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ABSTRACT

INVESTIGATION OF ASYMMETRIC GEAR TOOTH BENDING STRESS
FORMULATION

Orak, Mahir Gokhan
M.S., Department of Mechanical Engineering
Supervisor: Prof. Dr. Metin Akkok
March 2018, 183 pages

An asymmetric gear has different pressure angle and base radius for the drive and
coast side tooth flanks. A standard is not available to determine the bending stresses
of external and internal asymmetric spur gears, although there are international
standards to determine the bending stresses of external and internal symmetric spur
gears. The main objective of this thesis is to determine the bending stresses of the
external and internal asymmetric spur gears. The tooth thickness of a gear tooth at
the critical bending stress section is summation of both drive and coast side tooth
thicknesses. These thicknesses are not same for an asymmetric gear tooth contrary to
a symmetric gear tooth. Then, the bending stress of an asymmetric gear tooth cannot
be calculated same with a symmetric gear tooth. Therefore, the bending stresses of

external and internal asymmetric spur gears shall be formulated.

In this thesis, ISO B methodology is modified to determine both external and internal
asymmetric spur gear bending stresses. In this method, although the drive side
tangent angle at the critical section is equal to 30° and 60° for external and internal
asymmetric spur gears, respectively, the coast side tangent angles at their critical

sections are calculated by using the kinematics of the generations of the gear coast



side root fillets. In this thesis, the analytical results of the modified ISO method are
verified by FEA works. In order to do FEA works and determine the critical bending
stress sections, detailed geometry studies of both of external and internal asymmetric
spur gears are carried out. In these studies, an asymmetric rack-cutter and pinion type
shaper cutter are used to generate the external and internal asymmetric spur gears,

respectively.

For the external asymmetric spur gears, the calculated bending stress decreases with
an increase in drive side pressure angle. This enables to enhance the bending strength
of the gear tooth. The maximum bending stress calculated in analytical method is %5
lower than FEA results for low number of teeth and that increases to %210 for high

number of teeth.

For the internal asymmetric spur gears, the calculated bending stress decreases with
an increase in drive side pressure angle only for low coast side pressure angle smaller
than 20°. The bending stresses of the modified ISO method are about % 5 different
than the results of the FEA for drive and coast side pressure angles larger than 20°,
but the percentage difference increases to % 15 for low drive and coast side pressure

angles smaller than 20° (for example for 16°).
As a result, the modified ISO methods for external and internal asymmetric spur
gears give as accurate results as the standard ISO methods for external and internal

symmetric spur gears.

Keywords: External asymmetric spur gear bending stress, internal asymmetric spur

gear bending stress, asymmetric rack-cutter, asymmetric pinion type shaper cutter
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0z

ASIMETRIK DISLININ EGILME GERILMESi FORMULASYONUNUN
INCELENMESI

Orak, Mahir Gokhan
M.S., Makina Miihendisligi Bolimii
Tez Yoneticisi: Prof. Dr. Metin Akkok
Mart 2018, 183 sayfa

Asimetrik disli, bir disin sag ve sol yanaginda farkli basing agisina ve temel dairesine
sahip olan dislidir. I¢ ve dis simetrik diiz dislilerin egilme gerilimlerini hesaplayan
uluslararasi standartlar olmasina ragmen, i¢ ve dis asimetrik diiz dislilerin egilme
gerilmelerini hesaplayan bir standart bulunmamaktadir. Bu tezin ana gayesi, i¢ ve dis
asimetrik diiz dislilerin egilme gerilmelerini belirlemektir. Bir disin kritik egilme
gerilmesi kesitindeki et kalinligit hem sliren hem de diger yanagin bu kesitteki et
kalinliklar1 toplamina esittir ve bu et kalinliklar1 simetrik bir disin aksine asimetrik
bir diste esit degildir. Oyleyse, asimetrik bir dislinin egilme gerilmesi simetrik bir
dislinin egilme gerilmesi ile ayn1 hesaplanamaz. Bu yiizden i¢ ve dig asimetrik diiz

dislilerin egilme gerilmeleri formiile edilmelidir.

Bu tezde, hem i¢ hem de dis asimetrik diiz dislilerin egilme gerilmelerini belirlemek
i¢cin 1ISO B metodu modifiye edilir. Bu metoda gore dislinin ¢alisan yanaklarin kritik
egilme kesitindeki tanjant agisi i¢ ve dis disliler i¢in sirasiyla 30° ve 60° iken,
calismayan yanaklarin kritik egilme kesitindeki tanjant agilar1 bu yanaklarin dis dibi
radyuslarinin elde edilme kinematikleri kullanilarak hesaplanir. Bu tezde, modifiye

edilmis ISO metodunun analitik sonuglar1 sonlu eleman analizleri ile dogrulanir.
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Sonlu eleman analizleri yapabilmek ve kritik egilme gerilmesi kesitlerini
belirleyebilmek i¢in, hem i¢ hem dis dislilerin detayli geometri calismalar
gerceklestirilir. Bu calismalarda, sirasiyla i¢ ve dis asimetrik diiz dislileri elde etmek

i¢cin kremayer ve pinyon sekilli planya kesicileri kullanilir.

Dis asimetrik diiz digliler i¢in hesaplanan egilme gerilimleri yiik altinda calisan
yanagin basing agis1 arttikga artmaktadir. Bu dislinin egilme gerilimine karsi
mukavemetini artirir. Diislik dis sayilarinda analitik metodda hesaplanan maksimum
egilme gerilimleri, sonlu elaman analizlerine gore %5 az gelmektedir. Yiiksek dis

sayilarinda ise bu fark %10 civarina ¢ikmaktadir.

I¢ asimetrik disliler icin hesaplanan egilme gerilimleri, yiik altinda ¢alisan yanagin
basing agisi arttik¢a sadece ylik altinda caligmayan yanagin 20°’den diisiik basing
acisina sahip olmasi durumunda azalmaktadir. Hem ytik altinda ¢alisan hem de yiike
maruz kalmayan yanaklarda 20°’den daha yiiksek basing agilar1 i¢in, modifiye ISO
metoduna gore hesap edilen egilme gerilimleri, sonlu elaman analizlerine gére %5
farrklilik gostermektedir. Ama her iki yanak i¢in de 20°°den daha diisiik basing

acilari i¢in, bu fark %15 civarina ¢ikmaktadir.
Sonug olarak, i¢ ve dis asimetrik diiz disliler i¢cin modifiye edilen ISO metodlari, i¢
ve dis simetrik diiz disliler i¢in var olan standart ISO metodlar1 kadar iyi sonuglar

vermektedir.

Keywords: I¢ asimetirk disli egilme gerilmesi, dis asimetrik disli egilme gerilmesi,

asimetirk kremayer kesici, asimetrik pinyon sekilli planya kesici
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Introduction

In gear design, there are possible failure forms that shall be considered. These are
mainly bending, pitting and scuffing failures. In order to avoid these failures many
solutions can be applied on gears such as shot peening, heat treatment, using a better
material and tooth macro and micro geometry modifications. One of the tooth macro

geometry modifications is the asymmetric gear tooth form.

A symmetric involute spur gear tooth has the same pressure angle and base radius for
the left and right flanks of the tooth. On the other hand, an asymmetric gear tooth has

different pressure angle and base radius for the flanks.

In most of the applications where gears are used in, the system mainly works by
rotating in the same direction during the operation life. In such an application, a gear
tooth is mainly and highly loaded on one of its sides which is called drive side. On
the contrary, the other side of the gear tooth is unloaded or lightly loaded and called
coast side. And the design purpose of an asymmetric gear tooth is to improve the

performance of the drive side.

In order to be able to design an asymmetric gear tooth, the bending and contact
stresses shall be calculated. Since the contact stress of a gear tooth is directly related
to the drive side, an asymmetric gear tooth contact stress can be calculated same with

a symmetric gear tooth having the same pressure angle with the drive side of the



asymmetric gear tooth. However, the bending stress of a gear tooth is dependent on
not only the drive side but also the coast side. Because the tooth thickness of a gear
tooth at the critical bending stress section is summation of both drive and coast side
tooth thicknesses which are not same for an asymmetric gear tooth. Then, the
bending stress of an asymmetric gear tooth cannot be calculated same with a
symmetric gear tooth. Therefore the bending stress of an asymmetric gear tooth shall
be formulated.

The main objective of this thesis is to determine the external and internal asymmetric
spur gears bending stresses. In this thesis, ISO B methodology has been modified to
determine both of the asymmetric external and internal gear tooth bending stresses.
Also, a detailed study to obtain the geometry of both of the asymmetric external and
internal gears have been done such that a FEA work can be carried out to compare

the results with modified 1ISO B methodology.

1.2 Literature Survey

The first bending stress formulation is given by Wilfred Lewis (1893). In his model,
the tooth, which was substituted by a parabola of uniform strength, was handled as a
beam clamped at one end, i.e., a cantilever, and the loading force was assumed to be
an evenly distributed force along the tooth length and applied on the tip of the tooth
as the worst load case. For bending, the most dangerous section of the tooth is
pointed by the point of the parabola which is tangent to the tooth root curve. The
introduction of the notion of the tooth form factor is linked to Lewis [1]. Later Hofer
refined Lewis’ model. He marked out the dangerous section of the tooth root by
straight lines angled 30° with the tooth center line [1]. After that, in 1950’s, research
works were published at both national and international levels on the gear strength
scaling. The design recommendations of the American Gear Manufacturers
Association (AGMA) have been published. Ten years later, in 1970, the national
standard DIN3990 — in West Germany — and the international standard ISO 6336



were issued. Nowadays, the main regulations governing the calculation of the tooth
root stress are summarized in ANSI/AGMA 2101-D04 (2004), DIN 3990-3 (1987),
ISO 6336- 3:2006 [1].

The traditional Lewis bending stress and form factor equations of a symmetric gear
tooth is defined in the paper [2] where the unknowns are the critical tooth thickness
and height. In bending stress formulations of international standards, beside the form
factor, there is also a stress correction factor which is based on the work [3] and this
factor is also dependent on the critical tooth thickness and height. There are
analytical ways of calculating these unknowns for symmetric gears in AGMA [4]
which uses the Lewis model and in ISO-6336 [5] which uses the Hofer model.
Examination of run-in teeth reveals that when a single tooth carries the full load and
the load is applied at the highest point of single tooth contact (HPSTC), the
maximum bending stress occurs [6]. So when doing the bending stresses analysis,
contrary to application of the load at the tip of the gear tooth in traditional Lewis
model, the load is applied at the HPSTC in both AGMA and ISO standards.

Although the gear geometry and design of asymmetric tooth gears are not covered by
modern national and international gear design and rating standards, they are known
and described in a number of technical articles and books.

In terms of the asymmetric spur gear geometry, a method is developed for the
geometry and design of external spur gears with asymmetric involute teeth in paper
[7]. This is a direct gear design method and independent on the traditional cutter
parameters. Then, a mathematical model of a helical gear with asymmetric involute
teeth is developed by using rack cutter in paper [8]. In the paper [9], a double
envelope concept is used to determine the basic profile of an internal spur gear with
asymmetric involute teeth. Based on this concept, the required cutter to generate the
internal asymmetric gear can be obtained by the envelope to the family of a rack
cutter surfaces. This generated cutter is like a pinion type shaper cutter. However by

using this method, the tip of the shaper cutter cannot be rounded but can be obtained



with a trochoidal tip. Then, the internal gear is the envelope for the family of this
generated shaper cutter surfaces and the generated internal gear has a different root
fillet than the generated internal gear by a rounded pinion type shaper cutter.
Through this proposed method, the profile of an internal gear with asymmetric
involute teeth can be easily obtained. In paper [10], a pinion-type shaper cutter with
rounded tip is considered as the generating tool for the generation of the external
asymmetric gear, and a mathematical model of spur gears with asymmetric involute
teeth is given according to the gearing theory. The equations of the profile of the
cutter, the principle of coordinate transformation, the theory of differential geometry,
and the theory of gearing are applied for describing generating and generated

surfaces.

In terms of the asymmetric spur bending stress, in paper [7], it is found that external
asymmetric spur gear tooth geometry (with larger pressure angle on drive tooth side)
allow for an increase in load capacity while reducing weight and dimensions for
same types of gears. In the paper [11], an adaptation of the standard ISO C
methodology to determine bending stress calculations for external spur gears with
asymmetric teeth is used and the results are compared with the results obtained using
modern finite element methods. In another paper [12], the effect of bending stress of
an external spur gear at the critical section for different pressure angle on the drive
side along with the profile shift is studied by finite element analysis. Due to positive
profile shift, the thickness of tooth at the root increases, resulting in greater load
carrying capacity of the teeth. Profile shift varied from 0 to 0.5 and found lowest
bending strength at critical section with profile shift value of 0.5; drive side pressure
angle is also varied from 20 to 30 degree and found lowest bending strength at
critical section with 30 degree pressure angle. It has been found that implementation
of positive profile shift and pressure angle modification reduces bending stress
considerably. In the paper [13], the Lewis factor of an external spur gear tooth for
different coefficient of asymmetry is calculated for different number of teeth and it is

found that Lewis factor increases with coefficient of asymmetry and number of teeth.



Then, in the paper [14], the single-tooth bending fatigue strength and scuffing
resistance of asymmetric and symmetric tooth gear are determined experimentally by
designing, fabricating and testing specimens. Test results demonstrated higher
bending fatigue strength for both the asymmetric tooth form and optimized fillet
form compared to symmetric designs. Scuffing resistance was significantly increased
for the asymmetric tooth form compared to a conventional symmetric involute tooth
design. As an analytical study to determine the maximum bending stress, in the paper
[2], a developed analytical method based on a previous trial graphical method has
been introduced to find the solution of bending stress equation for symmetric and
external asymmetric spur gear teeth with and without profile correction and for
different gear design parameters. In order to achieve this analytical solution, certain
geometrical properties for gear tooth shape of tooth loading angle, tooth critical
section thickness, the load height from this section and Lewis form factor which are
imperative to formulate the final form of the tooth bending stress equation must be
determined analytically step-by-step. As a result of this work, the trial graphical
method has been avoided by establishing a simple analytical expression which can be
easily solved and it gives a higher accuracy and requires a shorter time. In another
analytical method in paper [15], in order to estimate the tooth thickness and height at
the gear tooth critical bending stress section for external asymmetric spur gear tooth,
the standard ISO B methodology has been adapted suitably such that at the critical
section 30 degrees is used for the drive side tangent angle and for the coast side
tangent angle, coast side pressure angle minus drive side pressure angle is added to
30 degrees. Then, the critical tooth thickness and height and the parameters
depending on them such as root fillet radius of curvature and tooth form factor for
asymmetric spur gear tooth with several sets of drive side and coast side pressure
angles are determined through an adapted ISO method and a comparative study with
FEM is also carried out. An optimum design for an internal gear pair for the desired
values of input parameters has been attempted through a direct gear design approach
in paper [16]. By synthesizing several sets of asymmetric pinion cutters for specific

values of input parameters, the respective internal gear and external pinion generated



by them have been analyzed by FEA for a balanced and lowest possible maximum
fillet stress to decide the optimum one. A conventional gear design process has also
been suggested with stub tooth concept in this regard.

A simple and effective approach to rating asymmetric tooth gears is outlined in paper
[17]. The maximum bending stress is calculated by either using 2-D or 3D FEA for
both asymmetric and comparable symmetric gear teeth and a bending stress
conversion coefficient is defined by using FEA results of these gears. Then a
standard stress analysis for the comparable symmetric gear tooth is done and the
bending safety factor is found. Finally the bending safety factor for the asymmetric
gear tooth is obtained by using the symmetric gear tooth bending safety factor and
the bending stress conversion coefficient. The Direct Gear Design approach to
asymmetric epicyclic gear stages with the singular and compound planet gears is
outlined in paper [18]. Methods of optimization of the tooth flank asymmetry factor
and root fillet profile are considered. This allows for a considerable increase in
power transmission density, increase in load capacity, and reduction in the size and
weight of asymmetric epicyclic gear drives. And an example implementation of
asymmetric epicyclic gears has been demonstrated. This example is two stage
planetary gearbox of the TV7-117S turboprop engine is demonstrated. This engine
has been used in the Russian airplane IL-114 for several years and is going to be
used in IL-112, MIG-110, TU-136 airplanes which resulted in extremely low weight
to output torque ratio [19].



CHAPTER 2

EXTERNAL ASYMMETRIC SPUR GEAR TOOTH GEOMETRY AND
ANALYTICAL BENDING STRESS INVESTIGATION

2.1 Generation of External Involute Spur Gear Tooth by a Rack Cutter

The generation of an external involute spur gear by a rack-cutter is shown in Fig. 2.1.
The gear to be cut rotates with angular velocity w about O, and the rack-cutter moves

with velocity v.

Fig. 2.1 Basic visualization of external spur gear generation by a rack-cutter

The rack-cutter and the external involute gear tooth are both composed of three parts

as seen in Fig. 2.2. The inclined surface X; generates the involute flank surface 2.



The round surface ', generates the root fillet surface X, ;. And the straight surface

214 generates the dedendum circle surface 2.

The rack-cutter The external

involute
gear tooth

Fig. 2.2 Generating parts of rack-cutter and the corresponding generated parts of

external spur gear tooth

2.1.1 The Generation of the Gear Involute Flank Surface

The rack-cutter inclined surface X; generates the involute flank surface X, as
mentioned above. The basic kinematic relations of the generation and how to obtain

gear involute flank surface are discussed below.

2.1.1.1 Basic Kinematic Relations

A rack-cutter having a constant linear velocity, v, have a constant normal angle, «,
and normal velocity component, v cos(a), on all points along the inclined surface,
2. In order for two bodies to remain in contact their normal velocities on contact
points must be equal as stated in [20]. Thus for conjugate action during the
generation of involute flank surface, the gear to be cut must have the same constant
normal angle and velocity with the rack-cutter inclined surface on all contact points.
As it is illustrated in Fig. 2.3 by regarding constant angular velocity of the gear to be

cut, w, constant normal velocity v cos(a) is only possible when the common normal



lines on all contact points are always tangent to the same circle, called base circle,

with radius r,.

wry, = vcos(a) (2.1)

By also knowing that these normal lines have the same angle, «, they result in a

single line, called line of action, which includes all contact points.

\ Instantaneous
Instantenous | Contact Point

Center of Rotation , .
Line of Action

Generating Rack-Cutter
Pitch Line
Involute Curve
\-. v

Reference P RAND* ..

Pitch Circle 7 v.cos(a)

ritehtirde
/ ; |

Fig. 2.3 Generation of external gear involute flank surface by the inclined surface of

the rack-cutter



According to Lewis theorem any point of the rack-cutter inclined surface X,
generates the corresponding point of the gear involute flank surface X', in a position
that their common normal intersects the gear vertical center line at a point I called
instantaneous center of rotation. At point I, the velocity of the gear to be cut is wn,
that is parallel to the rack-cutter velocity, v and has the angle a with the line of
action. And for this point, the normal velocity component of the gear to be cut is
w7, cos(a) which must be equal to the constant normal velocity v cos(a) of the

rack-cutter inclined surface for the conjugate action. Then,

wr, cos(a) = v cos(a) (2.2)

wry = v (2.3)

As seen in Equation (2.3) the velocities of the gear to be cut and the rack-cutter are

equal to each other at the instantaneous center of rotation, I.
Also, use Equations (2.1) and (2.2):
wTy, cos(a) = wry (2.4)
T, =1, cos(a) (2.5)
2.1.1.1.1 Sliding Velocity
The conjugate surfaces have equal velocities along the common normal at contact
point as it is mentioned above. In general the tangential velocity components differ in

magnitude as it is illustrated in Fig. 2.4. This results in a relative velocity or sliding

velocity vg; between two centroids.
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Rack-Cutter | Instantaneous
i Point of Contact

| '| /N

T
Tangential Direction \ |

: / Normal Direction

/\/\ (Line of Action)

/'\-’“&\"gﬁ
y
Fig. 2.4 Instantaneous point of contact during generation of external gear involute
flank surface
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Vgn = Vg COS(a;)

v, = v cos(a)

Use the equality of normal velocities at contact point:

Vgn = Un

v cos(a)
Vg = ————

cos(a;)
vy = vsin(a)
Vgt = Uy sin(a;)

Ust = VUt — Vgt

Vg = vsin(a) — v, sin(a;)

v cos(a)

Vg = vsin(a) — ————sin(«;)

cos(a;)

vy = v(sin(a) — cos(a) tan(a;))

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Here, v and « are constant and «;, the instantaneous pressure angle of the involute

flank surface, varies by rotation for any contact point. Thus v; is a function of angle

rotation. And the sliding or relative velocity is only zero at point I, instantaneous

center of rotation where «; and v, is equal to a and v, respectively, so that v, is

equal to v;.
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2.1.1.2 Parametric Representation of the Family of Surfaces
The coordinate systems, S;(x1,¥1,21), S2(x2,¥2,22) and Sg(xy,yr, zf) that are
rigidly connected to rack-cutter, external gear to be cut and reference frame,

respectively, as illustrated in Fig. 2.5.

V1 Y

V2

X
0,, 05 T, .

Fig. 2.5 Coordinate Systems of rack-cutter, external gear and reference frame

For any point on the rack-cutter inclined surface, r; represents the position vector of
that point in S;. As illustrated in Fig. 2.6, u and f are the rack-cutter inclination
direction and face width direction, respectively. And in terms of all u and f

components, r; (u, f) represents the rack-cutter inclined surface X, in S;.

13



Fig. 2.6 Position vector of rack-cutter inclined surface

During the generation motion, the rack-cutter inclined surface, X;, can be represented
by a corresponding surface in S, at any instant. For the whole generation motion

these corresponding surfaces are called as the family of surfaces, Xy, illustrated in

Fig. 2.7.

Fig. 2.7 The family of surfaces during external spur gear generation by a rack-cutter

In order to obtain parametric representation of the family of surfaces, Xy, firstly, a
translation matrix, My;, between S;&S; and secondly, a rotation matrix, M,

between S¢&S, should be applied on the rack-cutter inclined surface, r; (u, f). Then

the following matrix equation is obtained:

14



rz = szMflrl (216)

The counter-clockwise rotation matrix in x-y plane around z axis has the following
form,

cos¢p —singp O
] (2.17)

R(¢)=[sin¢ cos¢ 0
0 0 1

The direction of a vector rotation is counter-clockwise if ¢ is positive and the
direction of a vector rotation is clockwise if ¢ is negative. According to the Fig. 2.5
during the generation motion, the direction of gear rotation is counter-clockwise so
the direction of the rotation matrix, M, which is opposite to the direction of the
gear rotation, is clockwise and ¢ is negative. Then the rotation matrix M, can be

written as:

cos¢p sing O
] (2.18)

Myr = R(—¢p) = [—sinqb cos¢p 0
0 0 1

The translation matrix, Mg, is related with 7, and s as seen in Fig. 2.5. The

translation matrix components can be added to fourth column and written as:

(2.19)

OO = O
O = O O

= |
—_ O3 n

During the generation motion for a given time interval, t, the gear rotates amount of
¢ about 0, with an angular velocity, w, and the rack-cutter translates amount of s
with a velocity, v. Then s can be found as follows:

For gear:

15



wt (2.20)

<
Il

For rack-cutter:

s=vt (2.21)

Use Equation (2.3) in Equation (2.21):

S = wryt (2.22)

Use Equation (2.3) in Equation (2.21):

S=1,¢ (2.23)
Thus Mg, can be rewritten as:
1 0 0 -r¢
0 1 0 7
Me = p 2.24
7lo o1 o (2.24)
0 0 O 1

The rotation matrix M,, is modified for matrix multiplication convenience and

written as:

cosp singp 0 O

—sin¢ cos¢p 0 O
My = 2.25
2f 0 0 10 (2.25)

0 0 0 1

16



According to the position of the rack-cutter in S;, coordinates of r; change and in
Chapter 2.2.3.1, r; matrix is defined accordingly desired rack-cutter position in S;.
However as being independent on the rack-cutter position in S; the coordinates of r;
are function of u and f* as mentioned above. And the elements of both matrices Mg,
and M, are functions of ¢ as seen in Equations (2.24) and (2.25). Thus r, is a

function of u, f and ¢ and r,(u, f, ¢) represents the family of surfaces, X

2.1.1.3 The Determination of the Envelope to the Family of Surfaces

The envelope of a family of surfaces is tangent to each surfaces of the family along
the characteristic curve. As seen in Fig. 2.3, at any instant during the generation
motion, the gear to be cut is in contact (tangency) with the rack-cutter inclined
surface (an instantaneous surface of the family, X4, in Sf) along the line of action
(characteristic curve). Thus, the generated external involute flank surface of the gear,

2,, is determined as the envelope to the family of surfaces, 2.

The partial derivatives dr,/du and dr,/df represent the tangents to each point on
the rack-cutter inclined surface in S, at each instant. And the cross product of these

tangents gives the normal vectors to these points and represented as follows:

= % X Z—? (2.26)
As illustrated in Fig. 2.4, the sliding velocity vector v is in the tangential direction at
any contact point. Thus, at any point where one of the surfaces of the family and the
involute tooth surface of the gear, X,, are in tangency, the normal vector of that
surface of the family and vg; must be perpendicular to each other. So, the dot product
of these two vectors is zero at any tangency point and if the dot product of these

vectors is not zero, then, there is no tangency. This is the engineering approach

17



method to determine the involute flank surface of the external gear, X,, as being

envelope to the family of surfaces, X, in gear theory [21].

(6r2 ary,

% X W) Vg = 0 (227)

As shown in Fig. 2.4, at any point where one of the surfaces of the family and the

involute flank surface of the gear, X, are in tangency:
0 = v, (2.28)
1w = Vg A+ vy T (2.29)

d(r,w)  0(Vgn it + vy, £)
oo d¢

(2.30)

or, d(v 0(v,e) .
2 (gn),\_l_ (gt)t

936~ 54 "+ og (2.31)

During the generation motion, the normal velocity of the contact point is constant as
mentioned in Chapter 2.1.1.1, so its partial derivative with respect to ¢ is zero. Then

Equation (2.31) reduces to:

LRIODY
0p 3¢

(2.32)

ory _ 1 0(wer),

=5 o4 (2.33)

Equation (2.33) shows that the partial derivative dr,/d¢ is in the tangential direction

at any contact point. This is also the direction of vg;. So, in Equation (2.27), dr,/d¢
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can be used instead of vg. This is the classical or differential approach method to
determine the involute tooth surface of the gear, X, as being envelope to the family
of surfaces, Xy, in gear theory [21].

(arz arz) . or, (2.34)

uaf) g
These Equations (2.27) and (2.34) are called as equation of meshing. In this thesis
the differential approach method with equation (2.34) is used in order to obtain gear
geometry.

2.1.2 The Generation of the Gear Root Fillet Surface

The generation of the gear root fillet is illustrated in Fig. 2.8 by considering
coordinate systems illustrated in Fig. 2.5. As defined in introduction of Chapter 2, the

rack-cutter round surface X, generates the gear root fillet surface X;.

2.1.2.1 Basic Kinematic Relations

During the conjugate action the normal velocities must be equal and this equality can

be written as:
vsin(f) = wryr (2.35)
Here, 6 defines the point on the rack-cutter round surface between m; and m, and

changes with respect to the contact point at any instant, so does the normal velocity

as seen in Fig. 2.8. Thus, 7, is not constant and is a function of 6. Then Equation

(2.35) can be rewritten as:
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Norma

| Direction

T'bf(@)

o —

@)

Fig. 2.8 Generation of external gear root fillet surface by the rounded surface of the

rack-cutter
vsin(0) = wry(6)
Y sin(0) = 1, +(6)
> sin(0) = 1y

Use Equation (2.3) in Equation (2.37):

1,5in(0) = 1,£(6)

(2.36)

(2.37)

(2.38)

As seen in Fig. 2.8, OIB is equal to 6 and by using OIB right triangle:
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Ol sin(8) = OB (2.39)

Ol sin(0) = rp5(6) (2.40)

Use Equation (2.38) in Equation (2.40):

01 sin(8) = r,sin(6) (2.41)

ol =r, (2.42)

The equation above shows that OI is equal to the reference pitch radius as being
independent on 6. This can be explained according to Lewis theorem that a point of
the rack-cutter round surface generates the respective point of the gear root fillet
surface at a position where their common normal at the point of contact passes

through the instantaneous center of rotation, 1.

2.1.2.2 The Determination of the Envelope to the Family of Surfaces

For any point on the rack-cutter round surface, r;,- represents the position vector of
that point in S;. The vector ry,. is dependent on f, face width direction, and 6. And
in terms of all f and 8 components, r,-(6, f) represents the surface X, rack-cutter

round surface, in S;. The ry,- matrix is defined in Chapter 2.2.3.2 because of the same

reason for r; mentioned in Chapter 2.1.1.2.
Since the generation motions are same for both gear involute tooth and root fillet

surfaces, the rotation and the translation matrices are also same for these two

generations. Then, ry,. is represented in S, as:
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Tor = MapMpq1yy (2.43)

Here 7,/ is a function of 6, f and ¢ and r,£(0, f, ¢) representing the family of

surfaces X4 f, generated in S, by surface X;,, and illustrated in Fig. 2.7 together with

Z(l)f.

Because of the conjugate action during the generation, the gear root fillet surface,
25, Is determined as the envelope to the family of surfaces, X4 ;. And as mentioned
in Section 2.1.1.3, the equation of meshing is used to find the envelope. Then modify

Equation (2.34) for the gear root fillet surface and obtain:

arzf arzf arzf
o 2.44
(ae *%F ) 3¢ (244)

2.2 Details of Asymmetric Rack Cutter and External Asymmetric Spur Gear
Tooth

In order to generate an external asymmetric spur gear tooth, an asymmetric rack-
cutter is used. The details of an asymmetric rack-cutter and external asymmetric spur

gear tooth are discussed in the following sections.
2.2.1 Details of an Asymmetric Rack Cutter

Fig. 2.9 shows a representative transverse cross sectional shape of basic asymmetric
rack-cutter, which is used to generate the respective asymmetric tooth profiles. The
rack tooth thickness and space width at the tool reference line are mm/2. If the
direction of the profile shift coefficient, x, is downward, it is negative and if the
direction of x is upward, it is positive. With reference to Fig. 2.9 the rack tooth

thickness and space width at the generating pitch line, ¢ and .., are defined by:
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t=mm/2 + x4 + x, (2.45)

Xq = —xmtanay (2.46)

'rr?f

Generating

N Tm/2 Pitch Line /_
ma . . . I _ _ - /_‘ - _

xTm/2 N

Reference

] . Line
mb Drive Side Coast Side a
O
A A

Fig. 2.9 Asymmetric rack-cutter details
X, = —xmtana, (2.47)
t =mm/2 — xm(tanay + tana,) (2.48)
tref =mm—t (249)
trer =mm/2 + xm(tana, + tana,) (2.50)

The rack-cutter may be full-rounded with a radius A4,,,,. The detailed derivation for

calculating A, 1S given in Appendix A.1 and is expressed by:

_ mm/2—-mb(tanay + tana,)

Amax -
1 1 (2.51)
cosa; Tcosa, (tanay + tana,)
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2.2.2 Details of an External Asymmetric Spur Gear Tooth

Fig. 2.10 shows a representative transverse cross sectional shape of basic external
asymmetric spur gear tooth. Gear tooth axis is defined as the line passing through the
gear center and the point where tooth tip is pointed. Here r; is the pointed tooth tip

radius and can be found as defined in Appendix B.1.

Pitch circle is the reference pitch circle with radius:

= (2.52)

N i B Tip Circle
) ﬂ:i_ /z(\ - n_fj Addendum Circle

VA Pitch Circle . u\‘.\‘ ~—_
— — — e
DrfveS1de Coast Side~—~_ "o/ /
— Circle —~//
. Base Circle— ‘
W [ ) | I e
invOer—— 1 mnva,,
N Wred invoc Cnvay
N\ ‘\\. \ | |

.\ .

| | l 0
|t %
RTRNN  ———
— ‘ |

Fig. 2.10 External asymmetric spur gear details
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Regarding Equation (2.5) drive and coast sides base circles can be respectively

defined as:
Tha = Tp COS Ay (2.53)
The = T COS A (2.54)

The gear tooth thickness at reference pitch circle is equal to the tooth space width of
the rack-cutter at generating pitch line which is t,..r. And the detailed derivation for
calculating the drive and coast sides tooth thicknesses is given in Appendix B.1 and

Is expressed by:
ty = mTN( tan (cos‘1 (iﬂ)) —cos™1 (iﬂ) - invad) (2.55)

t, = mTN( tan (cos‘1 (%)) —cos™1 (%) - invac> (2.56)

2.2.3 Determination of the Position Vector Matrices for the Surfaces of the

Asymmetric Rack Cutter

The position of the rack-cutter in S; gives us the desired external gear tooth position
in S,. In FEA for bending stress an external gear tooth is analyzed as its tooth axis
being coincide with the vertical axis. Thus the rack-cutter should be positioned in S;

so that the obtained gear tooth axis coincides with the vertical axis.
Fig. 2.11 illustrates that the dark colored inclined and rounded surfaces of drive and

coast sides of the asymmetric rack-cutter generates the asymmetric external gear dark

colored flank and root fillet surfaces which represent the tooth space. By complete
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circular patterning as the number of the gear tooth, the asymmetric gear having the

desired tooth position is obtained.

\ Gear Tooth Axis

\
Fig. 2.11 The desired position of the external asymmetric gear tooth

2.2.3.1 Determination of the Position Vector Matrices for the Inclined Surfaces
of the Asymmetric Rack Cutter Coast and Drive Sides

With reference to Fig. 2.12 and Fig. 2.13, the asymmetric rack-cutter drive and coast
side inclined surfaces are defined as:
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U,

Fig. 2.12 The position vector of asymmetric rack-cutter drive side inclined surface

tg —ugsinagy
Ug COSay
Ta = f Upg SUG SUeq , 0SF <SSy (2.57)

1

Vi

Fig. 2.13 The position vector of asymmetric rack-cutter coast side inclined surface

tqg +t+ucsina,
U, COS
T1c f
1

Upe U S Upe , 0SF S, (2.58)

27



In Equations (2.57) and (2.58) the first and second rows are x and y components. The
detailed derivations of u.q, Urg, Uee, Ure are in Appendices A.2 and A.3 and

expressed by:

T,
Upg = (ra. sin (cos‘1 (Ld)) — 7Tp.sin ad> .tan ay (2.59)

Ta

_ mb—A+Asinay (2.60)
Yra = cos a '

7
Upgq = (75.5in (cos‘1 (%)) — Tp.sina;). tan a, (2.61)
a

mb — A+ Asina,
CoS a,

uT‘C -

(2.62)

The third row is face-width component. For a spur gear the involute gear tooth
sections are all same through the face-width direction. Finally the fourth row is

added for appropriate matrix multiplication in Equations (2.57) and (2.58).

2.2.3.2 Determination of the Position Vector Matrices for the Rounded

Surfaces of the Asymmetric Rack Cutter Coast and Drive Sides

With reference to Fig. 2.14 and Fig. 2.15, the asymmetric rack-cutter drive and coast

side rounded surfaces are defined as:
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! R = /
‘ rlrd d |, =

Fig. 2.14 The position vector of asymmetric rack-cutter drive side rounded surface

trqg — Asin By
Tirg = ‘mb+‘4f“40059d 0<8,<6,0, 0Sf<f, (2.63)
1
Y1
|
L -
A /
\_.‘ /
} \"‘\,‘ /
\ /
;L \ ff(. //
R / .
— e ' W S i]ﬁ@, Xy
)1| ™~ \'\ | /
' ) \a./
| \ ~ .I/ m
| N
i \\. FHC lrc

Fig. 2.15 The position vector of asymmetric rack-cutter coast side rounded surface
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tre + Asin O,
—mb+ A — Acos6,

f
1

OSeCSeec; OSfoW

Myre =

With reference to Fig. 2.14 and Fig. 2.15:

0 _T[

ed =5 %]
T

9eczz_ac

The detailed derivations of t¢4, t. are in Appendix A.4 and expressed by:

trg =tg + (mb—A)tana, +
fd a+t( ) d cos ag

tr,=t; +t—(mb—A)tana, —
fc d ( ) c cos a,

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

2.3 Analytical Method to Determine the Critical Bending Stress Section and

Related Parameters for an External Asymmetric Spur Gear Tooth

In this section a modified ISO B method which is very similar to the method in [15]

mentioned in Chapter 1.2, is used in order to determine the critical tooth thickness

and tooth height for an asymmetric external spur gear. In this method, as illustrated

in Fig. 2.16, the drive side tangent angle at the critical section S, is equal to 30°,

same with [15] but the coast side tangent angle at the critical section £, is not same

with [15] and calculated by using the generation of the external gear coast side root

fillet.
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. |
Gear Tooth Axis /‘

Fig. 2.16 The basic visualization of external asymmetric spur gear tooth bending

stress critical section
2.3.1 Determination of the Angle and Radius of the Applied Force

The maximum bending stress on the external gear root occurs when the force is
applied on the gear tooth at the highest point single tooth contact according to [6] as
mentioned in Chapter 1.2. In order to verify the critical tooth thickness and tooth
height, firstly radius of the applied force, 1, and angle, ag, as illustrated in Fig. 2.17
shall be determined. For this, radius of the highest point single tooth contact point,

3, must be known. The detailed derivation of 7y, is in Appendix B.3.

n
ap = cos™! (ﬂ> (2.69)
Th
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inva, = tanay, — ay (2.70)

ap = ap — (inva,y — invay,) (2.71)
_ Tpa
TF = cos(@r) (2.72)

Gear Tooth Axis /4

Fig. 2.17 The applied force at hpstc and the related parameters
2.3.2 Determination of the Critical Tooth Thickness and Height

The critical tooth thickness and tooth height can be determined by using the
generation of the gear root fillet with a rack-cutter. Firstly, the drive side critical
tooth thickness and the critical tooth height are obtained. Then with respect to the
critical section, the coast side critical tooth thickness is obtained. Finally, the
summation of the drive and coast side critical tooth thicknesses gives the critical

tooth thickness.
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2.3.2.1 Determination of the Drive Side Critical Tooth Thickness and Height

The drive side critical tooth thickness and tooth height are obtained by using the
generation of the external asymmetric spur gear drive side root fillet surface with the
asymmetric rack-cutter drive side rounded surface. Fig. 2.18 shows the generation of

the gear drive side root fillet at point P where the critical section occurs.

The rack-cutter translates amount of s; and with reference to Equation (2.23), s, is

equal to:

Sqa = TpPa (2.73)

PH =s,— P, (2.74)

P,: Absolute value of x component of r,-4, Fig. 2.14, Equation (2.63)

PH = Tp(l)d - (tfd — Asin Bd) (275)

PH is also equal to:

PH = IH tan 6, (2.76)

IH: Absolute value of y component of ry,.4, Fig. 2.14, Equation (2.63)

PH=(mb—A+ Acos8,;)tan 6, (2.77)
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O

Fig. 2.18 The generation of the external asymmetric spur gear drive side root fillet at
the location where the critical section occurs
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By using Equations (2.75) and (2.77), obtain ¢, in terms of 8,:

mb—A+Acos8,;)tan8,; + (ty;g — Asin @
¢d=( a) d (fd a) (2.78)

o

As seen in OCI triangle:

0q + Ba + Pa = g (2.79)

Note that:

T
Ba=7¢ (2.80)

And put Equations (2.78) and (2.79) in equation (2.80) and solve for 8. Then,

PI = IH 2.81

"~ cos B, (281)
b—A+A 0

pr =T cos 84) (2.82)

cos 8,

Cl =0l cos 8, (2.83)

Cl =7,cos6, (2.84)

0C = 0l sinf, (2.85)

0C =1, sin by (2.86)
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CK = OC tan f4

CK =r,sin 6, tan By

KP =CI - Pl - CK

(mb—A+ Acos6,)
cos 0,

KP =r1,cos 6, — — (rp sinf, tan Bd)

trqg = KP cos [y

(mb—A+ Acos6y,)
cos 0,

trg = <rp cos 0, — — (rp sinf, tan ,Bd)> cos By

_oc

"~ cos By

_ 1pSin 0,4

K
0 cos Bq4

KL = KP sin [,

(mb—A+ Acos0y,)
cos 0,

KL = (rp cos By — — (rp sin 6, tan ,Bd)> sin fq

h, = OM — (OK + KL)
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(2.88)

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)



Note that OM is r, Fig. 2.17, then:

= T, Sin By N 0 (mb—A+ Acosfy)
r =TF cos 34 Tp €05 Ya cos 6,

(2.98)
— (rp sin 8, tan Bd)> sin [?d)

2.3.2.2 Determination of the Coast Side Critical Tooth Thickness and Height

The coast side critical tooth thickness is obtained by using the generation of the
external asymmetric spur gear coast side root fillet surface with the asymmetric rack-
cutter coast side rounded surface. Fig. 2.19 shows the generation of the gear coast

side root fillet at point T where the critical section occurs.

The rack-cutter translates amount of s. and with reference to Equation (2.23), s. is

equal to:
Se = Ty (2.99)
FT =s.— T, (2.100)
T,: mm — (Absolute value of x component of ry,.. ) , Fig. 2.15, Equation (2.64)

FT = 1y — (m — (ty + Asin6,)) (2.101)

FT is also equal to:

FT = IF tan 6, (2.102)
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IF: Absolute value of y component of ry,.., Fig. 2.15, Equation (2.64)
FT = (mb— A+ Acos6,.)tan@, (2.103)

By using Equations (2.101) and (2.103), obtain ¢, in terms of 6,.:

(mb—A+ Acos6,)tan6, + (nm - (tfc + Asin HC))

= (2.104)
b -
As seen in ORI triangle:
T
O+ Bc+ ¢ = P (2.105)
Put Equation (2.103) in Equation (2.104) and obtain S, in terms of 8.. Then,
b—A+A 0.)tan 6, + — (t;e + Asin@
5 - T 6 (m cos 0,.) tan 6, (nm (trc + Asin C)) (2.106)
2 T
TI = il 2.107
"~ cos 0, (2.107)
b—A+A 0
= cos 8c) (2.108)
cos 0,
RI =0l cos 6, (2.109)
RI =1, cos 6, (2.110)
OR = 0Isin 6, (2.111)
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Fig. 2.19 The generation of the external asymmetric spur gear coast side root fillet at
the location where the critical section occurs
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OR =1, sin 6,

RS = ORtan 3,

RS = nr,sin 6. tan .

ST =RI—-TI—-RS

(mb—A+ Acosé,)
cos 6,

ST =m1,cos6, — — (rp sin 6, tan ﬁc)

OR

cos [,

_ 1psin 0,

cos 3,

SL = ST sin 3,

(mb—A+ Acosb,)
cos 6,

SL = (rp cos 6, — — (rp sin 6, tan ,BC)> sin 3,

h, = OM — (0S + SL)

= T, Sin 6, N 0 (mb—A+ Acosb,)
r=TF cos f3, Tp €05 Ve cos 6,

— (rp sin @, tan ,BC)> sin ,BC>
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(2.115)

(2.116)

(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)



Note that 5. is already obtained in terms of 6., in Equation (2.106). If Equation
(2.106) is put into the Equation (2.122), then h, is only a function of 6.. And
remember that h, is already found in Equation (2.98). Then if the Equation (2.98) is
equated to Equation (2.122), 6, at point T is found. After that put 6. in Equation
(2.106) and obtain .. Now, the coast side critical tooth thickness can be obtained as

below:

t,. = ST cos B, (2.123)

(mb—A+ Acos@,)
cos 6,

t, = (rp cos 0, — — (1, sin 6, tan BC)> cosfB. (2.124)

2.4 Determination of Tooth Form Factor, Stress Correction Factor and
Maximum Bending Stress for an External Asymmetric Spur Gear Tooth
through Modified ISO and FEA

The maximum bending stress at the external spur gear tooth root may be expressed

through the following known relation:

Fn
g = f—mYFYS (2125)

where, E, is normal load, Y is tooth form factor and Ys is stress correction factor. In
addition to the bending stress formulations of AGMA and ISO standards, the
compressive stress produced by the radial load F,. is also taken in to account in this

thesis so that the normal force F, is used instead of F; in Equation (2.125).

Yr and Y5 are determined for an external asymmetric gear tooth with both modified
ISO and FEA methods in the following Chapters.
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2.4.1 Modified 1ISO Method for Bending Stress Parameters

The tooth form factor Yy is also affected by the radial load E.. The detailed derivation

of Yz can be found in Appendix of [15] and defined as:

6mh,. cos a msina
(YF)ISO = 2 2 - t L (2.126)
T T
where,
tr =trc +tog (2.127)

The stress correction factor Ys is defined in [5] as:

1
121452 (2.128)
(Ys)iso = (1.2 + 0.13L)qsl1.21+Tl
where,
tT
PR (2.129)
tT

Here, pg is the root fillet radius of curvature of the drive side root fillet trochoid at

the critical section and can be found with the help of the Fig. 2.20:
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Trochoid Center Line

I/

o

Fig. 2.20 The root fillet radius of curvature at the drive side critical section of the

external asymmetric spur gear
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pp = PI — (CI — CD)

Here, PI and CI are already defined by Equations (2

(2.131)

82), (2.84) and CD is defined as:

(2.132)

CD = O0Ctan(By + a,)

Here, B4 and OC are already defined by Equations (2.80), (2.86) and the angle a,

can be defined by the help of Fig. 2.21

Trochoid Center Line

1

L hd+4d

/

Involute drive side
root fillet trochoid

C)‘.

Fig. 2.21 The angle of the root fillet radius of curvature at the drive side critical
section of the external asymmetric spur gear

44



T'pafp = td + hd + Ad (2133)

The parameters h; and A, are found by using Equations (A.1), (A.2) and (A.4).

_ta+hg+Ag

a, = (2.134)

Tp

Finally, the stress correction factor, (Y5);s0, Can be estimated, too. Then, the

maximum bending stress of an asymmetric gear tooth root can be calculated by:

F,
(0)1s0 = fom (Ye)iso (Ys)1so (2.135)

2.4.2 FEA Method for Bending Stress Parameters

Tensile stresses cause crack initiations and propagations. Thus, in terms of the
bending failure of a gear tooth, the maximum tensile stress on the root fillet can be
defined as the maximum bending stress. Additionally the maximum tensile stress is
determined as the maximum principle stress which is normal to the surface where
shear stresses are zero. Therefore the maximum principle stress on the root fillet

gives the maximum bending stress through FEA.

Ey
_(YF)FEA(YS)FEA (2136)

(0)FEa = fom

The form factor (Yz)gg4 is calculated with Equation (2.126) by using FEA based

values of t,. and h,.. Then (Ys) g4 can be defined as:

(U)FE
(5pea = —F———— (2.137)
fom (Yr)rEa
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The FEA based pg at the critical section is obtained by using Equation (2.131) with

the FEA based critical section parameters which are defined in Chapter 2.4.2.2.1.

In order to use this method, 2D FEA is carried out in this thesis and the asymmetric
external spur gear 2D FE model is the need for FEA. In order to create a 2D FE
model, firstly, a 3D cat model of the asymmetric internal spur gear is created in this

thesis and 2D gear geometry is obtained by using this cat model. Then 2D FE model
can be created by using this 2D gear geometry.

2.4.2.1 External Asymmetric Spur Gear 3D Model

The external asymmetric spur gear as shown in Fig. 2.23 is obtained by using a
Matlab code, written according to the theory explained in this thesis, and illustrated
in Fig. 2.22. Here, the profile is consist of points and represents the tooth space
surface. Also the profile is 3D and the points continue through the face width

direction. Since this is a spur gear, the profile at each section is same.

Fig. 2.22 External asymmetric spur gear tooth space profile

In order to obtain 3D model of the external asymmetric spur gear, firstly, the points
obtained in Matlab are put in an excel file, a macro of CATIA V5 R22. This macro
has the spline option inside itself. By choosing this spline option the involute flank

and trochoidal root profiles are generated in CATIA from these points. Later in
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generative shape design of CATIA the generated flank and root profiles are joined
and the gear tooth space surface is obtained from the jointed profiles being at
different sections of the face width by using multi-section surface command. Then, a
complete circular patterning as number of the gear tooth is done and the whole tooth
space surfaces are obtained. After that, the whole tooth space surfaces are splitted
from the 3D model of the gear to be cut which is a cylinder with a radius, r, and a

height, f,,. Finally, 3D model of the external asymmetric spur gear is obtained.

Fig. 2.23 External asymmetric spur gear 3D cat model

Later, by creating sketch on one of the faces of the gear and using the project 3D

elements option in CATIA a 2D geometry of the external asymmetric spur gear can
be obtained.

Fig. 2.24 External asymmetric spur gear 2D geometry
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2.4.2.2 FE Model of the External Asymmetric Spur Gear

In this thesis FE modeling and analysis are done in ABAQUS 6.14. A sample 2D FE
model of the external asymmetric spur gear is shown in Fig. 2.25. The FE model is
consist of three tooth and have enough rim thickness to provide a rim thickness

factor of 1 according to [5].

Fig. 2.25 External asymmetric spur gear tooth 2D FE model

FE model properties:

1) 2D FE analysis with plane strain condition is done by assuming a uniform load

distribution along face width of the gear tooth.

2) The material is a linear elastic isotropic and homogeneous one with an elastic

constant of E = 210 GPa and Poisson's ratio= 0.3.
3) The load is applied at RP-1 (reference point) which is HPSTC point. The reference

point is coupled to the nodes at that diameter with continuum distributing and the FE

model is fixed from the inner round and side lines as shown in Fig. 2.26.
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4) The gear tooth profiles for this analysis have been generated using a full rounded

rack cutter.

5) The 2-D 8-nodded quadratic elements are used to mesh the gear model. The
loaded gear tooth flanks and root fillets and the next unloaded tooth flanks and root
fillets are meshed sensitively by using partition regions, which are offset from the
original profile around 0.1 times module. There are 350x10 elements in the loaded
tooth drive side root fillet and 150x10 elements in the loaded tooth drive side flank
and coast side root fillet and 50x10 elements in the loaded tooth coast side involute
flank. There are also 50x5 elements in the next unloaded tooth flanks and root fillets.
For the other regions suitable global size elements are used.

Fig. 2.26 External asymmetric spur gear tooth 2D FE model boundary condition and

force application point
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2.4.2.2.1 External Asymmetric Spur Gear FE Model Critical Section

Parameters

In the FEA the maximum principle stress location which is the point P illustrated in
Fig. 2.27, is found and defines the critical section. The x and y components of point

P are read in Abaqus. Here, P, and P, are defined as:

P, =t (2.138)
P, = 0L (2.139)

‘ Gear Tooth Axis

L/ l Highest Point Single Tooth Contact

R

Maximum Prineiple Stress
location (Critical Section)

Fig. 2.27 External asymmetric spur gear tooth 2D FE model critical section

The critical tooth height is found as:
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h, = OM — (OL) (2.140)

Remember that OM is 1y, Fig. 2.17, then:

h. =15 — P, (2.141)

S, Max. Principal
(Avg: 75%)

+2.458e+01
+2.253e+01
+2.048e+01
+1.844e+401
+1.63%+01
+1.434e+01
+1.22%+01
+1.024e+401
+8.193e+400
+6.1452+400
+4.0972+00
+2.048e+00
+0.000e+00

Max: +2.458e+01
Elem: PART-1-1.3261
Node: 876

Max: +2.458e4+001

Fig. 2.28 An example of the FEA bending stress results for the external asymmetric
spur gear with 20 teeth, a;4/a;-=30°/20°

Since the critical tooth height is known and the critical section tangent angle is not
known for the gear tooth drive side in FEA, the same method with the analytical
method used in the coast side parameters derivation is used to obtain the drive side
parameters in FEA method. According to this method the drive side critical tooth

height is calculated by using Equation (2.98) and equated with Equation (2.141) so
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that unknown parameters can be found. Although there are two unknowns 6, and B4
in Equation (2.98) the drive side tangent angle S, can be obtained in terms of 6, by
using Equations (2.78) and (2.79). Then 6, becomes the only unknown and is found
by equating Equations (2.98) and (2.141).

T mb—A+Acos8,;)tan0,; + (trp; — Asinf
ﬁd=§—9d—( a) . d (fd a) (2.142)
p

The drive side critical section tooth thickness, t,;, can also be found by using
Equation (2.92) for FE model. The results of Equations (2.92) and (2.138) shall be
equal such that the correctness of the analytical method is proven.

The coast side critical section parameters for FE model are found by using totally
same equations and method mentioned in Chapter 2.3.2.2. The only difference is that
the input parameter, the critical tooth height, is not obtained by analytical method but
it comes from FEA. The coast side tangent angle and critical tooth thickness are

found by using Equations (2.106) and (2.124), respectively.
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CHAPTER 3

INTERNAL ASYMMETRIC SPUR GEAR TOOTH GEOMETRY AND
ANALYTICAL BENDING STRESS INVESTIGATION

3.1 Generation of Internal Involute Spur Gear Tooth by a Pinion Type
Shaper Cutter

The generation of an internal involute spur gear by a pinion type shaper cutter is
shown in Fig. 3.1. The internal gear to be cut rotates with angular velocity w; about

0;, and the pinion type shaper-cutter rotates with angular velocity w, about O.

—Internal Gear
i -;"‘-—-,.,_,__‘T'O be Cut
Ao :’,\'\'Tﬁﬁ\ﬁﬁ\"f_@@?‘t"?{-_p;‘ 4
o q‘f iy YA ‘bq
&< e L
o5 SRCR 2
s ,_) & f"l
5° A
A 2 Kt
/ 2 k(\:‘/d A E&VB ‘I"; Shaper
/ RL AR ’ ap (\(
,‘/«" 3\"_' ( utter _qg “
.f"‘ Q; 1 Z \‘.‘
.f ?\:‘ i) i,‘ ~ /f—
[ 5 6
| <l 0 |
| jp! > I
‘l (!i'\ C) . IP I‘
f Cl P

Fig. 3.1 Basic visualization of internal spur gear generation by a shaper cutter

The pinion type shaper cutter and the internal gear tooth are both composed of three
parts as seen in Fig. 3.2. The shaper involute flank surface X generates the internal

gear involute flank surface X;. The shaper round surface X, generates the internal
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gear root fillet surface X;r. And the shaper addendum surface X, generates the

internal gear dedendum surface 2;;.

D
A A
VAN RN L'.ZS ,/"\..
) \) \_ The Internal /
/ The Shaper A\ Gear Tooth /
- Cutter \ y /

Fig. 3.2 Generating parts of pinon type shaper cutter and the corresponding

generated parts of internal spur gear tooth

3.1.1 The Generation of the Gear Involute Flank Surface

Vr
A
X,
I
.ys X
qﬁ-f ! Agp.s i
Vi
0.
ET 1 ‘gpi
i
=X
f
0,0,

Fig. 3.3 Coordinate Systems of shaper, internal gear to be cut and gear housing
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The shaper cutter involute flank surface X generates the internal gear involute flank
surface X; as mentioned above. The coordinate systems illustrated in Fig. 3.3, S, S;
and Sy that are rigidly connected to shaper-cutter, internal gear to be cut and frame
(gear housing), respectively. By using these coordinate systems the basic kinematic
relations of the generation and how to obtain internal gear involute flank surface are

discussed below.

Internal Gear Generating Shaper Generating
Pitch Circle Pitch Circle

Fig. 3.4 Generation of internal gear involute flank surface by the involute surface of

the shaper cutter

3.1.1.1 Basic Kinematic Relations
The kinematics of a shaper cutter is same with an external involute gear since it is

essentially an external involute gear. Therefore, the involute flank surface of a shaper

cutter has a line of action passing through the instantaneous center of rotation and a
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constant normal velocity at all contact points during any conjugate action. Then an
internal gear to be cut must also have the same line of action and constant normal
velocity at all contact points during the generation motion with the involute flank

surface of the shaper cutter.

Vgin = Von (3.1)
Vg; COS @j; = Vs COS Qs (3.2)
T;W; COS @j; = TyWs COS s (3.3)
WiTpi = WsTps (3.4)

Here ws, 1 and w; are constant parameters, then r,; is also constant. Then the
generated surface of the internal gear by the involute flank surface of the shaper

cutter must also be involute.

The velocities of the shaper and internal gear must be equal at point I:

Vgi = Vg (3.5)

Typi®i = TgpsWs (3.6)
Ws

Tgpi = Tgpsgi 3.7)

Tgpi = Typs + Es (3.8)

Use Equations (3.4) and (3.8) in (3.7):
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For zero profile shift:

Zs

Ths = M — COS Qg
2

Zi

Tgpi = Tpi =M~

Z;
Thi = M~ COS &

Then use Equations (3.14) and (3.17) in Equation (3.10):
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(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)



Tops = 7, ) (3.18)
7-
Es =Ty — Tps + X (3.19)

Here x, is the amount of the vertical shift of the shaper cutter. If the shift is upward it
is positive and if the shift is downward it is negative. By defining an input value for

Xs, Typs Can be found with Equation (3.18).

Then the a, can be found as:

Ths = Typs COS g (3.20)
7
a; = cos™* < bs) (3.21)
Tgps

3.1.1.2 The Determination of the Envelope to the Family of Surfaces

For any point on the shaper cutter involute flank surface, r; represents the position
vector of that point in Sg. The vector g is dependent on f, face width direction, and
ajs. In terms of all f and a;; components, rs(ajs, f) represents the surface X,

shaper-cutter involute flank surface, in S;.

In order to obtain parametric representation of the family of surfaces, Xy;, firstly, a
rotation matrix, Mgy, and translation matrix , My,, between S &S, and secondly, a
second rotation matrix, M;s, between S;&S; should be applied on the shaper-cutter

flank surface, (s, ). Then the following matrix equation is obtained:
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1y = M Mps; Mpsq s (3.22)

According to the Fig. 3.3 during the generation motion, the direction of shaper
rotation is counter-clockwise so the direction of the rotation matrix, My, which is
same with the direction of the shaper rotation, is also counter-clockwise and ¢ is

positive. Then the rotation matrix, M, can be written as:

cos¢py, —singy 0
Mgy = [sin ¢s  cos ¢ 0] (3.23)
0 0 1
The translation matrix, My,, between S &S is simply:
1 0 0 O
o 1 0 E
Mg, = 00 1 0 (3.24)
0 0 0 1

According to the Fig. 3.3 during the generation motion, the direction of internal gear
to be cut is counter-clockwise so the direction of the rotation matrix, M;r, which is
opposite to the direction of the internal gear rotation, is clockwise and ¢; is negative.

Then the rotation matrix, M;s can be written as:

cos¢p; sing; 0
My = [—Sin ¢; cos¢; 0] (3.25)
0 0 1
Here ¢; is dependent on ¢,. By using Equations (3.4), (3.14) and (3.17):
Wg _ Zi
o Z, (3.26)
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Then,

S S Zi
% - Z— =7 (3.27)
Zs
¢ = ¢>57 (3.28)

According to the position of the shaper-cutter in S, coordinates of r; change and in
Chapter 3.2.3.1, r; matrix is defined accordingly desired shaper cutter position in Sg.
However as being independent on the shaper-cutter position in S the coordinates of
1y are function of a;5 and f as mentioned above. And the elements of both matrices
Mgy and M;r are functions of ¢s. Thus 7; is a function of a5, f and ¢ and
ri(ajs, f, ¢S) representing the family of surfaces X;, generated in S; by surface X.
Because of the conjugate action during the generation, the internal gear flank surface,
2;, is determined as the envelope to the family of surfaces, X4;. And as mentioned in

Chapter 2.1.1.3, the equation of meshing is used to find the envelope. Then modify

Equation (2.34) for the internal gear flank surface and obtain:

< (')rl- % (')rl-> (')‘r'i ~0 (3 29)
aajs af a¢s .

3.1.2 The Generation of the Gear Root Fillet Surface
The shaper cutter round surface X, generates the internal gear root fillet surface X;f
as mentioned in Chapter 3.1. By using the coordinate systems in Fig. 3.3 the basic

kinematic relations of the generation and how to obtain internal gear root fillet

surface are discussed below.
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Fig. 3.5 Generation of internal gear root fillet surface by the rounded surface of the

shaper cutter

3.1.2.1 Basic Kinematic Relations

During the conjugate action the normal velocities must be equal and this equality can

be written as:

W Tpsr (05, Ps) = w; rbfi(es: bs) (3.30)

Here, 6, defines the point on the shaper-cutter round between C and C, and changes
with respect to the contact point at any instant as seen in Fig. 3.5. Also 7,5, and 7,f;

are functions of 6, and ¢;.
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rbsr(es' d)s) _ &
Tori(0s @s)  ws (3.31)

By using the similarity between triangles in Fig. 3.5 and also putting Equation (3.26)
in to Equation (3.31).

105 Zg (3.32)
10;  Z; '
10, Zg
== 3.33
10 + E; Z; (3.33)
105 Z; =105 Z5 + E Zg (3.34)
104 Z; — 105 Z5 = E Z, (3.35)
10(Z; — Z,) = E, Z, (3.36)
Es Zs
[0, = ——— 3.37
* ( Zi - Zs) ( )
0=z (3.38)
Zg

The Equation (3.38) is same with Equation (3.18) which means 10, is equal to the
generating pitch radius as being independent on 8. This can be explained according
to Lewis theorem that a point of the shaper-cutter round generates the respective
point of the internal gear root fillet at a position where their common normal at the

point of contact passes through the instantaneous center of rotation, I.
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3.1.2.2 The Determination of the Envelope to the Family of Surfaces

For any point on the shaper-cutter round, ry, represents the position vector of that
point in Sg. The vector 7, is dependent on f, face width direction, and 6;. And in
terms of all f and 6; components, 1, (6, f) represents the surface X,., shaper-cutter
round surface, in Sg. The r,- matrix is defined in Chapter 3.2.3.2 because of the same

reason for r;,- mentioned in Chapter 3.1.1.2.

Since the generation motions are same for both internal gear involute tooth and root
fillet surfaces, the rotation and the translation matrices are also same for these two

generations. Then, ry, is represented in S; as:

Tif = MijpMpsyMpsq Ty (3.39)

Here 7 is a function of 6, f and ¢, and r;£(6s, f, ¢s) representing the family of
surfaces X4 f;, generated in S; by surface X,.. Because of the conjugate action during
the generation, the internal gear root fillet surface, X;f, is determined as the envelope
to the family of surfaces, X4 ;. And as mentioned in Chapter 2.1.1.3, the equation of

meshing is used to find the envelope. Then modify Equation (2.34) for the internal

gear root fillet surface and obtain:

aTif aTif aTif
A 4
<aes 3 ) 39, ° (340

3.2 Details of Asymmetric Shaper Cutter and Internal Asymmetric Spur Gear
Tooth

In order to generate an asymmetric internal gear tooth, an asymmetric shaper-cutter
is used. The details of an asymmetric shaper-cutter and internal gear tooth are

discussed in the following chapters.
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3.2.1 Details of an Asymmetric Shaper Cutter

Fig. 3.6 shows a representative transverse cross sectional shape of basic asymmetric
pinion type shaper cutter, which is used to generate the respective asymmetric
internal tooth profiles. Some basic properties of an asymmetric shaper cutter are

defined below:

mZz
rps = > s (341)
Thsa = Tps COS Agq (3.42)
Thsc = Tps COS g (3.43)
7
Aasa = COS_l( bSd) (3.44)
ras
7
Agse = cos_l( bsc) (3.45)
ras

The shaper tooth thickness and space width at the tool reference pitch circle are
mm/2.

trefs = TM/2 (3.46)

The shaper cutter tooth axis is defined as the line passing through the middle of the

tooth tip thickness.

t
5= (invagsy — invagy) — (invags — invag) (3.47)

Tys
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As mentioned in Chapter 3.1.1.1 with respect to vertical shift amount, x,, of the
shaper cutter the generating pitch circle changes and the generating pitch radius of

the shaper cutter r,,,; and the generating pressure angle a, are already defined. Then

agsc and ag can be found as:

7
Agsc = cos™! (rbsc> (3.48)
gps
T
a; = cos™? < b5d> (3.49)
Tgps

And the drive and coast sides tooth thicknesses are defined as:

tyse = Typs(iNVaAgse — inVays + 6/2) (3.50)
tgsa = rgps(invaasd — invagsq + 6/2) (3.51)
tgs = tgsc T lgsa (3.52)

The details of points C.g, Cee, Ce, C4s, Cqe and C, are defined with respect to the
radius A in Appendix C.1. Also the shaper-cutter may be full-rounded with a radius

Apmaxs- The detailed derivation for calculating A,,,4s IS given in Appendix C.2.

65



! Shaper Tooth
| Center Line

Fig. 3.6 Asymmetric shaper cutter details

3.2.2 Details of an Internal Asymmetric Gear Tooth

Fig. 3.7 shows a representative transverse cross sectional shape of basic asymmetric
internal gear tooth. In an asymmetric internal gear, the base radiuses of the coast and
drive side flanks may intersect or may not intersect each other. However in general
they do not intersect each other as represented in Fig. 3.7. For this case the larger
base radius is accepted as the imaginary tip radius of the internal gear tooth and the
gear tooth axis is defined as the line passing through the middle of the imaginary tip

tooth thickness.
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rInternal Gear Internal Gear
Generating Tooth Axis
Pitch Circle

I Internal Gear
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i

i {ag)

Fig. 3.7 Internal asymmetric gear tooth details
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Some basic properties of an asymmetric internal gear tooth are defined below:

mZi

rpi = )

Thid = rpi COS U gq
Thic = rpi COS g,

2MTy;
tgi = — tgs
Z;

(3.53)

(3.54)

(3.55)

(3.56)

The internal gear tooth axis angle §; and respective generating pitch circle coast and

drive side tooth thicknesses are defined according to Fig. 3.7 as below:

t.
6i: '

— nvagse — (invagsd - invabd)
gpi

_1 (Tpid
apq = COS
Thic

t

gic = rgpi(invagsc + 6i/2)

tgia = rgpi(invagsd — invayy + 6i/2)

(3.57)

(3.58)

(3.59)

(3.60)

In contrast to Fig. 3.7, if the drive side base radius is larger than the coast side base

radius and they do not intersect each other, then Equations (3.57), (3.59) and (3.60)

can be modified as:
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tgi

6; = ELE invagsg — (invagsc — invabc) (3.61)
Tgpi
T‘ .
Ape = cos‘l( bw) (3.62)
Thid
tgia = Tgpi(iNVaysq + 6:/2) (3.63)
tgic = Typi(invags. — invay, + 6;/2) (3.64)

If the base radiuses intersect each other, then the gear tooth axis is defined as the line
passing through this intersection point. The radius of this intersection point r;; can be
found as defined in Appendix D.1. The generating pitch line coast and drive side
tooth thicknesses according to this case are also defined in Appendix D.1 and

expressed by:

tgia = rgpi(invagsd — invatid) (3.65)

tgic = rgpi(invagsc — invam) (3.66)

3.2.3 Determination of the Position Vector Matrices for the Surfaces of the

Asymmetric Shaper Cutter

The position of the shaper cutter in S, gives us the desired internal gear tooth
position in S;. In FEA for bending stress an internal gear tooth is analyzed as its tooth
axis being coincide with the vertical axis. Thus the obtained internal gear tooth axis

must coincide with the vertical axis.
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Fig. 3.8 illustrates that the dark colored involute flanks and rounds of drive and coast

sides of the asymmetric shaper-cutter generates the asymmetric internal gear dark

colored flanks and roots which represent the tooth space. Also in order to obtain the

desired tooth position the obtained tooth space must be rotated as the angle ¢,;-

Shaper Cutter -
Tooth AXis

Internal Gearj,
Tooth Axis

1

Fig. 3.8 The desired position of the internal asymmetric gear tooth

Then by complete circular patterning as the number of the gear tooth the asymmetric
gear having the desired tooth position is obtained.

t +t,;
gsc gic
¢rot =

T,
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€OS Prot  —SiNProe O

Mrot = |sin ¢rot cos ¢rot 0 (368)
0 0 1

Zirot = Myot 2; (3.69)

Zifrot = Mot Zif (3.70)

3.2.3.1 Determination of the Position Vector Matrices for the Involute Flank
Surfaces of the Asymmetric Shaper Cutter Coast and Drive Sides

With reference to Fig. 3.9, the asymmetric shaper-cutter flank drive and coast side

surfaces are defined as:

[7se sin(8s. + inva,, — invajs,)]

Tee = | 7sc cos(c?sc +inva,. — invdjsc)l 0<djsc <, 0Sf<fy (3.71)

f
1

— Tsq sin(SSd + inva,s — invajsd)]

f

r
| s . .
Tog = | Tsa cos( sd T inva,s — anajsd) lo < sa < Cra, 0<f<f, (3.72)
| 1

Here 654, 00, @y and a,.4 are defined in Appendix C.1. Also ry; and r,. can be

defined as:

reg = —24 3.73
sd cos(ajsd) (3.73)
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+

(3.74)

Fig. 3.9 The position vectors of asymmetric shaper cutter drive and coast sides

involute flank surfaces

Then Equation (3.71) and (3.72) becomes:

Thsc . . . )
O + — ;
cos(ajsc) Sln( sc nva,.. mvajsc)
Tpsc . .

Ssc + — ;
cos(ajsc) COS( sc Mnva,. mvajsc)
f
1
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0 <f<fw
r -
S— L sin(8sq + iNVa g — iNVa;sq)
cos(atjsq)
r
Teqg = Lcos(&d + IVa,g — iNVajsq)

cos(ajsq)
f
1 - (3.76)

0< ajsd < Arg

0<f<fw

3.2.3.2 Determination of the Position Vector Matrices for the Rounded

Surfaces of the Asymmetric Shaper Cutter Coast and Drive Sides

With reference to Fig. 3.10 the asymmetric shaper-cutter round drive and coast side
surfaces are defined as:

Xce + Ag cos(Os.)
_ | yce + As sin(6s.) Oses < Ose < Osee , 0 F <y (3.77)

rST’C f SCs —

1

Xcd — As cos (Hsd)

Tsra = Yea ¥ ASfSin(HSd) Osas < 05 < Osqe » 0<f<Ff, (3-78)
1

Here xXcc, Veer Oscss Oscer Xcas Yea» Osas and B4, are defined in Appendix C.1.
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Shaper Tooth
Center Line

Fig. 3.10 The position vectors of asymmetric shaper cutter drive and coast sides

rounded surfaces
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3.3 Analytical Method to Determine the Critical Bending Stress Section and

Related Parameters for an Interna

I Asymmetric Spur Gear Tooth

In Fig. 3.11, the basic visualization of asymmetric internal spur gear tooth bending

stress critical section is illustrated.

rr'id

Internal Gear
Tooth Axis

O Fi

_——

@

Fig. 3.11 The basic visualization of asymmetric internal spur gear tooth bending

stress critical section

In this chapter the same modified 1ISO B method which is used for the external

asymmetric spur gears mentioned in Chapter 2.3, is used for internal asymmetric

gears in order to determine the critical tooth thickness and tooth height. In this

7

5



method, the drive side tangent angle at the critical section f;; is equal to 60°, the
coast side tangent angle at the critical section B;. is calculated by using the

generation of the internal gear coast side root fillet.

3.3.1 Determination of the Angle and Radius of the Applied Force

The maximum bending stress on the internal gear root occurs when the force is
applied at the lowest point single tooth contact point. In order to verify the critical

tooth thickness and tooth height, firstly radius of the applied force, rx;, and angle,

ap;, as illustrated in Fig. 3.12, shall be determined.

Internal Gear —
Tooth Axis . ——
/

~-Cpi -
1

Fig. 3.12 The applied force at LPSTC and the related parameters
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For this, radius of the lowest point single tooth contact point, r;, must be known. The

detailed derivation of r; is in Appendix D.2.

ap; = a; — ap; + Agt (3.79)
r .
a, = cos™! (ﬂ) (3.80)
n
Ay = inv(ag) —inv(a;) (3.81)
[
g =24 (3.82)
Tgpi
_ Thia
Tri = cos(ap) (3.83)

3.3.2 Determination of the Critical Tooth Thickness and Height

The critical tooth thickness and tooth height can be determined by using the
generation of the internal gear root fillet with a shaper cutter. Firstly, the drive side
critical tooth thickness and the critical tooth height are obtained. Then with respect to
the critical section, the coast side critical tooth thickness is obtained. Finally, the
summation of the drive and coast side critical tooth thicknesses gives the critical

tooth thickness.

3.3.2.1 Determination of the Drive Side Critical Tooth Thickness and Height

The drive side critical tooth thickness and tooth height are obtained by using the

generation of the internal gear drive side root fillet surface with the shaper cutter
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drive side round surface. Fig. 3.13 shows the generation of the gear drive side root

fillet at point P where the critical section occurs.

_ tgid + tgsd
g =—
Tgpi

Bia =Ca + @i + 05q — s

T
ﬁia=§

Z
oi zd)sz_j

Osa = Bia — Sa — i + &

T tgid+tgsd Z
g =5~ . T4

Topi

0,Cq = \/(xCd)Z + Yea)?

CdG = OSCd Sin(@Cd + ¢S)

IG = 0,G — 0,1

IG = 05C4 cos(Ocq + ¢s) — Typs
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Shaper
Tooth Axis

Internal Gear {5;5
Tooth Axis (.

Q.

T

Fig. 3.13 The generation of the internal asymmetric spur gear drive side root fillet at
the location where the critical section occurs
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1G

tan(fsq — s) = Cd_G (3.99)
Oy — s =t —1(16) (3.96)
sd ¢s = tan CdG :
0sq = tan~? (i) + (3.97)
sd — an CdG ¢S .

In Equations (3.97) and (3.89), the only variable is ¢ and by equating them obtain
¢s. Then by using Equation (3.89) obtain 8,4. Some of the details of the shaper

cutter are given in Fig. 3.14.

Pes = O5Cq sin(Ocq + Ps) + As cos(0sq — ps) (3.98)
Pys = 05Cq cos(8cq + ¢s) + As sin(fsq — bs) (3.99)
Py; = Py (3.100)
Py; = Pys + E (3.101)
_ Pxi
tan(§y) = — (3.102)
Py
— 1 Pxi
g =tan™ " | — (3.103)
Py;
trig = 0P sin({y — (€4 — ¢1)) (3.104)
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Fig. 3.14 The details of the asymmetric shaper cutter during the generation of the
internal asymmetric spur gear drive side root fillet at the location where the critical

section occurs
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2 Zg
trid = \/(Pxi)z + (Pyi) sin ((d - (fd - d)s Z_)> (3-105)

hyi = 0;P cos({y — (§q — ¢:)) — O;M (3.106)

Zs
hy = \/(Pxi)z + (Pyi)z cos (fd - ('fd — ¢ 7)) — Tpi (3.107)

3.3.2.2 Determination of the Coast Side Critical Tooth Thickness and Height

The coast side critical tooth thickness and tooth height are obtained by using the
generation of the internal gear coast side root fillet surface with the shaper cutter
coast side rounded surface. Fig. 3.16 shows the generation of the internal gear coast
side root fillet at point T where the critical section occurs. Some of the details of the

shaper cutter are given in Fig. 3.15.

05Cc =/ (x¢e)? + (Yee)? (3.108)
0 = tan™! <|x“|> (3.109)
Yee
C,Z = 0,C, sin(6ge + bs) (3.110)
17 = 0,7 — 0,1 (3.111)
1Z = 05C; cos(Occ + Ps) — Typs (3.112)
1z

tan(fs. — ¢s) = (3.113)

C.Z
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Shaper Tooth Axis

Fig. 3.15 The details of the asymmetric shaper cutter during the generation of the
internal asymmetric spur gear coast side root fillet at the location where the critical

section occurs
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1z
Osc — s = tan™" (CCZ)

17
O, = tan™?! (

ez)

0., = tan~1 <\/(ch)2 + (Yee)? cos(Oce + ¢s) — rgps) + ¢
\/(ch)z + (yCc)Z Sin(HCc + (nbs)

Tys = OsC. sin(O¢. + @) + A cos(Oe — )
Tys = 0sCc cos(Occ + Ps) + As sin(bc — )
Tyi = Ts
Ty; = Tys + Eq

Txi

tan(fc) = T_
yi

T..:
¢, =tan™! <ﬂ>

hyi = 0;T cos({, — (&, — ¢)) — O M

hy; = \/(Txi)z + (Tyi)z cos (Cc - (fc — ¢s %)) — T
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Shaper
Tooth Axis

Internal Gear
Tooth AXis

_ 0
Fig. 3.16 The generation of the internal asymmetric spur gear coast side root fillet at
the location where the critical section occurs
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Put Equation (3.116) in Equations (3.117) and (3.118). Then Equation (3.124) is now
only dependent on ¢,. Note that h,; is already found in Equation (3.107) and by
equating Equations (3.107) and (3.124) obtain ¢;.

tric = OiT sin({e — (e — 1)) (3.125)
tre = | (T07 + (1,,)"sin (zc - (8- ¢ i—)) (3:126)
¢c = fgic ¥ fgse (3.127)
-
Bic = e+ bi+ Oc — (3128)
Pic = ¢+ ¢S§_j + 050 — s (3.129)

Put Equation (3.116) in Equation (3.129). Then Equation (3.129) is only dependent

on ¢s. Since ¢; is already found ;. is found, too.

3.4 Estimation of Tooth Form Factor, Stress Correction Factor and
Maximum Bending Stress for an Internal Asymmetric Spur Gear Tooth
through Modified 1ISO and FEA Methods

The maximum bending stress formulation at the internal gear tooth root is same with

the external gear tooth root and may be expressed as:

F, :
0; = fi‘ﬂllYFiYSi (3130)
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where, F,; is normal load, Yz; is tooth form factor and Ys; is stress correction factor.
In addition to the bending stress formulations of international standards, the
compressive stress produced by the radial load F,; is also taken in to account in this
thesis so that the normal force F,;; is used instead of F;; in Equation (2.125). Y; and
Ys; are determined for an internal asymmetric gear tooth with both 1ISO B and FEA

methods in the following Chapters.

3.4.1 Modified ISO Method for Bending Stress Parameters

The tooth form factor Yg; is also affected by being taken in to account of the radial
load F,;. The detailed derivation of Yz; is same with Y of the external gear tooth

which can be found in Appendix of [15] and defined as:

6mh,; cos ag; MSin ag;

(Yei)1so = 2 - (3.131)
tri tri

tri = tric + tria (3.132)
The stress correction factor Ys; is same with Ys of the external gear tooth and defined

in [5] as:

1
[71.2 él (3.133)
(Ys)iso = (1.2 + 0.13L) g, 2 T

t .
L =-— (3.134)
hri
_ tri
Gsi =5, - (3.135)

Here, pg; is root fillet radius of curvature of the internal gear drive side root fillet

trochoid at the critical section and can be found with the help of the Fig. 3.17:
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Trochoid

Center Line\ v
e

Internal Gear Y

. Tooth Axis |

O,

Fig. 3.17 The root fillet radius of curvature at the drive side critical section of the

internal asymmetric spur gear
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pri = CP — CD (3.136)
pri = 0;Ctan(8gs — ¢s + &) — 0;C tan(bgs — Ps + i + ap;) (3.137)
0;C = 0;1 cos(0ys — ¢ps) (3.138)

0;C = 14p; cos(04s — Ps) (3.139)

Here all parameters of pg; are already found for the drive side critical section so that

pr; can be found, too.

At the instant when the centerline of the trochoid coincides with the shaper drive side
round center on the axis yy, the angle «,; between the trochoid center line and y;, is

equal to the angle 6.4, divided by the gear ratio.

Oca
Upi =7 (3.140)

UE\ILN

The angle 6., was already defined by Equation (3.91) as:

0oy = tan~! <|x0d|> (3.141)

89



.]'zf Shaper Cutter

1)
Vs

Tooth Axis

Internal Gear Drive Side

‘ ;f' / Root Fillet Trochoid
Trochoid .
Center Line
o R

Fig. 3.18 The angle of the root fillet radius of curvature at the drive side critical

section of the internal asymmetric spur gear
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3.4.2 FEA Method for Bending Stress Parameters

The maximum principle stress on the internal gear root fillet gives the maximum

bending stress through FEA as stated in Chapter 2.4.2 for the external gears.

Ini (Yri) rEa(Ysi) FEa (3.142)
fom > '

(0)FEa =
The form factor (Yg;)rea is calculated with Equation (3.131) by using FEA based

values of t,; and h,;. Then (Ys;)pg4 Can be defined as:

(01)rEa
(Ys)rppa = N l
nt

3.143
Fm (Yri) FEa ( )
The FEA based pg; at the critical section is obtained by using Equation (3.137) with

the FEA based critical section parameters which are defined in Chapter 3.4.2.2.1.

In order to use this method, 2D FEA is carried out in this thesis and the asymmetric
internal spur gear 2D FE model is the need for FEA. In order to create a 2D FE
model, firstly, a 3D cat model of the asymmetric internal spur gear is created in this
thesis and 2D internal gear geometry is obtained by using this cat model. Then 2D
FE model can be created by using this 2D gear geometry.

3.4.2.1 Internal Asymmetric Spur Gear 3D Model
The asymmetric internal spur gear as shown in Fig. 3.20 is obtained by using a

Matlab code, written according to the theory explained in this thesis, and illustrated
in Fig. 3.19.
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Fig. 3.19 Internal asymmetric spur gear tooth space profile

Here, the profile consists of points and represents the internal gear tooth space
surface. Also the profile is 3D and the points continue through the face width
direction. Since this is a spur gear, the profile at each section is same.

Fig. 3.20 Internal asymmetric spur gear 3D model
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In order to obtain firstly 3D cat model and then 2D geometry of the internal
asymmetric spur gear, the same method explained in Chapter 2.4.2.1 for the external
asymmetric spur gear is used. Fig. 3.21 shows an example of 2D geometry of the

internal asymmetric spur gear

Fig. 3.21 Internal asymmetric spur gear 2D geometry
3.4.2.2 FE Model of the Internal Asymmetric Spur Gear
In this thesis FE modeling and analysis are done in ABAQUS 6.14. A sample 2D FE
model of the asymmetric internal gear is shown in Fig. 3.22. The FE model is consist
of three tooth and have enough rim thickness to provide a rim thickness factor of 1
according to [5].

FE model properties:

1) 2D FE analysis with plane strain condition is done by assuming a uniform load

distribution along face width of the gear tooth.
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2) The material is a linear elastic isotropic and homogeneous one with an elastic

constant of E = 210 GPa and Poisson's ratio= 0.3.

Fig. 3.22 Internal asymmetric spur gear tooth 2D FE model

3) The load is applied at RP-1 (reference point) which is SPSTC point. The reference
point is coupled to the nodes at that diameter with continuum distributing and the FE
model is fixed from the outer round and side lines as shown in Fig. 3.23.

4) The gear tooth profiles for this analysis have been generated using a full rounded

shaper cutter.

Fig. 3.23 Internal asymmetric spur gear tooth 3D FE model boundary condition and
force application point
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5) The 2-D 8-nodded quadratic elements are used to mesh the gear model. The
loaded gear tooth flanks and root fillets and the next unloaded tooth flanks and root
fillets are meshed sensitively by using partition regions, which are offset from the
original profile around 0.1 times module. There are 350x10 elements in the loaded
tooth drive side root fillet and 150x10 elements in the loaded tooth drive side flank
and coast side root fillet and 50x10 elements in the loaded tooth coast side involute
flank. There are also 50x5 elements in the next unloaded tooth flanks and root fillets.

For the other regions suitable global size elements are used.

3.4.2.2.1 Internal Asymmetric Spur Gear FE Model Critical Section

Parameters
In the FEA the maximum principle stress location which is the point P illustrated in
Fig. 3.24, is found and defines the critical section. The x and y components of point

P are read in Abaqus. Here, P,; and P,,; are defined as:

Pxfea = tyia (3.144)

Pyfea = OL (3.145)

The critical tooth height is found as:

h,; = OL — (OM) (3.146)

Remember that OM is rg;, Fig. 3.12, then:

hri = nyea — Tri (3147)
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ric f:-mr

Internal Gear —_
Tooth Axis

~Maximum Principle Stress

i

/| Location (Critical Section)

Lowest Point Single
Tooth Contact

O

Fig. 3.24 Internal asymmetric spur gear tooth 2D FE model critical section

Since the critical tooth height is known and the critical section tangent angle is not
known for the gear tooth drive side in FEA, the same method with the analytical
method used in the coast side parameters derivation is used to obtain the drive side
parameters in FEA method. According to this method put Equation (3.97) in
Equation (3.107) such that the only parameter becomes ¢ in Equation (3.107). Since
the drive side critical tooth height is also calculated by using Equation (3.107), ¢ is
obtained by equating Equations (3.107) and (3.141). Then 6, is obtained by using

Equation (3.97). Finally g;, can be found by modifying Equation (3.88):
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Bia = 0sq + Cq + P; — b (3.148)

tgia + tasa VA
g2 9%¢ +¢57‘°j—¢5 (3.149)
L

4

Max:1.883e+01

Bia = Osq +

gpt

S, Max. Principal
{Avg: 75%)

+1.883e+01
+1.726e+401
+1.569e+01
+1.412e+401
+1.255e+401
+1.098e+01
+9.416e+400
+7.846e+00
+6.277e+00
+4.708e+00
+3.13%400
+1.569e+00
+0.000e+00

Max: +1.883e+01
Elem: PART-1-1.5040
Node: 56281

Fig. 3.25 An example of the FEA bending stress results for the internal asymmetric
spur gear with 60 teeth, a;4/a;-=30°/16°

The drive side critical section tooth thickness, t,;4, can also be found by using
Equation (3.105) for FE model. The results of Equations (3.105) and (3.144) shall be
equal such that the correctness of the analytical method is proven. The coast side
critical section parameters for FE model are found by using totally same equations
and method mentioned in Chapter 3.3.2.2. The only difference is that the input
parameter, the critical tooth height, is not obtained by analytical method but it comes
from FEA. The coast side tangent angle and critical tooth thickness are found by

using Equations (3.126) and (3.129), respectively.
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CHAPTER 4

RESULTS AND DISCUSSIONS FOR MODIFIED ISO AND FEA
METHODS OF EXTERNAL AND INTERNAL ASYMMETRIC SPUR
GEARS

4.1 Results and Discussions for Modified 1SO and FEA Methods of External

Asymmetric Spur Gear

The critical section and bending stress parameters (84, B¢, hr, tr, pr, Yr, Ys, 0) are
determined through FEA and modified ISO methods according to the different cases

for the external asymmetric spur gears.

4.1.1 The Case of Lightly Loaded Gear with Small Module

In this chapter external asymmetric spur gears with 1 mm module, unit face width,
standard tooth height (a=1, b=1.25), zero profile shift and 10 N applied force are
studied with FEA and modified ISO methods. These studies are done in two cases. In
first case the influence of drive side pressure angles are examined and in second case
the influence of coast side pressure angles are examined. Then the results of these

studies are compared with the previous work [15].

4.1.1.1 The Effect of Drive Side Pressure Angle

In previous work [15], the influence of drive side pressure angle on the critical

section and bending stress parameters (84, B¢, hy, tr, pr, Yr, Ys, 0) is plotted for
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different pinion teeth numbers Z,, (from 20 to 100). On these plots the datas are
given for only two teeth number 20 and 100. These datas are compared with this
thesis works in Table 1 and Table 2. Here, PW means previous work and TH means
this thesis work. It is seen that this thesis and previous work [15] data are very close
to each other for these two teeth number for this case. In order to verify this thesis
results more accurately, another teeth number from the previous work [15] can be
selected. This teeth number is chosen as 40 since the data at this teeth number are the
farthest ones to the line which starts from the data of 20 to 100 teeth numbers in the
previous work [15] plots.

Table 1. Comparison of the FEA and modified ISO method results with previous

work [15] for the bending stress parameters, a.=20°, Z,=Z,=20

PARAMETERS

0g/0c Ba(®) | Be® [ hr(mm)| t(mm) |pe(mm)| Ve Ys |0 (MPa)
PW-ISO| 30 30 1.0507 | 1.9564 | 0.5507 | 1.3821 | 1.824 | 25.209
20°/20° PW-FEM| 33 33 1.0784 | 1.9918 | 0.5473 | 1.37 1.918 | 26.276
TH-ISO 30 30 1.0507 | 1.9575 | 0.5511 | 1.3805 | 1.8242 | 25.183

TH-FEM)| 34.0285 [ 34.0285| 1.0875 | 2.0035 | 0.5469 | 1.3659 | 1.9196 | 26.22

PW-ISO| 30 35 1.1682 | 2.0666 | 0.4906 | 1.2734 | 1.924 24.5

Z20,m1 259/20° PW-FEM| 37 39 1.2276 | 2.1492 | 0.4826 | 1.2393 | 2.0407 | 25.29

TH-ISO 30 33.909 | 1.1672 | 2.0622 | 0.4912 | 1.278 | 1.9207 | 24.547
TH-FEM| 34.5448 | 38.826 | 1.2049 | 2.1137 | 0.4859 | 1.2572 | 2.0077 | 25.24
PW-ISO| 30 40 1.2896 | 2.1919 | 0.4181 | 1.1447 | 2.0695 | 23.69
PW-FEM| 39.75 51.2 | 1.3561 | 2.3074 | 0.4068 | 1.086 | 2.265 | 24.594
TH-ISO 30 39.9043| 1.2891 | 2.1915 | 0.4188 | 1.1447 | 2.0682 | 23.674
TH-FEM| 39.1719 [ 51.7379 | 1.3528 | 2.3005 | 0.4077 | 1.09 | 2.2551 | 24.58

30°/20°
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Table 2. Comparison of the FEA and modified ISO method results with previous
work [15] for the bending stress parameters, a.=20°, Z,=Z,=100

PARAMETERS
O/ O Ba(®) | Be® | h(mm) | t(mm) | pe(mm) | Ve Ys |o(MPa)
PW-ISO| 30 30 | 0826 | 2.225 | 0493 | 0.795 | 2.298 | 18.28
50020 PW-FEM_ 409 41 0.906 | 2.354 | 0.489 | 0.784 | 2.581 | 203
TH-ISO| 30 30 | 0.8257 | 2.2391 | 0.4934 | 0.7841 | 2.3117 | 18.126
TH-FEM| 43.502 | 43502 | 0.9235 | 2.3848 | 0.4884 | 0.7801 | 2.5919 | 20.22
PW-ISO| 30 35 | 0.958 | 2.364 | 0.424 | 0.753 | 2.453 | 1847
2100,mY o pge [PW-FEM| 4505 | 47.81 | 1027 | 2462 | 0418 | 0753 | 266 | 2003

TH-ISO 30 31.1754] 0.9562 | 2.3598 | 0.4241 | 0.7584 | 2.4522 | 18.5963
TH-FEM)| 45.1679 [ 46.7417| 1.0508 | 2.5084 | 0.4176 | 0.7432 | 2.7261 | 20.26
PW-ISO| 30 40 1.085 | 2.522 | 0339 | 0.688 | 2.728 | 18.77
PW-FEM| 49.9 55.7 1.181 2.68 0.33 0.668 | 2.996 | 20.03
TH-ISO 30 32.9042| 1.0818 | 2.5065 | 0.3394 | 0.696 | 2.7164 | 18.9061
TH-FEM) 46.9293 [ 51.1941 | 1.1672 | 2.6503 | 0.3311 | 0.6755 | 2.9948 | 20.23

30°/20°

Table 3. Comparison of the bending stress parameters for the FEA and modified ISO
method results, a,=20°, Z,,=Z,=40

PARAMETERS
O/ O Ba(®) | Be® [ h(mm)| t(mm) |pe(mm)| Ve Ys |0 (MPa)
20°/20° TH-ISO 30 30 0.9249 | 2.126 | 0.5188 | 1.0072 | 2.0732 | 20.8824
TH-FEM| 37.9907 [ 37.9907 | 0.9909 | 2.2149 | 0.5128 | 0.9984 | 2.2345 | 22.31
Z40,m1 259/20° TH-ISO 30 32.3793| 1.0444 | 2.2395 | 0.4538 | 0.9477 | 2.1966 | 20.8164
TH-FEM| 39.435 [42.3297| 1.1133 | 2.3395 | 0.4458 | 0.9293 | 2.3534 | 21.87
30°/20° TH-1SO 30 35.9222| 1.1658 | 2.3774 | 0.3748 | 0.8587 | 2.4005 | 20.6126
TH-FEM)| 42.4855 [ 50.6337 | 1.2414 | 2.5033 | 0.3632 | 0.827 | 2.5865 | 21.39

Table 4. Comparison of the bending stress of standard ISO method with FEA results

for ag=a.=20°

o (MPa)

adac | ZplZ, ISO FEA
20/20 | 27.54 | 26.22
20°/20° | 40/40 | 22.96 22.3
100/100 | 20.72 | 20.22
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Then this thesis works for 40 teeth are also compared with the previous work [15] by

putting signs in its plots as shown in Fig. 4.1, Fig. 4.2, Fig. 4.3 and Fig. 4.4. In these

figures some of the parameters have different symbols. Here, i is B, a,q IS ag, hf is

h, and sf is t, according to this thesis work. It is clearly seen that for 40 teeth the

results of this thesis and previous work [15] is also very close to each other. Thus this

thesis work is verified by using the previous work [15] results. Then the similar

discussions for this case with the previous work [15] can be done:

1-

From Table 1, Table 2, Table 3 and with the help of Fig. 4.1 it is found that as
a4 increases the angle of tangent at the drive and coast sides (8; and S.)
increases and by increasing the number of teeth the amount of increase
becomes larger and larger in the FEA study. However, the value of S, is
always equal to 30° and the respective S, increases with an increase in a4 in
the modified ISO method. Also contrary to the FEA study and previous work
[15] modified 1ISO method by increasing the number of teeth, the coast side
tangent angle . decreases in this thesis modified 1ISO method.

From Table 1, Table 2, Table 3 and with the help of Fig. 4.2, Fig. 4.3 and
Fig. 4.4 it is found that as a, increases the tooth form factor Y, decreases
which is mainly because of the corresponding increase in critical tooth
thickness t,, despite the increase in critical tooth height h,. However the
stress correction factor Y, increases because of the corresponding decrease in
root fillet radius of curvature p,. The respective determined values of the
bending stress o decreases with an increase in a4. This is because of the
corresponding decrease in tooth form factor Yz, which is more dominating
than the increase in stress correction factor. This enables to enhance the
bending strength of the gear tooth.
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3-

The present FEA results show higher values of ¢ than that of the modified
ISO method, which is mainly because of higher critical tooth height h, and
lesser root fillet radius of curvature pr. The bending stresses in FEA are %5
percentage higher than modified 1ISO method for low number of teeth and the
percentage increases to %10 for high number of teeth. According to Table 4,
for external symmetric spur gears with 20° pressure angle, the standard 1SO
method gives %3-5 larger bending stress results than FEA results. By

increasing the number of tooth, the results get closer to each other.

By increasing the number of teeth the bending stress o decreases. The
bending stress in modified 1ISO method decreases more than FEA method
since the stress correction factor Y, increases less than FEA method for the

modified ISO method while the number of teeth is increasing.
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Fig. 4.1 Comparison of the drive and coast sides critical section tangent angles of
this thesis and previous work [15] on the plots of [15] at Z,=40 for different drive
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correction factor of this thesis and previous work [15] on the plots of [15] at Z,=40
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106



—-A-—1S0, a,,=20° &

1.5 —

J —O— Regression, a_, = 20°

Y ,~1.3821 (ISO)

1.4+ ! ~-m-—FEM, a,,=20° ®

J Y ,+~1.37 (FEM
- % F FRMD —4—1S0, a,,=25" &

34 \ i
| %—YF71'2734 (ISO) —O— Regression, oy = 25°
3‘;_% Y ,;~1.2393 (FEM) ¢

1.2 : —=—FEM, a,,=25" =

i ~1.1447 (ISO

g =2 - 4= 180, «,, =30 &

114 Y,~1.086 (FEM) . o

] - O- Regression, o, =30
1.0 H - = FEM,q , =30 ®

J B0

\ N

0.9 -

J Y ,~0.784((FEM)
0.8 4

| TA-- ~D.753 (FEM)

il ~ i Y ,=(.688 (ISO

0.7 - a__é==:°EEEArr ( )
0.6 Y ;=0.668 (FEM)
0.5 T T T T T T T T T

10 20 30 40 50 60 70 80 90 100 110

Zp
. o
—-A--1S0,a,,=20" &

2.7 — O - Regression, o, , = 20°

| @=——0=2.6276 (FEM) —-m—FEM.q ,—20° ®
2.6 i e od

] Y __0-2.529 (FEM) —4—I180,0,,=25" 4
25 \— 0=2.5209 (ISO) —O— Regression, a,,= 25"

0=2.4594(FEM)

R =25° =
—6-2.45 (ISO) =—FEM, o,,;=25

- A= ISO, «,,=30" &
o

- O Regression, a, = 30
- FEM, o ,= 30°m

=== A- - _ 40187 (ISO)
2+ o-1.847 (ISO)
= Ag-1.828 (ISO)

T
100 110
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4.1.1.2 The Effect of Coast Side Pressure Angle

In previous work [15] the influence of coast side pressure angle on the critical
section and bending stress parameters (84, B¢, hy, tr, pr, Yr, Ys, 0) is plotted for
different pinion teeth numbers Z,, (from 20 to 100). On these plots the data are given
for only two teeth number 20 and 100 similar to the drive side plots. These data are
compared with this thesis works in Table 5 and Table 6. It is seen that this thesis and

previous work [15] data are very close to each other for this case.

Table 5. Comparison of the FEA and modified 1SO method results with previous

work [15] for the bending stress parameters, a;=30°, Z,=Z,=20

PARAMETERS
Og/0 B | Bc® [ h(mm) | t(mm) | pe(mm) | Ve Ys |0 (MPa)
PW-1SO| 30 40 | 1.2896 | 2.1919 | 0.4181 | 1.1447 | 2.0695 | 23.69

PW-FEM| 39.75 51.2 [ 1.3561 | 2.3074 [ 0.4068 | 1.086 | 2.265 | 24.594

30°720 TH-1SO 30 39.9043| 1.2891 | 2.1915 | 0.4188 | 1.1447 | 2.0682 | 23.674

TH-FEM| 39.1719 | 51.7379 | 1.3528 | 2.3005 | 0.4077 | 1.09 [ 2.2551 | 24.58

PW-1ISO| 30 35 1.338 | 2.2635 | 0.3494 | 1.108 | 2.2434 | 24.858

Z20,m1 PW-FEM| 41.15 49 1.4055 | 2.374 [ 0.3345 | 1.056 | 2.324 | 24.594

30°/25°

TH-ISO 30 35.6678 | 1.3385 | 2.2659 | 0.3502 | 1.1059 | 2.243 | 24.805
TH-FEM| 41.2497 | 48.998 | 1.4057 | 2.3745 | 0.3349 | 1.0581 | 2.291 | 24.24

PW-ISO| 30 30 1.3953 | 2.36 [ 0.2675 | 1.056 | 2.5244 | 26.66
30°/30° PW-FEM| 47.7 47.73 | 1.4759 | 2.4874 | 0.2424 | 1.0063 | 2.5244 | 25.399
TH-ISO 30 30 1.3953 | 2.36 [ 0.2686 | 1.056 | 2.5258 | 26.673

TH-FEM) 46.1429 [ 46.1429 | 1.4704 | 2.4757 | 0.2446 | 1.0122 | 2.4827 | 25.13
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Table 6. Comparison of the FEA and modified ISO method results with previous

work [15] for the bending stress parameters, a,=30°, Z,=Z,=100

PARAMETERS

00 Ba(®) | Be® [ h(mm)| t(mm) |pe(mm)| Ve Ys |o (MPa)
PW-ISO| 30 40 1.085 | 2522 | 0339 | 0.688 | 2.728 | 18.77

30°20° PW-FEM| 49.9 55.7 1.181 2.68 0.33 0.668 | 2.996 | 20.03
TH-ISO 30 32.9042] 1.0818 | 2.5065 | 0.3394 | 0.696 | 2.7164 | 18.9061
TH-FEM)| 46.9293 [ 51.1941| 1.1672 | 2.6503 | 0.3311 | 0.6755 | 2.9948 | 20.23
PW-ISO| 30 35 1165 | 2.639 | 0256 | 0.679 | 3.121 | 21.24

2100, m 1 30°/25° PW-FEM| 525 5478 | 1.247 | 2.787 | 0.244 | 0.652 3.23 21.14
TH-ISO 30 31.8007| 1.164 | 2.6405 | 0.2562 | 0.6775 | 3.125 |21.1721
TH-FEM)| 48.5968 [ 51.5478 | 1.2367 | 2.7632 | 0.2457 | 0.6601 | 3.2206 | 21.26
PW-ISO| 30 30 1253 | 2.795 | 0.155 | 0.652 | 3.971 25.9

30°/30° PW-FEM| 58 58.05 | 1317 | 2926 | 0.139 | 0.627 | 3.894 | 24.42
TH-ISO 30 30 1.2523 | 2.8039 [ 0.1553 | 0.6476 | 3.9866 | 25.8192
TH-FEM| 52.1206 [ 52.1206| 1.308 | 2.8979 | 0.1413 | 0.6351 | 3.8186 | 24.25

Table 7. Comparison of the bending stress parameters for the FEA and modified 1SO
method results, a;=30°, Z,=Z,=40

PARAMETERS
Og/0% Ba(®) | Be®) [ h(mm)| t(mm) |pe(mm)| Ve Ys |o(MPa)
30°/20° TH-1SO 30 35.9222| 1.1658 | 2.3774 | 0.3748 | 0.8587 | 2.4005 | 20.6126
TH-FEM| 42.4855 | 50.6337 | 1.2414 | 2.5033 | 0.3632 | 0.827 [ 2.5865 | 21.39
Z40,m1 30°/25° TH-ISO 30 33.4942| 1.232 | 2.4862 | 0.2982 | 0.8286 | 2.685 |22.2483
TH-FEM| 46.9956 [ 52.753 | 1.3139 | 2.6262 | 0.2811 | 0.7939 | 2.7937 | 22.18
30°/30° TH-ISO 30 30 1.3055 | 2.6196 [ 0.2061 | 0.789 [ 3.2026 | 25.2669
TH-FEM)| 53.4706 [ 53.4706 | 1.3843 | 2.7553 | 0.181 | 0.7577 | 3.1528 | 23.89

Table 8. Comparison of the bending stress of standard ISO method with FEA results

for ay;=a,.=30°

o (MPa)
ad/oe | ZplZg ISO FEA
20/20 | 28.44 | 25.13
30°/30° | 40/40 | 25.75 | 23.89
100/100 | 26.76 | 24.25

Then similar to the previous case, this thesis works for 40 teeth are also compared

with the previous work by putting signs in its plots as shown in Fig. 4.5, Fig. 4.6,

Fig. 4.7 and Fig. 4.8. It is clearly seen that for 40 teeth the results of this thesis and
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previous work is also very close to each other. Thus this thesis work is again verified

by using the previous work [15] results. Then the similar discussions for this case

with the previous work [15] can be done:

1-

From Table 5, Table 6, Table 7 and with the help of Fig. 4.5 it is found that as
a. increases the angle of tangent at the drive side 8, increases in FEA study.
It is also inferred that the angle of tangent at the coast side 5. decreases with
an increase in a, in modified ISO method. Also by increasing the number of
teeth both of 8, and . increase in both of the FEA and modified I1SO studies.

From Table 5, Table 6, Table 7 and with the help of Fig. 4.6, Fig. 4.7 and
Fig. 4.8 it is found that as a. increases the tooth form factor Y, decreases
which is mainly because of the corresponding increase in critical tooth
thickness t,, despite the increase in critical tooth height h,. However the
stress correction factor Y, increases because of the corresponding decrease in
root fillet radius of curvature p,. The respective determined values of the
bending stress o increases with an increase in a.. This is because of the
corresponding increase in stress correction factor Y, is more dominating than
the increase in tooth form factor Y. Thus an increase in a, is not a suitable
way to enhance the bending strength of the gear tooth. Also by increasing the
number of teeth the bending stress ¢ does not decrease for high a, since the

Y, increases very much.

The present FEA results also show higher values of o than that of the
modified 1SO method. The bending stresses in FEA are %5 higher than
modified ISO method for low number of teeth and the percentage increases to
%210 for high number of teeth. According to Table 8, the standard 1SO
method gives %8-12 larger bending stress results than FEA results for

external symmetric gears with 30° pressure angle.

110



—A-180, e, =20 &
— O — Regression, o, = 20°
—®—FEM, o, =20" 8

—— 180, o, =25 &
oc

o

001 o Regression, o, =25
67570 —=—FEM,u, —25" =5
65.04 _ a 50, o, =30" &
6259 _o Regression,o,, = 30° 58" (FEM)
6009 _ a gEM, o, =30"= 4’
575 B IR (e
P
—. 55.04 =
) PRS-« \,,;52.5“ (FEM)
£ 52.54 ’6’ "
[ = “(FE
= 50.0 w477 4FEM) i D2 AT
™ Y i—— .=
= 47.5 L -
45.0
42.5 g
40.0 ] Si;—ﬂydfm.w (FEM)
T w,~39.75" (FEM)
37.5
35.0
w307 (I50)
32.5
30.0 4 A ’x . 4 = 4 4 A +
275 T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Z
P
— 4180, a, =20° &
—-O— Regression, o= 20°
—-m— FEM, o =20"®
—a— IS0, a, 25" &
70.0 — —O— Regression, o = 25°
] oc
6757 —=—FEM, o, -25"m
65.010  _a 180,q4, —30° 8
6254 _ e ressi - 30°
] O~ Regression, a,_ = 30 'P‘=58-05u (FEM}
60071 _m FEM, o, -30°
57.5 R -

55_0; u‘—51.2°

52.5 ¥7

50.0

n
Gy =49" (FEM)

47.5 4 Wayy —47.73" (FEM)

v, (degree)

45.0
42.5]
40.0
37.5]
35.0

W, =40° (1SO)

_@w 557" (FEM)

W =54.78" (FEM)

32,5
30.0
27.5 | | | | ;

w,=30° (ISO)

A A A A A

A A A

10 20 30 40 50 60

Z
P

T T
70 80 90 100 110

Fig. 4.5 Comparison of the drive and coast sides critical section tangent angles of

this thesis and previous work [15] on the plots of [15] at Z,=40 for different coast

side pressure angles, a;=30°

111



—4--180, 0, =20" &
o

—-O-= Regression, o, = 20

~-m~FEM, o, =20" =

1.60 —4—180,0 =25 &
1.55 1 —O— Regression, «, = 25°
h,=1.4759 (FEM) —=— FEM =25 m
15047 * Yoc
% -4 1S0,0 —30° &
. oc
1.45 N . o
h,=1.4055 (REM) i - {> Regression,a_ =30
\ w__h=13953 (IS0) o
1.40 S - - FEM, o, =30" 8
h,=1 8-
€ 1asd Tm -‘Q"“O h,=1.317 (FEM
S
= h =17338 HSO 8 --w
~ 1304+ h
L, ,=1.253 (1S0)
= .
1.25 1h, =1.2896 YISO)
AN hr 1.247 (FEM|
'S =
4 - S, =
1.20 S - --@-—hf:.[ém (FEM)
L 2N
1.15 4 A h=1.165 (IS
. -l
1.10 B
h =1.085 (ISQ)
1.05 £
100 T T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Z
P
A= 180, o, =20" &
—Or - Regression, o, = 20°
sa— —-m--FEM, o, =20"%
—— IS0, o, =25" &
3.3+
—O— Regression, w, = 25
329 —a—FEM, o =251
oc
314 -4 IS0, o, =30" &
3.04 -~ Regression, a, = 30° §,=2.926 (FEM)
-~ FEM, o, =30"8 _:‘5
20 e o mee=®=
— _m-" ® 8,~2.795 (1S0O)
E 2.8 e
= 5,~2.787 (FEM
S 271 - A5 2.6 (FEM)
PR o Ld GLLO NP - I Y 5,~2.639 (IS
f’ .
2.5 z - o e L
L A §.=2.522 (I1SO)
24 _sFi?p?Al o i
= s =2 36 (1SO)
2.3 s $,=2.3074 (FEM)
e
TS 5,-2.2635 (1SO
2.2 4 « e s
T 5,22.1919 (ISO)
2.1 T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
z,

Fig. 4.6 Comparison of the critical section tooth height and thickness of this thesis
and previous work [15] on the plots of [15] at Z,,=40 for different coast side pressure

angles, a;=30°

112



-4~ 180, a,, =20" &
o

—-O- - Regression, o, = 20

--m-FEM, o, = 20" ®

0.70 .
—4— 180, =25" &
0.65 1 —C— Regression, o = 25°
e
060+ —=—FEM, o, =25" ™
0-55 1 -4 150,a,, =30" &
0.50 4 -~ Regression, = 30°
0.45 - ;0.4I81 (1S0) ] - = FEM, o, —30° 8
0.40 ] ~——p,~0.4068 (FEM)
® Ny 4o p,~0.339 (ISO)
0.35 4 —— S W T IR s A . A
B .‘\3{\0.3494 (180} g E R YRR §
x 0.304 ) p,-0.330 (FEM)7”
al p,~0.3345(FEM) A, 50256 (180)__
0.25 - _§~ T=p,=0.2675 (IS0)
0.20 4 ‘I\\-‘\““_‘ p0.244 (FEM)
Pe02424 (FEM)™ ~@- _ D87 --a- 4 p 0155050
0.15 1 TE---wm--glllgIIIA
~0.139 (FEM
0.10 4 A0 133 (FEM)
0.05
0400 T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Z
p
- 4 IS0, o, ~ 20" &
— O = Regression, o, = 20°
—-®— FEM, o, =20 &
—A— IS0, «, = 25" &
42— ; R
—O— Regression, a_ = 25 Y ~3.971 (ISO)
|
40- —=—FOM, o, -25"m . s
4 o Y T
38 "4 1SO.a,-30°4 P d\
- O Regression, o, — 30° _ 6: .-® Y =3.894 (FEM
369 _ - FEM,q -30°® 8=
| oc w
i 5" Y =3.23 (FEM
3.4 7 . 5323 (FEM)
3.24
Y =3.121 (ISO)
vny 3.0
— | . :
2.8 S ey Y =2.996 (FEM)
s
1Y s=2.5244"(FEI . i
2.6 N . PR : Y ~2.728 (ISO)
2.4 SO =2 ABATFEM)
B ATY 42265 (FEM)
2.2+ Y 2.2434 (150)
i _I
2.0+
Y =2.0695 (ISO)
1.8 T T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Z
2

Fig. 4.7 Comparison of the critical section root fillet radius of curvature and stress
correction factor of this thesis and previous work [15] on the plots of [15] at Z,=40

for different coast side pressure angles, a;=30°

113



1.20
| A 1
1.15 A Y,=1.1447 (ISO) —4-I80, a, =20
1 \ _ _ ; v — I " — ap®
1.10 4 " ¥ ,~1.108 (1ISO) O - Regression, o = 20
] Y =1.086(FEM) —-®-- FEM, o, =20°n
1.05 - H‘Y,_:I.OSG (FEM) SO, a  =25" &
_ T Y, =1.056 (1SO) ac
| . °
1.00 4 O‘ —-YF—I.OU(s.‘i (FEM) —O— Regression, o, = 25
0.95 - \ —=—FEM, a, =25 8
, - A (SO, o =30" &
oc
>_:—=.. 0.50 __ - - Regression, o 307
0.85 - =~ FEM, o, =30" B
0.80 H
0.75
0.70 ] : N AD.679(50)
_ - —Y,~0.668(FEM)
0.65 AT Y ,—0.652(1SO)
i T TS WY, ~0.627(FEM)
0-60 T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Z
12l
—&-— 180, a,, = 20" &
—-O-— Regression, o, = 20"
—-m-— FEM, o, =20 H
oc
_ a0
3.0 - —4— IS0, o, =258
b —O— Regression, o = 25°
59 oc
i —=—FEM, o, = 25" ®
2.8 -4 SO, =30 &
| oc
- ac - o
2.7+ o=zee6 (aspy O Regression, o, =30
J . — ap®
S - & FEM, o, =30"m 0=2.59 (1SO)
2.6 {a=2.5399 (FEM) a---4
| . P
e A A==
2.5 S o=2.4858 ﬁSO)
S G-2.4594 (FEM)
7 W e___@,==®=='®"=@
o 2.4 ?--=O- == ©=2.442 (FEM

2.2+ ) v
i e 4 o=2 |i3(150)
2-17 '\.‘ 6'*'-1:@._:_____(; 6=2.114 (FEM)
1 "~ B AR = TPy o PR
2.0 < B .
i i ©=2.003 (FEM)
BatE ST
1.9 a4
. o=1.877 (ISO)
1.8 T T T T T T T T T T T T T T T T T T T
10 20 30 40 50 60 70 80 90 100 110
Zz
2l

Fig. 4.8 Comparison of the critical section tooth form factor and bending stress of
this thesis and previous work [15] on the plots of [15] at Z,=40 for different coast

side pressure angles, a;=30°
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4.1.2 The Case of Heavily Loaded Gear with Large Module

In this chapter external asymmetric spur gears with 4 mm module, unit face width,
standard tooth height (a=1, b=1.25), zero profile shift and 500 N applied force are
studied with FEA and modified ISO methods. These studies are done in two cases. In
first case the influence of drive side pressure angles are examined and in second case

the influence of coast side pressure angles are examined.

4.1.2.1 The Effect of Drive Side Pressure Angle

By the help of Fig. 4.9, Fig. 4.10, Fig. 4.11 and Fig. 4.12, the heavily loaded case
analysis can be compared with lightly loaded case analysis according to the drive
side pressure angle change. With respect to the lightly loaded case, the drive and
coast side tangent angles 8, and 8. are almost same. The critical section tooth height
h, and thickness t, and the root fillet radius of curvature p, almost increased to four
times of their values. Also the tooth form factor and stress correction factor are
almost same. Finally, the maximum bending stress is almost 12.5 times larger for this
case. Here the value, 12.5, comes from 50 divided by 4 where the load is 50 times
larger and the module is 4 times larger for this case. All these results are the expected

results.

The graphs of this case are very similar to the lightly loaded case so that the same
discussions with the first analysis can be done. The main result is that the bending
stress o decreases with an increase in a,. Also, the bending stresses in FEA are %5
higher than modified 1ISO method for low number of teeth and the percentage
increases to %10 for high number of teeth. Also by increasing the number of teeth

the bending stress o decreases.
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4.1.2.2 The Effect of Coast Side Pressure Angle

By the help of Fig. 4.13, Fig. 4.14, Fig. 4.15 and Fig. 4.16, the heavily loaded case
analysis can be compared with lightly loaded case analysis according to coast side
pressure angle increase. With respect to the lightly loaded case, the drive and coast
side tangent angles S, and . are almost same. The critical section tooth height h,
and thickness ¢, and the root fillet radius of curvature p, almost increased to four
times of their values. Also the tooth form factor and stress correction factor are
almost same. Finally, the maximum bending stress is almost 12.5 times larger for this
case. Here, the value, 12.5, comes from 50 divided by 4 where the load is 50 times
larger and the module is 4 times larger for this case. All these results are the expected

results.

The graphs of this case are very similar to the lightly loaded case so that the same
discussions with the first analysis can be done. The main result is that the bending
stress o decreases with an increase in a,. Also, the bending stresses in FEA are %5
higher than modified 1SO method for low number of teeth and the percentage
increases to %10 for high number of teeth. Also by increasing the number of teeth

the bending stress o decreases.
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4.2 Results and Discussions for Modified 1ISO and FEA Methods of Internal
Asymmetric Spur Gear

The critical section and bending stress parameters (B;4, Bic: hris tris Pri» Yri» Ysiyr Oi)
are determined through FEA and modified 1SO methods according to the different

cases for the internal asymmetric spur gears.

4.2.1 The Case of Lightly Loaded Gear with Small Module

In this chapter internal asymmetric spur gears with 1 mm module, unit face width,
zero profile shift and 10 N applied force are studied with FEA and 1SO methods.
These studies are done in two cases. In first case the analysis are done for internal
gears having standard tooth height for different number of teeth. In this study, the
effects of the coast and drive side pressure angles are reflected in a single figure for
each parameter for a specified number of teeth. Moreover, the results of the standard
and modified 1SO methods are compared with FEA results for symmetric internal
gears. In second case the analysis are done for internal gears having small tooth
height for a specified number of teeth and only the effect of the drive side pressure

angle is studied such that the results can be compared with [16].

4.2.1.1 The Effect of Drive and Coast Sides Pressure Angles for Internal Gears
Having Standard Tooth Height

The first and second analyses are done with internal gears with 60 and 81 teeth,
respectively. The addendum coefficient of the pinion type shaper cutter a, (the
dedendum coefficient of the internal gear at the same time) is 1.25 and the addendum
coefficient of the internal gear a; is 1. Then the internal gears in this study are typical

standard (normal height) internal gears.
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In terms of the first analysis, in the FEA according to Fig. 4.17 the drive side tangent
angle B;4 increases by the inrease of both of the drive and coast side pressure angles
but the coast side tangent angle ;. either slightly increases or decreases until 30° for
coast side pressure angle. In the modified ISO method, the value of p;4 is always
equal to 60° and the respective S;. increases with the increase of coast side pressure
angle but decrease with the increase of drive side pressure angle and is generally
higher than the FEA results. In the FEA according to Fig. 4.20 the tooth form factor
Yr; decreases with increase in both drive and coast side pressure angles, which is
mainly because of the corresponding increase in critical tooth thickness t,;, despite
the increase in critical tooth height h,;. However the stress correction factor Yj;
increases with the increase in both drive and coast side pressure angles because of
the corresponding decrease in root fillet radius of curvature pg;. In the FEA the
respective determined values of the bending stress g; increases with the increase in
coast side pressure angle and usually decreases with the decrease in coast side
pressure angle. In terms of increase in drive side pressure angle the bending stress
increases for the high coast side pressure angles and decreases only for very low
coast side pressure angles a; (smaller than 20°). In case of a 16° coast side pressure
angle, for instance, the bending stress decreases % 6 by the increase of the drive side
pressure angle from 16° to 30°. The bending stress results of modified ISO method
are % 5 lower than the results of the FEA except low drive and coast side pressure
angles smaller than 20°. For example, for 16° drive and coast side pressure angles,
modified ISO method gives % 10-15 lower bending stress than FEA method.
Therefore, in the modified 1ISO method, the bending stress always increases with an
increase in drive side pressure angle. For the low drive and coast side pressure
angles, this is mainly because of the high differences in ;4 and g;. for FEA and ISO
methods which causes increase in the amount of the differences in t,; and Yy; values

for these methods.
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Table 9. The analysis input parameters for Z;=60, m=1

Analysis Input Parameters
Ze 20

as 1,25

ai 1

Ae 1

Fni 10N

Table 10. Comparison of the bending stress of standard ISO method with FEA

results for internal symmetric spur gears

o (MPa)
Zi old/0lc ISO FEA
16°/16° 23 20
50 20°/20° 20 19.76
25°/25° 22.16 20.5
30°/30° 28 38.5

According to Table 10, for internal symmetric spur gears, the standard ISO method
generally gives %7-10 larger bending stress results than FEA results except 20°

pressure angle. For low and high pressure angles the percentage increase to %15.
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By the help of Fig. 4.21, Fig. 4.22, Fig. 4.23and Fig. 4.24, the second analysis,
internal gear with 81 teeth, can be compared with the first analysis, internal gear with
60 teeth. With respect to the first analysis, the drive and coast side tangent angles S;4
and ;. are almost same. The critical section tooth height h,; and thickness t,;
generally decreased but the root fillet radius of curvature pg; generally increased.
Also the tooth form factor generally decreased and stress correction factor generally
increased. Finally, the maximum bending stress decreased very less or remained

Same.

The graphs of the second analysis are very similar to the first analysis so that the
same results with the first analysis can be obtained. The maximum bending stress o;
increases with the increase in coast side pressure angle and almost always decreases
with the decrease in coast side pressure angle. In terms of increase in drive side
pressure angle the bending stress increases for the high coast side pressure angles and
decreases only for very low coast side pressure angles a; (smaller than 20°). In case
of a 16° coast side pressure angle, for instance, the bending stress decreases % 5 by

the increase of the drive side pressure angle from 16° to 30°.

Table 11. The analysis input parameters for Z;=81, m=1

Analysis Input Parameters
Ze 27
as 1,25
aj 1
ae 1
Fni 10N
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Fig. 4.21 Comparison of the drive and coast sides critical section tangent angles for

different drive and coast side pressure angles at light load for Z; = 81
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4.2.1.2 The Effect of Drive Side Pressure Angle for Internal Gears Having
Different Tooth Heights

The results of the previous chapter shows that by the increase in drive side pressure
angle the bending stress decreases for only low coast side pressure angles. In [16] it
Is stated that the desired trend that the fillet stresses decreased with the increasing
drive side pressure angle has been achieved to a large extent by the consideration of
stud tooth at the cost of contact ratio by keeping its values always above the required
limit 1.1. The bending stress decreases with respect to decrease in the tooth height
according to [16] and the minimum tooth height with an addendum coefficient, 0.8 is
analyzed. In this study the same minimum tooth height with the same addendum
coefficient is also analyzed with respect to the increase in drive side pressure angle

and the results are discussed.

The addendum coefficient of the internal a; gear does not affect its own bending
stress but affects the bending stress of the external gear in the mesh since the HPSTC
of the external gear is affected by the tip diameter of the internal gear. The addendum
coefficient of the external gear a, affects the bending stress of the internal gear since
the LPSTC of the internal gear is affected by the tip diameter of the external gear. If
the tip diameter of the external gear increases the LPSTC diameter increases and
critical section tooth height decreases. Then the maximum bending stress also
decreases. If the tip diameter of the external gear decreases the LPSTC diameter
decreases and critical section tooth height increases. Then the maximum bending
stress also increases. The addendum coefficient of the shaper cutter a, (the
dedendum coefficient of the internal gear) also affects the bending stress of the
internal gear. If ag increases, the critical section tooth height increases so that the
bending stress increases and if ag decreases, then the critical section tooth height
decreases so that the bending stress decreases. After all these explanations if the a; is
decreased from 1.25 to 0.8 the bending stress must absolutely decrease. However a,

must also decrease since the dedendum of the internal gear is decreased. Then the
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bending must increase again. Here, for instance, a, can be maximum 0.6 because
there must be also an enough clearance between the root of the internal gear tooth
and tip of the external gear tooth. From Fig. 4.25 and Fig. 4.26 it is clearly seen that
the bending stress for a (0.8) and a, (0.6) case, either remains same or very slightly
decreases with respect to increase in drive side pressure angle and it is also even
more than the bending stress of the normal tooth height case, a; (1.25) and a, (1).
Also this causes a very important decrease in the contact ratio. Then there is no
advantage of stud tooth suggestion of [16] for the internal gears. Although a, can be
maximum 0.6 for ag 0.8, assume that a, is 0.8 in order to just make an analysis.
Then, From Fig. 4.27 and Fig. 4.28 it is clearly seen that the bending stress for a,
(0.8) and a, (0.8) case, decreases with the increase in drive side pressure angle.

However, this causes a geometric interference during meshing and this solution is not

practical.
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Fig. 4.25 Comparison of the critical section bending stress for different drive side

pressure angles and tooth heights for Z; = 60
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Fig. 4.26 Comparison of the critical section bending stress for different drive side

pressure angles and tooth heights for Z; = 81

4.2.2 The Case of Heavily Loaded Gear with Large Module

In this chapter internal asymmetric spur gears with 4 mm module, unit face width,
standard tooth height (ai=1, b=1.25), zero profile shift and 500 N applied force are
studied with FEA and ISO methods. In this study the effects of the coast and drive
side pressure angles are reflected in a single figure for each parameter for a specified

number of teeth.

Table 12. The analysis input parameters for Z;=60, m=4

Analysis Input Parameters
Ze 20

as 1,25

ai 1

Ae 1

Fni 500 N
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Fig. 4.28 Comparison of the critical section tooth height and thickness for different

drive and coast sides pressure angles at heavy load for Z; = 60
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Fig. 4.30 Comparison of the critical section tooth form factor and bending stress for
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Table 13. The analysis input parameters for Z;=81, m=4

Analysis Input Parameters
Ze 27

as 1,25

ai 1

Ae 1

Fni 500 N

By the help of Fig. 4.27, Fig. 4.28, Fig. 4.29, Fig. 4.30, Fig. 4.31 ,Fig. 4.32 ,Fig. 4.33
and Fig. 4.34, the heavily loaded case analysis can be compared with lightly loaded
case analysis of the internal gears (Zi=60 and Z;=81) according to the drive and coast
sides pressure angle changes. With respect to the lightly loaded case, the drive and
coast side tangent angles B;; and f;. are almost same. The critical section tooth
height h,; and thickness t,; and the root fillet radius of curvature ps; almost
increased to four times of their values. Also the tooth form factor and stress
correction factor are almost same. Finally, the maximum bending stress is almost
12.5 times larger than its value. Here, similar to the external gear results, 12.5 comes
from 50 divided by 4 where the load is 50 times larger and the module is 4 times

larger than their values. All these results are the expected results.

The graphs of the second case are very similar to the first case so that the same
results with the first case can be obtained. The maximum bending stress o; increases
with the increase in coast side pressure angle and almost always decreases with the
decrease in coast side pressure angle. In terms of increase in drive side pressure angle
the bending stress increases for the high coast side pressure angles and decreases
only for very low coast side pressure angles a;. (smaller than 20°). In case of a 16°
coast side pressure angle, for instance, the bending stress decreases % 5 by the

increase of the drive side pressure angle from 16° to 30°.
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Fig. 4.31 Comparison of the drive and coast side critical section tangent angles for
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Fig. 4.32 Comparison of the critical section tooth height and thickness for different

drive and coast sides pressure angles at heavy load for Z; = 81
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Fig. 4.33 Comparison of the critical section root fillet radius of curvature and stress
correction factor for different drive and coast sides pressure angles at heavy load for
Zi == 81
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Fig. 4.34 Comparison of the critical section tooth form factor and bending stress for

different drive and coast sides pressure angles at heavy load for Z; = 81
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CHAPTER 5

CONCLUSION AND FUTURE WORK

The external asymmetric spur gears are generated by using full rounded asymmetric
rack-cutters and the internal asymmetric spur gears are generated by using full
rounded asymmetric pinion type shaper cutters. In this thesis, considering the
detailed geometries of the external and internal asymmetric gear teeth, the analytical
methods are developed to find the maximum bending stress of both external and

internal asymmetric spur gears by modifying ISO methods.

The method for external gear is very similar to previous work [15]. The critical
section drive side tangent angle is 30° and all other critical section parameters
including coast side tangent angle are derived by using the generation motion. There
is no analytical method for internal asymmetric gears in the literature, but the
analytical method developed for internal asymmetric gears in this thesis is similar to
the external gears. In this method, the critical section drive side tangent angle is 60°
and all other critical section parameters including coast side tangent angle are
derived by using the generation motion. Then these results are compared with
previous work [15] and FEA for external asymmetric gears and with FEA for internal
asymmetric gears. The analyses are done for external and internal asymmetric gears

with small and large modules and light and heavy applied forces, respectively.

For small module and light load case, the external gear analytical and FEA results are
very similar to previous work [15] results. Therefore, almost the same results with
previous work [15] are obtained for external asymmetric gears. The calculated values

of the bending stress o decreases with an increase in a,. This is because of the

149



corresponding decrease in tooth form factor Yz which is more dominating than the
increase in stress correction factor Y. This enables to enhance the bending strength
of the gear tooth. The maximum bending stress calculated in analytical method is %5
lower than FEA results for low number of teeth and that increases to %10 for high
number of teeth. This is mainly caused by differences in the critical section tangent
angles of the modified 1SO and FEA methods. The results of standard 1ISO method
with FEA results for external symmetric gears are also compared in this thesis. For
20° pressure angle the standard ISO method gives %3-5 larger bending stress results
than FEA. For higher pressure angles like 30° this difference increases to %8-12.

For small module and light load case, the internal gear bending stress o; in FEA,
increases with the increase in coast side pressure angle and usually decreases with
the decrease in coast side pressure angle. For increase in drive side pressure angle the
bending stress increases but decreases only for very low coast side pressure angles
a;. (smaller than 20°). In case of a 16° coast side pressure angle, for instance, the
bending stress decreases % 6 by the increase of the drive side pressure angle from
16° to 30°. The bending stresses of 1ISO method are about % 5 different than the
results of the FEA for drive and coast side pressure angles larger than 20°, but the
percentage difference increases to % 15 for low drive and coast side pressure angles
smaller than 20° (for example for 16°). This is mainly because of the higher
differences in ;4 and B;. for FEA and 1SO methods. In modified ISO method of the
internal gears, the bending stress always increases with an increase in drive side
pressure angle, even for very low coast side pressure angles because of the
mentioned high bending stress difference % 15 with FEA results for low pressure
angles. In order to decrease the bending stress of an internal asymmetric gear by
increase in drive side pressure angle, the stub tooth is suggested in [16]. In this
thesis, this suggestion is also analyzed and it is seen that the bending stress decreases
for small tooth height if only the addendum coefficient of the external gear in mesh
equal or greater than the dedendum coefficient of the internal gear. However, this

causes a geometric interference during meshing and this solution is not practical. The
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results of standard ISO method with FEA results for internal symmetric gears are
also compared in this thesis. The standard ISO method generally gives %7-10 larger
bending stress results than FEA results. For low and high pressure angles, this

difference increases up to %15.

In both of external and internal asymmetric gears, for large module and high load
case, the results of the geometry related parameters, the tooth form and stress
correction factors, are almost independent of module and the same with small
module case. This is an expected result because by increasing module, all geometric
parameters of the gears increase with the same ratio. Therefore, the maximum

bending stress changes with a ratio of the applied load to module.

As a result, the modified ISO method for external asymmetric gears gives as accurate
results as the standard ISO method for external symmetric gears. As a future work,
the optimization of drive side critical section tangent angle can be conducted
especially for high number of teeth. Similarly, the modified 1ISO method for internal
asymmetric gears gives as accurate results as standard ISO method for internal
symmetric gears. As a future work, the optimization of drive side critical section
tangent angle optimization can be conducted especially for low pressure angles.

Finally, an asymmetric planetary spur gear stage design optimization for sun, planet
and ring gears can be investigated in terms of bending and contact stresses, top land
thicknesses, contact ratios and some other important parameters. This optimized

design can be verified by FEA and also experimental works.
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APPENDIX A

DETERMINATION OF ASYMMETRIC RACK CUTTER PARAMETERS

A.l. Determination of Maximum Asymmetric Rack Cutter Radius

Tm/2

mb A; . A

o) V_,.)""V ‘\.\
A .
<

max
|

Fig. A.1 Maximum asymmetric rack-cutter radius

For any rack-cutter radius A, the parameters of the rack-cutter are given as:

h=mb—-A (A1)

hg = htanay (A.2)

h. = htana, (A.3)

Ag = 4 (A.4)
cos ay
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A
A, =

= A
CoS &, (A-5)

If the rack is full rounded as shown in Fig. A.1, use A,,., In Equations (A.1) to
(A.5). Then A,,,4, can be found as:

7Tm/2 = hd + hC + Ad + AC (A6)

A A
mm/2 = (mb — Apax) tanay + (mb — Ajgy) tana, + corsm;xd + COY;LZC (A7)

mm/2 = mb (tanay + tan a,) — A (tanay + tana,) ...
1 1 ) (A.8)

+
cosa; CoSa,

+ Amax (

mm/2 —mb (tanay + tana,)

1 1
cosa; Cosa,

(A.9)

= Anmax ( — (tanay + tan ac)>

B mm/2 —mb(tanay + tana,)

Amax -
1 1 (A.10)
Cos o, Cosac—(tanad+tanac)

A.2. Determination of Lower Limits of Position Vectors of Asymmetric Rack

Cutter Coast and Drive Sides Inclined Surfaces

Aud = Asin a4 (All)

hyg =mb — A+ Ay (A.12)
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(A.13)

Uy
.

hud A:m‘ Anc hnc
A Y

3 ]

Uy A i

mb

Y

Fig. A.2 Lower limits of position vectors of asymmetric rack-cutter coast and drive

side inclined surfaces

_ mb—-A+Asinay (A14)
Yra = cos ag '

Modify the Equation (A.14) and obtain the coast side parameter, u,..:

mb — A+ Asina,
CoS a,

(A.15)

uT‘C -

A.3. Determination of Upper Limits of Position Vectors of Asymmetric Rack

Cutter Coast and Drives Sides Inclined Surfaces

During the generation motion of involute flank surface, any contact occurs on the
intersection of line of action and the rack-cutter inclined surface. If the radius of the
contact point is equal to tip radius, then tip radius point of the involute flank is

generated. This is illustrated on the figure below.
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74 COS Qg = Tpg (A.16)

7

(g = cos™t (ﬂ) (A.17)
ra

CB =rg.sinayy (A.18)

Generating

Pitch Line Rack-cutter

e \
/ .
/ | Involute
/ B Curve \
\ Reference
~\ Pitch Radius

| @ |
Fig. A.3 Upper limits of position vectors of asymmetric rack-cutter coast and drive

side inclined surfaces

IB =71y,.sinay (A.19)
Upq = Cl.tanay (A.20)
Upq = (CB —IB).tanay, (A.21)
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Ueqg = (Tg-SINAgq — Tp.Sin@g). tan agy (A.22)

T
Upqg = (ra. sin (cos_1 (%)) — Tp.sin ad) tanay (A.23)

a

Define a,. and modify the Equations (A.22) and (A.23) and obtain the coast side
parameter, u,:

7
Qg = cos™1 <£> (A.24)
ra
Uee = (Tg-Sin Ay — Tp.Sina,). tana, (A.25)
. -1 rbC .
Upe = (1y.5in | cos —)) ~ T-sin a.).tana, (A.26)
a

A.4. Determination of X Component Limits of Position Vectors of Asymmetric

Rack Cutter Coast and Drive Sides Rounded Surfaces

Fig. A.4 The x component limit of position vector of asymmetric rack-cutter drive

side rounded surface
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tfd = td + hd + Ad (AZ?)

Put Equations (A.1), (A.2) and (A.4) in Equation (A.27) and obtain:

trq = tq + (mb — A)tanay + (A.28)

cos ay

i
|
i \ /l
1 ‘\‘_‘ tfc //
‘ td \"\. ‘ t ///
‘ \ hc //
ek ——- - - ——X
()1‘T \'\ O / :
‘ /
\ 7
| \\\,\ AC /
H S/
‘.\‘,\\\\\ &/
Ny
I-lrc

Fig. A.5 The x component limit of position vector of asymmetric rack-cutter coast

side rounded surface

th = td + t— hC - AC (A29)

Put Equations (A.1), (A.3) and (A.5) in Equation (A.29) and obtain:

A

CoS a,

tre =tg +t—(mb—A)tana, — (A.30)
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APPENDIX B

DETERMINATION OF EXTERNAL ASYMMETRIC INVOLUTE GEAR
TOOTH AND GEAR PAIR MESH PARAMETERS

B.1. Determination of External Asymmetric Spur Gear Tooth Pointed Tip

Radius, Drive and Coast Sides Tooth Thicknesses

. Gear Tooth Axis
-
afr_g\f\c
_: o Tip Circle
— %K “”/ Addendum Circle
— T T
o 1'ef ;} Pitch Circle "

__Drive Side
. Base Circle—
W e
\ | \E—:)//,/-"

e !
‘\]\" bt\ - \-\

Fig. B.1 External asymmetric gear tooth pointed tip radius
trer = 1p(invay, + inva,, — (invay + inva,)) (B.1)

inva; =tana,; — ay (B.2)
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inva, = tana, — a, (B.3)

T: COS Qg = Tha (B.4)
7
@pq = cos™ ! (ﬂ) (B.5)
Tt
inva; =tan ayg — Azqg (B.6)
7 7
inva;; = tan (cos‘1 (ﬂ)) —cos™! (Ld) (B.7)
Tt Tt
T COS Ay = T (B.8)
7
ap. = cos™! (ﬂ) (B.9)
Tt
inva;, = tan ay;. — Ay (B.10)
iy 7]
inva,. = tan (cos‘1 (ﬂ)) —cos™! <£> (B.11)
Tt Tt

Use Equations (B.7) and (B.11) in Equation (B.1) and obtain:

mN 1 1 T
tref = —(tan (cos‘1 (ﬂ» —cos™t (ﬂ> + tan (cos‘1 (ﬂ»
2 T ¢ T

(B.12)
—cos™1 (%) — (invay + invac)>
t
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In Equation (B.12) all parameters are known except r and in order to find r;
Newton-Raphson method is used to solve the Equation (B.12). In Matlab, fsolve
function uses this method and can be used to find ;. The drive and coast sides tooth

thicknesses on pitch circle are defined as:

£y = mTN( vy — invay) (B.13)
=2 (can (c0574 (229) —cos? () - o) 1
(= mTN( inva,, — inva,) (B.15)
te =25 tan (cos1 (22)) = cos? (22) - inve (B.16)

B.2. Determination of an External Asymmetric Spur Gear Pair Mesh

Properties

Here subscripts “p and g” represent the pinion and gear in mesh.

Tpap t 7
a, = cos‘1< Dap bdg) where 0,0, = C, (B.17)
0,0,

inva, = tana, — a, (B.18)

_ Thap
Top = oo a (B.19)

7
Aocp = COS™? (:Cp> (B.20)

op
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Reference
Pitch Circle of /
Gear

Operating Pitch

Circle of Gear

Line of Action

Operating Pitch
Circle for Pinion__

Reference
Pitch Circle /o
of Pinion |

Fig. B.2 External asymmetric gear mesh
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NVQyep = tan Qpep — Apep

_ Tpag
cos a,

Tpc
Qocg = cos™! (T‘ g)
0g

MVQyeg = tan apeg — Apeg

Tog

_ trefp
p = ——
Top

trerp = TM/2 + x,m(tanay + tana,p)

mm/2 + xpm(tan ag + tan acp)
Yp =

trefg = Tm/2 + xgm(tan ag + tan acg)

mm/2 + xgm(tan g + tan acg)

Yg
Tog

Aq = inva, — invay

Aep = IV — INVA,
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(B.21)

(B.22)

(B.23)

(B.24)

(B.25)

(B.26)

(B.27)

(B.28)

(B.29)

(B.30)

(B.31)

(B.32)



Aeg = INVAGcq — INVA (B.33)

top = (yp — Ag — Acp)rop (B.34)

mm/2 + xpm(tan ag + tan acp)

top = - — (inva, — invay) ...
(B.35)
- (invaocp - invacp) Top
mm/2 + x,m(tana, + tana
tog = / g (rpg d co) — (inva, — invay) ...
(B.36)
— (ivatyey — invacy) |14
tog = (yg — g — Acg)rog (B.37)

Here t,, and t,, are dependent on the unknowns x,, and x,, respectively. And note

that at operating pitch circle, the gear tooth thickness is equal to the pinion tooth

space width for zero backlash condition. Then,

tog = towp — top (B.38)
2mr,

tog + top = Z—"” (B.39)
p

As seen in the Equations (B.35), (B.36) and (B.39) the profile shift coefficients of

the pinion and gear x,,, x, are dependent on each other. If one of them is given as
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an input value, then the other one is found by using the Equations (B.35), (B.36)
and (B.39).

B.3. Determination of Highest Point Single Tooth Contact Radius

ClBl = BZBl - B2C1 (B40)
C4B1 = pb + ClBl (B41)

2
iy = (C4B)? + () (B.42)

Fig. B.3 The line of action of external asymmetric gear mesh
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By = ()’ = ()’

BZCZ = BzB1 - CzB1

B,C3 =pp + B2C;

Thg = \/(3263)2 + (deg)z

L = C2B1 - ClBl
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APPENDIX C

DETERMINATION OF THE PARAMETERS OF THE ASYMMETRIC
PINION TYPE SHAPER CUTTER ROUNDED SURFACES

C.1. The Case of any Value for Shaper Cutter Tip Radius

| Shaper Tooth
Center Line

Fig. C.1 The asymmetric shaper cutter rounded surfaces parameters 1
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‘ Shaper Tooth

/

Center Line

Fig. C.2 The asymmetric shaper cutter rounded surfaces parameters 2

At point C., x, y components of drive side involute and radius can be determined as:

Xeesi = Tre Sin(6sc) (Cl)

Yeesi = Tre COS((SSC) (CZ)
_ Thsc

e = cos(etre) €3
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Tre =

_ Tyscos(ag)
cos(atyc)

Osc = 0/2 + invay,. — inva,,

Tps cos(ac)

Xeesi = ————sin(8/2 + invayg — inva,.)

cos(ayc)

Tys cos(asc)

Yeesi cos(arc)

= —————cos(6/2 + invay,. — inva,.)

Xeesr = Xce + As Cos(escs)

Veesr = Yee T As sin(Bgcs)

(C.4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

At point C,,, x, y components and % of coast side involute and round must be equal

because they are tangent at this point:

Xeesi =

Tys cOs(ac)
cos(ayc)

Yeesi =

Tps €Os(asc)
cos(ayc)

ayccsi _

sin(6/2 + invagg, —

xCCST

inva,.) = x¢. + As cos(B.s)

yCCST

cos(6/2 + invays. — inva,:) = Yoo + Ag sin(Bg.s)

ayCCST’

axccsi

a‘xCCST
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(C.11)

(C.12)

(C.13)
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ayccsi ayccsr
aarcs _ agcss

axccsi axccsr
d Arcs 06 css

(C.15)

At point C,,, x, y components of coast side radius and tip circle can be determined
as:

Xccer = Xce + As 0S(Osce) (C.16)
Yecer = Yee + As sin(Bsce) (C.17)
Xccet = Tas SIN(Ogc) (C.18)
Yecet = Tas €05(8aa) (C.19)

At point C,, x, y components and % of coast side radius and tip circle must also be

equal because they are tangent at this point:

Xccer = Xccet (C.20)
Xce + Ag c0S(Ogee) = Ty Sin(O,c) (C.21)
Yecer = Yecet (C.22)
Yee + As sin(Bsce) = 155 €05(Oqc) (C.23)

ayccer _ ayccet
axccer axccet

(C.24)
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GYCcer ayccet

ange — agca
axCC@T‘ axCC@t
aHCSE aeca

(C.25)

Now there are six unknowns a,., Oscs, Xcer Veer Osce @nd 6, and six Equations
(C.11), (C.13), (C.15), (C.21), (C.23) and (C.25). Therefore all six unknowns can

be determined.

The drive side unknowns a,.4, B4, Xca, Ycar Osqe @aNd B,4 can be determined same

with the coast side procedure. At point C,,, the equalities of x, y components and —

ay
dx

of drive side involute and radius can be determined by modifying Equations (C.10)

to (C.15) respectively as:

Xcdsi = Xcdsr

Tps cos(asq)

sin(6/2 + inva — inva =x-5 — A, cos(8
COS((lrd) ( / asd rd) cd S ( sds)

Yedsi = Yedsr

Tys COS(asq)

cos(a,) cos(6/2 + invagsy — iNVAq) = Veg + Ag sSin(Bgys)

a.’ycdsi _ aycdsr
aXcdsi aXcdsr

ay cdsi ay cdsr
d Args _ d Hdss

axcdsi axcdsr
d Ards d Hdss
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(C.26)

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)



At point Cg,, the equalities of x, y components and g—i of the drive side radius and

tip circle can be determined by modifying Equations (C.20) to (C.25) respectively

as:

Xcder = Xcdet

Xca — As COS(Hsde) = Tas Sin(gad)

Yeder = Ycdet

Yca + As Sin(Bsqe) = 145 €05(044)

a.'ycder _ aycdet
axcder axcdet

aycder aycdet

aedse — aeda
axcder axcdetf
aHdse aHda

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

(C.37)

Now there are six unknowns a,q, 8sqs, Xcd» Yed: Osqe @and 6,4 and six Equations
(C.27), (C.29), (C.31), (C.33), (C.35) and (C.37). Therefore all six unknowns can be

determined.

C.2. The Case of Maximum Value for Shaper Cutter Tip Radius

At point C.,, the equalities of x, y components and % of coast side involute and

radius can be determined by modifying Equations (C.10) to (C.15) respectively as:

Xcesi = Xeesr
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(C.38)



Tps COS((ZSC)

cos(a,.) sin(d/2 + invas, — inva,.) = x¢ + Asmax €05(Oscs)

Yeesi Yeesr

Tys cOs(ac)

cos(at,¢) cos(8/2 + invags. — inva,.) = y¢ + Asmax SIn(Gscs)

a.'yccsi ayccsr
axccsi axccsr

ayccsi a.'yccsr
0 Ares aecss

axccsi axccsr
0 Arcs a6 css

(C.39)

(C.40)

(C.41)

(C.42)

(C.43)

At point C,, x, y components and % of coast side radius, drive side radius and tip

circle must all be equal since they are tangent. Here the drive and coast side

parameters are totally same. Then the equalities of x, y components and Z—z of

drive/coast side radius and tip circle can be determined by modifying Equations

(C.20) to (C.25) respectively as:

Xcer = Xcet

Xc + Amaxs COS(Hse) = Tas Sil’l(@a)

Yeer = Ycet

Ye + Amaxs Sin(ese) = Tas COS(@a)
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(C.44)

(C.45)

(C.46)

(C.47)



Shaper Tooth
Center Line

Fig. C.3 The maximum asymmetric shaper cutter radius
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O0Ycer _ O0Vcet

- (C.48)
axcer axcet
e e
se — _Za C.49
Tcer  Deer (C.49)
90,, 06,

Now there are seven unknowns ., Oscs; Amaxs: Xc» Ve, Bse @and 6, but six
Equations (C.39), (C.41), (C.43), (C.45), (C.47) and (C.49). Therefore the coast side
parameters of the shaper cannot be solved alone. The drive side analysis shall also be

done.

At point Cg4,, the equalities of x, y components and z—z of drive side involute and

radius can be determined by modifying Equations (C.10) to (C.15) respectively as:

Xcdsi = Xcdsr (C.50)
Tps cos(asq) | . .
————sin(6/2 + inva sy — inva,g) = X¢ — Amaxs €0S(Osqs) (C.51)
cos(@rq)
YVedsi = Ycdsr (C.52)
1,5 cos(a
ps—(Sd)cos(6/2 + invaggy — iNva,g) = Yo + Amaxs SIN(Bsqs) (C.53)

cos(a,q)

a.’ycdsi _ aycdsr
aXcdsi aXcdsr

(C.54)
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aycdsi aycdsr
aards _ agdss

axcdsi axcdsr
aards agdss

(C.55)

The extra equation comes from the drive side since there are three equations but only
two unknowns a,.4, 8,4 different from the seven unknowns mentioned above. Now
there are nine unknowns a,.., @rq, Oscss Osas, Amaxs, Xc» Yer Ose and 6, and nine
Equations (C.39), (C.41), (C.43), (C.45), (C.47), (C.49), (C.51), (C.53), (C.55).
Therefore all nine unknowns can be determined, A,4xs t00.
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APPENDIX D

DETERMINATION OF INTERNAL ASYMMETRIC SPUR GEAR TOOTH

AND GEAR PAIR MESH PARAMETERS

D.1. Determination of Internal Asymmetric Spur Gear Tooth Pointed

Tip Radius, Drive and Coast Sides Tooth Thicknesses

_1 (Tpid
Qtiqg = COS
Tti

t

gid = rgpi(mvag — invagy)

tgia = Tgpi(invay — tanayg + ayiq)

-1 Thic
Apie = cos™1[—
Tti

tgic = rgpi(mvagsc - anatic)
tgic = rgpi(invagsc — tanayi. + atic)
t

gi = tgic + tgid

tgi = rgpi(mvagsc —tana,. + atic) + rgpi(lnvag —tanagg + atid)
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(D.1)

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

(D.8)
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Fig. D.1 The asymmetric internal gear tooth pointed tip radius
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Since tg; is already known by Equation (3.56), then in Equation (D.8) all parameters
are known except r3;. In order to find r;; Newton-Raphson method is used to solve
the Equation (D.8). In Matlab, fsolve function uses this method and can be used to

find r,;.

D.2. Determination of Lowest Point Single Tooth Contact Radius

BzB1 - IBl - IBZ (D.g)

ByB; = 14piSin(@y;) — TopeSin(ay;) (D.10)

Here subscript “e” represents the external gear which is in mesh with the internal

gear.

Ec =Ty — Tye + Xe (D.11)
Z
foe = M2 (D.12)
2
E.
Tope = 7 (D.13)
Z_e _
Topi = Tope + E¢ (D.14)
T .
ay; = cos™t (|22 (D.15)
ropi
ClBZ = ClBl - BZBI (D16)
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Line of Action

Fig. D.2 The line of action of internal asymmetric gear mesh

C1By = rgisin(@giq) (D.17)

Qgiq = cos™ ! (rbid) (D.18)
Tai

CoBy = 1gesin(@geq) (D.19)

C3C, = (B, = (1B, —py (D.20)

C3B; = C3C; + C1B4 (D.21)
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n = \/(6331)2 + (1pia)? (D.22)

C =L (D.23)

C;==—"——= (D.24)
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