CONFIGURATION 

Skin-stringer assembly with Z2 section stringer which has double row fastener 

configuration is obtained using same geometric and material properties of skin- 

stringer assembly as the I stringer section as mentioned before. Firstly, linear buckling 

analysis is performed for the skin-stringer assembly similar to previous chapter. For 

the buckling analysis of the skin-stringer assembly with Z2 section stringer, a 

compression load is applied on one of the edges of the skin-stringer assembly with the 

Z2 type of stringer section along the y-axis as 2.0 mm prescribed displacement in the 

“-x” direction. For the skin-stringer assembly with the Z2 type of stringer section 

described in Table 3.8, lowest eigenvalue is obtained as, 

𝜆𝐹𝐸 = 0.0442 (3.18) 

Using this eigenvalue, the corresponding compressive buckling coefficient of skin-

stringer assembly with Z2 stringer section type are calculated as, 

𝑘 = 𝜎𝑐𝑟
12(1 − 𝑣2)

𝜋2𝐸𝑐
(
𝑙𝑦

𝑡
)

2

= 7.239 
(3.19) 
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Table 3.8: Parameters of the skin-stringer assembly used in the finite element model with Z2 section 

stringer 

Skin panel material Aluminum 2024 T3 Sheet 

Skin panel thickness (mm) 0.813 

Skin panel length x (mm) 450 

Single skin panel length y (mm) 150 

Stringer material Aluminum 2024 T3 Sheet 

Stringer thickness (mm) 1.016 

Stringer height (mm) 25 

Stringer upper flange width (mm) 15 

Stringer lower flange width (mm) 20 

Based on the compression buckling coefficients determined from the linear buckling 

analysis of the skin-stringer assemblies with Z2 stringer section, it is confirmed that 

the restraints provided by the Z2 section stringers is slightly different than the classical 

clamped edge condition as the I section stringer case. The main reason of this 

similarity, both stringer types uses same double row fastener configuration and 

dimensions as seen in Table 3.6. However, the stringer web location has an effect on 

the buckling behaviour of the skin-stringer assembly. In the skin-stringer assemblies 

with I or J stringers, the mid web is supported by the flanges on both sides of the web, 

whereas in the skin-stringer assembly with Z type stinger, the mid web is supported 

only on one side by the flange. Even though double fasteners are used in the Z section 

stringer, the support that it provides is not as strong as the support that I or J section 

stringer provides. Hence, buckling coefficients of these two skin-stringer assembly are 

slightly different than each other.  

After the calculation of the buckling coefficient of skin-Z2 stringer section assembly, 

geometrically nonlinear static analysis has been conducted for the skin-stringer 

assembly with Z2 type stringer.  For the skin-stringer assembly with the linear material 
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model, load-displacement curve that is obtained by ABAQUS analysis is shown in 

Figure 3.36. 

 

Figure 3.36: Load-displacement curve of the skin-stringer assembly with linear material model (Z2 

section stringer) 

As shown in Figure 3.36, the first break in the load-displacement curve represents the 

initiation of the local buckling. Local buckling starts when the applied displacement is 

0.1039 mm. Beyond the initiation of the local buckling, post-buckling stage of the 

skin-stringer assembly starts. In Figure 3.36, there is no second load drop followed by 

again an increase in the load as in the Z type of stringer with single row configuration. 

It is assumed that in the skin-stringer assemblies with I, J and Z2 section stringers, there 

are two fastener connections in the lower flange-skin connection which does not allow 

the sudden jump in the buckled wavelength of the middle panel as is the case for the 

assembly with Z section stringer. For the skin-stringer assembly with the Z2 section 

stringer, local buckling displacement is equal to the corresponding displacement for 

the skin-stringer assemblies with I and J section stringers. 

Figure 3.37 shows the load-displacement curve obtained by using the nonlinear 

material model in the finite element analysis. As shown in Figure 3.37, local buckling 

of the skin starts at a displacement of 0.1087 mm which is very close to the local 

buckling displacement of the skin-stringer assembly with the linear material model. 
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Beyond the initiation of the local skin buckling, load-displacement curve again 

becomes nonlinear and when the displacement reaches 1.637 mm, collapse of the skin-

stringer assembly occurs. Collapse load for this case occurs at a displacement of 1.637 

mm which is slightly lower than the collapse loads of the skin-stringer assemblies with 

I and J section stringers. 

 

Figure 3.37: Load displacement curve of the skin-stringer assembly with nonlinear material model (Z2 

section stringer) 

The effect of material nonlinearity on the post-buckling behavior of the skin-stringer 

assembly is clearly seen in Figure 3.38. As shown in Figure 3.38, after the local 

buckling of the skin, when the applied displacement reaches 1.637 mm or so, material 

nonlinearity effect becomes dominant. 
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Figure 3.38: Comparison of load displacement curves of models with linear and nonlinear material 

properties (Z2 section stringer) 

For the skin-stringer assembly with the Z2-section stringer, Figure 3.39 shows the load 

distribution with the linear material model just before the local buckling of the skin 

panel. It is noticed that the load distribution in the skin Z2-section stringer assembly is 

same as the load distribution in the skin-stringer assemblies with I or J section 

stringers.   

 

Figure 3.39: Load distribution in the skin-stringer assembly with the linear material model just before 

the skin buckling (Z2-section stringer) 
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In Figure 3.40, load distribution is presented for skin-stringer assembly model with Z2-

section stringer with the linear material model at the compressive displacement of 

1.637 mm which is the collapse displacement obtained by the nonlinear material 

model. Figure 3.40 also shows that idealized load distribution with red dash line, 

known as the effective width. For the skin-stringer assembly with the linear material 

model and Z2 section stringer, effective width is calculated as 54.28 mm using area 

under the actual load distribution given by the blue line. 

 

Figure 3.40: Load distribution in the panel with the linear material model at the compressive collapse 

displacement of 1.637 mm (Z2-section stringer) 

In Figure 3.41, load distribution is presented for the model with the nonlinear material 

property just before the local buckling of the skin panel. Before the local buckling of 

the skin, load distribution given in Figure 3.41 is almost same as the load distribution 

(Figure 3.39) obtained using the linear material model, as expected. 

 

Figure 3.41: Load distribution of the model with nonlinear material property just before the skin 

buckling (Z2-section stringer) 
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In Figure 3.42, load distribution is presented for the model with the nonlinear material 

property at the compressive collapse displacement of 1.637 mm. As expected, load 

distribution in the post-buckled stage is highly different from the load distribution in 

the pre-buckled configuration. For the skin-stringer assembly with the nonlinear 

material model, effective width is calculated as 54.18 mm. According to this result, 

effective width calculated by nonlinear material model is almost equal to effective 

width calculated by linear material model. It is again noted that since the peak load for 

the skin-stringer assembly with the nonlinear material model is lower than the peak 

load for the assembly with the linear material model, effective width is expected as 

higher. However, area under the first stringer location is significantly lower than area 

under the second stringer location. These two differences between linear and nonlinear 

material models is balanced each other. In addition, similar to the skin J-section 

stringer assembly, load distribution is not symmetric since the Z2 section destroys the 

symmetry of the skin-stringer assembly with respect to the center of the middle panel. 

 

Figure 3.42: Load distribution of the model with nonlinear material property at the compressive 

displacement of 1.637 mm (Z2 stringer section type) 

Figure 3.43 compares the load distributions in the skin Z2-section stringer assemblies 

obtained by the linear and nonlinear material models in the finite element analysis in 

the same plot. It is seen that as in the I and J section stringer cases, the main effect of 

including material nonlinearity is on the peak load level which drops for the skin-

stringer assembly with the nonlinear material model. Moreover, equivalent width 

calculated based on finite element analysis using nonlinear material model is almost 

equal to the equivalent width calculated using linear material model. For the skin Z2-
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section stringer assembly, ratio of the equivalent widths calculated using the linear and 

nonlinear material models is 1.002. 

 

Figure 3.43: Comparison of load distribution of models with linear and nonlinear material properties 

(Z2-section stringer) 

Following the same analysis procedure applied for I, J and Z section stringer-skin 

assemblies, effective widths for the skin-Z2 section stringer assembly are also 

calculated by the classical empirical approach of Bruhn [1] and also utilizing the 

combination of the classical approach and the stringer stress determined by the finite 

element analysis. For the skin Z2-section stringer assembly, local buckling stress (𝐹𝑙𝑏) 

is calculated as 138.25 MPa [1] and crippling stress of the stringer is calculated as 

208.86 MPa [40]. For Aluminum 2024 T3, material yield stress is 269 MPa [36]. 

Therefore, stringer stress (𝐹𝑠𝑡𝑟) is taken as the minimum of the three as 138.25 MPa. 

It should be noted that for the Z2-section stringer, because of the double row fastener 

arrangement half of the lower flange length is added to the effective width. Thus, for 

the skin Z2-section stringer assembly effective width is calculated as 56.88 mm. Table 

3.9 compares the effective widths calculated by different approaches. It is seen that the 

classical approach gives almost same  effective width compared to the finite element 

based analysis results. 
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Table 3.9: Comparison of the effective widths (Z2-section stringer) 

 

Finite 

element 

(Linear 

material 

model) 

Finite 

element 

(Nonlinear 

material 

model) 

Equation 

(3.10) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Linear 

material 

model) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Nonlinear 

material 

model) 

Effective 

width 

(mm) 

54.28 54.18 56.88 50.97 57.02 

3.5. Comparison of Load Carrying Capacity, Load Distribution and Effective 

Width of Skin-Stringer Assemblies with Three Different Stringer Types 

Load carrying capacities of the skin-stringer assemblies determined by the finite 

element analysis employing nonlinear material model for the three different stringer 

types are compared Figure 3.44. It is seen that all skin stringer assemblies behave same 

in the linear range before the local buckling of the skin panel occurs. However, after 

the local buckling of the skin panels, post-buckling behavior of the skin-stringer 

assemblies differ from each other. Load carrying capacity of the skin-stringer assembly 

with I, J and Z2 type of stringer sections are almost equal to each other. Skin-stringer 

assembly with the I section stringer has slightly higher collapse load than the assembly 

with J and Z2 section stringer. However, skin Z-section stringer assembly has 

considerably lower collapse load than the skin-stringer assemblies with I, J and Z2 

section stringers.  The reason of this difference is deemed to be due to the fastener row 

configuration. In the I, J and Z2 types of stringers, double row fastener configuration 

is used, on the contrary, in the Z type of stringer, single row fastener configuration is 

used. 
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Figure 3.44: Comparison of load carrying capacity of skin-stringer assemblies with I, J, Z and Z2 

section stringers (Nonlinear material properties) 

Secondly, load distributions determined at the point of collapse by the finite element 

analysis of skin-stringer assemblies with nonlinear material properties are compared 

in Figure 3.45. Figure 3.45 clearly shows that the peak load in the skin Z-section 

assembly is significantly lower than the skin-stringer assemblies with double row 

fasteners. 

 

Figure 3.45: Comparison of load distribution of skin-stringer assemblies with I, J, Z and Z2 section 

stringers (Nonlinear material properties) 
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Finally, effective widths of the skin-stringer assemblies determined by the finite 

element analysis employing five different calculation methods for the three different 

stringer types are compared in Table 3.10. 

Table 3.10: Comparison of the effective widths with Three Different Stringer Types 

Effective 

width 

(mm) 

Finite 

element 

(Linear 

material 

model) 

Finite 

element 

(Nonlinear 

material 

model) 

Equation 

(3.10) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Linear 

material 

model) 

Equation 

(3.10) with 

Stringer 

Stress from 

FE Analysis 

(Nonlinear 

material 

model) 

I 

Stringer 

Section 

49.20 60.67 43.61 43.93 44.96 

J 

Stringer 

Section 

47.59 57.48 46.06 44.11 45.48 

Z 

Stringer 

Section 

54.01 58.61 46.88 58.22 61.62 

Z2 

Stringer 

Section 

54.28 54.18 56.88 50.97 57.02 

Based on the comparison of the effective widths calculated by different methods which 

are presented in Table 3.10, the following conclusions can be drawn: 

• Effective widths calculated by the finite element based analysis by employing 

nonlinear material property are higher than the effective widths calculated by 

employing linear material property. Since the peak loads drop when nonlinear material 

property is used in the finite element analysis, the increase in the effective width is 

reasonable. 
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• If the effective widths calculated by the finite element analysis employing 

finite element analysis with nonlinear material properties are taken as reference, for 

the skin stringer assemblies studied, classical effective width formula underestimates 

the effective widths by 28 % for the skin I-section stringer assembly, and by 20 % for 

the skin J and Z section stringer assemblies. However, classical effective width 

formula result almost equals to the finite element analysis effective width result for the 

skin Z2-section stringer assembly. 

• In general, classical empirical approach of Bruhn gives the smallest effective 

width except skin-stringer assembly with Z2 type stringer. 

• Effective widths calculated by the finite element based analysis by employing 

linear material property agree better with the effective widths calculated by the 

classical empirical approach of Bruhn compared to the effective widths calculated by 

the finite element based analysis by employing nonlinear material property. However, 

to obtain results from linear material model, nonlinear material model has to be 

constructed to get the collapse load. Analyses results of linear material models do not 

give the collapse load. 

• Effective widths of skin stringer assemblies which have double row fastener 

arrangement, such as I and J section stringers, are close to each other irrespective of 

the analysis methodology employed. However, effective width of skin stringer 

assembly with Z2 section stringer is far away from effective width results of other 

assemblies with double row fastener arrangement. 

• For skin stringer assemblies with double row fasteners, effective widths 

calculated by substituting the stringer stresses at the collapse point calculated by the 

finite element analysis in the classical empirical effective width formula (Equation 

(3.10)) match well with the effective widths calculated by the classical empirical 

effective width formula alone. 
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• Results of the present analysis also showed that the classical effective width 

formula gives reasonable results which are comparable with the finite element based 

analysis results.  

• According to results in above, nonlinear material model gives the more realistic 

result compare to  empirical and linear material models. 
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CHAPTER 4 

 

 

4. COMPOSITE PLATE BUCKLING 

 

 

 

In this chapter, for certain geometries and laminate configurations composite buckling 

charts are obtained by using a script written in Python 2.7 to construct parametric finite 

element model in ABAQUS and perform automated buckling analysis. Variable 

parameters of composite plates are taken as material, number of plies, ply orientation 

which are selected according to common use in the aviation industry. To verify the 

results of the finite element model, analytical methods based on classical lamination 

theory and first order shear deformation theory are used to determine the critical 

buckling load of the composite plates.  

In these methods, material of the composite plate is taken as orthotropic. In addition, 

the laminate is chosen as symmetric balance laminated and ply angles are decided as 

combination of 0, +45, -45 and 90 degrees.  

Firstly, buckling analysis of composite plates is investigated by two different theories 

base on equivalent single layer theories, the classical laminated plate theory (CLPT) 

and first order shear deformation theory (FSDT) [41].  

In the second part, analysis of composite plates is studied using defined mathematical 

methods.
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In the third part, finite element model is constructed using the classical boundary 

conditions and loading condition is chosen as uniaxial compressive loading. Buckling 

coefficient graphs are obtained by processing the results of finite element analysis and 

these graphs are in section 4.3. Buckling coefficient charts for each type of lay-up 

configuration obtained by the analytical approaches and finite element method are 

compared with each other and discussions are made. 

4.1. Classical and First-Order Laminate Theories of Composite Plate 

4.1.1. Classical Laminated Plate Theory (CLPT) 

Classical laminated plate theory is based on the Kirchhoff hypothesis. In this 

hypothesis, it is assumed that plane cross sections remain plane and normal to the 

middle-plane during deformations which means that the transverse shear strains are 

omitted.  

4.1.1.1. KINEMATICS 

The in-plane displacements are related to the normal displacements as follows [42]: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0 − 𝑧
𝜕𝑤

𝜕𝑥
, 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0 − 𝑧

𝜕𝑤

𝜕𝑦
, 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0 (4.1) 

where 𝑢 is the displacement in the 𝑥 direction, 𝑣 is the displacement in the 𝑦 direction 

and 𝑤 is the displacement in the z direction, while 𝑢0, 𝑣0 and 𝑤0 are displacements of 

the middle plane in 𝑥 , 𝑦 and 𝑧 directions, respectively. Undeformed and deformed 

geometric descriptions of plate edge according to Kirchhoff assumptions are seen in 

the Figure 4.1. Based on the displacement field above, we can find the strains as 

follows: 

𝜀 = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

{
𝑢

𝑣
} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ 𝑧

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

= {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

} (4.2) 



107 

 

Figure 4.1: Undeformed and deformed geometries of an edge of a plate under the Kirchhoff 

assumptions [41] 

4.1.1.2. MATERIAL LAW 

Definition of tensor strains is given by Equation (4.3) [42]: 

{

𝜀𝐿
𝜀𝑇
1

2
𝛾𝐿𝑇

} = [𝑇] {

𝜀𝑥
𝜀𝑦
1

2
𝛾𝑥𝑦

} (4.3) 

Where [𝑇] is the transformation matrix. Using this definition, the stress strain relations 

are given by [42]: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [𝑇]−1 {

𝜎𝐿
𝜎𝑇
𝜏𝐿𝑇
} = [𝑇]−1 [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 2𝑄66

] {

𝜀𝐿
𝜀𝑇
1

2
𝛾𝐿𝑇

} = [𝑇]−1[𝑄∗][𝑇] {

𝜀𝑥
𝜀𝑦
1

2
𝛾𝑥𝑦

}

= [�̅�∗] {

𝜀𝑥
𝜀𝑦
1

2
𝛾𝑥𝑦

} = [�̅�] {

𝜀𝑥
𝜀𝑦
1

2
𝛾𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} 

(4.4) 
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Equation (4.4) gives the stress-strain relation for orthotropic lamina referred to 

arbitrary axes. For the purpose of uniformity, a [�̅�] matrix is defined that relates 

engineering strains to the stresses referred to arbitrary axes.  

Inserting of equation (4.2) into the equation (4.4) gives: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

} + 𝑧 [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

] {

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

} (4.5) 

4.1.1.3. RESULTS FORCES AND MOMENTS 

The stresses change from layer to layer in a laminate. Hence it is convenient to deal 

with a simpler but equivalent system of forces and moments acting on a laminate cross 

section. Resultant force is obtained by integrating the corresponding stress through the 

laminate thickness h [42]: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = ∫ {

𝜎𝑥
𝜎𝑥
𝜏𝑥𝑦

} 𝑑𝑧

ℎ
2

−
ℎ
2

=∑∫ {

𝜎𝑥
𝜎𝑥
𝜏𝑥𝑦

}

𝑖

𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

 (4.6) 

Similarly, the resultant moment is obtained by integration through the thickness of the 

corresponding stress times the moment arm with respect to the middle plane [42]: 

{
𝑀𝑥

𝑀𝑦

𝑀

} = ∫ {

𝜎𝑥
𝜎𝑥
𝜏𝑥𝑦

} 𝑧 𝑑𝑧

ℎ
2

−
ℎ
2

=∑∫ {

𝜎𝑥
𝜎𝑥
𝜏𝑥𝑦

}

𝑖

𝑧 𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

 (4.7) 

Substitution of Equation (4.5) into equations (4.6) and (4.7) gives: 
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{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} =∑∫ [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

𝑖

𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}

+∑∫ 𝑧 [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

𝑖

𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

{

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}

= [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 

(4.8) 

{
𝑀𝑥

𝑀𝑦

𝑀

} =∑∫ 𝑧 [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

𝑖

𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

{

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

}

+∑∫ 𝑧2 [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

𝑖

𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

{

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

}

= [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
  
 

  
 −

𝜕2𝑤0
𝜕𝑥2

−
𝜕2𝑤0
𝜕𝑦2

−2
𝜕2𝑤0
𝜕𝑥𝜕𝑦}

  
 

  
 

 

(4.9) 

4.1.1.4. EQUILIBRIUM EQUATIONS IN TERMS OF DISPLACEMENT 

Equilibrium of forces in x, y direction for laminated thin plates are given in Equations 

(4.10) and (4.11), respectively. In addition, governing equation for buckling analysis 

for laminated thin plates is given in Equation (4.12) . In the Appendix D.2, calculations 

of these equations are given in Equations (D.12), (D.13) and (D.25).  

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0  

(4.10) 

𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= 0  

(4.11) 

𝜕2𝑀𝑥

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+ 𝑝∗ = 0  (4.12) 
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Where:  𝑝∗ = 𝑝 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝜌∗

𝜕2𝑤

𝜕𝑡2
 

Equation (4.12) is used  for the solution of the buckling load. Inserting Equation (4.9) 

into the Equation (4.12), we obtain: 

−𝐷11
𝜕4𝑤

𝜕𝑥4
− 4𝐷16

𝜕4𝑤

𝜕𝑥3𝜕𝑦
− (2𝐷12 + 4𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 4𝐷26

𝜕4𝑤

𝜕𝑦3𝜕𝑥
− 𝐷22

𝜕4𝑤

𝜕𝑦4
+ 

𝐵11
𝜕3𝑢0
𝜕𝑥3

+ 3𝐵16
𝜕3𝑢0
𝜕𝑥2𝜕𝑦

+ (𝐵12 + 2𝐵66)
𝜕3𝑢0
𝜕𝑦2𝜕𝑥

+ 𝐵26
𝜕3𝑢0
𝜕𝑦3

+ 

𝐵16
𝜕3𝑣0
𝜕𝑥3

+ (𝐵12 + 2𝐵66)
𝜕3𝑣0
𝜕𝑥2𝜕𝑦

+ 3𝐵26
𝜕3𝑣0
𝜕𝑦2𝜕𝑥

+ 𝐵22
𝜕3𝑣0
𝜕𝑦3

 

+𝑝∗ = 0 

(4.13) 

For specially orthotropic laminates, their constitutive equations satisfy the following 

conditions [42]: 

𝐴16 = 𝐴26 = 0 

𝐵𝑖𝑗 = 0  

𝐷16 = 𝐷26 = 0 

(4.14) 

Incorporation of conditions above into Equation (4.13) simplifies the equilibrium 

equation for specially orthotropic laminates as given by Equation (4.15). 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ (2𝐷12 + 4𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
= 𝑝∗ (4.15) 

4.1.2. First Order Shear Deformation Theory (FSDT) 

First order shear deformation theory is a bit more complicated compared to CPTL and 

it based on the Reissner-Mindlin hypothesis. In this theory, plane cross sections remain 

plane after deformation, however it does not have to remain normal to the reference 

plane. In this method, out-of-plane shear deformation is also included. 
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4.1.2.1. KINEMATICS 

The displacement field for the FSDT based on the assumption is given in Equation 

(4.16) [43]. As well, undeformed and deformed geometric descriptions of plate edge 

according to first-order plate theory assumptions are seen in the Figure 4.2.  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0 + 𝑧𝜙𝑥, 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0 + 𝑧𝜙𝑦, 𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) (4.16) 

Where: 𝜙𝑥 =
𝜕𝑢

𝜕𝑧
, 𝜙𝑦 =

𝜕𝑣

𝜕𝑧
 

which indicate that 𝜙𝑥 and 𝜙𝑦 are the rotations of the transverse normal about the y 

and the x axes, respectively. 

 

Figure 4.2: Undeformed and deformed geometries of an edge of a plate under the assumptions of the 

first-order plate theory [43]. 

It is convenient to split the strain vector into two parts, where 𝜀𝑏 is the axial-bending 

part and 𝜀𝑠 is the transverse shear part [44]. Axial and bending strain part of plate is 

given in the Equation (4.17), and equation for transverse shear strain of plate is given 

in Equation (4.18). 
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𝜀𝑏 = {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦
} =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ 𝑧

{
  
 

  
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥 }
  
 

  
 

 (4.17) 

𝜀𝑠 = {
𝛾𝑦𝑧
𝛾𝑥𝑧
} =

{
 

 
𝜕𝑣

𝜕𝑧
+
𝜕𝑤0
𝜕𝑦

𝜕𝑢

𝜕𝑧
+
𝜕𝑤0
𝜕𝑥 }

 

 
=

{
 

 𝜙𝑦 +
𝜕𝑤0
𝜕𝑦

𝜙𝑥 +
𝜕𝑤0
𝜕𝑥 }

 

 
 

(4.18) 

4.1.2.2. MATERIAL LAW 

Definition of tensor strains is given by Equation (4.19) [42]: 

{

𝜀𝐿
𝜀𝑇
1

2
𝛾𝐿𝑇

} = [𝑇] {

𝜀𝑥
𝜀𝑦
1

2
𝛾𝑥𝑦

} (4.19) 

The relations between stresses and strains are obtained utilizing linear elasticity. For 

the FSDT, it is useful to split stress-strain relation into two parts, involving axial-

bending and transverse shear. Hence, by using the tensor strains, the axial and bending 

part can be expressed as: 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ 𝑧 [

�̅�11 �̅�12 �̅�16
�̅�12 �̅�22 �̅�26
�̅�16 �̅�26 �̅�66

]

{
  
 

  
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥 }
  
 

  
 

 (4.20) 

Then the transverse-shear part is given as [42]: 

{
𝜏𝑦𝑧
𝜏𝑥𝑧
} = 𝑘𝑠𝑐 [

�̅�44 �̅�45
�̅�45 �̅�55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
} = 𝑘 [

�̅�44 �̅�45
�̅�45 �̅�55

]

{
 

 𝜙𝑦 +
𝜕𝑤0
𝜕𝑦

𝜙𝑥 +
𝜕𝑤0
𝜕𝑥 }

 

 
 (4.21) 

where 𝑘𝑠𝑐 is the shear correction coefficient. 
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4.1.2.3. RESULTS FORCES AND MOMENTS 

The resultant force and resultant moment are obtained in the same way as the CLPT: 

{

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

} = [

𝐴11 𝐴12 𝐴16
𝐴12 𝐴22 𝐴26
𝐴16 𝐴26 𝐴66

]

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
  
 

  
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥 }
  
 

  
 

 (4.22) 

{
𝑀𝑥

𝑀𝑦

𝑀

} = [

𝐵11 𝐵12 𝐵16
𝐵12 𝐵22 𝐵26
𝐵16 𝐵26 𝐵66

]

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

+ [

𝐷11 𝐷12 𝐷16
𝐷12 𝐷22 𝐷26
𝐷16 𝐷26 𝐷66

]

{
  
 

  
 

𝜕𝜙𝑥
𝜕𝑥
𝜕𝜙𝑦

𝜕𝑦

𝜕𝜙𝑥
𝜕𝑦

+
𝜕𝜙𝑦

𝜕𝑥 }
  
 

  
 

 (4.23) 

Equations relating the shear-force resultants 𝑅𝑦𝑧 and 𝑅𝑥𝑧 to the shear strains 𝛾𝑦𝑧 and 

𝛾𝑥𝑧 can be written as [42]: 

{
𝑅𝑦𝑧
𝑅𝑥𝑧

} = 𝑘∑∫ [
�̅�44 �̅�45
�̅�45 �̅�55

] 𝑑𝑧
ℎ𝑖

ℎ𝑖−1

𝑛

𝑖=1

{
𝛾𝑦𝑧
0

𝛾𝑥𝑧
0
} = 𝑘 [

𝐴44 𝐴45
𝐴45 𝐴55

]

{
 

 𝜙𝑦 +
𝜕𝑤0
𝜕𝑦

𝜙𝑥 +
𝜕𝑤0
𝜕𝑥 }

 

 
 (4.24) 

4.1.2.4. EQUILIBRIUM EQUATIONS IN TERMS OF DISPLACEMENT 

Equilibrium of moments in x, y direction for laminated thin plates are given in 

Equations  (4.25) and (4.26), respectively. In addition, Equilibrium of forces in z 

direction for laminated thin plates is given in Equation (4.27). In the Appendix D.2, 

calculations of these equations are given in Equations (D.20), (D.22) and (D.24).  

𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑅𝑥𝑧 = 0 

(4.25) 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑅𝑦𝑧 = 0 

(4.26) 

𝜕𝑅𝑥𝑧
𝜕𝑥

+
𝜕𝑅𝑦𝑧

𝜕𝑦
+ 𝑝∗ = 0 (4.27) 
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Where: 𝑝∗ = 𝑝 + 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
− 𝜌∗

𝜕2𝑤

𝜕𝑡2
 

Constitutive equations for a specially orthotropic plate with the new displacement field 

still satisfy the conditions stated earlier: 

𝐴16 = 𝐴26 = 0 

𝐵𝑖𝑗 = 0  

𝐷16 = 𝐷26 = 0 

𝐴45 = 𝐴54 = 0 

(4.28) 

In view of these conditions, equilibrium equations above can be written in terms of the 

displacement field as follows: 

𝐷11
𝜕2𝜙𝑥
𝜕𝑥2

+ (𝐷12 + 𝐷66)
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐷66

𝜕2𝜙𝑥
𝜕𝑦2

− 𝐴55𝑘 (𝜙𝑥 +
𝜕𝑤

𝜕𝑥
) = 0 (4.29) 

𝐷22
𝜕2𝜙𝑦

𝜕𝑥2
+ (𝐷12 + 𝐷66)

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+ 𝐷66
𝜕2𝜙𝑦

𝜕𝑦2
− 𝐴44𝑘 (𝜙𝑦 +

𝜕𝑤

𝜕𝑦
) = 0 (4.30) 

𝐴55𝑘 (
𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) + 𝐴44𝑘 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
) + 𝑝∗ = 0 (4.31) 

Equations (4.29)-(4.31) are three coupled second-order differential equations with 𝑤, 

𝜙𝑥 and 𝜙𝑦 as the three unknows. 

4.2. Analysis of Specially Orthotropic Plates under Uniaxial Compressive Load 

using CLPT and FSDT 

Calculation methods for critical buckling load of specially orthotropic composite 

plates under uniaxial compressive load is studied in this chapter. These calculations 

are done using CLPT and FSDT as described early. In addition, boundary condition of 

plates are chosen as classical boundary conditions, simply supported and clamped edge 

conditions. Composite plate geometric descriptions are given in the Figure 4.3. 
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Figure 4.3: Plate with uniaxial compression load [41]. 

4.2.1. CLPT 

4.2.1.1. BUCKLING OF PLATES WITH SIMPLY SUPPORTED BOUNDARY 

CONDITION UNDER UNIAXIAL COMPRESSIVE LOAD 

For the buckling analysis, we assume that the only applied load is the in-plane 

compressive force in the x direction and all other loads are zero. From equation (4.15) 

we put 𝑝∗ = 𝑁𝑥
𝜕2𝑤

𝜕𝑥2
= −𝑁

𝜕2𝑤

𝜕𝑥2
. In this case, the equation governing the buckling 

problem is given by: 

𝐷11
𝜕4𝑤

𝜕𝑥4
+ (2𝐷12 + 4𝐷66)

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐷22

𝜕4𝑤

𝜕𝑦4
+𝑁

𝜕2𝑤

𝜕𝑥2
= 0 (4.32) 

The plate edges are simply supported so that the transverse displacements at the edges 

and resultant moments about each edge are zero. These edge conditions are the 

boundary conditions, and mathematically expressed as follows [42]: 

𝑥 = 0:         𝑤(0, 𝑦) = 0         𝑀𝑥(0, 𝑦) = 0 

𝑥 = 𝑎:         𝑤(𝑎, 𝑦) = 0         𝑀𝑥(𝑎, 𝑦) = 0 

𝑦 = 0:         𝑤(𝑥, 0) = 0         𝑀𝑦(𝑥, 0) = 0 

𝑦 = 𝑏:         𝑤(𝑥, 𝑏) = 0         𝑀𝑦(𝑥, 𝑏) = 0 

(4.33) 
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A Navier solution of equation (4.32) that also satisfies the preceding boundary 

conditions is given by [42]: 

𝑤(𝑥, 𝑦) = ∑∑ 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

 (4.34) 

where 𝑤𝑚𝑛 are the displacement coefficients, 𝑚 and 𝑛 are positive integers. 

Substituting Equation (4.34) into the Equation (4.32) gives the buckling load as seen 

in Equation (4.35). 

𝑁 = 𝐷11 (
𝑚𝜋

𝑎
)
2

+ (2𝐷12 + 4𝐷66) (
𝑛𝜋

𝑏
)
2

+ 𝐷22 (
𝑎𝜋

𝑚
)
2

(
𝑛

𝑏
)
4

 (4.35) 

Thus, for each choice of 𝑚 and 𝑛, there corresponds a unique value of the axial load 

N. The critical buckling load is the smallest of N, which can be obtained for  n =  1 

but m can be any integer number depending on the plate’s geometric configuration. 

4.2.1.2. BUCKLING OF PLATES WITH CLAMPED SUPPORTED BOUNDARY 

CONDITION UNDER UNIAXIAL COMPRESSIVE LOAD 

Again, we assume that the only applied load is the in-plane compressive force in the x 

direction. For plates with all edges clamped, Rayleigh-Ritz method is used to solve the 

buckling problem. The method is based on the plate’s potential energy. We now split 

the total potential energy in two parts, bending strain energy and the strain energy due 

to external forces [45]: 

Π = 𝑈𝑏 + 𝑈𝑝 (4.36) 
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where: 

𝑈𝑏 =
1

2
∫𝜀𝑇𝜎 𝑑𝑉
𝑉

=
1

2
∫ ∫ 𝜀𝑇�̅�𝜀 𝑑𝑧 𝑑𝐴

ℎ
2⁄

−ℎ 2⁄𝐴

=
1

2
∫𝜅𝑇𝐷𝜅 𝑑𝐴
𝐴

=
1

2
∫ ∫ 𝐷11 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 2𝐷12 (
𝜕2𝑤

𝜕𝑥2
) (
𝜕2𝑤

𝜕𝑦2
) + 𝐷22 (

𝜕2𝑤

𝜕𝑦2
)

2𝑎

0

𝑏

0

+ 4𝐷66 (
𝜕2𝑤

𝜕𝑥𝜕𝑦
)

2

𝑑𝑥 𝑑𝑦 

and 

(4.37) 

𝑈𝑝 =
1

2
∫ ∫ −𝑁 (

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥 𝑑𝑦
𝑎

0

𝑏

0

 (4.38) 

The boundary conditions associated with the clamped edges are given by [41]: 

𝑥 = 0:         𝑤(0, 𝑦) = 0        
𝜕𝑤(0, 𝑦)

𝜕𝑥
= 0 

𝑥 = 𝑎:         𝑤(𝑎, 𝑦) = 0         
𝜕𝑤(𝑎, 𝑦)

𝜕𝑥
= 0 

𝑦 = 0:         𝑤(𝑥, 0) = 0         
𝜕𝑤(𝑥, 0)

𝜕𝑦
= 0 

𝑦 = 𝑏:         𝑤(𝑥, 𝑏) = 0         
𝜕𝑤(𝑥, 𝑏)

𝜕𝑦
= 0 

(4.39) 

A solution that satisfies the preceding boundary conditions is given by [46]: 

𝑤(𝑥, 𝑦) = ∑∑ 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑥

𝑎
) sin2 (

𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

 (4.40) 

where 𝑤𝑚𝑛 are the displacement coefficients, 𝑚 and 𝑛 are positive integers. 

The equation above with only one term is usually enough to solve the buckling 

problem. So we assume that: 
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𝑤(𝑥, 𝑦) = 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) sin2 (

𝜋𝑦

𝑏
) (4.41) 

Substitution of equation (4.41) into the equation (4.36) gives: 

Π =

{
 
 
 
 

 
 
 
 
1

2
𝜋4𝑤𝑚𝑛

2 [𝐷11
3

4

𝑏

𝑎3
𝑚4 + 𝐷22

3

4

𝑎

𝑏3

+(
1

2
𝐷12 + 𝐷66)

𝑚2

𝑎𝑏
] −

3

32

𝑤𝑚𝑛
2 𝜋2𝑏𝑚2

𝑎
𝑁,

𝑚 = 𝑛

1

4
𝜋4𝑤𝑚𝑛

2 [𝐷11
3

16

𝑏

𝑎3
(𝑛4 + 6𝑚2𝑛2 +𝑚4) + 𝐷22

𝑎

𝑏3

+(
1

2
𝐷12 + 𝐷66)

𝑛2 +𝑚2

𝑎𝑏
] −

3

64

𝑤𝑚𝑛
2 𝜋2𝑏(𝑛2 +𝑚2)

𝑎
𝑁,

𝑚 ≠ 𝑛

 (4.42) 

Equilibrium requires that δΠ = 0 , thus: 

𝜕Π
𝜕𝑤𝑚𝑛

δ𝑤𝑚𝑛 = 0     ↔       
𝜕Π
𝜕𝑤𝑚𝑛

= 0 (4.43) 

𝜕Π
𝜕𝑤𝑚𝑛

=

{
 
 
 
 

 
 
 
 𝜋2𝑤𝑚𝑛[𝐷11𝜋

2
3

4

𝑏

𝑎3
𝑚4 + 𝐷22𝜋

2
3

4

𝑎

𝑏3

+(
1

2
𝐷12 + 𝐷66) 𝜋

2
𝑚2

𝑎𝑏
−
3

16

𝑏𝑚2

𝑎
𝑁] = 0

𝑚 = 𝑛

1

2
𝜋2𝑤𝑚𝑛[𝐷11

3

16

𝑏

𝑎3
𝜋2(𝑛4 + 6𝑚2𝑛2 +𝑚4) + 𝐷22

𝑎

𝑏3
𝜋2

+(
1

2
𝐷12 + 𝐷66)

𝜋2

𝑎𝑏
(𝑛2 +𝑚2) −

3

16

𝑏

𝑎
(𝑛2 +𝑚2)𝑁] = 0

𝑚 ≠ 𝑛

 (4.44) 

Solving equation (4.44) for N, we obtain: 

N

=

{
 
 

 
 
4𝜋2𝐷11𝑚

2

𝑎3
+
4𝜋2𝐷22𝑎

2

𝑏4𝑚2
+
16𝜋2

3𝑏2
(
1

2
𝐷12 + 𝐷66) , 𝑚 = 𝑛

𝐷11
𝜋2

𝑎2
(𝑛4 + 6𝑚2𝑛2 +𝑚4) + 𝐷22𝜋

2 16
3
𝑎2

𝑏4
+ (

1
2
𝐷12 + 𝐷66)

16
3
𝜋2

𝑏2
(𝑚2 + 𝑛2)  

𝑚2 + 𝑛2
, 𝑚 ≠ 𝑛

 

(4.45

) 

Thus, combination of m and n that gives the smallest value of N is the critical buckling 

load for a clamped plate. 
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4.2.2. FSDT 

4.2.2.1. BUCKLING OF PLATES WITH SIMPLY SUPPORTED BOUNDARY 

CONDITION UNDER UNIAXIAL COMPRESSIVE LOAD 

Since the only applied load is the force in x direction, from equation (4.31), 𝑝∗ =

𝑁𝑥
𝜕2𝑤

𝜕𝑥2
= −𝑁𝑥

𝜕2𝑤

𝜕𝑥2
. Based on equations (4.29)-(4.31), the equation set that is needed 

for the solution the buckling problem is given by: 

𝐷11
𝜕2𝜙𝑥
𝜕𝑥2

+ (𝐷12 + 𝐷66)
𝜕2𝜙𝑦

𝜕𝑥𝜕𝑦
+ 𝐷66

𝜕2𝜙𝑥
𝜕𝑦2

− 𝐴55𝑘 (𝜙𝑥 +
𝜕𝑤

𝜕𝑥
) = 0 (4.46) 

𝐷22
𝜕2𝜙𝑦

𝜕𝑥2
+ (𝐷12 + 𝐷66)

𝜕2𝜙𝑥
𝜕𝑥𝜕𝑦

+ 𝐷66
𝜕2𝜙𝑦

𝜕𝑦2
− 𝐴44𝑘 (𝜙𝑦 +

𝜕𝑤

𝜕𝑦
) = 0 (4.47) 

𝐴55𝑘 (
𝜕𝜙𝑥
𝜕𝑥

+
𝜕2𝑤

𝜕𝑥2
) + 𝐴44𝑘 (

𝜕𝜙𝑦

𝜕𝑦
+
𝜕2𝑤

𝜕𝑦2
)−𝑁

𝜕
2
𝑤

𝜕𝑥2
= 0 (4.48) 

Boundary conditions for the simply supported plate are the same as those for the CLPT 

given by Equation (4.33). The following double Fourier series are assumed to represent 

𝑤, 𝜙𝑥 and 𝜙𝑦 [42]: 

𝑤(𝑥, 𝑦) = ∑∑ 𝑤𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

 (4.49) 

𝜙𝑥(𝑥, 𝑦) = ∑∑ 𝑥𝑚𝑛 cos (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

 (4.50) 

𝜙𝑦(𝑥, 𝑦) = ∑∑ 𝑦𝑚𝑛 sin (
𝑚𝜋𝑥

𝑎
) cos (

𝑛𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

 (4.51) 

where 𝑤𝑚𝑛 , 𝑥𝑚𝑛  and 𝑦𝑚𝑛  are the series coefficients, and 𝑚  and 𝑛  are positive 

integers. 

Using double Fourier series defined in Equations (4.49) to (4.51), simply supported 

boundary conditions defined in Equation (4.33) are satisfied. According to simply 
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supported boundary conditions, 𝑀𝑥  equals to zero when the x is equal to zero. To 

verify these series written in above, moment x equilibrium equation written in matrix 

equation (4.23) is used and following expression is obtained:   

𝑀𝑥 = 𝐷11 ∗
𝜕𝜙𝑥
𝜕𝑥

+ 𝐷12 ∗
𝜕𝜙𝑦

𝜕𝑦
 (4.52) 

𝑀𝑥 = −𝐷11 ∗ 𝑥𝑚𝑛 ∗
𝑚𝜋

𝑎
sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) − 𝐷12 ∗ 𝑦𝑚𝑛 ∗

𝑛𝜋

𝑏
sin (

𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑦

𝑏
) (4.53) 

When the x value is substituted as zero, 𝑀𝑥 equals to zero as seen in Equation (4.54). 

𝑀𝑥(0, 𝑦) = −𝐷11 ∗ 𝑥𝑚𝑛 ∗
𝑚𝜋

𝑎
sin(0) sin (

𝑛𝜋𝑦

𝑏
) − 𝐷12 ∗ 𝑦𝑚𝑛 ∗

𝑛𝜋

𝑏
sin(0) sin (

𝑛𝜋𝑦

𝑏
) = 0 (4.54) 

For simply supported plates, it is enough to consider one term with m and n varying 

from each equation. Substitution of equations (4.49)-(4.51) into equations (4.46)-

(4.48) gives the following matrix equation: 

[

−𝐷11𝛼
2 − 𝐷66𝛽

2 − 𝐴55𝑘 −𝐷12𝛼𝛽 − 𝐷66𝛼𝛽 −𝐴55𝑘𝛼

−𝐷12𝛼𝛽 − 𝐷66𝛼𝛽 −𝐷22𝛽
2 − 𝐷66𝛼

2 − 𝐴44𝑘 −𝐴44𝑘𝛽

−𝐴55𝑘𝛼 −𝐴44𝑘𝛽 𝑁𝛼2 − 𝐴55𝑘𝛼
2 − 𝐴44𝑘𝛽

2

] 

∗ {

𝑥𝑚𝑛
𝑦𝑚𝑛
𝑤𝑚𝑛

} = {
0
0
0
} 

(4.55) 

where 𝛼 =
𝑚𝜋

𝑎
, 𝛽 =

𝑛𝜋

𝑏
. 

By defining: 

𝐶1 = −𝐷11𝛼
2 − 𝐷66𝛽

2 − 𝐴55𝑘 

𝐶2 = −𝐷12𝛼𝛽 − 𝐷66𝛼𝛽 

𝐶3 = −𝐴55𝑘𝛼 

𝐶4 = −𝐷22𝛽
2 − 𝐷66𝛼

2 − 𝐴44𝑘 

𝐶5 = −𝐴44𝑘𝛽 

(4.56) 
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Equation (4.55) is simplified to: 

[

𝐶1 𝐶2 𝐶3
𝐶2 𝐶4 𝐶5
𝐶3 𝐶5 𝑁𝛼2 + 𝛼𝐶3 + 𝛽𝐶5

] ∗ {

𝑥𝑚𝑛
𝑦𝑚𝑛
𝑤𝑚𝑛

} = {
0
0
0
} (4.57) 

We are seeking non-trivial solutions, thus, 

|

𝐶1 𝐶2 𝐶3
𝐶2 𝐶4 𝐶5
𝐶3 𝐶5 𝑁𝛼2 + 𝛼𝐶3 + 𝛽𝐶5

| = 0 (4.58) 

Solving equation (4.58) for 𝑁, we obtain: 

𝑁 =
𝐶1𝐶5

2 + 𝛼𝐶3𝐶2
2 + 𝛽𝐶5𝐶2

2 + 𝐶4𝐶3
2 − 𝛼𝐶1𝐶3𝐶4 − 𝛽𝐶1𝐶4𝐶5 − 2𝐶2𝐶3𝐶5

𝛼2(𝐶1𝐶4 − 𝐶2
2)

 (4.59) 

The critical buckling load occurs at 𝑛 =  1, while 𝑚 can vary. 

4.2.2.2. BUCKLING OF PLATES WITH CLAMPED SUPPORTED BOUNDARY 

CONDITION UNDER UNIAXIAL COMPRESSIVE LOAD 

As the CLPT, the Rayleigh-Ritz method has been used to solve the buckling problem 

for the clamped plate. It is convenient to split the total potential energy in three parts, 

bending, transverse shear and external forces: 

Π = 𝑈𝑏 + 𝑈𝑠 + 𝑈𝑝 (4.60) 

where: 

𝑈𝑏 =
1

2
∫𝜀𝑏

𝑇𝜎𝑏 𝑑𝑉
𝑉

=
1

2
∫ ∫ 𝜀𝑏

𝑇�̅�𝜀𝑏 𝑑𝑧 𝑑𝐴

ℎ
2⁄

−ℎ 2⁄𝐴

=
1

2
∫𝜅𝑇𝐷𝜅 𝑑𝐴
𝐴

=
1

2
∫ ∫ 𝐷11 (

𝜕2𝑤𝑏
𝜕𝑥2

)

2

+ 2𝐷12 (
𝜕2𝑤𝑏
𝜕𝑥2

)(
𝜕2𝑤𝑏
𝜕𝑦2

) + 𝐷22 (
𝜕2𝑤𝑏
𝜕𝑦2

)

2𝑎

0

𝑏

0

+ 4𝐷66 (
𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

)

2

𝑑𝑥 𝑑𝑦 

(4.61) 



122 

𝑈𝑠 =
1

2
∫𝜀𝑠

𝑇𝜎𝑠 𝑑𝑉
𝑉

=
1

2
∫ ∫ 𝜀𝑠

𝑇�̅�𝑠𝑘𝑗𝜀𝑠 𝑑𝑧 𝑑𝐴

ℎ
2⁄

−ℎ 2⁄𝐴

=
1

2
∫𝜀𝑠

𝑇𝐴𝑠𝑘𝑗𝜀𝑠 𝑑𝐴
𝐴

=
1

2
𝑘∫ ∫ 𝐴44 (

𝜕𝑤𝑠
𝜕𝑦

)
2

+ 𝐴55 (
𝜕𝑤𝑠
𝜕𝑥

)
2

𝑑𝑥 𝑑𝑦
𝑎

0

𝑏

0

 

(4.62) 

𝑈𝑝 =
1

2
∫ ∫ −𝑁 (

𝜕𝑤

𝜕𝑥
)
2

𝑑𝑥 𝑑𝑦
𝑎

0

𝑏

0

 
(4.63) 

The boundary conditions associated with the clamped edges are again given by 

Equation (4.39). A solution that satisfies the preceding boundary conditions is given 

by [46]: 

𝑤(𝑥, 𝑦) = 𝑤𝑏 + 𝑤𝑠

=∑∑ (w̅b sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑥

𝑎
) sin2 (

𝜋𝑦

𝑏
)

∞

𝑚=1

∞

𝑛=1

+ w̅s sin (
𝑛𝜋𝑥

𝑎
) sin (

𝜋𝑦

𝑏
))  

(4.64) 

where w̅band w̅s are the displacement coefficients for bending and transverse shear, 

and m and n are positive integers. 

For a single term series, 

𝑤(𝑥, 𝑦) = w̅b sin (
𝑚𝜋𝑥

𝑎
) sin (

𝑛𝜋𝑥

𝑎
) sin2 (

𝜋𝑦

𝑏
) + w̅s sin (

𝑛𝜋𝑥

𝑎
) sin (

𝜋𝑦

𝑏
) (4.65) 

Equilibrium requires that δΠ = 0, thus: 

𝜕Π
𝜕w̅b

δw̅b +
𝜕Π
𝜕w̅s

δw̅s = 0 (4.66) 

This implies, 

{
 
 

 
 𝜕Π
𝜕w̅b
𝜕Π
𝜕w̅s}

 
 

 
 

= {
0
0
} (4.67) 
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Firstly, Equation (4.65) is substituted into the Equation (4.60). After that, derivation 

of Equations (4.60) gives two solutions as Equation (4.67). Finally, this expression is 

divided into two conditions, one for m ≠ 1 and another m =  1.  

For m ≠ 1, Equation (4.67) gives following matrix equation: 

[
𝐻1 + 𝑁𝐻2 𝑁𝐻3
𝑁𝐻3 𝐻4 +𝑁𝐻5

] {
w̅b
w̅s

} = {
0
0
} (4.68) 

where, 

𝐻1 =
𝜋4

32𝑎3𝑏3
(𝐷11𝑏

4(18𝑚2 + 3 + 3𝑚4) + 𝐷12𝑎
2𝑏2(8 + 8𝑚2) + 16𝐷22𝑎

4

+ 𝐷66𝑎
2𝑏2(16 + 16𝑚2)) 

𝐻2 = −
𝜋2𝑏(3𝑚6 + 3 + 3𝑛4 − 3𝑚4 − 3𝑚2 + 3𝑚2𝑛4 − 12𝑚2𝑛2 − 6𝑛2 − 6𝑚4𝑛2)

32𝑎(1 − 2𝑛2 +𝑚4 − 2𝑚2𝑛2 − 2𝑚2 + 𝑛4)
 

𝐻3 = −
8𝑏(−𝑚𝑛3 + (−1)𝑚+𝑛+1𝑚𝑛3)

3𝑎(1 − 2𝑛2 +𝑚4 − 2𝑚2𝑛2 − 2𝑚2 + 𝑛4)
 

𝐻4 =
𝑘𝜋2

4𝑎𝑏
(𝐴44𝑎

2 + 𝐴55𝑛
2𝑏2) 

𝐻5 = −
𝜋2𝑏(𝑛2 + 𝜋6 − 2𝑚2𝑛4 +𝑚4𝑛2 − 2𝑛4 − 2𝑚2𝑛2)

4𝑎(1 − 2𝑛2 +𝑚4 − 2𝑚2𝑛2 − 2𝑚2 + 𝑛4)
 

(4.69) 

Matrix equation (4.68) gives non-trivial solutions when the determinant of this matrix 

expressed is zero. This leads us to a second-order equation: 

(𝐻2𝐻5 − 𝐻3
2)𝑁2 + (𝐻1𝐻5 + 𝐻2𝐻4)𝑁 + 𝐻1𝐻4 = 0 (4.70) 

The smallest value of N is given by: 

𝑁 =
−(𝐻1𝐻5 + 𝐻2𝐻4) − √(𝐻1𝐻5 + 𝐻2𝐻4)

2 − 4(𝐻2𝐻5 − 𝐻3
2)𝐻1𝐻4

2(𝐻2𝐻5 −𝐻3
2)

 (4.71) 

Combination of positive integers m and n gives the critical buckling load. 
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For m =  1, Equation (4.67) gives following matrix equation: 

[
𝐺1 +𝑁𝐺2 𝑁𝐺3
𝑁𝐺3 𝐺4 + 𝑁𝐺5

] {
w̅b
w̅s

} = {
0
0
} (4.72) 

where, 

𝐺1 =
𝜋4

4𝑎3𝑏3
(3𝐷11𝑏

4 + 2𝐷12𝑎
2𝑏2 + 3𝐷22𝑎

4 + 4𝐷66𝑎
2𝑏2) 

𝐺2 = −
3𝜋2𝑏

16𝑎
 

𝐺3 = −
8𝑏(−𝑛3 + (−1)𝑛+2𝑛3)

3𝑎(𝑛4 − 4𝑛2)
 

𝐺4 =
𝑘𝜋2

4𝑎𝑏
(𝐴44𝑎

2 + 𝐴55𝑛
2𝑏2) 

𝐺5 = −
𝜋2𝑏𝑛2

4𝑎
 

(4.73) 

Matrix equation (4.72) gives non-trivial solutions when the determinant of this matrix 

expressed is zero. A result of this, a second-order equation is obtained as: 

(𝐺2𝐺5 − 𝐺3
2)𝑁2 + (𝐺1𝐺5 + 𝐺2𝐺4)𝑁 + 𝐺1𝐺4 = 0 (4.74) 

Solving this, we obtain the smallest value of N: 

𝑁 =
−(𝐺1𝐺5 + 𝐺2𝐺4) − √(𝐺1𝐺5 + 𝐺2𝐺4)

2 − 4(𝐺2𝐺5 − 𝐺3
2)𝐺1𝐺4

2(𝐺2𝐺5 − 𝐺3
2)

 (4.75) 

The critical buckling load depends on the positive integer 𝑛. 
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4.3. Finite Element Model of Composite Plates 

In this sub-chapter, finite element model description of the composite plate is 

explained. Most of the parts of modelling the composite plate are same as the metal 

model.  

In the finite element model, boundary conditions of the plate are assumed as classical 

boundary conditions of the single panel which is defined in Chapter 2.1.  

The geometry and the coordinate system of the composite plate are presented in Figure 

4.4. Ply orientation angles are given with respect to x axis according to Figure 4.4. 

 

Figure 4.4: Definition of different geometrical parameters of the composite panels and the coordinate 

system 

In the finite element model of composite plate, plate is modelled as 2D shell elements. 

Element type is chosen as quadrilateral element S4R. Element size is decided as 5 mm 

based on the mesh size study performed in Chapter 2.1. Moreover, the plate material 

is chosen as HexPly 8552 AS4 and at dry and room temperature condition properties 

of the composite material are given in Table 4.1. Detailed material properties can be 

seen in Appendix E, Figure E.1. 
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Table 4.1: Material properties of HexPly 8552 AS4 composite plate 

𝑬𝟏(𝑮𝑷𝒂) 128 ∗ 103 𝑮𝟏𝟐(𝑴𝑷𝒂) 114 

𝑬𝟐(𝑮𝑷𝒂) 1 ∗ 103 𝑮𝟏𝟑(𝑴𝑷𝒂) 114 

𝒗𝟏𝟐 0.355 𝑮𝟐𝟑(𝑴𝑷𝒂) 114 

Load is applied on the DC edge along the y-axis of the single panel as 1 N/mm shell 

edge load in the “-x” direction (compression) and the reaction edge of the panel is 

chosen as AB edge. In addition, the unloaded edges of the panel are AD and BC.  

Finite element model is solved by using the “Buckle” step of ABAQUS [35] in linear 

buckling analysis for the lowest buckling eigenvalue and corresponding critical 

buckling load. 

The critical buckling unit length load is obtained by finite element model using the 

lowest eigenvalue as shown in Equation (4.76), 

𝑁𝑐𝑟 = 𝑁𝑎𝑝𝑝 ∗ 𝜆𝐹𝐸  (4.76) 

where 𝑁𝑎𝑝𝑝 is the compressive shell edge load which is given as 1 N/mm in the “-x” 

direction. In addition, 𝜆𝐹𝐸 is the first eigenvalue obtained from finite element analysis. 

Then, using the critical buckling load, the affine plate buckling coefficient 𝑘0 is 

calculated [47]: 

𝑘0 =
𝑁𝑐𝑟 ∗ 𝑏

2

𝜋2 ∗ √𝐷11𝐷22
 (4.77) 

  

The modified buckling coefficient is calculated as [47]: 

𝑘𝑐 = 𝑘0 − 2𝐷
∗ (4.78) 

where the generalized rigidity ratio 𝐷∗ is given by, 
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𝐷∗ =
𝐷12 + 2𝐷66

√𝐷11𝐷22
 

(4.79) 

In addition, plate affine ratio is calculated using equation [47] 

𝑎𝑜
𝑏𝑜
=

𝑎

(𝐷11)
1/4

(𝐷22)
1/4

𝑏
 (4.80) 

Using the plate affine ratio and the modified buckling coefficient values of plate, 

generic buckling curves for balanced orthotropic rectangular plates can be obtained. 

To do that, a Python script is written. Same as in the metallic part in the Chapter 2, 

various aspect ratio plates are solved using ABAQUS to obtain the buckling coefficient 

curves.  

According to the model description made, a script is written Python 2.7 in order to 

create an ABAQUS finite element model, run the model and collect the lowest 

eigenvalue from the analysis results. The scripts are written for each composite plate 

and the following parameters are specified by the user; 

• Plate length y 

• Plate length x 

• Plate material  

• Ply thickness 

• Ply orientation 

• Ply repeat number 

• Lay-up symmetry 

• Boundary conditions 
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To minimize the time and sources, some of parameters of composite plates are fixed 

to certain values as, 

• Plate length x = 100 mm 

• Plate material = HexPly 8552 UD AS4 

• Ply thickness = 0.13 mm 

• Lay-up symmetry = True 

In this study, one material is demonstrated however material number and type can be 

changed by modifying the script given in Appendix F.5. 

Discrete values of the design parameters of composite plates are specified in a range. 

Upper and lower limits of the design parameters are decided based on the common 

used values in the aviation industry. 

The following design parameters are specified between the upper and lower limits, and 

in total 81 finite element analyses are performed to draw curves for the buckling 

coefficients for each configuration. Step size of plate length y is chosen as 5 mm.  

• Plate length y = [100:5:500] mm 

• Plate boundary conditions = [Simply supported, Clamped] 

• Ply repeat number = [2,4] 

• Ply configuration 

Three different ply configurations are considered in this study. 

• (0°/0°)𝑆 

• (0°/90°)𝑆 

• (45°/0°/−45°/90°)𝑆 
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To minimize the number of finite element analysis, for each parameter minimum of 

discrete values are selected within the upper-lower limits of each parameter. Panel 

length y has a remarkable effect on the buckling phenomena. Therefore, for the plate 

length y, more number of discrete analysis points is used in the finite element analyses. 

In addition, ply configuration has also significant effect however it is limited to three 

configurations due to lack of source and time. 

Generic compressive coefficient buckling curves for balanced, orthotropic and 

symmetric composite plates are given in Figure 4.5 to Figure 4.7 for simply supported 

boundary conditions. In these figures, there are two curves for each plate thickness 

which depends on the ply repeat number and the ply orientation. As seen in Figure 4.5 

to Figure 4.7, total thickness of plate is increased however modified buckling coeffient 

of plate is decreased. In contrast, this does not mean the buckling load of plate is 

decreased when the plate thickness is increased. To see that clearly, a comparison 

example is done with plate configuration seen in Table 4.2. The first plate total 

thickness is 1.04 mm and the second plate total thickness is 2.08 mm. Plates are 

assumed as simply supported at 4 edges. 

Table 4.2: Input parameters of the example composite plates used in comparison 

Plate material HexPly 8552 UD AS4 

Ply thickness (mm) 0.13 

Ply configuration 
(0°/90°)𝑆 

Plate length x (mm) 100 

Plate length y (mm) 200 

Plates bending stiffness properties are calculated using Equation (D.7). Results are 

given in Table 4.3. 
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Table 4.3: Thin and thick composite plates thickness and stiffness properties 

 Thin Plate Thick Plate 

Total Thickness (mm) 1.04 2.08 

𝑫𝟏𝟏 (𝑵 ∗ 𝒎𝒎) 8617.49 60570.67 

𝑫𝟐𝟐 (𝑵 ∗ 𝒎𝒎) 4432.87 43832.17 

𝑫𝟏𝟐 (𝑵 ∗ 𝒎𝒎) 316.80 2534.42 

𝑫𝟔𝟔 (𝑵 ∗ 𝒎𝒎) 10.69 85.49 

Firstly, generalized rigidity ratio of plates are calculated using Equation (4.79). Affine 

ratio of plates are calculated with Equation (4.80) using stiffness and geometric 

properties given in Table 4.2 and Table 4.3, respectively. After the calculation of affine 

ratio, modified buckling coeffient of plates are obtained from Figure 4.6. Then, affine 

plate buckling coefficients are calculated for both plates using Equation (4.78). Finally, 

buckling load of plates are calculated using Equation (4.77). These results are given in 

Table 4.4. As seen in Table 4.4, modified buckling coefficient of thicker plate is less 

than thin one. However, buckling load of thicker plate is greater than thin one.  

Table 4.4: Buckling load parameters of composite plates used in comparison 

 Thin Plate Thick Plate 

𝑫∗ 0.05 0.05 

𝒂𝟎/𝒃𝟎 1.69 1.84 

𝒌𝟎 − 𝟐𝑫
∗ 6.41 5.14 

𝒌𝟎 6.52 5.25 

𝑵 (𝑵/𝒎𝒎) 12.66 84.97 
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Figure 4.5: Compressive buckling coefficients for composite plates with simply supported loaded and 

unloaded edges (Ply orientation: (0°/0°)𝑆) 

 

Figure 4.6: Compressive buckling coefficients for composite plates with simply supported loaded and 

unloaded edges (Ply orientation: (0°/90°)𝑆) 
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Figure 4.7: Compressive buckling coefficients for composite plates with simply supported loaded and 

unloaded edges (Ply orientation: (45°/0°/−45°/90°)𝑆) 

Generic compressive buckling coefficient curves for balanced, orthotropic and 

symmetric composite plate are given in Figure 4.8 to Figure 4.10 for clamped 

boundary conditions.  

 

Figure 4.8: Compressive buckling coefficients for composite plates with clamped loaded and unloaded 

edges (Ply orientation: (0°/0°)𝑆) 
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Figure 4.9: Compressive buckling coefficients for composite plates with clamped loaded and unloaded 

edges (Ply orientation: (0°/90°)𝑆) 

 

Figure 4.10: Compressive buckling coefficients for composite plates with clamped loaded and 

unloaded edges (Ply orientation: (45°/0°/−45°/90°)𝑆) 

Buckling behaviour is affected by the total thickness of plate. As seen in the Figure 

4.7 and Figure 4.10, thick plates’ buckling coefficient is not affected by the plate aspect 

ratio. Moreover, as expected, buckling coefficient of plates with clamped edge 

condition is greater than one with the simply supported edge condition in the all ply 

configurations.  
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4.4. Comparision of Buckling Coefficient Curves obtained by CLPT, FSDT and 

FEA 

In this section, buckling coefficient results obtained by the CLPT, FSDT and FEA 

methods are compared with each other. In Figure 4.11 and Figure 4.12, buckling 

coefficient curves obtained by each method are given for the simply supported 

boundary condition and (0°/0°)𝑆 ply orientation. 

 

Figure 4.11: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (0°/0°)𝑆, thickness of plate=1.04 mm) 
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Figure 4.12: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (0°/0°)𝑆, thickness of plate=2.08 mm) 

In  Figure 4.13 and Figure 4.14, buckling coefficient curves obtained by each method 

are given for the simply supported boundary condition and (0°/90°)𝑆 ply orientation. 

 

Figure 4.13: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (0°/90°)𝑆, thickness of plate=1.04 mm) 
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Figure 4.14: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (0°/90°)𝑆, thickness of plate=2.08 mm) 

In Figure 4.15 and Figure 4.16, buckling coefficient curves obtained by each method 

are given for the simply supported boundary condition and (45°/0°/−45°/90°)𝑆ply 

orientation. 

 

Figure 4.15: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (45°/0°/−45°/90°)𝑆, thickness of plate=2.08 mm) 
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Figure 4.16: Compare of compressive buckling coefficients with all edges simply supported (Ply 

orientation: (45°/0°/−45°/90°)𝑆, thickness of plate=4.16 mm) 

In Figure 4.17 and Figure 4.18, buckling coefficient curves obtained by each method 

are given for the clamped boundary condition and (0°/0°)𝑆 ply orientation. 

 

Figure 4.17: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(0°/0°)𝑆, thickness of plate=1.04 mm) 
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Figure 4.18: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(0°/0°)𝑆, thickness of plate=2.08 mm) 

In Figure 4.19 and Figure 4.20, buckling coefficient curves obtained by each method 

are given for the clamped boundary condition and (0°/90°)𝑆 ply orientation. 

 

Figure 4.19: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(0°/90°)𝑆, thickness of plate=1.04 mm) 
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Figure 4.20: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(0°/90°)𝑆, thickness of plate=2.08 mm) 

In Figure 4.21 and Figure 4.22 buckling coefficient curves obtained by each method 

are given for the clamped boundary condition and (45°/0°/−45°/90°)𝑆  ply 

orientation. 

 

Figure 4.21: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(45°/0°/−45°/90°)𝑆, thickness of plate=2.08 mm) 
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Figure 4.22: Compare of compressive buckling coefficients with all edges clamped (Ply orientation: 

(45°/0°/−45°/90°)𝑆, thickness of plate=4.16 mm) 

In the Figure 4.23 and Figure 4.24, buckling coefficient curves obtained by finite 

element analysis for each ply orientation are given at the 2.08 mm plate thickness with 

all edges simply supported and clamped, respectively. To achieve the same plate 

thickness of 2.08 mm, for the (0°/0°)𝑆  and the (0°/90°)𝑆  ply orientations, 4 ply 

repeat is used whereas for the (45°/0°/−45°/90°)𝑆 ply orientation, 2 ply repeat is 

used. 

 

Figure 4.23: Compare of compressive buckling coefficients with all edges simply supported at the 

same plate thickness (2.08 mm) 
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Figure 4.24: Compare of compressive buckling coefficients with all edges clamped at the same plate 

thickness (2.08 mm) 

From the buckling coefficient curves presented, the following conclusions are inferred: 

• Buckling coefficient curves obtained by the FSDT and FEA agree with each 

other considerably well for all laminate configurations and boundary 

conditions. For the clamped edge condition, results deviate slightly more 

compared to the simply supported edge condition. However, maximum 

difference between the FSDT and the FEA results is 3%. 

• For composite plates with 0o ply angle, buckling coefficients obtained by the 

CLPT, FSDT and FEA agree with each other very well, especially for 

laminates with small thickness. As the thickness of the laminate increases, 

buckling coefficients obtained by the CLPT deviates from the FSDT and FEA 

results. 

• For quasi-isotropic laminates having 0o, 90o and ±45o plies, the differences 

between the buckling coefficients determined by the finite element analysis 

and by the CLPT and FSDT increase. This could be due to the fact that the 

displacement forms assumed in the solutions performed by the CLPT and the 

FSDT may not represent the actual wave forms of the buckled state. Whereas, 

in finite element model, the actual buckled wave form can be predicted more 
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accurately since many elements are used in the finite element model as seen in 

Figure 4.25-Figure 4.27. 

• For composite plates with 0o ply angle, pattern of buckling coefficient curve 

obtained by FEA is similar to pattern of metallic buckling curve.  

• At the same plate thickness, for composite plates with all edges simply 

supported and 0o and 90o ply angles, buckling coefficient curve obtained by 

FEA is slightly different than the composite plate with 0o, 90o ±45o ply angles. 

However,  patterns of these curves are similar to each other. Moreover, at the 

2.08 mm plate thickness, for composite plates with all edges clamped and 0o 

and 90o plies, buckling coefficient results obtained by FEA is almost same as 

the results of composite plate with 0o, 90o ±45o plies. 

• For thicker plates affine ratio of the plate is not effective on the buckling 

coefficient. 

 

Figure 4.25: Example view of first buckled mode shape of plate with all edges simply supported (Ply 

orientation: (0°/0°)𝑆, thickness of plate=2.08 mm) 
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Figure 4.26: Example view of first buckled mode shape of plate with all edges simply supported (Ply 

orientation: (0°/90°)𝑆, thickness of plate=2.08 mm) 

 

Figure 4.27: Example view of first buckled mode shape of plate with all edges simply supported (Ply 

orientation: (45°/0°/−45°/90°)𝑆, thickness of plate=2.08 mm) 
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CHAPTER 5 

 

 

5. CONCLUSION AND FUTURE WORK 

 

 

 

In Chapter 2, the effect of the boundary conditions on the buckling coefficients of 

stiffened flat panels is investigated by the finite element analysis. It is noted that 

depending on the restraint that the stringer along the unloaded edge of a skin-stringer 

panel provides, buckling coefficients obtained from finite element analysis may or may 

not agree with the buckling coefficients obtained by the analytical approach using the 

classical boundary conditions. For the skin-stringer assemblies with J, Z and T type 

stringers, buckling coefficients are determined by the finite element analyses for 

various combinations of the geometric properties of skin-stringer assemblies. Loaded 

edges of these assemblies are considered as clamped edge conditions. Finite element 

database for the buckling coefficients of skin-stringer assemblies for each stringer type 

is then processed to generate response surface (RS) and artificial neural network 

(ANN) approximations. Response surface and neural network approximations allow 

very fast determination of the buckling coefficients of skin-stringer assemblies for the 

selected stringer types provided that the geometric properties of the skin-stringer 

assembly are within the lower and upper limits of the geometric properties of the skin-

stringer assemblies for which finite element analyses are conducted to generate the RS 

and train the ANN. To test the performance of the RS and the ANN generated, 10 

additional random data sets are tested for each skin-stringer assembly with J, Z and T 

type stringer. It is seen that both the RS and the ANN methods give accurate buckling
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coefficient results compared to the FEA results. For the skin-stringer assemblies with 

three stringer types, it is concluded that the ANN gives more accurate results compared 

to the RS. However, it is noted that ANN also has accuracy problems if the parameters 

of the ANN are not selected appropriately. To select the proper parameter set for the 

ANN, trial and error methodology is used. For instance, if the neuron number is lower 

than required neuron number, ANN gives inaccurate results. In addition, if the neuron 

number is higher than required neuron number, overfitting occurs in the ANN results. 

Therefore, required neuron number is decided with trial and error for each problem 

separately. Additionally, number of data sets is also very important in obtaining 

accurate ANN and RS. For the randomly selected 10 additional design sets, RMS 

values of the ANN are obtained as 0.0494, 0.0544, 0.0458 for the skin-stringer 

assemblies with J, Z and T type stringers, respectively. It is to be noted that buckling 

coefficients are in the range of 6-8 for the skin-stringer assemblies with J, Z and T type 

stringers. It is seen that for the 10 additional analyses for each stringer type, root mean 

square errors are very small compared to the magnitude of the buckling coefficients. 

This shows that ANN approximation produces very accurate buckling coefficients and 

it is deemed that such a fast and accurate approximate solver for the buckling 

coefficients based on ANN can be effectively used within the framework of 

optimization of skin-stringer assemblies. 

In chapter 3, a comparative study on the post-buckling load redistribution in stiffened 

aircraft panels modeled with and without material nonlinearity is presented. For this 

purpose, a baseline stiffened panel is generated for the investigation of the material 

nonlinearity on the post-buckling behavior and on the effective width of the stiffened 

panel. To make a direct comparison with the classical empirical approach for the 

determination of the effective width of the skin panel, a stiffener section which 

provides classical clamped edge condition is designed by matching the compression 

buckling coefficient determined by the finite element analysis to the buckling 

coefficient of the panel with the classical clamped edge boundary condition. Post-

buckling analysis of the skin-stringer assembly is performed utilizing linear and 

nonlinear material models in the finite element analysis to study the effect of material 

plasticity on the post-buckling behavior of the skin-stringer assembly. 
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Results are presented on the post-buckling behavior of skin-stringer assemblies with 

linear and nonlinear material properties in the finite element model for I, J and Z 

stringer shapes for the same panel dimensions. Load distributions obtained by the finite 

element analysis performed by the linear and nonlinear material models in the post-

buckled stage revealed that for the skin-stringer assembly with the nonlinear material 

model, the peak load is significantly lower than the peak load for the linear material 

model case. Effective widths calculated by the finite element based analysis by 

employing nonlinear material property are higher than the effective widths calculated 

by employing linear material property. Since the peak loads drop when nonlinear 

material property is used in the finite element analysis, the increase in the effective 

width is considered to be reasonable. If the effective widths calculated by the finite 

element analysis employing finite element analysis with nonlinear material properties 

are taken as reference, for the skin stringer assemblies studied, classical effective width 

formula underestimates the effective widths between 20%-30% except assembly with 

Z2 stringer section. 

Effective widths calculated by the finite element based analysis by employing linear 

material property agree better with the effective widths calculated by the classical 

empirical approach of Bruhn compared to the effective widths calculated by the finite 

element based analysis by employing nonlinear material property. As an alternative 

method, effective widths are also calculated utilizing the stringer stresses determined 

by the finite element analysis at the point of collapse in the classical effective width 

formula. It is concluded that for skin stringer assemblies with double row fasteners, 

effective widths calculated by substituting the stringer stresses at the collapse point 

calculated by the finite element analysis in the classical empirical effective width 

formula match well with the effective widths calculated by the classical empirical 

effective width formula alone. Results of the present analysis also showed that the 

classical effective width formula gives reasonable results which are comparable with 

the finite element based analysis results. 

In the chapter 4, generic compressive buckling curves of composite plates with 

different ply orientations are obtained using three different methods. These methods 
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are chosen as the CLPT, FSDT and FEM. To use the CLPT and FSDT methods, 

mathematical formulations are shown step by step in sections 4.1 and 4.2. Both simply 

supported and clamped edge conditions are investigated using the three methods. 

CLPT is chosen because it is the simplest method to determine the critical buckling 

load. However, the accuracy of the method is not good when the complexity of the ply 

orientations is increased. As the second mathematical method, FSDT is decided 

because this method gives the more accurate results compared to CLPT. In the FSDT, 

out-of-plane shear deformation is also included. Thus, results of FSDT are more 

accurate than the CLPT when compared to the finite element method. As the third and 

most realistic method, finite element modelling is chosen to calculate buckling load.  

In this study, specific parameters are used to obtain the generic buckling coefficient 

curves. These parameters are the modified buckling coefficient and the plate’s affine 

ratio. Using these parameters, generic buckling curves for balanced orthotropic 

rectangular plates are obtained for three different ply orientation configurations. These 

orientations are decided according to use in the aviation industry. These three methods 

are applied and buckling coefficient results are obtained for various plates thicknesses, 

affine ratios and boundary conditions using a Python script. 

Generic buckling coefficient curves are obtained for both simply supported and 

clamped edge conditions. As expected, clamped edge results are higher than the simply 

supported cases. Moreover, for each ply orientation configuration, buckling curves are 

obtained. For the quasi-isotropic plates the effect of the skin thickness is higher on the 

buckling coefficients compared to the other configurations. In addition, the effect of 

the plate’s affine ratio is not significant in thicker plates. Based on the results obtained 

for the composite buckling analysis, it is seen that the buckling coefficient curves 

obtained by the FSDT and the FEA agree with each other considerably well for all 

laminate configurations and boundary conditions. For the clamped edge condition, 

results deviate slightly more compared to the simply supported edge condition. 

However, maximum difference between the FSDT and the FEA results is 3%. 

As for the future work, the experimental investigation of the post-buckling 

phenomenon is deemed to be the most important item. Determination of the post-
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buckling load distribution experimentally is considered to be a worthwhile study to 

conduct as the future study. 
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APPENDICES 

APPENDIX A 

 

 

A. PROCEDURE OF LINEAR BUCKLING ANALYSIS 

 

 

 

In ABAQUS, the procedure of linear buckling analysis is explained in this Appendix 

[35]. To obtain the critical buckling load in FEA, singular stiffness matrix has to be 

solved. In an eigenvalue buckling problem, loads are sought for which the model 

stiffness matrix becomes singular, so that the problem has nontrivial solutions, as 

shown in Equation (A.1), 

𝐾𝑀𝑁 ∗ 𝑣𝑀 = 0 (A.1) 

where  𝐾𝑀𝑁  is the tangent stiffness matrix when the loads are applied, and the 𝑣𝑀 is 

the nontrivial displacement solution vector. The applied loads can consist of 

distributed loads, pressures, concentrated forces, nonzero prescribed displacements. 

The buckling loads are calculated relative to the base state of the structure. If the 

eigenvalue buckling procedure is the first step in an analysis, the initial conditions 

form the base state; otherwise, the base state is the current state of the model at the end 

of the last general analysis step. Thus, the base state can include preloads (“dead” 

loads), 𝑃𝑁. The preloads are often zero in classical eigenvalue buckling problems. If 

geometric nonlinearity is omitted, the base state geometry is the original configuration 

of the body. An incremental loading pattern,  𝑄𝑁  is defined in the eigenvalue buckling
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prediction step. The magnitude of this loading is not important; it will be scaled by the 

load multipliers, 𝜆𝑖  found in the eigenvalue problem: 

(𝐾0
𝑁𝑀 + 𝜆𝑖 ∗ 𝐾∆

𝑁𝑀) ∗ 𝑣𝑖
𝑀 = 0 (A.2) 

where 

𝐾0
𝑁𝑀 is the stiffness matrix corresponding to the base state, which includes the effects 

of the preloads, 𝑃𝑁  (if any); 

𝐾∆
𝑁𝑀is the differential initial stress and load stiffness matrix due to the incremental 

loading pattern, 𝑄𝑁  ; 

𝜆𝑖 are the eigenvalues; 

𝑣𝑖
𝑀are the buckling mode shapes (eigenvectors); 

M and N refer to degrees of freedom M and N of the whole model; and 

“i” refers to the i’th buckling mode. 

The critical buckling loads are then given by  𝑃𝑁 + 𝜆𝑖𝑄
𝑁. Normally, the lowest value 

of 𝝀𝒊 is of interest. 

The buckling mode shapes, 𝑣𝑖
𝑀 , are normalized vectors and do not represent actual 

magnitudes of deformation at the critical load. They are normalized so that the 

maximum displacement component is 1.0.  

ABAQUS can extract eigenvalues and eigenvectors for symmetric matrices only; 

therefore, 𝐾0
𝑁𝑀  and 𝐾∆

𝑁𝑀  are symmetrized. If the matrices have significant 

unsymmetrical parts, the eigenvalue problem may not be exactly what you expected 

to solve. 
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APPENDIX B 

 

 

B. MATERIAL PROPERTIES ALUMINUM 2024 T3 CLAD SHEET 

 

 

 

 

Figure B.1: Material properties of aluminum 2024 T3 clad sheet [36]
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Figure B.2: True stress-strain graph of Aluminum 2024 T3 clad sheet [36] [39] 

Table B.1: True stress-strain data of Aluminum 2024 T3 clad sheet [36] [39] 

Stress (MPa) Strain Stress (MPa) Strain Stress (MPa) Strain 

250.45 0 300.89 0.017364 384.92 0.121213 

251.49 0.000119 302.22 0.018369 387.59 0.125193 

252.52 0.000239 303.56 0.019417 390.31 0.129257 

253.56 0.000361 304.92 0.020511 393.09 0.133405 

254.60 0.000484 306.30 0.021651 395.91 0.137636 

255.64 0.000609 307.69 0.022839 398.78 0.141951 

256.68 0.000737 309.10 0.024075 401.70 0.146351 

257.72 0.000869 310.53 0.025361 404.68 0.150835 

258.76 0.001005 311.98 0.026698 407.70 0.155404 

259.80 0.001146 313.45 0.028087 410.79 0.160059 

260.85 0.001293 314.94 0.029529 413.92 0.164798 

261.89 0.001447 316.44 0.031026 417.12 0.169623 

262.94 0.001608 317.98 0.032578 420.37 0.174533 

264.00 0.001777 319.53 0.034186 423.68 0.179528 

265.05 0.001956 321.10 0.035851 427.04 0.184609 

266.11 0.002144 322.70 0.037575 430.47 0.189775 
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Table B.2 Continued 

Stress (MPa) Strain Stress (MPa) Strain Stress (MPa) Strain 

267.17 0.002343 324.32 0.039359 433.96 0.195027 

268.23 0.002554 325.97 0.041204 437.51 0.200364 

269.30 0.002778 327.64 0.04311 441.13 0.205786 

270.38 0.003015 329.34 0.045079 444.81 0.211293 

271.45 0.003267 331.07 0.047111 448.55 0.216885 

272.54 0.003535 332.82 0.049209 452.36 0.222562 

273.62 0.003819 334.60 0.051372 456.24 0.228323 

274.71 0.004121 336.40 0.053602 460.18 0.234168 

275.81 0.004441 338.24 0.055899 464.20 0.240097 

276.92 0.004781 340.11 0.058265 468.28 0.24611 

278.03 0.005141 342.01 0.0607 472.44 0.252206 

279.15 0.005524 343.94 0.063205 476.67 0.258385 

280.27 0.005929 345.90 0.065782 480.98 0.264646 

281.40 0.006358 347.89 0.068431 485.36 0.27099 

282.54 0.006812 349.92 0.071153 489.81 0.277415 

283.69 0.007292 351.98 0.073948 494.35 0.283921 

284.85 0.007798 354.08 0.076818 498.96 0.290508 

286.02 0.008334 356.21 0.079763 503.65 0.297175 

287.19 0.008898 358.39 0.082784 508.42 0.303922 

288.38 0.009493 360.59 0.085881 513.28 0.310747 

289.58 0.010119 362.84 0.089056 518.21 0.317651 

290.78 0.010779 365.12 0.092309 523.24 0.324633 

292.00 0.011471 367.45 0.095641 528.34 0.331691 

293.23 0.012199 369.82 0.099052 533.54 0.338827 

294.48 0.012963 372.22 0.102543 538.82 0.346038 

295.73 0.013764 374.67 0.106114 544.19 0.353324 

297.00 0.014604 377.17 0.109766 549.66 0.360684 

298.28 0.015483 379.70 0.113499 555.21 0.368118 

299.58 0.016403 382.29 0.117315 560.86 0.375625 
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APPENDIX C 

 

 

C. LOCAL BUCKLING STRINGERS IN SKIN-STIFFENER ASSEMBLIES 

 

 

 

Local buckling of stiffeners is checked according to the method presented in Bruhn 

[1]. Cross-section of the stiffener is divided into rectangular elements and critical stress 

for each of these elements is calculated as follows: 

𝑘𝑐
∗ =

𝑘𝑐 ∗ 𝜋
2

12 ∗ (1 − 𝑣2)
 (C.1) 

𝐹𝑙𝑏𝑖 = 𝑘𝑐
∗ ∗ 𝐸 ∗ (

𝑡𝑖
𝑏𝑖
)
2

 
(C.2) 

where the index 𝑖  represents the section element, and 𝑘𝑐
∗  is the modified buckling 

coefficient and for elements supported at one side and simply supported loaded edges 

𝑘𝑐
∗  values are obtained by averaging case 5 (𝑘𝑐 = 0.406, 𝑘𝑐

∗ = 0.367)  and case 4 

(𝑘𝑐 = 1.25, 𝑘𝑐
∗ = 1.12) in Figure C.1. Similarly, for elements supported at both sides, 

𝑘𝑐
∗ is defined as average 𝑘𝑐

∗ values of case 3 (𝑘𝑐 = 4.0, 𝑘𝑐
∗ = 3.61) and case 1 (𝑘𝑐 =

6.97, 𝑘𝑐
∗ = 6.3) in Figure C.1. 

After calculating the buckling allowable of each section element, the minimum value 

is determined as the local buckling allowable of the whole section.
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𝐹𝑙𝑏 = 𝑚𝑖𝑛(𝐹𝑙𝑏𝑖) (C.3) 

 

Figure C.1: Buckling factors for several edge conditions [1] 
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APPENDIX D 

 

 

D. ELASTIC COEFFICIENT AND COMPLIANCE MATRICES AND 

GOVERNING EQUILIBRIUM EQUATIONS OF COMPOSITE PLATES 

 

 

 

D.1 Elastic Coefficient and Compliance Matrices of Composite Plates 

For the first method, CLPT, stiffness matrices are obtained as seen in Equations (D.5), 

(D.6) and (D.7). To do that, firstly, compliance matrix is obtained as Equation (D.1). 

[S] is known as the compliance tensor. It should be evident that the compliance tensor 

has the same symmetric properties as the elastic tensor [E] and same type of 

transformation law. The number of independent components of compliance tensor can 

be reduced in manner similar to elasticity tensor. At the end, compliance matrix for an 

orthotropic material for the two dimensional case is obtained as [42]: 

[𝑆] =

[
 
 
 
 
 
 
1

𝐸1
−
𝑣21
𝐸2

0

−
𝑣12
𝐸1

1

𝐸2
0

0 0
1

𝐺12]
 
 
 
 
 
 

 (D.1) 

Transformation matrix is found following equation [42]: 

[𝑇] = [
cos2 𝜃 sin2 𝜃 2 sin 𝜃 cos 𝜃
sin2 𝜃 cos2 𝜃 −2 sin 𝜃 cos 𝜃

− sin 𝜃 cos 𝜃 sin 𝜃 cos 𝜃 cos2 𝜃 − sin2 𝜃

] (D.2) 
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Where 𝜃 is the fiber orientation angle. 

Stiffness matrix of composite plate is calculated as [42]: 

[𝑄] = [𝑆]−1 (D.3) 

[�̅�] = [𝑇]−1[𝑄][𝑇] (D.4) 

Elements of the Extensional stiffness matrix which is defined as “A” is calculated the 

following way [42]: 

𝐴𝑖𝑗 =∑(�̅�𝑖𝑗)𝑘
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 (D.5) 

In addition, elements of the coupling stiffness matrix, “B”, is obtained as [42]: 

𝐵𝑖𝑗 =
1

2
∑(�̅�𝑖𝑗)𝑘

(ℎ𝑘
2 − ℎ𝑘−1

2 )

𝑛

𝑘=1

 (D.6) 

Moreover, elements of the bending stiffness matrix, “D”, are given as [42]: 

𝐷𝑖𝑗 =
1

3
∑(�̅�𝑖𝑗)𝑘

(ℎ𝑘
3 − ℎ𝑘−1

3 )

𝑛

𝑘=1

 (D.7) 

Where 𝑖 = 1,2,3 and 𝑗 = 1,2,3. “ℎ𝑘” is the vertical distance from mid-plane of the 

plate (z=0) to the upper surface of the kth  lamina (layer) as seen in Figure D.1 . 
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Figure D.1: Cross section view of a laminate 

For the second method, FSDT, plane shear term has to be added into the formulation. 

Shear correction factor is used in the determination of the transverse shear stiffness 

matrix. Shear correction factor is obtained from Table D.1. 

Table D.1: Typical shear correction coefficient [49] 

Material Type Homogeneous Composite Sandwich 

Shear Correction Factor 5/6 5/6 1 
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Transverse shear stiffness matrix of a ply is given by [43]: 

[𝑄]𝑠ℎ𝑟 = [
𝐺23 0
0 𝐺13

] (D.8) 

Transformation matrix for shear part is obtained as [43]: 

[𝑇]𝑠ℎ𝑟 = [
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

] (D.9) 

Transformed transverse shear  stiffness matrix for a ply is calculated as [42]: 

[�̅�]𝑠ℎ𝑟 = [𝑇]𝑠ℎ𝑟
−1 [𝑄]𝑠ℎ𝑟[𝑇]𝑠ℎ𝑟 (D.10) 

Finally, transverse shear stiffness matrix for the laminate is obtained as [43]: 

(𝐴𝑖𝑗)𝑠ℎ𝑟 = 𝑘𝑠ℎ𝑟∑((�̅�𝑖𝑗)𝑘)𝑠ℎ𝑟
(ℎ𝑘 − ℎ𝑘−1)

𝑛

𝑘=1

 (D.11) 

Where 𝑖 = 4,5 and 𝑗 = 4,5. 

D.2 Governing Equations of Composite Plates 

Figure D.2 and Figure D.3 show the infinitesimally small elements with the resultant 

forces and moments to obtain the force and moment equivalence equations in the 

composite plate buckling. For equilibrium, resultant forces and moments are zero. 

 

Figure D.2: A differential element with in-plane force resultants [42] 
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Figure D.3: A differential element with moment resultants, shear force resultants and applied 

transverse forces [42] 

Equilibrium of forces in the x direction according to Figure D.2 is obtained as: 

−𝑁𝑥 𝑑𝑦 + (𝑁𝑥 +
𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥) 𝑑𝑦 − 𝑁𝑥𝑦 𝑑𝑥 + (𝑁𝑥𝑦 +
𝜕𝑁𝑥𝑦

𝜕𝑦
𝑑𝑦) 𝑑𝑥 = 0 

⟹
𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0 

(D.12) 

Equilibrium of forces in the y direction according to Figure D.2 is obtained as: 

−𝑁𝑦 𝑑𝑥 + (𝑁𝑦 +
𝜕𝑁𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥 − 𝑁𝑥𝑦 𝑑𝑦 + (𝑁𝑥𝑦 +

𝜕𝑁𝑥𝑦

𝜕𝑥
𝑑𝑥) 𝑑𝑦 = 0 

⟹
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= 0 

(D.13) 

Equilibrium of forces in the z direction according to Figure D.2 is obtained with the 

projection of  transverse normal forces as:  

−𝑅𝑥𝑧 𝑑𝑦 + (𝑅𝑥𝑧 +
𝜕𝑅𝑥𝑧
𝜕𝑥

𝑑𝑥) 𝑑𝑦 − 𝑅𝑦𝑧 𝑑𝑥 + (𝑅𝑦𝑧 +
𝜕𝑅𝑦𝑧

𝜕𝑦
𝑑𝑦) 𝑑𝑥 + 𝑝 𝑑𝑥 𝑑𝑦 = 0 

⟹
𝜕𝑅𝑥𝑧
𝜕𝑥

+
𝜕𝑅𝑦𝑧

𝜕𝑦
+ 𝑝 = 0 

(D.14) 

According to Figure D-3, contributions of the in-plane normal and shear forces in the 

z direction are given by:  
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−𝑁𝑥
𝜕𝜔

𝜕𝑥
𝑑𝑦 + (𝑁𝑥 +

𝜕𝑁𝑥
𝜕𝑥

𝑑𝑥) 𝑑𝑦 (
𝜕𝜔

𝜕𝑥
+
𝜕2𝜔

𝜕𝑥2
𝑑𝑥) = 𝑁𝑥

𝜕2𝜔

𝜕𝑥2
𝑑𝑥𝑑𝑦 +

𝜕𝑁𝑥
𝜕𝑥

𝜕𝜔

𝜕𝑥
𝑑𝑥𝑑𝑦 (D.15) 

−𝑁𝑦𝑥
𝜕𝜔

𝜕𝑥
𝑑𝑦 + (𝑁𝑥𝑦 +

𝜕𝑁𝑦𝑥

𝜕𝑦
𝑑𝑦) 𝑑𝑥 (

𝜕𝜔

𝜕𝑥
+
𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑦)

= 𝑁𝑦𝑥
𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕𝑁𝑦𝑥

𝜕𝑦

𝜕𝜔

𝜕𝑥
𝑑𝑥𝑑𝑦 

(D.16) 

−𝑁𝑦
𝜕𝜔

𝜕𝑦
𝑑𝑥 + (𝑁𝑦 +

𝜕𝑁𝑦

𝜕𝑦
𝑑𝑦) 𝑑𝑥 (

𝜕𝜔

𝜕𝑦
+
𝜕2𝜔

𝜕𝑦2
𝑑𝑦) = 𝑁𝑦

𝜕2𝜔

𝜕𝑦2
𝑑𝑥𝑑𝑦 +

𝜕𝑁𝑦

𝜕𝑦

𝜕𝜔

𝜕𝑦
𝑑𝑥𝑑𝑦 

(D.17) 

−𝑁𝑥𝑦
𝜕𝜔

𝜕𝑦
𝑑𝑦 + (𝑁𝑥𝑦 +

𝜕𝑁𝑥𝑦

𝜕𝑥
𝑑𝑥) 𝑑𝑦 (

𝜕𝜔

𝜕𝑦
+
𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑥)

= 𝑁𝑥𝑦
𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 +

𝜕𝑁𝑥𝑦

𝜕𝑥

𝜕𝜔

𝜕𝑦
𝑑𝑥𝑑𝑦 

(D.18) 

 

Figure D.4: Force projection of  in-plane normal and shear forces in the z direction [50] 

At the end of the equilibrium in the z direction including force projection, Equation 

(D.19) is obtained after summing all contributions of the in-plane forces using the 

equations (D.15), (D.16), (D.17) and (D.18) and omitting higher order terms in 𝑑𝑥 and 

𝑑𝑦. 

𝑁𝑥
𝜕2𝜔

𝜕𝑥2
𝑑𝑥𝑑𝑦 + 𝑁𝑦𝑥

𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦 + 𝑁𝑦

𝜕2𝜔

𝜕𝑦2
𝑑𝑥𝑑𝑦 + 𝑁𝑥𝑦

𝜕2𝜔

𝜕𝑥𝜕𝑦
𝑑𝑥𝑑𝑦

+
𝜕𝜔

𝜕𝑦
𝑑𝑥𝑑𝑦 (

𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
) +

𝜕𝜔

𝜕𝑥
𝑑𝑥𝑑𝑦 (

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
)

= 𝑁𝑥
𝜕2𝜔

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝜔

𝜕𝑦2
+ 2𝑁𝑦𝑥

𝜕2𝜔

𝜕𝑥𝜕𝑦
 

(D.19) 
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Then, the final expression for the equilibrium in the z direction is obtained by summing 

the transverse forces given in Equation (D.14) and in-plane normal and shear forces 

given in Equation (D.19) as: 

𝜕𝑅𝑥𝑧
𝜕𝑥

+
𝜕𝑅𝑦𝑧

𝜕𝑦
+ 𝑝 + 𝑁𝑥

𝜕2𝜔

𝜕𝑥2
+ 𝑁𝑦

𝜕2𝜔

𝜕𝑦2
+ 2𝑁𝑦𝑥

𝜕2𝜔

𝜕𝑥𝜕𝑦
− 𝜌∗

𝜕2𝜔

𝜕𝑡2
= 0 (D.20) 

where 𝜌∗ is the surface weight or mass of the plate. 

After obtaining the equations for the force equilibrium, moment equilibrium equations 

are obtained in all directions using Figure D.3. In all moment equations, high order 

terms are neglected for the simplicity. 

Equilibrium of moments in x direction according to Figure D.3 is obtained as: 

𝑀𝑦 𝑑𝑥 + (𝑀𝑦 +
𝜕𝑀𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥 + 𝑀𝑥𝑦 𝑑𝑦 − (𝑀𝑥𝑦 +

𝜕𝑀𝑥𝑦

𝜕𝑥
𝑑𝑥) 𝑑𝑦

+ (𝑅𝑦𝑧 +
𝜕𝑅𝑦𝑧

𝜕𝑦
𝑑𝑦) 𝑑𝑥 𝑑𝑦 + (𝑅𝑥𝑧 +

𝜕𝑅𝑥𝑧
𝜕𝑥

𝑑𝑥) 𝑑𝑦
𝑑𝑦

2
− 𝑅𝑥𝑧 𝑑𝑦

𝑑𝑦

2

+ 𝑝𝑑𝑥 𝑑𝑦
𝑑𝑦

2
= 0 

(D.21) 

Equation (D.21) is divided into “𝑑𝑥 𝑑𝑦” terms after that high order derivative terms 

are neglected. The moment equation in the x direction simplifies to: 

𝜕𝑀𝑦

𝜕𝑦
+
𝜕𝑀𝑥𝑦

𝜕𝑥
− 𝑅𝑦𝑧 = 0 (D.22) 

Equilibrium of moments in the y direction according to Figure D.3 is obtained as: 

𝑀𝑥 𝑑𝑦 + (𝑀𝑥 +
𝜕𝑀𝑥

𝜕𝑥
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𝜕𝑀𝑥𝑦

𝜕𝑦
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𝜕𝑅𝑥𝑧
𝜕𝑥

𝑑𝑥) 𝑑𝑥 𝑑𝑦 + (𝑅𝑦𝑧 +
𝜕𝑅𝑦𝑧

𝜕𝑦
𝑑𝑦) 𝑑𝑥

𝑑𝑥

2
− 𝑅𝑦𝑧 𝑑𝑥

𝑑𝑥

2

+ 𝑝𝑑𝑥 𝑑𝑦
𝑑𝑦

2
= 0 

(D.23) 

Same as the x direction, simple version of moment equation in the y direction is 

determined as: 
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𝜕𝑀𝑥

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝑅𝑥𝑧 = 0 (D.24) 

Finally, Equation (D.25) is obtained by substituting Equations (D.22) and (D.24) into 

the Equation (D.20) as the governing equation for buckling analysis. 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
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𝜕2𝜔

𝜕𝑦2
+ 2𝑁𝑦𝑥

𝜕2𝜔

𝜕𝑥𝜕𝑦
− 𝜌∗

𝜕2𝜔

𝜕𝑡2
= 0 (D.25) 



173 

APPENDIX E 

 

 

E. MATERIAL PROPERTIES HEXPLY 8552 AS4 

 

 

 

 

Figure E.1: Material properties of HexPly 8552 AS4 at dry and room temperature [51]  
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APPENDIX F 

 

 

F. SCRIPTS 

 

 

 

F.1 Linear Metal Single Panel Buckling Python Scripts 

# Importing necessary modules   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
   
# Skin geometric properties   
sk_x = 100.0   
sk_z = 0.0   
sk_t = 2.0   
   
# Material properties   
Ec = 73774.0   
E  = 72395.0   
density = 2768.0   
poisson = 0.33   
Fcy = 269.0   
nc  = 15.0   
   
# Applied shell edge load   
flow = 1.0   
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#Paths   
save_path  = r'C:\Users\…………………….\Single Panel\Model\sp_comp'   
# Loop for boundary conditions    
for bc_type in ['ss','cl']:   
   
    # Loop for applied load type   
    for load_type in ['comp','shear']:   
       
        #Paths   
        model_path  = r'C:\Users\……………………\Single Panel\Model\sp_'+bc_type+'_'+load_type   
        result_path = r'C:\Users\……………………\Single Panel\Result\sp_'+bc_type+'_'+load_type   
   
        # Initialize output file   
        results = open(result_path+'.csv',"w+")   
        results.write("Ratio FEM Bruhn\n")   
   
        # Creating panels with different edge length ratio   
        for sk_y in range(100, 505, 5):   
            # Defining model name   
            modelname = 'sp_'+ bc_type +'_'+ load_type +'_'+ str(sk_y)   
            mdb.Model(modelType=STANDARD_EXPLICIT, name=modelname)   
            mn = mdb.models[modelname]   
               
            # Creating sketch of panel   
            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0),point2=(sk_x, sk_y))   
   
            # Creating part of panel   
            mn.Part(dimensionality=THREE_D, name='panel', type=DEFORMABLE_BODY)   
            mn.parts['panel'].BaseShell(sketch=mn.sketches['__profile__'])   
            del mn.sketches['__profile__']   
   
            # Creating material   
            mn.Material(name='AL2024')   
            mn.materials['AL2024'].Elastic(table=((Ec, poisson), ))   
            mn.materials['AL2024'].Density(table=((density, ), ))   
   
            # Assigning section of panel   
            mn.HomogeneousShellSection(idealization=NO_IDEALIZATION,    
                integrationRule=SIMPSON, material='AL2024', name='Section-1', numIntPts=5,    
                poissonDefinition=DEFAULT, preIntegrate=OFF, temperature=GRADIENT,    
                thickness=sk_t, thicknessField='', thicknessModulus=None, thicknessType=   
                UNIFORM, useDensity=OFF)   
            mn.parts['panel'].Set(faces=   
                mn.parts['panel'].faces.getSequenceFromMask(('[#1 ]', ),   
                ), name='Set-1')   
            mn.parts['panel'].SectionAssignment(offset=0.0, offsetField=   
                '', offsetType=MIDDLE_SURFACE, region=   
                mn.parts['panel'].sets['Set-1'], sectionName='Section-1',    
                thicknessAssignment=FROM_SECTION)   
   
            # Mesh control   
            mn.parts['panel'].setMeshControls(elemShape=QUAD, regions=   
                mn.parts['panel'].faces.getSequenceFromMask(('[#1 ]', ),    
                ), technique=SWEEP)   
   
            # Creating mesh seeds of panel   
            mn.parts['panel'].seedPart(deviationFactor=0.1,    
                minSizeFactor=0.1, size=5.0)   
   
            # Generating mesh   
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            mn.parts['panel'].generateMesh()   
            mn.rootAssembly.DatumCsysByDefault(CARTESIAN)   
            mn.rootAssembly.Instance(dependent=ON, name='panel-1', part=   
                mn.parts['panel'])   
   
            # Creating the set from panel upper edge nodes   
            upedge   = mn.parts['panel'].edges.findAt(((sk_x/2.0,sk_y,sk_z),))   
            upgeoset = mn.parts['panel'].Set(name = 'geoset', edges = upedge)   
            nodenums = []   
            for node in upgeoset.nodes:   
                nodenums.append(node.label)   
            fnodenum = [nodenums[0]]   
            mn.parts['panel'].SetFromNodeLabels(name = 'up corner', nodeLabels = tuple(fnodenum))   
            mn.parts['panel'].SetFromNodeLabels(name = 'up nodes', nodeLabels = tuple(nodenums))   
   
            # Creating set from panel rigth edge nodes   
            riedge = mn.parts['panel'].edges.findAt(((sk_x,sk_y/2.0,sk_z),))   
            rigeoset = mn.parts['panel'].Set(name = 'geoset', edges = riedge)   
            nodenums = []   
            for node in rigeoset.nodes:   
                nodenums.append(node.label)    
            mn.parts['panel'].SetFromNodeLabels(name = 'rigth nodes', nodeLabels = tuple(nodenums))   
   
            # Creating set from panel left edge nodes   
            leedge = mn.parts['panel'].edges.findAt(((0.0,sk_y/2.0,sk_z),))   
            legeoset = mn.parts['panel'].Set(name = 'geoset', edges = leedge)   
            nodenums = []   
            for node in legeoset.nodes:   
                nodenums.append(node.label)   
            mn.parts['panel'].SetFromNodeLabels(name = 'left nodes', nodeLabels = tuple(nodenums))   
   
            # Creating set from panel down edge nodes   
            doedge = mn.parts['panel'].edges.findAt(((sk_x/2.0,0.0,sk_z),))   
            dogeoset = mn.parts['panel'].Set(name = 'geoset', edges = doedge)   
            nodenums = []   
            for node in dogeoset.nodes:   
                nodenums.append(node.label)   
            fnodenum = [nodenums[(len(nodenums)-1)]]   
            mn.parts['panel'].SetFromNodeLabels(name = 'down corner', nodeLabels = tuple(fnodenum))   
            mn.parts['panel'].SetFromNodeLabels(name = 'down nodes', nodeLabels = tuple(nodenums))   
   
            # Creating buckling step with subspace solver      
            mn.BuckleStep(description='buckling', maxIterations=3000, vectors=10,    
                name='Step-1', numEigen=3, previous='Initial', eigensolver=SUBSPACE )   
                   
            # Defining boundary conditions of panel   
            if bc_type=='ss':   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='up_cor', region=   
                    mn.rootAssembly.instances['panel-1'].sets['up corner'], u1=0.0, u2=0.0,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='down_cor', region=   
                    mn.rootAssembly.instances['panel-1'].sets['down corner'], u1=UNSET, u2=0.0,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='down', region=   
                    mn.rootAssembly.instances['panel-1'].sets['down nodes'], u1=UNSET, u2=UNSET,    
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                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='up', region=   
                    mn.rootAssembly.instances['panel-1'].sets['up nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='left', region=   
                    mn.rootAssembly.instances['panel-1'].sets['left nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='rigth', region=   
                    mn.rootAssembly.instances['panel-1'].sets['rigth nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
            elif bc_type=='cl':   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='up_cor', region=   
                    mn.rootAssembly.instances['panel-1'].sets['up corner'], u1=0.0, u2=0.0,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='down_cor', region=   
                    mn.rootAssembly.instances['panel-1'].sets['down corner'], u1=UNSET, u2=0.0,    
                    u3=0.0, ur1=UNSET, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='down', region=   
                    mn.rootAssembly.instances['panel-1'].sets['down nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=0.0, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='up', region=   
                    mn.rootAssembly.instances['panel-1'].sets['up nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=0.0, ur2=UNSET, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='left', region=   
                    mn.rootAssembly.instances['panel-1'].sets['left nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=UNSET, ur2=0.0, ur3=UNSET)   
                mn.DisplacementBC(amplitude=UNSET, buckleCase=   
                    PERTURBATION_AND_BUCKLING, createStepName='Step-1', distributionType=   
                    UNIFORM, fieldName='', fixed=OFF, localCsys=None, name='rigth', region=   
                    mn.rootAssembly.instances['panel-1'].sets['rigth nodes'], u1=UNSET, u2=UNSET,    
                    u3=0.0, ur1=UNSET, ur2=0.0, ur3=UNSET)   
           
            # Creating loads       
            if load_type=='comp':   
                mn.rootAssembly.Surface(name='Surf-1', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#4 ]', ), ))    
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=flow, name='Load-1', region=   
                    mn.rootAssembly.surfaces['Surf-1'])    
                mn.rootAssembly.Surface(name='Surf-2', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#1 ]', ), ))    
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=flow, name='Load-2', region=   
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                    mn.rootAssembly.surfaces['Surf-2'])    
            elif load_type=='shear':   
                mn.rootAssembly.Surface(name='Surf-1', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#4 ]', ), ))   
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=-flow, name='Load-1', traction=SHEAR, region=   
                    mn.rootAssembly.surfaces['Surf-1'])    
                mn.rootAssembly.Surface(name='Surf-2', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#1 ]', ), ))    
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=-flow, name='Load-2', traction=SHEAR, region=   
                    mn.rootAssembly.surfaces['Surf-2'])    
                mn.rootAssembly.Surface(name='Surf-3', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#2 ]', ), ))    
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=flow, name='Load-3', traction=SHEAR, region=   
                    mn.rootAssembly.surfaces['Surf-3'])   
                mn.rootAssembly.Surface(name='Surf-4', side1Edges=   
                    mn.rootAssembly.instances['panel-1'].edges.getSequenceFromMask(   
                    ('[#8 ]', ), ))   
                mn.ShellEdgeLoad(createStepName='Step-1', distributionType=   
                    UNIFORM, field='', localCsys=None, magnitude=flow, name='Load-4', traction=SHEAR, region=   
                    mn.rootAssembly.surfaces['Surf-4'])   
                       
            # Creating job   
            mdb.Job(atTime=None, contactPrint=OFF, description='', echoPrint=OFF,    
                explicitPrecision=SINGLE, getMemoryFromAnalysis=True, historyPrint=OFF,    
                memory=90, memoryUnits=PERCENTAGE, model=modelname, modelPrint=OFF,    
                multiprocessingMode=DEFAULT, name=modelname, nodalOutputPrecision=SINGLE,    
                numCpus=1, numGPUs=0, queue=None, scratch='', type=ANALYSIS,    
                userSubroutine='', waitHours=0, waitMinutes=0)   
               
            # Submiting the job   
            mdb.jobs[modelname].submit(consistencyChecking=OFF)   
            mdb.jobs[modelname].waitForCompletion()   
   
            # Reading first eigenvalue from .dat file    
            filename = model_path + '_' + str(sk_y) + '.dat'   
            wordlist = []   
            starttorecord = False   
            f = open(filename)   
            for line in f:   
                if " MODE NO      EIGENVALUE" in line:   
                    starttorecord = True   
                for word in line.split():   
                    if word is 'THE':   
                        starttorecord = False   
                    if starttorecord == True:   
                        wordlist.append(word)   
            f.close()   
            if float(wordlist[4])>0.0:   
                eigenvalue = float(wordlist[4])   
            elif float(wordlist[6])>0.0:   
                eigenvalue = float(wordlist[6])   
            elif float(wordlist[8])>0.0:   
                eigenvalue = float(wordlist[8])   
            else:   
                eigenvalue = 0.0   
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            # Calculating buckling coefficient   
            k = (flow/sk_t * eigenvalue) * pow((sk_x/sk_t),2.0) * 12.0 * (1.0-
pow(poisson,2.0))/(pow(math.pi,2.0)*Ec)   
   
            # Reading buckling coefficient from plots of Bruhn   
            shorteredge = min(sk_x, sk_y)   
            largeredge = max(sk_x, sk_y)   
            x = largeredge / shorteredge   
            if bc_type=='ss':   
                if load_type=='comp':   
                    if x < 0.45:   
                        K = 8.55   
                    elif (x >= 0.45) and (x < 1.437):   
                        K = -
69.66 * pow(x, 5) + 363.28 * pow(x, 4) - 745.99 * pow(x, 3) + 757.82 * pow(x, 2) - 383.38 * x + 81.978   
                    elif (1.437 <= x) and (x < 2.474):   
                        K = 1.1819 * pow(x, 2) - 4.974 * x + 9.2349   
                    elif (2.474 <= x) and (x < 3.48):   
                        K = 0.5638 * pow(x, 2) - 3.4225 * x + 9.1792   
                    else:   
                        K = 0.0142 * pow(x, 2) - 0.184 * x + 4.5554   
                elif load_type=='shear':   
                    if (x < 2.212):   
                        K = -3.5363 * pow(x, 3) + 20.082 * pow(x, 2) - 38.676 * x + 31.81   
                    elif (2.212 <= x) and (x < 3.154):   
                        K = -0.2234 * pow(x, 3) + 2.3507 * pow(x, 2) - 8.2362 * x + 15.425   
                    else:   
                        K = -0.2437 * x + 6.7141   
            elif bc_type=='cl':   
                if load_type=='comp':   
                    if (x >= 0.65652) and (x < 0.89837):   
                        K = - 4905.2 * pow(x, 4) + 15581 * pow(x, 3) - 18433 * pow(x, 2) + 9606.6 * x - 1844.7   
                    elif (x >= 0.89837) and (x < 1.10526):   
                        K = - 148.29 * pow(x, 3) + 466.91 * pow(x, 2) - 488.75 * x + 180.49   
                    elif (x >= 1.10526) and (x < 1.4584):   
                        K = 2.7242 * pow(x, 3) + 1.1611 * pow(x, 2) - 22.033 * x + 29.777   
                    elif (x >= 1.4584) and (x < 1.78906):   
                        K = 4.7166 * pow(x, 2) - 15.58 * x + 21.24   
                    elif (x >= 1.78906) and (x < 2.36817):   
                        K = - 20.508 * pow(x, 4) + 170.29 * pow(x, 3) - 525.33 * pow(x, 2) + 712.31 * x - 349.51   
                    elif (x >= 2.36817) and (x < 2.98828):   
                        K = 1.3593 * pow(x, 3) - 9.7797 * pow(x, 2) + 22.557 * x - 8.7549   
                    elif (x >= 2.98828) and (x < 3.70121):   
                        K = 1.0002 * pow(x, 2) - 6.8909 * x + 19.265   
                    elif (x >= 3.70121) and (x < 4.36245):   
                        K = 0.941 * pow(x, 2) - 7.7078 * x + 23.11   
                    elif (x >= 4.36245) and (x <= 5.0):   
                        K = 0.8153 * pow(x, 2) - 7.7061 * x + 25.493           
                elif load_type=='shear':   
                    if (1.0 <= x) and (x < 2.18893):   
                        K = 40.615 * pow(x, 6) - 412.18 * pow(x, 5) + 1725.8 * pow(x, 4) - 3814.8 * pow(x, 3) + 4695.7 
* pow(x, 2) - 3056.3 * x + 836   
                    elif (2.18893 <= x) and (x < 2.99848):   
                        K = 1.2656 * pow(x, 3) - 8.9195 * pow(x, 2) + 20.19 * x - 4.668   
                    elif (2.99848 <= x) and (x <= 5.0):   
                        K = -0.0274 * pow(x, 6) + 0.8406 * pow(x, 5) -
10.101 * pow(x, 4) + 61.822 * pow(x, 3) - 204.98 * pow(x, 2) + 350.57 * x - 232.37   
   
            # Writing results to output file   
            results.write("%f %f %f" %(sk_y/sk_x,k,K)+"\n")   
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        results.close()   
try:   
    del mdb.models['Model-1']      
except:   
    None   
# Saving the model   
mdb.saveAs(   
    pathName=save_path+'.cae')   

F.2 Linear Metal Stiffened Panel Buckling Python Scripts 

• Example code to construct the skin-stringer model with J stringer section  

# Importing necessary modules   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Paths   
save_path='C:/Users/……………………/Model/Model_J/model_j'   
   
# Initialize result file   
results = open(r"C:\Users\……………………\Results\output_J_min_inertia.txt","w+")   
   
# Given Edge Load (N/mm)   
Edge_load = 1.0    
   
# Material properties (Al 2024 T3 Sheet thk: 0.23-3.25 mm)   
Ec = 73774.0   
E  = 72395.0   
density = 2768.0   
poisson = 0.33   
Fcy = 269.0   
nc  = 15.0   
   
# Skin geometry   
sk_x  = 450.0   
sk_ys = [150.0*3.0,225.0*3.0,300.0*3.0,375.0*3.0,450.0*3.0]   
sk_ts = [0.813,1.016,1.27]   
   
# Stringer "J" geometry   
str_l  = 450.0   
str_ts = [0.813,1.016,1.27]   
str_hs = [10.0,17.0,24.0,30.0]   
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str_cs = [10.0,14.0,18.0,22.0]   
str_bs = [10.0,14.0,18.0]   
   
# Fasteners' diameter   
fast_d = 3.2   
   
# Total number of models which will be created in this script   
total_count = len(str_hs)*len(str_cs)*len(str_bs)*len(str_ts)*len(sk_ts)*len(sk_ys)   
print "Total model number: ", total_count   
   
# Function of flat metal panel compressive buckling coefficient   
def graph_Kc_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        * Kc is obtained from Figure C5.2 for flat panels     
        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
        if x < 0.76493:   
            y = -56.0565*x + 57.1876   
        elif (0.76493 <= x) and (x < 1.14273):   
            y = -551.9651*pow(x, 4) + 2079.3509*pow(x, 3) - 2870.2033*pow(x, 2) + 1706.6187*x- 353.426   
        elif (1.14273 <= x) and (x < 1.85911):   
            y = -6.1616*pow(x, 3) + 34.8139*pow(x, 2) - 65.0106*x + 48.5687   
        elif (1.85911 <= x) and (x < 2.3433):   
            y = -15.9873*pow(x, 4) + 127.1208*pow(x, 3) - 373.7913*pow(x, 2) + 479.4634*x - 216.8528   
        elif (2.3433 <= x) and (x < 3.3987):   
            y = 13.6994*pow(x, 5) - 198.9195*pow(x, 4) + 1149.7887*pow(x, 3) - 3306.5735*pow(x, 2) + 4730.1
783*x - 2684.554   
        elif (3.3987 <= x) and (x < 4.15706):   
            y = 10.807*pow(x, 4) - 163.8182*pow(x, 3) + 929.1075*pow(x, 2) - 2336.7822*x + 2206.491   
        elif (4.15706 <= x) and (x <= 5.0142):   
            y = 1.9679*pow(x, 3) - 27.1906*pow(x, 2) + 124.8755*x - 183.3227   
        else:   
            y = 7.2802   
        return y   
    elif bc=='ss':   
        if x < 1.33459:   
            y = 116.1071*pow(x, 4) - 512.1754*pow(x, 3) + 847.8765*pow(x, 2) - 628.8651*x + 183.9239   
        elif (1.33459 <= x) and (x < 1.68636):   
            y = 2.5557*pow(x, 2) - 8.0374*x + 11.8528   
        elif (1.68636 <= x) and (x < 2.76429):   
            y = 12.4466*pow(x, 6) - 166.4906*pow(x, 5) + 921.7798*pow(x, 4) - 2704.0495*pow(x, 3) + 4434.97
41*pow(x, 2) - 3860.3466*x + 1400.7332   
        elif (2.76429 <= x) and (x <= 4.95153):   
            y = -
0.2663*pow(x, 5) + 5.2351*pow(x, 4) - 40.8202*pow(x, 3) + 157.8018*pow(x, 2) - 302.6058*x + 234.8432   
        else:   
            y = 4.2274   
        return y   
           
# Function of flat metal panel shear buckling coefficient   
def graph_Ks_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        Ks is obtained from Figure C5.11 for flat panels  
        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
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        if x < 1.39646:   
            y = 617.3722*pow(x, 4) - 3049.2054*pow(x, 3) + 5640.7618*pow(x, 2) - 4637.94*x + 1444.5082   
        elif (1.39646 <= x) and (x < 2.79647):   
            y = -0.2876*pow(x, 3) + 3.08*pow(x, 2) - 10.558*x + 21.4866   
        elif (2.79647 <= x) and (x < 5.0):   
            y = 0.2326*pow(x, 5) - 4.577*pow(x, 4) + 35.6865*pow(x, 3) - 137.6532*pow(x, 2) + 262.3421*x - 18
7.6865   
        else:   
            y = 9.6226   
        return y   
    elif bc=='ss':   
        if x < 1.79125:   
            y = -
23.165*pow(x, 6) + 154.3269*pow(x, 5) - 380.7138*pow(x, 4) + 376.5476*pow(x, 3) - 1.3356*pow(x, 2) - 2
51.0012*x + 135.069   
        elif (x <= 1.79125) and (x < 2.57994):   
            y = 0.1192*pow(x, 3) - 0.7131*pow(x, 2) + 0.5982*x + 7.1608   
        elif (x <= 2.57994) and (x < 3.70882):   
            y = 0.075*pow(x, 3) - 0.3925*pow(x, 2) + 0.0756*x + 7.135   
        elif (x <= 3.70882) and (x < 5.0):   
            y = -0.2125*x + 6.6311    
        else:   
            y = 5.5684    
        return y   
           
# Function of plasticity correction   
def get_plastic_stress(nc,Fscr_el,Ec,Fcy):   
    """  
        See HSB 52100-01 plasticity correction  
    """   
    return Fcr   
   
   
for sk_y_key,sk_y  in enumerate(sk_ys):   
    for sk_t_key,sk_t  in enumerate(sk_ts):   
        sk_ratio = sk_x / (sk_y/3.0)   
        Ireqs =[]   
        K_values =[]   
   
        # Unloaded edge boundary conditions (clamped or simply supported)   
        for bc in ["cl","ss"]:   
            Ks       = graph_Ks_flat(sk_ratio,bc)   
            Kc       = graph_Kc_flat(sk_ratio,bc)   
            K_value = [Ks,Kc]   
            K_values.append(K_value)   
            Fscr_el  = Ks*math.pi**2.0*Ec/(12.0*(1.0-poisson**2.0))*(sk_t/(sk_y/3.0))**2.0   
            Fscr     = get_plastic_stress(nc,Fscr_el,Ec,Fcy)   
            Ireq = (2.29*sk_x/sk_t)*(Fscr*sk_t*((sk_y/3.0)**2.0)/(33.0*E))**(4.0/3.0)   
            Ireqs.append(Ireq)   
        Ireq_moi=min(Ireqs)   
   
        # Results of panels with classical boundary conditions and minimum required inertia are written into t
he result file   
        results.write("%-15s %6.2f %-
15s %6.2f" %("Skin length y: ",(sk_y/3.0)," Skin thickness: ",sk_t)+"\n")     
        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Min. stiffener inertia" ,"For clamped: ",Ireqs[0]," For simply supported",Ireqs[1])+"\n")   
        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Shear buckling coeffient" ,"For clamped: ",K_values[0][0]," For simply supported",K_values[
1][0])+"\n")   
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        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Compressive buckling coeffient" ,"For clamped: ",K_values[0][1]," For simply supported",K_
values[1][1])+"\n"+"\n")   
   
        for str_h_key,str_h in enumerate(str_hs):   
            for str_c_key,str_c in enumerate(str_cs):   
                for str_b_key,str_b in enumerate(str_bs):   
                    for str_t_key,str_t in enumerate(str_ts):   
                        # Inertia and area of stringer is calculated   
                        r1_dx = str_b                          
                        r1_dy = str_t                  
                        r2_dx = str_t                  
                        r2_dy = str_h-2.0*str_t                    
                        r3_dx = str_c                  
                        r3_dy = str_t                  
                        r1_A  = r1_dx * r1_dy                          
                        r2_A  = r2_dx * r2_dy                          
                        r3_A  = r3_dx * r3_dy                          
                        r1_Ix = (1.0 / 12.0) * r1_dx * r1_dy**3.0                          
                        r2_Ix = (1.0 / 12.0) * r2_dx * r2_dy**3.0                          
                        r3_Ix = (1.0 / 12.0) * r3_dx * r3_dy**3.0                          
                        parts = [   
                            {'dx_cg': max(r1_dx-
r2_dx/2.0,r3_dx/2.0) + r2_dx/2.0 - r1_dx/2.0, 'dy_cg': r1_dy / 2.0,                 'A':r1_A, 'Ix':r1_Ix},   
                            {'dx_cg': max(r1_dx-
r2_dx/2.0,r3_dx/2.0),                         'dy_cg': r1_dy + r2_dy / 2.0,         'A':r2_A, 'Ix':r2_Ix},   
                            {'dx_cg': max(r1_dx-
r2_dx/2.0,r3_dx/2.0),                         'dy_cg': r1_dy + r2_dy + r3_dy / 2.0, 'A':r3_A, 'Ix':r3_Ix},   
                        ]                          
                        Ad_t = 0.0                     
                        A_t  = 0.0                     
                        for part in parts:   
                            Ad_t += part['A'] * part['dy_cg']   
                            A_t  += part['A']   
                        cg_y = Ad_t / A_t   
                        Istr = 0.0   
                        for part in parts:   
                            Istr += (part['Ix'] + part['A'] * part['dy_cg']** 2.0 - cg_y * part['A'] * part['dy_cg'])   
   
                        # Geometric properties of stringer are written into the result file    
                        results.write("%-25s %6.2f %-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("     Stringer heigth: ",str_h, " Stringer c width: ",str_c, " Stringer b width: ",str_b," Stringer thic
kness: ",str_t)+"\n")   
                        results.write("%-25s %6.2f" %("     Stiffener inertia: ",Istr)+"\n"+"\n")   
                           
                        # To satisfy the stiffened panel condition, stringer inertia is checked.   
                        if Ireq_moi<Istr:   
                            # Creating model of stiffened panel buckling (spb)   
                            model_name = "spb_J_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk_t
_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
   
                            # Creating material   
                            mn.Material(name='Al_2024_T3_Sheet')   
                            mn.materials['Al_2024_T3_Sheet'].Elastic(table=((Ec, poisson), ))   
                            mn.materials['Al_2024_T3_Sheet'].Density(table=((density, ), ))   
   
                            # Creating sketch of skin   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))   
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                            # Creating part of skin   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating partition   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            t = p_sk.MakeSketchTransform(sketchPlane=f_sk[0], sketchUpEdge=e_sk[2],   
                                sketchPlaneSide=SIDE1, origin=(sk_x*0.5, sk_y*0.5, 0.0))   
                            s = mn.ConstrainedSketch(name='__profile__',    
                                sheetSize=1272.79, gridSpacing=31.81, transform=t)   
                            g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=SUPERIMPOSE)   
                            p_sk.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)   
                            s.Line(point1=(-sk_y/6.0, sk_x*0.5), point2=(-sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[6], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[6], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[5], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(0, sk_x*0.5), point2=(0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[7], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[7], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[6], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[7], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(sk_y/6.0, sk_x*0.5), point2=(sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[8], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[8], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[8], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[9], entity2=g[3], addUndoState=False)   
                            pickedFaces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.PartitionFaceBySketch(sketchUpEdge=e_sk[2], faces=pickedFaces, sketch=s)   
                            s.unsetPrimaryObject()   
                            del mn.sketches['__profile__']   
   
                            # Creating skin section    
                            mn.HomogeneousShellSection(name='Skin_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=sk_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning skin section   
                            faces = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            region = p_sk.Set(faces=faces, name='Skin_faces_set')   
                            p_sk.SectionAssignment(region=region, sectionName='Skin_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of skin   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=5.0)   
   
                            # Generate mesh of skin   
                            p_sk.generateMesh()   
   
                            # Creating sketch of stringer   
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                            s = mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=STANDALONE)   
                            s.Line(point1=(-str_c*0.5, 0.0), point2=(str_c*0.5, 0.0))   
                            s.HorizontalConstraint(entity=g[2], addUndoState=False)   
                            s.Line(point1=(0.0, 0.0), point2=(0.0, str_h))   
                            s.VerticalConstraint(entity=g[3], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[2], entity2=g[3], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[2], entity2=g[2], addUndoState=False)   
                            s.EqualDistanceConstraint(entity1=v[0], entity2=v[1], midpoint=v[2], addUndoState=False) 
  
                            s.Line(point1=(0.0, str_h), point2=(str_b, str_h))   
                            s.HorizontalConstraint(entity=g[4], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[3], entity2=g[4], addUndoState=False)   
                   
                            # Creating part of stringer   
                            mn.Part(name='Stringer', dimensionality=THREE_D,type=DEFORMABLE_BODY)   
                            mn.parts['Stringer'].BaseShellExtrude(sketch=s, depth=str_l)   
                            del mn.sketches['__profile__']   
   
                            # Creating stringer section   
                            mn.HomogeneousShellSection(name='Stringer_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=str_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning stringer section   
                            p_str = mn.parts['Stringer']   
                            f_str = p_str.faces   
                            faces = f_str.getSequenceFromMask(mask=('[#f ]', ), )   
                            region = p_str.Set(faces=faces, name='Stringer_faces_set')   
                            p_str.SectionAssignment(region=region, sectionName='Stringer_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of stringer   
                            pickedRegions = f_str.getSequenceFromMask(mask=('[#f ]', ), )   
                            p_str.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of stringer   
                            p_str.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=2.0)   
   
                            # Generate mesh of stringer   
                            p_str.generateMesh()   
   
                            # Creating buckling step   
                            mn.BuckleStep(name='Buckle-
Step', previous='Initial', numEigen=3, vectors=28, maxIterations=3000)   
   
                            # Creating assembly instances   
                            a_ss = mn.rootAssembly   
                            a_ss.DatumCsysByDefault(CARTESIAN)   
                            a_ss.Instance(dependent=ON, name='Skin-1', part=p_sk)   
                               
                            # Creating Stringer 1   
                            mn.rootAssembly.DatumCsysByDefault(CARTESIAN)   
                            mn.rootAssembly.Instance(dependent=ON, name='Stringer-1', part=p_str)   
   
                            # Stringer 1 place is decided   
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                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0)       
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0), angle=90.0)   
                            a_ss.translate(instanceList=('Stringer-1', ), vector=(0.0, sk_y/3.0, (sk_t+str_t)*0.5))   
   
                            # Creating Stringer 2   
                            a_ss.LinearInstancePattern(instanceList=('Stringer-
1', ), direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0), number1=1, number2=2, spacing1=str_l, spacing2
=sk_y/3.0)   
                            a_ss.features.changeKey(fromName='Stringer-1-lin-1-2', toName='Stringer-2')   
   
                            # Creating Connector section as beam   
                            mn.ConnectorSection(name='Fastener_Con_Sec', assembledType=BEAM)   
   
                            # Creating Fasteners   
                            const_attach = [['[#20 ]',4,1,'1'],['[#4 ]',2,0,'2']]   
                            for key in range(2):   
                                e_str = a_ss.instances['Stringer-'+str(key+1)].edges   
                                v_str = a_ss.instances['Stringer-'+str(key+1)].vertices   
                                f_str = a_ss.instances['Stringer-'+str(key+1)].faces       
                                for const in const_attach:   
                                    # Creating attachment points   
                                    edges1 = e_str.getSequenceFromMask(mask=(const[0], ), )   
                                    geomEdges=edges1   
                                    a_ss.AttachmentPointsOffsetFromEdges(edges=geomEdges, startPoint=v_str[const[1]],    
                                        referenceFace=f_str[const[2]], name='Str'+str(key+1)+'-Attachment Points-
'+const[3],    
                                        pointCreationMethod=BY_NUMBER, offsetFromStartPoint=2.0*fast_d+1.0, numberOfP
oints=27,    
                                        offsetFromEndPoint=2.0*fast_d+1.0, numberOfRows=1, offsetFromEdges= str_c*0.25, 
   
                                        patterningMethod=PATTERN_ORTHOGONALLY, setName='Str'+str(key+1)+'-
Attachment Points-Set '+const[3])   
   
                                    # Assigning a section to fastener   
                                    region=a_ss.sets['Str'+str(key+1)+'-Attachment Points-Set '+const[3]]   
                                    a_ss.engineeringFeatures.PointFastener( name='Str'+str(key+1)+'-Fasteners-
'+const[3], region=region,    
                                        sectionName='Fastener_Con_Sec', directionVector=(v_str[7], a_ss.instances['Stringer-
'+str(key+1)].   
                                        InterestingPoint(edge=e_str[8], rule=MIDDLE)), physicalRadius=fast_d*0.5, additional
Mass=0.0001)   
   
                            # Creating boundary conditions at initial step   
                            v_sk = a_ss.instances['Skin-1'].vertices   
                            e_sk = a_ss.instances['Skin-1'].edges   
   
                            #Creating boundary conditions sets   
                            verts1 = v_sk.getSequenceFromMask(mask=('[#200 ]', ), )   
                            a_ss.Set(vertices=verts1, name='Set_mid_point')   
                            dict_bc = {'[#44 ]':'side_edges','[#c28 ]':'load_edge','[#1282 ]':'reaction_edge',}   
                            for key_bc,str_bc in dict_bc.items():   
                                edges1 = e_sk.getSequenceFromMask(mask=(key_bc, ), )   
                                a_ss.Set(edges=edges1, name='Set_'+str_bc)   
   
                            # Assigning boundary conditions on sets   
                            region = a_ss.sets['Set_mid_point']   
                            mn.DisplacementBC(name='BC_mid_point',    
                                createStepName='Initial', region=region, u1=UNSET, u2=SET, u3=UNSET,    
                                ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
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                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_side_edges']   
                            mn.DisplacementBC(name='BC_side_edges',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=SET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_load_edge']   
                            mn.DisplacementBC(name='BC_load_edge',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_reaction_edge']   
                            mn.DisplacementBC(name='BC_reaction_edge',    
                                createStepName='Initial', region=region, u1=SET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                               
                            # Creating  shell edge load   
                            loaded_edges = e_sk.getSequenceFromMask(mask=('[#c28 ]', ), )   
                            region = a_ss.Surface(side1Edges=loaded_edges, name='Loaded Edge Surface')   
                            mn.ShellEdgeLoad(name='Shell Load',    
                                createStepName='Buckle-Step', region=region, magnitude=Edge_load,    
                                distributionType=UNIFORM, field='', localCsys=None)   
   
                            # Creating job   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=99,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,    
                                numGPUs=0)   
results.close()   
del mdb.models['Model-1']   
   
# Saving the model   
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

• Example code to process finite element results for skin-stringer model with J 

stringer section 

# Importing necessary modules   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
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from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Defining maximum number of submittions can be given at the same time   
max_sub = 5   
ini_sub = 0   
   
# Paths   
save_path   = 'C:/Users/……………………/Model/Model_J/model_j'   
model_path = r'C:/Users/Enes/Desktop/AIAC/Versions/V7/Model/Model_J/'   
   
# Initialize result files   
results       = open(r"C:\Users\……………………\Results\output_J.txt","w+")   
results_excel = open(r"C:\Users\……………………\Results\excel_output_J.txt","w+")   
   
# Given Edge Load (N/mm)   
Edge_load = 1.0    
   
# Material properties (Al 2024 T3 Sheet thk: 0.23-3.25 mm)   
Ec = 73774.0   
E  = 72395.0   
density = 2768.0   
poisson = 0.33   
Fcy = 269.0   
nc  = 15.0   
   
# Skin geometry   
sk_x  = 450.0   
sk_ys = [150.0*3.0,225.0*3.0,300.0*3.0,375.0*3.0,450.0*3.0]   
sk_ts = [0.813,1.016,1.27]   
   
# Stringer "J" geometry   
str_l  = 450.0   
str_ts = [0.813,1.016,1.27]   
str_hs = [10.0,17.0,24.0,30.0]   
str_cs = [10.0,14.0,18.0,22.0]   
str_bs = [10.0,14.0,18.0]   
   
# Fasteners' diameter   
fast_d = 3.2   
   
# Initialize output file   
results.write("%-20s %6.0f %-20s %6.2f %-
20s %6.2f" %("Material Ec: ",Ec," Material poisson: ",poisson," Material density: ",density)+"\n")   
results.write("%-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("Skin length x: ",sk_x," Stringer length: ",str_l," Fastener diameter: ",fast_d)+"\n"+"\n")   
   
# Total number of models which will be created in this script   
total_count = len(str_hs)*len(str_cs)*len(str_bs)*len(str_ts)*len(sk_ts)*len(sk_ys)   
print "Total model number: ", total_count   
count=1   
   
# Initialize dictionary for excel output file   
excel_dic = {"Skin_length_y":[],"Skin_thickness":[],"Stringer_heigth":[],"Stringer_c_width":[],"Stringer_b_wid
th":[],"Stringer_thickness":[],"kc":[]}   
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# Function of flat metal panel compressive buckling coefficient   
def graph_Kc_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        Kc is obtained from Figure C5.2 for flat panels  
        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
        if x < 0.76493:   
            y = -56.0565*x + 57.1876   
        elif (0.76493 <= x) and (x < 1.14273):   
            y = -551.9651*pow(x, 4) + 2079.3509*pow(x, 3) - 2870.2033*pow(x, 2) + 1706.6187*x- 353.426   
        elif (1.14273 <= x) and (x < 1.85911):   
            y = -6.1616*pow(x, 3) + 34.8139*pow(x, 2) - 65.0106*x + 48.5687   
        elif (1.85911 <= x) and (x < 2.3433):   
            y = -15.9873*pow(x, 4) + 127.1208*pow(x, 3) - 373.7913*pow(x, 2) + 479.4634*x - 216.8528   
        elif (2.3433 <= x) and (x < 3.3987):   
            y = 13.6994*pow(x, 5) - 198.9195*pow(x, 4) + 1149.7887*pow(x, 3) - 3306.5735*pow(x, 2) + 4730.1
783*x - 2684.554   
        elif (3.3987 <= x) and (x < 4.15706):   
            y = 10.807*pow(x, 4) - 163.8182*pow(x, 3) + 929.1075*pow(x, 2) - 2336.7822*x + 2206.491   
        elif (4.15706 <= x) and (x <= 5.0142):   
            y = 1.9679*pow(x, 3) - 27.1906*pow(x, 2) + 124.8755*x - 183.3227   
        else:   
            y = 7.2802   
        return y   
    elif bc=='ss':   
        if x < 1.33459:   
            y = 116.1071*pow(x, 4) - 512.1754*pow(x, 3) + 847.8765*pow(x, 2) - 628.8651*x + 183.9239   
        elif (1.33459 <= x) and (x < 1.68636):   
            y = 2.5557*pow(x, 2) - 8.0374*x + 11.8528   
        elif (1.68636 <= x) and (x < 2.76429):   
            y = 12.4466*pow(x, 6) - 166.4906*pow(x, 5) + 921.7798*pow(x, 4) - 2704.0495*pow(x, 3) + 4434.97
41*pow(x, 2) - 3860.3466*x + 1400.7332   
        elif (2.76429 <= x) and (x <= 4.95153):   
            y = -
0.2663*pow(x, 5) + 5.2351*pow(x, 4) - 40.8202*pow(x, 3) + 157.8018*pow(x, 2) - 302.6058*x + 234.8432   
        else:   
            y = 4.2274   
        return y   
   
for sk_y_key,sk_y  in enumerate(sk_ys):   
    for sk_t_key,sk_t  in enumerate(sk_ts):   
        for str_h_key,str_h in enumerate(str_hs):   
            for str_c_key,str_c in enumerate(str_cs):   
                for str_b_key,str_b in enumerate(str_bs):   
                    for str_t_key,str_t in enumerate(str_ts):   
                        # Job name is described   
                        job_name = "job_spb_J_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk_t_
key)+str(sk_y_key)   
   
                        # Checked whether there is such a job name   
                        try:   
                            start_time = time.time()   
                            print "Model number: ",count   
                            job_model = mdb.jobs[job_name]   
                               
                            # Checked to see if the job has already been submitted   
                            try:   
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                                dir_logfile = model_path + job_name+".log"   
                                logfile = open(dir_logfile)   
                                comp = False   
                                   
                                # Checked to see that the job is completed   
                                for line in logfile:   
                                    if "Abaqus JOB "+job_name+" COMPLETED" in line:   
                                        print " completed"   
                                        comp = True   
                                logfile.close()   
                                   
                                # Submittion check   
                                if comp==False:   
                                    # Submit the job   
                                    job_model.submit(consistencyChecking=OFF)   
                                    ini_sub +=1   
                                       
                                    # Multi-submittion is permitted for this code   
                                    # Maximum number of submittion is checked   
                                    if ini_sub >= max_sub:   
                                        job_model.waitForCompletion()   
                                        ini_sub = 0   
                                        end_time = time.time()   
                                else:   
                                    end_time = time.time()   
                            except:   
                                # Submit the job   
                                job_model.submit(consistencyChecking=OFF)   
                                ini_sub +=1   
   
                                # Multi-submittion is permitted for this code   
                                # Maximum number of submittion is checked   
                                if ini_sub >= max_sub:   
                                    job_model.waitForCompletion()   
                                    ini_sub = 0   
                                    end_time = time.time()   
   
                            # Estimated time is calculated   
                            if count%(max_sub*2) == 0:   
                                em=divmod((total_count-count)*(end_time-start_time)/max_sub,60)   
                                en=divmod(em[0],60)   
                                print "Estimated remaning time: " ,en[0],en[1],em[1]   
                            count+=1   
                        except:   
                            None   
   
for sk_y_key,sk_y  in enumerate(sk_ys):   
    sk_ratio = sk_x / (sk_y/3.0)   
    kc_bruhn =[]   
    # Literature graphs are used to get comp. buckling coeffients with classical boundary condition assumpti
on   
    # Unloaded edge boundary conditions (clamped or simply supported)   
    for bc in ["cl","ss"]:   
        kc_bruhn.append(graph_Kc_flat(sk_ratio,bc))   
    for sk_t_key,sk_t  in enumerate(sk_ts):   
        for str_h_key,str_h in enumerate(str_hs):   
            for str_c_key,str_c in enumerate(str_cs):   
                for str_b_key,str_b in enumerate(str_bs):   
                    for str_t_key,str_t in enumerate(str_ts):   
                        # Defining the job name   
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                        job_name = "job_spb_J_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk_t_
key)+str(sk_y_key)   
   
                        # Obtain the eigenvalue   
                        try:   
                            dir_datfile = model_path + job_name+'.dat'   
                            wordlist = []   
                            starttorecord = False   
                            datfile = open(dir_datfile)   
                            for line in datfile:   
                                if " MODE NO      EIGENVALUE" in line:   
                                    starttorecord = True   
                                for word in line.split():   
                                    if word=='THE':   
                                        starttorecord = False   
                                    if starttorecord:   
                                        wordlist.append(word)   
                            if   float(wordlist[4])>0.0:   
                                eigenvalue = float(wordlist[4])   
                            elif float(wordlist[6])>0.0:   
                                eigenvalue = float(wordlist[6])   
                            elif float(wordlist[8])>0.0:   
                                eigenvalue = float(wordlist[8])   
                            else:   
                                eigenvalue = 0.0   
                            datfile.close()   
                            Fccr=eigenvalue*Edge_load/sk_t   
                               
                            # Compressive buckling coeffient is calculated using eigenvalue obtained from FEA   
                            kc=Fccr*(sk_y/3.0)**2.0*12.0*(1.0-poisson**2.0)/(Ec*(math.pi*sk_t)**2.0)   
                            kc_star=kc*math.pi**2.0/(12.0*(1.0-poisson**2.0))   
   
                            # Write the excel data   
                            excel_dic["Skin_length_y"].append(sk_y/3.0)   
                            excel_dic["Skin_thickness"].append(sk_t)   
                            excel_dic["Stringer_heigth"].append(str_h)   
                            excel_dic["Stringer_c_width"].append(str_c)   
                            excel_dic["Stringer_b_width"].append(str_b)   
                            excel_dic["Stringer_thickness"].append(str_t)   
                            excel_dic["kc"].append(kc)   
   
                            # Write the input data   
                            results.write("%-25s %6.2f %-20s %6.2f %-20s %6.2f %-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("     Skin length y: ",(sk_y/3.0)," Skin thickness: ",sk_t," Stringer heigth: ",str_h," Stringer c wid
th: ",str_c," Stringer b width: ",str_b," Stringer thickness: ",str_t)+"\n")   
                               
                            # Write the output data   
                            results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("     Eigenvalue: ",eigenvalue," Fccr: ",Fccr," kc_star: ",kc_star)+"\n")   
                            results.write("%-25s %6.3f %-20s %6.3f %-
20s %6.3f" %("     kc: ",kc," Bruhn kc(clamped): ",kc_bruhn[0]," Bruhn kc(ss): ",kc_bruhn[1])+"\n"+"\n")   
                        except:   
                            None   
# Excel output results are written into the output file   
for excel_key,excel_data in excel_dic.items():   
    results_excel.write("%-20s"%(excel_key))   
    for excel_var in excel_data:   
        results_excel.write("%8.2f"%(excel_var))   
    results_excel.write("\n")   
    if excel_key=="kc":   
        results_excel.write("\n")                      
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results.close()   
results_excel.close()   
   
# Saving the model   
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

F.3 ANN Matlab Script 

% Clearing the workspace and command window 
clc; clear all; close all; 
warning('off','MATLAB:xlswrite:AddSheet'); 
% Interval of ANN parameters which is tried to get max. performance in ANN. 
% Order T,Z,J 
% neurons = {[6],[6],[8]}; 
% ratios = {{[70,20,10]},{[90,5,5]},{[70,15,15]}}; 
types = ['T','Z','J']; 
neurons = {[10],[10],[10]}; 
ratios = {{[70,20,10],[70,15,15],[75,15,10]}, ... 
{[70,20,10],[70,15,15],[75,15,10]},... 
{[70,20,10],[70,15,15],[75,15,10]}}; 
trials = 10; 
t_n= length(neurons{1})*length(types)*length(ratios{1})*trials; 
t_n_disp = sprintf('Total number of iteration : %d',t_n); 
disp(t_n_disp) 
i_n=1; 
for ii=1:1:length(types); 
type=types(ii); 
str_type_disp = sprintf('Stringer type : %s',type); 
disp(str_type_disp) 
% Opening excel file to read ANN database inputs, additional ten sample 
% cases input and output values 
data = xlsread('ANN_abaqus.xlsx',strcat('Data_',type)); 
sample = xlsread('ANN_abaqus.xlsx',strcat('Sample_',type)); 
fem_output = xlsread('ANN_abaqus.xlsx',... 
strcat('Sample_Results_',type),'B1:K1'); 
% Input matrix is rearranged. 
num_data = size(data,1); 
for kk=3:1:num_data; 
input(kk-2,:)=data(kk,:); 
end 
target = data(1,:); 
for nn=1:1:length(neurons{ii}); 
neuron = neurons{ii}(nn); 
pre_rse = 1.0; 
for rr=1:1:length(ratios{ii}); 
ratio = ratios{ii}{rr}; 
for ss=1:1:trials; 
network = fitnet(neuron); 
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network.inputs{1}.processFcns = {'removeconstantrows',... 
'mapminmax'}; 
network.outputs{2}.processFcns = {'removeconstantrows',... 
'mapminmax'}; 
network.divideFcn = 'dividerand'; 
network.divideMode = 'sample'; 
% Configuring the ANN parameters to use in training itself 
network.divideParam.trainRatio = ratio(1)/100; 
network.divideParam.valRatio = ratio(2)/100; 
network.divideParam.testRatio = ratio(3)/100; 
network.trainFcn = 'trainlm'; 
network.performFcn = 'mse'; 
% Parameters can be changed after the training method 
% described ('trainlm') 
network.trainParam.max_fail = 500; 
network.trainParam.epochs = 1500; 
network.plotFcns = {'plotperform','plottrainstate',... 
'ploterrhist', 'plotregression','plotfit'}; 
[network,tr] = train(network,input,target); 
% ANN results, errors and performance values are stored. 
output = network(input); 
error = gsubtract(target,output); 
performance = perform (network,target,output); 
% Target input values are stored to calculate performances 
% of ANN. 
trainTargets = target .* tr.trainMask{1}; 
valTargets = target .* tr.valMask{1}; 
testTargets = target .* tr.testMask{1}; 
% ANN performances are calculated. 
trainPerformance = perform(network,trainTargets,output); 
valPerformance = perform(network,valTargets,output); 
testPerformance = perform(network,testTargets,output); 
% Root square error is calculated according to results of 
% additional ten FE analyses. 
sample_output = network(sample) ; 
square_error = 0; 
for ff=1:1:length(fem_output); 
square_error=square_error+(fem_output(ff)- ... 
sample_output(ff))^2; 
end 
rse = (square_error/length(fem_output))^0.5; 
% If the previous root square error is greater than current 
% calculated value, current ANN paramters are saved to 
% workspace. 
if pre_rse>rse; 
% Creating the performance plot and 
% then saving the plot 
plotperform(tr); 
saveas(gcf,strcat('perf_',type,'.png')); 
% Creating the training state values plot and 
% then saving the plot 
plottrainstate(tr) 
saveas(gcf,strcat('trn_',type,'.png')); 
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% Creating the regression plot and then saving the plot 
trOut = output(tr.trainInd); 
vOut = output(tr.valInd); 
tsOut = output(tr.testInd); 
trTarg = target(tr.trainInd); 
vTarg = target(tr.valInd); 
tsTarg = target(tr.testInd); 
plotregression(trTarg, trOut, 'Train', vTarg, vOut, ... 
'Validation', tsTarg, tsOut, 'Testing',... 
target, output, 'All') 
saveas(gcf,strcat('regr_',type,'.png')); 
% Closing all figures 
close all; 
% Saving results into the workspace 
eval([strcat('data_',type) '=data;']); 
eval([strcat('sample_',type) '=sample;']); 
eval([strcat('input_',type) '=input;']); 
eval([strcat('target_',type) '=target;']); 
eval([strcat('neuron_',type) '=neuron;']); 
eval([strcat('ratio_',type) '=ratio;']); 
eval([strcat('network_',type) '=network;']); 
eval([strcat('tr_',type) '=tr;']); 
eval([strcat('output_',type) '=output;']); 
eval([strcat('error_',type) '=error;']); 
eval([strcat('performance_',type) '=performance;']); 
eval([strcat('trainTargets_',type) '=trainTargets;']); 
eval([strcat('valTargets_',type) '=valTargets;']); 
eval([strcat('testTargets_',type) '=testTargets;']); 
eval([strcat('trainPerformance_',type)... 
'=trainPerformance;']); 
eval([strcat('valPerformance_',type)... 
'=valPerformance;']); 
eval([strcat('testPerformance_',type)... 
'=testPerformance;']); 
eval([strcat('sample_output_',type)... 
'=sample_output;']) 
eval([strcat('fem_output_',type)... 
'=fem_output;']) 
pre_rse=rse; 
end 
clear network tr output error performance trainTargets ... 
valTargets testTargets rse trainPerformance... 
valPerformance testPerformance sample_output... 
square_error ff 
r_n = t_n-i_n; 
r_n_disp = sprintf('Remaining number of iteration : %d',r_n); 
disp(r_n_disp) 
i_n = i_n+1; 
end 
end 
clear ratio neuron pre_rse pre_count ss rr 
end 
clear data sample input target num_data fem_output nn kk 
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% Final reslts of additional ten analyses are written into the excel 
% file. 
sample_output_tmp = eval(strcat('sample_output_',type)); 
for ee=1:1:length(sample_output_tmp); 
range=sprintf('%c','A'+ee,'3'); 
xlswrite('ANN_abaqus.xlsx',sample_output_tmp(ee),... 
strcat('Sample_Results_',type), range); 
end 
clear range sample_output_tmp ee type 
end 
clear ii i_n r_n t_n 
% Saving the ANN workspace. 
save ANN_workspace.mat; 
% Opening the excel file. 
winopen('ANN_abaqus.xlsx'); 
disp('Calculation is over'); 

F.4 Metal Stiffened Panel Post-Buckling Python Scripts 

• Example code to construct the skin-stringer model with I stringer section  

# Importing necessary modules   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Paths   
save_path='C:/Users/………………………./Model/Model_I/v6_i'   
   
# Initialize result file   
results = open(r"C:\Users\......................\Results\Model_I\output_I_min_inertia.txt","w+")   
   
# Given displacement load (mm)   
Disp_load    = -2.0   
   
# Element size of parts (mm)   
ele_size_sk  = 5.0   
ele_size_str = 2.0   
   
# Material properties (Al 2024 T3 Sheet thk: 0.23-3.25 mm)   
Ec = 73774.0   
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E  = 72395.0   
density = 2768.0   
poisson = 0.33   
Fcy = 269.0   
nc  = 15.0   
   
# Skin geometry   
sk_x  = 450.0   
sk_ys = [150.0*3.0]   
sk_ts = [0.813]   
   
# Stringer "I" geometry   
str_l  = 450.0   
str_ts = [1.016]   
str_hs = [25.0]   
str_cs = [20.0]   
str_bs = [15.0]   
   
# Fasteners' diameter   
fast_d = 3.2   
   
# Total number of models which will be created in this script   
total_count = 4*len(str_hs)*len(str_cs)*len(str_bs)*len(str_ts)*len(sk_ts)*len(sk_ys)   
print "Total model number: ", total_count   
   
# Function of flat metal panel compressive buckling coefficient   
def graph_Kc_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        Kc is obtained from Figure C5.2 for flat panels   
        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
        if x < 0.76493:   
            y = -56.0565*x + 57.1876   
        elif (0.76493 <= x) and (x < 1.14273):   
            y = -551.9651*pow(x, 4) + 2079.3509*pow(x, 3) - 2870.2033*pow(x, 2) + 1706.6187*x- 353.426   
        elif (1.14273 <= x) and (x < 1.85911):   
            y = -6.1616*pow(x, 3) + 34.8139*pow(x, 2) - 65.0106*x + 48.5687   
        elif (1.85911 <= x) and (x < 2.3433):   
            y = -15.9873*pow(x, 4) + 127.1208*pow(x, 3) - 373.7913*pow(x, 2) + 479.4634*x - 216.8528   
        elif (2.3433 <= x) and (x < 3.3987):   
            y = 13.6994*pow(x, 5) - 198.9195*pow(x, 4) + 1149.7887*pow(x, 3) - 3306.5735*pow(x, 2) + 4730.1
783*x - 2684.554   
        elif (3.3987 <= x) and (x < 4.15706):   
            y = 10.807*pow(x, 4) - 163.8182*pow(x, 3) + 929.1075*pow(x, 2) - 2336.7822*x + 2206.491   
        elif (4.15706 <= x) and (x <= 5.0142):   
            y = 1.9679*pow(x, 3) - 27.1906*pow(x, 2) + 124.8755*x - 183.3227   
        else:   
            y = 7.2802   
        return y   
    elif bc=='ss':   
        if x < 1.33459:   
            y = 116.1071*pow(x, 4) - 512.1754*pow(x, 3) + 847.8765*pow(x, 2) - 628.8651*x + 183.9239   
        elif (1.33459 <= x) and (x < 1.68636):   
            y = 2.5557*pow(x, 2) - 8.0374*x + 11.8528   
        elif (1.68636 <= x) and (x < 2.76429):   
            y = 12.4466*pow(x, 6) - 166.4906*pow(x, 5) + 921.7798*pow(x, 4) - 2704.0495*pow(x, 3) + 4434.97
41*pow(x, 2) - 3860.3466*x + 1400.7332   
        elif (2.76429 <= x) and (x <= 4.95153):   
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            y = -
0.2663*pow(x, 5) + 5.2351*pow(x, 4) - 40.8202*pow(x, 3) + 157.8018*pow(x, 2) - 302.6058*x + 234.8432   
        else:   
            y = 4.2274   
        return y   
           
# Function of flat metal panel shear buckling coefficient   
def graph_Ks_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        Ks is obtained from Figure C5.11 for flat panels  
        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
        if x < 1.39646:   
            y = 617.3722*pow(x, 4) - 3049.2054*pow(x, 3) + 5640.7618*pow(x, 2) - 4637.94*x + 1444.5082   
        elif (1.39646 <= x) and (x < 2.79647):   
            y = -0.2876*pow(x, 3) + 3.08*pow(x, 2) - 10.558*x + 21.4866   
        elif (2.79647 <= x) and (x < 5.0):   
            y = 0.2326*pow(x, 5) - 4.577*pow(x, 4) + 35.6865*pow(x, 3) - 137.6532*pow(x, 2) + 262.3421*x - 18
7.6865   
        else:   
            y = 9.6226   
        return y   
    elif bc=='ss':   
        if x < 1.79125:   
            y = -
23.165*pow(x, 6) + 154.3269*pow(x, 5) - 380.7138*pow(x, 4) + 376.5476*pow(x, 3) - 1.3356*pow(x, 2) - 2
51.0012*x + 135.069   
        elif (x <= 1.79125) and (x < 2.57994):   
            y = 0.1192*pow(x, 3) - 0.7131*pow(x, 2) + 0.5982*x + 7.1608   
        elif (x <= 2.57994) and (x < 3.70882):   
            y = 0.075*pow(x, 3) - 0.3925*pow(x, 2) + 0.0756*x + 7.135   
        elif (x <= 3.70882) and (x < 5.0):   
            y = -0.2125*x + 6.6311    
        else:   
            y = 5.5684    
        return y   
   
# Function of plasticity correction   
def get_plastic_stress(nc,Fscr_el,Ec,Fcy):   
    """  
        See HSB 52100-01 plasticity correction  
    """   
    return Fcr   
   
for sk_y_key,sk_y  in enumerate(sk_ys):   
    for sk_t_key,sk_t  in enumerate(sk_ts):   
        sk_ratio = sk_x / (sk_y/3.0)   
        Ireqs =[]   
        K_values =[]   
           
        # Unloaded edge boundary conditions (clamped or simply supported)      
        for bc in ["cl","ss"]:   
            Ks      = graph_Ks_flat(sk_ratio,bc)   
            Kc      = graph_Kc_flat(sk_ratio,bc)   
            K_value = [Ks,Kc]   
            K_values.append(K_value)   
            Fscr_el  = Ks*math.pi**2.0*Ec/(12.0*(1.0-poisson**2.0))*(sk_t/(sk_y/3.0))**2.0   
            Fscr     = get_plastic_stress(nc,Fscr_el,Ec,Fcy)   



199 

            Ireq = (2.29*sk_x/sk_t)*(Fscr*sk_t*((sk_y/3.0)**2.0)/(33.0*E))**(4.0/3.0)   
            Ireqs.append(Ireq)   
        Ireq_moi=max(Ireqs)    
           
        # Results of panels with classical boundary conditions and minimum required inertia are written into t
he result file   
        results.write("%-15s %6.2f %-
15s %6.2f" %("Skin length y: ",(sk_y/3.0)," Skin thickness: ",sk_t)+"\n")     
        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Min. stiffener inertia" ,"For clamped: ",Ireqs[0]," For simply supported",Ireqs[1])+"\n")   
        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Shear buckling coeffient" ,"For clamped: ",K_values[0][0]," For simply supported",K_values[
1][0])+"\n")   
        results.write("%-30s %-15s %6.2f %-
30s %6.2f" %("Compressive buckling coeffient" ,"For clamped: ",K_values[0][1]," For simply supported",K_
values[1][1])+"\n"+"\n")   
           
        for str_h_key,str_h in enumerate(str_hs):   
            for str_c_key,str_c in enumerate(str_cs):   
                for str_b_key,str_b in enumerate(str_bs):   
                    for str_t_key,str_t in enumerate(str_ts):   
                        # Second moment of inertia and area of stringer are calculated   
                        r1_dx = str_b   
                        r1_dy = str_t   
                        r2_dx = str_t   
                        r2_dy = str_h-2.0*str_t   
                        r3_dx = str_c   
                        r3_dy = str_t   
                        r1_A  = r1_dx * r1_dy   
                        r2_A  = r2_dx * r2_dy   
                        r3_A  = r3_dx * r3_dy   
                        r1_Ix = (1.0 / 12.0) * r1_dx * r1_dy**3.0   
                        r2_Ix = (1.0 / 12.0) * r2_dx * r2_dy**3.0   
                        r3_Ix = (1.0 / 12.0) * r3_dx * r3_dy**3.0   
                        parts = [   
                            {'dx_cg': max(r1_dx,r3_dx) / 2.0, 'dy_cg': r1_dy / 2.0,                 'A':r1_A, 'Ix':r1_Ix},   
                            {'dx_cg': max(r1_dx,r3_dx) / 2.0, 'dy_cg': r1_dy + r2_dy / 2.0,         'A':r2_A, 'Ix':r2_Ix},   
                            {'dx_cg': max(r1_dx,r3_dx) / 2.0, 'dy_cg': r1_dy + r2_dy + r3_dy / 2.0, 'A':r3_A, 'Ix':r3_Ix},   
                        ]   
                        Ad_t = 0.0   
                        A_t  = 0.0   
                        for part in parts:   
                            Ad_t += part['A'] * part['dy_cg']   
                            A_t  += part['A']   
                        cg_y = Ad_t / A_t   
                        Istr = 0.0   
                        for part in parts:   
                            Istr += (part['Ix'] + part['A'] * part['dy_cg']** 2.0 - cg_y * part['A'] * part['dy_cg'])   
                           
                        # Geometric properties of stringer are written into the result file   
                        results.write("%-25s %6.2f %-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("     Stringer heigth: ",str_h, " Stringer c width: ",str_c, " Stringer b width: ",str_b," Stringer thic
kness: ",str_t)+"\n")   
                        results.write("%-25s %6.2f %-
25s %6.2f" %("     Stiffener inertia: ",Istr, "     Stiffener area:",A_t)+"\n"+"\n")   
   
                        # To satisfy the stiffened panel condition, stringer inertia is checked.   
                        if Ireq_moi<Istr:   
                            # Model 0   
                            # Creating model of panel buckling (pb)   
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                            model_name = "0_pb_I_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk_
t_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
   
                            # Creating material   
                            mn.Material(name='Al_2024_T3_Sheet')   
                            mn.materials['Al_2024_T3_Sheet'].Elastic(table=((Ec, poisson), ))   
                            mn.materials['Al_2024_T3_Sheet'].Density(table=((density, ), ))   
   
                            # Creating sketch of skin   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y/3.0))   
   
                            # Creating part of skin   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating skin section   
                            mn.HomogeneousShellSection(name='Skin_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=sk_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning skin section   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            faces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            region = p_sk.Set(faces=faces, name='Skin_faces_set')   
                            p_sk.SectionAssignment(region=region, sectionName='Skin_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',   
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of skin   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_sk)   
   
                            # Generate mesh of skin   
                            p_sk.generateMesh()   
   
                            # Creating Buckling step   
                            mn.BuckleStep(name='Buckle-
Step', previous='Initial', numEigen=3, vectors=28, maxIterations=3000)   
   
                            # Creating assembly instances   
                            a_ss = mn.rootAssembly   
                            a_ss.DatumCsysByDefault(CARTESIAN)   
                            a_ss.Instance(dependent=ON, name='Skin-1', part=p_sk)   
                                       
                            # Creating boundary conditions at initial step   
                            v_sk = a_ss.instances['Skin-1'].vertices   
                            e_sk = a_ss.instances['Skin-1'].edges   
                            n_sk = a_ss.instances['Skin-1'].nodes   
   
                            # Creating boundary conditions sets   
                            verts1 = v_sk.getSequenceFromMask(mask=('[#8 ]', ), )   
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                            verts2 = v_sk.getSequenceFromMask(mask=('[#2 ]', ), )   
                            a_ss.Set(vertices=verts1, name='Set_reaction_cor_point')   
                            a_ss.Set(vertices=verts2, name='Set_loaded_cor_point')   
                            dict_bc = {'[#5 ]':'side_edges','[#2 ]':'load_edge','[#8 ]':'reaction_edge',}   
                            for key_bc,str_bc in dict_bc.items():   
                                if str_bc=='reaction_edge':   
                                    mask_node_ids=(   
                                                '[#1 #0 #8000000 #0:2 #400000 #0:2 #20000',    
                                                ' #0:2 #1000 #0:2 #80 #0:2 #4 #0',    
                                                ' #20000000 #0:2 #1000000 #0:2 #80000 #0:2 #4000',    
                                                ' #0:2 #200 #0:2 #10 #0 #80000000 #0:2',    
                                                ' #4000000 #0:2 #200000 #0:2 #10000 #0:2 #800',    
                                                ' #0:2 #40 #0:2 #2 #0 #10000000 #0:2',    
                                                ' #800000 #0:2 #40000 #0:2 #2000 #0:2 #100',    
                                                ' #0:2 #8 #0 #40000000 #0:2 #2000000 #0:2',    
                                                ' #100000 #0:2 #8000 #0:2 #400 ]', )   
                                    nodes1 = n_sk.getSequenceFromMask(mask=mask_node_ids, )   
                                    a_ss.Set(nodes=nodes1, name='Set_'+str_bc)   
                                else:   
                                    edges1 = e_sk.getSequenceFromMask(mask=(key_bc, ), )   
                                    a_ss.Set(edges=edges1, name='Set_'+str_bc)   
   
                            # Assigning boundary conditions on sets   
                            region = a_ss.sets['Set_reaction_cor_point']   
                            mn.DisplacementBC(name='BC_reac_cor_point',    
                                createStepName='Initial', region=region, u1=UNSET, u2=SET, u3=UNSET,    
                                ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_side_edges']   
                            mn.DisplacementBC(name='BC_side_edges',   
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=SET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_load_edge']   
                            mn.DisplacementBC(name='BC_load_edge',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_reaction_edge']   
                            mn.DisplacementBC(name='BC_reaction_edge',    
                                createStepName='Initial', region=region, u1=SET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
   
                            # Modifiying boundary conditions at buckle step   
                            mn.boundaryConditions['BC_load_edge'].setValuesInStep(   
                                stepName='Buckle-Step', u1=Disp_load, buckleCase=PERTURBATION_AND_BUCKLING)   
   
                            # Creating job   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,    
                                numGPUs=0)   
   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
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                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
   
                            # Model 1   
                            # Creating model of stiffened panel buckling (spb)   
                            model_name = "1_spb_I_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk
_t_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
   
                            # Creating material   
                            mn.Material(name='Al_2024_T3_Sheet')   
                            mn.materials['Al_2024_T3_Sheet'].Elastic(table=((Ec, poisson), ))   
                            mn.materials['Al_2024_T3_Sheet'].Density(table=((density, ), ))   
   
                            # Creating sketch of skin   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))   
   
                            # Creating part of skin   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating partition   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            t = p_sk.MakeSketchTransform(sketchPlane=f_sk[0], sketchUpEdge=e_sk[2],    
                                sketchPlaneSide=SIDE1, origin=(sk_x*0.5, sk_y*0.5, 0.0))   
                            s = mn.ConstrainedSketch(name='__profile__',    
                                sheetSize=1272.79, gridSpacing=31.81, transform=t)   
                            g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=SUPERIMPOSE)   
                            p_sk.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)   
                            s.Line(point1=(-sk_y/6.0, sk_x*0.5), point2=(-sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[6], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[6], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[5], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(0, sk_x*0.5), point2=(0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[7], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[7], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[6], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[7], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(sk_y/6.0, sk_x*0.5), point2=(sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[8], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[8], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[8], entity2=g[5], addUndoState=False)   
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                            s.CoincidentConstraint(entity1=v[9], entity2=g[3], addUndoState=False)   
                            pickedFaces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.PartitionFaceBySketch(sketchUpEdge=e_sk[2], faces=pickedFaces, sketch=s)   
                            s.unsetPrimaryObject()   
                            del mn.sketches['__profile__']   
   
                            # Creating skin section   
                            mn.HomogeneousShellSection(name='Skin_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=sk_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning skin section   
                            faces = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            region = p_sk.Set(faces=faces, name='Skin_faces_set')   
                            p_sk.SectionAssignment(region=region, sectionName='Skin_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
                                   
                            # Mesh control of skin   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_sk)   
   
                            # Generate mesh of skin   
                            p_sk.generateMesh()   
   
                            # Creating sketch of stringer   
                            s = mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=STANDALONE)   
                            s.Line(point1=(-str_c*0.5, 0.0), point2=(str_c*0.5, 0.0))   
                            s.HorizontalConstraint(entity=g[2], addUndoState=False)   
                            s.Line(point1=(-str_b*0.5, str_h), point2=(str_b*0.5, str_h))   
                            s.HorizontalConstraint(entity=g[3], addUndoState=False)   
                            s.Line(point1=(0.0, 0.0), point2=(0.0, str_h))   
                            s.VerticalConstraint(entity=g[4], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[2], entity2=g[4], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[2], addUndoState=False)   
                            s.EqualDistanceConstraint(entity1=v[0], entity2=v[1], midpoint=v[4], addUndoState=False) 
  
                            s.EqualDistanceConstraint(entity1=v[2], entity2=v[3], midpoint=v[5], addUndoState=False) 
  
   
                            # Creating part of stringer   
                            mn.Part(name='Stringer', dimensionality=THREE_D,type=DEFORMABLE_BODY)   
                            mn.parts['Stringer'].BaseShellExtrude(sketch=s, depth=str_l)   
                            del mn.sketches['__profile__']   
   
                            # Creating stringer section   
                            mn.HomogeneousShellSection(name='Stringer_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=str_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning stringer section   
                            p_str = mn.parts['Stringer']   



204 

                            f_str = p_str.faces   
                            faces = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            region = p_str.Set(faces=faces, name='Stringer_faces_set')   
                            p_str.SectionAssignment(region=region, sectionName='Stringer_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of stringer   
                            pickedRegions = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            p_str.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of stringer   
                            p_str.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=2.0)   
                               
                            # Generate mesh of stringer   
                            p_str.generateMesh()   
   
                            # Creating buckling step   
                            mn.BuckleStep(name='Buckle-
Step', previous='Initial', numEigen=3, vectors=28, maxIterations=3000)   
                               
                            # Creating assembly instances   
                            a_ss = mn.rootAssembly   
                            a_ss.DatumCsysByDefault(CARTESIAN)   
                            a_ss.Instance(dependent=ON, name='Skin-1', part=p_sk)   
   
                            # Creating Stringer 1   
                            mn.rootAssembly.DatumCsysByDefault(CARTESIAN)   
                            mn.rootAssembly.Instance(dependent=ON, name='Stringer-1', part=p_str)   
                               
                            # Stringer 1 place is decided   
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0)   
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0), angle=90.0)   
                            a_ss.translate(instanceList=('Stringer-1', ), vector=(0.0, sk_y/3.0, (sk_t+str_t)*0.5))   
   
                            # Creating Stringer 2   
                            a_ss.LinearInstancePattern(instanceList=('Stringer-
1', ), direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0), number1=1, number2=2, spacing1=str_l, spacing2
=sk_y/3.0)   
                            a_ss.features.changeKey(fromName='Stringer-1-lin-1-2', toName='Stringer-2')   
                                           
                            # Creating connector section as beam   
                            mn.ConnectorSection(name='Fastener_Con_Sec', assembledType=BEAM)   
   
                            # Creating fasteners   
                            const_attach = [['[#20 ]',4,1,'1'],['[#4 ]',2,0,'2']]   
                            for key in range(2):   
                                e_str = a_ss.instances['Stringer-'+str(key+1)].edges   
                                v_str = a_ss.instances['Stringer-'+str(key+1)].vertices   
                                f_str = a_ss.instances['Stringer-'+str(key+1)].faces   
                                for const in const_attach:   
                                    # Creating attachment points   
                                    edges1 = e_str.getSequenceFromMask(mask=(const[0], ), )   
                                    geomEdges=edges1   
                                    a_ss.AttachmentPointsOffsetFromEdges(edges=geomEdges, startPoint=v_str[const[1]],    
                                        referenceFace=f_str[const[2]], name='Str'+str(key+1)+'-Attachment Points-
'+const[3],    
                                        pointCreationMethod=BY_NUMBER, offsetFromStartPoint=2.0*fast_d+1.0, numberOfP
oints=27,    
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                                        offsetFromEndPoint=2.0*fast_d+1.0, numberOfRows=1, offsetFromEdges= str_c*0.25, 
   
                                        patterningMethod=PATTERN_ORTHOGONALLY, setName='Str'+str(key+1)+'-
Attachment Points-Set '+const[3])   
   
                                    # Assigning a section to fastener   
                                    region=a_ss.sets['Str'+str(key+1)+'-Attachment Points-Set '+const[3]]   
                                    a_ss.engineeringFeatures.PointFastener( name='Str'+str(key+1)+'-Fasteners-
'+const[3], region=region,    
                                        sectionName='Fastener_Con_Sec', directionVector=(v_str[7], a_ss.instances['Stringer-
'+str(key+1)].   
                                        InterestingPoint(edge=e_str[8], rule=MIDDLE)), physicalRadius=fast_d*0.5, additional
Mass=0.0001)   
                           
                            # Creating boundary conditions at initial step   
                            v_sk = a_ss.instances['Skin-1'].vertices   
                            e_sk = a_ss.instances['Skin-1'].edges   
                            n_sk = a_ss.instances['Skin-1'].nodes   
   
                            # Creating boundary conditions sets   
                            verts1 = v_sk.getSequenceFromMask(mask=('[#200 ]', ), )   
                            verts2 = v_sk.getSequenceFromMask(mask=('[#100 ]', ), )   
                            a_ss.Set(vertices=verts1, name='Set_reaction_mid_point')   
                            a_ss.Set(vertices=verts2, name='Set_loaded_mid_point')   
                            dict_bc = {'[#44 ]':'side_edges','[#c28 ]':'load_edge','[#1282 ]':'reaction_edge',}   
                            for key_bc,str_bc in dict_bc.items():   
                                if str_bc=='reaction_edge':   
                                    nodes1 = n_sk.getSequenceFromMask(mask=('[#296 #0:2 #fffffff8 #0:10 #ffffffe0 #3 #0
', ' #f8000000 #1ff #7ffe0 ]', ), )   
                                    a_ss.Set(nodes=nodes1, name='Set_'+str_bc)   
                                else:   
                                    edges1 = e_sk.getSequenceFromMask(mask=(key_bc, ), )   
                                    a_ss.Set(edges=edges1, name='Set_'+str_bc)   
   
                            # Assigning boundary conditions on sets   
                            region = a_ss.sets['Set_reaction_mid_point']   
                            mn.DisplacementBC(name='BC_reac_mid_point',    
                                createStepName='Initial', region=region, u1=UNSET, u2=SET, u3=UNSET,    
                                ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_side_edges']   
                            mn.DisplacementBC(name='BC_side_edges',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=SET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_load_edge']   
                            mn.DisplacementBC(name='BC_load_edge',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_reaction_edge']   
                            mn.DisplacementBC(name='BC_reaction_edge',    
                                createStepName='Initial', region=region, u1=SET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
   
                            # Modifiying boundary conditions at buckle step   
                            mn.boundaryConditions['BC_load_edge'].setValuesInStep(   
                                stepName='Buckle-Step', u1=Disp_load, buckleCase=PERTURBATION_AND_BUCKLING)   
   
                            # Creating job   
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                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,    
                                numGPUs=0)   
                                   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
                               
                            # Model 2   
                            # Creating model of stiffened panel post-buckling (sppb)   
                            model_name = "2_sppb_I_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(s
k_t_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
                               
                            # Creating material   
                            mn.Material(name='Al_2024_T3_Sheet')   
                            mn.materials['Al_2024_T3_Sheet'].Elastic(table=((Ec, poisson), ))   
                            mn.materials['Al_2024_T3_Sheet'].Density(table=((density, ), ))   
                               
                            # Creating sketch of skin   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))   
   
                            # Creating part of skin   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating partition   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            t = p_sk.MakeSketchTransform(sketchPlane=f_sk[0], sketchUpEdge=e_sk[2],    
                            sketchPlaneSide=SIDE1, origin=(sk_x*0.5, sk_y*0.5, 0.0))   
                            s = mn.ConstrainedSketch(name='__profile__',    
                            sheetSize=1272.79, gridSpacing=31.81, transform=t)   
                            g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=SUPERIMPOSE)   
                            p_sk.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)   
                            s.Line(point1=(-sk_y/6.0, sk_x*0.5), point2=(-sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[6], addUndoState=False)   
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                            s.PerpendicularConstraint(entity1=g[5], entity2=g[6], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[5], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(0, sk_x*0.5), point2=(0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[7], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[7], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[6], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[7], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(sk_y/6.0, sk_x*0.5), point2=(sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[8], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[8], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[8], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[9], entity2=g[3], addUndoState=False)   
                            pickedFaces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.PartitionFaceBySketch(sketchUpEdge=e_sk[2], faces=pickedFaces, sketch=s)   
                            s.unsetPrimaryObject()   
                            del mn.sketches['__profile__']   
   
                            # Creating skin section    
                            mn.HomogeneousShellSection(name='Skin_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=sk_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning skin section   
                            faces = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            region = p_sk.Set(faces=faces, name='Skin_faces_set')   
                            p_sk.SectionAssignment(region=region, sectionName='Skin_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of skin   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_sk)   
   
                            # Generate mesh of skin   
                            p_sk.generateMesh()   
   
                            # Creating sketch of stringer   
                            s = mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=STANDALONE)   
                            s.Line(point1=(-str_c*0.5, 0.0), point2=(str_c*0.5, 0.0))   
                            s.HorizontalConstraint(entity=g[2], addUndoState=False)                        
                            s.Line(point1=(-str_b*0.5, str_h), point2=(str_b*0.5, str_h))   
                            s.HorizontalConstraint(entity=g[3], addUndoState=False)   
                            s.Line(point1=(0.0, 0.0), point2=(0.0, str_h))   
                            s.VerticalConstraint(entity=g[4], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[2], entity2=g[4], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[2], addUndoState=False)   
                            s.EqualDistanceConstraint(entity1=v[0], entity2=v[1], midpoint=v[4], addUndoState=False) 
  
                            s.EqualDistanceConstraint(entity1=v[2], entity2=v[3], midpoint=v[5], addUndoState=False) 
  
   
                            # Creating part of stringer   
                            mn.Part(name='Stringer', dimensionality=THREE_D,type=DEFORMABLE_BODY)   
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                            mn.parts['Stringer'].BaseShellExtrude(sketch=s, depth=str_l)   
                            del mn.sketches['__profile__']   
   
                            # Creating stringer section   
                            mn.HomogeneousShellSection(name='Stringer_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=str_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning stringer section   
                            p_str = mn.parts['Stringer']   
                            f_str = p_str.faces   
                            faces = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            region = p_str.Set(faces=faces, name='Stringer_faces_set')   
                            p_str.SectionAssignment(region=region, sectionName='Stringer_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of stringer   
                            pickedRegions = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            p_str.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of stringer   
                            p_str.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_str)   
   
                            # Generate mesh of stringer   
                            p_str.generateMesh()   
   
                            # Creating Post-Buckling step   
                            mn.StaticStep(name='Post-Buckle-Step', previous='Initial',                 
                                maxNumInc=150, stabilizationMagnitude=0.0002,                      
                                stabilizationMethod=DISSIPATED_ENERGY_FRACTION,                        
                                continueDampingFactors=False, adaptiveDampingRatio=0.05, initialInc=0.005,    
                                minInc=1e-05, maxInc=0.2, nlgeom=ON)   
   
                            # Creating assembly instances   
                            a_ss = mn.rootAssembly   
                            a_ss.DatumCsysByDefault(CARTESIAN)   
                            a_ss.Instance(dependent=ON, name='Skin-1', part=p_sk)   
   
                            # Creating Stringer 1   
                            mn.rootAssembly.DatumCsysByDefault(CARTESIAN)   
                            mn.rootAssembly.Instance(dependent=ON, name='Stringer-1', part=p_str)   
   
                            # Stringer 1 place is decided   
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0)   
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0), angle=90.0)   
                            a_ss.translate(instanceList=('Stringer-1', ), vector=(0.0, sk_y/3.0, (sk_t+str_t)*0.5))   
   
                            # Creating Stringer 2   
                            a_ss.LinearInstancePattern(instanceList=('Stringer-
1', ), direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0), number1=1, number2=2, spacing1=str_l, spacing2
=sk_y/3.0)   
                            a_ss.features.changeKey(fromName='Stringer-1-lin-1-2', toName='Stringer-2')   
   
                            # Creating connector section as beam   
                            mn.ConnectorSection(name='Fastener_Con_Sec', assembledType=BEAM)   
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                            # Creating fasteners   
                            const_attach = [['[#20 ]',4,1,'1'],['[#4 ]',2,0,'2']]   
                            for key in range(2):   
                                e_str = a_ss.instances['Stringer-'+str(key+1)].edges   
                                v_str = a_ss.instances['Stringer-'+str(key+1)].vertices   
                                f_str = a_ss.instances['Stringer-'+str(key+1)].faces   
                                for const in const_attach:   
                                    # Creating attachment points   
                                    edges1 = e_str.getSequenceFromMask(mask=(const[0], ), )   
                                    geomEdges=edges1   
                                    a_ss.AttachmentPointsOffsetFromEdges(edges=geomEdges, startPoint=v_str[const[1]],    
                                        referenceFace=f_str[const[2]], name='Str'+str(key+1)+'-Attachment Points-
'+const[3],    
                                        pointCreationMethod=BY_NUMBER, offsetFromStartPoint=2.0*fast_d+1.0, numberOfP
oints=27,    
                                        offsetFromEndPoint=2.0*fast_d+1.0, numberOfRows=1, offsetFromEdges= str_c*0.25, 
   
                                        patterningMethod=PATTERN_ORTHOGONALLY, setName='Str'+str(key+1)+'-
Attachment Points-Set '+const[3])   
   
                                    # Assigning a section to fastener   
                                    region=a_ss.sets['Str'+str(key+1)+'-Attachment Points-Set '+const[3]]   
                                    a_ss.engineeringFeatures.PointFastener( name='Str'+str(key+1)+'-Fasteners-
'+const[3], region=region,    
                                        sectionName='Fastener_Con_Sec', directionVector=(v_str[7], a_ss.instances['Stringer-
'+str(key+1)].   
                                        InterestingPoint(edge=e_str[8], rule=MIDDLE)), physicalRadius=fast_d*0.5, additional
Mass=0.0001)   
   
                            # Creating boundary conditions at initial step   
                            v_sk = a_ss.instances['Skin-1'].vertices   
                            e_sk = a_ss.instances['Skin-1'].edges   
                            n_sk = a_ss.instances['Skin-1'].nodes   
   
                            # Creating boundary conditions sets   
                            verts1 = v_sk.getSequenceFromMask(mask=('[#200 ]', ), )   
                            verts2 = v_sk.getSequenceFromMask(mask=('[#100 ]', ), )   
                            a_ss.Set(vertices=verts1, name='Set_reaction_mid_point')   
                            a_ss.Set(vertices=verts2, name='Set_loaded_mid_point')   
                            dict_bc = {'[#44 ]':'side_edges','[#c28 ]':'load_edge','[#1282 ]':'reaction_edge',}   
                            for key_bc,str_bc in dict_bc.items():   
                                if str_bc=='reaction_edge':   
                                    nodes1 = n_sk.getSequenceFromMask(mask=('[#296 #0:2 #fffffff8 #0:10 #ffffffe0 #3 #0
', ' #f8000000 #1ff #7ffe0 ]', ), )   
                                    a_ss.Set(nodes=nodes1, name='Set_'+str_bc)   
                                else:   
                                    edges1 = e_sk.getSequenceFromMask(mask=(key_bc, ), )   
                                    a_ss.Set(edges=edges1, name='Set_'+str_bc)   
   
                            # Assigning boundary conditions on sets   
                            region = a_ss.sets['Set_reaction_mid_point']   
                            mn.DisplacementBC(name='BC_reac_mid_point',    
                                createStepName='Initial', region=region, u1=UNSET, u2=SET, u3=UNSET,    
                                ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_side_edges']   
                            mn.DisplacementBC(name='BC_side_edges',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=SET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_load_edge']   
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                            mn.DisplacementBC(name='BC_load_edge',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_reaction_edge']   
                            mn.DisplacementBC(name='BC_reaction_edge',    
                                createStepName='Initial', region=region, u1=SET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
   
                            # Modifiying boundary conditions at post-buckle step   
                            mn.boundaryConditions['BC_load_edge'].setValuesInStep(   
                                stepName='Post-Buckle-Step', u1=Disp_load)             
   
                            # Creating history outputs   
                            mn.HistoryOutputRequest(name='H-Output-2',     
                                createStepName='Post-Buckle-
Step', variables=('U1', ), region=a_ss.sets['Set_loaded_mid_point'],                           
                                sectionPoints=DEFAULT, rebar=EXCLUDE)   
                            mn.HistoryOutputRequest(name='H-Output-3',                         
                                createStepName='Post-Buckle-
Step', variables=('RF1', ), region=a_ss.sets['Set_reaction_edge'],                                 
                                sectionPoints=DEFAULT, rebar=EXCLUDE)   
                            str_ids = ['1','2']   
                            c_str = 6   
                            for str_id in str_ids:   
                                f_str = a_ss.instances['Stringer-'+str_id].faces   
                                face_str = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                                a_ss.Set(faces=face_str, name='Set_Str_'+str_id)   
                                mn.HistoryOutputRequest(name='H-Output-'+str(c_str),   
                                    createStepName='Post-Buckle-Step', variables=('S11', ),                        
                                    region=a_ss.sets['Set_Str_'+str_id], sectionPoints=DEFAULT,                    
                                    rebar=EXCLUDE)   
                                c_str+=1   
   
                            # Creating job   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=8, numDomai
ns=8,    
                                numGPUs=0)   
   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
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                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
                       
                            # Model 3   
                            # Creating model of stiffened panel post-buckling-nonlinear (sppbn)   
                            model_name = "3_sppbn_I_"+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str
(sk_t_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
   
                            # Creating material   
                            mn.Material(name='Al_2024_T3_Sheet')   
                            mn.materials['Al_2024_T3_Sheet'].Elastic(table=((Ec, poisson), ))   
                            mn.materials['Al_2024_T3_Sheet'].Density(table=((density, ), ))   
                            mn.materials['Al_2024_T3_Sheet'].Plastic(table=((   
                                271.5582718, 0.0), (272.5980053, 0.000124595), (273.6381335, 0.0002497), (   
                                274.6787599, 0.000375688), (275.7200026, 0.000502975), (276.7619911,    
                                0.000632015), (277.8048658, 0.000763293), (278.8487766, 0.000897323), (   
                                279.8938829, 0.001034642), (280.9403524, 0.00117581), (281.9883612,    
                                0.001321408), (283.0380933, 0.001472038), (284.0897405, 0.001628319), (   
                                285.1435019, 0.001790885), (286.1995841, 0.00196039), (287.2582009,    
                                0.0021375), (288.3195731, 0.002322897), (289.3839284, 0.002517276), (   
                                290.4515014, 0.002721347), (291.5225334, 0.00293583), (292.5972725,    
                                0.003161458), (293.6759734, 0.003398975), (294.7588975, 0.003649137), (   
                                295.8463124, 0.003912709), (296.9384926, 0.004190468), (298.0357187,    
                                0.004483198), (299.138278, 0.004791694), (300.246464, 0.005116759), (   
                                301.3605767, 0.005459204), (302.4809224, 0.00581985), (303.6078137,    
                                0.006199521), (304.7415696, 0.006599053), (305.8825151, 0.007019287), (   
                                307.0309819, 0.007461069), (308.1873078, 0.007925253), (309.3518367,    
                                0.008412696), (310.5249189, 0.008924264), (311.7069111, 0.009460825), (   
                                312.8981759, 0.010023252), (314.0990824, 0.010612422), (315.3100059,    
                                0.011229217), (316.5313278, 0.01187452), (317.7634359, 0.01254922), (   
                                319.0067241, 0.013254204), (320.2615927, 0.013990367), (321.528448,    
                                0.0147586), (322.8077029, 0.015559799), (324.099776, 0.016394859), (   
                                325.4050928, 0.017264676), (326.7240844, 0.018170147), (328.0571887,    
                                0.019112167), (329.4048495, 0.02009163), (330.767517, 0.021109431), (   
                                332.1456478, 0.022166461), (333.5397044, 0.02326361), (334.950156,    
                                0.024401764), (336.3774778, 0.025581808), (337.8221515, 0.026804621), (   
                                339.2846649, 0.02807108), (340.7655123, 0.029382057), (342.2651942,    
                                0.030738418), (343.7842174, 0.032141024), (345.3230952, 0.033590732), (   
                                346.8823471, 0.035088389), (348.462499, 0.036634838), (350.0640831,    
                                0.038230914), (351.687638, 0.039877443), (353.3337087, 0.041575244), (   
                                355.0028467, 0.043325127), (356.6956097, 0.045127891), (358.4125619,    
                                0.046984327), (360.1542739, 0.048895215), (361.9213227, 0.050861324), (   
                                363.7142918, 0.052883413), (365.5337711, 0.054962228), (367.380357,    
                                0.057098503), (369.2546522, 0.059292959), (371.1572662, 0.061546305), (   
                                373.0888147, 0.063859234), (375.0499199, 0.066232428), (377.0412107,    
                                0.068666553), (379.0633224, 0.071162259), (381.1168968, 0.073720182), (   
                                383.2025823, 0.076340942), (385.3210339, 0.079025142), (387.4729129,    
                                0.081773368), (389.6588875, 0.084586192), (391.8796323, 0.087464164), (   
                                394.1358284, 0.090407819), (396.4281639, 0.093417674), (398.7573329,    
                                0.096494226), (401.1240367, 0.099637953), (403.5289829, 0.102849316), (   
                                405.9728859, 0.106128753), (408.4564666, 0.109476686), (410.9804527,    
                                0.112893513), (413.5455785, 0.116379615), (416.1525851, 0.11993535), (   
                                418.8022202, 0.123561056), (421.4952381, 0.12725705), (424.2324001,    
                                0.131023627), (427.0144741, 0.134861061), (429.8422346, 0.138769605), (   
                                432.7164631, 0.142749488), (435.6379476, 0.146800919), (438.6074831,    
                                0.150924085), (441.6258714, 0.155119149), (444.6939208, 0.159386253), (   
                                447.8124467, 0.163725517), (450.9822713, 0.168137038), (454.2042234,    
                                0.172620889), (457.479139, 0.177177124), (460.8078605, 0.181805773), (   
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                                464.1912376, 0.186506842), (467.6301266, 0.191280317), (471.1253907,    
                                0.19612616), (474.6779002, 0.201044314), (478.2885321, 0.206034695), (   
                                481.9581704, 0.211097201), (485.687706, 0.216231707), (489.4780367,    
                                0.221438067), (493.3300673, 0.226716112), (497.2447097, 0.232065652), (   
                                501.2228824, 0.237486479), (505.2655113, 0.24297836), (509.3735289,    
                                0.248541045), (513.5478751, 0.25417426), (517.7894965, 0.259877715), (   
                                522.0993469, 0.265651098), (526.4783869, 0.271494077), (530.9275846,    
                                0.277406303), (535.4479147, 0.283387407), (540.0403591, 0.289437001), (   
                                544.7059069, 0.29555468), (549.4455542, 0.301740022), (554.2603041,    
                                0.307992586), (559.1511671, 0.314311915), (564.1191604, 0.320697535), (   
                                569.1653088, 0.327148956), (574.2906438, 0.333665674), (579.4962044,    
                                0.340247167), (584.7830365, 0.3468929), (590.1521934, 0.353602323), (   
                                595.6047353, 0.360374872), (601.1417299, 0.36720997), (606.764252,    
                                0.374107027)))   
   
                            # Creating sketch of skin   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))   
                               
                            # Creating part of skin   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating partition   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            t = p_sk.MakeSketchTransform(sketchPlane=f_sk[0], sketchUpEdge=e_sk[2],    
                                sketchPlaneSide=SIDE1, origin=(sk_x*0.5, sk_y*0.5, 0.0))   
                            s = mn.ConstrainedSketch(name='__profile__',    
                                sheetSize=1272.79, gridSpacing=31.81, transform=t)   
                            g, v, d1, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=SUPERIMPOSE)   
                            p_sk.projectReferencesOntoSketch(sketch=s, filter=COPLANAR_EDGES)   
                            s.Line(point1=(-sk_y/6.0, sk_x*0.5), point2=(-sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[6], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[6], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[5], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(0, sk_x*0.5), point2=(0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[7], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[7], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[6], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[7], entity2=g[3], addUndoState=False)   
                            s.Line(point1=(sk_y/6.0, sk_x*0.5), point2=(sk_y/6.0, -sk_x*0.5))   
                            s.VerticalConstraint(entity=g[8], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[5], entity2=g[8], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[8], entity2=g[5], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[9], entity2=g[3], addUndoState=False)   
                            pickedFaces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.PartitionFaceBySketch(sketchUpEdge=e_sk[2], faces=pickedFaces, sketch=s)   
                            s.unsetPrimaryObject()   
                            del mn.sketches['__profile__']   
   
                            # Creating skin section    
                            mn.HomogeneousShellSection(name='Skin_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=sk_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
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                            # Assigning skin section   
                            faces = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            region = p_sk.Set(faces=faces, name='Skin_faces_set')   
                            p_sk.SectionAssignment(region=region, sectionName='Skin_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of skin   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#f ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_sk)   
   
                            # Generate mesh of skin   
                            p_sk.generateMesh()   
   
                            # Creating sketch of stringer   
                            s = mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            g, v, d, c = s.geometry, s.vertices, s.dimensions, s.constraints   
                            s.setPrimaryObject(option=STANDALONE)   
                            s.Line(point1=(-str_c*0.5, 0.0), point2=(str_c*0.5, 0.0))   
                            s.HorizontalConstraint(entity=g[2], addUndoState=False)   
                            s.Line(point1=(-str_b*0.5, str_h), point2=(str_b*0.5, str_h))   
                            s.HorizontalConstraint(entity=g[3], addUndoState=False)   
                            s.Line(point1=(0.0, 0.0), point2=(0.0, str_h))   
                            s.VerticalConstraint(entity=g[4], addUndoState=False)   
                            s.PerpendicularConstraint(entity1=g[2], entity2=g[4], addUndoState=False)   
                            s.CoincidentConstraint(entity1=v[4], entity2=g[2], addUndoState=False)   
                            s.EqualDistanceConstraint(entity1=v[0], entity2=v[1], midpoint=v[4], addUndoState=False) 
  
                            s.EqualDistanceConstraint(entity1=v[2], entity2=v[3], midpoint=v[5], addUndoState=False) 
  
   
                            # Creating part of stringer   
                            mn.Part(name='Stringer', dimensionality=THREE_D,type=DEFORMABLE_BODY)   
                            mn.parts['Stringer'].BaseShellExtrude(sketch=s, depth=str_l)   
                            del mn.sketches['__profile__']   
   
                            # Creating stringer section   
                            mn.HomogeneousShellSection(name='Stringer_Sec',    
                                preIntegrate=OFF, material='Al_2024_T3_Sheet', thicknessType=UNIFORM,    
                                thickness=str_t, thicknessField='', idealization=NO_IDEALIZATION,    
                                poissonDefinition=DEFAULT, thicknessModulus=None, temperature=GRADIENT,    
                                useDensity=OFF, integrationRule=SIMPSON, numIntPts=5)   
   
                            # Assigning stringer section   
                            p_str = mn.parts['Stringer']   
                            f_str = p_str.faces   
                            faces = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            region = p_str.Set(faces=faces, name='Stringer_faces_set')   
                            p_str.SectionAssignment(region=region, sectionName='Stringer_Sec', offset=0.0,    
                                offsetType=MIDDLE_SURFACE, offsetField='',    
                                thicknessAssignment=FROM_SECTION)   
   
                            # Mesh control of stringer   
                            pickedRegions = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                            p_str.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of stringer   
                            p_str.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=ele_size_str)   
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                            # Generate mesh of stringer   
                            p_str.generateMesh()   
   
                            # Creating Post-Buckling step   
                            mn.StaticStep(name='Post-Buckle-Step', previous='Initial',                         
                                maxNumInc=150, stabilizationMagnitude=0.0002,                  
                                stabilizationMethod=DISSIPATED_ENERGY_FRACTION,                
                                continueDampingFactors=False, adaptiveDampingRatio=0.05, initialInc=0.005,   
                                minInc=1e-05, maxInc=0.2, nlgeom=ON)   
                                   
                            # Creating assembly instances   
                            a_ss = mn.rootAssembly   
                            a_ss.DatumCsysByDefault(CARTESIAN)   
                            a_ss.Instance(dependent=ON, name='Skin-1', part=p_sk)   
   
                            # Creating Stringer 1   
                            mn.rootAssembly.DatumCsysByDefault(CARTESIAN)   
                            mn.rootAssembly.Instance(dependent=ON, name='Stringer-1', part=p_str)   
   
                            # Stringer 1 place is decided   
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(0.0, 1.0, 0.0), angle=90.0)       
                            a_ss.rotate(instanceList=('Stringer-
1', ), axisPoint=(0.0, 0.0, 0.0), axisDirection=(1.0, 0.0, 0.0), angle=90.0)   
                            a_ss.translate(instanceList=('Stringer-1', ), vector=(0.0, sk_y/3.0, (sk_t+str_t)*0.5))   
   
                            # Creating Stringer 2   
                            a_ss.LinearInstancePattern(instanceList=('Stringer-
1', ), direction1=(1.0, 0.0, 0.0), direction2=(0.0, 1.0, 0.0), number1=1, number2=2, spacing1=str_l, spacing2
=sk_y/3.0)   
                            a_ss.features.changeKey(fromName='Stringer-1-lin-1-2', toName='Stringer-2')   
   
                            # Creating connector section as beam   
                            mn.ConnectorSection(name='Fastener_Con_Sec', assembledType=BEAM)   
   
                            # Creating fasteners   
                            const_attach = [['[#20 ]',4,1,'1'],['[#4 ]',2,0,'2']]   
                            for key in range(2):   
                                e_str = a_ss.instances['Stringer-'+str(key+1)].edges   
                                v_str = a_ss.instances['Stringer-'+str(key+1)].vertices   
                                f_str = a_ss.instances['Stringer-'+str(key+1)].faces   
                                for const in const_attach:   
                                    # Creating attachment points   
                                    edges1 = e_str.getSequenceFromMask(mask=(const[0], ), )   
                                    geomEdges=edges1   
                                    a_ss.AttachmentPointsOffsetFromEdges(edges=geomEdges, startPoint=v_str[const[1]],    
                                        referenceFace=f_str[const[2]], name='Str'+str(key+1)+'-Attachment Points-
'+const[3],    
                                        pointCreationMethod=BY_NUMBER, offsetFromStartPoint=2.0*fast_d+1.0, numberOfP
oints=27,    
                                        offsetFromEndPoint=2.0*fast_d+1.0, numberOfRows=1, offsetFromEdges= str_c*0.25, 
   
                                        patterningMethod=PATTERN_ORTHOGONALLY, setName='Str'+str(key+1)+'-
Attachment Points-Set '+const[3])   
   
                                    # Assigning a section to fastener   
                                    region=a_ss.sets['Str'+str(key+1)+'-Attachment Points-Set '+const[3]]   
                                    a_ss.engineeringFeatures.PointFastener( name='Str'+str(key+1)+'-Fasteners-
'+const[3], region=region,    
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                                        sectionName='Fastener_Con_Sec', directionVector=(v_str[7], a_ss.instances['Stringer-
'+str(key+1)].   
                                        InterestingPoint(edge=e_str[8], rule=MIDDLE)), physicalRadius=fast_d*0.5, additional
Mass=0.0001)   
   
                            # Creating boundary conditions at initial step   
                            v_sk = a_ss.instances['Skin-1'].vertices   
                            e_sk = a_ss.instances['Skin-1'].edges   
                            n_sk = a_ss.instances['Skin-1'].nodes   
   
                            # Creating boundary conditions sets   
                            verts1 = v_sk.getSequenceFromMask(mask=('[#200 ]', ), )   
                            verts2 = v_sk.getSequenceFromMask(mask=('[#100 ]', ), )   
                            a_ss.Set(vertices=verts1, name='Set_reaction_mid_point')               
                            a_ss.Set(vertices=verts2, name='Set_loaded_mid_point')   
                            dict_bc = {'[#44 ]':'side_edges','[#c28 ]':'load_edge','[#1282 ]':'reaction_edge',}   
                            for key_bc,str_bc in dict_bc.items():   
                                if str_bc=='reaction_edge':   
                                    nodes1 = n_sk.getSequenceFromMask(mask=('[#296 #0:2 #fffffff8 #0:10 #ffffffe0 #3 #0
', ' #f8000000 #1ff #7ffe0 ]', ), )   
                                    a_ss.Set(nodes=nodes1, name='Set_'+str_bc)   
                                else:   
                                    edges1 = e_sk.getSequenceFromMask(mask=(key_bc, ), )   
                                    a_ss.Set(edges=edges1, name='Set_'+str_bc)   
   
                            # Assigning boundary conditions on sets   
                            region = a_ss.sets['Set_reaction_mid_point']   
                            mn.DisplacementBC(name='BC_reac_mid_point',    
                                createStepName='Initial', region=region, u1=UNSET, u2=SET, u3=UNSET,    
                                ur1=UNSET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_side_edges']   
                            mn.DisplacementBC(name='BC_side_edges',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=SET, ur2=UNSET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
                            region = a_ss.sets['Set_load_edge']   
                            mn.DisplacementBC(name='BC_load_edge',    
                                createStepName='Initial', region=region, u1=UNSET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)      
                            region = a_ss.sets['Set_reaction_edge']   
                            mn.DisplacementBC(name='BC_reaction_edge',    
                                createStepName='Initial', region=region, u1=SET, u2=UNSET, u3=SET,    
                                ur1=UNSET, ur2=SET, ur3=UNSET, amplitude=UNSET, distributionType=UNIFORM,    
                                fieldName='', localCsys=None)   
   
                            # Modifiying boundary conditions at post-buckle step   
                            mn.boundaryConditions['BC_load_edge'].setValuesInStep(   
                                stepName='Post-Buckle-Step', u1=Disp_load)                         
   
                            # Creating history outputs   
                            mn.HistoryOutputRequest(name='H-Output-2',                         
                                createStepName='Post-Buckle-
Step', variables=('U1', ), region=a_ss.sets['Set_loaded_mid_point'],               
                                sectionPoints=DEFAULT, rebar=EXCLUDE)   
                            mn.HistoryOutputRequest(name='H-Output-3',                         
                                createStepName='Post-Buckle-
Step', variables=('RF1', ), region=a_ss.sets['Set_reaction_edge'],                         
                                sectionPoints=DEFAULT, rebar=EXCLUDE)   
                            str_ids = ['1','2']   
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                            c_str = 6   
                            for str_id in str_ids:   
                                f_str = a_ss.instances['Stringer-'+str_id].faces   
                                face_str = f_str.getSequenceFromMask(mask=('[#1f ]', ), )   
                                a_ss.Set(faces=face_str, name='Set_Str_'+str_id)   
                                mn.HistoryOutputRequest(name='H-Output-'+str(c_str),                               
                                    createStepName='Post-Buckle-Step', variables=('S11', ),   
                                    region=a_ss.sets['Set_Str_'+str_id], sectionPoints=DEFAULT,   
                                    rebar=EXCLUDE)   
                                c_str+=1   
   
                            # Creating job   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=8, numDomai
ns=8,    
                                numGPUs=0)   
results.close()   
try:   
    del mdb.models['Model-1']   
except:   
    None   
       
# Saving the model   
mdb.saveAs(   
    pathName=save_path+'.cae')   
       
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

• Example code to process finite element results for skin-stringer model with I 

stringer section 

 

# Importing necessary modules   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
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# Counter for script time   
start_t_time = time.time()   
   
# Selecting the which models have to be analyzed using FE   
need_to_solve=[0,1,2,3]   
   
# Initialize result file   
results = open(r"C:\Users\...............................\Results\Model_I\output_I.txt","w+")   
   
# Paths   
model_path  = r'C:/Users/.............................../Model/Model_I/'   
save_path   = 'C:/Users/.............................../Model/Model_I/v6_i'   
result_path = 'C:/Users/.............................../Results/Model_I/'   
   
# Given displacement load (mm)   
Disp_load    = -2.0   
   
# Element size of parts (mm)   
ele_size_sk  = 5.0   
ele_size_str = 2.0   
   
# Material properties (Al 2024 T3 Sheet thk: 0.23-3.25 mm)   
Ec = 73774.0   
E  = 72395.0   
density = 2768.0   
poisson = 0.33   
Fcy = 269.0   
nc  = 15.0   
   
# Skin geometry   
sk_x  = 450.0   
sk_ys = [150.0*3.0]   
sk_ts = [0.813]   
   
# Stringer "I" geometry   
str_l  = 450.0   
str_ts = [1.016]   
str_hs = [25.0]   
str_cs = [20.0]   
str_bs = [15.0]   
   
# Fasteners' diameter   
fast_d = 3.2   
   
# Constant terms are written in the result file    
results.write("%-22s %9.0f %-22s %6.2f %-
22s %6.2f" %("Material Ec: ",Ec," Material poisson: ",poisson," Material density: ",density)+"\n")   
results.write("%-22s %9.2f %-22s %6.2f %-
22s %6.2f" %("Skin length x: ",sk_x," Stringer length: ",str_l," Fastener diameter: ",fast_d)+"\n"+"\n")   
   
# Total number of models which will be created in this script   
total_count = len(str_hs)*len(str_cs)*len(str_bs)*len(str_ts)*len(sk_ts)*len(sk_ys)*len(need_to_solve)   
print "Total model number: ", total_count   
count=1   
   
# Function of flat metal panel compressive buckling coefficient   
def graph_Kc_flat(x,bc):   
    """  
        Ref: Analysis and Design of Flight Vehicle Structures - E.F.Bruhn  
        Kc is obtained from Figure C5.2 for flat panels   
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        Loaded edges are clamped.  
        Conditions are only exceptable for unloaded edges  
    """   
    if bc=='cl':   
        if x < 0.76493:   
            y = -56.0565*x + 57.1876   
        elif (0.76493 <= x) and (x < 1.14273):   
            y = -551.9651*pow(x, 4) + 2079.3509*pow(x, 3) - 2870.2033*pow(x, 2) + 1706.6187*x- 353.426   
        elif (1.14273 <= x) and (x < 1.85911):   
            y = -6.1616*pow(x, 3) + 34.8139*pow(x, 2) - 65.0106*x + 48.5687   
        elif (1.85911 <= x) and (x < 2.3433):   
            y = -15.9873*pow(x, 4) + 127.1208*pow(x, 3) - 373.7913*pow(x, 2) + 479.4634*x - 216.8528   
        elif (2.3433 <= x) and (x < 3.3987):   
            y = 13.6994*pow(x, 5) - 198.9195*pow(x, 4) + 1149.7887*pow(x, 3) - 3306.5735*pow(x, 2) + 4730.1
783*x - 2684.554   
        elif (3.3987 <= x) and (x < 4.15706):   
            y = 10.807*pow(x, 4) - 163.8182*pow(x, 3) + 929.1075*pow(x, 2) - 2336.7822*x + 2206.491   
        elif (4.15706 <= x) and (x <= 5.0142):   
            y = 1.9679*pow(x, 3) - 27.1906*pow(x, 2) + 124.8755*x - 183.3227   
        else:   
            y = 7.2802   
        return y   
    elif bc=='ss':   
        if x < 1.33459:   
            y = 116.1071*pow(x, 4) - 512.1754*pow(x, 3) + 847.8765*pow(x, 2) - 628.8651*x + 183.9239   
        elif (1.33459 <= x) and (x < 1.68636):   
            y = 2.5557*pow(x, 2) - 8.0374*x + 11.8528   
        elif (1.68636 <= x) and (x < 2.76429):   
            y = 12.4466*pow(x, 6) - 166.4906*pow(x, 5) + 921.7798*pow(x, 4) - 2704.0495*pow(x, 3) + 4434.97
41*pow(x, 2) - 3860.3466*x + 1400.7332   
        elif (2.76429 <= x) and (x <= 4.95153):   
            y = -
0.2663*pow(x, 5) + 5.2351*pow(x, 4) - 40.8202*pow(x, 3) + 157.8018*pow(x, 2) - 302.6058*x + 234.8432   
        else:   
            y = 4.2274   
        return y   
   
for sk_y_key,sk_y  in enumerate(sk_ys):   
    sk_ratio = sk_x / (sk_y/3.0)   
    kc_bruhn =[]   
    # Literature graphs are used to get comp. buckling coeffients with classical boundary condition assumpti
on   
    # Unloaded edge boundary conditions (clamped or simply supported)   
    for bc in ["cl","ss"]:   
        kc_bruhn.append(graph_Kc_flat(sk_ratio,bc))   
    for sk_t_key,sk_t  in enumerate(sk_ts):   
        for str_h_key,str_h in enumerate(str_hs):   
            for str_c_key,str_c in enumerate(str_cs):   
                for str_b_key,str_b in enumerate(str_bs):   
                    for str_t_key,str_t in enumerate(str_ts):   
                        if 0 in need_to_solve:   
                            # Model 0   
                            # Creating model of panel buckling (pb)   
                            # Job name is described   
                            job_name = 'job_0_pb_I_'+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk_
t_key)+str(sk_y_key)   
   
                            # Checked whether there is such a job name   
                            try:   
                                # Starting the time of analysis   
                                start_time = time.time()   
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                                # Submiting the job   
                                print "Panel Buckling Model Number: ",count   
                                mdb.jobs[job_name].submit(consistencyChecking=OFF)   
                                mdb.jobs[job_name].waitForCompletion()   
   
                                # Obtain the eigenvalue   
                                dir_datfile = model_path + job_name+'.dat'   
                                wordlist = []   
                                starttorecord = False   
                                datfile = open(dir_datfile)   
                                for line in datfile:   
                                    if " MODE NO      EIGENVALUE" in line:   
                                        starttorecord = True   
                                    for word in line.split():   
                                        if word=='THE':   
                                            starttorecord = False   
                                        if starttorecord:   
                                            wordlist.append(word)   
                                if   float(wordlist[4])>0.0:   
                                    eigenvalue = float(wordlist[4])   
                                elif float(wordlist[6])>0.0:   
                                    eigenvalue = float(wordlist[6])   
                                elif float(wordlist[8])>0.0:   
                                    eigenvalue = float(wordlist[8])   
                                else:   
                                    eigenvalue = 0.0   
                                datfile.close()   
                                Fccr=eigenvalue*abs(Disp_load)/sk_x*Ec   
                                   
                                # Compressive buckling coeffient is calculated using eigenvalue obtained from FEA   
                                kc=Fccr*(sk_y/3.0)**2.0*12.0*(1.0-poisson**2.0)/(Ec*(math.pi*sk_t)**2.0)   
                                kc_star=kc*math.pi**2.0/(12.0*(1.0-poisson**2.0))   
                                   
                                # Percentage error between literature result and FE result                         
                                dif_kc = abs(kc-kc_bruhn[0])/kc*100.0              
   
                                # Write the input data   
                                results.write("%-22s" %("Single Panel")+"\n")   
                                results.write("%-22s %9.2f %-
22s %6.2f" %("Skin length y: ",(sk_y/3.0)," Skin thickness: ",sk_t)+"\n")   
                                   
                                # Write the output data   
                                results.write("%-22s %9.7f %-22s %6.2f %-
22s %6.2f" %("Eigenvalue: ",eigenvalue," Fccr: ",Fccr," kc_star: ",kc_star)+"\n")   
                                results.write("%-22s %9.3f %-22s %6.3f %-
22s %6.3f" %("kc: ",kc," Bruhn kc(clamped): ",kc_bruhn[0]," Difference %: ",dif_kc)+"\n"+"\n")   
                                   
                                # Ending the time of analysis   
                                end_time = time.time()   
                                   
                                # Estimated time is calculated   
                                if count%10 == 0:   
                                    em=divmod((total_count-count)*(end_time-start_time),60)   
                                    en=divmod(em[0],60)   
                                    print "Estimated remaning time: " ,en[0],en[1],em[1]   
                            except:   
                                None   
                                   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
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                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
                        if 1 in need_to_solve:   
                            # Model 1   
                            # Creating model of stiffened panel buckling (spb)   
                            # Job name is described   
                            job_name = 'job_1_spb_I_'+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(sk
_t_key)+str(sk_y_key)   
   
                            # Checked whether there is such a job name   
                            try:   
                                # Starting the time of analysis   
                                start_time = time.time()   
                                   
                                # Submiting the job   
                                print "Stiffened Panel Buckling Model Number: ",count   
                                mdb.jobs[job_name].submit(consistencyChecking=OFF)   
                                mdb.jobs[job_name].waitForCompletion()   
   
                                # Obtain the eigenvalue   
                                dir_datfile = model_path + job_name+'.dat'   
                                wordlist = []   
                                starttorecord = False   
                                datfile = open(dir_datfile)   
                                for line in datfile:   
                                    if " MODE NO      EIGENVALUE" in line:   
                                        starttorecord = True   
                                    for word in line.split():   
                                        if word=='THE':   
                                            starttorecord = False   
                                        if starttorecord:   
                                            wordlist.append(word)   
                                if   float(wordlist[4])>0.0:   
                                    eigenvalue = float(wordlist[4])   
                                elif float(wordlist[6])>0.0:   
                                    eigenvalue = float(wordlist[6])   
                                elif float(wordlist[8])>0.0:   
                                    eigenvalue = float(wordlist[8])   
                                else:   
                                    eigenvalue = 0.0   
                                datfile.close()   
                                Fccr=eigenvalue*abs(Disp_load)/sk_x*Ec   
                                   
                                # Compressive buckling coeffient is calculated using eigenvalue obtained from FEA   
                                kc=Fccr*(sk_y/3.0)**2.0*12.0*(1.0-poisson**2.0)/(Ec*(math.pi*sk_t)**2.0)   
                                kc_star=kc*math.pi**2.0/(12.0*(1.0-poisson**2.0))   
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                                # Write the input data   
                                results.write("%-22s" %("Stiffened Panel")+"\n")   
                                results.write("%-22s %9.2f %-22s %6.2f %-
22s %6.2f " %("Skin length y: ",(sk_y/3.0)," Skin thickness: ",sk_t," Stringer heigth: ",str_h)+"\n")   
                                results.write("%-22s %9.2f %-22s %6.2f %-
22s %6.2f " %("Stringer c width: ",str_c," Stringer b width: ",str_b," Stringer thickness: ",str_t)+"\n")   
                                   
                                # Write the output data   
                                results.write("%-22s %9.7f %-22s %6.2f %-
22s %6.2f" %("Eigenvalue: ",eigenvalue," Fccr: ",Fccr," kc_star: ",kc_star)+"\n")   
                                results.write("%-22s %9.3f %-22s %6.3f %-
22s %6.3f" %("kc: ",kc," Bruhn kc(clamped): ",kc_bruhn[0]," Bruhn kc(ss): ",kc_bruhn[1])+"\n")   
                                   
                                # Ending the time of analysis   
                                end_time = time.time()   
                                   
                                # Estimated time is calculated   
                                if count%10 == 0:   
                                    em=divmod((total_count-count)*(end_time-start_time),60)   
                                    en=divmod(em[0],60)   
                                    print "Estimated remaning time: " ,en[0],en[1],em[1]   
                            except:   
                                None   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
                               
                        if 2 in need_to_solve:   
                            # Model 2   
                            # Creating model of stiffened panel post-buckling (sppb)   
                            # Job name is described   
                            job_name = 'job_2_sppb_I_'+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str(
sk_t_key)+str(sk_y_key)   
   
                            # Checked whether there is such a job name   
                            try:   
                                print "Linear Post-buckling Model Number: ",count   
                                   
                                # Try to open odb file without submitting the job   
                                try:   
                                    # Opening odb file   
                                    session.openOdb(name=model_path+job_name+'.odb')   
                                    odb = session.odbs[model_path+job_name+'.odb']   
                                except:   
                                    # Submitting the job   
                                    mdb.jobs[job_name].submit(consistencyChecking=OFF)   
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                                    mdb.jobs[job_name].waitForCompletion()   
                                       
                                    # Opening odb file   
                                    session.openOdb(name=model_path+job_name+'.odb')   
                                    odb = session.odbs[model_path+job_name+'.odb']   
                                       
                                # Creating XY-Datas of displacement node   
                                Disp_name = 'Lin_Disp_Data_U1_9'   
                                Disp_session = session.XYDataFromHistory(name=Disp_name, odb=odb,   
                                                outputVariableName='Spatial displacement: U1 PI: SKIN-
1 Node 9 in NSET SET_LOADED_MID_POINT',                                                  
                                                steps=('Post-Buckle-Step', ), )   
   
                                # List of reaction nodes( by order of x)   
                                Reac_node_list = [8]   
                                for node_id in range(29):   
                                    Reac_node_list.append(454+node_id)   
                                Reac_node_list.append(5)   
                                for node_id in range(14):   
                                    Reac_node_list.append(614+node_id)   
                                Reac_node_list.append(10)   
                                for node_id in range(14):   
                                    Reac_node_list.append(572+node_id)   
                                Reac_node_list.append(2)   
                                for node_id in range(29):   
                                    Reac_node_list.append(100+node_id)   
                                Reac_node_list.append(3)   
   
                                # Creating XY-Datas of reaction nodes   
                                Node_session_name_list = ()   
                                Node_session_list = ()   
                                for node_id in Reac_node_list:   
                                    Node_session_name = 'Lin_Reac_Data_RF1_'+str(node_id)   
                                    Node_session = session.XYDataFromHistory(name=Node_session_name, odb=odb,   
                                                    outputVariableName='Reaction force: RF1 PI: SKIN-
1 Node '+str(node_id)+' in NSET SET_REACTION_EDGE',                           
                                                    steps=('Post-Buckle-Step', ), )   
                                    Node_session_name_list += (Node_session_name,)   
                                    Node_session_list+=(Node_session,)   
   
                                # Displacement vs total reaction force graph   
                                Disp_force_graph=combine(-Disp_session, sum(Node_session_list))   
                                Disp_force_graph.setValues(sourceDescription='combine (-
'+Disp_name+', sum('+str(Node_session_name_list)+')')   
                                tmpName = Disp_force_graph.name   
                                session.xyDataObjects.changeKey(tmpName, 'Lin_Disp_vs_Reac_Data')   
                                Graph_disp_reac = session.xyDataObjects['Lin_Disp_vs_Reac_Data']   
                                   
                                # Writing into the output file   
                                session.writeXYReport(fileName = result_path + 'Data_graph_disp_vs_reac(Linear).rpt', ap
pendMode=OFF, xyData=(Graph_disp_reac,))   
                                session.writeXYReport(fileName = result_path + 'Data_nodes_disp_vs_reac(Linear).rpt', ap
pendMode=OFF, xyData=Node_session_list)                            
                           
                                # Stringer local stress calculation part   
                                # This part is non-parametric   
                                str_first_edge_ids = [1125,1126]   
                                str_edge_incs = [[-225,225],[-1,1]]   
                                   
                                # This part is parametic                           
                                str_eles_num = int(round(str_l/ele_size_str))   
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                                str_edges_eles_num = [int(round(str_c/(2.0*ele_size_str))),int(round(str_c/(2.0*ele_size_st
r)))]   
                                   
                                str_ids = [1,2]   
                                for str_id in str_ids:   
                                    graph_str_eles = ()   
                                    for str_ele_num in range(str_eles_num):   
                                        str_eles_data=()   
                                        str_eles_name=()   
                                        for str_edge_eles_key,str_edge_eles_num in enumerate(str_edges_eles_num):   
                                            for str_edge_ele_num in range(str_edge_eles_num):   
                                                for sur in range(2):   
                                                    if sur==0:   
                                                        sur_key = 'SPOS'   
                                                        sur_val = '(fraction = 1:0)'   
                                                    else:   
                                                        sur_key = 'SNEG'   
                                                        sur_val = '(fraction = -1:0)'   
                                                    str_ele_id = str_first_edge_ids[str_edge_eles_key] + str_edge_ele_num * str_edge_i
ncs[0][str_edge_eles_key]+ str_ele_num * str_edge_incs[1][str_edge_eles_key]   
                                                    str_ele_name = 'Lin_Sec_Data_STR'+str(str_id)+'_S11_'+str(str_ele_id)+'_'+sur_ke
y   
                                                    str_ele_data = session.XYDataFromHistory(name=str_ele_name, odb=odb,             
                                          
                                                                    outputVariableName='Stress components: S11 PI: STRINGER-
'+str(str_id)+' Element '+str(str_ele_id)+' Int Point 1 Sec Pt '+sur_key+', '+sur_val+' in ELSET SET_STR_'+str
(str_id),    
                                                                    steps=('Post-Buckle-Step', ),)   
                                                    str_eles_name +=(str_ele_name,)   
                                                    str_eles_data +=(str_ele_data,)   
   
                                        # Element stress on the stringer flange which is connected to skin is calculated by the 
averaging the upper and lower sides of the element stresses   
                                        str_ele_graph=sum(str_eles_data)/(len(str_eles_data))   
                                        str_ele_graph.setValues(   
                                            sourceDescription='sum('+str(str_eles_name)+')')   
                                        tmpName = str_ele_graph.name   
                                        session.xyDataObjects.changeKey(tmpName, 'Lin_Str'+str(str_id)+'_Data_Part_'+str(st
r_ele_num))   
                                        graph_str_ele = session.xyDataObjects['Lin_Str'+str(str_id)+'_Data_Part_'+str(str_ele_n
um)]   
                                        graph_str_eles +=(graph_str_ele,)   
                                        for str_ele_name in str_eles_name:   
                                            del session.xyDataObjects[str_ele_name]   
                                           
                                    # Writing into the outout file   
                                    session.writeXYReport(fileName = result_path + 'Str'+str(str_id)+'_Data(Linear).rpt', ap
pendMode=OFF, xyData=graph_str_eles)   
                            except:   
                                None   
                            """  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
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                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            !!!!!!!!!!!!!!!!!!!!!!!!!!!!  
                            """   
                        if 3 in need_to_solve:   
                            # Model 3   
                            # Creating model of stiffened panel post-buckling-nonlinear (sppbn)   
                            # Job name is described   
                            job_name = 'job_3_sppbn_I_'+str(str_h_key)+str(str_c_key)+str(str_b_key)+str(str_t_key)+str
(sk_t_key)+str(sk_y_key)   
   
                            # Checked whether there is such a job name   
                            try:   
                                print "Nonlinear Post-buckling Model Number: ",count   
                                # Try to open odb file without submitting the job   
                                try:   
                                    # Opening odb file   
                                    session.openOdb(name=model_path+job_name+'.odb')   
                                    odb = session.odbs[model_path+job_name+'.odb']   
                                except:   
                                    # Submitting the job   
                                    mdb.jobs[job_name].submit(consistencyChecking=OFF)   
                                    mdb.jobs[job_name].waitForCompletion()   
                                       
                                    # Opening odb file   
                                    session.openOdb(name=model_path+job_name+'.odb')   
                                    odb = session.odbs[model_path+job_name+'.odb']   
                                       
                                # Creating XY-Datas of displacement node   
                                Disp_name = 'Non_Disp_Data_U1_9'   
                                Disp_session = session.XYDataFromHistory(name='Non_Disp_Data_U1_9', odb=odb,   
                                                outputVariableName='Spatial displacement: U1 PI: SKIN-
1 Node 9 in NSET SET_LOADED_MID_POINT',                                              
                                                steps=('Post-Buckle-Step', ), )   
                                   
                                   
                                # List of reaction nodes( by order of x)               
                                Reac_node_list = [8]   
                                for node_id in range(29):   
                                    Reac_node_list.append(454+node_id)   
                                Reac_node_list.append(5)   
                                for node_id in range(14):   
                                    Reac_node_list.append(614+node_id)   
                                Reac_node_list.append(10)   
                                for node_id in range(14):   
                                    Reac_node_list.append(572+node_id)   
                                Reac_node_list.append(2)   
                                for node_id in range(29):   
                                    Reac_node_list.append(100+node_id)   
                                Reac_node_list.append(3)   
   
                                # Creating XY-Datas of reaction nodes   
                                Node_session_name_list = ()   
                                Node_session_list = ()   
                                for node_id in Reac_node_list:   
                                    Node_session_name = 'Non_Reac_Data_RF1_'+str(node_id)   
                                    Node_session = session.XYDataFromHistory(name=Node_session_name, odb=odb,    
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                                                    outputVariableName='Reaction force: RF1 PI: SKIN-
1 Node '+str(node_id)+' in NSET SET_REACTION_EDGE',                   
                                                    steps=('Post-Buckle-Step', ), )   
                                    Node_session_name_list += (Node_session_name,)   
                                    Node_session_list+=(Node_session,)   
                                       
                                # Displacement vs total reaction force graph   
                                Disp_force_graph=combine(-Disp_session, sum(Node_session_list))   
                                Disp_force_graph.setValues( sourceDescription='combine (-
'+Disp_name+', sum('+str(Node_session_name_list)+')')   
                                tmpName = Disp_force_graph.name   
                                session.xyDataObjects.changeKey(tmpName, 'Non_Disp_vs_Reac_Data')   
                                Graph_disp_reac = session.xyDataObjects['Non_Disp_vs_Reac_Data']   
                                   
                                # Writing into the output file   
                                session.writeXYReport(fileName = result_path + 'Data_graph_disp_vs_reac(Nonlinear).rpt',
 appendMode=OFF, xyData=(Graph_disp_reac,))   
                                session.writeXYReport(fileName = result_path + 'Data_nodes_disp_vs_reac(Nonlinear).rpt',
 appendMode=OFF, xyData=Node_session_list)                             
                                                               
                                # Stringer local stress calculation part   
                                # This part is non-parametric   
                                str_first_edge_ids = [1125,1126]   
                                str_edge_incs = [[-225,225],[-1,1]]   
                                   
                                # This part is parametic           
                                str_eles_num = int(round(str_l/ele_size_str))              
                                str_edges_eles_num = [int(round(str_c/(2.0*ele_size_str))),int(round(str_c/(2.0*ele_size_st
r)))]   
                                   
                                str_ids = [1,2]   
                                for str_id in str_ids:   
                                    graph_str_eles = ()   
                                    for str_ele_num in range(str_eles_num):   
                                        str_eles_data=()   
                                        str_eles_name=()   
                                        for str_edge_eles_key,str_edge_eles_num in enumerate(str_edges_eles_num):   
                                            for str_edge_ele_num in range(str_edge_eles_num):   
                                                for sur in range(2):   
                                                    if sur==0:   
                                                        sur_key = 'SPOS'   
                                                        sur_val = '(fraction = 1:0)'   
                                                    else:   
                                                        sur_key = 'SNEG'   
                                                        sur_val = '(fraction = -1:0)'   
                                                    str_ele_id = str_first_edge_ids[str_edge_eles_key] + str_edge_ele_num * str_edge_i
ncs[0][str_edge_eles_key]+ str_ele_num * str_edge_incs[1][str_edge_eles_key]   
                                                    str_ele_name = 'Non_Sec_Data_STR'+str(str_id)+'_S11_'+str(str_ele_id)+'_'+sur_k
ey   
                                                    str_ele_data = session.XYDataFromHistory(name=str_ele_name, odb=odb,   
                                                                    outputVariableName='Stress components: S11 PI: STRINGER-
'+str(str_id)+' Element '+str(str_ele_id)+' Int Point 1 Sec Pt '+sur_key+', '+sur_val+' in ELSET SET_STR_'+str
(str_id),   
                                                                    steps=('Post-Buckle-Step', ),)   
                                                    str_eles_name +=(str_ele_name,)   
                                                    str_eles_data +=(str_ele_data,)   
   
                                        # Element stress on the stringer flange which is connected to skin is calculated by the 
averaging the upper and lower sides of the element stresses                    
                                        str_ele_graph=sum(str_eles_data)/(len(str_eles_data))   
                                        str_ele_graph.setValues(   
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                                            sourceDescription='sum('+str(str_eles_name)+')')   
                                        tmpName = str_ele_graph.name   
                                        session.xyDataObjects.changeKey(tmpName, 'Non_Str'+str(str_id)+'_Data_Part_'+str(s
tr_ele_num))   
                                        graph_str_ele = session.xyDataObjects['Non_Str'+str(str_id)+'_Data_Part_'+str(str_ele_
num)]   
                                        graph_str_eles +=(graph_str_ele,)   
                                        for str_ele_name in str_eles_name:   
                                            del session.xyDataObjects[str_ele_name]   
                                           
                                    # Writing into the output file   
                                    session.writeXYReport(fileName = result_path + 'Str'+str(str_id)+'_Data(Nonlinear).rpt', 
appendMode=OFF, xyData=graph_str_eles)   
                            except:   
                                None   
                            count+=1   
results.close()   
   
# Saving the model   
mdb.saveAs(   
    pathName=save_path+'.cae')   
       
# Stoping the time calculater      
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

F.5 Composite Single Panel Buckling Python Scripts 

• Example code to construct the composite panel model with simply supported 

boundary condition  

# Importing necessary modules   
from abaqus import *   
from abaqusConstants import *   
from caeModules import *   
from driverUtils import executeOnCaeStartup   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Paths   
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save_path='C:/Users/..............'   
   
# Given edge load (N/mm)   
Edge_load = 1.0   
   
# Material properties    
# In this case, material is Carbon/epoxy,Hexply 8552S/37RC/AGP280/C   
mats=[]   
mats.append(   
{ "mat_des" : "Carbon_epoxy",   
"E1":54000, "E2":54000, "Nu12":0.05,   
"G12":4.5e3, "G13":4.5e3, "G23":4.5e3}   
)   
   
# Skin geometry   
# sk_x is the unloaded edge   
# sk_y is the loaded edge   
sk_xs  = []   
sk_ys  = []   
ply_ts = [0.28]   
for xdist in range(100, 505, 5):   
    sk_xs.append(xdist)   
for ydist in range(100, 105, 5):   
    sk_ys.append(ydist)   
       
#Ply sequences   
ply_props = []   
ply_props.append({"sym":True,"ply_sq":[0,0],"ply_repeat":[2,4]})   
ply_props.append({"sym":True,"ply_sq":[0,90],"ply_repeat":[1,2]})   
ply_props.append({"sym":True,"ply_sq":[45,0,-45,90],"ply_repeat":[1,2]})   
   
# Total number of models which will be created in this script   
total_count = 0   
for ply_prop in ply_props:   
    total_count += len(mats)*len(ply_ts)*len(ply_prop["ply_repeat"])*len(sk_xs)*len(sk_ys)   
print "Total model number: ", total_count   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]       
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
               
                            # Creating model of composite panel buckling (cpb)   
                            print "Creating model"   
                            model_name = "cpb_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+
str(sk_x_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
                               
                            # Creating material   
                            print "Creating model"   
                            mn.Material(name=mat["mat_des"])   
                            mn.materials[mat["mat_des"]].Elastic(   
                                type=LAMINA, table=((   
                                mat["E1"], mat["E2"],mat["Nu12"],    
                                mat["G12"], mat["G13"], mat["G23"]), ))   
                                
                            # Creating sketch of skin   
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                            print "Creating sketch of skin"   
                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))       
   
                            # Creating part of skin   
                            print "Creating part of skin"   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating Layup orientation    
                            print "Creating Layup orientation"   
                            layupOrientation = None   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            faces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            region_sk=regionToolset.Region(faces=faces)   
                            compositeLayup = p_sk.CompositeLayup(   
                                name='CompositeLayup-1', description='', elementType=SHELL,    
                                offsetType=MIDDLE_SURFACE, symmetric=ply_prop["sym"],    
                                thicknessAssignment=FROM_SECTION)   
                            compositeLayup.Section(preIntegrate=OFF, integrationRule=SIMPSON,    
                                thicknessType=UNIFORM, poissonDefinition=DEFAULT, temperature=GRADIENT,    
                                useDensity=OFF)   
                            compositeLayup.ReferenceOrientation(orientationType=GLOBAL, localCsys=None,    
                                fieldName='', additionalRotationType=ROTATION_NONE, angle=0.0, axis=AXIS_3)   
                            ply_sq = []   
                            for rep in range(ply_repeat):   
                                for ply_ang in ply_prop["ply_sq"]:   
                                    ply_sq.append(ply_ang)   
                            for ply_n,ply_ang in enumerate(ply_sq):   
                                compositeLayup.CompositePly(suppressed=False, plyName='Ply-
'+str(ply_n+1), region=region_sk,material=mat["mat_des"], thicknessType=SPECIFY_THICKNESS, thickness
=ply_t,orientationType=SPECIFY_ORIENT, orientationValue=ply_ang,additionalRotationType=ROTATION_
NONE, additionalRotationField='', axis=AXIS_3, angle=0.0, numIntPoints=3)   
   
                            # Mesh control of skin   
                            print "Mesh control of skin"   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            print "Mesh seed of skin"   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=5.0)   
   
                            # Generate mesh of skin   
                            print "Generate mesh of skin"   
                            p_sk.generateMesh()   
   
                            # Creating Buckling step   
                            print "Creating Buckling step"   
                            mn.BuckleStep(name='Buckle-
Step', previous='Initial', numEigen=8, vectors=28, maxIterations=3000)   
   
                            # Creating assembly instances   
                            print "Creating assembly instances"   
                            a_sk = mn.rootAssembly   
                            a_sk.DatumCsysByDefault(CARTESIAN)   
                            a_sk.Instance(dependent=ON, name='Skin-1', part=p_sk)   
   
                            # Creating boundary conditions at initial step   
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                            print "Creating boundary conditions at initial step"   
                            edges_bc = {'[#2 ]':'loaded_edge','[#8 ]':'opp_loaded_edge','[#5 ]':'unloaded_edges'}   
                            e_sk = a_sk.instances['Skin-1'].edges   
                            for edge_key,edge_des in edges_bc.items():   
                                    edges1 = e_sk.getSequenceFromMask(mask=(edge_key, ), )   
                                    a_sk.Set(edges=edges1, name='Set_'+edge_des)   
                            v_sk = a_sk.instances['Skin-1'].vertices   
                            verts_bc = {'[#8 ]':'lb_cor','[#2 ]':'rt_cor'}   
                            for vert_key,vert_des in verts_bc.items():   
                                    verts1 = v_sk.getSequenceFromMask(mask=(vert_key, ), )   
                                    a_sk.Set(vertices=verts1, name='Set_'+vert_des)    
   
                            # Assigning boundary conditions using sets   
                            print "Assigning boundary conditions using sets"   
                            region = a_sk.sets['Set_lb_cor']   
                            mn.DisplacementBC(name='BC_lb_cor', createStepName='Initial',    
                                region=region, u1=SET, u2=SET, u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_rt_cor']   
                            mn.DisplacementBC(name='BC_rt_cor', createStepName='Initial',    
                                region=region, u1=UNSET, u2=SET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_loaded_edge']   
                            mn.DisplacementBC(name='BC_loaded_edge', createStepName='Initial',    
                                region=region, u1=UNSET, u2=UNSET, u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_opp_loaded_edge']   
                            mn.DisplacementBC(name='BC_opp_loaded_edge', createStepName='Initial',    
                                region=region, u1=SET, u2=UNSET, u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_unloaded_edges']   
                            mn.DisplacementBC(name='BC_unloaded_edges', createStepName='Initial',    
                                region=region, u1=UNSET, u2=UNSET, u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
   
                            # Appliying shell edge load on the skin loaded edge   
                            print "Appliying shell edge load on the skin loaded edge"   
                            load_edges=['[#2 ]']   
                            for load_key,load_edge in enumerate(load_edges):   
                                s_edges = e_sk.getSequenceFromMask(mask=(load_edge, ), )   
                                region = a_sk.Surface(side1Edges=s_edges, name='Surf_loaded_edge'+str(load_key+1))   
                                mn.ShellEdgeLoad(name='Load_buckling'+str(load_key+1), createStepName='Buckle-
Step',    
                                    region=region, magnitude=Edge_load, distributionType=UNIFORM, field='',    
                                    localCsys=None)   
   
                            # Creating job   
                            print "Creating job"   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,   
                                numGPUs=0)   
try:   
    del mdb.models['Model-1']      
except:   
    None   
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# Saving the model   
print "Saving model"   
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

• Example code to process finite element results for the composite panel model with 

simply supported boundary condition 

# Importing necessary modules   
from abaqus import *   
from abaqusConstants import *   
from caeModules import *   
from driverUtils import executeOnCaeStartup   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Defining maximum number of submittions can be given at the same time   
max_sub = 5   
ini_sub = 0   
   
# Paths   
save_path='C:/Users/.............................../Model/ss/comp_ss_buckling'   
model_path = r'C:/Users/.............................../Model/ss/'   
   
# Initialize results' path   
result_path = r"C:\Users\...............................\Results\comp_ss_buckling_loads"   
result_excel_path = r"C:\Users\...............................\Results\excel\comp_ss_buckling_loads"   
   
# Given edge load (N/mm)   
Edge_load = 1.0   
   
# Material properties    
# In this case, material is Carbon/epoxy,Hexply 8552S/37RC/AGP280/C   
mats=[]   
mats.append(   
{ "mat_des" : "Carbon_epoxy",   
"E1":54000, "E2":54000, "Nu12":0.05,   
"G12":4.5e3, "G13":4.5e3, "G23":4.5e3}   



231 

)   
   
# Skin geometry   
# sk_x is the unloaded edge   
# sk_y is the loaded edge   
sk_xs  = []   
sk_ys  = []   
ply_ts = [0.28]   
for xdist in range(100, 505, 5):   
    sk_xs.append(xdist)   
for ydist in range(100, 105, 5):   
    sk_ys.append(ydist)   
   
#Ply Sequence   
ply_props = []   
ply_props.append({"sym":True,"ply_sq":[0],"ply_repeat":[2,4]})   
ply_props.append({"sym":True,"ply_sq":[0,90],"ply_repeat":[1,2]})   
ply_props.append({"sym":True,"ply_sq":[45,0,-45,90],"ply_repeat":[1,2]})   
   
# Total number of models which will be created in this script   
total_count = 0   
for ply_prop in ply_props:   
    total_count += len(mats)*len(ply_ts)*len(ply_prop["ply_repeat"])*len(sk_xs)*len(sk_ys)   
print "Total model number: ", total_count   
count = 1   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]           
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            # Job name is described    
                            start_time = time.time()   
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                            print "Model number: ",count   
                            job_model = mdb.jobs[job_name]   
                               
                            # Checked to see if the job has already been submitted   
                            try:   
                                dir_logfile = model_path + job_name+".log"   
                                logfile = open(dir_logfile)   
                                comp = False   
                                   
                                # Checked to see that the job is completed   
                                for line in logfile:   
                                    if "Abaqus JOB "+job_name+" COMPLETED" in line:   
                                        print " completed"   
                                        comp = True   
                                logfile.close()   
                                   
                                # Submittion check   
                                if comp==False:   
                                    job_model.submit(consistencyChecking=OFF)   
                                    ini_sub +=1   
                                       
                                    # Multi-submittion is permitted for this code   
                                    # Maximum number of submittion is checked   
                                    if ini_sub >= max_sub:   
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                                        job_model.waitForCompletion()   
                                        ini_sub = 0   
                                        end_time = time.time()   
                                else:   
                                    end_time = time.time()   
                                           
                            except:   
                                # Submit the job   
                                job_model.submit(consistencyChecking=OFF)   
                                ini_sub +=1   
                                   
                                # Multi-submittion is permitted for this code   
                                # Maximum number of submittion is checked   
                                if ini_sub >= max_sub:   
                                    job_model.waitForCompletion()   
                                    ini_sub = 0   
                                    end_time = time.time()   
                                       
                            # Estimated time is calculated   
                            if count%(max_sub*2) == 0:   
                                em=divmod((total_count-count)*(end_time-start_time)/max_sub,60)   
                                en=divmod(em[0],60)   
                                print "Estimated remaning time: " ,en[0],en[1],em[1]   
                            count+=1       
# Checked whether all analyses are completed   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]   
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                            job_model.waitForCompletion()   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]   
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                # Writing the input data into the result file   
                results = open(result_path+"_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key
)+".txt","w+")   
                results_excel = open(result_excel_path+"_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply
_repeat_key)+".txt","w+")   
                   
                # Writing the excel graphs' headings into the result file which is used to construct excel   
                results_excel.write("%20s %20s %20s %20s %20s %20s" %("a0/b0","k0-2D*(E)","k0-
2D*(C)","k0-2D*(F)","error(E-C)","error(E-F)" )+"\n"+"\n")   
                   
                # Writing the material properties into the result file   
                results.write("%-25s %20s " %("Material description: ", mat["mat_des"])+"\n")   
                results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("Material E1: ", mat["E1"], " Material E2: ", mat["E2"], " Material Nu12: ", mat["Nu12"])+"\n"
)   
                results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("Material G12: ", mat["G12"], " Material G13: ", mat["G13"], " Material G23: ", mat["G23"])+"\
n")   
   
                # Writing the ply thickness and symmetric condition into the result file   
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                results.write("%-25s %6.2f %-
20s %10s" %("Ply thickness: ", ply_t," Ply symmetric: ", ply_prop["sym"])+"\n")   
                   
                # Ply directions and angles are described to use in A,B,D matrices   
                ply_sq = []   
                for rep in range(ply_repeat):   
                    for ply_ang in ply_prop["ply_sq"]:   
                        ply_sq.append(ply_ang)   
                if ply_prop["sym"]:   
                    for ply_ang in reversed(ply_sq):   
                        ply_sq.append(ply_ang)   
                           
                # Writing the ply directions and angles into the result file   
                results.write("%-25s" %("Ply Directions: "))   
                for ply_ang in ply_sq:   
                    results.write("%6d" %(ply_ang))   
                results.write("\n"+"\n")   
                                   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            # Defining the job name    
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                       
                            # Obtain the eigenvalue (Critical buckling load according to FEA)   
                            dir_datfile = model_path + job_name+'.dat'   
                            wordlist = []   
                            starttorecord = False   
                            datfile = open(dir_datfile)   
                            for line in datfile:   
                                if " MODE NO      EIGENVALUE" in line:   
                                    starttorecord = True   
                                for word in line.split():   
                                    if word=='THE':   
                                        starttorecord = False   
                                    if starttorecord:   
                                        wordlist.append(word)   
                            if   float(wordlist[4])>0.0:   
                                eigenvalue = float(wordlist[4])   
                            elif float(wordlist[6])>0.0:   
                                eigenvalue = float(wordlist[6])   
                            elif float(wordlist[8])>0.0:   
                                eigenvalue = float(wordlist[8])   
                            else:   
                                eigenvalue = 0.0   
                            datfile.close()   
                               
                            # Total number of composite layers are calculated   
                            ply_n_total = len(ply_sq)      
                            h_tot = ply_n_total * ply_t        
                               
                            # Each layers of "h" matrix is the vertical distance from the mid-
plane of the plate (z=0) to the upper surface of the considered lamina(layer)   
                            h = []   
                            for ply_n in range(ply_n_total+1):   
                                h.append(-h_tot/2.0 + ply_n * ply_t)   
                                   
                            # Initialize the A and D matrices      
                            D11=0.0;  D12=0.0;  D22=0.0;  D66=0.0; A44=0.0; A55=0.0   
                               
                            #"kk" is the shear correction coefficient   



234 

                            kk = 5.0/6.0   
                               
                            # A and D matrices are calculated in this part   
                            for ply_n,ply_ang in enumerate(ply_sq):   
                                # In-plane compliance coefficients for orthotropic materials in material axis   
                                S11 = 1.0/mat["E1"]   
                                S12 = -mat["Nu12"]/mat["E1"]   
                                S22 = 1.0/mat["E2"]   
                                S66 = 1.0/mat["G12"]   
                                   
                                # In-plane elastic coefficients for orthotropic materials in material axis   
                                Q11 = S22/(S11*S22-S12**2.0)   
                                Q12 = -S12/(S11*S22-S12**2.0)   
                                Q22 = S11/(S11*S22-S12**2.0)   
                                Q66 = 1.0/S66   
                                   
                                # Problem axis angle cosine and sine values   
                                cs = math.cos(ply_ang*math.pi/180.0)   
                                sn = math.sin(ply_ang*math.pi/180.0)   
                                   
                                # Transformation of in-plane elastic coefficients for orthotropic materials in problem axis   
                                bQ11 = Q11*cs**4+2.0*(Q12+2.0*Q66)*(cs**2.0)*(sn**2.0)+Q22*sn**4.0   
                                bQ22 = Q11*sn**4+2.0*(Q12+2.0*Q66)*(cs**2.0)*(sn**2.0)+Q22*cs**4.0   
                                bQ12 = Q12*cs**4+(Q11+Q22-4.0*Q66)*(cs**2.0)*(sn**2.0)+Q12*sn**4.0   
                                bQ66 = (Q11+Q22-2.0*Q12)*(cs**2.0)*(sn**2.0)+Q66*((cs**2.0)-(sn**2.0))**2.0   
                                   
                                #Q1=[G23 0 ; 0 G13]   
                                #T1 = [cs -sn; sn cs]   
                                #T1_inv = [cs sn; -sn cs]   
                                #bbQ = T1_inv * Q1 *T1   
                                #bbQ is the 2x2 matrix   
                                bbQ44 = cs**2.0*mat["G23"]+sn**2.0*mat["G13"]   
                                bbQ55 = sn**2.0*mat["G23"]+cs**2.0*mat["G13"]   
                                   
                                # Necessary values of A and D matrices   
                                D11 += bQ11 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D22 += bQ22 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D12 += bQ12 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D66 += bQ66 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                A44 += bbQ44 * (h[ply_n+1]-h[ply_n])   
                                A55 += bbQ55 * (h[ply_n+1]-h[ply_n])   
                               
                            # D matrix values   
                            D11/=3.0   
                            D22/=3.0   
                            D12/=3.0   
                            D66/=3.0   
                               
                            # Composite buckling parameters according to FEA   
                            D_star = (D12+2.0*D66)/(D11*D22)**0.5   
                            ratio_a0b0 = (sk_x*(D22)**0.25)/(sk_y*(D11)**0.25)   
                               
                            # Composite plate buckling coefficient according to FEA   
                            k0_E = (eigenvalue * sk_y**2.0)/(pi*(D11*D22)**0.5)   
                            k_E = k0_E-2.0*D_star   
                               
                            # The Classical Laminated Plate Theory   
                            # Critical bucling load when n=1 and m variying   
                            # "a" equals to "sk_x" (unloaded edge) and "b" equals to "sk_y" (loaded edge)   
                            N_Cs = []   
                            nn_Cs =[]   
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                            mm_Cs =[]   
                            pi = math.pi   
                               
                            # Critical bucling load calculation for simply supported plate   
                            for num1 in range(1):   
                                nn_C = num1 + 1   
                                for num2 in range(10):   
                                    mm_C = num2 + 1   
                                    N_C = D11*(mm_C*pi/sk_x)**2.0+(2.0*D12+4.0*D66)*(pi/sk_y)**2.0+D22*(sk_x*pi/mm
_C)**2.0*(1.0/sk_y)**4.0   
                                    nn_Cs.append(nn_C)   
                                    mm_Cs.append(mm_C)   
                                    N_Cs.append(N_C)   
                            N_key_C = N_Cs.index(min(N_Cs))    
                            mm_cri_C = mm_Cs[N_key_C]   
                            nn_cri_C = nn_Cs[N_key_C]   
                               
                            # Critical buckling load according to CLPT   
                            N_cri_C = N_Cs[N_key_C]   
                               
                            # Percentage error of critical buckling load between FEA result and CLPT result    
                            N_err_C = abs(N_cri_C-eigenvalue)/eigenvalue*100.0   
                               
                            # Composite plate buckling coefficient according to CLPT   
                            k0_C = (N_cri_C * sk_y**2.0)/(pi*(D11*D22)**0.5)   
                            k_C = k0_C-2.0*D_star   
                                                       
                            #The First-Order Shear Deformation Theory   
                            N_Fs = []   
                            nn_Fs=[]   
                            mm_Fs =[]   
                               
                            # Critical bucling load calculation for simply supported plate   
                            for num1 in range(10):   
                                nn_F = num1 + 1   
                                for num2 in range(10):   
                                    mm_F = num2 + 1   
                                    alpha = mm_F*pi/sk_x   
                                    beta = nn_F*pi/sk_y   
                                    C1 = -D11*alpha**2.0-D66*beta**2.0-A55*kk   
                                    C2 = -D12*alpha*beta-D66*alpha*beta   
                                    C3 = -A55*kk*alpha   
                                    C4 = -D22*beta**2.0-D66*alpha**2.0-A44*kk   
                                    C5 = -A44*kk*beta   
                                    N_F = (C1*C5**2.0+alpha*C3*C2**2.0+beta*C2**2.0*C5+C3**2.0*C4-alpha*C1*C3*C4-
beta*C1*C4*C5-2.0*C2*C3*C5)/(alpha**2.0*(C1*C4-C2**2.0))   
                                    mm_Fs.append(mm_F)   
                                    nn_Fs.append(nn_F)   
                                    N_Fs.append(N_F)   
                            N_key_F = N_Fs.index(min(N_Fs))    
                            mm_cri_F = mm_Fs[N_key_F]   
                            nn_cri_F = nn_Fs[N_key_F]   
                               
                            # Critical buckling load according to FSDT   
                            N_cri_F = N_Fs[N_key_F]   
                               
                            # Percentage error of critical buckling load between FEA result and FSDT result    
                            N_err_F = abs(N_cri_F-eigenvalue)/eigenvalue*100.0   
                               
                            # Composite plate buckling coefficient according to FSDT   
                            k0_F = (N_cri_F * sk_y**2.0)/(pi*(D11*D22)**0.5)   
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                            k_F = k0_F-2.0*D_star   
                               
                            # Write the output data into the result file   
                            results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("    Skin length y: ", sk_y, " Skin length x: ", sk_x, " Total thickness: ",h_tot )+"\n")   
                            results.write("%-25s %6.2f %-20s %6.2f %-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("    Eigenvalue: ",eigenvalue, " CLPT N (m="+str(mm_cri_C)+" and n="+str(nn_cri_C)+"): ", N_c
ri_C, " FSDT N (m="+str(mm_cri_F)+" and n="+str(nn_cri_F)+"): ",N_cri_F, " CLPT error %: ",N_err_C, " FSDT 
error %: ",N_err_F)+"\n"+"\n")   
   
                            # Write the output data into the result excel file   
                            results_excel.write("%20.2f %20.2f %20.2f %20.2f %20.2f %20.2f" %(ratio_a0b0, k_E, k_C, k
_F, N_err_C, N_err_F )+"\n")   
                results.close()   
                results_excel.close()   
   
# Saving the model         
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]           

 

• Example code to construct the composite panel model with clamped boundary 

condition  

 

# Importing necessary modules   
from abaqus import *   
from abaqusConstants import *   
from caeModules import *   
from driverUtils import executeOnCaeStartup   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Paths   
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save_path='C:/Users/……………………………………./Model/cl/comp_cl_buckling'   
   
# Given edge load (N/mm)   
Edge_load = 1.0    
   
# Material properties    
# In this case, material is Carbon/epoxy,Hexply 8552S/37RC/AGP280/C   
mats=[]   
mats.append(   
{ "mat_des" : "Carbon_epoxy",   
"E1":54000, "E2":54000, "Nu12":0.05,   
"G12":4.5e3, "G13":4.5e3, "G23":4.5e3}   
)   
   
# Skin geometry   
# sk_x is the unloaded edge   
# sk_y is the loaded edge   
sk_xs  = []   
sk_ys  = []   
ply_ts = [0.28]   
for xdist in range(100, 505, 5):   
    sk_xs.append(xdist)   
for ydist in range(100, 105, 5):   
    sk_ys.append(ydist)   
#Ply sequences   
ply_props = []   
ply_props.append({"sym":True,"ply_sq":[0],"ply_repeat":[2,4]})   
ply_props.append({"sym":True,"ply_sq":[0,90],"ply_repeat":[1,2]})   
ply_props.append({"sym":True,"ply_sq":[45,0,-45,90],"ply_repeat":[1,2]})   
   
# Total number of models which will be created in this script   
total_count = 0   
for ply_prop in ply_props:   
    total_count += len(mats)*len(ply_ts)*len(ply_prop["ply_repeat"])*len(sk_xs)*len(sk_ys)   
print "Total model number: ", total_count   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]   
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                   
                            # Creating model of composite panel buckling (cpb)   
                            print "Creating model"   
                            model_name = "cpb_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+
str(sk_x_key)+str(sk_y_key)   
                            mdb.Model(modelType=STANDARD_EXPLICIT, name=model_name)   
                            mn=mdb.models[model_name]   
                               
                            # Creating material   
                            print "Creating model"   
                            mn.Material(name=mat["mat_des"])   
                            mn.materials[mat["mat_des"]].Elastic(   
                                type=LAMINA, table=((   
                                mat["E1"], mat["E2"],mat["Nu12"],    
                                mat["G12"], mat["G13"], mat["G23"]), ))   
                                
                            # Creating sketch of skin   
                            print "Creating sketch of skin"   
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                            mn.ConstrainedSketch(name='__profile__', sheetSize=200.0)   
                            mn.sketches['__profile__'].rectangle(point1=(0.0, 0.0), point2=(sk_x, sk_y))       
   
                            # Creating part of skin   
                            print "Creating part of skin"   
                            mn.Part(dimensionality=THREE_D, name='Skin', type=DEFORMABLE_BODY)   
                            mn.parts['Skin'].BaseShell(sketch=mn.sketches['__profile__'])   
                            del mn.sketches['__profile__']   
   
                            # Creating Layup orientation    
                            print "Creating Layup orientation"   
                            layupOrientation = None   
                            p_sk = mn.parts['Skin']   
                            f_sk, e_sk, d_sk = p_sk.faces, p_sk.edges, p_sk.datums   
                            faces = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            region_sk=regionToolset.Region(faces=faces)   
                            compositeLayup = p_sk.CompositeLayup(   
                                name='CompositeLayup-1', description='', elementType=SHELL,    
                                offsetType=MIDDLE_SURFACE, symmetric=ply_prop["sym"],    
                                thicknessAssignment=FROM_SECTION)   
                            compositeLayup.Section(preIntegrate=OFF, integrationRule=SIMPSON,    
                                thicknessType=UNIFORM, poissonDefinition=DEFAULT, temperature=GRADIENT,    
                                useDensity=OFF)   
                            compositeLayup.ReferenceOrientation(orientationType=GLOBAL, localCsys=None,    
                                fieldName='', additionalRotationType=ROTATION_NONE, angle=0.0, axis=AXIS_3)   
                               
                            ply_sq = []   
                            for rep in range(ply_repeat):   
                                for ply_ang in ply_prop["ply_sq"]:   
                                    ply_sq.append(ply_ang)   
                            for ply_n,ply_ang in enumerate(ply_sq):   
                                compositeLayup.CompositePly(suppressed=False, plyName='Ply-
'+str(ply_n+1), region=region_sk, material=mat["mat_des"], thicknessType=SPECIFY_THICKNESS, thicknes
s=ply_t, orientationType=SPECIFY_ORIENT, orientationValue=ply_ang, additionalRotationType=ROTATIO
N_NONE, additionalRotationField='', axis=AXIS_3, angle=0.0, numIntPoints=3)   
   
                            # Mesh control of skin   
                            print "Mesh control of skin"   
                            pickedRegions = f_sk.getSequenceFromMask(mask=('[#1 ]', ), )   
                            p_sk.setMeshControls(regions=pickedRegions, elemShape=QUAD, technique=SWEEP)   
   
                            # Mesh seed of skin   
                            print "Mesh seed of skin"   
                            p_sk.seedPart(deviationFactor=0.1, minSizeFactor=0.1, size=5.0)   
   
                            # Generate mesh of skin   
                            print "Generate mesh of skin"   
                            p_sk.generateMesh()   
   
                            # Creating buckling step   
                            print "Creating Buckling step"   
                            mn.BuckleStep(name='Buckle-
Step', previous='Initial', numEigen=8, vectors=28, maxIterations=3000)   
   
                            # Creating assembly instances   
                            print "Creating assembly instances"   
                            a_sk = mn.rootAssembly   
                            a_sk.DatumCsysByDefault(CARTESIAN)   
                            a_sk.Instance(dependent=ON, name='Skin-1', part=p_sk)   
   
                            # Creating boundary conditions at initial step   
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                            print "Creating boundary conditions at initial step"   
                            edges_bc = {'[#2 ]':'loaded_edge','[#8 ]':'opp_loaded_edge','[#5 ]':'unloaded_edges'}   
                            e_sk = a_sk.instances['Skin-1'].edges   
                            for edge_key,edge_des in edges_bc.items():   
                                    edges1 = e_sk.getSequenceFromMask(mask=(edge_key, ), )   
                                    a_sk.Set(edges=edges1, name='Set_'+edge_des)   
                            v_sk = a_sk.instances['Skin-1'].vertices   
                            verts_bc = {'[#8 ]':'lb_cor','[#2 ]':'rt_cor'}   
                            for vert_key,vert_des in verts_bc.items():   
                                    verts1 = v_sk.getSequenceFromMask(mask=(vert_key, ), )   
                                    a_sk.Set(vertices=verts1, name='Set_'+vert_des)    
   
                            # Assigning boundary conditions using sets   
                            print "Assigning boundary conditions using sets"   
                            region = a_sk.sets['Set_lb_cor']   
                            mn.DisplacementBC(name='BC_lb_cor', createStepName='Initial',    
                                region=region, u1=SET, u2=SET, u3=SET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_rt_cor']   
                            mn.DisplacementBC(name='BC_rt_cor', createStepName='Initial',    
                                region=region, u1=UNSET, u2=SET, u3=UNSET, ur1=UNSET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_loaded_edge']   
                            mn.DisplacementBC(name='BC_loaded_edge', createStepName='Initial',    
                                region=region, u1=UNSET, u2=UNSET, u3=SET, ur1=UNSET, ur2=SET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_opp_loaded_edge']   
                            mn.DisplacementBC(name='BC_opp_loaded_edge', createStepName='Initial',    
                                region=region, u1=SET, u2=UNSET, u3=SET, ur1=UNSET, ur2=SET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
                            region = a_sk.sets['Set_unloaded_edges']   
                            mn.DisplacementBC(name='BC_unloaded_edges', createStepName='Initial',    
                                region=region, u1=UNSET, u2=UNSET, u3=SET, ur1=SET, ur2=UNSET, ur3=UNSET,    
                                amplitude=UNSET, distributionType=UNIFORM, fieldName='', localCsys=None)   
   
                            # Appliying shell edge load on the skin loaded edge   
                            print "Appliying shell edge load on the skin loaded edge"   
                            load_edges=['[#2 ]']   
                            for load_key,load_edge in enumerate(load_edges):   
                                s_edges = e_sk.getSequenceFromMask(mask=(load_edge, ), )   
                                region = a_sk.Surface(side1Edges=s_edges, name='Surf_loaded_edge'+str(load_key+1))   
                                mn.ShellEdgeLoad(name='Load_buckling'+str(load_key+1), createStepName='Buckle-
Step',    
                                    region=region, magnitude=Edge_load, distributionType=UNIFORM, field='',    
                                    localCsys=None)   
   
                            # Creating job   
                            print "Creating job"   
                            job_name ='job_'+ model_name   
                            mdb.Job(name=job_name, model=model_name, description='', type=ANALYSIS,    
                                atTime=None, waitMinutes=0, waitHours=0, queue=None, memory=90,    
                                memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,    
                                explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, echoPrint=OFF,    
                                modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, userSubroutine='',    
                                scratch='', resultsFormat=ODB, multiprocessingMode=DEFAULT, numCpus=1,   
                                numGPUs=0)   
try:   
    del mdb.models['Model-1']      
except:   
    None   
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# Saving the model   
print "Saving model"   
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]   

• Example code to process finite element results for the composite panel model with 

clamped boundary condition 

# Importing necessary modules   
from abaqus import *   
from abaqusConstants import *   
from caeModules import *   
from driverUtils import executeOnCaeStartup   
from part import *   
from material import *   
from section import *   
from assembly import *   
from step import *   
from interaction import *   
from load import *   
from mesh import *   
from optimization import *   
from job import *   
from sketch import *   
from visualization import *   
from connectorBehavior import *   
import math   
import time   
   
# Counter for script time   
start_t_time = time.time()   
   
# Defining maximum number of submittions can be given at the same time   
max_sub = 5   
ini_sub = 0   
   
# Paths   
save_path='C:/Users/……………………………………./Model/cl/comp_cl_buckling'   
model_path = r'C:/Users/……………………………………./Model/cl/'   
   
# Initialize results' path   
result_path = r"C:\Users\…………………………………….\Results\comp_cl_buckling_loads"   
result_excel_path = r"C:\Users\…………………………………….\Results\excel\comp_cl_buckling_loads"   
   
# Given edge load (N/mm)   
Edge_load = 1.0   
   
# Material properties    
# In this case, material is Carbon/epoxy,Hexply 8552S/37RC/AGP280/C   
mats=[]   
mats.append(   
{ "mat_des" : "Carbon_epoxy",   
"E1":54000, "E2":54000, "Nu12":0.05,   
"G12":4.5e3, "G13":4.5e3, "G23":4.5e3}   
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)   
   
# Skin geometry   
# sk_x is the unloaded edge   
# sk_y is the loaded edge   
sk_xs  = []   
sk_ys  = []   
ply_ts = [0.28]   
for xdist in range(100, 505, 5):   
    sk_xs.append(xdist)   
for ydist in range(100, 105, 5):   
    sk_ys.append(ydist)   
   
#Ply Sequence   
ply_props = []   
ply_props.append({"sym":True,"ply_sq":[0],"ply_repeat":[2,4]})   
ply_props.append({"sym":True,"ply_sq":[0,90],"ply_repeat":[1,2]})   
ply_props.append({"sym":True,"ply_sq":[45,0,-45,90],"ply_repeat":[1,2]})   
   
# Total number of models which will be created in this script   
total_count = 0   
for ply_prop in ply_props:   
    total_count += len(mats)*len(ply_ts)*len(ply_prop["ply_repeat"])*len(sk_xs)*len(sk_ys)   
print "Total model number: ", total_count   
count = 1   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]   
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            # Job name is described    
                            start_time = time.time()   
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                            print "Model number: ",count   
                            job_model = mdb.jobs[job_name]   
                               
                            # Checked to see if the job has already been submitted   
                            try:   
                                dir_logfile = model_path + job_name+".log"   
                                logfile = open(dir_logfile)   
                                comp = False   
                                   
                                # Checked to see that the job is completed   
                                for line in logfile:   
                                    if "Abaqus JOB "+job_name+" COMPLETED" in line:   
                                        print " completed"   
                                        comp = True   
                                logfile.close()   
                                   
                                # Submittion check   
                                if comp==False:   
                                    job_model.submit(consistencyChecking=OFF)   
                                    ini_sub +=1   
                                       
                                    # Multi-submittion is permitted for this code   
                                    # Maximum number of submittion is checked   
                                    if ini_sub >= max_sub:   
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                                        job_model.waitForCompletion()   
                                        ini_sub = 0   
                                        end_time = time.time()   
                                else:   
                                    end_time = time.time()   
                                           
                            except:   
                                # Submit the job   
                                job_model.submit(consistencyChecking=OFF)   
                                ini_sub +=1   
                                   
                                # Multi-submittion is permitted for this code   
                                # Maximum number of submittion is checked   
                                if ini_sub >= max_sub:   
                                    job_model.waitForCompletion()   
                                    ini_sub = 0   
                                    end_time = time.time()   
                                       
                            # Estimated time is calculated   
                            if count%(max_sub*2) == 0:   
                                em=divmod((total_count-count)*(end_time-start_time)/max_sub,60)   
                                en=divmod(em[0],60)   
                                print "Estimated remaning time: " ,en[0],en[1],em[1]   
                            count+=1   
                               
# Checked whether all analyses are completed   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]   
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                            job_model.waitForCompletion()   
   
for mat_key,mat  in enumerate(mats):   
    for ply_t_key,ply_t  in enumerate(ply_ts):   
        for ply_prop_key,ply_prop in enumerate(ply_props):   
            ply_repeats = ply_prop["ply_repeat"]       
            for ply_repeat_key, ply_repeat in enumerate(ply_repeats):   
                # Writing the input data into the result file   
                results = open(result_path+"_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key
)+".txt","w+")   
                results_excel = open(result_excel_path+"_"+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply
_repeat_key)+".txt","w+")   
                   
                # Writing the excel graphs' headings into the result file which is used to construct excel   
                results_excel.write("%20s %20s %20s %20s %20s %20s" %("a0/b0","k0-2D*(E)","k0-
2D*(C)","k0-2D*(F)","error(E-C)","error(E-F)" )+"\n"+"\n")   
           
                # Writing the material properties into the result file   
                results.write("%-25s %20s " %("Material description: ", mat["mat_des"])+"\n")   
                results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("Material E1: ", mat["E1"], " Material E2: ", mat["E2"], " Material Nu12: ", mat["Nu12"])+"\n"
)   
                results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("Material G12: ", mat["G12"], " Material G13: ", mat["G13"], " Material G23: ", mat["G23"])+"\
n")   
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                # Writing the ply thickness and symmetric condition into the result file   
                results.write("%-25s %6.2f %-
20s %10s" %("Ply thickness: ", ply_t," Ply symmetric: ", ply_prop["sym"])+"\n")   
                   
                # Ply directions and angles are described to use in A,B,D matrices   
                ply_sq = []   
                for rep in range(ply_repeat):   
                    for ply_ang in ply_prop["ply_sq"]:   
                        ply_sq.append(ply_ang)   
                if ply_prop["sym"]:   
                    for ply_ang in reversed(ply_sq):   
                        ply_sq.append(ply_ang)   
   
                # Writing the ply directions and angles into the result file   
                results.write("%-25s" %("Ply Directions: "))   
                for ply_ang in ply_sq:   
                    results.write("%6d" %(ply_ang))   
                results.write("\n"+"\n")   
       
                for sk_x_key,sk_x  in enumerate(sk_xs):   
                        for sk_y_key,sk_y  in enumerate(sk_ys):   
                            # Defining the job name   
                            job_name ='job_cpb_'+str(mat_key)+str(ply_t_key)+str(ply_prop_key)+str(ply_repeat_key)+s
tr(sk_x_key)+str(sk_y_key)   
                       
                            # Obtain the eigenvalue (Critical buckling load according to FEA)   
                            dir_datfile = model_path + job_name+'.dat'   
                            wordlist = []   
                            starttorecord = False   
                            datfile = open(dir_datfile)   
                            for line in datfile:   
                                if " MODE NO      EIGENVALUE" in line:   
                                    starttorecord = True   
                                for word in line.split():   
                                    if word=='THE':   
                                        starttorecord = False   
                                    if starttorecord:   
                                        wordlist.append(word)   
                            if   float(wordlist[4])>0.0:   
                                eigenvalue = float(wordlist[4])   
                            elif float(wordlist[6])>0.0:   
                                eigenvalue = float(wordlist[6])   
                            elif float(wordlist[8])>0.0:   
                                eigenvalue = float(wordlist[8])   
                            else:   
                                eigenvalue = 0.0   
                            datfile.close()   
   
                            # Total number of composite layers are calculated   
                            ply_n_total = len(ply_sq)   
                            h_tot = ply_n_total * ply_t        
                               
                            # Each layers of "h" matrix is the vertical distance from the mid-
plane of the plate (z=0) to the upper surface of the considered lamina(layer)   
                            h = []    
                            for ply_n in range(ply_n_total+1):   
                                h.append(-h_tot/2.0 + ply_n * ply_t)   
                                   
                            # Initialize the A and D matrices      
                            D11=0.0;  D12=0.0;  D22=0.0;  D66=0.0; A44=0.0; A55=0.0   
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                            # "kk" is the shear correction coefficient   
                            kk = 5.0/6.0   
                               
                            # A and D matrices are calculated in this part   
                            for ply_n,ply_ang in enumerate(ply_sq):   
                                # In-plane compliance coefficients for orthotropic materials in material axis   
                                S11 = 1.0/mat["E1"]   
                                S12 = -mat["Nu12"]/mat["E1"]   
                                S22 = 1.0/mat["E2"]   
                                S66 = 1.0/mat["G12"]   
                                   
                                # In-plane elastic coefficients for orthotropic materials in material axis   
                                Q11 = S22/(S11*S22-S12**2.0)   
                                Q12 = -S12/(S11*S22-S12**2.0)   
                                Q22 = S11/(S11*S22-S12**2.0)   
                                Q66 = 1.0/S66   
                                   
                                # Problem axis angle cosine and sine values   
                                cs = math.cos(ply_ang*math.pi/180.0)   
                                sn = math.sin(ply_ang*math.pi/180.0)   
                                   
                                # Transformation of in-
plane elastic coefficients for orthotropic materials in problem axis    
                                bQ11 = Q11*cs**4+2.0*(Q12+2.0*Q66)*(cs**2.0)*(sn**2.0)+Q22*sn**4.0   
                                bQ22 = Q11*sn**4+2.0*(Q12+2.0*Q66)*(cs**2.0)*(sn**2.0)+Q22*cs**4.0   
                                bQ12 = Q12*cs**4+(Q11+Q22-4.0*Q66)*(cs**2.0)*(sn**2.0)+Q12*sn**4.0   
                                bQ66 = (Q11+Q22-2.0*Q12)*(cs**2.0)*(sn**2.0)+Q66*((cs**2.0)-(sn**2.0))**2.0   
                                   
                                # Q1=[G23 0 ; 0 G13]   
                                # T1 = [cs -sn; sn cs]   
                                # T1_inv = [cs sn; -sn cs]   
                                # bbQ = T1_inv * Q1 *T1   
                                # bbQ is the 2x2 matrix   
                                bbQ44 = cs**2.0*mat["G23"]+sn**2.0*mat["G13"]   
                                bbQ55 = sn**2.0*mat["G23"]+cs**2.0*mat["G13"]   
                                   
                                # Necessary values of A and D matrices   
                                D11 += bQ11 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D22 += bQ22 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D12 += bQ12 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                D66 += bQ66 * (h[ply_n+1]**3.0-h[ply_n]**3.0)   
                                A44 += bbQ44 * (h[ply_n+1]-h[ply_n])   
                                A55 += bbQ55 * (h[ply_n+1]-h[ply_n])   
                               
                            # D matrix values   
                            D11/=3.0   
                            D22/=3.0   
                            D12/=3.0   
                            D66/=3.0   
                               
                            # Composite buckling parameters according to FEA   
                            D_star = (D12+2.0*D66)/(D11*D22)**0.5   
                            ratio_a0b0 = (sk_x*(D22)**0.25)/(sk_y*(D11)**0.25)   
                               
                            # Composite plate buckling coefficient according to FEA   
                            k0_E = (eigenvalue * sk_y**2.0)/(pi*(D11*D22)**0.5)   
                            k_E = k0_E-2.0*D_star   
                               
                            # The Classical Laminated Plate Theory   
                            # Critical bucling load when n=1 and m variying   
                            # "a" equals to "sk_x" (unloaded edge) and "b" equals to "sk_y" (loaded edge)   
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                            N_Cs = []   
                            nn_Cs =[]   
                            mm_Cs =[]   
                            pi = math.pi   
                               
                            # Critical bucling load calculation for clamped plate   
                            for num1 in range(10):   
                                nn_C = num1 + 1   
                                for num2 in range(10):   
                                    mm_C = num2 + 1   
                                    if nn_C==mm_C:   
                                        N_C = (4.0*pi**2.0*D11*mm_C**2.0)/sk_x**2.0+(4.0*pi**2.0*D22*sk_x**2.0)/(sk_y**4
.0*mm_C**2.0)+16.0*pi**2.0/(3.0*sk_y**2.0)*(0.5*D12+D66)   
                                    else:   
                                        N_C = (D11*pi**2.0/sk_x**2.0*(nn_C**4.0+6.0*nn_C**2.0*mm_C**2.0+mm_C**4.0)+D2
2*pi**2.0*16.0*sk_x**2.0/(3.0*sk_y**4.0)+(0.5*D12+D66)*16.0*pi**2.0/(3.0*sk_y**2.0)*(nn_C**2.0+mm_
C**2.0))/(nn_C**2.0+mm_C**2.0)   
                                    nn_Cs.append(nn_C)   
                                    mm_Cs.append(mm_C)   
                                    N_Cs.append(N_C)   
                            N_key_C = N_Cs.index(min(N_Cs))   
                            mm_cri_C = mm_Cs[N_key_C]   
                            nn_cri_C = nn_Cs[N_key_C]   
                               
                            # Critical buckling load according to CLPT   
                            N_cri_C = N_Cs[N_key_C]   
                               
                            # Percentage error of critical buckling load between FEA result and CLPT result    
                            N_err_C = abs(N_cri_C-eigenvalue)/eigenvalue*100.0   
                               
                            # Composite plate buckling coefficient according to CLPT   
                            k0_C = (N_cri_C * sk_y**2.0)/(pi*(D11*D22)**0.5)   
                            k_C = k0_C-2.0*D_star   
                               
                            #The First-Order Shear Deformation Theory   
                            N_Fs = []   
                            nn_Fs=[]   
                            mm_Fs =[]   
                               
                            # Critical bucling load calculation for clamped plate   
                            for num1 in range(10):   
                                nn_F = num1 + 1   
                                for num2 in range(10):   
                                    mm_F = num2 + 1   
                                    if(1.0-2.0*nn_F**2.0+mm_F**4.0-2.0*mm_F**2.0*nn_F**2.0-
2.0*mm_F**2.0+nn_F**4.0)!=0.0 :   
                                        if mm_F==1:   
                                            G1 = pi**4.0*(3.0*D11*sk_y**4.0+2.0*D12*sk_x**2.0*sk_y**2.0+3.0*D22*sk_x**4.0+
4.0*D66*sk_x**2.0*sk_y**2.0)/(4.0*sk_x**3.0*sk_y**3.0)   
                                            G2 = -(pi**2.0*sk_y*(3.0*nn_F**4.0-12.0*nn_F**2.0))/(16.0*sk_x*(nn_F**4.0-
4.0*nn_F**2.0))   
                                            G3 = -(8.0*sk_y*(-nn_F**3.0+(-1.0)**(nn_F+2.0)*nn_F**3.0))/(3.0*sk_x*(nn_F**4.0-
4.0*nn_F**2.0))   
                                            G4 = kk*pi**2.0*(A44*sk_x**2.0+A55*nn_F**2.0*sk_y**2.0)/(4.0*sk_x*sk_y)   
                                            G5 = -(pi**2.0*sk_y*(nn_F**6.0-4.0*nn_F**4.0))/(4.0*sk_x*(nn_F**4.0-
4.0*nn_F**2.0))   
                                            N_F = (-(G1*G5+G2*G4)-((G1*G5+G2*G4)**2.0-4.0*(G2*G5-
G3**2.0)*G1*G4)**0.5)/(2.0*(G2*G5-G3**2.0))   
                                        else:   
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                                            H1 = pi**4.0*(D11*sk_y**4.0*(18.0*mm_F**2.0+3.0+3.0*mm_F**4.0)+D12*sk_x**2.
0*sk_y**2.0*(8.0+8.0*mm_F**2.0)+16.0*D22*sk_x**4.0+D66*sk_x**2.0*sk_y**2.0*(16.0+16.0*mm_F**2.0)
)/(32.0*sk_x**3.0*sk_y**3.0)   
                                            H2 = -(pi**2.0*sk_y*(3.0*mm_F**6.0+3.0+3.0*nn_F**4.0-3.0*mm_F**4.0-
3.0*mm_F**2.0+3.0*mm_F**2.0*nn_F**4.0-12.0*mm_F**2.0*nn_F**2.0-6.0*nn_F**2.0-
6.0*mm_F**4.0*nn_F**2.0))/(32.0*sk_x*(1.0-2.0*nn_F**2.0+mm_F**4.0-2.0*mm_F**2.0*nn_F**2.0-
2.0*mm_F**2.0+nn_F**4.0))   
                                            H3 = -(8.0*sk_y*(-mm_F*nn_F**3.0+(-
1.0)**(mm_F+nn_F+1.0)*mm_F*nn_F**3.0))/(3.0*sk_x*(1.0-2.0*nn_F**2.0+mm_F**4.0-
2.0*mm_F**2.0*nn_F**2.0-2.0*mm_F**2.0+nn_F**4.0))   
                                            H4 = kk*pi**2.0*(A44*sk_x**2.0+A55*nn_F**2.0*sk_y**2.0)/(4.0*sk_x*sk_y)   
                                            H5 = -(pi**2.0*sk_y*(nn_F**2.0+nn_F**6.0-
2.0*mm_F**2.0*nn_F**4.0+mm_F**4.0*nn_F**2.0-2.0*nn_F**4.0-
2.0*mm_F**2.0*nn_F**2.0))/(4.0*sk_x*(1.0-2.0*nn_F**2.0+mm_F**4.0-2.0*mm_F**2.0*nn_F**2.0-
2.0*mm_F**2.0+nn_F**4.0))   
                                            N_F = (-(H1*H5+H2*H4)-((H1*H5+H2*H4)**2.0-4.0*(H2*H5-
H3**2.0)*H1*H4)**0.5)/(2.0*(H2*H5-H3**2.0))   
                                        mm_Fs.append(mm_F)   
                                        nn_Fs.append(nn_F)   
                                        N_Fs.append(N_F)   
                            N_key_F = N_Fs.index(min(N_Fs))   
                            mm_cri_F = mm_Fs[N_key_F]   
                            nn_cri_F = nn_Fs[N_key_F]   
                               
                            # Critical buckling load according to FSDT   
                            N_cri_F = N_Fs[N_key_F]   
                               
                            # Percentage error of critical buckling load between FEA result and FSDT result    
                            N_err_F = abs(N_cri_F-eigenvalue)/eigenvalue*100.0   
                               
                            # Composite plate buckling coefficient according to FSDT   
                            k0_F = (N_cri_F * sk_y**2.0)/(pi*(D11*D22)**0.5)   
                            k_F = k0_F-2.0*D_star   
                               
                            # Write the output data into the result file   
                            results.write("%-25s %6.2f %-20s %6.2f %-
20s %6.2f" %("    Skin length y: ", sk_y, " Skin length x: ", sk_x, " Total thickness: ",h_tot )+"\n")   
                            results.write("%-25s %6.2f %-20s %6.2f %-20s %6.2f %-20s %6.2f %-
20s %6.2f" %("    Eigenvalue: ",eigenvalue, " CLPT N (m="+str(mm_cri_C)+" and n="+str(nn_cri_C)+"): ", N_c
ri_C, " FSDT N (m="+str(mm_cri_F)+" and n="+str(nn_cri_F)+"): ",N_cri_F, " CLPT error %: ",N_err_C, " FSDT 
error %: ",N_err_F)+"\n"+"\n")       
   
                            # Write the output data into the result excel file   
                            results_excel.write("%20.2f %20.2f %20.2f %20.2f %20.2f %20.2f" %(ratio_a0b0, k_E, k_C, k
_F, N_err_C, N_err_F )+"\n")   
                results.close()   
                results_excel.close()   
   
# Saving the model         
mdb.saveAs(pathName=save_path+'.cae')   
   
# Stoping the time calculater   
end_t_time = time.time()   
m=divmod(end_t_time-start_t_time,60)   
n=divmod(m[0],60)   
print "Total time: " ,n[0],n[1],m[1]           
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