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ABSTRACT 

 

RESTING STATE BRAIN CONNECTIVITY VIA BICOHERENCE AND 

COHERENCE 

 

 

Kandemir, Ahmet Levent 

MSc., Department of Medical Informatics 

Supervisor: Assoc. Prof. Dr. Tolga Esat Özkurt 

 

March 2018, 54 pages 

 

The human brain is a complex and dynamical system, which consists of segregated areas 

specialized for perceptual or motor processing. Task-specific functions are only carried 

out by integration of these segregated regions. Thus, in order to understand the human 

brain, it is very important to understand underlying network structure. There are various 

metrics to investigate the brain connectivity and each day, new metrics are introduced in 

the field. This study concentrates on bicoherence analysis. Bicoherence is a third order 

spectral coupling measure which is used to investigate nonlinear interactions, particularly 

quadratic phase coupling, within the brain. High computational cost and being prone to 

volume conduction effect has made bicoherence impractical in neuroscience. New 

approaches to bicoherence promise reduction in computational cost and robustness to 

volume conduction. ‘Sliced Bicoherence’ is a bicoherence metric calculating only the 

main diagonal of the bicoherence matrix with a significant reduction in calculation time. 

Sufficiency of calculation of only the main diagonal of the matrix has been an open 

question about the subject. On the other hand, newly introduced ‘Subtracted Bicoherence’ 

is an improvement over ‘Sliced Bicoherence’, eliminating volume conduction. Within the 

scope of this study, it was shown that the information content of bicoherence matrix was 

concentrated on the main diagonal. Also, validity and usability of ‘Sliced Bicoherence’ 

and ‘Subtracted Bicoherence’ in connectivity analysis were demonstrated by comparing 

them to well known ‘Coherence’ and ‘Imaginary Coherency’ metrics. 

 

Keywords: bicoherence, coherence, connectivity, cross-frequency coupling, resting state 

MEG analysis  
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ÖZ 

 

UYUMLULUK VE İKİZ-UYUMLULUK ARACILIĞIYLA DİNLENME HALİ 

BAĞLANTISALLIK ANALİZİ 

 

 

Kandemir, Ahmet Levent 

Yüksek Lisans, Sağlık Bilişimi Bölümü 

Tez Yöneticisi: Doç. Dr. Tolga Esat Özkurt  

 

Mart 2018, 54 sayfa 

 

İnsan beyni algısal ve motor faaliyetler üzerine özelleşmiş, ayrık bölgelerden oluşan 

karmaşık ve dinamik bir yapıdır. Beyin faaliyetleri ancak bu ayrık bölgelerin 

bütünleşmesiyle gerçekleştirilebilir. Bu nedenle, insan beynini anlayabilmek için öncelikli 

olarak altta yatan ağ yapısını anlamak gerekir. Literatürde beyin içerisinde bağlantısallık 

analizi gerçekleştirmek üzere geliştirilmiş bir çok metot bulunmaktadır ve her gün yeni 

metotlar bu arşive eklenmektedir. Bu çalışma, ikiz-uyumluluk üzerine yoğunlaşmıştır. 

İkiz-uyumluluk, doğrusal olmayan etkileşimleri, özellikle Karesel Faz Eşleşmelerini, 

araştırmak için kullanılan üçüncü derece izgesel eşleşme ölçüsüdür. İkiz-uyumluluk 

yüksek hesaplama maliyeti ve hacimsel iletkenlik nedeniyle sinirbilim alanında bugüne 

kadar çok kullanışlı olamamıştır. Yeni yaklaşımlar hesaplama maliyetinde düşüşü ve 

hacimsel iletkenliğe dayanıklılığı vadetmektedir. ‘İkiz-Uyumluluk Dilimi’ sadece ana 

köşegeni hesaplayan ve hesaplama zamanını ciddi bir şekilde düşüren ikiz-uyumluluk 

tabanlı bir ölçüdür. Sadece ana köşegen hesabının yeterliliği tartışmaya açıktır. Öte 

yandan, yeni önerilen ‘Çıkarılmış İkiz-Uyumluluk’, ‘İkiz-Uyumluluk Dilimi’ne getirilen 

bir geliştirmedir ve hacimsel iletkenliği ortadan kaldırmaktadır. Bu çalışma kapsamında, 

ikiz-uyumluluk matrisinin bilgi içeriğinin ana köşegen üzerinde toplandığını 

gösterilmektedir. Ayrıca, ‘İkiz-Uyumluluk Dilimi’ ve ‘Çıkarılmış İkiz-Uyumluluk’ 

metotlarının geçerliliğini ve bağlantısallık analizinde kullanılabilirliğini bu metotların 

literatürde iyi bilinen Uyumluluk ve Sanal Uyumluluk metotlarıyla kıyaslanmasıyla 

kanıtlanmaktadır.  

Anahtar Sözcükler: ikiz-uyumluluk, uyumluluk, bağlantısallık, çapraz-frekans analizi, 

dinlenme hali MEG analizi   
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CHAPTER 1 

 

1. INTRODUCTION 

Understanding human brain has been one of the greatest challenges of our conquest to 

understanding ourselves. In general, the multidisciplinary study of brain and nervous 

system is called Neuroscience. The earliest Neuroscience studies date back to ancient 

Egypt. The first description of the word ‘brain’ is found in The Edwin Smith Surgical 

Papyrus (Mohamed, 2008).The papyrus is based on texts from 3000 BC and it gives 

information about 48 different types of brain injuries and treatment methods (Feldman 

& Goodrich, 1999). Nonetheless, it was not until the Ancient Greeks for the seat of 

intelligence to be stated as the brain (Gross C. G., 1987). Galen (129 AD-199 AD) of 

Roman Empire was a great contributor to the field. He was the leading physician of 

his time and he demonstrated many functions of the nervous system (Freemon, 1994). 

Even though the scientific enlightenment about the human brain slowed down during 

the medieval era, the greatest discoveries were to be made during the 16th century. 

Andreas Vesalius (1514-1564), a follower of Galen, identified many structural parts 

of both the brain and the nervous system through dissections of human cadavers (Van 

Laere, 1993). He was later to be known as the founder of modern anatomy. Later on, 

as the technology developed and the knowledge about the field increased, 

neuroimaging techniques paved the way for greater discoveries.  

Electroencephalography (EEG) along with Magnetoencephalography (MEG), and 

Magnetic Resonance Imaging (MRI) are some of the most important neuroimaging 

modalities used in modern neuroscience. First human EEG was recorded by Hans 

Berger in 1924 (Haas, 2003) and since then, EEG still remains the most widely used 

functional test allowing to directly monitor electrical correlates of neural function with 

high temporal resolution (He, Yang, Wilke, & Yuan, 2011). While EEG measures the 

electrical activity of neural firing, MEG measures the magnetic fields generated by 

accumulated postsynaptic potentials. MEG is an alternative to EEG developed by 

David Cohen in 1968 with the main advantage of better spatial resolution in locating 

cortical events (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993). 

Together with the use of MRI, EEG/MEG recordings can be mapped to subject 

specific geometric models, making better assumptions thanks to anatomical 

information (Liu, Ding, & He, 2006).  

With the good establishment of neuroimaging techniques, a new field of neuroscience 

emerged: the brain connectivity. The brain connectivity analysis is the study of 

anatomical links (structural connectivity), statistical dependencies (functional 

connectivity) and causal interactions (effective connectivity) between neurons and/or 

neuronal populations (Sporns, Brain Connectivity, 2007). This study concentrates on 

functional connectivity, which is described as the integration of segregated brain areas 

to operate as a network in several task-related and resting state activations. Functional 
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connectivity can be quantified with measures of statistical dependencies, such as 

correlations or coherence (Friston K. , 2011). Functional connectivity investigates 

oscillatory synchronization between distinct brain regions which has been proven 

useful to evaluate functioning of pathological and normal brain (Schnitzler & Gross, 

2005; Siegel, Donner, & Engel, 2012).  

Functional connectivity may be investigated in means of both linear and nonlinear 

interactions. Linear interactions within the brain are well studied using the measure of 

coherence. But linear approaches have limitations since the brain is evaluated as a 

nonlinear, dynamical system (Aydore, Pantazis, & Leahy, 2013). Thus, various phase 

estimation and cross-frequency measures are used frequently to investigate functional 

connectivity caused by nonlinear systems (Jirsa & Müller, 2013; Özkurt & Schnitzler, 

2011; Florin & Baillet, 2015; Colclough, et al., 2016). 

A subtype of nonlinear interactions, named quadratic phase coupling (QPC) is an 

interaction of three frequencies;  𝑓1 , 𝑓2  and 𝑓1 + 𝑓2 . In order to suggest a QPC 

interaction, sum of the phases at 𝑓1(𝜙1) and 𝑓2(𝜙2) should be the phase at frequency 

𝑓1 + 𝑓2 (𝜙1 + 𝜙2) (Venkatakrishnan, Sukanesh, & Sangeetha, 2011). Bicoherence is 

a powerful tool to detect QPC and has been applied successfully to evaluate QPC types 

of nonlinear effects in human EEG and MEG (Barnett, Johnson, Naitoh, Hicks, & 

Nute, 1971; Dumermuth, Huber, Kleiner, & Gasser, 1971; Nikias & Mendel, 1993). 

Although proven useful, bicoherence has not found wide field of use in connectivity 

analysis due to heavy computational cost (Özkurt T. E., 2016). A pairwise bicoherence 

analysis of multivariate source data requires estimates in the order of ~𝑁2𝑥 𝑀2, where 

N and M denote the number of channels/sources and the number of sampled 

frequencies, respectively. There have been significant attempts to reduce the 

computational costs. Chella et al. (2014), used principal component analysis prior to 

source localization, reducing the number of channels to only principal components. 

On the other hand, Özkurt (2016) suggested an indirect estimation method, called 

‘sliced bicoherence’, for calculating only the main diagonal of the bicoherence matrix 

for each pair of source data.  

Aims of the Study 

This study examines information content of the bicoherence matrix on resting state 

data and evaluates the efficiency of ‘sliced bicoherence’ and ‘subtracted bicoherence’. 

A comparison between linear and nonlinear connectivity measures are also carried out 

in means of correlation estimation, volume conduction and reliability.  

This thesis is comprised of 5 chapters including the introduction. The rest of the thesis 

is organized as follows: in the 2nd chapter, human brain, connectivity types and 

analysis will be described in detail. Detailed information on bispectral analysis and 

bicoherence will be provided. Materials and methods used in this study will be 

described in the 3rd chapter. Results and Discussions will be given in chapters 4 and 

5, respectively.  
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CHAPTER 2 

 

2. LITERATURE REVIEW 

 Human Brain and Connectivity 

The human brain is an extremely complicated network composed of more than 1010 

neurons. Each and every neuron in the brain has a special role in information 

processing and from a macro scale, each group of neurons specializes in performing 

special tasks. The idea of segregated areas specialized in specific functions was 

dominant during the 19th century. With the formulation of phrenology by Gall, the 

identification of specific functional brain regions gained attention in neuroscience as 

it can be seen from Figure 2.1 (Friston K. , 2011). Even though the idea was evaluated 

non-scientific and controversial at the time, further studies affirmed segregation of 

functional brain regions in a similar, yet different way. Taking anatomical connections 

between distant regions into consideration, it was realized that assigning a special 

function to a segregated area was not a realistic model. Instead, studies suggested that 

brain regions were actually specialized for perceptual or motor processing and task 

specific functions could only be carried out by integration of these segregated regions 

(Friston K. , 2011). Important contributions to the field were later made by Paul Broca, 

Eduart Hitzig, Gustav Fritsch, and Sir David Ferrier (Finger, 2000). 

 

Figure 2.1: The Phrenological Chart. Front cover of The American Phrenological 

Journal: (1846 - Vol. 10, No. 3). 1 

 

1 Figure from http://en.wikipedia.org/wiki/Phrenology 
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In the early twentieth century, more convincing evidence on the segregation of brain 

regions was discovered by anatomists Oscar Vogt, Cecile Vogt, Alfred Walter 

Campbell, and Korbinian Brodmann (Finger, 2000). The discoveries showed different 

characteristics of neuron groups localized at different regions of the brain (Figure 2.2) 

(Garey , 2006).  

 

Figure 2.2: Brodmann's Cortex Classification. Brodmann split the cortex into 52 

different areas based on the cytoarchitectural organization of neurons (Brodmann, 

1909).2 

All of the studies describing different characteristics of neurons starts with the most 

important breakthrough in neuroscience known as the neuron doctrine (Pawela & 

Biswal, 2011). The neuron theory was developed by Santiago Ramón y Cajal based 

on his extensive work on the details of neuron (López-Muñoz, Boya, & Alamo, 2006). 

His detailed illustrations of cellular connections in the brain form the basis of the field 

and may be considered as the beginning of the connectivity research (Figure 2.3) 

(Pawela & Biswal, 2011).  

 

 

 

 

 

2 Figure from https://en.wikipedia.org/wiki/Brodmann_area 
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Figure 2.3: Superficial Layers of Human Frontal Cortex. Original drawings by Cajal 

on the basis of Golgi impregnation. Pyramidal (A, B, C, D, E) and non-pyramidal 

neurons (F, K) are visualized in detail3.  

 Brain Connectivity 

Brain connectivity has become one of the hot topics in neuroscience within the last 

few decades. Each year, new scientists from different fields join and the number of 

publications rises significantly. Figure 2.4 shows the number of publications in 

ScienceDirect (Elsevier) database for the last 5 years including the term ‘brain 

connectivity’. New methods for connectivity analysis are introduced to the literature 

each year and scientists all around the world implement these methods to understand 

brain mechanisms to a greater extent. 

 

3 Figure from (Garcia-Lopez, Garcia-Marin, & Freire, 2010) 
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Figure 2.4: Brain Connectivity Publications. A significant increase in the interest for 

brain connectivity is observed4. 

Connectivity research is concentrated on anatomical pathways, interactions, and 

communication between distinct units (Pawela & Biswal, 2011). In a highly evolved 

nervous system, connectivity is described in 3 levels (Figure 2.5) (Sporns, Tononi, & 

Kötter, 2005); 

Microscale: Microscale connectivity is described as the individual connections 

between individual neurons. Microscale is the fundamental neural connection type 

observed in all forms of life. 

Mesoscale: Mesoscale connectivity describes networks of columns connecting 

neuronal populations.  

Macroscale: Macroscale connectivity is the connection between distinct regions of 

the brain. At macroscale, pathways between larger neuronal populations are formed 

and complex functional networks are created.  

In the literature, the term ‘brain connectivity’, although not limited, mostly refers to 

macroscale connectivity. Connectivity between distinct regions of the brain is of 

utmost interest. The remainder of the thesis will focus on macroscale connectivity and 

its importance in the field.  

 

 

4 Figure from https://www.sciencedirect.com  
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Figure 2.5: Levels of Connectivity. Different levels of brain connectivity is visualized 

in detail5.  

Apart from different levels, brain connectivity is also represented in three different 

types. These types investigate anatomical links (anatomical connectivity), statistical 

dependencies (functional connectivity) or causal interactions (effective connectivity) 

between distinct units within a nervous system (Sporns, 2007). 

Anatomical Connectivity: Anatomical connectivity, also called structural 

connectivity, forms the connectome (Sporns, Tononi, & Kötter, 2005). Anatomical 

connectivity points to the presence of a physical connection between separate regions 

in the brain and describes the nature of the pathways (Hagmann, et al., 2008). The set 

of pathways in the brain is called white matter and latest observations suggest that 

anatomical connectivity may change over time substantially due to learning related 

plasticity of the white matter (Sampaio-Baptista & Johansen-Berg, 2017).  

Functional Connectivity: Functional connectivity investigates two principal 

concepts: functional segregation and functional integration (Tononi, Sporns, & 

Edelman, 1994). Functional segregation is grouping of functionally specialized 

neurons into spatially distant brain regions. On the other hand, functional integration 

is the necessary communication between segregated areas in a task specific function 

(Duda, 2010). Functional connectivity is a statistical concept and examines statistical 

dependences between separate neuron populations (Sporns, 2007). Statistical 

dependence may be estimated by measuring interactions via several methods 

 

5 Figure from (Lemieux, Daunizeau, & Walker, 2011) 
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introduced to the literature within the last few decades. It is important to note that 

functional connectivity is not concerned about the structural link between spatially 

distant regions and the direction of the interaction. 

Effective Connectivity:  Effective connectivity describes the causal influences 

between neuron populations (Friston K. J., 1994). Effective connectivity is not only 

concerned with the communication between distant regions in the brain but it is also 

concerned with the direction of the communication (Sporns, 2007). Effective 

connectivity is observed through time series analysis since causality creates a time 

delay between activations of different brain regions.  

Formally, brain connectivity patterns are represented in graph or matrix format. Figure 

2.6 shows differences between types of connectivity. The remainder of this thesis 

concentrates on functional connectivity and discusses the methods developed to 

analyze it.  

 

Figure 2.6: Types of Connectivity. Structural, functional and effective connectivity in 

macaque cortex. Bottom matrices represent binary connections for each type of 

connectivity6. 

 

6 Figure from (Sporns, Brain Connectivity, 2007) 
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 Investigating Functional Brain Connectivity 

The first step in connectivity investigation is data acquisition. Apart from anatomical 

image acquisition, which is typically made with MRI, functional data should also be 

collected. With the recent advancements in technology, functional Magnetic 

Resonance Imaging (fMRI), EEG and MEG became the most frequently used 

modalities for connectivity analysis. After data acquisition, one has to solve forward-

inverse problems to localize source activity.  

 Neuroimaging Modalities 

Functional Magnetic Resonance Imaging (fMRI) 

As soon as a neuron gets active, it needs energy to pump ions to return to the original 

state of polarization. This energy source is mostly covered by glucose. Since the brain 

does not store glucose, blood rushes to the site of activation, to transport glucose and 

oxygen in the form of oxy-hemoglobin. Due to magnetic properties of oxy-hemoglobin 

and deoxy-hemoglobin (Pauling & Coryell, 1936), the oxygenation concentration of 

blood alters the MRI signal. Researchers used these properties of hemoglobin to 

measure what would be later called as the blood oxygen level-dependent (BOLD) 

signal (Bandettini, Wong, Hinks, Tikofsky, & Hyde, 1992; Kwong, et al., 1992; 

Ogawa, et al., 1992). The basic principle of BOLD signal is that as the oxygen level 

of the blood increases, the noise in the MRI signal decreases and as a result, the signal 

quality increases (Ogawa, et al., 1992; Kwong, et al., 1992). This quality change in the 

MRI signal due to neuronal activity is called the hemodynamic response. Active 

regions of the brain appear brighter in the fMRI reaching the peak brightness at around 

5s after the stimulus during a task specific experiment. Although this lag in response 

time reduces temporal resolution of fMRI, high spatial resolution of millimeters makes 

it one of the most important neuroimaging modalities used in neuroscience (Glover, 

2011; Wallisch, 2014).  

Electroencephalogram (EEG) 

Communication at neuron level within the brain is an electrochemical process. Action 

potential at the synaptic cleft triggers release of neurotransmitters which eventually 

causes postsynaptic potentials. These post-synaptic potentials produce a current flow, 

also called current dipole, lasting for around tens to hundreds of milliseconds 

(Kirschstein & Köhling, 2009). In the event of a regional activation, millions of post-

synaptic potentials occur together (Nunez & Srinivasan, 2006). The EEG is a 

physiological recording device used to detect these current dipoles through electrodes 

located on the human scalp (Berger, 1929).  

Due to its non-invasive nature and low cost, the EEG has become widely used in many 

clinical and research applications. Moreover, its high temporal resolution makes EEG 

a preferred method of choice for fast cognitive processes (Gomez-Herrero, 2010). 
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Magnetoencephalogram (MEG) 

Current flow produced by postsynaptic potentials also produce a magnetic field which 

can be measured from outside the skull (Feynman, Leighton, & Sands, 1964; Cohen 

D. , 1968). Magnetoencephalogram (MEG) is a physiological recording device 

measuring this magnetic field through magnetometers (Hämäläinen, Hari, Ilmoniemi, 

Knuutila, & Lounasmaa, 1993). However, the strength of brain’s magnetic field is as 

low as 50-500 fT (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993), 

making it very difficult to detect in comparison to ambient magnetic fields. Figure 2.7 

shows a scale for surrounding magnetic fields (Tanzer, 2006). In order to alleviate this 

problem, state of the art MEG devices use superconducting quantum interference 

device (SQUID) magnetometers and data acquisition takes place in heavily shielded 

rooms (Zimmerman, Thiene, & Harding, 1970; Cohen D. , 1970).   

 

Figure 2.7: Magnetic Field Strengths. The magnetic field of brain activity is very low 

compared to surrounding magnetic fields. Thus, SQUID magnetometers and heavily 

shielded rooms are used7.   

Due to properties of the magnetic field, radial dipoles are invisible to MEG (Ahlfors, 

Han, Belliveau, & Hämäläinen, 2010) while EEG detects both radial and tangential 

dipoles (Figure 2.8). Even though MEG detects only the tangential dipoles, its spatial 

resolution in separating cortical sources is proven to be better than EEG, making it a 

reason for preference (Hari, 2011).   

Among non-invasive neuroimaging techniques, EEG and MEG systems have the 

highest temporal resolution (milliseconds) available (Hämäläinen, Hari, Ilmoniemi, 

Knuutila, & Lounasmaa, 1993). There are studies combining MEG and EEG to 

increase spatiotemporal resolution (Sharon, Hämäläinen, Tootell, Halgren, & 

Belliveau, 2007).  

 

7 Figure from (Tanzer, 2006) 
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Figure 2.8: Organization of Neurons. Pyramidal neurons are oriented normal to the 

cortex surface. MEG is insensitive to radial dipoles8.  

 Source Localization  

Technological developments in the past several decades offer the potential for E/MEG 

to produce accurate estimates of the location and time courses of brain activity 

(Mosher, Leahy, & Lewis, 1999).  There are two important concepts of source 

localization; forward solution and inverse problem. The forward solution is the 

estimation of the signals to be measured on the scalp due to a dipole activity in a 

specific brain region (Cohen M. X., 2014). On the other hand, the inverse problem is 

the estimation of source activity with exact location and amplitude based on the 

measured signals on the scalp (Cohen M. X., 2014).  

Forward Problem  

In order to calculate forward solution, head as a volume conductor and the underlying 

neural sources should be modeled (Baillet S. , Forward and Inverse Problems of 

 

8 Figure adapted from (Hämäläinen, Hari, Ilmoniemi, Knuutila, & Lounasmaa, 1993) 
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MEG/EEG, 2014). Several different approaches exist in the context of head modeling. 

The earliest analytic models assumed the head as an isotropic sphere while more 

realistic versions included a set of nested spheres representing scalp, skull layers, gray 

matter and white matter with different conductivity properties (Sarvas, 1987; Huang, 

Mosher, & Leahy, 1999). Although head models with spherical approaches are easy 

to model, they are not accurate as the human brain is not spherical (Stenroos & Sarvas, 

2012). Latest approaches including Boundary Element Model (BEM) and Finite 

Element Model (FEM) provide more realistic approximations (Ramírez, 2008). Both 

approaches require extracting anatomical information from the subject’s MRI or using 

a template MRI. BEM uses homogeneous and isotropic conduction properties within 

each tissue layer while FEM allows modeling anisotropy within same tissue layers 

(Marin, Guérin, Baillet, Meunier, & Meunier, 1998). Because of complication and 

difficulty of modeling with FEM, BEM models are used widely in the field (Baillet, 

Friston, & Oostenveld, 2011). The output of the forward solution is a weight matrix 

called Lead-Field, which is used in inverse solution algorithms. 

Inverse Problem 

The inverse problem is an ill-posed problem due to an infinite number of solutions. In 

order to calculate an inverse solution, prior assumptions should be made (Baillet, 

Mosher, & Leahy, 2001). There are three basic approaches for inverse solutions 

(Ramírez, 2008): 

I. Parametric Dipole Modelling: Dipole modeling assumes that the measured 

signals were generated by few regions in the brain. These regions are modeled 

as Equivalent Current Dipoles (ECD) Bayesian particle filtering methods are 

found useful for the solution (Solin, et al., 2016). Lately, these approaches are 

abandoned in the favor of relatively newer methods (Baillet S. , 2014).  

II. Beamforming: Beamforming methods are based on radar data analysis 

methods. A set of dipoles are defined in the brain and each dipole is evaluated 

separately in means of data fitting while ignoring the information content of 

other dipoles (Baillet S. , 2014). Beamforming methods are well studied and 

frequently used in the field. Multiple Signal Classification (MUSIC) (Schmidt, 

1986), Linearly Constrained Minimum-Variance Beamforming (LCMV) (Van 

Veen, van Drongelen, Yuchtman, & Suzuki, 1997), Synthetic Aperture 

Magnetometry (SAM) (Robinson & Vrba, 1999), and Dynamic Imaging of 

Coherent Sources (DICS) (Gross, et al., 2001) are few of the most known 

beamforming algorithms. In this study, LCMV algorithm is used for source 

localization.  

III. Distributed Source Imaging: Distributed source imaging assigns dipoles at 

every possible candidate location, making the inverse solution heavily 

underdetermined. Prior information is provided in order to solve the inverse 

problem. Although distributed source imaging is computationally expensive, 

lately new algorithms are introduced (Solin, et al., 2016). In general, most 
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popular algorithms are weighted minimum-norm image models (Baillet S. , 

2014).  

Volume Conduction Problem 

Volume conduction problem, also known as field spread, is caused by the interaction 

of multiple channels with a single source (Brookes, et al., 2011). This interaction 

creates a major problem with MEG/EEG source estimation. Source estimates are 

spatially correlated and the leakage of source activity due to shared sensors result in 

fake active regions in the neighborhood of genuinely active neurons (Palva & Palva, 

2012). Even though source estimation methods such as Dynamic Imaging of Coherent 

Sources (DICS) and Linearly Constrained Minimum Variance Scalar Beamformer 

(LCMV) show limited susceptibility to volume conduction problem, effects still 

cannot be totally eliminated (Drakesmith, El-Deredy, & Welbourne, 2013; Schoffelen 

& Gross, 2009). Thus, it is also important to use connectivity measures which are 

prone to volume conduction. 

 Functional Connectivity Analysis 

Bivariate interactions in the brain can be investigated in two different types: linear 

interactions and nonlinear interactions (Sakkalis, 2011). 

Linear Interactions 

Investigation of linear interactions assumes that the interactions are products of linear 

systems. In a linear system, scaling the input by a factor gets the output scaled by the 

same factor (Hansen, Kringelbach, & Salmelin, 2010). Linear measures are well 

investigated in the brain at various task related and resting state data. Cross-

correlation, coherence and imaginary coherency are mostly used linear measures. 

Within the scope of this study, Coherence and Imaginary Coherency measures are used 

to evaluate linear interactions.  

Coherence 

Coherence is defined as the normalized version of cross-spectrum; Fourier transform 

of the cross-correlation (David, Cosmelli, & Friston, 2003). Coherence takes values 

between 0 and 1, with 0 meaning that there is no correlation between signals and 1 

meaning that the signals are proportional. Coherence is sensitive to both power and 

the phase of two signals (Sakkalis, 2011). Earlier studies showed that Coherence is a 

useful measure for detecting long-range interactions (Gross, et al., 2001; Nunezab, et 

al., 1997). 

Imaginary Coherency 

Due to volume conduction effect, a single activity of a dipole is observable in more 

than one channels outside the head (Sarvas, 1987), showing an artifact rather than true 

interaction (Nolte, et al., 2004). In order to avoid volume conduction effect, Nolte et 
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al. developed Imaginary Coherency with the idea that scalp potential has no time-lag 

to underlying source activity (Stinstra & Peters, 1988). The imaginary part of 

coherency is blind to synchronizations with no time-lag, making it blind to artefactual 

self-interaction caused by volume conduction also (Nolte, et al., 2004).  Robustness of 

Imaginary Coherency to volume conduction effect was later verified by following 

studies and popularity of the measure has increased (Sander, Bock, Leistner, Kühn, & 

Trahms, 2010; Domínguez, Stieben, Pérez Velázquez, & Shanker, 2013; Hohlefeld, et 

al., 2013). 

Nonlinear Interactions 

The nervous system is considered as a nonlinear, dynamical system (Aydore, Pantazis, 

& Leahy, 2013; Stam, Breakspear, van Walsum, & van Dijk, 2003). Nonlinear 

relations between spatially distant regions have been shown to be important 

(Breakspear & Terry, 2002). Various phase estimation and cross-frequency measures 

are used frequently to investigate functional connectivity caused by nonlinear systems 

(Jirsa & Müller, 2013; Özkurt & Schnitzler, 2011; Florin & Baillet, 2015; Colclough, 

et al., 2016).  

Quadratic Phase Coupling 

An important class of cross-frequency coupling, Quadratic Phase Coupling, has gained 

attention lately. QPC originates as a result of a nonlinear system in the brain and it is 

expressed as (Isler, Grieve, Czernochowski, Stark, & Friedman, 2008);  

 2𝜋𝑓3𝑡 + 𝜑3 = (2𝜋𝑓1𝑡 + 𝜑1) + (2𝜋𝑓2𝑡 + 𝜑2) (2.1) 

requiring both f3 = f1 + f2 and φ3 = φ1 + φ2 (Venkatakrishnan, Sukanesh, & Sangeetha, 

2011).  

Bispectrum 

In general, bispectrum is a statistical measure used to search for nonlinear interactions. 

Bispectrum is evaluated in the category of higher-order spectra and it provides 

supplementary information to the power spectrum. Higher order spectral measures are 

extensions to second-order measures known as autocorrelation. Bispectrum is the 

Fourier Transform of the third-order cumulant sequence just as power spectrum is the 

Fourier Transform of second order (Nikias & Mendel, 1993). The bispectrum of three 

zero-mean third order stationary random processes x,y and z is given below:  

 𝐵𝑥𝑦𝑧(𝜔1, 𝜔2) = Σ𝑚=−∞
∞ Σ𝑛=−∞

∞ 𝑅𝑥𝑦𝑧(𝑚, 𝑛)𝑒−𝑗(𝑚𝜔1+𝑛𝜔2) (2.2) 

 𝑅𝑥𝑦𝑧(𝑚, 𝑛) = 𝐸{𝑥(𝑘)𝑦(𝑘 + 𝑚)𝑧(𝑘 + 𝑛)} (2.3) 

where 𝜔 represents angular frequency, m and n independent lags, E{} expectation 

operator and 𝑅𝑥𝑦𝑧  third-order cumulant. 
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Bicoherence 

Bicoherence the normalized version of bispectrum and it is a powerful tool to detect 

QPC types of nonlinear interactions.  It has been applied successfully to evaluate 

nonlinear effects in human EEG and MEG (Barnett, Johnson, Naitoh, Hicks, & Nute, 

1971; Dumermuth, Huber, Kleiner, & Gasser, 1971; Nikias & Mendel, 1993). 

Although proven useful in many signal processing fields, bicoherence has not been 

used widely in neuroscience due to computational costs (Özkurt T. E., 2016) and 

volume conduction effect (Pereda, Quiroga, & Bhattacharya, 2005).  

In order to reduce computational costs, researchers suggested new methods. Sensor 

level PCA was applied by Chella et al. (2014) to reduce the data dimension. This 

approach actually only lowers the computational cost if only the sensor level 

bicoherence is considered. It is not applicable to source level bicoherence computation. 

On the other hand, Özkurt (2016) suggested using ‘sliced bicoherence’ to reduce the 

computational costs with the idea that the most prominent interactions are located on 

the main diagonal of the bicoherence matrix. Sliced bicoherence is an indirect method 

only calculating the main diagonal of the bicoherence matrix.  

In order to alleviate volume conduction problem, (Chella, Marzetti, Pizzella, 

Zappasodi, & Nolte, 2014) suggested removing the antisymmetric part of the 

bicoherence to eliminate ‘autobispectra’ of sources. On the other hand, (Özkurt T. E., 

2016), suggests another method which also eliminates channel related ‘autobispectra’ 

as well. Suggested method, called ‘subtracted bicoherence’ only keeps the ‘cross’ 

relations between sources.  

 

 

 

 

 

 

 

 

 

 

 



 

16 

 

  



 

17 

 

CHAPTER 3 

 

3. MATERIALS AND METHODS 

 Materials 

MEG Data 

Publicly available resting-state MEG recordings collected in the scope of HCP were 

used in this study (Van Essen, et al., 2013). MEG recordings are part of S1200 release 

and details of the scanning procedures are provided by the S1200 Release Reference 

Manual (WU-Minn HCP Consortium, 2017). The data consist of 89 MEG subjects and 

all subjects are young adults (ages 22-25) with a subset of ~50 same-sex twin pairs.  

All subjects were scanned with a whole head Magnes 3600 Scanner (4D 

Neuroimaging, San Diego, CA, USA) in a magnetically shielded room. Subjects were 

also scanned with 3T MRI (Siemens 3T “Connectome Skyra”, St. Louis, MO, USA) 

scanner in order to acquire anatomical information. Magnes 3600 system includes 248 

magnetometer channels together with 23 reference channels. Data were sampled at 

2034.5101 Hz. In order to remove cardiac and ocular activity, electrooculography 

(EOG, 2 channels) and electrocardiography (ECG, 1 channel) recordings were 

synchronized with the MEG. Participants were positioned supine in the MEG scanner. 

In order to co-register MEG data to the MRI scans, a 3-point reference system (nasion 

and two peri-auricular points) and locator coils were used.  

Resting state MEG data were recorded in 3 consecutive sessions for each subject for 

approximately 6 min. We selected one of three sessions randomly for this study. The 

data provided by HCP were preprocessed, resampled at 508.625 Hz. and saved in 

Fieldtrip file format. Bad channels, bad segments and remaining artifacts were 

removed using ICA. Cardiac components and eye-blinks were also cleaned from the 

data in this scope.  

Software and Auxiliary Toolboxes 

All computations in this thesis were implemented in MATLAB® (R2017a, The 

Mathworks Inc., Natick, MA). Publicly available Fieldtrip Toolbox (Oostenveld, 

Fries, Maris, & Schoffelen, 2011), Higher Order Spectral Analysis (HOSA) (Swami, 

Mendel, & Nikias, 1993) Toolbox and MEG Connectome Pipelines (WU-Minn HCP 

Consortium, 2017) were used for some of the calculations.  

Parcellation Atlas 

In order to reduce the data dimension, identify Anatomical Volumes of Interest 

(AVOI) and create group level results, Automated Anatomical Labelling (AAL) Atlas 
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was used (Tzourio-Mazoyer, Landeau, Papathanassiou, Crivello, & Etard, 2002). 

Original AAL Atlas includes 45 AVOIs in each hemisphere with a total of 90 AVOIs. 

AAL Atlas used in this study is based on the original atlas with the addition of 

cerebellum and vermis reaching a total number of 116 AVOIs (Neurofunctional 

Imaging Group-GIN, UMR6232, CYCERON, Caen, France). Table 1 and Figure 3.1 

provide detailed information about the atlas used in this study.  

Table 1: Anatomical Volumes of Interest. AAL 90 Atlas, made available by 

Neurofunctional Imaging Group (Caen, France), was used. The Atlas used in this study 

is based on the original atlas developed by Tzourio-Mazoyer which contains 45 AVOI 

in each hemisphere excluding Cerebellum and Vermis (Tzourio-Mazoyer, Landeau, 

Papathanassiou, Crivello, & Etard, 2002). Given volume of each AVOI in the table is 

the ratio of the total volume of the AVOI in both hemispheres to total volume of the 

brain. Given distance is the distance of the center of gravity of each AVOI to the 

closest magnetometer.  

ROI Anatomical ROI Vol. (%) 
Dist. 
(mm) 

ROI Anatomical ROI Vol. (%) 
Dist. 
(mm) 

1 Precentral 2,68 42,04 25 Occipital_Sup 1,44 55,47 

2 Frontal_Sup 2,47 55,82 26 Occipital_Mid 2,81 53,52 

3 Frontal_Sup_Orb 0,34 68,37 27 Occipital_Inf 1,10 53,72 

4 Frontal_Mid 4,32 51,46 28 Fusiform 2,40 75,03 

5 Frontal_Mid_Orb 0,96 56,46 29 Postcentral 3,16 43,99 

6 Frontal_Inf_Oper 1,37 48,21 30 Parietal_Sup 0,96 42,77 

7 Frontal_Inf_Tri 2,33 49,36 31 Parietal_Inf 1,78 44,19 

8 Frontal_Inf_Orb 1,92 56,31 32 SupraMarginal 1,78 44,81 

9 Rolandic_Oper 1,10 53,01 33 Angular 1,65 48,21 

10 Supp_Motor_Area 1,65 48,84 34 Precuneus 3,09 60,04 

11 Olfactory 0,27 87,89 35 Paracentral_Lobule 0,55 39,30 

12 Frontal_Sup_Medial 3,23 54,19 36 Caudate 0,62 83,09 

13 Frontal_Med_Orb 1,17 69,69 37 Putamen 0,96 72,20 

14 Rectus 0,69 85,30 38 Pallidum 0,21 85,70 

15 Insula 1,51 61,22 39 Thalamus 1,10 86,07 

16 Cingulum_Ant 1,37 70,46 40 Heschl 0,27 72,59 

17 Cingulum_Mid 2,68 63,78 41 Temporal_Sup 2,81 51,12 

18 Cingulum_Post 0,41 83,16 42 Temporal_Pole_Sup 1,37 54,92 

19 Hippocampus 0,89 78,33 43 Temporal_Mid 4,80 53,82 

20 ParaHippocampal 0,89 83,03 44 Temporal_Pole_Mid 1,24 57,28 

21 Amygdala 0,21 82,63 45 Temporal_Inf 2,61 58,14 

22 Calcarine 2,40 68,94 46 Cerebellum 7,69 58,66 

23 Cuneus 1,65 58,86 47 Vermis 1,03 62,03 

24 Lingual 2,06 75,87     
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Figure 3.1: Representation of AAL Atlas. Different colors are used for seperate 

AVOIs.  

 Data Processing 

The workflow followed in the scope of this thesis is given at Figure 3.2. The rest of 

this chapter will describe given steps in detail.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Workflow of the Study. Details are described in further detail in this 

chapter.  
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 Forward Solution  

In order to calculate forward solution, a volume conductor and a neural source model 

should be modeled (Baillet S. , 2014). Volume conduction model used in this study is 

the subject specific headmodel provided by HCP. A neural source model for each 

subject was created with a 10 mm grid using subject specific MRI. As a result, a neural 

source model of~1500 voxels was created for each subject. Figure 3.3 shows a 

headmodel and a sourcemodel for an exemplary subject.   

Using created sourcemodel, subject specific headmodel, sensor locations and sensor 

readings from resting state data, a leadfield matrix was calculated. Leadfield matrix 

represents an M*3 weight matrix at each voxel, where M denotes the number of 

channels. Weight matrix includes information for 3 dipole orientations (-x,-y,-z).   

  

 

 

 

 

 

 

Figure 3.3: Sourcemodel and Headmodel Representations. Sourcemodel is located 

inside a headmodel with sagittal and axial views. Representative subject from HCP 

Data.  

 Inverse Solution 

Source construction was realized using LCMV (Van Veen, van Drongelen, Yuchtman, 

& Suzuki, 1997). Leadfield matrix was reduced 1 dipole orientation with most 

variance for each voxel using Single Value Decomposition. Calculation of LCMV 

Beamformer is given below;  

 𝐴𝑠 =  𝑊𝑆
𝑇𝐵 (3.1) 

 𝑊𝑆
𝑇 = (𝐿𝑆

𝑇𝐶−1𝐿𝑆)−1𝐿𝑆
𝑇𝐶−1 (3.2) 

Where 𝐴𝑆 is the source level data, 𝑊𝑆 is the spatial filter, B is the sensor level data, 𝐿𝑆 

is the leadfield matrix, and C is the covariance matrix. 
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 Group Level Analysis and Dimension Reduction 

In order to make group level analysis over 89 subjects, AAL Atlas was used. Source 

level data of each subject were sorted out according to AVOI information and PCA 

was applied to reduce grouped time-series to representative signals. Results of each 

AVOI over 89 subjects were projected to a template brain provided by Fieldtrip 

(Oostenveld, Fries, Maris, & Schoffelen, 2011).  

Aforementioned PCA reduction was carried out in a way that each region preserved 

90% of its information. Depending on the information content of the region, some 

regions preserved more than one time-series. The number of virtual time-series is 

subject specific, ranging from 210 to 280 with the average of ~250. Figure 3.4 shows 

an exemplary PCA reduction.  

 

 

 

 

 

 

Figure 3.4: Dimension Reduction Using PCA. An exemplary AVOI is shown for 

visualization. PCA was used to reduce four source-space signals in an AVOI to a  

single representative signal.  

 Bicoherence Estimation 

HOSA Toolbox (Swami, Mendel, & Nikias, 1993) was used for Bicoherence 

estimation in this study. For each subject, Bicoherence Matrix was calculated N*N 

times where N is the number of virtual time series. The data was segmented into non-

overlapping 256 sample hanning windows. Windowing of the data leads to a 4 Hz of 

spectral resolution limit. The mean was removed from each record and the Fast Fourier 

Transform was computed. Calculation of Cross Bicoherence between time-series x(t) 

and y(t) is given as below;  

 𝑏𝑖𝑗 =
|𝐸{𝑋(𝑓1)𝑋(𝑓2)𝑌∗(𝑓1 + 𝑓2)}|2

𝑆𝑋(𝑓1)𝑆𝑋(𝑓2)𝑆𝑌(𝑓1 + 𝑓2)
 (3.3) 

where superscript * denotes complex conjugate and E{} is the statistical expectation 

operator (Elgar, Van Atta, & Gharib, 1990). Here, X and S denote Fourier coefficients 

and spectra, respectively.  
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Confidence Level Calculation 

An empirical confidence level for each subject was calculated using Bootstrapping 

Resampling Method (Efron, 1979). Randomly chosen 5 virtual time-series pairs were 

used for calculation. For each pair, one of the signals was divided into 256 sample 

pieces and shuffled 100 times to calculate bicoherence repeatedly. As a result, 500 

different bicoherence matrices were produced for each subject. At each frequency pair, 

the 95% limit of the distribution was assigned as the confidence level. Confidence 

Level was used for each subject to threshold the bicoherence results separately.  

Thresholding and Evaluation 

Each bicoherence matrix was thresholded using subject specific confidence level. 

Values of frequency pairs above confidence level were accepted significant and 

represented with ‘1’. The remaining values were assigned ‘0’, making a binary matrix. 

Entire sets of bicoherence matrices calculated for each subject were used to calculate 

the percentage of significant bicoherence of each frequency pair.  

 Coherence and Imaginary Coherency Calculation  

Coherence calculation within the scope of this study was ‘Magnitude-Squared 

Coherence Estimate’. Coherency with the given formula below was calculated for each 

pair of the time-series; 

 𝐶𝑖𝑗 =
𝐸{𝑋𝑖(𝑓)𝑋𝑗

∗(𝑓)}

(𝑆𝑖(𝑓)𝑆𝑗(𝑓))
1

2⁄
 (3.4) 

where superscript * denotes complex conjugate and E{} is the statistical expectation 

operator. Coherence and Imaginary Coherency were calculated with below formulas; 

 𝐶𝑜ℎ𝑖𝑗(𝑓) = |𝐶𝑖𝑗|2 (3.5) 

 𝐼𝑚.  𝐶𝑜ℎ𝑖𝑗(𝑓) = |𝐼𝑚(𝐶𝑖𝑗)|2 (3.6) 

where 𝐶𝑖𝑗 is the Coherency (Eq. 3.4) and Im() denotes the imaginary part.  Coherence 

and imaginary coherency results are represented in AVOI matrices. In order to achieve 

this, coherence and imaginary coherency were calculated for each possible pair in each 

opposing AVOI. Maximum connectivity result for each AVOI is used in the final 

matrix.  

 Sliced and Subtracted Bicoherence Calculation  

Sliced and subtracted bicoherence calculation routines used in this study were 

developed by Özkurt (2016). Sliced bicoherence metric uses an indirect formula to 

compute cross-bispectral slice:  
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 𝑏112(𝑓, 𝑓) = ℱ{𝑥1(𝑛) ∗ 𝑥1(𝑛) ∗ 𝑦2(𝑛)} (3.7) 

where  ℱ  stands for Discrete Fourier Transform, * is the convolution operator and 

 𝑦2(𝑛) = {
𝑥2(𝑁 − 1 − 𝑛 2⁄ ), 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
0,                              𝑛 𝑖𝑠 𝑜𝑑𝑑

 (3.8) 

On the other hand, Subtracted Bicoherence is an alternative metric of Sliced 

Bicoherence being robust to volume conduction (Özkurt T. E., 2016). Subtracted 

bicoherence eliminates strong autobispectral relations and only conserves “cross” 

connectivity between channels. Subtracted bicoherence formulation is given as below:  

 𝑏12̃(𝑓) = {
𝑏12(𝑓) − 𝑏11(𝑓),    𝑖𝑓 𝑏12(𝑓) − 𝑏11(𝑓) > 0

0,                                𝑖𝑓 𝑏12(𝑓) − 𝑏11(𝑓) ≤ 0
 (3.9) 

 Statistical Comparison 

The metrics described here were also compared with each other in means of both 

correlation and reliability.  

Correlation 

We used Pearson’s correlation to investigate similarities between metrics. Correlation 

analyses were carried out for each AVOI. We compared Coherence with Sliced 

Bicoherence and Imaginary Coherency with Subtracted Bicoherence. Percentage of 

significantly (p<0.05) correlated AVOIs to total number of AVOIs was calculated for 

each correlation analysis. 

Split Half Reliability Test 

Reliability of each measure was calculated using Split Half Reliability Test 

(Colclough, et al., 2016). Subjects were divided to half 100 times and average scores 

of 2 sets for each AVOI was calculated and compared every time.  

 Computational Cost 

The high computational cost of bicoherence estimation arises from the high number of 

calculations. A pairwise bicoherence analysis of multivariate source data requires 

estimates in the order of 𝑁2𝑥 (𝑀2/2) , where N and M denote the number of 

channels/sources and the number of sampled frequencies, respectively. Number of 

estimated sources in our study is ~1500 per each subject. After PCA reduction, the 

number of sources is reduced to ~250.  

The bicoherence is symmetric under the transformations (ω1,ω2) → (ω2,ω1) and 

(ω1,ω2) → (-ω1,-ω2), so that only one quarter of the plane (ω1,ω2) contains 

independent information. Considering that the sampling frequency for resting state 

MEG data, total number of meaningful frequency bins is ~128.  
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Total bicoherence estimation calculates bicoherence at each frequency bin and in our 

study the number of calculations equals to ~512.000.000 (2502 × (1282/2)) per each 

windowed segment for every subject. 5-min MEG recording with 508.625 Hz 

sampling frequency is windowed with 256 sample hanning window, creating ~600 

segments. As a result, the total number of calculations reaches over 300.000.000.000 

per subject. Total bicoherence estimation per a subject takes ~50 hours on an above 

average computer. Total calculations for this thesis took almost 2 months with 4 

different computers working simultaneously.  

Sliced and subtracted bicoherence only calculate the main diagonal which consists of 

a total of 128 frequency bins( 𝑓1 = 𝑓2). The reduction of the number of frequency bins 

reduces the number of calculations drastically. As a result, calculation time is reduced 

to 1/60 of total bicoherence estimation.   
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CHAPTER 4 

 

4. RESULTS 

The ‘Results’ section of the study is divided into two sections. First section 

concentrates on total Bicoherence Matrix, evaluates cross frequency interactions and 

identifies information content of the matrix. Second section compares linear and 

nonlinear connectivity analysis methods. 

 Total Bicoherence Matrix 

Total Bicoherence Matrix represents information content of each frequency pair 

(128x128). As explained in Chapter 3.2.4, value of each frequency pair represents 

percentage of that pair showing significant bicoherence.  

Total Bicoherence Matrix shows that there are several important interactions within 

and cross frequency bands. As expected at resting state data, the most prominent 

interaction is visual at the alpha band (8-12 Hz.) (Figure 4.1). Even though the 

interaction points to𝑓1 = 𝑓2, it is interpreted as 𝑓2 = 2𝑓1 interaction due to bicoherence 

formulation (3.3). As a result, the interaction at alpha band points to a true interaction 

between alpha and beta bands. Similar fashion could be observed at delta and theta 

bands pointing to delta-theta, delta-alpha, theta-alpha and theta-beta interactions. It is 

quite difficult to analyze interactions below alpha band separately because of the 

frequency resolution used for this study (4 Hz). It is clearly seen that most of the 

nonlinear interaction between brain regions mainly concentrates at the main diagonal 

of the bicoherence matrix pointing to 𝑓2 = 2𝑓1 interactions.  

As explained earlier, in order to find Total Bicoherence Matrix, subject specific 

confidence level matrices were calculated empirically.  

Figure 4.2 shows one-sided Confidence Level Matrix averaged across 89 subjects. The 

empirically found confidence level confirms earlier works on parametric confidence 

level calculation used by Özkurt (2016) with an important note on the diagonal 

components. Özkurt (2016) suggested that the confidence level for the components at 

the main diagonal is twice the confidence level at the non-diagonal components. Our 

empirical calculations show that this depends on the frequency resolution of the 

calculations. The confidence level tends to increase as the component approaches the 

main diagonal and maximizes at the main diagonal, reaching double the confidence 

level of non-diagonal components. We sliced the confidence level matrix beginning 

from the main diagonal to the left bottom of the matrix and calculated the average of 

each slice. The reduced confidence level graph is shown at Figure 4.3. The confidence 

level decreases as the distance between the slice and the main diagonal increases. It is 

important to note that the first 4 slices have higher confidence level compared to other 

slices. This corresponds to 4 Hz. Frequency resolution used in the study. Taking the 
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frequency resolution into consideration, first 4 slices are identified as the diagonal 

components since they are effected by the frequency leakage.  

We investigated the information content of the bicoherence matrix and compared 

diagonal components to non-diagonal components. Figure 4.4 shows mean and 

standard error graph for Total Bicoherence Matrix for all of the subjects. The figure 

shows clear separation between diagonal and non-diagonal components in means of 

information content for each subject. We also investigated the information content of 

each AVOI and found the same pattern (Figure 4.5). Moreover, we applied t-test for 

both subject level and region level comparisons and found significant separation 

(p<0.05) between diagonal and nondiagonal components. Both figures show that the 

information content of the bicoherence matrix is mostly concentrated on the diagonal 

components, pointing to 2nd order couplings of the resting state brain at𝑓2 = 2𝑓1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Total Bicoherence Results. Mean Bicoherence Matrices calculated over 

89 subjects. Color Bar indicates percentage of each frequency pair showing significant 

bicoherence at corresponding frequencies. Note the interactions at Alpha Band (8-12 

Hz). 
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Figure 4.2: Empirically Calculated %95 Confidence Level Matrix.  Color Bar 

indicates confidence level averaged across subjects. Confidence level increases as the 

components approach the main diagonal, reaching double the confidence level of non-

diagonal components. 

 

 

 

 

 

 

 

Figure 4.3: Reduced Confidence Level. First 4 slices belonging to the main diagonal 

show higher confidence levels due to 4 Hz. frequency resolution. The nondiagonal 

slices show half the confidence level when compared to the diagonal slices. These 

results confirm parametric confidence level calculation method.  
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Figure 4.4: Mean and Standard Error of Diagonal and Non-Diagonal Components. First 4 diagonals were marked as Diagonal Components 

due to frequency resolution. Mean and Standard Error indicates percentage of cross coupling at either diagonal frequencies or non-diagonal 

frequencies. Figure shows clear separation for both average and individual bicoherence matrices, indicating high information content of 

diagonal components.  
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Figure 4.5: Diagonal and Non-Diagonal components of AVOIs.  First 4 diagonals were marked as Diagonal Components due to frequency 

resolution. Mean and Standard Error indicates percentage of cross coupling at either diagonal frequencies or non-diagonal frequencies. Clear 

separation of information content at each AVOI follows the same pattern of total bicoherence matrix.  
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 Comparison Between Linear and Nonlinear Couplings 

As our findings suggest that the prominent nonlinear interactions are concentrated on 

the diagonal components, we compared two main diagonal based nonlinear methods 

to linear methods. Linear interaction analyses were carried out using coherence and 

imaginary coherency metrics. On the other hand, nonlinear interaction analysis were 

carried out using Sliced Bicoherence and Subtracted Bicoherence metrics suggested 

by Özkurt (2016).  

Alpha Band Connectivity Analysis 

Figure 4.6 shows alpha band connectivity matrices for all methods. The matrices show 

interactions between different AVOIs. As expected for resting state data, all matrices 

show similar features indicating a strong connectivity between occipital regions 

(AVOIs 45-56) and the rest of the brain.  

 

Figure 4.7 and Figure 4.8 show network level activity according to each metric. These 

figures are visualizations of connectivity matrices projected on a template brain. Each 

metric shows strong connectivity at the occipital regions of the brain with coherence 

and sliced bicoherence showing connectivity spreading all over the brain. On the other 

hand, imaginary coherency and subtracted bicoherence show localized activity around 

occipital regions.  

 

Seed Based Connectivity Analysis 

 

Figure 4.9 and Figure 4.10 show seed based connectivity results for all metrics. 

Because of its known role in resting state, Posterior Cingulate Cortex (PCC) is chosen 

as the seed. As expected, strong connectivity to parietal and occipital regions are found 

in all metrics. It is important to note that the regions around the seed show strong 

correlation in coherence and sliced bicoherence, which is not expected as a part of 

PCC network in resting state. These results is without doubt, the clearest evidence of 

volume conduction effect in coherence and sliced bicoherence. The robustness of 

imaginary coherency and subtracted bicoherence to volume conduction is also 

observed from seed based connectivity analysis.  
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Figure 4.6: Alpha Band Connectivity Results. Connectivity Measures. Coherence, 

Imaginary Alpha Band (8-12 Hz.) connectivity analysis on reduced virtual time series 

at 116 AVOI for each metric is carried out. Color bars indicate actual connectivity 

results averaged over 89 subjects. Coherence and Imaginary Coherency are symmetric 

measures; e.g. AVOI 1  AVOI 2 = AVOI 2  AVOI 1. Bicoherence based measures 

are non-symmetric. All metrics show high connectivity results around occipital 

regions as expected at resting state (see Appendix A).  
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Figure 4.7: Network Degrees for Coherence and Imaginary Coherency. The degree of 

connection between AVOIs are projected to a template brain. AVOIs with most 

connectivity to other AVOIs are seen clearly from the scale. Note high connectivity 

results spreading all over the brain for Coherence. Connectivity results for Imaginary 

Coherency show more localized activity.   

Coherence 

Imaginary Coherency 
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Figure 4.8: Network Degrees for Sliced Bicoherence and Subtracted Bicoherence. The 

degree of connection between AVOIs are projected to a template brain. AVOIs with 

most connectivity to other AVOIs are seen clearly from the scale. Similar high and 

spreading connectivity patterns are observed for Sliced Bicoherence. Subtracted 

Bicoherence results show robustness to volume conduction.  
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Figure 4.9: Seed Based Connectivity Analysis for Linear Methods. PCC seed is used 

for seed based connectivity analysis. Earlier resting state analysis show connectivity 

patterns between PCC, parietal and occipital regions. Coherence results show strong 

connectivity around the seed, indicating high volume conduction.  
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Figure 4.10: Seed Based Connectivity Analysis for Nonlinear Methods. PCC seed is 

used for seed based connectivity analysis. Similar to Coherence, Sliced Bicoherence 

show strong connectivity around the seed, indicating high volume conduction.  
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Between Metrics Correlation Analysis 

 

Correlation results between each metric are given below. The percentage of 

significantly correlated AVOIs to total number of AVOIs is also provided per each 

comparison. It is important to note that occipital (45-56) and parietal (57-70) regions 

show similar results between each pair (see Appendix A). Also, the results of deep 

brain structures (regions between 37-42, 70-80 and 91-116) may be creating false 

results due to spatial resolution of MEG imaging (See Appendix A).  

 

 

 

 

 

 

 

Figure 4.11: Correlation Analysis: Coherence – Imaginary Coherence.  Significant 

and nonsignificant correlations are shown in different colors. Strong correlations 

between every AVOIs are observed.  

 

Figure 4.12: Correlation Analysis: Coherence - Sliced Bicoherence.  Significant and 

nonsignificant correlations are shown in different colors. Strong correlations between 

most AVOIs are observed. AVOIs of occipital (45-56)  and parietal (57-70) regions 

show consistent correlation in particular. The percentage of significantly correlated 

AVOIs to total number of AVOIs is 81%. 
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Figure 4.13: Correlation Analysis: Coherence - Subtracted Bicoherence.  Significant 

and nonsignificant correlations are shown in different colors. Consistent correlations 

are only observed at parietal (57-70) regions. The percentage of significantly 

correlated AVOIs to total number of AVOIs is 36%.  

 

Figure 4.14: Correlation Analysis: Imaginary Coherency - Sliced Bicoherence.  

Significant and nonsignificant correlations are shown in different colors. Strong 

correlations between most AVOIs are observed. The percentage of significantly 

correlated AVOIs to total number of AVOIs is 89%.  
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Figure 4.15: Correlation Analysis: Imaginary Coherency - Subtracted Bicoherence.  

Significant and nonsignificant correlations are shown in different colors. High 

correlation is observed at AVOIs of occipital (45-56)  and parietal (57-70) regions. 

The percentage of significantly correlated AVOIs to total number of AVOIs is 46%.  

 

Figure 4.16: Correlation Analysis: Sliced Bicoherence - Subtracted Bicoherence.  

Significant and nonsignificant correlations are shown in different colors. Strong 

correlations between every AVOIs are observed.  
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Between Metrics Reliability Analysis 

 

Finally, we analyzed the group level reliability of each metric. Figure 4.17 shows that 

each metric have similar high reliability result meaning that all results are reproducible 

and repeatable across different subjects.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17: Split Half Reliability Test. All metrics show similar high reliability 

results meaning that the results are reproducible and repeatable.  
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CHAPTER 5 

 

5. DISCUSSION AND CONCLUSION 

 Discussion 

Our thesis is divided into two parts. In the first part, we hypothesized that the most 

prominent nonlinear interaction, particularly QPC, within the brain is concentrated at 

the slice of  𝑓1 = 𝑓2 = 𝑓 which implies coupling for 𝑓2 = 2𝑓1 . In order to test our 

hypothesis, we used higher order spectral analysis, namely bicoherence. Cross 

frequency coupling of 𝑓2 = 2𝑓1 is actually visual at 𝑓2 = 𝑓1 coupling on bicoherence 

matrix (3.3). Thus, the main diagonal, also known as sliced bicoherence, where 𝑓2 =
𝑓1is of interest within the study.  

In the second part of the study, we compared nonlinear metrics with linear metrics in 

means of information content, commonality, volume conduction and reliability. We 

used ‘sliced bicoherence’ and ‘subtracted bicoherence’ (Özkurt T. E., 2016) as 

nonlinear metrics and ‘coherence’ and ‘imaginary coherency’ as linear metrics.  

Earlier studies on bicoherence detected neural interactions particularly on the main 

diagonal. For example, a study on monkeys performing visuomotor tasks showed 

peaks at beta band on main diagonal of the bicoherence matrix (Wang, Chen, & Ding, 

2007). In a resting state analysis, (Chella, Marzetti, Pizzella, Zappasodi, & Nolte, 

2014) found significant peaks at alpha band. Similarly, (10-10 Hz.) coupling was 

identified by (Shahbazi, Ewald, & Nolte, 2014) at resting state data. Nevertheless, 

none of the studies investigated the information content of the sliced bicoherence 

comparatively. This study implements a statistical analysis method to compare 

diagonal and non-diagonal components of the bicoherence matrix.  

Results of the study confirmed our hypothesis that the most prominent nonlinear 

interactions, particularly QPC is found on the main diagonal of the bicoherence matrix. 

We observed peaks on main diagonal at alpha band where𝑓1 = 𝑓2, indicating a true 

interaction at 𝑓2 = 2𝑓1 (3.3) (Figure 4.1). We also tested the same phenomenon for 

different anatomical volumes of interest. We found out that each and every region 

follows the same pattern, having the most important interactions at the main diagonal. 

Surely, this does not suggest that the non-diagonal components should be ignored. 

Within the scope of this study, we also compared sliced and subtracted bicoherence to 

absolute and imaginary coherence. Our results showed that these share similar patterns 

for alpha band during resting state. Seed based connectivity analysis demonstrated 

specifically the robustness of imaginary coherency and subtracted bicoherence to 

volume conduction problem.  
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We compared information content of all metrics by correlating average connectivity 

metrics. In this manner, we compared coherence to sliced bicoherence and imaginary 

coherency to subtracted bicoherence. Results showed that there is a strong correlation 

between coherence and sliced bicoherence with 81%. On the other hand, 46% 

correlation was observed between imaginary coherency and subtracted bicoherence. 

Correlations between imaginary coherency and subtracted bicoherence is mostly 

concentrated at the occipital and the parietal regions.  

Finally, our results suggest that all metrics show similar reliability results. This implies 

that the results are reproducible for different subjects. 

To sum up, our results show that sliced bicoherence is a time efficient alternative to 

bicoherence estimation. Also, use of subtracted bicoherence to overcome volume 

conduction effect is favored.  

 Limitations  

There are some limitations to this study. First of all, this study concentrates on resting 

state data. Task specific comparisons should also be carried in order to prove reliability 

and robustness of the metrics further. Also, comparison between linear and nonlinear 

metrics was only realized in the alpha band. Interactions at other bands should also be 

evaluated.  

Another limitation of the study is the frequency resolution. For our studies we used 4 

Hz. resolution due to computational costs. Higher frequency resolution would yield 

finer bicoherence estimations.  

Last but not least, same metrics should be evaluated with different beamforming and 

parcellation methods in order to evaluate robustness to volume conduction effects.  

 Conclusion 

In conclusion, this study shows that the information content of nonlinear interactions, 

particularly QPC, significantly concentrates on the main diagonal of bicoherence 

matrix. This result means that QPC mostly occurs between  (𝑓1 − 𝑓2)  frequencies 

where 𝑓2 = 2𝑓1. Taking this into consideration, one can overcome high computational 

cost of bicoherence by calculating only the sliced bicoherence. This study also 

confirms the robustness of subtracted bicoherence to volume conduction effect. High 

reliability of both subtracted bicoherence and sliced bicoherence make them valid 

alternatives for nonlinear interaction estimation metrics. This study supports the idea 

that sliced bicoherence and subtracted bicoherence should be added to the rich 

collection of brain connectivity metrics.  
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APPENDIX A 

7. ANATOMICAL VOLUMES OF INTEREST LABELS 

1 'Precentral_L' 59 'Parietal_Sup_L' 

2 'Precentral_R' 60 'Parietal_Sup_R' 

3 'Frontal_Sup_L' 61 'Parietal_Inf_L' 

4 'Frontal_Sup_R' 62 'Parietal_Inf_R' 

5 'Frontal_Sup_Orb_L' 63 'SupraMarginal_L' 

6 'Frontal_Sup_Orb_R' 64 'SupraMarginal_R' 

7 'Frontal_Mid_L' 65 'Angular_L' 

8 'Frontal_Mid_R' 66 'Angular_R' 

9 'Frontal_Mid_Orb_L' 67 'Precuneus_L' 

10 'Frontal_Mid_Orb_R' 68 'Precuneus_R' 

11 'Frontal_Inf_Oper_L' 69 'Paracentral_Lobule_L' 

12 'Frontal_Inf_Oper_R' 70 'Paracentral_Lobule_R' 

13 'Frontal_Inf_Tri_L' 71 'Caudate_L' 

14 'Frontal_Inf_Tri_R' 72 'Caudate_R' 

15 'Frontal_Inf_Orb_L' 73 'Putamen_L' 

16 'Frontal_Inf_Orb_R' 74 'Putamen_R' 

17 'Rolandic_Oper_L' 75 'Pallidum_L' 

18 'Rolandic_Oper_R' 76 'Pallidum_R' 

19 'Supp_Motor_Area_L' 77 'Thalamus_L' 

20 'Supp_Motor_Area_R' 78 'Thalamus_R' 

21 'Olfactory_L' 79 'Heschl_L' 

22 'Olfactory_R' 80 'Heschl_R' 

23 'Frontal_Sup_Medial_L' 81 'Temporal_Sup_L' 

24 'Frontal_Sup_Medial_R' 82 'Temporal_Sup_R' 

25 'Frontal_Med_Orb_L' 83 'Temporal_Pole_Sup_L' 

26 'Frontal_Med_Orb_R' 84 'Temporal_Pole_Sup_R' 

27 'Rectus_L' 85 'Temporal_Mid_L' 

28 'Rectus_R' 86 'Temporal_Mid_R' 

29 'Insula_L' 87 'Temporal_Pole_Mid_L' 

30 'Insula_R' 88 'Temporal_Pole_Mid_R' 

31 'Cingulum_Ant_L' 89 'Temporal_Inf_L' 

32 'Cingulum_Ant_R' 90 'Temporal_Inf_R' 

33 'Cingulum_Mid_L' 91 'Cerebelum_Crus1_L' 

34 'Cingulum_Mid_R' 92 'Cerebelum_Crus1_R' 

35 'Cingulum_Post_L' 93 'Cerebelum_Crus2_L' 

36 'Cingulum_Post_R' 94 'Cerebelum_Crus2_R' 

37 'Hippocampus_L' 95 'Cerebelum_3_L' 
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38 'Hippocampus_R' 96 'Cerebelum_3_R' 

39 'ParaHippocampal_L' 97 'Cerebelum_4_5_L' 

40 'ParaHippocampal_R' 98 'Cerebelum_4_5_R' 

41 'Amygdala_L' 99 'Cerebelum_6_L' 

42 'Amygdala_R' 100 'Cerebelum_6_R' 

43 'Calcarine_L' 101 'Cerebelum_7b_L' 

44 'Calcarine_R' 102 'Cerebelum_7b_R' 

45 'Cuneus_L' 103 'Cerebelum_8_L' 

46 'Cuneus_R' 104 'Cerebelum_8_R' 

47 'Lingual_L' 105 'Cerebelum_9_L' 

48 'Lingual_R' 106 'Cerebelum_9_R' 

49 'Occipital_Sup_L' 107 'Cerebelum_10_L' 

50 'Occipital_Sup_R' 108 'Cerebelum_10_R' 

51 'Occipital_Mid_L' 109 'Vermis_1_2' 

52 'Occipital_Mid_R' 110 'Vermis_3' 

53 'Occipital_Inf_L' 111 'Vermis_4_5' 

54 'Occipital_Inf_R' 112 'Vermis_6' 

55 'Fusiform_L' 113 'Vermis_7' 

56 'Fusiform_R' 114 'Vermis_8' 

57 'Postcentral_L' 115 'Vermis_9' 

58 'Postcentral_R' 116 'Vermis_10' 

 


