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ABSTRACT

NONLINEAR SUPERVISED DIMENSIONALITY REDUCTION VIA
SMOOTH REGULAR EMBEDDINGS

ÖRNEK, Cem
M.S., Department of Electrical and Electronics Engineering

Supervisor : Assist. Prof. Dr. Elif Vural

February 2018, 74 pages

The recovery of the intrinsic geometric structures of data collections is an impor-
tant problem in data analysis. Supervised extensions of several manifold learning
approaches have been proposed in the recent years. Meanwhile, existing methods
primarily focus on the embedding of the training data, and the generalization of the
embedding to initially unseen test data is rather ignored. In this work, we build on
recent theoretical results on the generalization performance of supervised manifold
learning algorithms. Motivated by these performance bounds, we propose a super-
vised manifold learning method that computes a nonlinear embedding while con-
structing a smooth and regular interpolation function that extends the embedding to
the whole data space in order to achieve satisfactory generalization. The embed-
ding and the interpolator are jointly learnt such that the Lipschitz regularity of the
interpolator is imposed while ensuring the separation between different classes. Ex-
perimental results on several image data sets show that the proposed method yields
quite satisfactory performance in comparison with other supervised dimensionality
reduction algorithms and traditional classifiers.

Keywords: Manifold learning, dimensionality reduction, supervised learning, out-of-
sample, nonlinear embeddings
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ÖZ

YUMUŞAK DÜZENLİ GÖMME İLE DOĞRUSAL OLMAYAN DENETİMLİ
BOYUT DÜŞÜRME

ÖRNEK, Cem
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi : Assist. Prof. Dr. Elif Vural

Şubat 2018 , 74 sayfa

Veri topluluklarının esas geometrik yapısını çıkarmak, veri analizinde önemli bir
problemdir. Birçok manifold öğrenme yaklaşımlarının denetimli açılımları son yıl-
larda öne sürülmüştür. Aynı zamanda, var olan metotlar öncelikle eğitim verisinin
gömülmesine odaklanmıştır, ve başta elde bulunmayan test verisinin gömülmesiyle il-
gilenmemişlerdir. Bu tezde, denetimli manifold öğrenme algoritmalarının genelleme
performansı üzerine son zamanlarda elde edilmiş teorik sonuçlara dayanan bir ça-
lışma yapılmıştır. Bu performans sınırlarından hareket ederek, test verilerine başarılı
bir şekilde genelleme sağlayabilmek için gömmeyi bütün veri uzayına genişleten ya-
vaş değişime sahip bir interpolasyon fonksiyonu ile, doğrusal olmayan bir gömme
hesaplayan denetimli bir manifold öğrenme metodu öne sürülmüştür. Gömme ve in-
terpolasyon fonksiyonu, hem farklı sınıflar arası ayrımı, hem de interpolasyon fonk-
siyonunun Lipschitz düzenliliğini sağlayacak şekilde öğrenilmiştir. Çeşitli görüntü
kümelerinde yapılan deney sonuçları öne sürülen yöntemin diğer denetimli boyut
düşürme algoritmaları ve geleneksel sınıflandırıcılara kıyasla oldukça tatminkar bir
performans sağladığını göstermiştir.

Anahtar Kelimeler: Manifold öğrenme, boyut düşürme, denetimli öğrenme, örneklem
dışılık, doğrusal olmayan gömme
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Machine learning is a field that applies mathematical and statistical methods to ex-

isting data in order to learn models. In the last ten years, machine learning had in-

teresting applications in image recognition, self-driving vehicles, voice recognition,

effective web browsing and human genome research. Machine learning algorithms

are applied to intelligent robots, text processing, computer vision, medical informat-

ics, voice processing, image processing and data mining.

Machine learning is comprised of algorithms that teach computers to perform tasks

that human beings often do naturally on a daily basis. Machine learning algorithms

are expected to learn from available data and produce reliable results.

With the recent advances, machine learning has developed drastically in the past few

years. However, performance of machine learning is still lower than the human per-

formance in many applications. So, new algorithms are being developed everyday

in order to analyze bigger data, perform more complex computations and give more

accurate and faster results.

Thanks to the power of machine learning, many industries enjoy more efficient oper-

ation, lower-cost and more powerful computational processing, and savings in time,

money and data memory storage.

Classification is an important problem, where the purpose is to assign a category or

a class to each observation. Applications of classification have a broad fan. Some
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examples are listed below.

• Image classification implementations such as object recognition, face recogni-

tion and handwritten digit recognition.

• Shape detection, e.g. as in a system where a user draws a shape on a touch

screen and the system determines which shape the user draws.

• Sentiment analysis, e.g. classification of comments made about you on the

internet as positive, negative or neutral.

• Video classification where a category is assigned to a video. For example,

videos can be categorized whether they are proper for children or not.

• Voice classification, e.g., the identification of the person the voice belongs to.

• Spam detection in an inbox, e.g., deciding whether an e-mail is a spam or not.

• Internet traffic interception, e.g. the determination of whether the content of a

webpage is legal or not.

• Medical diagnosis, e.g. the detection of diseased cells or diseased organs in

medical sector thanks to wearable devices or sensors.

• Fraud detection and prevention in financial industry.

• Financial analysis, e.g., learning from current and past price behaviours of a

product in order to decide whether the product should be sold, bought or held.

In addition to these, classification methods have many other application areas as well.

Most classification algorithms involve the reduction of the data dimensionality for the

following reasons:

• In many data analysis applications, collections of data are acquired in a high

dimensional ambient space; however, the intrinsic dimensionality of the data

is much lower. Dimensionality is related to the minimum number of features

needed to describe any data sample in its space. If we wish to represent a

point in a real line, only a number will be enough to describe it; therefore, the
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dimensionality is one. If we wish to represent a point in a planar surface, we

need two coordinates; therefore the dimensionality is two.

• If the count of features is much higher compared to the number of classes, the

problem called the "curse of dimensionality" occurs. This idiom was put into

words by Bellman in 1961 and can be explained as follows. For example, if

each data sample has one dimension and there are 3 different classes, the space

in which the one dimensional data samples lie is divided into three regions.

The amount of data in each region is measured. If each data sample has two

dimension and there are 3 different classes, the two dimensional space is di-

vided into 9 regions and again we consider the amount of data in each region.

If each data sample has three dimensions and there are 3 different classes, the

three dimensional space is divided into 27 regions. If the amount of data is

small and the dimension is high, most of the regions cannot have any data and

no inference can be done in these regions. This situation is called the “curse of

dimensionality”.

• Some features may be irrelevant or redundant and it is not desired that these

irrelevant features affect the designed model.

• A large dimensionality increases the complexity of the learning.

Due to these reasons, many learning algorithms apply dimensionality reduction, i.e.,

reduce the number of features, before learning a model. However, reducing the num-

ber of features cannot be done arbitrarily or useful information may be lost. The

important thing is to eliminate unnecessary features while preserving the amount of

useful information.

In the recent years, many research effort has focalized on the reduction of the dimen-

sionality of data. Dimensionaliy reduction in a manner consistent with the intrinsic

geometry of data is also called manifold learning.

A "manifold" can be intuitively described as a surface of any shape in layman’s terms.

The manifold concept is a generalization of surfaces in D-dimensional space. For

example, a 0-dimensional manifold is a point, a 1-dimensional manifold is a curve, a

2-dimensional manifold is a surface and similarly there are manifolds of much higher
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dimensions too. Manifold learning moves with the opinion that the dataset lies along a

low-dimensional manifold embedded in a high-dimensional space. The objective is to

uncover the low-dimensional manifold structure in a high-dimensional data set. The

low-dimensional space reflects the underlying parameters and the high-dimensional

space is the feature space. For example, a single camera takes a video stream of an

object from varying view angles. The images have many pixels. For instance, if an

image is 100 × 100, there are 10000 pixels. When the images are vectorized, each

data sample or image vector lies inR10000. However, the camera has only two degrees

of freedom : tilting the x axis, and the y axis. So the images at consecutive frames are

very similar and their difference can be described by the 2-degrees-of-freedom motion

of camera. In other words, the images lie on a 2-dimensional surface embedded in a

10000-dimensional space. In such a setting, there are too many unnecessary features

that might reduce the speed of the system.

At first, unsupervised manifold learning methods that aim to preserve and capture

the geometric structure of the data set have been developed. Unsupervised learning

methods do not exploit the class label information. After that, supervised manifold

learning methods have been developed, which aim to enhance the separation between

training samples from different classes by taking advantage of the class label infor-

mation while respecting the geometric structure of data.

The intention of linear dimensionality reduction methods is to compute a low dimen-

sional linear mapping of the originally high dimensional data x ∈ Rd, where x is

a data specimen residing in a high-dimensional space. Then, in order to project x

into an r-dimensional space, linear dimensionality reduction methods find a linear

projection matrix T that is a d × r matrix. Linear dimensionality reduction meth-

ods have different ways to find the linear projection matrix. Consequently, the lower

dimensional representation of x is found as follows:

y = T Tx (1.1)

However, linear dimensionality reduction methods tend to be unsuccessful to perceive

the nonlinear structure in the data. Figure 1.1 [1] provides an example to demonstrate

this. The projections given by PCA, LLE [30] and IsoMap [34] are compared in
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this figure. PCA is a popular linear dimensionality reduction technique. It measures

the similarity between data samples by the Euclidean distance. However, Euclidean

distance sometimes causes PCA algorithm to fail in manifolds like in Figure 1.1.

In particular, in a classification problem manifold-modeled data, the Euclidean dis-

tance of samples from different classes may be small. LLE and IsoMap are popular

non-linear dimensionality reduction techniques. As it is seen in the figure, LLE and

IsoMap can successfully unroll the original manifold. In addition, IsoMap gets rid of

the disadvantage of the Euclidean distance by using the geodesic distance.

Figure 1.1: Dimension Reduction of Swiss Roll Data by PCA, ISOMAP and LLE

[1]

Fisher Discriminant Analysis (FDA) and many similar techniques that aim to maxi-

mize the between-class scatter and minimize the within-class scatter show poor per-

formance for intricate data distributions. Another disadvantage of this kind of linear

methods is that the embedding dimension is limited to the number of classes. This

situation is caused from the rank deficiency of the between class scatter matrix.
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Nonlinear dimensionality reduction methods such as [29] have greater flexibility in

the learnt representation. However, two critical issues arise concerning supervised

dimensionality reduction methods: First, most nonlinear methods compute a point-

wise mapping only for the initially available data samples. In order to generalize

them to initially unavailable points, an interpolation needs to be done, which is called

the out-of-sample extension of the embedding. Second, existing dimensionality re-

duction methods focus on the properties of the computed embedding only as far as

the training samples are concerned: Existing algorithms mostly aim to increase the

between-class separation and preserve the local structure, however, only for the train-

ing data. Meanwhile, the important question is how well these algorithms generalize

to test data. This question is even more critical for nonlinear dimensionality reduction

methods, as the classification performance obtained on test data will not only depend

on the properties of the embedding of the training data, but also on the properties

of the interpolator used for extending the embedding to the whole ambient space.

Several methods have been suggested to solve the out-of-sample extension problem,

such as unsupervised generalizations with smooth functions [11], [28], [13], [26] or

semi-supervised interpolators [38]. These methods intend to generalize an already

computed embedding to new data and are constrained by the initially prescribed co-

ordinates for training data. Meanwhile, the best strategy for achieving satisfactory

generalization to test data would not consist in learning the embedding and the inter-

polation sequentially, but rather in learning them in a joint and coherent manner.

In this thesis, we have developed a nonlinear supervised manifold learning method

for classification where the embeddings of training data are learned and optimized

in a joint way along with the interpolator that extends the embedding to the whole

ambient space. A distinctive property of our method is the fact that it explicitly aims

to have good generalization to test data in the learning objective. In order to achieve

this, we build on the previous work [37] where a theoretical analysis of supervised

manifold learning is proposed. The theoretical results in [37] show that for good

classification performance, the separation between different classes in the embedding

of training data needs to be sufficiently high, while at the same time the interpolation

function that extends the embedding to test data must be sufficiently regular. For good

generalization to initially unavailable test samples, a compromise needs to be found
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between these two important criteria.

In this work, we adopt radial basis function interpolators for the generalization of the

embedding, and learn the embedding of the training data and the parameters of the in-

terpolator, i.e., the coefficients and the scale parameter of the interpolation function,

at the same time with a joint optimization algorithm. The analysis in [37] charac-

terizes the regularity of an interpolator via its Lipschitz regularity. We first derive

an upper bound on the Lipschitz constant of the interpolator in terms of the parame-

ters of the embedding. Then, relying on the theoretical analysis in [37], we propose

to optimize an objective function that maximizes the separation between different

classes and preserves the local geometry of training samples, while at the same time

minimizing an upper bound on the Lipschitz constant of the RBF interpolator. We

propose an alternating iterative optimization scheme that first updates the embedding

coordinates, and then the interpolator parameters in each iteration. We test the classi-

fication achievement of the proposed method on several real data sets and show that it

outperforms the supervised manifold learning methods in comparison and traditional

classifiers.

1.2 Thesis Outline

The thesis is organized as follows. In Chapter 2, some unsupervised and supervised

learning algorithms we have obtained through literature review are summarized. In

Chapter 3, we formulate the supervised manifold learning problem and present the

proposed algorithm. In Chapter 4, we evaluate our method with experiments on sev-

eral face and object data sets. Finally, we conclude in Chapter 5.
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CHAPTER 2

RELATED WORK

In this chapter we present an overview of the literature on manifold learning. In

Section 2.1, we discuss unsupervised manifold learning methods. Next, in Section

2.2, supervised manifold learning methods are overviewed.

2.1 Unsupervised Manifold Learning Methods

Unsupervised manifold learning is a learning process which is performed by unla-

beled data. We only have input data, and there is no corresponding true output vari-

ables, namely class labels are not available. Hence, unsupervised manifold learning

algorithms try to explore the unknown structure of the dataset without the class infor-

mation of the samples.

In this section, some well-known linear and nonlinear unsupervised manifold learning

techniques will be overviewed. Principal Component Analysis and Locality Preserv-

ing Projection [20] are popular linear unsupervised dimensionality reduction tech-

niques. Laplacian Eigenmaps [9], Locally Linear Embedding, Isomap [34] are among

the well-known nonlinear dimensionality reduction methods.

When we discuss unsupervised manifold learning algorithms, the following notation

will be used. Let the original high-dimensional data matrix be X = [x1 x2 ... xN ] ∈
RdxN , mean of all data samples in X be µ, the data dimension after dimensionality

reduction be r and the output data matrix be Y = [y1 y2 ... yN ] ∈ RrxN .
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Principal Component Analysis

Principal component analysis (PCA) is a linear unsupervised dimensionality reduc-

tion method that is frequently used in pattern recognition. PCA is used for dimen-

sionality reduction, and estimation and visualization of a dataset. The purpose of

PCA is to find r uncorrelated principal components related to the data set. Direction

on which the dataset shows maximum variation is chosen as the first principal compo-

nent. Then among the directions orthogonal to the first principal component, the one

along which the dataset shows maximum variation is chosen as the second principal

component. Continuing in this way, the direction ortogonal to the previously found

principal components along which the dataset shows maximum variation is chosen as

the new principal component.

The principal components are computed by first obtaining the covariance matrix of

the data samples:

S =
N∑
j=1

(xj − µ)(xj − µ)T (2.1)

Then, the eigenvectors of S are calculated. Finally, the r eigenvectors associated

with the r largest eigenvalues give us the principal component vectors. The new low

dimensional coordinates of the initially high dimensional data samples are then given

by the projections of the samples onto the principal components.

Laplacian Eigenmaps

PCA is interested in global statistical characteristics of a dataset and does not care

about the conservation of the local structure of the dataset. Meanwhile, in some

applications, one may wish to maintain the geometric structure of the data in the

embedding. Laplacian Eigenmaps algorithm (LE) [9] is a nonlinear dimensionality

reduction algorithm that aims to find a low dimensional representation for a dataset

that is embedded in a high-dimensional ambient space. Unlike PCA, LE is able to

capture the nonlinear structure of the data. LE consists of the following steps:

• The neighborhood graph is built. If the data sample xj is among the ε-nearest
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neighbors of xk or xk is among the ε-nearest neighbors of xj , nodes j and k are

connected by an edge.

• Connected edges are weighted and weight matrix W is constructed.

Wj,k =

exp(−‖xj − xk‖2/β) if nodes j and k are connected

0 if nodes j and k are not connected
(2.2)

where β is a heat kernel parameter and is generally tuned as the mean of squared

distances between all sample pairs.

• The following objective function is minimized, which intend to maintain the local

structure of the dataset by bringing the neighboring samples in the original space

close to each other in the new space.

min
∑
jk

(yj − yk)2Wjk (2.3)

The above objective function can be rewritten as

∑
jk

(yj − yk)2Wjk =
∑
jk

(y2j + y2k − 2yjyk)Wjk

=
∑
j

y2jDjj +
∑
k

y2kDkk − 2
∑
jk

yjykWjk = 2yTLy
(2.4)

where D is the diagonal weight matrix, whose inputs are found by summing the

columns of W , so that Djj =
∑

kWjk. The Laplacian matrix described as L =

D −W .

• Lastly, the following generalized eigenvector problem is solved:

Lf = λDf (2.5)

Let the eigenvalues found in this problem be [0 = λ0 ≤ λ1 ≤ ...,≤ λr] and the

corresponding eigenvectors be [f0, f1, ..., fr]. f0 is discarded because it corresponds

to the eigenvalue 0 and usually gives an almost constant vector. Finally, the first

r eigenvectors, [f1, ..., fr], gives the output data Y . The purpose of selecting the

eigenvectors corresponding to the smallest eigenvalues in LE is the following: The LE
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method seeks to embed neighboring samples in the original space to nearby samples

in the new domain. The new coordinates of the data then correspond to functions that

have the slowest possible variation on the original data graph, which are given by the

eigenvectors [f1, ..., fr].

Locality Preserving Projection

Another algorithm that gives importance to maintaining the local neighboring struc-

ture of the dataset is Locality Preserving Projection (LPP) [20]. This algorithm is a

linear approximation of the nonlinear Laplacian Eigenmaps. It is a faster technique,

thanks to this linear approximation. Nonlinear techniques like Laplacian Eigenmaps,

Locally Linear Embedding [30] compute a pointwise mapping only for the training

samples that is initially available, and their generalization to new test is called the

out-of-sample problem. Meanwhile, since it learns a linear projection, LPP can be

directly applied to new test points. The following algorithmic steps describe the LPP

method:

• The adjacency graph and the weight matrix are constructed as in the Laplacian

Eigenmaps method.

• Eigenvalues and eigenvectors of the following generalized eigenvector problem are

found.

XLXT e = λXDXT e (2.6)

where D and L are calculated as in the Laplacian Eigenmaps method. This refor-

mulates the same problem as in the Laplacian Eigenmaps method, however, under

the linear projection constraint f = XT e. The first r eigenvectors corresponding

to smallest eigenvalues give the linear transformation matrix T . New test points are

mapped by this transformation matrix, namely:

Y = T TX (2.7)
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ISOMAP

The purpose of ISOMAP [34] is to embed the data samples into a much lower dimen-

sional space while preserving the geodesic distances of the data samples on the data

manifold. Most of the classical techniques use Euclidean distance. Meanwhile, in

settings where the data is known to lie on a manifold, the geodesic distance, which is

the closest distance on the manifold, may be a more meaningful dissimilarity measure

than the Euclidean distance (see Figure 2.1 for an illustration of the geodesic distance

and the Euclidean distance). Furthermore, the classical linear techniques like PCA

are successful only if the intrinsic geometry of the data set conforms to a subspace

model. Otherwise, these algorithms will fail to explore the true underlying structure

of the original high-dimensional manifold. The ISOMAP algorithm works as follows:

• In the first stage of the ISOMAP, the neighborhood graph G is built. Each point

is connected to its ε-nearest neighbors by edges and these edges are weighted with

dx(j, k) which is the distance between points j and k.

• In the second stage of the algorithm, the shortest geodesic distances dG(j, k) be-

tween all sample pairs on the manifold are estimated and these distance values form

the matrix DG = {dG(j, k)}. The geodesic distances are computed as follows. If

points j and k are linked by an edge, dG(j, k) will be equated to dx(j, k). Otherwise,

dG(j, k) = ∞. Then dG(j, k) is replaced by min(dG(j, k), dG(j,m) + dG(m, k)) for

the values of m = 1, 2, ..., N one by one.

• In the final stage, the new low-dimensional coordinates yj of the samples xj are

computed by minimizing the following cost function:

E(Y ) = ‖ξ(DG)− ξ(DY )‖F (2.8)

where DY is formed by Euclidean distances of output samples yj and yk. The aim

of this objective function is to form the lower dimensional embedding Y such that the

estimated intrinsic geometry of the original manifold is maintained. In order to boost

the efficiency of the optimization, the ξ operator converts the distances in matrices

DG and DY to inner products and is defined as follows
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τ(D) = −HSH/2 (2.9)

where Sjk = D2
jk and H = I − (1/N)11T is the "centering matrix".

Figure 2.1: Geodesic and Euclidean Distances

Locally Linear Embedding

Since most databases have a nonlinear structure, nonlinear methods have been needed.

Locally Linear Embedding (LLE) [30] is a popular nonlinear dimensionality reduc-

tion algorithm. LLE intends to learn the global structure of the nonlinear manifold by

reconstructing every sample by its neighbors linearly. This algorithm comprises the

following three steps:

• The ε-nearest neighbors are found for every sample in the datasetX . The Euclidean

distance is commonly used as a measure of distance between the samples.

• The best reconstruction of each xj is found with its ε-nearest neighbors. The re-

construction weights build the reconstruction matrix W . The goal in this step is to

find the matrix W that minimizes reconstruction error. The reconstruction error is
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calculated as

E(W ) =
n∑
j=1

‖xj −
ε∑

k=1

Wjkxjk‖2 (2.10)

subject to two constraints
n∑
k=1

Wjk = 1 (2.11)

and Wjk = 0 if xk is not among the ε-nearest neighbors of xj .

• After calculating the weight matrix W , output points are calculated by minimizing

the following objective function that preserves the neighborhood characteristics :

E(y) =
n∑
j=1

‖yj −
ε∑

k=1

Wjkyjk‖2 (2.12)

subject to two constraints :
n∑
j=1

yj = 1 (2.13)

and
n∑
j=1

yjy
T
j /n = 1 (2.14)

Let R = (I −W )T (I −W ). Then Y is found by computing the r + 1 eigenvectors

of R corresponding to the r + 1 smallest eigenvalues under these constraints. The

first eigenvector whose eigenvalue is close to zero is discarded. The remaining r

eigenvectors give the coordinates Y of the embedding. However, the mapping of new

test samples to the low-dimensional domain is not straightforward, namely the "out

of sample" problem occurs in this method.

2.2 Supervised Manifold Learning Methods

Supervised manifold learning is a learning process that uses labeled observations. The

algorithm learns a classification rule from the labels of the training data. In supervised

manifold learning, a dimensionality reducing mapping is learnt over the training data.

In other words, a mapping is built from labelled training data to desired outputs. The

purpose is to approximate the mapping function so well that when you have new input

data, you can predict the output variables correctly for that data.
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Generally, supervised learning follows the following procedure. First, a training

dataset is constituted by collecting information concerned with the application at

hand. For better learning, the quantity of the training data is important. In addition,

there should be sufficiently many samples from each class. If we have 100 articles

from class A and 1 article from class B, "overfitting" will occur. Namely, the learning

algorithm will not be able to estimate the labels of the samples that belong to class

B. Secondly, input features for the training data and the corresponding output val-

ues (labels) are determined. Thirdly, the most suitable training algorithm should be

choosen. Finally, once a model is built, the class labels of test data can be estimated

via the learnt model.

The vast majority of supervised dimensionality reduction methods rely on linear pro-

jections, and the methods computing a continuous supervised nonlinear embedding

are less common. The generalization of the embedding of a given set of training sam-

ples to the whole space via continuous interpolation functions is known as the out-of-

sample problem. The out-of-sample problem is of critical importance especially for

nonlinear supervised manifold learning methods computing a pointwise embedding at

only training samples. While out-of-sample extensions via the Nyström method [11],

locally linear representations [17], or smooth interpolators such as polynomials [28]

are commonly employed in unsupervised manifold learning, fewer works have stud-

ied the interpolation problem within a formulation specifically suited to supervised

manifold learning [38], [24].

In this section, several linear and nonlinear supervised learning techniques will be

explained with their implementation details. When we discuss supervised manifold

learning algorithms, the following notation will be used. Let the matrix which con-

tains all training samples be X = [x1 x2 ... xN ] ∈ RdxN , the class label of the sample

xj be l(xj), the training data matrix that belongs to class-j be Xj , the number of

classes be C, the number of training samples in class-j be nj , the new dimension af-

ter dimensionality reduction be r, the mean of all training samples be µ and the mean

of all training samples in the class-j be µj . Let the nearest neighbors of a sample xj

in the same class be denoted as Nw(xj); and the nearest neighbors of xj in the other

classes be Nb(xj). Nw(xj) and Nb(xj) are defined as follows:
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Nw(xj) = {xk|l(xk) = l(xj), if xj is one of the ε-nearest neighbors

of xk or xk is one of the ε-nearest neighbors of xj}
(2.15)

Nb(xj) = {xk|l(xk) 6= l(xj), if xj is one of the ε-nearest neighbors

of xk or xk is one of the ε-nearest neighbors of xj}
(2.16)

Fisher Linear Discriminant Analysis

Fisher Linear Discriminant Analysis (FDA) is a famous linear transformation method

which is one of the earliest works aiming supervised dimensionality reduction. It

shrinks the dimensionality of data by learning a projection so that the between-class

separation is increased while the within-class compactness is enhanced. In order to

do this, first, the within-class scatter and the between-class scatter matrices are found:

Sw =
l∑

k=1

∑
j:yj=k

(xj − µk)(xj − µk)T (2.17)

and

Sb =
l∑

k=1

nk(µk − µ)(µk − µ)T (2.18)

In order to maximize the between-class scatter and to minimize the within-class scat-

ter, the following objective function is used:

J(e) =
eTSBe

eTSW e
(2.19)

Then the following eigenvector problem needs to be solved to maximize this objective

function:

Sbe = λSwe (2.20)

Assume that {ej}ri=1 are the generalized eigenvectors corresponding to the general-

ized eigenvalues λ1 ≥ λ2 ≥ ... ≥ λr. Lastly, the transformation matrix, TFDA, is

formed by these eigenvectors:
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TFDA = (e1|e2|...|er) (2.21)

Mapped samples are simply found by the multiplication of the transformation matrix

with the original high dimensional samples.

Although methods like FDA are easy to implement, some disadvantages arise. One

of the important disadvantages is the rank defficiency of the between-class scatter

matrix. This limits the maximum embedding dimension r to the number of classes in

the original training data. Because of the fact that these methods are based on global

statistics, such as the mean, and do not attach importance to the local structure of the

data, their accuracy rate in multimodal data where samples in a class may come from

from several clusters, is generally low.

Furthermore, it is known that linear dimensionality reduction techniques may per-

form badly for nonlinearly distributed complicated datasets. In order to adapt FDA

to this type of datasets, the "kernel trick" is applied to FDA and it is called "Kernel

Discriminant Analysis (KDA)". First, the input data samples {xi}Ni=1 are mapped to

a higher dimensional space via a nonlinear mapping function φ(.). After this, the

scatter matrices and the objective functions of FDA will be written with φ(x) instead

of x :

SφW =
C∑
j=1

nj∑
k=1

(φ(xjk)− µ
φ
j )(φ(xjk)− µ

φ
j )T (2.22)

where nj is number of samples in class-j and xjk is the jth sample in class-j. The

between-class scatter matrix becomes :

SφB =
C∑
j=1

(µφj − µφ)(µφj − µφ)T (2.23)

where

µφj = (1/nj)

nj∑
k=1

φ(xjk) (2.24)
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and

µφ = (1/N)
N∑
k=1

φ(xk) (2.25)

Then the objective function that will be maximized becomes the following:

Q(w) =
(wTSφBw)

(wTSφWw)
(2.26)

Local Feature Discriminant Analysis

When the data is multimodal or has an intricate geometry, maintaining the local struc-

ture is important. LPP can be successful in multimodal data because it preserves the

local structure of the data when embedding them into lower dimensions. However

LPP is an unsupervised method. In order to combine the idea of FDA and the idea

of LPP, Local Fisher Discriminant Analysis (LFDA) [33] is suggested. LFDA is also

a linear dimensionality reduction algorithm. It maximizes the between-class scatter,

while preserving the local structure at the same time.

Let nl be the number of samples in class l. The local within-class scatter and the local

between-class scatter matrices are calculated as follows :

S̃(w) = (1/2)
n∑

j,k=1

W̃
(w)
jk (xj − xk)(xj − xk)T (2.27)

S̃(b) = (1/2)
n∑

j,k=1

W̃
(b)
jk (xj − xk)(xj − xk)T (2.28)

where

W̃
(w)
j,k =

Aj,k/nl if yj = yk = l

0 if yj 6= yk

(2.29)

W̃
(b)
j,k =


Aj,k

(1/n− 1/nl)
if yj = yk = l

1/n if yj 6= yk

(2.30)
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Sample pairs from the same class are weighted by Aj,k = exp(−‖xj − xk‖2/σ). In

this way, far apart sample pairs have less influence on S̃(w) and S̃(b). Hence, in con-

trast to LDA, distant sample pairs and nearby sample pairs are weighted differently

in the within-class scatter objective. This takes into account the local data geome-

try in the learning. Sample pairs from different classes are not weighted. Then the

transformation matrix of LFDA is found from the following optimization problem

TLFDA = arg min
T∈Rdxr

[tr((T T S̃(w)T )−1T T S̃(b)T )] (2.31)

Locality Sensitive Discriminant Analysis

Another method that is based on both the local structure of the data and the dis-

criminant information is Locality Sensitive Discriminant Analysis (LSDA) [12]. The

within-class graph and the between-class graph are constructed in this method too.

Then, the within-class and between-class weight matrices are calculated from these

graphs as follows:

Ww,jk =

1 if xk ∈ Nw(xj) or xj ∈ Nw(xk)

0 otherwise
(2.32)

Wb,jk =

1 if xk ∈ Nb(xj) or xj ∈ Nb(xk)

0 otherwise
(2.33)

Two objective functions that are formed by these weight matrices are optimized. One

of them is optimized to maintain the local structure and the other one is optimized to

benefit from the discriminant information of the data. These objective functions are

given respectively by

min
∑
jk

(yj − yk)2Ww,jk = min
∑
jk

(eTxj − eTxk)2Ww,jk

= min(
∑
j

eTxjDw,jjx
T
j e−

∑
jk

eTxjWw,jkx
T
k e)

= min(eTXDwX
T e− eTXWwX

T e)

(2.34)
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where Dw,jj =
∑

kWw,jk is a diagonal matrix and provides a natural measure on

the data points. If Dw,jj is large, then it alludes that the class containing xj has a

high density around xj and this means that xj is more important. Thus, the following

constraint is imposed:

yTDwy = eTXDwX
T e = 1 (2.35)

The objective function 2.34 becomes:

min
e

1− eTXWwX
T e = 1 (2.36)

max
∑
jk

(yj − yk)2Wb,jk = max
∑
jk

(eTxj − eTxk)2Wb,jk

= max(
∑
j

eTxjDb,jjx
T
j e−

∑
jk

eTxjWb,jkx
T
k e)

= max(eTXDbX
T e− eTXWbX

T e)

= max eTXLbX
T e

(2.37)

Finally, these objective functions are combined as follows:

arg max
e
eTX(βLb + (1− β)Ww)XT e s.t. eTXDwX

T e = 1 (2.38)

where β is a constant that is between 0 and 1.

However, if the data manifold is nonlinear, LSDA tends to fail because it is a linear

learning algorithm. In order to deal with this negative outcome of linearity, kernel

trick can be applied to LSDA.

Local Discriminant Embedding

Local Discriminant Embedding (LDE) [14] is another linear manifold learning algo-

rithm. The purpose is to decrease the distance between samples of the same class and
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increase the separation between samples of different classes in the low dimensional

space of embedding. The algorithm consists of three steps:

• For all data samples, two neighborhood graphs are constructed. Let the first graph

be G and the second graph be G′. In the first graph G, there is an edge between points

xj and xk if xj and xk are in the same class and xk is one of xj’s ε-nearest neighbors.

In the second graph G′, there is an edge between points xj and xk if xj and xk are in

different classes and xk is one of xj’s ε-nearest neighbors.

• Two affinity weight matrices are calculated for two graphs that are built in the first

step. The first affinity weight matrix that belongs to the first neighborhood graph G

is calculated as follows:

Wjk =

exp[−‖xj − xk‖2/β] if there is an edge between xj and xk in G

0 otherwise
(2.39)

The other affinity weight matrix W ′ of G′ is calculated as follows:

W ′
jk =

exp[−‖xj − xk‖2/β] if there is an edge between xj and xk in G′

0 otherwise
(2.40)

• The generalized eigenvectors [v1, v2, ..., vr] that correspond to the r largest eigenval-

ues and give a linear transformation matrix are found from the following eigenvector

problem :

X(D′ −W ′)XTv = λX(D −W )XTv (2.41)

where D and D′ are diagonal matrices with diagonal elements djj =
∑

k wjk and

d′jj =
∑

k w
′
jk.

Since the classification performance of linear methods is limited, especially in non-

linearly distributed complex manifolds, the "kernel trick" can be applied to this linear

method too to enhance the performance. The input data is mapped to higher dimen-

sional space via nonlinear kernel functions. Let φ : Rn → F be a nonlinear mapping
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that transforms the input data {xj}Nj=1 to higher dimensional feature space F . The

algorithmic steps of LDE will be applied to {φ(xj)|φ(xj) ∈ F} instead of {xj}Nj=1.

Hence, the generalized eigenvalue problem of LDE becomes :

K(D′ −W ′)KT z = λK(D −W )KT z (2.42)

where K is a kernel matrix with Kjk = k(xj, xk) = φ(xj)
Tφ(xk). After this, the

transformation matrix is learnt and the embedding of new test samples are computed

from the eigenvectors of this problem.

Stable Orthogonal Local Discriminant Embedding

It is known that PCA, FDA and LDA methods pay attention only to the global struc-

ture of data. Many manifold learning methods consider preservation of the within-

class similarity and compactness but ignore the within-class variation. Supervised

Optimal Local Discriminant Embedding(SOLDE) [18] takes into account both the

within-class similarity and the within-class diversity in order to achieve generaliza-

tion and stability. An orthogonality constraint is imposed for the vectors of the trans-

formation matrix.

• The weight matrix Sw is built as follows:

Sw,jk =

exp(−‖xj − xk‖2/β) if xk ∈ Nw(xj) or xj ∈ Nw(xk)

0 otherwise
(2.43)

and the following objective function that imposes within-class compactness is mini-

mized:

∑
jk

(yj − yk)2Sjk = 2T TXLsX
TT (2.44)

•Weight matrix H is built as follows:

Hjk =

1− exp(−‖xj − xk‖2/β) if xk ∈ Nw(xj) or xj ∈ Nw(xk)

0 otherwise
(2.45)
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and the following objective function that represents the within-class variation is max-

imized:

∑
jk

(yj − yk)2Hjk = 2T TXLhX
TT (2.46)

• The weight matrix F is built as follows:

Fjk =

exp(−‖xj − xk‖2/β) if xk ∈ Nb(xj) or xj ∈ Nb(xk)

0 otherwise
(2.47)

and the following objective function that represents the between-class separation is

maximized:

∑
jk

(yj − yk)2Fjk = 2T TXLfX
TT (2.48)

All of these objective functions are combined into a single objective function:

T ∗ = arg max
T TXLfX

TT

(T TXLsXTT − T TXLhXTT )
(2.49)

However, in the objective function, intraclass similarity T TXLsXTT and intraclass

diversity T TXLhXTT are weighted equally, whereas the task of T TXLhXTT is to

avoid the over-fitting problem caused by T TXLsXTT . In order to obtain a stable and

compact intraclass representation, the component T TXLsXTT should be weighted

larger and the component T TXLhXTT should be weighted smaller. Thus, the opti-

mal objective function should be

T ∗ = arg max
T TXLfX

TT

(T TX(bLs − (1− b)Lh)XTT )

= arg max
T TXLfX

TT

(T TXLdXTT )

(2.50)

where Ld = αLs − (1− α)Lh, and α is a constant that is set as 0.9 in [18]. Then the

eigenvectors of the following eigenvector problem gives the projection vector.
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XLfX
TT = λXLdX

TT (2.51)

Supervised Optimal Locality Preserving Projection (SOLPP)

It is known that LPP can preserve the local neighborhood structure but it is an un-

supervised technique. Unlike Laplacian Eigenmap, Locally Linear Embedding and

Isomap algorithms, LPP is a linear dimensionality reduction algorithm and easy to

implement. Upon this, Wong and Zhao proposed the Supervised Optimal Locality

Preserving Projection (SOLPP) [39] , which uses the class label information too. The

features extracted by this technique are statistically uncorrelated and orthogonal. This

is why this method is called "optimal". When the extracted features are correlated,

there will be redundant information and this reduce the performance. Unfortunately

LPP has this disadvantage. In the SOLPP method, because of the availability of the

class label information, the similarity matrix is defined as :

Wjk =

exp(−‖xj − xk‖2/β) if xj and xk are in the same class

0 otherwise
(2.52)

However when this similarity matrix is used, the neighborhood graph of the training

data can be disjointed and this contradicts the idea of LPP that aims to preserve the

local structure of the original manifold. Thus, similarity matrix W of SOLPP is

constructed as follows:

Let the d dimensional input training data be {xj, lj}Nj=1 in which lj ∈ 1, 2, ..., c is

the class label of xj , and p(j)(j = 1, 2, ..., c) be the class prior probability of the jth

class. Then, the similarity matrix is defined as
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Wjk =



p(lj)
2 exp(

−‖xj − xk‖2

β
)(1 + exp(

−‖xj − xk‖2

β
)) if xk ∈ Nw(xj)

or xj ∈ Nw(xk)

p(lj)p(lk) exp(
−‖xj − xk‖2

β
)(1− exp(

−‖xj − xk‖2

β
)) if xk ∈ Nb(xj)

or xj ∈ Nb(xk)

0 otherwise
(2.53)

where the class label prior probalities makes the algorithm more suitable to classi-

fication applications when the number of training samples in different classes are

unequal. The following objective function is minimized :

J(φ) = min(tr(φTXLXTφ)) (2.54)

under the following constraints, which provide the orthogonal and uncorrelated fea-

tures to this method:

φTφ = I , φTj XDX
Tφk = 0 and φTkXX

Tφj = 0 (j 6= k)

Two-Stage Multiple Kernel Learning

Since most data collections have a high dimensional structure and nonlinear map-

pings give better results for nonlinearly distributed data, the kernel trick is used in

order to convert linear methods to nonlinear. The kernel extensions of many famous

dimensionality reduction methods such as PCA, LDA, ICA exist [32], [7], [6]. The

construction of continuous functions via smooth kernels is also quite common in Re-

producing Kernel Hilbert Space (RKHS) methods [10], [5]; however, these meth-

ods differ from supervised manifold learning methods in that the learnt mapping of-

ten represents class labels of data samples rather than their coordinates in a lower-

dimensional domain of embedding as in manifold learning. The choice of the kernel

type and parameters can be critical in kernel methods. Several previous works in the

semi-supervised learning literature have addressed the learning of kernels by combin-
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ing known kernels [16], [4]. A two-stage multiple kernel learning method is recently

proposed in [22] for supervised dimensionality reduction, which finds a nonlinear

mapping by the perspective of the multiple kernel learning.

The approach in multiple kernel learning (MKL) methods is to construct a new kernel

function benefiting from several known kernel functions km(., .) instead of using one

kernel. In this way, a more suitable kernel can be found. Two-stage Multiple Kernel

Learning (TSMKL) [22] is a recent MKL method. There are two steps in TSMKL.

In the first step, a new kernel function is built as a linear combination of valid kernels

as follows:

φ(x, z) =
M∑
m=1

βmφm(x, z) (2.55)

where the weights [β1, ..., βm] are determined according to an appropriate criterion.

The "Maximizing Fisher Criterion", “maximizing homoscedasticity criterion[40]”

and the “maximizing between-class distance criterion” could be chosen. In the sec-

ond step, KDA is applied in order to calculate a nonlinear mapping which maximizes

between-class distances and minimizes within-class distances at the same time.

Supervised Versions of Locally Linear Embedding

The major disadvantage of LLE is the “out of sample problem”. LLE does not give us

a transformation that projects new data points onto the embedded space. In addition,

LLE does not exploit the class label information; namely, LLE is an unsupervised

method. In order to profit from class label information, The Supervised Locally Lin-

ear Embedding (SLLE) [42] is proposed. The only difference of the SLLE from the

LLE is the calculation of the distances between the samples. In the LLE, the dis-

tances between the samples are calculated by the Euclidean distance and no class

information is used. In the SLLE, the distance between the samples are calculated as

follows:

δ′ = δ + τ max(δ)κjk, τ ⊂ [0, 1] (2.56)
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where δ is the Euclidean distance that is calculated without utilizing the class label

information and max(δ) is the largest Euclidean distance between the classes. If Xj

and Xk are in different classes, κjk = 1; and κjk = 0 otherwise. The purpose is

to increase the distance between the samples from different classes more. τ is the

control parameter that determines the amount of class label information to be added.

SLLE can be converted into the unsupervised LLE by making τ = 0. The Step 2 and

Step 3 of SLLE is the same as the Step 2 and Step 3 of LLE.

Enhanced Supervised Locally Linear Embedding (ESLLE) [42] is proposed by mod-

ifying the distance in SLLE. The new distance between the samples is calculated as

follows:

δ′ =


√

(exp(δ2/β)) + τ if lj 6= lk√
(1− exp(−δ2/β)) if lj = lk

(2.57)

where lj is the class label of Xj and β is a positive constant.

However these two methods do not solve the "out of sample" problem. In order

to overcome the out of sample problem of LLE, the Neighborhood Preserving Em-

bedding (NPE) is proposed. NPE is also an unsupervised dimensionality reduction

algorithm. NPE can preserve the local neighborhood structures on the original data

manifold. An optimal transformation matrix A is found by minimizing the following

cost function:

A = arg min
A

n∑
j=1

||yj −
n∑
j=1

Wjkyk||
2

= arg min
A
tr(ATXMXTA) (2.58)

subject to ATXXTA = I , where M = (I −W )T (I −W ). The Lagrange multipliers

technique takes this cost function to the following generalized eigenvector problem:

XMXTA = λXXTA (2.59)

Finally output samples Y are found by Y = AX .

LLE considers that each sample can be reconstructed by its ε-nearest neighbors so

there is one weight matrix. In the Neighborhood Preserving Discriminant Embed-

ding (NPDE) [25] algorithm, there are two reconstruction weight matrices. The first
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one is a within-class reconstruction matrix that is found by reconstructing each sam-

ple with its ε-nearest neighbors from the same class. The second one a between-

class reconstruction matrix that is found by reconstructing each sample with its ε-

nearest neighbors from the other classes. Then, two cost functions are formulated as

in LLE in order to preserve the local structure with the aid of the within-class and the

between-class reconstruction matrices. An optimization problem that minimizes the

cost function that is related with the within-class reconstruction matrix while maxi-

mizing the cost function that is related with the between-class reconstruction matrix

is solved.

Supervised Laplacian Eigenmaps

Laplacian Eigenmaps (LE) preserves the geometric structure of the data but does not

benefit from discriminant information of data. The Supervised Laplacian Eigenmaps

(SUPLAP) algorithm [29] exploits discriminant information too. Geometrical and

discriminant information are represented by two different graphs. The within-class

graph Gw and the between-class graph Gb. The within-class weight matrix Ww and

the between class weight matrixWb are calculated by these graphs respectively. Then,

two objective functions are defined and the optimization of these objective functions

gives the embedding. The algorithm is implemented by the following steps.

• The average similarity is calculated for each sample:

AS(xj) = (1/N)
N∑
k=1

exp(−‖xj − xk‖2/β) (2.60)

• The nearest neighbors of xj from the same class and the other classes are determined

as

Nw(xj) = {xk|l(xk) = l(xj), exp(−‖xj − xk‖2/β) > AS(xj)} (2.61)

Nb(xj) = {xk|l(xk) 6= l(xj), exp(−‖xj − xk‖2/β) > AS(xj)} (2.62)
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where l(xk) denotes the class label of the sample xk.

• The weight matrices Ww and Wb are built:

Ww,jk =

exp(−‖xj − xk‖2/β) if xk ∈ Nw(xj) or xj ∈ Nw(xk)

0 otherwise
(2.63)

Wb,jk =

exp(−‖xj − xk‖2/β) if xk ∈ Nb(xj) or xj ∈ Nb(xk)

0 otherwise
(2.64)

• The following objective functions are optimized:

min 1/2
∑
jk

‖yj − yk‖2Ww,jk (2.65)

max 1/2
∑
jk

‖yj − yk‖2Wb,jk (2.66)

These functions can be rewritten as:

min tr(Y TLwY ) (2.67)

max tr(Y TLbY ) (2.68)

where Lw and Lb are the Laplacian matrices of Ww and Wb respectively. These ob-

jective functions are combined into a single objective function:

arg max
Y
{γtr(Y TLbY ) + (1− γ)tr(Y TWwY )} s.t. Y TDwY = I (2.69)

arg max
Y

tr(Y T (γLb + (1− γ)Ww)Y ) s.t. Y TDwY = I (2.70)

where γ ∈ [0, 1] is a balance parameter and if we denote B = γLb + (1− γ)Ww, the

following eigenvalue problem gives the solution of the optimization problem:
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By = λDwy (2.71)

Let the eigenvalues found in this problem be [λ1 ≥ λ2 ≥ ...,≥ λk] and the corre-

sponding eigenvectors be [y1, y2, ..., yk]. The first r eigenvectors, [y1, ..., yr], give the

embedding Y of the training data.

Hybrid Manifold Embedding

Unlike many algorithms that give a linear mapping function, the goal of Hybrid Man-

ifold Embedding (HyME) [21] is to find a general nonlinear mapping function. This

nonlinear mapping function is found by a learning procedure with two layers. In the

first layer, the original data is divided into subsets. Each subset has minimum non-

linearity. This procedure is called "geodesic clustering (GC)". In the second layer,

supervised dimension reduction is applied to each subset. This procedure is called

"Locally Conjugate Discriminant Projection (LCDP)". Only one mapping function

is found by combining these procedures. Therefore, both the local and the global

manifold structure is learned.

Datasets in real world can be very complex. Only one global model may be inad-

equate. The GC procedure divides the original dataset into the subsets that have

minimum nonlinearity. In this way, the learning capability of the model is enhanced.

The nonlinearity of a subset is measured by the maximum geodesic distance of that

subset. Let P be a partition of the dataset, C be the number of subsets, Xc be cth sub-

set and distG(xj, xk) be the geodesic distance between datasamples xj and xk. The

division of the original dataset into the subsets is achieved by the objective function

of GC that is defined as follows:

P = arg min
P

max
c=1,...,C

max
j,k:xj ,xk∈XC

distG(xj, xk) (2.72)

After the clustering of the original dataset, "Locally Conjugate Discriminant Projec-

tion (LCDP)" is applied. Assume that Xc is the datamatrix of subset c, videlicet

Xc = [x1, ..., Xnc ] where nc is the number of data points in Xc. LCDP learns a D× d
transformation matrixWc = [wc1 , ..., wcd ] that maximizes the discriminant scatter and

preserves the local geometry in the new space. Then a discriminant scatter matrix Scd
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and a locality scatter matrix Scl are defined by using the class label informations of

each data sample as follows:

Sc
d =

∑
j,k

(Ac
d)jk(yj − yk)(yj − yk)T =

∑
j,k

(Ac
d)jkWc

T (xj − xk)T (xj − xk)Wc

(2.73)

Sc
l =
∑
j,k

(Ac
l)jk(yj−yk)(yj−yk)T =

∑
j,k

(Ac
l)jkWc

T (xj−xk)T (xj−xk)Wc (2.74)

whereACd andACl are discriminant coefficient matrix and locality coefficient matrix

respectively. If xj is in the K-nearest neighbors of xk and class labels of xj and xk are

the same, (AC
l)jk = e−‖xj−xk‖

2/2σ, otherwise (AC
l)jk = 0. If xj is in the ε-nearest

neighbors of xk and class labels of xj and xk are different, (AC
d)jk = e−‖xj−xk‖

2/2σ,

otherwise (AC
d)jk = 0.

The following optimization problem gives the transformation matrix for a subset C.

The transformation matrix is found separately for each subsets. The transformation

matrix is found separately for each cluster as follows.

Wc = arg max
Wc

tr((Sc
l)†Sc

d) (2.75)

where (Sc
l)
†

is the Moore-Penrose pseudoinverse of Scl. Then these transforma-

tion matrices are combined and finally the combination gives us a nonlinear mapping

function.

Local Feature Discriminant Projection

Local Feature Discriminant Projection (LFDP) [41] is a supervised dimensionality

reduction method. One of the main ideas proposed in [41] is the Differential Scat-

ter Discriminant Criterion (DSDC), which overcomes the matrix singularity problem.

In classical methods such as LDA, because of the matrix singularity problem, the

embedding dimension is restricted to the number of classes. A general orthogonal-

ization procedure is also proposed in [41] that makes the subspace more compact and

less redundant.
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Not only the dimension is reduced but also the discriminant ability of the local fea-

tures is increased. The Image to class (I2C) distance is found for every sample by

using the class label information.

The I2C distance from an image xj to class c is defined as:

Dc
xj

= (1/d)
d∑

k=1

‖xjk − xcjk‖2 (2.76)

where xjk is k-th feature of the image xj and xcjk is the nearest neighbor of xjk is

class c. After the I2C distances are found, the DSDC is applied to the I2C distances

that are found for all samples.

The purpose is to find a matrix w ∈ RDxd to project the original local features xjk to

a lower-dimensional but more discriminative space Rd. The projected I2C distance of

the image Xj becomes

D̂c
Xj

= tr(wT∆XT
jc∆Xjcw) (2.77)

where

∆Xjc = (1/
√
mj)[(xj1 − xcj1), . . . , (xjmj

− xcjmj
)]T ∈ Rmj×D (2.78)

The projected I2C distances of the image Xj be

dj = (D̂1
Xj
, . . . , D̂C

Xj
) (2.79)

J =
C∑
c=1

nc‖µc − µ‖2 − λ
C∑
c=1

∑
dk∈classc

‖dk − µc‖2 (2.80)

where λ is a tuning parameter.

µc = (1/nc)
∑

dk∈classc

dk (2.81)
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µ = (1/N)
N∑
k=1

dk (2.82)

The intention of the objective function of DSCD is to minimize the within-class vari-

ance and to maximize the between-class variance. However, because of the quadratic

structure of the objective function, the objective function cannot be directly converted

to an eigenvalue problem. Therefore, the gradient descent algorithm on sphere is ap-

plied to minimize the objective function. In addition a general orthogonalization pro-

cedure is applied in order to make the embedding more compact and less redundant.

Dimensionality Reduction by Minimizing Nearest-Neighborhood Classification Error

"Dimensionality reduction by minimizing nearest-neighborhood classification error

(DRMNNCE)" [36], is a supervised linear dimensionality reduction method. How-

ever there are no within-class and between-class scatters in this procedure, in contrast

to conventional linear dimensionality reduction methods. An optimization procedure

is applied in order to minimize the estimation error of the nearest neighbor classifier

in the embedding. A linear projection and a small set of prototypes that support the

class boundaries are learned.

The following sigmoid function with slope β, centered at z = 1 is used in order to

define the 1-NN error rate:

Sβ(z) = 1/(1 + eβ(1−z)) (2.83)

S ′β(z) = βeβ(1−z)/(1 + eβ(1−z))
2

(2.84)

The aim is to learn a projection base B ∈ RDxE by minimizing the error rate of the

nearest neighbor classifier on a training set X = {x1, ..., xN} ⊂ RD with C classes.

In order to estimate the nearest neighbor classification error, a set of labeled proto-

types P = {p1, ..., pM} ⊂ RD which is different from and much smaller than the

training setX is defined. There should be at least one prototype per class, i.e. P 6⊂ X

, C �M � N .
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Let d(x̃, p̃∈) be the Euclidean distance between the training sample x and its same

class nearest prototype in the target space ; and let d(x̃, p̃ 6∈) be the Euclidean distance

between the training sample x and its different class nearest prototype in the target

space. By using the reference prototypes, the 1-NN error rate can be written as

Jx(B,P ) = (1/N)
∑
∀x∈X

Sβ(Rx) (2.85)

where

Rx = d(x̃, p̃∈)/d(x̃, p̃ 6∈) (2.86)

The sigmoid function is used rather than the step function in the 1-NN error rate

definition because the contribution of each sample to the overall error Jx becomes

more important or less important depending on the quotient of the distances. The

gradients of Jx are derived as follows:

∇BJx = (1/N)
∑
∀x∈X

(S ′β(Rx)Rx/d(x̃, p̃∈))∇Bd(x̃, p̃∈)

−(1/N)
∑
∀x∈X

(S ′β(Rx)Rx/d(x̃, ˜p 6 ∈))∇Bd(x̃, ˜p 6 ∈)
(2.87)

∇pmJx = (1/N)
∑

∀x∈X:p̃m=p̃∈

(S ′β(Rx)Rx/d(x̃, p̃∈))∇pmd(x̃, p̃∈)

−(1/N)
∑

∀x∈X:p̃m=p̃ 6∈

(S ′β(Rx)Rx/d(x̃, ˜p 6 ∈))∇pmd(x̃, ˜p 6 ∈)
(2.88)

where

∇Bd(x̃, p̃) = 2(x− p)(x̃− p̃) (2.89)

∇pd(x̃, p̃) = −2B(x̃− p̃) (2.90)

In order to simplify the gradient equations the following factors can be defined.

F∈ =
S ′β(Rx)Rx

d(x̃, p̃∈)
(2.91)
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F 6∈ =
S ′β(Rx)Rx

d(x̃, p̃ 6∈)
(2.92)

Learning Discriminant Projections and Prototypes (LDPP) [36] is applied to get the

following expressions:

∇BJx = XGT + PHT (2.93)

∇PJx = BH (2.94)

When the Euclidean distance is used, the n-th andm-th columns of the factor matrices

G and H are:

gn = (2/N)F∈n(x̃n − p̃∈n)− (2/N)F 6∈n(x̃n − p̃ 6∈n) (2.95)

hm = (−2/N)
∑

∀x∈X:p̃m=p̃∈

F∈n(x̃n− p̃∈n)+(2/N)
∑

∀x∈X:p̃m=p̃ 6∈

F 6∈n(x̃n− p̃ 6∈n) (2.96)

By using the following gradient descent update equations, optimization is performed.

B(t+1) = B(t) − γ 5B Jx (2.97)

P (t+1) = P (t) − η5P Jx (2.98)

Finally the Gram-Schmidt procedure is applied to B in order to do orthonormal pro-

jection.

Two-Dimensional Discriminant Locality Preserving Projection Based on L1-Norm

Maximization

Two-Dimensional Discriminant Locality Preserving Projection Based on L1-Norm

Maximization(2DDLPP-L1) [15] is an improved LPP based method. Unlike other
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methods that consider each image in the dataset as a vector and use L2-norm, 2DDLPP-

L1 projects an image matrix onto a low-dimensional subspace directly without vec-

torizing it, which may destroy the structure information of input images, lead to di-

mensional disaster and increase the instability of matrix calculation. Since L2-norm

magnifies noise and outliers and L1-norm is more robust to noise and outliers; L1-

norm is preferred in this method.

Before explaining this method, we briefly describe the "Discriminant Locality Pre-

serving Projection Based on L2-norm Maximization (DLPP-L2)", "Two-Dimensional

Discriminant Locality Preserving Projection Based on L2-norm Maximization (2DDLPP-

L2)", "Discriminant Locality Preserving Projection Based on L1-norm Maximization

(DLPP-L1)" methods.

Discriminant Locality Preserving Projection Based on L2-norm Maximization (DLPP-

L2) [25], converts an image to a vector as in other methods and then finds an optimal

linear projection matrix T = [t1 t2 ... tr] ∈ Rdxr by maximizing the following objec-

tive function based on L2-norm:

J(t) =
c∑

j,k=1

Bjk(t
Tµj − tTµk)2/

c∑
i=1

Ni∑
j,k=1

W i
ij(t

Txkj − tTxkk)2 (2.99)

where Bjk = exp(−‖µj − µk‖2/σb) is a weight between the mean vectors of the

class-j and class-k, W i
jk = exp(−‖xij − xik‖2/σw) is a weight between two samples

xj and xk in the class-i, and σb and σw are scale paramaters.

Two-Dimensional Discriminant Locality Preserving Projection Based on L2-norm

Maximization (2DDLPP-L2) projects image matrices without vectorizing them by

maximizing the following objective function based on L2-norm:

J(t) =
c∑

j,k=1

Bjk‖tT Āj − tT Āk‖2/
c∑
i=1

Ni∑
j,k=1

W i
jk‖tTAij − tTAik‖2 (2.100)

where Aij is the image matrix of j-th training sample in class-i, Aj is the mean of the

image matrices in class-j, Bjk = exp(−‖Aj−Ak‖2F/σb) is a weight between the two

mean matrices of the class-j and class-k, W i
jk = exp(−‖Aj − Ak‖2F/σw) is a weight
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between two matrices Aj and Ak in the class-i and σb and σw are scale paramaters.

Discriminant Locality Preserving Projection Based on L1-norm Maximization (DLPP-

L1) converts an image to a vector and finds an optimal linear projection matrix

T = [t1t2...tr] ∈ Rdxr by maximizing the following objective function based on

L1-norm:

J(t) =
c∑

j,k=1

Bjk|tTµj − tTµk|/
c∑
i=1

Ni∑
j,k=1

W i
jk|tTxij − tTxik|2 (2.101)

Two-Dimensional Discriminant Locality Preserving Projection Based on L1-norm

Maximization (2DDLPP-L1) optimizes the following objective function based on L1-

norm:

J(t) =
c∑

j,k=1

Bjk‖(Āj − Āk)t‖1/
c∑
i=1

Ni∑
j,k=1

W i
jk‖(Aij − Aik)t‖1 (2.102)

,which preserves the image structure during learning while achieving robustness to

noise and outliers via the usage of the L1-norm.
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CHAPTER 3

PROPOSED METHOD

In this chapter, we present the proposed method for supervised dimensionality reduc-

tion. We first give an overview of the theoretical results that motivate our work in

Section 3.1. We then formulate the manifold learning problem in Section 3.2 and

define an optimization problem based on these theoretical perspectives. We then de-

scribe our algorithm in Section 3.3

3.1 Theoretical Perspectives

Nonlinear dimensionality reduction methods minimizing objectives as in (2.69) often

yield embeddings where training samples from different classes are linearly separa-

ble, and the local neighborhoods on the same manifold are preserved as imposed by

the within-class graph Laplacian matrix. On the other hand, what is critical is how

well these embeddings generalize to new test data; i.e., when a test sample of un-

known class label is mapped to the low-dimensional domain of embedding via an

interpolator or an out-of-sample extension method, we are interested in how likely

the sample is to be correctly classified. This depends both on the coordinates of

the embedding for the training samples and the interpolator used to generalize the

embedding to the whole ambient space. In the previous work [37], this problem is

theoretically studied. We now overview some results from [37].

The classification problem is analyzed in [37] in a setting where each data sample in

the training set X = {xi}Ni=1 is assumed to belong to one of the classes {1, 2, . . . ,M}
and the samples of each class m are distributed according to the probability measure
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νm. LetMm denote the support of the probability measure νm. Denoting as Bδ(x)

an open ball of radius δ around a point x

Bδ(x) = {u ∈ Rn : ‖x− u‖ < δ},

the following definition introduces the smallest possible measure for a ball Bδ(x) of

radius δ centered around a point in the supportMm of the m-th class.

ηm,δ := inf
x∈Mm

νm(Bδ(x))

Next, we recall the definition of Lipschitz continuity for a function f .

Definition 1. We say that a function f : Rn → Rd is Lipschitz continuous with

constant L > 0 if for any u, v ∈ Rn

‖f(u)− f(v)‖ 6 L ‖u− v‖.

The analysis considers a supervised manifold learning algorithm that computes the

embedding yi ∈ Rd of each training sample xi ∈ Rn. Then a test sample x of

unknown class label is first mapped to Rd via an interpolation function f : Rn → Rd.

The following main result from [37] gives a bound on the classification error, when

the estimate Ĉ(x) of the class label C(x) of x is estimated via the nearest-neighbor

classification in Rd as Ĉ(x) = C(xi), where

i = arg min
j
‖yj − f(x)‖.

Theorem 1. Let X = {xi}Ni=1 ⊂ Rn be a set of training samples such that each xi

is drawn i.i.d. from one of the probability measures {νm}Mm=1, with νm denoting the

probability measure of the m-th class. Let Y = {yi}Ni=1 be an embedding of X in Rd

such that

‖yi − yj‖ < Dδ, if ‖xi − xj‖ 6 δ and C(xi) = C(xj)

‖yi − yj‖ > γ, if C(xi) 6= C(xj).

For given ε > 0 and δ > 0, let f : Rn → Rd be a Lipschitz-continuous interpolation

function with constant L, which maps each xi to f(xi) = yi, such that

Lδ +
√
dε+D2δ 6

γ

2
. (3.1)
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Figure 3.1: An illustration for Theorem 1

Consider a test sample x randomly drawn according to the probability measure νm

of class m. For any Q > 0, if X contains at least Nm training samples from the m-th

class drawn i.i.d. from νm such that

Nm >
Q

ηm,δ

then the probability of correctly classifying x with nearest-neighbor classification in

Rd is lower bounded as

P
(
Ĉ(x) = m

)
> 1− exp

(
−2 (Nm ηm,δ −Q)2

Nm

)
− 2d exp

(
− Qε2

2L2δ2

)
. (3.2)

Theorem 1 considers an embedding such that nearby training samples from the same

class are mapped to nearby coordinates, while training samples from different classes

are separated by a distance of at least γ in the low-dimensional domain of embedding.

The parameter γ can be considered as the separation margin of the embedding. Then

for such an embedding, the condition in (3.1) assumes an interpolator f that is suffi-

ciently regular compared to the separation margin γ. An illustration of the parameters

of the theorem is given in Figure 3.1. Finally, a probabilistic classification guarantee

is given for this setting in (3.2), which states that the misclassification probability de-

creases exponentially with the number of samples. An extension of this result is also
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presented in [37] which studies the performance of classification with a linear clas-

sifier in the low-dimensional domain. When a linear classifier is used in the domain

of embedding, a necessary condition very similar to (3.1) is obtained that establishes

a very similar relation between the interpolator regularity and the separation margin,

and a similar bound on the misclassification error is obtained.

While most supervised manifold learning methods in the literature focus on achieving

a large separation between the training samples from different classes in the embed-

ding, the condition (3.1) in the above theoretical analysis points to a critical com-

promise that must be sought in supervised dimensionality reduction: Achieving high

separation between different classes in the training set does not necessarily mean

that the classifier will generalize well to test samples. The presence of a sufficiently

regular interpolator is furthermore needed, so that the Lipschitz constant L of the in-

terpolator remains below a threshold determined by the separation margin γ of the

embedding. From this perspective, depending on the data distribution, increasing the

separation too much has the risk of forcing the interpolator to be too irregular, which

may in turn cause condition (3.1) to fail. What we propose to do in this thesis is to

learn the embedding {yi}Ni=1 together with the interpolator f in view of the condition

(3.1), which is detailed in the next section.

3.2 Problem Formulation

Given training points X = {xi}Ni=1 ⊂ Rn from M classes, our purpose is to learn

an embedding of data Y = {yi}Ni=1 ⊂ Rd together with a continuous interpolation

function f : Rn → Rd , such that f(xi) = yi. The interpolator f will then be used to

classify new test points x by mapping x to the low-dimensional domain Rd as f(x),

so that examining f(x) ∈ Rd with respect to the embedding Y of the training points

with known class labels provides an estimate of the class label of x.

Our method relies on the theoretical results presented in Section 3.1. Recall from

Theorem 1 that, a necessary condition to obtain good generalization performance is

Lδ +
√
dε+D2δ ≤

γ

2
.

In the sequel, we formulate a manifold learning problem in view of this condition,
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whose purpose is to make the the Lipschitz constant L of the interpolator and the

distance D2δ between neighboring points from the same class as small as possible,

while making the separation γ between different classes as large as possible, in order

to increase the chances that the above condition be met.

Let f(x) = [f 1(x) . . . fd(x)] ∈ Rd, where fk(x) is the k-th dimension of f(x), with

fk : Rn → R. We propose to choose the function f a radial basis function (RBF)

interpolator as RBF interpolators, which are a well-studied family of functions [8],

[27] with many desirable properties such as smoothness and adjustable spread around

anchor points. Hence, each component fk of f is of the form

fk(x) =
N∑
i=1

cki φ(‖x− xi‖) (3.3)

where φ : R → R+ is an RBF kernel, cki are the coefficients, and xi are the kernel

centers. A common choice for the RBF kernel is the Gaussian kernel φ(r) = e−r
2/σ2 ,

which we also adopt in this work. Under this setting, we now examine our three

entities of interest, namely the regularity of the interpolator, the distance between

neighboring points from the same class and the separation between different classes.

Interpolator regularity. We begin with deriving a Lipschitz constant for f in terms of

the function parameters. We first derive the Lipschitz constant Lφ of the RBF kernel,

i.e., we seek a constant Lφ such that

|φ(u)− φ(v)| 6 Lφ|u− v|

for all u, v ∈ R. It is easy to show that the derivative of φ(r) = e−r
2/σ2 takes is

maximum magnitude at r = σ/
√

2, so that for all r,∣∣∣∣dφ(r)

dr

∣∣∣∣ 6
∣∣∣∣∣dφ(t)

dt

∣∣∣∣
t=σ/

√
2

∣∣∣∣∣ =
√

2e−
1
2σ−1.

This upper bound on the derivative magnitude provides the Lipschitz constant Lφ =
√

2e−
1
2σ−1 for the Gaussian kernel. Then we derive the Lipschitz constant of f(x) as

follows. First, observe that

|fk(u)− fk(v)| =

∣∣∣∣∣
N∑
i=1

cki
(
φ(‖u− xi‖)− φ(‖v − xi‖)

)∣∣∣∣∣
6

N∑
i=1

|cki | |φ(‖u− xi‖)− φ(‖v − xi‖)|
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where the second term inside the sum can be upper bounded as

|φ(‖u− xi‖)− φ(‖v − xi‖)| 6 Lφ
∣∣‖u− xi‖ − ‖v − xi‖∣∣ 6 Lφ‖u− v‖.

This gives in the above equation

|fk(u)− fk(v)| 6 Lφ

N∑
i=1

|cki |‖u− v‖ 6 Lφ‖ck‖1‖u− v‖ 6
√
NLφ ‖ck‖‖u− v‖

where ck = [ck1 . . . c
k
N ]T denotes the coefficient vector of the function fk and ‖ · ‖1 is

the `1-norm of a vector. Then we have

‖f(u)− f(v)‖ =

√√√√ d∑
k=1

|fk(u)− fk(v)|2 6

√√√√ d∑
k=1

NL2
φ‖ck‖

2‖u− v‖2

=
√
NLφ‖u− v‖

√√√√ d∑
k=1

‖ck‖2 =
√
NLφ‖C‖F‖u− v‖

where ‖ · ‖F denotes the Frobenius norm of a matrix and C is the matrix consisting

of the RBF coefficients

C =


c11 . . cd1

. . . .

c1N . . cdN

 .

Hence, we get

‖f(u)− f(v)‖ 6 L‖u− v‖

where L :=
√
NLφ‖C‖F is the Lipschitz constant of f(x). Then, in order to min-

imize the Lipschitz constant of f(x), we need to minimize the terms Lφ and ‖C‖F .

From the form (3.3) of the interpolator components and the fact that the interpola-

tor values at training points must correspond to the coordinates of the embedding

yi = f(xi), we get the relation

ΨC = Y

where Ψ is the matrix consisting of the values of the RBF kernels

Ψ =


φ(‖x1 − x1‖) φ(‖x1 − x2‖) · · · φ(‖x1 − xN‖)

· · · · · ·
φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)


and Y is an N × d matrix consisting of the coordinates of the embeddings of the

training samples

Y = [y1 y2 . . . yN ]T .
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Then the coefficient matrix is given by C = Ψ−1Y , so that

‖C‖2F = ‖Ψ−1Y ‖2F = tr(Y TΨ−2Y ). (3.4)

In order to keep the Lipschitz constant L =
√
NLφ‖C‖F of the interpolator small in

the learnt embedding, we need to keep both the Lipschitz constant Lφ of the Gaussian

kernel and the norm ‖C‖F of the coefficient matrix small. Using the expression of

‖C‖2F in (3.4) and recalling that Lφ =
√

2e−
1
2σ−1, we thus propose to minimize the

following objective for controlling the interpolator regularity

min tr(Y TΨ−2Y ) +
µ

σ2
(3.5)

where µ is a weight parameter. The objective is chosen proportionally to the squares

of the terms ‖C‖F and Lφ instead of themselves, due to the convenience of the ana-

lytical expression obtained for ‖C‖2F in (3.4).

Distance between neighboring points from the same class. Recall from Theorem 1

that the condition (3.1) required for good classification performance necessitates the

termD2δ to be sufficiently small, whereDδ is an upper bound on the distance between

the embeddings of nearby samples, i.e., ‖yi − yj‖ < Dδ whenever ‖xi − xj‖ 6 δ. It

is not easy to study the distance ‖yi − yj‖ in relation with the ambient space distance

‖xi − xj‖ for each pair of samples xi, xj . Nevertheless, we adopt a constructive

solution here and relax this problem to the minimization of the distance between

the embeddings of nearby points from the same class. The total distance between the

embeddings of neighboring points from the same class, weighted by the edge weights,

is given by ∑
xi,xj : C(xi)=C(xj)

‖yi − yj‖2wij = tr(Y TLwY )

where Ww is the within-class weight matrix containing edge weights wij only be-

tween neighboring samples from the same class, and Lw = Dw −Ww is the corre-

sponding within-class Laplacian matrix. Hence, the objective

min tr(Y TLwY ) (3.6)

used in several previous works as discussed in Chapter 2 is an appropriate choice for

our purpose.
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Separation between samples from different classes. The last entity to be examined

in view of the condition (3.1) is the separation margin γ. In order to satisfy the

condition (3.1) more easily, the separation between the samples between different

classes must be sufficiently high. Although the margin γ denotes a lower bound for

the distance ‖yi− yj‖ between any pair of samples from different classes in Theorem

1, the examination of the minimum value of ‖yi − yj‖ for all pairs of samples is

a relatively hard problem. We propose to relax this and evaluate the total distance

between the embeddings of different-class samples in this study. Hence, in order to

increase the separation margin γ, we propose to maximize

∑
C(xi) 6=C(xj)

‖yi − yj‖2 = tr(Y TLbY )

where Wb is a between-class weight matrix given by

Wb(i, j) =

1 if C(xi) 6= C(xj)

0 if C(xi) = C(xj)

and Lb = Db −Wb is the corresponding between-class Laplacian matrix. Thus, the

maximization of the separation margin is represented by the objective function

max tr(Y TLbY ). (3.7)

Overall formulation. Now, bringing together the objective functions presented in

(3.5), (3.6), and (3.7), we propose to solve the following optimization problem for

learning an embedding Y together with its corresponding interpolator:

min
Y,σ

tr(Y TLwY )− µ1tr(Y
TLbY ) + µ2tr(Y

TΨ−2Y ) + µ3/σ
2, s.t. Y TY = I (3.8)

Here µ1, µ2, and µ3 are positive weights that balance the different terms in the ob-

jective function, and the normalization condition Y TY = I is imposed in order to

prevent solutions with arbitrarily small embedding coordinates that trivially minimize

the objective.
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3.3 The algorithm

We minimize the proposed objective function (3.8) with an alternating, iterative opti-

mization algorithm. In each iteration, we first fix the scale parameter σ and optimize

the embedding coordinates Y , which is then followed by fixing Y and optimizing σ.

Optimization of Y . When the scale parameter σ is fixed, the minimization of the

objective (3.8) is equivalent to the following optimization problem

Y ∗ = arg min
Y

tr(Y TLwY )− µ1tr(Y
TLbY ) + µ2tr(Y

TΨ−2Y ) s.t. Y TY = I

= arg min
Y

tr
(
Y T (Lw − µ1Lb + µ2Ψ

−2)Y
)

s.t. Y TY = I.

(3.9)

The solution to this problem is given by the N × d matrix Y ∗ whose k-th column

consists of the eigenvector of the matrix

A = Lw − µ1Lb + µ2Ψ
−2 (3.10)

that corresponds to its k-th smallest eigenvalue, for k = 1, . . . , d. Note that as A

is a symmetric matrix, its eigenvectors are orthonormal, hence the learnt embedding

satisfies the condition Y TY = I .

Optimization of σ. Note that the dependence of the objective function (3.8) on the

scale parameter σ is through its third term µ2tr(Y
TΨ−2Y ) and fourth term µ3/σ

2.

Hence, when the embedding Y is fixed, the optimization of the objective can be

achieved by solving

σ∗ = arg min
σ

µ2tr(Y
TΨ−2Y ) +

µ3

σ2
. (3.11)

The objective in (3.11) is not a convex function of σ in general. Nevertheless, a useful

observation is the following: As the entries of the matrix Ψ consist of the RBF kernel

terms

φ(‖xi − xj‖) = exp

(
−‖xi − xj‖

2

σ2

)
the matrix Ψ and its inverse Ψ−1 have poor conditioning when σ takes arbitrarily large

values. Hence, the first term tr(Y TΨ−2Y ) of in (3.11) increases with increasing large

values of σ. On the other hand, the term σ−2 approaches infinity as σ approaches
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Algorithm 1 Nonlinear Supervised Smooth Embedding (NSSE)
1: Input:

X = {xi}Ni=1 ⊂ Rn: Training samples with known class labels

d: Embedding dimension

µ1, µ2, µ3: Weight parameters

2: Initialization: Set kernel scale σ∗ to a typical positive value.

3: repeat

4: Fix σ = σ∗ and optimize Y by solving

Y ∗ = arg minY tr
(
Y T (Lw − µ1Lb + µ2Ψ

−2)Y
)

s.t. Y TY = I

5: Fix Y = Y ∗ and optimize σ by solving

σ∗ = arg minσ µ2tr(Y
TΨ−2Y ) + µ3σ

−2

6: until Objective function in (3.8) is stabilized

7: Compute interpolator coefficients as C = Ψ−1Y .

8: Output:

Y = {yi}Ni=1 ⊂ Rd: Embedding of training samples

f : Rn → Rd: Interpolation function

0. These observations imply that that there exists a positive kernel scale σ∗ > 0 that

minimizes the objective (3.11). As the problem (3.11) requires the optimization of

a single parameter σ and has a differentiable objective, the optimal value σ∗ can be

computed in practice via a basic descent-type optimization algorithm or with exhaus-

tive search within a typical range of σ values.

These steps for the alternating optimization of Y and σ are applied successively until

the stabilization of the objective function. Note that if µ1 is chosen sufficiently small

to make the matrix A in (3.10) positive semi definite, the overall objective function

(3.8) is positive. In this case, since both of the alternating optimization steps in (3.9)

and (3.11) bring updates that cannot increase the objective function in each iteration,

being bounded from below, the objective function is guaranteed to converge.

Once the embedding Y of the training points and the kernel scale parameter σ are

computed in this way, the interpolation function f is simply obtained as in (3.3) by

computing the coefficients cki as C = Ψ−1Y . We call the proposed method Nonlinear

Supervised Smooth Embedding (NSSE) and give its description in Algorithm 1.
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3.4 Complexity of the Proposed Method

We now analyze the computational complexity of the NSSE method. The proposed

algorithm is composed of three main stages, which are the initialization stage (calcu-

lation of the Lw and Lb matrices), the main loop between steps 3 and 6 of Algorithm

1, and the finalization stage in step 7.

In the initialization step, the complexity of the computation ofLw andLb is mainly de-

termined by the complexity of computing the within-class and between-class weight

matrices Ww and Wb, which is of O(nN2).

We next consider the main loop of the algorithm. The matrix Ψ in step 4 can be

calculated with complexity O(nN2) and it is inverted with complexity O(N3) to ob-

tain Ψ−1. As a result, the computation of Ψ−2 is of complexity O(nN2) + O(N3).

In order to find Y ∗ in step 4, the eigenvectors of Lw − µ1Lb + µ2Ψ
−2 should be

found, which is of complexity O(N3). Consequently, the total complexity of step 4 is

O(nN2) + O(N3). In step 5, the expression µ2tr(Y
TΨ−2Y ) + µ3σ

−2 must be com-

puted repeatedly to find σ∗, which is of complexity O(N3). Hence, the complexity of

the main loop of the algorithm is found as O(nN2) +O(N3).

In step 7, the complexity of the calculation of Ψ−1 is O(N3), and the matrix product

Ψ−1Y is of complexity O(dN2). We may assume d � N , which then gives the

complexity of step 7 as of O(N3). Combining this with the previous stages, the

overall complexity of the algorithm is found as O(nN2) +O(N3).
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CHAPTER 4

EXPERIMENTAL RESULTS

In this chapter, we evaluate the performance of the proposed NSSE method on six real

data sets. We first describe the used datasets, then study the behavior of the NSSE

algorithm throughout the iterations, and then compare the performance of NSSE with

that of other supervised manifold learning algorithms and traditional classifiers.

4.1 Datasets and Experimentation Settings

We experiment on the data sets listed below. Some sample images from one class of

each data set are presented in Figure 4.1.

Yale Face Database. The data set consists of 2242 greyscale face images of 38 dif-

ferent subjects, where each subject has 59 images [19]. All images are taken from a

single viewpoint with variations in the lighting angles and lighting rates.

COIL-20 Database. The Columbia Object Image Library database consists of 1440

grayscale images of 20 different objects, where each object has 72 images captured

by rotation increments of 5 degrees [23].

ORL Database. The database consists of a total of 400 images, with 10 images of each

one of the 40 subjects taken in an upright, frontal position [31]. The images contain

variations in the the lighting, facial expressions and facial details such as glasses.

FEI Database. The FEI database is a Brazilian face database containing a total of

2800 images, with 14 images for each one of the 200 subjects taken in an upright
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(a) Yale database (b) COIL-20 database (c) ORL database

(d) FEI database (e) ROBOTICS-CSIE database

(f) MIT-CBCL database

Figure 4.1: Sample images from one class of the used databases

frontal position with profile rotation of up to about 180 degrees and scale variation of

about 10% [35]. We experiment on 50 classes from this database.

ROBOTICS-CSIE Database. The database contains a total of 3330 grayscale face

images of 90 subjects, with 37 images for each subject captured under rotation incre-

ments of 5 degrees [3]. We experiment on 40 classes from this database.

MIT-CBCL Database. The database contains face images of 10 subjects [2]. We

experiment on a total of 5240 images, with 524 images per subject captured under

rotations of up to 30 degrees and varying illumination conditions.

We experiment on greyscale versions of the images resized to around 25 × 25 pix-

els. All experiments are conducted in a supervised setup, by randomly separating

the images into a training set and a test set in each repetition of the experiment. In

all experiments, the proposed NSSE algorithm is evaluated in a setting where the

training images are used to learn a continuous embedding into a low-dimensional do-

main. The test images are then mapped to the domain of embedding via the learnt

interpolator and their class labels are estimated via nearest neighbor classification in

the low-dimensional domain. The graph edge weights are set with a Gaussian ker-

nel. In all experiments, the weight parameters µ1, µ2, and µ3 of NSSE are set with

cross-validation. According to results of the cross-validation, in order to obtain good

results, µ values should be selected around the values given in Table 4.1.
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Table 4.1: µ values found from cross-validation

Databases µ1 µ2 µ3

YALE 40 0.0001 4

COIL-20 3 0.01 4

MIT-CBCL 400 0.0003 1.2

FEI 400 0.0005 2

ORL 900 0.005 0.3

ROBOTICS-CSIE 400 0.008 3

4.2 Study of the iterative optimization procedure

In this first experiment, we study the iterative optimization procedure employed in

the proposed method. As discussed in Section 3.3, the NSSE algorithm follows an

alternating optimization scheme by minimizing the objective function in (3.8) first

with respect to the embedding Y of the training samples, and then the scale parameter

σ of the RBF kernels.

The results given in Figure 4.2 are obtained on the FEI face data set, where an embed-

ding into a d = 10 dimensional domain is computed using a total of 100 training sam-

ples. Figure 4.2(a) shows the variation of the objective function in (3.8) throughout

the iterations. Although the proposed alternating optimization procedure is not theo-

retically guaranteed to find the global optimum of the objective, it is observed from

the figure that the proposed scheme can effectively minimize the objective function,

which converges in a small number of iterations. The misclassification rates of the

test images in percentage are reported in Figure 4.2(b) obtained with the embeddings

and interpolators computed in each iteration. The results show that the progressive

update of the continuous embedding throughout the iterations improves the classifi-

cation performance. The comparison of the plots in Figures 4.2(a) and 4.2(b) reveals

that the variations of the objective function and the misclassification rate throughout

the iterations are quite similar. This suggests that the choice of the objective function

in (3.8), motivated by theoretical bounds, indeed matches the actual classification er-

ror. Figure 4.2(c) shows the evolution of the RBF kernel scale parameter σ throughout
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Figure 4.2: Algorithm performance throughout the iterative optimization procedure

when initialized with a high RBF kernel scale. (a) Convergence of the objective

function (b) Stabilization of the misclassification rate (c) Stabilization of the RBF

kernel scale σ

the iterations. The RBF kernel scale σ is deliberately initialized with a too high value

in this experiment in order to study the effect of the initial conditions on the algorithm

performance. Despite the initialization of σ with a too large value, the iterative min-

imization of the objective gradually pulls the kernel scale towards a favorable value

that improves the classification performance.
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Figure 4.3: Algorithm performance throughout the iterative optimization procedure

when initialized with a low RBF kernel scale. (a) Convergence of the objective func-

tion (b) Stabilization of the misclassification rate (c) Stabilization of the RBF kernel

scale σ

The same experiment is repeated in Figure 4.3, by initializing the RBF kernel scale

this time with a small value. It is observed that the RBF scale σ is effectively op-

timized throughout the iterations towards a larger value, which gradually decreases
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the objective function and improves the classification accuracy. These results suggest

that the algorithm performance is not affected much by the initialization of the RBF

kernel scale. We have obtained similar results on the other data sets and under differ-

ent choices of the parameters such as the number of training samples, which we skip

here for brevity.

4.3 Variation of the classification performance with the embedding dimension

We now study the classification performance of the proposed algorithm in relation

with the dimension d of the embedding. The proposed NSSE method is compared

with the algorithms listed below.

(SUPLAP) The Supervised Laplacian Eigenmaps method proposed in [29] computes

a nonlinear low-dimensional embedding of the training samples by minimizing the

objective in (2.69). We extend the embedding of the training samples given by the

SUPLAP method to the whole space via an RBF interpolator of the same form as in

NSSE. We then embed the test samples into the low-dimensional domain with this

interpolation function.

(LFDA) The Local Fisher Discriminant Analysis method proposed in [33] is a super-

vised manifold learning algorithm that computes a linear embedding by optimizing a

Fisher-type cost with additional locality preservation objectives.

(LDE) The Local Discriminant Embedding method [14] is a manifold learning method

that optimizes a similar objective as in the SUPLAP method; however, learns a linear

projection.

(LDA) Linear Discriminant Analysis is a classical dimensionality reduction technique

that maximizes the between-class scatter while minimizing the within-class scatter.

These algorithms are described in more detail in Chapter 2. The dimensionality re-

duction methods are applied on training samples to compute a d-dimensional embed-

ding, which is then used to classify test samples via nearest neighbor classification

in the domain of embedding. The algorithms are evaluated for a range of d values.

The parameters of the other methods in comparison are adjusted to attain their best
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performance.

The variation of the misclassification rates of test samples in percentage with the di-

mension d of the embedding is presented in Figures 4.4 - 4.13, for the Yale, COIL-20,

MIT-CBCL, FEI, ORL and the ROBOTICS-CSIE databases. The number of training

images used in the computation of the embeddings are indicated in the figure captions

for each experiment. The results are the average of 20 random realizations of the ex-

periments with different training and test sets. Most of the tested methods are based

on solving a generalized eigenvalue problem and the rank of the involved matrices

may be different for each method depending on the number of training samples and

the number of classes. Hence, the maximum possible dimension of the embedding

may vary between different methods, as well as the best range of dimensions where

the methods perform well. For this reason, the results on each data set are grouped

into two figures with different d ranges for better visual clarity.

5 10 15 20 25 30 35 40
20

30

40

50

60

70

80

d

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

e 
(%

)

 

 

NSSE
SUPLAP
LDA

(a) NSSE, SUPLAP and LDA

0 50 100 150 200
20

22

24

26

28

30

d

M
is

cl
as

si
fi

ca
ti

o
n

 r
at

e 
(%

)

 

 

LFDA
LDE

(b) LFDA and LDE

Figure 4.4: Variation of the misclassification rate with the embedding dimension in

Yale dataset, with 6 training samples per class

The results in Figures 4.4-4.13 show that the classification righteousness of the pro-

posed NSSE algorithm compares quite favorably to those of the other methods, as

NSSE often yields the smallest misclassification rate. The misclassification rate of

LDA is observed to decrease monotonically with the dimension d and its best per-

formance is attained when d reaches the number of classes. The LDE and LFDA

algorithms exhibit their best performances at much higher dimensions compared to

the other algorithms. The error rates of these algorithms may decrease as the embed-
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Figure 4.5: Variation of the misclassification rate with the embedding dimension in

Yale dataset, with 10 training samples per class
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Figure 4.6: Variation of the misclassification rate with the embedding dimension in

Coil20 dataset, with 7 training samples per class

ding dimension increases; however, in some datasets a local optimum for d can also

be observed.

Among all methods, the nonlinear NSSE and SUPLAP methods often perform bet-

ter than the linear LDA, LFDA, and LDE methods. This shows that the flexibility

of nonlinear methods when learning an embedding is likely to bring an advantage

in computing better representations for data. It is then interesting to compare the

performances of the two nonlinear methods; NSSE and SUPLAP. The SUPLAP al-

gorithm attains its best performance when the dimension d of the embedding is close
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Figure 4.7: Variation of the misclassification rate with the embedding dimension in

Coil20 dataset, with 10 training samples per class
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Figure 4.8: Variation of the misclassification rate with the embedding dimension in

MITCBCL dataset, with 10 training samples per class

to the number of classes, while the optimum value of d for the proposed NSSE al-

gorithm is smaller in most data sets. Interestingly, the optimal dimension of NSSE

is much smaller than that of SUPLAP in data sets with a low intrinsic dimension

such as COIL-20, FEI, and ROBOTICS-CSIE, which are generated by the variation

of only one or two camera angle parameters. Similarly, in data sets of larger intrinsic

dimension such as MIT-CBCL due to several pose and lighting parameters, the op-

timal dimension of NSSE is higher and closer to that of SUPLAP. This may suggest

that the embedding computed with NSSE tries to capture the intrinsic geometry of
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Figure 4.9: Variation of the misclassification rate with the embedding dimension in

FEI dataset, with 2 training samples per class
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Figure 4.10: Variation of the misclassification rate with the embedding dimension in

FEI dataset, with 4 training samples per class

data and provides a better representation when the embedding dimension is chosen

proportionally to the intrinsic dimension of data.

The reduction of the embedding dimension is desirable especially regarding the com-

plexity of the classification of test samples in a practical application. Another ad-

vantage of NSSE over SUPLAP is that NSSE is less sensitive to the choice of the

dimension, as the misclassification performance is less affected for non-optimal val-

ues of d. Such benefits of the proposed NSSE algorithm mainly result from the fact

that the Lipschitz continuity of the interpolator is imposed in the learning objective.
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Figure 4.11: Variation of the misclassification rate with the embedding dimension in

ORL dataset, with 2 training samples per class
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Figure 4.12: Variation of the misclassification rate with the embedding dimension in

ORL dataset, with 3 training samples per class

Consequently, the training samples are embedded more evenly in the low-dimensional

space so as to allow the construction of a regular interpolator, which in return reduces

the required number of dimensions or the sensitivity to the non-optimal choice of d.

In fact, Figure 4.14 provides a visual comparison of the embeddings obtained with

the NSSE and the SUPLAP algorithms. Panels (a) and (b) show the two-dimensional

embeddings of 70 training samples from 10 classes of the ROBOTICS-CSIE data set,

respectively with the NSSE and the SUPLAP methods. The embeddings of training

samples look similar between the two methods, although different classes are more
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Figure 4.13: Variation of the misclassification rate with the embedding dimension in

ROBOTICS-CSIE dataset, with 7 training samples per class

regularly spaced in NSSE. The performance difference between these two methods

becomes much clearer when the embeddings of the test samples in panels (c) and (d)

are observed. Even at this very small embedding dimension of 2, the NSSE method

separates test samples from different classes much more successfully than SUPLAP,

which is due to the inclusion of the interpolator parameters in the learning objective

in order to attain good generalization performance.

The embedding of training and test data onto a 2-dimensional space is provided also

in Figure 4.15 but a previously unseen class is also embedded beside the test data at

this time. Panels (a) and (b) are deduced from 70 training samples from 10 classes

of the ROBOTICS-CSIE data set. A previously unseen new class is embedded with

the learnt interpolator and the 2-dimensional embedding of the new class is shown

as black filled diamond shape in Panel (b). Although the proposed method is not

developed for previously unseen classes, the learnt interpolator takes the untrained

class to a place that can be considered reasonable in the 2-dimensional embedding

space.
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Figure 4.14: Visual comparison of the embeddings given by the NSSE and SUPLAP

algorithms

4.4 Overall comparison with baseline classifiers and supervised dimensionality

reduction methods

We now provide an overall comparison of the proposed NSSE method with baseline

classifiers and other supervised manifold learning methods. We compare NSSE with

the supervised manifold learning algorithms discussed in Section 4.3, as well as the

SVM and the nearest neighbor (NN) classifiers in the original domain. The embed-

ding dimensions and other algorithm parameters of the manifold learning methods

are set to their optimal values yielding the best performance. The classification errors

over test samples are studied by varying the training/test ratio and the results are av-
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Figure 4.15: Embedding of training and test samples (including an untrained class)

eraged over 20 realizations of the experiments under different random choices of the

training and test samples.

The misclassification rates of test samples in percentage are presented for the com-

pared methods for different training data sizes in Tables 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,

respectively for the Yale, COIL-20, ORL, FEI, ROBOTICS-CSIE, and MIT-CBCL

data sets. The leftmost columns of the tables show the number of training samples

per class used for learning the classifiers. Experiments are conducted over a suitable

range of number of training samples for each data set, considering the total number of

samples in the data set. The smallest classification error of each experiment is shown

in bold.

The proposed NSSE method is observed to often outperform the other methods in Ta-

bles 4.2-4.7. The performances of the algorithms improve as the number of training

samples increases as expected, while the algorithm closest in performance to NSSE in

almost all experiments is the nonlinear supervised manifold learning algorithm SU-

PLAP. On the other hand, the linear manifold learning algorithms LFDA, LDA, and

LDE exhibit variable performance depending on the data set. Their comparison to

the baseline SVM and NN classifiers shows that these linear methods may get outper-

formed by baseline classifiers especially when the number of samples is sufficiently

high, while the nonlinear NSSE and SUPLAP methods often yield better performance

than these baseline classifiers. The proposed NSSE often outperforms the SUPLAP
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method, with the performance gap being more significant especially when the num-

ber of training samples is limited. This can be explained with the fact that the lack

of training samples is likely to lead to degenerate embeddings in nonlinear methods

computing a pointwise embedding as in SUPLAP, while the regularization term en-

forcing the regularity of the interpolator in NSSE proves effective for the prevention

of such degeneracies and ensuring the preservation of the overall geometric structure

of data in the embedding.

Table 4.2: Misclassification rates (%) of compared methods on Yale database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

6 22.09 23.10 29.43 63.48 26.88 35.85 20.04

10 12.59 12.92 15.16 52.89 40.62 63.97 21.78

15 7.52 7.95 9.09 43.57 10.77 57.86 7.95

20 5.02 5.60 6.14 37.51 7.42 52.79 5.15

30 2.56 2.56 2.98 30.12 3.22 46.43 3.04

Table 4.3: Misclassification rates (%) of compared methods on COIL-20 database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

7 9.18 10.97 10.38 13.89 17.93 11.84 20.86

10 5.88 6.81 6.92 10.21 13.59 7.68 16.84

15 3.26 3.84 4.59 6.87 11.32 4.22 14.00

20 1.50 2.03 3.23 4.51 9.53 2.28 12.64

30 0.81 0.80 2.27 2.30 7.08 0.99 13.27

Table 4.4: Misclassification rates (%) of compared methods on ORL database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

2 14.63 16.04 19.73 19.34 27.69 21.17 24.91

3 8.54 9.48 10.70 12.96 14.89 13.13 12.73

5 3.90 5.31 4.35 6.91 8.10 7.73 7.05
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Table 4.5: Misclassification rates (%) of compared methods on FEI database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

2 21.45 27.06 35.37 32.13 29.82 30.92 30.05

4 8.28 12.46 12.85 19.45 12.90 12.56 10.80

7 5.06 6.41 9.09 10.85 9.74 5.40 7.76

Table 4.6: Misclassification rates (%) of compared methods on ROBOTICS-CSIE

database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

7 13.55 27.22 23.96 34.46 24.87 29.42 25.13

14 4.38 11.73 8.77 17.80 11.96 14.15 9.73

21 2.83 6.51 4.76 10.09 6.99 10.56 5.88

Table 4.7: Misclassification rates (%) of compared methods on MIT-CBCL database

# Training / class NSSE SUPLAP SVM NN LFDA LDA LDE

10 6.48 7.31 9.90 14.42 12.32 18.43 9.69

20 2.56 3.38 4.18 5.64 8.36 8.38 6.01

40 0.85 1.21 1.52 1.45 5.29 3.18 2.97
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CHAPTER 5

CONCLUSION

In this thesis, we have proposed a nonlinear supervised manifold learning method

that learns an embedding of the training data jointly with a smooth RBF interpolation

function that extends the embedding to the whole space. The embedding and the

interpolator parameters are jointly optimized with the purpose of good generalization

to initially unavailable data, based on recent theoretical results on the performance

of supervised manifold learning algorithms. In particular, the embedding and the

RBF paramaters are learnt such that the interpolator has sufficiently good Lipschitz

regularity while the samples from different classes are separated as much as possible.

We have tested the performance of the proposed NSSE method by three different ex-

periments conducted on six real data sets. In the first experiment, the behavior of the

proposed method in the iterative optimization procedure is observed. The objective

function shows a rapid decline from an initially high value until convergence. Thanks

to this rapid decline, the objective function is stabilized in only a few iterations. For

each iteration, the misclassification rate falls in parallel with the objective function.

This indicates that the proposed objective function can serve the desired purpose suc-

cessfully. We have also observed the behavior of the RBF kernel scale σ for each

iteration. Even if the RBF kernel scale σ is initially selected to be too high or too

low, it moves toward a more favorable value with iterations. The RBF kernel scale

σ reaches its final value when the objective function converges. As a result, as the

objective function converges, the classification error is reduced and the RBF kernel

scale automatically reaches a good value.

In the second experiment, the classification performance of the proposed algorithm
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according to the embedding dimension is investigated. The proposed NSSE method in

this context is compared with the SUPLAP, LFDA, LDE, LDA algorithms described

in Chapter 2. In cases where the embedding dimension is too low, the error rates of

the other algorithms except for the NSSE are much higher than the NSSE. When the

embedding dimension is increased, the error rate of the LDA decreases monotoni-

cally. However, the maximum limit of the embedding dimension of the LDA is up

to the number of classes. Best performances of the LDE and the LFDA algorithms

depend on the dataset. The misclassification rates of these algorithms may decrease

as the embedding dimension increases; however, in some datasets a local optimum

for the embedding dimension can also be observed. The SUPLAP shows the best

performance at a dimension close to the number of classes. The optimal embedding

dimension of our proposed algorithm is observed to be highly related to the number

of degrees of freedom, i.e., the intrinsic dimension, of the data set. For example the

optimum dimension of the NSSE is low in the COIL-20, FEI and ROBOTICS-CSIE

datasets which have low degrees of freedom and the optimum dimension of the NSSE

is higher in the MIT-CBCL dataset which have higher degrees of freedom. This shows

that our algorithm is better fit to the intrinsic geometry of the original data manifold.

Another advantage of the NSSE over the other algorithms is its robostness against

nonoptimal selection of the embedding dimension which does not affect the perfor-

mance of the NSSE very much. However other algorithms are affected significantly

with the change of the embedding dimension. The proposed NSSE algorithm achieves

this through imposing the Lipschitz continuity of the interpolator in the learning ob-

jective function. In all these methods, the nonlinear NSSE and SUPLAP algorithms

seem to perform better than LDA, LDE and LFDA which are linear methods. This

shows that the flexibility of nonlinear methods when learning an embedding is likely

to bring an advantage in computing better representations for data.

Figure 4.14 gives a visual comparison of NSSE and SUPLAP. Embedding of train-

ing samples seems to be successful in both methods although embedding of training

samples is distributed more regularly for the NSSE method. However, if we would

look at the generalization of the embedding to the initially unavailable test samples,

the NSSE does this task much better than the SUPLAP as it can be seen in the figure.
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In our last experiment, the best performances of algorithms in all datasets have been

compared. SVM and Nearest Neighbor (NN) classifiers applied in the original data

domain are also included in this comparison. We have observed that the proposed

NSSE often outperformed the other algorithms in comparison. Especially when the

number of available training samples is insufficient in comparison with the number of

classes such as in the FEI and ROBOTICS-CSIE datasets, the performance gap of the

NSSE over the other methods becomes more significant. This shows that explicitly

including the generalization performance in the learning via the interpolator regular-

ity brings robustness in the classification performance for scarcely sampled data sets.

From a general perspective, these comparative experiments suggest that in settings

where the training data is limited, employing priors on the data model in the learn-

ing, such as the low-dimensionality of the data as in this thesis, may be preferable to

learning generic classifiers that assume no data priors. This contrasts with the favor-

ableness of generic classifiers with rich models, e.g. deep learning methods, when

vast amounts of training data are available.

In the proposed method, several algorithm parameters need to be tuned, such as the

kernel scale and weight parameters. To begin with, as we have previously observed,

the choice of the RBF kernel scale does not affect the performance of the proposed

method as it is optimized throughout the learning process. However, there is no

method for selecting the weight parameters in the objective function. The weight

parameters can be found by the cross validation process to be performed with the

training data that is initially available. For the calculation of the withing-class Lapla-

cian matrix Lw in the proposed algorithm, the within-class weight matrix Ww must

be calculated first. Since the sensitivity of the proposed method to the heat kernel is

low, the heat kernel parameter is set to a typical positive value in our experiments. In

addition, all samples in the same class are treated as neighbors in the matrix Ww. One

of the future works on this algorithm might be to develop a method to find the optimal

value of these weight parameters without dealing with the cross validation process.

Conventional linear dimensionality reduction methods such as FDA suffer from diffi-

culties if the samples in a class are multimodal, that is, if the same data class is made

up of separate clusters. Because such methods assume that samples in the same class

have a continuous and Gaussian distribution. Unfortunately, this is not always the
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case in reality. In such cases, the algorithm used should give importance to preserv-

ing the local structure of the original data. Non-linear methods, for example Locally

Linear Embedding (LLE), Laplacian Eigenmaps (LE), Isomap, Supervised Laplacian

Eigenmaps (SUPLAP) and our method, are more successful in preserving the original

data structure. We already know that non-linear methods are more flexible in repre-

senting the original structure of the data set. However, these aforementioned linear

and nonlinear algorithms and our algorithm build only a single graph that considers

the data structure as a whole. No extra prevention has been taken against the risk of

being multimodal. Each class in the data sets in our experiments creates a continu-

ous manifold in space. In the case that the data set is multimodal, for our algorithm,

perhaps the construction of more than one graph for each class can improve the algo-

rithm performance. And also, the embedding of these graphs is another problem that

needs to be solved.

In the experiments we have done, we knew the class label information in each of the

data sets. However, one can also consider settings where the class label information of

some data samples is not available. In this case, we would need to adapt our algorithm

for semi-supervised learning to take advantage of unlabeled data.

Another important point is that the training and test data are not always collected

under the same capturing conditions. This can cause training and test data to have

different distributions in the data space. However, both the training and the test data

have the same distribution in our experiments. Another future direction of our work

is its extension to overcome this problem.

Another extension that can be done for the proposed method may be an adaptation for

zero-shot learning problems. Learning style of the interpolator may be modified such

that previously unseen classes are also embedded on reasonable places in the lower

dimensional embedding space.

To sum up, this thesis study shows that nonlinear dimensionality reduction may yield

promising results in machine learning problems where the data is known to have a

low-dimensional structure. The idea of explicitly taking the generalization perfor-

mance of algorithms into account in the learning can potentially be extended to other

settings as well in the future.
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