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ABSTRACT 

 

DATA PLANE-BASED DEFENSE SYSTEM AGAINST DDOS ATTACKS 

FOR SOFTWARE DEFINED NETWORKS 

 

Gözütok, Ahmet 

M.S., Department of Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı 

 

March 2018, 97 pages 

 

Software Defined Network (SDN) is a new networking architecture. It offers 

promising advances and provides remarkable solutions to certain challenges in 

this area, yet it is still vulnerable to Distributed Denial of Service (DDoS) attacks. 

DDoS attacks cause devastating impacts on the SDN architecture, which may lead 

to failure of an entire SDN network. There is no generally accepted network 

defense system against these attacks for SDN architecture; in addition, there are 

many unresolved problems in this area. This thesis provides the MiddleModule 

system, which is a Network/Transport-Level DDoS attack detection and 

prevention system framework designed for SDN architecture. The MiddleModule 

system proposes a data plane-based DDoS defense system, which means this 

system suggests deploying the monitoring, detection and the prevention 

capabilities into the data plane devices, namely OpenFlow switches. In addition, 

the thesis states several requirements that a data plane-based defense system 
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should satisfy and provides several attack detection algorithms against various 

Network/Transport-Level DDoS attack types. In the scope of this thesis, an 

extensive evaluation is performed on the proposed framework and on the 

detection algorithms, using different evaluation scenarios. The evaluation results 

are compared with the similar studies in the literature. Moreover, a detailed 

literature analysis is provided in this thesis, by explaining and classifying the 

related studies.  

Keywords: SDN, Software-Defined Networks, DDoS, Distributed Denial of 

Service, network security 
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ÖZ 

 

YAZILIM TANIMLI AĞLAR İÇİN DAĞITILMIŞ HİZMET REDDİ 

SALDIRILARINA KARŞI VERİ KATMANI TABANLI SAVUNMA SİSTEMİ 

 

Gözütok, Ahmet 

Yüksek Lisans. Elektrik ve Elektronik Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Cüneyt Fehmi Bazlamaçcı 

 

Mart 2018, 97 sayfa 

 

Yazılım Tanımlı Ağ (YTA) yeni bir ağ mimarisidir. Bu mimari, umut verici 

gelişmeler sunmakta ve bu alandaki birtakım zorluklara karşı dikkat çekici 

çözümler sağlamaktadır ancak Dağıtılmış Hizmet Reddi (DHR) saldırılarına karşı 

halen savunmasızdır. DHR saldırılarının, YTA mimarisi üzerinde yıkıcı etkileri 

vardır ve bu etkiler, bir YTA ağının tamamen çökmesine sebep olabilir. YTA 

mimarisine yönelik bu saldırılara karşı genel olarak kabul gören bir ağ savunma 

sistemi bulunmamaktadır. Hatta bu alandaki birçok problem hala çözülememiştir. 

Bu tez, YTA mimarisi için tasarlanmış bir Ağ/İletim Seviyesi DHR saldırı tespit 

ve önleme sistemi olan MiddleModule sistemini sunmaktadır. MiddleModule 

sistemi, veri katmanı tabanlı bir DHR savunma sistemi önermektedir, yani bu 

sistemde, veri izleme, saldırı tespiti ve saldırı önleme yetenekleri, veri katmanında 

bulunan cihazlara kazandırılmaktadır. Bu tez ayrıca, veri katmanı tabanlı bir ağ 

güvenlik sisteminin sahip olması gereken birtakım özellikleri belirtmekte ve 
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çeşitli Ağ/İletim Seviyesi DHR saldırı türlerine karşı bazı saldırı tespit 

algoritmaları sunmaktadır. Bu tez dahilinde, önerilen savunma mimarisi ve saldırı 

algılama algoritmaları, çeşitli test senaryolarıyla, kapsamlı bir değerlendirmeye 

tabi tutulmuştur. Değerlendirme sonuçları, literatürdeki benzer çalışmalarla 

karşılaştırılmıştır. Ayrıca, bu tezde, konu ile ilgili çalışmalar, açıklanarak ve 

sınıflandırılarak, detaylı bir literatür analizi de sunulmaktadır. 

Anahtar Kelimeler: YTA, Yazılım Tanımlı Ağ, DHR, Dağıtılmış Hizmet Reddi, ağ 

güvenliği 
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CHAPTER 1 

 

INTRODUCTION 

 

Software Defined Network (SDN) is a new networking paradigm and architecture. It 

offers promising advances and attracts the attention of both the academia and 

industry, yet it is vulnerable to Distributed Denial of Service (DDoS) attacks [1]. 

DDoS attacks have always been a major problem in networking area. However, for 

SDN networks, the effects of DDoS attacks are more devastating than traditional 

networks. In fact, SDN may become the real target of these attacks and an entire 

SDN network may become unavailable to legitimate users because of these attacks 

[1]. Defense methods against DDoS for SDN is still an unresolved area, and there is 

no dominant solution accepted for this problem [2]. In this thesis, we suggest that a 

data plane-based DDoS detection and mitigation technique, which satisfies several 

requirements, would provide an effective defense mechanism against DDoS attacks 

for SDN environment. To substantiate our suggestion, we designed the 

MiddleModule system - a data plane-based detection and mitigation framework - and 

proposed several detection algorithms along with it and evaluated the proposed 

system extensively. 

1.1 Overview 

In networking, a malicious user may send malformed messages to a victim server to 

disrupt its accessibility by legitimate users, which is called as Denial of Service 

(DoS) attack. When a malicious host uses some bots or reflection technique to 

generate the DoS attack, it becomes a Distributed DoS (DDoS) attack.[3] A 

malicious user can easily generate a large amount of malicious traffic by using a 

DDoS attack, which threats both the victim servers and the underlying network. Due 

to advancements in networking area and the Malware-as-a-Service (MaaS) approach, 

the volume of DDoS attacks are increasing significantly [1]. A DDoS attack in the 
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order of Tbps has been recorded in 2016 [4]. 

Software-Defined Networking (SDN) and DDoS attacks, specifically the 

Network/Transport-Level DDoS attacks, have a contradictory relationship. SDN 

suggests a layered architecture, and in SDN, network is separated into application-

plane, control-plane and data-plane. SDN provides several advantages to detect a 

DDoS attack towards a victim host by using this layered approach, such as 

centralized-control, network-wide view and dynamical forwarding rules. However, 

despite these features, SDN itself may become the target of a DDoS attack. The 

layers of SDN or the communication channels between these layers can be the main 

targets and the SDN nodes may become inaccessible to legitimate users under a 

DDoS attack. Although there exist several studies in this area, there is no dominant 

solution for these problem; in addition, there remains many unresolved problems in 

this area. 

1.2 Aim of the Thesis 

Although SDN brings several great features in networking, the use of SDN is still 

very limited because of the vulnerabilities of SDN to DDoS Attacks [1]. In this 

thesis, we aim to clarify the main problems of SDN, which may lead to failure under 

DDoS attacks. In addition, we focus on providing a scalable and comprehensive 

defense mechanism which can effectively detect DDoS attacks with low system 

performance degradation and with high defense strength performance. We also aim 

to explain the well-known defense methods suggested in the literature so far and 

classify them.  

In this thesis, we suggest to use a data plane-based DDoS detection and mitigation 

technique. We first state several requirements that a data plane-based method should 

satisfy to obtain the best performance. By considering these requirements, we 

provide the MiddleModule framework, where each edge-switch of an SDN network 

collects statistics and applies statistical-based detection algorithms on incoming 

packets. If any malicious activity is detected, the appropriate mitigation technique is 

applied by that edge-switch. To provide such functionality effectively, we use 
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multiple location defensive approach, which means, different detection functions are 

performed at different locations of the network. With the proposed defense system, 

we do not send the malicious traffic to the controller because we aim to avoid 

controller overloading and switch-controller communication channel congestion 

problems but instead we detect and react the malicious traffic at the closest switch to 

the source of the malicious activity. We perform functional analysis and performance 

evaluations for the proposed method and test results are compared with similar 

studies found in the literature. Our test and comparison results suggest that the 

proposed system performs well. 

1.3 Contributions of the Thesis 

The contributions of this thesis can be summarized as follows; 

1. We provide a comprehensive explanation of the effects of 

Network/Transport-Level DDoS attacks on SDN. We explain and compare the 

existing defense methods. 

 

2. We state some basic requirements that a data plane-based DDoS defense 

system for SDN should satisfy, such as having lightweight algorithms and using 

multiple-location defense approach.  

 

3. By using the suggested requirements, we provide a data plane-based DDoS 

defense framework, the MiddleModule framework, which brings monitoring, 

detection and prevention capabilities to the edge-switches. We also provide several 

DDoS detection algorithms expected to be effective against the most common 

examples of each Network/Transport-Level attack type and implement these 

algorithms within the MiddleModule framework.  

 

4. An extensive evaluation is performed to demonstrate that the proposed 

method is capable of effectively defending an SDN network against 

Network/Transport-Level DDoS attacks. The proposed method is simulated on 

OMNET 4.2++ environment to perform a detailed functional analysis under different 
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test scenarios. In addition to simulation, the proposed method is also emulated on the 

Mininet environment to analyze the performance of the method and to carry-out the 

proof-of-work. By using the test results, the proposed method is compared with the 

similar studies found in the literature and the advantages and disadvantages are 

discussed throughout the thesis. 

1.4 Thesis Outline 

The thesis is organized as follows; 

In Chapter 2, the background information about both the SDN and DDoS concepts 

are given. The contradictory relationship between SDN and DDoS is discussed. The 

well-known DDoS mitigation methods for SDN in the literature are classified and 

explained.  

In Chapter 3, the proposed framework, the MiddleModule framework, is explained 

and several requirements that a data plane-based DDoS mitigator should satisfy are 

suggested with their justifications. The sub-blocks of the proposed framework are 

defined and explained in detail.  

In Chapter 4, several DDoS detection algorithms, designed to operate within the 

MiddleModule system, are proposed. The way these algorithms are used within the 

framework is described. The pseudo-codes of these algorithms are given, and the 

capabilities of these algorithms are discussed. 

In Chapter 5, the evaluation phase is explained by describing our test platforms, test 

scenarios and test results. A detailed functional analysis is performed in OMNET 

4.2++ simulation environment and an extensive performance evaluation is performed 

in Mininet emulation environment. The details of these processes, and the results of 

the associated tests are explained in this chapter.  

Chapter 6 concludes the study stating also some potential future directions. 
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CHAPTER 2 

 

BACKGROUND AND LITERATURE OVERVIEW 

 

2.1 BACKGROUND INFORMATION 

2.1.1 Software-Defined Network 

Software-Defined Network (SDN) is a new paradigm in networking area. SDN 

proposes a different network architecture than traditional network by decoupling the 

network into different planes, application-plane, control-plane and data-plane [1]. In 

traditional networks, the two-fundamental networking processes, routing and 

forwarding, are handled by routers. Routers are distributed across the network, and 

they operate in a stand-alone fashion by communicating with each other. On the 

other hand, as shown in Figure 2.1, in SDN, these two processes are handled at 

different devices, which are deployed at different layers of network. The routing 

decisions are made by a logically centralized device, which is deployed at control-

plane of the network, called as controller. The controller have a global network view 

and it runs the required routing algorithms, along with the other algorithms that 

belong to application-plane [5]. In a sense, control-plane represents the intelligent 

part of the network. On the other hand, the forwarding process is handled by 

logically and physically distributed devices, which are deployed at data-plane of the 

network, called as switches. The switches forward packets according to the 

forwarding rules received from the controller; therefore, the data-plane is the 

unintelligent part of the network [1]. Each switch communicates with the controller 

over a secure channel and receives the forwarding rules over that channel by using a 

well-defined protocol. In networking society, OpenFlow protocol is widely used as 

the switch-controller communication protocol [6]. 
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In SDN architecture, all hosts are directly connected to the data-plane devices, as 

shown in Figure 2.1 and data-plane devices (switches) are connected to each other to 

provide required connectivity between hosts. When a switch receives a packet from a 

host, it checks if there exists a matching flow entry in its flow table for the received 

packet. If there is a match, the switch forwards the packet to one of its ports 

according to the corresponding forwarding rule. If there is no match, then by using 

the switch-controller communication channel, the switch sends a packet_in message 

to the controller with the header portion of the received packet while the data portion 

of the packet is stored in the switch buffer. SDN Controller processes the packet_in 

query by using its routing algorithms and sends the corresponding forwarding rule to 

the switch. Switch stores the forwarding rule to its forwarding table, dequeues the 

stored data portion of the packet, and forwards the packet to its corresponding port. 

This packet will be forwarded from switch to switch lying in the corresponding 

routing path and finally the packet will arrive at the destination host [1]. 

 

Figure 2.1: The basic Model of SDN  

The separation of data plane and control plane, which is the main idea behind the 

SDN, has a longer history than SDN architecture [5]. In order to improve the 

telephone networks, early attempts of data/control plane separation is applied around 
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1980s and 1990s [5]. In addition, active networks or programmable data plane 

concepts are also not very new in networking area. Programmable switches were 

discussed around 1990s and several methods to realize this concept were suggested 

such as downloading some instruction sets into switches and altering the packet 

forwarding rules of the switches [5]. SDN, on the other hand, represents a more 

compact and protocol-based architecture. In fact, the origins of SDN can be 

considered as the studies and ideas around OpenFlow protocol [5]. There are several 

advantages of SDN/OpenFlow, such as providing centralized management, adjusting 

network-wide traffic according to changing needs, managing network resources via 

automated and dynamic SDN programs, and managing the network independent of 

vendors [7]. However, the real motivation behind the SDN/OpenFlow architecture is 

isolation and virtualization [8]. SDN/OpenFlow allows network engineers to operate 

different network routing rules and to provide different connection trees on the same 

network for different isolated traffics belonging to different users simultaneously. 

SDN has too many advantages for the academic use and for the business use [8]. 

Several companies including Google, Akamai, Cisco and Microsoft are members of 

Open Networking Foundation (ONF) with the aim of advancing SDN using open 

standards. Recently, Google built an SDN-based interconnection network to connect 

its data centers around the globe. Although SDN draws attention in networking 

society, industry experts suggest that security issues of SDN are still immature and 

further investigation in security of SDN is required [5]. 

2.1.2 Distributed Denial of Service 

Denial of Service (DoS) attacks are aimed to disrupt the accessibility of a victim 

server by sending malformed messages. The attacker may have many incentives to 

attack a server such as financial gain, revenge, ideological belief, intellectual 

challenge or cyberwarfare [3]. When the malicious activity is supported by more than 

one malicious user, the DoS attack becomes Distributed DoS (DDOS). DDoS attacks 

are much more challenging than DoS attacks, because by using a DDoS attack, 

malicious users can easily generate a large amount of malicious traffic. Under such 

attack, the victim server becomes inaccessible to legitimate users. In addition to the 
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victim server, the underlying network also suffers from such attacks. The underlying 

network will be congested with too many packets and the network devices may fail 

to provide some services to legitimate users due to buffer overflows and excessive 

packet drops. DoS attack has been a problem for computer networking for a long 

time. The first known DoS attack is encountered at early 1980s [3]. As computer 

networks get larger and as Internet becomes popular around the world, DDoS attacks 

started to appear, and the first DDoS attack was recorded in 1999 [3]. As networks 

became wider, DDoS attacks became more complex and the capabilities of these 

attacks has improved. In October 2002, a DDoS flooding attack against 9 DNS root 

servers was executed and consequently 9 out of 13 DNS root servers were 

inaccessible to entire Internet users around the world. Since Internet technologies are 

more advanced now, several attacking tools are developed; in addition, Malware-as-

a-Service (MaaS) concept is also introduced. Today, a malicious user may access a 

botnet army with a low cost (e.g. a botnet army with 10.000 computers for $1.000) 

and generate great amount of malicious traffic easily [1]. Therefore, making a DDoS 

attack has become much easier and the size of the DDoS attacks has increased nearly 

exponentially. The size of the largest reported DDoS attack in 2010 is approximately 

100Gbps, while in 2013 it is nearly 300 Gbps [1]. Cloud computing getting more 

popular every year, DDoS attacks became immense and more flexible. A DDoS 

attack in the order of Tbps is recorded in 2016 [4]. 

DDoS attacks are classified into two categories; Network/Transport-Level DDoS 

Flooding Attacks and Application-Level DDoS Flooding Attacks, as shown in 

Figure 2.2 [1]. The former is focused on generating DDoS attacks by using mostly 

TCP, UDP, ICMP and DNS protocol packets. In this attack type, the aim is 

exhausting the bandwidth of the victim by sending too many packets to the victim 

server; consequently, the connectivity of the victim server will be disrupted, and 

legitimate users cannot access the victim server [3]. These are volumetric attacks. 

The latter is focused on generating application level messages and the aim is 

exhausting the resources (e.g. CPU, memory, sockets and I/O bandwidth) of the 

victim; consequently, disrupting the services of the victim server. Application-Level 

DDoS Flooding Attacks consume less bandwidth when compared to the 
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Network/Transport-Level DDoS Flooding Attacks, and they are stealthier and more 

sophisticated [3]. Although Application-Level DDoS Flooding Attacks are 

problematic for victim server, Network/Transport-Level DDoS Flooding Attacks 

cause severe problems for both the victim server and the underlying network. In 

addition, Network/Transport-Level DDoS Flooding Attacks cause devastating 

impacts on SDN network [1]. Therefore, in this thesis, we prefer to focus on 

providing a defense mechanism against Network/Transport-Level DDoS Attacks. 

Network/Transport-Level DDoS Attacks are classified into four categories in the 

literature, as shown in Figure 2.2 [3]: 

1. Flooding Attacks: This is the basic Network/Transport-Level DDoS Attack 

type and it aims to exhaust the victim server’s network bandwidth and disrupt 

legitimate connection to this server. The examples for flooding attacks are 

spoofed/non-spoofed UDP Flood and ICMP Flood.  

2. Protocol Exploitation Attacks: In this attack type, the attacker aims to 

consume the resources of the victim server by exploiting some features of victim’s 

connection protocol or by exploiting implementation bugs. The well-known example 

of this attack type is spoofed/non-spoofed SYN Flood attack.  

3. Reflection-Based Attacks: Malicious users send malformed requests to 

reflector users instead of directly sending these to the victim; in this case, a reflector 

user is a third host in the network other than the attacker and the victim. In the 

malformed requests, the source address part is changed with the address of the 

victim. Therefore, the replies from the reflectors will be sent to the victim, and the 

bandwidth and the resources of the victim will be exhausted. An organized and 

distributed flooding attack, such as Smurf attack, can be considered as an example of 

this attack type.  

4. Amplification-Based Attacks: Attackers may intent to increase the effects of 

their attacks by amplifying the attack towards the victim. This attack generally used 

with Reflection-Based Attacks. By using an Amplification-Based Attack, the attacker 

consumes much more bandwidth of the victim server than its own bandwidth to 

generate such attack. One of the most common usage is making the reflectors to 

generate broadcast messages, as in the case of Smurf attack.  



10 

Source address spoofing attack is not classified as a different attack type, instead it is 

discussed under other attack types (e.g. spoofed/non-spoofed flooding attacks) in the 

literature. However, this attack itself can be problematic for SDN networks. To 

handle this attack in detail and to provide a comprehensive defense mechanism 

against it, and to test it carefully, we consider this attack as a different type and treat 

it as the fifth Network/Transport-Level Attack Type. 

 

 

Figure 2.2: DDoS Attack Types 

2.1.3 Contradictory Relationship between SDN and DDoS 

DDoS attacks and SDN architecture has a contradictory relationship. SDN has very 

powerful capabilities to detect and prevent a DDoS attack through a victim server; 

however, SDN itself may become the victim of a DDoS attack. In order to defend 

hosts against DDoS attacks, SDN has several features, such as i) logically centralized 

controller and global network view ii) programmability of network elements iii) 

dynamic forwarding rules iv) distributed nodes across the network v) testing a 

defense system easily [1]. Despite these great features of SDN that can be used to 

defend hosts against DDoS attacks, SDN itself may become the target of these 

attacks since SDN is designed to serve pure-minded hosts. A malicious DDoS 

activity, can disrupt the services of SDN nodes that may lead to failure of an entire 

network. Spoofed or non-spoofed, originated by several zombie hosts or bots, large 
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number of packets may cause severe problems [9]. Some of these problems are 

explained as follows: 

1. Switch Buffer and Flow Table Overflow: When an OpenFlow switch 

receives a packet whose flow ID is not in the flow table of the switch; the switch 

stores the data portion of the packet to its buffer and sends the header portion to the 

controller with a packet_in request message. Controller processes the incoming 

request and sends the appropriate flow rule to the switch, which is stored in the flow 

table of the switch. If a switch receives too many packets from hosts with unknown 

flow IDs, the switch buffer overflows, and when a packet with unknown flow ID is 

received, instead of storing its data portion, the switch sends the entire packet to the 

controller. During a DDoS attack, buffers of switches can easily be overloaded. In 

addition, the redundant flow rules received from the controller are also stored in 

switch flow tables. Since each switch has a limited size flow table, when too many 

redundant flow rules are received, legitimate ones may be dropped from the flow 

table and forwarding speed of legitimate traffic may dramatically decrease [10]. 

2. Switch-Controller Channel Bandwidth Congestion: When switches send 

too many packet_in messages in a short time interval, the switch-controller 

communication channel becomes congested. In addition, following a switch buffer 

overflow, this communication channel congests more easily, and delays or packet 

drops occur on this channel, which carries all OpenFlow traffic between switches and 

controllers including periodic and sporadic messages. Therefore, when such a 

problem occurs, all switches sharing such a communication channel will suffer and 

forwarding performance of the associated switches degrades notably [10]. 

3. Controller Buffer Overflow: When controller receives a packet_in request, 

it processes the request and finds the appropriate forwarding rules. Computing such 

actions for each request consumes controller resources, such as memory and CPU. 

Although a controller is a powerful device, still it has limited amount of resources. 

During a DDoS attack, a large number of redundant packet_in requests may saturate 

the controller’s resources; therefore, the controller starts to drop the legitimate 

packet_in requests or delay them. Therefore, in SDN, single point of failure problem 

arises under such attacks due to having a logically centralized controller. When the 
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controller drops or delays legitimate packet_in requests, the entire network fails to 

operate correctly. The controller may become unreachable to legitimate users. This 

problem occurs even if there is a backup controller or the controller is physically 

distributed because of the logically centralization of the controller [10]. 

To sum up, Software Defined Networking architecture has several major problems, 

which makes the SDN vulnerable to Distributed Denial of Service attacks and these 

issues arise because of  having the following three main characteristics: i) SDN trusts 

all connected hosts ii) logically centralized control plane of the SDN has single point 

of failure problem iii) SDN has limited size buffers and limited size switch flow 

tables [11]. Hence, any comprehensive DDoS defense mechanism for SDN should 

consider these. 

2.2 LITERATURE REVIEW 

The methods proposed in the literature, containing both SDN and DDoS, have 

mainly two different focusses, designing an SDN-based DDoS detection and 

mitigation technique for traditional networks or designing a DDoS detection and 

mitigation technique for SDN itself [2].  

SDN is capable of providing flexible and powerful analysis techniques, which could 

help in mitigating DDoS attacks in traditional networks. Many studies are proposed 

for that purpose; however, in those studies the fact that SDN itself may become the 

real target of DDoS attacks is ignored, which causes a serious security gap. On the 

other hand, to make SDN itself immune to DDoS attacks, several methods are also 

suggested. The studies that consider defending traditional networks by using SDN 

approach are not within the scope of this thesis; therefore, they are not explained in 

this chapter. Instead, the studies that concentrate on improving the SDN architecture 

against DDoS attack are considered.  

The existing methods can be classified into three categories, control plane-based 

methods, data plane-based methods and hybrid ones. In control plane-based methods, 

the detection operations are handled at the controller device by running a defense 
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application on it. On the other hand, in data plane-based methods, the attack 

detection and mitigation operations are handled at the data plane to avoid single point 

of failure problem by not sending malicious data to the controller for processing. 

Although the present thesis proposes a data plane-based defense mechanism, all three 

categories are investigated in detail and a brief survey is presented in the following 

sections. 

2.2.1 Control Plane-Based DDoS Defense Methods 

When a defense method has DDoS detection and mitigation module, or algorithm, 

running on the centralized controller, or any other centralized device, to provide a 

network-wide defense mechanism, it is called as Control plane-based DDoS Defense. 

These methods are popular because they can easily be designed and implemented in 

an SDN network. SDN centralized controller attracts also the attention of many 

researchers. Although data monitoring techniques or detection approaches differ 

among such studies, the framework used is generally common.  

In [9], Mousavi et al. proposes using the controller to collect statistics and to detect 

DDoS attacks. For that purpose, an entropy-based application, which checks the 

variations of entropy of each destination IP address, runs on the controller device. If 

packets in the network are destined to all destinations homogeneously, then the 

likelihood of each destination to receive a packet will be close to each other, and the 

entropy will be high. On the other hand, if packets are destined to only one 

destination, then the likelihood of this destination to receive a packet will be high 

while others low, and the entropy value will be smaller. Controller calculates the 

entropy and compares it to a threshold. If the entropy is lower than a threshold, the 

controller concludes that there is a DDoS attack and implements mitigation rules to 

drop all packets destined to the victim server. Other similar works such as [12] and 

[13] exist, which propose centralized defense systems by using entropy based 

detection algorithms running on the controller.  

Several methods have a similar framework as in [9], yet they differ in their detection 

algorithms. In [14], the statistics, including the number of connections and the 
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number of packets per connection for each flow, are collected by the controller and 

the statistics are compared with thresholds to make a decision. Several security 

applications such as firewalls and network anomaly detectors are implemented on the 

controller to detect any malicious activity in [15], [16], [17], [18], [19] and [20]. In 

[21], a DDoS mitigation technique for SDN-based cloud networks is suggested. The 

proposed method uses ALTO server to obtain a bird’s eye view of the entire cloud 

network and the security algorithms run on the controllers of the SDN networks.  

In [22], [23], [24], and [25] various Machine Learning-based detection algorithms 

are provided to avoid DDoS attacks. Machine Learning algorithms are implemented 

at the application layer, input features are collected from the network, and by using 

these features, malicious activities are detected. In [26] and [27], a high-level DDoS 

detection application is proposed using SOM detection algorithm that uses statistics 

collected by OpenFlow switches. In [27], an efficient resource utilization monitoring 

technique is also suggested for switches. 

Several other methods use a centralized DDoS detection device other than the 

controller itself, such as [28]. These methods avoid overloading the controller with 

additional DDoS detection algorithm load; however, these devices suffer from 

communication channel congestion problem and the associated device resources can 

get exhausted. Hence, these methods face single point of failure problem under an 

organized DDoS attack.  

Different statistics collection techniques are proposed, some of them suggest using a 

third-party device for this purpose [29]; while others point out that OpenFlow switch 

capabilities and OpenFlow protocol itself is enough for statistics collection [30].  

Some methods concentrate only one of the main problems caused by DDoS attacks. 

Although these methods propose promising solutions to its associated specific 

problem, they generally have negative impacts on other problems. In [31], to avoid 

OpenFlow switch flow table overloading problem, QoS-aware load balancing 

strategy between switches is suggested. Centralized controller continuously checks 

the status of each switch and if the flow table of a switch is full, then the traffic 



15 

destined to that switch is re-distributed to other switches making the switch not 

experience flow table overloading. However, this method considers only the flow 

table overloading problem and to solve this problem, it puts an additional processing 

burden on the controller, which may exhaust controller resources even faster under a 

DDoS attack. In [32], to avoid the controller overloading problem, a processing 

queue scheduling algorithm for controller is suggested. The controller logically 

subdivides its queue into different logical queues, each one of them being reserved 

for different switches and the controller serves each logical queue in a round robin 

fashion, or any other way. Since this method only considers controller overloading, 

when a switch is under a DDoS attack, it will face the buffer overloading problems 

even faster; the legitimate traffic, passing through the associated switch, will 

experience large delays or they will not get any service at all.  

Although the control plane-based methods seem convenient to use, they do not 

provide a comprehensive solution to the main problem of the SDN, i.e., single point 

of failure under DDoS attacks. In fact, adding DDoS detection/mitigation 

applications, in addition to standard controller applications, and analyzing each 

packet on controller may exhaust the resources of controller even faster. Adding an 

additional centralized detection device is also not a solution to the problem, because 

these devices inherit single point of failure problem from the controller. Furthermore, 

since malicious packets are still sent to the controller, switch-controller channel 

congestion problem also remains unsolved.  

2.2.2 Hybrid DDoS Defense Methods 

Hybrid DDoS defense mechanisms use both data plane devices and control plane 

devices during DDoS detection and mitigation operations. The packets are monitored 

at data plane devices and suspicious packets are found somehow in the data plane 

devices; then all the suspicious packets are directed towards the controller for further 

analysis. The main DDoS detection and prevention processes are handled by the 

controller. 
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In [33], a defense method for DDoS attacks in SDN-based cloud networks is 

proposed. In this method, SDN switches distinguish suspicious and nonsuspicious 

packets with a primitive analysis and then forward suspicious packets to the 

controller for further analysis and controller detects the attacks and decides 

appropriate mitigation rules. In [34], a multi-level DDoS detection method is 

proposed, where attack monitors and correlators are distributed across the network 

and placed at switches to detect any malicious activity. Monitors run Snort-based 

IDS and if any anomalous activity is detected, the anomalous packet is forwarded to 

the correlator that checks if the source address is spoofed or not. If so, these packets 

are directed to the controller for further analysis and also for the generation of a 

prevention rule. Therefore, under a volumetric DDoS attack, the controller device 

still gets overloaded; hence, the network is faced with the single point of failure 

problem. In [35], Network Function Virtualization (NFV) and SDN is combined for 

DDoS detection/mitigation purpose. By using NFV, specific monitoring 

functionalities are added to the data plane and a centralized orchestrator is used to 

coordinate these virtualized functions. Monitored data is analyzed at the controller 

and the required mitigation functions are implemented at the data plane in the form 

of virtual functions or forwarding rules.  

Hybrid methods decrease the workload of the centralized controllers; however, in 

these methods, all the malicious traffic is still directed to the controller for detection 

and mitigation purposes. Although these methods improve the performance of SDN 

against controller overloading and communication channel congestion problems, 

they still cannot provide an adequate solution to these problems. 

2.2.3 Data Plane-Based DDoS Defense Methods 

Data plane-based DDoS defensive mechanisms seem more suitable for providing a 

comprehensive solution to all problems of DDoS attacks when compared with others. 

Adding intelligence to data plane devices helps to detect and prevent DDoS attacks at 

data plane and keep malicious flows within data plane. Therefore, controller, 

communication channel and the rest of the network are not prone to malicious traffic. 

In addition, an accurate response to a malicious activity can be generated relatively 
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quickly and effectively, because there is no propagation and queuing delay in a data 

plane-based method. 

With data plane-based DDoS defense methods, the following question may rise; does 

adding such intelligence to data plane devices compromise the main paradigm of 

SDN. The main idea behind SDN architecture is using an intelligent device at 

control-plane to generate routing decisions and using several non-intelligent devices 

at data-plane to forward packets according to those decisions [5]. Although the 

common understanding of SDN is in this way, in the original architecture of SDN 

provided in [8], it is pointed that capabilities supported by a standard OpenFlow 

Switch are flexible and extensible. In fact, today, a standard OpenFlow Switch 

provides several additional functionalities other than packet forwarding [36]. All 

OpenFlow Switches have processors, several memory units and some software 

programs running on them. An OpenFlow Switch uses its processor to analyze 

incoming/outgoing packets for extracting a set of detailed statistics about them and to 

communicate with the controller [36]. Therefore, although, these devices are known 

as non-intelligent, they have some degree of intelligence, but they do not use their 

intelligence to generate routing decisions.  

In [8], it is clearly stated that an OpenFlow Switch should include at least the 

following parts; Flow Table, Secure Communication Channel and OpenFlow 

support. In addition, several essential set of actions for OpenFlow Switches are 

provided, and the routing/forwarding operation for a standard SDN architecture is 

clearly explained. As long as routing/forwarding characteristics and other essential 

properties of SDN are not modified, extending the capabilities of an OpenFlow 

Switch by adding minor intelligence for defensive purposes does not compromise the 

main paradigm of SDN [2].  

In [4] and [37], an in-switch processing method to detect and mitigate DDoS attacks 

is suggested. The monitored values are processed by an entropy-based algorithm 

running on the switches for the detection of malicious activity. If an attack is 

detected at the switch, the switch drops the flow and notifies the controller to 

designate the counter-measure. When a packet arrives at a switch, the entropy-based 
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algorithm calculates the entropy, checks if it is below a threshold, and if so, labels 

this packet as an attack. However, if more than one host connected to the same 

switch are under attack, this algorithm cannot detect the attack accurately. 

AVANTGUARD, in [38], proposes a new framework for SDN to mitigate spoofed 

SYN Flooding Attacks. The SYN Flooding mitigation is achieved by Connection 

Migration block, which is implemented on OpenFlow switches. When a switch 

receives a “SYN” message, it is directed to the Connection Migration block. If the 

message has an unknown flow ID, the Connection Migration block automatically 

responds to that host with a “SYN+ACK” message. If the host sends an appropriate 

reply, then the switch receives a forwarding rule from controller for this connection 

and forwards all messages coming from the host to the destination. If the host does 

not reply to the “SYN+ACK” message, then the Connection Migration block drops 

that packet without keeping any state.  

In [2] and [39], switches apply detection algorithms to incoming packets. Both 

methods propose detection algorithms inspired by the PacketScore [40] technique, 

which is designed for traditional networks. These algorithms include more than one 

sequential packet processing stages. These stages, basically, are monitoring, score 

calculation and mitigation; which are applied all to the incoming packets before 

forwarding them. Score calculation stage includes profile generation and profile 

updating phase, a probability-based score generation phase, and a threshold 

comparison phase. Although these studies provide promising performance results, 

detection algorithms implemented in the data plane devices seem a bit complex to be 

employed for data plane devices. Using such complex algorithms for all incoming 

packets before forwarding them may cause serious system performance degradation 

problems. In addition, in [39] an additional analysis stage, based on SYN cookie 

technique is proposed. The proposed analysis technique is very similar to the one 

proposed in AVANT-GUARD and adding this degrades system performance even 

more. 

In [41] and [42], a collaborative DDoS detection method is proposed, where an 

Artificial Neural Network (ANN) is implemented on the SDN data plane and the 
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SDN switches are used as the ANN nodes. A 3-layered Radial Basis Function Neural 

Network is proposed for this purpose. All SDN switches are used as ANN input layer 

nodes; while, some of them are used as ANN hidden layer nodes and output layer 

nodes. The nodes receive three features: ratio of i) ICMP packet counts, ii) UDP 

packet counts iii) SYN packet counts, to all packet counts. After exchanging packets 

between neurons and processing the inputs, the output neurons decide if there is a 

DDoS attack in the network or not. The proposed systems do not provide any 

information about the source or the destination of the malicious activity. 

Detecting the malicious activity at the data plane and mitigating the malicious 

packets without sending them to the controller device could provide a comprehensive 

solution for the problems of SDN caused by DDoS attacks. Since DDoS packets are 

not directed to the controller device, the controller is not overloaded, and the 

controller-switch communication channel is not congested. In addition, if the 

malicious activity is detected quickly enough in an efficient and effective way, the 

switch buffer and flow table overloading problems can also be overcome.  

In this thesis, we highlight that a data plane-based mechanism is necessary for a 

comprehensive detection and mitigation system against Network/Transport-Level 

DDoS attacks; and we provide a data plane-based DDoS detection framework. We 

consider centralized controller as a vulnerability under DDoS attacks and instead of 

taking advantage of the centralized controller for defensive purposes, we aim to 

protect it by not directing the DDoS traffic to it. In this thesis, we take advantage of 

the data plane nodes of SDN, and their distributed and controllable nature. These 

nodes are distributed across the network and by using them, malicious packets can be 

processed very close to the sources and the victims of any malicious activity.  

 In this thesis, we suggest several requirements that a data plane-based defensive 

method should satisfy, and we provide a data plane-based defense system designed 

according to these requirements. In addition, we propose lightweight and scalable 

DDoS detection algorithms against all Network/Transport-Level DDoS attack types. 

Furthermore, we suggest using the multiple location defensive approach, which 

means we use different detection algorithms at different locations in the network. 
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CHAPTER 3 

 

SYSTEM DESIGN 

 

To provide a defense system against Network/Transport-Level DDoS attacks for 

SDN architecture, we present MiddleModule system, a data plane-based DDoS 

detection and prevention mechanism. In addition, we state several system 

requirements to create comprehensive data-plane defense mechanisms. 

3.1 ARCHITECTURE OVERVIEW 

The data plane of a standard SDN network includes OpenFlow switches connected to 

each other to provide the required connectivity in the network. As shown in Figure 

3.1, these switches can be classified as edge-switches and core-switches; where edge-

switches are placed at the gateways of the network. On the other hand, the core 

switches are located at the center of the data plane network and they are connected to 

other switches in the network.  

 

Figure 3.1: Standard SDN Network 
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In the MiddleModule system, the detection and mitigation functionalities are 

implemented in edge-switches, while core switches are used without any alteration, 

as shown in Figure 3.2. In addition, an Orchestrator Module is implemented in the 

controller, which is used for communication of the controller with the MiddleModule 

blocks located within edge-switches.  

 

Figure 3.2: SDN Network with MiddleModule System 

When any packet enters an SDN network that employs the MiddleModule, it is 

analyzed at the gateway, i.e., the edge-switch, of the network. Therefore, by utilizing 

a small amount of resources and simple detection functions, DDoS activities can be 

detected quickly and accurately at the gateway points. Using this method, malicious 

packets do not occupy resources of other network components.  

There are two important points regarding the MiddleModule system. Firstly, 

although there is an Orchestrator Module in this system, running on top of the 

controller; the MiddleModule system is a data plane-based defense system; and the 

Orchestrator Module is not used for detection/mitigation purposes. The DDoS 

detection functions that are located in the edge-switches do not need any periodic 

messages or commands from the Orchestrator Module in order to operate correctly. 

MiddleModule functions operate in a stand-alone fashion. The Orchestrator Module 

provides the ability to the network operator to configure the MiddleModule functions 

as desired, or the ability to enable or disable them. In SDN, it is important for the 
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controller to be aware of any forwarding action applied by the switches in the 

network, including packet dropping rules. Therefore, when a MiddleModule 

function, located in an edge-switch, detects a malicious activity and decides to use a 

prevention rule, it informs the controller by using the Orchestrator Module. If the 

controller wants to modify that prevention rule somehow, it can change it by sending 

appropriate messages via the Orchestrator Module. Secondly, since this system 

provides a distributed detection/mitigation technique instead of a centralized one, the 

detection nodes should be widely distributed across the network. This is why we 

propose implementing the MiddleModule functions in edge-switches to maximize 

this distribution. Therefore, to obtain the best performance, and to fully utilize the 

system, the MiddleModule functions should be implemented in edge-switches that 

are directly connected to hosts. In this thesis; we assume that direct connections exist 

between edge-switches and all hosts, as shown in Figure 3.2; and we suggest 

implementing the MiddleModule in this way to obtain the best performance. 

3.2 SYSTEM REQUIREMENTS 

Before explaining the system architecture and the framework in detail; we note that 

there are several critical points for a data plane-based Network/Transport-Level 

DDoS defense system for SDN architecture, which should be considered carefully 

while designing such a system. These points are selected by considering the 

requirements of SDN architecture, properties of data plane devices, characteristics of 

DDoS attacks and basic network security approaches. To the best of our knowledge, 

these points have not been gathered together and stated clearly for data plane-based 

DDoS defense systems earlier in the literature. In this thesis, we highlight these 

points and we suggest that any data plane-based DDoS defense system should be 

designed by considering the factors listed below: 

1. Complexity of Algorithms: While designing a data plane-based defense 

system, the detection and prevention algorithms should be made carefully. Although 

complex algorithms provide high defense strength, or they may cover a large set of 

attacks; such algorithms may cause severe load for data plane devices. Firstly, data 

plane devices have limited resources; hence CPU or memory would be the bottleneck 
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if complex algorithms are used. Secondly, incoming traffic rate to a data plane device 

is still considerably high, hence the required processing time to analyze incoming 

traffic could become high if complex algorithms are implemented in data plane 

devices. This may cause high packet forwarding delays or even packet drops, 

therefore, one should choose low complexity detection and prevention algorithms. 

2. Implementation Style of the Defense System: A data plane-based DDoS 

defense system for SDN can be implemented in the switch in a serially or parallel 

connected fashion. When it is implemented in serial mode, a malicious packet is 

dropped as soon as it is labeled as malicious before forwarding it, which slightly 

increases the detection rate of the defense system. However, since all packets have to 

be processed before forwarding, packet forwarding delay will increase considerably. 

When the defense system is implemented in parallel to the forwarding circuit; even if 

the received packet is labeled as malicious, instead of this specific packet, the next 

received packet can be dropped because the packet labeled as malicious has already 

been forwarded. Therefore, although few malicious packets are missed by the 

defense system decreasing the detection rate a little bit, there will be nearly no 

additional packet forwarding delay. 

3. Multiple-Location Defensive Approach: Multiple-Location Defensive 

approach means placing or operating different defense algorithms to different 

locations in the network. For a data plane-based DDoS defense system, detecting all 

Network/Transport-Level DDoS attack types could be a challenging problem. The 

reason is that there are several types of attacks and some attacks can be detected near 

the source side, while others can be detected accurately only within the network or at 

the destination side. For example, at the source side, a protocol exploitation attack 

can easily be detected while a reflection attack cannot be detected at all. A data plane 

device, by itself, does not have a global view of the network and it is not aware of the 

traffic passing through the other switches. Therefore, to detect all 

Network/Transport-Level DDoS attack types, either this information should be sent 

to other switches, which increases the communication overhead of the system 

dramatically and increases the complexity of the system, or this problem should be 

solved by a careful implementation of multiple-location defensive approach. While 
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designing a data plane-based DDoS detection/mitigation system, the need for 

multiple-location defensive approach should be considered. 

4. Allowable data rate: Today, the traffic generated by a single host is 

increasing due to advanced networking technologies. In addition, in 

Network/Transport-Level DDoS attacks, one of the main purposes of a malicious 

host is to generate as many packets as possible. Modern DDoS defense mechanisms 

should be capable of handle much higher data rates when compared with earlier 

methods. Hence, the maximum allowable malicious traffic rate should be taken into 

consideration while designing a defense system and such defense systems should be 

tested and evaluated using high data rates.     

5. Communicating with the controller: In SDN, the intelligent part of the 

network is the controller in terms of forwarding. Any action regarding the forwarding 

operation should be handled in coordination with the controller.  Data plane-based 

DDoS detection and prevention methods suggest that a data plane device detects the 

malicious activity and mitigates it by itself. However, the data plane devices should 

still inform the controller device about the detection and prevention decisions. Data 

plane devices should also be able to receive mitigation rules from the controller such 

as white or black lists. Furthermore, in SDN, a network operator is able to control 

and configure the entire network via the controller; therefore, a data plane-based 

defense system should also be configurable over the controller. 

6. Targeted DDoS Attack Types: Selecting a correct target attack set is an 

important issue for network security systems. Targeting a large set of different attack 

types is not a good idea especially for data plane-based defense mechanisms because 

this could increase the complexity of the system dramatically or decrease the 

effectiveness. On the other hand, targeting only a small subset of an attack type is 

also not a good idea because network designers use a security system generally to 

avoid a specific attack type. If the used defense system does not cover all attacks in 

that specific attack type, the network designer needs to implement another defense 

system. Using similar defense systems, working on the same devices, controlling the 

same traffic and checking similar signatures, would generally result in poor 

performance. In addition, such usage of data plane-based defense systems exhausts 

the resources of the data plane devices even more and may add high amount of delay 
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to forwarding operations. Therefore, a defense system should clearly define its 

targets and while choosing its target, it should consider trade-off between the 

completeness of the solution and the complexity of the system. 

7. Detecting Source and Victim of Malicious Activity: For effective 

mitigation, a defense system should provide information about the source and the 

victim of a malicious activity when it detects a DDoS attack. The type of the DDoS 

attack should also be detected. This information is valuable to mitigate the attack 

accurately. If a defense system detects an attack but does not provide such 

information, then the attack traffic cannot be prevented accurately.  

In MiddleModule system, the detection functionality is provided by using 

lightweight algorithms to minimize the complexity of the system and to maximize 

the malicious traffic rate that can be detected. The packet processing circuitry is 

implemented in parallel to the forwarding circuitry to minimize forwarding delay. 

When a packet arrives at an edge-switch, it is mirrored to the detection block; while 

the original packet is forwarded towards the destination. To provide high defense 

strength against all types of Network/Transport-Level DDoS attacks, we use 

multiple-location defensive approach in our MiddleModule system. Reflection 

attacks are detected at the destination side while other attack types are detected at the 

source side of the messages. In this system, edge-switches apply detection functions 

to the incoming packets and decide mitigation rules. If desired, edge-switches can 

inform the controller about these mitigation decisions with periodic or sporadic 

messages. In addition, the controller can modify these decisions by adding or 

removing some mitigation rules. Finally, when the MiddleModule system detects a 

DDoS attack, it provides the DDoS attack type and the source and the victim of that 

malicious activity as an output.  

The MiddleModule system is designed to defend SDN architecture against 

Network/Transport-Level DDoS attacks. As was mentioned earlier, DDoS attacks are 

classified into two categories, Network/Transport-Level DDoS Attacks and 

Application-Level DDoS Attacks. The former can have more devastating impacts on 

SDN when compared with the latter. Unlike Application-Level DDoS Attacks, the 

former is noticeable at network level and they can be detected with considerably 
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simpler detection algorithms, more suitable for data plane devices. Therefore, the 

MiddleModule system targets only Network/Transport-Level DDoS attacks. As was 

explained earlier, all Network/Transport-Level DDoS attack types can be very 

problematic for an SDN network, and all these attack types have similar 

characteristics. Hence, our MiddleModule system provides a detection/mitigation 

capability against all Network/Transport-Level attack types. Application-Level 

DDoS attacks are not within the scope of the MiddleModule system. 

3.3 SYSTEM FRAMEWORK 

The MiddleModule framework suggests implementing several functional blocks in 

the data plane for monitoring, detection and prevention purposes; and also, one block 

in the control plane for orchestration and configuration purposes. 

3.3.1 MiddleModule Blocks in Data Plane 

The MiddleModule framework suggests adding several blocks to edge-switches, to 

provide monitoring, detection and mitigation capabilities; which are namely ‘Packet 

Mirror and Attack Prevention Block’ and ‘Packet Processing Block’. For cooperation 

of the edge-switches with the controller in detection and prevention activities, 

‘Control Block’ is also added to edge-switches. Therefore, three functional blocks in 

total are added to each edge-switch. Figure 3.3 shows the placement of these blocks 

and their connectivity. 

3.3.1.1 Packet Mirror and Attack Prevention Block 

Packet Mirror and Attack Prevention Block is responsible for two basic operations, 

namely, mirroring the incoming packets to the Packet Processing Block and dropping 

the incoming packet if its source address or its ingress port is in the Malicious List. 

When a packet enters an edge-switch, it directly goes into this block, and firstly the 

Attack Prevention sub-block controls the packet. If the source address of this packet 

is in the Malicious List, then this packet is dropped without sending the packet to any 

other blocks. If it is not in the list, then the Packet Mirror sub-block receives the 
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packet. In this sub-block, the header portion of the packet is mirrored through the 

Packet Processing Block while the entire original packet is directed to the forwarding 

circuitry. To give further details, the sub-blocks will be explained separately.  

 

Figure 3.3: MiddleModule Blocks 

Attack Prevention sub-block is responsible for performing the appropriate mitigation 

action according to the malicious detection results. It is the first block of the 

MiddleModule system that receives an incoming packet, as shown in Figure 3.3. The 

reason is that if the received packet is coming from an already recorded malicious 

user, then there is no need to re-analyze this packet. This sub-block has a Malicious 

List, which includes the source addresses or ingress ports of the previously recorded 

malicious users. When Packet Processing Block detects any malicious activity, it 

sends the source address or the ingress port of that activity to the Attack Prevention 

sub-block, and this sub-block stores it in the Malicious List. In addition, if the 

controller sends any malicious source address to an edge-switch, Control Block 
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receives this information and sends it to the Attack Prevention sub-block. This sub-

block stores the malicious address in its Malicious List.  

Packet Mirror sub-block is located near the ingress ports of an edge-switch as shown 

in Figure 3.3. When a packet arrives to an edge-switch from any ingress port, either 

from a host or a core switch, and if the Attack Prevention sub-block does not drop the 

packet, then Packet Mirror sub-block receives the packet. In this sub-block, the 

header portion of the packet is mirrored through the Packet Processing Block while 

the entire original packet is directed through the forwarding circuitry. The detection 

algorithms deployed in the Packet Processing Block can detect malicious activities 

by analyzing only the header portions of the packets. Mirroring only the header 

portions, instead of the entire packets, minimizes the communication overhead in the 

switch and minimizes the input queue utilization of the Packet Processing Block.  

Packet Mirror sub-block is the packet sampling block of the overall MiddleModule 

system. There are different techniques for packet sampling; such as, sampling 

packets with a probability or sampling packets randomly or sampling all incoming 

packets. In these techniques, as the sampling rate increases, the number of analyzed 

packets increases, and eventually, the probability of missing any malicious packet 

decreases. In the MiddleModule system, Packet Mirror sub-block samples all the 

incoming packets, to maximize the malicious detection rate.  

The Packet Mirror and Attack Prevention Block causes the only delay of 

MiddleModule system on the packet forwarding path and it is very limited; in fact, it 

is ignorable, as will be shown in Chapter 5. The required resources for this block are 

also very small. The analysis of required resources, scalability analysis and 

implementation suggestions can also be found in the evaluation part in Chapter 5. 

3.3.1.2 Packet Processing Block 

Packet Processing Block provides the detection capability to the edge-switches; 

hence, it could be considered as the intelligence added to the edge-switches in terms 

of detection operations. This block receives packet headers from the Packet Mirror 
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sub-block and processes them by using several Network/Transport-Level DDoS 

detection algorithms. Therefore, Packet Processing Block includes several sub-

modules, which are Input Queue, Detection Engine that includes processing and 

storage infrastructure and Detection Algorithms.  

When the header portion of any packet is received by the Packet Processing Block, it 

is stored in the Input Queue. This is designed as a “first-in first-out” queue. Although 

other scheduling techniques can be used, this is preferred due to its ease of use. 

In Packet Processing Block, flow-based features are recorded and are used in 

malicious detection algorithms. Flows are created based on source or destination 

addresses, depending on the Detection Algorithm. Different features are recorded for 

different detection algorithms; for example, in SYN Flood, the number of received 

SYN packets is recorded for each source address-based flows while in Reflection 

detection, the number of received packets with different source IP addresses is stored 

for each destination address based flow. These features are stored in the Features 

Table, located in the Detection Engine. When an entry, i.e., the header portion of a 

packet, is dequeued from the Input Queue, associated flow information is found and 

the corresponding features of the flow are received from the Features Table. These 

features are directed to the Detection Algorithms and by analyzing them; the 

appropriate detection decisions are taken. After that, the Features Table is updated 

accordingly. If any malicious activity is detected for that flow, the source address of 

the malicious activity is stored in the Malicious List.  

Since detection operations are handled very close to hosts, the size of Features Table 

could be very small. There are several reasons for this. Firstly, a small number of 

feature types are enough to make an accurate detection since Detection Algorithms 

collect features directly from the host connections. Secondly, the length or the 

window size of the collected features could be small, and new records are 

overwritten on the existing ones. Therefore, only very recent features are analyzed by 

detection algorithms. Small window size is enough for accurate detection because of 

the characteristics of the Network/Transport-Level DDoS attacks. When any host 

generates such attack, there will be definite changes in the recent packet features, 
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which will be then be detected much easily. However, obviously, the window size 

should still not be selected too small in order to avoid false positives.  

In Packet Processing Block, it is critical to differentiate malicious from anomalous to 

minimize the false positive rates. In MiddleModule system, in addition to the 

architectural precautions, an additional false positive avoiding mechanism is used. In 

networking, simple anomalous activities do not tend to repeat themselves while the 

Network/Transport-Level DDoS attacks tend to last long, and they repeat 

themselves. In MiddleModule system, when a malicious activity is detected for the 

first time, the source address of that malicious activity is not stored directly in the 

Malicious List; instead, it is stored in a blacklist table, located in the Detection 

Engine, for a penaltyTime. If Detection Algorithms detect the same malicious 

activities originating from a specific source within the penaltyTime, then this source 

address is removed from the blacklist table to the Malicious List for another penalty 

time. If any packet is received from this source address during the associated penalty 

time, the packet is dropped. Further analysis of the Packet Processing Block 

regarding the scalability, performance analysis and the detection/prevention delays 

can be found in the evaluation part in Chapter 5.     

3.3.1.3 Control Block 

Control block is used for communication between the MiddleModule blocks running 

on edge-switches and the MiddleModule blocks running on the controller. This block 

is critical for the MiddleModule system, because the system is designed for SDN and 

in SDN; controller decides all forwarding/routing related decisions. As was 

mentioned earlier, when an edge-switch detects any malicious activity and starts 

dropping the packets, the controller should be aware of this activity. The controller 

should also be able to define a whitelist or a blacklist to any edge-switch. Moreover, 

the controller should be able to enable or disable the entire MiddleModule operation 

of any edge-switch in the network or configure the detection algorithm variables.  

Control Block is responsible for sending appropriate messages to the controller and 

for receiving and processing messages coming from the controller. Control Block has 
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a second purpose. When a reflection attack is detected by an edge-switch, the Control 

Block of that edge-switch is used for broadcasting the detected malicious source 

addresses to other switches. For this, the edge-switch sends a message to the 

controller via this block and the controller distributes this message to other edge-

switches. Hence, edge-switches located very close to the malicious host start 

dropping messages received from these hosts and the malicious traffic is dropped 

without entering into the network. 

To provide such connectivity, we define a communication protocol between the 

edge-switches and the controller, called MiddleModule Message Protocol, as shown 

in Figure 3.4. The messages are exchanged over a dedicated communication channel 

between the Control Block and the controller as was seen in Figure 3.3. For each 

message type, there is a predefined message ID. As an example, to disable the 

detection/mitigation blocks of a switch the controller sends a message with ID 0x01. 

This block can also be used for generating and handling port detection messages. 

Port detection messages are used for edge-switch port classification, which will be 

explained in Chapter 4. Any desired command or information can be transferred to 

the receiver with appropriate message ID (see Figure 3.4). The MiddleModule 

messages are TCP messages with data payload size of 60 bytes. This protocol can be 

modified according to further needs. The overhead of this messaging can be ignored. 

Further analyses of MiddleModule message communication overhead is provided at 

the evaluation part in Chapter 5.  

 

Figure 3.4: MiddleModule Message Protocol 
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3.3.2 MiddleModule Blocks in Control Plane 

3.3.2.1 Orchestrator Block 

Orchestrator Block is used to communicate with the Control Blocks of the edge-

switches; communication taking place as illustrated in Figure 3.4. The 

communication behavior of this block is similar to the one explained in Control 

Block section. Orchestrator Block is designed as an application that runs on top of 

the controller. This block provides an ability to the network operator to configure or 

control the MiddleModule defense system running on edge-switches. In addition, 

network operator can observe the detection decisions made by the MiddleModule 

system. The network operator can reassign threshold values to detection algorithms 

to tune the performance of the system or to change the system’s behavior, can change 

penalty time, can add idle time, etc. If the controller gets overloaded somehow, the 

Orchestrator Block can be terminated; which would not affect the overall 

performance of the MiddleModule system dramatically. 

3.3.3 MiddleModule Operation 

When a packet arrives to an edge-switch, it is transferred directly to the Packet 

Mirror and Attack Prevention Block, as shown in Figure 3.5.  Attack Prevention sub-

block receives the packet and checks if the source address is in the Malicious List or 

not. If yes, the packet is dropped without any further analysis. This will protect the 

switch resources, controller resources, and also the victim host from malicious 

activities. In addition, no MiddleModule malicious detection resource is utilized for 

further analysis of this packet. If the source host of the packet is not in the Malicious 

List, then the Packet Mirror sub-block receives the packet and mirrors the header 

portion of the packet through the Packet Processing Block and sends the entire 

packet through the Forwarding Circuit. If pipelining is used in the system, since the 

Packet Mirror and Attack Prevention Block becomes idle, the system can receive and 

process a new packet from the network. Forwarding Circuit operates as in a standard 

OpenFlow switch since MiddleModule system is making any modification in the 

OpenFlow and Forwarding components of the switch. When the header portion of 
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the packet arrives at Packet Processing Block, it is stored in the Input Queue. 

Whenever the Detection Engine in the Packet Processing Block becomes idle, the 

first entry in the Input Queue is dequeued and the Detection Engine receives the 

entry, namely the header portion. First, Detection Engine finds the corresponding 

flow for the entry, then it checks the Features Table and retrieves the corresponding 

features of the received header. These features include several lists and values based 

on previously history of received packets for the flow which are used in the 

Detection Algorithms. Detailed explanations regarding the recorded features can be 

found in the Detection Algorithms part of the thesis, in Chapter 4. Detection Engine 

runs several lightweight Detection Algorithms and if any one of them detects 

malicious activity, it stores the source address of the packet to the blacklist table for 

a penaltyTime. If the address of the source host is already in the blacklist table, then 

Detection Engine sends this address to the Attack Prevention sub-block to store it in 

the Malicious List for another penalty time and removes this address from the 

blacklist table. The Features Table in the Detection Engine is updated with the recent 

features. If a malicious activity is detected, the detection decision is also forwarded 

to the Control Block. This block can then send the source address of this malicious 

activity to the Controller and the Controller can distribute it to all edge-switches. 

 

Figure 3.5: MiddleModule Operation Diagram 
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CHAPTER 4 

 

DETECTION ALGORITHMS 

 

In the MiddleModule system, to detect the Network/Transport-Level DDoS attacks, 

several detection algorithms are designed and implemented within Packet Processing 

Blocks of the edge-switches. As was explained in the background part in Chapter 2, 

there are mainly five types of Network/Transport-Level DDoS Attacks. In this thesis, 

we provide detection algorithms against the well-known samples of each 

Network/Transport-Level DDoS attack types, as follows: 

1. IP Spoofing Attack Type: Source IP Spoofing Detection algorithm 

2. Protocol Exploitation Attack Type: SYN Flood Detection algorithm 

3. Flooding Attack Type: ICMP Flood and UDP Flood Detection algorithm 

4. Reflection Attack Type: ICMP Reflection Detection algorithm 

5. Amplification Attack Type: Broadcast Amplification Detection algorithm 

In this chapter, a detailed explanation of the above detection algorithms is given. 

4.1 General Detection Algorithm Approach in MiddleModule System 

Network/Transport-Level DDoS attacks have two critical features, which distinguish 

them from other network incidents. Firstly, these attacks cause large network traffic; 

hence, they increase the traffic volume significantly. Secondly, most of the packets in 

the network become very similar to each other regarding some packet features; 

hence, variation of some packet properties decreases or increases noticeably. In an 

organized and massive DDoS attack, these changes can be recognized along the 

entire network, while in a smaller attack; they are detected at least on the 

communication channel of the responsible malicious host. If an attack is so small that 

it does not cause any such alteration in the traffic, then this attack does not pose any 
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threat towards the SDN network; hence, it is not within the scope of this study. For 

example, during a DoS SYN Flood attack, the SYN packet volume and the ratio of 

the number of SYN packets to the number of all packets measured at the 

communication channel of the malicious host increase noticeably. On the other hand, 

during an organized DDoS ICMP Reflection attack made with reflectors, the volume 

of the ICMP packets in the network increases while the variations of the destination 

addresses, packet byte lengths and packet protocols of the packets in the network 

decrease. Therefore, in Network/Transport-Level DDoS detection algorithms, to 

detect if there is a DDoS attack on the network and if so, to detect the source and the 

victim host and the attack type, we can seek the changes in some features, as shown 

in Figure 4.1.  

In the MiddleModule system, the detection algorithms are designed with this 

approach in mind. The detection algorithms provided in our system use simple 

feature extraction methods and basic threshold-based comparison techniques (see 

Figure 4.1) hence are lightweight ones. Even if they are lightweight; since they are 

implemented in data plane devices, and they are seeking very specific changes in the 

characteristic features for DDoS attacks and since they analyze each packet received 

from connected hosts; they provide remarkable detection performances as will be 

shown in the evaluation part in Chapter 5. In addition, using multiple-location 

defensive approach is critical in obtain high detection performance using such 

lightweight detection algorithms.  

For such lightweight techniques, the false positives could of course be a major 

problem. However, to minimize false positive rates, some further capabilities are 

inserted in the MiddleModule system. The threshold values used are selected by 

considering both the anomalous and normal traffic characteristics. In fact, to be in the 

safe side in terms of false positives, the implemented threshold values are chosen 

with a margin on the calculated threshold values. As our evaluation results suggested 

in Chapter 5, the MiddleModule system easily detects the DDoS attacks with 

negligible false positive rates. 
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Figure 4.1: Network/Transport-Level DDoS Attacks Detection Features 

In MiddleModule system, there are several different attack detection algorithms to 

detect different Network/Transport-Level DDoS attack types. These algorithms are 

classified into two different sets source-side algorithms set and destination-side 

algorithms set. Although both of these sets are implemented at all edge-switches, 

only one set is applied to a received packet, according to the incoming port of the 

packet to the edge-switch. The ingress ports of a switch are categorized as host ports 

and network ports. If an ingress port of an edge-switch is directly connected to a 

host, then this port is called host port. On the other hand, if an ingress port of an 

edge-switch is connected to another switch, then this port is called network port. 

When a packet is received from a host port, then the edge-switch applies the source-

side algorithms set; or if a packet is received from a network port, then the edge-

switch applies the destination-side algorithms set. Reflection Attack Detection 

Algorithms constitutes the destination-side algorithms set, while the other attack 

detection algorithms constitute the source-side algorithms set. In the MiddleModule 

system, we assume that if a host is a malicious host, most of the traffic generated by 

this host belong to that malicious activity, which is a valid assumption when the 

characteristics of the Network/Transport-Level DDoS attacks are considered. To the 
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best of our knowledge, this assumption is utilized in most of the similar works found 

in the literature [4], [39]. 

To detect host ports and network ports of an edge-switch, the MiddleModule system 

uses port detection message, defined in MiddleModule Message Protocol. During the 

initialization of the network, each edge-switch generates port detection message, 

which is forwarded to other edge-switches over the core switches. Finally, all edge-

switches receive such port detection message over their network ports and the 

remaining ports of that edge-switch are labeled as host ports. We prefer this because 

the MiddleModule system is implemented in our work on relatively small networks. 

If the network is a large one, to minimize communication overhead, different 

approaches can be used; for example, this information can be provided by the 

controller to edge-switches by using the global network wide view. 

4.2 Protocol Exploitation Attack Detection Algorithm 

In this attack type, a malicious host generates packets to abuse some properties of the 

communication protocols to exhaust the resources of the victim host. In this thesis, 

SYN Flood attack is considered as a sample of protocol exploitation attack type and 

a detection algorithm is provided against SYN Flood attacks, as explained in 

Algorithm 4-1. To detect SYN Flood attack, at the source side of packets, the ratio of 

SYN packet count over total packet count is calculated for each host having different 

source IP addresses. Hence, this algorithm analyzes the variation of the message 

type.  

For normal TCP traffic, the ratio of the count of SYN messages and the total 

message count should be smaller than a threshold. If the threshold is chosen carefully 

to cover network anomalies, then when this ratio exceeds the threshold, it can be 

deduced that there is a SYN Flooding activity from a host through a victim server. 

In SYN Flood detection algorithm, when a packet, p, arrives at an edge-switch, the 

incoming port of the packet, i, is checked to see if the packet is coming from a host 

port or a network port. If it is coming from a host port, then the packet, p, is stored in 
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a list, pcktWindows with the index number of lastEntrys. For different source IP 

addresses, different lists are used. If the list is full, then the new packet is overwritten 

the oldest packet; hence, the list always includes most recent packets, which is 

critical for detection performance. After storing p, the total number of packets in 

pcktWindows list, ts, and the total number of SYN packets in the pcktWindows list, ss, 

are calculated. Then several comparison operations are performed for malicious 

activity detection. Firstly, the ratio of the total number of packets in the pcktWindows 

list and windowSize is calculated and it is compared with a saturationThreshold to 

avoid immature decisions. If there are sufficient number of packets, the ratio of the 

number of SYN packets, ss, and the total number of packets in the pcktWindows list, 

ts, is compared with the synFloodThreshold value to check if an enormous increase in 

the number of SYN packets exists or not. If so, the responsible source IP address is 

added into a blacklist table in the edge-switch for a penalty time and all statistics 

collected so far for the associated host is cleared.  

The assignment of synFloodThreshold value is an important issue for detection 

performance of the algorithm. To assign a correct value, both standard traffic 

scenarios and anomaly scenarios should be considered. In a standard TCP 

connection, including 3-way handshaking, data transaction and FIN-ACK parts, the 

ratio of the number of SYN packets to the number of total packets is less than 1/5. In 

fact, this ratio gets even smaller if there are different message protocols on the 

network other than TCP. In some cases, there could be network anomalies, and this 

may increase the number of SYN packets over the total number of packet. However, 

even during these anomalies, this ratio should not be larger than a threshold for a 

long time; such as 1/2. Therefore, an optimal synFloodThreshold value can be found 

according to the network topologies, by considering the expected normal traffic and 

possible network anomalies.  

Algorithm 4-1: SYN Flood Detection Algorithm 

1 arrival of new packet p 

2 s  the source IP address of p  

3 i  the ingress switch port of packet p  

4 if i is a host port then 

5 pcktWindows[lastEntrys]  p 
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6 if lastEntrys < windowSize then 

7  increment lastEntrys 

8 else 

9  lastEntrys  0 

10  ts  total number of packets in the pcktWindows set 

11 ss  total number of SYN packets in the pcktWindows set 

12 if (ss / ts > synFloodThreshold) ∧ (ts / windowSize > saturationThreshold) then 

13  p is malicious 

14   ts  0 

15  ss  0 

4.3 IP Spoofing Attack Detection Algorithm 

In this attack type, a malicious host generates packets with forged source IP 

addresses. Generally, source IP spoofing is not classified as a separate attack type but 

in this thesis we consider source IP spoofing as a separate Network/Transport-Level 

Attack type and a detection algorithm is provided against IP Spoofing attacks as 

shown in Algorithm 4-2. 

To detect this type of attack at the source side of packets, the source IP addresses of 

the incoming traffic are monitored to detect any significant increase in the variation 

of the source IP addresses of incoming packets. If the number of packets, with 

different source IP addresses, coming from a single switch host port increases above 

a threshold value, then the host, connected to this host port is added to the IP Spoof 

attackers black list.  

In IP Spoofing attack detection algorithm, when a packet, p, arrives to an edge-

switch, the incoming port, i, is controlled if it is a host port and if so, the packet, p, is 

stored in the pcktWindowi list with the index number of lastEntryi. In this algorithm, 

for each different switch ingress port, different statistics and different lists are stored; 

hence, ingress port-based flows are generated. Then, the ratio of the total number of 

packets in the pcktWindowi list and the windowSize is compared with the 

saturationThreshold to avoid immature decisions. In addition, source IP addresses of 

packets in the pcktWindowi list are analyzed; and the number of different source IP 

addresses, stored in the pcktWindowi list, is compared with the spoofThreshold. If it 

is bigger than the spoofThreshold, this means that there are too many packets with 
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the different source IP addresses arriving from a single ingress port of the edge-

switch. This algorithm is designed assuming that the edge-switches are very close to 

the hosts and only one host is connected to one ingress port of the switch. Hence, if 

both comparisons show that the values are larger than the thresholds, it is deduced 

that the host, connected to that ingress port of the edge-switch, sends IP Spoofing 

traffic into the network. The edge-switch stores the ingress port into the blacklist 

Table for a penalty time, clears all the statistics kept for that port, and restart 

monitoring it. If IP spoofing activity is detected at the same ingress port in that 

penalty time, then this port is added to the Malicious List and the packets coming 

from that port is dropped for a penalty time. 

Algorithm 4-2: IP Spoof Detection Algorithm 

1 arrival of new packet p 

2 s  the source IP address of p 

3 i  the ingress switch port of packet p  

4 if i is a host port then 

5 pcktWindowi[lastEntryi]  p 

6 if lastEntryi < windowSize then 

7  increment lastEntryi 

8 else 

9  lastEntryi  0 

10  ti  total number of packets in the pcktWindowi set  

11  diffSrci  different source IP addresses of packets in the pcktWindowi set 

12 if (size of diffSrci) > spoofThreshold) ∧ (ti / windowSize > saturationThreshold) then 

13  p is malicious 

14   ti  0 

15  clear(diffSrci) 

4.4 Flooding Attack Detection Algorithm 

In Flooding attack type, a malicious host generates a large number of redundant 

packets towards a victim host to exhaust its resources and communication 

bandwidth. In this thesis, ICMP Flooding and UDP Flooding are considered as 

samples of flooding attack type and a detection algorithm is provided against ICMP 

Flooding and UDP Flooding attacks, as explained in Algorithm 4-3. 
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To detect Flooding attack, the number of packets sent from a single source host to a 

destination is checked. The properties of the packets received from that source host 

are also analyzed. During a Flooding attack, a source host sends a large number of 

packets towards a destination and the variation of the destination IP addresses of the 

packets received from that source host decreases noticeably. Furthermore, during 

such attacks, the packet byte length and the packet protocol of most of the packets 

received from that source host become identical. Although other similarities could be 

observed during such attacks, other than packet byte length and packet protocol, 

other similarities are not considered in MiddleModule system for convenience. The 

packet byte lengths and packet protocols are named as packet properties in this 

algorithm. 

In Flooding Detection Algorithm, when a packet, p, arrives at an edge-switch from 

its host port, it is stored in the pcktWindows list with the index number of lastEntrys. 

Different statistics and lists are used for different source hosts. After storing the 

packet in the list, the lastEntrys value is incremented if it is smaller than the 

windowSize value. Then, the ratio of the number of packets in the pcktWindows list 

and the windowSize is calculated and compared with a saturationThreshold. If there 

are enough number of packets in the list, then the number of list packets having the 

same destination address p is found as occDestd. In addition, the number of list 

packets having the same properties as p is also found, occPropprops. After that, the 

ratio of occDestd and the total number of packets in the pcktWindows list is 

calculated. And this ratio is compared with the floodThreshold value to check the 

distribution of destination IP addresses of the packets coming from that source host. 

After that, the distribution of the properties of the packets received from that source 

host is calculated by finding the ratio of occPropprops value to total number of packets 

in the pcktWindows list. This ratio is compared with the floodThreshold value. If the 

comparison results imply that there is flooding attack from that source host, then 

source IP address of the host is stored in the blacklist Table and the monitored 

features are cleared to their default values and monitoring operation restarts.  

There is a critical detail in the Flooding attack detection algorithm. If the victim host 

sends reply messages to the incoming Flooding packets, it could be labeled as 
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malicious, too. To avoid this problem, when a packet is received from a host port for 

the first time, the detection algorithm checks if this is the initial message or a 

response message. To do so, when a packet is received from host port, it is searched 

that if the destination address of the packet is in the different destination address list, 

building the occDestd value, or not. If it is not in the list, then the diffSrcs list, from 

the reflection attack detection algorithm, is checked to see if the destination address 

of that packet is in the list or not. If it is, then it is deduced that the packet is sent as a 

reply to a message; hence flooding detection algorithm is not applied to the packet. 

Algorithm 4-3: Flooding Detection Algorithm 

1 arrival of new packet p 

2 s  the source IP address of p  

3 d  the destination IP address of p  

4 i  the ingress switch port of packet p  

5 prop  the property of p 

6 diffDestAddrLists  the list of different destination IP addresses 

7 if i is a host port then 

8 if (d is in diffDestAddrLists) ∧ (d is in diffSrcs) then 

9  break 

10 pcktWindows[lastEntrys]  p 

11 if lastEntrys < windowSize then 

12  increment lastEntrys 

13 else 

14  lastEntrys  0 

15  ts  total number of packets in the pcktWindows set  

16 occPropprops  the number of packets with property prop in the pcktWindows set 

17 occDestd  the number of packets with destination d in the pcktWindows set 

18 if ts / windowSize > saturationThreshold then 

19  if (occDestd / ts > floodThreshold) ∧ (occPropprops / ts > floodThreshold) then 

20   p is malicious 

21   ts  0 

22   occDestd  0 

23   occPropprops  0 

4.5 Amplification Attack Detection Algorithm 

In this attack type, a malicious host generates malicious traffic and it modifies some 

properties of the packets in that traffic to amplify the effects of the malicious activity. 

By using this attack, the attacker utilizes more network bandwidth of the victim host 
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than its own bandwidth to create the attack. In this thesis, Broadcast amplification 

attacks are considered as the sample of amplification type of attack. A malicious user 

broadcasts malicious messages through the network instead of directing these 

messages to a victim server, or a malicious user sends reflection packets to reflectors 

and makes them broadcast their replies. The main purpose of this attack is to amplify 

the effects of the attack for the underlying network and for the legitimate users. If a 

request message is broadcasted through the network, such as ICMP request and if the 

legitimate users respond to it, the effect of the attack becomes devastating. In 

MiddleModule system, to avoid broadcast amplification attacks, an algorithm is 

provided, which checks both the number of broadcast messages and the variation of 

the packet properties, as explained in Algorithm 4-4. 

This detection algorithm works as follows: when a packet arrives to an edge-switch 

from its host port, it is stored in the pcktWindows list with the index number of 

lastEntrys. The ratio of the total number of the packets in the pcktWindows list and 

windowSize is calculated and it is compared with a saturationThreshold. If there are 

enough packets in the pcktWindows list to make an accurate decision, the number of 

broadcast messages in the pcktWindows list is found. Packet properties, packet byte 

lengths and packet protocols in the pcktWindows list are also checked, and the 

number of different packet properties is computed. Then, the number of broadcast 

messages and the number of different packet properties in the list are compared with 

the total number of packets in the list. If these comparisons imply that there is a 

Broadcast amplification attack, then the source IP address of the responsible source 

host is stored in the blacklist Table first, and if that source is detected as malicious 

again then it is stored in the Malicious List. In this algorithm, source-based flows are 

generated, and packet monitoring and malicious detection are handled for each 

source-based flow.  

Algorithm 4-4: Broadcasting Detection Algorithm 

1 arrival of new packet p 

2 s  the source IP address of p  

3 i  the ingress switch port of packet p  

4 prop  the property of p 

5 if i is a host port then 
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6 pcktWindows[lastEntrys]  p 

7 if lastEntrys < windowSize then 

8  increment lastEntrys 

9 else 

10  lastEntrys  0 

11  ts  total number of packets in the pcktWindows set  

12  bs  total number of broadcast messages in the pcktWindows set  

13 occPropprops  the number of packets with property prop in the pcktWindows set 

14 if ts / windowSize > saturationThreshold then 

15  if (bs / ts > amplificationThreshold) ∧ (occPropprops / ts > 

amplificationThreshold) then 

16   p is malicious    

17   ts  0 

18   bs  0 

4.6 Reflection Attack Detection Algorithm 

In this attack type, a malicious host sends several request messages towards the 

reflectors, with modified source IP address. Instead of writing its own IP address, the 

malicious user writes the IP address of the victim host at the source IP address part of 

the messages; therefore, the replies from the reflectors are sent to the victim host. In 

this thesis, ICMP Reflection attack is considered as a sample of reflection attack type 

and a detection algorithm is provided against ICMP Reflection attack, as explained in 

Algorithm 4-5. 

This attack type cannot be detected at the source side of a packet because this is a 

collaborative attack and it is generated by several separate nodes. In MiddleModule 

system, this attack is detected at the destination side of the packets. During a 

reflection attack, the number of packets with different source addresses increases at 

the edge-switch near victim host, so that the source IP address variation at the edge-

switch increases above a threshold. In addition, the reflection attack traffic is in fact 

the reply messages generated from the reflector nodes to an attack trigger message 

received from a malicious host. Therefore, the reflection attack packets, have 

identical packet byte lengths and packet protocols. Although there are several other 

similarities in those messages, in MiddleModule system, only these two properties 

are considered for simplicity, and they are called as packet properties. Therefore, 

during a reflection attack, at the edge-switch near the victim host the variation of the 
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packet properties, whose source IP addresses are the same, decreases below a 

threshold.  

In reflection detection algorithm, when a packet, p, arrives at an edge-switch, the 

incoming port, i, is controlled if it is a network port and if so, the reflection attack 

detection algorithm is applied on the packet. In this algorithm, destination address-

based flows are generated unlike the previous algorithms, where source address-

based flows were earlier. After receiving the packet, p, from a network port, before 

storing the packet in the pcktWindowd list, the existing pcktWindowd list is checked 

and different source IP addresses of the packets in the pcktWindowd list are stored in 

the diffSrcd list. The properties of these packets, which are included in diffSrcd list, 

are stored in diffSrcPropd list. The packet p is then stored in the pcktWindowd list 

using the index lastEntryd and lastEntryd is incremented if it is smaller than 

windowSize. Then, the source IP address of the received packet, s, is compared with 

the IP addresses existing in the diffSrcd list and if it is not in that list, s is added to the 

diffSrcd list; and the property of the received packet is added to the diffSrcPropd list. 

The ratio of the total number of the packets in the pcktWindowd list to windowSize is 

compared with saturationThreshold value. If there exist enough packets in 

diffSrcPropd list, then the ratio of the size of the diffSrcd list to total number of 

packets in the pcktWindowd list is calculated and this ratio is compared with 

refSrcThreshold. If it is bigger than the threshold, it means that there are too many 

packets having different source IP addresses sent to the destination host. Finally, the 

packet properties in the diffSrcPropd list are analyzed, and the number of packets 

having the same properties with others is found; and the maximum number of 

packets having same properties in the diffSrcPropd list is assigned to the 

maxNumbSamePropd value. If the ratio of maxNumbSamePropd value to the size of 

diffSrcd list is larger than refPropThreshold, this means there are too many packets, 

whose source addresses are different, but whose properties are similar to each other. 

Therefore, all such packets satisfying these conditions are considered as malicious 

and the source IP addresses of these packets are sent to other edge-switches over the 

controller. Hence, packets coming from these hosts are mitigated at the source-side. 
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Algorithm 4-5: Reflection Detection Algorithm 

1 arrival of new packet p 

3 i  the ingress switch port of packet p  

2 d  the destination IP address of p  

4 s  the source IP address of p 

4 prop  the property of p 

5 if i is a destination port then 

6 diffSrcd  different source IP addresses of packets in the pcktWindowd set 

7 diffSrcPropd  the properties of packets that build diffSrcd set 

8 pcktWindowd[lastEntryd]  p 

9 if lastEntryd < windowSize then 

10  increment lastEntryd 

11 else 

12  lastEntryd  0 

13  td  total number of packets in the pcktWindowd set  

14 if s is not in diffSrcd then 

15  add s into diffSrcd 

16   add prop into diffSrcPropd 

17 maxNumbSamePropd  maximum number of the same properties in diffSrcPropd set 

18  samePropSrcd  source IP addresses of packets that build maxNumbSamePropd  

19 if td / windowSize > saturationThreshold then 

20  if size of diffSrcd / td > refSrcThreshold then 

21    if maxNumbSamePropd / size of diffSrcd > refPropThreshold then 

22    samePropSrcd list is malicious 

23    send samePropSrcd list to controller 

24     td  0 

25    clear diffSrcd set 

26    clear diffSrcPropd set 

27    clear samePropSrcd set 

28    maxNumbSamePropd  0 

For example, consider a victim host, which is under an ICMP reflection attack; and 

the edge-switch directly connected to the victim host has windowSize of 100. Several 

reflector nodes, say 90 reflectors having different source IP addresses send malicious 

packets to the host. When the edge-switch stores 100 packets in its pcktWindowd list, 

let’s say 95 packets are received from 90 different reflectors and five packets are 

received from two different legitimate hosts. Assume that 95 malicious packets have 

similar packet properties with each other, 2 packets out of 5 normal ones have similar 

packet properties with each other and the remaining 3 have different packet 

properties. In this example, the diffSrcd list will include 92 different source addresses 
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and diffSrcPropd list includes 92 entries, which are the properties of the most recent 

packets received from those 92 different sources. For this simple example, assume 

the saturationThreshold value is 0.75 and the refPropThreshold is 0.8. First, the ratio 

of the number of packets in the pcktWindowd list, and the windowSize value, is to be 

calculated and 100/100 is found as the result. Then, this ratio of one is compared 

with the saturationThreshold value of 0.75. Since there are enough number of 

packets in the list, the ratio of the diffSrcd list size to the number of packets in the 

pcktWindowd list is now calculated as 0.92 and it is compared with the 

refPropThreshold value. diffSrcPropd list is checked for identical entries; and it is 

found that 95 entries and 2 entries similar packet properties. Since the maximum is 

95, it is assigned to maxNumbSamePropd. Then the ratio of maxNumbSamePropd 

value and the size of diffSrcd list is calculated as 1.03 (95/92) and this ratio is also 

compared to refPropThreshold value. Since both comparisons imply that there is a 

Reflection attack, then 90 source IP addresses of the packets building the 

maxNumbSamePropd value are labeled as malicious. 
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CHAPTER 5 

 

EVALUATION 

 

An extensive evaluation is performed to examine the behavior of the MiddleModule 

system and to analyze its performance. In this chapter, the performance measurement 

metrics are discussed, the evaluation scenarios are explained in detail, and obtained 

test results are presented. The test results are compared with important similar studies 

and the advantages and disadvantages of the MiddleModule system are stated 

clearly. 

The MiddleModule system is evaluated in two different platforms, namely 

OMNET++ 4.2 and Mininet. The OMNET++ is a discrete event simulator platform 

and Mininet is a network emulator platform that uses process-based virtualization 

technique. During MiddleModule system design and the detailed functional analysis, 

OMNET++ 4.2 simulator is used because of its flexible and modular nature. For the 

performance analysis of the MiddleModule system and the proof-of-work, Mininet 

network emulator platform is used because of its realistic and reliable nature.  

To evaluate the performance of the MiddleModule system; in this chapter, the 

defense strength and the system performance degradation are measured using 

different packet generation rates and using different test scenarios. By considering 

the measurement results obtained, scalability, implementation complexity and 

compromise-ability of the MiddleModule system are discussed. 

Our evaluations are performed on a single computer, having properties stated in 

Table 5.1Error! Reference source not found..  

 

 



50 

Table 5.1: Hardware Specifications 

Processor Model Intel i7-5500U CPU 

Number of Cores 2 

Number of Threads 4 

Processor Base / Max Frequency 2.40 GHz / 3.0 GHz 

Installed Memory 12 GB 

Instruction Set 64 Bit 

5.1 Evaluation Tools 

5.1.1 Evaluation Platforms 

A network system can be evaluated in a simulator platform or in a hardware testbed 

or in an emulator platform. There are many differences between these platforms, and 

the most critical ones are reliability, realism, reproducibility, flexibility and cost [43]. 

In this thesis, we concentrated on both simulation and emulation. Simulators can 

provide reproducible and realistic analysis; and they provide flexible and easily 

manageable network topologies and low-cost evaluation systems. Custom network 

systems can be created easily and be evaluated with custom topologies and custom 

communication protocols by using simulators. Despite these advantages, simulators 

do not use the same codes running on real networks; and their models for traffic 

generation, communication protocols or hardware devices may raise accuracy 

concerns, which decreases their reliability [43]. Emulators provide both flexible and 

reliable evaluation platforms; hence, they stand between the simulators and the 

hardware testbeds in terms of these properties. Emulators run real codes regarding 

network applications, OS kernel, etc. with interactive network traffic by creating 

virtual hardware; therefore, they provide reliable and accurate evaluation results. On 

the other hand, like simulators, custom topologies can be created with emulators and 

they are still low cost analysis systems [43]. 

Therefore, during the design of a network defense system, network simulators can be 

used because of their flexibility and the sense of realism provided by the simulators. 
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In addition, as suggested in [44], using simulators could be beneficial for functional 

analysis of network defense systems because of their flexible and manageable nature. 

After designing a network defense system and performing basic functional analysis, 

the network emulators can be used for detailed performance analysis of the network 

defense systems, and for proof-of-work. By using emulators, detailed and reliable 

analysis results can be collected, and the performance of the proposed system can be 

compared with similar studies. During evaluation of MiddleModule system, we 

follow this approach and use both OMNET++ and Mininet. 

In this thesis, OMNET++ 4.2 is operated on Windows 10 operating system [45]. Inet 

2.0 library [46] is used to provide basic networking capabilities and ofomnet library 

[47] is used to provide SDN and OpenFlow capabilities. Ofomnet library provides 

SDN architecture with OpenFlow 1.0 protocol. Our MiddleModule system 

framework and the associated detection algorithms are created in OMNET++ 4.2.  

The Mininet [48] GUI/X11, on the other hand, is built on VirtualBox, that runs on 

Windows 10. The Mininet version used in these tests is 2.2.2; and OpenFlow 1.0 is 

used in these tests. In the test scenarios, the Open vSwitch 2.0.2 and OVS-Controller 

2.0.2 are used as OpenFlow network nodes. Various test topologies are built and a 

detailed performance analysis of the MiddleModule system is performed on this 

platform. 

5.1.2 Traffic Datasets 

Traffic datasets are important to obtain reliable evaluation results for network 

defense systems. Once a network defense system is created, it should be evaluated 

with realistic test scenarios, and the network traffic is an important part of the 

scenario. During the evaluation of the MiddleModule system, different traffic 

datasets are used for different test platforms. In the simulation phase, involving 

OMNET++, the NSL-KDD dataset is used to create legitimate traffic and some of 

the malicious traffic [49]. It is an improved version of the standard KDD’99 dataset 

[50]. The standard KDD dataset is generated at the MIT Lincoln Labs. A local area 

network that simulates a real military LAN environment was created and operated as 
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if it was a true networking environment. In addition, some DoS attacks were 

implemented on the network, along with other attack types. This network traffic was 

monitored, and features of each connection was recorded and presented in the KDD 

dataset. The NSL-KDD improves the original KDD dataset by removing redundant 

packets and duplicate records, etc. Although this dataset is considerably old, and it 

consists of synthetic traffic, we used this dataset in our simulations because it is 

widely used in the literature and it is convenient to use it in simulation environments. 

On the other hand, during our emulation phase that utilized the Mininet platform, 

traffic is generated by using a real traffic dataset received from MAWI Working 

Group Traffic Archive [51], which is a popular dataset widely used in the literature 

[2] [39]. MAWILab has been working for a long time to collect real traffic at 

backbones. They have been sharing real traffic datasets since 2002 up until today. 

The traffic is labelled as benign or malicious. In this thesis, the traffic, collected on 

Jan 12, 2014 is used and the legitimate traffic is generated by using the packets, 

labeled as benign, during the emulation phase. 

5.2 Performance Metrics 

There are several performance measurement metrics that should be considered while 

designing and testing a DDoS defense mechanism. As stated in [3], defense strength, 

system performance degradation, scalability, implementation complexity, and 

compromise-ability of a defense system are very critical for a DDoS defense system. 

In addition, a Network/Transport-Level DDoS defense mechanism should handle 

high traffic injection rates; therefore, the allowable malicious traffic injection speed 

should also be considered during evaluation.  

5.2.1 Defense Strength 

Defense strength of a system demonstrates the detection and prevention performance 

of it against malicious activities. According to the responses of defense systems, four 

different outcomes can be obtained; false positive, false negative, true positive and 

true negative, as explained in Table 5.2 [3]. 
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Table 5.2: Possible Outcomes of a Defense System 

 Desired Outcome is Positive Desired Outcome is Negative 

System Response is Positive True Positive (TP) False Positive (FP) 

System Response is Negative False Negative (FN) True Negative (TN) 

Six defense strength performance metrics can be calculated based on the outcomes of 

the defense system and these metrics can be used to evaluate a defense system. These 

metrics are calculated as shown in the Table 5.3 [3]. 

Table 5.3: Defense Strength Performance Metrics 

METRIC TYPE EXPLANATION MEASUREMENT 

Accuracy Measures the degree of the correct 

responses of a defense system to all events 

ACC =
(TP + TN)

(FP + FN + TP + TN)
 

Sensitivity Measures the degree of the accurate positive 

responses over all positive events 

SENS = (TP) / (TP + FN) 

Specificity measures the degree of the accurate negative 

responses over all negative events 

SPEC = (TN) / (FP + TN) 

Precision measures the degree of the accurate positive 

responses over all positive responses 

PREC = (TP) / (TP + FP) 

False Positive 

Rate 

measures the degree of the inaccurate 

positive responses over all positive 

responses 

FPR = (FP) / (TP + FP) 

False Negative 

Rate 

measures the degree of the inaccurate 

negative responses over all negative 

responses 

FNR = (FN) / (TN + FN) 

During the evaluation of the MiddleModule system, Sensitivity, Accuracy and False 

Positive Rate values are calculated and analyzed.  

5.2.2 Scalability 

Scalability is a critical evaluation metric in networking since the amount of traffic 

passing through a network system and the number of nodes connected to a network 

system can increase or decrease, and the system performance should not be affected 

dramatically with such changes.  
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5.2.3 System Performance Degradation 

System Performance Degradation metric measures the performance degradation 

experienced in the underlying network that is caused by employing the defense 

system. The implemented defense system may increase the workload of the network 

nodes or may increase the forwarding delay of the nodes; and these may cause 

overall system performance to degrade. This is a critical issue especially for a data 

plane-based DDoS defense system because the defense system is implemented on the 

forwarding devices. Hence, the forwarding delay, or the average packet retrieval 

delay (in seconds) caused by the additional defense system on the legitimate hosts 

should be analyzed carefully. For that purpose, the network should be tested with and 

without the proposed system and packet retrieval times (time between sending packet 

request and receiving reply) of legitimate hosts are measured (in seconds). 

5.2.4 Implementation Complexity 

Implementation Complexity metric demonstrates the required additional resources 

and the required number of devices that should be modified to implement a defense 

system. When implementation complexity increases, the feasibility of implementing 

the defense system decreases. 

5.2.5 Allowable Packet Receiving Rate 

Allowable packet receiving rate is an important aspect for a data plane-based 

Network/Transport-Level DDoS defense mechanism. One of the most distinctive 

properties of the Network/Transport-Level DDoS attacks is that the attackers inject 

DDoS traffic into the network with the highest possible packet generation rate. In 

today’s advanced networking technologies, the packet generation rate of single hosts 

is increasing; hence, the maximum allowable data rate (in packets per second) of a 

defense system becomes a critical performance metric. DDoS defense systems 

should be designed to handle higher packet generation rates and the defense strength 

performance of these systems should also be tested under such conditions. 
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5.2.6 Compromise-ability 

All network defense systems are used to protect the network against some malicious 

activities. However, if the implemented network defense system can be exploited by 

the malicious users by some means then the network can be exposed to any network 

attack. This is a significant issue because when a defense system is exploited, the 

accuracy values or system performance degradation values calculated for that 

defense system becomes unimportant because the network is now defenseless to 

attacks under that condition. Therefore, during the evaluation of any defense system, 

the compromise-ability of the system should also be discussed in detail. 

5.3 Evaluation Tests and Test Results 

During the evaluation process of the MiddleModule system, several tests are applied 

to the system at different test platforms. For this purpose, OMNET++ 4.2 simulation 

platform and Mininet emulation platform are used, as was explained earlier. 

Firstly, the system performance degradation of the proposed method is tested in 

OMNET++ platform. For this purpose, average packet retrieval time of a Normal 

User is measured with and without the MiddleModule system. Then the defense 

strength evaluation is performed in OMNET++ platform with custom test scenarios. 

The test scenarios used in defense strength tests are designed by considering the 

MiddleModule system working principles. After observing that the MiddleModule 

system functions properly against targeted malicious attack types, the detailed 

performance analysis tests are started in Mininet.  In this platform, first the system 

performance degradation is measured; and then the defense strength is measured 

using different test scenarios and different packet generation rates. The test scenarios, 

the legitimate traffic generation datasets, and the targeted DDoS attack types that are 

used during the tests in Mininet platform are selected by considering similar studies 

found in the literature. The results collected in these tests are used to compare the 

performance of the MiddleModule system with existing works. 
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To increase the reliability and accuracy of the tests, test procedures are designed by 

considering the following points: 

1. Generating Realistic Legitimate Traffic:  

In the simulation tests in OMNET++ 4.2, the legitimate traffic is generated by using 

NSL-KDD dataset; and in the emulation tests, in Mininet, a real traffic dataset 

received from MAWI Working Group Traffic Archive is used. The legitimate traffic 

is generated by using these datasets and the malicious traffic is generated by using 

both the malicious packets in these datasets and obvious properties of the 

corresponding attacks. To increase the reliability of the emulation results, MAWILab 

traffic is used because it includes several non-malicious abnormalities, such as SYN 

bursts, packet errors, packet retransmissions, triple ACKs, etc. In Mininet, to inject 

both the legitimate and the malicious traffic into the network with different data 

rates, Scapy [52] and packETH [53] programs are used. Scapy is a sophisticated 

packet generation tool with many capabilities; however, it cannot inject traffic with 

rates higher than 1 pckt / 500ms. On the other hand, packETH is a leightweigth 

packet generation tool and it can inject traffic with higher data rates up to 1 pckt / 

1µs. In addition, to fluctuate the legitimate traffic in both testing platforms, the 

legitimate traffic is built by using both TCP packets and ICMP packets in different 

percentages. 

2. Applying Tests for Multiple Rounds: 

During the evaluation, to increase the reliability of the tests, each test is applied for 

multiple rounds, instead of just one round. Each round lasts for a period of time or 

lasts until each host sends an exact number of packets. The average performance 

values for these rounds are calculated and reported as the result of the corresponding 

tests. In each test, the details about how the method is implemented for that specific 

test are explained. 

 

3. Generating Traffic with Different Data Rates: 

Different traffic generation speeds are used for both legitimate and malicious traffic 

during the evaluation; namely ultra-low-speed, low-speed, normal-speed, high-speed 

and the ultra-high-speed modes according to Table 5.4: 
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Table 5.4: Traffic Generation Modes 

Traffic Generation Speed 

Mode 

 Packet Generation Rate The Rate of Transferred Data 

when the average packet size 

is 250 Bytes 

ultra-low-speed mode 100 packets/sec, 1 pckt / 10 ms 200 Kbps 

low-speed mode 500 packets/sec, 1 pckt / 2 ms 1 Mbps 

normal-speed mode 5000 packets/sec, 1 pckt / 200 µs 10 Mbps 

high-speed mode 100Kpackets/sec, 1 pckt / 10 µs 200Mbps 

ultra-high-speed mode 500Kpackets/sec, 1 pckt / 2 µs 1Gbps 

5.3.1 Evaluation in OMNET++ 4.2 

5.3.1.1 System Performance Degradation Test 

The test scenario shown in Figure 5.1 is built in OMNET++ 4.2 platform. In this 

test, the effect of the MiddleModule system on average packet retrieval time of the 

Normal User is measured. The test is applied using four different scenarios, with and 

without MiddleModule system and with and without the malicious traffic generated 

by the Malicious User nodes. Firstly, the Normal User generates legitimate TCP 

traffic towards the Server by using NSL-KDD dataset, while ten Malicious User 

hosts do not generate any traffic, and the MiddleModule system is deactivated.  

 

Figure 5.1: System Performance Degradation Test Scenario for OMNET++ 
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During this test, the following steps, explained in Table 5.5, are used.  

Table 5.5: Test Steps in OMNET++ 

1. Generate the appropriate network topology in ‘test.ned’ file.  

2. Set the following properties in ‘omnetpp.ini’ file for Normal_User node, by using the 

modified version of TCPBasicClientApp. Therefore, Normal_User node will operate as 

TCP client and generates packets according to NSL-KDD dataset. 
a. **.Normal_User.numTcpApps = 1 

b. **.Normal_User.tcpApp[*].typename = "TCPBasicClientApp" 

c. **.Normal_User.tcpApp[*].kMeansMode = "normal"  

d. **.Normal_User.tcpApp[*].connectAddress = "server" 

 

3.  Set the following properties in ‘omnetpp.ini’ file for each Malicious_User node, 
a. **.Malicious_User*. numPingApps = 1 

b. **.Malicious_User*.pingApp[*].isIPSpoofing = true 

c. **.Malicious_User*.pingApp[*].typename = "PingApp" 

d. **.Malicious_User*.pingApp[*].destAddr = "server" 

e. **.Malicious_User*.pingApp[*].packetSize = 250B 

f. **.Malicious_User*.pingApp[*].count = 10000 

g. **.Malicious_User*.pingApp[*].sendInterval = 10us 

 

4. Set the following properties in ‘omnetpp.ini’ file for each open_flow_switch node, 
a. **.open_flow_switch*.open_Flow_Processing.windowSize = 40  

b. **.open_flow_switch*.open_Flow_Processing.saturationThreshold = 0.15 

c. **.open_flow_switch*.open_Flow_Processing.maliciousThreshold = 0.8  

 

5. Set the following properties in ‘omnetpp.ini’ file for each server node, by using the 

modified version of TCPEchoApp. Therefore, server node will operate as both TCP and 

ICMP web server. TCP web server generate responses according to NSL-KDD dataset. 
a. **.server*.numTcpApps = 1 

b. **.server*.numPingApps = 1 

c. **.server*.pingApp[*].typename = "PingApp" 

d. **.server*.tcpApp[*].typename = "TCPEchoApp" 

e. **.server*.tcpApp[0].localAddress = "" 

f. **.server*.tcpApp[0].localPort = 1000 

g. **.server*.tcpApp[0].echoFactor = 1.0 

h. **.server*.tcpApp[0].echoDelay = 0 

 

6. Comment out the entries for Malicious_User nodes, set the following property in 

‘omnetpp.ini’, and apply test. Therefore, Malicious_User nodes do not generate any 

packets and MiddleModule system does not operate. 
a. **.open_flow_switch*.open_Flow_Processing.isMMIDSOn = false 

 

7. Under these conditions, Normal_User node establishes new TCP connection, then 

generates TCP packets by using NSL-KDD. The modified version of 

TCPBasicClientApp writes the SYN request generation time, FIN reply reception time, 

and their differences on the simulation window, in milliseconds. 

First, apply the steps from 1 to 7. In this test, a web server is built in the server node 

and the Normal User node creates a TCP connection to the server node. After 
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establishing the connection, Normal User node exchanges data with the server and 

then closes the TCP connection. The difference between connection initialization 

time and FIN packet reception time by the Normal User node is shown in 

milliseconds on the simulator window. This time difference shows single packet 

retrieval time of a Normal User node without DDoS attacks and without 

MiddleModule system. Apply this test for 10 rounds, where each round includes 100 

connections. Calculate the average packet retrieval time in milliseconds.   

In the second test, apply the steps from 1 to 7, but in step 6, set the parameter to true, 

as shown below. 

**.open_flow_switch*.open_Flow_Processing.isMMIDSOn = true 

In this test, the Malicious User nodes do not generate any traffic but the 

MiddleModule system is activated. Follow the test procedure of the first test and 

calculate the average packet retrieval times for 10 rounds in milliseconds.   

In the third and fourth tests, the previous two tests are repeated while Malicious User 

nodes are generating IP Spoofed SYN Flood traffic at high-speed mode. For this 

purpose, in step 5, comment in the entries for Malicious User nodes. Calculate the 

overall average packet retrieval times under these conditions in milliseconds. 

Obviously, the packet retrieval times are in simulation time, not in real time. 

The overall average packet retrieval times are compared in Table 5.6. As this table 

demonstrates, the MiddleModule system does not cause any noticeable degradation 

at Normal User packet retrieval time when there are no DDoS attacks. When the 

Malicious User nodes generate DDoS traffic, because of switch buffer overflows and 

switch flow table overflows, mentioned earlier, the Normal User cannot get any 

response from the server if the MiddleModule system is deactivated. Average packet 

retrieval time of the Normal User goes to infinity. On the other hand, if the 

MiddleModule system operates during DDoS attacks, the Normal User can 

communicate with the server without any packet loss, and the average packet 

retrieval time is very close to the average packet retrieval time when there is no 

DDoS attack on the network. 
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Table 5.6: System Performance Degradation Result in OMNET++ 

 without DDoS traffic with DDoS traffic 

without MM 0.531 ms ∞ 

with MM 0.532 ms 0.534 ms 

5.3.1.2 Defense Strength Test 

In OMNET++ 4.2 simulation platform, the defense strength tests are applied to the 

MiddleModule system to satisfy three goals. Firstly, the tests are applied for basic 

functional analysis to observe if the MiddleModule system detects the targeted 

malicious activities, or not. Secondly, further functional analysis is performed to 

observe if the MiddleModule system operates correctly under more complex test 

scenarios. To satisfy the second goal, all targeted Network/Transport-Level DDoS 

attacks are generated by the Malicious User nodes at the same time, and the 

legitimate traffic is generated by the Normal User. Under these conditions, the 

detection performance of the MiddleModule system is evaluated. Finally, the 

configuration variables of the MiddleModule system, detection algorithm thresholds 

and windowSize, are varied and the defense strength performance of the 

MiddleModule system is measured. The relation between the defense strength 

performance of the MiddleModule system and the configuration variables are 

evaluated with this test. In these tests, IP spoofing attacks, SYN Flood attacks, ICMP 

Flood attacks, UDP Flood attacks, ICMP Reflection attacks, and Broadcast 

Amplification attacks are targeted. 

During these tests, the steps from 1 to 7, explained in Table 5.5 are used. The step 3 

is modified according to the applied test. For example, for UDP Flooding, 

"UDPApp" is used instead of “PingApp". In step 5, UDP server application is also 

operated, and in step 6, comment in the entries for Malicious User nodes and set the 

parameter to true, as shown below. During detection algorithm parameter 

dependency analysis of the MiddleModule system, the parameters in step 4 are 

varied according to Table 5.8. The detection and prevention decision are shown in 
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the simulation window thanks to the modifications in ‘open_flow_switch’ source 

code. 

**.open_flow_switch*.open_Flow_Processing.isMMIDSOn = true 

First, the test scenario, shown in the Figure 5.2, is created in the OMNET++ 

platform to test the basic functionality of the MiddleModule system. The DDoS 

detection functions are built in edge-switches, open_flow_switch_withMM and 

open_flow_switch_withMM1, and they are connected to myorchestrator module, 

which simulates the proposed Orchestrator Block residing in the Controller. If 

open_flow_switch_withMM module detects any malicious activity, it informs 

myorchestrator module. Five different tests are applied and in each one of them 

different malicious traffic (IP Spoofing traffic, SYN Flood traffic, ICMP Flood 

traffic, UDP Flood traffic and Broadcast Amplification traffic) is generated from the 

Malicious User module towards the server module. In these tests, Malicious User 

generates traffic at high-speed mode and the configuration variables are set according 

to Table 5.9.  

 

Figure 5.2: Basic Defense Strength Test Scenario for OMNET++ 

Test results show that, malicious packets are detected by the 

open_flow_switch_withMM module when they satisfy the malicious conditions.  

Since the open_flow_switch_withMM module is closer to the source of the malicious 

activity, this module detects and prevents the malicious activity. The prevention 
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decisions of open_flow_switch_withMM node are analyzed, and the detection rate is 

calculated as follows; 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
prevented Malicious Packets count

all Malicious Packets count
 

Under these conditions, the detection rate of the MiddleModule system is measured 

to be above 99%. Some of the detection and prevention operation outputs, collected 

from the OMNET++ simulation platform, are shown in the Figure 5.3. 

    

      

Figure 5.3: Basic Defense Strength Test Results from OMNET++ 

A second but a more complex test scenario is built in the OMNET++ simulation and 

the defense strength tests are reapplied using this scenario. During this test, both 

legitimate traffic and the malicious traffic are generated at the same time. Different 

attack types are also generated by different Malicious User nodes. For this test, the 

scenario shown in Figure 5.4 is built in OMNET++, and legitimate traffic is 

generated by Normal User and Normal User1 modules. To increase the reliability of 

the test, the legitimate traffic is generated by using two different communication 
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protocols, TCP and ICMP, and 90 percent of the legitimate traffic is built with TCP 

while the remaining 10 percent is built with ICMP. The TCP traffic is generated by 

using NSL-KDD dataset and the ICMP traffic is generated as ping messages from 

Normal User modules towards server and server1 modules. As demonstrated in 

Figure 5.4, three Malicious User nodes generate ICMP Reflection attack towards the 

server module, one Malicious User node generates Broadcast Amplification attack 

towards server1 module, and Normal User module generates legitimate traffic 

towards server module while Normal User1 module generates legitimate traffic 

towards server1 module. In addition, one Malicious User generates UDP Flooding 

attack towards to server module, while one Malicious User generates SYN Flooding 

attack with IP Spoof towards server1 module. The configuration variables of the 

detection algorithms implemented in edge-switches are set according to Table 5.9. 

Malicious traffic is generated at high-speed mode for 10 rounds, and each round lasts 

for 20 msec simulation time. 

 

Figure 5.4: Complex Defense Strength Test Scenario for OMNET++ 

The prevention decisions of open_flow_switch_withMM node are analyzed, and the 

detection rate (sensitivity) and false positive rates are calculated as follows; 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
prevented Malicious Packets count

all Malicious Packets count
 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
prevented Normal Packets count

all Normal Packets count
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Simulation results demonstrate that the MiddleModule system detects the malicious 

activities accurately, while forwarding the legitimate traffic without any packet loss. 

Hence, during DDoS attacks, thanks to the MiddleModule system, the Normal User 

nodes can communicate with the server nodes successfully while the traffic coming 

from Malicious User nodes are prevented at the data plane devices, without sending 

them to server nodes or sending them to controller. Under these conditions, the 

sensitivity, false positive rate and accuracy of the MiddleModule system model are 

measured; and they are shown in Table 5.7. The sensitivity results are measured to 

be above 99.6 % for all attack types, and the accuracy results are above 99.8 %; 

which means all targeted Network/Transport-Level DDoS attack types are detected 

accurately by the MiddleModule system. On the other hand, the legitimate packets 

are not dropped by the MiddleModule system; hence, the false positive rate is zero. 

Table 5.7: Simulation Defense Strength Performance Results 

 Sensitivity False Positive Rate Accuracy 

IP Spoofing Attack 99.8 % 0 % 99.9 % 

SYN Flooding Attack 99.6 % 0 % 99.8 % 

UDP Flooding Attack 99.6 % 0 % 99.8 % 

ICMP Reflection Attack 99.7 % 0 % 99.8 % 

Broadcast Amplification Attack 99.7 % 0 % 99.8 % 

      

Finally, the defense strength performance variation of the MiddleModule system is 

evaluated with respect to three configuration variables, namely saturationThreshold, 

maliciousThreshold and windowSize. For this purpose, the test scenario, shown in 

Figure 5.5 is built in OMNET++. During saturationThreshold and 

maliciousThreshold evaluations, Malicious User nodes generate only SYN Flood 

traffic without IP Spoofing. In these tests, windowSize is assigned to an expected 

optimum value of 20. Then, other parameters are set to their optimum values and the 

effect of windowSize is evaluated with SYN Flood traffic. Finally, the Malicious 

User nodes generate ICMP Reflection attack, and the effect of windowSize is 

evaluated for this attack type, also. Tests are applied as 10 rounds and, in each round, 
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 each host node, both Malicious User and Normal User, generates 200 packets 

towards the server node. 

The legitimate traffic is built using the TCP protocol. Different TCP connections; 

including 3-way handshaking, data transfer, and FIN/ACK message exchange; are 

created by using the NSL-KDD dataset. If a non-zero payload length is provided in 

the dataset for a benign connection, then such data transfer occurs between the 

Normal User node and the server node for that particular connection. If payload 

length provided in the dataset for a benign connection is zero, then no data transfer 

occurs between the nodes in that connection; only the 3-way handshaking and 

FIN/ACK message exchange occur. For each scenario, demonstrated in Table 5.8, 

test is applied for 10 rounds. The defense strength outcomes are measured for each 

round and average accuracy and false positive rates are calculated. As shown in 

Table 5.8, different values for the associated variables are selected from different 

intervals. As a result of this test, the relation between the defense strength of the 

MiddleModule system and configuration variables are evaluated; and ideal 

configuration variable values, for the network topology in Figure 5.5 are found.  

 

Figure 5.5: Defense Strength Variation with Configuration Variables Test 

Scenario 
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Table 5.8: Configuration Variable Variation 

 
synFlood Threshold 

(maliciousThreshold) 

saturation 

Threshold 
windowSize 

Malicious Traffic 

Type 

Test 1 0.8 0.15 20 SYN Flood 

Test 2 0.8 0.75 20 SYN Flood 

Test 3 0.2 0.25 20 SYN Flood 

Test 4 0.4 0.25 20 SYN Flood 

Test 5 0.5 0.25 20 SYN Flood 

Test 6 0.7 0.25 20 SYN Flood 

Test 7 0.99 0.25 20 SYN Flood 

Test 8 0.8 0.25 5 SYN Flood  

Test 9 0.8 0.25 20 SYN Flood  

Test 10 0.8 0.25 100 SYN Flood  

Test 11 0.8 0.25 5 ICMP Reflection 

Test 12 0.8 0.25 20 ICMP Reflection 

Test 13 0.8 0.25 100 ICMP Reflection 

As shown in Figure 5.6, the defense strength of the MiddleModule system changes 

with respect to configuration variables. The following three conclusions can be 

drawn about configuration variables: 

First, synFloodThreshold should not be assigned a low value to avoid high false 

positive rates. If this variable is set to a high value, near 1.0 for example, then the 

detection rate of the system can decrease if any unexpected change occurs in the 

malicious traffic. Although, test results do not highlight this point, setting this 

variable too high is also not advised considered the structure of the detection 

algorithms. Hence, synFloodThreshold variable can be set a value from moderate to 

high interval. Second, the saturationThreshold is used to prevent immature 

decisions; therefore, it should not be set too low. This variable should not be set too 

high also. The detection algorithms wait until they receive a sufficient number of 

packets to satisfy the saturation condition before making any decisions. If this 

variable is set too high, the MiddleModule system misses many malicious packets. 

Therefore, it should be set to a value from moderate to low interval. Finally, the 

variable windowSize should be chosen according to the network topology. If it is set 
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too low for a given topology, then the accuracy of the detection algorithms decreases. 

If it is set too high, then the detection algorithms cannot analyze the most recent 

packets, which decreases the detection performance of the system. In addition to 

these outcomes, there are two important conclusions drawn from our tests; accuracy 

and false positive performances changes steadily near optimum points; therefore, it is 

not vital to use the exact optimum values. Setting the configuration variables close to 

optimum points is enough to get high performance results. Secondly, defense 

strength changes with the configuration variables, in a predictable way. Hence, the 

optimum values for these variables can be predicted by considering the network 

topology. In this test, the optimum values for the given network topology are found 

as shown with green dots in Figure 5.6. 

  

 

Figure 5.6: Defense Strength Variation Results with respect to Configuration 

Variables 

0

0,2

0,4

0,6

0,8

1

0,1 0,3 0,5 0,7 0,9 1,1

D
e

fe
n

se
 S

tr
e

n
gt

h

synFloodThreshold

Accuracy False Positive Rate

0,7

0,75

0,8

0,85

0,9

0,95

1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

A
cc

u
ra

cy

saturationThreshold

0,8
0,82
0,84
0,86
0,88

0,9
0,92
0,94
0,96
0,98

1
1,02

0 20 40 60 80 100 120

A
cc

u
ra

cy

windowSize
with SYN Flood Attack with ICMP Reflection Attack



68 

During the emulation tests performed in Mininet platform, a test scenario, similar to 

the one demonstrated in Figure 5.5, is used. Therefore, to obtain the best 

performance in emulation tests, configuration variables are set as shown in Table 5.9. 

Table 5.9: Optimum Configuration Variables for the Test Scenario 

windowSize 20 - 40 

saturationThreshold 0.15 - 0.30 

spoofThreshold 2 

synFloodThreshold 0.70 – 0.90 

floodThreshold 0.70 – 0.90 

5.3.2 Evaluation in Mininet 

Although OMNET++ provides realistic test results, simulators have some limitations 

in terms of reliability, as was mentioned earlier. To provide more reliable and more 

accurate results, some of the performance tests are repeated in Mininet platform. 

These tests are applied to detect system performance degradation and defense 

strength of the MiddleModule system using different packet generation rates. 

Scalability of the system is also discussed. In addition, the results collected in 

Mininet are used for performance comparison of the proposed system with similar 

studies. In our tests, Mininet is built on top of VirtualBox by using Mininet VM 

image provided in [54]. The virtual machine that runs the Mininet has the properties 

shown in Table 5.10. The Mininet version 2.2.2 and OpenFlow version 1.0 is used in 

these tests. In the test scenarios, Open vSwitch 2.0.2 and OVS-Controller 2.0.2 are 

used as the OpenFlow compliant network nodes. 

 Table 5.10: VirtualBox Properties 

VirtualBox version 5.2.6 r120293 

Operating System Ubuntu – 64bit 

Number of Cores 1 

Installed Memory 6 GB 

Upper Limit of Operation 100 % 
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These tests are applied by following the steps explained in Table 5.11. 

Table 5.11: Test Steps in Mininet 

1. Run Mininet-VM (Mininet virtual machine) in VirtualBox, then run Mininet GUI/X11 

by typing ‘startx’ on the command line.  

 

2. Go to ‘~/mininet/custom’ folder and build the required network topology with the name 

‘myTopology.py’ for the test. 

 

3. In the terminal command line, type ‘sudo mn --custom custom/myTopology.py --topo 

myTopo --link tc -x’. This will start the mininet emulation for the network, defined in 

‘myTopology.py’ file. In addition, for each network node, xterm command lines will 

open.  

 

4. At the switch node, read the incoming traffic with tcpdump command and then run the 

MiddleModule functions on the received packets. 

 

5. Type ‘python -m SimpleHTTPServer 80 &’ to the command line of server node to 

create a simple HTTP server with the port number of 80. 

 

6. Type ‘wget -0 -destIPAddr &’ to the command line of Normal User node to get packet 

from the HTTP server node. 

 

7. To generate legitimate TCP traffic, use scapy. Read the ‘*.pcap’ file of TCP traffic 

dataset with rdpcap command and modify the source and destination header 

information of each packet according to the test network. Then send the packet with 

sendp command. To generate legitimate ICMP traffic, again the rdpcap and sendp 

commands can be used. 

 

8. To generate reply messages to the legitimate TCP packets, use scapy again with the 

corresponding ‘*.pcap’ file. 

 

9. To generate malicious traffic at Malicious User node, if the packet generation rate is 

less than 1 pckt/500 ms, use scapy. Read the malicious traffic dataset with rdpcap, 

modify the packet headers appropriately then send the packets with sendp. If generation 

rate is higher than 1 pckt/500 ms, use packETH. Type ‘./packETHcli -i eth0 -m 2 -d 

delayBetweenPacketInus -n numberOfPackets -f maliciousTraffic.pcap’ to the 

command line of the Malicious User node.   

 

10. At packet generation or packet reception at all nodes, use also the strftime function to 

read time of that action in milliseconds.  

 

11. At the server node, run tcpdump to observe incoming traffic.  
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5.3.2.1 System Performance Degradation Test 

In the Mininet platform, the test scenario shown in Figure 5.7 is built and an HTTP 

web server application is operated at the Server node. First, the MiddleModule is 

deactivated and under this condition, Normal User connects to the Server and 

receives packets from the HTTP web server, and the average packet retrieval time is 

measured. This test is applied for 10 rounds, each one including 100 packet 

retrievals, and the average packet retrieval time is calculated for each round and also 

for the overall test. Then the MiddleModule is activated and Normal User connects 

to Server. The packet retrieval times are again measured for 10 rounds, and 100 

packet retrievals for each round. The average packet retrieval time of the Normal 

User are calculated for each round under these conditions. 

During this test, follow the steps 1, 2, 3, 4, 5, 6, 10 explained in Table 5.11. To 

deactivate the MiddleModule system, at step 4, do not use any MiddleModule 

function. Compare the times, received at step 10, for packet request generations and 

packet response receptions at the Normal User node, and calculate the packet 

retrieval times. 

 

Figure 5.7: System Performance Degradation Test Scenario for Mininet 

Table 5.12 illustrates that the average packet retrieval times, in seconds, with and 

without the MiddleModule are very close to each other, and the packet retrieval time 

overhead caused by the MiddleModule system is 0.2%. Hence, the system 
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OpenFlow

Edge-Switch

with MiddleModule

OpenFlow

Controller

with Orchestrator

SERVER

OpenFlow

Edge-Switch

with MiddleModule
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performance degradation of the MiddleModule system in terms of packet retrieval 

time is negligible.  

Table 5.12: System Performance Degradation Result in Mininet 

 without MiddleModule (in sec) with MiddleModule (in sec) 

Round1 0.02530 0.02532 

Round2 0.02516 0.02531 

Round3 0.02531 0.02526 

Round4 0.02542 0.02544 

Round5 0.02534 0.02532 

Round6 0.02542 0.02528 

Round7 0.02528 0.02556 

Round8 0.02501 0.02547 

Round9 0.02533 0.02503 

Round10 0.02556 0.02520 

Average 0.025313 0.025319 

Overhead - 0.2 %  

5.3.2.2 Defense Strength Test 

In Mininet, the accuracy and the false positive rate of the MiddleModule system are 

measured against IP Spoofing attack, IP spoofed/non-spoofed SYN Flood attack, IP 

spoofed/non-spoofed ICMP Flood attack and IP spoofed/non-spoofed UDP Flood 

attack. The measurement results are used for comparing our MiddleModule system 

with similar studies found in the literature. Since there are no results for the 

reflection attacks and the broadcast amplification attacks provided in these studies, 

these attack types are not considered during the defense strength tests in Mininet. In 

these tests, scenarios are chosen to be similar to the ones used in the other studies. 

The configuration variables are chosen as in Table 5.9: Optimum Configuration 

Variables for the Test ScenarioTable 5.9 to obtain ideal results. In addition, 

penaltyTime is set to 5 seconds. Tests are applied for 10 rounds and each round lasts 

100 seconds. The accuracy and false positive rates are measured in each round; and 

the average of the measurement results is computed using 10 rounds. In these tests, 
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as was explained previously, the legitimate traffic is generated by using MAWILab 

dataset.  

During this test, follow the steps 1, 2, 3, 4, 7, 8, 9, 10, 11 explained in Table 5.11. 

For defense strength measurement, observe the generated packets by Malicious User 

nodes and Normal User nodes and also the received packets by server node, at the 

step 11. Measure the true positive, true negative, false positive and false negative 

values, by using this observation. 

First, the test scenario shown in Figure 5.8Error! Reference source not found. is 

built and different tests are applied to observe that the MiddleModule system detects 

and prevents malicious traffic correctly. In each test, a different DDoS attack type is 

generated by the Malicious User and the accuracy of the MiddleModule system is 

measured.  

 

Figure 5.8: Test Scenario for Basic Defense Strength Tests 

In the first test, the IP Spoofed ping messages (without Flooding) are generated from 

Malicious User towards the Victim Server. Malicious traffic is generated at ultra-

low-speed-mode (1 pckt / 10 ms), and as shown in Figure 5.9, the IP Spoof attack is 

detected when the received packet count exceeds the saturationThreshold. Then, the 

packets coming from the Malicious Host is prevented accurately.  
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Figure 5.9: IP Spoof Attack Detection Result 

Using the test scenario shown in Figure 5.8, the SYN Flooding attack with IP Spoof 

and ICMP Flooding attack with IP Spoof and UDP Flooding attack with IP Spoof are 

generated from the Malicious User at ultra-low-speed-mode (1 pckt / 10 ms), the 

MiddleModule system detects these attacks as IP Spoofing, successfully. After 

detecting the attack and labeling the ingress port of these messages as malicious, the 

packets received from that port is dropped, as can be seen in Figure 5.9. Finally, the 

tests with the remaining attack types, the SYN Flooding attack without IP Spoof, the 

ICMP Flooding attack without IP Spoof and the UDP Flooding attack without IP 

Spoof attacks are applied, at ultra-low-speed mode; and the MiddleModule system 

detected the attacks accurately. These tests are applied using other traffic generation 

rates also and it is observed that the detection performance of the system does not 

change even the test conditions are changed. The detection outcomes and the 

detection rate values are measured and shown in Table 5.13. Since penaltyTime 

value is set to 5sec, each test duration is considered to be 5sec. Hence, in each round, 

that lasts 100sec, 20 different sub-rounds are performed. The False Negative counts 

increase as the packet generation rate increases, because the testing tools add a 

certain delay to the detection system, and during this time, some of the malicious 

packets are missed. These detection delay values would get dramatically smaller if 

this system is implemented in an appropriate hardware platform. However, even with 
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such delay effects, the sensitivity value is remarkably high; i.e., it is above 99.5% for 

all traffic generation speeds.  

Table 5.13: Detection Performance Results with Basic Test Scenario 

 TP FN Sensitivity 

low-speed-mode (1 pckt / 2 ms) 2489 11 99.5 % 

normal-speed-mode (1 pckt / 200 µs) 24900 100 99.6 % 

high-speed-mode (1 pckt / 10 µs) 498286 1714 99.6 % 

ultra-high-speed-mode (1 pckt / 2 µs) 2491886 8114 99.6 % 

Following the basic detection rate analysis of the MiddleModule system, a further 

defense strength analysis is performed to obtain results for more reliable and realistic 

test scenarios. A more realistic test scenario, including several Normal User nodes 

and several Malicious User nodes, shown in Figure 5.10, is built in Mininet. During 

these tests, the legitimate traffic is built by using TCP packets and ICMP packets. 

The ratio of these packet types to overall packets is changed during the tests to 

fluctuate the legitimate traffic. The TCP packet ratio changes between 80% and 

100%, while the ICMP packets ratio changes between 20% and 0%. The legitimate 

TCP packets are produced by using the MAWILab dataset, as was explained earlier. 

The packets are injected to the network and directed towards the Victim Server with 

Scapy or packETH tools, depending on the traffic rate. During these tests, the 

windowSize variable is set to 100 and the saturationThreshold variable is set to 0.25, 

to minimize false positive rates. The spoofThreshold is set to 2, synFloodThreshold 

and floodThreshold are set to 0.80, and penaltyTime is set to 5 seconds.   



75 

 

Figure 5.10: Test Scenario for Reliable Defense Strength Tests 

In these tests, the following attack types are generated in that order; the IP Spoofing 

attack traffic, the SYN Flooding attack traffic with IP Spoofing, SYN Flooding 

attack traffic without IP Spoofing, the ICMP Flooding attack traffic with IP 

Spoofing, ICMP Flooding attack traffic without IP Spoofing, the UDP Flooding 

attack traffic with IP Spoofing, UDP Flooding attack traffic without IP Spoofing. In 

one test, only one attack type is generated from all Malicious User nodes. While the 

Malicious User nodes generate such traffic, the Normal User nodes generate 

legitimate traffic, as was mentioned earlier. The sensitivity, the accuracy and the 

false positive rate of the MiddleModule system are measured against each attack 

type, for 10 rounds, where each round lasts for 100 seconds; and the average results 

of these 10 rounds are computed. In addition, each test is applied for five different 

packet generation rates to measure the packet generation rate dependency of the 

system. The accuracy and the false positive rates are recorded for each packet 

generation speed mode. Since the penaltyTime value is set to 5sec, each test duration 

is considered to be 5sec. Hence, in each round, lasting 100sec, 20 different sub-

rounds are performed. The test results for different attack types are very similar to 

each other and the average results for all attack types are shown in Table 5.14. 
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Table 5.14: Defense Strength Test Results in Mininet 

 TP FN FP TN Sensitivity Accuracy 

ultra-low-speed-mode (1 pckt/10 ms) 482 18 0 500 96.4 % 98.2 % 

low-speed-mode (1 pckt/2 ms) 7409 91 0 7500 98.8 % 99.4 % 

normal-speed-mode (1 pckt/200 µs) 124143 857 0 125000 99.3 % 99.6 % 

high-speed-mode (1 pckt/10 µs) 2483051 16948 0 2500000 99.3 % 99.6 % 

ultra-high-speed-mode (1 pckt/2 µs) 7422748 78252 0 7500000 98.9 % 99.5 % 

As given in Table 5.14, the MiddleModule system does not cause any legitimate 

packet drop, while it detects and prevents malicious traffic successfully, for each 

traffic rate. Since there is no legitimate packet drop, False Positive Rate of the 

MiddleModule system under these test conditions becomes zero. On the other hand, 

some False Negatives are observed, and the number of False Negatives increases as 

packet generation rate increases because of certain delays caused by testing tools 

mentioned earlier. As shown in Table 5.14, Accuracy for all conditions are closer to 

or higher than 99%. This test result suggests two important points; firstly, the defense 

strength of the MiddleModule system with real traffic dataset and with the associated 

test scenario is remarkable for targeted Network/Transport-Level DDoS Attack 

types. Secondly, the defense strength of this system does not change dramatically 

with the change of the packet generation rate, and this system successfully detects 

attacks even with the 0.5M packets per second data rate. 

5.3.2.3 Communication Overhead Measurement  

In MiddleModule system, each data plane MiddleModule node operates by itself. 

The nodes do not need any command or any additional information, coming from 

other nodes, to operate correctly. However, to inform the controller about the 

prevention rules, and to obtain the best mitigation performance, data plane 

MiddleModule nodes send two different messages. Firstly, when a data plane 

MiddleModule node detects any malicious activity, it sends malicious information 

message to the controller to inform the controller about this malicious activity. This 

message is sent when the malicious activity is detected for the first time. Secondly, 
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when a malicious activity is detected at the destination side of a message, this data 

plane MiddleModule node sends malicious distribution message, to the controller. 

When the controller receives that message, it distributes this message to the other 

data plane MiddleModule nodes. By using malicious distribution messages, when a 

packet is received from a previously labeled malicious host, that packet is mitigated 

at the closest edge-switch to the source of the malicious activity; hence, the 

malicious packets are prevented before they enter the network. Both messages are 

TCP messages, including 64 bytes for header portion and 60 bytes for data payload 

portion, leading 124 bytes for a single message. In addition, both are sent when the 

malicious activity is detected for the first time; they are not periodic messages.  

The communication burden of the MiddleModule system to the entire network is 

calculated according to the test scenario, shown in Figure 5.10. In this test scenario, 

in a single round, lasting 100 seconds, with penalty time of 5 seconds, an edge-

switch receives DDoS messages from 5 different malicious hosts; therefore, the total 

size of the malicious information message in the network is 124bytes x 20 x 5 =12.1 

KB. On the other hand, when the malicious hosts generate Reflection attack, the 

destination side edge-switch sends malicious distribution messages to the controller, 

with the total size of 124bytes x 20 = 2.42KB. These messages are distributed to the 

other edge-switch by the controller, which leads total malicious distribution 

messages overhead of 12.1 KB. Therefore, the total communication overhead of the 

MiddleModule system is 24.2 KB for this test scenario, while the total traffic passing 

through the network is in the order of GBs. Hence, the communication burden of the 

MiddleModule system is less than 0.1 %, which is negligible.   

On the other hand, the MiddleModule system provides additional capabilities to the 

network operator, such as, modifying the detection variables during operation, 

receiving periodic status messages from the data plane MiddleModule nodes, sending 

prevention commands to the data plane MiddleModule nodes. Since using these 

capabilities is optional and they are not required for accurate defense operations, the 

overhead, caused by these operations, is not evaluated in this thesis.  
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5.3.3 Scalability Analysis 

The scalability of the MiddleModule system is evaluated in terms of the detection 

performance scalability. This is evaluated with different numbers of connected hosts 

and with different traffic injection speeds. In addition, the scalability of the required 

hardware is also discussed. 

The detection rate performance of the MiddleModule system scales with respect to 

the number of connected hosts to a single edge-switch and the traffic injection speed 

by those hosts. Since all packets are evaluated with the same detection algorithm set, 

this is an expected value. In addition, since the MiddleModule system suggests using 

a single Packet Processing Block to process all incoming packets, the False Negative 

Rate may change slightly as the incoming packet number increases; however, the 

sensitivity rate or the false positive rate do not change noticeably under such 

conditions. As suggested in the evaluation tests, applied with the test scenarios 

shown in Figure 5.8 and Figure 5.10; as the number of connected hosts increases 

from one to ten and as the incoming traffic rate is changed from 1 pckt / 10ms to 

1pckt / 1us, the accuracy of the MiddleModule system stays above 99% while the 

false positive rate is nearly 0%. In addition, since each edge-switch operates by itself, 

as the number of edge-switch in the network increases, the performance of each 

edge-switch does not change.  

On the other hand, the required hardware, to provide MiddleModule functionality to 

an edge-switch, changes as the number of ingress ports of that edge-switch change. 

The size of the Packet Mirror and Attack Prevention Block increases linearly 

according to the ingress port number, and the allocated resources increase at the 

Packet Processing Block linearly. The scalability of the allocated hardware is 

guaranteed by the design of the system. 

5.3.4 Implementation Complexity Analysis 

The MiddleModule system suggests placing monitoring, detection and mitigation 

blocks at the data plane devices of the SDN network. This system suggests 
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modification of the edge-switches in the network, while the core switches are used 

without any modification. All packets in the network are processed by the defense 

system, while only some of the data plane devices are modified, thanks to this thesis. 

The ratio of the number of modified switches to the number of all switches depends 

on the network topology. This ratio could be close to 1 or 0.5. In a tree network 

topology, one of the most common network topologies [55], the ratio of the number 

of edge-switches to the number of all switches is (2n-1) / (2n-1); for example 16/31 for 

a 5 stage network.  

The modification in the edge-switches, on the other hand, is not a complex or 

comprehensive modification. Since the MiddleModule system uses very lightweight 

detection algorithms, the required hardware resources to operate these algorithms are 

not excessive. The required processing power is also not much. Since only the header 

portion of the incoming packets is processed by the detection algorithms, the 

required memory and IO bandwidth are also small. Furthermore, the detection 

operations are handled very close to the responsible hosts and edge-switches can 

detect any change at the traffic generated by these hosts only by analyzing the most 

recent packets. Therefore, the required table sizes to store the monitoring results for 

each host are also small.  

The orchestrator application is responsible for analyzing messages coming from the 

data plane MiddleModule nodes and for generating responses to these nodes. These 

messages are not generated with high frequency. They are standard TCP messages, 

which provide some predefined information in their payload portion. Therefore, a 

lightweight orchestrator application can accurately process these messages and 

generate the appropriate responses. 

To provide the MiddleModule functionality to edge-switches, the modification, 

shown in Figure 5.11, is suggested to be applied to all edge-switches. For packet 

monitoring purpose, an ASIC-based module can be used to mirror the header 

portions of the incoming packets through the processing block. The header mirror 

module should operate at high-speeds to minimize the system performance 

degradation.  Packet processing algorithms are not that complex either and they do 
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not require high clock speeds. The processing block may receive different packets 

from different header mirror modules, simultaneously.  

The power consumption of the processing block should be minimal. Therefore, a 

parallel processor unit, such as an FPGA, is proposed as a parallel processing block 

for each edge-switch. The memory unit of the processing block can be built by using 

either RAM and/or TCAM. Small memory blocks would be sufficient for this 

purpose since the size of the tables kept for each connected host is limited, and the 

required number of parameters of detection algorithms is small. The attack 

prevention functionality can be implemented by using OpenFlow commands. During 

the evaluations applied in the Mininet, we used this technique. The Packet 

Processing Block can modify the flow table of the Forwarding Circuit by sending 

OpenFlow commands, to implement the attack prevention rules. 

 

Figure 5.11: Data Plane Device MiddleModule Implementation Suggestion 

5.3.5 Compromise-Ability Discussion 

The MiddleModule system uses data plane monitoring, detection and prevention 

nodes, distributed across the network and working in a stand-alone fashion. 
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Therefore, the MiddleModule system does not have any single point of failure 

problem unlike the controller-based defense systems. If a defense node malfunctions 

for any reason, other nodes can continue their operations without any problem. 

Furthermore, as was stated and tested earlier, the MiddleModule system can operate 

with different protocols and traffic rates; hence fluctuating traffic or a high packet 

generation rate does not cause any failure of the MiddleModule system. In addition, 

since the defense nodes send malicious information messages and also, they can send 

periodic status messages, if desired, to the controller; the controller can analyze the 

decisions of each data plane node. If any defense node is compromised by a 

malicious user, and the node starts malfunctioning, the controller can detect that 

malfunctioning node. The controller can then fix the problem or can deactivate the 

node entirely by changing the detection algorithm parameters or by defining whitelist 

and blacklists. The configuration channels of the data plane nodes, the channel 

between the data plane nodes and the controller, can become the weak spot of the 

nodes. However, in MiddleModule system, edge-switches have dedicated 

configuration channel ports, which are different from the regular ingress ports. If 

required, the communication on that configuration channel can be secured with 

encryption or using any other method.  

5.4 Comparison and Further Discussion 

In this section, MiddleModule system is compared with similar studies found in the 

literature using performance metrics mentioned earlier. In this thesis the following 

data plane-based DDoS defense systems are considered during comparison; namely, 

AVANT-GUARD [38], CIDS [41], StateSec [4] and  SDNScore [2]. 

Although all these studies and the MiddleModule system are proposed against DDoS 

attacks; the targeted attack types in the above studies are slightly different than each 

other. AVANT-GUARD system considers only SYN Flood DDoS attack type, CIDS 

system targets only SYN Flood attacks and Flooding attacks (ICMP Flooding and 

UDP Flooding), while the StateSec system is tested against only the Flooding 

attacks. The SDNScore concentrates on SYN Flood attack and Flooding attacks. On 

the other hand, the MiddleModule system is designed and tested against IP Spoofing 
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attack, SYN Flood attack, Flooding attack with and without spoofing, Reflection 

attack and Broadcast Amplification attacks. Therefore, the MiddleModule system 

covers a larger Network/Transport-Level DDoS attack set. 

The defense strengths of the studies are compared with our proposed method. For 

that purpose, we compare them under both ideal and non-ideal conditions. Ideal 

condition means that the attacks have well-defined packet attributes (packet lengths, 

protocols, etc.) and they are generated at normal-speed. 

Since the data plane-based defensive approach is an effective method against 

Network-Level DDoS attacks, all the compared methods and also the MiddleModule 

system have remarkable defense strength values under ideal conditions, as shown in 

Table 5.15.  

 

Table 5.15: Defense Strength Comparison under Ideal Conditions 

 SYN Flood attack ICMP or UDP Flooding attack 

 Sensitivity False Positive Rate Sensitivity False Positive Rate 

CIDS 94.8% 2.3% 96.3 % 3.4 % 

StateSec - - ~ 100 % ~ 0.0 % 

SDNScore 100 % 0.02% 100 % 1.0 % 

MiddleModule 99.3 % 0.0 % 99.3 % 0.0 % 

Since there are no numeric defense strength values provided for AVANT-GUARD 

system, we cannot use it in defense strength comparison. As shown in Table 5.15, 

the MiddleModule system provides similar defense strength performance against 

these attacks when compared with other studies.  

However, under non-ideal conditions, the defense strength performance of the 

MiddleModule system is noticeably higher than other studies. As shown in Table 

5.16, when generation rate of malicious traffic is low, the sensitivity results change 

since the attack intensity decreases. The StateSec, CIDS and MiddleModule systems 

are tested under such conditions; the StateSec is tested with 1pckt/10ms; the CIDS is 
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tested with a value between 1pckt/10ms and 1 pckt/2ms; the MiddleModule is tested 

with 1pckt/10ms packet generation rates. Table 5.16 shows that while the detection 

rate of the StateSec and the CIDS systems drops to approximately 80 %, the 

detection rate of the MiddleModule system stays above 96 %, which is close to 

results collected under ideal conditions. SDNScore is not tested with low generation 

speeds but it is tested using attacks with both well-defined and random packet 

attributes (protocol type, destination port number, packet byte length, etc.). Attacks 

with random attributes are called as generic attacks at SDNScore study. When the 

defense system is tested by using generic attacks at nominal packet generation rates; 

the detection rate performance of SDNScore decreases significantly, to nearly 75.0%. 

On the other hand, the MiddleModule detection algorithms analyze the volume and 

variation of packet properties, regardless of the values of these properties. Therefore, 

when a malicious packet is generated having packet attributes with either well-

known values or generic values, the same performance results are obtained. During 

the emulation of the MiddleModule system, malicious packets are generated by using 

real traffic and DDoS packet attributes are generated randomly. Hence, as shown in 

Table 5.16, the detection rate of the MiddleModule system with generic malicious 

packet attributes is 99.3%. 

Table 5.16: Defense Strength Comparison under Non-Ideal Conditions 

 Flooding attack Flooding attack 

 Sensitivity False Positive Rate Sensitivity False Positive Rate 

CIDS ~ 79.0 % ~ 5.0 % - - 

StateSec ~ 80.0 % - - - 

SDNScore - - 75.0 % 1.0 % 

MiddleModule 96.4 % 0.0 % 99.3 % 0.0 % 

 with Low data generation rate with not well-known attack pattern 

MiddleModule system is observed to perform remarkably well under ideal and non-

ideal conditions, while the defense strength of others decreases notably under non-

ideal conditions. 
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The system performance degradation is the other important aspect especially for data 

plane-based defense systems, because in such system, all packets in the network 

experience the performance degradation caused by the defense system. A defense 

system should detect malicious activities accurately, but at the same time, it should 

cause minimal delay on the nominal user’s connectivity. The delays on packet 

retrieval time of a nominal user, caused by the MiddleModule system and the 

AVANT-GUARD system, are compared in Table 5.17. 

Table 5.17: Packet Retrieval Time Delay Comparison 

 AVANT-GUARD MiddleModule 

Packet retrieval time delay 1.86 % 0.2 % 

The packet retrieval times of a nominal user with and without the defense system are 

recorded; and the packet retrieval delay, caused by the defense system is computed. 

When this test is applied for AVANT-GUARD system, the packet retrieval time is 

1.86% longer. With MiddleModule system, packet retrieval time of a nominal user is 

0.2% longer. Hence, MiddleModule causes nearly no delay on the packet retrieval 

time of a nominal user, which is remarkable when compared with the AVANT-

GUARD system. Although this metric is a critical one, the other defense systems do 

not provide such test results. To evaluate system performance degradation of those 

systems, they provide only the communication overhead caused by the defense 

system. The communication overhead values of the other systems are less than 1%; 

on the other hand, the communication overhead of the MiddleModule system is less 

than 0.01 %, which is also remarkable when compared with the other studies. In fact, 

since the defense nodes in the MiddleModule system operates in a stand-alone 

fashion with lightweight detection algorithms, such system performance degradation 

results are expected for the MiddleModule system. 

One of the most significant properties of Network/Transport-Level DDoS attacks is 

that they are generated at higher rates than normal conditions. Generally, if a host 

generates Network/Transport-Level DDoS traffic into the network, let’s say a 

Flooding Traffic; it generates the traffic with the highest possible generation rate. 
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Therefore, it is critical to evaluate the proposed defense systems using high traffic 

generation rates. If a defense system is tested only under low packet rates than 

today’s needs than the defense strength for that system could become meaningless 

under real networking conditions. Table 5.18 is built by using the minimum and 

maximum packet generation rates, reported in the proposed defense systems. Some 

packet generation rates, used in Table 5.18, are not directly provided in the 

corresponding study, such as in CIDS, but these values are inferred from the 

provided information in those studies. In addition, in SDNScore study, no packet 

generation rate information is provided.  

Table 5.18: The Traffic Generation Rates Comparison 

 Minimum packet generation rate Maximum packet generation rate 

AVANT-GUARD 1 pckt / 10 ms (100 pckt / sec) 1 pckt / 1 ms (1000 pckt / sec) 

CIDS 1 pckt / 1 ms (1000 pckt / sec) 1 pckt / 200 µs (5000 pckt / sec) 

StateSec 1 pckt / 10 ms (100 pckt / sec) 1 pckt / 1200 µs (833 pckt / sec) 

MiddleModule 1 pckt / 10 ms (100 pckt / sec) 1 pckt / 2 µs (500000 pckt / sec) 

As shown in Table 5.18, the minimum packet generation rates are similar to each 

other, but the maximum rates are different. They change between 0.8 kpps and 5 

kpps for the other studies while for the MiddleModule system, the maximum packet 

generation rate used during the evaluation is hundred times higher than the other 

studies (500 kpps). If the average packet length is assumed to be 250 bytes, then 5 

kpps corresponds only 10Mbps while 500 kpps corresponds 1 Gpbs, which is more 

realistic in today’s advanced networking technologies. Therefore, MiddleModule 

system is designed to operate at higher packet generation rates and also tested under 

more realistic conditions.  

Some other aspects are also considered during comparison of the MiddleModule 

system and the other studies. Although providing a high-performance defense system 

is important, it is also essential to provide a system that meets critical characteristics 

of DDoS attacks, SDN and prevention systems.  
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The AVANT-GUARD system detects only SYN Flooding attacks with spoofed IP 

address. However, as was explained earlier, several other DDoS attack types could 

be dangerous for SDN. To prevent other Flooding attacks, an additional detection 

system should be implemented in the network. The CIDS system provides only the 

information whether DDoS exists or not; but it cannot provide source hosts and 

victim hosts of the attack. However, without that information, an attack cannot be 

prevented effectively. The StateSec system cannot operate properly if the DDoS 

traffic in the network is much stronger than the nominal traffic. The detection 

performance of the StateSec system decreases dramatically under that condition. 

However, in general, during a DDoS attack, DDoS traffic becomes much stronger. In 

addition, it cannot detect the source of malicious activities if the number of attackers 

exceeds a certain value. The SDNScore system cannot operate accurately if the 

malicious packets do not have well-defined attributes; however, malicious packets 

can have random attributes, too. In addition, it suggests a considerably complex 

detection mechanism, but it does not provide any test results about the connectivity 

delays caused by that detection mechanism system. In addition, it does not provide 

the detection performance variation under higher packet generation rates.  

These aspects are critical for DDoS defense systems, and a comprehensive defense 

system should perform well when these aspects are considered.  

When the MiddleModule system is compared with these studies in terms of these 

aspects, the MiddleModule system has remarkable features. The MiddleModule 

system detects several Network/Transport-Level attack types. It provides both source 

and victim hosts of a malicious activity. The MiddleModule can operate if the DDoS 

traffic is much stronger than the legitimate traffic, without any noticeable loss of 

performance. It accurately detects attacks with well-defined patterns or random 

pattern. Finally, the MiddleModule system uses lightweight detection algorithms; 

hence the MiddleModule does not cause any noticeable system performance 

degradation and it can detect malicious activities accurately even if they are 

generated using high rates. 
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Although the MiddleModule system has some points that require attention, such as 

setting detection algorithm parameters, the MiddleModule system is superior to other 

data plane-based defense systems when all aspects are considered.  

Finally, the MiddleModule system is compared with one promising control plane-

based defense system and one hybrid system. For this purpose, [24] and [33] are 

considered. In [24], Kokila et al. proposes using Support Vector Machine (SVM) for 

attack detection purposes. In this method, SVM-based detection algorithm runs on 

the controller. In addition, in that study, SVM is compared with several other 

classifiers. In [33], Rengaraju et al. proposes a hybrid system, where OpenFlow 

switches run simple anomaly detection algorithms. If switch detects any anomalous 

traffic or receives packets from unknown sources, it directs those packets to the 

controller. The controller applies IDS algorithms on those packets to detect any 

signature mismatch. 

First, we compare our MiddleModule system with these systems in terms of defense 

strength. Rengaraju provides detection rate values for a test network including one 

attacker (ICMP and SYN flooding), one legitimate user and one victim server. The 

malicious traffic is injected to the network at 10 kpps injection rate. On the other 

hand, Kokila tests its SVM-based centralized defense system with different network 

topologies with legitimate users, malicious users and a single victim server. During 

the evaluation of this study, after setting the detection algorithm parameters to their 

optimum values, the defense system is trained for 120 seconds. After that, accuracy 

of the defense system is measured to be 95.1%. Then, in this study, accuracy result 

for SVM is compared with several detection methods including RBF, Naïve Bayes, 

Bagging, etc., and SVM method is measured to have better defense strength values.  

When the MiddleModule system is compared with these systems, as shown in Table 

5.19, MiddleModule system provides superior defense strength performance than the 

other studies. The detection rate of Rengaraju is below 90% and the detection rate of 

Kokila is 95.1%. On the other hand, MiddleModule system provides a detection rate 

above 99%. 
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Table 5.19: Defense Strength Comparison with Control Plane-Based System 

and Hybrid System 

 Rengaraju MiddleModule Kokila MiddleModule 

Flooding Attack 89.4 % 99.3 % 95.1 % 99.6 % 

 Detection Rate Accuracy 

It should also be noted that, the main advantage of the MiddleModule system is, it 

avoids single-point of failure problem. The other systems analyze packets at control 

plane level, and as the attack size increases, the workload of the controller also 

increases. After a point, controller resources would exhaust, as was explained earlier. 

Although this is a critical issue, these centralized methods do not provide any test 

results regarding this problem; they analyze only defense strength performance. 

All in all, the MiddleModule system provides superior results when compared with 

both data plane-based methods and centralized methods regarding all aspects. 
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

Network/Transport-Level DDoS is a challenging issue for SDN architecture, and 

these attacks cause devastating problems for SDN, which may lead to failure of an 

entire SDN network. There is no generally accepted solution against 

Network/Transport-Level DDoS attacks for SDN networks in the literature; and in 

fact, there are many unresolved problems in this area. The existing methods suggest 

to deploy the defense systems either in control plane or in data plane. Although some 

of the control plane-based systems provide promising defense strength values, they 

increase the computational load of the controller. In addition, they require message 

exchanges between the switches and the controller for accurate decisions, which 

congests the communication channel even more under an organized DDoS attack. 

Furthermore, they have single point of failure problems and they can be neutralized 

under a sophisticated DDoS attack. However, data plane-based approaches provide 

more robust defense systems. There are a few data plane-based DDoS defense 

mechanisms provided in the literature; and as was mentioned in the Chapter V, they 

have certain drawbacks regarding the evaluation metrics. 

In this thesis, the MiddleModule DDoS detection and prevention system is proposed 

to defend SDN networks against Network/Transport-Level DDoS attacks. The 

MiddleModule is a data plane-based defense system, deploying the monitoring, 

detection and prevention capabilities in data plane nodes. Before designing this 

system, the requirements that a data plane-based system should satisfy are analyzed 

and explained. The MiddleModule system is designed by considering these 

requirements. In this system, edge-switches of the network are modified so that they 

monitor some statistics of the incoming packets and operate simple threshold-based 

detection functions by using these statistics and makes flow-based decisions. In the 
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detection functions, the variations of some packet attributes, depending on the DDoS 

attack types are analyzed. The controller is also informed according to detection 

decisions and the appropriate prevention method is applied by on the associated 

edge-switch. The MiddleModule system is tested in different evaluation platforms to 

obtain comprehensive and accurate performance results. The evaluation results 

suggest that the MiddleModule system operates as required under different test 

scenarios. The MiddleModule system provides negligible system performance 

degradation and remarkable defense strength performances against 

Network/Transport-Level DDoS attacks, under both ideal and non-ideal conditions. 

Test results also suggest that the MiddleModule system can operate accurately when 

malicious hosts generate packets at both high and low generation rates. The test 

results are compared with the four more recent and promising data plane-based 

defense systems. The comparison results suggest that our proposal, the 

MiddleModule system, is superior to the existing studies in the literature, regarding 

most of the evaluation metrics, and comparable regarding many other aspects. 

In this thesis, both OMNET++ and Mininet platforms are used in evaluations. The 

simulation and emulation environments can be compared while analyzing the 

evaluation results. Both OMNET++ and Mininet based tests have provided similar 

results especially during the functional analysis phase. OMNET++ provides more 

flexible and reproducible tests; hence, it may be possible to suggest using this 

simulation tool in system design in general. On the other hand, Mininet provides 

more detailed performance analysis results in a more realistic testing environment; 

hence, we suggest using this emulation tool during proof-of-work phases. 

When the drawbacks and possible future works are analyzed, we notice three issues. 

First, in the current MiddleModule system, the values of detection algorithm 

parameters are assigned manually. If they are not assigned appropriately, accuracy of 

the MiddleModule system decreases. Therefore, these variables, namely windowSize, 

saturationThreshold and maliciousThreshold, should be assigned automatically as 

future work to avoid such problems. For that purpose, MiddleModule Orchestrator 

module, which runs on the controller, can generate appropriate values for these 

parameters by monitoring detection decisions of the switches and by considering the 
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network topology. Then, these values can be distributed to each data plane detection 

node. In addition, malicious list updating technique applied by each edge-switch can 

be modified so that any entry is stored to that list after receiving a confirmation from 

controller. Second, in the scope of this thesis, the Network/Transport-Level DDoS 

attacks are considered only. The MiddleModule system can be improved to defend 

an SDN network against more sophisticated attacks along with Application-Level 

DDoS attacks as future work. Sophisticated but volumetric attacks can be searched at 

data plane devices by using more collaborative approach with more detailed 

detection algorithms. Although some other techniques can be used for this purpose, 

using Network Function Virtualization (NFV) can provide certain advantages. The 

orchestrator of NFV can be used to provide collaboration between data plane 

detection nodes. It can easily analyze the performance of each data plane detection 

node, activate/deactivate them automatically, modify their parameters or update their 

detection lists or algorithms quickly. In addition, sophisticated detection algorithms 

can be generated as virtual functions by a centralized and powerful device and the 

required algorithms can be deployed into the required data plane devices in 

coordination by using the orchestrator of NFV. Furthermore, to cover sophisticated 

but non-volumetric attacks, a centralized detection method can be operated in 

agreement with the data plane-based approach suggested in this work. Finally, the 

MiddleModule system benefits from distributed detection nodes.  In fact, to get the 

best performance, the detection nodes should be distributed into the network with 

maximum distribution, so that they should be placed close to hosts. This increases 

the implementation complexity of the system. As future work, using a collaborative 

approach could be useful to decrease such implementation complexity.  
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