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ABSTRACT 

 
 

DEVELOPMENT OF A NEW METHODOLOGY FOR PATH 
OPTIMIZATION OF UNDERGROUND MINE HAUL ROADS USING 

EVOLUTIONARY ALGORITHMS 
 
 

Yardımcı, Ahmet Güneş 

Ph.D., Department of Mining Engineering 

Supervisor: Prof. Dr. Celal Karpuz 
 
 

March 2018, 129 pages 
 
 
 

The main haul road serves as an access route for men, equipment, transportation of 

extracted ore and ventilation air in underground mines. Initial capital investment and 

operating cost parameters are affected by the haul road path. However, the most 

common method to design a main haul road is to rely on the provisions of skilled mine 

design experts. Contrary to the simple underground mine layouts, determination of the 

optimum path without violating navigability constraints in complex underground 

networks may exceed the limit of human intelligence. Obviously, a new methodology 

is required to obtain the shortest mine haul road that satisfy the minimum turning 

radius and maximum gradient constraints. It is also useful to avoid some structural 

defect zones (like faults, joints) or any kind of undesired regions. In addition to the 

path length minimization, rock mass quality should also be optimized for increasing 

safety and decreasing tunnel support costs. This study aims to provide an algorithmic 

solution to one of the major design problems in underground mine planning. In the 

first stage, the shortest path optimization is adapted to this specific mining problem. 

Conventional methods are investigated and an improved solution mechanism is 

established using evolutionary algorithms. In the second stage, path length and the 

rock mass quality covering the haul road are optimized by a multi objective 
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optimization. Developed algorithms are verified on simple benchmark problems. 

Finally, algorithmic designs are compared to the designs of human experts on actively 

operating underground mines. Advantages of evolutionary algorithms are shown. 

 

 

Keywords: Haul Road Design, Path planning, Optimization, Evolutionary Algorithms 
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ÖZ 

 
 

YERALTI MADENLERİNDE ANA NAKLİYE YOLU GÜZERGÂHININ 
OPTİMİZE EDİLMESİ MAKSADIYLA EVRİMLEŞEN ALGORİTMALARA 

DAYALI YENİ BİR METODOLOJİ GELİŞTİRİLMESİ 
 
 

Yardımcı, Ahmet Güneş 

Doktora, Maden Mühendisliği Bölümü 

Tez Yöneticisi: Prof. Dr. Celal Karpuz 
 
 

Mart 2018, 129 sayfa 
 
 
 

Yeraltı madenlerinde ana nakliye yolu, personel, ekipmanlar, üretilen cevher ve hava 

için erişim güzergâhı olarak görev yapar. Ana nakliye yolu güzergâhı, ilk yatırım 

maliyeti ve işletme maliyeti parametrelerini kontrol etmektedir. Önemine rağmen bir 

ana nakliye yolu tasarımı yapmanın en yaygın yolu deneyimli maden tasarım 

uzmanlarının öngörülerine güvenmektir. Basit yeraltı maden planlarının aksine 

karmaşık yeraltı madeni planlarında seyir edebilirlik kısıtlamalarını ihlal etmeyen 

optimum güzergahın belirlenmesi insanın düşünsel kapasitesini aşabilmektedir. 

Açıkça bellidir ki en küçük dönüş yarıçapı ve en büyük yol eğimi kısıtlamalarını 

sağlayan ve en kısa ana nakliye yolu güzergahını belirlemede kullanılacak yeni bir 

metodolojiye ihtiyaç vardır. Ayrıca, yapısal olarak bozuk bölgelerden (fay, eklem gibi) 

veya herhangi bir istenmeyen bölgeden kaçınmak faydalı olabilir. Güzergah uzunluğu 

minimizasyonuna ek olarak, güvenliği artırmak ve tünel tahkimat maliyetlerini 

düşürmek maksadıyla kaya kütlesi kalitesi de optimize edilmelidir. Bu çalışma, yeraltı 

maden planlamasındaki önemli bir tasarım sorununa algoritmik bir çözüm getirmeyi 

amaçlamaktadır. İlk aşamada, en kısa yol optimizasyonu bu spesifik madencilik 

problemine uyarlanmıştır. Geleneksel yöntemler incelenmiş ve evrimleşen 

algoritmalar kullanılarak iyileştirilmiş bir çözüm mekanizması geliştirilmiştir. İkinci 



 
 

viii 
 

aşamada güzergah mesafesi ve nakliye yolunu çevreleyen kaya kütle kalitesi çok 

amaçlı optimizasyon yöntemiyle optimize edilmiştir. Geliştirilen algoritmalar basit 

kıyaslama problemleri ile kontrol edilmiştir. Son olarak, algoritmik tasarımlar ile insan 

uzmanların halihazırda aktif olarak işleyen yeraltı madenleri için hazırladığı tasarımlar 

kıyaslanmıştır. Evrimleşen algoritmaların faydaları gösterilmiştir. 

 

 

Anahtar Kelimeler: Nakliye Yolu Tasarımı, Rota Planlama, Optimizasyon, Evrimsel 

Algoritma 
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CHAPTERS 

CHAPTER 1 

 

 

1 INTRODUCTION 

 

 

 

The demand for raw materials increased worldwide due to the improvements in 

industry. Since the last century, shallow ore bodies have been a major source of raw 

material with the advantage of low production cost and operational simplicity. 

Although today’s technology allows for ore extraction from deeper open pit mines, 

physical and economical conditions limit the feasible depth. Apparently, deep ore 

bodies extracted by underground mining methods will play a more dominant role in 

the future by supplying required raw materials to the society. 

 

There are two common methods to access deeply lying underground orebodies and to 

transport the extracted material. The first one is a vertical shaft, which connects the 

topographical surface to the underground production levels by a vertical excavation. 

Vertical shafts have the advantage of connecting production levels with the shortest 

path. Although the amount of excavation is decreased, a vertical shaft is still difficult 

to excavate. In addition, the ore production rate is limited by the capacity of the shaft. 

The alternative method connects the underground production levels by a system of 

declines and helical ramps with a gentle slope. This method allows more 

mechanization to be implemented. Compared to the vertical shafts, bulk production 

increases ore production rates. Therefore, decline/ramp system is the first choice of 

any mine design expert, where it is applicable. 

 

In decline/ramp system, ore and waste rock transportation shares the vast majority of 

operating cost in an underground mine. The fuel consumption of haul trucks is one of 
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the long term cost items. Another one is the excavation cost. Not only the monetary 

cost but also the time required to complete the excavation is also critical. All of these 

cost items are directly related to the haul road length, which makes it a critical 

parameter to be optimized.  

 

Decline/ramp is a permanent opening in which safety is a vital asset. In order to reduce 

support cost, rock mass hosting the haul road needs to be optimized.  

 

Briefly, an ideal underground mine haul road is expected to connect the topographical 

surface to the underground production levels with the optimum path. Optimality is 

defined in terms of the path length and the host rock mass quality.  

 

Optimization is still a primary research topic among the mining society. Decrease in 

commodity prices has revealed the importance of initial and operational cost 

minimization and profit maximization. Compared to the extensive research on open 

pit mine optimization, there are limited attempts for underground mines. Brazil et.al. 

[1] asserts that the complex topology of underground mines contributes to the limited 

interest of researchers. Optimization in open pit mines majorly focuses on the 

production and scheduling. Recently, some researchers have studied stope 

optimization in underground mines. However, there is limited work on the 

optimization of underground mine topology. As an early attempt, Lee [2] investigated 

underground network optimization. Later, Brazil et al. [3] proposed a decline 

optimization tool. Underground mine haul roads are constrained by the navigability 

limitations (minimum turning radius and maximum gradient) of the underground 

mining equipment. Gradient constrained paths for underground haul roads have long 

been investigated by researchers [4]. 

 

In this study, a new methodology is proposed for the underground mine haul road 

design. Compared to the previous research, our solution mechanism makes use of 

evolutionary algorithms in order to minimize the path length. This novelty provides 

the computational efficiency. Another research outcome is special mutation operators 
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those are developed for avoiding undesired regions or strictly passing inside the 

desired regions. In this way, the road is kept safely away from buffer zones, 

discontinuities, or aquifers. In addition, the road can be planned strictly inside the 

region of interest. None of the previous studies consider the rock mass quality while 

searching for a suitable path. In this study, we make multi objective optimization for 

to determine the minimum length road that is driven inside the maximum possible rock 

mass quality. Finally, the developed methodology is embedded onto a software. 

 

1.1 Problem Statement 

Conventional approaches in underground mine design are still not transformed by the 

fast paced technological advances of the information age. Although Computer Aided 

Design (CAD) has replaced the traditional routines, design is still practiced by 

engineers. CAD saves the time required to complete a design task and it has 

operational benefits. However, it is not capable of testing the design optimality. 

Excluding the limited research on optimum stope dimensioning, underground mine 

design is still a challenging human task. For instance, main haul roads are manually 

designed by skilled mine design specialists. The output is most likely to be a subjective 

design controlled by the operator’s judgment and experience. For a simple 

underground mine layout, optimum design would not be hard to guess for a human 

operator. However, complex layouts might challenge the human cognitive capacity. 

 

Recently, there have been some pioneering studies on the haul road optimization 

algorithms. The common method is to connect the user defined nodes by a continuous 

path that does not violate the kinematical constraints of the mobilized vehicles. This 

approach is adapted from the robotics or Unmanned Air Vehicle (UAV) path planning 

solutions. Despite the fundamental concepts, mining has its unique requirements, 

which are not considered by the current solutions. Haul road length dominantly 

controls the development cost. Another cost factor is the host rock mass quality. The 

haul road should be excavated inside a high quality rock mass in order to decrease the 

supporting cost. This is also beneficial for having a safe and reliable long term opening. 

To summarize, the shortest haul road path needs to pass inside a good quality rock 
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mass. Multi objective optimization is required to optimize the path length and the rock 

mass quality at the same time. Until now, heuristic methods and single objective 

optimization have been investigated by different researchers. Some researchers 

optimized multiple cost items in a single objective function just by using weighting 

factors. None of these approaches could achieve the global optimality. In addition, 

there has been no suggestion about considering the host rock mass quality in 

optimization. Finally, most of the algorithms proposed until now suffer from long 

processing times and powerful computational system requirements. 

 

1.2 Objectives of the Study 

This study aims to develop an efficient and reliable path planning algorithm to 

determine the optimum underground mine haul road in terms of length and rock mass 

quality. Optimality is implemented in terms of cost minimization. Generally, the 

shortest path is the most commonly desired goal in underground mine design and this 

problem is implemented by a single objective function.  

 

Low quality rock zones may be inhibited inside a rock mass. Avoiding such 

undesirable zones potentially decreases cost of supporting and increases safety. In 

addition, road (opening) development progresses faster in better ground conditions. It 

is more appropriate to implement as a multi objective optimization problem. Cost 

items are the path length and the host rock mass quality. Although both of the items 

are desired to be optimized, they do not have an equal weight of importance. In other 

words, tradeoff between the path length and rock mass quality does not have a rate of 

unity. Path length is always more critical than the rock mass quality because low 

quality rock zones can be passed by heavy supporting for the sake of cost. However, 

any increase in the path length affects the operating cost throughout the whole mine 

life. Therefore, the objective function is established as a summation of the weighted 

cost items.  

 

In multi objective optimization, cost items might have opposite effects on the cost. 

This study aims to calculate the tradeoff between the cost items and come up with a 
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least cost solution. Although, global optimality cannot be achieved for both of the cost 

items rock mass quality optimization is a useful contribution for the optimization of 

underground mine haul roads. 

 

In the optimization process, navigability is defined by the kinematic constraints; 

minimum turning radius and maximum gradient. Undesired regions (such as heavily 

faulted zones, jointed rock mass, aquifers, etc.) are avoided by local corrections. 

 

This research aims to explore the advantages of intelligent algorithms in haul road path 

planning. Dynamic Programming and heuristic solutions are compared to evolutionary 

algorithms. Human-like thinking is integrated into the genetic algorithm by modified 

mutation operators.   

 

Below, objective of this study are summarized; 

 To replace the conventional methods of underground mine haul road design by 

a computationally efficient algorithm for  

 To optimize the path length of the haul road 

 To optimize the rock mass quality of the hosting rock mass 

 To take the advantage of intelligent algorithms in optimization 

 To develop special mutation operators for undesired region avoidance 

 To develop a user-friendly software 

 

1.3 Research Methodology 

The research strategy of this thesis focuses on the methods of developing an efficient 

path-planning algorithm for underground mine access roads. Firstly, alternative 

mathematical models are explored for simulating the motion of an underground mining 

vehicle. Dubins car model suits well for the purpose. Later, problem variables, inputs, 

assumptions, and outputs are established.  

 

In this study, two different objectives are optimized. The first objective is to determine 

the shortest path connecting the surface portal to the underground production levels 
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(also called as main nodes). The first solution method is based on Dubins curves. This 

method proves that the path length changes by the node directions. In addition, 

determining the optimum path among the complete solution space takes a long time 

(even impossible for a large set of main nodes) using trial and error method. The 

second method is optimization by Dynamic Programming. This method is capable of 

calculating the global optimum in a more efficient way. However, solution for a large 

set of decision variables still takes long time. The objective function is established to 

minimize the path length. In other words, it is a single objective optimization. Third 

solution is optimization by an evolutionary algorithm. Genetic algorithm sacrifices the 

global optimality; however, makes an appealing improvement in the computational 

efficiency. This method also makes use of a single objective function that minimizes 

the path length. The kinematic model remains the same; however, the path between 

each two main nodes is defined by four decision variables. Violating undesired regions 

such as aquifers and shear zones is penalized by the objective function. On the 

contrary, passing along the desired regions is awarded. Local corrections are carried 

out in order to avoid or catch special regions. The path is enforced to avoid the 

undesired regions by obstacle avoidance algorithms while the desired regions are 

traversed in the same manner. In Dynamic Programming, semi-algebraic methods 

manipulate the path sections for those special regions. However; in genetic algorithm, 

heuristics are added by special mutation operators.  

 

The second objective is to determine the least cost path for underground mine access 

roads. The cost of rock mass quality that the path is driven inside is also integrated into 

the objective function in addition to the cost of path length. The rock mass quality is 

defined by a geotechnical block model. Multi objective optimization is carried out. In 

the objective function, path length and rock mass quality does not take the same 

importance weight. The major concern is always the path length. Effect of rock mass 

quality on the optimum path is investigated by different weightings. Dubins curves, 

Dynamic Programming, and Genetic Algorithm solvers are adapted to the multi 

objective optimization.  
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For the purpose of verification, a simple mine layout is used. It is assumed that if the 

algorithm works on a simple verification problem, it is prone to be successful in more 

complicated problems. After verification, the shortest path algorithm is verified on real 

underground mine access roads. Performance of the algorithm is compared to the 

manual design of human operators. In addition, output of the Dynamic Programming 

is compared to the Genetic Algorithm. The least cost path problem is investigated on 

hypothetical cases. The effect of the rock mass quality cost is checked by altering the 

weightings in the objective function. 

 

The optimization algorithm is implemented in MATLAB. A graphical user interface 

(GUI) is prepared for the ease of regenerating the case studies. The GUI is capable of 

importing data from the widely used mine planning software. It also allows manual 

data entry. The optimized path can be exported to the commonly used file formats in 

mine planning software. The problem inputs and outputs can be seen throughout the 

plot screen. The result summary is reported in a message history screen.  

 

To summarize the research methodology; 

 Haul road optimization is carried out for single and multiple objectives 

 The single objective optimization minimizes the road length 

 Dubins car model is selected to represent the kinematics of the mobilized 

underground mining equipment. 

 Dynamic Programming is used to determine the optimum Dubins curves. 

 Genetic Algorithm is implemented as an efficient method. 

 Special mutation operators are developed for making heuristic corrections on 

the path. 

 Multi objective optimization is carried out by the Genetic Algorithm  

 Rock mass quality is defined in terms of a Geotechnical block model. 

 Pareto front is created and optimal path is determined by a weighted objective 

function. 
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1.4 Outline of Thesis 

This dissertation is organized into seven chapters. Overview of each chapter is given 

in the below paragraphs,  

 

Chapter 1 makes a brief introduction by presenting the problems associated with the 

underground mine haul road design. Later on, research objectives and methodology 

outlines the key concepts used in this study together with the novel contributions to 

the literature of underground mine haul road design. 

 

Chapter 2 outlines the background of this dissertation. Underground mining, mine 

planning, alternative underground mine access types, path planning, Operations 

Research in mining, Dubins path, Dynamic Programming, and evolutionary 

algorithms are presented.  

 

In Chapter 3, previous research on optimization in mining and optimization of 

underground mine access are presented. 

Chapter 4, presents an overview of the optimization problem. Mathematical model of 

the motion of a mobilized underground mining equipment is defined. Later, 

underground mine access optimization as a shortest path problem is investigated with 

a single objective function. Path length minimization on curvature-constrained paths 

is investigated with Exhaustive Search, Heuristic Algorithm and Dynamic 

Programming. Finally, Genetic algorithm is used to solve the same problem. The 

algorithms are verified on simple problems. Real underground mine haul roads are 

compared with the algorithmic designs. 

 

In Chapter 5, underground mine access optimization is transformed into a least cost 

estimation problem. The objective function contains the path length and the host rock 

mass quality. Multi objective optimization with weighted cost items is applied in order 

to determine a least cost path. 
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The dissertation ends with main outcomes of this study and some recommendations 

for future researches are presented in Chapter 6. 

 

1.5 Research Contributions 

This study makes some novel contributions to one of the neglected topics in mine 

planning. Conventionally, underground mine access design is carried out by human 

experts. This study proposes an algorithm to determine the optimum path. Although 

skilled experts can make proper designs for simple mine layouts, complex mines are 

harder to interpret for the human operators. Optimization ensures the best solution is 

reached. Path planning applications of robotics and aeronautics are reviewed and the 

most appropriate solution for mining is implemented. By this way, one of the most 

fundamental design procedures in underground mining is automated. 

 

This study compares exact optimizers with intelligent algorithms. Although Dynamic 

Programming provides the global optimum, computational efficiency is provided by 

the intelligent algorithms. It is observed that sacrificing the global optimum is feasible 

when the sub optimal solution is close to.  

 

Another contribution is the heuristic correction on the path in order to avoid the 

undesired regions or catch the desired regions. In Dynamic Programming, semi-

algebraic methods are proposed for this purpose. Genetic algorithm performs this type 

of path manipulation by some special mutation operators. The main contributions of 

this study are these proposed mutation operators. 

 

Summary of the original contributions of this study are listed below; 

 A Genetic Algorithm is proposed for underground mine haul road design, 

which can replace the manual design of human experts. 

 Custom mutation operator is developed for avoiding undesired zones like 

discontinuity zones or aquifers. 

 Custom mutation operator is developed for keeping the path inside a region of 

interest. 
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 Rock mass quality of the hosting rock is optimized together with the road 

length. 

 

Below is the list of publications based on this Ph.D. study: 

1 A. G. Yardimci and C. Karpuz, " Development of a New Methodology for 

Underground Mine Haul Road Design Using Evolutionary Algorithms" 

Journal, 2018. (Under Review) 

2 A.G. Yardimci and C. Karpuz, “Optimized Path Planning in Underground 

Mine Ramp Design Using Genetic Algorithm,” in 26th International 

Symposium on Mine Planning & Equipment Selection, MPES2017, 

Luleå/Sweden, 08/2017 

3 A.G. Yardimci and C. Karpuz, “Optimization of Underground Haul Roads 

Using an Evolutionary Algorithm,” in 25th International Mining Congress and 

Exhibition of Turkey, IMCET 2017, Antalya/Turkey, 04/2017 

4 A.G. Yardimci and C. Karpuz, “Shortest Path Estimation Considering 

Kinematical Constraints of Main Haulage Roads in Underground Mines: A 

Heuristic Algorithm,” in 6th International Conference on Computer 

Applications in the Minerals Industries, CAMI2016, Istanbul/ Turkey, 10/2016 
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CHAPTER 2 

 

 

2 BACKGROUND 

 

 

 

This chapter provides background information about the fundamental concepts of the 

research. Firstly; underground mining, mine planning and underground mine access 

subjects are outlined. Later, literature related to the path planning and previous 

researches are reviewed. Finally, Dubins path, dynamic programming and 

evolutionary algorithms are briefly described. 

 

2.1 Underground Mining 

Mining is an engineering activity performed to reveal the economically valuable 

minerals of the Earth’s crust and supply them for the benefit of the mankind. An ideal 

mining method should provide a profitable job in safe working conditions. Besides 

numerous control variables, depth of the orebody has a dominant influence in mining 

method selection. Underground mining is an ore extraction method for deeply 

underlying orebodies. Mining cost is higher compared to surface mining. However, 

greater selectivity decreases the amount of waste rock extraction. 

 

In underground mining, orebody is accessed via a vertical shaft or a ramp. Although 

vertical shaft connects the production levels with the shortest path, a ramp offers a 

better alternative by higher production rates. In addition, ramp allows for fully 

mechanized operation. The orebody is connected to these surface access by drifts and 

haul roads. The basic cycle of an underground mine begins by extracting ore with the 

selected mining method. Later, the ore is transported by haulage equipment (truck, 

locomotive or conveyor belt) to the vertical shaft or ramp. If the surface access is a 
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vertical shaft, the ore is hoisted inside the mine cars by a crane. However, if the surface 

access is provided by a ramp, haulage equipment delivers the run of mine to the 

surface. In some cases, run of mine top size might be reduced by primary crushing. 

Later, the crushed material is transported to the surface. Typical layouts of open pit 

and underground mines can be seen in Figure 1. 

 

 

Figure 1 A typical open pit and underground mine layout [5]  

 

Underground metal mining method selection is controlled by the type of the deposit, 

geometry of the orebody, geology, and geotechnical properties. Based on the 

supporting mechanism, underground mining methods are classified into three groups. 

Naturally supported methods are room and pillar, stope and pillar, shrinkage and 
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sublevel stoping. Although extensive roof bolting and localized support measures are 

taken, these methods require no artificial pillars. Either undisturbed rock pillars or 

stopes filled by fragmented rock supports the walls. Artificially supported methods are 

cut and fill stoping and square set stoping. Although operational safety is increased, 

supporting cost and slow-paced development are the major disadvantages. Caving 

methods have economic merits due to bulk underground ore production with less 

blasting and excavation. Longwall stoping is a popular underground coal mining 

method while sublevel caving and block caving methods are more popular in 

underground metal mines.  

 

Mine planning is an essential stage of mine management and should be followed 

continuously regardless of the selected mining method. 

 

2.2 Mine Planning 

Mine planning starts from the early stages of orebody exploration and continues 

throughout the mine life. The scope of the feasibility studies mainly focus on the 

production and even includes the rehabilitation plan right after the orebody 

exploitation is completed. Geological modelling and resource/reserve estimation form 

the basis of any further planning tasks. Mining method selection outlines the mine 

design guidelines. Production scheduling arranges the cash flow. Although each mine 

has different characteristics, the basic operations listed in Figure 2 are most commonly 

applicable.  

 

Figure 2 Basic workflow of mine planning [6] 

1
•Geospatial 
Database

2
•Geological 
Modelling

3
•Mine 
Design

4
•Production 
Scheduling
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Mine planning requires huge amount of data from different sources. The plan should 

be improved by fresh data and investigated for multiple scenarios. In addition, 

geological complexities should be included for the sake of accuracy. Conventional 

methods of interpreting such a complex input would lead to static and inaccurate mine 

plans. However, dynamic models would be more beneficial in order to adapt to 

continuously changing operation conditions. Although first versions of the mine 

planning softwares go back to 80s, invention of powerful computers improved the 

popularity of them by the late 90s. Today, orebody modelling, reserve estimation, 

grade control, mine layout design, and production scheduling are carried out 

extensively by computational methods. Orebody modelling can be implemented by 

explicit and implicit methods. Computer Aided Design (CAD) is used for the mine 

layout design. 3D wire meshing allows for realistic topographical mapping in the 

virtual environment. Short term and long term production scheduling can be organized 

to maximize the Net Present Value (NPV).  

 

The development of transportation roads has a major share of development cost in 

underground mining and is crucial for Net Present Value (NPV) calculations. 

 

2.3 Underground Mine Access 

Mine access is the main transportation road connecting the surface to the underground 

orebody. Development of mine access starts in the early stages. A network of 

production openings is connected to the mine access. Throughout the mine life, 

extracted ore and waste rock are transported to the surface via the mine access. 

Therefore, this road is required to be capable of handling heavy traffic under reliable 

geotechnical conditions. 

 

Site-specific conditions determine the mine access type and design specifications. 

Some of the vital considerations are characteristics of orebody deposit, life of mine, 
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amount of reserve, production rate, mining method, extent of mechanization, opening 

dimensions, kinematical constraints of mobilized equipment, and ventilation network. 

 

As indicated by Tatiya [7] underground mine access types are: 

 Adit 

 Incline 

 Decline/Ramp 

 Shafts (Inclined / Vertical) 

 

In Figure 3, underground mine access types are presented. 

 

Figure 3 Underground mine access types [7] 

 

An adit provides access to the underground via an almost horizontal opening, where 

the deposit extends above the valley. Compared to the alternatives, development cost 

is significantly low and driving rate is the fastest.  
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Incline is an access road with a slope up to 20°. It is suitable for flat dipping orebodies. 

Maximum depth of excavation does not exceed 150 m [7]. Development rate is faster 

compared to the decline and shafts but slower than the adit. Development cost is low.  

 

Decline is a helical path with a gradient of up to 8°. Maximum feasible depth for a 

decline is 250 m. Curved path allows travelling to lower levels in a restricted area. 

Maximum turning radius for the curved parts are determined by the mobilized 

equipment specs, which is generally 15 – 40 m. Driving rate is faster than shafts but 

slower than the adit and incline. Complex excavation plans increase the construction 

cost; however, there is a remarkable advantage compared to the shafts. 

 

Shafts can be driven either vertical or inclined with a slope down to 70°. Maximum 

feasible path is no more than 100 m [7]. Although it is the shortest path to transport 

the extracted ore out of the mine, it restricts production capacity. Degree of 

mechanization is limited. Driving a shaft is the slowest way to develop an underground 

mine access. In addition, it is the can be associated to the highest cost compared to any 

of the other methods. 

 

All underground mine access types can be considered as part of a shortest path problem 

in mining. Therefore, path planning should be performed to find the most feasible way 

to connect the start and end nodes. 

 

2.4 Path Planning 

Path planning aims to generate a feasible path between a start and a target node by 

avoiding obstacles. A path is feasible if all the nodes are connected without violating 

the kinematic constraints. Kinematic constraints arise from the technical limitations of 

the moving object. For instance, the turn of a mine car is restricted by a minimum 

turning radius. In addition, the capacity of a car to climb up or down a slope is limited 

by the maximum gradient. Path planning has been extensively used on robotics, 

aviation, and computer games.  
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There are two common types of path planning algorithms. The first approach, which 

is online path planning, is capable of predicting the optimum path based on the live 

information gathered during the vehicle’s movement. This approach is most widely 

used in robotics and aeronautics, where the environment is dynamic. Sensors attached 

on the vehicle detect unknown or changing environment and an autopilot system 

decides the optimum path simultaneous to the movement. A sample application is 

proposed by unmanned air vehicle (UAV) researchers [8] by an evolutionary algorithm 

that makes online planning and maximizes the information collected in a mission with 

multiple unmanned aerial vehicles. The second approach is offline path planning. In 

this approach, the environment is already recognized and the path is planned prior to 

the travel of the vehicle. This method is not dynamic and the vehicle moves exactly on 

the predicted path. In this study, we used offline path planning based on the static 

environment of the problem solution space. Problem inputs are recognized prior to the 

travel of the vehicle. Reif and Wang [9] have shown that this problem is NP-hard, 

which means that there is no existing polynomial time algorithm to date that can solve 

this problem. However, discretization techniques are proven to work well for these 

kind of problems. 

 

Discretization creates a configuration space to simplify the problem. This concept was 

introduced in the late 70s as a result of the kinematic constraints on moving objects. A 

set of parameters that define the position and orientation of the mine car in a plane is 

defined as the configuration. Commonly, reducing the robot down to a point and 

increasing the size of the obstacles is the method of building a configuration space. 

 

Path planning is an essential part of analyzing the short and/or safest travel of moving 

objects, especially in limited space such as underground mines. Different methods of 

Operational Research have been implemented to problems of mining engineering.  

 

2.5 Operational Research 

Operations research focuses on the analytical solutions of complex engineering and 

management problems. It aims to improve decision-making mechanism by providing 
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knowledge by using some computational tools; optimum values of the decision 

variables are explored. These tools originate from various disciplines like 

mathematics, statistics, economics and engineering.  

 

The history of Operations Research goes back to the early stages of WWII. British and 

American armies were looking for effective methods of allocating military resources 

to different operations. Therefore, they established a scientific research group. After 

the war, the booming industry interested on this new field, which had proven its 

success. Operations Research problems require high computational capacity. Although 

scientists developed new solution techniques, those handful calculations took long 

time for human operators. Invention of electronic computers led to faster calculations 

by a capacity increase of arithmetic calculations of thousands of times. 

 

Implementing an Operations Research method starts by defining the mathematical 

model of the problem. Formulation consists of parameters, decision variables, 

objective function, and constraints. The coefficients in the objective function, 

constraints and exponents in nonlinear formulations are provided by the parameters. 

The mathematical model determines the decision variables. The objective function 

calculates a cost to be minimized or maximized considering the constraints. 

Constraints are limits of the decision variables such as the upper and lower limits. 

 

Optimization is commonly used in mining. Pit optimization techniques are used to 

determine the excavation boundary in open pit mines with the maximum Net Present 

Value. Recently, there are some studies on the optimization of stope dimensions in 

underground mines. Some of the commonly used optimization methods in mining are 

linear programming, integer programming, nonlinear programming, dynamic 

programming and network theory. 

 

Linear programming is a constrained optimization method with a linear objective 

function and linear constraints. Simplex method and interior point method are 

commonly used solution algorithms for Linear Programming. 
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Integer programming is almost similar to the Linear Programming. Difference lies in 

the decision variable, which must be any value greater than or equal to 0 and also an 

integer. Binary situations like 1 or 0 can be modelled with Integer Programming. 

Solution of Integer programs are not as easy as the Linear programs. Branch and bound 

algorithm makes systematic enumeration for the solution. 

 

Nonlinear Programming investigates any nonlinearity in the objective function or the 

constraints. Decision variables can be any discrete value that is greater than zero. 

Although the problem can be solved more easily by linearization of the constraints, it 

may cause loss of accuracy. Unconstrained nonlinear programs can be solved by the 

steepest decent and Newton’s method. Penalty and barrier algorithms solve 

constrained nonlinear programs. 

 

A model with integer decision variables is called a pure integer program. A Mixed 

Integer Program consists of integer and continuous variables together. If there are 

nonlinear constraints, then it is a mixed integer nonlinear program. 

 

Mathematical problems are classified based on their level of complexity. P problems 

can be solved by polynomial time algorithms. np is the maximum solution time for 

these problems, where n is the input size and p is a constant. NP problems cannot be 

solved efficiently in polynomial time but any solution can be verified. NP stands for 

‘Nondeterministic polynomial time’. NP-hard problems are harder than any NP 

problem. If a polynomial time algorithm can solve an NP-complete problem, then there 

is a polynomial time algorithm for every NP-complete problem.  

 

Simulation is used to investigate uncertainties and different scenarios in complex 

mining related problems. Open pit haul fleet selection and production scheduling are 

either simulated or optimization techniques are applied. Heuristic methods can be used 

when the explicit expression of the problem is difficult or the solution is time 

consuming. Optimization algorithms can be fed by a heuristic initial solution to obtain 

a faster convergence. An example to this is the shortest path optimization that can be 
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applied to underground mining equipment. A well-known concept in path optimization 

is the Dubins path. 

 

2.6 Dubins Path 

A particle mass in the space is free to move in any direction, which is equal to its 

degree of freedom. In these conditions, the shortest way of travelling from an initial 

point to a terminal point is a straight path. This type of behavior can be performed by 

a holonomic platform. Unlikely, a simple car can drive forward and backward but not 

on its sideways. As a natural consequence, parallel parking is a challenging task due 

to the complex maneuvers. Driver must steer the front wheels for a turning motion. 

Later, straight movements in forward and backward directions are required to fit the 

car in the parking lot. Such restricted motion capability makes the car nonholonomic. 

Underground mining vehicles are also nonholonomic. As the number of maneuvers 

increase, total length of travel also does. Apparently, it is challenging to determine the 

shortest path for a curved route.  

 

Lester Dubins [10] proposed that three motion primitives are sufficient to traverse the 

shortest curved path.  While the ‘Straight’ action moves the car on a straight path, 

‘Left’ and ‘Right’ actions turn the car on the assigned direction as sharply as possible. 

Motion primitives are denoted by their initial capitals. A sequence of three motion 

primitives is called as a ‘word’. Each word is a potential shortest path. Dubins declared 

that the shortest path is one of the six potential words:  

 

{RSL, LSR, RLR, LRL, RSR, LSL} 

where; 

           R = Right 

           S = Straight 

           L = Left 
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These are called the Dubins curves. Motion primitives can be classified based on the 

qualitative similarities. If ‘Left’ and ‘Right’ actions are symbolized by ‘C’, that is the 

initial of ‘Curve’ the Dubins curves are reduced to only two words:  

 

{CCC, CSC} 

 

Kirszenblat [11] presented physical interpretations of Dubins curves. On a perforated 

table, a string winds around thick disks and both ends of the string carries an equal 

weight. String under tension follows the shortest path and the curved sections are 

dominated by the radius of the disks. 

 

Figure 4 presents an overview of Dubins curves on a sample 2 dimensional curvature 

constrained path. The LHD follows an RSR path, which connects an initial point with 

(xi,yi) coordinates to a terminal point with (xt,yt) coordinates. Minimum turning radius 

is symbolized by trmin.  

 

Figure 4 Overview of an RSR type 2D Dubins curve 

 

The LHD starts motion with a heading angle of θi and arrives at the terminal point at 

a heading angle of θt. Starting from the initial point, heading angle of the car changes 
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at a constant rate on an arc shaped path until the outer tangent point of the circle with 

a radius of trmin. This curved section is denoted by ‘C’. Later, the heading angle kept 

constant up to the outer tangent point of the second circle and the straight motion is 

symbolized by ‘S’. Finally, the heading angle changes again at a constant rate until the 

LHD reaches the terminal point. ‘C’ denotes the final section. Similarly, LSL path 

connect the outer tangent points of the circles. However, RSL and LSR paths are 

connected by the inner tangent points. 

 

Figure 5 presents a sample for 2D Dubins curves between an initial point located at 

(0,0) and a terminal point at (50,50) coordinates. Initially the path is driven with a 

heading angle of 10° and the terminal point heading angle is requested to be 240°. 

Curvatures have a turning radius of 15 m. Among the six Dubins curves, the shortest 

path comes out to be an LSR path with a length of 119 m. 

 

 

Figure 5 Sample view of six alternative Dubins Paths in 2D space between two nodes 
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Dubins curves have a wide range of use in robotics and aeronautics. Plane autopilot 

systems control the avionics based on the output of the route planning algorithms. 

Dubins curves determine the optimum route between waypoints. Because planes are 

not appropriate for sharp maneuvers, physical constraints of the plane should be 

considered. Underground mining vehicles have very similar physical restrictions. 

 

Dubins [10] and Boissonnat et al. [12] proved that the shortest curvature constrained 

path on a 2D space is formed of three motion primitives. Sussman [13] showed that in 

a 3 dimensional problem space, the shortest path can be either a helix, a CSC path, a 

CCC path or a degenerated form of a Dubins path. An underground mine ramp is a 3 

dimensional structure. Apparently, the original concept should be modified to work in 

the 3D environment. The optimization problem in 3D environment might require a 

computationally efficient optimization solver, such as Dynamic Programming. 

 

2.7 Dynamic Programming 

Dynamic programming (DP) is an optimization solver with the benefit of 

computational efficiency. Explicit enumeration guarantees the global optimum by 

checking each potential solution. However, solution takes longer time due to solving 

sub problems repeatedly. DP simply breaks down the problem into simpler sub 

problems. Each sub problem is solved only once and called from a look up list when 

it is needed. By this way, the number of computations are reduced. The advantage is 

more apparent when the input size escalates the number of repeating sub problems 

exponentially. 

 

A simple illustration for the solution mechanism of DP can be seen in Figure 6 for a 

travelling salesman problem. In this characteristic problem, each of the nodes denoted 

by a capital letter is a city and called as states. There are four groups of cities that are 

called stages. A salesman plans to start from city A and arrive at city H by travelling 

the shortest path. Initially, DP generates a distance matrix showing the distance 

between each paired cities and later determines the shortest route that visits at least 

one city in each stage. The search can possibly flow in forward direction (from city A 
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to city H) or in the backward direction (from city H to city A). In this study, backward 

induction is preferred. 

 

Figure 6 Sample solution tree for DP 

 

Commonly, DP problems have the following characteristics: 

1. The problem can be divided into ‘stages’ with a ‘decision’ required at each 

stage.  

2. Each stage has a number of ‘states’ associated with it.  

3. The decision at one stage transforms one state into a state in the next stage.  

4. Given the current state, the optimal decision for each of the remaining states 

does not depend on the previous states or decisions.  

5. A recursive relationship identifies the optimal decision for a stage, given that 

the next stage has already been solved. 

6. The final stage must be solvable by itself.  

 

Complexity of a problem is directly related to the number of states and stages. DP 

would be inefficient for a crowded solution space. Intelligent algorithms perform better 

by sacrificing the global optimality. However, sub optimal solutions would be more 

useful where the global optimum does not make a significant difference. Evolutionary 

algorithms are alternative methods to DP in solving complex problems. 
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2.8 Evolutionary Algorithms 

Evolutionary algorithm (EA) is the most general name to define computer-based 

problem solving systems that use computational models of evolutionary processes   as 

the main concept in their design and implementation. There are various evolutionary 

algorithms. Most commonly knowns are:  

 Genetic algorithm  

 Evolutionary programming  

 Evolution strategies  

 Classifier system 

 Genetic programming  

 

All of them are based on the same concept that simulates the ‘evolution’ of ‘individual’ 

structures via processes of ‘selection’, ‘mutation’, and ‘reproduction’.  

 

EAs improve a ‘population’, by evolving the weak parts that are determined by 

‘selection’ rules. Evolving is achieved by “search operators", (or genetic operators), 

such as ‘recombination’ or ‘mutation’. ‘Individual’ in the population is measured by 

its ‘fitness’ in the ‘environment’. ‘Reproduction’ focuses on highly fit individuals. 

Recombination and mutation provide perturbation to those individuals. The algorithms 

basically imitate the biological process to determine better off springs. This study 

focused on implementing these problem solving techniques for shortest path 

optimization while avoiding certain regions in underground mining.  

 

2.9 Rock Mass Classification Systems 

Rock mass quality can be quantified by classifications systems. This section makes a 

brief investigation about these kinds of systems.   

 

2.9.1 Overview of Geomechanical Classification Systems 

Rock engineers aim to design safe and economical underground and surface rock 

structures. Common tools are analytical, observational, and empirical methods. 

Analytical methods investigate stresses and deformations around openings by closed 
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form solutions, numerical models, analog simulations and physical models. 

Observational methods keep track of in-situ ground stresses and deformations while 

the excavation is in progress. Calibrating the numerical model with field measurements 

provide a reliable validation tool. Empirical methods suggest quantitative relations 

derived from statistical data for the purpose of solving certain rock stability problems. 

Rock mass classification is one of the empirical methods that relies on case histories 

and requires periodical update. 

 

Rock mass quality is an important aspect that needs to be well defined before 

constructing a rock structure. Classification systems are practical tools for engineers 

to characterize the rock mass even with limited input data. Qualitative assessments can 

be easily converted to quantitative descriptions to represent the rock mass properties. 

It is also an advantage to establish a common ground for the experts of different 

disciplines. 

 

Bieniawski [14] defines the most fundamental functions of rock mass classification 

systems: 

a. Dominant parameters that determine the behavior of rock mass should be 

identified. 

b. Rock masses of different quality should be divided into classes. 

c. Generated rock mass classes should provide information about their 

characteristics. 

d. Types of rocks encountered in different sites should be related to each other. 

e. Quantitative data representing rock mass properties and guidelines to assess 

that data should be provided for engineering design. 

f. An effective way of communication should be established for the members of 

geotechnical design groups coming from different backgrounds. 

 

Classification systems should not replace analytical - numerical methods, field 

observations or engineering judgment but they are just useful tools in the preliminary 
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stage of design which is going to be the basis of further advanced analysis techniques 

leading to the ultimate solution of the design problem. 

 

2.9.2 Historical Background of Rock Mass Classification Systems 

Researchers have developed numerous rock mass classification systems either for 

general use or specific purposes. 

 

Terzaghi [15] was the first researcher to classify rock masses in terms of their 

geotechnical characteristics for engineering design purposes. He proposed support 

systems by considering underground opening dimensions according to the nine rock 

classes defined by himself. 

 

Lauffer [16] system highlights the relation of active span and stand up time for support 

design for the first time. It has significant effect on development of recent classification 

systems, however it lacks of usefulness due to lack of a rating system. 

Deere et al. [17] established a quantitative index called Rock Quality Designation 

(RQD). Proportion of length of drillhole core samples obtained from diamond drilling 

and greater than 100 mm to the total length of drilling is defined as the RQD index. 

Although it is a fast and easy way to investigate the rock quality, it does not consider 

geological or groundwater conditions but only focuses on fractures. 

 

Wickham et. al. [18] proposed Rock Structure Rating (RSR). It is a quantitative 

classification method and it provides support system suggestions. Although this 

system relies on case histories of small tunnels supported by steel sets it was the 

pioneer of referencing to shotcrete support. RSR score is the summation of three 

parameters geology, geometry, and groundwater effect parameters, which are denoted 

by A, B, and C initials. 

 

Barton et. al. [19] introduced Q-system that can predict rock mass characteristics and 

tunnel support requirements. Q index has a logarithmic scale between 0.001 -1000 and 

it is based on six parameters. 
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Recently, Aydan et. al. [20] introduced a novel rock mass rating system named as Rock 

Mass Quality Rating (RMQR). Estimation of rock mass properties from intact rock 

properties and rock classification systems is a widely used method. In spite of its 

usefulness, this method is known to have some drawbacks. RMQR suggests a new 

methodology to estimate the rock mass geomechanical properties. 

 

The most widely used classification systems are Rock Mass Rating (RMR) and Q-

system. In this study, rock mass covering the haul road is optimized by depending on 

the RMR scores. In the following section, it will be explained in more detail. 

 

2.9.3 Rock Mass Rating (RMR) 

Bieniawski [21] developed a popular rock mass classification system that is called 

Geomechanics Classification or Rock Mass Rating (RMR). The system has been 

modified several times by adjusting the rating parameters and interval boundaries. In 

addition, it is adapted for specific purposes. For instance, Unal [22] proposed an 

empirical relation to predict rock load intensity that causes roof collapse in coal mines. 

Romana [23] developed an enhanced version of the basic RMR by adding four 

geometrical parameters in order to predict slope failure modes. It is mostly used in 

tunneling, foundations, and slopes. Moreover, there are application in coal mining, 

rippability, and boreability. 

 

Singh and Goel [24] summarizes some of the significant modifications in the core 

prediction mechanism. In 1974, the number of RMR parameters were reduced from 8 

to 6. In 1975, ratings of parameters were adjusted and support recommendations were 

reduced. In 1976, rating intervals of parameters were modified. In 1979, ISRM (1978) 

rock mass descriptions were adopted. The final revision came in 1989. Due to 

changing class boundaries and ratings throughout the time, same rock mass can take 

different RMR scores; thus, it is vital to state the RMR version while working on RMR 

scores. 
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In its basic version, RMR has five parameters, which are; 

a. Uniaxial compressive strength (UCS) of intact rock material 

b. Rock quality designation (RQD) 

c. Spacing of discontinuities (JS) 

d. Condition of discontinuities (JC) 

e. Groundwater conditions (GW) 

 

RMR basic parameters are summed up to rate the rock quality as shown in Equation 

(2). 

௕௔௦௜௖ܴܯܴ ൌ ܵܥܷ ൅ ܦܴܳ ൅ ܵܬ ൅ ܥܬ ൅  (2) ܹܩ

 

Some adjustment factors can be added to the basic RMR score for use in special 

conditions. Some of these factors are orientation and blasting adjustment. 

 

The resultant score can be used to interpret the rock quality class, stand up time for 

underground openings, and rock mass mechanical parameters. 

 

2.9.4 Common Problems of Classification Systems 

Classifications systems are known to have some drawbacks. Daftaribesheli et. al. [25] 

reports them to be sharp class boundaries, assigning same numerical scores for upper 

and lower class boundaries, ambiguity in converting linguistic terms to numerical 

values, and presence of uncertainties as a result of the complex nature of rock. Problem 

of the same scores for upper and lower limits in RMR has been studied by Tomás et 

al. [26]. They recommend the use of continuous rating just as Sen and Sadagah [27]. 

Although continuous rating works for parameters defined by numerical intervals, 

linguistic parameters pursue to constitute a problem. Rock quality score may be 

misleaded by these drawbacks. Basarir and Saiang [28] created two hypothetical rock 

masses of different properties and proved that it is possible to obtain the same RMR 

score. They proposed fuzzy RMR as a solution. Yardimci and Karpuz [29] proved that 

the RMR score estimation is affected by the mentioned drawbacks on weak rocks. 

They proposed a Fuzzy RMR system to overcome the problem. 
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CHAPTER 3 

 

 

3 PREVIOUS WORK 

 

 

 

3.1 Optimization in Mining 

Optimization has been used in mining since the 1960s. Initial attempts were on the 

production scheduling of open pit mines [30]. However, it didn’t take so long to see 

underground mining applications. As a result of depleting orebodies and falling 

commodity prices, optimization has become more important today, like it has never 

been before. Researchers study on novel applications of optimization in underground 

mining.  

 

Erdogan et. al. [31] studied the applicability of some of the stope boundary 

optimization algorithms. They aimed to maximize the economic profit by selecting the 

best possible layout. Their application considers the operational, geotechnical and 

physical constraints. A real underground mine operation is examined by four 

algorithms, which are namely, Floating Stope, Maximum Value Neighborhood, and 

two special applications that are developed by Sens and Topal [32], Sandanayake [33], 

and Topal [34]. Results of the algorithms are compared using the dimensions of an 

actual underground mine stope. 

 

Gilani and Sattarvand [35] presented a new non-linear heuristic approach to model 

variable slope angles in open pit optimization. They used a fixed slope angle together 

with special block configurations. They report that these configurations suffer from 

creating the higher or lower angles than desired. Later, they used the cone template 

based methods with variable slope angles and improved the solution quality. 
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Salama et.al. [36] compared operating costs of a mine at different production levels 

for diesel and electric trucks, shaft and belt conveyor haulage systems. Their study 

considered different scenarios with forecasted energy prices. They intended to search 

for alternative sequencing techniques as mine depth increases. Discrete event 

simulation and mixed integer programming (MIP) were used to optimize the mine 

plans. They revealed that energy cost increases across each haulage method at both 

current and future energy prices by increasing depth. In addition, their study proves 

that discrete event simulation and MIP is a useful combination for a better decision 

making mechanism. 

 

Nehring et.al. [37] studied production schedule optimization for underground mines. 

A classical MIP model was established for production scheduling of a sublevel stoping 

operation. A new model formulation was proposed to significantly reduce solution 

times. Case studies were carried out to check the performance of the proposed model. 

 

In mine ventilation, solving ventilation networks of natural air splitting is a classical 

problem. Commonly the problem is formulated similar to the Kirchhoff's voltage and 

current laws. The solution is obtained by an iterative technique, which is known as the 

Hardy Cross method. Ueng and Wang [38], proved that the problem can be solved as 

an unconstrained optimization (minimization) problem.. 

 

Kaiyan et.al. [39] established a nonlinear multi-objective optimization mathematical 

model with constraints for highly difficult semi-controlled splitting problem. The 

optimization is based on the theory of mine ventilation networks. They proposed a new 

algorithm, that combines the improved differential evaluation and the critical path 

method (CPM). It has been observed that the global optimal solution is obtained more 

efficiently. A computer program was developed and it is capable of solving large-scale 

generalized ventilation network optimization problems. 

 

Bakhtavar et.al. [40] studied the optimal transition depth from open-pit to 

underground. They established a model based on block economic values of open-pit 



 
 

33 
 

and underground methods together with the Net Present Value (NPV). Later, they 

calculated the optimal transition depth based on NPV. 

 

3.2 Underground Mine Access Optimization 

Underground mine access optimization is a relatively niche subject. Although some 

researchers have proposed premature solutions, they need to be improved. 

 

Brazil and Thomas [41] have realized the potential of optimization and strategic 

planning of underground mines. They adapted network optimization on underground 

mine optimization. Aim of the study was to design a connected system of declines, 

ramps, drives, and possibly shafts. By this way, capital development and haulage costs 

over the lifetime of a mine can be minimized. Mathematical model of this problem 

was established as a variation of the Steiner problem. Navigability constraints and 

obstacle avoidance were included. They established a fundamental model, and 

advanced by more complicated and generalized models. These models add extra costs 

and constraints to the fundamental model. 

 

Kirszenblat et.al. [42] presented an exact 3D algorithm for the construction of the 

shortest curvature-constrained path interconnecting a given set of directed points. 

Minimum Dubins network is an underground mining related optimization problem. 

They aimed to construct a navigable network of tunnels for trucks with the least cost. 

They claimed that the Dubins network problem is similar to the Steiner tree problem; 

however, there is a curvature constraint and the terminals are directed. They proposed 

a minimum curvature-constrained Steiner point algorithm by fixing two terminals and 

varying the third. 

 

Brazil et.al. [1] studied underground networks and improved underground access road 

optimization. Research outcomes are two software tools called as PUNO and DOT. 

These softwares make use of principles from geometric optimization. They used these 

tools on ore deposits at the Prominent Hill mine in South Australia and the Leeville 
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old mine in Nevada. Comparing the software and human designs, it is concluded that 

the software makes better and faster design. 

 

Later, Brazil et.al. [3] improved the DOT by modelling the decline as a mathematical 

network that meets the operational constraints and costs of a real mine. Geometric 

methods were used for constrained path optimization. The improved algorithm 

effectively uses the geometric properties of gradient and turning circle constrained 

paths. By this way, efficiency of the procedure for designing optimal declines has been 

increased. The new version of DOT, which is DOTTMover, contains the mentioned 

improvements. 

 

Chang et. al. [43] studied the minimum cost curvature-constrained path between two 

directed points. In addition, they investigated the cost effect of geological 

characteristics on the tunnel development [44]. Their research generalizes the 

outcomes of the Dubins paths. To summarize, they claim that optimal paths are of the 

same forms as Dubins paths if the reciprocal of the directional-cost function is strictly 

polarly convex. However, there exists an optimal Dubins path if the strict polar 

convexity is relaxed to weak polar convexity. The results apply to the optimization of 

underground mine networks.  

 

Brazil et.al. [45] focused on  optimizing the development and haulage costs of 

accessing to and from the ore zones. In addition to the previous work on ramps, shafts 

were also investigated. They modelled this optimization problem as a weighted 

network.  

 

Zoran et. al. [46] developed a genetic algorithm to interconnect multiple orebodies 

with a decline. They modeled a spatial network with nonlinear constrained objective 

function representing the cost of mine development and ore haulage. Later, they 

minimized the cost. 

Research on optimizing underground haul roads is still in progress and can be defined 

specifically by using certain input and output parameters. 
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CHAPTER 4 

 

 

4 THE SHORTEST UNDERGROUND MINE ACCESS ROAD BY SINGLE 

OBJECTIVE OPTIMIZATION 

 

 

 

This chapter presents the implementation of commonly used optimization techniques 

for determining the shortest underground mine haul road. 

 

First of all, a mathematically proven method for the shortest curved path connecting 

an initial node to a terminal node is presented. This method guarantees the path with 

minimal length by the prescribed travel directions in each node. However, changing 

node travel directions has the potential to improve optimality. Brute force algorithms 

investigate each node for each possible travel direction. Global optimality is chased 

for the sake of computational efficiency. Search is conducted at least between two 

nodes. As the number of nodes increase, optimization takes more time. Heuristic 

algorithms are presented as an alternative. This approach implements some extra 

limitations to reduce the solution space. Although computation is faster, the result is a 

local optimum. Dynamic Programming, is proposed as an efficient alternative to chase 

the global optimality. The basic mechanism relies on the mathematically proven 

method that was presented before; however, search is carried out between at least two 

nodes and more.  

 

Finally, Genetic Algorithm (GA) is implemented to determine the near global optimum 

path. Global optimality is sacrificed for the sake of computational efficiency. In 

addition, local corrections are made on the path for avoiding undesired regions or 

catching desired regions. Heuristics are added by special mutation operators.  
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In order to check validity, the algorithms are implemented on validation problems. 

Later, they are compared by their computational efficiency and degree of optimality. 

Advantages of the proposed Genetic Algorithm are noticed.  

 

4.1 Presentation of the Essentials of Underground Mine Haul Road 

Optimization Problem 

In this section, the underground haul road optimization problem is presented. 

Assumption, inputs and outputs are introduced. A suitable mathematical model for 

simulating the motion of mobilized underground mining vehicles is proposed. 

 

4.1.1 Overview of the Problem: Assumptions, Inputs and Outputs 

In this section, an overview of the underground mine access optimization problem is 

presented. Basic layout of the problem geometry is presented in Figure 7. The path 

presented by a green line connects the surface portal of an underground mine to the 

crosscut entry points of the sublevels. The path is a navigable and curvature 

constrained route.   

 

 

Figure 7 Basic layout of the underground mine haul road optimization problem 
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The path progresses from the upper elevations to the lower elevations. Visiting 

sequence of the nodes is certain. In this way, there is no need to solve a Travelling 

Salesman Problem (TSP). To briefly explain, TSP is necessary where there are 

multiple nodes to travel and visiting sequence is not certain.  

Assumptions of the algorithm, inputs and expected outputs are listed below. 

 

Assumptions: 

 The algorithm makes valid shortest path predictions for single orebody 

problems. 

 The portal location and the crosscut entry points (nodes) are defined in terms of 

x, y, and z coordinates. 

 Heading angles for each of the nodes are defined. 

 Visiting sequence of the nodes is known. 

 Elevation of the nodes decreases gradually.  

 The algorithm cannot predict paths climbing up a slope. 

 The algorithm is capable of simulating horizontal paths. 

 The valid path between two nodes can be one of the followings: 

- A straight section. 

- A Curve-Straight-Curve (CSC) type section 

- A Curve-Curve-Curve (CCC) type section 

- A straight section followed by a helical ramp 

- A helical ramp 

 If two main nodes can be connected by a straight path within the allowable limits 

of gradient, then it is preferred. 

 If it is not possible to connect two main nodes by a straight path, the shortest one 

of the CSC or CCC type section is used. 

 If two main nodes can be connected by a CSC or CCC type of path with a smaller 

gradient than the maximum allowable gradient, than it is used. 

 If two main nodes cannot be connected by neither of a straight section, a CSC or 

CCC type of path with the maximum allowable gradient because of the high 

elevation difference, then the final portion is connected by a helical path with a 
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gradient up to the maximum allowable gradient. In case a smaller gradient is 

possible in this portion, it is used. 

 Number of turns in a helical ramp depends on the level difference between two 

succeeding nodes and the gradient. 

 Undesired regions are polygons that are restricted from the fixed elevations on 

the roof and floor 

 The optimum path is located exactly inside the desired region 

 

Givens: 

 Node coordinates.  

 Undesired regions. 

 Desired region. 

 Kinematical constraints: 

- Minimum turning radius (m) 

- Maximum gradient (%) 

 Rock mass quality block model. 

 

Outputs: 

 x, y, z coordinates of the equally spaced nodes on the shortest valid path. 

 

4.1.2 Mathematical Model of an Underground Mining Vehicle 

In path planning, location of a moving object needs to be predicted throughout the 

simulation time. Accurate or simple kinematical models have been proven to work 

mostly by Unmanned Air Vehicle (UAV) path planning researchers. True motion of a 

vehicle can be accurately modelled using non-linear fully coupled ordinary differential 

equations of motion for a vehicle moving along three axes with six degrees of freedom. 

This approach is also capable to include the forces and moments acting on the vehicle 

body, which are driven by gravity, propulsion and aerodynamic forces. However, no 

closed form solutions exist for these complex equations. Therefore, numerical 

solutions are required for steady state solutions. A more simplistic approach, which is 

the Dubins vehicle, is an appropriate kinematical model for underground mining 



 
 

39 
 

equipment. A Dubins vehicle is a bounded speed and no reversing planar vehicle with 

constriction to move along paths of bounded curvature [47]. The equations for an 

underground mining equipment modelled as a Dubins vehicle can be seen below: 

 

௜ݔ ൌ ௜ݒ cosሺߠ௜ሻ ݅ ൌ 1…݊  

௜ݕ ൌ ௜ݒ sinሺߠ௜ሻ ݅ ൌ 1…݊  

௜ݖ ൌ െݒ௜ sinሺ߰௜ሻ ݅ ൌ 1…݊  

௜ߠ ൌ 	
௜ݒ௜ݑ
௠௜௡ݎ

						 ݅ ൌ 1…݊  

where;  

݅ ൌ ݎܾ݁݉ݑ݊	݁݀݋݊   

݊ ൌ ݉ݑ݉݅ݔܽ݉ ݎܾ݁݉ݑ݊ ݂݋ ݏ݁݀݋݊   

௜ݔ ൌ ݁ݐܽ݊݅݀ݎ݋݋ܿ	ݔ ݂݋ ݄݁ݐ ݅௧௛݊݁݀݋   

௜ݕ ൌ ݁ݐܽ݊݅݀ݎ݋݋ܿ	ݕ ݂݋ ݄݁ݐ ݅௧௛݊݁݀݋   

௜ݖ ൌ ݁ݐܽ݊݅݀ݎ݋݋ܿ	ݖ ݂݋ ݄݁ݐ ݅௧௛݊݁݀݋   

௜ߠ ൌ ݄݁ܽ݀݅݊݃ ݈ܽ݊݃݁ ݂݋ ݄݁ݐ ݅௧௛݊݁݀݋  

߰௜ ൌ ݐ݊݁݅݀ܽݎ݃	 ݂݋ ݄݁ݐ ݅௧௛݊݁݀݋   

௜ݑ ൌ ݈݋ݎݐ݊݋ܿ	݊ݎݑݐ   

௜ݒ ൌ ݕݐ݅ܿ݋݈݁ݒ   

௠௜௡ݎ ൌ ݉ݑ݉݅݊݅݉ ݃݊݅݊ݎݑݐ ݏݑ݅݀ܽݎ   

 

4.2 The Shortest Path between an Initial Node and a Terminal Node with 

Fixed Heading Angles 

This method establishes the fundamentals for the exhaustive search, heuristic 

algorithm, and Dynamic Programming. The shortest path connects an initial node to a 

terminal node. As mentioned before, Lester Dubins [10] proved that the shortest 

curved path is one of the six alternative paths. Each path is composed of three motion 

primitives, which are left turn, right turn and straight motion. Kinematical restrictions 

control the curved sections and gradient of the road. Minimum turning radius and 

maximum gradient parameters are controlled by the specifications of, mobile 

underground mining equipment. 
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4.2.1 Objective Function 

Objective of this path planning problem is to minimize the path length between two 

nodes. Mathematical expression is given below: 

 

 ሽ݄ݐ݃݊݁ܮ	݄ݐሼܲܽ	ࢋࢠ࢏࢓࢏࢔࢏ࡹ

Where; 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

 

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2

0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

Given; 

	ሺ݁ܽݐݏ௜௡௜௧௜௔௟	௡௢ௗ௘, ,௡௢ௗ௘	௜௡௜௧௜௔௟݄ݐݎ݋݊ ,௡௢ௗ௘	௜௡௜௧௜௔௟݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜௡௜௧௜௔௟	௡௢ௗ௘ሻ 

	ሺ݁ܽݐݏ௧௘௥௠௜௡௔௟	௡௢ௗ௘, ,௡௢ௗ௘	௧௘௥௠௜௡௔௟݄ݐݎ݋݊ ,௡௢ௗ௘	௧௘௥௠௜௡௔௟݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௧௘௥௠௜௡௔௟	௡௢ௗ௘ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  					ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉

 

4.2.2 Workflow of the Algorithm 

The Dubins car starts to travel on a curved section. Later, the path proceeds either by 

a straight or a curved section. Finally, the travel ends with a curved section. This study 

makes use of geometrical rules to calculate curvature constrained paths. Normally, 

Dubins curves are established in 2D space; however, gradient constraint is integrated 

to the algorithm. In case maximum gradient is not sufficient to connect to the terminal 

point, the path makes extra helical travels with the maximum possible gradient. 

Although a fixed gradient is highly recommended in underground mines, geometry 

may not allow it in some specific cases. Figure 8 shows the flowsheet of the shortest 

path algorithm between an initial node and a terminal node. 



 
 

41 
 

 

Figure 8 Flowsheet of the shortest path algorithm between an initial node and a terminal node 

 

Initial and final node coordinates and heading angles must be provided. For each node, 

the algorithm calculates the center points of the perpendicular circles on both sides 

with a distance of minimum turning radius. In this study, initial node and its 

perpendicular circles are called the ‘primary section’, the terminal node and its 

perpendicular circles are called the ‘secondary section’ and the transition zone that 

connects the primary section to the secondary section is called the ‘middle section’. In 

order to calculate six Dubins Paths, the algorithm must use one of the perpendicular 

circles in each section.  Figure 9 demonstrates a basic layout described above. 

• Initial and terminal node coordinates

• Minimum turning radius

• Maximum gradient

1. Provide inputs

2. Calculate inner and outer tangents

• RSL, LSR, RSR, LSL, RLR, LRL

3. Compute six Dubins Paths

• If any gradient less than max gradient is Ok, then use it

• If exactly max gradient is OK, then use it

• If max gradient is not sufficient, create extra helical ramp with the 
maximum possible gradient

4. Check for each path if the maximum gradient 
satisfies the  goal of reaching the terminal node. 

5. Calculate length of each Dubins Path

6. Select the shortest curved path
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Figure 9 Basic layout of a Dubins Path 

 

The transition zone is restricted either by the inner or outer tangent points between the 

circles. The algorithm starts by calculating the number of tangent lines. Inner tangent 

lines are necessary for ‘RSL’ and ‘LSR’ type paths while outer tangents are required 

for ‘RSR’ and ‘LSL’ type paths. If the number of tangent lines is equal to ‘0’ or ‘1’, 

then one of the circles is encapsulated by another. However, this state is valid only for 

circles with different radius. In this study, curvature is constrained. Therefore, there is 

no possibility for these two cases. If the number of tangents are ‘2’ or ‘3’ then the 

circles intersect on either one or two points. In these cases, only ‘RSR’ and ‘LSL’ type 

paths are possible. If the number of tangent lines is ‘4’ then all of the four paths that 

have a straight middle section are possible. Table 1 shows the number of tangent lines 

and their conditions. 
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Table 1 Equations for calculating the number of tangent lines 

Illustration 
Number of 

Tangent Lines
Condition 

 

ܦ 0 ൌ ඥሺܿ െ ܽሻଶ ൅ ሺ݀ െ ܾሻଶ 

 

ܦ 1 ൌ ଴ݎ| െ  |ଵݎ

 

଴ݎ| 2 െ |ଵݎ ൏ ܦ ൏ ଴ݎ ൅  ଵݎ

 

ܦ 3 ൌ ଴ݎ ൅  ଵݎ

 

ܦ 4 ൐ ଴ݎ ൅  ଵݎ
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Inner and outer tangent coordinates can be calculated by the equations between (3) and 

(12). 

ܦ ൌ ඥሺݔ௧ െ ௜ሻଶݔ ൅ ሺݕ௧ െ  ௜ሻଶ (3)ݕ

ܮ ൌ ඥܦଶ ൅ ሺܴ௜ േ ܴ௧ሻଶ (4) 

  

ܴଵ ൌ ටܮଶ ൅ ܴ௧
ଶ (5) 

ଵߪ ൌ
1
4
ඥሺܦ ൅ ܴ௜ ൅ ܴଵሻሺܦ ൅ ܴ௜ െ ܴଵሻሺܦ െ ܴ௜ ൅ ܴଵሻሺെܦ ൅ ܴ௜ ൅ ܴଵሻ (6) 

ଵݔ ൌ
௜ݔ ൅ ௧ݔ
2

൅
ሺݔ௧ െ ௜ሻ൫ܴ௜ݔ

ଶ െ ܴଵ
ଶ൯

ଶܦ2 േ 2
௜ݕ െ ௧ݕ
ଶܦ  ଵ (7)ߪ

ଵݕ ൌ
௜ݕ ൅ ௧ݕ
2

൅
ሺݕ௧ െ ௜ሻ൫ܴ௜ݕ

ଶ െ ܴଵ
ଶ൯

ଶܦ2 േ 2
௜ݔ െ ௧ݔ
ଶܦ  ଵ (8)ߪ

  

ܴଶ ൌ ටܮଶ ൅ ܴ௜
ଶ (9) 

ଶߪ ൌ
1
4
ඥሺܦ ൅ ܴ௧ ൅ ܴଶሻሺܦ ൅ ܴ௧ െ ܴଶሻሺܦ െ ܴ௧ ൅ ܴଶሻሺെܦ ൅ ܴ௧ ൅ ܴଶሻ (10) 

ଶݔ ൌ
௧ݔ ൅ ௜ݔ
2

൅
ሺݔ௜ െ ௧ሻ൫ܴ௧ݔ

ଶ െ ܴଶ
ଶ൯

ଶܦ2 േ 2
௧ݕ െ ௜ݕ
ଶܦ  ଶ (11)ߪ

ଶݕ ൌ
௧ݕ ൅ ௜ݕ
2

൅
ሺݕ௜ െ ௧ሻ൫ܴ௧ݕ

ଶ െ ܴଶ
ଶ൯

ଶܦ2 േ 2
௧ݔ െ ௜ݔ
ଶܦ  ଶ (12)ߪ

 

The mathematical model of the underground mining vehicle runs on a discrete path 

with equally spaced paces. The heading angle changes with a fixed rate on the primary 

and secondary sections. If the middle section is of ‘straight’ type, the heading angle 

keeps constant. Change in heading angle is controlled by the minimum turning radius 

(trmin), pace length (v), and calculated by equation (13). 

 

ܦ ൌ cosିଵ
ሺ2ݎݐ௠௜௡

ଶ െ ଶሻݒ

௠௜௡ݎݐ2
ଶ  (13) 
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Pace length is a critical parameter that may disturb the ideal path. To be more specific, 

if the pace length is a bigger value then the path may deviate from the terminal node. 

However, the problem has a final node constraint. An appropriate pace length should 

be selected. 

 

For the curved middle sections, the radius is determined by the distance between the 

primary and secondary sections. This radius can be at least the minimum turning radius 

and may be even more. 

 

After calculating all six Dubins Paths, the shortest one is selected. If both of the nodes 

have equal heading angles and their elevations conform, then the algorithm is capable 

of computing the shortest path as a straight path. In addition, if the nodes line up on 

the same vertical track, then the algorithm predicts a helical ramp as the shortest path. 

 

4.2.3 Verification 

Dubins path was proven by its success in the shortest curved path calculation. 

However, its Matlab implementation that is prepared in the scope of this study requires 

to be tested, whether it works properly in common problems and also for some special 

cases. 

 

This part presents the verification of the shortest path algorithm between two nodes. 

The algorithm is tested for five distinct cases that includes all of the general and some 

special cases: 

1. Dubins Path with a gradient less than the maximum gradient 

2. Extended Dubins Path with the maximum gradient 

3. Straight path 

4. Straight path with an extension 

5. Helical ramp 

 

Kinematical constraints are same for all the problems and presented in Table 2. 
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Table 2 Kinematic constraints for the verification problem 

Kinematic Constraints 
Minimum Turning Radius (m) Maximum Gradient (%) 

15 12 
 

The algorithm is implemented in Matlab. A special Graphical User Interface (GUI) is 

created for the sake of ease in repeating problems. 

 

Dubins Path with a gradient less than the maximum gradient 

The first problem seeks for the shortest path where node elevations are so close that 

the path gradient can be smaller than the maximum gradient. Their coordinates are 

presented in Table 3. 

 

Table 3 Node coordinates and heading angles for the first verification problem 

Node 
No: 

East (m) North (m) Elevation (m) Heading Angle (°) 

1 0 0 100 120 
2 100 100 90 225 

 

Table 4 shows the shortest path predicted by the algorithm is an ‘RSR’ type path and 

it has a length of 194 m. Apparently, alternative path types have much greater length. 

 

Table 4 Length of the alternative Dubins Paths for the first verification problem 

Path Length (m) 
RSL LSR RSR LSL RLR LRL 
198 281 194 276 203 287 

 

Figure 10 illustrates the shortest path connecting the initial node to the terminal node, 

coordinates of which are given in Table 3. 
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Figure 10 View of the shortest path for the first verification problem 

 

Extended Dubins Path with the maximum gradient 

The second problem looks for the shortest path when elevations difference between 

the nodes is so great that the path cannot reach the terminal node even with the 

maximum gradient. In such a case, the path is traversed by a typical Dubins Path and 

later a helical ramp with the possible maximum gradient is used to catch the terminal 

node. Node coordinates can be seen in Table 5. 

Table 5 Node coordinates and heading angles for the second verification problem 

Node  East (m) North (m) Elevation (m) Heading Angle (°) 
Initial 0 0 100 45 

Terminal 100 100 50 225 
 

Table 6 shows the shortest path predicted by the algorithm is an ‘LSL’ type path and 

it has a length of 475 m. Apparently, alternative path types have much greater length. 

 



 
 

48 
 

Table 6 Length of the alternative Dubins Paths for the second verification problem 

Path Length (m) 
RSL LSR RSR LSL RLR LRL 
476 477 476 475 476 484 

 

Figure 11 illustrates the shortest path connecting the initial node to the terminal node, 

coordinates of which are given in Table 5. 

 

Figure 11 View of the shortest path for the second verification problem 

 

Straight path 

The third problem aims to test a special case. It checks the capability of the algorithm 

whether it can predict the shortest path as a straight path when the nodes have the same 

heading angles and the elevation difference allows to travel with the maximum 

gradient or less. Table 7 presents the node coordinates. 

 

Table 7 Node coordinates and heading angles for the third verification problem 

Node East (m) North (m) Elevation (m) Heading Angle (°) 
Initial 0 0 100 60 

Terminal 100 100 90 60 
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The algorithm predicts the shortest path as a straight path and it has a length of 141 m. 

Figure 12 illustrates the shortest path connecting the initial node to the terminal node, 

coordinates of which are given in Table 7. As it is a straight path, the algorithm is 

approved. 

 

Figure 12 View of the shortest path for the third verification problem 

 

Straight path with an extension 

The fourth problem extends the previous problem by checking whether the algorithm 

can perform the shortest path as a straight path, when the nodes have the same heading 

angles and the elevation difference is so great that the travel cannot be achieved by the 

maximum gradient. In this case, the straight path proceeds by a helical ramp with the 

maximum possible gradient is used. Table 8 presents the node coordinates. 

 

Table 8 Node coordinates and heading angles for the fourth verification problem 

Node East (m) North (m) Elevation (m) Heading Angle (°) 
Initial 0 0 100 60 

Terminal 100 100 80 60 
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The algorithm predicts the shortest path as a straight path proceeded by a helical ramp, 

as it is expected. Figure 13 presents the path, which has a length of 234 m. This 

approves that the algorithm is successful in predicting straight paths extended by 

helical ramps. 

 

 

Figure 13 View of the shortest path for the fourth verification problem 

 

Helical ramp 

The final problem investigates another special case in which the nodes are located on 

a vertical line. A helical ramp is the expected shortest path in such a kind of situation. 

Especially, it is the most common layout to be observed in underground mines. 

Gradient of the ramp is desired to be the maximum allowed value and there may be 

some local correction in some special cases. Table 9 presents the node coordinates for 

a simple problem. 
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Table 9 Node coordinates and heading angles for the fifth verification problem 

Node East (m) North (m) Elevation (m) Heading Angle (°) 
Initial 0 0 100 270 

Terminal 0 0 80 270 
 

Figure 14 proves that the algorithm is successful in predicting the shortest path as a 

helical ramp, as it is expected. The path has a length of 190 m. 

 

 

Figure 14 View of the shortest path for the fifth verification problem 

 

Node Heading Angle Sensitivity Analysis 

Dubins path determines the shortest path between directed nodes. Changing the 

heading angle in a node redefines the shortest path length. In order to observe this 

situation, a sensitivity analysis is carried out on a sample problem configuration. Node 

coordinates are presented in Table 10. Initial node heading angle is fixed and 45° while 

the terminal node heading angle is changed by 1° in each step and the shortest Dubins 

Path is calculated. 
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Table 10 Node coordinates and heading angles for the fourth verification problem 

Node East (m) North (m) Elevation (m) Heading Angle (°) 
Initial 0 0 100 45 

Terminal 100 100 0 … 
 

Figure 15 shows the shortest path is obtained when the terminal node heading angle is 

341°. The path is a RLR type Dubins Path. 

 

 

Figure 15 The shortest path for sensitivity analysis 

 

Figure 16 shows the shortest path length by a 1° increase in the terminal node heading 

angle between an interval of 0° - 360°. Each of the states belong to one of the six 

Dubins paths. For instance, a 9° terminal node heading angle provides a shortest path 

of RSL type while, a 120° terminal node heading angle results in an LRL type Dubins 

Path. This sensitivity analysis apparently shows that the node heading angle governs 

the Dubins Path type and the path length. Therefore, heading angle becomes one of 

the most important control variables. 
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Figure 16 Sensitivity analysis of the terminal node heading angle 

 

4.3 Exhaustive Search 

Underground mines have several production levels that are called sublevels, especially 

for steeply dipping seam type orebodies. Sublevels are accessed via ‘crosscuts’. 

Underground mine access is the road connecting the surface portal to the sublevels. In 

order to determine the shortest path for this road, the algorithm based on Dubins Path 

is applied between each node pairs. Optimization of this road requires to repeat the 

same procedure in each node for a heading angle range of 0°-360°.  As the number of 

nodes increase, the problem transforms into an exponential time problem, which is 

very hard to solve. However, the result is guaranteed to be the global optimum because 

all the potential solutions are controlled. To summarize, exhaustive search is an 

optimization technique that considers all of the possible solutions and provides the 

global optimum. 

 

4.3.1 Objective Function 

Objective of this path planning problem is to minimize the path length between many 

nodes. Each node pair is connected by any one of the Dubins Paths or special paths. 

Below is the mathematical expression: 
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 ሽ݄ݐ݃݊݁ܮ	݄ݐሼܲܽ	ࢋࢠ࢏࢓࢏࢔࢏ࡹ

Where; 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ	݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

 

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2

0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

Given; 

ሺ݁ܽݐݏ௜, ,௜݄ݐݎ݋݊ ,௡௢ௗ௘	௜೟೓݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜௘ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  	ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉

 

4.3.2 Workflow of the Algorithm 

Exhaustive search requires coordinates of the surface portal and crosscut entry points. 

Kinematical constraints are selected to conform to the mining equipment 

specifications in terms of minimum turning radius (m) and maximum gradient. Search 

starts by assigning heading angles to each node between an interval of 0 - 360°. Later, 

six Dubins Paths are calculated for each of the node pairs. All of the possible heading 

angle combinations are calculated. The shortest path in each combination is selected 

to represent the ideal path. Apparently, increasing number of main nodes exponentially 

increases the combinations and more calculation time is required. Finally, the shortest 

overall path connecting all of the nodes is determined. Workflow of the algorithm can 

be seen in Figure 17. 
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Figure 17 Flowsheet of the exhaustive search for the shortest path in underground mine haul roads 

 

Although exhaustive search makes sure to reach the global optimum, it lacks 

computational efficiency. Even for a calculation between two nodes there are 360 x 

360 heading angle combinations. Considering a simple mine requires tens to hundreds 

of nodes for a main haul road, it is obvious that a dramatically high computation time 

is required. Thus, this algorithm needs to be improved. 

 

 

 

• Node coordinates (more than two nodes)

• Minimum turning radius

• Maximum gradient

1. Provide inputs

2. Calculate inner and outer tangents

• RSL, LSR, RSR, LSL, RLR, LRL

3. Compute six Dubins Paths between each two node 
pairs for a range of heading angles between 0°-360°

4. Select the shortest path for each state of heading 
angles

5. Calculate the total path length for all possible 
heading angle combinations in each node

6. Select the state of heading angle that provides the 
shortest overall path
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4.4 Heuristic Algorithm 

Heuristic algorithm is a modification of the exhaustive search. Adding some extra 

constraints decreases the size of solution space. These constraints rely on the expert 

opinion. By this way, computation requires less time. Underground mine design may 

be restricted by some undesired rock mass volumes. Mine design experts may prefer 

to avoid the main haul road from passing those regions. Manipulating the heading 

angle of nodes can achieve this goal.  The heuristic algorithm eludes unnecessary 

calculations and focuses on the path that traverses on the desired directions. 

 

4.4.1 Objective Function 

Objective of this path planning problem is to minimize the path length between many 

nodes. Each node pair is connected by any one of the Dubins Paths or special paths. 

Difference from the exhaustive search lies in the solution space. Below is the 

mathematical expression: 

 ሽ݄ݐ݃݊݁ܮ	݄ݐሼܲܽ	ࢋࢠ࢏࢓࢏࢔࢏ࡹ

where; 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ	݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2

0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

Given; 

ሺ݁ܽݐݏ௜, ,௜݄ݐݎ݋݊ ,௜݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  					ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉

௕௢௨௡ௗ௔௥௬	௜,௟௢௪௘௥ߠ ൑ ௜ߠ ൑  					௕௢௨௡ௗ௔௥௬	௜,௨௣௣௘௥ߠ
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4.4.2 Workflow of the Algorithm 

In exhaustive search, node heading angles are values within an interval of 0 - 360°. In 

mining practice, the main haul road is most likely to be perpendicular or close to 

perpendicular to the crosscuts. Heuristic algorithm restricts heading angle intervals for 

nodes. Normally, complete solution space has 360 x 360 possibilities. However, 

heuristic algorithm considerably decreases the solution space. 

This approach has disadvantages in terms of the degree of optimality. It does not 

guarantee the global optimum solution because all probable solutions are not 

evaluated. The solution cannot be claimed to be a near optimum solution because there 

is a high risk of being trapped inside a local optimum. However, shorter calculation 

time is a major advantage. Workflow of the algorithm can be seen in Figure 18. 
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Figure 18 Flowsheet of the heuristic algorithm for the shortest path in underground mine haul roads 

 

4.5 Dynamic Programming (DP) 

Until now, all of the presented methods have some advantages and disadvantages. To 

remind, exhaustive search is presented by its success in computing the global optimum 

solution. However, computation takes very long time. Heuristic algorithm improves 

the computation time but the result is not necessarily a global optimum. Apparently, 

an optimization technique that provides the global or near global solution in a 

reasonable time is required. Therefore, Dynamic Programming is applied on this path 

planning problem. Results are observed to match the performance requirements. 
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heading angle combinations in each node

6. Select the state of heading angle that provides the 
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4.5.1 Objective Function 

Objective of this path planning problem is to minimize the path length between many 

nodes. Each node pairs are connected by any one of the Dubins Paths or special paths. 

Below is the mathematical expression: 

 

 ሽ݄ݐ݃݊݁ܮ	݄ݐሼܲܽ	ࢋࢠ࢏࢓࢏࢔࢏ࡹ

Where; 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ	݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  	ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

 

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2

0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

Given; 

ሺ݁ܽݐݏ௜, ,௜݄ݐݎ݋݊ ,௜݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  	ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉

 

4.5.2 Workflow of the DP Optimization 

Node coordinates and kinematical constraints are defined. Heading angle 

combinations are written into a matrix. In this matrix, each column represents a stage 

and each state denotes a heading angle between 0° - 360°. Later, Dubins Paths are 

calculated and the shortest one is selected for each state. Length of the shortest path is 

calculated and written into the matrix. This matrix is called the length matrix. As it can 

be predicted, increasing number of main nodes increases the number of possible paths 

and the calculation time. Next, DP starts to evaluate the shortest route starting from 

the last stage and going through the first stage. In each stage the heading angle 

combination that gives the shortest path is determined. As progressing backwards, 

heading angle combination that gives the shortest path is only investigated for the 
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current stage. Calculations that were done before are not repeated. By this way, 

computation is completed faster. Figure 19 shows a sample decision tree for DP. 

 

 

Figure 19 Sample decision tree for the shortest path algorithm using DP optimization 

 

This sample decision tree represents a path planning problem for n nodes. Each column 

represents a node and each state stands for a heading angle. All of the states are 
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connected to each other. Arrows connecting the pairs of heading angles in the two 

consecutive nodes represent the length of the shortest Dubins Path.  Figure 20 shows 

the flowsheet of the shortest path algorithm by DP optimization. 

 

Figure 20 Flowsheet of the DP optimization for the shortest path in underground mine haul roads 

 

The advantage of DP lies in the solution mechanism. The most primitive approach is 

to generate many sub problems and solve each of them, individually. However, DP 

seeks to solve each sub problem only once. If the solution to a sub problem has already 

been computed, it is stored: the next time the same solution is needed, it is simply 

called from memory. By this way, the number of computations is reduced. This 

• Node coordinates (more than two nodes)

• Minimum turning radius

• Maximum gradient
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• RSL, LSR, RSR, LSL, RLR, LRL

3. Compute six Dubins Paths between for each state 
in the length matrix

4. Select the shortest path for each state and write its 
length

5. Start DP from the last stage and move backwards

6. Determine the heading angles for the shortest path
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approach is especially useful when the repeating sub problems grow exponentially as 

a function of the input size. 

 

4.6 Genetic Algorithm 

Constrained optimization of a 3D path is a complex computational problem. 

Depending on the number of variables, the problem converges to an exponential time 

problem. Complex underground mines with tens of sublevels represent a typical 

example for such difficult problems to solve. Exhaustive search is an inefficient but 

exact solver to obtain the global optimum. Heuristic algorithm improves the 

computational efficiency by adding some extra constraints to reduce the search space. 

However, degree of optimality is most likely to be poor. Intelligent algorithms are 

advantageous in path planning by learning through the generations instead of trying 

all the possible solutions. Although they provide near optimal solutions, if the 

difference is not meaningful compared to the global optimum then they can be used 

for increasing computational efficiency.  

 

This study investigates the performance of evolutionary algorithms on path 

optimization that learns from the past experience. Genetic Algorithm provides 

flexibility to apply heuristic corrections on the path, where it is necessary. These 

corrections avoid some undesired regions and stay inside the desired region. Such 

heuristics are implemented by the proposed mutation operators. Prior to the 

optimization, travel sequence of nodes is certain. Otherwise, it would be necessary to 

determine the optimal sequence such as a Travelling Salesman Problem (TSP). 

 

4.6.1 Objective Function 

The fitness score of the haul road is defined in terms of five factors. In genetic 

algorithm terminology, objective function optimizes a fitness score that is similar to 

the cost in conventional optimization. Each of the cost factors is weighted in the 

objective function. Weighting defines the cumulative effect of cost factors on the 

overall cost. Sum of the weightings is one. Each cost factor may take different 

weightings depending on the characteristics of the problem. In some cases, catching 
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nodes may be more vital while avoiding is more critical in others. In this study, 

weightings are determined by trial and error method and their values are (0.3, 0.3, 0.2, 

0.1, 0.1). The objective function of the Genetic Algorithm is as follows: 

	ࢋࢠ࢏࢓࢏࢔࢏ࡹ ቄݓଵ ൈ ቀ1 ௖௢௦௧ൗܮܲ ቁ ൅ ଶݓ ൈ ܨ ௖ܰ௢௦௧ ൅ ଷݓ ൈ ቀ1 ௖௢௦௧ൗܦܴܩ ቁ ൅ ସݓ ൈ ܷܴ௖௢௦௧

െ ହݓ ൈ  ௔௪௔௥ௗቅܴܦ

Where; 

௖௢௦௧ܮܲ ൌ  ሺ݉ሻ	݄ݐ݈݃݊݁	݄ݐܽ݌	݄݁ݐ	݂݋	ݐݏ݋ܥ

ܨ ௖ܰ௢௦௧ ൌ  ሺ݉ሻ݁݀݋݊	݈݂ܽ݊݅	݄݁ݐ	݃݊݅ݏݏ݅݉	݂݋	ݐݏ݋ܥ

௖௢௦௧ܦܴܩ ൌ  ݐ݊݁݅݀ܽݎ݃	݄݁ݐ	݂݋	ݐݏ݋ܥ

ܷܴ௖௢௦௧ ൌ  ݏ݊݋ܴ݅݃݁	݀݁ݎ݅ݏܷ݁݀݊	݄݁ݐ	݃݊݅ݐ݈ܽ݋݅ݒ	݂݋	ݐݏ݋ܥ

௔௪௔௥ௗܴܦ ൌ  ݏ݊݋ܴ݅݃݁	݀݁ݎ݅ݏ݁ܦ	݄݁ݐ	݁݀݅ݏ݊݅	݃݊݅݌݁݁݇	݂݋	݀ݎܽݓܣ

௡ݓ ൌ  ݃݊݅ݐ݄ܹ݃݅݁

 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ	݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

݅ ൌ  ݎܾ݁݉ݑ݊	݁݀݋ܰ

݊ ൌ 1,… , 5 

 

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2

0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

                                                          0 ൑ ௡ݓ ൑ 1	 

Given; 

ሺ݁ܽݐݏ௜, ,௜݄ݐݎ݋݊ ,௡௢ௗ௘	௜೟೓݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  		ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉
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4.6.1.1 Cost of Path Length 

Length of a haul path is the major cost factor in the objective function. As an 

underground mine design rule of thumb, an efficient design must travel the shortest 

path. By this way, short term (cost of ramp construction) and long term (operating 

cost) costs can be reduced. 

 

4.6.1.2 Final Node Missing Penalty 

The algorithm requires to catch the predefined nodes, which are the sublevel entry 

points. In each calculation, the algorithm calculates the distance between the target 

node and the calculated path. The distance is added to the objective function as one of 

the cost factors. 

4.6.1.3  Gradient Penalty 

In order to travel the shortest path in 3D space, the algorithm must use the maximum 

available gradient. Gradient assignment to the path sections is a probabilistic task. 

Sometimes, the algorithm may assign a lower gradient than the maximum value it 

could pick. In order to reduce this probability, it is included in the objective function 

as a cost item. Through the generations, the algorithm minimizes the cost of using 

small gradient values.  

 

4.6.1.4 Undesired Region Penalty 

Structural anomalies like faults and joints, or pressurized underground spaces (like 

aquifers) are regions to be avoided in an underground haul road path. These regions 

may cause instability problems or increase the cost of construction. Therefore, the 

objective function includes a penalty factor these items.  

  

4.6.1.5 Desired Region Award 

Extents of the rock mass inside which the main haul road will be constructed are 

limited by the Desired Region. This region is defined in terms of x, y and z boundary 

coordinates. In order to keep the path inside this Desired Region, any node of the path 

inside this region is awarded by decreasing the fitness value. 
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4.6.2 Discretization 

In order to simulate the travel path of the underground mine vehicle, the travel path is 

discretized. The total travel time [t1; tn ] is divided into n > 0 subintervals.  

[t1; t2]; [t2; t3];…; [tn-1; tn] 

 

Each subdivision has an equal duration. In each discrete time interval, all of the control 

variables are assumed to be fixed. In other words, the underground mining vehicle is 

assumed to travel with the same heading angle in each subinterval. Discretization can 

be increased for a smoother path. However, in this study we observed that the number 

of control variables and the GA takes more time to converge.  Also, we tried to 

decrease the discretization. This time, problems such as increased cost of missing final 

nodes are observed. Also, smoothness of the path decreases. 

 

4.6.3 Finding the Seed Path 

Genetic Algorithm (GA) requires a good starting point for path planning that satisfies 

the physical constraints. An initial path is generated by randomly assigned control 

variables. This path is called the seed path. Later, GA creates a population by randomly 

changing the seed path. Quality of the seed path controls the degree of optimality and 

convergence of the optimization solver. 

 

In this study, alternative methods were investigated for seed path generation. Besides, 

the randomly assigned values for control variables, the heuristic algorithm was also 

used. It provides a quite fast and useful initial guess for the starting point of the 

optimization. The optimum heading angle intervals in each node are predicted and the 

heuristic solution is assigned to the GA population generation mechanism. In spite of 

its benefits, this method is observed to force the GA into local optima in some 

computational experiments. To overcome this effect, mutation rate is increased up to 

90% when the change in fitness score is less than 1%. 
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4.6.3.1 Population Generation 

This section presents the population generation procedure. Population is a set of 

candidate solutions (named as individuals) of the optimization problem. Each 

individual is composed of some chromosomes that can be altered by mutation and 

cross-over operators. This process is similar to the biological phenomena.  

 

This path optimization problem has a population size of 50. Each chromosome has five 

parts. The first part is the number of steps that the underground mining vehicle travels 

with the heading angle in the second part. The third part is the final heading angle after 

the turn is completed. The fourth part is the number of turn in the helical ramp section 

and the final part is the gradient. Chromosome structure can be seen in Figure 21. 

 
# of steps with 

fixed heading angle 

Heading angle 

before 

Heading angle 

after 

# of turns in 

the ramp 
Gradient 

100 50 … π/2 π/4 … π/4 π/6 … 2 1 … 0.10 0.08 … 

 

 

Figure 21 Chromosome structure 

 

4.6.3.2 Genetic Operators 

Crossover 

Crossover is a genetic operator that produces child chromosomes by replacing the 

genes from the parent chromosomes. Selection (reproduction) process enriches the 

population. Reproduction makes clones of good strings but does not create new ones. 

Crossover operator is applied to the mating pool with the hope that it creates a better 

offspring. High fitness score increases the chance of a chromosome to be selected as a 

parent. Figure 22 illustrates a typical crossover operation. 

125 π/8 π/10 3 0.10 
 

210 π/4 π/5 1 0.08 

  

  

210 π/8 π/10 3 0.10 
 

125 π/4 π/5 1 0.08 

Figure 22 Crossover operator 
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Mutation 

After crossover, the strings are subjected to mutation. Mutation prevents the path from 

trapping inside a local minimum. Mutation plays the role of recovering the lost genetic 

materials as well as for randomly disturbing genetic information. It is an insurance 

policy against the irreversible loss of genetic material. Mutation has traditionally been 

considered as a simple search operator. If crossover is supposed to exploit the current 

solution to find better ones, mutation is supposed to help for the exploration of the 

whole search space. Mutation is a background operator that maintains the genetic 

diversity. It introduces new genetic structures in the population by randomly 

modifying some of its building blocks.  In this study, the mutation rate is fixed to 5%. 

Randomly selected control variables are changed by adding some values.  

 

125 π/8 π/10 3 0.10 
 

 

 

125 π/8 π/10 0 0.10 

Figure 23 Classical mutation operator 

 

4.6.4 Final Path with the Proposed GA Operator 

In this section, the final step of the path planning algorithm is presented. Proposed 

mutation operators and the classical GA operators are used to plan the underground 

mine haul road path. The proposed operators are the most important outcomes of this 

research. They are described briefly and presented by illustrations. The chromosome 

structure is reviewed according to the requirements of this step. The chromosome is 

only composed of the ‘number of straight motion steps’ and ‘heading angles’. 

 

4.6.4.1 Population Generation 

Population in this stage is based on the resultant path determined in the first step. It is 

also called the seed path. The population in this final step is created by randomly 

changing the randomly selected positions of the chromosome. 

 



 
 

68 
 

4.6.4.2 Proposed GA Operator: Avoid Undesired Regions (URAV) 

The first proposed operator makes local corrections on the path in order to fix the 

undesired region violations. This section describes the basic workflow of the operator.  

Randomly generated chromosomes are calculated and the path is subdivided into at 

least four equally spaced sections. Later, the undesired region violations and their 

locations are examined. Violation entry and exit locations are described by the 

subdivisions. First, the operator searches for the chromosome section controlling the 

violation entry. This section is the first node of the entry subdivision. Number of 

straight motion steps is set to ‘0’ and the target heading angle is increased by 45°. By 

this way, motion of the vehicle going through the undesired region is redirected. Later, 

the first node of the next subdivision is located on the chromosome. Number of straight 

motion steps is set to the number of steps in the violated region and the target heading 

angle is decreased by 90°. Finally, the first node of the third subdivision is set to a 

number of straight motion that is equal to the second part and the target heading angle 

is increased by 45°. The corrected path catches the original path from the exit of the 

violation and the rest follows the original path. 

 

Undesired regions are defined by the polygon node coordinates. Regions are restricted 

from the lower and upper elevations and these elevations are fixed. Figure 24 illustrates 

the mechanism of the proposed operator. 
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Figure 24 The proposed mutation operator to avoid undesired region violations (URAV) 

 

Figure 25 shows the plan view of URAV operator applied on the Dubins paths that 

connect the (0,0,100) node to the (100,145,0) node. Blue lines show the original paths 

and red lines show the corrected path sections. Green polygon is the undesired region. 

The proposed operator calculates the shortest correction and avoids the violation. 
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Figure 25 Plan view of the sample application of URAV operator 

 

4.6.4.3 Proposed GA Operator: Keep inside Desired Region (DEREK) 

In this path planning problem, extents of the rock mass covering the underground mine 

haul road can be defined. Exceeding borders is not recommended because it may result 

in tunneling inside poor quality rock mass or getting dangerously close to the orebody. 

This section presents the second proposed operator, which keeps the path inside the 

‘Desired Region’.  

 

DEREK is a custom mutation operator that starts by calculating randomly generated 

chromosomes and subdivides the path into at least four equally spaced sections. 

Desired region violations and their locations are examined. The previous node before 

the violation and next node right after the path returns back to the desired region are 

determined. First, the operator searches for the chromosome section controlling right 

before the violation. Number of straight motion steps is set to ‘0’ and the target heading 

angle is increased by 90°. Later, chromosome section of the second node is mutated 

by setting the number of straight motion to the step number of the violating section 
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and increasing the target heading angle by 90°. This way, the corrected path catches 

the original path and the modification is limited to the problematic location. Figure 26 

illustrates the DEREK operator. 

 

 

Figure 26 The proposed mutation operator to keep the path inside the desired regions (DEREK) 

 

4.6.5 Workflow of the Algorithm 

The flowchart of the algorithm is presented in Figure 27. Pseudocode is presented in 

Appendix B. Matlab Global Optimization toolbox functions for Genetic Algorithm 

were used. In addition to the classical GA operators, two new mutation operators are 

created. A special Graphical User Interface (GUI) is prepared for the ease of access to 

the created functions by Matlab programming. Output of this research is a standalone 

shortest path optimization software.  

 

Inputs can be supplied to the software directly by entering data via the developed 

Graphical User Interface (GUI). Alternatively, common mining software file formats 

are recognized by the software. The algorithm takes the node coordinates and 

subdivides between each node pairs. Next, GA solver generates a seed path for the 

second optimization stage. This initial attempt only makes use of standard mutation 
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and crossover operators. In the second stage, the seed path is used to generate a 

population of 50 individuals. Next, the algorithm calculates fitness scores for each 

path. The best 3 individuals are kept as parents of the next generation. In this stage, 

undesired region violations are detected and the proposed URAV operator makes local 

corrections on the path. Right after, the DEREK operator checks for the path sections 

that exceed the desired region boundaries. If there are any violations, then DEREK 

operator makes local corrections. Finally, classical crossover mutation operators are 

applied to obtain better off spring fitness values.  

 

Stopping criteria of the algorithm drops 90% of the total population if there is no longer 

decrease in the fitness scores. A new population is generated that includes previously 

selected individuals. If the decrease in fitness values stops at the same levels the 

algorithm terminates, if not, the same procedure is applied until steady state is reached. 

By this way, trapping on the local optimum solutions is avoided. 

 

The algorithm has a final node constraint. Therefore, each of the main nodes are 

needed to be traversed by the path. The algorithm detects distance of the path to each 

of the nodes and makes local corrections, if it is necessary. 

 

Output of the algorithm is the list of coordinates for the optimum path. The path has 

dummy nodes as much as the ratio of the path length to the pace length. For each of 

the dummy nodes, coordinates are provided in the following format; (East, North, 

Elevation). 
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Figure 27 Flowchart of the Genetic Algorithm for single objective optimization 

 

4.7 Verification of the Algorithms 

Path planning problems suffer from lack of verification problems. The analytical 

solution of the shortest path in a complex environment without violating kinematical 

• Node coordinates

• Minimum turning radius

• Maximum gradient

• Dicretization number

• Max steps of straight motion

• Max turns in a ramp section

• Desired region coordinates

• Undesired region coordinates

Inputs

• Create a population randomly

• Generate a seed path

• Use classical GA operators

• Output = Seed Path

Genetic Algorithm (1st stage)

• Generate a population from the seed path

• Calculate fitness scores

• For each of the individuals

• Detect if there is any Undesired region violation

• If Yes, apply URAV operator

• If No, continue

• Detect if the path violates desired regions boundaries

• If Yes, apply DEREK operator

• If No, continue

• Apply classical GA operators

• End

• Output = The shortest path

Genetic Algorithm (2nd stage)
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constraints is a challenging task. However, the algorithms studied in this research 

requires to be verified before investigating its performance in real case studies.   

 

In this study, an idealized mine layout is used to test the validity of the generated 

algorithms. A simple mine layout with a flat topography and orebody in the shape of 

a rectangular prism was generated. Crosscut entry coordinates in the East-North plane 

are the same and elevation difference between the successive crosscut entries are 

equal. There are no undesired regions and the desired region is a large volume. Sample 

view of the verification problem was shown before in  Figure 7. 

 

For this verification problem, the shortest path is apparent, which is a helical ramp. If 

the algorithms can predict the same path as the apparent solution, then we can conclude 

that the algorithms are prone to make meaningful predictions for more complex 

problems. 

 

In this study, the shortest path is determined by the exhaustive search, the heuristic 

algorithm, dynamic programming, and the genetic algorithm. All of these methods are 

tested and the same helical ramp is obtained. Sample Matlab view from the verification 

can be seen in Figure 28. 

 

Undesired region avoidance capability of the GA requires to be verified. Figure 29 

shows the result of GA optimization on the verification problem shown in Figure 28 

with an undesired region, coordinates of which are presented in Table 11. Apparently, 

the optimum keeps away from the undesired region. 

 

Table 11 Coordinates of the undesired region  

Node No: East (m) North (m) Elevation (m) 
1 70 60 30 - 70 
2 90 60 30 - 70 
3 90 90 30 - 70 
4 70 90 30 - 70 
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Figure 28 Result of the verification problem using exhaustive search, heuristic search, DP and GA 

 

Figure 29 Result of the GA optimization on the verification problem with an undesired region 
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4.8 Research Output: An Optimization Software with a Unique Graphical 

User Interface 

In the previous section, different shortest path optimization methods are described. GA 

is presented as an improved path optimization technique. Some unique features related 

to mining are included by the proposed genetic operators. Performance of intelligent 

algorithms is observed on underground mine haul road optimization. 

 

This research investigates a complex path optimization problem. Solution is only 

possible by the computational methods. Therefore, the algorithms are created in 

Matlab [48] programming environment. Matlab is a high level developer tool that 

provides many of the basic mathematical libraries. By this way, the user can focus on 

the main task, rather than developing even for the basic operations. However, our 

problem requires unique features related to mining. Therefore, most of the algorithm 

is developed from scratch and implemented on Matlab. For GA optimization, Global 

Optimization Toolbox libraries were used.  

 

Although Matlab provides a user-friendly environment for programming, regenerating 

such a complicated optimization problem cannot be efficiently performed by the 

command screen. Code screen is difficult for data entry and adjustment. Figure 30 

shows a sample view from the Matlab command screen. 
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Figure 30 Sample view from the MATLAB command screen 

 

As a research outcome, a unique ‘Graphical User Interface’ (GUI) was created. The 

GUI was bonded to the codes of the algorithms and different panels were arranged for 

node coordinate and kinematical constraints entry, optimization solver type selection, 

optimized paths plotting, and results summary reporting. The GUI and the codes were 

executed to a standalone software. This software is named as ‘Optopath’. Overview of 

the Optopath main screen can be seen in Figure 31. 
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Figure 31 Overview of the GUI 

 

Now, the GUI will be presented in detail. Each panel is assigned a number and the 

magnified view will be described in detail. 

 

Figure 32 shows the menu bar and toolbar. A new project can be opened or an existing 

project can be called. Node coordinates can be imported or exported from or to an 

Excel file. In addition, optimized paths can be plotted using the related menu. Toolbar 

contains pan tool, rotation tool, and magnifier for managing the plot screen. 

 

 

Figure 32 Menu bar and toolbar 

Figure 33 show the node coordinate panel. The coordinates are either imported from 

an Excel file or manually entered. Sublevels can be added or deleted  
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Figure 33 Node coordinate entry panel 

 

Figure 34 illustrates the panel that is used for plotting the manually designed path 

 

 

Figure 34 Manual path plot panel 

 

Figure 35 shows the kinematical constraints panel. Here, the user can define the 

minimum turning radius, maximum gradient, and pace length. In addition, desired 

turning directions can be defined. Underground mine haul roads are different from 

other paths by their turning directions. Global optimality may be provided by turns on 

both sides, however; in underground mines, most of the times, a single turning 

direction is preferred. Although the path length increases, it might be desired for an 

ergonomic haul road path design.   
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Figure 35 Kinematical constraints and selection of the turning direction panel 

 

Figure 36 shows the optimization solver selection panel. The first selection provides 

the shortest path with Dubins Paths. The second option makes use of Dynamic 

Programming to calculate the optimum path. The third option is based on the 

kinematical model that is used in GA; however, the path is calculated for a single 

chromosome. The fourth solver calculates the seed path for the second stage GA. The 

final option optimizes the seed path including the proposed GA operators.  

 

 

Figure 36 Optimization solver type selection panel 

 

Figure 37 illustrates the GA input parameters. Here, the maximum number of straight 

motion steps can be adjusted. Also, the maximum turns in a ramp section can be set. 

Subdivision number is determined in this panel. Undesired region and desired region 
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coordinates entry GUI can be called from this panel. For the least cost optimization, it 

is possible to provide the rock mass quality block model using the related section. 

 

Figure 37 Genetic algorithm inputs panel 

 

Figure 38 contains buttons for saving the input data, optimization using different solver 

types and plotting the results. In addition, Global Optimization Toolbox can be called 

for detailed GA setting adjustment. 

 

 

Figure 38 Controls panel 
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Figure 39 shows the plot screen. Optimized paths can be displayed in 3D environment. 

It is also possible to rotate the plot, pan, and magnify the screen. Node coordinates can 

be selected and read from the screen. 

 

 

Figure 39 Plot screen showing the result of optimized paths 

 

Figure 40 shows the result of optimization. Each row represents a different 

optimization solver. Path length and rock mass quality can be seen. 
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Figure 40 Optimization results table 

 

Finally, Figure 41 presents the message history panel in which the feedbacks from the 

software can be seen. Log of each operation is recorded and displayed in this panel. 

 

 

Figure 41 Message history panel showing the notifications from the software 

 

4.9 Case Studies 

This study presents a novel methodology for a mine design task that has been 

previously carried out by manual ways. The developed algorithm was applied on real 

underground mines. By this way, it was possible to check the superiority of the 

algorithmic design over the manual design. Some of these mines are already operating 

and the others are in development phase. The mines are presented below. 

 

The first case study is an underground iron mine in Erzincan/ Bizmisen region of 

Turkey. Two sectors in Bizmisen region have been operated by shallow depth open pit 

mines. Outcropping orebody part of Donentas dips with 23° in the opposite direction 

to the overlying hillside. By referencing to the outcrop, orebody depth is estimated as 

345 m.   
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As a consequence of the opposite dip direction to the topographical surface, depth of 

any open pit exploiting the complete orebody would extent more than this depth. Due 

to economic and legal problems, upper part of the orebody was planned to be exploited 

by an open pit mine. A crown pillar was planned to be left below the open pit to sustain 

safety in the underground operation, which was planned to produce remaining ore in 

the lower parts. 

 

Figure 42 illustrates the mine location, orebody geometry and Donentas open pit layout 

(Google Earth, 2016). Donentas sector is located on the North East of Bizmisen district 

of Erzincan / Turkey. Satellite view of the mine, plan and cross-section view of the 3D 

orebody model and orebody dimensions can be seen in Figure 42. 

 

 

Figure 42 Overview of the Erzincan/Bizmisen underground mine 

 

Studies of Durand et al. [49] tectonic units of Turkey report that all the mine sites settle 

in the south of Ankara-Erzincan suture zone and north of the Toros Mountain Chain. 

 

The oldest formation around the region is carboniferous-campanian aged Munzur 

limestone embedded as blocks in serpentines. Granite rock formations are covered 
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incompatibly by sedimentary rocks with nummulites. In the region, this formation is 

abducted by Oligocene-Upper Miocene including various local inconsistencies. Plio-

anthropogene, aged terrestrial sediments are the youngest rock formation [50].  

 

The tectonic subgrade of the region is composed of lower carboniferous-campanian 

aged Munzur limestone and aged ophiolite rocks consisting of intense serpentinized 

periodititic rocks. In the upper layer, aged Maastrichtian is incompatibly involved. 

Paleocene aged granitic rocks possibly interrupt these formations. Mineralization and 

granitic rocks are non-conformably covered by Neogene aged formation consisting of 

partly limestone. The youngest formations around the region are Anthropogenic aged 

slope debris and alluviums. 

 

Three of the other case studies are from the Kayseri city of Turkey. Karacat 

underground mine is located right below the open pit (see Figure 43). Apparently, open 

pit slope stability will be risky if proper filling design is not applied in underground 

mining operation. Three critical items of underground mine design are investigated: 

stope dimensioning, pillar design, and backfill design. As part of the design project, 

production stope dimensioning is first conducted. Later, pillar stability work is carried 

out for the multiple stope production operations at different levels of mine. Finally, 

economically optimum backfill alternatives are assessed from the point of local and 

global structural stability by numerical modeling. 

 

Karacat mine is located in Yahyali district of Kayseri / Turkey. A satellite view of the 

mine, plan view from the 3D model showing the orebody, orebody dimensions and 

production levels from the cross section view can be seen in Figure 43. Besides from 

the Karacat mine, there are four active mines: two open pit and two underground mines 

in the area. 
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Figure 43 Overview of the underground mines in Kayseri 

 

Geology of Karacat iron orebody was studied by Tiringa [51] in the scope of a Master 

of Science work. The Geyikdag unit was described to be located in the Taurid Tectonic 

Belt hosting the Karacat iron orebody. The orebody was reported to be surrounded by 

Emirgazi (Precambrian), Zabuk (Lower Cambrian), Değirmentaş (Middle Cambrian), 

and Armutludere (Ordovisian) formations. 

Hematite and goethite are the major ore minerals which are believed to have originated 

as a product of siderite alteration. The ore body and country rocks interrelation (Zabuk 

formation, Değirmentaş formation, and Armutludere formation) can be stated to be 

controlled by tectonism. 

 

Surface reaction mechanism and karstification processes are the result of post-

mineralization faults. Altered siderite and iron minerals transform into limonite and 

goethite predominated by atmospheric conditions where surface reaction mechanisms 

are active. Products of the mineralization process mentioned above are exploited and 

served to industry as raw material. 
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Karacat Iron ore deposit can be described as a deformed deposit occurred by flow of 

hydrothermal fluids from Precambrian aged primer iron deposits. 

 

Besides Karacat, Mentes, and Madazi, underground mines are located on the same 

region and investigated within the scope of this study. Geological features and mining 

methods are quite similar. 

 

An underground metallic mine in Albania and an underground metallic mine in 

Sweden are also studied. Input parameters for GA optimization of the case studies can 

be seen in Table 12. 

Table 12 Input parameters of the case studies 

Case Studies Kinematic Constraints  

No Location 

Minimum 
Turning 
Radius  

(m) 

Maximum 
Slope 
(%) 

Number of 
Nodes 

1 Erzincan/TURKEY 15 12 6 

2 Kayseri, Karacat/TURKEY 17.5 12.5 12 

3 Kayseri, Madazi/TURKEY 25 12 6 

4 Kayseri, Mentes/TURKEY 25 10 9 

5 An U/G mine in Albania 10 17.5 15 

6 An U/G mine in Sweden 20 15 7 
 

4.10 Results and Discussion 

Real underground mine haul roads are compared with the routes of the developed 

algorithms. Optimization is carried out by the Dynamic Programming and Genetic 

Algorithm. Resultant paths and path lengths are presented in this section. 

 

The first case study is the Erzincan/Bizmisen underground iron mine. Appendix A 

Figure 55 shows the manually designed path and optimized paths by the developed 

algorithms. The first path designed by a human mine design expert and has a length of 

1192 m. Dynamic Programming optimization provides a path of 925 m. Apparently, 
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improvement is considerable. Solution takes a computation time of 3.5 hours. Genetic 

algorithm optimizes the path that has a length of 962 m. As it is predicted, GA provides 

a suboptimal solution. Compared to the manually designed path improvement is still 

satisfactory. In addition, the solution takes around two minutes, which is a significant 

improvement in terms of computational efficiency. On the other hand, considering the 

monetary cost of tunneling per meter is around 2,000$ the saving is around 460,000$ 

when Ga is used. 

 

Appendix A Figure 56 presents a sample plot for GA generations. As it is a 

minimization type optimization, fitness value decreases. Generations stop when there 

is no considerable improvement in the fitness value. Also, optimum values of the 

control variables can be seen in the plot for the best individual. 

 

The second case study is the Kayseri/Karacat underground iron mine. In Appendix A 

Figure 57 the manually designed and optimized paths can be seen. The first path 

designed by a human mine design expert and has a length of 1930 m. Dynamic 

Programming optimization provides a path of 1887 m. Apparently, improvement is 

considerable. Solution takes a computation time of around 6 hours. Genetic algorithm 

optimizes the path that has a length of 1897 m. Again, GA provides a suboptimal 

solution. Compared to the manually designed path improvement is satisfactory. In 

addition, the solution takes around five minutes. Computational efficiency has been 

improved significantly. 

 

The third case study is the Kayseri/Madazi underground iron mine. Appendix A Figure 

58 shows the manually designed path and optimized paths by the developed 

algorithms. The first path designed by a human mine design expert and has a length of 

877 m. Dynamic Programming optimization provides a path of 805 m. Apparently, 

improvement is considerable. Solution takes a computation time of around 3.5 hours. 

Genetic algorithm optimizes the path that has a length of 825 m. Again, GA provides 

a suboptimal solution. Improvement in length is satisfactory if compared with the 
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manually designed paths. In addition, the solution takes around three minutes. 

Compared to the manual design, monetary value of the saving is around 104,000$. 

 

The fourth case study is the Kayseri/Mentes underground iron mine. Appendix A 

Figure 59 shows the manually designed path and optimized paths by the developed 

algorithms. The first path designed by a human mine design expert and has a length of 

1949 m. Dynamic Programming optimization provides a path of 1482 m. Apparently, 

improvement is considerable. Solution takes a computation time of around 5 hours. 

Genetic algorithm optimizes the path that has a length of 1581 m. Again, GA provides 

a suboptimal solution. Compared to the manually designed path improvement is 

satisfactory. In addition, the solution takes around four minutes. Compared to the 

manual design, monetary value of the saving is around 736,000$. 

 

The fifth case study is from an underground mine in Albania. Appendix A Figure 60 

shows the manually designed path and optimized paths by the developed algorithms. 

The first path designed by a human mine design expert and has a length of 1165 m. 

Dynamic Programming optimization provides a path of 1137 m. Apparently, 

improvement is considerable. Solution takes a computation time of around 3.5 hours. 

Genetic algorithm optimizes the path that has a length of 1144 m. Again, GA provides 

a suboptimal solution. Compared to the manually designed path improvement is 

satisfactory. In addition, the solution takes around ten minutes. 

 

The final case study is an underground mine in Sweden. Appendix A Figure 61 shows 

the manually designed path and optimized paths by the developed algorithms. The first 

path designed by a human mine design expert and has a length of 1463 m. Dynamic 

Programming optimization provides a path of 1197 m. Apparently, improvement is 

considerable. Solution takes a computation time of around 4.5 hours. Genetic 

algorithm optimizes the path that has a length of 1299 m. Again, GA provides a 

suboptimal solution. Compared to the manually designed path improvement is 

satisfactory. In addition, the solution takes around three minutes. Compared to the 

manual design, monetary value of the saving is around 328,000$. 
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Summary of the optimization results and the manually designed path lengths can be 

seen in Table 13. Apparently, the developed GA algorithm makes remarkably good 

predictions for the sub optimum path. Dynamic Programming provides better results 

in longer computation times. GA seems to improve the computational efficiency. In 

addition, heuristic corrections are added into the GA algorithm. GUI makes it simple 

to carry out a shortest path optimization. Data entry is far easier compared to the, 

command window entry. In addition, optimized paths can be exported to the widely 

used mine planning software. 

 

Table 13 Summary results of the manually designed and optimized path lengths 

Location 

Path Length (m) 

Manual Design 
Dynamic 

Programming 

Genetic 

Algorithm 

Erzincan / Bizmisen 1192 925 962 

Kayseri/Karacat 1930 1887 1897 

Kayseri/Mentes 1949 1482 1581 

Kayseri/Madazi 877 805 825 

Albania 1165 1137 1144 

Sweden 1463 1197 1299 
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CHAPTER 5 

 

 

5 THE LEAST COST UNDERGROUND MINE ACCESS ROAD BY 

MULTI OBJECTIVE OPTIMIZATION 

 

 

 

5.1 Overview 

In the previous chapter, minimization of the path length is presented as the main 

concern in underground main haul road design.  Considering haul road development 

cost and operating cost of mining cars depend on the path length, this approach can be 

accepted to be correct. However, monetary cost of tunneling is also governed by the 

quality of rock mass that the tunnel is driven inside. 

 

In this chapter, the underground mine haul road optimization considering the shortest 

path length and the rock properties is investigated as a multi objective optimization 

problem. Genetic Algorithm solver is used. Multiple objectives may have some 

tradeoffs. In other words, improvement in the fitness value of an objective may have 

an opposite effect on the other objective. To observe this effect more clearly, ‘Pareto 

Front’ is determined for the objective values. The optimum path is determined after a 

second optimization stage in which the objective values are weighted and summed up 

to provide a final objective value. Weighting is useful to determine the effect of each 

objective function on the cumulative cost. By this way, user can set either a length or 

rock mass quality driven optimization that will match the specific needs of the case 

study. 

 

A sample application for a multi objective optimization is presented. The algorithm is 

an improved version of the shortest path algorithm that was presented in the last 
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chapter. Implementation is carried out in Matlab. ‘Genetic Algorithm Multi objective 

optimization’ solver in Global Optimization Toolbox is used. 

 

5.1.1 Objective Function 

The objective function is composed of two objectives. The first one is similar to the 

previous chapter and aims to minimize the path length. The second one is about the 

rock mass quality that the haul road will be driven inside. Both of the functions contain 

final node missing cost, gradient cost, undesired region violation cost, and desired 

region award for the sake of generating feasible paths. Rock mass quality score is 

provided in terms of the widely used Geomechanical classification system, Rock Mass 

Rating (RMR). RMR is a quality score between 0 – 100 and presents the rock mass 

quality. As it is known, increasing score indicates higher quality rock mass. Since our 

optimization is a minimization, it would not be appropriate to directly add this score 

to the objective function. Therefore, difference of this score from the highest value 

(100 - RMR) is used to represent the deficiency in the rock mass. 

 

Weighting the factors in an objective function is a widely used approach, where it is 

critical to determine the effect of each factor on the cumulative objective value. For 

instance, Oleiwi et al. [52] carried out multi-objective optimization for route planning 

of a robot. They had three objectives; which are path length, path smoothness, and path 

safety. Each of the three functions were weighed with factors which have a value 

between 0 and 1. Weightings are told to be tuned through simulations by trial and error. 

 

Another study investigating optimization with weighted objective function factors is 

presented by Ergezer and Leblebicioglu [53]. Their goal was to determine the path that 

maximizes the information collected by multiple UAVs. Although the optimization 

has a single objective function, items of the objective function were weighted by some 

factors. Path length, forbidden region cost, desired region cost, and final point distance 

are the items of the objective function. Using the weighting factors, impact of each of 

these items can be adjusted on the final optimum route. 
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Weighting factors are determined by trial and error method for the cost factor. 

However, objective function weightings can be adjusted to suit the requirements of the 

problem, as given below; 

 

ଵݓሺ	ࢋࢠ࢏࢓࢏࢔࢏ࡹ ൈ ሺ૚ሻሻࢌ ൅ ሺݓଶ ൈ  ሺ૛ሻሻࢌ

 

ሺ૚ሻࢌ ൌ 	 ቄݓଵ ൈ ቀ1 ௖௢௦௧ൗܮܲ ቁ ൅ ଶݓ ൈ ܨ ௖ܰ௢௦௧ ൅ ଷݓ ൈ ቀ1 ௖௢௦௧ൗܦܴܩ ቁ ൅ ସݓ ൈ ܷܴ௖௢௦௧

െ ହݓ ൈ  ௔௪௔௥ௗቅܴܦ

 

ሺ૛ሻࢌ ൌ 	 ቄݓଵ ൈ ௖௢௦௧ܦܯܴ ൅ ଶݓ ൈ ܨ ௖ܰ௢௦௧ ൅ ଷݓ ൈ ቀ1 ௖௢௦௧ൗܦܴܩ ቁ ൅ ସݓ ൈ ܷܴ௖௢௦௧ െ ହݓ

ൈ  ௔௪௔௥ௗቅܴܦ

 

Where; 

௖௢௦௧ܮܲ ൌ  ሺ݉ሻ	݄ݐ݈݃݊݁	݄ݐܽ݌	݄݁ݐ	݂݋	ݐݏ݋ܥ

௖௢௦௧ܦܯܴ ൌ  ݐݏ݋ܿ	ݕݐ݈݅ܽݑݍ	ݏݏܽ݉	݇ܿ݋ܴ

ܨ ௖ܰ௢௦௧ ൌ  ሺ݉ሻ݁݀݋݊	݈݂ܽ݊݅	݄݁ݐ	݃݊݅ݏݏ݅݉	݂݋	ݐݏ݋ܥ

௖௢௦௧ܦܴܩ ൌ  ݐ݊݁݅݀ܽݎ݃	݄݁ݐ	݂݋	ݐݏ݋ܥ

ܷܴ௖௢௦௧ ൌ  ݏ݊݋ܴ݅݃݁	݀݁ݎ݅ݏܷ݁݀݊	݄݁ݐ	݃݊݅ݐ݈ܽ݋݅ݒ	݂݋	ݐݏ݋ܥ

௔௪௔௥ௗܴܦ ൌ  ݏ݊݋ܴ݅݃݁	݀݁ݎ݅ݏ݁ܦ	݄݁ݐ	݁݀݅ݏ݊݅	݃݊݅݌݁݁݇	݂݋	݀ݎܽݓܣ

௡ݓ ൌ  ݃݊݅ݐ݄ܹ݃݅݁

 

௜ߠ ൌ  ݏ݁݀݋݊	݄݁ݐ	݂݋	݈݁݃݊ܽ	݃݊݅݀ܽ݁ܪ

߰௜ ൌ  ݐ݊݁݅݀ܽݎܩ

௜ݒ ൌ  ݈݄݁ܿ݅݁ݒ	݃݊݅݊݅݉	݀݊ݑ݋ݎ݃ݎ݁݀݊ݑ	݄݁ݐ	݂݋	݄ݐ݈݃݊݁	݁ܿܽܲ

݅ ൌ  ݎܾ݁݉ݑ݊	݁݀݋ܰ

݊ ൌ 1,… , 5 

 

Subject to: 

0 ൑ ௜ߠ ൑  ߨ2
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0 ൑ ߰௜ ൑  ௠௔௫݀ܽݎ݃

0 ൑  ௜ݒ

                                                          0 ൑ ௡ݓ ൑ 1	 

Given; 

ሺ݁ܽݐݏ௜, ,௜݄ݐݎ݋݊ ,௡௢ௗ௘	௜೟೓݊݋݅ݐܽݒ݈݁݁ ݄݁ܽ݀݅݊݃	݈ܽ݊݃݁௜ሻ 

௠௜௡ݎݐ ൌ  ݏݑ݅݀ܽݎ	݃݊݅݊ݎݑݐ	݉ݑ݉݅݊݅݉

௠௔௫݀ܽݎ݃ ൌ  					ݐ݊݁݀݅ܽݎ݃	݉ݑ݉݅ݔܽ݉

 

5.1.2 Workflow of the Multi-Objective Optimization Algorithm 

Multi objective optimization workflow is quite similar to the GA optimization for the 

shortest path. The main difference is the objective function. The overall cost includes 

the path length and rock mass quality costs. Therefore, the result is a least cost path. 

RMR scoring system in the geotechnical block model is shown in Figure 44. 

Geotechnical block models are studied by Jenkins et.al. [54]. They commented on the 

advantages of these models while transferring a representative rock mass and structural 

geology data into numerical and limit equilibrium models. This study makes use of a 

geotechnical block model to define the rock mass quality. 
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Figure 44 Sample view from a Geotechnical block model of Jenkins et.al. [54] 

 

After the seed path generation is completed multi-objective optimization is carried out 

by the GA solver. As a result, the pareto front is plotted. The pareto front expresses 

the relationship between the objective values. Finally, the least cost path is determined 

from the weighted objective function. Flowchart of the algorithm can be seen in Figure 

45. 
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Figure 45 Flowchart of the Genetic Algorithm for multi objective optimization 
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5.1.3 Verification 

This least cost path problem also suffers from the lack of verification problems, with 

real mine data. Therefore, the same approach presented in the shortest path problem is 

followed. A simple and a complicated mine geometry was investigated. In the simple 

geometry, there are only two nodes, an initial node and a final node. The rock mass 

quality blocks model contains only two large blocks to keep the problem simple.  

 

Node coordinates are presented in Table 14. The rock mass block model coordinates 

are given in Table 15. Kinematic constraints can be seen in Table 16 

 

Table 14 Node coordinates of the verification problem 

Node No: East (m) North (m) Elevation (m) 
1 100 100 150 
2 100 100 50 

 

Table 15 Extents of the rock quality block model 

Block No:  
East  Extents 

(m) 
North Extents 

(m) 
Elevation Extents 

(m) RMR 
Min Max Min Max Min Max 

1 50 100 50 150 0 200 50 
2 100 150 50 150 0 200 100 

 

Table 16 Kinematic constraints for the verification problem 

Kinematic Constraints 
Minimum Turning Radius (m) Maximum Gradient (%) 

15 10 
 

GA multi objective optimization solver runs for three minutes to find the results. Pareto 

front can be seen in Figure 46. Assuming an equal weighting for the path length cost 

and rock mass quality cost, the least cost path can be observed in Figure 47. As 

expected, most of the path traverse inside the block with the higher RMR score. 

Considering the algorithm works properly in this simple problem, it can be expected 

to work in more complicated problems. 
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Figure 46 Pareto front of the verification problem 
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Figure 47 Optimum path from the multi objective optimization 

 

Later on, the problem is repeated by increasing the number of blocks. It has been 

observed that increasing the block model complexity also increases the time required 

for the algorithm to converge. 

 

5.1.4 Case Study 

In this section, the least cost path optimization algorithm, which is developed in the 

scope of this research, is applied on a more complex case. This case was investigated 

in the previous section for determining the shortest path. The Bizmisen underground 

production levels were connected to the surface portal by an optimized path using the 

shortest path algorithm, which is the first outcome of this study. The location remains 

the same but the current goal is to find the path that passes inside the highest quality 

rock mass with a reasonable path length. Importance weighting for both of the 

objectives are the same. 
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Geological units are identified on core samples. Twelve representative drillholes are 

selected and rock mass quality characterization is carried out on dominant geological 

units in terms of RMR89. Figure 48 shows the average RMR scores in Donentas sector 

of Bizmisen region. 

 

 

Figure 48 Average RMR89 scores in Donentas sector of Bizmisen region 

 

Rest of the drillholes covering the region of interest are assigned with these RMR 

scores. In Figure 49, perspective view of the drillhole plan with RMR score color 

legend can be seen. 
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Figure 49 Perspective view of Donentas drillhole plan 

 

Rock mass of the potential region for a suitable main haul road is called as the region 

of interest (ROI). ROI is divided into blocks of 25m x 25m x 25m in all dimensions. 

In this problem, ROI contains 1609 blocks. Interpolating the RMR scores by ‘Inverse 

Distance Weighting (IDW)’ method, a rock quality block model is created. 

Formulation in Eqn. 14 expresses the IDW method for a power of ‘2’. 

 

ଶݖ ൌ
∑ ൬

௜ݖ
݀௜
ଶ൰

௡
௜ୀଵ

∑ ൬
1
݀௜
ଶ൰

௡
௜ୀଵ

 (14) 

 

Although RMR scores are used in this study, the block model can be attributed by any 

numerical value representing the rock mass quality. For instance, alternative rock mass 
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quality systems (like Q-tunneling index, Geological Strength Index (GSI)) or even 

Geophysical assessment methods are potential replacements. RMR block model can 

be seen in Figure 50. 

 

 

Figure 50 RMR block model  

 

Optimum path is shown in Appendix A Figure 62 by a green line. The black line shows 

the manual design with a length of 1192m. The optimum path is 140m shorter with a 

total length of 1052m. In the previous section, a shorter path length (962m) was 

calculated for the same case; however, rock mass quality was not taken into 

consideration.  

 

Comparing the average rock mass quality, the manual design is driven inside a rock 

mass with 50 RMR. However, the optimum path has an average RMR of 56. RMR 

score interval is so narrow that the minimum score is 40 and the maximum score is 60. 

This clarifies the restricted improvement. Apparently, there is improvement in both of 

the path length and the rock mass quality. However, both of the objectives might be 

better improved, if they were the single objective.  
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Figure 51 presents the plan view of the manual design (red line) and the path optimized 

by the developed algorithm (black line). Block model is a three dimensional object. In 

order to better observe the improvement by optimization three section views are 

presented. 

 

 

Figure 51 Plan view of the manual design (red line) and the path optimized by the developed algorithm (black line) 

 

Section 1 is presented in Figure 52. Most of the path is inside the blocks with an RMR 

interval of 55 – 60. However, the horizontal decline passes inside a lower RMR block 

region. 
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Figure 52 Perspective view of section 1  

 

Figure 53 focuses on the section 2. The manual design is shown by a horse-shoe shape 

while the optimum path is represented by a black line. Apparently, the algorithm 

moves the path to the core of the high RMR region. 
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Figure 53 Perspective view of section 2 

 

Figure 54 proves that the bottom of the manual design is located inside rock mass with 

35 to 50 RMR blocks. However, optimum path passes only inside the high RMR 

blocks (45 - 50). 

 

Figure 54 Perspective view of section 3 
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CHAPTER 6 

 

 

6 CONCLUSIONS AND FUTURE STUDIES 

 

 

 

Deep orebodies are preferably accessed by underground mine ramps due to the 

availability of high-level mechanization and higher production rates. Development and 

operation of underground mine ramps have short and long term influences on the mine 

economy. Most commonly, expert view dominates the manual ramp design. 

Apparently, optimization of the ramp design may improve the mine economy.  

 

In this study, the underground mine haul road optimization problem is outlined. 

Kinematics of the mobilized underground mining equipment is modelled as a Dubins 

Car. 

 

Optimization methods for determining the shortest path are compared. The curvature 

constrained path with directed nodes is optimized using the Dubins path. Exhaustive 

search is an exact method; however, computational efficiency is very low. 

Complicated problems require an exponential time solution. If the optimal path can be 

predicted, heuristic solution is more effective. However, the result is most likely to be 

suboptimal. Dynamic Programming improves the solution mechanism by polynomial 

time solutions; however, still it takes long to determine the optimal path. Alternatively, 

an evolutionary algorithm is proposed for the path length minimization. Genetic 

Algorithm applies heuristic corrections such as avoiding undesired and desired region 

violations. In this way, any different properties such as fault zones, aquifers, or 

restricted regions (for any reason) can be avoided. Two custom mutation operators are 

proposed as the main contributions of this research. The algorithmic path designs are 
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compared by the manual paths. It is concluded that the intelligent algorithms clearly 

provide shorter paths than the human design. In complex geometries, the difference 

becomes even more apparent. The algorithm is implemented in Matlab and a custom 

‘Graphical User Interface (GUI)’ is prepared for the ease of repeatability. 

 

Additionally, Genetic Algorithm is used to carry out a multi-objective optimization. 

The result is a least cost path for underground mine ramps. The cost function includes 

path length and rock mass quality. Rock mass quality is defined into a block model in 

terms of a widely used Geomechanical Classification System. Pareto front is used to 

calculate the optimum solution from an objective function with some adjustable 

weighting factors. Those weighting factors can be tuned for the specific needs of each 

case study. For instance, it may be more critical to have the shortest path mine access 

in some cases, while the rock mass quality around the access is more critical in another.  

 

Path planning problems do not have verification problems. Therefore, a generalized 

approach is used. A simple mine layout is designed and performance of the algorithms 

are tested. Optimum path for the simple layout is easily predictable even by 

observation. If the algorithm makes close predictions, then it can be used for more 

complex geometries. 

 

Although Genetic Algorithm does not guarantee the global optimum, the sub-optimal 

solution offers a significant improvement compared to the manual design. In addition, 

computational performance is plausible. 

 

To summarize the research outcomes; an automated methodology is presented to 

replace the conventional design method for underground mine access.  

 

Minimizing path length is the major concern in this haul road optimization since length 

governs the road development and mine operating costs. The shortest path 

optimization algorithm offered an efficient solution. The properties of the developed 

methodology is as follows: 
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 Intelligent algorithms are used more effectively to optimize underground mine 

haul roads. 

 Underground mine access avoids and considers some special regions such as, 

discontinuities and aquifers. 

 Genetic Algorithm is used for making heuristic changes on the optimum path. 

 Two custom mutation operators are proposed. 

 

Optimizing the rock mass quality around the haul road is the second concern since it 

is important for decreasing the tunnel development cost. The least cost path 

optimization is used as a tool. 

 

Some of the minor outcomes are presented below: 

 Turning direction of an underground mine access road should be rather fixed 

for the sake of ergonomics. Mine car drivers should not be confused by 

different turning directions. However, fixing this direction may decrease the 

level of optimality. The algorithms proposed in this study are capable of 

selecting a single turning direction or even both of them. Effects of restricting 

the turning directions are investigated and presented. 

 The algorithm is implemented in Matlab and a custom Graphical User Interface 

is developed.  

 

Future studies may develop the algorithm for multiple orebody problems. Current 

solution assumes that the mine production plan is already prepared. However, novel 

research may include the production plan optimization and the whole underground 

mine design process can be automated. In addition, other mine access options can be 

integrated into the algorithm. Weightings of the objective function may also be 

optimized for each case. 
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APPENDIX A 

 

 

A. FIGURES 

 

 

Figure 55 Underground mine access optimization in Erzincan/Bizmisen
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Figure 56 Plot of improved fitness scores through generations and best individual in GA optimization
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Figure 57 Underground mine access optimization in Kayseri/Karacat
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Figure 58 Underground mine access optimization in Kayseri/Madazi
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Figure 59 Underground mine access optimization in Kayseri/Mentes



 

 
 

122 

 

Figure 60 Underground mine access optimization for a mine in Albania
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Figure 61 Underground mine access optimization for a mine in Sweden
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Figure 62 Manual design and the result of multi objective optimization by genetic algorithm 
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APPENDIX B 

 

 

B. PSEUDO CODE 

 

 

 

1: Set Inputs 
2: Init Population 
3: Set Best Objective Value to Infiniti. 
4: Set SameResult to 0 
5: Read SameResult Limit 
6: Set POP SIZE to 50 
7: Call Seed Path Finder 
8: Set Operation List as Classical Crossover and Mutation 
9: Repeat 
10:  For each path in the population 
11:   Call Simulation 
12:   Compute Objective Values 
13: End For 
14:  Repeat 
15:   Select a path from present population randomly. 
16:  Select Operation from Operation List 
17:   Case Selected Operation is Crossover 
18:    Select another path from present population randomly to  
                                               generate new   chromosomes. 
19:    Call Crossover Routine 
20:   Case Selected Operation is Mutation 
21:    Call Classical Mutation Routine 
22:  Until new generation is created. 
23: Until SameResult equals to SameResult Limit 

24: Call Path Optimizer 
25: Set Population as the seed path 
26: Set Best Objective Value to Infiniti. 
27: Set SameResult to 0 
28: Read SameResult Limit 
29: Set Operation List as Proposed Operators, Crossover and Mutation 
30: Repeat 
31:  For each path in the population 
32:   Call Simulation 
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33:   Compute Objective Values 
34:   Determine whether it enters to UR or not. 
35: End For 
36: Sort Objective Values and keep best three for next 
37:  If Objective Values (1) less than Best Objective Value Then 
38:  Set Best Objective Value to Objective Values (1) 
39:   Set SameResult to 0 
40:  Else 
41:   Increment SameResult 
42:  End If 
43:  Repeat 
44:   Select a path from present population randomly. 
45:  Select Operation from Operation List randomly 
46:   Case Selected operation is ”Proposed Operators” 
47:   For three times apply proposed operators 
48:    If it flies over to any UR Then 
49:     Call URAV 
50:    End If 
51:    If it avoids to the DR Then 
52:     Call DEREK 
53:    End If 
54:   End For 
55:   Case Selected Operation is Crossover 
56:    Select another path from present population randomly to  
                                              generate new chromosomes. 
57:    Call Crossover Routine 
58:   Case Selected Operation is Mutation 
59:   Call Classical Mutation Routine 
60:  Until new generation is created. 
61: Until SameResult equals to SameResult Limit 
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